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Preface to the First Edition

Thirty years have passed since the pioneering work of Kimeldorf andWahba
(1970a, 1970b, 1971) and Good and Gaskins (1971), and during this time,
a rich body of literature has been developed on smoothing methods with
roughness penalties. There have been two books solely devoted to the sub-
ject prior to this one, of which Wahba (1990) compiled an excellent synthe-
sis for work up to that date, and Green and Silverman (1994) provided a
mathematically gentler introduction to the field through regression models
that are largely univariate.
Much has happened in the past decade, and more has been done with

the penalty method than just regression. In this book, I have tried to as-
semble a comprehensive treatment of penalty smoothing under a unified
framework. Treated are (i) regression with Gaussian and non-Gaussian re-
sponses as well as with censored lifetime data, (ii) density and conditional
density estimation under a variety of sampling schemes, and (iii) hazard
rate estimation with censored lifetime data and covariates. The unifying
themes are the general penalized likelihood method and the construction
of multivariate models with certain ANOVA decompositions built in. Ex-
tensive discussions are devoted to model (penalty) construction, smooth-
ing parameter selection, computation, and asymptotic convergence. There
are, however, many omissions, and the selection and treatment of topics
solely reflect my personal preferences and views. Most of the materials
have appeared in the literature, but a few items are new, as noted in the
bibliographic notes at the end of the chapters.
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viii Preface to the First Edition

An adequate treatment of model construction in the context requires
some elementary knowledge of reproducing kernel Hilbert spaces, of which
a self-contained introduction is included early in the book; the materials
should be accessible to a second-year graduate student with a good training
in calculus and linear algebra. Also assumed is a working knowledge of basic
statistical inference such as linear models, maximum likelihood estimates,
etc. To better understand materials on hazard estimation, prior knowledge
of basic survival analysis would also help.
Most of the computational and data analytical tools discussed in the

book are implemented in R, an open-source clone of the popular S/Splus
language. Code for regression is reasonably polished and user-friendly and
has been distributed in the R package gss available through CRAN, the
Comprehensive R Archive Network, with the master site at

http://cran.r-project.org

The use of gss facilities is illustrated in the book through simulated and
real-data examples.
Remaining on my wish list are (i) polished, user-friendly software tools

for density estimation and hazard estimation, (ii) fast computation via ap-
proximate solutions of penalized likelihood problems, and (iii) handling of
parametric random effects such as those appearing in longitudinal models
and hazard models with frailty. All of the above are under active develop-
ment and could be addressed in a later edition of the book or, sooner than
that, in later releases of gss.
The book was conceived in Spring 1996 when I was on leave at the

Department of Statistics, University of Michigan, which offered me the
opportunity to teach a course on the subject. Work on the book has been
on and off since then, with much of the progress being made in the 1997–
1998 academic year during my visit at the National Institute of Statistical
Sciences, and in Fall 2000 when I was teaching a course on the subject at
Purdue.
I am indebted to Grace Wahba, who taught me smoothing splines, and

to Doug Bates, who taught me statistical computing. Bill Studden carefully
read various drafts of Chaps. 1, 2, and 4; his questions alerted me to nu-
merous accounts of mathematical sloppiness in the text and his suggestions
led to much improved presentations. Detailed comments and suggestions
by Nancy Heckman on a late draft helped me to fix numerous problems
throughout the first five chapters and to shape the final organization of the
book (e.g., the inclusion of §1.4). For various ways in which they helped,
I would also like to thank Mary Ellen Bock, Jerry Davis, Nels Grevstad,
Wensheng Guo, Alan Karr, Youngju Kim, Ping Ma, Jerry Sacks, Jingyuan
Wang, Yuedong Wang, Jeff Wu, Dong Xiang, Liqing Yan, and the classes at
Michigan and Purdue. Last but not least, I would like to thank the R Core
Team, for creating a most enjoyable platform for statistical computing.

West Lafayette, Indiana Chong Gu
July 2001

http://cran.r-project.org


Preface

When the first edition was published a decade ago, I wrote in the Preface:

Remaining on my wish list are (i) polished, user-friendly soft-
ware tools for density estimation and hazard estimation, (ii) fast
computation via approximate solutions of penalized likelihood
problems, and (iii) handling of parametric random effects such
as those appearing in longitudinal models and hazard models
with frailty.

I am happy to report that the wishes have been fulfilled, plus some more,
and it is time to present an updated treatise on smoothing methods with
roughness penalties.
The developments of software tools embodied in an R package gss have

gone a long way in the past decade, with the user-interface polished, func-
tionality expanded, and/or numerical efficiency improved from release to
release. The primary objective of this new edition is to introduce extensive
software illustrations to complement the theoretical and methodological
discussions, so the reader not only can read about the methods but also
can use them in everyday data analysis.
Newly developed theoretical, methodological, and computational tech-

niques are integrated in a few new chapters and new sections, along with
some previously omitted entries; due modifications are made in related
chapters and sections to maintain coherence. Empirical studies are ex-
panded, reorganized, and mostly rerun using the latest software.
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x Preface

Two appendices are also added. One appendix outlines the overall design
of the R package gss. The other presents some conceptual critiques on a
few issues concerning smoothing methods at large, which are potentially
controversial.
Much of the new materials that went into this edition were taken from

or inspired by collaborations or communications with Pang Du, Anouschka
Foltz, Chun Han, Young-Ju Kim, Yi Lin, Ping Ma, Christophe Pouzat,
JingyuanWang, and Tonglin Zhang, to whom I owe thanks. I can not thank
enough the R Core Team, for creating and maintaining a most enjoyable
platform for statistical computing.

West Lafayette, Indiana Chong Gu
August 2011
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1
Introduction

Data and models are two sources of information in a statistical analysis.
Data carry noise but are “unbiased,” whereas models, effectively a set of
constraints, help to reduce noise but are responsible for “biases.” Repre-
senting the two extremes on the spectrum of “bias-variance” trade-off are
standard parametric models and constraint-free nonparametric “models”
such as the empirical distribution for a probability density. In between the
two extremes, there exist scores of nonparametric or semiparametric mod-
els, of which most are also known as smoothing methods. A family of such
nonparametric models in a variety of stochastic settings can be derived
through the penalized likelihood method, forming the subject of this book.
The general penalized likelihood method can be readily abstracted from

the cubic smoothing spline as the solution to a minimization problem, and
its applications in regression, density estimation, and hazard estimation
set out the subject of study (§1.1). Some general notation is set in §1.2.
Multivariate statistical models can often be characterized through func-
tion decompositions similar to the classical analysis of variance (ANOVA)
decomposition, which we discuss in §1.3. To illustrate the potential appli-
cations of the methodology, previews of selected case studies are presented
in §1.4. Brief summaries of the chapters to follow are given in §1.5.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 1,
© Springer Science+Business Media New York 2013
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2 1. Introduction

1.1 Estimation Problem and Method

The problem to be addressed in this book is flexible function estimation
based on stochastic data. To allow for flexibility in the estimation of η, say,
soft constraints of the form J(η) ≤ ρ are used in lieu of the rigid constraints
of parametric models, where J(η) quantifies the roughness of η and ρ sets

the allowance; an example of J(η) for η on [0, 1] is
∫ 1

0
(d2η/dx2)2dx. Solving

the constrained maximum likelihood problem by the Lagrange method, one
is led to the penalized likelihood method.
In what follows, a brief discussion of the cubic smoothing spline helps

to motivate the idea, and a simple simulation illustrates the role of ρ
through the Lagrange multiplier, better known as the smoothing parameter
in the context. Following a straightforward abstraction, the penalized like-
lihood method is exemplified in regression, density estimation, and hazard
estimation.

1.1.1 Cubic Smoothing Spline

Consider a regression problem Yi = η(xi) + εi, i = 1, . . . , n, where xi ∈
[0, 1] and εi ∼ N(0, σ2). In a classical parametric regression analysis, η
is assumed to be of form η(x,β), known up to the parameters β, which
are to be estimated from the data. When η(x,β) is linear in β, one has
a standard linear model. A parametric model characterizes a set of rigid
constraints on η. The dimension of the model space (i.e., the number of
unknown parameters) is typically much smaller than the sample size n.
To avoid possible model misspecification in a parametric analysis, oth-

erwise known as bias, an alternative approach to estimation is to allow η
to vary in a high-dimensional (possibly infinite) function space, leading to
various nonparametric or semiparametric estimation methods. A popular
approach to the nonparametric estimation of η is via the minimization of
a penalized least squares score,

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

η̈2dx, (1.1)

with η̈ = d2η/dx2, where the first term discourages the lack of fit of η to
the data, the second term penalizes the roughness of η, and the smoothing
parameter λ controls the trade-off between the two conflicting goals. The
minimization of (1.1) is implicitly over functions with square integrable
second derivatives. The minimizer ηλ of (1.1) is called a cubic smoothing
spline. As λ → 0, ηλ approaches the minimum curvature interpolant. As
λ → ∞, ηλ approaches the simple linear regression line. Note that the
linear polynomials

{
f : f = β0 + β1x

}
form the so-called null space of the

roughness penalty
∫ 1

0 f̈
2dx,

{
f :
∫ 1

0 f̈
2dx = 0

}
.
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FIGURE 1.1. Cubic smoothing splines. The test function is in the faded line
and the estimates are in the solid, dashed, and long-dashed lines. The data are
superimposed as circles.

To illustrate, consider a simple simulation with xi = (i− 0.5)/50, i = 1,
. . . , 50, η(x) = 1 + 3 sin(2πx − π), and σ2 = 1. The estimate ηλ was cal-
culated at log10 nλ = 0,−3,−6. Plotted in Fig. 1.1 are the test function
(faded line), the estimates (solid, dashed, and long-dashed lines), and the
data (circles). The rough fit corresponds to log10 nλ = −6, the near straight
line to log10 nλ = 0, and the close fit to log10 nλ = −3.
An alternative derivation of the cubic smoothing spline is through a

constrained least squares problem, which solves

min
1

n

n∑

i=1

(
Yi − η(xi)

)2
, subject to

∫ 1

0

η̈2dx ≤ ρ, (1.2)

for some ρ ≥ 0. The solution to (1.2) usually falls on the boundary of the

permissible region,
∫ 1

0
η̈2dx = ρ, and by the Lagrange method, it can be

calculated as the minimizer of (1.1) with an appropriate Lagrange multi-
plier λ. Thus, up to the choices of λ and ρ, a penalized least squares problem

with a penalty proportional to
∫ 1

0 η̈
2dx is equivalent to a constrained least

squares problem subject to a soft constraint of the form
∫ 1

0
η̈2dx ≤ ρ; see,

e.g., Schoenberg (1964). See also §2.6.2.
Defined as the solution to a penalized optimization problem, a smoothing

spline is also known as a natural spline in the numerical analysis literature.
The minimizer ηλ of (1.1) is called a cubic spline because it is a piecewise
cubic polynomial. It is three times differentiable, with the third derivative
jumping at the knots ξ1 < ξ2 < · · · < ξq, the ordered distinctive sampling
points xi, and it is linear beyond the first knot ξ1 and the last knot ξq. See
Schumaker (1981, Chap. 8) for a comprehensive treatment of smoothing
splines from a numerical analytical perspective. See also de Boor (1978).
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1.1.2 Penalized Likelihood Method

The cubic smoothing spline of (1.1) is a specialization of the general
penalized likelihood method in univariate Gaussian regression. To estimate
a function of interest η on a generic domain X using stochastic data, one
may use the minimizer of

L(η|data) + λ

2
J(η), (1.3)

where L(η|data) is usually taken as the minus log likelihood of the data
and J(f) is a quadratic roughness functional with a null space NJ =

{
f :

J(f) = 0
}
of low dimension; see §2.1.1 for the definition of quadratic func-

tional. The solution of (1.3) is the maximum likelihood estimate in a model
space Mρ =

{
f : J(f) ≤ ρ

}
for some ρ ≥ 0, and the smoothing parameter

λ in (1.3) is the Lagrange multiplier. See §2.6.2 for a detailed discussion of
the role of λ as a Lagrange multiplier.
A few examples of penalized likelihood estimation follow.

Example 1.1 (Response data regression) Assume

Y |x ∼ exp
{(
yη(x)− b(η(x))

)
/a(φ) + c(y, φ)

}
,

an exponential family density with a modeling parameter η and a possibly
unknown nuisance parameter φ. Observing independent data (xi, Yi), i =
1, . . . , n, the method estimates η via the minimization of

− 1

n

n∑

i=1

{
Yiη(xi)− b(η(xi))

}
+
λ

2
J(η). (1.4)

When the density is Gaussian, (1.4) reduces to a penalized least squares
problem; see Problem 1.1. Penalized least squares regression for Gaussian-
type responses is the subject of Chap. 3. Penalized likelihood regression for
non-Gaussian responses will be studied in Chap. 5. �

Example 1.2 (Density estimation) Observing independent and identi-
cally distributed samples Xi, i = 1, . . . , n from a probability density f(x)
supported on a bounded domain X , the method estimates f by eη/

∫
X e

ηdx,
where η minimizes

− 1

n

n∑

i=1

{

η(Xi)− log

∫

X
eη(x)dx

}

+
λ

2
J(η). (1.5)

A side condition, say
∫
X η dx = 0, shall be imposed on η for a one-to-one

transform f ↔ eη/
∫
X e

ηdx. Penalized likelihood density estimation is the
subject of Chap. 7. �
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Example 1.3 (Hazard estimation) Let T be the lifetime of an item
with survival function S(t|u) = P (T > t|u), possibly dependent on a co-
variate U . The hazard function is defined as eη(t,u) = −∂ logS(t|u)/∂t. Let
Z be the left-truncation time and C be the right-censoring time, indepen-
dent of T and of each other. Observing (Ui, Zi, Xi, δi), i = 1, . . . , n, where
X = min(T,C), δ = I[T≤C], and Z < X , the method estimates the log
hazard η via the minimization of

− 1

n

n∑

i=1

{

δiη(Xi, Ui)−
∫ Xi

Zi

eη(t,Ui)dt

}

+
λ

2
J(η); (1.6)

see Problem 1.2 for the derivation of the likelihood. Penalized likelihood
hazard estimation will be studied in Chap. 8. �

The two basic components of a statistical model, the deterministic part
and the stochastic part, are well separated in (1.3). The structure of the
deterministic part is determined by the construction of J(η) for η on a
domain X , of which a comprehensive treatment is presented in Chap. 2.
The stochastic part is reflected in the likelihood L(η|data) and determines,
among other things, the natural measures with which the performance of
the estimate is to be assessed. The minimizer of (1.3) with a varying λ
defines a family of estimates, and from the cubic spline simulation shown
in Fig. 1.1, we have seen how differently the family members may behave.
Data-driven procedures for the proper selection of the smoothing parameter
are crucial to the practicability of penalized likelihood estimation, to which
extensive discussion will be devoted in the settings of regression, density
estimation, and hazard estimation in their respective chapters.

1.2 Notation

Listed below is some general notation used in this book. Context-specific
or subject-specific notation may differ from that listed here, in which case
every effort will be made to avoid possible confusion.
Domains are usually denoted by X , Y, Z, etc., or subscripted as X1, X2,

etc. Points on domains are usually denoted by x ∈ X , y ∈ Y, or x1, x2, y ∈
X . Points on product domains are denoted by x1, x2, y ∈ X = X1 × X2,
with x1〈1〉, x2〈1〉, y〈1〉 ∈ X1 and x1〈2〉, x2〈2〉, y〈2〉 ∈ X2, or by z = (x, y) ∈ Z =
X × Y, with x ∈ X and y ∈ Y. Ordinary subscripts are used to denote
multiple points on a domain, but not coordinates of a point on a product
domain.
Function spaces are usually denoted by H, G, etc. Functions in function

spaces are usually denoted by f, g, h ∈ H, η, φ, ξ ∈ H, etc. Derivatives
of a univariate function f(x) are denoted by ḟ = df/dx, f̈ = d2f/dx2,
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or by the general notation f (m) = dmf/dxm. Derivatives of multivariate
functions f(x〈1〉, x〈2〉) on X1 × X2 or g(x, y) on X × Y are denoted by

f
(3)
〈112〉 = ∂3f/∂x2〈1〉∂x〈2〉, g̈〈xy〉 = ∂2g/∂x∂y, etc.
Matrices are denoted by the standard notation of uppercase letters.

Vectors, however, are often not denoted by boldface letters in this book. For
a point on a product domain X =

∏Γ
γ=1 Xγ , we write x = (x〈1〉, . . . , x〈Γ〉).

For a function on domain X =
{
1, . . . ,K

}
, we write f =

(
f(1), . . . , f(K)

)T
,

which may be used as a vector in standard matrix arithmetic. Boldface
vectors are used where confusion may result otherwise. For example, 1 =
(1, . . . , 1)T is used to denote a vector of all one’s, and c = (c1, . . . , cn)

T is
used to encapsulate subscripted coefficients. In formulas concerning matrix
computation, vectors are always set in boldface.
The standard Op, op notation is used in the asymptotic analyses of §§3.2,

4.2.3, 5.2, 6.2, 6.3, Chap. 9, §§10.2, and 10.5. If P
(
|X | > KY

)
→ 0 for

some constant K <∞, we write X = Op(Y ), and when P
(
|X | > εY

)
→ 0,

∀ε > 0, we denote X = op(Y ).

1.3 Decomposition of Multivariate Functions

An important aspect of statistical modeling, which distinguishes it from
mere function approximation, is the interpretability of the results. Of great
utility are decomposition of multivariate functions similar to the classical
analysis of variance (ANOVA) decomposition and the associated notions
of main effect and interaction. Higher-order interactions are often excluded
in practical estimation to control model complexity; the exclusion of all
interactions yields the popular additive models. Selective exclusion of cer-
tain interactions also characterizes many interesting statistical models in a
variety of stochastic settings.
Casting the classical one-way ANOVA decomposition as the decomposi-

tion of functions on a discrete domain, a simple averaging operator is in-
troduced to facilitate the generalization of the notion to arbitrary domains.
Multiway ANOVA decomposition is then defined, with the identifiability
of the terms assured by side conditions specified through the averaging op-
erators. Examples are given and a proposition is proved concerning certain
intrinsic structures that are independent of the side conditions. The utility
and implication of selective term trimming in an ANOVA decomposition
are then briefly discussed in the context of regression, density estimation,
and hazard estimation.

1.3.1 ANOVA Decomposition and Averaging Operator

Consider a standard one-way ANOVA model, Yij = μi + εij , where μi

are the treatment means at treatment levels i = 1, . . . ,K and εij are
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independent normal errors. Writing μi = μ + αi, one has the “overall
mean” μ and the treatment effect αi. The identifiability of μ and αi are
assured through a side condition, of which common choices include α1 = 0
with level 1 treated as the control and

∑K
i=1 αi = 0 with all levels treated

symmetrically.
The one-way ANOVA model can be recast as Yj = f(xj)+εj, where f(x)

is defined on the discrete domain X =
{
1, . . . ,K

}
; the treatment levels are

now coded by x and the subscript j labels the observations. The ANOVA
decomposition μi = μ+αi in the standard ANOVA model notation can be
written as

f(x) = Af + (I −A)f = f∅ + fx,

where A is an averaging operator that “averages out” the argument x to
return a constant function and I is the identity operator. For example,
with Af = f(1), one has f(x) = f(1) +

{
f(x) − f(1)

}
, corresponding to

α1 = 0. With Af =
∑K

x=1 f(x)/K = f̄ , one has f(x) = f̄ +
(
f(x) − f̄

)
,

corresponding to
∑K

i=1 αi = 0. Note that applying A to a constant function
returns that constant, hence the name “averaging.” It follows that A(Af) =
Af , ∀f , or, simply, A2 = A. The constant term f∅ = Af is the “overall
mean” and the term fx = (I − A)f is the treatment effect, or “contrast,”
that satisfies the side condition Afx = 0.
On a continuous domain, say X = [a, b], one may similarly define an

ANOVA decomposition f(x) = Af + (I − A)f = f∅ + fx through an ap-
propriately defined averaging operator A, where fx satisfies the side con-
dition Afx = 0. For example, with Af = f(a), one has f(x) = f(a) +
{
f(x) − f(a)

}
. Similarly, with Af =

∫ b

a
fdx/(b − a), one has f(x) =

∫ b

a fdx/(b− a) +
{
f(x)−

∫ b

a fdx/(b− a)
}
.

1.3.2 Multiway ANOVA Decomposition

Now consider a function f(x) = f(x〈1〉, . . . , x〈Γ〉) on a product domain

X =
∏Γ

γ=1 Xγ , where x〈γ〉 ∈ Xγ denotes the γth coordinate of x ∈ X . Let
Aγ be an averaging operator on Xγ that averages out x〈γ〉 from the active
argument list and satisfies A2

γ = Aγ ; Aγf is constant on the Xγ axis but
not necessarily an overall constant function. An ANOVA decomposition of
f can be defined as

f =

{ Γ∏

γ=1

(I−Aγ +Aγ)

}

f =
∑

S

{∏

γ∈S
(I−Aγ)

∏

γ �∈S
Aγ

}

f =
∑

S
fS , (1.7)

where S ⊆
{
1, . . . ,Γ

}
enlists the active arguments in fS and the summation

is over all of the 2Γ subsets of
{
1, . . . ,Γ

}
. The term f∅ =

∏
Aγf is a

constant, the term fγ = f{γ} = (I −Aγ)
∏

α�=γ Aαf is the x〈γ〉 main effect,
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the term fγ,δ = f{γ,δ} = (I − Aγ)(I − Aδ)
∏

α�=γ,δ Aαf is the x〈γ〉-x〈δ〉
interaction, and so forth. The terms of such a decomposition satisfy the
side conditions AγfS = 0, ∀S � γ. The choices of Aγ , or the side conditions
on each axes, are open to specification.
The domains Xγ are generic in the above discussion; in particular, they

can be product domains themselves. As a matter of fact, the ANOVA de-
composition of (1.7) can also be defined recursively through a series of
nested constructions with Γ = 2; see, e.g., Problem 1.3.
The ANOVA decomposition can be built into penalized likelihood esti-

mation through the proper construction of the roughness functional J(f);
details are to be found in §2.4.

Example 1.4 When Γ = 2, X1 =
{
1, . . . ,K1

}
, and X2 =

{
1, . . . ,K2

}
,

the decomposition reduces to a standard two-way ANOVA decomposition.
With averaging operators A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 1), one has

f∅ = A1A2f = f(1, 1),

f1 = (I −A1)A2f = f(x〈1〉, 1)− f(1, 1),

f2 = A1(I −A2)f = f(1, x〈2〉)− f(1, 1),

f1,2 = (I −A1)(I −A2)f

= f(x〈1〉, x〈2〉)− f(x〈1〉, 1)− f(1, x〈2〉) + f(1, 1).

With Aγf =
∑Kγ

x〈γ〉=1 f(x〈1〉, x〈2〉)/Kγ , γ = 1, 2, one similarly has

f∅ = A1A2f = f··,
f1 = (I −A1)A2f = fx〈1〉· − f··,

f2 = A1(I −A2)f = f·x〈2〉 − f··,

f1,2 = (I −A1)(I −A2)f

= f(x〈1〉, x〈2〉)− fx〈1〉· − f·x〈2〉 + f··,

where f·· =
∑

x〈1〉,x〈2〉 f(x〈1〉, x〈2〉)/K1K2, fx〈1〉· =
∑

x〈2〉 f(x〈1〉, x〈2〉)/K2,

and f·x〈2〉 =
∑

x〈1〉 f(x〈1〉, x〈2〉)/K1. One may also use different averaging

operators on different axes; see Problem 1.4. �

Example 1.5 Consider Γ = 2 and X1 = X2 = [0, 1]. With A1f = f(0, x〈2〉)
and A2f = f(x〈1〉, 0), one has

f∅ = A1A2f = f(0, 0),

f1 = (I − A1)A2f = f(x〈1〉, 0)− f(0, 0),

f2 = A1(I −A2)f = f(0, x〈2〉)− f(0, 0),

f1,2 = (I − A1)(I −A2)f

= f(x〈1〉, x〈2〉)− f(x〈1〉, 0)− f(0, x〈2〉) + f(0, 0).



1.3 Decomposition of Multivariate Functions 9

With Aγf =
∫ 1

0
fdx〈γ〉, γ = 1, 2, one has

f∅ = A1A2f =
∫ 1

0

∫ 1

0
fdx〈1〉dx〈2〉,

f1 = (I − A1)A2f =
∫ 1

0
(f −

∫ 1

0
fdx〈1〉)dx〈2〉,

f2 = A1(I −A2)f =
∫ 1

0
(f −

∫ 1

0
fdx〈2〉)dx〈1〉,

f1,2 = (I − A1)(I −A2)f

= f −
∫ 1

0
fdx〈2〉 −

∫ 1

0
fdx〈1〉 +

∫ 1

0

∫ 1

0
fdx〈1〉dx〈2〉.

Similar results with different averaging operators on different axes are also
straightforward; see Problem 1.5. �

In standard ANOVA models, higher-order terms are frequently elim-
inated, whereas main effects and lower-order interactions are estimated
from the data. One learns not to drop the x〈1〉 and x〈2〉 main effects if the
x〈1〉-x〈2〉 interaction is considered, however, and not to drop the x〈1〉-x〈2〉
interaction when the x〈1〉-x〈2〉-x〈3〉 interaction is included. Although the
ANOVA decomposition as defined in (1.7) obviously depends on the av-
eraging operators Aγ , certain structures are independent of the particular
choices of Aγ . Specifically, for any index set I, if fS = 0, ∀S ⊇ I with a
particular set of Aγ , then the structure also holds for any other choices of
Aγ , as the following proposition asserts.

Proposition 1.1 For any two sets of averaging operators Aγ and Ãγ sat-

isfying A2
γ = Aγ and Ã2

γ = Ãγ ,
∏

γ∈I(I − Aγ)f = 0 if and only if
∏

γ∈I(I − Ãγ)f = 0, where I is any index set.

Note that the condition
∏

γ∈I(I−Aγ)f = 0 means that fS = 0, ∀S ⊇ I.
For example, (I−A1)f = 0 implies that all terms involving x〈1〉 vanish, and
(I − A1)(I − A2)f = 0 means that all terms involving both x〈1〉 and x〈2〉
disappear. Model structures that can be characterized through constraints
of the form

∏
γ∈I(I − Aγ)f = 0 permit a term fS only when all of its

“subset terms,” fS′ for S ′ ⊂ S, are permitted. A simple corollary of the
proposition is the obvious fact that an additive model remains an additive
model regardless of the side conditions.
Proof of Proposition 1.1: It is easy to see that (I − Ãγ)Aγ = 0. Suppose∏
γ∈I(I − Aγ)f = 0 and define the ANOVA decomposition in (1.7) using

Aγ . Now, for any nonzero term fS in (1.7), one has S �⊇ I, so there exists

γ ∈ I but γ �∈ S, hence fS = [· · ·Aγ · · · ]f . The corresponding (I − Ãγ) in∏
γ∈I(I−Ãγ) then annihilates the term. It follows that all nonzero ANOVA

terms in (1.7) are annihilated by
∏

γ∈I(I − Ãγ), so
∏

γ∈I(I − Ãγ)f = 0.
The converse is true by symmetry. �
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1.3.3 Multivariate Statistical Models

Many multivariate statistical models can be characterized by selective term
elimination in an ANOVA decomposition. Some of such models are
discussed below.

Curse of Dimensionality and Additive Models

Recall the classical ANOVA models with Xγ discrete. In practical data
analysis, one usually includes only the main effects, with the possible ad-
dition of a few lower-order interactions. Higher-order interactions are less
interpretable yet more difficult to estimate, as they usually consume many
more degrees of freedom than the lower-order terms. Models with only main
effects included are called additive models.
The difficulty associated with function estimation in high-dimensional

spaces may be perceived through the sparsity of the space. Take Xγ = [0, 1],
for example, a k-dimensional cube with each side of length 0.5 has volume
0.5k. Assume a uniform distribution of the data and consider a piecewise
constant function with jumps only possible at x〈γ〉 = 0.5. To estimate such
a function in 1 dimension with two pieces, one has information from 50%
of the data per piece, in 2 dimensions with four pieces, 25% per piece,
in 3 dimensions with eight pieces, 12.5% per piece, etc. The lack of data
due to the sparsity of high-dimensional spaces is often referred to as the
curse of dimensionality. Alternatively, the curse of dimensionality may also
be characterized by the explosive increase in the number of parameters,
or the degrees of freedom, that one would need to approximate a function
well in a high-dimensional space. To achieve the flexibility of a five-piece
piecewise polynomial in 1 dimension, for example, one would end up with
125 pieces in 3 dimensions by taking products of the pieces in 1 dimension.
To combat the curse of dimensionality in multivariate function estima-

tion, one needs to eliminate higher-order interactions to control model
complexity. As with classical ANOVA models, additive models with the
possible addition of second-order interactions are among the most popular
models used in practice.

Conditional Independence and Graphical Models

To simplify notation, the marginal domains will be denoted by X , Y, Z,
etc., in the rest of the section instead of the subscripted X used in (1.7).
Consider a probability density f(x) of a random variable X on a

domain X . Writing

f(x) =
eη(x)

∫
X e

η(x)dx
, (1.8)

known as the logistic density transform, the log density η(x) is free of the
positivity and unity constraints, f(x) > 0 and

∫
X f(x)dx = 1, that f(x)
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must satisfy. The transform is not one-to-one, though, as eη(x)/
∫
X e

η(x)dx=

eC+η(x)/
∫
X e

C+η(x)dx for any constant C. The transform can be made one-
to-one, however, by imposing a side condition Axη = 0 for some averaging
operator Ax on X ; this can be achieved by eliminating the constant term
in a one-way ANOVA decomposition η = Axη + (I −Ax)η = η∅ + ηx.
For a joint density f(x, y) of random variables (X,Y ) on a product

domain X × Y, one may write

f(x, y) =
eη(x,y)

∫
X dx

∫
Y e

η(x,y)dy
=

eηx+ηy+ηx,y

∫
X dx

∫
Y e

ηx+ηy+ηx,ydy
,

where ηx, ηy, and ηx,y are the main effects and interaction of η(x, y) in
an ANOVA decomposition; the constant is eliminated in the rightmost
expression for a one-to-one transform. The conditional distribution of Y
given X has a density

f(y|x) = eη(x,y)
∫
Y e

η(x,y)dy
=

eηy+ηx,y

∫
Y e

ηy+ηx,ydy
, (1.9)

where the logistic conditional density transform is one-to-one only for the
rightmost expression with the side conditions Ay(ηy + ηx,y) = 0, ∀x ∈ X ,
where Ay is the averaging operator on Y that help to define the ANOVA
decomposition. The independence of X and Y , denoted by X⊥Y , is char-
acterized by ηx,y = 0, or (I −Ax)(I −Ay)η = 0.
The domains X and Y are generic in (1.9); in particular, they can be

product domains themselves. Substituting (y, z) for y in (1.9), one has

f(y, z|x) = eηy+ηz+ηy,z+ηx,y+ηx,z+ηx,y,z

∫
Y dy

∫
Z e

ηy+ηz+ηy,z+ηx,y+ηx,z+ηx,y,zdz
,

where η(y,z) is expanded out as ηy + ηz + ηy,z and ηx,(y,z) is expanded out
as ηx,y + ηx,z + ηx,y,z; see Problem 1.3. The conditional independence of Y
and Z given X , denoted by (Y⊥Z)

∣
∣X , is characterized by ηy,z+ηx,y,z = 0,

or (I −Ay)(I − Az)η = 0.
Now, consider the joint density of four random variables (U, V, Y, Z), with

(U⊥V )
∣
∣(Y, Z) and (Y⊥Z)

∣
∣(U, V ). It can be shown that such a structure is

characterized by ηu,v + ηy,z + ηu,v,y + ηu,v,z + ηu,y,z + ηv,y,z + ηu,v,y,z = 0 in
an ANOVA decomposition, or (I −Au)(I −Av)η = (I −Ay)(I −Az)η = 0;
see Problem 1.7.
As noted above, the ANOVA decompositions in the log density η that

characterize conditional independence structures are all of the type covered
in Proposition 1.1. The elimination of lower-order terms in (1.8) and (1.9)
for one-to-one transforms only serve to remove technical redundancies
introduced by the “overparameterization” of f(x) or f(y|x) by the cor-
responding unrestricted η.
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Conditional independence structures can be represented as graphs, and
models for multivariate densities with specified conditional independence
structures built in are called graphical models; see, e.g., Whittaker (1990)
for some general discussion and for the parametric estimation of graphical
models.

Proportional Hazard Models and Beyond

For η(t, u) a log hazard on the product of a time domain T and a covariate
domain U , an additive model η(t, u) = η∅ + ηt + ηu characterizes a propor-
tional hazard model, with eη∅+ηt being the base hazard and eηu being the
relative risk. When the interaction ηt,u is included in the model, one has
something beyond the proportional hazard model. The covariate domain
can be a product domain itself, on which nested ANOVA decompositions
can be introduced.

1.4 Case Studies

To illustrate potential applications of the techniques to be developed in
this book, we shall now present previews of a few selected case studies. Full
accounts of these studies are to be found in later chapters.

1.4.1 Water Acidity in Lakes

From the Eastern Lake Survey of 1984 conducted by the United States
Environmental Protection Agency (EPA), Douglas and Delampady (1990)
derived a data set containing geographic information, water acidity mea-
surements, and main ion concentrations in 1,798 lakes in three regions,
northeast, upper midwest, and southeast, in the eastern United States. Of
interest is the dependence of the water acidity on the geographic locations
and other information concerning the lakes.
Preliminary analysis and consultation with a water chemist suggest that

a model for the surface pH in terms of the geographic location and the
calcium concentration is appropriate. A model of the following form is
considered:

pH = η∅ + ηc(calcium) + ηg(geography) + ηc,g(calcium, geography) + ε.

The model can be fitted to the data using tensor product splines with a
thin-plate marginal, to be discussed in §4.3, with the geographic location
treated in an isotropically invariant manner. The isotropic invariance is
in the following sense: After converting the longitude and latitude of the
geographic location to the x-y coordinates (in distance) with respect to
a local origin, the fitting of the model is invariant to arbitrary shift and
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FIGURE 1.2. Water acidity fit for lakes in the Blue Ridge. Top: Calcium effect
with 95% Bayesian confidence intervals. Left : Geography effect. Right : Standard
errors of geography effect with the lakes superimposed.

rotation of the x-y coordinates. The geographic location is mathematically
two dimensional, but, conceptually, it makes little sense to talk about north-
south effect or east-west effect, or any other directional decomposition of the
geographic location, in the context. The isotropically invariant treatment
preserves the integrity of the geographic location as an inseparable entity.
For illustration, consider the fitting of the model to 112 lakes in the Blue

Ridge. As inputs to the fitting algorithm, the longitude and latitude were
converted to x-y coordinates in distance, and a log transform was applied
to the calcium concentration. The interaction ηc,g was negligible as assessed
by the model selection devices of §§3.7 and 3.8, so an additive model was
fitted. Plotted in Fig. 1.2 are the fitted calcium effect with 95% confidence
intervals, the estimated geography effect, and the standard errors of the
estimated geography effect; see §3.3 for the definition and interpretation
of the standard errors and confidence intervals. The 0.14 contour of the
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geography standard errors, which encloses all but one lake, is superimposed
as the dashed line in the plot of the geography effect. The lakes are super-
imposed in the plot of geography standard errors. The fit has an R2 of 0.53
and the “explained” variation in pH are roughly 70% by calcium concen-
tration and 30% by geography.
A full account of the analysis is to be found in §4.3.4.

1.4.2 AIDS Incubation

To study the AIDS incubation time, a valuable source of information is in
the records of patients who were infected with the HIV virus through blood
transfusion, of which the date can be ascertained retrospectively. A data
set collected by the Centers for Disease Control and Prevention (CDC)
is listed in Wang (1989), which includes the time X from transfusion to
the diagnosis of AIDS, the time Y from transfusion to the end of study
(July 1986), both in months, and the age of the individual at the time of
transfusion, for 295 individuals. It is clear that X ≤ Y (i.e., the data are
truncated).
Assuming the independence of X and Y in the absence of truncation,

and conditioning on the truncation mechanism, the density of (X,Y ) is
given by

f(x, y) =
eηx(x)+ηy(y)

∫ a

0
dy
∫ y

0
eηx(x)+ηy(y)dx

,

where [0, a] is a finite interval covering the data. The penalized likelihood
score (1.5) can be specified as

− 1

n

n∑

i=1

{

ηx(Xi) + ηy(Yi)− log

∫ a

0

dy

∫ y

0

eηx(x)+ηy(y)dx

}

+
λx
2

∫ a

0

η̈2xdx+
λy
2

∫ a

0

η̈2ydx, (1.10)

where ηx and ηy satisfy certain side conditions such as
∫ a

0 ηxdx = 0 and∫ a

0 ηydy = 0.
Grouping the individuals by age, one has 141 “elderly patients” of age 60

or above. Estimating f(x, y) for this age group through the minimization
of (1.10), with a = 100 and λx and λy selected through a device introduced
in §7.3, one obtains the estimate contoured in Fig. 1.3, where the data

are superimposed and the marginal densities f(x) = eηx/
∫ 100
0

eηxdx and

f(y) = eηy/
∫ 100

0
eηydy are plotted in the empty space on their respective

axes.
Further discussions concerning the analysis of this data set will be pre-

sented in §§7.5.3 and 7.6.5.
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FIGURE 1.3. AIDS incubation and HIV infection of the elderly. Contours are
estimated density on the observable region surrounded by dashed lines. Circles
are the observations. Curves over the dotted lines in the empty space are the
estimated marginal densities.

1.4.3 Survival After Heart Transplant

One of the most demonstrated survival data is the Stanford heart trans-
plant data. In this study, we consider the data listed in Miller and Halpern
(1982). Recorded were survival or censoring times of 184 patients after
(first) heart transplant, in days, their ages at transplant, and a certain
tissue-type mismatch score for 157 of the patients. There were 113 recorded
deaths and 71 censorings. From the analysis by Miller and Halpern (1982)
and others, the tissue-type mismatch score did not have significant impact
on survival, so we will try to estimate the hazard as a function of time after
transplant and the age of patient at transplant.
In the notation of Example 1.3, Z = 0 and U is the age at transplant.

With a proportional hazard model η(t, u) = η∅ + ηt + ηu, the penalized
likelihood score (1.6) can be specified as

− 1

n

n∑

i=1

{

δi
(
η∅ + ηt(Xi) + ηu(Ui)

)
− eη∅+ηu(Ui)

∫ Xi

0

eηt(t)dt

}

+
λt
2

∫ T∗

0

η̈2t dt+
λu
2

∫ b

a

η̈2udu, (1.11)

where Xi ≤ T ∗ and Ui ∈ [a, b].
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FIGURE 1.4. Hazard after heart transplant. Top: Contours of 100eη̃(t
∗,u), where

t∗ =
√
t, with deceased (circles) and censored (pluses) patients superimposed.

Left : Base hazard eη∅+ηt with 95% Bayesian confidence intervals, on the original
time scale. Right : Age effect eηu with 95% Bayesian confidence intervals.

Before fitting the model to the data, the time axis was rescaled by a
square root transform t∗ =

√
t to make Xi more evenly scattered. Once

eη̃(t
∗,u) = −d logS(t∗, u)/dt∗ is estimated, the hazard on the original time

scale is simply

eη(t,u) = eη̃(t
∗,u)(dt∗/dt) = eη̃(

√
t,u)/

(
2
√
t
)
.

Fitting the proportional hazard model through the minimization of (1.11),
with λt and λu selected via a device introduced in §8.2, one obtains the
fit plotted in Fig. 1.4: In the top frame, eη̃(t

∗,u) is contoured with the data
superimposed, and in the left and right frames, the base hazard eη∅+ηt (on
the original time scale) and the age effect eηu are plotted along with 95%
confidence intervals.
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Further details concerning the analysis of this data set can be found in
§§8.4.2, 8.5.4, 8.6.6, and 10.4.5.

1.5 Scope

This book presents a systematic treatment of function estimation on generic
domains using the penalized likelihood method. Main topics to be covered
include model construction, smoothing parameter selection, computation,
and asymptotic convergence.
Chapter 2 is devoted to the construction of J(η) for use in (1.3) on

generic domains; of particular interest is that on product domains with
ANOVA decompositions built in. Among examples used to illustrate the
construction are shrinkage estimates, polynomial smoothing splines, and
their tensor products. Other issues that do not involve the stochastic struc-
ture of L(η|data) are also discussed in the chapter, which include the empir-
ical Bayes model associated with (1.3) and the existence of the minimizer
of (1.3).
Chapter 3 discusses penalized least squares regression with Gaussian-

type responses. Effective methods for smoothing parameter selection and
generic algorithms for computation are the main focus of the discussion.
Data analytical tools are presented, which include interval estimates and
diagnostics for model selection. Also discussed are fast algorithms in set-
tings with certain special structures.
Chapter 4 enlists some generalizations and variations of the polynomial

smoothing splines. Among subjects under discussion are the partial splines,
the periodic splines, the thin-plate splines, the spherical splines, and the
L-splines. Conceptually, these are simply further examples of the general
construction presented in Chap. 2, but some of the mathematical details
are more involved.
Chapter 5 studies penalized likelihood regression with non-Gaussian

responses. The central issue is, again, the effective selection of smoothing
parameters and the related computation. Computational and data analyt-
ical tools developed in Chap. 3 are extended to non-Gaussian regression.
Chapter 6 develops methods to accommodate correlated data. Using

random effects to model correlations in the likes of longitudinal and clus-
tered data, mixed-effect models can be fitted with tuning parameters
selected by devices developed for independent data. When the covariance
matrix differs from diagonal by more than a low-rank matrix update, meth-
ods are also derived for tuning parameter selection in Gaussian regression.
Chapter 7 deals with penalized likelihood density estimation under

a variety of sampling schemes. Beside the standard method of Example
1.2 for independent and identically distributed samples, variation is also
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discussed for data subject to biased sampling and random truncation.
Further variations include conditional density estimation, of which regres-
sion with cross-classified responses is a special case, and density estimation
with data from response-based sampling. Methods for effective smoothing
parameter selection are developed and the related computation is outlined.
Chapter 8 handles penalized likelihood hazard estimation. Under dis-

cussion are (i) the method of Example 1.3, (ii) the estimation of relative
risk in a proportional hazard model via penalized partial likelihood, and
(iii) the estimation of models parametric in time. The numerical structure
of Example 1.3 parallels that of Example 1.2, and the partial likelihood is
isomorphic to the likelihood for density estimation under biased sampling,
so the smoothing parameters in (i) and (ii) can be selected using the meth-
ods developed in Chap. 7. For (iii), the smoothing parameters are selected
by the methods developed in Chap. 5.
Chapter 9 investigates the asymptotic convergence of penalized like-

lihood estimates. Convergence rates are calculated in terms of problem-
specific losses derived from the respective stochastic settings, and the notion
of efficient approximation provides the theoretical basis for much of the
computational developments in earlier chapters. Also noted are the mode
and rates of convergence of the estimates when the models are incorrect.
Chapter 10 explores a variant of penalized likelihood estimation that

trades statistical performance for numerical efficiency. The computational
benefit comes from the avoidance of costly numerical integrations, making
density estimation feasible in high dimensions and reducing substantially
the execution time for the estimation of conditional density f(y|x) with
continuous y and for the estimation of hazard with continuous covariates.
Throughout Chaps. 3–8 and 10, open-source software is illustrated that

implements the computational and data analytical tools developed; the
code is collected in an R package gss with a friendly user-interface. The
overall design of gss is outlined in Appendix A.
Parametric statistical models such as J(η) = 0 resides in some low dimen-

sional model spaces regardless of the sample size, whereas nonparametric
models such as J(η) ≤ ρ have expanding model spaces (with ρ ↑ ∞) as
the sample size increases. The philosophical difference between the two
approaches is often overlooked, however, and attempts to extend famil-
iar notions in parametric inference to nonparametric estimation can easily
fall victim to conceptual pitfalls. Appendix B presents a few conceptual
critiques that scrutinize some widely publicized notions concerning non-
parametric statistical models.
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1.6 Bibliographic Notes

Section 1.1

A discrete version of (1.1) for data smoothing dated back to Whittaker
(1923). Early results on the modern theory of smoothing spline interpo-
lation with exact data (i.e., with λ = 0 in (1.1) for Yi = f(xi)) can be
found in, e.g., Schoenberg (1964) and de Boor and Lynch (1966), among
others; see the Foreword of Wahba (1990) for further historical notes. A
comprehensive treatment of smoothing splines from a numerical analytical
perspective can be found in Schumaker (1981, Chap. 8). A popular reference
on splines, especially on the popular B-splines, is de Boor (1978). B-splines,
however, are not smoothing splines.
Pioneered by the work of Kimeldorf and Wahba (1970a, 1970b, 1971), the

study of (1.1) and generalizations thereof in a statistical context has over
the years produced a vast literature on penalized least squares regression.
Historical breakthroughs can be found in Craven and Wahba (1979) and
Wahba (1983), among others. Wahba (1990) compiled an excellent synthesis
for work up to that date. See §3.11 for further notes on penalized least
squares regression.
The penalized likelihood method was introduced by Good and Gaskins

(1971) in the context of density estimation; the formulation of Example
1.2 by Gu and Qiu (1993) evolved from the work of Leonard (1978) and
Silverman (1982). The penalized likelihood regression of Example 1.1 was
formulated by O’Sullivan, Yandell, and Raynor (1986); see also
Silverman (1978). The penalized likelihood hazard estimation of Example
1.3, which was formulated by Gu (1996), evolved from the work of
Anderson and Senthilselvan (1980), O’Sullivan (1988a, 1988b), and Zucker
and Karr (1990).

Section 1.3

Classical ANOVA models can be found in statistics textbooks of almost
all levels. The definition (1.7) on generic domains can be found in Gu and
Wahba (1991a, 1993b). The result of Proposition 1.1 on discrete domains
can be found in standard graduate-level textbooks on linear models. See,
e.g., Scheffe (1959, §4.1) and Seber (1977, p. 277).
Additive models are routinely used in standard linear model analysis.

Their use in nonparametric regression was popularized by the work of Stone
(1985) and Hastie and Tibshirani (1986, 1990), among others. Graphical
models have their roots in the classical log linear models for categor-
ical data; comprehensive modern treatments with a mixture of contin-
uous and categorical data can be found in, e.g., Whittaker (1990) and
Lauritzen (1996). The proportional hazard models, especially the so-called
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Cox models proposed by Cox (1972), are among standard tools found in
most textbooks on survival analysis; see, e.g., Kalbfleisch and Prentice
(1980) and Fleming and Harrington (1991).

Section 1.4

The EPA lake acidity data of §1.4.1 was used in Gu and Wahba (1993a) to
illustrate tensor product thin-plate splines and in Gu and Wahba (1993b)
to illustrate componentwise Bayesian confidence intervals.
The CDC blood transfusion data was used by Kalbfleisch and Lawless

(1989) to motivate and illustrate methods for nonparametric (in the sense
of empirical distribution) and parametric inference based on retrospec-
tive ascertainment. Wang (1989) analyzed the data using a semiparametric
maximum likelihood method designed for truncated data. The analysis il-
lustrated in §1.4.2 is similar to the one presented in Gu (1998c).
The Stanford heart transplant data has become a benchmark example

for many researchers to showcase innovations in survival analysis. Early
references on the analysis of the data include Turnbull, Brown, and Hu
(1974), Miller (1976) and Crowley and Hu (1977). The analysis illustrated
in §1.4.3 is similar to the one presented in Gu (1998c).

1.7 Problems

Section 1.1

1.1 Consider univariate regression on X = [0, 1]. Take J(η) =
∫
η̈2dx

in (1.4).

(a) For Y |x ∼ N
(
μ(x), σ2

)
, verify that (1.4) with η = μ reduces to (1.1).

(b) For Y |x ∼ Binomial
(
1, p(x)

)
, specialize (1.4) with η = log

{
p/(1−p)

}

to obtain a score for penalized likelihood logistic regression.

(c) For Y |x ∼ Poisson
(
λ(x)

)
, specialize (1.4) with η = logλ to obtain a

score for penalized likelihood Poisson regression.

1.2 Consider the hazard estimation problem in Example 1.3.

(a) Verify that S(t|u) = exp
{
−
∫ t

0
eη(s,u)ds

}
.

(b) The likelihood of exact lifetime T is simply its density f(t) evaluated
at T . The likelihood of right-censored lifetime T > C is the survival
probability P (T > C) = S(C). Verify that the likelihood of (Z,X, δ)
is eδη(X)S(X)/S(Z), where the dependence on the covariate U is
suppressed from the notation.
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(c) Verify that the first term in (1.6) is indeed the minus log likelihood
of (Ui, Zi, Xi, δi), i = 1, . . . , n.

Section 1.3

1.3 For averaging operators Aγ on Xγ , verify that

I − A1A2 = (I −A1)A2 +A1(I −A2) + (I −A1)(I −A2).

Use the result to construct the ANOVA decomposition of (1.7) with Γ = 3
through two nested constructions with Γ = 2.

1.4 For the discrete domains of Example 1.4, obtain f∅, f1, f2, and f1,2
for A1f = f(1, x〈2〉) and A2f =

∑K2

x〈2〉=1 f(x〈1〉, x〈2〉)/K2.

1.5 For the continuous domains of Example 1.5, obtain f∅, f1, f2, and

f1,2 for A1f = f(0, x〈2〉) and A2 =
∫ 1

0
fdx〈2〉.

1.6 The domains Xγ in (1.7) can be a mixture of different types. As a
simple example, consider Γ = 2, X1 =

{
1, . . . ,K

}
, and X2 = [0, 1], with

A1f =
∑K

x〈1〉=1 f(x〈1〉, x〈2〉)/K and A2f =
∫ 1

0
fdx〈2〉. Obtain f∅, f1, f2,

and f1,2 in an ANOVA decomposition.

1.7 Prove that if the joint density of (U, V, Y, Z) has the expression

f(u, v, y, z) =
eηu+ηv+ηy+ηz+ηu,y+ηu,z+ηv,y+ηv,z

∫
U
∫
V
∫
Y
∫
Z e

ηu+ηv+ηy+ηz+ηu,y+ηu,z+ηv,y+ηv,z
,

then (U⊥V )
∣
∣(Y, Z) and (Y⊥Z)

∣
∣(U, V ).



2
Model Construction

The two basic components of a statistical model, the deterministic part
and the stochastic part, are well separated in the penalized likelihood score
L(f)+(λ/2)J(f) of (1.3). The deterministic part is specified via J(f), which
defines the notion of smoothness for functions on domain X . The stochastic
part is characterized by L(f), which reflects the sampling structure of the
data.
In this chapter, we are mainly concerned with the construction of J(f)

for use in L(f) + (λ/2)J(f). At the foundation of the construction is some
elementary theory of reproducing kernel Hilbert spaces, of which a brief
self-contained introduction is given in §2.1. Illustrations of the construction
are presented on the domain {1, . . . ,K} through shrinkage estimates (§2.2)
and on the domain [0, 1] through polynomial smoothing splines (§2.3); the
discrete case also provides insights into the entities in a reproducing kernel
Hilbert space through those in a standard vector space. The construction
of models on product domains with the ANOVA structure of §1.3.2 built
in is discussed in §2.4, with detailed examples on domains {1, . . . ,K1} ×
{1, . . . ,K2}, [0, 1]2, and {1, . . . ,K} × [0, 1].
Also included in this chapter are some general properties of the penalized

likelihood score L(f) + (λ/2)J(f) that are largely independent of L(f).
One such property is the fact that a quadratic functional J(f) acts like
the minus log likelihood of a Gaussian process prior for f , which leads
to the Bayes model discussed in §2.5. Other important properties include
the existence of the minimizer of L(f) + (λ/2)J(f) and the equivalence of
penalized minimization and constrained minimization (§2.6).

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 2,
© Springer Science+Business Media New York 2013
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The definitions of numerous technical terms are embedded in the text.
For convenient back reference, the terms are set in boldface at the point of
definition.
Mathematically more sophisticated constructions, such as the thin-plate

splines on (−∞,∞)d, are deferred to Chap. 4.

2.1 Reproducing Kernel Hilbert Spaces

By adding a roughness penalty J(f) to the minus log likelihood L(f), one
considers only smooth functions in the space

{
f : J(f) <∞

}
or a subspace

therein. To assist analysis and computation, one needs a metric and a
geometry in the space, and the score L(f) + (λ/2)J(f) to be continuous
in f under the metric. The so-called reproducing kernel Hilbert space, of
which a brief introduction is presented here, is adequately equipped for the
purpose.
We start with the definition of Hilbert space and some of its elementary

properties. The discussion is followed by the Riesz representation theorem,
which provides the technical foundation for the notion of a reproducing
kernel. The definition of reproducing kernel Hilbert space comes next and
it is shown that a reproducing kernel Hilbert space is uniquely determined
by its reproducing kernel, for which any non-negative definite function
qualifies.

2.1.1 Hilbert Spaces and Linear Subspaces

As abstract generalizations of the familiar vector spaces, Hilbert spaces
inherit many of the structures of the vector spaces. To provide insights
into the technical concepts introduced here, abstract materials are followed
by vector space examples set in italic.
For elements f , g, h, . . . , define the operation of addition satisfying the

following properties: (i) f+g = g+f , (ii) (f+g)+h = f+(g+h), and (iii) for
any two elements f and g, there exists an element h such that f + h = g.
The third property implies the existence of an element 0 satisfying f +
0 = f . Further, define the operation of scalar multiplication satisfying
α(f + g) = αf + αg, (α + β)f = αf + βf , 1f = f , and 0f = 0, where α
and β are real numbers. A set L of such elements form a linear space if
f, g ∈ L implies that f + g ∈ L and αf ∈ L. A set of elements fi ∈ L are
said to be linearly independent if

∑
i αifi = 0 holds only for αi = 0, ∀i.

The maximum number of elements in L that can be linearly independent
defines its dimension.
Take real vectors of a given length as the elements; the standard vector

addition and scalar-vector multiplication satisfy the conditions specified for
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the operations of addition and scalar multiplication. The notions of linear
space, linear independence, and dimension reduce to those in standard vec-
tor spaces.
A functional in a linear space L operates on an element f ∈ L and

returns a real number as its value. A linear functional L in L satisfies
L(f + g) = Lf + Lg, L(αf) = αLf , f, g ∈ L, α real. A bilinear form
J(f, g) in a linear space L takes f, g ∈ L as arguments and returns a real
value and satisfies J(αf + βg, h) = αJ(f, h) + βJ(g, h), J(f, αg + βh) =
αJ(f, g)+βJ(f, h), f, g, h ∈ L, α, β real. Fixing one argument in a bilinear
form, one gets a linear functional in the other argument. A bilinear form
J(·, ·) is symmetric if J(f, g) = J(g, f). A symmetric bilinear form is
non-negative definite if J(f, f) ≥ 0, ∀f ∈ L, and it is positive definite
if the equality holds only for f = 0. For J(·, ·) non-negative definite, J(f) =
J(f, f) is called a quadratic functional.
Consider the linear space of all real vectors of a given length. A functional

in such a space is simply a multivariate function with the coordinates of the
vector as its arguments. A linear functional in such a space can be written
as a dot product, Lf = gTLf , where gL is a vector “representing” L. A bilin-
ear form can be written as J(f, g) = fTBJg with BJ a square matrix, and
J(f, g) is symmetric, non-negative definite, or positive definite when BJ

is symmetric, non-negative definite, or positive definite. A quadratic func-
tional J(f) = fTBJf is better known as a quadratic form in the classical
linear model theory.
A linear space is often equipped with an inner product, a positive def-

inite bilinear form with a notation (·, ·). An inner product defines a norm
in the linear space, ‖f‖ =

√
(f, f), which induces a metric to measure the

distance between elements in the space, D[f, g] = ‖f − g‖. The Cauchy-
Schwarz inequality,

|(f, g)| ≤ ‖f‖ ‖g‖, (2.1)

with equality if and only if f = αg, and the triangle inequality,

‖f + g‖ ≤ ‖f‖+ ‖g‖, (2.2)

with equality if and only if f = αg for some α > 0, hold in such a linear
space; see Problems 2.1 and 2.2.
Equip the linear space of all real vectors of a given length with an inner

product (f, g) = fT g; one obtains the Euclidean space. The Euclidean norm

‖f‖ =
√
fT f induces the familiar Euclidean distance between vectors. The

Cauchy-Schwarz inequality and the triangle inequality are familiar results
in a Euclidean space.
When limn→∞ ‖fn − f‖ = 0 for a sequence of elements fn, the sequence

is said to converge to its limit point f , with a notation limn→∞ fn = f
or fn → f . A functional L is continuous if limn→∞ Lfn = Lf whenever
limn→∞ fn = f . By the Cauchy-Schwarz inequality, (f, g) is continuous in
f or g when the other argument is fixed.
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In the Euclidean space, a functional is a multivariate function in the
coordinates of the vector, and the definition of continuity reduces to the
definition found in standard multivariate calculus.
A sequence satisfying limn,m→∞ ‖fn − fm‖ = 0 is called a Cauchy

sequence. A linear space L is complete if every Cauchy sequence in L
converges to an element in L. An element is a limit point of a set A if it
is the limit point of a sequence in A. A set A is closed if it contains all of
its own limit points.
The Euclidean space is complete. In the two-dimensional Euclidean space,

(−∞,∞) × {0} is a closed set, so is [a1, b1] × [a2, b2], where −∞ < ai ≤
bi <∞, i = 1, 2.
A Hilbert space H is a complete inner product linear space. A closed

linear subspace of H is itself a Hilbert space. The distance between a
point f ∈ H and a closed linear subspace G ⊂ H is defined by D[f,G] =
infg∈G ‖f − g‖. By the closedness of G, there exists an fG ∈ G, called the
projection of f in G, such that ‖f − fG‖ = D[f,G]. Such an fG is unique
by the triangle inequality. See Problem 2.3.
In the two-dimensional Euclidean space, G =

{
f : f = (a, 0)T , a real

}

is a closed linear subspace. The distance between f = (af , bf)
T and G is

D[f,G] = |bf |, and the projection of f in G is fG = (af , 0)
T .

Proposition 2.1 Let fG be the projection of f ∈ H in a closed linear
subspace G ⊂ H. Then, (f − fG , g) = 0, ∀g ∈ G.

Proof : We prove by negation. Suppose (f − fG , h) = α �= 0, h ∈ G. Write
β = (h, h) and take g = fG + (α/β)h ∈ G. It is easy to compute

‖f − g‖2 = ‖f − fG‖2 − α2/β < ‖f − fG‖2,

a contradiction. �
The linear subspace Gc =

{
f : (f, g) = 0, ∀g ∈ G

}
is called the orthog-

onal complement of G. By the continuity of (f, g), Gc is closed. Using
Proposition 2.1, it is easy to verify that

‖f − fG − fGc‖2 = (f − fG − fGc , f − fGc − fG)

= (f − fG , f − fGc)− (f − fG , fG)

− (fGc , f − fGc) + (fGc , fG)

= 0,

where fG ∈ G and fGc ∈ Gc are the projections of f in G and Gc, respec-
tively. Hence, there exists a unique decomposition f = fG + fGc for every
f ∈ H. It is clear now that (Gc)c = G. The decomposition f = fG + fGc

is called a tensor sum decomposition and is denoted by H = G ⊕ Gc,
Gc = H�G, or G = H�Gc. Multiple-term tensor sum decompositions can
be defined recursively.
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In the two-dimensional Euclidean space, the orthogonal complement of
G =

{
f : f = (a, 0)T , a real

}
is Gc =

{
f : f = (0, b)T , b real

}
.

Consider linear subspaces H0 and H1 of a linear space L, equipped with
inner products (·, ·)0 and (·, ·)1, respectively. Assume the completeness of
H0 and H1 so that they are Hilbert spaces. If H0 and H1 have only one
common element 0, then one may define a tensor sum Hilbert space H =
H0⊕H1 with elements f = f0+ f1 and g = g0 + g1, where f0, g0 ∈ H0 and
f1, g1 ∈ H1, and an inner product (f, g) = (f0, g0)0 +(f1, g1)1. It is easy to
verify that such a bottom-up pasting is consistent with the aforementioned
top-down decomposition; see Problem 2.4.
Consider the two-dimensional vector space. Equip the space H0 =

{
f :

f = (a, 0)T , a real
}

with the inner product (f, g)0 = afag, where f =

(af , 0)
T and g = (ag, 0)

T , and equip H1 =
{
f : f = (0, b)T , b real

}
with

the inner product (f, g)1 = bfbg, where f = (0, bf)
T and g = (0, bg)

T .
H = H0⊕H1 has elements of the form f = f0 + f1 = (af , 0)

T +(0, bf )
T =

(af , bf )
T and g = (ag, 0)

T + (0, bg)
T = (ag, bg)

T , and an inner product
(f, g) = (f0, g0)0 + (f1, g1)1 = afag + bfbg.
A non-negative definite bilinear form J(f, g) in a linear space H de-

fines a semi-inner-product in H which induces a square seminorm
J(f) = J(f, f). Unless J(f, g) is positive definite, the null space NJ =
{f : J(f, f) = 0, f ∈ H} is a linear subspace of H containing more elements
than just 0. With a nondegenerateNJ , one typically can define another non-
negative definite bilinear form J̃(f, g) in H satisfying the following condi-
tions: (i) it is positive definite when restricted to NJ , so J̃(f) = J̃(f, f) de-
fines a square full norm in NJ and (ii) for every f ∈ H, there exists g ∈ NJ

such that J̃(f−g) = 0. With such an J̃(f, g), it is easy to verify that J(f, g)
is positive definite in the linear subspace NJ̃ = {f : J̃(f, f) = 0, f ∈ H}
and that (J+ J̃)(f, g) is positive definite in H. Hence, a semi-inner-product
can be made a full inner product either via restriction to a subspace or via
augmentation by an extra term, both through the definition of an inner
product in its null space. If H is complete under the norm induced by
(J + J̃)(f, g), then it is easy to see that NJ and NJ̃ form a tensor sum
decomposition of H.
In the two-dimensional vector space H with elements f = (af , bf)

T and
g = (ag, bg)

T , J(f, g) = bfbg defines a semi-inner-product with the null

space NJ =
{
f : f = (a, 0)T , a real

}
. Define J̃(f, g) = afag, which

satisfies the two conditions specified above. It follows that NJ̃ =
{
f :

f = (0, b)T , b real
}
, in which J(f, g) = bfbg is positive definite. Clearly,

(J + J̃)(f, g) = bfbg + afag is positive definite in H.

Example 2.1 (L2 space) All square integrable functions on [0, 1] form a
Hilbert space

L2[0, 1] =
{
f :
∫ 1

0
f2dx <∞

}
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with an inner product (f, g) =
∫ 1

0
fg dx. The space

G =
{
f : f = gI[x≤0.5], g ∈ L2[0, 1]

}

is a closed linear subspace with an orthogonal complement

Gc =
{
f : f = gI[x≥0.5], g ∈ L2[0, 1]

}
.

Note that elements in L2[0, 1] are defined not by individual functions but
by equivalent classes.

The bilinear form J(f, g) =
∫ 0.5

0 fg dx defines a semi-inner-product in
L2[0, 1], with a null space

NJ = Gc =
{
f : f = gI[x≥0.5], g ∈ L2[0, 1]

}
.

Define J̃(f, g) = C
∫ 1

0.5
fg dx, with C > 0 a constant; one has an inner

product (f, g) = (J + J̃)(f, g) =
∫ 0.5

0 fg dx + C
∫ 1

0.5 fg dx on L2[0, 1]. On
G = L2 �NJ , J(f, g) is a full inner product. �

Example 2.2 (Euclidean space) Functions on {1, . . . ,K} are vectors of
length K. Consider the Euclidean K-space with an inner product

(f, g) =
K∑

x=1

f(x)g(x) = fT g.

The space G =
{
f : f(1) = · · · = f(K)

}
is a closed linear subspace with

an orthogonal complement Gc =
{
f :
∑K

x=1 f(x) = 0
}
.

Write f̄ =
∑K

x=1 f(x)/K. The bilinear form

J(f, g) =

K∑

x=1

(
f(x)− f̄

)(
g(x)− ḡ

)
= fT

(

I − 1

K
11T

)

g

defines a semi-inner-product in the vector space with a null space

NJ = G =
{
f : f(1) = · · · = f(K)

}
.

Define J̃(f, g) = Cf̄ ḡ = CfT (11T /K)g, with C > 0 a constant; one has
an inner product in the vector space,

(f, g) = (J + J̃)(f, g) = fT

(

I +
C − 1

K
11T

)

g,

which reduces to the Euclidean inner product when C = 1. On Gc =
{
f :

∑K
x=1 f(x) = 0

}
, J(f, g) is a full inner product. �
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2.1.2 Riesz Representation Theorem

For every g in a Hilbert space H, Lgf = (g, f) defines a continuous linear
functional Lg. Conversely, every continuous linear functional L in H has a
representation Lf = (gL, f) for some gL ∈ H, called the representer of
L, as the following theorem asserts.

Theorem 2.2 (Riesz representation) For every continuous linear func-
tional L in a Hilbert space H, there exists a unique gL ∈ H such that
Lf = (gL, f), ∀f ∈ H.

Proof : LetNL =
{
f : Lf = 0

}
be the null space of L. Since L is continuous,

NL is a closed linear subspace. If NL = H, take gL = 0. When NL ⊂ H,
there exists a nonzero element g0 ∈ H�NL. Since (Lf)g0 − (Lg0)f ∈ NL,(
(Lf)g0 − (Lg0)f, g0

)
= 0. Some algebra yields

Lf =

(
Lg0

(g0, g0)
g0, f

)

.

Hence, one can take gL = (Lg0)g0/(g0, g0). The uniqueness is trivial. �
The continuity of L is necessary for the theorem to hold, or otherwise

NL is no longer closed and the proof breaks down.
All linear functionals in a finite-dimensional Hilbert space are continuous.

Actually, there is an isomorphism between anyK-dimensional Hilbert space
and the Euclidean K-space. See Problems 2.5 and 2.6.

2.1.3 Reproducing Kernel and Non-Negative Definite
Function

The likelihood part L(f) of the penalized likelihood functional L(f) +
(λ/2)J(f) usually involves evaluations; thus, for it to be continuous in
f , one needs the continuity of the evaluation functional [x]f = f(x).
Consider a Hilbert space H of functions on domain X . If the evaluation
functional [x]f = f(x) is continuous in H, ∀x ∈ X , then H is called a
reproducing kernel Hilbert space.
By the Riesz representation theorem, there exists Rx ∈ H, the represen-

ter of the evaluation functional [x](·), such that (Rx, f) = f(x), ∀f ∈ H.
The symmetric bivariate function R(x, y) = Rx(y) = (Rx, Ry) has the re-
producing property

(
R(x, ·), f(·)

)
= f(x) and is called the reproducing

kernel of the space H. The reproducing kernel is unique when it exists
(Problem 2.7).
The L2[0, 1] space of Example 2.1 is not a reproducing kernel Hilbert

space. In fact, since the elements in L2[0, 1] are defined by equivalent classes
but not individual functions, evaluation is not even well defined. A finite-
dimensional Hilbert space is always a reproducing kernel Hilbert space since
all linear functionals are continuous.
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Example 2.3 (Euclidean space) Consider again the EuclideanK-space
with (f, g) = fT g, with vectors perceived as functions on X =
{1, . . . ,K}. The evaluation functional [x]f = f(x) is simply coordinate
extraction. Since f(x) = eTx f , where ex is the xth unit vector, one has
Rx(y) = I[x=y]. A bivariate function on {1, . . . ,K} can be written as a
square matrix, and the reproducing kernel in the Euclidean space is simply
the identity matrix. �

A bivariate function F (x, y) on X is said to be a non-negative definite
function if

∑
i,j αiαjF (xi, xj) ≥ 0, ∀xi ∈ X , ∀αi real. For R(x, y) = Rx(y)

a reproducing kernel, it is easy to verify that

∥
∥
∥
∑

i

αiRxi

∥
∥
∥
2

=
∑

i,j

αiαjR(xi, xj) ≥ 0,

so R(x, y) is non-negative definite. As a matter of fact, there exists a
one-to-one correspondence between reproducing kernel Hilbert spaces and
non-negative definite functions, as the following theorem asserts.

Theorem 2.3 For every reproducing kernel Hilbert space H of functions
on X , there corresponds an unique reproducing kernel R(x, y), which is
non-negative definite. Conversely, for every non-negative definite function
R(x, y) on X , there corresponds a unique reproducing kernel Hilbert space
H that has R(x, y) as its reproducing kernel.

By Theorem 2.3, one may construct a reproducing kernel Hilbert space
simply by specifying its reproducing kernel. The following lemma is needed
in the proof of the theorem.

Lemma 2.4 Let R(x, y) be any non-negative definite function on X . If

n∑

i=1

n∑

j=1

αiαjR(xi, xj) = 0,

then
∑n

i=1 αiR(xi, x) = 0, ∀x ∈ X .

Proof : Augment the (xi, αi) sequence by adding (x0, α0), where x0 ∈ X
and α0 real are arbitrary. Since

0 ≤
n∑

i=0

n∑

j=0

αiαjR(xi, xj) = 2α0

n∑

i=1

αiR(xi, x0) + α2
0R(x0, x0)

and R(x0, x0) ≥ 0, it is necessary that
∑n

i=1 αiR(xi, x0) = 0. �
Proof of Theorem 2.3: Only the converse needs a proof. Given R(x, y),

write Rx = R(x, ·); one starts with the linear space

H∗ =
{
f : f =

∑
i αiRxi , xi ∈ X , αi real

}
,
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and defines in H∗ an inner product

(∑

i

αiRxi ,
∑

j

βjRyj

)

=
∑

i,j

αiβjR(xi, yj).

It is trivial to verify the properties of inner product for such a (f, g), except
that (f, f) = 0 holds only for f = 0, which is proved in Lemma 2.4. It is
also easy to verify that (Rx, f) = f(x), ∀f ∈ H∗.
By the Cauchy-Schwarz inequality,

∣
∣f(x)

∣
∣ =
∣
∣(Rx, f)

∣
∣ ≤
√
R(x, x) ‖f‖,

so convergence in norm implies pointwise convergence. For every Cauchy
sequence {fn} in H∗,

{
fn(x)

}
is a Cauchy sequence on the real line con-

verging to a limit. Note also that
∣
∣ ‖fn‖ − ‖fm‖

∣
∣ ≤ ‖fn − fm‖, so

{
‖fn‖

}

has a limit as well. The limit point of {fn} can then be defined by f(x) =
limn→∞ fn(x), ∀x ∈ X , with ‖f‖ = limn→∞ ‖fn‖. It will be shown shortly
that ‖f‖, thus defined, is unique; that is, for two Cauchy sequences {fn}
and {gn} satisfying limn→∞ fn(x) = limn→∞ gn(x), ∀x ∈ X , it is neces-
sary that limn→∞ ‖fn‖ = limn→∞ ‖gn‖. Adjoining all these limit points of
Cauchy sequences to H∗, one obtains a complete linear space H with the
norm ‖f‖. It is easy to verify that (f, g) =

(
‖f + g‖2− ‖f‖2− ‖g‖2

)
/2 ex-

tends the inner product from H∗ to H and that (Rx, f) = f(x) holds in H,
so H is a reproducing kernel Hilbert space with R(x, y) as its reproducing
kernel.
We now verify the uniqueness of the definition of ‖f‖ in the completed

space, and it suffices to show that for every Cauchy sequence {fn} inH∗ sat-
isfying limn→∞ fn(x) = 0, ∀x ∈ X , it necessarily holds that limn→∞ ‖fn‖ =
0. We prove the assertion by negation. Suppose fn(x) → 0, ∀x ∈ X , but
‖fn‖2 → 3δ > 0. Take ε ∈ (0, δ). For n and m sufficiently large, one
has ‖fn‖2, ‖fm‖2 > 2δ and ‖fn − fm‖2 < ε. Fix such an m and write
fm =

∑
i αiRxi a finite sum. Since fn(x) → 0, ∀x ∈ X , it follows that∑

i αifn(xi)→ 0. Hence, for n sufficiently large,

∣
∣(fn, fm)

∣
∣ =
∣
∣(fn,

∑
i αiRxi)

∣
∣ =
∣
∣∑

i αifn(xi)
∣
∣ < ε.

Now,

ε > ‖fn − fm‖2 = ‖fn‖2 + ‖fm‖2 − 2(fn, fm) > 4δ − 2ε > 2δ,

a contradiction.
It remains to be shown that if a space H̃ has R(x, y) as its reproducing

kernel, then H̃ must be identical to the space H constructed above. Since
Rx = R(x, ·) ∈ H̃, ∀x ∈ X , so H ⊆ H̃. Now, for any h ∈ H̃ � H, by
orthogonality, h(x) = (Rx, h) = 0, ∀x ∈ X , so H̃ = H. The proof is now
complete. �
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From the construction in the proof, one can see that the space H
corresponding to R is generated from the “columns” Rx = R(·, x) of R,
very much like a vector space generated from the columns of a matrix.
In the sections to follow, we will be constantly decomposing reproducing

kernel Hilbert spaces into tensor sums or pasting up larger spaces by taking
tensor sums of smaller ones. The following theorem spells out some of the
rules in such operations.

Theorem 2.5 If the reproducing kernel R of a space H on domain X can
be decomposed into R = R0 + R1, where R0 and R1 are both non-negative
definite, R0(x, ·), R1(x, ·) ∈ H, ∀x ∈ X , and

(
R0(x, ·), R1(y, ·)

)
= 0, ∀x, y ∈

X , then the spaces H0 and H1 corresponding respectively to R0 and R1 form
a tensor sum decomposition of H. Conversely, if R0 and R1 are both non-
negative definite and H0 ∩H1 = {0}, then H = H0⊕H1 has a reproducing
kernel R = R0 +R1.

Proof : By the orthogonality between R0(x, ·) and R1(y, ·),

R0(x, y) =
(
R0(x, ·), R(y, ·)

)
=
(
R0(x, ·), R0(y, ·)

)
,

so the inner product in H0 is consistent with that in H; hence, H0 is a
closed linear subspace of H. Now, for every f ∈ H, let f0 be the projection
of f in H0 and write f = f0 + f c

0 . Straightforward calculation yields

f(x) =
(
R(x, ·), f

)

=
(
R0(x, ·), f0

)
+
(
R0(x, ·), f c

0

)
+
(
R1(x, ·), f0

)
+
(
R1(x, ·), f c

0

)

= f0(x) +
(
R1(x, ·), f c

0

)
,

so
(
R1(x, ·), f c

0

)
= f(x) − f0(x) = f c

0(x). This shows that R1 is the repro-
ducing kernel of H�H0; hence, H = H0 ⊕H1.
For the converse, it is trivial to verify that

(
R(x, ·), f

)
=
(
R0(x, ·), f0

)
0
+
(
R1(x, ·), f1

)
1
= f0(x) + f1(x) = f(x),

where f = f0 + f1 ∈ H with f0 ∈ H0 and f1 ∈ H1, and (·, ·)0 and (·, ·)1 are
the inner products in H0 and H1, respectively. �

2.2 Smoothing Splines on {1, . . . , K}
As discussed in Example 2.3, a function on the discrete domain X ={
1, . . . ,K

}
is a vector of length K, evaluation is coordinate extraction,

and a reproducing kernel can be written as a non-negative definite matrix.
A linear functional in a finite-dimensional space is always continuous, so a
vector space equipped with an inner product is a reproducing kernel Hilbert
space.
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Let B be any K ×K non-negative definite matrix. Consider the column
space of B, HB =

{
f : f = Bc =

∑
j cjB(·, j)

}
, equipped with the inner

product (f, g) = fTBg. The standard eigenvalue decomposition gives

B = UDUT = (U1, U2)

(
D1 O
O O

)(
UT
1

UT
2

)

= U1D1U
T
1 ,

where the diagonal of D1 contains the positive eigenvalues of B and the
columns of U1 are the associated eigenvectors. The Moore-Penrose inverse
of B has an expression B+ = U1D

−1
1 UT

1 . It is clear that HB = HB+ ={
f : f = U1c

}
. Now, B+B = U1U

T
1 is the projection matrix onto HB, so

B+Bf = f , ∀f ∈ HB. It then follows that

[x]f = f(x) = eTx f = eTxB
+Bf = (B+ex)

TBf,

∀f ∈ HB (i.e., the representer of [x](·) is the xth column of B+). Hence,
the reproducing kernel is given by R(x, y) = B+(x, y), where B+(x, y) is
the (x, y)th entry of B+. The result of Example 2.3 is a trivial special case
with B = I.
The duality between (f, g) = fTBg and R = B+ provides a useful

insight into the relation between the inner product in a space and the
corresponding reproducing kernel: In a sense, the inner product and the
reproducing kernel are inverses of each other.
Now, consider a decomposition of the reproducing kernel in the Eu-

clidean K-space, R(x, y) = I[x=y] = 1/K + (I[x=y] − 1/K), or in matrix
terms, I = (11T /K) + (I − 11T /K). Since (11T /K)(I − 11T /K) = O,(
R0(x, ·), R1(y, ·)

)
= 0, ∀x, y. By Theorem 2.5, the decomposition de-

fines a tensor sum decomposition of the space RK = H0 ⊕ H1, where
H0 =

{
f : f(1) = · · · = f(K)

}
and H1 =

{
f :
∑K

x=1 f(x) = 0
}
. The inner

products in H0 and H1 have expressions (f, g)0 = fT g = fT (11T /K)g
and (f, g)1 = fT g = fT (I − 11T /K)g, respectively, where 11T /K is the
Moore-Penrose inverse of R0 = 11T /K and I − 11T /K is the Moore-
Penrose inverse of R1 = I − 11T /K. The decomposition defines a one-way

ANOVA decomposition with an averaging operator Af =
∑K

x=1 f(x)/K.
See Problem 2.8 for a construction yielding a one-way ANOVA decompo-
sition with an averaging operator Af = f(1).
Regression on X =

{
1, . . . ,K

}
yields the classical one-way ANOVA

model. Consider a roughness penalty

J(f) =

K∑

x=1

(
f(x)− f̄

)2
= fT

(

I − 11T

K

)

f,

where f̄ =
∑K

x=1 f(x)/K. The minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

K∑

x=1

(
η(x)− η̄

)2
(2.3)
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defines a shrinkage estimate being shrunk toward a constant. Similarly, if
one sets J(f) = fT f , then the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

K∑

x=1

η2(x) (2.4)

defines a shrinkage estimate being shrunk toward zero. Hence, smoothing
splines on a discrete domain reduce to shrinkage estimates.

The roughness penalty
∑K

x=1

(
f(x)− f̄

)2
appears natural for x nominal.

For x ordinal, however, one may consider alternatives such as

K∑

x=2

(
f(x)− f(x− 1)

)2
,

which have the same null space but use different “scaling” in the penalized
contrast space H1 =

{
f :
∑K

x=1 f(x) = 0
}
.

2.3 Polynomial Smoothing Splines on [0, 1]

The cubic smoothing spline of §1.1.1 is a special case of the polynomial
smoothing splines, the minimizers of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η(m)

)2
dx, (2.5)

in the space C(m)[0, 1] =
{
f : f (m) ∈ L2[0, 1]

}
. Equipped with appropri-

ate inner products, the space C(m)[0, 1] can be made a reproducing kernel
Hilbert space.
We will present two such constructions and outline an approach to the

computation of polynomial smoothing splines. The two constructions yield
identical results for univariate smoothing, but provide building blocks sat-
isfying different side conditions for multivariate smoothing with built-in
ANOVA decompositions.

2.3.1 A Reproducing Kernel in C(m)[0, 1]

For f ∈ C(m)[0, 1], the standard Taylor expansion gives

f(x) =

m−1∑

ν=0

xν

ν!
f (ν)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u)du, (2.6)

where (·)+ = max(0, ·). With an inner product

(f, g) =

m−1∑

ν=0

f (ν)(0)g(ν)(0) +

∫ 1

0

f (m)g(m)dx, (2.7)
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it can be shown that the representer of evaluation [x](·) is

Rx(y) =

m−1∑

ν=0

xν

ν!

yν

ν!
+

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du. (2.8)

To see this, note that R
(ν)
x (0) = xν/ν!, ν = 0, . . . ,m−1, and that R

(m)
x (y) =

(x − y)m−1
+ /(m − 1)!. Plugging these into (2.7) with g = Rx, one obtains

the right-hand side of (2.6), so (Rx, f) = f(x).
The two terms of the reproducing kernel R(x, y) = Rx(y),

R0(x, y) =
m−1∑

ν=0

xν

ν!

yν

ν!
, (2.9)

and

R1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du, (2.10)

are both non-negative definite themselves, and it is also easy to verify
the other conditions of Theorem 2.5. To R0 there corresponds the space
of polynomials H0 =

{
f : f (m) = 0

}
with an inner product (f, g)0 =

∑m−1
ν=0 f

(ν)(0)g(ν)(0), and to R1 there corresponds the orthogonal comple-
ment of H0,

H1 =
{
f : f (ν)(0) = 0, ν = 0, . . . ,m− 1,

∫ 1
0

(
f (m)

)2
dx <∞

}
, (2.11)

with an inner product (f, g)1 =
∫ 1

0 f
(m)g(m)dx. The space H0 can be

further decomposed into the tensor sum of m subspaces of monomials{
f : f ∝ (·)ν

}
with inner products f (ν)(0)g(ν)(0) and reproducing ker-

nels (xν/ν!)(yν/ν!), ν = 0, . . . ,m− 1.
Setting m = 1, one has R0(x, y) = 1 and

R1(x, y) =

∫ 1

0

I[u<x]I[u<y]du = x ∧ y, (2.12)

where x ∧ y = min(x, y). This setting is useful for the computation of a
linear smoothing spline, the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

η̇2dx. (2.13)

Setting m = 2, one has R0(x, y) = 1 + xy and

R1(x, y) =

∫ 1

0

(x− u)+(y − u)+du

= (x ∧ y)2
(
3(x ∨ y)− (x ∧ y)

)
/6, (2.14)
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where x∨y = max(x, y). The latter formula can be used in the computation
of a cubic smoothing spline.
For m = 1, the tensor sum decomposition characterized by R = R0 +

R1 = [1]+ [x∧ y] naturally defines a one-way ANOVA decomposition with
an averaging operator Af = f(0), where the corresponding H0 spans the
“mean” space and H1 spans the “contrast” space; see §1.3.1 for discussions
on ANOVA decomposition and averaging operator.
For m = 2, the same ANOVA decomposition is characterized by the

kernel decomposition

R = R00 + [R01 +R1] = [1] +
[
xy +

{
(x ∧ y)2

(
3(x ∨ y)− (x ∧ y)

)
/6
}]
,

where R0 = 1 + xy is further decomposed into the sum of R00 = 1 and
R01 = xy. The kernel R00 generates the “mean” space and the kernels R01

and R1 together generate the “contrast” space, with R01 contributing to
the “parametric contrast” and R1 to the “nonparametric contrast.”

2.3.2 Computation of Polynomial Smoothing Splines

Given the sampling points xi, i = 1, . . . , n in (2.5) and noting that the
space

{
f : f =

∑n
i=1 αiR1(xi, ·)

}
is a closed linear subspace of H1 given in

(2.11), one may write η ∈ C(m)[0, 1] as

η(x) =

m−1∑

ν=0

dν
xν

ν!
+

n∑

i=1

ciR1(xi, x) + ρ(x), (2.15)

where ci and dν are real coefficients, R1 is given in (2.10), and

ρ ∈ H1 �
{
f : f =

∑n
i=1 ciR1(xi, ·)

}
.

By orthogonality, ρ(xi) =
(
R1(xi, ·), ρ

)
= 0, i = 1, . . . , n. Denoting by S

the n×m matrix with the (i, ν)th entry xνi /ν! and by Q the n× n matrix
with the (i, j)th entry R1(xi, xj), (2.5) can be written as

(Y − Sd−Qc)T (Y − Sd−Qc) + nλ cTQc+ nλ (ρ, ρ), (2.16)

where the fact that
∫ 1

0
R

(m)
1 (xi, x)R

(m)
1 (xj , x)dx = R1(xi, xj) is used. Note

that ρ only appears in the third term in (2.16), which is minimized at ρ = 0.
Hence, a polynomial smoothing spline resides in a space

H0 ⊕
{
f : f =

∑n
i=1 ciR1(xi, ·)

}
,

of finite dimension, and so can be computed via the minimization of the
first two terms of (2.16) with respect to c and d.
In this approach to the computation of polynomial smoothing splines,

one needs the reproducing kernel R1 that corresponds to a space H1 in

which the roughness penalty
∫ 1

0

(
f (m)

)2
dx is a full square norm, plus a

basis that spans the null space of the penalty.
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2.3.3 Another Reproducing Kernel in C(m)[0, 1]

The bilinear form
∫ 1

0
f (m)g(m)dx is a semi-inner-product in C(m)[0, 1], which

can be augmented to a full inner product by the addition of an inner prod-
uct in its null space, the space

{
f : f (m) = 0

}
of polynomials up to order

m − 1. In §2.3.1, we used
∑m−1

ν=0 f
(ν)(0)g(ν)(0) as the inner product in{

f : f (m) = 0
}
. In this section, we will use a different inner product,

∑m−1
ν=0

( ∫ 1

0 f
(ν)dx

)( ∫ 1

0 g
(ν)dx

)
, in

{
f : f (m) = 0

}
, and derive the repro-

ducing kernel associated with

(f, g) =

m−1∑

ν=0

(∫ 1

0

f (ν)dx
)( ∫ 1

0

g(ν)dx
)
+

∫ 1

0

f (m)g(m)dx, (2.17)

which defines an inner product different from that in (2.7).
The sought-after reproducing kernel can most conveniently be expressed

in terms of the functions

kr(x) = −
( −1∑

μ=−∞
+

∞∑

μ=1

)
exp(2πiμx)

(2πiμ)r
, r = 1, 2, . . . , (2.18)

where i =
√
−1. It is easy to verify that for r > 1, kr is well defined and

continuous on the real line, and for r = 1, it is well defined and continuous
at noninteger points; see Problem 2.9(a). It is also easy to verify that kr(x)
is real-valued and is periodic with period 1; see Problem 2.9(b). It can be

seen that k
(p)
r = kr−p, p = 1, . . . , r−2 and that k

(r−1)
r (x) = k1(x) for x not

an integer. It is known that k1(x) = x− 0.5 on (0, 1) (Problem 2.9(c)), and
we define k0 = 1. The kr functions are actually scaled Bernoulli polynomi-
als, kr(x) = Br(x)/r!; see Abramowitz and Stegun (1964, Chap. 23) for a
comprehensive list of results concerning the Bernoulli polynomials Br(x).

From the properties listed above, it is easy to verify that
∫ 1

0 k
(ν)
μ dx = δμ,ν ,

μ, ν = 0, . . . ,m− 1, where δμ,ν is the Kronecker delta. It then follows that
kν , ν = 0, . . . ,m − 1 form an orthonormal basis of H0 =

{
f : f (m) = 0

}

under the inner product (f, g)0 =
∑m−1

ν=0

( ∫ 1

0 f
(ν)dx

)( ∫ 1

0 g
(ν)dx

)
and that

R0(x, y) =
m−1∑

ν=0

kν(x)kν (y) (2.19)

is the reproducing kernel in H0; see Problem 2.5(c) for the definition of or-
thonormal basis. In fact,H0 can be further decomposed into the tensor sum

of m subspaces
{
f : f ∝ kν

}
with inner products

( ∫ 1

0
f (ν)dx

)( ∫ 1

0
g(ν)dx

)

and reproducing kernels kν(x)kν(y), ν = 0, . . . ,m− 1, respectively.
We now show that in the space

H1 =
{
f :
∫ 1

0 f
(ν)dx = 0, ν = 0, . . . ,m− 1, f (m) ∈ L2[0, 1]

}
(2.20)
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with a square norm (f, g)1 =
∫ 1

0
f (m)g(m)dx, the function

Rx(y) = km(x)km(y) + (−1)m−1k2m(x− y) (2.21)

is the representer of evaluation [x](·). From the properties of kr, it is easy to

verify that
∫ 1

0
R

(ν)
x (y)dy = 0, ν = 0, . . . ,m−1, and that R

(m)
x (y) = km(x)−

km(x−y) ∈ L2[0, 1], soRx ∈ H1 forH1 given in (2.20). Integrating by parts,

and using the periodicity of kr, r > 1, and the fact that
∫ 1

0 f
(ν)dx = 0,

ν = 0, . . . ,m− 1, one can show that, for m > 1,

(Rx, f)1 =

∫ 1

0

(
km(x)− km(x − y)

)
f (m)(y)dy

= −
∫ 1

0

km−1(x− y)f (m−1)(y)dy

= · · · = −
∫ 1

0

k1(x− y)ḟ(y)dy; (2.22)

see Problem 2.10. Now, since

k1(x− y) =

{
x− y − 0.5 = k1(x) − y, y ∈ (0, x),

(1 + x− y)− 0.5 = k1(x)− y + 1, y ∈ (x, 1),

straightforward calculation yields

−
∫ 1

0

k1(x− y)ḟ(y)dy

= −
∫ 1

0

k1(x)ḟ (y)dy +

∫ 1

0

yḟ(y)dy −
∫ 1

x

ḟ(y)dy

= 0 + f(1)−
(
f(1)− f(x)

)
= f(x).

The result holds for m = 1 via direct calculation. This proves that

R1(x, y) = km(x)km(y) + (−1)m−1k2m(x− y) (2.23)

is the reproducing kernel of H1 given in (2.20).
Obviously,H0∩H1 = {0}, so by the converse of Theorem 2.5, C(m)[0, 1] =

H0 ⊕H1 has the reproducing kernel R = R0 +R1. The identity

f(x) =

m−1∑

ν=0

kν(x)

∫ 1

0

f (ν)(y)dy+

∫ 1

0

(
km(x)−km(x−y)

)
f (m)(y)dy, (2.24)

∀f ∈ C(m)[0, 1], may be called a generalized Taylor expansion, where the
scaled Bernoulli polynomials kν(x) play the role of the scaled monomials
xν/ν! in the standard Taylor expansion of (2.6). The standard Taylor ex-
pansion is asymmetric with respect to the domain [0, 1], in the sense that
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a swapping of the two ends 0 and 1 would change its composition entirely,
whereas the generalized Taylor expansion of (2.24) is symmetric with re-
spect to the domain.
The computation of polynomial smoothing splines as outlined in §2.3.2

can also be performed by using the R1 of (2.23) instead of that of (2.10).
Also, one may use any basis {φν}m−1

ν=0 of the subspace H0 in the place of
{xν/ν!}m−1

ν=0 in the expression of η given in (2.15). The coefficients ci and
dν will be different when different φν and R1 are used, but the function
estimate

η(x) =

m−1∑

ν=0

dνφν(x) +

n∑

i=1

ciR1(xi, x)

will remain the same regardless of the choices of φν and R1.
When m = 1, R0(x, y) = 1 and

R1(x, y) = k1(x)k1(y) + k2(x− y). (2.25)

When m = 2, R0(x, y) = 1 + k1(x)k1(y) and

R1(x, y) = k2(x)k2(y)− k4(x− y). (2.26)

The R1 in (2.25) and (2.26) can be used in the computation of linear and
cubic smoothing splines in lieu of those in (2.12) and (2.14). To calculate
R1 in (2.25) and (2.26), one has, on x ∈ [0, 1],

k2(x) =
1

2

(
k21(x) −

1

12

)
,

k4(x) =
1

24

(
k41(x)−

k21(x)

2
+

7

240

)
,

(2.27)

where k1(x) = x−0.5; see Problem 2.11. Note that k2 and k4 are symmetric
with respect to 0.5 on [0, 1], so for x ∈ [−1, 0],

k2(x) = k2(x+ 1) = k2
(
0.5 + (x+ 0.5)

)
= k2

(
0.5− (x + 0.5)

)
= k2(−x),

and likewise, k4(x) = k4(−x). It then follows that k2(x − y) = k2
(
|x− y|

)

and k4(x− y) = k4
(
|x− y|

)
, for x, y ∈ [0, 1].

For m = 1, the tensor sum decomposition characterized by R = R0 +
R1 = [1]+

[
k1(x)k1(y)+k2(x−y)

]
defines a one-way ANOVA decomposition

with an averaging operator Af =
∫ 1

0 fdx, where the corresponding H0

spans the “mean” space and H1 spans the “contrast” space.
For m = 2, the same ANOVA decomposition is characterized by the

kernel decomposition

R = R00 + [R01 +R1] = [1] +
[
k1(x)k1(y) +

{
k2(x)k2(y)− k4(x− y)

}]
,

where R0 = 1+ k1(x)k1(y) is further decomposed into the sum of R00 = 1
and R01 = k1(x)k1(y). The kernel R00 generates the “mean” space and
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the kernels R01 and R1 together generate the “contrast” space, with R01

contributing to the “parametric contrast” and R1 to the “nonparametric
contrast.”

2.4 Smoothing Splines on Product Domains

To incorporate the ANOVA decomposition introduced in §1.3.2 for the
estimation of a multivariate function, one may construct a tensor product
reproducing kernel Hilbert space. Given Theorem 2.3, the construction of
the space can be done through the construction of the reproducing kernel,
for which one uses reproducing kernels on the marginal domains. One-
way ANOVA decompositions on the marginal domains naturally induce an
ANOVA decomposition on the product domain.
We begin with some general discussion of tensor product reproducing

kernel Hilbert spaces, where it is shown that the products of reproducing
kernels on the marginal domains form reproducing kernels on the prod-
uct domain. The construction is then illustrated with marginal domains{
1, . . . ,K

}
and [0, 1], using the (marginal) reproducing kernels introduced

in §§2.2 and 2.3.

2.4.1 Tensor Product Reproducing Kernel Hilbert Spaces

A convenient approach to the construction of reproducing kernel Hilbert
spaces on a product domain

∏Γ
γ=1 Xγ is by taking the tensor product of

spaces constructed on the marginal domains Xγ . The construction builds
on the following theorem.

Theorem 2.6 ForR〈1〉(x〈1〉, y〈1〉)non-negative definite onX1 andR〈2〉 (x〈2〉,
y〈2〉) non-negative definite on X2, R(x, y) = R〈1〉(x〈1〉, y〈1〉)R〈2〉(x〈2〉, y〈2〉)
is non-negative definite on X = X1 ×X2.

Proof : It suffices to show that, for two non-negative definite matrices A
and B of the same size, their entrywise product, A ◦B, is necessarily non-
negative definite. By elementary matrix theory, A and B are non-negative
definite if and only if there exist vectors ai and bj such that A =

∑
i aia

T
i

and B =
∑

j bjb
T
j . Now,

A ◦B =
(∑

i aia
T
i

)
◦
(∑

j bjb
T
j

)

=
∑

i,j

(aia
T
i ) ◦ (bjbTj ) =

∑

i,j

(ai ◦ bj)(ai ◦ bj)T ,

so A ◦B is non-negative definite. �
By Theorem 2.3, every non-negative definite function R on domain X

corresponds to a reproducing kernel Hilbert space with R as its reproducing
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kernel. Given H〈1〉 on X1 with reproducing kernel R〈1〉 and H〈2〉 on X2 with
reproducing kernel R〈2〉, R = R〈1〉R〈2〉 is non-negative definite on X1 ×X2

by Theorem 2.6. The reproducing kernel Hilbert space corresponding to
such an R is called the tensor product space of H〈1〉 and H〈2〉, and is
denoted by H〈1〉 ⊗H〈2〉. The operation extends to multiple-term products
recursively.
Suppose one has reproducing kernel Hilbert spaces H〈γ〉 on domains

Xγ , γ = 1, . . . ,Γ, respectively. Further, assume that the spaces have one-
way ANOVA decompositions built in via the tensor sum decompositions
H〈γ〉 = H0〈γ〉 ⊕ H1〈γ〉, where H0〈γ〉 =

{
f : f ∝ 1

}
has a reproducing

kernel R0〈γ〉 ∝ 1 and H1〈γ〉 has a reproducing kernel R1〈γ〉 satisfying side
conditions AγR1〈γ〉(x〈γ〉, ·) = 0, ∀x〈γ〉 ∈ Xγ , where Aγ are the averaging
operators defining the one-way ANOVA decompositions on Xγ . The tensor
product space H = ⊗Γ

γ=1H〈γ〉 has a tensor sum decomposition

H =
Γ
⊗
γ=1

(H0〈γ〉⊕H1〈γ〉) = ⊕
S

{(
⊗

γ∈S
H1〈γ〉

)
⊗
(
⊗

γ �∈S
H0〈γ〉

)}
= ⊕

S
HS , (2.28)

which parallels (1.7) on page 7, where the summation is over all subsets S ⊆{
1, . . . ,Γ

}
. The term HS has a reproducing kernel RS ∝

∏
γ∈S R1〈γ〉, and

the projection of f ∈ H in HS is the fS appearing in (1.7). The minimizer
of L(f)+(λ/2)J(f) in a tensor product reproducing kernel Hilbert space is
called a tensor product smoothing spline. Examples of the construction
follow.

2.4.2 Reproducing Kernel Hilbert Spaces on {1, . . . , K}2

Set Aγf =
∑Kγ

x〈γ〉=1 f(x)/Kγ on discrete domains Xγ =
{
1, . . . ,Kγ

}
, γ =

1, 2. The marginal reproducing kernels that define the one-way ANOVA
decomposition on Xγ can be taken as R0〈γ〉(x〈γ〉, y〈γ〉) = 1/Kγ and

R1〈γ〉(x〈γ〉, y〈γ〉) = I[x〈γ〉=y〈γ〉] − 1/Kγ,

γ = 1, 2, as given in §2.2.
A function on

{
1, . . . ,K1

}
×
{
1, . . . ,K2

}
can be written as a vector of

length K1K2,

f =
(
f(1, 1), . . . , f(1,K2), . . . , f(K1, 1), . . . , f(K1,K2)

)T
,

and a reproducing kernel as a (K1K2) × (K1K2) matrix. Using matrix
notation, the products of the marginal reproducing kernels R0〈γ〉 and R1〈γ〉
given above and the subspaces they correspond to are listed in Table 2.1,
where 1K is of length K, IK is of size K ×K, and, as a matrix operator,
⊗ denotes the Kronecker product of matrices. The corresponding inner
products are defined by the Moore-Penrose inverses of these matrices, which
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TABLE 2.1. Product reproducing kernels on
{
1, . . . ,K1

}
×

{
1, . . . ,K2

}
.

Subspace Reproducing kernel

H0〈1〉 ⊗H0〈2〉 (1K11
T
K1
/K1)⊗ (1K21

T
K2
/K2)

H0〈1〉 ⊗H1〈2〉 (1K11
T
K1
/K1)⊗ (IK2 − 1K21

T
K2
/K2)

H1〈1〉 ⊗H0〈2〉 (IK1 − 1K11
T
K1
/K1)⊗ (1K21

T
K2
/K2)

H1〈1〉 ⊗H1〈2〉 (IK1 − 1K11
T
K1
/K1)⊗ (IK2 − 1K21

T
K2
/K2)

are themselves because they are idempotent. The decomposition of (2.28)
is seen to be

H = (H0〈1〉 ⊕H1〈1〉)⊗ (H0〈2〉 ⊕H1〈2〉)

= (H0〈1〉 ⊗H0〈2〉)⊕ (H1〈1〉 ⊗H0〈2〉)

⊕ (H0〈1〉 ⊗H1〈2〉)⊕ (H1〈1〉 ⊗H1〈2〉)

= H{} ⊕H{1} ⊕H{2} ⊕H{1,2}, (2.29)

where H{} spans the constant, H{1} spans the x〈1〉 main effect, H{2} spans
the x〈2〉 main effect, and H{1,2} spans the interaction.
If one would like to use the averaging operator Af = f(1) on a marginal

domain
{
1, . . . ,K

}
, the K-dimensional vector space may be decomposed

alternatively as

H0 ⊕H1 =
{
f : f(1) = · · · = f(K)

}
⊕
{
f : f(1) = 0

}
,

with the reproducing kernels given by R0 = 1 and R1(x, y) = I[x=y �=1]; see
Problem 2.8.

2.4.3 Reproducing Kernel Hilbert Spaces on [0, 1]2

Set Af =
∫ 1

0 fdx on [0, 1]. The tensor product reproducing kernel Hilbert
spaces on [0, 1]2 can be constructed using the reproducing kernels (2.19)
and (2.23) derived in §2.3.3.

Example 2.4 (Tensor product linear spline) Settingm = 1 in §2.3.3,
one has

{
f : ḟ ∈ L2[0, 1]

}
=
{
f : f ∝ 1

}
⊕
{
f :
∫ 1

0
fdx = 0, ḟ ∈ L2[0, 1]

}

= H0 ⊕H1,

with reproducing kernelsR0(x, y) = 1 and R1(x, y) = k1(x)k1(y)+k2(x−y).
This marginal space can be used on both axes to construct a tensor product
reproducing kernel Hilbert space with the structure of (2.28), with averag-

ing operators Aγf =
∫ 1

0
fdx〈γ〉, γ = 1, 2. The reproducing kernels and the

corresponding inner products in the subspaces are listed in Table 2.2. �
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Example 2.5 (Tensor product cubic spline) Setting m = 2 in §2.3.3,
one has

{
f : f̈ ∈ L2[0, 1]

}
=
{
f : f ∝ 1

}
⊕
{
f : f ∝ k1

}

⊕
{
f :
∫ 1

0
fdx =

∫ 1

0
ḟdx = 0, f̈ ∈ L2[0, 1]

}

= H00 ⊕H01 ⊕H1,

where H01 ⊕ H1 forms the contrast in a one-way ANOVA decomposition

with an averaging operator Af =
∫ 1

0
fdx. The corresponding reproduc-

ing kernels are R00(x, y) = 1, R01(x, y) = k1(x)k1(y), and R1(x, y) =

k2(x)k2(y) − k4(x − y). Note that
∫ 1

0 R01(x, y)dy =
∫ 1

0 R1(x, y)dy = 0,
∀x ∈ [0, 1]. Using this space on both marginal domains, one can con-
struct a tensor product space with nine tensor sum terms. The subspace
H00〈1〉 ⊗ H00〈2〉 spans the constant term in (1.7) on page 7, the subspaces
H00〈1〉 ⊗ (H01〈2〉 ⊕ H1〈2〉) and (H01〈1〉 ⊕ H1〈1〉) ⊗H00〈2〉 span the main ef-
fects, and the subspace (H01〈1〉 ⊕ H1〈1〉) ⊗ (H01〈2〉 ⊕ H1〈2〉) spans the in-
teraction. The reproducing kernels and the corresponding inner products
in some of the subspaces are listed in Table 2.3. The separation of H01

and H1 is intended to facilitate adequate numerical treatment of the dif-
ferent components; it is not needed for the characterization of the ANOVA
decomposition in (2.28). �

For the averaging operator Af = f(0), similar tensor product repro-
ducing kernel Hilbert spaces can be constructed using the marginal spaces
described in §2.3.1; details are to be worked out in Problem 2.13. Note that
it is not necessary to use the same marginal space on both axes. Actually,
the choice of the order m and that of the averaging operator Af on differ-
ent axes are unrelated to each other. Although the reproducing kernels of
§§2.3.1 and 2.3.3 lead to identical polynomial smoothing splines for univari-
ate smoothing on [0, 1], they do yield different tensor product smoothing
splines on [0, 1]2, as their respective roughness penalties are different.

2.4.4 Reproducing Kernel Hilbert Spaces
on {1, . . . , K} × [0, 1]

Setting A1f =
∑K

x〈1〉=1 f(x)/K on X1 =
{
1, . . . ,K

}
and A2f =

∫ 1

0
fdx〈2〉

on X2 = [0, 1], tensor product spaces with the structure of (2.28) built in
can be constructed using the marginal spaces used in §§2.4.2 and 2.4.3.

Example 2.6 One construction of a tensor product space is by using
R0〈1〉(x〈1〉, y〈1〉) = 1/K and R1〈1〉(x〈1〉, y〈1〉) = I[x〈1〉=y〈1〉] − 1/K on X1 and
R0〈2〉(x〈2〉, y〈2〉) = 1 and R1〈2〉(x〈2〉, y〈2〉) = k1(x〈2〉)k1(y〈2〉) + k2(x〈2〉 − y〈2〉)
on X2. The reproducing kernels and the corresponding inner products in
the subspaces are listed in Table 2.4. �
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Example 2.7 Using R0〈1〉 = 1/K and R1〈1〉 = I[x〈1〉=y〈1〉] − 1/K on X1

and R00〈2〉 = 1, R01〈2〉 = k1(x〈2〉)k1(y〈2〉), and R1〈2〉 = k2(x〈2〉)k2(y〈2〉) −
k4(x〈2〉 − y〈2〉) on X2, one can construct a tensor product space with six
tensor sum terms. The subspace H0〈1〉⊗H00〈2〉 spans the constant, H0〈1〉⊗
(H01〈2〉 ⊕ H1〈2〉) and H1〈1〉 ⊗ H00〈2〉 span the main effects, and H1〈1〉 ⊗
(H01〈2〉 ⊕ H1〈2〉) spans the interaction. The reproducing kernels and the
corresponding inner products in the subspaces are listed in Table 2.5. �

2.4.5 Multiple-Term Reproducing Kernel Hilbert Spaces:
General Form

The examples of tensor product reproducing kernel Hilbert spaces on prod-
uct domains presented above all contain multiple tensor sum terms. In
general, a multiple-term reproducing kernel Hilbert space can be written
as H = ⊕βHβ , where β is a generic index, with subspaces Hβ having
inner products (fβ , gβ)β and reproducing kernels Rβ , where fβ is the pro-
jection of f in Hβ . It is often convenient to write (f, g)β for (fβ, gβ)β ,
which can be formally defined as a semi-inner-product in H satisfying
(f − fβ , f − fβ)β = 0.
The subspacesHβ are independent modules, and the within-module met-

rics implied by the inner products (fβ , gβ)β are not necessarily comparable
between the modules. Allowing for intermodule rescaling of the metrics, an
inner product in H can be specified via

J(f, g) =
∑

β

θ−1
β (fβ , gβ)β , (2.30)

where θβ ∈ (0,∞) are tunable parameters. The reproducing kernel associ-
ated with (2.30) is RJ =

∑
β θβRβ , as

J
(
RJ (x, ·), f

)
=
∑

β

θ−1
β

(
θβRβ(x, ·), fβ

)
β
=
∑

β

fβ(x) = f(x).

When some of the θβ are set to ∞ in (2.30), J(f, g) defines a semi-inner-
product in H = ⊕βHβ . Such a semi-inner-product may be used to specify
J(f) = J(f, f) for use in L(f) + (λ/2)J(f). Subspaces not contributing
to J(f) form the null space of J(f), NJ =

{
f : J(f) = 0

}
. Subspaces

contributing to J(f) form the space HJ = H � NJ , in which J(f, g) is a
full inner product.
Observing Yi = η(xi) + εi, where xi ∈ X is a product domain and

εi ∼ N(0, σ2), one may estimate η via the minimization of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λJ(η), (2.31)
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ġ 〈

2
〉)
/
K

H
0
〈1

〉
⊗
H

1
〈2

〉
[ k

2
(x

〈2
〉)
k
2
(y

〈2
〉)
−
k
4
(x

〈2
〉
−
y 〈

2
〉)
] /
K

∫
1 0
(∑

K x
〈1

〉=
1
f̈ 〈

2
2
〉)
(∑

K x
〈1

〉=
1
g̈ 〈

2
2
〉)
/
K

H
1
〈1

〉
⊗
H

0
0
〈2

〉
I [
x
〈1

〉=
y
〈1

〉]
−
1
/
K

∑
K x
〈1

〉=
1
(∫

1 0
(I
−
A

1
)f
)(
∫
1 0
(I
−
A

1
)g
)

H
1
〈1

〉
⊗
H

0
1
〈2

〉
(I

[x
〈1

〉=
y
〈1

〉]
−
1
/
K
)k

1
(x

〈2
〉)
k
1
(y

〈2
〉)

∑
K x
〈1

〉=
1
(∫

1 0
(I
−
A

1
)ḟ
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where J(f) = J(f, f) is as given above. The minimizer of (2.31) defines a
smoothing spline on X . The computation strategy outlined in §2.3.2 readily
applies here, with the subspaces H0 and H1 in §2.3.2 replaced by NJ and
HJ , respectively.
When some of the θβ are set to 0 in J(f) = J(f, f), the corresponding fβ

are not allowed in the estimate. One simply eliminates the corresponding
Hβ from the tensor sum.
Note that for the computation of a smoothing spline, all that one needs

are a basis of NJ and the reproducing kernel RJ associated with J(f) in
HJ = H�NJ . In particular, the explicit form of J(f) is not needed.

Example 2.8 Consider the construction of Example 2.5 on X = [0, 1]2.
Denote Hν,μ = Hν〈1〉⊗Hμ〈2〉, ν, μ = 00, 01, 1, with inner products (f, g)ν,μ
and reproducing kernels Rν,μ = Rν〈1〉Rμ〈2〉. One may set

J(f, g) = θ−1
1,00(f, g)1,00 + θ−1

1,01(f, g)1,01

+ θ−1
00,1(f, g)00,1 + θ−1

01,1(f, g)01,1 + θ−1
1,1(f, g)1,1

and minimize (2.31) in H = ⊕ν,μHν,μ. The null space of J(f) = J(f, f) is

NJ = H00,00 ⊕H01,00 ⊕H00,01 ⊕H01,01

= span{φ00,00, φ01,00, φ00,01, φ01,01}
= span

{
1, k1(x〈1〉), k1(x〈2〉), k1(x〈1〉)k1(x〈2〉)

}
,

where the basis functions φν,μ are explicitly specified. The minimizer of
(2.31) in H = ⊕ν,μHν,μ has an expression

η(x) =
∑

ν,μ=00,01

dν,μφν,μ(x) +

n∑

i=1

ciRJ(xi, x),

where

RJ = θ1,00R1,00 + θ1,01R1,01 + θ00,1R00,1 + θ01,1R01,1 + θ1,1R1,1.

The projections of η in Hν,μ are readily available from the expression. For
example, η01,00 = d01,00φ01,00(x) and η01,1 =

∑n
i=1 ciθ01,1R01,1(xi, x).

To fit an additive model, one may set

J(f, g) = θ−1
1,00(f, g)1,00 + θ−1

00,1(f, g)00,1

and minimize (2.31) in Ha = H00,00⊕H01,00⊕H1,00⊕H00,01⊕H00,1. The
null space is now

NJ = H00,00 ⊕H01,00 ⊕H00,01 = span{φ00,00, φ01,00, φ00,01},
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and HJ = H1,00 ⊕H00,1 with a reproducing kernel

RJ = θ1,00R1,00 + θ00,1R00,1.

The spaces H01,01, H1,01, H01,1, and H1,1 are eliminated from Ha. �

2.5 Bayes Model

Penalized likelihood estimation in a reproducing kernel Hilbert space H
with the penalty J(f) a square (semi) norm is equivalent to a certain em-
pirical Bayes model with a Gaussian prior. The prior has a diffuse compo-
nent in the null space NJ of J(f) and a proper component in HJ = H�NJ

with mean zero and a covariance function proportional to the reproducing
kernel RJ in HJ . The Bayes model may also be perceived as a mixed-effect
model, with the fixed effects residing in NJ and the random effects residing
in HJ .
We start the discussion with the familiar shrinkage estimates on discrete

domains, followed by the polynomial smoothing splines on [0, 1]. The calcu-
lus is seen to depend only on the null space NJ of J(f) and the reproducing
kernel RJ in its orthogonal complement HJ = H � NJ , hence applies to
smoothing splines in general. The general results are noted concerning the
general multiple-term smoothing splines of §2.4.5.

2.5.1 Shrinkage Estimates as Bayes Estimates

Consider the classical one-way ANOVA model with independent observa-
tions Yi ∼ N

(
η(xi), σ

2
)
, i = 1, . . . , n, where xi ∈

{
1, . . . ,K

}
. With a prior

η ∼ N(0, bI), it is easy to see that the posterior mean of η is given by the
minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

b

K∑

x=1

η2(x). (2.32)

Setting b = σ2/nλ, (2.32) is equivalent to (2.4) of §2.2.
Now, consider η = α1+η1, with independent priors α ∼ N(0, τ2) for the

mean and η1 ∼ N
(
0, b(I − 11T /K)

)
for the contrast. Note that ηT1 1 = 0

almost surely and that η̄ =
∑K

x=1 η(x)/K = α. The posterior mean of η is
given by the minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

τ2
η̄2 +

1

b

K∑

x=1

(
η(x)− η̄

)2
. (2.33)
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Letting τ2 → ∞ and setting b = σ2/nλ, (2.33) reduces to (2.3) of §2.2.
In the limit, α is said to have a diffuse prior. This setting may also be
considered as a mixed-effect model, with α1 being the fixed effect and η1
being the random effect.
Next we look at a two-way ANOVA model on

{
1, . . . ,K1

}
×
{
1, . . . ,K2

}

using the notation of §2.4.2. Assume that η = η∅ + η1 + η2 + η1,2 has four
independent components, with priors η∅ ∼ N(0, bθ∅R∅), η1 ∼ N(0, bθ1R1),
η2 ∼ N(0, bθ2R2), and η1,2 ∼ N(0, bθ1,2R1,2), where R∅ = R0〈1〉R0〈2〉,
R1 = R1〈1〉R0〈2〉, R2 = R0〈1〉R1〈2〉, and R1,2 = R1〈1〉R1〈2〉, as given in
Table 2.1. Note that Rβ ’s are orthogonal to each other and that an ηβ
resides in the column space of Rβ almost surely. The posterior mean of η
is given by the minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

b

∑

β

θ−1
β ηTR+

β η. (2.34)

Setting b = σ2/nλ and J(f) =
∑

β θ
−1
β fTR+

β f , (2.34) reduces to (2.31)
of §2.4.5, which defines a bivariate smoothing spline on a discrete product
domain. A θβ =∞ in J(f) puts ηβ in NJ , which is equivalent to a diffuse
prior, or a fixed effect in a mixed-effect model. To obtain the additive model,
one simply eliminates η1,2 by setting θ1,2 = 0.

2.5.2 Polynomial Smoothing Splines as Bayes Estimates

Consider η = η0+η1 on [0, 1], with η0 and η1 having independent Gaussian
priors with mean zero and covariance functions,

E
[
η0(x)η0(y)

]
= τ2R0(x, y) = τ2

m−1∑

ν=0

xν

ν!

yν

ν!
,

E
[
η1(x)η1(y)

]
= bR1(x, y) = b

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du,

where R0 and R1 are taken from (2.9) and (2.10) of §2.3.1. Observing
Yi ∼ N

(
η(xi), σ

2
)
, the joint distribution of Y and η(x) is normal with

mean zero and a covariance matrix

(
bQ+ τ2SST + σ2I bξ + τ2Sφ

bξT + τ2φTST bR1(x, x) + τ2φTφ

)

, (2.35)

where Q is n × n with the (i, j)th entry R1(xi, xj), S is n × m with the
(i, ν)th entry xν−1

i /(ν − 1)!, ξ is n × 1 with the ith entry R1(xi, x), and
φ is m × 1 with the νth entry xν−1/(ν − 1)!. Using a standard result on
multivariate normal distribution (see, e.g., Johnson and Wichern (1992,
Result 4.6)), the posterior mean of η(x) is seen to be
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E
[
η(x)|Y

]
= (bξT + τ2φTST )(bQ+ τ2SST + σ2I)−1Y

= ξT (Q + ρSST + nλI)−1Y

+ φT ρST (Q + ρSST + nλI)−1Y, (2.36)

where ρ = τ2/b and nλ = σ2/b.

Lemma 2.7 Suppose M is symmetric and nonsingular and S is of full
column rank.

lim
ρ→∞

(ρSST +M)−1 =M−1 −M−1S(STM−1S)−1STM−1, (2.37)

lim
ρ→∞

ρST (ρSST +M)−1 = (STM−1S)−1STM−1. (2.38)

Proof : It can be verified that (Problem 2.17)

(ρSST +M)−1 =

M−1 −M−1S(STM−1S)−1(I + ρ−1(STM−1S)−1)−1STM−1. (2.39)

Equation (2.37) follows trivially from (2.39). Substituting (2.39) into the
left-hand side of (2.38), some algebra leads to

ρST (ρSST +M)−1 = ρ(I − (I + ρ−1(STM−1S)−1)−1)STM−1

= (STM−1S)−1(I + ρ−1(STM−1S)−1)−1STM−1.

Letting ρ→∞ yields (2.38). �
Setting ρ → ∞ in (2.36) and applying Lemma 2.7, the posterior mean

E
[
η(x)|Y

]
is of the form ξT c+ φTd, with the coefficients given by

c = (M−1 −M−1S(STM−1S)−1STM−1)Y,

d = (STM−1S)−1STM−1Y,
(2.40)

where M = Q+ nλI.

Theorem 2.8 The polynomial smoothing spline of (2.5) is the posterior
mean of η = η0 + η1, where η0 diffuses in span{xν−1, ν = 1, . . . ,m} and η1
has a Gaussian process prior with mean zero and a covariance function

bR1(x, y) = b

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du,

for b = σ2/nλ.

Proof : The only thing that remains to be verified is that c and d in (2.40)
minimize (2.16) on page 36. Differentiating (2.16) with respect to c and d
and setting the derivatives to 0, one gets
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Q
{
(Q+ nλI)c + Sd−Y

}
= 0,

ST {Qc+ Sd−Y} = 0.
(2.41)

It is easy to verify that c and d given in (2.40) satisfy (2.41). �

2.5.3 Smoothing Splines as Bayes Estimates: General Form

Besides the choices of covariance functions R0 and R1, nothing is specific
to polynomial smoothing splines in the derivation of §2.5.2. In general,
consider a reproducing kernel Hilbert space H = ⊕p

β=0Hβ on a domain X
with an inner product

(f, g) =

p∑

β=0

θ−1
β (f, g)β =

p∑

β=0

θ−1
β (fβ , gβ)β

and a reproducing kernel

R(x, y) =

p∑

β=0

θβRβ(x, y),

where (f, g)β is an inner product in Hβ with a reproducing kernel Rβ ,
fβ is the projection of f in Hβ , and H0 is finite dimensional. Observing
Yi ∼ N

(
η(xi), σ

2
)
, a smoothing spline on X can be defined as the minimizer

of the functional

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

p∑

β=1

θ−1
β (η, η)β (2.42)

in H; see also (2.31) of §2.4.5. A smoothing spline thus defined is a Bayes
estimate of η =

∑p
β=0 ηβ , where η0 has a diffuse prior in H0 and ηβ ,

β = 1, . . . , p, have mean zero Gaussian process priors on X with covariance
functions E

[
ηβ(x)ηβ(y)

]
= bθβRβ(x, y), independent of each other, where

b = σ2/nλ. Treated as a mixed-effect model, η0 contains the fixed effects
and ηβ , β = 1, . . . , p, are the random effects.

2.6 Minimization of Penalized Functional

As an optimization object, analytical properties of the penalized likelihood
functional L(f)+(λ/2)J(f) can be studied under general functional analyti-
cal conditions such as the continuity, convexity, and differentiability of L(f)
and J(f). Among such properties are the existence of the minimizer and
the equivalence of penalized optimization and constrained optimization.
We first show that the penalized likelihood estimate exists as long as the

maximum likelihood estimate uniquely exists in the null space NJ of J(f).
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We then prove that the minimization of L(f) + (λ/2)J(f) is equivalent to
the minimization of L(f) subject to a constraint of the form J(f) ≤ ρ for
some ρ ≥ 0, and quantify the relation between ρ and λ.

2.6.1 Existence of Minimizer

A functional A(f) in a linear space L is said to be convex if for f, g ∈ L,
A
(
αf+(1−α)g

)
≤ αA(f)+(1−α)A(g), ∀α ∈ (0, 1); the convexity is strict

if the equality holds only for f = g.

Theorem 2.9 (Existence) Suppose L(f) is a continuous and convex
functional in a Hilbert space H and J(f) is a square (semi) norm in H
with a null space NJ , of finite dimension. If L(f) has a unique minimizer
in NJ , then L(f) + (λ/2)J(f) has a minimizer in H.

The minus log likelihood L(f |data) in (1.3) is usually convex in f , as
will be verified on a case-by-case basis in later chapters. The quadratic
functional J(f) is convex; see Problem 2.18. A minimizer of L(f) is unique
in NJ if the convexity is strict in it, which is often the case.
Without loss of generality, one may set λ = 2 in the theorem. The proof

of the theorem builds on the following two lemmas, with L(f) and J(f) in
the lemmas being the same as those in Theorem 2.9.

Lemma 2.10 If a continuous and convex functional A(f) has a unique
minimizer in NJ , then it has a minimizer in the cylinder area Cρ =

{
f :

f ∈ H, J(f) ≤ ρ
}
, ∀ρ ∈ (0,∞).

Lemma 2.11 If L(f)+J(f) has a minimizer in Cρ =
{
f : f ∈ H, J(f) ≤

ρ
}
, ∀ρ ∈ (0,∞), then it has a minimizer in H.

The rest of the section are the proofs.

Proof of Lemma 2.10: Let ‖ ·‖0 be the norm in NJ , and f0 be the unique
minimizer of A(f) in NJ . By Theorem 4 of Tapia and Thompson (1978,
p. 162), A(f) has a minimizer in a “rectangle”

Rρ,γ =
{
f : f ∈ H, J(f) ≤ ρ, ‖f − f0‖0 ≤ γ

}
.

Now, if the lemma is not true (i.e., that A(f) has no minimizer in Cρ for
some ρ), then a minimizer fγ of A(f) in Rρ,γ must satisfy ‖fγ − f0‖0 = γ.
By the convexity of A(f) and the fact that A(fγ) ≤ A(f0),

A
(
αfγ + (1− α)f0

)
≤ αA(fγ) + (1− α)A(f0) ≤ A(f0), (2.43)

for α ∈ (0, 1). Now, take a sequence γi → ∞ and set αi = γ−1
i , and write

αifγi + (1 − αi)f0 = fo
i + f∗

i , where f
o
i ∈ NJ and f∗

i ∈ H � NJ . It is
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easy to check that ‖fo
i − f0‖0 = 1 and that J(f∗

i ) ≤ α2
i ρ. Since NJ is

finite dimensional, {fo
i } has a convergent subsequence converging to, say,

f1 ∈ NJ , and ‖f1− f0‖0 = 1. It is apparent that f∗
i → 0. By the continuity

of A(f) and (2.43), A(f1) ≤ A(f0), which contradicts the fact that f0
uniquely minimizes A(f) in NJ . Hence, ‖fγ − f0‖0 = γ cannot hold for all
γ ∈ (0,∞). This completes the proof. �

Proof of Lemma 2.11: Without loss of generality we assume L(0) = 0. If
the lemma is not true, then a minimizer fρ of L(f) + J(f) in Cρ must fall
on the boundary of Cρ for every ρ (i.e., J(fρ) = ρ, ∀ρ ∈ (0,∞)). By the
convexity of L(f),

L(αfρ) ≤ αL(fρ), (2.44)

for α ∈ (0, 1). By the definition of fρ,

L(fρ) + J(fρ) ≤ L(αfρ) + J(αfρ). (2.45)

Combining (2.44) and (2.45) and substituting J(fρ) = ρ, one obtains

L(αfρ)/α+ ρ ≤ L(αfρ) + α2ρ,

which, after some algebra, yields

L(αfρ) ≤ −α(1 + α)ρ. (2.46)

Now, choose α = ρ−1/2. Since J(αfρ) = 1, (2.46) leads to

L(f1) ≤ −(ρ1/2 + 1),

which is impossible for large enough ρ. This proves the lemma. �

Proof of Theorem 2.9: Applying Lemma 2.10 on A(f) = L(f) + J(f)
leads to the condition of Lemma 2.11, and the lemma, in turn, yields the
theorem. �

2.6.2 Penalized and Constrained Optimization

For a functional A(f) in a linear space L, define Af,g(α) = A(f + αg) as

functions of α real indexed by f, g ∈ L. If Ȧf,g(0) exists and is linear in g,

∀f, g ∈ L, A(f) is said to be Fréchet differentiable in L, and Ȧf,g(0) is
the Fréchet derivative of A at f in the direction of g.

Theorem 2.12 Suppose L(f) is continuous, convex, and Fréchet differ-
entiable in a Hilbert space H, and J(f) is a square (semi) norm in H.
If f∗ minimizes L(f) in Cρ =

{
f : f ∈ H, J(f) ≤ ρ

}
, then f∗ mini-

mizes L(f)+(λ/2)J(f) in H, where the Lagrange multiplier relates to ρ via
λ = −ρ−1L̇f∗,f∗

1
(0) ≥ 0, with f∗

1 being the projection of f∗ in HJ = H�NJ .
Conversely, if fo minimizes L(f) + (λ/2)J(f) in H, where λ > 0, then fo

minimizes L(f) in
{
f : f ∈ H, J(f) ≤ J(fo)

}
.
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The minus log likelihood L(f |data) in (1.3) is usually Fréchet
differentiable, as will be verified on a case-by-case basis in later chapters.

Proof of Theorem 2.12: If J(f∗) < ρ, then by the convexity of L(f), f∗

is a global minimizer of L(f), so the result holds with λ = L̇f∗,f∗
1
(0) = 0.

In general, J(f∗) = ρ; thus, f∗ minimizes L(f) on the boundary contour
Co

ρ =
{
f : f ∈ H, J(f) = ρ

}
. It is easy to verify that J̇f,g(0) = 2J(f, g),

where J(f, g) is the (semi) inner product associated with J(f). The space
tangent to the contour Co

ρ at f∗ is thus G =
{
g : J(f∗, g) = J(f∗

1 , g) = 0
}
.

Pick an arbitrary g ∈ G. When J(g) = 0, f∗ + αg ∈ Co
ρ . Since

0 ≤ L(f∗ + αg)− L(f∗) = αL̇f∗,g(0) + o(α),

one has L̇f∗,g(0) = 0. When J(g) �= 0, without loss of generality one
may scale g so that J(g) = ρ; then,

√
1− α2f∗ + αg ∈ Co

ρ . Now, write

γ =
(√

1− α2 − 1
)
/α. By the linearity of L̇f,g(0) in g, one has

0 ≤ L
(√

1− α2f∗ + αg
)
− L(f∗)

= L
(
f∗ + α(γf∗ + g)

)
− L(f∗)

= αγL̇f∗,f∗(0) + αL̇f∗,g(0) + o(α)

= αL̇f∗,g(0) + o(α),

where αγ =
√
1− α2 − 1 = O(α2) = o(α); so, again, L̇f∗,g(0) = 0.

It is easy to see that J(f∗
1 ) = ρ and that Gc = span{f∗

1 }. Now, every
f ∈ H has an unique decomposition f = βf∗

1 + g, with β real and g ∈ G;
hence,

L̇f∗,f (0) +
λ

2
J̇f∗,f (0) =L̇f∗,βf∗

1
(0) + L̇f∗,g(0) + λJ(f∗, βf∗

1 + g)

=βL̇f∗,f∗
1
(0) + βλρ. (2.47)

With λ = −ρ−1L̇f∗,f∗
1
(0), (2.47) is annihilated for all f ∈ H; thus, f∗

minimizes L(f) + (λ/2)J(f). Finally, note that L(f∗ − αf∗
1 ) ≥ L(f∗) for

α ∈ (0, 1), so L̇f∗,f∗
1
(0) ≤ 0. The converse is straightforward and is left as

an exercise (Problem 2.21). �

2.7 Bibliographic Notes

Section 2.1

The theory of Hilbert space is at the core of many advanced analysis
courses. The elementary materials presented in §2.1.1 provide a minimal
exposition for our need. An excellent treatment of vector spaces can be
found in Rao (1973, Chap. 1). Proofs of the Riesz representation theorem
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can be found in many references, of different levels of abstraction; the one
given in §2.1.2 was taken from Akhiezer and Glazman (1961). The theory of
reproducing kernel Hilbert space was developed by Aronszajn (1950), which
remains the primary reference on the subject. The exposition in §2.1.3 is
minimally sufficient to serve our need.

Section 2.2

Shrinkage estimates are among basic techniques in classical decision the-
ory and Bayesian statistics; see, e.g., Lehmann and Casella (1998, §5.5).
The interpretation of shrinkage estimates as smoothing splines on discrete
domains has not appeared elsewhere. Vector spaces are much more famil-
iar to statisticians than reproducing kernel Hilbert spaces, and this section
is intended to help the reader to gain further insights into entities in a
reproducing kernel Hilbert space.

Section 2.3

The space C(m)[0, 1] with the inner product (2.7) and the representer of
evaluation (2.8) derived from the standard Taylor expansion are stan-
dard results found in numerical analysis literature; see, e.g., Schumaker
(1981, Chap. 8). The reproducing kernel (2.21) of C(m)[0, 1] associated with
the inner product (2.17) was derived by Craven and Wahba (1979), and
was used more often than (2.8) as marginal kernels in tensor product
smoothing splines. Results concerning Bernoulli polynomials can be found
in Abramowitz and Stegun (1964, Chap. 23).
The computational strategy outlined in §2.3.2 was derived by Kimeldorf

and Wahba (1971) in the setting of Chebyshev splines, of which the polyno-
mial smoothing splines of (2.5) are special cases; see §4.5.2 for Chebyshev
splines. For many years, however, the device was not used much in ac-
tual numerical computation. The reasons were multifold. First, algorithms
based on (2.16) are of order O(n3), whereas O(n) algorithms exist for poly-
nomial smoothing splines; see §§3.4 and 3.10. Second, portable numerical
linear algebra software and powerful desktop computing were not available
until much later. Since the late 1980s, generic algorithms and software have
been developed based on (2.16) for the computation of smoothing splines,
univariate and multivariate alike; see §3.4 for details.

Section 2.4

A comprehensive treatment of tensor product reproducing kernel Hilbert
spaces can be found in Aronszajn (1950), where Theorem 2.6 was quoted
as a classical result of I. Schur. The proof given here was suggested by
Liqing Yan.
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The idea of tensor product smoothing splines was conceived by Barry
(1986) and Wahba (1986). Dozens of references appeared in the litera-
ture since then, among which Chen (1991), Gu and Wahba (1991b, 1993a,
1993b), Gu (1992b, 1995a 1996, 2004), Wahba, Wang, Gu, Klein, and Klein
(1995) and Gu and Ma (2011) registered notable innovations in the the-
ory and practice of the tensor product spline technique. The materials of
§§2.4.3–2.4.5 are scattered in these references. The materials of §2.4.2, how-
ever, had not appeared in the smoothing literature prior to the first edition
of this book.

Section 2.5

The Bayes model of polynomial smoothing splines was first observed by
Kimeldorf andWahba (1970a, 1970b). The materials of §§2.5.2 and 2.5.3 are
mainly taken from Wahba (1978, 1983). The elementary materials of §2.5.1
in the familiar discrete setting provide insights into the general results. In
Bayesian statistics, such models are more specifically referred to as empir-
ical Bayes models; see, e.g., Berger (1985, §4.5).

Section 2.6

The existence of penalized likelihood estimates has been discussed by many
authors in various settings; see, e.g., Tapia and Thompson (1978, Chap. 4)
and Silverman (1982). The general result of Theorem 2.9 and the elemen-
tary proof are taken from Gu and Qiu (1993).
The relation between penalized optimization and constrained optimiza-

tion in the context of natural polynomial splines was noted by Schoenberg
(1964), where L(f) was a least squares functional. The general result of
Theorem 2.12 was adapted from the discussion of Gill, Murray, and Wright
(1981, §3.4) on constrained nonlinear optimization.

2.8 Problems

Section 2.1

2.1 Prove the Cauchy-Schwarz inequality of (2.1).

2.2 Prove the triangle inequality of (2.2).

2.3 Let H be a Hilbert space and G ⊂ H a closed linear subspace. For
every f ∈ H, prove that the projection of f in G, fG ∈ G, that satisfies

‖f − fG‖ = inf
g∈G

‖f − g‖

uniquely exists.
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(a) Show that there exists a sequence {gn} ⊂ G such that

lim
n→∞

‖f − gn‖ = δ = inf
g∈G

‖f − g‖.

(b) Show that

‖gm − gn‖2 = 2‖f − gm‖2 + 2‖f − gn‖2 − 4‖f − gm + gn
2

‖2.

Since limm,n→∞ ‖f − gm+gn
2 ‖ = δ, {gn} is a Cauchy sequence.

(c) Show the uniqueness of fG using the triangle inequality.

2.4 Given Hilbert spaces H0 and H1 satisfying H0∩H1 = {0}, prove that
the space H =

{
f : f = f0 + f1, f0 ∈ H0, f1 ∈ H1

}
with an inner product

(f, g) = (f0, g0)0 + (f1, g1)1 is a Hilbert space, where f = f0 + f1, g =
g0+g1, f0, g0 ∈ H0, f1, g1 ∈ H1, and (·, ·)0 and (·, ·)1 are the inner products
in H0 and H1, respectively. Prove that H0 and H1 are the orthogonal
complements of each other as closed linear subspaces of H.

2.5 The isomorphism between a K-dimensional Hilbert space H and the
Euclidean K-space is outlined in the following steps:

(a) Take any φ ∈ H0 = H nonzero, denote φ1 = φ/‖φ‖, and obtain

H1 = H0 �
{
f : f = αφ1, α real

}
.

Prove that H1 contains nonzero elements if K > 1.

(b) Repeat step (a) for Hi−1, i = 2, . . . ,K, to obtain φi and

Hi = Hi−1 �
{
f : f = αφi, α real

}
.

Prove that HK−1 =
{
f : f = αφK , α real

}
, so HK = {0}.

(c) Verify that (φi, φj) = δi,j , where δi,j is the Kronecker delta. The
elements φi, i = 1, . . . ,K, are said to form an orthonormal basis of
H. For every f ∈ H, there is a unique representation f =

∑K
i=1 αiφi,

where αi are real coefficients.

(d) Prove that the mapping f ↔ α, where α are the coefficients of f ,
defines an isomorphism between H and the Euclidean space.

2.6 Prove that in an Euclidean space, every linear functional is continu-
ous.

2.7 Prove that the reproducing kernel of a Hilbert space, when it exists,
is unique.
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Section 2.2

2.8 On X =
{
1, . . . ,K

}
, the constructions of reproducing kernel Hilbert

spaces outlined below yield a one-way ANOVA decomposition with an av-
eraging operator Af = f(1).

(a) Verify that the reproducing kernel R0 = 1 = 11T generates the space
H0 =

{
f : f(1) = · · · = f(K)

}
with an inner product (f, g)0 =

fT (11T /K2)g.

(b) Verify that the reproducing kernel R1 = I[x=y �=1] = (I − e1e
T
1 )

generates the space H1 =
{
f : f(1) = 0

}
with an inner product

(f, g)1 = fT (I − e1e
T
1 )g, where e1 is the first unit vector.

(c) Note that H0 ∩ H1 = {0}, so H0 ⊕ H1 is well defined and has the
reproducing kernel R0+R1. With the expressions given in (a) and (b),
however, one in general has (f1, f1)0 �= 0 for f1 ∈ H1 and (f0, f0)1 �= 0
for f0 ∈ H0. Nevertheless, f = 1eT1 f for f ∈ H0, so one may write
(f, g)0 = fT (e1e

T
1 )g. Similarly, as f = (I−1eT1 )f for f ∈ H1, one may

write (f, g)1 = fT (I−e11T )(I−1eT1 )g. Verify the new expressions of
(f, g)0 and (f, g)1. Check that with the new expressions, (f1, f1)0 = 0,
∀f1 ∈ H1, and that (f0, f0)1 = 0, ∀f0 ∈ H0, so the inner product in
H0 ⊕ H1 can be written as (f, g) = (f, g)0 + (f, g)1 with the new
expressions.

(d) Verify that (11T + I − e1e
T
1 )

−1 = e1e
T
1 + (I − e11

T )(I − 1eT1 ) (i.e.,
the reproducing kernel R0+R1 and the inner product (f, g)0+(f, g)1
are inverses of each other).

Section 2.3

2.9 Consider the function kr(x) of (2.18).

(a) Prove that the infinite series converges for r > 1 on the real line and
for r = 1 at noninteger points.

(b) Prove that kr(x) is real-valued.

(c) Prove that k1(x) = x− 0.5 on x ∈ (0, 1).

2.10 Prove (2.22) through integration by parts, for m > 1. Note that kr,

r > 1, are periodic with period 1 and that
∫ 1

0
f (ν)dx = 0, ν = 0, . . . ,m− 1.

2.11 Derive the expressions of k2(x) and k4(x) on [0, 1] as given in (2.27)
by successive integration from k1(x) = x−.5. Note that for r > 1, dkr/dx =
kr−1 and kr(0) = kr(1).
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Section 2.4

2.12 On X =
{
1, . . . ,K1

}
×
{
1, . . . ,K2

}
, construct tensor product

reproducing kernel Hilbert spaces with the structure of (2.28).

(a) With A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 1).

(b) With A1f = f(1, x〈2〉) and A2f =
∑K2

x〈2〉=1 f(x)/K2.

2.13 On X = [0, 1]2, construct tensor product reproducing kernel Hilbert
spaces with the structure of (2.28).

(a) With A1f = f(0, x〈2〉) and A2f = f(x〈1〉, 0), using (2.9) and (2.10)
with m = 1, 2.

(b) With A1f = f(0, x〈2〉) and A2f =
∫ 1

0
fdx〈2〉, using (2.9), (2.10),

(2.19) and (2.23), with m = 1, 2.

2.14 On X =
{
1, . . . ,K

}
× [0, 1], construct tensor product reproducing

kernel Hilbert spaces with the structure of (2.28).

(a) With A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 0).

(b) With A1f = f(1, x〈2〉) and A2f =
∫ 1

0
fdx〈2〉.

(c) With A1f =
∑K

x〈1〉=1 f(x)/K and A2f = f(x〈1〉, 0).

2.15 To compute the tensor product smoothing splines of Example 2.8,
one may use the strategy outlined in §2.3.2.

(a) Specify the matrices S and Q in (2.16), for both the full model and
the additive model.

(b) Decompose the expression of η(x) into those of the constant, the main
effects, and the interaction.

2.16 In parallel to Example 2.8 and Problem 2.15, work out the corre-
sponding details for the computation of tensor product smoothing splines
on
{
1, . . . ,K

}
× [0, 1], using the construction of Example 2.7.

Section 2.5

2.17 Verify (2.39).
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Section 2.6

2.18 Prove that a quadratic functional J(f) is convex.

2.19 Let A(f) be a strictly convex functional in a Hilbert space H. Prove
that if the minimizer of A(f) exists in H, then it is also unique.

2.20 Consider a strictly convex continuous function f(x) on (−∞,∞)2.
Prove that if f1(x〈1〉) = f(x〈1〉, 0) has a minimizer, then f(x) + x2〈2〉 has a
unique minimizer.

2.21 Prove that if fo minimizes L(f) + λJ(f), where λ > 0, then fo

minimizes L(f) subject to J(f) ≤ J(fo).



3
Regression with Gaussian-Type
Responses

For regression with Gaussian responses, L(f) + (λ/2)J(f) reduces to the
familiar penalized least squares functional. Among topics of primary in-
terest are the selection of smoothing parameters, the computation of the
estimates, the asymptotic convergence of the estimates, and various data
analytical tools.
The main focus of this chapter is on the development of generic compu-

tational and data analytical tools for the general multiple-term smoothing
splines as formulated in §2.4.5. After a brief review of elementary facts
in §3.1, we discuss (§3.2) three popular scores for smoothing parameter
selection in detail, namely an unbiased estimate of relative loss, the gen-
eralized cross-validation, and the restricted maximum likelihood under the
Bayes model of §2.5. In §3.3, we derive the Bayesian confidence intervals of
Wahba (1983) and briefly discuss their across-the-function coverage prop-
erty. Generic algorithms implementing these tools are described in §3.4.
Minimizers of L(f)+ (λ/2)J(f) in certain low dimensional function spaces
can deliver as efficient statistical performances, and the theory and practice
of such approximations are explored in §3.5. Open-source software imple-
menting the modeling tools are illustrated in §3.6. Heuristic diagnostics are
introduced in §§3.7 and 3.8 for the identifiability and practical significance
of terms in multiple-term models. Real-data examples are presented in §3.9.
Also presented (§3.10) are selected fast algorithms for problems admitting
structures through alternative formulations, such as the O(n) algorithm for
univariate polynomial splines.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 3,
© Springer Science+Business Media New York 2013
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The asymptotic convergence of penalized least squares estimates will be
discussed in Chap. 9, along with that of penalized likelihood estimates in
other settings.

3.1 Preliminaries

Observing Yi = η(xi) + εi, i = 1, . . . , n, with εi ∼ N(0, σ2), the minus
log likelihood functional L(f) in L(f) + (λ/2)J(f) of (1.3) reduces to the

least squares functional proportional to
∑n

i=1

(
Yi − f(xi)

)2
. As discussed

in §§2.4.5 and 2.5.3, the general form of penalized least squares functional
in a reproducing kernel Hilbert space H = ⊕p

β=0Hβ can be written as

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λJ(η), (3.1)

where J(f) = J(f, f) =
∑p

β=1 θ
−1
β (f, f)β and (f, g)β are inner products in

Hβ with reproducing kernels Rβ(x, y). The penalty is seen to be

λJ(f) = λ

p∑

β=1

θ−1
β (f, f)β ,

with λ and θβ as smoothing parameters. This is an overparameterization,
as what really matter are the ratios λ/θβ . One may choose to fix one of
the θβ , but we opt to preserve the symmetry and we do want to keep a λ
up front. The bilinear form J(f, g) =

∑p
β=1 θ

−1
β (f, g)β is an inner product

in ⊕p
β=1Hβ , with a reproducing kernel RJ (x, y) =

∑p
β=1 θβRβ(x, y) and a

null space NJ = H0 of finite dimension, say m. By the arguments of §2.3.2,
the minimizer ηλ of (3.1) has an expression

η(x) =
m∑

ν=1

dνφν(x) +
n∑

i=1

ciRJ(xi, x) = φ
Td+ ξT c, (3.2)

where {φν}mν=1 is a basis of NJ = H0, ξ and φ are vectors of functions,
and c and d are vectors of real coefficients. The estimation then reduces to
the minimization of

(Y − Sd−Qc)T (Y − Sd−Qc) + nλcTQc (3.3)

with respect to c and d, where S is n ×m with the (i, ν)th entry φν(xi)
and Q is n×n with the (i, j)th entry RJ (xi, xj). See also (2.16) on page 36.

The least squares functional
∑n

i=1

(
Yi−f(xi)

)2
is continuous and convex

in H, and when S is of full column rank, the convexity is strict in NJ . Also,
(3.1) is strictly convex in H when S is of full column rank. See Problem 3.1.
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By Theorem 2.9, the minimizer ηλ of (3.1) uniquely exists as long as it
uniquely exists inNJ , which requires S to be of full column rank. When Q is
singular, (3.3) may have multiple solutions for c and d, all that satisfy (2.41)
on page 51. All the solutions, however, yield the same function estimate
ηλ through (3.2). For definiteness in the numerical calculation, we shall
compute a particular solution of (3.3) by solving the linear system

(Q+ nλI)c + Sd = Y,

ST c = 0.
(3.4)

It is easy to verify that (3.4) has a unique solution that satisfies (2.41)
(Problem 3.2).
Suppose S is of full column rank. Let

S = FR∗ = (F1, F2)

(
R̃
O

)

= F1R̃ (3.5)

be the QR-decomposition of S with F orthogonal and R̃ upper-triangular;
see, e.g., Golub and Van Loan (1989, §5.2) for QR-decomposition. From
ST c = 0, one has FT

1 c = 0, so c = F2F
T
2 c. Premultiplying the first equation

of (3.4) by FT
2 and FT

1 , simple algebra leads to

c = F2(F
T
2 QF2 + nλI)−1FT

2 Y,

d = R̃−1(FT
1 Y − FT

1 Qc).
(3.6)

Denote the fitted values by Ŷ =
(
ηλ(x1), . . . , ηλ(xn)

)T
and the residuals

by e = Y − Ŷ. Some algebra yields

Ŷ = Qc+ Sd

= (F1F
T
1 + F2F

T
2 QF2(F

T
2 QF2 + nλI)−1FT

2 )Y

= (I − F2(I − FT
2 QF2(F

T
2 QF2 + nλI)−1)FT

2 )Y

= (I − nλF2(F
T
2 QF2 + nλI)−1FT

2 )Y.

The symmetric matrix

A(λ) = I − nλF2(F
T
2 QF2 + nλI)−1FT

2 (3.7)

is known as the smoothing matrix associated with (3.1), which has all its
eigenvalues in the range [0, 1] (Problem 3.3). It is easy to see from (3.4)
that e =

(
I − A(λ)

)
Y = nλc. Using formula (2.40) on page 50 for c and

d, the smoothing matrix can alternatively be written as

A(λ) = I − nλ(M−1 −M−1S(STM−1S)−1STM−1), (3.8)

where M = Q+ nλI.
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When εi ∼ N(0, σ2/wi) with wi known, L(f)+(λ/2)J(f) of (1.3) reduces
to a penalized weighted least squares functional

1

n

n∑

i=1

wi

(
Yi − η(xi)

)2
+ λJ(η). (3.9)

The counter part of (3.4) is

(Qw + nλI)cw + Swd = Yw,

ST
wcw = 0,

(3.10)

whereQw =W 1/2QW 1/2, cw =W−1/2c, Sw =W 1/2S, andYw =W 1/2Y,
for W = diag(wi); see Problem 3.4. Write Ŷw = W 1/2Ŷ = Aw(λ)Yw and

ew = Yw − Ŷw; it is easy to see that ew = nλcw and that

Aw(λ) = I − nλF2(F
T
2 QwF2 + nλI)−1FT

2 , (3.11)

where FT
2 F2 = I and FT

2 Sw = 0. Parallel to (3.8), one also has

Aw(λ) = I − nλ(M−1
w −M−1

w Sw(S
T
wM

−1
w Sw)

−1ST
wM

−1
w ), (3.12)

where Mw = Qw + nλI.
Other than the claim that the least squares functional is proportional

to the log likelihood, the normality of εi has not been used so far. Indeed,
many of the results to be presented in this chapter only require moment
conditions of εi. This is reflected in the title of the chapter, where we
advertise Gaussian-type responses instead of strict Gaussian responses.

3.2 Smoothing Parameter Selection

With varying smoothing parameters λ and θβ , the minimizer ηλ of (3.1)
defines a family of possible estimates. In practice, one has to choose some
specific estimate from the family, which calls for effective methods for
smoothing parameter selection.
We introduce three scores that are in popular use for smoothing pa-

rameter selection in the context. The first score, which assumes a known
variance σ2, is an unbiased estimate of a relative loss. The second score, the
generalized cross-validation of Craven and Wahba (1979), targets the same
loss without assuming a known σ2. These scores are presented along with
their asymptotic justifications. The third score is derived from the Bayes
model of §2.5 through restricted maximum likelihood, which is of appeal to
some but is not designed to minimize any particular loss. Parallel scores for
weighted and replicated data are also presented. The empirical performance
of the three methods is illustrated through simple simulations.
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To keep the notation simple, we only make the dependence of various
entities on the smoothing parameter λ explicit and suppress their depen-
dence on θβ . The derivations and proofs apply without change to the general
case, with both λ and θβ tunable.

3.2.1 Unbiased Estimate of Relative Loss

As an estimate of η based on data collected from the sampling points xi,
i = 1, . . . , n, the performance of ηλ can be assessed via the loss function

L(λ) =
1

n

n∑

i=1

(
ηλ(xi)− η(xi)

)2
. (3.13)

This is not to be confused with the log likelihood functional L(f), which
will not appear again in this chapter except in Problem 3.1. The λ that
minimizes L(λ) represents the ideal choice one would like to make given
the data, and will be referred to as the optimal smoothing parameter.

Write Y = η+ε, where η =
(
η(x1), . . . , η(xn)

)T
. It is easy to verify that

L(λ) =
1

n

(
A(λ)Y − η

)T (
A(λ)Y − η

)

=
1

n
ηT
(
I −A(λ)

)2
η − 2

n
ηT
(
I −A(λ)

)
A(λ)ε +

1

n
εTA2(λ)ε.

Define

U(λ) =
1

n
YT
(
I −A(λ)

)2
Y + 2

σ2

n
trA(λ). (3.14)

Simple algebra yields

U(λ) =
1

n

(
A(λ)Y − η

)T (
A(λ)Y − η

)
+

1

n
εT ε

+
2

n
ηT
(
I −A(λ)

)
ε− 2

n

(
εTA(λ)ε − σ2trA(λ)

)
.

It follows that

U(λ)− L(λ)−n−1εT ε

=
2

n
ηT
(
I −A(λ)

)
ε− 2

n

(
εTA(λ)ε − σ2trA(λ)

)
. (3.15)

It is easy to see that U(λ) is an unbiased estimate of the relative loss
L(λ) + n−1εT ε.
Denote the risk function by

R(λ) = E
[
L(λ)

]
=

1

n
ηT
(
I −A(λ)

)2
η +

σ2

n
trA2(λ), (3.16)
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where the first term represents the “bias” in the estimation and the second
term represents the “variance.” Under a condition

Condition 3.2.1 nR(λ)→∞ as n→∞ and λ→ 0,

one can establish the consistency of U(λ). Condition 3.2.1 is a mild one,
as one would not expect nonparametric estimation to deliver a parametric
convergence rate of O(n−1). See §4.2.3 and Chap. 9.

Theorem 3.1 Assume independent εi with mean zero, a common vari-
ance, and uniformly bounded fourth moments. Under Condition 3.2.1, as
n→∞ and λ→ 0,

U(λ) − L(λ)− n−1εT ε = op
(
L(λ)

)
.

Note that n−1εT ε does not depend on λ, so U(λ) traces L(λ) closely. The
theorem falls short of fully justifying the use of U(λ), however, as the λ here
is deterministic but the minimizers λo of L(λ) and λu of U(λ) are stochastic.
It was shown by Li (1986), using much more sophisticated machinery, that
the result holds uniformly over a set of λ, yielding L(λu)/L(λo) = 1+op(1).

Proof of Theorem 3.1: From (3.15), it suffices to show that

L(λ)−R(λ) = op
(
R(λ)

)
, (3.17)

1

n
ηT
(
I −A(λ)

)
ε = op

(
R(λ)

)
, (3.18)

1

n

(
εTA(λ)ε − σ2trA(λ)

)
= op

(
R(λ)

)
. (3.19)

We will show (3.17), (3.18), and (3.19) only for the case with εi normal here,
leaving the more tedious general case to Problem 3.5. Let A(λ) = PDPT

be the eigenvalue decomposition of A(λ), where P is orthogonal and D is
diagonal with diagonal entries di, i = 1, . . . , n. It is seen that the eigenvalues
di are in the range [0, 1]; see Problem 3.3. Write η̃ = PTη and ε̃ = PT ε. It
follows that

L(λ) =
1

n

n∑

i=1

{
(1 − di)

2η̃2i − 2di(1 − di)η̃i ε̃i + d2i ε̃
2
i

}
,

R(λ) =
1

n

n∑

i=1

{
(1 − di)

2η̃2i + d2iσ
2
}
.

To see (3.17), note that

Var
[
L(λ)

]
=

1

n2

n∑

i=1

{
4d2i (1− di)

2η̃2i σ
2 + 2d4iσ

4
}
≤ 4σ2

n
R(λ) = o

(
R2(λ)

)
.
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Similarly, (3.18) follows from

Var

[
1

n
ηT (I −A(λ))ε

]

=
1

n2

n∑

i=1

(1− di)
2η̃2i σ

2 = o
(
R2(λ)

)
,

and (3.19) follows from E
[
εTA(λ)ε

]
= σ2trA(λ) and

Var

[
1

n
εTA(λ)ε

]

=
2

n2

n∑

i=1

d2iσ
4 = o

(
R2(λ)

)
.

The proof is thus complete for the case with εi ∼ N(0, σ2). �

3.2.2 Cross-Validation and Generalized Cross-Validation

To use U(λ) as defined in (3.14), one needs to know the sampling vari-
ance σ2, which is impractical in many applications. The problem can be
circumvented, however, by using the method of cross-validation.
The method of cross-validation aims at the prediction error at the sam-

pling points. If an independent validation data set were available with
Y ∗
i = η(xi) + ε∗i , then an intuitive strategy for the selection of λ would be

to minimize n−1
∑n

i=1

(
ηλ(xi) − Y ∗

i

)2
. Lacking an independent validation

data set, an alternative strategy is to cross-validate, that is, to minimize

V0(λ) =
1

n

n∑

i=1

(
η
[i]
λ (xi)− Yi

)2
, (3.20)

where η
[k]
λ is the minimizer of the “delete-one” functional

1

n

∑

i�=k

(
Yi − η(xi)

)2
+ λJ(η). (3.21)

Instead of solving (3.21) n times, one can perform the delete-one operation
analytically with the assistance of the following lemma.

Lemma 3.2 The minimizer η
[k]
λ of the “delete-one” functional (3.21) min-

imizes the full data functional (3.1) with Ỹk = η
[k]
λ (xk) replacing Yk.

Proof : For all η �= η
[k]
λ ,

1

n

((
Ỹk − η

[k]
λ (xk)

)2
+
∑

i�=k

(
Yi − η

[k]
λ (xi)

)2)
+ λJ(η

[k]
λ )

=
1

n

∑

i�=k

(
Yi − η

[k]
λ (xi)

)2
+ λJ(η

[k]
λ )
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<
1

n

∑

i�=k

(
Yi − η(xi)

)2
+ λJ(η)

≤ 1

n

((
Ỹk − η(xk)

)2
+
∑

i�=k

(
Yi − η(xi)

)2)
+ λJ(η).

The lemma follows. �
The fitted values Ŷ = A(λ)Y are linear in Y. By Lemma 3.2, it is easy

to see that

ηλ(xi)− η
[i]
λ (xi) = ai,i

(
Yi − η

[i]
λ (xi)

)
,

where ai,i is the (i, i)th entry of A(λ). Solving for η
[i]
λ (xi), one has

η
[i]
λ (xi) =

ηλ(xi)− ai,iYi
1− ai,i

.

It then follows that

η
[i]
λ (xi)− Yi =

ηλ(xi)− Yi
1− ai,i

.

Hence,

V0(λ) =
1

n

n∑

i=1

(
Yi − ηλ(xi)

)2

(1− ai,i)2
. (3.22)

It is rarely the case that all sampling points contribute equally to the
estimation of η(x). To adjust for such an imbalance, it might pay to consider
alternative scores with unequal weights,

Ṽ (λ) =
1

n

n∑

i=1

wi

(
Yi − ηλ(xi)

)2

(1− ai,i)2
.

With the choice of wi = (1 − ai,i)
2/
{
n−1tr

(
I − A(λ)

)}2
[i.e., substituting

ai,i in (3.22) by its average n−1
∑n

i=1 ai,i], one obtains the generalized cross-
validation (GCV) score of Craven and Wahba (1979),

V (λ) =
n−1YT

(
I −A(λ)

)2
Y

{
n−1tr

(
I −A(λ)

)}2 . (3.23)

A desirable property of the GCV score V (λ) is its invariance to an orthog-
onal transform of Y. Under an extra condition

Condition 3.2.2
{
n−1trA(λ)

}2
/n−1trA2(λ)→ 0 as n→∞ and λ→ 0,

V (λ) can be shown to be a consistent estimate of the relative loss. Condition
3.2.2 generally holds in most settings of interest; see Craven and Wahba
(1979) and Li (1986) for details. See also §4.2.3.
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Theorem 3.3 Assume independent εi with mean zero, a common variance,
and uniformly bounded fourth moments. Under Conditions 3.2.1 and 3.2.2,
as n→∞ and λ→ 0,

V (λ)− L(λ)− n−1εT ε = op
(
L(λ)

)
.

Similar to Theorem 3.1, this is poor man’s justification for the use of
V (λ). The ultimate justification can be found in Li (1986), where it was
shown that L(λv)/L(λo) = 1 + op(1), with λv minimizing V (λ).

Proof of Theorem 3.3: Write μ = n−1trA(λ) and σ̃2 = n−1εT ε. Note that
n−1trA2(λ) < 1, so Condition 3.2.2 implies that μ → 0. Straightforward
algebra yields

V (λ) − L(λ)− σ̃2 =
1

(1− μ)2
{
U(λ)− 2σ2μ−

(
L(λ) + σ̃2

)
(1− μ)2

}

=
U(λ)− L(λ)− σ̃2

(1− μ)2
+

(2− μ)μL(λ)

(1 − μ)2

− μ2σ̃2

(1− μ)2
+

2μ(σ̃2 − σ2)

(1− μ)2
.

The first term is op
(
L(λ)

)
by Theorem 3.1. The second term is op

(
L(λ)

)

since μ → 0. By Condition 3.2.2, μ2 = op
(
L(λ)

)
, so the third term is

op
(
L(λ)

)
. Combining this with σ̃2 − σ2 = Op(n

−1/2) = op
(
L1/2(λ)

)
, one

obtains op
(
L(λ)

)
for the fourth term. �

When the conditions of Theorem 3.3 hold uniformly in a neighborhood
of the optimal λ, the minimizers λu of U(λ) and λv of V (λ) should be close
to each other. Differentiating U(λ) and setting the derivative to zero, one
gets

d

dλ
YT
(
I −A(λ)

)2
Y = −2σ2 d

dλ
trA(λ). (3.24)

Differentiating V (λ) and setting the derivative to zero, one similarly has

d

dλ
YT
(
I −A(λ)

)2
Y = −2

YT
(
I −A(λ)

)2
Y

tr
(
I −A(λ)

)
d

dλ
trA(λ). (3.25)

Setting λu = λv by equating (3.24) and (3.25) and solving for σ2, one
obtains a variance estimate

σ̂2
v =

YT
(
I −A(λv)

)2
Y

tr
(
I −A(λv)

) . (3.26)

The consistency of the variance estimate σ̂2
v is established below.
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Theorem 3.4 If Conditions 3.2.1 and 3.2.2 hold uniformly in a neighbor-
hood of the optimal λ, then the variance estimate σ̂2

v of (3.26) is consistent.

Proof : By Theorems 3.1 and 3.3 and (3.17),

op
(
R(λv)

)
= V (λv)− U(λv) = σ̂2

v/(1− μ)− σ̂2
v(1− μ)− 2σ2μ,

where μ = n−1trA(λv), as in the proof of Theorem 3.3. Solving for σ2, one
has

σ2 = σ̂2
v

1− μ/2

1− μ
+ op

(
μ−1R(λv)

)
= σ̂2

v

(
1 + o(1)

)
+ op

(
μ−1R(λv)

)
.

It remains to show that μ−1R(λv) = O(1). In the neighborhood of the
optimal λ, the “bias” term and the “variance” term of R(λ) should be of
the same order, so R(λ) = O

(
n−1trA2(λ)

)
. Since the eigenvalues of A(λ)

are in the range of [0, 1], trA2(λ)/trA(λ) ≤ 1. Now,

μ−1R(λ) = μ−1n−1trA2(λ)
{
R(λ)/n−1trA2(λ)

}
= O(1).

This completes the proof. �
It is easy to see that any estimate of the form σ̂2

v

(
1 + op(1)

)
is also

consistent. The consistency of σ̂2
v(1 + op(1)) may also be obtained directly

from Theorem 3.3 and the fact that L(λ) = op(1).
Despite its asymptotic optimality, the GCV score V (λ) of (3.23) is known

to occasionally deliver severe undersmoothing. A modified version,

V (λ) =
n−1YT

(
I −A(λ)

)2
Y

{
n−1tr

(
I − αA(λ)

)}2 , (3.27)

with a fudge factor α > 1 proves rather effective in curbing undersmoothing
while maintaining the otherwise good performance of GCV; α = 1.4 was
found to be adequate in the simulation studies of Kim and Gu (2004).

3.2.3 Restricted Maximum Likelihood Under Bayes Model

As an alternative to cross-validation, one may select the smoothing param-
eters in the context via the restricted maximum likelihood (REML) under
the Bayes model of §2.5. The method may be of appeal to some, but it is
not designed to minimize any specific loss.
Under the Bayes model, one observes Yi = η(xi) + εi with εi ∼ N(0, σ2)

and η(x) =
∑m

ν=1 dνφν(x) + η1(x), where η1(x) is a mean zero Gaussian
process with a covariance function E

[
η1(x)η1(y)

]
= bRJ(x, y). To eliminate

the nuisance parameters dν , a common practice is to consider the likelihood
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of the contrasts Z = FT
2 Y, where F2 is as in (3.5) on page 63. The minus

log (restricted) likelihood of σ2 and b based on the restricted data Z is seen
to be

1

2
ZT (bQ∗ + σ2I)−1Z+

1

2
log
∣
∣bQ∗ + σ2I

∣
∣

=
1

2b
ZT (Q∗ + nλI)−1Z+

1

2
log
∣
∣Q∗ + nλI

∣
∣+

n−m

2
log b, (3.28)

where Q∗ = FT
2 QF2 and nλ = σ2/b; see Problem 3.6. Minimizing (3.28)

with respect to b, one gets

b̂ =
ZT (Q∗ + nλI)−1Z

n−m
,

with λ to be estimated by the minimizer of the profile minus log likelihood,

1

2
log
∣
∣Q∗ + nλI

∣
∣+

n−m

2
log(b̂). (3.29)

From (3.7), one has

ZT (Q∗ + nλI)−1Z = (nλ)−1YT
(
I −A(λ)

)
Y

and
∣
∣Q∗ + nλI

∣
∣ = (nλ)n−m

∣
∣I −A(λ)

∣
∣−1

+
,

where |B|+ denotes the product of positive eigenvalues of B. With some
algebra, a monotone transform of (3.29) gives

M(λ) =
n−1YT

(
I −A(λ)

)
Y

∣
∣I −A(λ)

∣
∣1/(n−m)

+

, (3.30)

whose minimizer λm is called the generalized maximum likelihood (GML)
estimate of λ by Wahba (1985). The corresponding variance estimate is
then

σ̂2
m =

YT
(
I −A(λm)

)
Y

n−m
. (3.31)

As n→∞, it was shown by Wahba (1985) that λm = op(λv) for η “super-
smooth” (in the sense that η satisfies smoothness conditions more stringent
than J(η) <∞) and that λm � λv otherwise; see §4.2.3. Hence, asymptot-
ically, GML tends to deliver rougher estimates than GCV.
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3.2.4 Weighted and Replicated Data

For weighted data with E[ε2i ] = σ2/wi, it is appropriate to replace the loss
function L(λ) of (3.13) by its weighted version

Lw(λ) =
1

n

n∑

i=1

wi

(
ηλ(xi)− η(xi)

)2
. (3.32)

The unbiased estimate of relative loss is now

Uw(λ) =
1

n
YT

w

(
I −Aw(λ)

)2
Yw + 2

σ2

n
trAw(λ), (3.33)

where Yw = W 1/2Y for W = diag(wi) and Aw(λ) is as given in (3.12).
The corresponding GCV score is

Vw(λ) =
n−1YT

w

(
I −Aw(λ)

)2
Yw

{
n−1tr

(
I −Aw(λ)

)}2 . (3.34)

The following theorem establishes the consistency of Uw(λ) and Vw(λ) as es-
timates of the relative loss Lw(λ)+n

−1εTWε, with the proof easily adapted
from the proofs of Theorems 3.1 and 3.3; see Problem 3.7.

Theorem 3.5 Suppose the scaled noise
√
wiεi are independent with mean

zero, a common variance σ2, and uniformly bounded fourth moments. De-

note Rw(λ) = E
[
Lw(λ)

]
. If nRw(λ) → ∞ and

{
n−1trAw(λ)

}2
/n−1tr

A2
w(λ)→ 0 as n→∞ and λ→ 0, then

Uw(λ)− Lw(λ)− n−1εTWε = op
(
Lw(λ)

)
,

Vw(λ)− Lw(λ)− n−1εTWε = op
(
Lw(λ)

)
.

For the restricted maximum likelihood under the Bayes model, one can
start with the contrasts of Yw and derive the corresponding GML score

Mw(λ) =
n−1YT

w

(
I −Aw(λ)

)
Yw

∣
∣I −Aw(λ)

∣
∣1/(n−m)

+

. (3.35)

Now, suppose one observes replicated data Yi,j = η(xi) + εi,j , where
j = 1, . . . , wi, i = 1, . . . , n, and εi,j ∼ N(0, σ2). The penalized unweighted
least squares functional

1

n

n∑

i=1

wi∑

j=1

(
Yi,j − η(xi)

)2
+ λJ(η) (3.36)
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is equivalent to the penalized weighted least squares functional

1

n

n∑

i=1

wi

(
Ȳi − η(xi)

)2
+ λJ(η), (3.37)

where Ȳi =
∑wi

j=1 Yi,j/wi; see Problem 3.8(a). Let Ỹ be the response vector

in (3.36) of length N =
∑n

i=1 wi and Ã(λ) be the corresponding smoothing
matrix, and let Yw be the weighted response vector in (3.37) of length
n with the ith entry

√
wiȲi and Aw(λ) be the corresponding smoothing

matrix as given in (3.11). It can be shown that Yw =W−1/2PT Ỹ and

I − Ã(λ) = PW−1/2
(
I −Aw(λ)

)
W−1/2PT + F3F

T
3 ,

where P = diag(1wi) is of size N×n and F3 is orthogonal of size N×(N−n)
satisfying FT

3 P = O; see Problem 3.8. It follows that

ỸT
(
IN − Ã(λ)

)p
Ỹ = YT

w

(
In −Aw(λ)

)p
Yw + (N − n)σ̃2, p = 1, 2,

tr
(
IN − Ã(λ)

)
= tr

(
In −Aw(λ)

)
+ (N − n),

where the sizes of the identity matrices are marked by the subscripts N
and n and σ̃2 =

∑n
i=1

∑wi

j=1(Yi,j − Ȳi)
2/(N − n). It is easy to see that

trÃ(λ) = trAw(λ) and
∣
∣IN − Ã(λ)

∣
∣
+

=
∣
∣In − Aw(λ)

∣
∣
+
. Hence, the U(λ),

V (λ), and M(λ) scores associated with (3.36) can be expressed in terms of
Yw and Aw(λ) as

U(λ) =
1

N
YT

w

(
In −Aw(λ)

)2
Yw + 2

σ2

N
trAw(λ) +

N − n

N
σ̃2, (3.38)

V (λ) =
N−1

{
YT

w

(
In −Aw(λ)

)2
Yw + (N − n)σ̃2

}

{
1−N−1trAw(λ)

}2 , (3.39)

M(λ) =
N−1

{
YT

w

(
In −Aw(λ)

)
Yw + (N − n)σ̃2

}

∣
∣In −Aw(λ)

∣
∣1/(N−m)

+

. (3.40)

It is clear that U(λ) of (3.38) is equivalent to Uw(λ) of (3.33), but V (λ) of
(3.39) and Vw(λ) of (3.34) are different, so areM(λ) of (3.40) andMw(λ) of
(3.35). Note that the information concerning σ2 contained in σ̃2 is ignored
in Vw(λ) and Mw(λ).
The numerical treatment through (3.4) on page 63 is immune to possible

singularity of Q, so one usually can ignore the presence of replicated data.
When n is substantially smaller than N , however, the computation via
(3.37) can result in substantial savings; see §3.4 for the cost of computation.
Also, a fast algorithm for the computation of L-splines of §4.5 assumes
distinctive xi’s; see §4.5.5.
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FIGURE 3.1. Performance of U(λ), V (λ), and M(λ) in simulation: n = 100. Left :
Loss achieved by U(λ) of (3.14). Center : Loss achieved by V (λ) of (3.27) with
α = 1 (solid) and α = 1.4 (faded). Right : Loss achieved by M(λ) of (3.30).

3.2.5 Empirical Performance

We now illustrate the practical performance of the methods discussed above
through some simple simulation. One hundred replicates of samples of size
n = 100 were generated from Yi = η(xi)+ εi, xi = (i− 0.5)/n, i = 1, . . . , n,
where

η(x) = 1 + 3 sin(2πx− π)

and εi ∼ N(0, 1). Cubic smoothing splines were calculated with λ minimiz-
ing U(λ), V (λ), andM(λ), and with λ on the grid log10 nλ = (−6)(0.1)(0).
The mean square error L(λ) = n−1

∑n
i=1

(
ηλ(xi) − η(xi)

)2
was calculated

for all the estimates, from which the optimal λo was located. The losses
L(λu), L(λv), and L(λm) are plotted against L(λo) for all the replicates in
Fig. 3.1, where a point on the dotted line indicates a perfect selection by
the empirical method. All of the methods appeared to perform well most
of the time, with occasional wild failures found in L(λu) and L(λv) but not
in L(λm). The modified GCV score V (λ) of (3.27) was also minimized on
the grid, for α = 1.4, with the resulting L(λv) superimposed in the center
frame of Fig. 3.1 in faded circles; the wild failures of the unmodified V (λ)
were effectively curtailed by the fudge factor α = 1.4.
To empirically investigate the asymptotic behavior of V (λ) versus that

of M(λ), part of the simulation was repeated for sample sizes n = 200
and n = 500, each with one hundred replicates. Plotted in Fig. 3.2 are
the relative efficacy L(λm)/L(λv) of λv over λm, the comparison of the
magnitudes of λv versus λm, and the performance of the variance estimates
σ̂2
v and σ̂2

m; results for unmodified V (λ) are in solid and those with α = 1.4
are in faded, and the two sets of σ̂2

v were numerically duplicates of each
other. It appeared that L(λv) came ahead of L(λm) more often than the
other way around, and the frequency of such increased as n increased. The
magnitude of λm indeed came below that of λv in general, as predicted by
the asymptotic analysis of Wahba (1985), but λv from the unmodified V (λ)
was severely undersmoothing in a few cases, which actually were responsible
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FIGURE 3.2. Comparison of V (λ) versus M(λ) in simulation. Results for α = 1
in (3.27) are in solid and those for α = 1.4 in faded. Center : Symbols “1,” “2,”
and “5” indicate replicates with n = 100, 200, and 500, respectively. Right : σ̂2

v

are in wider boxes, σ̂2
m are in thinner boxes, σ2 = 1.

for its occasional wild failures seen in Fig. 3.1. The performances of the
variance estimates were reasonably good and did improve as n increased.
The variance estimates σ̂2

v and σ̂2
m were actually within 1.5% of each other

in all but eight n = 100 replicates, three n = 200 replicates, and two
n = 500 replicates.

3.3 Bayesian Confidence Intervals

Point estimate alone is often insufficient in practical applications, as it lacks
an assessment of the estimation precision. Lacking parametric sampling
distributions, however, an adequately justified interval estimate is a rarity
in nonparametric function estimation. An exception to this is the Bayesian
confidence intervals of Wahba (1983), which are derived from the Bayes
model of §2.5.
We derive the posterior mean and the posterior variance of η(x) and

those of its components under the Bayes model, which form the basis for
the construction of the interval estimates. The posterior variance permits
a somewhat simpler expression on the sampling points, which we will also
explore. Despite their derivation from the Bayes model, the interval es-
timates demonstrate a certain across-the-function coverage property for η
fixed and smooth, which makes them comparable to the standard paramet-
ric confidence intervals. The practical performance of the interval estimates
is illustrated through simple simulation. Parallel results for weighted data
are also briefly noted.
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3.3.1 Posterior Distribution

Consider η = η0+η1, where η0 and η1 have independent mean zero Gaussian
process priors with covariances E

[
η0(x)η0(y)

]
= τ2

∑m
ν=1 φν(x)φν(y) and

E
[
η1(x)η1(y)

]
= bRJ(x, y), respectively. From (2.35) on page 49 and a

standard result on multivariate normal distribution (see, e.g., Johnson and
Wichern (1992, Result 4.6)), the conditional variance of η(x) given Yi =
η(xi) + εi is seen to be

bRJ(x,x) + τ2φTφ− (bξT + τ2φTST )

× (bQ+ τ2SST + σ2I)−1(bξ + τ2Sφ)

= b
{
RJ(x, x) + ρφTφ

− (ξT + ρφTST )(Q+ ρSST + nλI)−1(ξ + ρSφ)
}

= b
{
RJ(x, x) + φ

T (ρI − ρ2ST (ρSST +M)−1S)φ

− 2φT (ρST (ρSST +M)−1)ξ − ξT (ρSST +M)−1ξ
}
, (3.41)

where ξ is n × 1 with the ith entry RJ (xi, x), Q is n× n with the (i, j)th
entry RJ(xi, xj), φ is m × 1 with the νth entry φν(x), S is n × m with
the (i, ν)th entry φν(xi), ρ = τ2/b, nλ = σ2/b, and M = Q+ nλI. Setting
ρ→∞ in (3.41), one obtains the following theorem.

Theorem 3.6 Let η = η0+η1, where η0 has a diffuse prior in span{φν , ν =
1, . . . ,m} and η1 has a mean zero Gaussian process prior with covariance
function E

[
η1(x)η1(y)

]
= bRJ(x, y). Observing Yi = η(xi)+εi, i = 1, . . . , n,

where εi ∼ N(0, σ2), the posterior variance of η(x) satisfies

b−1Var
[
η(x)|Y

]
= RJ(x, x) + φ

T (STM−1S)−1φ− 2φT d̃− ξT c̃, (3.42)

where

c̃ = (M−1 −M−1S(STM−1S)−1STM−1)ξ,

d̃ = (STM−1S)−1STM−1ξ.
(3.43)

The proof of Theorem 3.6 follows readily from Lemma 2.7 of §2.5.2 and
the following lemma.

Lemma 3.7 Suppose M is symmetric and nonsingular and S is of full
column rank.

lim
ρ→∞

ρI − ρ2ST (ρSST +M)−1S = (STM−1S)−1. (3.44)

Proof : From (2.39) on page 50, one has

ST (ρSST +M)−1S = (I − (I + ρ−1(STM−1S)−1)−1)STM−1S

= ρ−1(I + ρ−1(STM−1S)−1)−1,
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so

ρI − ρ2ST (ρSST +M)−1S = ρ(I − (I + ρ−1(STM−1S)−1)−1)

= (I + ρ−1(STM−1S)−1)−1(STM−1S)−1.

The lemma follows. �
Now, consider the multiple-term model of §2.5.3 in H = ⊕p

β=0Hβ ,

η(x) =

m∑

ν=1

ψν(x) +

p∑

β=1

ηβ(x),

where ψν have diffuse priors in span{φν} with {φν}mν=1 a basis of H0 and
ηβ(x) have independent Gaussian process priors with mean zero and co-
variance functions bθβRβ(x, y). Remember that the model may also be
perceived as a mixed-effect model, with ψν , ν = 1, . . . ,m, being the fixed
effects and ηβ , β = 1, . . . , p, being the random effects.

Theorem 3.8 Under the multiple-term model specified above, observing
Yi = η(xi) + εi, εi ∼ N(0, σ2), i = 1, . . . , n, the posterior means and
covariances of the fixed effects ψν and the random effects ηβ are as follows:

E
[
ψν(x)|Y

]
= φν(x)e

T
ν d, (3.45)

E
[
ηβ(x)|Y

]
= ξTβ c, (3.46)

b−1Cov
[
ψν(x), ψμ(x)|Y

]
= φν(x)φμ(x)e

T
ν (S

TM−1S)−1eμ, (3.47)

b−1Cov
[
ψν(x), ηβ(x)|Y

]
= −φν(x)eTν d̃β , (3.48)

b−1Cov
[
ηβ(x), ηγ(x)|Y

]
= θβRβ(x, x)δβ,γ − c̃Tβ ξγ , (3.49)

where c and d are as given in (2.40), eν is the νth unit vector of size m×1,
ξβ is n× 1 with the ith entry θβRβ(xi, x), and

c̃β = (M−1 −M−1S(STM−1S)−1STM−1)ξβ ,

d̃β = (STM−1S)−1STM−1ξβ .
(3.50)

The proof of the theorem is straightforward but tedious following the
lines of the proofs of Theorems 2.8 and 3.6; see Problem 3.9.
The results of Theorems 2.8, 3.6, and 3.8 can be used to construct interval

estimates of η(x), of its components ψν(x) and ηβ(x), and of their linear
combinations. See Problem 3.10.
For weighted data with weights wi, one simply replaces, in the formulas

appearing in Theorems 3.6 and 3.8, S by W 1/2S, M = Q+ nλI by Mw =
W 1/2QW 1/2 + nλI, ξβ by W 1/2ξβ , and c, c̃, and c̃β by W−1/2c, W−1/2c̃,

and W−1/2c̃β , respectively, where W = diag(wi); see Problem 3.11.
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3.3.2 Confidence Intervals on Sampling Points

At a sampling point xi, φ
T is the ith row of S and ξ is the ith column of

Q. Write B = S(STM−1S)−1ST . It is easy to check that b−1Var
[
η(xi)|Y

]

as given in Theorem 3.6 is the (i, i)th entry of the matrix

Q+B −BM−1Q−QM−1B −Q(M−1 −M−1BM−1)Q. (3.51)

Note that QM−1 = M−1Q = I − nλM−1. Following straightforward but
tedious algebra, (3.51) simplifies to

nλ
(
I − nλ(M−1 −M−1BM−1)

)
= nλA(λ),

where the last equation is from (3.8); see Problem 3.12. With b and σ2 =
(nλ)b known, the 100(1 − α)% confidence interval of η(xi) based on the
posterior distribution is thus

ηλ(xi)± zα/2 σ
√
ai,i, (3.52)

where ηλ is the minimizer of (3.1) and ai,i is the (i, i)th entry of the smooth-
ing matrix A(λ) given in (3.8).
For weighted data with weights wi, it can be shown that b−1Var

[
η(xi)|Y

]

is the (i, i)th entry of nλW−1/2Aw(λ)W
−1/2, where Aw(λ) is given in

(3.12); see Problem 3.13.

3.3.3 Across-the-Function Coverage

Despite its derivation from the Bayes model, the interval estimates of (3.52),
when used with the GCV smoothing parameter λv and the corresponding
variance estimate σ̂2

v , demonstrate a certain across-the-function coverage
property for η fixed and smooth, as was illustrated by Wahba (1983).
Over the sampling points, define the average coverage proportion

ACP(α) =
1

n
#
{
i :
∣
∣ηλv

(xi)− η(xi)
∣
∣ < zα/2 σ̂v

√
ai,i
}
.

Simulation results in Wahba (1983) suggest that for n large,

E
[
ACP(α)

]
≈ 1− α, (3.53)

where the expectation is with respect to εi in Yi = η(xi)+εi with η(x) fixed
and smooth. Note that the construction of the intervals is pointwise but the
coverage property is across-the-function. Heuristic arguments in support
of (3.53) can be found in Wahba (1983). A more rigorous treatment for
smoothing splines on [0, 1] was given by Nychka (1988), but it is unclear
whether a general treatment is possible.
For the components ψν(x) and ηβ(x) and their linear combinations,

one may likewise define the corresponding average coverage proportion.



3.4 Computation: Generic Algorithms 79

TABLE 3.1. Empirical ACP in simulation.

α n = 100 n = 200 n = 500

0.05 0.943 0.958 0.962
0.10 0.897 0.915 0.911

The counterpart of (3.53) for componentwise intervals appears less plausible,
however, as the simulations of Gu and Wahba (1993b) suggest.
To put (3.53) in perspective, consider some parametric model η(x) =

f(x,β) with f(x,β) known up to the parameters β. The standard large

sample confidence interval for η(x), f(x, β̂)±zα/2 σ̂f(x,β̂), has the pointwise
coverage property

P
(∣∣f(x, β̂)− η(x)

∣
∣ < zα/2 σ̂f(x,β̂)

)
≈ 1− α. (3.54)

The property (3.53) is weaker than (3.54), but (3.54) does imply (3.53).
Hence, the intervals satisfying (3.53) can be compared with the standard
confidence intervals in parametric models on the basis of the across-the-
function coverage property.
For the replicates in the simulation of §3.2.5, ACP(α) was also calculated

for α = 0.05, 0.10. The results are summarized in Table 3.1.

3.4 Computation: Generic Algorithms

For the estimation tools developed in §§3.2 and 3.3 to be practical, one
needs efficient algorithms for the minimization of U(λ), V (λ), or M(λ)
with respect to the smoothing parameters. Generic algorithms based on
the linear system (3.4) are the topic of this section. From discussions in
§§3.1–3.3 concerning weighted data, it is clear that the same algorithms
are applicable to the penalized weighted least squares problem of (3.9)
through the linear system (3.10). Special algorithms for problems with
certain structures are to be found in §3.10.
Fixing the smoothing parameters, one needs n3/3+O(n2) floating-point

operations, or flops, to calculate ηλ. This serves as a benchmark to mea-
sure the relative efficiency of the practical algorithms to follow. With only λ
tunable, one needs about four times as many flops to execute the algorithm
of §3.4.2 to minimize U(λ), V (λ), or M(λ). With λ and θβ, β = 1, . . . , p,
all tunable, the iterative algorithm of §3.4.3 takes 4pn3/3+O(n2) flops per
iteration and needs about 5–10 iterations to converge on most problems.
The algorithms are largely based on standard numerical linear algebra pro-
cedures, of which details, including the flop counts, can be found in Golub
and Van Loan (1989).
As in previous sections, we suppress from the notation the dependence

of entities on θβ , except in §3.4.3.
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3.4.1 Algorithm for Fixed Smoothing Parameters

Fixing the smoothing parameters λ and θβ hidden in Q, the calculation of
c and d in (3.6) is straightforward using standard numerical linear algebra
procedures.
For c, one calculates the Cholesky decomposition (FT

2 QF2 + nλI) =
GTG, where G is upper-triangular, solves for u from Gu = FT

2 Y by
back substitution and for v from GTv = u by forward substitution, then
c = F2v; for d, one simply solves R̃d = (FT

1 Y−FT
1 QF2v) by back substi-

tution. See, e.g., Golub and Van Loan (1989, §§4.2 and 3.1) for Cholesky
decomposition and forward and back substitutions.
The calculation of the Cholesky decomposition takes n3/3+O(n2) flops,

and the rest of the computation, including the QR-decomposition S =
FR∗ = (F1, F2)

(
R̃
O

)
and the formation of FTQF , takes O(n2) flops. This

algorithm is rarely used in practice, since it is inadequate to fix the smooth-
ing parameters, but its flop count serves as a benchmark to measure the
relative efficiency of the practical algorithms to follow.

3.4.2 Algorithm for Single Smoothing Parameter

We now present an algorithm for the minimization of U(λ), V (λ), orM(λ)
as functions of a single smoothing parameter λ. The algorithm employs a
one-time O(n3) matrix decomposition to introduce a certain banded struc-
ture, with which the evaluations of U(λ), V (λ), orM(λ) become negligible
O(n) operations. The algorithm also serves as a building block in the algo-
rithm for multiple smoothing parameters, to be discussed in §3.4.3.

Algorithm 3.1 Given S, Q, Y, and possibly σ2 as inputs, perform the
following steps to minimize U(λ), V (λ), orM(λ), and return the associated
coefficients c, d:

1. Initialization:

(a) Compute the QR-decomposition S = FR∗ = (F1, F2)
(
R̃
O

)
.

(b) Compute FTY, FTQF , from which z = FT
2 Y, Q∗ = FT

2 QF2,
FT
1 Y, and FT

1 QF2 can be extracted.

2. Tridiagonalization and minimization:

(a) Compute Q∗ = UTUT , where U is orthogonal and T is
tridiagonal.

(b) Compute x = UT z.
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(c) Minimize one of the following scores:

U∗(λ) =
1

n
xT (T + nλI)−2x− 2σ2

n
(nλ)tr(T + nλI)−1, (3.55)

V (λ) =
n−1xT (T + nλI)−2x

[n−1tr(T + nλI)−1]2
, (3.56)

M(λ) =
n−1xT (T + nλI)−1x

|T + nλI|−1/(n−M)
, (3.57)

with respect to λ.

3. Compute return values:

(a) Compute v = U(T + nλI)−1x at the selected λ.

(b) Return c = F2v and d = R̃−1(FT
1 Y − FT

1 QF2v).

Note that U∗(λ) = U(λ)− 2σ2 and that

I −A(λ) = (nλ)F2(F
T
2 QF2 + nλI)−1FT

2 = (nλ)F2U(T + nλI)−1UTFT
2 .

Step 1(a) and FTY in step 1(b) are implemented in the LINPACK rou-
tines dqrdc and dqrsl; see Dongarra et al. (1979). An implementation of
Q = FTQF in step 1(b), which uses the output of dqrdc in a similar man-
ner as dqrsl does, is implemented in RKPACK; see Gu (1989). Golub and
Van Loan (1989, §§5.1–5.2) and Dongarra et al. (1979) are good places to
read about the details of these calculations. The execution of step 1 takes
O(n2) flops.
Step 2(a) via Householder tridiagonalization is the most time-consuming

step in Algorithm 3.1, which usually takes 4n3/3 flops; see, e.g., Golub
and Van Loan (1989, §8.2.1). With a numerically singular Q∗, however,
it is possible to speed up the process by employing a certain truncation
scheme in the algorithm; see Gu et al. (1989). Step 2(b) is simply another
application of the LINPACK routine dqrsl.
The crux of Algorithm 3.1 is in step 2(c), where one has to evaluate U(λ),

V (λ), or M(λ) at multiple λ values. The band Cholesky decomposition
T + nλI = CTC for T tridiagonal can be computed in O(n) flops, where

C =

⎛

⎜
⎜
⎜
⎝

a1 b1
. . .

. . .

an1−1 bn1−1

an1

⎞

⎟
⎟
⎟
⎠

for n1 = n −m; see Golub and Van Loan (1989, §4.3.6). Through a band
back substitution followed by a band forward substitution, (T + nλI)−1x
is now available in O(n) flops; see Golub and Van Loan (1989, §4.3.2).
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For M(λ) in (3.57), |T +nλI| =
∏n1

i=1 a
2
i is straightforward. The nontrivial

part of this step is the efficient evaluation of the term tr(T + nλI)−1 =
tr(C−1C−T ) in U∗(λ) of (3.55) and V (λ) of (3.56).
Write C−T = (c1, . . . , cn1); it is clear that tr(C−1C−T ) =

∑n1

i=1 c
T
i ci.

From

C−TCT = (c1, c2, . . . , cn1)

⎛

⎜
⎜
⎜
⎜
⎝

a1

b1
. . .

. . . an1−1

bn1−1 an1

⎞

⎟
⎟
⎟
⎟
⎠

= I,

one has

an1cn1 = en1 ,

aici = ei − bici+1, i = n1 − 1, . . . , 1,

where ei is the ith unit vector. Because C−T is lower-triangular (Prob-
lem 3.14), ci+1 is orthogonal to ei. Thus, one has recursive formulas

cTn1
cn1 = a−2

n1
,

cTi ci = (1 + b2i c
T
i+1ci+1)a

−2
i , i = n1 − 1, . . . , 1.

(3.58)

The calculation in (3.58) is clearly of order O(n). This technique for the
efficient calculation of tr

(
I −A(λ)

)
is due to Elden (1984).

At the selected λ, one has

c = F2U(T + nλI)−1x,

d = R̃−1
(
FT
1 Y − (FT

1 QF2)U(T + nλI)−1x
)
,

which are available in O(n) flops. Also available in O(n) flops are

σ̂2
v =

(nλv)x(T + nλvI)
−2x

tr(T + nλvI)−1
,

σ̂2
m =

(nλm)x(T + nλmI)
−1x

n−M
.

Overall, Algorithm 3.1 takes 4n3/3 + O(n2) flops to execute, about four
times what is needed for the calculation of c and d with a fixed λ.

3.4.3 Algorithm for Multiple Smoothing Parameters

We now briefly describe an algorithm for the minimization of U(λ; θ),
V (λ; θ), or M(λ; θ) as functions of smoothing parameters λ and θβ hidden
in Q =

∑p
β=1 θβQβ, where Qβ has the (i, j)th entry Rβ(xi, xj). The algo-

rithm operates on λ and ϑβ = log θβ . We state the algorithm in terms of
V (λ; θ), but the same procedures readily apply to U(λ; θ) and M(λ; θ).
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Algorithm 3.2 Given S, Qβ, β = 1, . . . , p, Y, starting values ϑ0, and
possibly σ2 as inputs, perform the following steps to minimize V (λ; θ) and
return the associated coefficients c, d:

1. Initialization:

(a) Compute the QR-decomposition S = FR∗ = (F1, F2)
(
R̃
O

)
.

(b) Compute FTY and FTQβF , from which z = FT
2 Y, Q∗

β =

FT
2 QF2, F

T
1 Y, and FT

1 QβF2 can be extracted.

(c) Set Δϑ = 0, ϑ− = ϑ0, and V− =∞.

2. Iteration:

(a) For the trial value ϑ = ϑ− +Δϑ, collect Q∗ =
∑p

β=1 θβQ
∗
β and

scale it to have a fixed trace.

(b) Compute Q∗ = UTUT , where U is orthogonal and T is
tridiagonal. Compute x = UT z.

(c) Minimize V (λ; θ) with respect to λ. If V > V−, set Δϑ = Δϑ/2,
go to (a); else proceed.

(d) Evaluate the gradient g = (∂/∂ϑ)V (λ; θ) and the Hessian H =
(∂2/∂ϑ∂ϑT )V (λ; θ).

(e) Calculate the increment Δϑ = −H̃−1g, where H̃ = H+diag(e)
is positive definite. If H itself is positive definite “enough,” e is
simply set to 0.

(f) Check convergence conditions. If the conditions fail, set ϑ− = ϑ,
V− = V , go to (a).

3. Compute return values:

(a) Compute v = U(T + nλI)−1x at the converged λ and ϑ.

(b) Return c = F2v and d = R̃−1(FT
1 Y − FT

1 QF2v), with Q =∑p
β=1Qβ .

The calculations in step 1 of Algorithm 3.2 are the same as those in step
1 of Algorithm 3.1 and can be executed in O(n2) flops. Steps 2(a) through
2(c) with fixed θβ virtually duplicate step 2 of Algorithm 3.1, which takes
4n3/3+O(n2) flops to execute. The calculation of gradient and Hessian in
step 2(d) takes an extra 4(p − 1)n3/3 + O(n2) flops; see Gu and Wahba
(1991b). Each iteration of step 2 takes altogether 4pn3/3 +O(n2) flops.
The scores U(λ; θ), V (λ; θ), or M(λ; θ) are fully parameterized by

(λ1, . . . , λp) = (λθ−1
1 , . . . , λθ−1

p ),

so (λ, θ1, . . . , θp) form an overparameterization. This is the reason for the
scaling in step 2(a). One may directly employ the Newton iteration with
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respect to the parameters log λβ to minimize the scores, but the calculation
of the gradient and the Hessian would take 4pn3/3 + O(n2) flops anyway.
In this sense, the extra gain through step 2(c) is virtually free.
Step 2(e) returns a descent direction even when the Hessian H is not

positive definite. The algorithm to use here is the modified Cholesky de-
composition as described in Gill et al. (1981, §4.4.2.2), which adds positive
mass to the diagonal elements of H , if necessary, to produce a factorization
H̃ = GTG, where G is upper-triangular.

Algorithm 3.3 To obtain a set of starting values (λ0, θ10, . . . , θp0) for use
in Algorithm 3.2, perform the following steps.

1. Set θ̃β =
(
tr(Qβ)

)−1
and Q =

∑p
β=1 θ̃βQβ, then use Algorithm 3.1

to obtain an initial fit η̃ =
∑p

β=0 η̃β , where η̃0 = φTd and η̃β = ξTβ c,

β = 1, . . . , p, with ξβ having entries θ̃βRβ(xi, x).

2. Set θβ0 ∝ (η̃, η̃)β = θ̃2β c
TQβc and Q =

∑p
β=1 θβ0Qβ , then use Algo-

rithm 3.1 again to obtain λ0.

The choice of θ̃β in Step 1 of Algorithm 3.3 is arbitrary but invariant to
the relative scaling of (f, f)β. The initial fit η̃ reveals where structures in
the true η rest and one should apply less penalty where signal is strong;
remember that J(f) =

∑p
β=1 θ

−1
β (f, f)β. Using starting values from Algo-

rithm 3.3, Algorithm 3.2 typically converges in five to ten iterations.

3.4.4 Calculation of Posterior Variances

From (3.47) to (3.49) in Theorem 3.8, one needs (STM−1S)−1, c̃β , and d̃β

to construct the Bayesian confidence intervals. At the converged λ and θβ ,
it is easy to calculate

c̃β = F2U(T + nλI)−1UTFT
2 ξβ ,

d̃β = R̃−1(FT
1 ξβ − (FT

1 QF2)U(T + nλI)−1UTFT
2 ξβ)

(3.59)

in O(n) extra flops. The remaining task is the calculation of (STM−1S)−1.
Using an elementary matrix identity (Problem 3.15), one has

STM−1S = R̃TFT
1 (Q + nλI)−1F1R̃

= R̃T (I, O)FT (Q+ nλI)−1F ( I
O ) R̃

= R̃T (I, O)(FTQF + nλI)−1 ( I
O ) R̃

= R̃T
(
(FT

1 QF1 + nλI)

− (FT
1 QF2)(Q

∗ + nλI)−1(FT
2 QF1)

)−1
R̃

= R̃T
(
(FT

1 QF1 + nλI)

− (FT
1 QF2)U(T + nλI)−1UT (FT

2 QF1)
)−1

R̃;
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hence,

(STM−1S)−1 = R̃−1
(
(FT

1 QF1 + nλI)

− (FT
1 QF2)U(T + nλI)−1UT (FT

2 QF1)
)
R̃−T , (3.60)

which is available in O(n) extra flops.

3.5 Efficient Approximation

The penalty λJ(f) effectively enforces a low dimensional model space (see,
e.g., §4.2.2), so an infinite dimensional H is not really necessary. It is shown
in §9.4.4 that the minimizer of (3.1) in a space

H∗ = NJ ⊕ span
{
RJ(zj , ·), j = 1, . . . , q

}

shares the same asymptotic convergence rates as the minimizer in H, and
hence is statistically as efficient, where {zj} is a random subset of {xi} and
q →∞ can be at a rate much slower than n. This allows for algorithms of
order O(nq2), more scalable than O(n3) for q = o(n).
The minimizer of (3.1) inH∗ can also be cast as a Bayes estimate, and the

results of §§2.5, 3.3, and 3.2.3 remain valid after minor modifications. The
algorithms of §3.4 no longer apply, so alternative numerical approaches will
be explored. A small q is preferred for numerical efficiency but too small
a q may impair statistical performance; the practical choice of q will be
guided by asymptotic analysis and empirical simulations. Also assessed is
the numerical accuracy of quantities associated with the minimizer in H∗

as approximations to those associated with the minimizer in H.

3.5.1 Preliminaries

Functions in H∗ can be written as

η(x) =

m∑

ν=1

dνφν(x) +

q∑

j=1

cjRJ(zj , x) = φ
Td+ ξT c, (3.61)

with (3.2) on page 62 as a special case at q = n. Plugging (3.61) into (3.1),
one minimizes

(Y − Sd−Rc)T (Y − Sd−Rc) + nλcTQc (3.62)

with respect to c and d, where S is as in (3.3), R is n× q with the (i, j)th
entry RJ (xi, zj), and Q is q×q with the (j, k)th entry RJ (zj , zk); note that
Q is part of R, and (3.3) is a special case of (3.62) with R = Q. We assume
a full column rank for S as in §3.1, which ensures a unique minimizer of
(3.1) even though the coefficients c and d may not be unique.
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Differentiating (3.62) with respect to c and d and setting the derivatives
to 0, some algebra yields the linear system

(
STS STR
RTS RTR+ nλQ

)(
d
c

)

=

(
STY
RTY

)

. (3.63)

For the weighted data as in §3.2.4, one may simply replace (Y, S, R) in
(3.63) by (Yw, Sw, Rw) = W 1/2(Y, S, R), and all the derivations in the
rest of the section hold for weighted data with these substitutions.

On X = [0, 1] with J(f) =
∫ 1

0 f̈
2dx, the minimizer of (3.1) in H is a

piecewise cubic polynomial as noted in §1.1.1. The basis functions RJ (xi, x)
can involve x4, see (2.26) and (2.27) on page 39, but the constraint ST c = 0
in (3.4) ensures that the coefficients of x4 cancel out. Such a constraint
does not apply to the solution of (3.63), however, so the minimizer in H∗

may no longer be a piecewise cubic polynomial. Still, despite the technical
inaccuracy, we will keep referring to such estimates as cubic splines.

3.5.2 Bayes Model

Consider η = η0+η1, where η0 has a diffuse prior in NJ and η1 has a mean
zero Gaussian process prior with a covariance function

E
[
η1(x)η1(y)

]
= bRJ(x, z

T )Q+RJ(z, y),

where Q+ is the Moore-Penrose inverse of Q = RJ (z, z
T ). The counterpart

of (2.35) on page 49 is given by

(
bRQ+RT + τ2SST + σ2I bRQ+ξ + τ2Sφ

bξTQ+RT + τ2φTST bξTQ+ξ + τ2φTφ,

)

(3.64)

and that of (2.36) by

E
[
η(x)|Y

]
= (bξTQ+RT + τ2φTST )(bRQ+RT + τ2SST + σ2I)−1Y

= ρφTST (M + ρSST )−1Y + ξTQ+RT (M + ρSST )−1Y,

where M = RQ+RT + nλI, nλ = σ2/b, and ρ = τ2/b. Setting ρ→∞ and
applying Lemma 2.7, one has

E
[
η(x)|Y

]
= φTd+ ξT c, (3.65)

where

d = (STM−1S)−1STM−1Y,

c = Q+RT (M−1 −M−1S(STM−1S)−1STM−1)Y.
(3.66)

Since J(f) is a square norm in span{ξj} = H∗ �NJ , J(ξ
T c) = cTQc = 0

implies ξT c = 0, so ξ(x) is in the column space of Q, ∀x, and hence
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QQ+RT = RT , where QQ+ is the projection matrix in the column space
of Q. It is then easy to verify that the c and d in (3.66) solve (3.63)
(Problem 3.16). Parallel to (3.42) on page 76, one also has

b−1var
[
η(x)|Y

]
= ξTQ+ξ + φT (STM−1S)−1φ− 2φT d̃− ξT c̃, (3.67)

where

d̃ = (STM−1S)−1STM−1RQ+ξ,

c̃ = Q+RT (M−1 −M−1S(STM−1S)−1STM−1)RQ+ξ.
(3.68)

From (3.66), it is easy to verify that

A(λ) = I − nλ(M−1 −M−1S(STM−1S)−1STM−1), (3.69)

which appears identical to (3.8) on page 63 but with an alternatively defined
M = RQ+RT + nλI. Evaluating (3.67) at a sampling point xi yields the
(i, i)th entry of nλA(λ); (3.51) on page 78 holds with RQ+RT replacing Q
and the same algebra carries through.
For RJ(x, y) =

∑p
β=1 θβRβ(x, y), replace η1 above by a sum

∑p
β=1 ηβ

with prior covariance functions given by

E
[
ηβ(x)ηγ(y)

]
= b θβ θγ Rβ(x, z

T )Q+Rγ(z, y), β, γ = 1, . . . , p.

Also decompose the diffuse terms η0 =
∑m

ν=1 ψν , where ψν ∈ span{φν}.
The counterpart of Theorem 3.8 is tedious to state, but the posterior means
and variances of arbitrary partial sums of ψν and ηβ can be obtained by
simple modifications of (3.65), (3.67), and (3.68). For example, for the
partial sum ψ1+η1+η2, one simply replaces φ in (3.65), (3.67), and (3.68)
by (φ1(x), 0, . . . , 0)

T and ξ by θ1R1(z, x) + θ2R2(z, x).
The derivation of REML in §3.2.3 remains largely intact after replacing

Q by RQ+RT , yielding

M(λ) =
n−1YTF2(F

T
2 MF2)

−1FT
2 Y

|FT
2 MF2|−1/(n−m)

, (3.70)

where F2 (and F1 below) is from (3.5) on page 63 and M = RQ+RT +nλI
as in (3.69). Partition

(FTMF )−1 = FTM−1F =

(
FT
1 M

−1F1 FT
1 M

−1F2

FT
2 M

−1F1 FT
2 M

−1F2

)

.

Using Problem 3.15, the bottom-right block of FTMF is seen to be

FT
2 MF2 = (FT

2 M
−1F2 − FT

2 M
−1F1(F

T
1 M

−1F1)
−1FT

1 M
−1F2)

−1.

Note that (3.69) holds with F1 replacing S, so one has

(FT
2 MF2)

−1 = (nλ)−1FT
2

(
I −A(λ)

)
F2.



88 3. Regression with Gaussian-Type Responses

I = F1F
T
1 + F2F

T
2 , and from (3.69), ST

(
I − A(λ)

)
= O = FT

1

(
I −A(λ)

)
,

so one has

F2(F
T
2 MF2)

−1FT
2 = (nλ)−1

(
I −A(λ)

)
, (3.71)

thus (3.70) can again be written as (3.30) on page 71 but with A(λ) in
(3.69) defined via M = RQ+RT + nλI; (3.71) is the counterpart of (3.7).

3.5.3 Computation

The algorithms of §3.4 rely on a special structure in (3.3) not shared by
(3.62) in general, that R = Q, so alternative numerical treatments are
needed here.
With multiple smoothing parameters, analytical gradient and Hessian of

V (λ) (or U(λ), M(λ)) used in Algorithm 3.2 are no longer available, and
one has to employ quasi-Newton iterations with numerical derivatives, such
as those developed in Dennis and Schnabel (1996), for smoothing parameter
selection; (3.63) has to be updated and solved for each evaluation of V (λ).
When the number of θβ ’s is large, quasi-Newton iterations can be slow to
converge, but one may choose to skip the process as the starting values from
Algorithm 3.3 often deliver “80% or more” of the achievable performance.

Fixing the smoothing parameters λ and θβ hidden in R and Q, and
assuming a full column rank of R, the linear system (3.63) can be easily
solved by a Cholesky decomposition of the (m+q)×(m+q) matrix followed
by forward and back substitutions; see, e.g., Golub and Van Loan (1989,
§§4.2 and 3.1). The formation of (3.63) takes O(nq2) flops, which, for q =
o(n), dominates the O(q3) Cholesky decomposition.
Care must be taken when R is not of full column rank.Write the Cholesky

decomposition

(
STS STR
RTS RTR+ nλQ

)

=

(
GT

1 O
GT

2 GT
3

)(
G1 G2

O G3

)

, (3.72)

where STS = GT
1 G1, G2 = G−T

1 STR, and

GT
3 G3 = RT (I − S(STS)−1ST )R+ nλQ.

Possibly with an permutation of indices known as pivoting, one may write

G3 =

(
J1 J2
O O

)

=

(
J
O

)

,

where J1 is nonsingular. Now define

G̃3 =

(
J1 J2
O δI

)

, G̃ =

(
G1 G2

O G̃3

)

;
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one has

G̃−1 =

(
G−1

1 −G−1
1 G2G̃

−1
3

O G̃3
−1

)

.

Premultiplying (3.63) by G̃−T , some algebra yields
(
I O

O G̃−T
3 GT

3 G3G̃3
−1

)(
d∗

c∗

)

=

(
G−T

1 STY

G̃−T
3 RT (I − S(STS)−1ST )Y

)

,

(3.73)
where

(
d∗
c∗
)
= G̃

(
d
c

)
. Partitioning G̃−1

3 = (K,L) such that JK = I and
JL = O, so

G̃−T
3 GT

3 G3G̃3
−1

=

(
KT

LT

)

GT
3 G3(K,L) =

(
KT

LT

)

JTJ(K,L) =

(
I O
O O

)

.

LTGT
3G3L = O implies LTRT (I − S(STS)−1ST )RL = O, so one has

LTRT (I − S(STS)−1ST )Y = 0.

The linear system (3.73) is thus of the form
⎛

⎝
I O O
O I O
O O O

⎞

⎠

⎛

⎝
d∗

c∗1
c∗2

⎞

⎠ =

⎛

⎝
∗
∗
0

⎞

⎠ , (3.74)

which is a solvable system but c∗2 can be arbitrary. Replacing the lower-
right block O in the matrix on the left-hand side by I, which amounts to
replacing G3 in (3.72) by G̃3, one sets c∗2 = 0 in (3.74). In practice, one
may simply perform the Cholesky decomposition of (3.72) with pivoting,
replace the trailing O (if present) by δI for an appropriate value of δ, then
proceed as if R were of full column rank.
The calculation of GCV scores is straightforward given that

Ŷ = Sd+Rc = (S,R)G̃−1G̃−T

(
ST

RT

)

Y = A(λ)Y,

noting that trA(λ) is the square norm of (S,R)G̃−1 when it is treated
as a long vector; this is an O(nq2) operation. The numerical accuracy of
such trace evaluation is adequate unless nλ is very small, a case one could
prevent by using a fudge factor in (3.27). A stable, much more accurate
algorithm for trace evaluation also exists but is of order O(n2q); see Kim
and Gu (2004).
For the denominator of (3.70), as |I −AB| = |I −BA| (Problem 3.17),

∣
∣(nλ)−1FT

2 MF2

∣
∣ =
∣
∣(nλ)−1FT

2 RQ
+RTF2 + I

∣
∣

=
∣
∣(nλ)−1Q+RTF2F

T
2 R+ I

∣
∣. (3.75)
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Consider the eigenvalue decomposition

Q+ = (P1, P2)

(
D−1

Q O

O O

)(
PT
1

PT
2

)

= P1D
−1
Q PT

1 ,

where DQ is diagonal with the positive eigenvalues of Q. As PT
2 R

T = O,

∣
∣(nλ)−1Q+RTF2F

T
2 R+ I

∣
∣ =
∣
∣D−1

Q (nλ)−1PT
1 R

TF2F
T
2 RP1 + I

∣
∣

=
∣
∣Q+ (nλ)−1RTF2F

T
2 R
∣
∣
+
/|Q|+.

The formation of RTF2F
T
2 R is O(nq2) and the eigenvalue problem is O(q3).

For the evaluation of (3.67), d̃ and c̃ are available from RQ+ξ and the
Cholesky factor G̃, and ξTQ+ξ = ξTP1D

−1
Q PT

1 ξ. We now show that

(STM−1S)−1 = (nλ)(G−1
1 G−T

1 +G−1
1 G2G̃

−1
3 G̃−T

3 GT
2G

−T
1 )

= (nλ){(STS)−1 + (STS)−1STRG̃−1
3 G̃−T

3 RTS(STS)−1}, (3.76)

which is nλ times the upper-left block of G̃−1G̃−T . First note that

M−1 = (nλ)−1(I −R(nλQ+RTR)+RT ) (3.77)

(Problem 3.18); multiply with M and simplify using the fact that

QQ+RT = (nλQ +RTR)(nλQ +RTR)+RT = RT .

Substituting (3.77) in STM−1S and multiplying with the right-hand side
of (3.76), straightforward algebra yields identity (Problem 3.19); remember
that GT

3G3 = RT (I − S(STS)−1S)R+ nλQ and note that

GT
3 G3G̃

−1
3 G̃−T

3 RT = RT ,

where GT
3G3 = JTJ so JT shares the same column space with Q, and

GT
3G3G̃

−1
3 G̃−T

3 = JTKT acts like a projection matrix as JK = I.

3.5.4 Empirical Choice of q

A small q is preferred computationally, but too small a q could make the
fit overly dependent on the choice of {zj} ⊂ {xi} or even introduce model
bias. The empirical choice of q is to be guided by the theory of Chap. 9.
As λ → 0 and nλ2/r → ∞, the minimizer of (3.1) in H converges to

the true η at a rate Op(n
−1λ1/r + λp), for some r > 1 and p ∈ [1, 2], with

the optimal rate achieved at λ � n−r/(pr+1); see Theorem 9.17. For the
minimizer in H∗ to share the same convergence rate, one needs qλ2/r →∞
(Theorem 9.20), hence it suffices to have q � n2/(pr+1)+ε, ∀ε > 0. For

J(f) =
∫ 1

0 f̈
2dx on X = [0, 1], r = 4 (Example 9.1), p = 1 when η̈2



3.5 Efficient Approximation 91

k

k

k

L(
λ)

L(
λ)

k

0.
00

0.
02

0.
04

5 10 15

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15

5 10 15

FIGURE 3.3. Effect of q on estimation consistency. Boxplots of L(λ) with 30
different random subsets {zj} ⊂ {xi} of size q = kn2/9. Left : Cubic spline fits to
three simulated samples. Right : Tensor product cubic spline fits to three simulated
samples. Top: n = 100, 500 in solid, from high to low, and n = 300 in faded.
Bottom: n = 500 with better resolution. The dashed lines correspond to q = n.

is “barely” integrable, and p = 2 if η(4) is square integrable; for tensor
product cubic splines, the rate holds for any r < 4 (Example 9.2). Setting
r = 4, p = 2, and ε = 0, one may use q ∝ n2/9 in practice.
Samples of sizes n = 100, 300, 500 were generated from Yi = η(xi) + εi,

xi = (i− 0.5)/n, i = 1, . . . , n, where

η(x) = 1 + 3 sin(2πx− π)

and εi ∼ N(0, 1). For each of the three samples and every k on the grid
k = 5(1)15, thirty different random subsets {zj} ⊂ {xi} of size q = kn2/9

were generated, and cubic splines were fitted with the smoothing parameter
minimizing V (λ) of (3.27) with α = 1.4. The fits with q = n were also cal-
culated. The loss L(λ) of (3.13) was recorded for all the fits and the results
are summarized in the left frames of Fig. 3.3 in box plots. The experiments
were repeated on X = [0, 1]2 using tensor product cubic splines, with

η(x) = 5 + exp(3x〈1〉) + 106x11〈2〉(1− x〈2〉)
6

+ 104x3〈2〉(1− x〈2〉)
10 + 5 cos

(
2π(x〈1〉 − x〈2〉)

)
,
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TABLE 3.2. Quantiles of
∣
∣η̃(xi)− η̂(xi)

∣
∣/
√
L and

∣
∣ log

(
sη̃(xi)/sη̂(xi)

)∣∣ in univari-
ate simulation: n = 100, 300.

50% 75% 90% 95% 99% 100%

|η̃ − η̂|/e: n = 100 0.005 0.011 0.021 0.031 0.079 1.551
n = 300 0.005 0.010 0.018 0.025 0.047 0.212

| log(sη̃/sη̂)|: n = 100 0.002 0.004 0.011 0.016 0.028 0.088
n = 300 0.001 0.004 0.010 0.016 0.028 0.063

xi ∼ U(0, 1)2, and εi ∼ N(0, 32); corresponding results are summarized
in the right frames of Fig. 3.3. The bivariate results demonstrate much
more variability, likely due to the five smoothing parameters involved; also
note that the same loss L(λ) could be achieved by different sets of θβ ’s,
so the variability in the actual fits could be greater. The fact that the box
width gradually decreases as k increases indicates that q � n2/9 is the
“correct” scale, and a k around 10 appears to deliver stable enough results
for practical use.

3.5.5 Numerical Accuracy

For q = n, RQ+RT = Q, so all the formulas in §3.5.2 reduce to their
respective counterparts in §§2.5 and 3.3. We now assess the numerical ac-
curacy of quantities calculated with q = 10n2/9 as approximations to those
calculated with q = n.
Consider again the univariate simulation of §3.5.4 using cubic splines.

For sample size n = 100, one hundred replicates were generated and cross-
validated fits were calculated using q = n and V (λ) with α = 1.4; posterior
means η̂(xi) and posterior standard deviations sη̂(xi) were calculated on the
sampling points. For each of the replicates, ten different random subsets
{zj} ⊂ {xi} of size q = 10n2/9 were used to calculate ten more cross-
validated fits, with posterior means η̃(xi) and posterior standard deviations
sη̃(xi). The standardized differences

∣
∣η̃(xi)− η̂(xi)

∣
∣/
√
L in posterior mean

and the log ratios
∣
∣ log

(
sη̃(xi)/sη̂(xi)

)∣∣ in posterior standard deviation were

recorded, where L = e2 = n−1
∑n

i=1

(
η̂(xi)− η(xi)

)2
was the mean square

error loss of the fit with q = n. This yielded 100(10)(100) = 105 entries
of differences and log ratios. The experiment was repeated for sample size
n = 300 on fifty replicates, yielding 50(10)(300) = 1.5 × 105 entries of
differences and log ratios. These results are summarized in Table 3.2.
Fifty samples of size n = 300 were also generated from the bivariate

simulation of §3.5.4 and sets of cross-validated tensor product cubic splines
were fitted to the data. The differences

∣
∣η̃(xi) − η̂(xi)

∣
∣/
√
L and log ratios∣

∣ log
(
sη̃(xi)/sη̂(xi)

)∣∣ were calculated for the overall function

η(x) = η∅ + η1(x〈1〉) + η2(x〈2〉) + η1,2(x〈1〉, x〈2〉)
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TABLE 3.3. Quantiles of
∣
∣η̃(xi)−η̂(xi)

∣
∣/
√
L and

∣
∣ log

(
sη̃(xi)/sη̂(xi)

)∣∣ in bivariate
simulation: n = 300.

50% 75% 90% 95% 99% 100%

|η̃ − η̂|/e: η 0.133 0.238 0.370 0.475 0.771 2.962
η1 0.053 0.098 0.161 0.213 0.351 1.267
η2 0.077 0.139 0.217 0.282 0.437 1.804

η1,2 0.111 0.198 0.307 0.397 0.674 2.745
| log(sη̃/sη̂)|: η 0.047 0.081 0.115 0.137 0.182 0.462

η1 0.068 0.111 0.160 0.199 0.315 0.591
η2 0.044 0.074 0.108 0.134 0.184 0.358

η1,2 0.079 0.118 0.159 0.188 0.262 0.735

as well as its ANOVA components η1, η2, and η1,2; the mean square error
L of η̂ was calculated only for the overall function and the same divisor√
L was used to standardize the differences

∣
∣η̃(xi) − η̂(xi)

∣
∣ in both the

overall function and the ANOVA components. The results are summarized
in Table 3.3. Were the same θβ ’s used in the η̂ and η̃ being compared, the
numbers in Table 3.3 could be more in line with those in Table 3.2, but
cross-validated smoothing parameters are part of the whole package. The
overall consistency appears to be reasonable.

3.6 Software

To facilitate data analysis by practitioners, most of the techniques presented
throughout this book have been implemented in open-source software. Code
for regression is available in collections of FORTRAN compatible routines
and in suites of functions in an R package.

3.6.1 RKPACK

The algorithms of §3.4 have been implemented in a collection of public
domain RATFOR (Rational FORTRAN (Kernighan 1975)) routines col-
lectively known as RKPACK, first released in 1989 (Gu 1989). Routines
from public domain linear algebra libraries BLAS and LINPACK have been
used extensively in RKPACK routines as building blocks; see Dongarra
et al. (1979) for descriptions of BLAS and LINPACK. The user interface of
RKPACK is through four routines, dsidr, dmudr, dsms, and dcrdr, which
implement Algorithms 3.1 and 3.2, (3.60) and (3.59), respectively. A few
sample application programs in RATFOR are also included in the package.
RKPACK has been deposited to Netlib and StatLib. The latest version can
be found at

http://www.stat.purdue.edu/~chong/software.html

 http://www.stat.purdue.edu/~chong/software.html
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RATFOR is a dialect of FORTRAN with a structural syntax similar to
that of the S language (Becker et al. 1988). Most UNIX systems understand
RATFOR. In compilation, RATFOR routines are translated by a RATFOR
preprocessor into standard FORTRAN routines, transparent to the user,
which are then sent to the compiler. For those without access to a RATFOR
preprocessor, the FORTRAN translation of the routines are included in the
package, but in-line comments are lost in the translation.

3.6.2 R Package gss: ssanova and ssanova0 Suites

R, an open-source environment for data analysis and graphics not unlike
the S/Splus language (Becker et al. 1988, Chambers and Hastie 1992), has
emerged in the past decade as the de facto standard platform for statistical
computing. R was originally created by Ihaka and Gentleman (1996), and
is currently being developed and maintained by a core group of more than
a dozen prominent statisticians/programmers stationed over several conti-
nents. R resources are archived on the Comprehensive R Archive Network
(CRAN), with the master site at

http://cran.r-project.org

Add-on modules in R are known as packages, as in S/Splus, and at this
writing, more than four thousands of R packages can be found on CRAN.
The installations of R and add-on packages on all major operating systems
are clearly explained in the R FAQ (Frequently Asked Questions on R) by
Kurt Hornik (Hornik 2010), to be found on CRAN.
Suites of R functions implementing the methods presented in this book

are collected in the R package gss, with the name abbreviated from general
smoothing splines. The overall design of gss is outlined in Appendix A at
the end of the book, and the basic usage of the suites is illustrated using
simulated and real-data examples in the chapters and sections where the
respective methods are developed.
For regression with Gaussian-type responses, one may use the ssanova or

the ssanova0 suites. The ssanova0 suite is virtually the original ssanova
suite referred to in the first edition of this book, serving as a front end to
RKPACK which implements the algorithms of §3.4. The current ssanova
suite implements the algorithms of §3.5.3 for the efficient approximation.
Some working knowledge is assumed of the modeling facilities in R, which

have syntax nearly identical to those in S/Splus; a good reference on the
subject is Venables and Ripley (2002). The syntax of the ssanova0 and
ssanova suites is similar to that of the lm suite for linear models, as can
be seen in the following examples.

 http://cran.r-project.org
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FIGURE 3.4. A cross-validated cubic spline fit. The fit is in the solid line and
the 95% Bayesian confidence intervals are in faded lines, with the test function
superimposed in dashed line and the data in circles.

Example 3.1 (Cubic spline) Assume that the gss package is installed.
At the R prompt, the following command loads the gss package into R:

library(gss)

The following sequence generates some synthetic data and fits a cubic spline
to the data, with the smoothing parameter minimizing the GCV score V (λ)
of (3.27) with α = 1.4:

set.seed(5732)

x <- runif(100)

y <- 1+3*sin(2*pi*x-pi)+rnorm(x)

fit.cubic <- ssanova(y~x,method="v",alpha=1.4)

The set.seed command resets the pseudo-random number generator so
the reader could reproduce the reported results including figures. The de-
fault options method="v" and alpha=1.4 are usually omitted. The results
assigned to fit.cubic is a list object of class "ssanova". To evaluate the
fit on a grid for plotting purposes, one may try the following:

grid <- seq(0,1,len=51)

est <- predict(fit.cubic,data.frame(x=grid),se.fit=TRUE)

The flag se.fit=TRUE requests the calculation of the posterior standard
deviation corresponding to the evaluated posterior mean; est is a list object
consisting of elements fit (posterior mean) and se.fit (posterior standard
deviation). Figure 3.4 displays a plot with the data, the test function, the
cross-validated fit, and the 95% Bayesian confidence intervals, which can
be produced by the following commands:

plot(x,y,col=3); lines(grid,est$fit)

lines(grid,est$fit+1.96*est$se.fit,col=5)

lines(grid,est$fit-1.96*est$se.fit,col=5)

lines(grid,1+3*sin(2*pi*grid-pi),lty=2)
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By default, ssanova uses a random subset {zj} ⊂ {xi} of size q ≈ 10n2/9,
so multiple calls with the same x and y would return slightly different fits
barring resettings of the seed in between calls. One may reset the seed
within ssanova via an optional argument seed, and one may pass the
same selection of {zj} from fit0 to fit1 through

fit1 <- ssanova(...,id.basis=fit0$id.basis)

To override the default q ≈ 10n2/9, one may use nbasis=q. �

Example 3.2 (Tensor product cubic spline) The following sequence
generates some synthetic data and fits a tensor product cubic spline to
the data, with the smoothing parameters minimizing the unmodified GCV
score V (λ) of (3.23):

set.seed(5732)

x1 <- runif(100); x2 <- runif(100)

y <- 5 + exp(3*x1)+10^6*x2^11*(1-x2)^6+

10^4*x2^3*(1-x2)^10+5*cos(2*pi*(x1-x2))+

3*rnorm(x1)

mtype=list("cubic",c(0,1))

fit.tpcubic <- ssanova0(y~x1*x2,type=list(x1=mtype,

x2=mtype))

The default method="v" is omitted in the call and alpha is not an option for
ssanova0 as it only implements unmodified GCV. The marginal domains
are explicitly specified here as X1 = X2 = [0, 1] via the type argument,
overriding the default which would be the data range extended by 5%
on both ends. The model has four terms, labeled 1, x1, x2, and x1:x2

representing η∅, η1, η2, and η1,2, respectively. To evaluate the fit on a grid,
one may try the following:

grid1 <- seq(0,1,length=51)

grid2 <- seq(0,1,length=51)

new <- data.frame(x1=rep(grid1,51),

x2=rep(grid2,rep(51,51)))

est <- predict(fit.tpcubic,newdata=new,se.fit=TRUE)

post.mean <- matrix(est$fit,51,51)

post.stdev <- matrix(est$se.fit,51,51)

Now, let us plot the contours of the posterior mean and the posterior stan-
dard deviation, with the data superimposed:

contour(grid1,grid2,post.mean,sub="GCV Fit")

points(x1,x2)

contour(grid1,grid2,post.stdev,sub="Standard Deviation")

points(x1,x2)
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FIGURE 3.5. A cross-validated tensor product cubic spline fit. Left : Contours of
the fit. Right : Contours of standard error. The data are superimposed as circles.

The plots are given in Fig. 3.5. The posterior standard deviation is rather
flat away from the edges, slightly smaller where data are dense and larger
where data are sparse. When sitting in front of a color monitor, one may
want to replace contour by filled.contour.
By default, predict evaluates the overall function, but a partial sum

of selected model terms can also be obtained via the specification of an
optional argument include. For example, the following command returns
the interaction on the grid:

est.int <- predict(fit.tpcubic,new,

se=TRUE,include="x1:x2")

One can now plot the contours of the interaction and compare with those
of the overall function. �

As hinted by the type argument in the ssanova0 call in Example 3.2,
the margins of tensor product splines can be configured individually. The
marginal domains for cubic splines can be arbitrary, either specified via
type or extended from the data range by default, but they must contain all
the observed data; the marginal domains are mapped onto [0, 1] internally
and the formulas of §§2.3.3 and 2.4.3 are used to calculate the reproducing
kernels. As a consequence of such numerical treatment, any attempt to
evaluate the fit beyond the domain will result in an error.
For n up to a thousand and probably beyond, the O(n3) algorithms of

ssanova0 often execute faster than the O(nq2) = O(n13/9) algorithms of
ssanova for the default q ≈ 10n2/9, especially when multiple smoothing
parameters are involved; Newton iterations using analytical derivatives are
far more efficient than quasi-Newton iterations using numerical derivatives.
The numerical efficiency of the algorithms in §3.4 rests with the special
structure R = Q, which on the other hand severely restricts the scope of
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their applicability. The algorithms of §3.5.3 however can be readily adapted
to handle further modeling tools, such as the square error projection of §3.8
and the mixed-effect models of §6.2.
Incorporating the modified GCV score in ssanova0 means opening up

the legacy RKPACK routines for nontrivial modifications, an endeavor we
chose not to pursue given the limited benefit. In theory, an ssanova0 fit
can be reproduced by ssanova with id.basis=1:n (so {zj} = {xi}) and
alpha=1, which is indeed the case for the data of Example 3.2, but the
different optimization algorithms used in ssanova0 and ssanova may re-
turn different solutions when V (λ) has a flat bottom. Also, ssanova has
safeguards built in that automatically invoke some α ∈ (1, 3] to override
α = 1 when very small values of nλ are searched upon, whereas ssanova0
faithfully minimizes V (λ) of (3.23) as defined; a quick check reveals that the
ssanova0 fit to the data of Example 3.1 is a case of severe undersmooth-
ing, but the ssanova fits with various configurations of {zj} and α all look
good.

3.7 Model Checking Tools

Two phases of statistical modeling are model fitting and model checking.
For parametric models, model checking tools include diagnostics for the
lack of fit, diagnostics for the identifiability of model terms such as the
collinearity in linear models, and diagnostics for the practical significance
of model terms through various tests. For nonparametric models, the lack
of fit is no longer a main concern, but the danger of overfitting and over-
interpreting makes the other two issues ever more important.
With respect to function decompositions such as the ANOVA decomposi-

tion of §1.3.2, we introduce some geometric diagnostics for the identifiability
and the practical significance of the fitted terms. The use and effectiveness
of the diagnostics are illustrated through simple simulations. Also presented
are some heuristic arguments and related conceptual discussion concerning
the diagnostics.

3.7.1 Cosine Diagnostics

Consider η =
∑p

β=0 fβ , where f0 ∝ 1 and fβ, β > 0 are terms in a function
decomposition such as the ANOVA decomposition of §1.3.2. Evaluating a
fit at the sampling points xi, one obtains a retrospective linear model

Y = f0 + f1 + · · ·+ fp + e, (3.78)

where fβ =
(
fβ(x1), . . . , fβ(xn)

)T
. Projecting (3.78) onto {1}⊥ =

{
f :

fT1 = 0
}
to remove the constant term, one gets

Y∗ = f∗1 + · · ·+ f∗p + e∗. (3.79)



3.7 Model Checking Tools 99

The collinearity indices κβ of
(
f∗1 , . . . , f

∗
p

)
(Stewart 1987), which equal

the square roots of the variance inflation factors, measure the identifiability
of the fβ’s in the fit. Denoting by C the p × p matrix with the (β, γ)th

entry cos(f∗β , f
∗
γ ), the κ

2
β ’s are given by the diagonals of C−1. Write Ŷ∗ =

f∗1 + · · · + f∗p . The scaled dot products πβ = (f∗β )
T Ŷ∗/‖Ŷ∗‖2 provide a

“decomposition” of unity,
∑p

β=1 πβ = 1, although πβ can be negative.
When f∗β are nearly orthogonal to each other, the πβ ’s come close to form

a percentage decomposition of the sum of squares of Ŷ∗ into those of its
components.
The f∗β ’s are supposed to predict the response Y∗, so a near-orthogonal

angle between an f∗β and Y∗ indicates a noise term. Signal terms should
be reasonably orthogonal to the residuals, so a large cosine between an f∗β
and e∗ makes a term suspect. Among informative measures for the signal-
to-noise ratio are cos(Y∗, e∗) and R2 = ‖Y∗− e∗‖2/‖Y∗‖2. Finally, a very
small Euclidean norm of an f∗β as compared to that of Y∗ also indicates a
negligible term.
These geometric diagnostics will be collectively referred to as the cosine

diagnostics, as they are largely based on the cosines among the vectors
appearing in (3.79).
For weighted data, one may simply premultiply (3.78) by W 1/2, project

the terms onto {W 1/21}⊥, and operate from the resulting vectors. For
replicated data, κβ and πβ remain the same regardless of whether the retro-
spective linear model is based on (3.36) (unweighted) or (3.37) (weighted),
but entities involving Y∗ or e∗ do vary; see Problem 3.20.

3.7.2 Examples

As illustrations of the use and effectiveness of the cosine diagnostics, we
now analyze a few simple synthetic examples on [0, 1]3 using the ssanova0
and ssanova suites in gss.

Example 3.3 (Independent design) First, generate some synthetic
data and fit a tensor product cubic spline:

set.seed(5732)

x1 <- runif(100); x2 <- runif(100); x3 <- runif(100)

y <- 10*sin(pi*x2)+exp(3*x3)+

5*cos(2*pi*(x1-x2))+3*rnorm(x1)

fit <- ssanova(y~x1*x2*x3-x1:x2:x3)

The diagnostics for the fit can be obtained using the method summary:

sum.fit <- summary(fit,diagnostics=TRUE)

A look at the κβ ’s confirms that there is no identifiability problem with
this fit; the pound sign # is added in front of each line of the computer
printout to distinguish it from the command one types in:
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round(sum.fit$kappa,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# 1.12 1.09 1.05 1.04 1.06 1.06

Given below are the πβ ’s, the cosines between Y∗, e∗ and the f∗β ’s, and the
norms of the vectors, where the cos.y line gives cos(Y∗, ·) and the cos.e

line gives cos(e∗, ·):

round(sum.fit$pi,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# 0.00 0.15 0.63 0.22 0.01 -0.01

round(sum.fit$cosines,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# cos.y 0.03 0.43 0.79 0.46 0.14 -0.15

# cos.e 0.04 0.03 0.02 0.10 0.08 0.09

# norm 1.41 22.17 50.44 32.00 5.31 5.23

# yhat y e

# cos.y 0.96 1.00 0.37

# cos.e 0.08 0.37 1.00

# norm 67.23 72.06 20.86

The terms x1, x1:x3, and x2:x3 appear weak, both from the πβ ’s and from
their weak correlations with the response. Eliminating x1:x3 and x2:x3 but
keeping x1 due to the presence of x1:x2, a new model is fitted to the data:

fit.new <- ssanova(y~x1*x2+x3,id.basis=fit$id.basis)

where for a more direct comparison we took care to specify via id.basis the
same {zj} used in fit. A quick check shows that there is little meaningful
change in the diagnostics associated with the remaining terms:

sum.new<-summary(fit.new,TRUE)

round(sum.new$pi,2)

# x1 x2 x3 x1:x2

# 0.00 0.13 0.66 0.21

round(sum.new$cos,2)

# x1 x2 x3 x1:x2 yhat y e

# cos.y -0.06 0.43 0.79 0.45 0.95 1.00 0.4

# cos.e 0.11 0.07 0.02 0.11 0.08 0.40 1.0

# norm 0.28 19.66 51.08 30.22 66.28 72.06 23.4

Results using ssanova0 are similar. �

Example 3.4 (Simple aliasing design) Instead of an independent de-
sign, we now put xi〈1〉 and xi〈2〉 on a curve to create some identifiability
problem:

set.seed(5732)
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x2 <- runif(100); x3 <- runif(100)

x1 <- sqrt(x2)

y <- 10*sin(pi*x2)+exp(3*x3)+

5*cos(2*pi*(x1-x2))+3*rnorm(x1)

Fitting a tensor product cubic spline using ssanova0 and obtaining the
diagnostics, one has:

fit <- ssanova0(y~x1*x2*x3-x1:x2:x3)

sum.fit <- summary(fit,TRUE)

round(sum.fit$kappa,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# 27.31 28.92 3.33 5.20 7.91 7.88

round(sum.fit$pi,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# -0.68 0.50 1.21 0.35 -0.21 -0.17

round(sum.fit$cos,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# cos.y -0.14 0.09 0.85 0.27 -0.17 -0.15

# cos.e 0.00 0.00 0.02 0.00 0.01 0.00

# norm 293.38 332.23 87.53 79.07 72.77 70.03

# yhat y e

# cos.y 0.95 1.00 0.34

# cos.e 0.04 0.34 1.00

# norm 64.60 68.63 20.48

The κβ ’s indicate severe collinearity among the f∗β ’s, and the large magni-
tude of x1 coupled with its negative correlation with Y∗ suggest that it
provides no help in predicting the response but is merely offsetting other
terms. Removing all terms involving x1, one has:

fit.new <- ssanova0(y~x2*x3)

sum.new <- summary(fit.new,TRUE)

round(sum.new$kappa,2)

# x2 x3 x2:x3

# 1.02 1.01 1.02

round(sum.new$pi,2)

# x2 x3 x2:x3

# 0.16 0.83 0.01

round(sum.new$cos,2)

# x2 x3 x2:x3 yhat y e

# cos.y 0.38 0.85 0.27 0.95 1.00 0.38

# cos.e 0.06 0.03 0.17 0.06 0.38 1.00

# norm 26.25 58.37 3.81 63.73 68.63 21.69

The results are cleaned out, though the term x2:x3 could also be removed
due to the high cos(e∗, f∗β) relative to cos(Y∗, f∗β) and the very small κβ. �
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Example 3.5 (Complex aliasing design) We now change the aliasing
pattern to xi〈1〉 = (x2i〈2〉 +x

2
i〈3〉)/2 and obtain a tensor product cubic spline

fit and its diagnostics:

set.seed(5732)

x2 <- runif(100); x3 <- runif(100)

x1 <- (x2^2+x3^2)/2

y <- 10*sin(pi*x2)+exp(3*x3)+

5*cos(2*pi*(x1-x2))+3*rnorm(x1)

fit <- ssanova(y~x1*x2*x3-x1:x2:x3)

sum.fit <- summary(fit,TRUE)

round(sum.fit$kappa,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# 10.68 8.65 8.47 2.95 2.46 3.69

round(sum.fit$pi,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# -1.43 -0.84 3.43 -0.02 -0.04 -0.11

round(sum.fit$cosines,2)

# x1 x2 x3 x1:x2 x1:x3 x2:x3

# cos.y -0.32 -0.26 0.78 -0.03 -0.04 -0.11

# cos.e 0.00 0.00 0.01 0.00 0.00 0.03

# norm 359.73 263.35 356.97 49.78 78.50 76.65

# yhat y e

# cos.y 0.96 1.00 0.32

# cos.e 0.05 0.32 1.00

# norm 85.09 89.87 25.13

The situation is similar to that in Example 3.4 but we now have both x1

and x2 offending. The x1 term plays a bigger role and it could be twisting
perceptions concerning other terms, so we first take out terms involving x1

and check the results:

fit.new <- ssanova(y~x2*x3,id.basis=fit$id.basis)

sum.new <- summary(fit.new,TRUE)

round(sum.new$kappa,2)

# x2 x3 x2:x3

# 1.01 1.01 1.02

round(sum.new$pi,2)

# x2 x3 x2:x3

# 0.22 0.71 0.07

round(sum.new$cosines,2)

# x2 x3 x2:x3 yhat y e

# cos.y 0.50 0.79 0.26 0.96 1.00 0.35

# cos.e 0.07 0.02 0.09 0.07 0.35 1.00

# norm 36.44 71.44 24.42 84.28 89.87 25.70

The results are now clean, so no further action is needed. �
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3.7.3 Concepts and Heuristics

We now briefly discuss the heuristics behind the cosine diagnostics and
some related concepts. The primary issues are the identifiability of the fβ ’s,
which the κβ ’s are designed to diagnose, and the practical significance of
individual terms, which the cos(Y∗, f∗β)’s are designed to diagnose.
First consider the identifiability. By construction, the decomposition

η =
∑p

β=0 fβ is well defined on its domain, say X . When the function
is being estimated from the data, however, information only comes from
the sampling points X0 = {xi}ni=1, and the identifiability of the terms in
the decomposition depends on how well the decomposition is supported
on the restricted domain X0. Parallel to collinearity, such an identifiability
problem is called concurvity by Buja et al. (1989).
There exist two kinds of concurvity: the retrospective, or observed, con-

curvity, and the prospective concurvity. The observed concurvity can be
defined as the collinearity of the restrictions of the estimated fβ’s to X0,
which the κβ’s are designed to diagnose. Prospective concurvity, the same
in spirit as what was under discussion in Buja et al. (1989), is a (unde-
sirable) property of the model and the design X0 based on preobservation
analysis. For a parametric linear model, concurvity reduces to collinearity,
the form of the fit is fully predictable from the model and the design, so
there is no distinction between prospective and retrospective collinearity.
What is so bad about concurvity? One calculates an estimate f =∑p
β=0 fβ based on information from X0, but its restriction to X0, say

f0 =
∑p

β=0 f
0
β , is not well defined. If there is an alternative breakup

f0 =
∑p

β=0 αβf
0
β , then one could have used an alternative estimate g =

∑p
β=0 αβfβ instead of f =

∑p
β=0 fβ. For this to be of serious concern to us,

however, the difference (αβ − 1)fβ would have to be practically meaning-
ful, and J(f − g) =

∑
β(αβ − 1)2Jβ(fβ) would have to be negligible, where

Jβ(fβ) is the roughness contribution of fβ to J(f). This pretty much rules
out the participation of “nonparametric” components in serious concurvity:
For (αβ−1)fβ to be practically significant, one must have negligible Jβ(fβ);
hence, fβ would be primarily a parametric component inNJ . The main con-
cern of Buja et al. (1989), the numerical instability caused by concurvity
to their back-fitting algorithm, is, however, not an issue here, as all terms
are estimated simultaneously via the linear systems (3.4) or (3.63).
Now, consider the practical significance of individual terms. Recall that

in a parametric regression model, insignificant terms are often detected
using various F -statistics. Consider a linear model Y = α1+βx+ε, where
1Tx = 0; if 1Tx �= 0, replace x by (I − 11T/n)x. Write f0 = α̂1 and

f1 = β̂x = x(xTx)−1xTY. The standard F -statistic for testing β = 0, or
f1 = 0, is

F =
YTx(xTx)−1xTY

YT (I − 11T /n− x(xTx)−1xT )Y
=

cos2(Y∗, f∗1 )

1− cos2(Y∗, f∗1 )
, (3.80)
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which is monotone in

cos2(Y∗, f∗1 ) =
YTx(xTx)−1xTY

YT (I − 11T /n)Y
; (3.81)

see Problem 3.21. Hence, cos(Y∗, f∗β) coincide with the classical measures
in a specific simple parametric setting.
We suggest that cos(Y∗, f∗β) be taken as absolute measures when the

smoothing parameters are selected using a data-adaptive criterion such
as V (λ), for, in such a circumstance, different terms are allowed to com-
pete with each other and with the residual term for shares of resources
based on their qualifications as predictors of Y. These diagnostics are
objective quantities, but their calibration has to be subjective in lack of
sampling distributions. Our limited experience seems to suggest that a
term with cos(Y∗, f∗β) > 0.4 shall not be overlooked and a term with
cos(Y∗, f∗β) < 0.25 may be safely suppressed. The calibration of ‖fβ‖ (an

analog of χ2-statistics) is much more difficult, so their use is limited and is
of secondary importance. The πβ ’s provide reasonable measures for the rel-
ative strengths of the fitted terms, especially when the terms f∗β are nearly
orthogonal.

3.8 Square Error Projection

Consider a testing problem H0 : η ∈ H0 versus Ha : η ∈ H0 ⊕ H1, where
the notation is not to be confused with that in §3.1. For an example, H0

could be an additive model in an ANOVA decomposition involving only
main effects, with H1 containing interaction terms. Lacking sampling dis-
tributions with an infinite dimensional H0, we now develop a geometric
diagnostic for the practical significance of H1.
Denote by η̂ an estimate of η in H0 ⊕H1. Minimizing

SE(η̂, η) =
1

n

n∑

i=1

(
η̂(xi)− η(xi)

)2
(3.82)

with respect to η ∈ H0, one obtains a square error projection of η̂ in H0,
to be denoted by η̃. Suppose span{1} ⊂ H0 and write ηc = Ȳ the constant
fit. One has a square error decomposition (Problem 3.22)

SE(η̂, ηc) = SE(η̂, η̃) + SE(η̃, ηc). (3.83)

When the ratio ρ = SE(η̂, η̃)/SE(η̂, ηc) is small, one loses little by cutting
out H1. Note that this process does not involve the estimation of η in H0,
which shall take place after H0 is concluded.
The minimization of (3.82) in an infinite dimensional space is ill-posed,

so the above procedure has to be regulated. Calculating η̂ following the
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approach of §3.5, η̃ can be set in a form similar to (3.61) but with basis
φν(x) ∈ H1 removed and with components θβRβ(zj , x) ∈ H1 trimmed
from RJ (zj , x). The computation can be done via a modified (3.63), with
a possibly skinnier S, fewer hidden components in R, Y replaced by η̂(x),
and nλ = 0; such projection is well-posed for q = o(n), but as a safeguard
we use a small but positive nλ. One may also allow the remaining θβ ’s
in RJ(zj , x) to vary to bring SE(η̂, η̃) further down, though iterations for
this process often stalls. Such square error projection is implemented in the
ssanova suite.
For the data in Example 3.3, one may try:

fit <- ssanova(y~x1*x2*x3-x1:x2:x3)

project(fit,include=c("x1","x2","x1:x2","x3"))

where project returns a list object with elements ratio (ρ = 0.0072), kl
(SE(η̂, η̃) = 0.33), and check (ρ+SE(η̃, ηc)/SE(η̂, ηc) = 0.999995); the use
of a positive nλ breaks (3.83) and check monitors by how much it is off.
For the data in Example 3.5, one may similarly perform:

fit <- ssanova(y~x1*x2*x3-x1:x2:x3)

project(fit,include=c("x2","x3","x2:x3"))

This returns ρ = 0.055 and a check value 0.99998. The procedure is de-
signed to diagnose the practical significance of H1 assuming H0 ⊕ H1 is
well defined, but the concurvity in the given data threw things off a bit.
To perceive such a geometric inferential tool in contrast to the classical

hypothesis testing, consider a standard linear model

Y = 1β0 +X1β1 +X2β2 + ε

with a null H0 : β2 = 0. One has

SE(η̃, ηc) =
1

n

n∑

i=1

(Ỹi − Ȳ )2, SE(η̂, ηc) =
1

n

n∑

i=1

(Ŷi − Ȳ )2,

where Ỹ = X̃1(X̃
T
1 X̃1)

−1X̃T
1 Ŷ, Ŷ = X̃(X̃T X̃)−1X̃TY for X̃1 = (1, X1),

X̃ = (1, X1, X2). It follows that

ρ =

∑n
i=1(Ŷi − Ỹi)

2

∑n
i=1(Ŷi − Ȳ )2

=
SSR(X2|X1)

SSR(X1, X2)

with X1 and X2 indicating groups of predictors; note that neither the
variance of ε nor the sample size is referenced here. If ρ = 0.02, one may well
feel comfortable to settle with β2 = 0, although β2 could be statistically
significant due to a small error variance or a large sample size. On the other
hand, a ρ = 0.10 as the sole clue would likely keep β2 in the model, but
β2 could be statistically insignificant with a large error variance or a small
sample size.
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3.9 Case Studies

We now apply the techniques developed so far to analyze a few real data
sets. As with all data analysis exercises, subjective choices will have to be
made along the way, and the author’s preferences by no means represent
the only “correct” solutions.

3.9.1 Nitrogen Oxides in Engine Exhaust

In an experiment reported by Brinkman (1981), a single-cylinder engine
was run with ethanol to see how the NOx concentration in the exhaust
depended on the compression ratio and the equivalence ratio. There were
88 measurements made, and the data were analyzed by Cleveland and
Devlin (1988) and Breiman (1991), among others, using other smoothing
methods.
The data are included in gss as a data frame nox with elements nox,

comp, and equi. A tensor product cubic spline was fitted to the data and
the diagnostics obtained:

data(nox); set.seed(5732)

fit.nox <- ssanova(log(nox)~comp*equi,data=nox)

sum.nox <- summary(fit.nox,TRUE)

round(sum.nox$kappa,2)

# comp equi comp:equi

# 1.08 1.05 1.04

round(sum.nox$pi,2)

# comp equi comp:equi

# -0.02 1.01 0.01

round(sum.nox$cos,2)

# comp equi comp:equi yhat y e

# cos.y -0.08 0.95 0.07 0.98 1.00 0.23

# cos.e 0.02 0.04 0.03 0.06 0.23 1.00

# norm 4.23 19.09 3.48 18.36 18.83 3.29

project(fit.nox,"equi")$ratio

# 0.02151077

The set.seed command ensures a reproducible {zj}. The NOx concen-
trations are positive with some near-zero readings, so a log transform was
applied. The effect of equivalence ratio was dominant, but the compres-
sion ratio had little impact. Eliminating terms involving comp, one can fit
a cubic spline in equi and plot the data, the fit, and the 95% Bayesian
confidence intervals, as in Fig. 3.6:

set.seed(5732)

fit.nox <- ssanova(log(nox)~equi,data=nox)

grid <- sort(nox$equi)
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FIGURE 3.6. A cubic spline fit to NOx data. The fit is in the solid line, the 95%
Bayesian confidence intervals in faded lines, and the data in circles.

est <- predict(fit.nox,data.frame(equi=grid),se=TRUE)

plot(nox$equi,nox$nox,log="y",xlab="equivalence ratio",

ylab=expression(NO[x]),col=3)

lines(grid,exp(est$fit))

lines(grid,exp(est$fit+1.96*est$se),col=5)

lines(grid,exp(est$fit-1.96*est$se),col=5)

The compression ratio had only five distinctive values, so it could have
been treated as an ordinal discrete variable; it would not make a difference
though, as nox is plain flat on the comp axis. Cleveland and Devlin (1988)
and Breiman (1991) both used the cubic root transform for nox instead of
the log transform; parallel analysis using the cubic root transform yields
essentially the same results.

3.9.2 Ozone Concentration in Los Angeles Basin

Daily measurements of ozone concentration and eight meteorological quan-
tities in the Los Angeles basin were recorded for 330days of 1976. The
data were used by Breiman and Friedman (1985) to illustrate their ACE
algorithm (alternating conditional expectation) and by Buja et al. (1989)
to illustrate nonparametric additive models through the back-fitting al-
gorithm. The data are included in gss as a data frame ozone with the
following elements:

upo3 Upland ozone concentration (ppm).

vdht Vandenberg 500 millibar height (m).

wdsp Wind speed (mph).

hmdt Humidity (%).

sbtp Sandburg Air Base temperature (oC).

ibht Inversion base height (ft).
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FIGURE 3.7. Scatter plot matrix of ozone data: A correlated group.

dgpg Dagget pressure gradient (mmHg).

ibtp Inversion base temperature (oF ).

vsty Visibility (miles).

From the scatter plot matrix, the three variables vdht, sbtp, and ibtp

appeared to be highly correlated; see Fig. 3.7. We decided not to include
these variables simultaneously in our preliminary analysis. We also decided
not to include the variable wdsp, which showed little relation with any of
the other variables.
Our first attempt was to fit tensor product cubic splines on five variables:

one of vdht, sbtp, or ibtp, plus four others, hmdt, ibht, dgpg, and vsty.
Included in the models were five main effects and ten pairwise interactions.
The log transform was applied to the response since it is positive with some
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readings near zero. The measure R2 = ‖Y∗ − e∗‖2/‖Y∗‖2 was calculated
to be 0.750, 0.776, and 0.770 for the three fits. We now proceed with fits
involving sbtp:

data(ozone); set.seed(5732)

fit.oz0 <- ssanova(log10(upo3)~

(sbtp+hmdt+ibht+dgpg+vsty)^2,

data=ozone)

sum.oz0 <- summary(fit.oz0,TRUE)

round(sum.oz0$kappa,2)

round(sum.oz0$cos,2)

The largest κβ was 2.09, indicating modest concurvity. The interaction
terms sbtp:ibht, sbtp:dgpg, hmdt:ibht, hmdt:vsty, and ibht:dgpg had
cos(Y∗, f∗β) ≤ 0.02, so we refit the model without these terms:

fit.oz1 <- ssanova(log10(upo3)~

(sbtp+hmdt+ibht+dgpg+vsty)^2

-(sbtp:ibht+sbtp:dgpg+hmdt:ibht

+hmdt:vsty+ibht:dgpg),

id.basis=fit.oz0$id,data=ozone)

sum.oz1 <- summary(fit.oz1,TRUE)

round(sum.oz1$pi,2)

round(sum.oz1$cos,2)

The terms sbtp:hmdt, sbtp:vsty, and dgpg:vsty had cos(Y∗, f∗β) ≤ 0.22,
and the main effect hmdt had cos(Y∗, f∗β) = −0.43. Eliminating the three
interactions listed but keeping hmdt for now, we inspect the next fit:

fit.oz2 <- ssanova(log10(upo3)~sbtp+hmdt+ibht+dgpg+vsty

+hmdt:dgpg+ibht:vsty,

id.basis=fit.oz0$id,data=ozone)

sum.oz2 <- summary(fit.oz2,TRUE)

round(sum.oz2$pi,2)

round(sum.oz2$cos,2)

The terms hmdt and hmdt:dgpg had cos(Y∗, f∗β) = −0.43, 0.43 and similar
norms, apparently offsetting each other. Removing these two terms and
adding back as main effects the previously excluded vdht, ibtp, and wdsp

to double check their effects, one has:

fit.oz3 <- ssanova(log10(upo3)~sbtp+ibht+dgpg+vsty

+vdht+ibtp+wdsp+ibht:vsty,

id.basis=fit.oz0$id,data=ozone)

sum.oz3 <- summary(fit.oz3,TRUE)

round(sum.oz3$pi,2)

round(sum.oz3$cos,2)
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The terms vdht, wdsp, and ibht:vsty had small cos(Y∗, f∗β) or small norm
or both. The square error projection into a five-term additive model yields:

project(fit.oz3,c("sbtp","ibht",

"dgpg","vsty","ibtp"))$ratio

# 0.009726355

We now fit the five-term additive model and check its diagnostics:

fit.oz4 <- ssanova(log10(upo3)~ibtp+sbtp+ibht+dgpg+vsty,

id.basis=fit.oz0$id,data=ozone)

sum.oz4 <- summary(fit.oz4,TRUE)

round(sum.oz4$kappa,2)

# ibtp sbtp ibht dgpg vsty

# 3.06 2.41 1.78 1.23 1.12

round(sum.oz4$pi,2)

# ibtp sbtp ibht dgpg vsty

# 0.10 0.52 0.20 0.11 0.07

round(sum.oz4$cos,2)

# ibtp sbtp ibht dgpg vsty yhat y e

# cos.y 0.74 0.79 0.67 0.42 0.45 0.86 1.00 0.52

# cos.e 0.00 0.01 0.01 0.03 0.03 0.02 0.52 1.00

# norm 0.58 2.83 1.33 1.19 0.64 5.03 5.90 2.98

The concurvity between ibtp and sbtp is evident, and vsty appears weak.
In fact, one has:

project(fit.oz4,c("sbtp","ibht","dgpg"))$ratio

# 0.01210439

project(fit.oz3,c("sbtp","ibht","dgpg"))$ratio

# 0.03033862

So one may also consider a three-term additive model:

fit.oz5 <- ssanova(log10(upo3)~sbtp+ibht+dgpg,

id.basis=fit.oz0$id,data=ozone)

sum.oz5 <- summary(fit.oz5,TRUE)

round(sum.oz5$kappa,2)

# sbtp ibht dgpg

# 1.22 1.21 1.05

round(sum.oz5$pi,2)

# sbtp ibht dgpg

# 0.62 0.27 0.10

round(sum.oz5$cos,2)

# sbtp ibht dgpg yhat y e

# cos.y 0.79 0.66 0.43 0.86 1.00 0.53

# cos.e 0.01 0.01 0.04 0.02 0.53 1.00

# norm 3.36 1.75 1.08 5.00 5.90 3.05
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FIGURE 3.8. Three terms in additive cubic spline fits to ozone data. The fits are
in solid lines and the 95% Bayesian confidence intervals in faded. Top: fit.oz4
with concurvity. Bottom: fit.oz5 without concurvity. The rugs on the bottom
in each frame mark the data points, slightly jittered.

The fits fit.oz3, fit.oz4, and fit.oz5 have R2 = 0.749, 0.729, and
0.719, respectively. To obtain a fitted term with standard errors on the
data points, say the term sbtp in fit.oz4, one may use:

est4.sbtp <- predict(fit.oz4,ozone,inc="sbtp",se=TRUE)

Plotted in Fig. 3.8 are the terms sbtp, ibht, and dgpg in fit.oz4 and
fit.oz5, with the rugs on the bottom in each frame marking jittered data
points. It is easily seen that fit.oz4 has a slightly weaker sbtp effect with
larger standard errors. The sbtp effect in fit.oz5 is split between sbtp

and ibtp in fit.oz4, with the concurvity causing identifiability problems.

3.10 Computation: Special Algorithms

The generic algorithms of §3.4 are of order O(n3) and those of §3.5.3 are
of order O(nq2) = O(n13/9) with the default q � n2/9. For some problems,
however, structures can be introduced through alternative formulations,
yielding more scalable algorithms for calculations with fixed smoothing
parameter. To select the smoothing parameter using U(λ) or V (λ), one
needs algorithms of comparable speed for the evaluation of trA(λ), which is
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the focus of this section. According to current knowledge, the scoreM(λ) is
largely beyond reach with the alternative formulations, so are the posterior
variances which one would need for the construction of Bayesian confidence
intervals.
For polynomial splines on [0, 1], bandedness can be introduced into the

matrices involved through the use of ordered local-support basis, and O(n)

algorithms are available for both Ŷ and trA(λ) (§3.10.1). For problems such
as tomographical reconstruction and the smoothing of digital images, one
usually solves sparse or highly structured linear systems through iterative
procedures, and the term trA(λ) can be estimated through a parallel run
with some w ∼ N(0, I) replacing Y (§3.10.2).

3.10.1 Fast Algorithm for Polynomial Splines

A polynomial smoothing spline on [0, 1], the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η(m)

)2
dx, (3.84)

is called a natural spline in the numerical analysis literature. It is a piece-
wise polynomial of order 2m − 1, with up to the (2m − 2)nd derivatives
continuous and the (2m−1)st derivative jumping at the knots ξ1 < · · · < ξq,
the ordered distinctive sampling points xi. On [0, ξ1] and [ξq, 1], it is a poly-
nomial of order m− 1. See, e.g., de Boor (1978).
The natural splines with a given set of knots ξ1 < · · · < ξq form a

linear space of dimension q; see Problem 3.27. There exists a local-support
basis

{
Bj(x), j = 1, . . . , q

}
for these natural splines, with each of the Bj ’s

supported on at most 2m of the adjacent intervals [0, ξ1], [ξ1, ξ2], . . . , [ξq, 1],
and at most 2m of the Bj ’s are nonzero at any x ∈ [0, 1]; see Schumaker
(1981, §8.2). Plugging the expression η(x) =

∑q
j=1 cjBj(x) into (3.84),

one has

(Y −Xc)T (Y −Xc) + nλcT Jc, (3.85)

where X is n × q with the (i, j)th entry Bj(xi) and J is q × q with the

(i, j)th entry
∫ 1

0 B
(m)
i B

(m)
j dx. Minimizing (3.85) with respect to c, one gets

c = (XTX + nλJ)−1XTY and Ŷ = X(XTX + nλJ)−1XTY.
Ordering the basis functions Bj increasingly by their supports, one has

Bi(x)Bj(x) = B
(m)
i (x)B

(m)
j (x) = 0

for |i−j| ≥ 2m. It is clear thatXTX and J are both banded with bandwidth
4m−1. The band Cholesky decomposition (XTX+nλJ) = CTC takesO(q)
flops, with the upper-triangular C banded with bandwidth 2m; see Golub
and Van Loan (1989, §4.3.6). The coefficients c then are available in O(q)
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extra flops through a band back substitution followed by a band forward
substitution; see Golub and Van Loan (1989, §4.3.2).
The nontrivial part of the algorithm is the fast evaluation of

trA(λ) = tr
{
(XTX + nλJ)−1(XTX)

}
.

For B = XTX and C−T = (c1, . . . , cq), one has trA(λ) =
∑

i,j bi,j c
T
i cj .

Since B is symmetric and banded with bandwidth 4m − 1, only cTi cj for
0 ≤ i− j < 2m need to be computed. From C−TCT = I, one has

ei =

q∑

j=1

di,jcj =

q∧(i+2m−1)∑

j=i

di,jcj ,

where ei is the ith unit vector and di,j is the (i, j)th entry of C with di,j = 0
for j < i and j ≥ i+ 2m. Write n(i) = q ∧ (i+ 2m− 1). From

di,ici = ei −
n(i)∑

j=i+1

di.jcj ,

one has, recursively,

cTq cq = d−2
q ,

cTi ck = −d−1
i,i

n(i)∑

j=i+1

di,jc
T
j ck, i < k,

cTi ci = d−2
i,i

(

1 +

n(i)∑

j=i+1

n(i)∑

l=i+1

di,jdi,lc
T
j cl

)

,

(3.86)

where the fact that eTi ck = 0 for i < k is used. These formulas are imme-
diate extensions of (3.58) on page 82. Using (3.86), one can fill cTi cj in the
band 0 ≤ i− j < 2m, from the bottom row up, backward within each row,
without any reference to entries outside the band. The calculations take
O(q) flops.
The key to this algorithm is the band structure made available by the

ordered local-support basis. Many authors use the popular B-spline basis as
the Bj(x) in the above formulation, which makes no difference in computa-
tion and performance, but, technically, B-splines are not natural splines, as
they have different boundary conditions; see de Boor (1978) and Schumaker
(1981) for details. The algorithm has been implemented for B-splines inde-
pendently by Finbarr O’Sullivan and by H. J. Woltring, with code available
from the NETLIB at http://www.netlib.org/gcv.

http://www.netlib.org/gcv
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3.10.2 Iterative Algorithms and Monte Carlo
Cross-Validation

Smoothing with a quadratic penalty is a special case of generalized ridge
regression and can often be formulated in the form of (3.85) for some X .
Fixing the smoothing parameter, one solves the linear system

(XTX + nλJ)c = XTY (3.87)

for c and calculates Ŷ = Xc = A(λ)Y and e = Y− Ŷ =
(
I −A(λ)

)
Y. In

many applications, the matrix XTX + nλJ is sparse or highly structured,
although not necessarily banded as in §3.10.1, which allows for the fast
calculation of the matrix-vector multiplication (XTX + nλJ)c. Iterative
procedures such as the conjugate gradient method are often the most effi-
cient for solving such linear systems; see, e.g., Golub and Van Loan (1989,
Chap. 10).
Examples of such formulation can be found in, e.g., Girard (1989). De-

tailed algorithmic specifications, which vary from problem to problem, are
not directly relevant to our discussion. Our primary concern here is the im-
plementation of automatic smoothing parameter selection through scores
like U(λ) or V (λ) when iterative procedures are used to solve (3.87).
When the linear system (3.87) is solved iteratively, one has no direct

access to the structure of the smoothing matrix A(λ) and its trace. To
use U(λ) or V (λ) for the selection of the smoothing parameter in such
a circumstance, a Monte Carlo approximation of trA(λ) was proposed by
Girard (1989). The idea is simple and easy to implement. Let w be a vector
of n independent standard normal deviates. Passing w through the same
iterative procedures that produce Ŷ = A(λ)Y, one obtains A(λ)w. One
then can use wTA(λ)w to approximate trA(λ) and select the smoothing
parameter by minimizing

Ũ(λ) =
1

n
YT
(
I −A(λ)

)2
Y + 2

σ2

n
wTA(λ)w

for σ2 known, or by minimizing

Ṽ (λ) =
n−1YT

(
I −A(λ)

)2
Y

{
1− n−1wTA(λ)w

}2

for σ2 unknown. The justification of the approximation is through the
following theorem.

Theorem 3.9 Assume independent noise εi with mean zero, a common
variance σ2, and uniformly bounded fourth moments. If Condition 3.2.1 of
§3.2.1 holds, then

Ũ(λ) − L(λ)− n−1εT ε = op
(
L(λ)

)
. (3.88)
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If, in addition, Condition 3.2.2 of §3.2.2 also holds, then

Ṽ (λ)− L(λ)− n−1εT ε = op
(
L(λ)

)
. (3.89)

Parallel to Theorems 3.1 and 3.3, this is poor man’s justification. Results
parallel to those of Li (1986) can be found in Girard (1991).

Proof of Theorem 3.9: Recalling (3.17) and (3.19) in the proof of Theorem
3.1, one has

Ũ(λ) − U(λ) = 2
σ2

n

(
wTA(λ)w − trA(λ)

)
= op

(
L(λ)

)
,

which together with Theorem 3.1 yields (3.88). To prove (3.89) with
Theorem 3.3 in mind, it suffices to show that Ṽ (λ) − V (λ) = op

(
L(λ)

)
.

Write μ = n−1trA(λ) and μ̃ = n−1wTA(λ)w. Simple algebra yields

Ṽ (λ)− V (λ) = V (λ)

{
(1− μ)2

(1− μ̃)2
− 1

}

= V (λ)
2 − μ− μ̃

(1− μ̃)2
(μ̃− μ),

which is op
(
L(λ)

)
since μ̃ − μ = op

(
L(λ)

)
, V (λ) = Op(1), and μ = o(1).

This completes the proof. �

It is clear that each evaluation of Ũ(λ) or Ṽ (λ) takes about twice as many

flops as the calculation of Ŷ alone. In practice, it is advisable to generate
a single w for use in Ũ(λ) or Ṽ (λ) for all evaluations. One benefit of this is
the continuity of the resulting score, and the other benefit is possible faster
convergence of the iteration when A(λ)w at some nearby λ is used as the
starting value. The approximation may be improved a little by averaging
wTA(λ)w over a few replicates of w at further computational cost. Since
n is usually very large when Ũ(λ) or Ṽ (λ) is used, however, any benefit
from such practice, if any, may not be worth the extra cost.
Compared to μ̃ = n−1wTA(λ)w, μ∗ = wTA(λ)w/wTw provides a

better estimator of μ = n−1trA(λ) that one may use in practice; see
Problem 3.28. Theorem 3.9 remains valid when μ̃ is replaced by μ∗.

3.11 Bibliographic Notes

Section 3.1

The general problem of penalized least squares regression with multiple
penalty terms was formulated by Wahba (1986) and studied numerically
in Gu, Bates, Chen, and Wahba (1989) and Gu and Wahba (1991b). The
linear system (3.4) as the basis for computation first appeared in Wahba
and Wendelberger (1980). The smoothing matrix in the form of (3.7) was
given by Wahba (1978).
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Section 3.2

The score U(λ), originally proposed by Mallows (1973) for use in ridge
regression, is usually referred to as Mallows’ CL. Cross-validation is a clas-
sical technique for model selection in a variety of parametric and non-
parametric problems. The generalized cross-validation score V (λ) was due
to Craven and Wahba (1979). Theorems 3.1 and 3.3 represent a step up
from versions in the literature concerning expectations R(λ), E[U(λ)], and
E[V (λ)] but remain primitive compared to the results by Li (1986). The
simple, direct proof of Theorem 3.3 is largely adapted from related argu-
ments in Craven and Wahba (1979). The modified cross-validation score
V (λ) of (3.27) was explored in Kim and Gu (2004), following parallel de-
velopment in density estimation (Gu and Wang 2003).
The score M(λ) was proposed and studied in the context by Wahba

(1985). Restricted maximum likelihood (REML) has been widely used in
the literature on variance components and mixed-effect models; see, e.g.,
Harville (1977) and Robinson (1991). In Bayesian statistics, such an ap-
proach to the estimation of prior parameters is known as the type-II max-
imum likelihood; see, e.g., Berger (1985, §3.5.4).
The variance estimate σ̂2

v was proposed by Wahba (1983) based on
heuristic arguments and excellent simulation results. The motivation by
equating λu and λv represents an alternative interpretation of the argu-
ments developed in Gu, Heckman, and Wahba (1992) for smoothing pa-
rameter selection with replicated data. The primary result of Gu, Heckman,
and Wahba (1992) was the calculus leading to (3.38)—(3.40).

Section 3.3

The Bayesian confidence intervals were proposed by Wahba (1983), with
the across-the-function coverage property suggested through heuristic argu-
ments and demonstrated via empirical simulations. A more rigorous treat-
ment of the across-the-function coverage property for univariate polynomial
splines can be found in Nychka (1988). The componentwise intervals de-
rived through Theorem 3.8 were explored in Gu and Wahba (1993a).

Section 3.4

The developments in this section draw heavily on some standard numerical
linear algebra results, for which Golub and Van Loan (1989) and Dongarra,
Moler, Bunch, and Stewart (1979) are excellent references. Algorithm 3.1
was proposed by Gu, Bates, Chen, and Wahba (1989), with important
ideas borrowed from earlier work by Elden (1984) and Bates, Lindstrom,
Wahba, and Yandell (1987). Algorithms 3.2 and 3.3 were developed by Gu
and Wahba (1991b), where further details are to be found.
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Section 3.5

The materials in this section are largely taken from Kim and Gu (2004). The
simulations are rerun, however, as the underlying code has gone through
several updates since the original publication. The idea of efficient approx-
imation first appeared in Gu and Kim (2002) and Gu and Wang (2003).

Section 3.6

RKPACK was first released to the public in 1989, with the two drivers
dsidr and dmudr each having two options for smoothing parameter selec-
tion, V (λ) or M(λ). The option U(λ) and the two utility routines dcrdr
and dsms were added in 1992.
The R package gss was first released to the public in 1999. It was orig-

inally designed as a front end to RKPACK, but has since taken a life of
its own with the addition of numerous suites implementing modeling tools
beyond regression with independent data.

Section 3.7

An excellent review of diagnostics for collinearity can be found in Stewart
(1987), where the collinearity indices are introduced. Earlier discussion of
concurvity and its numerical ramifications can be found in Buja, Hastie,
and Tibshirani (1989). This section draws heavily on materials from Gu
(1992b), where more examples and further discussion are to be found. The
values of κ2β were mistakenly reported as κβ in the examples of Gu (1992b),
although the mistake was inconsequential.

Section 3.8

The materials in this section are largely taken from Gu (2004), where the
more general Kullback-Leibler projection was proposed; the square error
projection in Gaussian regression is a special case.

Section 3.9

In earlier analyses of the NOx data, Cleveland and Devlin (1988) used mul-
tivariate local weighted regression and Breiman (1991) used his

∏
method,

and both concluded that the interaction between the compression ratio
and the equivalence ratio was significant. The analysis presented in §3.9.1
concludes otherwise.
In Breiman and Friedman (1985), an additive model in sbtp, ibht, dgpg,

and vsty was fitted to the Los Angeles ozone data using alternating con-
ditional expectation (ACE). Buja, Hastie, and Tibshirani (1989) used the
data as a running example in the discussion of additive models and back-
fitting algorithm. A slew of analyses of the ozone data using a variety of
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techniques were compared in Hastie and Tibshirani (1990, §10.3), where a
scatter plot matrix of all the variables can be found.

Section 3.10

A comprehensive treatment of natural splines can be found in Schumaker
(1981, Chap. 8). The O(n) evaluation of trA(λ) was proposed by Hutchin-
son and de Hoog (1985); see also O’Sullivan (1985). The distinction between
the B-splines and the natural splines is discussed in de Boor (1978) and
Schumaker (1981).
The Monte Carlo approximation of the trace term trA(λ) was proposed

by Girard (1989); see also Hutchinson (1989).

3.12 Problems

Section 3.1

3.1 Consider the least squares functional L(f) =
∑n

i=1

(
Yi − f(xi)

)2
in a

reproducing kernel Hilbert space H with a square seminorm J(f).

(a) Prove that L(f) is continuous, convex, and Fréchet differentiable.

(b) Let {φν , ν = 1, . . . ,m} be a basis of NJ =
{
f : J(f) = 0

}
and S be

n×m with the (i, ν)th entry φν(xi). Prove that if S is of full column
rank, then L(f) is strictly convex in NJ .

(c) Prove that if S is of full column rank, then L(f) + λJ(f) is strictly
convex in H.

3.2 Prove that the linear system

(Q+ nλI)c + Sd = Y,

ST c = 0,

where S is of full column rank, Q non-negative definite, and λ > 0, has a
unique solution that satisfies

Q
{
(Q+ nλI)c + Sd−Y

}
= 0,

ST {Qc+ Sd−Y} = 0.

3.3 Prove that the eigenvalues of the smoothing matrix A(λ) as defined
in (3.7) are all in the range [0, 1].

3.4 Show that the solution of (3.10) minimizes

(Y − Sd−Qc)TW (Y − Sd−Qc) + nλcTQc.
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Section 3.2

3.5 Prove Theorem 3.1 under the general moment conditions on εi as
stated in the theorem.

(a) Let B and C be n× n matrices, where B is symmetric. Show that

Var[εTBε] ≤ 2σ4trB2 +

n∑

i=1

b2ii(K − 3σ4), (3.90)

Var[ηTCε] = σ2ηTCCTη, (3.91)

where K bounds E[ε4i ] uniformly.

(b) Prove (3.17) by applying (3.90) with B = A2(λ) and applying (3.91)
with C =

(
I −A(λ)

)
A(λ). Note that the Cauchy-Schwarz inequality

can be used to bound Cov[εTBε,ηTCε].

(c) Prove (3.18) by applying (3.91) with C = I −A(λ).

(d) Prove (3.19) by applying (3.90) with B = A(λ).

3.6 Show that (3.28) is the minus log likelihood of Z = FT
2 Y.

3.7 Prove Theorem 3.5.

3.8 Consider replicated data Yi,j = η(xi) + εi,j, where j = 1, . . . , wi,
i = 1, . . . , n. Denote the total sample size by N =

∑n
i=1 wi and the response

vector of length N by Ỹ. Let S be n×m with entries φν(xi), Q be n× n
with entries RJ(xi, xj), and P = diag(1wi) of size N × n.

(a) Write Ȳi =
∑wi

j=1 Yi,j/wi. Show that

n∑

i=1

wi∑

j=1

(
Yi,j − η(xi)

)2
=

n∑

i=1

wi

(
Ȳi − η(xi)

)2
+

n∑

i=1

wi∑

j=1

(Yi,j − Ȳi)
2.

(b) Solving (3.36) directly through (3.3) with Y , S, Q replaced by Ỹ , S̃,
Q̃, respectively, verify that S̃ = PS and Q̃ = PQPT .

(c) Let Yw be of length n with the ith entry
√
wiȲi. Verify that Yw =

W−1/2PT Ỹ , where W = PTP = diag(wi).

(d) Consider F2 orthogonal of size n× (n−m) satisfying FT
2 W

1/2S = O,
and F3 orthogonal of size N × (N − n) satisfying FT

3 P = O. Verify
that F̃2 = (PW−1/2F2, F3) is orthogonal and satisfies F̃T

2 S̃ = O.
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(e) The smoothing matrix for (3.36) is given by

Ã(λ) = I − nλF̃2(F̃
T
2 Q̃F̃2 + nλI)−1F̃T

2 ,

and that for (3.37) is given by

Aw(λ) = I − nλF2(F
T
2 W

1/2QW 1/2F2 + nλI)−1FT
2 ;

see (3.7) and (3.11). Show that

I − Ã(λ) = PW−1/2
(
I −Aw(λ)

)
W−1/2PT + F3F

T
3 .

Section 3.3

3.9 Prove Theorem 3.8. Similar to the proofs of Theorems 2.8 and 3.6,
first consider independent proper priors for ψν = dνφν , dν ∼ N(0, τ2), then
let τ2 →∞.

(a) Find the covariance matrix ofY, ψν(x), and ψμ(x) and use it to prove
(3.45) and (3.47).

(b) Find the covariance matrix of Y, ηβ(x), and ηγ(x) and use it to prove
(3.46) and (3.49).

(c) Find the covariance matrix of Y, ψν and ηβ(x) and use it to prove
(3.48).

3.10 Suppose Yi = η(xi) + εi, where η =
∑4

ν=1 ψν +
∑5

β=1 fβ with fixed
effects ψν and random effects fβ, as in Theorem 3.8.

(a) Derive E
[
ψ3(x) + f2(x)

∣
∣Y
]
and b−1Var

[
ψ3(x) + f2(x)

∣
∣Y
]
.

(b) Derive E
[
ψ4(x)+f3(x)+f4(x)+f5(x)

∣
∣Y
]
and b−1Var

[
ψ4(x)+f3(x)+

f4(x) + f5(x)
∣
∣Y
]
.

3.11 Derive the results of Theorems 3.6 and 3.8 for weighted data with
εi ∼ N(0, σ2/wi).

3.12 Verify that (3.51) simplifies to nλA(λ).

3.13 Show that for weighted data with weights wi, b
−1Var

[
η(xi)|Y

]
is

the (i, i)th entry of nλW−1/2Aw(λ)W
−1/2.
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Section 3.4

3.14 For L lower-triangular, prove that L−1 is also lower-triangular.

3.15 For an invertible block matrix M = (A B
C D ), show that

M−1 =

(
E−1 −E−1BD−1

−D−1CE−1 D−1 +D−1CE−1BD−1

)

,

where E = A−BD−1C.

Section 3.5

3.16 Verify that the c and d given in (3.66) solve (3.63).

3.17 For a square block matrix M = (A B
C D ) with A invertible, show that

|M | = |A| |D − CA−1B|; premultiply M by
(

I O
−CA−1 I

)
.

3.18 Verify (3.77).

3.19 Verify (3.76).

Section 3.7

3.20 Consider the replicated data of Problem 3.8 and keep all the nota-
tion and definitions. Write the retrospective linear model corresponding to
(3.36) as

Ỹ = f̃0 + f̃1 + · · ·+ f̃p + ẽ (3.92)

and that corresponding to (3.37) as

Ȳ = f0 + f1 + · · ·+ fp + e, (3.93)

where Ȳ =W−1PT Ỹ has the ith entry Ȳi. It is easy to see that f̃β = P fβ .

(a) Verify that PW−1PT is a projection matrix and I − PW−1PT =
F3F

T
3 .

(b) Show that Ỹ = F3F
T
3 Ỹ+P Ȳ, F3F

T
3 Ỹ = F3F

T
3 ẽ, andW−1PT ẽ = e.

(c) Projecting (3.92) onto {1N}⊥, where the subscript N indicates the
length of the vector, one gets Ỹ∗ = f̃∗1 + · · ·+ f̃∗p + ẽ∗. Show that

f̃∗β = P (I − 1n1
T
nW/N)fβ ,

Ỹ∗ = P (I − 1n1
T
nW/N)Ȳ + F3F

T
3 Ỹ,

ẽ∗ = P (I − 1n1
T
nW/N)e+ F3F

T
3 Ỹ.
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(d) Verify that I − W 1/21n1
T
nW

1/2/N is the projection matrix onto
{W 1/21}⊥.

(e) For (ã, a) = (f̃∗γ , fγ), (Ỹ
∗, Ȳ), (ẽ∗, e), show that

ãT f̃∗β = (W 1/2a)T (I −W 1/21n1
T
nW

1/2/N)(W 1/2fβ)

(f) For (ã, a), (b̃,b) = (Ỹ∗, Ȳ), (ẽ∗, e), show that

ãT b̃ = (W 1/2a)T (I −W 1/21n1
T
nW

1/2/N)(W 1/2b) + ỸTF3F
T
3 Ỹ.

3.21 Verify (3.80) and (3.81).

Section 3.8

3.22 Verify (3.83).

Section 3.9

3.23 Analyze the NOx data of §3.9.1, with the cubic root of NOx concen-
tration as the response.

3.24 Analyze the NOx data of §3.9.1, with the compression ratio treated
as an ordinal factor; replace comp by ordered(comp) in nox.

3.25 Consider the ozone data of §3.9.2.

(a) Fit a tensor product cubic spline in the variables vdht, hmdt, ibht,
dgpg, and vsty, with all pairwise interactions included.

(b) Simplify the model with the help of cosine diagnostics and/or square
error projection; iterate the process if necessary.

(c) Obtain selected main effects from the final model and compare with
those illustrated in Fig. 3.8.

3.26 Consider the ozone data of §3.9.2.

(a) Fit a cubic spline additive model in all variables.

(b) Simplify the model with the help of cosine diagnostics and/or square
error projection; iterate the process if necessary.

(c) Obtain selected main effects from the final model and compare with
those illustrated in Fig. 3.8.
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Section 3.10

3.27 Given a set of knots 0 < ξ1 < · · · < ξq < 1, a natural spline is
a piecewise polynomial of order 2m − 1 on [ξ1, ξq], m − 1 on [0, ξ1] and
[ξq, 1], with up to the (2m−2)nd derivatives continuous and the (2m−1)st
derivative jumping at the knots. Verify that a natural spline has q free
parameters.

3.28 Prove the inequality E[μ∗− μ]2 < E[μ̃− μ]2, where μ = n−1trA(λ),
μ∗ = wTA(λ)w/wTw, and μ̃ = n−1wTA(λ)w, for w ∼ N(0, I).

(a) Show that without loss of generality, one may assume A(λ) to be
diagonal.

(b) Show that w/
√
wTw and wTw are independent.

(c) For A(λ) = diag(di), calculate

E[μ∗ − μ]2 =
E
[
n−1

∑
diw

2
i − (n−1

∑
di)(n

−1
∑
w2

i )
]2

E
[
n−1

∑
w2

i

]2 ,

and compare with E[μ̃− μ]2 = E
[
n−1

∑
diw

2
i − n−1

∑
di
]2
.



4
More Splines

The framework for model construction as laid out in Chap. 2 takes as
building blocks any reproducing kernel. The polynomial splines of §2.3
are the standard choices on continuous domains, but generalizations or
restrictions are sometimes called for by the nature of the applications.
The technical underpinnings of the variants are generally different from
that of polynomial splines, but once the reproducing kernels are specified,
everything else remains largely intact.
In this chapter, we present several variants of polynomial splines that

have a broad range of applications. Discussed in §4.2 are splines on the cir-
cle, or periodic polynomial splines, which are often used to model periodic
phenomena as well as to showcase asymptotic calculations. To model spatial
data in a natural manner, one has at his disposal the isotropically invari-
ant thin-plate splines on the domain X = (−∞,∞)d (§4.3) and spherical
splines on the sphere X = S (§4.4). L-Splines are discussed in §4.5, where
the null space NJ of the roughness penalty J(f) is not restricted to lower-
order polynomials. The derivation of the reproducing kernels is the main
focus of the discussion, although some advanced mathematical background
is relegated to the literature.
The simple but useful idea of partial splines is also briefly discussed and

illustrated (§4.1).

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 4,
© Springer Science+Business Media New York 2013
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4.1 Partial Splines

In some applications, one may want to use a semiparametric model,

Y = zTβ + η(x) + ε,

where z comprises the parametric covariate with coefficient β and x is the
nonparametric covariate. The minimizer of

1

n

n∑

i=1

(
Yi − zTi β − η(xi)

)2
+ λJ(η) (4.1)

with respect to β and η ∈ H =
{
f : J(f) <∞

}
is called a partial spline.

To compute a partial spline, one simply augments the matrix S in (3.4)
or (3.63) by Z = (z1, . . . , zn)

T , S̃ = (Z, S), augments d by β, d̃ =
(βT ,dT )T , and replaces (S,d) by (S̃, d̃) in the algorithms of §§3.4 and
3.5.3. The minimizer of (4.1) uniquely exists when S̃ is of full column rank.

The ssanova and ssanova0 suites have partial spline utilities built in.

Example 4.1 (Cubic spline with jump) To estimate a function that
has a possible jump at a known location x = 0.7 but otherwise believed to
be smooth on [0, 1], one may minimize

1

n

n∑

i=1

(
Yi − βI[xi>0.7] − η(xi)

)2
+ λ

∫ 1

0

η̈2dx

with respect to β and η ∈
{
f :
∫ 1

0
f̈2dx <∞

}
.

The following sequence generates some synthetic data and fits a cubic
spline with a jump:

set.seed(5732)

x <- runif(100); z <- as.numeric(x>.7)

y <- 1+3*sin(2*pi*x-pi)-2*z+rnorm(x)

fit.part <- ssanova(y~x,partial=~z)

Linear parametric terms are to be generated by partial as in lm but each
term here will be standardized internally to have mean 0 and variance 1.
One can then evaluate the fit and plot as shown in Fig. 4.1:

grid <- seq(0,1,len=51)

new <- data.frame(x=grid,z=as.numeric(grid>.7))

est <- predict(fit.part,new,se=TRUE)

plot(x,y,col=3); lines(grid,est$fit)

lines(grid,est$fit+1.96*est$se,col=5)

lines(grid,est$fit-1.96*est$se,col=5)

lines(grid,1+3*sin(2*pi*grid-pi)-2*(grid>.7),lty=2)

Obviously, the same variable should not appear in both formulas as that
will create identifiability problems. �



4.2 Splines on the Circle 127

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

x

y

FIGURE 4.1. A cross-validated cubic spline fit with jump. The fit is in the solid
line and the 95% Bayesian confidence intervals are in faded lines, with the test
function superimposed in dashed line and the data in circles.

4.2 Splines on the Circle

Functions on the circle are isomorphic to periodic functions on [0, 1]. A
periodic function f(x) on [0, 1] can usually be expressed in the form of a
Fourier series expansion

f(x) = a0 +
∞∑

μ=1

(
aμ cos 2πμx+ bμ sin 2πμx

)
, (4.2)

where
∑∞

μ=1(a
2
μ + b2μ) <∞. Denote by P [0, 1] the linear space of all func-

tions on [0, 1] permitting the Fourier series expansion (4.2); all continuous
periodic functions belong to P [0, 1].
In parallel to §2.3.3, we present a family of reproducing kernels on [0, 1]

for periodic polynomial splines. With equally spaced data, a periodic poly-
nomial spline is shown to be equivalent to a low-pass filter through an ana-
lytical spectral decomposition of the matrix Q appearing in (3.4). Assisted
by such an analytical spectral decomposition, it is also possible to illustrate
further details of the asymptotics of §3.2 concerning smoothing parameter
selection.

4.2.1 Periodic Polynomial Splines

Consider the space H =
{
f : f ∈ P [0, 1], f (m) ∈ L2[0, 1]

}
. By the orthogo-

nality of the trigonometric basis, it is easy to calculate

∫ 1

0

(
f (m)

)2
dx =

1

2

∞∑

μ=1

(a2μ + b2μ)(2πμ)
2m (4.3)
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for f ∈ P [0, 1], noting that
∫ 1

0
sin2 2πμxdx =

∫ 1

0
cos2 2πμxdx = 1/2; see

Problem 4.1. Hence, H =
{
f : f ∈ P [0, 1],

∑∞
μ=1(a

2
μ + b2μ)μ

2m <∞
}
. With

an inner product

(f, g) =

(∫ 1

0

fdx

)(∫ 1

0

gdx

)

+

∫ 1

0

f (m)g(m)dx,

the reproducing kernel is seen to be

R(x, y) = 1 +

∞∑

μ=1

2

(2πμ)2m
(cos 2πμx cos 2πμy + sin 2πμx sin 2πμy)

= 1 +

∞∑

μ=1

2 cos 2πμ(x− y)

(2πμ)2m
; (4.4)

see Problem 4.2. Comparing this with (2.18) on page 37, it is easy to
verify that R(x, y) = 1 + (−1)m−1k2m(x− y); see Problem 4.3. A one-way

ANOVA decomposition with the averaging operator Af =
∫ 1

0
fdx is built

in, with R0 = 1 generating the “mean” space and R1 = (−1)m−1k2m(x−y)
generating the “contrast” space.
Consider Yi = η(xi) + εi, where εi ∼ N(0, σ2). The minimizer ηλ of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η(m)

)2
dx, (4.5)

for η ∈ H ⊂ P [0, 1], is a periodic polynomial spline.
To fit a periodic cubic spline to the data of Example 3.1, one may use

ssanova(y~x,type=list(x=list("per",c(0,1))))

where the domain, which is [0, 1] here, must be specified; one may specify
any domain, which will be mapped to [0, 1]. The same sequence used in
Example 3.1 for the evaluation and the plotting of the fit yields Fig. 4.2;
the Bayesian confidence intervals here do not grow wider towards 0 and 1,
which are now the same point. One may also configure selected margins in
tensor product splines as periodic polynomial splines.

4.2.2 Splines as Low-Pass Filters

In the notation of §3.1, NJ = span{1} and RJ(x, y) = (−1)m−1k2m(x− y).
To compute the minimizer ηλ of (4.5) via (3.4) on page 63, one has S = 1
and Q with the (i, j)th entry (−1)m−1k2m(xi − xj).
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FIGURE 4.2. A cross-validated periodic cubic spline fit. The fit is in the solid
line and the 95% Bayesian confidence intervals are in faded lines, with the test
function superimposed in dashed line and the data in circles.

Consider equally spaced data with xi = (i − 1)/n. The (i, j)th entry of
Q is then (−1)m−1k2m

(
(i − j)/n

)
. Substituting in the expression (2.18),

straightforward algebra yields

(−1)m−1k2m
(
(i − j)/n

)
=

( −1∑

μ=−∞
+

∞∑

μ=1

)
exp
(
2πiμ(i− j)/n

)

(2πμ)2m

=

( −1∑

ξ=−∞
+

∞∑

ξ=1

)
exp
(
2πi(nξ)(i − j)/n

)

(2πnξ)2m

+

n−1∑

ν=1

∞∑

ξ=−∞

exp
(
2πi(ν + nξ)(i − j)/n

)

(
2π(ν + nξ)

)2m

=
n−1∑

ν=0

λν
exp
(
2πiν(i− j)/n

)

n
, (4.6)

where i =
√
−1 and

λ0 = 2n(2π)−2m
∞∑

ξ=1

(nξ)−2m,

λν = n(2π)−2m
∞∑

ξ=−∞
(ν + nξ)−2m, ν = 1, . . . , n− 1.

(4.7)

Hence, one has the spectral decomposition Q = ΓΛΓH , where Γ is the
Fourier matrix with the (i, j)th entry n−1/2 exp

(
2πi(i−1)(j−1)/n

)
, ΓH the

conjugate transpose of Γ, ΓHΓ = ΓΓH = I, and Λ = diag(λ0, . . . , λn−1);
see Problem 4.4. Note that λν = λn−ν , ν = 1, . . . , n− 1.
The operation z̃ = ΓHz defines the discrete Fourier transform of z and

z = Γz̃ defines its inverse. It is easy to see that ΓH1 =
√
ne1, where e1 is
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FIGURE 4.3. Splines as low-pass filters. Left : Eigenvalues λν of Q. Right : Damp-
ing factors wν with w10 = .5. The dotted lines are for m = 1, the solid lines for
m = 2, and the dashed lines for m = 3. The sample size is n = 128.

the first unit vector. Let Ỹ be the discrete Fourier transform of Y and c̃
be that of c. The linear system (3.4) reduces to

(Λ + nλI)c̃+
√
ne1d = Ỹ,

c̃1 = 0.

Hence, one has c̃ν = Ỹν/(λν−1 + nλ), ν = 2, . . . , n. Remember that Ŷ =

Y − nλc, so
˜̂
Yν = wν Ỹν , where w1 = 1, wν = λν−1/(λν−1 + nλ), ν =

2, . . . , n. The eigenvalues λν of Q monotonically decreases up to ν = n/2,
so a periodic spline with equally spaced data is virtually a low-pass filter.
For n = 128 and m = 1, 2, 3, log10 λν , ν = 1, . . . , 64, are plotted in the

left frame of Fig. 4.3, and wν with nλ = λ9, ν = 1, . . . , 65, are plotted
in the right frame. The order m controls the shape of the filter, and the
smoothing parameter λ determines the half-power frequency.

4.2.3 More on Asymptotics of §3.2
Assisted by the analytical spectral decomposition Q = ΓΛΓH for periodic
splines with equally spaced data, we can now look into further details of
the asymptotics of §3.2 concerning smoothing parameter selection.
WriteW = diag(w1, . . . , wn), where w1 = 1 and wν = λν−1/(λν−1+nλ),

ν = 2, . . . , n. From
˜̂
Y =W Ỹ, one has A(λ) = ΓWΓH . It follows that

trA(λ) = 1 +

n−1∑

ν=1

λν
λν + nλ

= 1 +

n−1∑

ν=1

1

1 + λρν
, (4.8)

where ρν = n/λν , and

trA2(λ) = 1 +

n−1∑

ν=1

1

(1 + λρν)2
. (4.9)
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For ν ≤ n/2, it follows from (4.7) that ρν = n/λν � ν2m. As λ → 0 and
nλ1/2m →∞,

trA(λ) = K1 + 2

( ∑

ν≤λ−1/2m

+
∑

λ−1/2m<ν<n/2

)
1

1 + λρν

= K1 +K2λ
−1/2m +K3

∫ n/2

λ−1/2m

1

1 + λx2m
dx

= K1 +K2λ
−1/2m +K3λ

−1/2m

∫ ∞

1

1

1 + x2m
dx

� λ−1/2m,

where the Ki’s are constants bounded away from 0 and ∞. Similarly, one
has trA2(λ) � λ−1/2m. Condition 3.2.2 of §3.2.2, that

{
n−1trA(λ)

}2
/n−1trA2(λ)→ 0,

follows when λ→ 0 and nλ1/2m →∞.
We now calculate the risk R(λ) = E

[
n−1

∑n
i=1

(
ηλ(xi) − η(xi)

)2]
and

verify Condition 3.2.1 of §3.2.1, that nR(λ)→∞. From (3.16) on page 65,
one has

R(λ) =
1

n
ηT
(
I −A(λ)

)2
η +

σ2

n
trA2(λ) = B(λ) +O(n−1λ−1/2m), (4.10)

where η =
(
η(0), η(1/n), . . . , η((n− 1)/n)

)T
, with the bias term

B(λ) =
1

n
ηT
(
I −A(λ)

)2
η =

1

n

n−1∑

ν=1

(nλ)2

(λν + nλ)2
|η̃ν+1|2

= λ

n−1∑

ν=1

λρν
(1 + λρν)2

ρν
n
|η̃ν+1|2, (4.11)

where η̃ν+1 is the (ν+1)st entry of ΓHη. It will be shown that B(λ) = O(λp)
for some p ∈ [1, 2], so Condition 3.2.1 follows when nλp → ∞ and λ → 0.
The optimal λ � n−2m/(2pm+1) satisfies these conditions.
We now show that B(λ) = O(λp) for some p ∈ [1, 2]. For η ∈ P [0, 1],

η(i/n) = ã0 +

n−1∑

μ=1

(
ãμ cos(2πμi/n) + b̃μ sin(2πμi/n)

)
,
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where ã0 =
∑∞

ξ=0 anξ, ãν =
∑∞

ξ=0 aν+nξ, and b̃ν =
∑∞

ξ=0 bν+nξ, ν =
1, . . . , n− 1. For integers ν and μ, one has the orthogonality relations

n∑

i=1

cos(2πνi/n) cos(2πμi/n) =
n

2
δν,μ, ν, μ ∈ [1, n/2),

n∑

i=1

cos2(2πνi/n) = n, ν = n/2,

n∑

i=1

sin(2πνi/n) sin(2πμi/n) =
n

2
δν,μ, ν, μ ∈ [1, n/2),

n∑

i=1

cos(2πνi/n) sin(2πμi/n) = 0,

(4.12)

where δν,μ is the Kronecker delta. It follows that

η̃ν+1 =

√
n

2

{
(ãν + ãn−ν) + i(bν − bn−ν)

}
, ν = 1, . . . , n− 1, (4.13)

so

|η̃ν+1|2 =
n

4

{
(ãν + ãn−ν)

2 + (b̃ν − b̃n−ν)
2
}
, ν = 1, . . . , n− 1;

see Problem 4.5. For ν > 0, by the Cauchy-Schwarz inequality,

ã2ν ≤
( ∞∑

ξ=0

a2ν+nξ(ν + nξ)2m

)( ∞∑

ξ=0

(ν + nξ)−2m

)

,

b̃2ν ≤
( ∞∑

ξ=0

b2ν+nξ(ν + nξ)2m

)( ∞∑

ξ=0

(ν + nξ)−2m

)

,

where
∑∞

ξ=0(ν + nξ)−2m ∝ λν/n = ρ−1
ν . Since

∑∞
μ=1(a

2
μ + b2μ)μ

2m < ∞,

one has
∑n−1

ν=1 ρν ã
2
ν <∞ and

∑n−1
ν=1 ρν b̃

2
ν <∞. It follows that

n−1∑

ν=1

ρν
n
|η̃ν+1|2 ≤

1

2

n/2∑

ν=1

ρν
{
(ãν + ãn−ν)

2 + (b̃ν − b̃n−ν)
2
}
= O(1).

Plugging this into (4.11) and noting that λρν/(1 + λρν)
2 < 1, one has

B(λ) = O(λ). When η is “supersmooth,” in the sense that

∞∑

μ=1

(a2μ + b2μ)μ
2pm <∞ (4.14)
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holds for some p > 1, similar calculation yields B(λ) = O(λp), for p up
to 2. When (4.14) holds for p > 2 but B2 = λ−2B(λ)|λ=0 > 0, it can be
shown that λ−2B(λ) − B2 = o(1) for λ = o(1) (Problem 4.6), so O(λ2) is
the best attainable rate for B(λ).
Finally, let us see how the minimizer λm of the score M(λ) under-

smoothes when η is “supersmooth.” Plugging the spectral decomposition
A(λ) = ΓWΓH into (3.30) on page 71, after some algebra one gets

M(λ) =

1

n

n−1∑

ν=1

λρν
1 + λρν

|Ỹν+1|2

(
n−1∏

ν=1

λρν
1 + λρν

)1/(n−1)
.

Straightforward calculation yields

d logM(λ)

d logλ
=

1

n

n−1∑

ν=1

λρν
(1 + λρν)2

|Ỹν+1|2

1

n

n−1∑

ν=1

λρν
1 + λρν

|Ỹν+1|2
− 1

n− 1

n−1∑

ν=1

1

1 + λρν

=
N(λ)

D(λ)
− 1

n− 1
trA(λ), (4.15)

say; see Problem 4.7. As shown earlier, (n−1)−1trA(λ) � n−1λ−1/2m. Now

|Ỹν+1|2 = |η̃ν+1|2 + |ε̃ν+1|2 + (η̃ν+1
¯̃εν+1 + ¯̃ην+1ε̃ν+1),

where z̄ denotes the conjugate of complex number z, and, correspondingly,
N(λ) and D(λ) can each be decomposed into three terms. We shall cal-
culate the rates for the terms corresponding to |η̃ν+1|2 and |ε̃ν+1|2, which
control the rate of the cross-term through the Cauchy-Schwarz inequality;
see Problem 4.8.
It is easy to verify that

1

n

n−1∑

ν=1

λρν
1 + λρν

|η̃ν+1|2 = O(λ)

and that

1

n

n−1∑

ν=1

λρν
1 + λρν

|ε̃ν+1|2 =
1

n
εT
(
I −A(λ)

)
ε = σ2(1− μ1) + op

(
R(λ) + n−1

)
,
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where μ1 = n−1trA(λ) and (3.19) on page 66 is used. It follows that D(λ) =
σ2
(
1 + op(1)

)
. Similarly,

N1(λ) =
1

n

n−1∑

ν=1

λρν
(1 + λρν)2

|η̃ν+1|2 = O(λ)

and

1

n

n−1∑

ν=1

λρν
(1 + λρν)2

|ε̃ν+1|2 =
1

n
εT
(
A(λ) −A2(λ)

)
ε = Op(n

−1λ−1/2m),

so N(λ) = Op(λ+ n−1λ−1/2m).
When η is “supersmooth” but λ−1N1(λ)|λ=0 > 0, one has N1(λ) � λ;

the proof is similar to Problem 4.6. Hence, λ is the best attainable rate
for N1(λ). Putting things together, it follows that λ cannot exceed the
order of n−1λ−1/2m for (4.15) to evaluate to zero. This leads to λm =
O(n−2m/(2m+1)), which is smaller than the optimal λ � n−2m/(2pm+1) when
p > 1.

4.3 Thin-Plate Splines

A thin-plate spline is the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λJd

m(η) (4.16)

on the d-dimensional domain X = (−∞,∞)d, where

Jd
m(f) =

∑

α1+···+αd=m

m!

α1! · · ·αd!

×
∫
· · ·
∫ (

∂mf

∂xα1
〈1〉 · · ·∂xαd

〈d〉

)2

dx〈1〉 · · · dx〈d〉. (4.17)

The null space of Jd
m(f) consists of polynomials of up to (m − 1) total

order, which is of dimensionM =
(
d+m−1

d

)
; see Problem 4.9. The quadratic

functional Jd
m(f) is invariant under a rotation of the coordinates; see Prob-

lem 4.10. In the space H =
{
f : Jd

m(f) < ∞
}

with Jd
m(f) as a square

semi norm, it is necessary that 2m − d > 0 for the evaluation functional
[x]f = f(x) to be continuous; see Duchon (1977), Meinguet (1979) and
Wahba and Wendelberger (1980).
The derivation of reproducing kernels for thin-plate splines requires some

advanced knowledge of differential equation theory; details can be found
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in Duchon (1977), Meinguet (1979) and references cited therein. In the
sections to follow, we try to keep the exposition to an elementary level,
leaving the technically more advanced discussion to the literature. For the
fitting of a thin-plate spline alone using Algorithm 3.1 of §3.4.2, an easy-
to-evaluate, conditionally non-negative definite semi-kernel is all that one
would need (§4.3.1), but to compute the Bayesian confidence intervals or
to use thin-plate marginals to construct tensor product splines, genuine
reproducing kernels have to be constructed (§4.3.2). Tensor product splines
with thin-plate marginals are briefly discussed in §4.3.3, and the case study
previewed in §1.4.1 is developed in full in §4.3.4.

4.3.1 Semi-Kernels for Thin-Plate Splines

When the parametric least squares estimate in the null space of Jd
m(f)

uniquely exists, the minimizer ηλ of (4.16) uniquely exists; see Theorem 2.9.
From Duchon (1977, Theorem 4 bis), ηλ has an expression

ηλ(x) =
M∑

ν=1

dνφν(x) +
n∑

i=1

ciE
(
|xi − x|

)
, (4.18)

where {φν}Mν=1 span the null space of Jd
m(f), ci’s are subject to the con-

straints ST c = 0 with S the n×M matrix with the (i, ν)th entry φν(xi),
|x− y| is the Euclidean distance, and

E(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θm,d x
2m−d log x, d even, for

θm,d = (−1)d/2+m+1

22m−1πd/2(m−1)!(m−d/2)!
,

θm,d x
2m−d, d odd, for

θm,d = Γ(d/2−m)
22mπd/2(m−1)!

.

(4.19)

The constant θm,d in (4.19) is not really needed for (4.18), as it is readily
absorbed into ci’s. The reproducing kernels, however, are expressed in terms
of E(x) with θm,d attached, as will be seen shortly.
For ci’s satisfying S

T c = 0, it can be shown that

Jd
m

(∑n
i=1 ciE(|xi − x|)

)
=
∑

i

∑

j

cicjE
(
|xi − xj |

)
; (4.20)

see Meinguet (1979) and Wahba and Wendelberger (1980). Plugging (4.18)
and (4.20) into (4.16), the estimation reduces to the minimization of

(Y − Sd−Kc)T (Y − Sd−Kc) + nλ cTKc (4.21)

with respect to c and d, subject to the constraints ST c = 0, where K is
n× n with the (i, j)th entry E

(
|xi − xj |

)
.
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Compare (4.21) with (3.3) on page 62 and (3.4) on page 63. It is easily
seen that the solution of the linear system

(K + nλI)c+ Sd = Y,

ST c = 0, (4.22)

is a solution of the constrained minimization problem (4.21).
To compute a thin-plate spline, one may use Algorithm 3.1 of §3.4.2,

which was designed for the linear system (3.4). The only difference be-
tween (3.4) and (4.22) is that Q in (3.4) is non-negative definite, whereas
K in (4.22) is not. It is easy to verify, however, that one only needs FT

2 QF2

to be non-negative definite for Algorithm 3.1 to work, and indeed it is the
case; check (4.20). The matrix K satisfying

ST c = 0 =⇒ cTKc ≥ 0

is said to be conditionally non-negative definite.
The bivariate function E

(
|x − y|

)
acts like a reproducing kernel in this

approach to the computation of thin-plate splines, and hence is called a
semi-kernel. Note that only the sign of θm,d matters for the calculation, as
the magnitude can be absorbed into ci’s and λ.

Example 4.2 (Cubic spline) With d = 1 and m = 2, one has J1
2 (f) =∫∞

−∞ f̈2dx, yielding a cubic spline on the real line. Since Γ(1/2 − 2) > 0,

E
(
|x− y|

)
∝ |x− y|3. One has

ηλ(x) = d1 + d2x+

n∑

i=1

ci|xi − x|3,

with c and d solving (4.22) for K with the (i, j)th entry |xi − xj |3. Under
this formulation, one does not need to map the data into [0, 1]. �

Example 4.3 With d = 2 and m = 2, one has J2
2 (f) =

∫ ∫ (
f̈2
〈11〉 +

2f̈2
〈12〉 + f̈2

〈22〉
)
dx〈1〉dx〈2〉. Obviously, d/2 +m + 1 is even, so E

(
|x − y|

)
∝

|x− y|2 log |x− y|. It follows that

ηλ(x) = d1 + d2xi〈1〉 + d3xi〈2〉 +

n∑

i=1

ci|xi − x|2 log |xi − x|,

with c and d the solution of (4.22), where the matrix K has the (i, j)th
entry |xi − xj |2 log |xi − xj |. �

4.3.2 Reproducing Kernels for Thin-Plate Splines

For the calculation of the fit alone, it is sufficient to know the semi-kernel.
To evaluate the posterior variance for the Bayesian confidence intervals of



4.3 Thin-Plate Splines 137

§3.3 or to construct tensor product splines of §2.4 with thin-plate splines
as building blocks on the marginal domains, one will have to calculate the
genuine reproducing kernel, which is the subject of this section.
Denote by ψν a set of polynomials that spanNJ , the null space of Jd

m(f).
Define

(f, g)0 =

N∑

i=1

pif(ui)g(ui), (4.23)

where ui ∈ (−∞,∞)d, pi > 0,
∑N

i=1 pi = 1 are specified such that the
Gram matrix with the (ν, μ)th entry (ψν , ψμ)0 is nonsingular. Following
some standard orthogonalization procedure, one can find an orthonormal
basis φν , ν = 1, . . . ,M , for NJ with φ1(x) = 1 and (φν , φμ)0 = δν,μ, where
δν,μ is the Kronecker delta. The reproducing kernel in NJ is seen to be

R0(x, y) =

M∑

ν=1

φν(x)φν (y). (4.24)

The projection of f onto NJ is defined by the operator P through

(Pf)(x) =

M∑

ν=1

(f, φν)0φν(x). (4.25)

Define

R1(x, y) = (I − P(x))(I − P(y))E
(
|x− y|

)
, (4.26)

where I is the identity operator and P(x) and P(y) are the projection oper-
ator of (4.25) applied to the arguments x and y, respectively.
Plugging (4.25) into (4.26), one has, for fixed x,

R1(x, u) = E
(
|x− u|

)
−

M∑

ν=1

φν(x)

N∑

i=1

piφν(ui)E
(
|ui − u|

)
+ π(u)

= E(|x− u|) +
N∑

i=1

ci(x)E
(
|ui − u|

)
+ π(u),

where π(u) ∈ NJ and ci(x) = −
∑M

ν=1 piφν(ui)φν(x). From (4.20), it is
easy to show that (Problem 4.11)

Jd
m

(∑n
i=1 ciE(|xi − ·|),

∑p
j=1 c̃iE(|yj − ·|)

)
=
∑

i,j

cic̃jE
(
|xi − yj |

)
, (4.27)
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for ci and c̃j satisfying
∑n

i=1 ciφν(xi) =
∑p

j=1 c̃jφν(yj) = 0, ν = 1, . . . ,M ,

where Jd
m(f, g) denotes the (semi) inner product associated with the square

(semi) norm Jd
m(f). It is easy to check that

φν(x) +

N∑

i=1

ci(x)φν (ui) = φν(x)−
M∑

μ=1

(φμ, φν)0φμ(x) = 0

for ν = 1, . . . ,M . Taking n = p = N + 1, xi = yi = ui, ci = ci(x),
c̃i = ci(y), i = 1, . . . , N , xN+1 = x, yN+1 = y, and cN+1 = c̃N+1 = 1
in (4.27), one has

Jd
m

(
R1(x,·), R1(y, ·)

)

=E
(
|x− y|

)
−

M∑

ν=1

φν(x)

N∑

i=1

piφν(ui)E
(
|ui − y|

)

−
M∑

ν=1

φν(y)

N∑

i=1

piφν(ui)E
(
|ui − x|

)

+

M∑

ν,μ=1

φν(x)φμ(y)

N∑

i,j=1

pipjφν(ui)φμ(uj)E
(
|ui − uj|

)

=(I − P(x))(I − P(y))E
(
|x− y|

)
= R1(x, y); (4.28)

see Problem 4.12. It follows from (4.28) that R1(x, y) is non-negative defi-
nite, hence a reproducing kernel (by Theorem 2.3), and that in the corre-
sponding reproducing kernel Hilbert space, Jd

m(f, g) is the inner product.
Actually, for all f ∈ H =

{
f : Jd

m(f) <∞
}
, one has

Jd
m

(
(I − P )f,R1(x, ·)

)
= (I − P )f(x),

so R1(x, y) is indeed the reproducing kernel of H � NJ ; further details
can be found in Meinguet (1979) and Wahba and Wendelberger (1980).

Write R00(x, y) = φ1(x)φ1(y) = 1 and R01(x, y) =
∑M

ν=2 φν(x)φν (y). The
kernel decomposition R = R00 + [R01 + R1] defines a one-way ANOVA
decomposition on the domain X = (−∞,∞)d with an averaging operator

Af =
∑N

i=1 pif(ui).

Example 4.4 (Cubic spline) Consider a cubic spline on the real line
with d = 1, m = 2, and E

(
|x − y|

)
∝ |x − y|3. Take N = 2, u1 = −1,

u2 = 1, p1 = p2 = 0.5, and φ2 = x. It is easy to calculate that

R1(x, y) ∝ |x− y|3 − 0.5
{
(1− x)|1 + y|3 + (1 + x)|1 − y|3

}

− 0.5
{
(1− y)|1 + x|3 + (1 + y)|1− x|3

}

+ 2
{
(1 + x)(1 − y) + (1− x)(1 + y)

}
; (4.29)

see Problem 4.13. �
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Whereas the semi-kernel E
(
|x − y|

)
is rather convenient to work with,

the reproducing kernel R1(x, y) can be a bit cumbersome to evaluate. With
the choices N = n, ui = xi, and pi = 1/n, i = 1, . . . , n, however, efficient
algorithms do exist for the calculation of the n × n matrix Q with the
(i, j)th entry R1(xi, xj), and for the calculation of the n × 1 vector ξ(x)
with the ith entry R1(xi, x). The matrix Q is used in the computation of
the fit, and the vector ξ(x) is used in the evaluation of the estimate.
Set N = n, ui = xi, and pi = 1/n. To derive an orthonormal basis φν

from a set of polynomials ψν that span NJ , one forms the n ×M matrix
S̃ with the (i, ν)th entry ψν(xi) and calculates a QR-decomposition S̃ =
(F1, F2) ( R

O ) = F1R. It follows that φ =
√
nR−Tψ forms an orthonormal

basis in NJ with the inner product (f, g)0 =
∑n

i=1 f(xi)g(xi)/n and that
F1 has the (i, ν)th entry φν(xi)/

√
n (Problem 4.14). From the expression

in (4.28), it is easy to see that

Q = (I − F1F
T
1 )K(I − F1F

T
1 ) = F2F

T
2 KF2F

T
2 , (4.30)

where K is n × n with the (i, j)th entry E
(
|xi − xj |

)
(Problem 4.15). To

make sure that φ1 = 1, one needs to set ψ1 = 1 and to exclude the first
column of S̃ from pivoting when calculating the QR-decomposition. Similar
to (4.30), one has

ξ(x) = (I − F1F
T
1 )
(
κ(x)−KF1φ(x)/

√
n
)

= F2F
T
2

(
κ(x) −KF1R

−Tψ(x)
)
, (4.31)

where κ(x) is n× 1 with the ith entry E
(
|xi − x|

)
(Problem 4.16).

4.3.3 Tensor Product Splines with Thin-Plate Marginals

Using R0(x, y) of (4.24) and R1(x, y) of (4.26) in Theorem 2.6, one can
construct tensor product splines with thin-plate marginals. Aside from the
complication in the evaluation of the reproducing kernels, there is nothing
special technically or computationally about thin-plate marginals.
Tensor product splines with thin-plate marginals do offer something

conceptually novel, however, albeit technically trivial. The novel feature
is the notion of multivariate main effect in an ANOVA decomposition, in
a genuine sense. Consider spatial modeling with geography as one of the
covariates. Using a d = 2 thin-plate marginal on the geography domain,
one is able to construct an isotropic geography main effect and interactions
involving geography that are rotation invariant in the geography domain.
This is often a more natural treatment as compared to breaking the ge-
ography into, say, the longitude and the latitude, which would lead to a
longitude effect, a latitude effect, plus a longitude-latitude interaction, that
may not make much practical sense.
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4.3.4 Case Study: Water Acidity in Lakes

We now fill in details concerning the analysis of the EPA lake acidity data
discussed in §1.4.1. A subset of the data concerning 112 lakes in the Blue
Ridge is included in gss as a data frame LakeAcidity with elements ph,
cal, lon, lat, and geog, where geog contains the x-y coordinates (in dis-
tance) of the lakes with respect to a local origin; for (φ, θ) the longitude-
latitude of lakes around a local origin (φ0, θ0), the x-y coordinates are
obtained through

x = cos
(
πθ/180

)
sin
(
π(φ − φ0)/180

)
,

y = sin
(
π(θ − θ0)/180

)
, (4.32)

with the Earth’s radius as the unit distance. Such mapping and its inverse
can be done in R using the following functions.

ltln2xy <- function(latlon,latlon0) {

lat <- latlon[,1]*pi/180; lon <- latlon[,2]*pi/180

lt0 <- latlon0[1]*pi/180; ln0 <- latlon0[2]*pi/180

x <- cos(lt0)*sin(lon-ln0); y <- sin(lat-lt0)

cbind(x,y)

}

xy2ltln <- function(xy,latlon0) {

x <- xy[,1]; y <- xy[,2]

lt0 <- latlon0[1]*pi/180

lat <- asin(y)/pi*180+latlon0[1]

lon <- asin(x/cos(lt0))/pi*180+latlon0[2]

data.frame(lat=lat,lon=lon)

}

A tensor product spline can be fitted to the data using ssanova:

data(LakeAcidity); set.seed(5732)

fit.lake <- ssanova(ph~log(cal)*geog,data=LakeAcidity)

The variable geog in the data frame LakeAcidity is a matrix with its
integrity preserved by the as-is function I(...):

LakeAcidity <- data.frame(...,geog=I(geog),...)

By default, a thin-plate spline is configured for a matrix variable, with
m = 2 in Jd

m(f), {ui} = {x̃i} and pi = 1/n in (4.23), where x̃i are the
marginal sampling points; a cubic spline is the default for the vector variable
log(cal). Checking the diagnostics:

sum.lake <- summary(fit.lake,diag=TRUE)

round(sum.lake$kappa,2)

# log(cal) geog log(cal):geog



4.3 Thin-Plate Splines 141

# 1.06 1.03 1.04

round(sum.lake$cos,2)

# log(cal) geog log(cal):geog yhat y e

# cos.y 0.65 0.53 -0.1 0.76 1.00 0.68

# cos.e 0.00 0.09 0.0 0.04 0.68 1.00

# norm 2.37 1.40 0.1 2.99 4.10 2.68

project(fit.lake,c("log(cal)","geog"))$ratio

# 0.0005530675

it is seen that the interaction can be eliminated. An additive model is now
fitted to the data, which was plotted in Fig. 1.2:

fit.lake.a <- ssanova(ph~log(cal)+geog,data=LakeAcidity,

id.basis=1:112)

where id.basis=1:112 sets q = n; project could mislead on fits with
q = n so q < n was used earlier in fit.lake. The plots are reproduced in
Fig. 4.4 for convenient reference.
To obtain the log(cal) effect as plotted in the top frame of Fig. 4.4,

which is virtually a linear function, one may use:

est.cal <- predict(fit.lake.a,fit.lake.a$mf,

se=TRUE,inc="log(cal)")

To evaluate the geog effect on a grid, try:

grid0 <- seq(-.04,.04,len=31)

grid <- cbind(rep(grid0,31),rep(grid0,rep(31,31)))

est.geog <- predict(fit.lake.a,data.frame(geog=I(grid)),

se=TRUE,inc="geog")

The fitted values are contoured in the left frame and the standard errors in
the right frame in dotted lines, with the x-y grid mapped back to longitude-
latitude:

library(maps)

m.lat <- (min(LakeAcidity$lat)+max(LakeAcidity$lat))/2

m.lon <- (min(LakeAcidity$lon)+max(LakeAcidity$lon))/2

ltln.grid <- xy2ltln(cbind(grid0,grid0),c(m.lat,m.lon))

lon.gd <- ltln.grid[,2]; lat.gd <- ltln.grid[,1];

contour(lon.gd,lat.gd,matrix(est.geog$fit,31,31))

map("state",add=TRUE,col=5)

contour(lon.gd,lat.gd,matrix(est.geog$se,31,31))

map("state",add=TRUE,col=5)

points(LakeAcidity$lon,LakeAcidity$lat,col=3)



142 4. More Splines

Calcium concentration

longitude

la
tit

ud
e

 −
0.

25
 

 −0.2 

 −0.15 

 −0.1 
 −0.05 

 0 

 0.05 

 0.1 
 0.15  0.2 

 0.25  0.3 

SC

GA

NC
TN

VA
KY

WV

longitude

la
tit

ud
e

 0.06 

 0.08 

 0.1 
 0.12 

 0.14  0.16 

 0.16 

 0.16 

 0.18 

 0.
18

 

 0.2 

 0
.2

  0
.2

2 
 0

.2
6 

0.5 2.0 5.0 20.0

−
0.

5
0.

0
0.

5

−84 −82 −80 −84 −82 −80

33
34

35
36

37

33
34

35
36

37

FIGURE 4.4. Water acidity fit for lakes in the Blue Ridge. Top: Calcium effect
with 95% Bayesian confidence intervals. Left : Geography effect. Right : Standard
errors of geography effect with the lakes superimposed.

where one needs the R package maps pre-installed for the map command
to work. The R2 and the decomposition πβ of the “explained” variation in
pH can be obtained from the summaries of the fit:

sum.lake.a <- summary(fit.lake.a,diag=TRUE)

sum.lake.a$r.squared

# 0.5300598

round(sum.lake.a$pi,3)

# log(cal) geog

# 0.702 0.298

see §3.7 for the definitions of R2 and πβ .
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4.4 Splines on the Sphere

To estimate functions on small geographic regions, one may use thin-plate
splines on (−∞,∞)2, but surface curvature can not be ignored on larger
geographic regions or for global mapping. Using the spherical coordinates
(r, θ, φ) in (−∞,∞)3, where

x〈1〉 = r sin θ cosφ, x〈2〉 = r sin θ sinφ, x〈3〉 = r cos θ

for r ∈ [0,∞), θ ∈ [0, π], φ ∈ [0, 2π], and setting r = 1, we consider the
unit sphere X = S in this section; θ is the angle from the north pole, off
by π/2 from the latitude, and φ is the longitude.
The infinitesimal rectangle with corners at points (θ, φ), (θ + dθ, φ),

(θ, φ + dφ), and (θ + dθ, φ + dφ) on the unit sphere S has area sin θ dθ dφ
(Problem 4.17), so integrals on S are given by

∫

S
f(x)dx =

∫ 2π

0

∫ π

0

f(θ, φ) sin θ dθ dφ.

Much like the standard Fourier expansion (4.2) for functions on the circle,
square integrable functions on S can be expressed as

f(x) = f(θ, φ) =
∞∑

μ=0

μ∑

k=−μ

fμ,kHμ,k(θ, φ), (4.33)

where Hμ,k(θ, φ) are the spherical harmonics.
After a brief review of pertinent facts concerning the spherical harmonics

(§4.4.1), we discuss the Laplacian on the sphere and introduce the spherical
splines of Wahba (1981) (§4.4.2). The reproducing kernels under standard
Laplacian penalties are inconvenient to compute as sums of infinite series,
but closed form formulas are available under slightly modified penalties
(§4.4.3). As an illustration, a global temperature map is estimated in §4.4.4
using a spherical spline.

4.4.1 Spherical Harmonics

Spherical harmonics is widely used in mathematical physics. Treatments
of the classical subject can be found in numerous sources, such as Byerly
(1959, Chap. 6), where the results quoted below are developed.
The spherical harmonics of degree μ, order k are given by

Hμ,k(θ, φ) =

{
κμ,kP

k
μ (cos θ) cos(kφ), k ≥ 0,

κμ,kP
−k
μ (cos θ) sin(kφ), k < 0,

(4.34)
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where κμ,k = κμ,−k are normalizing constants to be specified below and
P k
μ (z), k ≥ 0 are the associated Legendre functions on z ∈ [−1, 1] that

solve differential equations

d

dz

(
(1− z2)

df

dz

)
+
(
μ(μ+ 1)− k2

1− z2

)
f = 0. (4.35)

It is known that for k ≥ 0,

∫ 1

−1

P k
μ (z)P

k
ν (z)dz = δμ,ν

2 (μ+ k)!

(2μ+ 1)(μ− k)!
,

where δμ,ν is the Kronecker delta, so to make {Hμ,k} an orthonormal basis,
one needs

κ2μ,k =

{
2μ+1
2π

(μ−k)!
(μ+k)! , k > 0,

2μ+1
4π , k = 0.

For x, y ∈ S, one has

μ∑

k=−μ

Hμ,k(x)Hμ,k(y) =
2μ+ 1

4π
Pμ(x · y), (4.36)

where Pμ(z) = P 0
μ(z) is the μth Legendre polynomial and x ·y is the cosine

of the angle between x and y. Also of interest is the expansion

1√
1 + h2 − 2hz

=

∞∑

μ=0

hμPμ(z), (4.37)

where the left-hand side is known as the generating function of Pμ(z).

4.4.2 Laplacian on the Sphere and Spherical Splines

Consider the Laplacian operator on (−∞,∞)3,

Δ =
∂2

∂x2〈1〉
+

∂2

∂x2〈2〉
+

∂2

∂x2〈3〉
, (4.38)

which is rotation invariant (Problem 4.18). Under the spherical coordinates
(r, θ, φ), (4.38) transforms into (Problem 4.19)

Δ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
, (4.39)

and upon setting r = 1, one has the Laplace-Beltrami operator on S,

Δ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2θ

∂2

∂φ2
. (4.40)
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Noting that

1

sin θ

∂

∂θ
= − ∂

∂ cos θ
,

(4.40) can be written as

Δ =
∂

∂ cos θ

(
(1− cos2θ)

∂

∂ cos θ

)
+

1

1− cos2θ

∂2

∂φ2
.

It then follows, as P k
μ (z) solve (4.35), that

ΔHμ,k(θ, φ) = −μ(μ+ 1)Hμ.k(θ, φ). (4.41)

For m > 0 an even integer, define

Jm(f) =

∫

S

{
Δm/2f(x)

}2
dx =

∫ 2π

0

∫ π

0

{
Δm/2f(θ, φ)

}2
sin θ dθ dφ.

A spherical spline on X = S minimizes over η ∈
{
f : Jm(f) < ∞

}
the

penalized least squares functional

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λJm(η). (4.42)

By (4.41), the spherical harmonics Hμ,k(θ, φ) are the eigenfunctions of
Jm(f) with eigenvalues

{
μ(μ+ 1)

}m
(see §9.1 for discussion of eigenfunc-

tions and eigenvalues); the eigenvalues, when put in an increasing order
ρν ↑ ∞, grow at a rate ρν � νm. To the inner product

(f, g) =
1

(4π)2

( ∫

S
fdx
)(∫

S
gdx
)
+

∫

S

(
Δm/2f

)(
Δm/2g

)
dx

in H =
{
f : Jm(f) <∞

}
corresponds the reproducing kernel

R(x, y) = 1 +

∞∑

μ=1

μ∑

k=−μ

1

μm(μ+ 1)m
Hμ,k(x)Hμ,k(y)

= 1 +
1

4π

∞∑

μ=1

2μ+ 1

μm(μ+ 1)m
Pμ(x · y), (4.43)

where (4.36) is plugged in; note that for f(x) as given in (4.33),

Jm(f) =

∞∑

μ=1

μ∑

k=−μ

{
μm(μ+ 1)m

}
f2
μ,k. (4.44)

where fμ.k =
∫
S f(x)Hμ,k(x)dx are the Fourier coefficients. The formula-

tion also extends to m odd via (4.44).
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4.4.3 Reproducing Kernels in Closed Forms

The infinite sum in (4.43) is inconvenient to compute, but a slight modifi-
cation of Jm(f) solves the problem. Combining (4.37) with the identity

1

r!

∫ 1

0

(1− h)rhμdh =
1

(μ+ 1) · · · (μ+ r + 1)
,

one has

qr(z)

r!
=

1

r!

∫ 1

0

(1− h)r√
1 + h2 − 2hz

dh =

∞∑

μ=0

Pμ(z)

(μ+ 1) · · · (μ+ r + 1)
,

where qr(z) can be obtained analytically through recursive formulas; see
Problem 4.20. One thus may use the reproducing kernel in closed form,

R̃(x, y) = 1 +

∞∑

μ=1

μ∑

k=−μ

Hμ,k(x)Hμ,k(y)

(μ+ 1/2)(μ+ 1) · · · (μ+ 2m− 1)

= 1 +
1

2π

∞∑

μ=1

Pμ(x · y)
(μ+ 1) · · · (μ+ 2m− 1)

= 1 +
q2m−2(x · y)− 1/(2m− 1)

2π(2m− 2)!
, (4.45)

which is associated with the penalty

J̃m(f) =
∞∑

μ=1

μ∑

k=−μ

{
(μ+ 1/2)(μ+ 1) · · · (μ+ 2m− 1)

}
f2
μ,k. (4.46)

J̃m(f) and Jm(f) are equivalent penalties with the ratios of their respective
eigenvalues satisfying ρ̃ν/ρν → 1, where ρ̃ν and ρν are in increasing order.
The expressions of qr(z) for r = 0, . . . , 10 were listed in Wahba (1981)

with an erratum in Wahba (1982). For m = 2, 3, 4, one needs

2 q2(z) = a(12w2 − 4w)− 6cw + 6w + 1, (4.47)

12 q4(z) = a(840w4 − 720w3 + 72w2) + 420w3

+ c(−420w3 + 220w2)− 150w2 − 4w + 3, (4.48)

30 q6(z) = a(27720w6 − 37800w5 + 12600w4 − 600w3)

+ 13860w5 + c(−13860w5 + 14280w4 − 2772w3)

− 11970w4 + 1470w3 + 15w2 − 3w + 5, (4.49)

where w = (1 − z)/2, a = log(1 + 1/
√
w), and c = 2

√
w.
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4.4.4 Case Study: Global Temperature Map

Maps of meteorological quantities constructed from records registered at
weather stations are valuable tools in numerous applications such as cli-
mate change studies. A data frame climate involving 690 weather stations
worldwide can be found in the R package assist by Yuedong Wang and
Chunlei Ke. The data were repackaged in a data frame clim in gss, with el-
ements temp (average temperatures from December 1980 to February 1981)
and geog (geographic locations of weather stations); geog is a matrix with
the latitude in the first column and the longitude in the second, in degrees.
The range of latitude is [−90, 90] and that of longitude is [−180, 180], shifted
from the ranges of (θ, φ) in the proceeding mathematical treatments.
To fit a temperature map to the data, one may use:

data(clim)

fit.clim <- ssanova(temp~geog,type=list(geog="sphere"),

data=clim,id.basis=1:dim(clim)[1])

J̃m(f) of (4.46) is used in (4.42) in the place of Jm(f) and the default
order is m = 2; the order could be alternatively specified via something
like type=list(geog=list("sphere",3)), but only m = 2, 3, 4 are im-
plemented, with R̃(x, y) of (4.45) constructed using the formulas given
in (4.47)–(4.49). To evaluate the fit on a regular grid, try:

lat <- seq(-90,90,length=61)

lon <- seq(-180,180,length=121)

new <- cbind(rep(lat,rep(121,61)),rep(lon,61))

est <- predict(fit.clim,data.frame(geog=I(new)),se=TRUE)

We can now plot the estimated temperature on the world map as shown in
the top frame of Fig. 4.5:

library(maps)

map("world",interior=FALSE,col=5); box()

points(clim$geog[,2:1],pch=19,cex=.2)

contour(lon,lat,matrix(est$fit,121,61),

col=3,lwd=.5,labcex=.4,add=TRUE)

Replacing est$fit in the contour command above by est$se, one gets
the bottom frame of Fig. 4.5.
To keep things simple, we used q = n in the fit above, but the execution

of ssanova and predict was slow; the execution would be much faster
with the ssanova0 suite but the fit was a bit rough. Due to the uneven
distribution of the weather stations, a simple random subset {zj} ⊂ {xi}
is likely to have over-representations in Japan and Europe while missing
out areas with sparsely scattering stations. One however could try to “fill”
the space by prohibiting the selected zj’s to be too close to each other, a
strategy implemented in the following R function subset.sphere.
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FIGURE 4.5. Global temperature map. Top: Estimated temperature. Bottom:
Standard errors. The weather stations are superimposed as dots and the shore
lines are on the background.

subset.sphere <- function(x,size,tol) {

nobs <- dim(x)[1]; x <- x/180*pi

pick <- samp <- sample(1:nobs,1)

while(length(samp)<size) {

if (!(length(pick)-nobs)) stop("list exhausted")

wk <- sample((1:nobs)[-pick],1)

pick <- c(pick,wk); okey <- TRUE

for (j in samp) {

if (cos.angle(x[wk,],x[j,])>tol) {

okey <- FALSE; break

}

}

if (okey) samp <- c(samp,wk)
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}

samp

}

cos.angle <- function(x,y) {

cos(x[1])*cos(y[1])*cos(x[2]-y[2])+sin(x[1])*sin(y[1])

}

Note also that the default q � n2/9 for cubic splines assumes ρν � ν4 for
the eigenvalues ρν of J(f), but one has ρν � νm for spherical splines and
we used m = 2, so the choice of q here would be ad hoc.
To select a “space-filling” random subset {zj} ⊂ {xi}, say of size q = 200

and with zj ’s at least 3 angular degrees apart from each other, and fit the
model, one may use:

id.select <- subset.sphere(clim$geog,200,cos(3/180*pi))

fit0.clim <- ssanova(temp~geog,type=list(geog="sphere"),

data=clim,id.basis=id.select)

The commands ssanova and predict execute much faster now. The zj ’s
could be identified on the map via

points(clim$geog[id.select,2:1],pch=19,cex=.2,col=2)

One may check on the consistency by comparing the fits on the grid,
numerically or graphically.

4.5 L-Splines

Consider functions on [0, 1]. Given a general differential operator L and a
weight function h(x) > 0, the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(Lη)2(x)h(x)dx (4.50)

is called an L-spline. The polynomial splines of §2.3 are special cases of
L-splines. In applications where NL =

{
f : Lf = 0

}
provides a more

natural parametric model than a low-order polynomial, an L-spline other
than a polynomial spline often provides a better estimate.
Popular examples of L-splines include trigonometric splines and Cheby-

shev splines, which we will discuss in §§4.5.1 and 4.5.2, respectively; of
interest are the characterization of the null space of L and the derivation
of the reproducing kernels. A general approach to the construction of re-
producing kernels for L-splines is described next (§4.5.3), and data analysis
with L-splines is illustrated through a real-data example (§4.5.4). Based on
a special structure in the reproducing kernel from the general construction
of §4.5.3, a fast algorithm similar to that of §3.10.1 is also described for the
computation of L-splines (§4.5.5).
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4.5.1 Trigonometric Splines

Consider f ∈ P [0, 1] periodic with
∫ 1

0 fdx = a0 = 0. The differential
operator

L2 = D2 + (2π)2 (4.51)

has a null space NL = span{cos 2πx, sin 2πx}. To the inner product

2

(∫ 1

0

f(x) cos 2πxdx

)(∫ 1

0

g(x) cos 2πxdx

)

+ 2

(∫ 1

0

f(x) sin 2πxdx

)(∫ 1

0

g(x) sin 2πxdx

)

in NL corresponds the reproducing kernel

2 cos 2πx cos 2πy + 2 sin 2πx sin 2πy = 2 cos 2π(x− y). (4.52)

Take h(x) = 1 and define H =
{
f : f ∈ P [0, 1], a0 = 0,

∫ 2

0
(L2f)

2dx <∞
}
,

and consider HL = H�NL with the inner product
∫ 1

0
(L2f)(L2g)dx. Since

f(x) =

∞∑

μ=2

(aμ cos 2πμx+ bμ sin 2πμx)

for f ∈ HL, the reproducing kernel of HL is easily seen to be

R2(x, y) =

∞∑

μ=2

2

(2π)4(μ2 − 1)2
(cos 2πμx cos 2πμy + sin 2πμx sin 2πμy)

=

∞∑

μ=2

2 cos 2πμ(x− y)

(2π)4(μ2 − 1)2
; (4.53)

see Problem 4.21. Note that for f ∈ P [0, 1],
∫ 1

0

(L2f)
2dx = (2π)4a20 +

(2π)4

2

∞∑

μ=2

(a2μ + b2μ)(μ
2 − 1)2, (4.54)

so
∫ 1

0
(L2f)

2dx <∞ is equivalent to
∫ 1

0
f̈2dx <∞; compare (4.54) with (4.3)

of §4.2 form = 2. Naturally, one would like to add the constant term a0 back
in as an unpenalized term, which can be achieved by using λ

∑∞
μ=2(a

2
μ +

b2μ)(μ
2−1)2 as the penalty term instead of λ

∫ 1

0
(L2f)

2dx. This procedure is
technically an application of the partial spline technique discussed in §4.1.
More generally, the differential operator

L2r =
(
D2 + (2π)2

)
· · ·
(
D2 + (2πr)2

)
(4.55)
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has a null space NL = span{cos 2πνx, sin 2πνx, ν = 1, . . . , r}. In the space

HL =
{
f : f =

∑∞
μ=r+1(aμ cos 2πμx+ bμ sin 2πμx),

∫ 1

0
(L2rf)

2dx <∞
}

with the inner product
∫ 1

0
(L2rf)(L2rg)dx, the reproducing kernel is seen

to be

R2r(x, y) =

∞∑

μ=r+1

2 cos 2πμ(x− y)

(2π)4r(μ2 − 1)2 · · · (μ2 − r2)2
; (4.56)

see Problem 4.22.
With the differential operator

L3 = D
(
D2 + (2π)2

)
, (4.57)

the null space NL = span{1, cos 2πx, sin 2πx} automatically contains the
constant term. To the inner product

(∫ 1

0

fdx

)(∫ 1

0

gdx

)

+ 2

(∫ 1

0

f(x) cos 2πxdx

)(∫ 1

0

g(x) cos 2πxdx

)

+ 2

(∫ 1

0

f(x) sin 2πxdx

)(∫ 1

0

g(x) sin 2πxdx

)

in NL corresponds the reproducing kernel

1 + 2 cos 2πx cos 2πy + 2 sin 2πx sin 2πy.

Take h(x) = 1 and define H =
{
f : f ∈ P [0, 1],

∫ 1
0
(L3f)

2dx < ∞
}
. Corre-

sponding to the inner product
∫ 1

0
(L3f)(L3g)dx, the reproducing kernel of

HL = H�NL is seen to be

R3(x, y) =

∞∑

μ=2

2 cos 2πμ(x− y)

(2π)6μ2(μ2 − 1)2
; (4.58)
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see Problem 4.23. For f ∈ P [0, 1],

∫ 1

0

(L3f)
2dx =

(2π)6

2

∞∑

μ=2

(a2μ + b2μ)μ
2(μ2 − 1)2, (4.59)

so
∫ 1

0
(L3f)

2dx < ∞ is equivalent to
∫ 1

0

(
f (3)
)2
dx < ∞; compare (4.59)

with (4.3) of §4.2 for m = 3.
In general, the differential operator

L2r+1 = D
(
D2 + (2π)2

)
· · ·
(
D2 + (2πr)2

)
(4.60)

has a null spaceNL = span{1, cos 2πνx, sin 2πνx, ν = 1, . . . , r}. In the space

HL =
{
f : f =

∑∞
μ=r+1(aμ cos 2πμx+ bμ sin 2πμx),

∫ 1

0
(L2r+1f)

2dx <∞
}

with the inner product
∫ 1

0
(L2r+1f)(L2r+1g)dx, the reproducing kernel is

given by

R2r+1(x, y) =

∞∑

μ=r+1

2 cos 2πμ(x− y)

(2π)4r+2μ2(μ2 − 1)2 · · · (μ2 − r2)2
; (4.61)

see Problem 4.24.
The infinite sums in (4.56) and (4.61) are inconvenient to compute, but

similar to the treatment in §4.4.3, one may obtain closed form reproduc-
ing kernels under slightly modified, indirectly defined J(f). For example,
R2(x, y) in (4.53) may be replaced by

R̃2(x, y) = −k4(x− y)− 2 cos 2π(x− y)/(2π)4, (4.62)

and R3(x, y) in (4.58) by

R̃3(x, y) = k6(x− y)− 2 cos 2π(x− y)/(2π)6;

recall (4.4) and Problem 4.3. Pasting (4.52) and (4.62) together, one has a
kernel decomposition in H =

{
f : f ∈ P [0, 1], J̃2(f) <∞

}
,

R(x, y) = 1 + 2 cos 2π(x− y) + R̃2(x, y), (4.63)

where J̃2(f) = (2π)4
∑∞

μ=2(a
2
μ+b

2
μ)μ

4/2 is equivalent to
∫ 2

0 (L2f)
2dx inH�

span{1, cos 2πx, sin 2πx}; (4.63) defines a one-way ANOVA decomposition
for periodic functions on [0, 1], with 2 cos 2π(x − y) representing a two-
dimensional “parametric contrast” and R̃2(x, y) representing the “nonpara-
metric contrast.” This differs only slightly from a cubic periodic spline
discussed in §4.2, just with the base frequency pulled out of the penalty.
To specify (4.63) for a variable x in ssanova, say, one may use something
like
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ssanova(y~x,type=list(x=list("trig",c(0,1))))

where the domain does not have to be [0, 1]; the syntax parallels that for
periodic splines as seen in §4.2.1.

4.5.2 Chebyshev Splines

Let wi(x) ∈ C(m−i+1)[0, 1], i = 1, . . . ,m, be strictly positive functions with
wi(0) = 1. Consider the differential operator

Lm = Dm · · ·D1, (4.64)

where Dif = D(f/wi).
The null space NL of Lm is spanned by

φ1(x) = w1(x)

φ2(x) = w1(x)

∫ x

0

w2(t2)dt2

...

φm(x) = w1(x)

∫ x

0

w2(t2)dt2 · · ·
∫ tm−1

0

wm(tm)dtm,

(4.65)

which form a so-called Chebyshev system on [0, 1], in the sense that

det
[
φj(xi)

]m
i,j=1

> 0 for all x1 < x2 < · · · < xm, [x1, xm] ⊆ [0, 1];

see Schumaker (1981, §2.5, Theorem 9.2). The functions φν in (4.65) also
form an extended Chebyshev system, in the sense that

det
[
φ
(i−1)
j (x)

]m
i,j=1

> 0, ∀x ∈ [0, 1];

see Karlin and Studden (1966, §1.2, Theorem 1.2 on page 379). The matrix

[
φ
(i−1)
j (x)

]m
i,j=1

=

⎛

⎜
⎜
⎜
⎝

φ1(x) φ2(x) · · · φm(x)

φ̇1(x) φ̇2(x) · · · φ̇m(x)
...

...
...

φ
(m−1)
1 (x) φ

(m−1)
2 (x) · · · φ

(m−1)
m (x)

⎞

⎟
⎟
⎟
⎠
,

is known as the Wronskian matrix of φ = (φ1, . . . , φm)T . Write L0 = I,
L1 = D1, . . . , Lm−1 = Dm−1 · · ·D1. One has (Lμφν)(0) = δμ+1,ν , μ =
0, . . . ,m − 1, ν = 1, . . . ,m, where δμ,ν is the Kronecker delta. It follows
that

∑m
ν=1 φν(x)φν (y) is the reproducing kernel of NL corresponding to

the inner product

m∑

ν=1

(Lν−1f)(0)(Lν−1g)(0).
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Actually, {φν}mν=1 form an orthonormal basis of NL under the given inner
product.

Define H =
{
f :
∫ 1

0
(Lmf)

2hdx < ∞
}
and denote HL = H � NL. For

f ∈ HL, noting that (Lνf)(0) = 0, ν = 0, . . . ,m − 1, it is straightforward
to verify that

f(x) = w1(x)

∫ x

0

w2(t2)dt2 · · ·
∫ tm−1

0

wm(tm)dtm

∫ tm

0

(Lmf)(u)du

=

∫ x

0

(Lmf)(u)du

{

w1(x)

∫ x

u

w2(t2)dt2 · · ·
∫ tm−1

u

wm(tm)dtm

}

=

∫ x

0

G(x;u)(Lmf)(u)du,

(4.66)

where

G(x;u) =

{
w1(x)

∫ x

u
w2(t2)dt2 · · ·

∫ tm−1

u
wm(tm)dtm, u ≤ x,

0, u > x;
(4.67)

see Problem 4.25. The function G(x;u) is called a Green’s function asso-
ciated with the differential operator Lm. After some algebra, one has the
expression

G(x;u) =

{∑m
ν=1 φν(x)ψν(u), u ≤ x,

0, u > x,
(4.68)

where

ψν(u) =−
∫ u

0

wν+1(tν+1)dtν+1

×
∫ tν+1

u

wν+2(tν+2)dtν+2 · · ·
∫ tm−1

u

wm(tm)dtm,

ν = 1, . . . ,m − 2, ψm−1(u) = −
∫ u

0
wm(tm)dtm, and ψm(u) = 1 (Prob-

lem 4.26). Write

Rx(y) =

∫ 1

0

G(x;u)G(y;u)
(
h(u)

)−1
du.

It is straightforward to verify that (LνRx)(0) = 0, ν = 0, . . . ,m−1, and that
(LmRx)(y) = G(x; y)/h(y); see Problem 4.27. Hence, by (4.66), the repro-

ducing kernel in HL corresponding to an inner product
∫ 1

0 (Lmf)(Lmg)hdx
is given by

RL(x, y) =

∫ 1

0

G(x;u)G(y;u)
(
h(u)

)−1
du. (4.69)
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By Theorem 2.5, the reproducing kernel of H under the inner product

m∑

ν=1

(Lν−1f)(0)(Lν−1g)(0) +

∫ 1

0

(Lmf)(Lmg)hdx

is seen to be

R(x, y) =

m∑

ν=1

φν(x)φν(y) +

∫ 1

0

G(x;u)G(y;u)
(
h(u)

)−1
du.

Parallel to (2.6) on page 34, one has, for f ∈ H, the generalized Taylor
expansion,

f(x) =
m∑

ν=1

(Lν−1f)(0)φν(x) +

∫ x

0

G(x;u)(Lmf)(u)du.

Since G(x;u) = 0, u > x, one may rewrite (4.69) as

RL(x, y) =

∫ x∧y

0

G(x;u)G(y;u)
(
h(u)

)−1
du.

It is easy to see that the calculus of this section applies on any domain of
the form [0, a], where a is not necessarily scaled to 1.

Example 4.5 (Polynomial splines) Setting wi(x) = 1, i = 1, . . . ,m,
and h(x) = 1, one gets the polynomial splines of §2.3.1; see Problem 4.28.
�

Example 4.6 (Exponential splines) Setting wi(x) = eβix, i=1, . . . ,m,
where βi ≥ 0 with the strict inequality holding for i > 1, one gets the so-
called exponential splines; see, e.g., Schumaker (1981, §9.9). Denote αi =∑i

j=1 βj . It is easy to verify that

Lν = e−ανx(D − αν) · · · (D − α1), ν = 1, . . . ,m,

and that Lm has the null space NL = span{eαix, i = 1, . . . ,m}.
As a specific case, consider m = 2, β1 = 0, and β2 = θ. One has L2 =

e−θx(D − θ)D with the null space NL = span{1, eθx}. The orthonormal
basis of NL consists of φ1 = 1 and φ2 = (eθx − 1)/θ. Now,

G(x;u) =

∫ x

u

eθtdt = θ−1
(
eθx − eθu

)
= φ2(x)− φ2(u), u ≤ x,
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so

RL(x, y) =

∫ x∧y

0

G(x;u)G(y;u)
(
h(u)

)−1
du

=

∫ x∧y

0

(
φ2(x) − φ2(u)

)(
φ2(y)− φ2(u)

)(
h(u)

)−1
du.

The generalized Taylor expansion is seen to be

f(x) = f(0)+ḟ(0)φ2(x)+

∫ x

0

(
φ2(x)−φ2(u)

)
e−θu

(
f̈(u)−θḟ(u)

)
du, (4.70)

which, after a change of variable x̃ = φ2(x), reduces to

g(x̃) = g(0) + ġ(0)x̃+

∫ x̃

0

(x̃− ũ)g̈(ũ)dũ, (4.71)

where g(x̃) = f
(
φ−1
2 (x̃)

)
for φ−1

2 the inverse of φ2; see Problem 4.29. With
1/h(x) = dφ2/dx = eθx,

RL(x, y) =

∫ x∧y

0

G(x;u)G(y;u)
dφ2(u)

du
du

=

∫ x∧y

0

(
φ2(x) − φ2(u)

)(
φ2(y)− φ2(u)

)
dφ2(u), (4.72)

so the formulation virtually yields a cubic spline in x̃ = φ2(x); com-
pare (4.72) with (2.10) on page 35 for m = 2.
More generally, an exponential spline on [0, a] with β1 = 0, βi = θ,

i = 2, . . . ,m, and h(x) = e−θx reduces to a polynomial spline in x̃ = φ2(x)

with a penalty proportional to
∫ φ2(a)

0

(
g(m)(x̃)

)2
dx̃; see Problem 4.30. �

Example 4.7 (Hyperbolic splines) For m = 2r, let β1 = 0, βi > 0,

i = 2, . . . , r, and denote αi =
∑i

j=1 βj , i = 1, . . . , r. Setting wi(x) = eβix,

i = 1, . . . , r, wr+1(x) = e−2αrx, and wr+i(x) = wr−i+2(x), i = 2, . . . , r,
one gets the so-called hyperbolic splines; see Schumaker (1981, §9.9). It is
straightforward to verify that

Lν = e−ανx(D − αν) · · · (D − α1), ν = 1, . . . , r,

L2r−ν+1 = eανx(D + αν) · · · (D + αr)

× (D − αr) · · · (D − α1), ν = r, . . . , 1.

The differential operator

Lm = D(D + α2) · · · (D + αr)(D − αr) · · · (D − α2)D

has the null space NL = span{1, x, e−ανx, eανx, ν = 2, . . . , r}.
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Consider the case with r = 2 and β2 = θ. One has L4 = D(D+θ)(D−θ)D
with the null space NL = span{1, x, e−θx, eθx}. The orthonormal basis of
NL consists of φ1 = 1, φ2 = (eθx − 1)/θ, φ3 = (coshθx − 1)/θ2, and
φ4 = (sinhθx− θx)/θ3. The Green’s function is

G(x, u) =
(
sinhθ(x − u)− θ(x − u)

)
/θ3,

for u ≤ x; see Problem 4.31.
More generally, with βi = θ, i = 2, . . . , r, one can show that, for φ2 =

(eθx − 1)/θ,

φν =
φν−1
2 (x)

(ν − 1)!
,

φr+ν =

∫ x

0

φν−1
2 (v)

(ν − 1)!

(
φ2(x) − φ2(v)

)r−1

(r − 1)!

dφ2(v)
(
1 + θφ2(v)

)2r−1 , (4.73)

ν = 1, . . . , r, and that

G(x;u) =

∫ x

u

(
φ2(v)−φ2(u)

)r−1

(r − 1)!

(
φ2(x)−φ2(v)

)r−1

(r−1)!
dφ2(v)

(
1+θφ2(v)

)2r−1 ,

(4.74)

for u ≤ x; see Problem 4.32. �

4.5.3 General Construction

Consider a differential operator of the form

L = Dm +

m−1∑

j=0

aj(x)D
j . (4.75)

This effectively covers the operator Lm of (4.64) as a special case, which
can be written as

Lm =
{∏m

i=1 wi(x)
}−1(

Dm +
∑m−1

j=0 aj(x)D
j
)
,

since the factor
{∏m

i=1 wi(x)
}−1

can be absorbed into the weight func-

tion h(x). When aj ∈ C(m−j)[0, 1], it is known that the null space of L,
NL =

{
f : Lf = 0

}
, is an m-dimensional linear subspace of infinitely dif-

ferentiable functions; see Schumaker (1981, §10.1). Let φν , ν = 1, . . . ,m,
be a basis of such an NL. The Wronskian matrix of φ = (φ1, . . . , φm)T ,

W (φ)(x) =

⎛

⎜
⎜
⎜
⎝

φ1(x) φ2(x) · · · φm(x)

φ̇1(x) φ̇2(x) · · · φ̇m(x)
...

...
...

φ
(m−1)
1 (x) φ

(m−1)
2 (x) · · · φ

(m−1)
m (x)

⎞

⎟
⎟
⎟
⎠
,
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is known to be nonsingular, ∀x ∈ [0, 1]; see Schumaker (1981, §10.1). Since
W (φ)(0) is invertible,

∑m
ν=1 f

(ν−1)(0)g(ν−1)(0) forms an inner product in

NL (Problem 4.33). Define φ̃ =
[
W (φ)(0)

]−T
φ. It is easy to verify that

φ̃
(μ−1)
ν (0) = δμ,ν , μ, ν = 1, . . . ,m, so φ̃ν , ν = 1, . . . ,m, form an orthonormal

basis of NL and
∑m

ν=1 φ̃ν(x)φ̃ν (y) is its reproducing kernel.
An m-dimensional function space on an interval is called a Chebyshev

space if it has a basis that is a Chebyshev system on the interval; see
Schumaker (1981, §2.5). A function in an m-dimensional Chebyshev space
is uniquely determined by its values on m distinctive points on the interval.
The space NL may not be a Chebyshev space on [0, 1], but for some δ > 0,
it is always a Chebyshev space on intervals shorter than δ; see Schumaker
(1981, Theorem 10.5).

Define H =
{
f :

∫ 1

0 (Lf)
2hdx < ∞

}
and HL = H � NL. Let ψν(x),

ν = 1, . . . ,m, be the entries of the last column of
[
W (φ)(x)

]−1
. It is easy

to see that

m∑

ν=1

φ(j)ν (x)ψν (x) = 0, j = 0, . . . ,m− 2,

m∑

ν=1

φ(m−1)
ν (x)ψν (x) = 1. (4.76)

Write

G(x;u) =

{∑m
ν=1 φν(x)ψν(u), u ≤ x,

0, u > x;
(4.77)

we show that G(x;u) is a Green’s function associated with L in (4.75). For
g ∈ L2[0, 1], define

g̃(x) =

∫ 1

0

G(x;u)g(u)du.

Using (4.76), it is easy to calculate

g̃(j)(x) =

m∑

ν=1

φ(j)ν (x)

∫ x

0

ψν(u)g(u)du, j = 0, . . . ,m− 1,

g̃(m)(x) =

m∑

ν=1

φ(m)
ν (x)

∫ x

0

ψν(u)g(u)du+ g(x);

(4.78)

see Problem 4.34. Hence, g̃(j)(0) = 0, j = 0, . . . ,m−1, and since φ
(m)
ν (x)+

∑m−1
j=0 aj(x)φ

(j)
ν (x) = 0 as φν ∈ NL, Lg̃ = g. It follows that for f ∈ HL,

f(x) =

∫ x

0

G(x;u)(Lf)(u)du,
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and corresponding to the inner product
∫ 1

0
(Lf)(Lg)hdx, one has the re-

producing kernel

RL(x, y) =

∫ x∧y

0

G(x;u)G(y;u)
(
h(u)

)−1
du. (4.79)

For f ∈ H, one has the generalized Taylor expansion

f(x) =

m∑

ν=1

f (ν−1)(0)φ̃ν(x) +

∫ x

0

G(x;u)(Lf)(u)du.

Example 4.8 (Cubic spline) Consider L = D2 with φ1(x) = 1 and
φ2(x) = x. The Wronskian matrix and its inverse are respectively

W (φ)(x) =

(
1 x
0 1

)

and
[
W (φ)(x)

]−1
=

(
1 −x
0 1

)

.

One has φ̃1 = φ1, φ̃2 = φ2, and G(x;u) = x − u for u ≤ x. The results
coincide with those derived in §2.3.1 and Example 4.5. �

Example 4.9 (Exponential spline) Consider L = (D − θ)D for θ > 0
with φ1(x) = 1 and φ2(x) = eθx. The Wronskian matrix and its inverse are
respectively

W (φ)(x) =

(
1 eθx

0 θeθx

)

and
[
W (φ)(x)

]−1
=

(
1 −θ−1

0 θ−1e−θx

)

.

One has φ̃1(x) = 1, φ̃2(x) = (eθx − 1)/θ, and

G(x;u) = e−θu
(
φ̃2(x)− φ̃2(u)

)

for u ≤ x. The results agree with those of Example 4.6 for m = 2, after
adjusting for the factor e−θx appearing in the operator L2 = e−θx(D−θ)D
of Example 4.6. �

Example 4.10 Consider L = (D + θ)D for θ > 0 with φ1(x) = 1 and
φ2(x) = e−θx. Substituting −θ for θ in Example 4.9, one has φ̃1(x) = 1,
φ̃2(x) = (1− e−θx)/θ, and

G(x;u) = eθu
(
φ̃2(x)− φ̃2(u)

)

for u ≤ x. With a weight function h(x) = e3θx, one obtains a cubic spline
in φ̃2(x). �



160 4. More Splines

Example 4.11 (Trigonometric splines) Consider L = D2+(2π)2 with
φ1(x) = sin 2πx and φ2(x) = cos 2πx. The Wronskian matrix and its inverse
are respectively

W (φ)(x) =

(
sin 2πx cos 2πx

(2π) cos 2πx −(2π) sin 2πx

)

and

[
W (φ)(x)

]−1
=

(
sin 2πx (2π)−1 cos 2πx

cos 2πx −(2π)−1 sin 2πx

)

.

One has φ̃1 = cos 2πx, φ̃2(x) = (2π)−1 sin 2πx, and

G(x;u) =
1

2π
sin 2π(x− u)

for u ≤ x. The reproducing kernel ofHL corresponding to the inner product∫ 1

0 (Lf)(Lg)dx is thus

RL =
1

(2π)2

∫ x∧y

0

sin 2π(x− u) sin 2π(y − u)du

=
(x ∧ y) cos 2π(x− y)

2(2π)2
− sin 2π(x+ y)− sin 2π|x− y|

4(2π)3
. (4.80)

This reproducing kernel is different from the one given in (4.53) of §4.5.1,
where the constant and the nonperiodic functions are excluded.
Now, consider L = D(D2 + (2π)2) with φ1(x) = 1, φ2(x) = sin 2πx, and

φ3(x) = cos 2πx. The Wronskian matrix and its inverse are respectively

W (φ)(x) =

⎛

⎜
⎝

1 sin 2πx cos 2πx

0 (2π) cos 2πx −(2π) sin 2πx
0 −(2π)2 sin 2πx −(2π)2 cos 2πx

⎞

⎟
⎠

and

[
W (φ)(x)

]−1
=

⎛

⎜
⎝

1 0 (2π)−2

0 (2π)−1 cos 2πx −(2π)−2 sin 2πx

0 −(2π)−1 sin 2πx −(2π)−2 cos 2πx

⎞

⎟
⎠ .

One has φ̃1(x) = 1, φ̃2(x) = (2π)−1 sin 2πx, φ̃3(x) = (2π)−2(1 − cos 2πx),
and

G(x;u) =
1

(2π)2
(
1− cos 2π(x− u)

)
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for u ≤ x. The reproducing kernel ofHL corresponding to the inner product∫ 1

0 (Lf)(Lg)dx is thus

RL =
1

(2π)4

∫ x∧y

0

(
1− cos 2π(u− x)

)(
1− cos 2π(u− y)

)
du

=
x ∧ y
(2π)4

− sin 2πx+ sin 2πy − sin 2π|x− y|
(2π)5

+
(x ∧ y) cos 2π(x− y)

2(2π)4
+

sin 2π(x+ y)− sin 2π|x− y|
4(2π)5

. (4.81)

This reproducing kernel is different from the one given in (4.58) of §4.5.1,
where the nonperiodic functions are excluded. �

Example 4.12 (Logistic spline) Consider D
(
D − γθe−θx/(1 + γe−θx)

)

for θ, γ > 0, with φ1(x) = 1 and φ2(x) = 1/(1 + γe−θx). The Wronskian
matrix and its inverse are respectively

W (φ)(x) =

(
1 (1 + γe−θx)−1

0 γθe−θx(1 + γe−θx)−2

)

and

[
W (φ)(x)

]−1
=

(
1 −(γθ)−1eθx(1 + γe−θx)

0 (γθ)−1eθx(1 + γe−θx)2

)

.

One has φ̃1(x) = 1,

φ̃2(x) =
(1 + γ)2

γθ

( 1

1 + γe−θx
− 1

1 + γ

)
,

and

G(x;u) =
eθu(1 + γe−θu)2

(1 + γ)2
(
φ̃2(x)− φ̃2(u)

)

for u ≤ x. With a weight function h(x) ∝ e3θx(1+γe−θx)6, one gets a cubic
spline in φ̃2(x). �

4.5.4 Case Study: Weight Loss of Obese Patient

Obese patients on a weight rehabilitation program tend to lose adipose
tissue at a diminishing rate as the treatment progresses. A data set concern-
ing the weight loss of a male patient can be found in the R package MASS,
as a data frame wtloss with two elements, Weight and Days. A nonlinear
regression model was considered in Venables and Ripley (2002, Chap. 8),

Y = β0 + β12
−x/θ + ε, (4.82)
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where Y was the weight at x days after the start of the rehabilitation
program. The least squares estimates of the parameters were given by β̂0 =
81.374, β̂1 = 102.68, and θ̂ = 141.91. The parameter β0 may be interpreted
as the ultimate lean weight, β1 the total amount to be lost, and θ the
“half-decay” time.

Note that 2−x/θ = e−θ̃x with θ̃ = log 2/θ. The nonlinear model (4.82) is
in the null space of the differential operator L = (D + θ)D considered in
Example 4.10. To allow for possible departures from the parametric model,

we consider a cubic spline in e−θ̃x, which is an L-spline with L = (D+ θ̃)D

and h(x) = e3θ̃x. Fixing θ̃, the smoothing parameter can be selected using
the GCV score V (λ) of (3.23), and to choose θ̃, one may compare the
minimum V (λ) scores obtained with different θ̃. Note that Theorem 3.3 is
still useful in this situation. The R code below finds the GCV estimate of
the parameter θ̃:

library(MASS); data(wtloss)

tmp.fun <- function(theta) {

theta <- theta/100

ssanova0(Weight~exp(-theta*Days),data=wtloss)$score

}

nlm(tmp.fun,1)$estimate

# 0.4884628

The tmp.fun function returns the minimum V (λ) score for fixed θ̃. The nlm
function finds the minimal point of tmp.fun using a quasi-Newton algo-
rithm with numerical derivatives; see Dennis and Schnabel (1996) for al-
gorithmic details. The scaling of theta in tmp.fun was introduced so that
nlm would use appropriate differencing steps for the calculation of numer-
ical derivatives. The solution corresponds to θ = log(2)/0.004884628 =
141.9038, matching the least squares estimate in the parametric model.
The minimum V (λ) for θ̃ = 0.004885 is 0.8166.
The fit with θ̃ = 0.004885 can now be calculated and plotted as the

solid line in the left frame of Fig. 4.6, which is indistinguishable from the
parametric fit plotted as the dashed line; the data are superimposed as
circles. A cubic spline in x is also calculated and superimposed as the long
dashed line, which is nearly indistinguishable from the other two fits; the
minimum V (λ) for the cubic spline is 0.9283.

# calculate the L-spline and cubic spline fits

wtloss$dd <- exp(-.004885*wtloss$Days)

wtloss.fit1 <- ssanova0(Weight~dd,data=wtloss)

wtloss.fit2 <- ssanova0(Weight~Days,data=wtloss)

tt <- seq(0,250,length=101)

est1 <- predict(wtloss.fit1,

data.frame(dd=exp(-.004885*tt)),se=TRUE)

est2 <- predict(wtloss.fit2,data.frame(Days=tt),se=TRUE)
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FIGURE 4.6. Weight loss of obese patient. Left : The L-spline fit, the cubic spline
fit, and the nonlinear parametric fit are visually indistinguishable; the data are
superimposed in circles. Right : Spline fits and Bayesian confidence intervals minus
the parametric fit; the L-spline fit is in solid lines and the cubic spline fit in dashed
lines.

est0 <- 81.374+102.68*2^(-tt/141.91)

# plot the fits

plot(wtloss$Days,wtloss$Weight,col=3)

lines(tt,est1$fit)

lines(tt,est0,lty=2)

lines(tt,est2$fit,lty=5)

In the right frame of Fig. 4.6, the L-spline and cubic spline fits and their cor-
responding Bayesian confidence intervals are plotted after the parametric
fit is subtracted from each curve.

plot(tt,est1$fit-est0,type="l",ylim=c(-1.5,1.5))

lines(tt,est2$fit-est0,lty=3)

lines(tt,est1$fit-est0-1.96*est1$se,col=5)

lines(tt,est1$fit-est0+1.96*est1$se,col=5)

lines(tt,est2$fit-est0-1.96*est2$se,lty=3,col=5)

lines(tt,est2$fit-est0+1.96*est2$se,lty=3,col=5)

It is clear that the L-spline fit has smaller standard errors than the cubic
spline fit.
Admittedly, the relative noise level in the weight measurements is way

below what one usually sees in stochastic data, although the displayed
nonlinearity might not be detectable at a higher noise level. To confirm the
usefulness of the demonstrated techniques on “ordinary” data, a simple
simulation is conducted below. On xi = (i − 0.5)/100, i = 1, . . . , 100,
responses are generated according to Yi = 5 + 3e−4xi + 2e−8xi + εi, where
εi ∼ N(0, 0.52):

set.seed(5732)

tt <- ((1:100)-.5)/100

yy <- 5+3*exp(-4*tt)+2*exp(-8*tt)+.5*rnorm(tt)
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FIGURE 4.7. L-spline simulation. Left : The L-spline fit and the corresponding
Bayesian confidence intervals are in solid lines, the cubic spline fit in dashed lines,
the test function in dotted line, and the data are superimposed as circles. Right :
The left frame curves minus the test function.

L-Splines with L = (D + θ̃)D and h(x) = e3θ̃x are tried, and the θ̃ that
minimizes the minimum V (λ) is obtained:

tmp.fun <- function(theta) {

ssanova0(yy~exp(-theta*tt))$score

}

nlm(tmp.fun,4)$estimate

# 4.790263

The minimum V (λ) for θ̃ = 4.7903 is 0.3375, and that for a cubic spline in
x is 0.3556:

ssanova0(yy~exp(-4.7903*tt))$score

# 0.3374706

ssanova0(yy~tt)$score

# 0.3555772

One can now calculate and plot the fits as in the left frame of Fig. 4.7,
where the L-spline fit and the corresponding Bayesian confidence intervals
are drawn in solid and faded solid lines, the cubic spline in dashed and
faded dashed lines, and the test function in the dotted line. The data are
superimposed as circles.

ttt <- exp(-4.7903*tt)

fit.L <- ssanova0(yy~ttt)

est.L <- predict(fit.L,data.frame(ttt=ttt),se=TRUE)

fit.c <- ssanova0(yy~tt)

est.c <- predict(fit.c,data.frame(tt=tt),se=TRUE)

#

plot(tt,yy,col=3)

lines(tt,est.L$fit)

lines(tt,est.L$fit-1.96*est.L$se,col=5)
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lines(tt,est.L$fit+1.96*est.L$se,col=5)

lines(tt,est.c$fit,lty=2)

lines(tt,est.c$fit-1.96*est.c$se,col=5,lty=2)

lines(tt,est.c$fit+1.96*est.c$se,col=5,lty=2)

lines(tt,5+3*exp(-4*tt)+2*exp(-8*tt),lty=3)

Subtracting the test function from each of the lines, one gets the right
frame of Fig. 4.7.

4.5.5 Fast Algorithm

We now describe a fast algorithm for the computation of L-splines due
to Heckman and Ramsay (2000). The algorithm assumes that x1 < x2 <
· · · < xn, that the space NL = span{φν , ν = 1, . . . ,m} is Chebyshev on the
intervals [xi+1, xi+m], i = 1, . . . , n−m, and that

RL(x, y) =

∫ 1

0

G(x;u)G(y;u)
(
h(u)

)−1
du,

where G(x;u) is of the form
∑m

ν=1 φν(x)ψν(u) for u ≤ x. For replicated
data, one may work with (3.37) on page 73 and select λ using U(λ) of (3.38)
or V (λ) of (3.39). As with the algorithms of §3.10, the score M(λ) and the
posterior variances of §3.3 are not available through the fast algorithm,
according to current knowledge.
Without loss of generality, consider (3.10) on page 64. From ST

wcw = 0,
cw = Tγ for some n × (n − m) matrix T of full column rank satisfying
ST
wT = O. Premultiplying the first equation of (3.10) by T T and plugging

in Tγ for cw, one has

(
T TQwT + (nλ)T TT

)
γ = T TYw.

Now, since Yw − Ŷw =
(
I −Aw(λ)

)
Yw = (nλ)cw , one has

I −Aw(λ) = (nλ)T
(
T TQwT + (nλ)T TT

)−1
T T .

If T can be chosen such that both T TT and T TQwT are banded, then the
O(n) algorithm of §3.10.1 can be readily applied to calculate L-splines with
λ selected by U(λ) or V (λ).
Let ti be an n-vector with i − 1 leading zeros, n −m − i trailing zeros,

and the middle m+ 1 entries tj,i satisfying conditions ti,i �= 0 and

∑i+m
j=i tj,i

√
wjsj = 0,

where sTj =
(
φ1(xj), . . . , φm(xj)

)
is the jth row of S; the latter condition

is possible because sj, j = i, . . . , i + m, are linearly dependent, and the
former condition is possible because sj , j = i + 1, . . . , i +m, are linearly
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independent since xj ’s are distinctive and NL is Chebyshev on [xi+1, xi+m].
Set T = (t1, . . . , tn−m). It is obvious that ST

wT = O and that T is of full
column rank. It is also clear that T TT is banded with bandwidth 2m+ 1.
Plugging in the expression G(x;u) =

∑m
ν=1 φν(x)ψν (u) for u ≤ x, the

(k, l)th entry of Qw can be written as

qk,l =
√
wk
√
wlRL(xk, xl) =

∫ xk∧xl

0

G(xk;u)G(xl;u)
(
h(u)

)−1
du

= (
√
wksk)

TP (xk ∧ xl)(
√
wlsl),

where P (v) is m × m with the (μ, ν)th entry
∫ v

0 ψμ(u)ψν(u)
(
h(u)

)−1
du.

Now, for i < j, consider the (i, j)th entry of T TQwT ,

ri,j =
∑

k,l

tk,i(
√
wksk)

TP (xk ∧ xl)(
√
wlsl)tl,j

=
∑

k≤l

tk,i(
√
wksk)

TP (xk)(
√
wlsl)tl,j

+
∑

k>l

tk,i(
√
wksk)

TP (xl)(
√
wlsl)tl,j

= r′i,j + r′′i,j ,

say. By the construction of T ,
∑n

l=k tl,j(
√
wlsl) = 0 unless j < k ≤ j +m,

and tk,i = 0 unless i ≤ k ≤ i+m, so one must have j < i+m, or j−i < m,
for r′i,j �= 0. Similarly, one must have j− i < m for r′′i,j �= 0. Hence, T TQwT
is banded with bandwidth 2m− 1.
The algorithm relies on the particular form

∫ 1

0
G(x;u)G(y;u)

(
h(u)

)−1
du

of reproducing kernels with G(x;u) =
∑m

ν=1 φν(x)ψν (u), u ≤ x, so it does
not work with the reproducing kernels of §§2.3.3 and 4.5.1.

4.6 Bibliographic Notes

Section 4.1

The idea of partial splines appeared in the literature since the early 1980s in
various forms. Extensive discussion on the subject can be found in Wahba
(1990, Chap. 6) and Green and Silverman (1994, Chap. 4).

Section 4.2

Fourier series expansion and discrete Fourier transform are among
elementary tools in the spectral analysis of time series; see, e.g., Priestley
(1981, §§4.2, 6.1 and 7.6) for comprehensive treatments of related subjects.
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The spectral decomposition of (4.6) was found in Craven andWahba (1979),
where it was used to analyze the behavior of generalized cross-validation.
Some other uses of this decomposition can be found in Gu (1993a) and Stein
(1993). The materials of §4.2.3 are largely repackaged arguments found in
Craven and Wahba (1979) and Wahba (1985).

Section 4.3

Standard references on thin-plate splines are Duchon (1977), Meinguet
(1979) and Wahba and Wendelberger (1980), upon which much of the ma-
terials were drawn. See also Wahba (1990, §§2.4 and 2.5). Tensor product
splines with thin-plate marginals were proposed and illustrated by Gu and
Wahba (1993b).

Section 4.4

The materials of this section, sans §4.4.4, are largely drawn from Wahba
(1981). The mathematics concerning spherical harmonics, Laplacian, and
Legendre functions is widely used in mathematical physics; results con-
cerning Legendre functions can be found in Abramowitz and Stegun (1964,
Chap. 8). Further discussions concerning the fitting of the temperature map
in §4.4.4 can be found in Kim and Gu (2004).

Section 4.5

A comprehensive treatment of L-splines from a numerical analytical per-
spective can be found in Schumaker (1981, Chaps. 9 and 10), upon which
a large portion of the technical materials presented here were drawn. The
Chebyshev splines of §4.5.2 were found in Kimeldorf and Wahba (1971); see
also Wahba (1990, §1.2). Further results on L-splines and their statistical
applications can be found in Ramsay and Dalzell (1991), Ansley, Kohn,
and Wong (1993), Dalzell and Ramsay (1993), Wang and Brown (1996)
and Heckman and Ramsay (2000).

4.7 Problems

Section 4.2

4.1 Verify (4.3) for f ∈ P [0, 1].

4.2 For f ∈ P [0, 1] and Rx(y) = R(x, y) with R(x, y) as given in (4.4),
prove that

(∫ 1

0

fdy

)(∫ 1

0

Rxdy

)

+

∫ 1

0

f (m)R(m)
x dy = f(x).
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4.3 Compare (4.4) with (2.18) on page 37 to verify that R(x, y) = 1 +
(−1)m−1k2m(x− y).

4.4 Let Γ be the Fourier matrix with the (i, j)th entry

1√
n
exp

{

2πi
(i− 1)(j − 1)

n

}

.

(a) Verify that ΓHΓ = ΓΓH = I.

(b) Verify that (4.6) implies Q = ΓΛΓH .

4.5 Verify (4.13) using the orthogonality conditions in (4.12).

4.6 Prove that when (4.14) holds for some p > 2 and B2 = λ−2B(λ)|λ=0 >
0, then λ−2B(λ)−B2 = o(1) for λ = o(1).

4.7 Verify (4.15).

4.8 For cν > 0 and zν and yν complex, show that

1

2

∣
∣
∣
∣
∑

ν

cν(z̄νyν + zν ȳν)

∣
∣
∣
∣ ≤
{∑

ν

cν |zν |2
}1/2{∑

ν

cν |yν |2
}1/2

,

where z̄ denotes the conjugate of z.

Section 4.3

4.9 On a d-dimensional real domain, the space of polynomials of up to
(m− 1) total order is of dimension M =

(
d+m−1

d

)
.

(a) Show that the number of polynomials of up to (m− 1) total order is
the same as the number of ways to choose m − 1 objects from a set
of d+ 1 objects allowing repeats.

(b) Show that the number of ways to choose m− 1 objects from a set of
d + 1 objects allowing repeats is the same as the number of ways to
choose m− 1 objects from a set of (d+ 1)+ (m− 1)− 1 = d+m− 1
objects disallowing repeats, hence is

(
d+m−1
m−1

)
=
(
d+m−1

d

)
.

4.10 The quadratic functional Jd
m(f) of (4.17) is rotation invariant.

(a) Write Di = ∂/∂x〈i〉. Show that

Jd
m(f) =

∫
· · ·
∫ { d∑

i1=1

· · ·
d∑

im=1

(
Di1 · · ·Dimf

)2
}

dx〈1〉 · · · dx〈d〉.
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(b) Let P be a d × d orthogonal matrix with the (i, j)th entry pi,j and
let y = PTx. Note that the Jacobian of the orthogonal transform
y = PTx is 1. Write D̃j = ∂/∂y〈j〉. Verify that D̃j =

∑d
i=1 pi,jDi.

(c) Calculating Jd
m(f) with respect to y, the integrand is given by

∑

j1

· · ·
∑

jm

(D̃j1 · · · D̃jmf)
2 =

∑

j1

· · ·
∑

jm

{ m∏

k=1

( d∑

i=1

pi,jkDi

)

f

}2

=
∑

j1

· · ·
∑

jm

{∑

i1

· · ·
∑

im

(pi1,j1 · · · pim,jm)(Di1 · · ·Dimf)

}2

.

Expanding
{∑

i1
· · ·
∑

im
(pi1,j1 · · · pim,jm)

(
Di1 · · ·Dimf

)}2
, one gets

dm square terms and
(
dm

2

)
cross-terms. Summing over (j1, . . . , jm),

show that the square terms add up to
∑

i1
· · ·
∑

im

(
Di1 · · ·Dimf

)2

and the cross-terms all vanish.

4.11 Given (4.20), prove (4.27).

4.12 Verify (4.28).

4.13 Verify (4.29).

4.14 Let ψν , ν = 1, . . . ,M , be a set of polynomials that span NJ and S̃
an n ×M matrix with the (i, ν)th entry ψν(xi). Write S̃ = F1R for the
QR-decomposition of S̃. Verify that φ =

√
nR−Tψ forms an orthonormal

basis in NJ with the inner product (f, g)0 =
∑n

i=1 f(xi)g(xi)/n and that
F1 has the (i, ν)th entry φν(xi)/

√
n.

4.15 Verify (4.30).

4.16 Verify (4.31).

Section 4.4

4.17 Show that the infinitesimal parallelogram on the unit sphere with
corners at (θ, φ), (θ+dθ, φ), (θ, φ+dφ), and (θ+dθ, φ+dφ) is a rectangle
and has area sin θ dθ dφ.

(a) The line segment from (θ, φ) to (θ+ dθ, φ) has Cartesian coordi-
nates (cos θ cosφ, cos θ sinφ,− sin θ) dθ, and the segment from (θ, φ)
to (θ, φ+dφ) has coordinates (− sin θ sinφ, sin θ cosφ, 0) dφ.

(b) The line segments in (a) are perpendicular and are of lengths dθ and
sin θ dφ, respectively.
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4.18 Show that the Laplacian of (4.38) is rotation invariant using the
technique of Problem 4.10.

4.19 Following Williamson (1899, Chap. 22), verify (4.39).

(a) For x = ρ cosφ, y = ρ sinφ, show that

∂(ρ, φ)

∂(x, y)T
=

(
∂(x, y)

∂(ρ, φ)T

)−1

=

(
cosφ − sinφ/ρ
sinφ cosφ/ρ

)

,

so by the chain rule,

∂

∂x
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
,

∂

∂y
= sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
.

(b) Verify that

∂2

∂x2
= cos2φ

∂2

∂ρ2
+

sin 2φ

ρ

(1
ρ

∂

∂φ
− ∂2

∂ρ∂φ

)
+

sin2φ

ρ

( ∂
∂ρ

+
1

ρ

∂2

∂φ2

)

∂2

∂y2
= sin2φ

∂2

∂ρ2
− sin 2φ

ρ

(1
ρ

∂

∂φ
− ∂2

∂ρ∂φ

)
+

cos2φ

ρ

( ∂
∂ρ

+
1

ρ

∂2

∂φ2

)
,

so

∂2

∂x2
+

∂2

∂y2
=

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
.

(c) With z = r cos θ, ρ = r sin θ, and (x, y) given above,

Δ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
.

Substituting ρ = r sin θ and

∂

∂ρ
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

some algebra yields (4.39).

4.20 Derive recursive formulas for qr(z) =
∫ 1

0 (1−h)r(1+h2−2hz)−1/2dh,
r = 0, 1, 2, . . . .

(a) Define g(u; a) = log
(
u+

√
u2 + a

)
. Verify that dg/du = (u2+a)−1/2.

Hence, q0(z) = g
(
1 − z; 1 − z2

)
− g
(
− z; 1 − z2

)
= log

(
1 + 1/

√
w
)
,

where w = (1− z)/2.



4.7 Problems 171

(b) Verify that q1(z) = 2wq0(z)−
(
2
√
w − 1

)
.

(c) Write qr(z) =
∫ 1−z

−z (1− z − u)r(u2 +1− z2)−1/2du, where u = h− z.
Expanding (1− z − u)r, one has

qr(z) =

r∑

i=0

(
r

i

)

(1− z)r−i(−1)i
∫ 1−z

−z

ui√
u2 + 1− z2

du.

Integrating by parts, one has for i > 1,

∫ 1−z

−z

uidu√
u2 + 1− z2

= ui−1
√
u2 + 1− z2

∣
∣
∣
1−z

−z
−
∫ 1−z

−z

(i− 1)ui−2du√
u2 + 1− z2

= 2iwi−1/2 − (−z)i−1 −
∫ 1−z

−z

(i− 1)ui−2du√
u2 + 1− z2

;

for i even, the integral recursively reduces to q0(z), and for i odd, it
reduces to q1(z)− 2wq0(z) = 2

√
w − 1.

Section 4.5

4.21 Write Rx(y) = R2(x, y), where R2 is given in (4.53). Prove that for
f(x) =

∑∞
μ=2(aμ cos 2πμx+ bμ sinπμx),

∫ 1

0

(L2f)(y)(L2Rx)(y)dy = f(x),

where L2 is given in (4.51).

4.22 Write Rx(y) = R2r(x, y), where R2r is given in (4.56). Prove that
for f(x) =

∑∞
μ=r+1(aμ cos 2πμx+ bμ sinπμx),

∫ 1

0

(L2rf)(y)(L2rRx)(y)dy = f(x),

where L2r is given in (4.55).

4.23 Write Rx(y) = R3(x, y), where R3 is given in (4.58). Prove that for
f(x) =

∑∞
μ=2(aμ cos 2πμx+ bμ sinπμx),

∫ 1

0

(L3f)(y)(L3Rx)(y)dy = f(x),

where L3 is given in (4.57).
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4.24 Write Rx(y) = R2r+1(x, y), where R2r+1 is given in (4.61). Prove
that for f(x) =

∑∞
μ=r+1(aμ cos 2πμx+ bμ sinπμx),

∫ 1

0

(L2r+1f)(y)(L2r+1Rx)(y)dy = f(x),

where L2r+1 is given in (4.60).

4.25 Verify (4.66).

4.26 Verify (4.68).

4.27 Consider Rx(y) =
∫ 1

0
G(x;u)G(y;u)

(
h(u)

)−1
du, with G(x;u) given

in (4.67). For Lν as defined in §4.5.2, verify that (LνRx)(0) = 0, ν =
0, . . . ,m− 1, and that (LmRx)(y) = G(x; y)/h(y).

4.28 In the setting of §4.5.2, set wi(x) = 1, i = 1, . . . ,m. Verify that
φν(x) = xν−1/(ν−1)! in (4.65), ν = 1, . . . ,m, and that for u ≤ x, G(x;u) =
(x− u)m−1

+ /(m− 1)! in (4.67).

4.29 With g(x̃) = f
(
φ−1
2 (x̃)

)
, where φ−1

2 is the inverse of φ2 = (eθx−1)/θ,
prove that (4.70) reduces to (4.71).

4.30 In the setting of §4.5.2, set w1 = 1 and wi = eθx, i = 2, . . . ,m.

(a) Show that φν(x) = φν−1
2 (x)/(ν − 1)! in (4.65), ν = 1, . . . ,m, where

φ2(x) = (eθx − 1)/θ.

(b) Show that for u ≤ x, G(x;u) =
(
φ2(x)−φ2(u)

)m−1

+
/(m−1)! in (4.67).

(c) Given dx̃/dx = eθx, show that

Dν
x̃f = e−νθx

(
Dx − (ν − 1)θ

)
· · ·Dxf =

(
Lν(x)f

)
(dx/dx̃),

ν = 1, . . . ,m, where Dx̃f = df/dx̃, Dxf = df/dx, and Lν(x) is the
operator Lν applied to the variable x.

4.31 In the setting of §4.5.2, set m = 4, w1 = 1, w2 = w4 = eθx, and
w3 = e−2θx.

(a) Show that φ1 = 1, φ2 = (eθx − 1)/θ, φ3 = (coshθx − 1)/θ2, and
φ4 = (sinhθx− θx)/θ3 in (4.65).

(b) Show that for u ≤ x, G(x, u) =
(
sinhθ(x−u)−θ(x−u)

)
/θ3 in (4.67).
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4.32 Prove Eqs. (4.73) and (4.74) by a change of variable, x̃ = φ2(x) =
(eθx − 1)/θ.

4.33 Consider the setting of §4.5.3. For W (φ)(0) invertible, show that∑m
ν=1 f

(ν−1)(0)g(ν−1)(0) forms an inner product in span{φν , ν = 1, . . . ,m}.

4.34 Verify (4.78).



5
Regression with Responses
from Exponential Families

For responses from exponential family distributions, (1.4) of Example 1.1
defines penalized likelihood regression. Among topics of primary interest
are the selection of smoothing parameters, the computation of the esti-
mates, the asymptotic behavior of the estimates, and various data analytical
tools.
With a nonquadratic log likelihood, iterations are needed to calculate

penalized likelihood regression fit even for fixed smoothing parameters. Ele-
mentary properties concerning the penalized likelihood functional are given
in §5.1, followed by discussions in §5.2 of two approaches to smoothing pa-
rameter selection. One of the approaches makes use of the scores Uw(λ),
Vw(λ), andMw(λ) of §3.2.4 and the algorithms of §§3.4 or 3.5.3 via iterated
reweighted (penalized) least squares, whereas the other implements a ver-
sion of direct cross-validation. Approximate Bayesian confidence intervals
can be calculated through the penalized weighted least squares that approx-
imates the penalized likelihood functional at the converged fit (§5.3.1), and
the “testing” of the practical significance of model terms can be performed
via Kullback-Leibler projection (§5.3.2). The customizations of the general
methods in specific distribution families are detailed in §5.4, along with
the exploration of the empirical performances of methods and the illustra-
tion of software tools. Real-data examples are given in §5.5, where it is
also shown how the techniques of this chapter can be used to estimate the
spectral density of a stationary time series or to estimate a disease map.
The asymptotic convergence of penalized likelihood regression estimates

will be discussed in Chap. 9.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 5,
© Springer Science+Business Media New York 2013
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5.1 Preliminaries

Consider exponential family distributions with densities of the form

f(y|x) = exp
{(
yϑ(x)− b(ϑ(x))

)
/a(φ) + c(y, φ)

}
,

where a > 0, b, and c are known functions, ϑ(x) is the canonical parameter
dependent on a covariate x, and φ is either known or considered as a
nuisance parameter that is independent of x. Observing Yi|xi ∼ f(y|xi),
i = 1 . . . , n, one is to estimate the regression function ϑ(x) = ϑ

(
η(x)

)
via

a link η. Much of the general developments in this chapter are presented
under the canonical link η = ϑ, which covers the cases of logistic regression
for binary data and Poisson regression for count data. Ramifications of the
use of non-canonical links in other families will be noted in §5.4.
Parallel to (3.1) on page 62, one has the penalized likelihood functional

− 1

n

n∑

i=1

{
Yiη(xi)− b

(
η(xi)

)}
+
λ

2
J(η) (5.1)

for η ∈ H = ⊕p
β=0Hβ , where J(f) = J(f, f) =

∑p
β=1 θ

−1
β (f, f)β and

(f, g)β are inner products in Hβ with reproducing kernels Rβ(x, y). The
terms c(Yi, φ) are independent of η(x) and, hence, are dropped from (5.1),
and the dispersion parameter a(φ) is absorbed into λ. The bilinear form
J(f, g) is an inner product in ⊕p

β=1Hβ with a reproducing kernel RJ(x, y) =∑p
β=1 θβRβ(x, y) and a null spaceNJ = H0. The first term of (5.1) depends

on η only through the evaluations [xi]η = η(xi), so the argument of §2.3.2
applies and the minimizer ηλ of (5.1) has an expression

η(x) =

m∑

ν=1

dνφν(x) +

n∑

i=1

ciRJ(xi, x) = φ
Td+ ξT c, (5.2)

where {φν}mν=1 is a basis ofNJ = H0, ξ and φ are vectors of functions, and c
and d are vectors of coefficients. The efficient approximation of §3.5 can also
be used here, and for general purposes we shall replace

∑n
i=1 ciRJ (xi, x) in

(5.2) by
∑q

j=1 cjRJ(zj , x); the former is a special case with {zj} = {xi}.

Example 5.1 (Gaussian regression) Consider Gaussian responses with
Y |x ∼ N

(
η(x), σ2

)
. One has a(φ) = σ2 and b(η) = η2/2. This reduces to

the penalized least squares problem treated in Chap. 3. �

Example 5.2 (Logistic regression) Consider binary responses with
P (Y = 1|x) = p(x) and P (Y = 0|x) = 1− p(x). The density is

f(y|x) = p(x)y
(
1− p(x)

)1−y
= exp

{
yη(x)− log(1 + eη(x))

}
,
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where η(x) = log
{
p(x)/

(
1− p(x)

)}
is the logit function. One has a(φ) = 1

and b(η) = log(1+eη). This is a special case of penalized likelihood logistic
regression with binomial data. �

Example 5.3 (Poisson regression) Consider Poisson responses with
P (Y = y|x)=

{
λ(x)

}y
e−λ(x)/y!, y = 0, 1, . . . . The density can be written as

f(y|x) =
(
λ(x)

)y
e−λ(x)/y! = exp

{
yη(x)− eη(x) − log(y!)

}
,

where η(x) = logλ(x) is the log intensity. One has a(φ) = 1 and b(η) = eη.
This defines penalized likelihood Poisson regression for count data. �

By standard exponential family theory, E
[
Y
∣
∣x
]
= ḃ
(
η(x)

)
= μ(x) and

Var
[
Y
∣
∣x
]

= b̈
(
η(x)

)
a(φ) = v(x)a(φ); see, e.g., McCullagh and Nelder

(1989, §2.2.2). The functional L(f) = −
∑n

i=1

{
Yif(xi)− b

(
f(xi)

)}
is thus

continuous and convex in f ∈ H. When the matrix S as given in (3.3) on
page 62 is of full column rank, one can show that L(f) is strictly convex
in NJ , and that (5.1) is strictly convex in H; see Problem 5.1. By Theo-
rem 2.9, the minimizer ηλ of (5.1) uniquely exists when S is of full column
rank, which we will assume throughout this chapter.
Fixing the smoothing parameters λ and θβ hidden in J(η), (5.1) is strictly

convex in η, of which the minimizer ηλ may be computed via Newton
iteration. Write ũi = −Yi + ḃ

(
η̃(xi)

)
= −Yi + μ̃(xi) and w̃i = b̈

(
η̃(xi)

)
=

ṽ(xi). The quadratic approximation of −Yiη(xi) + b
(
η(xi)

)
at η̃(xi) is

− Yiη̃(xi) + b
(
η̃(xi)

)
+ ũi

{
η(xi)− η̃(xi)

}
+

1

2
w̃i

{
η(xi)− η̃(xi)

}2

=
1

2
w̃i

{

η(xi)− η̃(xi) +
ũi
w̃i

}2

+ Ci,

where Ci is independent of η(xi). The Newton iteration updates η̃ by the
minimizer of the penalized weighted least squares functional

1

n

n∑

i=1

w̃i

(
Ỹi − η(xi)

)2
+ λJ(η), (5.3)

where Ỹi = η̃(xi)− ũi/w̃i. Compare (5.3) with (3.9) on page 64.

5.2 Smoothing Parameter Selection

Smoothing parameter selection remains the most important practical is-
sue for penalized likelihood regression. With (5.1) nonquadratic, one needs
iterations to compute ηλ even for fixed smoothing parameters, which adds
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to the complexity of the problem. Our task here is to devise efficient and
effective algorithms to locate good estimates from among the ηλ’s with
varying smoothing parameters.
The first approach under discussion makes use of the scores Uw(λ), Vw(λ),

and Mw(λ) of §3.2.4 through (5.3) in a so-called performance-oriented
iteration. The method tracks an appropriate loss in an indirect manner
and, hence, may not be the most effective, but the simultaneous updat-
ing of (λ, θβ) and ηλ makes it numerically efficient. Alternatively, one may
employ the generalized approximate cross-validation of Xiang and Wahba
(1996) or its variants, which could improve performance but at the cost
of numerical efficiency. The empirical performances of the methods will be
explored in §5.4 for commonly used distributions, case by case, along with
possible customizations.
As in §3.2, we only make the dependence of various entities on the

smoothing parameter λ explicit and suppress their dependence on θβ in
the notation.

5.2.1 Performance-Oriented Iteration

Within an exponential family, the discrepancy between distributions pa-
rameterized by (η, φ) and (ηλ, φ) can be measured by the Kullback-Leibler
distance

KL(η, ηλ) = Eη

[
Y (η − ηλ)−

(
b(η)− b(ηλ)

)]
/a(φ)

=
{
ḃ(η)(η − ηλ)−

(
b(η)− b(ηλ)

)}
/a(φ),

or its symmetrized version

SKL(η, ηλ) = KL(η, ηλ) + KL(ηλ, η)

=
(
ḃ(η)− ḃ(ηλ)

)
(η − ηλ)/a(φ)

= (μ− μλ)(η − ηλ)/a(φ),

where μ = ḃ(η). To measure the performance of ηλ(x) as an estimate of
η(x), a natural loss function is given by

L(η, ηλ) =
1

n

n∑

i=1

(
μ(xi)− μλ(xi)

)(
η(xi)− ηλ(xi)

)
, (5.4)

which is proportional to the average symmetrized Kullback-Leibler distance
over the sampling points; (5.4) reduces to (3.13) on page 65 for Gaussian
data. The smoothing parameters that minimize L(η, ηλ) represent the ideal
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choices, given the data, and will be referred to as the optimal smoothing
parameters. By the mean value theorem, one has

L(η, ηλ) =
1

n

n∑

i=1

w′(xi)
(
η(xi)− ηλ(xi)

)2
, (5.5)

where w′(xi) = b̈
(
η′(xi)

)
for η′(xi) a convex combination of η(xi) and

ηλ(xi).
The performance-oriented iteration to be described below operates on

(5.3), which has the same numerical structure as (3.9). In fact, (5.3) also
has a stochastic structure similar to that of (3.9), as the following lemma
asserts.

Lemma 5.1 Suppose b̈
(
η(xi)

)
are bounded away from 0 and b̈

(
η′(xi)

)
=

b̈
(
η(xi)

)(
1 + o(1)

)
uniformly for η′ any convex combination of η and η̃.

One has

Ỹi = η̃(xi)− ũi/w̃i = η(xi)− uoi /w
o
i + op(1),

where uoi = −Yi + ḃ
(
η(xi)

)
and wo

i = b̈
(
η(xi)

)
.

Proof: We drop the subscripts and write η̃ = η̃(x) and η = η(x). Write

δ = (η̃ − ũ/w̃)− (η − uo/wo)

= (η̃ − η)−
(
ḃ(η̃)/b̈(η̃)− ḃ(η)/b̈(η)

)
+ Y

(
1/b̈(η̃)− 1/b̈(η)

)
.

It is easy to verify that

E[δ] = (η̃ − η)−
(
ḃ(η̃)− ḃ(η)

)
/b̈(η̃)

= (η̃ − η)− (η̃ − η)
(
1 + o(1)

)
= o(η̃ − η)

and that

Var[δ] =
{
b̈(η)a(φ)/b̈2(η)

}
o(1) = o

(
a(φ)/b̈(η)

)
.

The lemma follows. �

Note that E[uoi /w
o
i ] = 0 and Var[uoi /w

o
i ] = a(φ)/wo

i , so (5.3) is almost
the same as (3.9), except that uoi /w

o
i is not normal and that the weights w̃i

are not the same as wo
i . Normality is not needed for Theorem 3.5 of §3.2.4

to hold, but one does need to take care of the “misspecified” weights in
(5.3).

Theorem 5.2 Consider the setting of Theorem 3.5. Suppose
√
wiεi are

independent with mean zero, variances viσ
2, and uniformly bounded fourth

moments. Denote Rw(λ) = ELw(λ) and V = diag(vi). As n → ∞ and

λ → 0, if nRw(λ) → ∞,
{
n−1trAw(λ)

}2
/n−1trA2

w(λ) → 0, and

trAw(λ)/tr
(
V Aw(λ)

)
→ 1, then
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Uw(λ)− Lw(λ)− n−1εTWε = op
(
Lw(λ)

)
,

Vw(λ)− Lw(λ)− n−1εTWε = op
(
Lw(λ)

)
.

The proof of Theorem 5.2 follows straightforward modifications of the
proofs of Theorems 3.1 and 3.3, and is left as an exercise (Problem 5.2).
Theorem 5.2 applies to (5.3) with wi = w̃i, vi = w̃i/w

o
i , and σ

2 = a(φ).
Note that the condition vi = 1+ o(1) for Lemma 5.1 implies the condition
trAw(λ)/tr

(
V Aw(λ)

)
= 1 + o(1) for Theorem 5.2.

Denote by ηλ,η̃ the minimizer of (5.3) with varying smoothing parameters.
By Theorem 5.2, the minimizer of Uw(λ) or Vw(λ) approximately minimizes

Lw(λ) = n−1
∑n

i=1 w̃i

(
ηλ,η̃(xi) − η(xi)

)2
, which is a proxy of L(η, ηλ,η̃);

compare with (5.5). The set {ηλ,η̃} may not necessarily intersect with the
set {ηλ}, however.
For η̃ = ηλo with fixed (λo, θoβ), it is easy to see that ηλo,η

λo
= ηλo , which

is the fixed point of Newton iteration with the smoothing parameters in
(5.1) fixed at (λo, θoβ). Unless (λ

o, θoβ) minimizes the corresponding Uw(λ)
or Vw(λ) (which are ηλo dependent), one would not want to use ηλo,η

λo
,

because it is perceived to be inferior to the ηλ,η
λo

that minimizes the cor-

responding Uw(λ) or Vw(λ). Note that two sets of smoothing parameters
come into play here: One set specifies η̃ = ηλo , which, in turn, defines the
scores Uw(λ) and Vw(λ), and the other set indexes ηλ,η̃ and is the argu-
ment in Uw(λ) and Vw(λ). The above discussion suggests that one should
look for some ηλ∗,η

λ∗ = ηλ∗ that minimizes the Uw(λ) or Vw(λ) scores

defined by itself, provided such a “self-voting” ηλ∗ exists. To locate such
“self-voting” ηλ∗ , a performance-oriented iteration procedure was proposed
by Gu (1992a), which we discuss next.
In performance-oriented iteration, one iterates on (5.3) with the smooth-

ing parameters updated according to Uw(λ) or Vw(λ). Instead of mov-
ing to a particular Newton update with fixed smoothing parameters, one
chooses, from among a family of Newton updates, one that is perceived
to be better performing according to Uw(λ) or Vw(λ). If the smoothing
parameters stabilize at, say, (λ∗, θ∗β) and the corresponding Newton iter-
ation converges at η∗, then it is clear that η∗ = ηλ∗ and one has found
the solution. Note that the procedure never compares ηλ directly with each
other but only tracks L(η, ηλ,η̃) through Uw(λ) or Vw(λ) in each iteration.
In a neighborhood around η∗, where the corresponding (5.3) is a good
approximation of (5.1) for smoothing parameters near (λ∗, θ∗β), ηλ,η∗ ’s are
hopefully close approximations of ηλ’s, and through indirect comparison,
η∗, in turn, is perceived to be better performing among the ηλ’s in the
neighborhood.
The existence of “self-voting” ηλ∗ and the convergence of performance-

oriented iteration remain open and do not appear to be tractable
theoretically. Note that the numerical problem (5.3) as well as the scores
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Uw(λ) and Vw(λ) change from iteration to iteration. With proper imple-
mentation, performance-oriented iteration is found to converge empirically
in most situations, and when it converges, the fixed point of the iteration
simply gives the desired “self-voting” ηλ∗ .
The implementation suggested in Gu (1992a) starts at some η̃ = ηλ

with λ large, and it limits the search range for smoothing parameters to
a neighborhood of the previous ones during the minimization of Uw(λ) or
Vw(λ) in each iteration. The idea is to start from the numerically more
stable end of the trajectory {ηλ} and to stay close to the trajectory, where
the final solution will be located. Technical details are to be found in Gu
(1992a).
Since M(λ) also does a good job in tracking the mean square error loss

in penalized least squares regression, as illustrated in simulations (see, e.g.,
§3.2.5), one may also useMw(λ) to drive the performance-oriented iteration
by analogy. Such a procedure does not maximize any likelihood function
with respect to the smoothing parameters, however.
To explore the mechanism that drives the performance-oriented iteration

to convergence, a sample of binary data were generated on xi = (i −
0.5)/100, i = 1, . . . , 100 using a logit function

η(x) = 3
{
105x11(1− x)6 + 103x3(1− x)10

}
− 2. (5.6)

Set η̃ = ηλ̃ in (5.3) for λ̃ on a grid log10 λ̃ = −6(0.1)0. The scores Uw(λ)
(with a(φ) = 1), Vw(λ), andMw(λ) were evaluated for λ on a grid log10 λ =
−6(0.1)0. Note that λ̃ here indexes η̃ = ηλ̃ the minimizer of (5.1) and λ
indexes ηλ,η̃ the minimizer of (5.3) given η̃. This gave 61 × 61 arrays of
Uw(λ), Vw(λ), and Mw(λ). These arrays are contoured in Fig. 5.1, where
the horizontal axis is λ and the vertical axis is λ̃. An ηλ̃ that is not optimal
can still be a good approximation of η for the purpose of Lemma 5.1, so
for many of the horizontal slices in Fig. 5.1, one could expect the minima,
marked as a circle or a star in the plots, to provide λ close to optimal
for the weighted least squares problem (5.3). The stars in Fig. 5.1 indicate
the respective “self-voting” λ∗, to which performance-oriented iteration
converged. Note that although the iteration in general only visits the slice
marked by the solid line on convergence, the scores associated with the
intermediate iterates should have behavior similar to the horizontal slices
in the plots.

5.2.2 Direct Cross-Validation

In order to compare ηλ directly, one needs some computable score that
tracks L(η, ηλ) of (5.4). One such score is the generalized approximate cross-
validation (GACV) of Xiang and Wahba (1996), to be described below.
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FIGURE 5.1. Contours of Uw(λ|ηλ̃), Vw(λ|ηλ̃), and Mw(λ|ηλ̃). The circles are
minima of the horizontal slices with fixed λ̃. The star indicates the “self-vot-
ing” λ∗. Performance-oriented iteration visits the solid slice on convergence.

Without loss of generality, assume a(φ) = 1. Consider the Kullback-
Leibler distance

KL(η, ηλ) =
1

n

n∑

i=1

{
μ(xi)

(
η(xi)− ηλ(xi)

)
−
(
b(η(xi))− b(ηλ(xi))

)}
, (5.7)

which is a proxy of L(η, ηλ); roughly, 2KL(η, ηλ) ≈ L(η, ηλ). Dropping
terms from (5.7) that do not involve ηλ, one gets the relative Kullback-
Leibler distance

RKL(η, ηλ) =
1

n

n∑

i=1

{
− μ(xi)ηλ(xi) + b

(
ηλ(xi)

)}
. (5.8)

Replacing μ(xi)ηλ(xi) by Yiη
[i]
λ (xi), one obtains a cross-validation estimate

of RKL(η, ηλ),

V0(λ) =
1

n

n∑

i=1

{
− Yiη

[i]
λ (xi) + b

(
ηλ(xi)

)}
, (5.9)

where η
[k]
λ minimizes the “delete-one” version of (5.1),

− 1

n

∑

i�=k

{
Yiη(xi)− b

(
η(xi)

)}
+
λ

2
J(η). (5.10)

Note that E[Yi] = μ(xi) and that η
[i]
λ is independent of Yi. Write

V0(λ) = − 1

n

n∑

i=1

{
Yiηλ(xi)−b

(
ηλ(xi)

)}
+
1

n

n∑

i=1

Yi
(
ηλ(xi)−η

[i]
λ (xi)

)
, (5.11)

where the first term is readily available, but the second term is impractical
to compute. One needs computationally practical approximations of the
second term to make use of V0(λ).
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Through a series of first-order Taylor expansions, Xiang and Wahba
(1996) propose to approximate the second term of (5.11) by

1

n

n∑

i=1

hiiYi
(
Yi − μλ(xi)

)

1− hiiw̃i
, (5.12)

where w̃i = b̈
(
ηλ(xi)

)
and hii is the ith diagonal of a matrix H to be

specified below. Recall matrices S and Q from §3.1 and let F2 be an n ×
(n−m) orthogonal matrix satisfying STF2 = 0. Write W = diag(w̃i). The
matrix H appearing in (5.12) is given by

H =
(
W + nλF2(F

T
2 QF2)

+FT
2

)−1
,

where (·)+ denotes the Moore-Penrose inverse. Substituting the approxi-
mation into (5.11), one gets an approximate cross-validation (ACV) score

Va(λ) = − 1

n

n∑

i=1

{
Yiηλ(xi)−b

(
ηλ(xi)

)}
+
1

n

n∑

i=1

hiiYi
(
Yi − μλ(xi)

)

1− hiiw̃i
. (5.13)

Replacing hii and hiiw̃i in (5.13) by their respective averages n−1trH and
1−n−1tr(HW ), one obtains the GACV score of Xiang and Wahba (1996),

Vg(λ) = − 1

n

n∑

i=1

{
Yiηλ(xi)− b(ηλ(xi))

}

+
trH

n− tr(HW )

1

n

n∑

i=1

Yi
(
Yi − μλ(xi)

)
. (5.14)

For n large, Q is often ill-conditioned and the computation of H can be
numerically unstable.
As an alternative approach to the approximation of (5.11), Gu and Xiang

(2001) substitute η
[i]
λ,ηλ

(xi) for η
[i]
λ (xi), where η

[k]
λ,ηλ

minimizes the “delete-

one” version of (5.3),

1

n

∑

i�=k

w̃i

(
Ỹi − η(xi)

)2
+ λJ(η), (5.15)

for η̃ = ηλ. Remember that ηλ = ηλ,ηλ
. Trivial adaptation of Lemma 3.2 of

§3.2.2 yields

√
w̃i

(
ηλ(xi)− η

[i]
λ,ηλ

(xi)
)
= ai,i

√
w̃i

(
Ỹi − η

[i]
λ,ηλ

(xi)
)
,

where ai,i is the ith diagonal of the matrix Aw(λ); see (3.11) and (3.12) on
page 64. It follows that

ηλ(xi)− η
[i]
λ,ηλ

(xi) =
ai,i

1− ai,i

(
Ỹi − ηλ(xi)

)
.
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Recalling that Ỹi = η̃(xi)− ũi/w̃i, one has

ηλ(xi)− η
[i]
λ,ηλ

(xi) =
ai,i

1− ai,i

−ũi
w̃i

. (5.16)

Substituting (5.16) into (5.11), one obtains an alternative ACV score

V ∗
a (λ) = − 1

n

n∑

i=1

{
Yiηλ(xi)− b

(
ηλ(xi)

)}

+
1

n

n∑

i=1

ai,i
1− ai,i

Yi(−ũi)
w̃i

. (5.17)

Parallel to (5.14), one may replace ai,i/w̃i by n
−1
∑n

i=1 ai,i/w̃i and 1− ai,i
by 1− n−1trAw to obtain an alternative GACV score:

V ∗
g (λ) = − 1

n

n∑

i=1

{
Yiηλ(xi)− b(ηλ(xi))

}

+
tr(AwW

−1)

n− trAw

1

n

n∑

i=1

Yi(−ũi). (5.18)

Remember that ũi = −Yi + μ̃(xi), and it can be shown (Problem 5.3) that
when FT

2 QF2 is nonsingular, Aw(λ) = W 1/2HW 1/2. Hence, Vg(λ) and
V ∗
g (λ) are virtually the same, and we shall remove the star in the notation

from now on. The terms in (5.18) are numerically stable for all n.
For Gaussian data, Vg(λ) of (5.18) reduces to

U∗(λ) =
1

n
YT
(
I −A(λ)

)2
Y +

2trA(λ)

n

YT
(
I −A(λ)

)
Y

tr
(
I −A(λ)

) . (5.19)

Under mild conditions, one can show that

U∗(λ) − L(λ)− n−1εT ε = op
(
L(λ)

)
.

See Problem 5.4.
With fixed smoothing parameters, the algorithms of §3.4 do not have

any advantage over that of §3.5.3 even for q = n, so the weighted version
of (3.63) will be used to calculate the minimizer of (5.3).

5.3 Inferential Tools

Based on (5.3) at the converged fit η̃ = ηλ, one may calculate the poste-
rior means and posterior variances as if it were weighted Gaussian regres-
sion, which can then be used to construct approximate Bayesian confidence
intervals. For the “testing” of H0 : η ∈ H0 versus Ha : η ∈ H0 ⊕ H1, one
may calculate an estimate η̂ ∈ H0 ⊕H1 and compare it with its Kullback-
Leibler projection in H0.
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5.3.1 Approximate Bayesian Confidence Intervals

Consider η = η0+η1, where η0 and η1 have independent mean zero Gaussian
process priors with covariances E

[
η0(x)η0(y)

]
= τ2

∑m
ν=1 φν(x)φν(y) and

E
[
η1(x)η1(y)

]
= bRJ(x, y). Write η0(x) =

∑m
ν=1 φν(x)βν , where β =

(β1, . . . , βm)T ∼ N(0, τ2I). Write η =
(
η(x1), . . . , η(xn)

)T
and let τ2 →∞;

the likelihood of (η,β) is proportional to

exp
{
− 1

2b
(η − Sβ)TQ+(η − Sβ)

}
, (5.20)

where S is n × m with the (i, ν)th entry φν(xi) and Q+ is the Moore-
Penrose inverse of the n × n matrix Q with the (i, j)th entry RJ (xi, xj);
see Problem 5.5. Integrating out β from (5.20), the likelihood of η is seen
to be

q(η) ∝ exp
{
− 1

2b
ηT (Q+ −Q+S(STQ+S)−1STQ+)η

}
; (5.21)

see Problem 5.6. The posterior likelihood of η given Y = (Y1, . . . , Yn)
T is

proportional to the joint likelihood, which is of the form

p(Y|η)q(η) ∝ exp
{ 1

a(φ)

n∑

i=1

(
Yiη(xi)− b(η(xi))

)

− 1

2b
ηT (Q+ −Q+S(STQ+S)−1STQ+)η

}
. (5.22)

The following theorem extends the results of §2.5.

Theorem 5.3 Suppose ηλ minimizes (5.1) with nλ = a(φ)/b. For Q non-

singular, the fitted values η∗ =
(
ηλ(x1), . . . , ηλ(xn)

)T
are the posterior

mode of η given Y.

Proof: By (5.2), η∗ = Qc+Sd, where c = (c1, . . . , cn)
T , d = (d1, . . . , dm)T

minimize

− 1

n

n∑

i=1

{
Yi(ξ

T
i c+ φTi d)− b(ξTi c+ φTi d)

}
+
λ

2
cTQc, (5.23)

with ξi =
(
RJ (x1, xi), . . . , RJ(xn, xi)

)T
and φi =

(
φ1(xi), . . . , φm(xi)

)T
.

Taking derivatives of (5.23) with respect to c and d and setting them to
zero, one has

Qu+ nλQc = 0,

STu = 0,
(5.24)

where u = (u1, . . . , un)
T with ui = −Yi + ḃ

(
ηλ(xi)

)
. For Q nonsingular,

Q+ = Q−1. Taking derivatives of −a(φ) log p(Y|η)q(η) as given in (5.22)
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with respect to η, and plugging in η∗ = Qc+ Sd with c and d satisfying
(5.24), one has

u+ nλ(Q−1 −Q−1S(STQ−1S)−1STQ−1)(Qc+ Sd)

= u+ nλ(c−Q−1S(STQ−1S)−1ST c) = 0.

The theorem follows. �

Replacing the exponent of p(Y|η) by its quadratic approximation at η∗,
one gets a Gaussian likelihood with observations Ỹi and variances a(φ)/w̃i,
where Ỹi and w̃i are as specified in (5.3), all evaluated at η̃ = ηλ. With such
a Gaussian approximation of the sampling likelihood p(Y|η), the results of
§3.3 yield approximate posterior means and variances for η(x) and its com-
ponents, which can be used to construct approximate Bayesian confidence
intervals.
On the sampling points, forQ nonsingular, such an approximate posterior

analysis of η is simply Laplace’s method applied to the posterior distribu-
tion of η, as ascertained by Theorem 5.3; see, e.g., Tierney and Kadane
(1986) and Leonard et al. (1989) for discussions on Laplace’s method. The
statement, however, is generally not true even for a subset of η, as the cor-
responding subset of η∗ are, in general, not the exact mode of the respective
likelihood. It appears that the exact Bayesian calculation can be sensitive
to parameter specification. This also serves to explain why one would need
Q to be nonsingular for Theorem 5.3 to hold.
With the Bayes model of §3.5.2 for efficient approximation, (5.20)–(5.22)

hold after replacing Q+ by RQ+RT , with R n× q having the (i, j)th entry
RJ(xi, zj) and Q q × q having the (j, k)th entry RJ(zj , zk). Theorem 5.3
does not seem to hold in the setting, but approximate Bayesian confidence
intervals can still be calculated based on the quadratic approximation of
p(Y|η) at η∗.

5.3.2 Kullback-Leibler Projection

Given η̂ ∈ H0⊕H1, its Kullback-Leibler projection η̃ ∈ H0 minimizes, over
η ∈ H0, the Kullback-Leibler distance,

KL(η̂, η) =
1

n

n∑

i=1

{
μ̂i

(
ϑ̂i − ϑ(η(xi))

)
−
(
b(ϑ̂i)− b(ϑ(η(xi)))

)}
, (5.25)

with μ̂i = μ̂(xi) and ϑ̂i = ϑ(η̂(xi)). KL(η̂, η) in (5.25) agrees with (5.7) for
η = ϑ and is equivalent to (3.82) for Gaussian data with η = ϑ, b(η) = η2/2;
the square error projection of §3.8 is thus a special case.
For ηc ∈ H0 a constant fit, one has (Problem 5.7)

1

n

n∑

i=1

(μ̃i − μ̂i)h̃(xi)
(
η̃(xi)− ηc(xi)

)
= 0, (5.26)
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where μ̃i = μ̃(xi) and h̃ = (dϑ/dη)
∣
∣
η̃
. It is easy to verify that

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc) +
1

n

n∑

i=1

(μ̃i − μ̂i)
(
ϑ̃(xi)− ϑc(xi)

)
,

where, by (5.26), the last term vanishes for η = ϑ the canonical link. The
Kullback-Leibler decomposition KL(η̂, ηc) = KL(η̂, η̃)+KL(η̃, ηc) may still
hold approximately for non-canonical links, depending on how accurate the
first order approximation, (μ̃− μ̂)(ϑ̃− ϑc) ≈ (μ̃− μ̂)h̃(η̃ − ηc), is.
The Kullbak-Leibler projection in an infinite-dimensionalH0 is ill-posed,

just like the special case of square error projection discussed in §3.8. To
regulate the problem, one may use the efficient approximation of §3.5 with
q = o(n) and add a small but positive penalty term to (5.25); further details
are as discussed in §3.8, except that one now iterates on weighted versions
of (3.63).

5.4 Software, Customization, and Empirical
Performance

The common structure of penalized likelihood regression warrants unified
software implementation, yet distinctive characteristics of individual fami-
lies require due customizations of the general methods. The empirical per-
formances of the various methods provide insights concerning the method
of choice in practice and guide the default software settings.
After a brief introduction of three suites of R functions for penalized

likelihood regression, the specialization and customization of the general
methods are spelled out for the binomial, Poisson, gamma, inverse Gaus-
sian, and negative binomial families. The empirical performances of various
cross-validation methods are presented for the individual families in their
respective sections, along with simple software illustrations.

5.4.1 R Package gss: gssanova, gssanova0, and gssanova1

Suites

Similar to the ssanova and ssanova0 suites for Gaussian regression, the
three suites for non-Gaussian regression largely share the same syntax
but employ different numerical engines under the hood. The performance-
oriented iteration of §5.2.1 is implemented in gssanova0 and gssanova1,
with the former using the algorithms of §3.4 to solve (5.3) with automatic
smoothing parameters and the latter using the algorithms of §3.5.3; both
suites allow the choices of method="u", "v", "m", and gssanova1 also takes
alpha, with a default value 1.4, that modifies Uw(λ), Vw(λ) for method="u",
"v" by attaching a fudge factor α > 1 in front of trAw(λ). The direct
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cross-validation of §5.2.2 is implemented in gssanova. The Kullback-Leibler
projection of §5.3.2 is implemented for gssanova and gssanova1, but not
for gssanova0. The gssanova0 suite is virtually the original gssanova
suite referred to in the first edition of this book, delegating much of the
numerical calculations to RKPACK routines.
For each of the families, only one link is used, one that is free of con-

straint. This is not much of a restriction, however, as splines are flexible.

5.4.2 Binomial Family

The binomial distribution Binomial(m, p) has a density

(
m

y

)

py(1− p)m−y

and a minus log likelihood

− yη +m log(1 + eη) = l(η; y), (5.27)

where the logit η = log
{
p/(1− p)

}
is the canonical parameter. The binary

data of Example 5.2 is a special case with m = 1. To iterate on (5.3), it is
easy to calculate ũi = −Yi+mi p̃i and w̃i = mi p̃i(1− p̃i), where p̃i = p̃(xi);
see Problem 5.8.

Invariant Methods

The binomial responses Yi are sums of binary responses, say Yi =
∑mi

j=1 Yi,j ,
where Yi,j ∈ {0, 1}. Using the same data, either in the individual form
(xi, Yi,j) or in the grouped form (xi, Yi), one naturally expects the same
end result. This calls for methods that are invariant to data grouping.
For the terms in (5.3), it is easy to verify that

w̃i

(
Ỹi − η(xi)

)2
= mip̃i(1− p̃i)

(
η̃i −

mip̃i − Yi
mip̃i(1− p̃i)

− η(xi)
)2

=

mi∑

j=1

p̃i(1− p̃i)
(
η̃i −

p̃i − Yij
p̃i(1 − p̃i)

− η(xi)
)2

+ C,

where η̃i = η̃(xi) and C does not involve η(xi). It is reassuring to see that
(5.3) is invariant to data grouping.
The dispersion is known to be a(φ) = 1, so intuitively, Uw(λ) with σ

2 = 1
should be the preferred method to use in performance-oriented iteration.
As seen in §3.2.4, U(λ) for individual data Yi,j is equivalent to Uw(λ) for
grouped data Yi/mi with weights wi = mi; parallel calculations show that
Uw(λ) for individual data Yi,j with weights wi,j = pi(1 − pi) is equiva-
lent to Uw(λ) for grouped data Yi/mi with weights wi = mipi(1 − pi).
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Hence, performance-oriented iteration driven by Uw(λ) is invariant to data
grouping. The same can not be said about Vw(λ) or Mw(λ), however.
For direct cross-validation, the verbatim application of (5.18) amounts

to “delete-m” instead of “delete-one.” One however could work under the
equivalent binary setting, in which the matrices Aw and W are N × N ,
where N =

∑n
i=1mi, and the entries associated with each xi form homoge-

neous (by symmetry) blocks of sizes mi; within each block the diagonals of
Aw are 1/mi of the binomial ai,i, w̃ is p̃i(1− p̃i), and ũ is p̃i−Yij. Applying
(5.18) in the binary setting, simple algebra yields

Vg(λ) = − 1

N

n∑

i=1

{
Yiηλ(xi)−mi log(1 + eηλ(xi))

}

+ α
tr(AwMW−1)

N − trAw

1

N

n∑

i=1

Yi(1− p̃i) (5.28)

for α = 1, where M = diag(m1, . . . ,mn); a fudge factor α > 1 might help
if the unmodified cross-validation score delivers undersmoothing. Clearly,
(5.28) is invariant to data grouping.

Empirical Performance

A simple simulation was performed to investigate the empirical perfor-
mances of the methods discussed above. Binary samples were drawn on
xi = (i− 0.5)/100, i = 1, . . . , 100 using the logit function given in (5.6) on
page 181. For each replicate, five cubic spline fits were calculated with q =
n, one minimizing the symmetrized Kullback-Leibler loss L(λ) = L(η, ηλ)
of (5.4), two minimizing Vg(λ) of (5.28) with α = 1, 1.4, and two result-
ing from performance-oriented iteration driven by Uw(λ) with α = 1, 1.4.
The losses achieved by the five fits were recorded, which included the opti-
mal L(λo), two L(λd)’s from direct cross-validation, and two L(λp)’s from
performance-oriented iteration.
The simulation was conducted on one hundred replicates of samples and

the results are summarized in Fig. 5.2. In the left frame, the relative efficacy
of the methods, L(λo)/L(λd) or L(λo)/L(λp), is shown in boxplots. In the
center frame, methods modified by a fudge factor α = 1.4 are compared
with the respective standard ones. An α = 1.4 in Vg(λ) offers little benefit
compared to α = 1, warranting no further consideration. In the right frame,
the performance-oriented iteration is compared against Vg(λ). The direct
cross-validation via Vg(λ) emerges as the method of choice.

Software Illustration

The syntax of gssanova for the binomial family is similar to that of glm.
The following sequence generates some synthetic data on a grid and calcu-
lates a cubic spline logistic fit:
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FIGURE 5.2. Effectiveness of Vg(λ) and Uw(λ) in logistic regression simulation.
Left : Relative efficacy L(λo)/L(λd) (solid) and L(λo)/L(λp) (faded), with α = 1
(wider boxes) and α = 1.4 (thinner boxes). Center : L(λd) (solid) or L(λp) (faded)
with α = 1 versus those with α = 1.4. Right : L(λd) with α = 1 versus L(λp) with
α = 1 (faded) or α = 1.4 (solid).

set.seed(5732)

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))-2}

x <- (0:100)/100

p <- 1-1/(1+exp(test(x)))

y <- rbinom(x,3,p)

fit.lgt <- gssanova(cbind(y,3-y)~x,family="binomial")

Equivalently, one may use a one-column response Yi/mi and enter mi = 3
as weights:

fit.lgt <- gssanova(y/3~x,"binomial",weights=rep(3,101))

Due to the random selection of zj, repeated calls to gssanova would return
slightly different results unless id.basis is specified, as with ssanova. To
evaluate the fit on the grid, use:

est <- predict(fit.lgt,data.frame(x=x),se=TRUE)

The fit is plotted in the left frame of Fig. 5.3, with the data and the test
function superimposed:

plot(x,y/3,ylab="p",col=3); lines(x,p,lty=2)

lines(x,1-1/(1+exp(est$fit)))

lines(x,1-1/(1+exp(est$fit+1.96*est$se)),col=5)

lines(x,1-1/(1+exp(est$fit-1.96*est$se)),col=5)

Note that the prediction is on the logit scale. The working residuals and
deviance residuals are also available:

resid(fit.lgt)

resid(fit.lgt,type="dev")
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FIGURE 5.3. Cubic spline logistic and Poisson regression. The test functions
are in dashed lines, the fits are in solid lines, and the 95% Bayesian confidence
intervals are in faded lines. The data are superimposed as circles.

The syntax of gssanova0 and gssanova1 is the same, unless one wants
to override the default method="u" with varht=1, and for gssanova1,
alpha=1.4.

5.4.3 Poisson Family

The Poisson distribution Poisson(λ) has a minus log likelihood

− y logλ+ λ = −yη + eη = l(η; y), (5.29)

where the log intensity η = logλ is the canonical parameter. To iterate on
(5.3), one has ũi = −Yi + eη̃(xi) and w̃i = eη̃(xi); see Problem 5.9.
With a known dispersion a(φ) = 1, Uw(λ) with σ2 = 1 is still the

preferred method to use in performance-oriented iteration. While there
is no invariance to worry about here, the close relation between Poisson
regression and density estimation suggests a direct cross-validation score
that is more natural in the setting and works better than (5.18).

Poisson Regression as Density Estimation

Plugging the Poisson log likelihood (5.29) into (5.1) and adding and sub-
tracting a term, one has

−
n∑

i=1

Yi

{

η(xi)− log

∫
eηdx

}

+
nλ

2
J(η) +

{∫
eηdx−N log

∫
eηdx

}

,

(5.30)
where

∫
eηdx =

∑n
i=1 e

η(xi) and N =
∑n

i=1 Yi. The first two terms in (5.30)
estimates the density eη/

∫
eηdx on the discrete domain {x1, . . . , xn} using

“binned data” with bin-size Yi at xi, and when J(η) annihilates constant,
the third term is separable from the other two, which fixes a constant in
the log density η to make

∫
eηdx = N ; see §7.2.
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The use of (5.18) in Poisson regression amounts to “delete-one-bin” in
the density estimation context, and is far inferior to the “delete-one-count”
cross-validation developed in §7.3; empirical comparisons can be found in
Kim (2003). Applying (7.22) on page 245 in the current setting, one has

V (λ) = − 1

N

n∑

i=1

{
Yiηλ(xi)− eηλ(xi)

}
+ α

tr(PyR̃H
+R̃TPT

y )

N(N − 1)
, (5.31)

where R̃ = (S,R), Py = (I − yyT /N) diag(y) for y =
(√
Y1, . . . ,

√
Yn
)T

,

and H =
{
R̃T (W −wwT /N)R̃+nλ

(
O O
O Q

)}
/N for W = diag(w̃1, . . . , w̃n)

and w = (w̃1, . . . , w̃n)
T ; S, R, and Q are as given in (3.63) on page 86, and

remember that
∑n

i=1 w̃i =
∑n

i=1 e
η̃(xi) = N . Once again, a fudge factor

α ≥ 1 is attached to the extra term beyond the minus log likelihood.
The score Vg(λ) of (5.18) targets the relative Kullback-Leibler distance

in the regression setting as given in (5.8),

RKL(η, ηλ) =
1

n

n∑

i=1

{
eηλ(xi) − eη(xi)ηλ(xi)

}
,

whereas V (λ) of (5.31) is after the relative Kullback-Leibler distance in the
density estimation setting as given in (7.14),

log

∫
eηλdx− μη(ηλ) = log

n∑

i=1

eηλ(xi) −
∑n

i=1 e
η(xi)ηλ(xi)∑n

i=1 e
η(xi)

Note that
∑n

i=1 e
ηλ(xi) = N for all λ and

∑n
i=1 e

η(xi) is independent of λ,
so both are aiming to maximize

∑n
i=1 e

η(xi)ηλ(xi).

Empirical Performance

Parallel to the logistic regression simulation, Poisson samples were gener-
ated on xi = (i − 0.5)/100, i = 1, . . . , 100 with log intensity

η(x) = 3
{
105x11(1− x)6 + 103x3(1 − x)10

}
+ 0.1.

Five cubic spline fits were calculated on each replicate and their perfor-
mances in terms of L(λ) = L(η, ηλ) of (5.4) were recorded. The results
from one hundred replicates are summarized in Fig. 5.4. It is evident that
the fudge factor α = 1.4 helps here, for both the direct cross-validation
via V (λ) of (5.31) and the performance-oriented iteration driven by Uw(λ).
The two approaches gave nearly identical results, for α = 1.4.

Software Illustration

For the Poisson family, both gssanova and gssanova1 have a default
alpha=1.4. The following sequence generates some Poisson responses on a
grid and fits a cubic spline to the log intensity:
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FIGURE 5.4. Effectiveness of V (λ) and Uw(λ) in Poisson regression simulation.
Left : Relative efficacy L(λo)/L(λd) (solid) and L(λo)/L(λp) (faded), with α = 1
(wider boxes) and α = 1.4 (thinner boxes). Center : L(λd) (solid) or L(λp) (faded)
with α = 1 versus those with α = 1.4. Right : L(λd) with α = 1.4 versus L(λp)
with α = 1.4.

set.seed(5732)

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))+.1}

x <- (0:100)/100

lam <- test(x)

y <- rpois(x,lam)

fit.pois <- gssanova1(y~x,family="poisson")

est <- predict(fit.pois,data.frame(x=x),se=TRUE)

The fit is shown in the right frame of Fig. 5.3, with the data and the test
function superimposed:

plot(x,y,col=3); lines(x,lam,lty=2)

lines(x,exp(est$fit))

lines(x,exp(est$fit+1.96*est$se),col=5)

lines(x,exp(est$fit-1.96*est$se),col=5)

5.4.4 Gamma Family

The gamma distribution Gamma(α, β) has a density

1

βαΓ(α)
yα−1e−y/β, α, β, y > 0,

where α is the shape parameter and β is the scale parameter. When α = 1,
the gamma distribution reduces to the exponential distribution. Reparam-
eterizing by (α, μ), where μ = αβ = E[Y ], and dropping terms that do not
involve μ, one has a minus log likelihood

{ y
μ
+ logμ

}
α = {ye−η + η}α = l(η; y)/σ2, (5.32)



194 5. Regression with Exponential Families

with σ2 = α−1 being the dispersion parameter and η = logμ; see Problem
5.10. To avoid the constraint associated with the canonical parameter
−μ−1, we choose to work with the log link η = logμ. It is easy to verify
that u = dl/dη = −y/μ+1 and w = d2l/dη2 = y/μ; E[u] = 0, Var[u] = σ2,
and E[w] = 1. To iterate on (5.3), ũi = −Yi/μ̃(xi) + 1 as usual, but we use
w̃i = 1, the expected value of w, as in Fisher’s scoring.
To drive the performance-oriented iteration, one may use V (λ) in general,

or use U(λ) when the dispersion is known such as with the exponential
distribution.

Kullback-Leibler and Direct Cross-Validation

Using a non-canonical link, much of the general developments in §5.2 need
due modifications. The Kullback-Leibler distance is given by

KL(η, η̃) = −μ(e−η − e−η̃)− (η − η̃) = (μ/μ̃− 1)− (η − η̃),

so (5.4) becomes

L(λ) = L(η, ηλ) =
1

n

n∑

i=1

( μ(xi)
μλ(xi)

+
μλ(xi)

μ(xi)
− 2
)
, (5.33)

which will be used as the performance measure in the simulation below.
The relative Kullback-Leibler distance of (5.8) is now

RKL(η, ηλ) =
1

n

n∑

i=1

μ(xi)

μλ(xi)
+ ηλ(xi),

and (5.9) should look like

V0(λ) =
1

n

n∑

i=1

{ Yi
μλ(xi)

+ ηλ(xi)
}
+

1

n

n∑

i=1

Yi(e
−η

[i]
λ (xi) − e−ηλ(xi))

≈ 1

n

n∑

i=1

{ Yi
μλ(xi)

+ ηλ(xi)
}
+

1

n

n∑

i=1

Yi
μλ(xi)

(
ηλ(xi)− η

[i]
λ (xi)

)
.

Replacing η
[i]
λ (xi) by η

[i]
λ,ηλ

(xi) = ηλ(xi) + ai,iũi/(1 − ai,i) [see (5.16) on
page 184] and following the same procedures leading to (5.18), one obtains

Vg(λ) =
1

n

n∑

i=1

{ Yi
μλ(xi)

+ ηλ(xi)
}

+ α
trA

n− trA

1

n

n∑

i=1

Yi
μλ(xi)

( Yi
μλ(xi)

− 1
)
, (5.34)

where a fudge factor α ≥ 1, not to be confused with the shape parameter
σ−2, is attached to the second term.
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Empirical Performance

In a simulation study parallel to those for the binomial and Poisson families,
gamma responses were generated on xi = (i− 0.5)/100, i = 1, . . . , 100 with
a shape parameter σ−2 = 2 and a mean function

μ(x) = 3
{
105x11(1− x)6 + 103x3(1 − x)10

}
+ 0.1.

Five cubic spline fits were calculated on each replicate and their perfor-
mances recorded in L(λ) of (5.33). The performance-oriented iteration is
now driven by V (λ) of (3.23). The results from one hundred replicates are
shown in Fig. 5.5. The fudge factor α = 1.4 helps both methods, and with
it, the performance-oriented iteration might have a tiny edge.

Software Illustration

For the gamma family, both gssanova and gssanova1 have a default
alpha=1.4. The following sequence generates some gamma responses on
a grid and fits a cubic spline to the log mean:

set.seed(5732)

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))+.1}

x <- (0:100)/100

mu <- test(x)

y <- rgamma(x,shape=2,scale=mu/2)

fit.gamma <- gssanova1(y~x,family="Gamma")

est <- predict(fit.gamma,data.frame(x=x),se=TRUE)
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FIGURE 5.6. Cubic spline gamma and inverse Gaussian regression. The test
functions are in dashed lines, the fits are in solid lines, and the 95% Bayesian
confidence intervals are in faded lines. The data are superimposed as circles.

The fit is shown in the left frame of Fig. 5.6, with the data and the test
function superimposed:

plot(x,y,col=3); lines(x,mu,lty=2)

lines(x,exp(est$fit))

lines(x,exp(est$fit+1.96*est$se),col=5)

lines(x,exp(est$fit-1.96*est$se),col=5)

The dispersion σ2 is needed for the calculation of standard errors, and is
estimated using (3.26) on page 69 via (5.3) at η̃ = ηλ.

5.4.5 Inverse Gaussian Family

The inverse Gaussian distribution IG(μ, σ2) has a density

1√
2πσ2

y−3/2e−(y−μ)2/2σ2μ2y, μ, σ2, y > 0,

where E[Y ] = μ and Var[Y ] = σ2μ3. Dropping terms that do not involve
μ, one has a minus log likelihood

{ y

2μ2
− 1

μ

} 1

σ2
= {ye−2η/2− e−η}/σ2 = l(η; y)/σ2, (5.35)

with σ2 as the dispersion parameter and η = logμ; see Problem 5.11.
Working with the log link η = logμ, one has u = dl/dη = −y/μ2+1/μ and
w = d2l/dη2 = 2y/μ2 − 1/μ; E[u] = 0, Var[u] = σ2/μ, and E[w] = 1/μ.
To iterate on (5.3), we take ũi = −Yi/μ̃2(xi) + 1/μ̃(xi) and w̃i = 1/μ̃(xi).
To drive the performance-oriented iteration, one may use Vw(λ).
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Kullback-Leibler and Direct Cross-Validation

As with the gamma family, one needs to modify the calculations in §5.2.
The Kullback-Leibler distance is given by

KL(η, η̃) = −μ
2
(e−2η − e−2η̃) + (e−η − e−η̃) =

μ

2μ̃2
− 1

μ̃
+

1

2μ

and the equivalent of (5.4) looks like

L(λ) = L(η, ηλ) =
1

2n

n∑

i=1

( μ(xi)
μλ(xi)

+
μλ(xi)

μ(xi)
−2
)( 1

μ(xi)
+

1

μλ(xi)

)
, (5.36)

The relative Kullback-Leibler distance of (5.8) is now

RKL(η, ηλ) =
1

n

n∑

i=1

( μ(xi)

2μ2
λ(xi)

− 1

μλ(xi)

)
,

and (5.9) becomes

V0(λ) ≈
1

n

n∑

i=1

{ Yi
2μ2

λ(xi)
− 1

ηλ(xi)

}
+

1

n

n∑

i=1

Yi
μ2
λ(xi)

(
ηλ(xi)− η

[i]
λ (xi)

)

Replacing η
[i]
λ (xi) by η

[i]
λ,ηλ

(xi) = ηλ(xi)+(ũi/w̃i)ai,i/(1−ai,i) and following
the procedures leading to (5.18), one has

Vg(λ) =
1

n

n∑

i=1

{ Yi
2μ2

λ(xi)
− 1

μλ(xi)

}

+ α
tr(AwW

−1)

n− trAw

1

n

n∑

i=1

Yi
μ2
λ(xi)

( Yi
μ2
λ(xi)

− 1

μλ(xi)

)
. (5.37)

Empirical Performance

Parallel to the simulations for previous families, inverse Gaussian responses
were generated on xi = (i−0.5)/100, i = 1, . . . , 100 with a dispersion σ2 = 1
and a mean function

μ(x) = 3
{
105x11(1− x)6 + 103x3(1 − x)10

}
+ 0.1.

Five cubic spline fits were calculated on each replicate and their perfor-
mances recorded in L(λ) of (5.36). Results from one hundred replicates
are summarized in Fig. 5.7, The performance-oriented iteration driven by
Vw(λ), with α = 1.4, emerges as the clear winner.
The inverse Gaussian family is numerically challenging; this might be re-

lated to the skewness of the distribution, which grows with μ. Initially,
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FIGURE 5.7. Effectiveness of Vg(λ) and Vw(λ) in inverse Gaussian regression
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are off the chart. Right : L(λd) with α = 1 versus L(λp) with α = 1.4.

we had great difficulty trying to locate L(λo) and L(λd); optimization
algorithms are easily trapped in plateaus at larger λ values, and we had
to adjust internal settings in gssanova just to accommodate this family.
Also, iterations on (5.3) with fixed-λ can experience more difficulties with
none or slow convergence than performance-oriented iteration.

Software Illustration

The following sequence generates some inverse Gaussian responses on a
grid and fits a cubic spline to the log mean; the function rinvgauss can
be found in the R package statmod by Gordon Smyth:

set.seed(5732)

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))+.1}

x <- (0:100)/100

mu <- test(x)

y <- rinvgauss(x,mu)

fit.ig <- gssanova1(y~x,family="inverse.gaussian")

est <- predict(fit.ig,data.frame(x=x),se=TRUE)

The fit is shown in the right frame of Fig. 5.6, with the data and the test
function superimposed:

plot(x,y,log="y",col=3); lines(x,mu,lty=2)

lines(x,exp(est$fit))

lines(x,exp(est$fit+1.96*est$se),col=5)

lines(x,exp(est$fit-1.96*est$se),col=5)
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5.4.6 Negative Binomial Family

The negative binomial distribution has a density

Γ(ν + y)

y! Γ(ν)
pν(1 − p)y, ν > 0, p ∈ (0, 1), y = 0, 1, . . . . (5.38)

For ν an integer, the distribution describes the number of failures before
the νth success in a sequence of Bernoulli trials with a success probability
p. The distribution also describes the behavior of composite Poisson data
with Y ∼ Poisson(λ) and λ ∼ Gamma

(
ν, (1 − p)/p

)
; see Problem 5.12.

It can be shown that E[Y ] = ν(1− p)/p and Var[Y ] = ν(1− p)/p2. Taking
the logit link η = log

{
p/(1 − p)

}
and dropping terms that do not involve

η, one has a minus log likelihood

(ν + y) log(1 + eη)− νη = l(η; y); (5.39)

see Problem 5.13. It follows (Problem 5.14) that u = dl/dη = (ν + y)p− ν
and w = d2l/dη2 = (ν + y)p(1 − p); E[u] = 0, Var[u] = ν(1 − p), and
E[w] = ν(1 − p). To iterate on (5.3), one may use ũi = (νi + Yi)p̃(xi) − νi
and w̃i = νi

(
1− p̃(xi)

)
.

It is assumed that νi’s are known. It is also possible to assume a common
but unknown ν, under which one iterates between the estimations of ν and
η(x); given (Yi, pi), one may estimate ν via the minimization of

1

n

n∑

i=1

{
log Γ(ν)− log Γ(ν + Yi)− ν log pi

}
. (5.40)

Either way, the estimation of η(x) is under known νi.
The dispersion is known to be a(φ) = 1, so performance-oriented iteration

can be driven by Uw(λ) with σ
2 = 1.

Kullback-Leibler and Direct Cross-Validation

The Kullback-Leibler distance is seen to be

KL(η, η̃) =
ν

p
log

1− p

1− p̃
+ ν(η − η̃),

and the counterpart of (5.4) is now

L(λ) = L(η, ηλ) =
1

n

n∑

i=1

( νi
p(xi)

− νi
pλ(xi)

)
log

1− p(xi)

1− pλ(xi)
. (5.41)

The relative Kullback-Leibler distance of (5.8) becomes

RKL(η, ηλ) = − 1

n

n∑

i=1

{ νi
p(xi)

log
(
1− pλ(xi)

)
+ νi ηλ(xi)

}
,
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and, noting that E[ν + y] = ν/p, (5.9) looks like

V0(λ) ≈ − 1

n

n∑

i=1

{
(νi + Yi) log

(
1− pλ(xi)

)
+ νiηλ(xi)

}

+
1

n

n∑

i=1

Yi pλ(xi)
(
η
[i]
λ (xi)− ηλ(xi)

)
.

The same procedures leading to (5.18) yield

Vg(λ) = − 1

n

n∑

i=1

{
(νi + Yi) log

(
1− pλ(xi)

)
+ νiηλ(xi)

}

+ α
tr(AwW

−1)

n− trAw

1

n

n∑

i=1

Yi pλ(xi)
{
(νi + Yi)pλ(xi)− νi

}
. (5.42)

Empirical Performance

Parallel to the simulations for the other families, negative binomial samples
were drawn on xi = (i − 0.5)/100, i = 1, . . . , 100 with ν = 3 and a mean
function

μ(x) = 3
{
105x11(1− x)6 + 103x3(1 − x)10

}
+ 0.1.

For each of the one hundred replicates generated, five cubic splines were
fitted to the logit and their performances recorded in L(λ) of (5.41). The
results are summarized in Fig. 5.8. The fudge factor α = 1.4 helps the
performance-oriented iteration but not the direct cross-validation, and
Uw(λ) with α = 1.4 emerges as the method of choice.
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FIGURE 5.9. Cubic spline logistic fit to negative binomial data. The test func-
tions are in dashed lines, the fits are in solid lines, and the 95% Bayesian confi-
dence intervals are in faded lines. The data are superimposed as circles.

Software Illustration

Negative binomial responses can be entered in two ways, either in two
columns of (Yi, νi) or in a vector of Yi; in the latter case, ν is unknown but
assumed to be common to all observations. This is similar to the binomial
family syntax-wise, but the two types of responses are not equivalent here.
The following sequence generates some negative binomial responses with

ν = 3 and fits a cubic spline to the logit:

set.seed(5732)

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))+.1}

x <- (0:100)/100

mu <- test(x); nu <- 3

p <- nu/(mu+nu)

y <- rnbinom(x,nu,p)

fit.nb <- gssanova1(cbind(y,nu)~x,family="nbinomial")

est <- predict(fit.nb,data.frame(x=x),se=TRUE)

The fit is shown in the left frame of Fig. 5.9, with the data and the test
function superimposed:

plot(x,y,col=3); lines(x,mu,lty=2)

lines(x,nu/exp(est$fit))

lines(x,nu/exp(est$fit+1.96*est$se),col=5)

lines(x,nu/exp(est$fit-1.96*est$se),col=5)

One may also submit the responses as a vector:

fit.nb1 <- gssanova1(y~x,family="nbinomial",

id.basis=fit.nb$id.basis)

fit.nb1$nu

# 3.347354
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with the resulting fit shown in the right frame of Fig. 5.9. The ν estimate in
fit.nb1 might be off, but together with the corresponding η(x) estimate
they produced virtually the same estimate for μ(x) = νe−η(x).
With ν unknown, its updating is concurrent with η(x). Every time a

new set of η̃(xi) come from (5.3), ν is updated via the minimization of
(5.40), and ũi and w̃i are calculated using this updated ν to form the Ỹi for
the next iteration; this is done for both the performance-oriented iteration
and the fixed-λ iteration with direct cross-validation. The procedure is not
guaranteed to converge, but we have yet to encounter any problems as of
this writing. The selection of λ in the performance-oriented iteration is
unaffected by this as comparisons are only made of estimates based on the
same ν. The direct cross-validation compares estimates based on different
ν’s, however, so one needs to add back to (5.42) the terms,

1

n

n∑

i=1

{
log Γ(ν)− log Γ(ν + Yi)

}
,

which were earlier dropped from (5.39) as they do not involve η.

5.5 Case Studies

We now apply the techniques developed in this chapter to analyze a few real
data sets. It will be seen that Poisson regression can be used to estimate
a probability density and that gamma regression can be used to estimate
the spectral density of a stationary time series.

5.5.1 Eruption Time of Old Faithful

Listed in Härdle (1991) are the duration and the waiting time to the next
eruption gathered from 272 consecutive eruptions of the Old Faithful geyser
in Yellowstone National Park. The data are available in R as a data frame
faithful with elements eruptions and waiting, both in minutes. In this
study, we use eruptions to estimate a continuous “mass spectrum” of the
eruption duration.
The range of the eruption times is [1.6, 5.1]. Rounding the data to a

histogram of 30 bins on [1.5, 5.25], each of length 0.125, one has xi as the
middle points of the bins and Yi as the frequencies of the bins:

data(faithful); erup <- faithful$eruptions

jk <- hist(erup,bre=seq(1.5,5.25,length=31),plot=FALSE)

x <- jk$mids

y <- jk$counts
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FIGURE 5.10. Mass spectrum of eruption duration of Old Faithful. The estimated
Poisson intensity is in solid lines and the 95% Bayesian confidence intervals in
faded lines. The data are superimposed as circles.

The continuous “mass spectrum” can be estimated through a cubic spline
Poisson regression, which is plotted in the left frame of Fig. 5.10:

fit.faith <- gssanova(y~x,family="poisson",

offset=rep(log(60/8),30))

xx <- seq(1.5,5.25,length=101)

est <- predict(fit.faith,data.frame(x=xx,offset=0),TRUE)

plot(x,y*8/60,col=3,ylim=c(0,6))

lines(xx,exp(est$fit))

lines(xx,exp(est$fit+1.96*est$se),col=5)

lines(xx,exp(est$fit-1.96*est$se),col=5)

The offset term scales the estimate to the unit of per-second intensity;
note that Yi are counts per 1/8min. For the evenly binned data given here,
the offset is not necessary, as one can always rescale the fit afterwards, but
if the data are given in heterogeneous units, the offset provides a convenient
device to align them to a common scale; see Problem 5.15.
Repeating the process with a histogram of 60 bins on [1.5, 5.25], one gets

the estimate in the right frame of Fig. 5.10.
Scaling the Poisson intensity to integrate to 1 on the domain [1.5, 5.25],

one gets a probability density of eruption duration; see §7.2. The Bayesian
confidence intervals lose their meaning for a density, however. An analysis
of the data using density estimation techniques will be shown in §7.5.2.

5.5.2 Spectrum of Yearly Sunspots

The yearly number of sunspots from 1700 to 1988 can be found in Tong
(1990, page 471). Our task here is to estimate the frequency spectrum of
the series.
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For a stationary time series Xt, t = 0,±1,±2, . . . with covariance func-
tion γk = Cov(Xt, Xt+k), the spectral density is defined by

f(ω) =
1

γ0

∞∑

k=−∞
γke

−i2πkω , ω ∈ (−0.5, 0.5),

where i =
√
−1, which satisfies

γk = γ0

∫ 0.5

−0.5

f(ω)ei2πkωdω.

See, e.g., Priestley (1981, §4.8.3) and Brockwell and Davis (1991, §4.3),
where the frequency is parameterized by ω̃ = 2πω ∈ (−π, π). The spectral
density is an even function, so one only needs to estimate f(ω) on (0, 0.5).
Observing xt, t = 1, . . . , T , one may calculate the discrete Fourier transform
(cf. §4.2.2)

x̃ν =
1√
T

T∑

t=1

xte
−i2πtν/T , ν = 0, 1, . . . , T − 1, (5.43)

which yields the periodogram I(ων) = |x̃ν |2 on the so-called Fourier fre-
quencies ων = ν/T . Note that I(ων) = I(ωT−ν). For T large, it can be
shown that I(ων), ων ∈ (0, 0.5), are asymptotically independent exponen-
tial random variables with means E

[
I(ων)

]
∝ f(ων); see, e.g., Priestley

(1981, page 425) and Brockwell and Davis (1991, Theorem 10.3.2). The
estimation of the spectrum can thus be obtained from a gamma regression
with xν = ων and Yν = I(ων).
The observed series are available in R as a ts object sunspot.year. The

following sequence loads the data, calculates the periodogram, and sets up
xν and Yν for gamma regression:

data(sunspot.year)

n <- length(sunspot.year)

ind <- 1:(ceiling(n/2)-1)

y <- (abs(fft(sunspot.year))^2/n)[-1][ind]

x <- ind/n

The R function fft calculates an unscaled discrete Fourier transform [i.e.,
the transform given in (5.43) but without 1/

√
T ]. A cubic spline can now

be fitted to the log periodogram via gamma regression and plotted as in
the right frame of Fig. 5.11:

set.seed(5732)

fit.sunspot <- gssanova(y~x,family="Gamma")

xx <- seq(0,.5,length=101)

est <- predict(fit.sunspot,data.frame(x=xx),se=TRUE)
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FIGURE 5.11. Spectrum of yearly sunspots. Left : Observed series. Right : Spectral
estimate with 95% Bayesian confidence intervals; the periodogram is superim-
posed as circles.

plot(x,y,log="y",col=3)

lines(xx,exp(est$fit))

lines(xx,exp(est$fit+1.96*est$se),col=5)

lines(xx,exp(est$fit-1.96*est$se),col=5)

Scaling the estimate to integrate to 0.5 on (0, 0.5), one gets the spectral
density. The Bayesian confidence intervals lose their meaning for a spectral
density, however.
The performance-oriented iteration using w̃i = 1 in (5.3) encountered nu-

merical overflow within the first few steps, so we had to resort to gssanova.
The performance-oriented iteration using w̃i = Yi/μ̃(xi) did converge, how-
ever, as reported in the first edition of this book; the original gssanova
used w̃i = Yi/μ̃(xi) in performance-oriented iteration. As can be seen in
the right frame of Fig. 5.11, Yi here are extremely imbalanced in magni-
tude; ũi/w̃i = 1 − Yi/μ̃(xi) for w̃i = 1 inherit much of this imbalance
whereas ũi/w̃i = μ̃(xi)/Yi − 1 for w̃i = Yi/μ̃(xi) are moderated a bit. We
nevertheless choose to use w̃i = 1 in the implementation as they lead to
much better performances by the performance-oriented iteration in sim-
ulations when things do converge. Direct cross-validation does not seem
to be affected by the choice of w̃i, however. The fit shown here is hardly
distinguishable from the one presented in the first edition of this book.

5.5.3 Progression of Diabetic Retinopathy

The Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR)
was an epidemiological study of a cohort of patients receiving their medical
care in an 11-county area in southernWisconsin, who were first examined in
1980–1982, then again in 1984–1986, 1990–1992, and 1994–1996. A subset
derived from the WESDR data is distributed in GRKPACK (Wang 1997),
to be found at
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http://www.pstat.ucsb.edu/faculty/yuedong/software.html

which consists of the baseline measures of duration of diabetes in years,
percent of glycosylated hemoglobin, body mass index, and a binary indica-
tor of retinopathy progression at the first follow-up, of 669 patients. There
were 278 positive cases among the 669 patients.
The data are included in gss as a data frame wesdr with elements dur,

gly, bmi, and ret. A tensor product cubic spline can be fitted to the logit
of retinopathy progression, with all interactions included, and the cosine
diagnostics of §3.7 and the Kullback-Leibler projection of §5.3.2 inspected;
the cosine diagnostics are based on the weighted least squares at the fit:

data(wesdr); set.seed(5732)

fit.wsd <- gssanova(ret~dur*bmi*gly,data=wesdr,

family="binomial")

sum.fit <- summary(fit.wsd,diag=TRUE)

round(sum.fit$kappa,2)

# dur bmi gly dur:bmi dur:gly bmi:gly dur:bmi:gly

# 1.37 1.58 5.88 1.92 5.90 6.59 6.64

round(sum.fit$pi,2)

# dur bmi gly dur:bmi dur:gly bmi:gly dur:bmi:gly

# 0.10 0.11 1.18 0.01 -0.05 -0.55 0.19

round(sum.fit$cos,2)

# dur bmi gly dur:bmi dur:gly bmi:gly

# cos.y 0.11 0.06 0.32 0.02 -0.28 -0.29

# cos.e 0.03 0.01 0.00 0.01 0.00 0.00

# norm 4.86 7.45 14.75 6.66 0.65 7.50

# cos.y dur:bmi:gly yhat y e

# cos.e 0.26 0.40 1.00 0.93

# norm 0.00 0.02 0.93 1.00

# 2.97 10.54 27.99 25.67

project(fit.wsd,c("dur","bmi","gly"))$ratio

# 0.02744856

High concurvity and negative πβ ’s and cos(W 1/2Y∗,W 1/2f∗β)’s are associ-
ated with several interaction terms, so they might be just offsetting each
other, and the Kullback-Leibler projection suggests the adequacy of an ad-
ditive model. One can now fit a cubic spline additive model and evaluate
the components on the sampling points:

fit.wsd.a <- gssanova(ret~dur+bmi+gly,"binomial",

data=wesdr,id.basis=fit.wsd$id)

sum.fit.a <- summary(fit.wsd.a,diag=TRUE)

round(sum.fit.a$kappa,2)

# dur bmi gly

# 1.01 1.04 1.03

round(sum.fit.a$pi,2)

http://www.pstat.ucsb.edu/faculty/yuedong/software.html
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FIGURE 5.12. Factors affecting diabetic retinopathy progression. Left : Effect of
duration of diabetes. Center : Effect of percent of glycosylated hemoglobin. Right :
Effect of body mass index. The logit components are in solid lines and the 95%
Bayesian confidence intervals in faded. The rugs on the bottom mark the sampling
points.

# dur bmi gly

# 0.13 0.07 0.79

round(sum.fit.a$cos,2)

# dur bmi gly yhat y e

#cos.y 0.18 0.10 0.32 0.39 1.00 0.93

#cos.e 0.04 0.02 0.00 0.02 0.93 1.00

#norm 3.61 3.75 9.79 10.49 28.00 25.75

project(fit.wsd.a,c("dur","bmi"))$ratio

# 0.7306119

project(fit.wsd.a,c("dur","gly"))$ratio

# 0.08031866

project(fit.wsd.a,c("bmi","gly"))$ratio

# 0.08023298

est.dur <- predict(fit.wsd.a,wesdr,se=TRUE,inc="dur")

est.bmi <- predict(fit.wsd.a,wesdr,se=TRUE,inc="bmi")

est.gly <- predict(fit.wsd.a,wesdr,se=TRUE,inc="gly")

Binary data are intrinsically noisy and the weighted least squares is only
a local approximation, so the consine diagnostics are not as easy to cali-
brate. The Kullback-Leibler projection however suggests that none of the
remaining terms can be eliminated. The fitted logit components are plot-
ted in Fig. 5.12 along with the respective Bayesian confidence intervals. The
effect of glycosylated hemoglobin was linear and was dominant. The rugs
on the bottom of the plots mark the marginal sampling points, and it is
comforting to see that the standard errors are larger in sparse areas.
The deviance of the additive fit is 746.76 and that of the full interaction

fit is 742.46. For comparison, a linear logistic regression yields a deviance
of 780.98, with the duration effect insignificant (p-value 0.45).
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5.5.4 Colorectal Cancer Mortality Rate

Information concerning cancer deaths in the United States is scattered in
government registries. The county-wise death counts of colorectal cancer
patients during years 2000–2004 in the state of Indiana were compiled by
Tonglin Zhang and Ge Lin, along with selected demographic information
from Census 2000 and geographic locations of the county governments. Part
of the data are included in gss as a data frame ColoCan, with elements pop
(population in 2000), event (death count of colorectal cancer), sex, wrt
(proportion of whites), brt (proportion of blacks), ort (proportion of other
minorities), scrn (screening rate for adults over 50), lat (latitude), lon
(longitude), and geog; geog is a matrix with two columns of x-y coordinates
as given in (4.32), where (φ0, θ0) is taken as Indianapolis, the state capital
located in Marion county. The variables pop and event are given for males
and females separately so there are a total of 184 rows for the 92 counties,
with the top 92 rows containing the male data and the next 92 containing
the female data; the racial proportions are however for both sexes together.
One may fit a standard Poisson regression model Y ∼ Poisson(eη(x)δ),

where Y is the event count, δ is the population, and the log mortality rate
η(x) is a function of covariates:

data(ColoCan); set.seed(5732)

fit.cc.0 <- gssanova(event~sex*(geog+brt+ort+scrn),

"poisson",offset=log(pop),

data=ColoCan,nbasis=40)

where nbasis=40 sets q = 40; gssanova1 again ran into numerical problems
with this data set whereas gssanova is reliable as usual. Note that only
two of wrt, brt, and ort can be included as they add up to one. The terms
scrn, sex:brt, sex:ort, and sex:scrn are negligible:

project(fit.cc.0,c("sex","geog",

"sex:geog","brt","ort"))$ratio

# 0.01886593

Trying to remove one more term from the model, however, would result in
KL(η̂, η̃)/KL(η̂, ηc) > 7.7%, so the remaining terms are indispensable.
The colorectal cancer screening rate for adults over 50 was found by

Zhang and Lin (2009) to be a significant factor that impacted the mortality
rate, but geography and racial proportions were not used as covariates
there. In our fit here, the screening effect appears to have been accounted
for by the other effects in the model.
We now fit the model with five terms in the log mortality rate:

fit.cc <- gssanova(event~sex*geog+brt+ort,"poisson",

offset=log(pop),data=ColoCan,

id.basis=1:184)



5.5 Case Studies 209

where id.basis=1:184 sets q = n. The joint effect of sex and geog can be
depicted in two mortality maps, one for each sex. To evaluate such a map
on a grid, say that for male, one may try:

x.gd <- seq(-.024,.017,length=42)

y.gd <- seq(-.031,.033,length=65)

grid <- cbind(rep(x.gd,65),rep(y.gd,rep(42,65)))

est.g.m <- predict(fit.cc,data.frame(geog=I(grid),

sex=as.factor(rep("M",42*65))),

TRUE,c("sex","geog","sex:geog"))

where sex must be a factor. One can then plot the mortality map:

library(maps)

map("county","indiana",col=5)

m.lat <- ColoCan$lat[49]; m.lon <- ColoCan$lon[49];

lon.gd <- xy2ltln(cbind(x.gd,0),c(m.lat,m.lon))[,2]

lat.gd <- xy2ltln(cbind(0,y.gd),c(m.lat,m.lon))[,1]

contour(lon.gd,lat.gd,matrix(est.g.m$fit,42,65),

lty=3,add=T)

contour(lon.gd,lat.gd,matrix(est.g.m$se,42,65),

levels=.08,lty=5,add=T)

where the R function xy2ltln is from §4.3.4 on page 140 and m.lat, m.lon
mark the geographic location of Indianapolis/Marion county. The effects
of racial proportions can be similarly obtained:

est.brt <- predict(fit.cc,ColoCan,TRUE,"brt")

est.ort <- predict(fit.cc,ColoCan,TRUE,"ort")

Shown in Fig. 5.13 are the two mortality maps and the effects of racial
proportions. The 0.08 contours of the standard errors of the mortality maps
trace the state boundary closely. Indianapolis and its vicinity enjoy the low-
est mortality rate whereas the highest is midway between Indianapolis and
Chicago. To compare the mortality rates at Indianapolis/Marion county
(49th) and at Purdue/Tippecanoe county (79th), one may try:

est1 <- predict(fit.cc,ColoCan[c(49,79,141,171),],

inc=c("sex","geog","sex:geog"))

exp(est1[2]-est1[1])

# 1.741715

exp(est1[4]-est1[3])

# 1.637541

where the 141st and 171st data entries are for females in Marion and
Tippecanoe counties, respectively. The effects of racial proportions turn
out to be linear, with blacks suffering higher mortality rate and other mi-
norities enjoying lower mortality rate; the equivalent fit using (wrt,bwt)
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FIGURE 5.13. Components of log mortality rate of colorectal cancer. Left and
Center : Geographic pattern for males (left) and females (center), with Marion
county (*) and Tippecanoe county (+) marked; the 0.08 contours of standard
errors are in dashed lines. Right : Effects of racial proportions.

has both slopes positive and that using (wrt,owt) has both slopes negative.
It is well known that blacks have the highest colorectal cancer mortality
rate, whites the second highest, with other races below them.
The deviance of fit.cc.0 is 174.10 and that of fit.cc is 168.62.

5.6 Bibliographic Notes

Section 5.1

Penalized likelihood regression was formulated and studied by O’Sullivan,
Yandell, and Raynor (1986); see also Silverman (1978) and Green and Yan-
dell (1985). Fits with multiple penalty terms were found in Gu (1990) and
Wahba, Wang, Gu, Klein, and Klein (1995), among others.
A standard reference on linear parametric regression with exponential

family responses, better known as generalized linear models, is McCullagh
and Nelder (1989), where extensive discussions can be found on the proper-
ties of exponential families and on the use of iterated weighted least squares
in the fitting of generalized linear models.
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Section 5.2

A suggestion in the early literature was to compute the minimizer ηλ of
(5.1) for fixed λ, evaluate Vw(λ|η̃) at η̃ = ηλ, and compare such Vw(λ)
values on a grid of λ. This amounts to comparing the scores on the dashed
slice in Fig. 5.1. Since Vw(λ|η̃) with different η̃ are not comparable, this
approach is ineffective, as was shown in Gu (1992a).
Performance-oriented iteration was used implicitly by Gu (1990), but the

mechanism and the related issues were not understood until Gu (1992a).
The direct cross-validation through V0(λ) of (5.9) was proposed by Cox
and Chang (1990). Xiang and Wahba (1996) derived the more effective
and computable GACV score Vg(λ). Gu and Xiang (2001) derived the nu-
merically stable, readily computable V ∗

g (λ) and proved the equivalence of
Vg(λ) and V

∗
g (λ).

Section 5.3

The adaptation of Bayesian confidence intervals for non-Gaussian regres-
sion was proposed and illustrated in Gu (1992c). Examples of component-
wise intervals were shown in Wahba, Wang, Gu, Klein, and Klein (1995).

Hypothesis “testing” via Kullback-Leibler projection was developed in
Gu (2004).

Section 5.4

The original gssanova suite was part of the gss package in its first public
release dated back to 1999. GRKPACK, a collection of RATFOR routines
implementing the performance-oriented iteration, was put together earlier
by Wang (1997).
Extensive discussion of binomial, Poisson, and gamma distributions can

be found in McCullagh and Nelder (1989). Facts concerning the inverse
Gaussian distribution can be found in Chhikara and Folks (1989). General-
ized linear model for the negative binomial family is discussed in Venables
and Ripley (2002, §7.4).
The customizations of the direct cross-validation in the gamma, inverse

Gaussian, and negative binomial families have not appeared in the
literature.

Section 5.5

Various versions of the Old Faithful eruption data have been used in the
literature to showcase regression and density estimation techniques; see,
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e.g., Azzalini and Bowman (1990), Härdle (1991), and Scott (1992), among
others. A nice discussion of density estimation through Poisson regression
can be found in Lindsey (1997, Chap. 3).
The sunspot data or subsets thereof are among the most popular exam-

ples being used in textbooks and research articles on time series analysis.
Spectral estimation through gamma regression was studied by Pawitan and
O’Sullivan (1994); see also Cogburn and Davis (1974) and Wahba (1980).
Detailed descriptions of the WESDR data can be found in, e.g., Klein,

Klein, Moss, Davis, and DeMets (1988, 1989), among others. The analysis
presented here differs slightly from the one found in Wahba, Wang, Gu,
Klein, and Klein (1995).
The Indiana colorectal cancer mortality data were compiled by Tonglin

Zhang and Ge Lin and were analyzed in Zhang and Lin (2009).

5.7 Problems

Section 5.1

5.1 Consider the functional L(f) = −
∑n

i=1

{
Yif(xi) − b(f(xi))

}
in a

reproducing kernel Hilbert space H with a square seminorm J(f).

(a) Prove that L(f) is continuous, convex, and Fréchet differentiable.

(b) Let {φν , ν = 1, . . . ,m} be a basis of NJ =
{
f : J(f) = 0

}
and S be

n×m with the (i, ν)th entry φν(xi). Prove that if S is of full column
rank, then L(f) is strictly convex in NJ .

(c) Prove that if S is of full column rank, then L(f) + λJ(f) is strictly
convex in H.

Section 5.2

5.2 Prove Theorem 5.2.

5.3 Rewrite (3.12) on page 64 as

Aw(λ) = I − nλW−1/2(M−1 −M−1S(STM−1S)−1STM−1)W−1/2,

where M = Q + nλW−1. Let S = FR∗ = (F1, F2)(R
O ) = F1R be the

QR-decomposition of S with F orthogonal and R upper-triangular.

(a) Show that

M−1 −M−1S(STM−1S)−1STM−1

= F2(F
T
2 QF2 + nλFT

2 W
−1F2)

−1FT
2 .
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(b) Let H = (W + nλF2(F
T
2 QF2)

+FT
2 )−1. For FT

2 QF2 nonsingular,
verify that Aw(λ)(W

1/2HW 1/2)−1 = I.

5.4 Consider U∗(λ) as given in (5.19) for penalized least squares regression.

(a) Show that Vg(λ) of (5.18) reduces to U
∗(λ).

(b) Assume n−1ηT
(
I − A(λ)

)
η = o(1), where ηT =

(
η(x1), . . . , η(xn)

)
.

If, in addition, Condition 3.2.1 of §3.2.1 also holds, that nR(λ)→∞,
show that U∗(λ)− L(λ)− n−1εT ε = op

(
L(λ)

)
.

Section 5.3

5.5 Prove (5.20).

5.6 Prove (5.21).

5.7 Verify (5.26); set η = η̃+α(η̃−ηc) in (5.25) for α real and differentiate
with respect to α.

Section 5.4

5.8 Show that u = dl/dη = −y +mp and w = d2l/dη2 = mp(1 − p) for
the binomial minus log likelihood l(η; y) in (5.27) with η = log

{
p/(1−p)

}
.

5.9 Show that u = dl/dη = −y + λ and w = d2l/dη2 = λ for the Poisson
minus log likelihood l(η; y) in (5.29) with η = logλ.

5.10 Derive the minus log likelihood (5.32) for the gamma family.

5.11 Derive the minus log likelihood (5.35) for the inverse Gaussian family.

5.12 Derive the probability density (5.38) for composite Poisson data with
Y ∼ Poisson(λ) and λ ∼ Gamma

(
ν, (1− p)/p

)
.

5.13 Derive the minus log likelihood (5.39) for the negative binomial
family with η = log

{
p/(1− p)

}
.

5.14 Show that for the negative binomial minus log likelihood l(η; y) in
(5.39) with η = log

{
p/(1−p)

}
, u = dl/dη = (ν+y)p−ν and w = d2l/dη2 =

(ν + y)p(1− p).
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Section 5.5

5.15 Round the faithful data into an uneven histogram using break
points seq(1.5,5.25,length=61)[-(1:20)*3]. Estimate the per-second
intensity using the uneven histogram and compare the estimate with the
ones plotted in Fig. 5.10.



6
Regression with Correlated Responses

When responses are correlated in regression settings, (3.1) and (5.1) need
to be modified to incorporate correlation. For the model components to be
identifiable from each other, the correlation can not be arbitrary but struc-
tured around a limited number of parameters, say γ, and the correlation
structure should not be dependent on the covariate x. Of primary interest
is the selection of tuning parameters, which now consist of the smoothing
parameters in λJ(η) and the correlation parameters γ.
Commonly used correlation models include random effects and station-

ary time series. With random effects, the covariance matrix W−1 of the
responses typically differ from σ2I by some low-rank matrix update, and
one may work with the joint likelihood of the fixed effect η(x) and the
random effects (§6.2); the variance components are effectively turned into
“mean components,” the tools developed for independent data are readily
applicable, and the asymptotic optimality of cross-validation carries over.
For correlation models with W−1 “far” from diagonal such as stationary
time series models, optimal smoothing is possible via certain extensions of
cross-validation (§6.3). Software tools are illustrated using simulated and
real-data examples.
We are not aware of a mechanism in which one may characterize the

“limiting behavior” of correlation structures, so no results are available
concerning the asymptotic convergence of estimates based on correlated
data.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 6,
© Springer Science+Business Media New York 2013
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6.1 Models for Correlated Data

Consider observations Yi = η(xi) + εi, i = 1, . . . , n, where (ε1, . . . , εn)
T =

ε ∼ N(0, σ2W−1). When W is known, one may estimate η = φTd + ξT c
via the minimization of

(Y − Sd−Rc)TW (Y − Sd−Rc) + nλ cTQc, (6.1)

where the notation is as in (3.61) and (3.62) of §3.5. Let W−1 = CTC
be the Cholesky decomposition of W−1, so W = C−1C−T . One may ob-
tain a solution of (6.1) by replacing (Y, S, R) in (3.63) on page 86 with
(Yw, Sw, Rw) = C−T (Y, S, R). For R = Q with q = n, one may alterna-
tively solve (3.10) using the algorithms of §3.4, but with C−T replacing
W 1/2 in the definitions of the respective Qw, cw , Sw and Yw in (3.10).
Relevant results in §3.2.4 also hold for W not diagonal.
When W involves unknown parameters, say γ, new tools are needed for

the estimation of η(x) with automatic tuning parameters (λ, γ). The tools
are developed for some commonly used models ofW , which include random
effects for longitudinal or clustered data and time series models for data
with serial correlations.

6.1.1 Random Effects

Let εi = ai + zTi b, where ai ∼ N(0, σ2) are independent of each other and
of b ∼ N(0, σ2B). One has W−1 = I + ZBZT , where Z = (z1, . . . , zn)

T .
The term zTi b contains the random effects as opposed to the fixed effect

η(xi). B is typically structured with unknown parameters. The terms of
σ2W−1 = σ2(I + ZBZT ) are also known as variance components.

Example 6.1 (Longitudinal data) Consider longitudinal data Yi =
η(xi) + bsi + ai, where Yi is taken from subject si ∈ {1, . . . , p} with covari-
ate xi, where bs ∼ N(0, σ2

s) is the subject random effect, independent of
the measurement error ai and of each other. B = γIp with γ = σ2

s/σ
2 to

be specified. �

Example 6.2 (Clustered data) Consider clustered data Yi = η(xi) +
bci + ai, such as those from multi-center studies, where Yi is taken from
cluster ci ∈ {1, . . . , p}with covariate xi. The intra-cluster correlation within
cluster c is seen to be σ2

c/(σ
2+σ2

c ), c = 1, . . . , p. B = diag(γ1, . . . , γp) with
p unknown parameters γc = σ2

c/σ
2, as there is no reason to assume a

common intra-cluster correlation. �

6.1.2 Stationary Time Series

The spectral density of a stationary time series can be approximated
arbitrarily closely by that of an autoregressive-moving-average (ARMA)
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process. Consider a stationary and invertible ARMA process of order (p, q)
(ARMA(p,q)) for εi,

(1 − ϕ1B − · · · − ϕpB
p)εi = (1− θ1B − · · · − θqB

q)ai, (6.2)

where p, q ≥ 0, ai ∼ N(0, σ2), i = . . . ,−2,−1, 0, 1, 2, . . . are independent,
and B is the backward shift operator, Bεi = εi−1 and Bai = ai−1; the
polynomials ϕ(x) = 1 − ϕ1x− · · · − ϕpx

p and θ(x) = 1− θ1x− · · · − θqx
q

have all of their roots outside of the unit circle, and ϕ(x) and θ(x) share
no common root.
W−1 are generally not available in simple forms of ϕj ’s and θk’s, but

the (j, k)th entry of σ2W−1 can be expressed as
∫ 0.5

−0.5
ei2π(j−k)ωp(ω)dω, for

i =
√
−1, where p(ω) = σ2|θ(e−i2πω)|2/|ϕ(e−i2πω)|2 is the power spectrum

of the process.

Example 6.3 (AR(1) model) For p = 1 and q = 0, εi = γεi−1 + ai,
where |γ| < 1. One has

W−1 =
1

1− γ2

⎛

⎜
⎜
⎜
⎝

1 γ γ2 · · · γn−1

γ 1 γ · · · γn−2

...
...

... · · ·
...

γn−1 γn−2 γn−3 · · · 1

⎞

⎟
⎟
⎟
⎠
. �

Example 6.4 (MA(1) model) For p = 0 and q = 1, εi = ai − γai−1,
where |γ| < 1. One has

W−1 =

⎛

⎜
⎜
⎜
⎝

1 −γ 0 · · · 0
−γ 1 + γ2 −γ · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎠
. �

The W−1 matrices of AR(1) and MA(1) models are inverses of each other;
see Problem 6.1.

6.2 Mixed-Effect Models and Penalized Joint
Likelihood

Using the random-effect model of §6.1.1 for correlated data but with a
slight change in notation, consider a mixed-effect model

Yi = η(xi) + zTi b+ εi, (6.3)
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i = 1, . . . , n, where b ∼ N(0, σ2B), εi ∼ N(0, σ2), independent of b and of
each other. We shall estimate the fixed effect η(x) and the random effects
zTb jointly via the minimization of

1

n

n∑

i=1

(
Yi − η(xi)− zTi b

)2
+

1

n
bTΣb+ λJ(η), (6.4)

where Σ = B−1 > 0; note that we are working with the log joint likelihood
of (η,b) instead of the log marginal likelihood of η appearing in (6.1). When
the random-effects zTb are not interpretable, such as in Example 6.2, the
estimation via (6.4) turns variance components into “mean components.”
The tuning parameters for (6.4), which include the smoothing parame-

ters in λJ(η) and the correlation parameters in Σ, can be selected using the
methods of §3.2. The Bayes model is briefly noted, from which the Bayesian
confidence intervals can be readily calculated. The selection of tuning pa-
rameters via generalized cross-validation is asymptotically optimal, and its
empirical performance is assessed through simple simulations. The square
error projection of §3.8 can be computed with the random effects zTb
treated as an offset.
Mixed-effect models can also be used in non-Gaussian regression. Soft-

ware tools are illustrated using simulated examples.

6.2.1 Smoothing Matrices

Plugging η = φTd+ ξT c into (6.4), one minimizes

(Y − Sd−Rc− Zb)T (Y − Sd−Rc− Zb) + bTΣb+ nλ cTQc (6.5)

with respect to (d, c,b), where S, R, and Q are as in (3.62) on page 85
and Z = (z1, . . . , zn)

T is n × p. Write R̆ = (S,R), Q̆ = diag(O,Q), and
c̆T = (dT , cT ). Differentiating (6.5) with respect to c̆ and b and setting
the derivatives to 0, one has

(
R̆T R̆ + nλ Q̆ R̆TZ

ZT R̆ ZTZ +Σ

)(
c̆
b

)

=

(
R̆TY
ZTY

)

. (6.6)

Ŷ = R̆c̆+ Zb = A(λ, γ)Y with the smoothing matrix

A(λ, γ) = (R̆, Z)

(
R̆T R̆+ nλ Q̆ R̆TZ

ZT R̆ ZTZ +Σ

)+(
R̆T

ZT

)

,

where γ denotes the correlation parameters in Σ and M+ denotes the
Moore-Penrose inverse of M . Using Problem 6.2(b), some algebra yields

A(λ, γ) = Ã(λ)+
(
I−Ã(λ)

)
Z
(
ZT
(
I−Ã(λ)

)
Z+Σ

)−1
ZT
(
I−Ã(λ)

)
, (6.7)
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where Ã(λ) = R̆(R̆T R̆+nλQ̆)+R̆T is the smoothing matrix in the absence
of random effects.
The scores U(λ) of (3.14), V (λ) of (3.23), and M(λ) of (3.30) are in

terms of the smoothing matrix A(λ) given in (3.8) and (3.69). Substituting
A(λ, γ) in the place of A(λ), one may use U(λ, γ), V (λ, γ), andM(λ, γ) for
the joint selection of (λ, γ).

6.2.2 Bayes Model

Under the Bayes model of §§2.5 and 3.5.2, which itself can be perceived as
a mixed-effect model with the fixed effect diffusing in NJ and the random
effects having proper priors, the random effects zTb simply augment terms
with proper priors, just like the parametric terms in the partial spline
models of §4.1 augment terms with diffuse priors.
Following §3.5.2, write η = η0 + η1 + η2 with independent compo-

nents, where η0 = Sd with d diffuse, E[η1] = E[η2] = 0, E
[
η1η

T
1

]
=

(σ2/nλ)RQ+RT , and E
[
η2η

T
2

]
= σ2Z Σ−1ZT ; i.e., E[η1 + η2] = 0 and

E
[
(η1 + η2)(η1 + η2)

T
]
= σ2 (R,Z)

(
Q+/nλ O
O Σ−1

)(
RT

ZT

)

.

Comparing (3.63) with (6.6) but fully spelled out,

⎛

⎝
STS STR STZ
RTS RTR+ nλQ RTZ
ZTS ZTR ZTZ +Σ

⎞

⎠

⎛

⎝
d
c
b

⎞

⎠ =

⎛

⎝
STY
RTY
ZTY

⎞

⎠,

it is clear that everything in §3.5.2 remains intact with (R,Z) replacing R
and diag(nλQ,Σ) replacing nλQ.

6.2.3 Optimality of Generalized Cross-Validation

We now present results parallel to Theorems 3.1 and 3.3 concerning the
use of U(λ, γ) and V (λ, γ) for the selection of tuning parameters in (6.4).
We shall motivate the ideas, discuss the conditions, and list the theorems.
The proofs, to be found in Gu and Ma (2005b), are somewhat involved.
First consider the mean square error at the data points,

L1(λ, γ) =
1

n

n∑

i=1

(
Ŷi − η(xi)− zTi b

)2
, (6.8)

which is a natural loss when the random effects zTb are interpretable, or
real. Parallel to (3.15) on page 65, one has
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U(λ, γ)− L1(λ, γ)− n−1εT ε

=
2

n
(η + Zb)T

(
I −A(λ, γ)

)
ε− 2

n

(
εTA(λ, γ)ε − σ2trA(λ, γ)

)
; (6.9)

see Problem 6.3. To bound (Zb)T
(
I −A(λ, γ)

)
ε, one needs

Condition 6.2.1 Σ
(
ZT
(
I − Ã(λ)

)
Z + Σ

)−1
Σ has eigenvalues bounded

from above.

The condition holds for Σ with its largest eigenvalue bounded from above,
or growing at a rate of up to

√
n when that of ZT

(
I − Ã(λ)

)
Z grows at a

rate of n. Write R1(λ, γ) = E
[
L1(λ, γ)

]
.

Condition 6.2.2 nR1(λ, γ)→∞ as n→∞ and λ→ 0,

This is virtually Condition 3.2.1.

Theorem 6.1 Under Conditions 6.2.1 and 6.2.2, as n→∞ and λ→ 0,

U(λ, γ)− L1(λ, γ)− n−1εT ε = op
(
L1(λ, γ)

)
.

Condition 6.2.3
{
n−1trA(λ, γ)

}2
/
{
n−1trA2(λ, γ)

}
→ 0 as n → ∞ and

λ→ 0.

This is Condition 3.2.2. If trÃ(λ) � λ−1/r and trÃ2(λ) � λ−1/r as λ → 0
and nλ1/r → ∞ (see §4.2.3), then Condition 6.2.3 holds for p up to the
order O

(√
n
)
; see Gu and Ma (2005b, Lemma 4.2).

Theorem 6.2 Under Conditions 6.2.1–6.2.3, as n→∞ and λ→ 0,

V (λ, γ)− L1(λ, γ)− n−1εT ε = op
(
L1(λ, γ)

)
.

We now turn to the case where the random effects zTb are not inter-
pretable, or latent, for which the loss L1(λ, γ) of (6.8) may not make much
practical sense. Write PZ = Z(ZTZ)+ZT and P⊥

Z = I − PZ . Consider

the estimation of P⊥
Z η by P⊥

Z η̂, where η̂ = R̆c̆; the projection ensures the
identifiability of the target function. Accounting for the error covariance
σ2(I + Z Σ−1ZT ), one may assess the estimation precision via the loss

L2(λ, γ) =
1

n
(η̂ − η)TP⊥

Z (I + Z Σ−1ZT )−1P⊥
Z (η̂ − η).

Now (I + Z Σ−1ZT )−1 = I − Z(ZTZ +Σ)−1ZT (Problem 6.4), so

L2(λ, γ) =
1

n
(η̂ − η)TP⊥

Z (η̂ − η), (6.10)

which is independent of Σ. Write R2(λ, γ) = E
[
L2(λ, γ)

]
.
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Condition 6.2.4 R1(λ, γ)−R2(λ, γ) = o
(
R1(λ, γ)

)
as n→∞ and λ→ 0.

The condition is a mild one for p fixed; see Gu and Ma (2005b, Lemma 4.3).
Conditions 6.2.2 and 6.2.4 together imply that nR2(λ, γ)→∞.

Theorem 6.3 Under Conditions 6.2.1, 6.2.2, and 6.2.4, as n → ∞ and
λ→ 0,

U(λ, γ)− L2(λ, γ)− n−1εT ε = op
(
L2(λ, γ)

)
.

If, in addition, Condition 6.2.3 also holds, then

V (λ, γ)− L2(λ, γ)− n−1εT ε = op
(
L2(λ, γ)

)
.

With a mixture of real and latent random effects, say Zb = Z1b1+Z2b2,
where Z = (Z1, Z2) and bT = (bT

1 ,b
T
2 ) for b1 and b2 independent, one

may use the loss

L3(λ, γ) =
1

n
(η̂ + Z1b̂1 − η − Z1b1)

TP⊥
Z2
(η̂ + Z1b̂1 − η − Z1b1). (6.11)

Theorem 6.3 can be replicated for L3(λ, γ), but with R3(λ, γ) = E
[
L3(λ, γ)

]

replacing R2(λ, γ) in Condition 6.2.4.
In summary, generalized cross-validation delivers asymptotically optimal

smoothing for the estimation of mixed-effect models via (6.4), regardless of
the nature of the random effects zTb. The dimension of real random effects
may grow at a rate of up to

√
n, but that of latent random effects should be

fixed. Similar to Theorems 3.1 and 3.3, the available results only provide
poor man’s justification, as the theorems only concern deterministic tuning
parameters.

6.2.4 Empirical Performance

Samples were drawn from Yi = η(xi)+bsi +εi, i = 1, . . . , 100, where η(x) =
1 + 3 sin(2πx− π), xi ∼ U(0, 1), εi ∼ N(0, 0.52), bs ∼ N(0, 0.52), and si ∈
{1, . . . , 5}, 20 each. With B = γI5, cubic spline estimates were calculated
that minimized L1(λ, γ) of (6.8) at (λo, γo) and V (λ, γ) at (λv, γv) with
α = 1, 1.4. The results from one hundred replicates are summarized in
Fig. 6.1, with the relative efficacy L1(λo, γo)/L1(λv , γv) in the boxplots in
the left half of the left frame and L1(λv, γv) for α = 1 versus that for
α = 1.4 in the center frame.
Perceiving the same data as clustered, estimates were also calculated

with B = diag(γ1 . . . γ5) that minimized L2(λ, γ) of (6.10) and V (λ, γ).
Respective results are also summarized in Fig. 6.1, in the right half of the
left frame and in the right frame.
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FIGURE 6.1. Effectiveness of V (λ, γ) in mixed-effect simulations. Left : Relative
efficacy L(λo, γo)/L(λv , γv), for α = 1 (wider boxes) and α = 1.4 (thinner boxes).
Center : L1(λv, γv) for α = 1 versus that for α = 1.4. Right : L2(λv, γv) for α = 1
versus that for α = 1.4.

6.2.5 Non-Gaussian Regression

The random effects zTb can also be used in non-Gaussian regression to
model correlated data. Replacing η(x) by η(x) + zTb in the families of
Chap. 5, one may estimate η(x) and b via the minimization of

1

n

n∑

i=1

li
(
η(xi) + zTi b;Yi

)
+

1

2n
bTΣb+

λ

2
J(η), (6.12)

where li(ζ; y) is the minus log likelihood associated with Yi. For the mini-
mization of (6.12), one may iterate on weighted versions of (6.4), and the
tuning parameters can be selected through performance-oriented iteration
driven by Uw(λ, γ)/Vw(λ, γ) or via direct cross-validation. Approximate
Bayesian confidence intervals can be calculated based on the quadratic
approximation of (6.12) at the converged fit, and the Kullback-Leibler pro-
jection of §5.3.2 can be computed with zTb treated as an offset.

6.2.6 R Package gss: Optional Argument random

Mixed-effect models for Gaussian and non-Gaussian regression can be fit-
ted using ssanova, gssanova, or gssanova1 with an additional argument
random, which can be a formula or a list.
The following sequence generates some synthetic longitudinal data and

fits a model with B = γI5 as stipulated in Example 6.1:

id <- rep(1:5,rep(20,5))

b <- rnorm(5)/2

eps <- rnorm(100)/2+b[id[1:100]]

x <- runif(100)

y <- 1+3*sin(2*pi*x-pi)+eps

id <- as.factor(id)

fit.long <- ssanova(y~x,random=~1|id)
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If the data are to be perceived as clustered, a model can be fitted with
B = diag(γ1, . . . , γ5) as stipulated in Example 6.2:

fit.cluster <- ssanova(y~x,random=~id|id)

More generally, one may specify random=~id1|id2, with the levels of id2
possibly “refining” those of id1, or the levels of id1 possibly “collapsed”
from those of id2, say

id1 <- rep(1:3,rep(4,3)); id2 <- rep(1:6,rep(2,6))

but not

id1 <- rep(1:3,rep(4,3)); id2 <- rep(1:6,2)

Each level of id2 corresponds to a column in Z, and each level of id1 is
associated with a correlation parameter γ.
For general mixed-effect models, one may specify (Z,Σ) via

random=list(z=...,sigma=...,init=...)

where z contains the Z matrix, sigma gives Σ through

sigma$fun(gamma,sigma$env)

with γ in gamma and constants in sigma$env, and init provides initial
values of γ; γ should be properly parameterized to be free of constraint.

6.3 Penalized Likelihood with Correlated Data

Working with (6.1) for W involving unknown parameters, one needs to se-
lect both the smoothing parameters and the correlation parameters. M(λ)
of §3.2.3 can be readily extended under the Bayes model, but effective
counterparts of U(λ) and V (λ) take a few turns to derive.
We first discuss the Bayes model, then introduce extensions of U(λ)

and V (λ) for tuning parameter selection. The asymptotic optimality of the
selection methods are outlined, followed by the assessment of their empirical
performances via simulations. Software tools are illustrated using simulated
examples.
To cut down on clutter, the dependence of quantities on λ and γ are

often omitted in the notation, except in the statements of conditions and
theorems.

6.3.1 Bayes Model

Parallel to (3.63), the minimizer of (6.1) satisfies
(
STWS STWR
RTWS RTWR+ nλQ

)(
d
c

)

=

(
STWY
RTWY

)

. (6.13)
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Most of the calculations in §3.5.2 remain valid but with a redefined M =
RQ+RT+nλW−1. Specifically, (3.65)–(3.68) hold verbatim for the modified
M , with d and c given in (3.66) solving (6.13), and (3.69) becomes

A = I − nλW−1(M−1 −M−1S(STM−1S)−1STM−1), (6.14)

where Ŷ = Sd+ Rc = AY; note that WA is symmetric here, not A. For
W−1 = CTC, one has Ŷw = AwYw, where Yw = C−TY, Ŷw = C−T Ŷ,

Aw = I − nλC(M−1 −M−1S(STM−1S)−1STM−1)CT ; (6.15)

see also Problem 6.5. Aw = C−TACT and I −Aw = C−T (I −A)CT .
With the modified M , (3.70) on page 87 still holds for REML, but now

(FT
2 MF2)

−1 = (nλ)−1FT
2 W (I −A)F2,

F2(F
T
2 MF2)

−1FT
2 = (nλ)−1W (I −A).

The numerator of (3.70) is thus

n−1(nλ)−1YTW (I −A)Y = n−1(nλ)−1YT
w(I −Aw)Yw,

where W (I −A) = C−1(I −Aw)C
−T . Using Problem 3.17,

∣
∣(nλ)−1FT

2 MF2

∣
∣ =
∣
∣(nλ)−1FT

2 RQ
+RTF2 + FT

2 W
−1F2

∣
∣

=
∣
∣FT

2 W
−1F2

∣
∣
∣
∣I + (nλ)−1Q+RTF2(F

T
2 W

−1F2)
−1FT

2 R
∣
∣

=
∣
∣FT

2 W
−1F2

∣
∣
∣
∣I + (nλ)−1Q+RT

wFw(F
T
wFw)

−1FT
wRw

∣
∣,

where Rw = C−TR and Fw = CF2. Let Sw = (F̃1, F̃2)
(
R̃
O

)
be the QR-

decomposition of Sw = C−TS. Since ST
w F̃2 = O = STF2 = ST

wFw, Fw

and F̃2 have the same column space, thus Fw(F
T
wFw)

−1FT
w = F̃2F̃

T
2 . The

denominator of (3.70) is then seen to be

(nλ)−1
(
|FT

2 W
−1F2| |I −Aw|+

)1/(n−m)
;

compare with (3.75) on page 89. Putting things together, one has

M̃(λ, γ) =
n−1YT

w(I −Aw)Yw
∣
∣I −Aw

∣
∣1/(n−m)

+

1
∣
∣FT

2 W
−1F2

∣
∣1/(n−m)

. (6.16)

WhenW is known, |FT
2 W

−1F2| is a constant, in which case (6.16) is equiv-
alent to (3.35) on page 72; this formally validates our earlier use of (3.35)
for weighted data.
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6.3.2 Extension of Cross-Validation

We now extend U(λ) and V (λ) of §3.2 for the joint selection of (λ, γ);
playing a central role in the derivation is the minus log likelihood,

1

2σ2
(Y − η)TW (Y − η)− 1

2
log |W |+ n

2
log σ2 +

n

2
log 2π. (6.17)

For σ2W−1 = σ2CTC known, one may select λ via the minimization of

Uw(λ) =
1

n
YT

w(I −Aw)
2Yw + 2

σ2

n
trAw, (6.18)

whereYw = C−TY and Aw is as in (6.15); this is simply (3.33) but withW
non-diagonal, and Theorem 3.5 still holds for Lw(λ) = (ηλ−η)TW (ηλ−η),
where ηTλ =

(
ηλ(xi), . . . , ηλ(xn)

)
. It is noted that (n/2σ2)Uw(λ) consists

of the minus log likelihood plus a penalty term trAw , but with terms in
(6.17) that do not depend on λ dropped; note that

(Y − η)TW (Y − η) = YT (I −A)TW (I −A)Y = YT
w(I −Aw)

2Yw.

With σ2 known but W = C−1C−T dependent on γ, one may add back the
term −(1/2) log |W | in (6.17) and scale properly, yielding, for α = 1,

Ũ(λ, γ) =
1

nσ2
YT

w(I −Aw)
2Yw −

1

n
log |W |+ α

2

n
trAw. (6.19)

For σ2 unknown, one may minimize (6.17) with respect to σ2, plug into
(6.17) the minimizer σ̂2 = n−1

{
YT

w(I − Aw)
2Yw

}
to obtain the profile

likelihood, and then add the penalty term trAw, properly scaled, to the
profile likelihood. This yields

Ṽ (λ, γ) = log
{
n−1YT

w(I −Aw)
2Yw

}
− 1

n
log |W |+ α

2

n
trAw, (6.20)

where terms free of (λ, γ) are dropped. For W = I and μ = trA/n = o(1),
(6.20) reduces to

log
{
(n−1YT (I −A)2Y)e2μ

}

= log

{
n−1YT (I −A)2Y

(1− μ)2
(
1 +O(μ2)

)
}

= log
{
V (λ)

(
1 +O(μ2)

)}
.

An obvious drawback of (6.20) is that the third term is bounded from above
since I −Aw ≥ 0, while the first term will go to −∞ as Aw approaches I,
favoring interpolation. To guard against this, one may use

Ṽ∗(λ, γ) = log
{
n−1YT

w(I −Aw)
2Yw

}
− 1

n
log |W |+ α

2 trAw

n− trAw
; (6.21)

when μ = trAw/n = o(1), Ṽ∗(λ, γ)− Ṽ (λ, γ) = 2μ2
(
1 + o(1)

)
.
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6.3.3 Optimality of Cross-Validation

We now outline results parallel to Theorems 3.1 and 3.3 concerning the
use of Ũ(λ, γ), Ṽ (λ, γ), and Ṽ∗(λ, γ) for the selection of (λ, γ) in (6.1).
Technical details are to be found in Han and Gu (2008).
Let fη,W be the density of N

(
η, σ2W−1

)
. We use as loss the Kullback-

Leibler distance of f = fη,W from the true density f0 = fη0,W0 ,

n

2
L(λ, γ) = KL(f0, f) =

1

2σ2
(η − η0)

TW (η − η0)

+
1

2
tr
(
WW−1

0 − I
)
− 1

2
log
∣
∣WW−1

0

∣
∣, (6.22)

where the estimate f depends on λ and γ; see Problem 6.6. Parallel to
(3.15), it is straightforward to verify that (Problem 6.7)

Ũ(λ, γ)− L(λ, γ)− 1

nσ2
εTW0ε+

1

n
log |W0|

=
2

nσ2
ηT0 (I −A)TWε− 2

n

{ 1

σ2
εTATWε− trAw

}

+
1

n

{ 1

σ2
εT (W −W0)ε− tr

(
WW−1

0 − I
)}
. (6.23)

One can bound the terms on the right-hand side of (6.23) under regularity
conditions. Write R(λ, γ) = R

[
L(λ, γ)

]
.

Condition 6.3.1 R(λ, γ) → 0 and nR(λ, γ) → ∞ as λ → 0, nλ1/r → ∞,
and Wγ →W0.

Condition 6.3.1 assures that the estimates are risk consistent, but concedes
that the typical parametric convergence rates of O(n−1) are not achievable.
By Wγ →W0 we mean for Wγ in a shrinking neighborhood of W0 =Wγ0 ,
typically characterized by γ → γ0 at certain rates.

Condition 6.3.2 ±
(
W

1/2
γ W−1

0 W
1/2
γ − I

)
≤ ργI for some positive ργ =

O
(
R1/2(λ, γ)

)
as λ→ 0, nλ1/r →∞, and Wγ →W0.

Condition 6.3.2 requiresWγ to converge to W0 at a certain rate so that the
largest absolute eigenvalue of WγW

−1
0 − I is of the order O

(
R1/2(λ, γ)

)
.

Condition 6.3.3
{
n−1trAw(λ, γ)

}2
/
{
n−1trA2

w(λ, γ)
}
→ 0 as λ → 0 and

nλ1/r →∞.

Condition 6.3.3 holds in settings where trAw � trA2
w = o(n), and it implies

that μ = n−1trAw → 0 as n−1trA2
w ≤ n−1trAw ≤ 1.
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Theorem 6.4 Under Conditions 6.3.1–6.3.3, as λ → 0 and nλ1/r → ∞,
one has

Ũ(λ, γ)− L(λ, γ)− 1

nσ2
εTW0ε+

1

n
log |W0| = op

(
L(λ, γ)

)
.

To establish similar results for Ṽ (λ, γ) and Ṽ∗(λ, γ), one needs an addi-
tional condition.

Condition 6.3.4 n−1tr
(
WγW

−1
0 − I

)
= o
(
R1/2(λ, γ)

)
as λ→ 0, nλ1/r →

∞, and Wγ →W0.

Note that Condition 6.3.2 only guarantees that n−1tr
(
WγW

−1
0 − I

)
=

O
(
R1/2(λ, γ)

)
.

Theorem 6.5 Under Conditions 6.3.1–6.3.4, as λ → 0 and nλ1/r → ∞,
one has

Ṽ (λ, γ)− L(λ, γ)−K = op
(
L(λ, γ)

)
,

Ṽ∗(λ, γ)− L(λ, γ)−K = op
(
L(λ, γ)

)
,

with K = (nσ2)−1εTW0ε− n−1 log |W0|+ log σ2 − 1 independent of (λ, γ).

The proofs of the theorems under the conditions are straightforward al-
beit tedious, but the verifications of the conditions are much more involved;
the limit process is delicate here. Some key lemmas used in the verifications
of the conditions assume c1I ≤ W−1 ≤ c2I for some 0 < c1 < c2 < ∞,
where a healthy lower bound seems to be essential for the stable empirical
performance of Ṽ∗(λ, γ); see §6.3.4 below.
For the ARMA(p, q) process of §6.1.2, Conditions 6.3.1–6.3.4 were ver-

ified in Han and Gu (2008) for γ over a compact set Γ; in Examples 6.3
and 6.4, Γ = [−γ̄, γ̄] for some γ̄ < 1.
For the longitudinal data of Example 6.1, Conditions 6.3.1–6.3.4 were

verified when the number of observations from each subject is bounded
from above; it is necessary that p � n, invalidating the theory of §6.2.3
where p is allowed to grow but at a rate only up to

√
n.

The Kullback-Leibler loss of (6.22) involves W , so a γ that delivers a
small L(λ, γ) should be a good estimate of the true correlation parameter
γ0. In fact, the minimizers of L(λ, γ), Ũ(λ, γ), Ṽ (λ, γ), and Ṽ∗(λ, γ) for fixed
λ are

√
n-consistent under mild conditions, as λ→ 0 and nλ1/r →∞.

Once again, the theory provides a poor man’s justification for the prac-
tical use of Ũ(λ, γ), Ṽ (λ, γ), and Ṽ∗(λ, γ), as the theorems concern only
deterministic (λ, γ).
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FIGURE 6.2. Effectiveness of Ṽ∗(λ, γ) and M̃(λ, γ) in AR(1) simulations. Top:
Relative efficacy of M̃(λ, γ) (thinner boxes) and Ṽ∗(λ, γ) with α = 1, 1.4, in order.
Bottom: Estimation precision of δ = log

{
(1+γ)/(1−γ)

}
using M̃(λ, γ) (thinner

boxes) and Ṽ∗(λ, γ) with α = 1, 1.4, in order.

6.3.4 Empirical Performance

We now assess the empirical performances of Ṽ∗(λ, γ) and M̃(λ, γ) via
simulation studies. U(λ, γ) and V (λ, γ) are not as useful in practice, with
the former assuming a known σ2 and the latter having a global minimum
at λ = 0.
Data were generated from Yi = η(xi) + εi, i = 1, . . . , n, where η(x) =

1 + 3 sin(2πx − π), xi ∼ U(0, 1), and ε ∼ N
(
0, 0.52W−1

)
. Three sets of

simulations were conducted, with the AR(1) model of Example 6.3, the
MA(1) model of Example 6.4, and the longitudinal data of Example 6.1.
For the AR(1) and MA(1) simulations, samples of size n = 200 were

drawn with γ = 0,±0.3,±0.6,±0.9, one hundred replicates each. For each
replicate, cubic spline estimates were calculated that minimized L(λ, γ)
of (6.22) at (λo, γo), M̃(λ, γ) of (6.16) at (λm, γm), and Ṽ∗(λ, γ) of (6.21)
at (λv, γv) for α = 1, 1.4. The relative efficacy L(λo, γo)/L(λm, γm) and
L(λo, γo)/ L(λv, γv) for the AR(1) simulations are summarized in the top
frame of Fig. 6.2, and the estimation accuracy of γ, on the scale of δ =
log
{
(1 + γ)/ (1− γ)

}
, is summarized in the bottom frame. Parallel results

from the MA(1) simulations are shown in Fig. 6.3.
For the longitudinal simulations, n = 200 points were taken from 40 indi-

viduals, 5 each, with W−1 = I + γ diag(151
T
5 , . . . ,151

T
5 ). Data were drawn

with γ = 0, 0.5, 1, one hundred replicates each. The relative efficacy of
M̃(λ, γ) and Ṽ∗(λ, γ) are summarized in Fig. 6.4, along with the estimation
accuracy of γ on the scale of δ = γ/(1 + γ).
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FIGURE 6.3. Effectiveness of Ṽ∗(λ, γ) and M̃(λ, γ) in MA(1) simulations. Top:
Relative efficacy of M̃(λ, γ) (thinner boxes) and Ṽ∗(λ, γ) with α = 1, 1.4, in order.
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{
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}
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The results show that the methods do work in general, with Ṽ∗(λ, γ)
outperforming M̃(λ, γ). The methods however demonstrated performance
degradation in the MA(1) simulations with γ = ±0.6 and flatly broke down
with γ = ±0.9.
In search for an explanation for the MA(1) results, we observe that

(1/4)I ≤
(
1+|γ|

)−2
I ≤W−1 for the AR(1) model (Problem 6.1), I ≤W−1

for the longitudinal data, and
(
1−|γ|

)2
I ≤W−1 for the MA(1) model. For

|γ| close to 1, the W−1 matrix in the MA(1) model flirts with singularity.
For W = I, Ṽ∗(λ, γ) of (6.21) reduces to

V∗(λ) = log
{
n−1YT (I −A)2Y

}
+ α

2 trA

n− trA
, (6.24)
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which is different from V (λ) of (3.27). To compare the two cross-validation
scores for smoothing parameter selection, samples were drawn from Yi =
η(xi)+εi, i = 1, . . . , 100, where η(x) = 1+3 sin(2πx−π), xi ∼ U(0, 1), and
εi ∼ N(0, 1). For each of the one hundred replicates generated, estimates
were calculated that minimized V∗(λ) of (6.24) at λ

∗
v and V (λ) of (3.27) at

λv, both with α = 1. The 0, 25, 50, 75, and 100% quantiles of the loss ratio
L(λ∗v)/L(λv) are given by 0.50, 0.97, 1.00, 1.01, and 1.05, in order, where
L(λ) is as in (3.13). The respective quantiles of the loss ratio for α = 1.4
are 0.95, 1.00 1.01, 1.01, and 1.03.

6.3.5 R Package gss: ssanova9 Suite

Penalized likelihood regression with correlated Gaussian data are imple-
mented in the ssanova9 suite. The syntax is pretty much the same as that
of ssanova, except that the optional arguments weights and random are
replaced by a mandatory argument cov. The following sequence generates
data with independent noise but fits a model with AR(1) errors:

x <- runif(100)

y <- 1+3*sin(2*pi*x-pi)+rnorm(x)

fit.ar1 <- ssanova9(y~x,cov=list("arma",c(1,0)))

To obtain the estimated coefficient γ = ϕ1, use

para.arma(fit.ar1)$a

The following sequence generates data with MA(1) noise, fits a model with
MA(1) errors, and obtains the estimated γ = θ1:

eps <- rnorm(101); eps <- eps[-1]-.5*eps[-101]

x <- runif(100)

y <- 1+3*sin(2*pi*x-pi)+eps

fit.ma1 <- ssanova9(y~x,cov=list("arma",c(0,1)))

para.arma(fit.ma1)$b

For longitudinal data, one may enter cov=list("long",id), where id is
a factor of subject identification. One may also use ssanova9 with a known
W−1, with cov=list("known",w), where w contains the known W−1.
More generally, one may pass W−1 onto ssanova9 via

cov=list(fun=...,env=...,init=...)

whereW−1 is to be calculated via fun(gamma,env),env contains constants,
and init contains initial values of γ; γ should be properly parameterized
to be free of constraint.
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To evaluate W−1 for an ssanova9 fit at the estimated γ, one may use

fit$cov$fun(fit$zeta,fit$cov$env)

6.4 Case Studies

We now apply the techniques developed in this chapter to analyze a couple
of real data sets.

6.4.1 Treatment of Bacteriuria

Patients with acute spinal cord injury and bacteriuria (bacteria in urine)
were randomly assigned to two treatment groups. Patients in the first group
were treated for all episodes of urinary tract infection, whereas those in
the second group were treated only if two specific symptoms occurred.
Weekly binary indicator of bacteriuria was recorded for every patient over
4–16weeks. A total of 72 patients were represented in the data, with 36
each in the two treatment groups. The data are listed in Joe (1997, §11.4),
where further details and references can be found. There are a total of
892 observations, but the week-1 bacteriuria indicator was positive for all
patients. After removing the week-1 data, we have a sample size n = 820.
The data are included in gss as a data frame bacteriuriawith elements

id (patient id), trt (treatments), time (weeks after randomization), and
infect (bacteriuria indicator); trt and id are factors. One may fit a logistic
regression model to the data, with the infection probability p as a function
of the treatment and the follow-up time.

data(bacteriuria)

id.basis <- (1:820)[bacteriuria$id%in%c(3,38)]

fit.bact0 <- gssanova(infect~trt*time,"binomial",

data=bacteriuria,random=~1|id,

id.basis=id.basis)

there are only 30 distinctive xi’s (15 time points by 2 treatment levels),
and patients 3 and 38 had complete follow-up under the two treatments.
The random patient effect appears as an additive term in the logit,

log
p

1− p
= η(x) + bs.

The interaction term is negligible, so an additive model is fitted.

project(fit.bact0,c("trt","time"))$ratio

# 0.01166707

fit.bact1 <- gssanova(infect~trt+time,"binomial",

data=bacteriuria,random=~1|id,

id.basis=id.basis)
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FIGURE 6.5. Bacteriuria infection probability. Estimated infection probability
with 95% Bayesian confidence intervals. The dotted lines mark the estimate under
the other treatment.

Patients 1–36 were under treatment 1 and patients 37–72 were under treat-
ment 2, and a quick check on the random patient effect reveals disparity
between the two treatments.

var(fit.bact1$b[1:36])

# 0.05118155

var(fit.bact1$b[37:72])

# 0.2275906

Treatment 1 seems to allow less “individualism,” so it appears appropriate
to attach separate γ’s to the two groups.

fit.bact2 <- gssanova(infect~trt+time,"binomial",

data=bacteriuria,random=~trt|id,

id.basis=id.basis)

var(fit.bact2$b[1:36])

# 1.582532e-15

The patient effect is in fact absent under treatment 1. The estimated infec-
tion probability as a function of time under the treatments can be evaluated
and plotted as shown in Fig. 6.5.

new <- data.frame(trt=factor(rep(1,15)),time=2:16)

est.1 <- predict(fit.bact2,new,,se=TRUE)

plot(2:16,plogis(est.1$fit),type="l",ylim=c(0,1))

lines(2:16,plogis(est.1$fit-1.96*est.1$se),col=5)

lines(2:16,plogis(est.1$fit+1.96*est.1$se),col=5)

6.4.2 Ozone Concentration in Los Angeles Basin

We now revisit the ozone concentration data of §3.9.2. The fit shown in the
bottom frames of Fig. 3.8 was estimated under W = I.
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data(ozone, package="gss"); set.seed(5732)

fit.oz5 <- ssanova(log10(upo3)~sbtp+ibht+dgpg,data=ozone)

Inspections of the (partial) autocorrelation functions of the residuals sug-
gest an AR(1) error structure, and one may refit the model using ssanova9.

acf(resid(fit.oz5)); pacf(resid(fit.oz5))

fit.oz6 <-ssanova9(log10(upo3)~sbtp+ibht+dgpg,data=ozone,

cov=list("arma",c(1,0)),id=fit.oz5$id)

para.arma(fit.oz6)$a

# 0.3095311

The cosine diagnostics are still available; premultiply (3.78) by C−T , where

W−1 = CTC, and project the terms onto
{
C−T1

}⊥
=
{
f : fTW1 = 0

}
.

sum.oz6 <- summary(fit.oz6,TRUE)

round(sum.oz6$kappa,2)

# sbtp ibht dgpg

# 1.14 1.16 1.04

round(sum.oz6$pi,2)

# sbtp ibht dgpg

# 0.64 0.26 0.10

round(sum.oz6$cos,2)

# sbtp ibht dgpg yhat y e

# cos.y 0.71 0.58 0.39 0.78 1.00 0.63

# cos.e 0.00 0.01 0.05 0.02 0.63 1.00

# norm 2.59 1.31 0.82 3.72 4.79 2.97

The terms of fit.oz6 and fit.oz5 are shown in Fig. 6.6, where the bottom
frames are reproduced from Fig. 3.8. The sbtp effect in fit.oz6 is virtually
parametric, and the standard errors for the ibht effect of fit.oz6 are
slightly smaller than those of fit.oz5.

6.5 Bibliographic Notes

Section 6.1

Linear mixed-effect models, also known as variance component models,
are extensively studied in the literature; see, e.g., Harville (1977) and
Robinson (1991). The use of random effects in generalized linear models
can be found in, e.g., Zeger and Karim (1991), Breslow and Clayton (1993),
and McCulloch (1997).
Comprehensive treatments of stationary time series can be found in Box,

Jenkins, and Reinsel (1994), Brockwell and Davis (1991), among others.
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FIGURE 6.6. Terms in additive cubic spline fits to ozone data. The fits are in
solid lines and the 95% Bayesian confidence intervals in faded. Top: fit.oz6
assuming AR(1) error. Bottom: fit.oz5 assuming independent error. The rugs
on the bottom mark the data points, slightly jittered.

Section 6.2

The materials of this section are mainly taken from Gu and Ma (2005b),
and further results concerning non-Gaussian regression can be found in Gu
and Ma (2005a). Penalized joint likelihood of (η,b) allows one to use tools
developed for independent data, resulting in structural simplicity and com-
putational convenience. A thorough treatment of the strategy in parametric
estimation can be found in Lee and Nelder (1996).
For treatments of nonparametric mixed-effect models via the marginal

likelihood of η, see, e.g., Wang (1998a), Lin and Zhang (1999), and Karcher
and Wang (2001).

Section 6.3

The materials of this section are mainly taken from Han and Gu (2008).
Prior to that work, numerous ad hoc extensions of cross-validation had been
proposed in the literature for use with correlated data, all demonstrating
middling performances in the simulation studies of Wang (1998b), leaving
the REML score M̃(λ, γ) as the only viable solution at the time.
The parameterization of γ for the ARMA(p,q) model in ssanova9 is

taken from Jones (1980), which is free of constraint.
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Section 6.4

The bacteriuria data were analyzed by Joe (1997) using Markov models
with and without random effects. The analysis presented here is taken
from Gu and Ma (2005a).

6.6 Problems

Section 6.1

6.1 Define

W =

⎛

⎜
⎜
⎜
⎝

1 −γ 0 · · · 0
−γ 1 + γ2 −γ · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎠

(a) Verify that

W−1 =
1

1− γ2

⎛

⎜
⎜
⎜
⎝

1 γ γ2 · · · γn−1

γ 1 γ · · · γn−2

...
...

... · · ·
...

γn−1 γn−2 γn−3 · · · 1

⎞

⎟
⎟
⎟
⎠
.

(b) For |γ| < 1, show that
(
1− |γ|

)2
I ≤W ≤

(
1 + |γ|

)2
I.

Section 6.2

6.2 The Moore-Penrose inverse M+ of a non-negative definite matrix M
satisfies MM+M =M and M+MM+ =M+, with MM+ =M+M being
a projection matrix. Consider the matrix in (6.6),

M =

(
R̆T R̆ + nλQ̆ R̆TZ

ZT R̆ ZTZ +Σ

)

=

(
E R̆TZ

ZT R̆ D

)

,

where D > 0.

(a) Show that D̃ = D − ZT R̆E+R̆TZ > 0.

(b) Show that

M+ =

(
E+ + E+R̆TZD̃−1ZT R̆E+ −E+R̆TZD̃−1

−D̃−1ZT R̆E+ D̃−1

)

.
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6.3 Verify (6.9) for L1(λ, γ) in (6.8) and

U(λ, γ) =
1

n
YT
(
I −A(λ, γ)

)2
Y + 2

σ2

n
trA(λ, γ).

6.4 Verify that (I + Z Σ−1ZT )−1 = I − Z(ZTZ +Σ)−1Z.

Section 6.3

6.5 For W−1 = CTC, Sw = C−TS, Rw = C−TR, and Mw = RwQ
+RT

w+
nλI, verify that Aw in (6.15) can be written as

Aw = I − nλ
(
M−1

w −M−1
w Sw(S

T
wM

−1
w Sw)

−1ST
wM

−1
w

)
.

6.6 Let fη,W be the density of N
(
η, σ2W−1

)
. Verify that the Kullback-

Leibler distance of f1 = fη1,W1 from f0 = fη0,W0 is given by

Ef0

[
log(f0/f1)

]
=

1

2σ2
(η1 − η0)

TW1(η1 − η0)

+
1

2
tr
(
W1W

−1
0 − I

)
− 1

2
log
∣
∣W1W

−1
0

∣
∣.

6.7 Verify (6.23).
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Probability Density Estimation

For observational data, (1.5) of Example 1.2 defines penalized likelihood
density estimation. Of interest are the selection of smoothing parameters,
the computation of the estimates, and the asymptotic behavior of the esti-
mates. Variants of (1.5) are also called for to accommodate samples subject
to selection bias and samples from conditional distributions.
The precise formulation, the existence and uniqueness, and the com-

putability of penalized likelihood density estimates are discussed in §7.1,
and it is noted in §7.2 that the technique can be used to estimate inho-
mogeneous Poisson processes. The selection of smoothing parameters are
discussed in §7.3, where a cross-validation score is derived and its empirical
performance is assessed. Computational algorithms, inferential tools, and
open-source software are discussed in §7.4, and the techniques are applied
to analyze a few real data sets in §7.5. The estimation in the presence of
sampling bias is treated in §§7.6 and 7.9. The estimation of the conditional
density f(y|x) is discussed in §7.7, with x and y on generic domains, which,
for y discrete, leads to regression models with cross-classified responses
(§7.8).
The computability of the estimates is through the notion of efficient

approximation based on the asymptotic convergence rates, which will be
discussed in Chap. 9.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 7,
© Springer Science+Business Media New York 2013
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7.1 Preliminaries

Let Xi, i = 1, . . . , n, be independent and identically distributed (i.i.d.)
random samples from a probability density f(x) on a bounded domain X .
One is to estimate f(x) from the observations Xi. When some parametric
form of f(x) is assumed, say f ∈ Pθ =

{
f(x; θ) : θ ∈ Θ

}
, where f(x; θ) is

known up to a finite-dimensional parameter θ, density estimation reduces
to parameter estimation, for which the maximum likelihood method is the
standard technique possessing many favorable properties. When a para-
metric form is not available, however, a naive maximum likelihood density
estimate without any nonintrinsic constraint (see the following paragraph
for intrinsic constraints) is a sum of delta function spikes at the sample
points, which, apparently, is not an appealing estimate when the domain
X is continuous. In between the two extremes, one may use the penalized
likelihood estimate.
Two intrinsic constraints that a probability density must satisfy are the

positivity constraint that f ≥ 0 and the unity constraint that
∫
X fdx = 1.

Assuming f > 0 on X , one can make a logistic density transform f =
eη/
∫
X eηdx and estimate η instead, which is free of the positivity and

unity constraints. To make the transform one-to-one, one may impose a
side condition on η, say Aη = 0, where A is an averaging operator on X ;
see §1.3.1 for a discussion of averaging operators. The estimate of η can
then be obtained by minimizing the penalized likelihood functional,

− 1

n

n∑

i=1

η(Xi) + log

∫

X
eηdx+

λ

2
J(η), (7.1)

in a reproducing kernel Hilbert space H, in which the roughness penalty
J(η) is a square (semi) norm. The members of H have to comply with
a side condition mentioned above to make the first term of (7.1) strictly
convex. It is easy to construct such an H by dropping the constant term in
a (one-way) ANOVA decomposition.
Let L(f) = −n−1

∑n
i=1 f(Xi) + log

∫
X e

fdx be the minus log likelihood.
When the maximum likelihood estimate exists in the null space NJ ={
f : Af = 0, J(f) = 0

}
, the following lemmas establish the existence and

uniqueness of the minimizer of (7.1) via Theorem 2.9.

Lemma 7.1 L(f) is strictly convex for f ∈ H ⊆
{
f : Af = 0

}
.

Proof : By Hölder’s inequality, for α, β > 0, α+ β = 1, and f, g ∈ H,

log

∫

X
eαf+βgdx ≤ α log

∫

X
efdx+ β log

∫

X
egdx,

where the equality holds if and only if ef ∝ eg, which amounts to f = g
with Af = Ag = 0. �
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Lemma 7.2 If e|f | are Riemann integrable on X for all f ∈ H, then L(f)
is continuous in H. Furthermore, L(f +αg), ∀f, g ∈ H, is infinitely differ-
entiable as a function of α real.

Proof : The claims follow from the Riemann sum approximations of related
integrals and the continuity of evaluation. �
A simple example follows.

Example 7.1 (Cubic spline) Let X = [0, 1] and J(η) =
∫ 1

0
η̈2dx. The

null space of J(η) without side condition is span{1, x}. One has the choice
of at least two different formulations.
The first formulation employs the construction of §2.3.1. TakeAf = f(0).

One has
H =

{
f : f(0) = 0,

∫ 1

0
f̈2dx <∞

}
= NJ ⊕HJ ,

where NJ = span{x} and

HJ =
{
f : f(0) = ḟ(0) = 0,

∫ 1
0
f̈2dx <∞

}
,

with RJ(x, y) =
∫ 1

0
(x− u)+(y − u)+du.

The second formulation employs the construction of §2.3.3. Take Af =∫ 1

0
fdx. One has

H =
{
f :
∫ 1

0 fdx = 0,
∫ 1
0 f̈

2dx <∞
}
= NJ ⊕HJ ,

where NJ = span{x− .5} and

HJ =
{
f :
∫ 1

0
fdx =

∫ 1

0
ḟdx = 0,

∫ 1
0
f̈2dx <∞

}
,

with RJ(x, y) = k2(x)k2(y)−k4(x− y); see (2.27) on page 39 for k2(x) and
k4(x). �

With the same data and the same penalty, one would naturally expect
that the two formulations of Example 7.1 would yield the same density
estimate. It is indeed the case, as assured by the following proposition.

Proposition 7.3 Let H ⊆
{
f : J(f) < ∞

}
and suppose that J(f) anni-

hilates constant. For any two different averaging operators A1 and A2, if
η1 minimizes (7.1) in H1 = H ∩

{
A1f = 0

}
and η2 minimizes (7.1) in

H2 = H ∩
{
A2f = 0

}
, then eη1/

∫
X e

η1dx = eη2/
∫
X e

η2dx.

Proof : For any f ∈ H1, it is easy to verify that Pf = f − A2f ∈ H2,
L(Pf) = L(f), and J(Pf) = J(f). Similarly, for any g ∈ H2, Qg =
g − A1g ∈ H1, L(Qg) = L(g), and J(Qg) = J(g). Now, for f ∈ H1,
Q(Pf) = Pf − A1(Pf) = (f − A2f) − A1(f − A2f) = f , so there is an
isomorphism between H1 and H2. Clearly, e

f/
∫
X e

fdx = ePf/
∫
X e

Pfdx.
The proposition follows. �
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Example 7.2 (Tensor product spline) Consider the domain X=[0, 1]3.
Multiple-term models can be constructed using the tensor product splines of
§2.4, with an ANOVA decomposition

f = f∅ + f1 + f2 + f3 + f1,2 + f1,3 + f2,3 + f1,2,3,

where terms other than the constant f∅ satisfy certain side conditions. The
constant shall be dropped for density estimation to maintain a one-to-one
logistic density transform. The remaining seven components can all be in-
cluded or excluded separately, resulting in 27 possible models of different
complexities. The additive model implies the independence of the three co-
ordinates, and it is easily seen to be equivalent to solutions of three separate
problems on individual axes. Less trivial probability structures may also
be built in via selective inclusion of the ANOVA terms. For example, the
conditional independence of x〈1〉 and x〈2〉 given x〈3〉 may be incorporated
by excluding f1,2 and f1,2,3 from the model.
The above discussion is simply a partial repeat of §1.3.3, where more

discussions can be found. �

In addition to the evaluations [xi]η = η(xi), the first term of (7.1) de-
pends on η also through the integral

∫
X e

ηdx. This breaks the argument of
§2.3.2, so the solution expression (3.2) on page 62 no longer holds for the
minimizer ηλ of (7.1) in the space H =

{
f : Af = 0, J(f) <∞

}
. Actually,

ηλ is, in general, not computable. The notion of efficient approximation
comes to rescue here, and one may calculate the minimizer η∗λ of (7.1) in a
(data-adaptive) finite-dimensional space

H∗ = NJ ⊕ span
{
RJ (Zj , ·), j = 1, . . . , q

}
, (7.2)

where {Zj} is a random subset of {Xi}. It is shown in §9.2.3 that η∗λ
and ηλ share the same asymptotic convergence rates with q � n2/(pr+1)+ε

for some r > 1, p ∈ [1, 2], and ∀ ε > 0, so there is no loss of efficiency
in the substitution of H by H∗. When the maximum likelihood estimate
exists in the null space NJ , the existence and uniqueness of η∗λ follow from
Lemmas 7.1 and 7.2.
Proposition 7.3 does not apply to η∗λ; for the two different formulations

in Example 7.1, H∗ are different even for the same choice of {Zj}. The
asymptotic convergence results of §9.2 hold regardless which RJ is used,
however, and the variability due to different choices of RJ is not much
different from the variability due to different choices of {Zj}.
In the rest of the chapter, we shall focus on η∗λ but drop the star from

the notation. Plugging the expression

η(x) =

m∑

ν=1

dνφν(x) +

q∑

j=1

cjRJ (Zj , x) = φ
Td+ ξT c (7.3)
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into (7.1), the calculation of ηλ reduces to the minimization of

Aλ(c,d) = − 1

n
1T (Sd+Rc) + log

∫

X
exp
(
φTd+ ξT c

)
dx+

λ

2
cTQc (7.4)

with respect to c and d, where S is n×m with the (i, ν)th entry φν(Xi),
R is n× q with the (i, j)th entry ξj(Xi) = RJ(Zj , Xi), and Q is q× q with
the (j, k)th entry RJ(Zj , Zk).
Write μf (g) =

∫
gefdx/

∫
efdx, Vf (g, h) = μf (gh) − μf (g)μf (h), and

Vf (g) = Vf (g, g). Taking derivatives at η̃ = φT d̃+ ξT c̃ ∈ H∗, one has

∂Aλ

∂d
= −ST1/n+ μη̃(φ) = −ST1/n+ μφ,

∂Aλ

∂c
= −RT1/n+ μη̃(ξ) + λQc̃ = −RT1/n+ μξ + λQc̃,

∂2Aλ

∂d∂dT
= Vη̃(φ,φ

T ) = Vφ,φ, (7.5)

∂2Aλ

∂c∂cT
= Vη̃(ξ, ξ

T ) + λQ = Vξ,ξ + λQ,

∂2Aλ

∂d∂cT
= Vη̃(φ, ξ

T ) = Vφ,ξ;

see Problem 7.1. The Newton updating equation is thus
(
Vφ,φ Vφ,ξ
Vξ,φ Vξ,ξ + λQ

)(
d− d̃
c− c̃

)

=

(
ST1/n− μφ

RT1/n− μξ − λQc̃

)

. (7.6)

After rearranging terms, (7.6) becomes
(
Vφ,φ Vφ,ξ
Vξ,φ Vξ,ξ + λQ

)(
d
c

)

=

(
ST1/n− μφ + Vφ,η
RT1/n− μξ + Vξ,η

)

, (7.7)

where Vφ,η = Vη̃(φ, η̃) and Vξ,η = Vη̃(ξ, η̃); see Problem 7.2. Fixing the
smoothing parameter λ, and θβ hidden in R and Q for multiple-term mod-
els, one may iterate on (7.7) to calculate ηλ.
For prebinned data with replicate counts ki at Xi, (7.4) becomes

− 1

N
kT (Sd+Rc) + log

∫

X
exp
(
φTd+ ξT c

)
dx+

λ

2
cTQc, (7.8)

where k = (k1, . . . , kn)
T and N =

∑n
i=1 ki, and (7.7) changes to

(
Vφ,φ Vφ,ξ
Vξ,φ Vξ,ξ + λQ

)(
d
c

)

=

(
STk/N − μφ + Vφ,η
RTk/N − μξ + Vξ,η

)

. (7.9)

On high-dimensional domains, the prohibitive cost of numerical integra-
tion renders (7.1) impractical. One however may use the penalized pseudo
likelihood to be developed in §10.1, gaining numerical feasibility at the cost
of degraded statistical performance.
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7.2 Poisson Intensity

Consider a Poisson counting process on X with an intensity function λ(x),
where λ(x) is not to be confused with the smoothing parameter λ. Observ-
ing N occurrences Xi, i = 1, . . . , N , from the process, the joint likelihood
of N and Xi can be shown to be

{
N∏

i=1

λ(Xi)

}

exp

{

−
∫

X
λ(x)dx

}

=

{
N∏

i=1

λ0(Xi)

}
(
ΛNe−Λ

)
,

where Λ =
∫
X λ(x)dx is the overall intensity of the process on X and

λ0(x) = λ(x)/Λ is the occurrence density; see, e.g., Snyder (1975, §2.3).N is
statistically sufficient for Λ and has a Poisson distribution with intensity Λ,
and Xi|N are conditionally independent with a probability density λ0(x).
A penalized likelihood estimate of the Poisson intensity can be defined as
the minimizer of

−
N∑

i=1

logλ0(Xi)−N log Λ + Λ + J
(
logλ0(x) + logΛ

)
, (7.10)

for logλ(x) ∈ H̃ ⊃ {1}, where H̃ is a general reproducing kernel Hilbert
space and the smoothing parameter is absorbed into the roughness penalty
J(f) to avoid confusion with the intensity λ(x). Decompose H̃ = {1}⊕H,
where H satisfies a side condition, and write logλ(x) = C + η, where C
is a constant and η ∈ H. Since logλ0 = η − log

∫
X e

ηdx and logΛ =
C + log

∫
X e

ηdx, (7.10) can be written as

[

−
N∑

i=1

η(Xi) +N log

∫

X
eηdx+ J(C + η)

]

+

[

−N

(

C + log

∫

X
eηdx

)

+ exp

(

C + log

∫

X
eηdx

)]

; (7.11)

see Problem 7.3. Naturally, J(f) should annihilate constant since smooth-
ing should only apply to the occurrence density, so J(C + η) = J(η). The
minimization of (7.11) can then be achieved in two steps: first to mini-
mize the sum in the first pair of square brackets in (7.11) with respect to
η ∈ H to estimate the occurrence density λ0(x) and, second, to minimize
the sum in the second pair of square brackets with respect to C to estimate
the overall intensity Λ. The former is simply a penalized likelihood density
estimation through (7.1) based on Xi, i = 1, . . . , N , and the latter is a
Poisson density estimation based on a single observation N .
When J(f) annihilates constant, the two-step estimation in (7.11) may

be manipulated to enforce an arbitrary positive value on Λ by modifying
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the second part. Specifically, replacing −N log Λ+Λ by −N log Λ+NΛ in
(7.11), one effectively enforces Λ = 1. Dividing the functional thus modified
by N , one has

− 1

N

N∑

i=1

η̃(Xi) +

∫

X
eη̃dx+ J̃(η̃), (7.12)

where η̃ = logλ(x) and J̃(f) = J(f)/N . Obviously, the minimizer η̃∗ of
(7.12) satisfies

∫
X e

η̃∗
dx = 1; see Problem 7.4. This device was proposed by

Silverman (1982) to enforce the unity constraint without imposing any side
condition on the log density. Were a probability density defined to integrate
to 2, one would use

∫
X e

ηdx/2 in (7.12) instead of
∫
X e

ηdx to enforce the

“unity” constraint
∫
X e

η̃∗
dx = 2.

7.3 Smoothing Parameter Selection

As with regression, smoothing parameter selection holds the key to any
practical success of penalized likelihood density estimation. Similar to the
situation with non-Gaussian regression in Chap. 5, the convex but non-
quadratic functional (7.1) has to be minimized iteratively even for fixed
smoothing parameters. Needed are effective methods to locate good esti-
mates from among the ηλ’s with varying smoothing parameters.
Similar to the developments in §5.2.2, a direct cross-validation score will

be derived for density estimation. The Newton update for solving (7.1)
no longer has its own statistical meaning as in (5.3), so there exists no
alternative score to drive a possible performance-oriented iteration; the
self-voting argument may still apply using the direct cross-validation score,
but there is little numerical benefit to justify an indirect approach. The
empirical performance of the cross-validation score and its modifications
will be explored in simulation studies.
As in §§3.2 and 5.2, we only make the dependence of various entities on

the smoothing parameter λ explicit, suppressing their dependence on θβ in
the notation.

7.3.1 Kullback-Leibler Loss

To measure the proximity of the estimate fλ = eηλ/
∫
X e

ηλdx to the true
density f = eη/

∫
X e

ηdx, consider the Kullback-Leibler distance

KL(η, ηλ) = Ef

[
log(f/fλ)

]
= μη(η − ηλ)− log

∫

X
eηdx+ log

∫

X
eηλdx,

where μf (g) =
∫
gefdx/

∫
efdx as defined in §7.1, and the symmetrized

version
L(η, ηλ) = SKL(η, ηλ) = μη(η − ηλ) + μηλ

(ηλ − η). (7.13)
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Dropping terms in KL(η, ηλ) that do not involve ηλ, one has the relative
Kullback-Leibler distance,

RKL(η, ηλ) = log

∫

X
eηλdx− μη(ηλ). (7.14)

The first term is readily computable, but the second term, μη(ηλ), involves
the unknown density and will have to be estimated.

7.3.2 Cross-Validation

A naive estimate of μη(ηλ) is the sample mean n−1
∑n

i=1 ηλ(Xi), but the
resulting estimate of the relative Kullback-Leibler distance would simply
be the minus log likelihood, clearly favoring λ = 0. The naive sample mean
is biased because the samples Xi contribute to the estimate ηλ. Standard

cross-validation suggests an estimate μ̃η(ηλ) = n−1
∑n

i=1 η
[i]
λ (Xi), where

η
[i]
λ minimizes the delete-one version of (7.1),

− 1

n− 1

∑

j �=i

η(Xj) + log

∫

X
eηdx+

λ

2
J(η). (7.15)

Note that Xi does not contribute to η
[i]
λ , although η

[i]
λ is not quite the same

as ηλ. The delete-one estimates η
[i]
λ are not analytically available, however;

so it is impractical to compute μ̃η(ηλ) directly.

For an analytically tractable approximation of η
[i]
λ , consider the quadratic

approximation of (7.1) at ηλ. For f, g ∈ H and α real, define Lf,g(α) =

log
∫
X e

f+αgdx as a function of α. It is easy to show that L̇f,g(0) = μf (g)

(hence L(f) = log
∫
X e

fdx is Fréchet differentiable) and that L̈f,g(0) =
Vf (g); see Problem 7.5. Setting f = η̃, g = η − η̃, and α = 1, one has the
Taylor expansion

log

∫

X
eηdx = Lη̃,η−η̃(1) ≈ Lη̃,η−η̃(0) + μη̃(η − η̃) +

1

2
Vη̃(η − η̃). (7.16)

Substituting the right-hand side of (7.16) for the term log
∫
X e

ηdx in (7.1)
and dropping terms that do not involve η, one obtains the quadratic ap-
proximation of (7.1) at η̃:

− 1

n

n∑

i=1

η(Xi) + μη̃(η)− Vη̃(η̃, η) +
1

2
Vη̃(η) +

λ

2
J(η). (7.17)

Plugging (7.3) into (7.17) and solving for c and d, one obtains (7.7); see
Problem 7.6.
The delete-one version of (7.17),

− 1

n− 1

∑

j �=i

η(Xj) + μη̃(η)− Vη̃(η̃, η) +
1

2
Vη̃(η) +

λ

2
J(η), (7.18)
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only involves changes in the first term. Set η̃ = ηλ and write ξ̆ = (φT , ξT )T

and c̆ = (dT , cT )T . Rewrite (7.7) as

H c̆ = R̆T1/n+ g,

where H = Vη̃(ξ̆, ξ̆
T
) + diag(O, λQ), R̆T =

(
ξ̆(X1), . . . , ξ̆(Xn)

)
= (S,R)T ,

and g = Vη̃(ξ̆, η̃)− μη̃(ξ̆). The minimizer η
[i]
λ,η̃ of (7.18) has the coefficient

c̆[i] = H−1

(
R̆T1− ξ̆(Xi)

n− 1
+ g

)

= c̆+
H−1R̆T1

n(n− 1)
− H−1ξ̆(Xi)

n− 1
,

so

η
[i]
λ,η̃(Xi) = ξ̆(Xi)

T c̆[i] = ξ̆(Xi)
T c̆− 1

n− 1
ξ̆(Xi)

TH−1
(
ξ̆(Xi)− R̆T1/n

)
.

(7.19)

Noting that R̆T1/n = n−1
∑n

i=1 ξ̆(Xi), this leads to a cross-validation es-
timate of μη(ηλ),

μ̂η(ηλ) =
1

n

n∑

i=1

η
[i]
λ,η̃(Xi) =

1

n

n∑

i=1

ηλ(Xi)−
tr
(
P⊥
1 R̆H

−1R̆TP⊥
1

)

n(n− 1)
, (7.20)

where P⊥
1 = I − 11T /n, and the corresponding estimate of the relative

Kullback-Leibler distance,

V (λ) = − 1

n

n∑

i=1

ηλ(Xi) + log

∫

X
eηλdx+ α

tr
(
P⊥
1 R̆H

−1R̆TP⊥
1

)

n(n− 1)
, (7.21)

for α = 1. Note that η
[i]
λ,η̃ is simply the one-step Newton update from ηλ

for the minimization of (7.15).
For prebinned data, the delete-one operation should be done on the in-

dividual observations instead of the bins, yielding

V (λ) = log

∫

X
eηλdx− 1

N

n∑

i=1

kiη
[i]
λ,η̃(Xi)

= − 1

N

n∑

i=1

kiηλ(Xi) + log

∫

X
eηλdx+

tr
(
P⊥
k̃
K̃R̆H−1R̆T K̃P⊥

k̃

)

N(N − 1)
,

(7.22)

where P⊥
k̃

= I − k̃k̃T /N with k̃ =
(√
k1, . . . ,

√
kn
)T

, K̃ = diag
(√
ki
)
, and

η
[i]
λ,η̃ minimizes

− 1

N − 1

{ n∑

j=1

kjη(Xj)− η(Xi)

}

+ μη̃(η)− Vη̃(η̃, η) +
1

2
Vη̃(η) +

λ

2
J(η);

see Problem 7.7.
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FIGURE 7.1. Effectiveness of cross-validation for density estimation. Left : Rela-
tive efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner boxes).
Center : L(λv) with α = 1 versus L(λv) with α = 1.4 on [0, 1]. Right : L(λv) with
α = 1 versus L(λv) with α = 1.4 on [0, 1]3.

7.3.3 Empirical Performance

Simple simulations were conducted to explore the empirical performance of
cross-validation. On X = [0, 1], samples of size n = 100 were drawn from

f1(x) ∝ f̃1(x)Ix∈[0,1] =
{1
3
e−50(x−0.3)2 +

2

3
e−50(x−0.7)2

}
Ix∈[0,1], (7.23)

which is a mixture ofN(0.3, 0.12) and N(0.7, 0.12) truncated to [0, 1]. Using
the second formulation of cubic spline as discussed in Example 7.1 and
setting q = n in (7.3), three estimates were calculated for each replicate,
one minimizing L(λ) = L(η, ηλ) of (7.13), another minimizing V (λ) of
(7.21) with α = 1, and a third minimizing V (λ) with α = 1.4, yielding an
optimal loss L(λo) and two cross-validation losses L(λv). The results from
one hundred replicates are summarized in Fig. 7.1, with the relative efficacy
L(λo)/L(λv) shown in the left half of the left frame and the comparison of
α = 1, 1.4 in V (λ) shown in the center frame.
On X = [0, 1]3, samples of size n = 300 were generated from

f3(x) ∝ e−12.5(x〈3〉−0.5)2 f̃1(x〈1〉 − 0.3x〈3〉 + 0.1)

f̃1(x〈2〉 − 0.2x〈3〉 + 0.1)Ix∈[0,1]3, (7.24)

where f̃1(x) is as given in (7.23). Estimates with q = 36 were calculated
using tensor product cubic splines of the form η(x) = η1+η2+η3+η1,3+η2,3,
where the conditional independence structure (X1⊥X2)|X3 is built in. The
results from one hundred replicates are summarized in Fig. 7.1, with the
relative efficacy in the right half of the left frame and the comparison of
α = 1, 1.4 in V (λ) in the right frame.
On X = [0, 1], we set q = n to take away the variability due to the choice

of {Zj}. On X = [0, 1]3, when q is large, we constantly ran into numerical
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problems with the Newton iteration via (7.6) for cross-validated fits with
α = 1, so had to settle with the default q = 10n2/9; simulations similar to
those in §3.5.4 but in the density estimation setting can be found in Gu and
Wang (2003), which suggested the default q value. We took care to use the
same {Zj} for all the three estimates in each replicate, so the comparisons
in Fig. 7.1 are adequate.

7.4 Computation, Inference, and Software

Fixing smoothing parameters, the computation involves the Newton itera-
tion via (7.6) and the evaluation of the cross-validation score V (λ) given in
(7.21). To select smoothing parameters by cross-validation, quasi-Newton
methods with numerical derivatives, such as those developed in Dennis and
Schnabel (1996), can be employed to minimize V (λ) with respect to the
smoothing parameters.
Numerical integration is needed for the calculation of entities appearing

in (7.6) and (7.21), which is nontrivial on a multidimensional X .
For the “testing” of H0 : η ∈ H0 versus Ha : η ∈ H0⊕H1, one again can

make use of the Kullback-Leibler projection.
Software implementation of the techniques developed is embodied in the

ssden suite in gss, whose usage is illustrated through simulated examples.

7.4.1 Newton Iteration

To perform the Newton iteration via (7.6), one calculates the Cholesky
decomposition

H =

(
Vφ,φ Vφ,ξ
Vξ,φ Vξ,ξ + λQ

)

=

(
GT

1 O
GT

2 GT
3

)(
G1 G2

O G3

)

= GTG

for G upper-triangular, where GT
1 G1 = Vφ,φ, G

T
1G2 = Vφ,ξ, and G

T
3 G3 =

(Vξ,ξ−Vξ,φV −1
φ,φVφ,ξ)+λQ, and then uses forward and back substitutions to

calculate the update. Standard safeguard procedures such as step-halving
might be called upon to ensure decreasing penalized likelihood scores in
each step, and the iteration usually takes five to ten steps to converge
given reasonable starting values. The Cholesky decomposition takes O(q3)
flops and the substitutions take O(q2), usually dominated by the O(dq2)
flops needed to form (7.6), where d is the quadrature size for numerical
integration on X .
On the convergence of the Newton iteration, the Cholesky decomposition

H = GTG has already been computed. Back substitution yields G−T R̆T

in O(nq2) flops, from which tr
(
P⊥
1 R̆H

−1R̆TP⊥
1

)
can be computed.
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Care must be taken for numerically singular H , which may arise when
ξj(x) = RJ(Zj , x) are linearly dependent. With a possible permutation of
indices known as pivoting, G3 in this case can be written as

G3 =

(
J1 J2
O O

)

=

(
J
O

)

,

where J is of full row rank and GT
3 G3 = JTJ . Define

G̃3 =

(
J1 J2
O δI

)

, G̃ =

(
G1 G2

O G̃3

)

,

for some δ > 0, and partition G̃−1
3 = (K,L). It follows that JK = I

and JL = O. This leads to LTGT
3 G3L = O, and since Vξ,ξ − Vξ,φV

−1
φ,φVφ,ξ

is non-negative definite, LTQL = O. Noting that J(f) is a norm in the
space span{ξ1, . . . ξq} and J

(
ξT l
)
= lTQl, LTQL = O implies LT ξ = 0,

and, consequently, LTVξ,ξ = O, LTVξ,φ = O, LTVξ,η = 0, and LTμξ = 0.

Premultiply (7.7) by G̃−T and write c̃ = G̃ ( dc ); straightforward algebra
yields

⎛

⎝
I O O
O I O
O O O

⎞

⎠

⎛

⎝
c̃1
c̃2
c̃3

⎞

⎠ =

⎛

⎝
∗
∗
0

⎞

⎠; (7.25)

see Problem 7.8. This is the same exercise done in §3.5.3 leading up to
(3.74) on page 89, and one may solve

(
GT

1 O

GT
2 G̃T

3

)(
G1 G2

O G̃3

)(
d
c

)

=

(
ST1/n− μφ + Vφ,η
Q1/n− μξ + Vξ,η

)

,

which amounts to setting c̃3 = 0 in (7.25). In actual computation, one per-
forms the Cholesky decomposition of H with pivoting, replaces the trailing
O by δI with an appropriate δ, and proceeds as if H were nonsingular.

7.4.2 Numerical Integration

For the calculation of
∫
X g(x)dx, a quadrature/cubature is of the form

∑d
i=1 wi g(xi), where xi are the nodes and wi are the associated weights;

typically, one dimensional formulas are called quadratures and multidimen-
sional ones are called cubatures. Within a family of formulas, the accuracy
usually increases with the size d, along with the computational cost.
Certain methods are adaptive, attempting to achieve user-specified pre-

cision through sequential node addition guided by precision estimates. In
our setting, O(q2) integrals involving the same O(q) functions need to be
calculated for each step of the Newton iteration, so formulas with fixed
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nodes are actually more economical than the adaptive methods. Also, the
H matrix is guaranteed to be non-negative definite with fixed nodes and
positive weights.
In one dimension, a standard Gauss quadrature with d up to 200 is suf-

ficient for our needs. The public domain FORTRAN subroutine gaussq.f
archived at http://www.netlib.org/go can be used to generate the nodes
and the weights.
On multidimensional cubes, product quadratures quickly become pro-

hibitive. A system known as Smolyak algorithm has been developed in the
literature for the derivation of efficient cubatures from univariate formu-
las. The efficiency of Smolyak cubatures is achieved by thinning out nodes
from the product quadratures; some negative weights are introduced in the
process. Some of the Smolyak cubatures can be found in Novak and Rit-
ter (1996) and Petras (2001). A collection of public domain C routines are
found in Knut Petras’ SMOLPACK, which can be modified to return the
nodes and the weights of Smolyak cubatures.
Smolyak cubatures are highly accurate with smooth integrands in gen-

eral, but modifications are necessary for them to work in the current setting.
Data for density estimation are typically away from the boundaries of the
domain one specifies, but the placement of nodes in Smolyak cubatures is
dense near the boundaries and sparse in the middle; gross errors result from
such a misaligned resource allocation. To circumvent the problem, one may
apply transformations on each coordinate of the cube to make the marginal
data nearly uniformly distributed, then use the Smolyak formulas on the
transformed domain.
To illustrate the strategy, consider integration on X = [0, 1]2. One first

estimates the marginal densities f1(x〈1〉) and f2(x〈2〉) with distribution
functions F1 and F2; a bit oversmoothing does no harm for the purpose
so one may use cross-validation with α = 2. Transforming the domain by
x̃〈1〉 = F1(x〈1〉) and x̃〈2〉 = F2(x〈2〉), the marginal observations are nearly
uniformly distributed on the x̃〈1〉 and x̃〈2〉 scales. Let (x̃i〈1〉, x̃i〈2〉) be the
Smolyak nodes and wi be the associated weights, the integral

∫

X
g(x)dx =

∫ 1

0

∫ 1

0

g
(
F−1
1 (x̃〈1〉), F

−1
2 (x̃〈1〉)

)dx〈1〉

dx̃〈1〉

dx〈2〉

dx̃〈2〉
dx̃〈1〉dx̃〈2〉

can be approximated by

d∑

i=1

wi g
(
F−1
1 (x̃i〈1〉), F

−1
2 (x̃i〈2〉)

)

f1
(
F−1
1 (x̃i〈1〉)

)
f2
(
F−1
2 (2̃i〈2〉)

) ,

where f1
(
F−1
1 (x̃〈1〉)

)
= dx̃〈1〉/dx〈1〉 and f2

(
F−1
2 (x̃〈2〉)

)
= dx̃〈2〉/dx〈2〉.

An example of this is shown in Fig. 7.2, where the circles are 150 simulated
observations and the filled dots are the nodes of the 449-point version of

http://www.netlib.org/go
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FIGURE 7.2. Smolyak cubature in two dimension. Left : Original scale. Right :
Transformed scale. Circles are the data and filled dots are cubature nodes.

the so-called delayed Smolyak cubature in two dimension, on the original
scale and on the transformed scale; the transformations are through the
marginal density estimates based on the 150 observations.

7.4.3 Kullback-Leibler Projection

Given η̂ ∈ H0 ⊕H1, its Kullback-Leibler projection η̃ in H0 minimizes

KL(η̂, η) = μη̂(η̂ − η)− log

∫

X
eη̂dx+ log

∫

X
eηdx

over η ∈ H0. Writing Aη̃,g(α) = KL(η̂, η̃ + αg) for g ∈ H0, it is easy to

verify that 0 = Ȧη̃,g(0) = μη̃(g)− μη̂(g). It then follows, for ηc ∈ H0, that

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc).

One may take ηc = 0 as the uniform distribution on X .
Unlike the projection in §5.3.2 for regression, this one is well-posed.

7.4.4 R Package gss: ssden Suite

Penalized likelihood density estimation is implemented in the ssden suite,
whose usage shall be illustrated using a couple of synthetic examples. For
density estimation in high dimensions, one should instead use the ssden1

suite discussed in §10.1.5.

Example 7.3 (X = [0, 1]) The following sequence generates a sample from
(7.23) and fits a cubic spline to the log density, for λ minimizing V (λ) of
(7.21) with α = 1.4:
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FIGURE 7.3. Density estimation on X = [0, 1]. Left : Density estimate is in solid
line, test density in dashed line, and data in finely binned histogram. Center :
Cumulative distribution function F (x). Right : Quantiles F−1(x).

rf1 <- function(n) {

u <- runif(n); x0 <- rnorm(n)

ifelse(u>2/3,x0/10+.3,x0/10+.7)

}

rtest1 <- function(n) {

x <- rf1(n); ok <- (x>0)&(x<1)

while(m<-sum(!ok)) {

x[!ok] <- rf1(m); ok <- (x>0)&(x<1)

}

x

}

set.seed(5732); x <- rtest1(100)

fit <- ssden(~x,domain=data.frame(x=c(0,1)))

The domain X plays an active role in the estimation process as the density
is normalized by

∫
X e

ηdx, so it should be supplied by the user. A Gauss
quadrature is used internally for the calculation of

∫
X g(x)dx. Shown in

Fig. 7.3 are the estimated density along with the test density and the data,
the cumulative distribution function, and the quantiles:

xx <- (0:100)/100

dtest1 <- function(x)

(dnorm(x,.3,.1)/3+dnorm(x,.7,.1)*2/3)/.9986501

hist(x,breaks=(0:50)/50,border=5,col=5,prob=TRUE)

lines(xx,dssden(fit,xx))

lines(xx,dtest1(xx),lty=2)

plot(xx,pssden(fit,xx),type="l")

plot(xx,qssden(fit,xx),type="l")

dssden generally expects a data frame as input (like the predict function
for ssanova) but does accept a vector in one-dimension, whereas pssden
and qssden only work in one dimension and expect a vector. �

Example 7.4 (X = [0, 1]3) The following sequence generates a sample
from (7.24) and fits a tensor product cubic spline to the log density:
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FIGURE 7.4. Density estimation on X = [0, 1]3: Fitted conditional distribution
f(x〈1〉|x〈2〉 = 0.5, x〈3〉 = 0.5). Left : Conditional density. Center : Conditional
cumulative distribution function. Right : Quantiles of conditional distribution.

rtest3 <- function(n) {

z <- .5+.2*rnorm(n)

x <- rf1(n)-.1+.3*z; y <- rf1(n)-.1+.2*z

ok <- (pmin(x,y,z)>0)&(pmax(x,y,z)<1)

while(m<-sum(!ok)) {

z[!ok] <- .5+.2*rnorm(m)

x[!ok] <- rf1(m)-.1+.3*z[!ok]

y[!ok] <- rf1(m)-.1+.2*z[!ok]

ok <- (pmin(x,y,z)>0)&(pmax(x,y,z)<1)

}

cbind(x,y,z)

}

set.seed(5732); x <- rtest3(300)

x1 <- x[,1]; x2 <- x[,2]; x3 <- x[,3]; rg <- c(0,1)

my.domain <- data.frame(x1=rg,x2=rg,x3=rg)

fit <- ssden(~x1*x2*x3,domain=my.domain)

Three marginal densities are estimated internally to rescale the cube, and
a Smolyak cubature is used on the rescaled cube for the calculation of∫
X g(x)dx; see §7.4.2 for the strategy. A total of 3 + 3(3) + 7 = 19 θβ ’s
are used in the fit, so the execution is a bit slow. The Kullback-Leibler
projection suggests the elimination of the terms x1:x2 and x1:x2:x3, and
we refit without these terms:

project(fit,c("x1","x2","x3","x1:x3","x2:x3"))$ratio

# 0.01115107

fit <- ssden(~(x1+x2)*x3,domain=my.domain)

One may “slice out” the estimated density via conditional distributions,
say f(x〈1〉|x〈2〉 = .5, x〈3〉 = .5), as shown in Fig. 7.4:

xx <- (0:100)/100; cond <- data.frame(x2=.5,x3=.5)

plot(xx,cdssden(fit,xx,cond=cond)$pdf,type="l")

plot(xx,cpssden(fit,xx,cond=cond),type="l")

plot(xx,cqssden(fit,xx,cond=cond),type="l")

where cdssden returns a list with elements pdf and int. �
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FIGURE 7.5. Distribution of Buffalo annual snowfall. The fits with X = [0, 150],
[10, 140], and [20, 130] are in solid, short-dashed, and long-dashed lines, with the
data superimposed as finely binned histogram.

7.5 Case Studies

We now apply the techniques developed so far to analyze a few real data
sets. It will be seen that the specification of the domain X carries a rather
heavy weight in the estimation process.

7.5.1 Buffalo Snowfall

The annual snowfall accumulations in Buffalo, New York from 1910 to
1973 are listed in Scott (1985), and are included in gss as a vector object
buffalo. The data range from 25.0 to 126.4. To see how the domain X
affects the estimate, three fits were calculated using X = [0, 150], [10, 140],
and [20, 130], respectively:

data(buffalo)

fit.buf1 <- ssden(~buffalo,id.basis=1:63,

domain=data.frame(buffalo=c(0,150)))

fit.buf2 <- ssden(~buffalo,id.basis=1:63,

domain=data.frame(buffalo=c(10,140)))

fit.buf3 <- ssden(~buffalo,id.basis=1:63,

domain=data.frame(buffalo=c(20,130)))

where id.basis=1:63 sets q = n to take away the variability due to the
selection of {Zj}. The fits are shown in Fig. 7.5, along with the data as
finely binned histogram:

hist(buffalo,breaks=(0:50)*3,border=5,col=5,prob=TRUE)

lines(0:150,dssden(fit.buf1,0:150),lty=1)

lines(10:140,dssden(fit.buf2,10:140),lty=2)

lines(20:130,dssden(fit.buf3,20:130),lty=5)
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FIGURE 7.6. Density of eruption duration of Old Faithful. The fit based on the
original data is in solid lines, those based on the histograms are in dashed lines,
and those from Poisson regression are in dotted lines; the dotted and dashed lines
coincide. The histograms are superimposed on the probability scale.

It is clear that as the domain X extends farther into the no-data area, the
cross-validation tries harder to take away the mass assigned to the empty
space by the smoothness of the estimates, resulting in less smoothing.

7.5.2 Eruption Time of Old Faithful

We now revisit the Old Faithful data discussed in §5.5.1:

data(faithful); erup <- faithful$eruptions

jk <- hist(erup,bre=seq(1.5,5.25,len=31),plot=FALSE)

x <- jk$mids; y <- jk$counts

Estimates using the original data and the binned data can be obtained,
along with that using Poisson regression:

set.seed(5732)

fit.ori <- ssden(~erup,

domain=data.frame(erup=c(1.5,5.25)))

fit.bin <- ssden(~x,domain=data.frame(x=c(1.5,5.25)),

weights=y,subset=(y>0))

fit.poi <- gssanova(y~x,family="poisson")

The estimates can then be plotted along with the histogram, as shown in
the left frame of Fig. 7.6:

xx <- ((1:100)-.5)/100*3.75+1.5

hist(erup,breaks=seq(1.5,5.25,length=31),

prob=TRUE,border=5,col=5)

lines(xx,dssden(fit.ori,xx),lty=1)

lines(xx,dssden(fit.bin,xx),lty=2)

est <- predict(fit.poi,data.frame(x=xx))

lines(xx,exp(est)/sum(exp(est))*100/3.75,lty=3)
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The estimate from Poisson regression is scaled into a probability density on
[1.5, 5.25], which coincides with the ssden fit using binned data. Parallel
results using 60 bins are shown in the right frame.

7.5.3 AIDS Incubation

Details are in order concerning the AIDS incubation study discussed in
§1.4.2. The data are included in gss as a data frame aids with elements
incu (incubation time X), infe (time Y from infection to end of study),
and age. Conditioning on the truncation mechanism, the density of (X,Y )
is given by f(x, y) = eη(x,y)/

∫
T e

η(x,y)dxdy, where T = {x < y}.
The domain enters the estimation process only through the integrals∫

T g(x, y)dxdy, so it is effectively specified via the quadrature. Lacking
better alternatives, one may start with a crude rectangular grid on [0, 100]2,
eliminate points on {x > y}, and assign half weights along {x = y}:

qd.pt <- expand.grid(incu=2*(1:50)-1,infe=2*(1:50)-1)

qd.pt <- qd.pt[qd.pt$incu<=qd.pt$infe,]

qd.wt <- rep(1,nrow(qd.pt))

qd.wt[qd.pt$incu==qd.pt$infe] <- .5

qd.wt <- qd.wt/sum(qd.wt)*5e3

The following sequence loads the data, fits a tensor product cubic spline to
log density, and checks for pretruncation independence:

data(aids); rg <- c(0,100); set.seed(5732)

fit.aids0 <- ssden(~incu*infe,data=aids,

domain=data.frame(incu=rg,infe=rg),

quad=list(pt=qd.pt,wt=qd.wt))

project(fit.aids0,c("incu","infe"))$ratio

# 0.01559929

One can then fit an additive model and plot, as shown in the bottom right
frame of Fig. 7.7:

fit.aids <- ssden(~incu+infe,data=aids,

domain=data.frame(incu=rg,infe=rg),

quad=fit.aids0$quad,id=fit.aids0$id)

xx <- 2*(1:50)-1; grid <- expand.grid(incu=xx,infe=xx)

ff <- matrix(dssden(fit.aids,grid),50,50)

ff[outer(xx,xx,">")] <- NA

f.incu <- cdssden(fit.aids,xx,data.frame(infe=50))$pdf

f.infe <- cdssden(fit.aids,xx,data.frame(incu=50))$pdf

contour(xx,xx,log(ff)); lines(c(0,100),c(0,100),lty=2)

points(aids[,c("incu","infe")],col=3)

lines(xx,f.incu*1500); lines(100-f.infe*1500,xx,col=5)
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FIGURE 7.7. AIDS incubation and HIV infection: Fits with pretruncation inde-
pendence. Contours are the fitted log density on the observable region surrounded
by the dashed lines. Circles mark the observations. Curves over the dotted lines
in the empty space are the fitted marginal densities.

Separate fits for the age groups as shown in the other frames of Fig. 7.7
can be obtained by adding a subset argument in the call to ssden, say
subset=(age>=60) for the elderly.
Based on only 38 observations, the fit for the youth group is not to be

taken too seriously. Due to the lack of information from the samples, f(x) at
the upper end and f(y) at the lower end cannot be estimated accurately,
and, indeed, the marginal estimates plotted near the lower-right corner
demonstrate less consistency among different age groups. An interesting
observation is the bump in f(y) in the fit for the elderly, which appears to
suggest that at the vicinity of January 1984 (30months before July 1986), a
batch of contaminated blood might have been distributed in the population
from which the elderly data were collected.
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7.6 Biased Sampling and Random Truncation

Independent and identically distributed samples may not always be
available or may not be all that are available concerning the density f(x).
Biased sampling and random truncation are two sources from which non-
i.i.d. samples may result.
A simple general formulation provides a unified framework for treating

such data, and (7.1) can be easily modified to combine information from
heterogeneous samples. The computation and smoothing parameter selec-
tion require only trivial modifications to the algorithms designed for (7.1).
The empirical performance of cross-validation is explored via simple sim-
ulations, and the use of ssden under sampling bias is illustrated using
simulated examples. The techniques can be used to estimate independent
marginal densities of truncated data, allowing for an alternative analysis
of the AIDS incubation data of §7.5.3.

7.6.1 Biased and Truncated Samples

Consider independent observations Xi on X sampled from densities pro-
portional to wi(x)f(x), where wi(x) ≥ 0 are known biasing functions
and f(x) is to be estimated. Note that the data are actually the pairs
(wi, Xi). Let T be an index set and w(t, x) a known function on T × X
such that the set

{
w(t, ·), t ∈ T

}
includes all possible biasing functions

and w(t, ·) �= w(t′, ·) when t �= t′. The “observed” biasing function wi

can then be written as w(ti, ·) for some ti ∈ T , and the data are now
(ti, Xi). Assume 0 <

∫
X w(t, x)f(x)dx < ∞, ∀t ∈ T , so that the densities

w(t, x)f(x)/
∫
X w(t, x)f(x)dx are well defined. Take ti as observations from

a probability density m(t) on T . The data (ti, Xi) can then be treated as
from a two-stage sampling.

Example 7.5 (Ordinary samples) Let T = {1} be a singleton and
w(1, x) = 1. Xi are i.i.d. samples from f(x). �

Example 7.6 (Length-biased samples) Let T = {1} be a singleton,
X = [0, 1], and w(1, x) = x. Xi are i.i.d. length-biased samples from the

probability density xf(x)/
∫ 1

0 xf(x)dx. �

Example 7.7 (Ordinary and length-biased samples) Let T={1, 2},
X = [0, 1], w(1, x) = 1, and w(2, x) = x. Xi|(ti =1) are ordinary samples

from f(x) andXi|(ti=2) are length-biased samples from xf(x)/
∫ 1

0 xf(x)dx.
Examples 7.5 and 7.6 are special cases with m(1) = 1 and m(1) = 0,
respectively. �



258 7. Probability Density Estimation

Example 7.8 (Finite-strata biased samples) Let T = {1, . . . , s} and
X =

⋃
t:m(t)>0

{
x : w(t, x) > 0

}
, where w(t, x) ≥ 0 but otherwise arbitrary.

Xi|ti are from the densities

w(ti, x)f(x)∫
X w(ti, x)f(x)dx

.

Example 7.7 is a special case with s = 2. �

Example 7.9 (Truncated samples) Paired data (t,X) are generated
from a joint density g(t)f(x) on T × X , but only those that fall on an
observable region A ⊂ T × X are recorded and those that fall on Ac are
lost. Of interest is the estimation of f(x). It follows that w(t, x) = I[(t,x)∈A]

and m(t) ∝ g(t)
∫
X I[(t,x)∈A]f(x)dx.

Note that t and X are interchangeable and that the truncation scheme is
virtually arbitrary in this setting. The independence of t andX is necessary,
for otherwise t would also carry information about f(x).
For a specific case, consider T = X = [0, 1] and A = {t < x}. One has

w(t, x) = I[t<x] and m(t) ∝ g(t)
∫ 1

t f(x)dx. �

7.6.2 Penalized Likelihood Estimation

Write f(x) = eη(x)/
∫
X e

η(x)dx; the sampling likelihood of X |t is seen to be

w(t, x)f(x)
∫
X w(t, x)f(x)dx

=
w(t, x)eη(x)

∫
X w(t, x)e

η(x)dx
,

which leads to the penalized likelihood functional

− 1

n

n∑

i=1

{

η(Xi)− log

∫

X
w(ti, x)e

η(x)dx

}

+
λ

2
J(η). (7.26)

For a singleton T such as the case with the length-biased samples of Ex-
ample 7.6, (7.26) virtually reduces to (7.1) but with

∫
X e

η(x)dx replaced by∫
X e

η(x)w(x)dx, a substitution of the integration measure.
Removing dx from the notation and writing the integral as

∫
X e

η, (7.1)
covers more ground than it first appears. Note that a probability density
f = eη/

∫
X e

η is the Radon-Nikodym derivative of the probability measure
with respect to a base measure, the integration measure that defines

∫
X eη.

By the chain rule of the Radon-Nikodym derivative, biased samples from
w(x)f(x) with respect to the uniform integration measure are simply ordi-
nary samples from f(x) with respect to the “biased” integration measure
νw(A) =

∫
A
w(x)dx. With such a change in notation, one no longer needs

the domain X to be bounded, but only the integral
∫
X 1 over the domain to

be finite so that the uniform distribution (with respect to the integration
measure) is properly defined.
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The minimizer of (7.26) in H =
{
f : J(f) < ∞

}
is generally not com-

putable, but one again may calculate the efficient approximation in

H∗ = NJ ⊕ span
{
RJ (Zj , ·), j = 1, . . . , q

}
;

see §9.2.5. Define

μf (g|t) =
∫
X g(x)w(t, x)e

f(x)

∫
X w(t, x)e

f(x)

and write vf (g, h|t) = μf (gh|t)− μf (g|t)μf (h|t). Modify the definitions of
μf (g) and Vf (g, h) in §7.1 as

μf (g) =
1

n

n∑

i=1

μf (g|ti), Vf (g, h) =
1

n

n∑

i=1

vf (g, h|ti). (7.27)

The Newton updating formula (7.7) on page 241 holds verbatim for the
minimization of (7.26) in H∗, with the entries defined by the modified
μf (g) and Vf (g, h) (Problem 7.9).
Taking into account the sampling mechanism, the Kullback-Leibler dis-

tance of eηλ/
∫
X e

ηλ from eη/
∫
X e

η should be modified as

KL(η, ηλ) =

∫

T
m(t)

{

μη(η − ηλ|t)− log

∫
X w(t, x)e

η(x)

∫
X w(t, x)e

ηλ(x)

}

,

with the relative Kullback-Leibler distance

RKL(η, ηλ) =

∫

T
m(t) log

∫

X
w(t, x)eηλ(x) −

∫

T
m(t)μη(ηλ|t). (7.28)

The first term of (7.28) can be estimated by n−1
∑n

i=1 log
∫
X w(ti, x)e

ηλ(x).

For the second term, E
[
ηλ(X)

]
, where X follows the marginal distribution

under the sampling mechanism,

X ∼
∫

T
m(t)

w(t, x)eη(x)
∫
X w(t, x)eη(x)

,

one may use the cross-validation estimate given by (7.20) on page 245,
with the entries in the relevant matrices defined by the modified μf (g) and
Vf (g, h). The counterpart of (7.21) is easy to work out (Problem 7.10),
and the computation following these lines can be accomplished via trivial
modifications of the algorithms developed for (7.1).
Given η̂ ∈ H0 ⊕H1, its Kullback-Leibler projection η̃ in H0 minimizes

KL(η̂, η) =
1

n

n∑

i=1

{

μη̂(η̂ − η|ti)− log

∫
X w(ti, x)e

η̂(x)

∫
X w(ti, x)e

η(x)

}

.

For ηc ∈ H0, KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc).
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FIGURE 7.8. Effectiveness of cross-validation for density estimation under sam-
pling bias. Left : Relative efficacy L(λo)/L(λv) with α = 1 (wider boxes) and
α = 1.4 (thinner boxes). Center : L(λv) with α = 1 versus L(λv) with α = 1.4,
for w1(t, x) = x. Right : L(λv) with α = 1 versus L(λv) with α = 1.4, for
w2(t, x) = I[x>t].

7.6.3 Empirical Performance

We now explore the empirical performance of the techniques outlined above
through simple simulations. Samples (ti, Xi) of size n = 100 were generated
according to Example 7.9 with A = {t < x}, g(t) = I[0<t<1] uniform,
and f(x) as given in (7.23) on page 246. Note that the Xi thus generated
are length-biased (Problem 7.11). Using the second formulation of cubic
spline as discussed in Example 7.1 and setting q = n in (7.3), estimates
were calculated using two different biasing functions, w1(t, x) = x and
w2(t, x) = I[x>t]; with w1 one incorporates knowledge of g(t) but discards
ti, whereas with w2 one relies solely on the observed ti.
For each replicate and each biasing function, three estimates were calcu-

lated, one minimizing the symmetrized Kullback-Leibler distance

L(λ) =
1

n

n∑

i=1

{
μη(η − ηλ|ti) + μηλ

(ηλ − η|ti)
}
,

another minimizing the duly modified V (λ) (the counterpart of (7.21)) with
α = 1, and a third minimizing V (λ) with α = 1.4, yielding an optimal loss
L(λo) and two cross-validation losses L(λv). The results from one hundred
replicates are summarized in Fig. 7.8.

7.6.4 R Package gss: ssden Suite

Density estimation under sampling bias can be performed using ssden with
an additional argument bias, which should be a list object with elements
t ({tk} = T ), wt (m(tk)), and fun (biasing function w(t, x)); note that
T is effectively discrete, ti’s do not need to be paired with Xi’s, and only
distinctive tk’s need to be listed.
The following function is modified from rtest1 in Example 7.3, which

generates truncated data (ti, Xi) as in §7.6.3:



7.6 Biased Sampling and Random Truncation 261

Length−Biased
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FIGURE 7.9. Density estimation under sampling bias. Left : Estimate using
w1(t, x) = x. Right : Estimate using w2(t, x) = I[x>t]. The estimates are in solid
lines, the test density in dashed lines, the sampling density in dotted lines, and
the data in finely binned histograms.

rtest.b <- function(n) {

t <- runif(n); x <- rf1(n); ok <- (x>t)&(x<1)

while(m<-sum(!ok)) {

t[!ok] <- runif(m); x[!ok] <- rf1(m)

ok <- (x>t)&(x<1)

}

cbind(x,t)

}

A sample of size n = 100 is generated, and f(x) is estimated using biasing
functions w1(t, x) = x and w2(t, x) = I[x>t], respectively:

set.seed(5732); xt <- rtest.b(100)

x <- xt[,1]; t <- xt[,2]

bias1 <- list(t=1,wt=1,fun=function(t,x){x[,]})

fit1 <- ssden(~x,domain=list(x=c(0,1)),bias=bias1)

bias2 <- list(t=t,wt=rep(1/100,100),

fun=function(t,x){x[,]>t})

fit2 <- ssden(~x,domain=list(x=c(0,1)),bias=bias2,

id.basis=fit1$id.basis)

note that T is a singleton for w1. The fit using w1 can be plotted as in the
left frame of Fig. 7.9, superimposed with the data, the test density f(x) as
given in (7.23), and the sampling density f̃(x) ∝ xf(x):

xx <- (0:100)/100

dtest <- function(x)

(dnorm(x,.3,.1)/3+dnorm(x,.7,.1)*2/3)/.9986501

dtest.b <- function(x) dtest(x)*x/0.5665187

hist(x,breaks=(0:50)/50,border=5,col=5,prob=TRUE)

lines(xx,dssden(fit1,xx))
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FIGURE 7.10. AIDS incubation and HIV infection for the elderly. Left : Incuba-
tion density f(x) of X. Right : Infection density f(y) of Y . The solid lines are the
fits through (7.26). The dashed lines are taken from Fig. 7.7, lower-left frame.

lines(xx,dtest(xx),lty=2)

lines(xx,dtest.b(xx),lty=3)

Replacing fit1 above by fit2 yields the right frame.

7.6.5 Case Study: AIDS Incubation

We now apply the techniques developed in this section to the AIDS incu-
bation data of §7.5.3. Assuming the independence of the incubation time
X and the infection time Y , f(x) can be estimated using w(t, x) = I[x<t]

for t = Y and f(y) can be estimated using w(t, y) = I[y>t] for t = X .
The following sequence fits f(x) and f(y) for the elderly:

data(aids); n <- dim(aids)[1]; set.seed(5732)

bias.x <- list(t=aids$infe,wt=rep(1/n,n),

fun=function(t,x){x[,]<t})

fit.x <- ssden(~incu,domain=data.frame(incu=c(0,100)),

data=aids,subset=age>=60,bias=bias.x)

bias.y <- list(t=aids$incu,wt=rep(1/n,n),

fun=function(t,y){y[,]>t})

fit.y <- ssden(~infe,domain=data.frame(infe=c(0,100)),

data=aids,subset=age>=60,bias=bias.y,

id.basis=fit.x$id.basis)

The estimated f(x) is shown in the left frame of Fig. 7.10, with that from
the joint estimation in §7.5.3 superimposed:

xx <- 0:100

plot(xx,dssden(fit.x,xx),type="l",ylim=c(0,.033))

f.incu <- cdssden(fit.aids,xx,data.frame(infe=50))$pdf

lines(xx,f.incu,lty=5)

where fit.aids is from §7.5.3 but with subset=age>=60. The right frame
can be drawn in similar manner.
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As can be seen in the lower-left frame of Fig. 7.7, information from data
is scarce on the upper end of f(x). The estimates appear to agree well,
especially those of f(y).

7.7 Conditional Densities

On a product domain X × Y, the primary interest is often the estima-
tion of the conditional density f(y|x). Such a problem is typically known
as regression, but unlike the formulations of Chaps. 3 and 5, no paramet-
ric assumption is made here on a generic Y axis, and the function to be
estimated is “bivariate” in (x, y) instead of “univariate” only in x.
A logistic conditional density transform can be made one-to-one through

side conditions on the Y axis, with which the penalized likelihood estima-
tion is straightforward. The computation and smoothing parameter selec-
tion follow trivial modifications of the procedures developed for (7.1). For
Y continuous, the empirical performance of cross-validation is assessed via
simple simulation and software tools are illustrated using simulated and
real-data examples.
When n is large or when Y involves multidimensional continuous do-

mains, the high cost of numerical integration can cripple the computation,
and one instead may have to use the penalized pseudo likelihood of §10.3
that trades statistical performance for computational efficiency.
For Y discrete, the approach leads to regression with cross-classified re-

sponses. Numerical integration is a non issue in such a setting, but a dif-
ferent set of modeling tools are needed, to be developed in §7.8.

7.7.1 Penalized Likelihood Estimation

Consider independent observations (Xi, Yi) on a product domain X × Y
from a density f(x, y) = f(x)f(y|x). Of interest is the estimation of the
conditional density f(y|x) = f(x, y)/

∫
Y f(x, y) of Y given X . Since the

marginal density f(x) of X is only a nuisance parameter, the sampling of
Xi can actually be arbitrary, random or deterministic, so long as Y |X ∼
f(y|x). For notational convenience, however, f(x) will still be used to de-
note the “limiting distribution” of Xi’s, even when they are deterministic.
The logistic conditional density transform, f(y|x) = eη(x,y)/

∫
Y e

η(x,y),
can be employed to enforce the positivity and unity constraints. To make
the transform one-to-one, η(x, y) has to satisfy certain side conditions, say
Ayη(x, y) = 0, ∀x ∈ X , where the averaging operator Ay on the domain Y
can, in principal, depend on x. A simple approach to achieving a one-to-
one logistic conditional density transform is through term elimination in
an ANOVA decomposition, as discussed in §1.3.2: For η(x, y) = η∅ + ηx +
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ηy + ηx,y with averaging operators Ax and Ay,

f(y|x) = eη∅+ηx+ηy+ηx,y

∫
Y e

η∅+ηx+ηy+ηx,y
=

eηy+ηx,y

∫
Y e

ηy+ηx,y
, (7.29)

where Ay(ηy + ηx,y) = 0, ∀x ∈ X ; the side condition here is indepen-
dent of x. Eliminating η∅ + ηx from η(x, y), one may estimate f(y|x) =
eη(x,y)/

∫
Y e

η(x,y) via the minimization of

− 1

n

n∑

i=1

{

η(Xi, Yi)− log

∫

Y
eη(Xi,y)

}

+
λ

2
J(η) (7.30)

in an appropriately assembled tensor product reproducing kernel Hilbert
space.

Example 7.10 (Tensor product cubic spline) Consider X=[0, 1] and
Y = [0, 1]. Use the construction of Example 2.5 on page 44, with (x, y)
replacing (x〈1〉, x〈2〉) in the notation. Eliminating η∅ and ηx, one has the
space

H = H00〈x〉 ⊗ (H01〈y〉 ⊕H1〈y〉)⊕ (H01〈x〉 ⊕H1〈x〉)⊗ (H01〈y〉 ⊕H1〈y〉).

In the notation of Example 2.8, one may set

J(f, g) = θ−1
00,1(f, g)00,1 + θ−1

01,1(f, g)01,1 + θ−1
1,01(f, g)1,01 + θ−1

1,1(f, g)1,1,

which has the null space NJ = (H00〈x〉⊗H01〈y〉)⊕(H01〈x〉⊗H01〈y〉) spanned
by φ1 = y − 0.5 and φ2 = (x− 0.5)(y − 0.5), and the reproducing kernel

RJ = θ00,1R00,1 + θ01,1R01,1 + θ1,01R1,01 + θ1,1R1,1.

Clearly, one has
∫ 1

0
η(x, y)dy = 0, ∀x ∈ [0, 1], for η ∈ H. �

The minimizer of (7.30) in H = {f : J(f) < ∞} is generally not com-
putable, but one may calculate an efficient approximation in

H∗ = NJ ⊕ span
{
RJ(Vj , ·), j = 1, . . . , q

}

for {Vj} ⊆
{
(Xi, Yi)

}
a random subset, which shares the same asymptotic

convergence rates; see §9.2.6. Now, define μf (g|x) =
∫
Y ge

f/
∫
Y e

f and
vf (g, h|x) = μf (gh|x) − μf (g|x)μf (h|x). The Newton updating formula
(7.7) on page 241 again holds verbatim for the minimization of (7.30) in
H∗, with μf (g) and Vf (g, h) modified as follows,
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μf (g) =
1

n

n∑

i=1

μf (g|Xi), Vf (g, h) =
1

n

n∑

i=1

vf (g, h|Xi); (7.31)

see Problem 7.12.
Weighted by the sampling proportion f(x), the aggregated Kullback-

Leibler distance of fλ(y|x) = eηλ/
∫
Y e

ηλ from f(y|x) = eη/
∫
Y e

η is now

KL(η, ηλ) =

∫

X
f(x)

{

μη(η − ηλ|x)− log

∫

Y
eη + log

∫

Y
eηλ

}

, (7.32)

with the relative Kullback-Leibler distance

RKL(η, ηλ) =

∫

X
f(x) log

∫

Y
eηλ −

∫

X
f(x)μη(ηλ|x). (7.33)

The first term of (7.33) can be estimated by n−1
∑n

i=1 log
∫
Y e

ηλ(Xi,y); the

second term E
[
ηλ(X,Y )

]
, where (X,Y ) ∼ f(x)f(y|x) = f(x, y), can be

estimated by n−1
∑n

i=1 η
[i]
λ,η̃(Xi, Yi), which is given by (7.20) on page 245

with the entries in the relevant matrices defined by the modified μf (g) and
Vf (g, h). Parallel derivation yields the same cross-validation score V (λ) of
(7.21) but with the modified μf (g) and Vf (g, h); see Problem 7.13.
While the formulas readily carry over from density estimation to con-

ditional density estimation, the computation here can be prohibitive. The
calculations of μf (g) and Vf (g, h) as defined in §7.1 take O(d) flops, where
d is the quadrature size. The calculations of μf (g) and Vf (g, h) as defined
in (7.31) would in general take O(nd) flops, however, unless Xi’s are heavily
duplicated. One nevertheless could trade statistical performance for com-
putational efficiency/feasibility via an alternative treatment; see §10.3.

7.7.2 Empirical Performance of Cross-validation

Consider the test distribution on X = [0, 1] and Y = [0, 1],

f(y|x) ∝ φ
(
(y − μx)/σx

)
I[0<y<1], (7.34)

where μx = x3 − x2 + x − 0.2, σx = 0.3, and φ(z) = e−z2/2/
√
2π is the

standard normal density. Samples of size n = 200 were drawn with Xi on
the grid 0.005(0.01)0.995, two each. The tensor product cubic spline of
Example 7.10 were used, and for each replicate, three fits were calculated,
minimizing respectively the symmetrized Kullback-Leibler distance

L(λ) =
1

n

n∑

i=1

{
μη(η − ηλ|Xi) + μηλ

(ηλ − η|Xi)
}

and the cross-validation score V (λ) with α = 1, 1.4. The optimal L(λo) and
the two cross-validation L(λv)’s from one hundred replicates are summa-
rized in Fig. 7.11, in the left half of the left frame and in the center frame.
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FIGURE 7.11. Effectiveness of cross-validation for conditional density estimation.
Left : Relative efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner
boxes); σ1 = 0.3, σ2 = 0.15(1 + x), σ3 = 0.15(2 − x). Center : L(λv) with α = 1
versus L(λv) with α = 1.4, for σx = 0.3. Right : L(λv) with α = 1 versus L(λv)
with α = 1.4, for σx = 0.15(1 + x) (solid) and σx = 0.15(2 − x) (faded).

The experiments were repeated for two modified standard deviation
functions, σx = 0.15(1 + x) and σx = 0.15(2 − x), respectively, with re-
sults from one hundred replicates also summarized in Fig. 7.11, in the right
half of the left frame and in the right frame.
The relative efficacy is much worse than what we have seen so far in other

settings, likely due to the more difficult task at hand; note that one only
has two Y ’s per X in the simulated samples for the estimation of f(y|x).
The comparison of α = 1 versus α = 1.4 varies with the test distribution,
but α = 1.4 appears to be the safer choice.

7.7.3 Kullback-Leibler Projection

Given η̂ ∈ H0 ⊕H1, its Kullback-Leibler projection η̃ in H0 minimizes

KL(η̂, η) =
1

n

n∑

i=1

{

μη̂(η̂ − η|Xi)− log

∫

Y
eη̂(Xi,y) + log

∫

Y
eη(Xi,y)

}

,

over η ∈ H0. Writing Aη̃,g(α) = KL(η̂, η̃ + αg) for g ∈ H0, it is easy to

verify that 0 = Ȧη̃,g(0) = μη̃(g)− μη̂(g). It then follows, for ηc ∈ H0, that

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc).

One may take ηc = ηy(y) = η1(y〈1〉) + · · ·+ ηΓ(y〈Γ〉), where Y =
∏Γ

γ=1 Yγ ,
with Y〈γ〉 independent of X and of each other.

7.7.4 R Package gss: sscden Suite

The sscden suite in gss implements the penalized likelihood conditional
density estimation of (7.30) with (part of) Y continuous. For n large or with
Y involving multidimensional continuous marginals, one should consider
the sscden1 suite (§10.3.4) instead, which runs much faster though
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FIGURE 7.12. Conditional density estimation on X = [0, 1] and Y = [0, 1].
The 5th, 25th, 50th, 75th, and 95th percentiles of the fitted f(y|x) are in solid
lines, those of the test distributions in faded lines, and the data in circles. From
left to right : σx = 0.3, 0.15(1 + x), 0.15(2 − x).

generally returns worse-performing estimates. With Y discrete, one should
use the ssllrm suite (§7.8.6) for regression with cross-classified responses.
The following sequence draws a sample from (7.34) with σx = 0.15(1+x)

and fits a tensor product cubic spline to the log conditional density, with
smoothing parameters minimizing V (λ) with α = 1.4:

rfc2 <- function(x) {

mu <- x^3-x^2+x-.2; sd=.15*(1+x)

y <- (rnorm(length(x))*sd+mu)

ok <- (y>0)&(y<1)

while(m <- sum(!ok)) {

y[!ok] <- (rnorm(m)*sd[!ok]+mu[!ok])

ok <- (y>0)&(y<1)

}

y

}

xx <- ((1:100)-.5)/100; x <- rep(xx,2)

set.seed(5732); y <- rfc2(x)

fit <- sscden(~x*y,~y,ydomain=data.frame(y=c(0,1)))

where the first formula ~x*y specifies model terms in the log conditional
density and the second formula ~y lists the y-variables; terms not involving
y-variables are removed internally. The domain Y affects the normalization
of the conditional density via

∫
Y e

ηdy, which should be supplied through
ydomain. A Gauss quadrature is used internally on an univariate Y for the
calculation of

∫
Y g(x, y)dy.

Shown in the center frame of Fig. 7.12 are the 5th, 25th, 50th, 75th, and
95th percentiles of the fitted f(y|x), with the data superimposed:

quan <- qsscden(fit,c(.05,.25,.5,.75,.95),

data.frame(x=xx))

plot(x,y,col=3); for (i in 1:5) lines(xx,quan[i,])
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FIGURE 7.13. Thickness of U.S. Lincoln pennies. Left : Continuous fit. Right : Fit
with built-in break. The lines are the 5th, 25th, 50th, 75th, and 95th percentiles
of the fitted f(y|x). The data, with the year jittered, are superimposed in circles.
The vertical dotted lines mark the position of the break.

Also superimposed are the respective percentiles of the test distribution.
Parallel results with σx = 0.3 and σx = 0.15(2 − x) are shown in the left
and the right frames, respectively.

7.7.5 Case Study: Penny Thickness

The thickness in mils of a sample of 90 U.S. Lincoln pennies is listed in
Scott (1992, Appendix B.4). Two pennies from each year between 1945 and
1989 were measured. The data are included in gss as a data frame penny

with elements year and mil, with the latter ranging between 50.6 and 59.
The following sequence loads the data, fits a tensor product cubic spline

to the log conditional density, and plots the fit as shown in the left frame of
Fig. 7.13, where the data, with the variable year slightly jittered to avoid
overlap, are superimposed:

data(penny); set.seed(5732)

fit <- sscden(~year*mil,~mil,data=penny,

ydomain=data.frame(mil=c(49,61)))

yy <- 1944+(0:92)/2

quan <- qsscden(fit,c(.05,.25,.5,.75,.95),

data.frame(year=yy))

plot(penny$year+.1*rnorm(90),penny$mil,ylim=c(49,61))

for (i in 1:5) lines(yy,quan[i,])

The data show an abrupt downward shift of penny thickness from 1974
to 1975, perhaps due to equipment recalibration or the like at the time.
To accommodate such discontinuity in the estimation, one may add to x a
binary factor, with the result shown in the right frame of Fig. 7.13:
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z <- factor(penny$year>1974.5); set.seed(5732)

fit1 <- sscden(~(year+z)*mil,~mil,data=penny,

ydomain=data.frame(mil=c(49,61)))

yy <- 1944+(0:92)/2; zz <- factor(yy>1974.5)

quan1 <- qsscden(fit1,c(.05,.25,.5,.75,.95),

data.frame(year=yy,z=zz))

quan1[,yy==1974.5] <- NA

plot(penny$year+.1*rnorm(90),penny$mil,ylim=c(49,61))

for (i in 1:5) lines(yy,quan1[i,])

abline(v=1974.5,lty=3)

Apart from the downward shift from 1974 to 1975, the pennies were getting
thicker steadily.

7.8 Regression with Cross-Classified Responses

For Y =
∏Γ

γ=1 Yγ with Yγ ’s discrete, the conditional density estimation of
§7.7 provides a means to regression with cross-classified responses. Beyond
the standard developments of §§7.7.1 and 7.7.3, further modeling tools are
available in the setting.
When Y = {0, 1}, the method reduces to the logistic regression of

Example 5.2, so it is an extension of logistic regression to general discrete re-
sponses. The association between y-variables can be characterized via odds
ratios, for which some modeling options are briefly discussed. Bayesian con-
fidence intervals can be developed for contrasts of log f(y|x) among “lev-
els” of y and random effects can be included to accommodate correlated
data. Empirical performances are explored through simple simulations and
software tools are illustrated using simulated and real-data examples.

7.8.1 Logistic Regression

Set Y = {0, 1}. A reproducing kernel Hilbert space H〈y〉 on Y is the
Euclidean space with a reproducing kernelR〈y〉(y1, y2) = I[y1=y2], which can
be decomposed, with ANOVA implications, as R0〈y〉 +R1〈y〉 = I[y1=y2=0]+
I[y1=y2=1] or R0〈y〉 +R1〈y〉 = 1/2+ (I[y1=y2]− 1/2); both define an ANOVA
decomposition η = η∅+ηy, with the former implying an averaging operator
Ayη(y) = η(0) and ηy(0) = 0, and the latter Ayη(y) =

(
η(0)+ η(1)

)
/2 and

ηy(1) = −ηy(0). Taking tensor product with a reproducing kernel Hilbert
space H〈x〉 on X with an square (semi) norm J〈x〉(η), the corresponding
square (semi) norm in H〈x〉 ⊗ H1〈y〉 is given by J(η) = J〈x〉

(
η(x, 1)

)
for

either decompositions of R〈y〉. Write
∫
Y g = g(0) + g(1).



270 7. Probability Density Estimation

For R1〈y〉 = I[y1=y2=1] with η(x, 0) = 0, (7.30) becomes

− 1

n

n∑

i=1

{
I[Yi=1]η̃(Xi)− log

(
1 + eη̃(Xi)

)}
+
λ

2
J〈x〉(η̃), (7.35)

with η̃(x) = η(x, 1), which is the standard form of penalized likelihood
logistic regression; see Problem 7.14.
For R1〈y〉 = I[y1=y2] − 1/2 with η(x, 1) = −η(x, 0),

η(x, y)− log
(
eη(x,1) + eη(x,0)

)
= 2η(x, 1)I[y=1] − log

(
1 + e2η(x,1)

)
,

so (7.30) becomes, for η̃(x) = 2η(x, 1),

− 1

n

n∑

i=1

{
I[Yi=1]η̃(Xi)− log

(
1 + eη̃(Xi)

)}
+
λ

8
J〈x〉(η̃),

which is the same as (7.35) since λ > 0 has yet to be selected.
Now let us look at cross-validation. With η(x, 0) = 0,

log
∫
Y e

ηλ(Xi,y) = log
(
1 + eηλ(Xi,1)

)
,

η
[i]
λ (Xi.Yi) = I[Yi=1]η

[i]
λ (Xi, 1),

so the relative Kullback-Leibler distance of (7.33) is estimated by

1

n

n∑

i=1

{
log
(
1+eη̃λ(Xi)

)
− Ỹiη̃λ(Xi)

}
+

1

n

n∑

i=1

Ỹi
(
η̃λ(Xi)− η̃[i]λ (Xi)

)
, (7.36)

where η̃(x) = η(x, 1) and Ỹ = I[Y=1]; this is simply (5.11) on page 182.
For η(x, 1) = −η(x, 0),

log
∫
Y e

ηλ(Xi,y) = log
(
e2ηλ(Xi,1) + 1

)
− ηλ(Xi, 1),

η
[i]
λ (Xi, Yi) = (2Ỹi − 1)η

[i]
λ (Xi, 1),

and (7.36) changes slightly to

1

n

n∑

i=1

{
log
(
1 + eη̃λ(Xi)

)
− Ỹiη̃λ(Xi)

}
+

1

n

n∑

i=1

(Ỹi − 0.5)
(
η̃λ(Xi)− η̃[i]λ (Xi)

)
,

where η̃(x) = 2η(x, 1); instead of the
∑

i μ(xi)ηλ(xi) appearing in (5.8) on
page 182, one now estimates

∑
i

(
μ(xi)− 0.5

)
ηλ(xi).

Note that Proposition 7.3 does not apply here, as the marginal config-
urations of tensor product reproducing kernel Hilbert spaces affect more
than just a constant. For symmetry, we shall use the averaging operator

Aγη = 1
Kγ+1

∑Kγ

y〈γ〉=0 η(y〈γ〉) on Yγ = {0, . . . ,Kγ} in the rest of the discus-

sion; see Problem 7.15 for the construction of tensor product spaces with
such a y-marginal. It then follows that

∫
Y η(x, y) = 0, where

∫
Y f(y) is the

summation of f(y) over y ∈ Y.
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7.8.2 Log-Linear Regression Models

When x is absent, data on Y =
∏Γ

γ=1 Yγ are typically aggregated into
contingency tables, for which the log-linear models are among standard
analytical tools. The conditional density models add an x-axis to the log-
linear models to disaggregate contingency tables, and will be referred to as
log-linear regression models.
The log-linear model for an (K1+1)×· · ·× (KΓ+1) table is a surrogate

Poisson regression model on Y =
∏Γ

γ=1 Yγ for Yγ = {0, . . . ,Kγ}, which is
equivalent to density estimation on Y. Associations between the margins
of contingency tables are typically characterized via the log odds ratios.
Take a 2 × 2 table for example, with Y = {0, 1}2 and f(y) = eηy/

∫
Y e

ηy

for ηy(y) = η1(y〈1〉) + η2(y〈2〉) + η1,2(y〈1〉, y〈2〉). One has

log
f(1, 1)f(0, 0)

f(1, 0)f(0, 1)
= η1,2(1, 1)− η1,2(1, 0)− η1,2(0, 1) + η1,2(0, 0),

thus the log odds ratio only depends on the interaction η12.
Adding an x-axis, f(y|x) = eηy+ηx,y/

∫
Y e

ηy+ηx,y , where ηy is as above
and ηx,y(x, y) = ηx,1(x, y〈1〉)+ηx,2(x, y〈2〉)+ηx,1,2(x, y〈1〉, y〈2〉). The log odds
ratio depends only on η1,2+ηx,1,2. If ηx,1,2 = 0, the odds ratio is independent
of x, with the model sitting in between the “saturated” model and the
conditional independence model (Y〈1〉⊥Y〈2〉)|X with η1,2 + ηx,1,2 = 0.

7.8.3 Bayesian Confidence Intervals for y-Contrasts

As discussed in §5.3.1, one may derive approximate Bayesian confidence
intervals for η(x, y) based on the quadratic approximation of the log like-
lihood at ηλ, but such intervals are of little use here as eη(x,y) needs to
be normalized to assume any meaning. Of interest are the y-contrasts of
η(x, y) over “levels” of y at fixed x values, for which the normalizing con-
stant cancels out; the log odds ratios are y-contrasts of η(x, y).
Write η = φTd+ ξT c = ψTa as in (7.3) and refer η and (dT , cT )T = a

interchangeably. The quadratic approximation of (7.30) at η̃ = ηλ is seen
to be

1

2n
(a− ã)T (nH)(a− ã) + C,

where H is the matrix in the left-hand side of (7.7), η̃(x, y) = ψT (x, y)ã,
and C is a constant; (7.30) is the posterior likelihood of the data divided by
n, so the posterior of a is approximately normal with mean ã and covariance
H+/n, where H+ is the Moore-Penrose inverse of H . The posterior of
η(x, y) is thus approximately normal with mean η̃(x, y) = ψT(x, y)ã and
variance ψT(x, y)H+ψ(x, y)/n. For any x ∈ X , a y-contrast is of the form

κ(x) = β1η(x, y1) + · · ·+ βpη(x, yp),
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where β1 + · · ·+ βp = 0; the log odds ratios of f(y|x) are such y-contrasts.
The posterior of κ(x) is seen to have a mean κ̃(x) = ψ̃

T
(x)ã and a variance

s2(x) = ψ̃
T
(x)H+ψ̃(x)/n, where ψ̃(x) = β1ψ(x, y1) + · · · + βpψ(x, yp).

Bayesian confidence intervals of κ(x) are given by κ̃(x)± z1−α/2 s(x).

7.8.4 Mixed-Effect Models for Correlated Data

The random effects of §6.1.1 can be extended to the current setting to
model correlated data. Replace (7.29) by

f(y|x) = eηy+ηx,y+zTby

∫
Y e

ηy+ηx,y+zTby
, (7.37)

where by ∼ N(0, cB) varies with y, for c a constant. Parallel to
∫
Y η(x, y) =

0, we shall specify the correlations among by to ensure
∫
Y zTby = 0.

For Y =
{
0, . . . ,K

}
, write b̃ = (bT

0 , . . . ,b
T
K)T . We shall specify

b̃ ∼ N
(
0, c(IK+1 − 1

K+11K+11
T
K+1)⊗B

)
, (7.38)

where ⊗ denotes the Kronecker product of matrices. For Γ > 1, we consider
an additive model by = by〈1〉 + · · ·+ by〈Γ〉 , with independent components
by〈γ〉 specified as above; the structure of B should remain the same for all
the components by〈γ〉 , but the constant c may vary from margin to margin.
For Y = {0, 1}, this reduces to a mixed-effect logistic regression model seen
in §6.4.1.
The formulation through (7.37) and (7.38) propagates random effects

zTb for univariate responses to cross-classified responses. Note that by
(7.38), b0+ · · ·+bK = 0, so one only needs K of the K+1 by’s. Rewriting

b̃ = (bT
1 , . . . ,b

T
K)T , the minus log likelihood of the random effects is seen

to be proportional to b̃TΣb̃ for

Σ = c−1(IK + 1K1T
K)⊗B−1, (7.39)

where IK +1K1K = (IK − 1
K+11K1K)−1. For Γ > 1, one may concatenate

all the independent components of by in b̃ with Σ block-diagonal with
blocks of the form as in (7.39).
The model can then be estimated via the minimization of

− 1

n

n∑

i=1

{
η(Xi, Yi) + zTi bYi − log

∫

Y
eη(Xi,y)+zTi by

}
+

1

2n
b̃TΣb̃+

λ

2
J(η).

(7.40)
The Newton iteration for the minimization of (7.40) follows straightfor-
ward modification of (7.6) (Problem 7.16) and the tuning parameters can
be selected by cross-validation. The Kullback-Leibler projection of §7.7.3
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can be computed with zTby treated as an offset, and Bayesian confidence
intervals for y-contrasts follow the same calculus as in §7.8.3 but with
a = (dT , cT ,bT )T and a modified H matrix to be derived in Problem 7.16.

7.8.5 Empirical Performance of Cross-Validation

The tuning parameters are to be selected by the cross-validation score
V (λ) of (7.21) but with μf (g) and Vf (g, h) defined in (7.31). To assess
the effectiveness of cross-validation, simulations were conducted on Y =
{0, 1} × {0, 1} and X = [0, 1]. Define

log
p1(x)

1− p1(x)
= 400x5(1− x)3 − 1,

log
p2(x)

1− p2(x)
= 500x7(1− x)3 + 250x2(1− x)10 − 1,

log
p3(x)

1− p3(x)
= 50x2(1− x)4.

A setting with Y〈1〉⊥Y〈2〉|x would have
(
f(0, 0), f(0, 1), f(1, 0), f(1, 1)

)
= (q1q2, q1p2, p1q2, p1p2),

where qk = 1− pk, but we modify it by
(
f(0, 0), f(0, 1), f(1, 0), f(1, 1)

)
∝ (q1q2p3, q1p2q3, p1q2q3, p1p2p3);

note that after the modification, p1(x) and p2(x) are no longer the marginal
probabilities P (y〈1〉=1|x) and P (y〈2〉=1|x), but the log odds ratio is

log
f(0, 0|x)f(1, 1|x)
f(1, 0|x)f(0, 1|x) = 2 log

p3(x)

1− p3(x)
= 100x2(1− x)4.

Samples of size n = 200 were generated, for xi ∼ U(0, 1), with and without
random effects. For samples with random effects, zTbi = b1(si, y〈1〉) +
b2(si, y〈2〉), where si ∈ {1, . . . , 10}, 20 each, b1(s, 1) = −b1(s, 0) ∼ N(0, 1),
and b2(s, 1) = −b2(s, 0) ∼ N(0, 1). Models of the form

η(x, y) = η1(y〈1〉) + η2(y〈2〉) + η1,2(y〈1〉, y〈2〉)

+ ηx,1(x, y〈1〉) + ηx,2(x, y〈2〉) + ηx,1,2(x, y〈1〉, y〈2〉) (7.41)

were fitted to the data.
To assess the performance of f̂(y|x) as an estimate of f(y|x), one may

use as loss the Kullback-Leibler distance

L(λ) = KL(f, f̂λ) =
1

n

n∑

i=1

∫

Y
log

{
f(y|xi)
f̂λ(y|xi)

}

f(y|xi), (7.42)
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FIGURE 7.14. Effectiveness of cross-validation for log-linear regression models.
Left : Relative efficacy L(λo)/L(λv), for α = 1 (wider boxes) and α = 1.4 (thinner
boxes). Center : L(λv) for α = 1 versus that for α = 1.4 in fixed-effect simulation.
Right : L(λv) for α = 1 versus that for α = 1.4 in mixed-effect simulation.

where the dependence of f̂λ(y|x) on the tuning parameters is made explicit,
with the subscript λ representing the λ in (7.30) or (7.40), the θβ ’s hidden
in J(η), and also the Σ in (7.40) for mixed-effect models. The conditional
density f(y|x) is as in (7.37), which reduces to (7.29) when zTby is absent.

For both the fixed-effect (without random effects) and mixed-effect (with
random effects) simulations, one hundred replicates were generated. Three
estimates were calculated for each replicate, one minimizing L(λ) of (7.42)
at λo, and two minimizing V (λ) of (7.21) at λv, for α = 1, 1.4. The results
are summarized in Fig. 7.14, with the relative efficacy L(λo)/L(λv) in the
left frame and L(λv) for α = 1 versus that for α = 1.4 in the center and
right frames. The choice of α appears a tossup in the fixed-effect simulation,
but α = 1 dominated α = 1.4 in the mixed-effect simulation.

7.8.6 R Package gss: ssllrm Suite

Log-linear regression models can be fitted using the ssllrm suite. The
following sequence generates a sample used in the fixed-effect simulation of
§7.8.5 and fits a model of the form as in (7.41) with smoothing parameters
selected by V (λ) with α = 1:

test <- function(x) {

p1 <- plogis(400*x^5*(1-x)^3-1)

p2 <- plogis(500*x^7*(1-x)^3+250*x^2*(1-x)^10-1)

p3 <- plogis(50*x^2*(1-x)^4)

q1 <- 1-p1; q2 <- 1-p2; q3 <- 1-p3

p <- cbind(q1*q2*p3,q1*p2*q3,p1*q2*q3,p1*p2*p3)

p/apply(p,1,sum)

}

set.seed(5732)

x <- runif(200); p <- test(x)
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y1 <- y2 <- NULL

for (i in 1:200) {

ywk <- rmultinom(1,1,p[i,])

y1 <- c(y1,ywk[3]+ywk[4])

y2 <- c(y2,ywk[2]+ywk[4])

}

y1 <- factor(y1); y2 <- factor(y2)

fit <- ssllrm(~y1*y2*x,~y1+y2)

The basic syntax of ssllrm is the same as that of sscden. To evaluate the
fitted f(y|x), say at x = (0.3, 0.5), use

predict(fit,data.frame(x=c(.3,.5)))

which returns a 2 × 4 matrix with f(y|0.3) and f(y|0.5) in the rows; the
ordering of the y values, (0, 0), (0, 1), (1, 0), (1, 1), can be obtained via
fit$qd.pt. For a y-contrast on a grid, say log

{
f(1, 1|x)/f(1, 0|x)

}
=

η(x, 1, 1)− η(x, 1, 0), use

xx <- seq(0,1,length=51)

est <- predict(fit,data.frame(x=xx),

odds=c(0,0,-1,1),se=TRUE)

which can be plotted as in the top-left frame of Fig. 7.15, with the data
and the test function superimposed:

plot(xx,exp(est$fit),type="l",log="y",ylim=c(0.1,10))

lines(xx,exp(est$fit+1.96*est$se),col=5)

lines(xx,exp(est$fit-1.96*est$se),col=5)

pp <- test(xx); lines(xx,pp[,4]/pp[,3],lty=3)

id3 <- (y1==1)&(y2==0); id4 <- (y1==1)&(y2==1)

points(x[id4],rep(10,sum(id4)),col=3)

points(x[id3],rep(0.1,sum(id3)),col=3)

Shown in the other three frames of Fig. 7.15 are f(1, 1|x)/f(0, 1|x),
f(1, 1|x)/f(0, 0|x), and f(1, 1|x)f(0, 0|x)/

{
f(1, 0|x)f(0, 1|x)

}
.

7.8.7 Case Study: Eyetracking Experiments

In eyetracking experiments, participants in front of computer monitors
listen to instructions such as “click on the purple bottle” and their eye
fixation on the target (purple bottle), on some color competitor (e.g., pur-
ple pencil), on some object competitor (e.g., yellow bottle), or on something
else is monitored on a fine time grid. The purpose of such studies is to ex-
plore how linguistic variables may affect the ease with which the listeners
can select a visually available referred-to item.
As part of her dissertation research at The Ohio State University, eye-

tracking data were collected by Anouschka Foltz in 288 trials involving
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FIGURE 7.15. Log-linear regression model on X = [0, 1] and Y = {0, 1}2. Fitted
f(1, 1|x)/f(1, 0|x), f(1, 1|x)/f(0, 1|x), and f(1, 1|x)/f(0, 0|x) (solid) with 95%
Bayesian confidence intervals (faded); true functions (dotted) and data (circles)
are superimposed. The odds ratio f(1, 1|x)f(0, 0|x)/

{
f(1, 0|x)f(0, 1|x)

}
is in the

bottom-right frame.

48 participants, 6 trials each. In each trial, the participant listened to
three consecutive instructions, with the first being something like “click
on the YELLOW pencil” and the second “click on the PURPLE bottle;”
the common linguistic trait is the emphasized adjectives and the changes
in both the adjectives and the nouns, but the particular word choices may
vary from trial to trial. Data from the time segment associated with the
second instructions are included in gss as a data frame eyetrack, with
elements time (136 points at (−867)(17)(1428)ms), color (binary, eye fix-
ation on matching color), object (binary, eye fixation on matching object),
id (participant’s ID), and cnt; time 0 is at the onset of the noun, and the
136× 288 = 39168 readings are merged into 13891 distinctive records with
the multiplicity counts in cnt.
A model of the form as in (7.37) can be fitted to the data, with η(x, y) as

in (7.41) and zTby = b1(s, y〈1〉) + b2(s, y〈2〉), where b1(s, 1) = −b1(s, 0) ∼
N(0, σ2

1) and b2(s, 1) = −b2(s, 0) ∼ N(0, σ2
2) are independent:

data(eyetrack)

fit.eye <- ssllrm(~time*color*object,~color+object,

data=eyetrack,weight=cnt,

id.basis=1:136,random=~1|id)
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The random argument specifies random effects zTb for univariate responses
as discussed in §6.2.6, which are then propagated into the zTby of §7.8.4.
Due to the huge sample size, the fit may take a hour or two to execute on
a modern desktop or laptop.
Upon hearing the emphasized adjective “PURPLE” but before the noun

“bottle,” one usually expects a noun repetition (“pencil”) and starts to look
for purple pencil on the monitor, and of interest is how long it takes for
the participant to recover from the trap to focus on the target, the purple
bottle. Setting b = 0 in the fitted model, one is to compare f(y|x) =
eη(x,y)/

∫
Y e

η(x,y) at y = (1, 1) (target) and y = (1, 0) (color competitor),
as shown in Figure 7.16:

tt <- eyetrack$time[1:136]

p <- predict(fit.eye,data.frame(time=tt))

plot(tt,p[,4],type="l"); lines(tt,p[,3],col=5)

contr <- predict(fit.eye,data.frame(time=tt),

odds=c(0,0,-1,1),se=TRUE)

plot(tt,exp(contr$fit),log="y")

lines(tt,exp(contr$fit+1.96*contr$se),col=5)

lines(tt,exp(contr$fit-1.96*contr$se),col=5)

The Kullback-Leibler projection suggests that one may set ηx12 = 0 but
not η12 + ηx12 = 0, so color and object are dependent but the odds ratio
f(1, 1|x)f(0, 0|x)/

{
f(1, 0|x)f(0, 1|x)

}
is largely independent of x:

project(fit.eye,c("color","object",

"time:color","time:object"))$ratio

# 0.3672533

project(fit.eye,c("color","object","color:object",

"time:color","time:object"))$ratio

# 0.03188852

The association between Y〈1〉 and Y〈2〉 however is not of primary interest in
the current application.
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7.9 Response-Based Sampling

In studies of rare events, data are often subject to a form of selection bias
known as choice-based sampling in econometrics or case-control sampling
in biostatistics. Samples largely from f(x|y) have to be used to estimate
f(y|x) or part of it.
Because of the selection bias, f(y|x) is estimable only through the joint

density f(x, y). The joint density is not always estimable, but when it
is, the estimation through penalized likelihood method is straightforward.
The odds ratio is available through either f(x|y) or f(y|x), so is always
estimable.

7.9.1 Response-Based Samples

Consider a probability density f(x, y) on a product domain X × Y, where
Y = {1, . . . ,K} is discrete. Let Yj ⊆ Y, j = 1, . . . , s, be s strata;

⋃s
j=1 Yj =

Y. A stratum Yj is selected with probability πj ,
∑s

i=1 πj = 1, and given the
stratum, observations are taken from f(x, y) but restricted to the stratum
X × Yj . Such data are known as choice-based samples in econometrics
or case-control samples in biostatistics. Of interest is the estimation of
the conditional density f(y|x). Since the strata are defined by restricted y
values, the sampling scheme is called response-based sampling.

Example 7.11 (Separate sampling) With s = K and Yj = {y = j},
one gets a separate sample for case-control studies (Anderson 1972). �

Example 7.12 (Enriched choice-based sampling) With s = K + 1,
Yj = {y = j}, j = 1, . . . ,K, and YK+1 = Y, one obtains an enriched
choice-based sample (Cosslett 1981). �

With response-based sampling, the data are largely from the “wrong”
conditional distribution f(x|y). Such sampling strategy is necessary when
the categories of interest are rare in the population, in which case an in-
formative random sample from f(x, y) or f(y|x) can be astronomical.
From f(x, y) = eηx+ηy+ηx,y/

∫
X
∫
Y e

ηx+ηy+ηx,y , one has

f(y|x) = eηy+ηx,y

∫
Y e

ηy+ηx,y
, f(x|y) = eηx+ηx,y

∫
X e

ηx+ηx,y
.

Separate sampling does not warrant the estimation of f(y|x) unless an
independent estimate of the marginal density f(y) ∝ eηy

∫
X e

ηx+ηx,y is
available, whereas an enriched sample does carry information about f(x, y)
and, hence, about f(y|x). Note that the empirical πj cannot be used to
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estimate the marginal density f(y) due to the very selection bias in the
sampling scheme. It is easy to verify, however, that an odds ratio

f(y1|x1)/f(y2|x1)
f(y1|x2)/f(y2|x2)

=
f(y1|x1)f(y2|x2)
f(y1|x2)f(y2|x1)

, (7.43)

depends only on the interaction ηx,y, and, hence, is always estimable; see
Problem 7.17.
In the case that none of the partitions {1, . . . , s} = A∪Ac would satisfy(⋃
j∈A Yj)

⋂(⋃
j∈Ac Yj

)
= ∅ (Cosslett 1981, Assumption 10), known as

the connected case, f(x, y) is identifiable from the sample, in the sense
that the minus log likelihood

− 1

n

n∑

i=1

η(Xi, Yi) +

s∑

j=1

nj

n
log

∫

X

∫

Yi

eη (7.44)

is strictly convex in η = ηx+ηy+ηx,y that satisfies side conditions Ax(ηx+
ηx,y) = 0, ∀y, and Ay(ηy + ηx,y) = 0, ∀x, where (Xi, Yi) are the observed
data and nj are the sample sizes from the strata Yj ,

∑s
j=1 nj = n; see

Problem 7.18. When there is a partition of {1, · · · , s} = A ∪ Ac such that(⋃
j∈A Yj

)⋂ (⋃
j∈Ac Yj

)
= ∅, however, ηy is not identifiable although ηx+

ηx,y still is.
For the estimation of f(x|y) = eηx+ηx,y/

∫
X e

ηx+ηx,y , one can always cast
the sampling scheme as separate sampling with s = K and Yj = {y = j},
and the minus log conditional likelihood

− 1

n

n∑

i=1

η(Xi, Yi) +

K∑

j=1

nj

n
log

∫

X
eη(x,j) (7.45)

is strictly convex in η = ηx + ηx,y that satisfies side conditions Axη = 0,
∀y. Note that (7.45) is identical to (7.44) under separate sampling, with
ηy(j) in (7.44) canceling out.

7.9.2 Penalized Likelihood Estimation

The estimation of f(x|y) has been treated in §7.7, so we only consider
the connected case here. Write π̂j = nj/n. The joint density f(x, y) =
eη/
∫
X
∫
Y e

η can be estimated through the minimization of

− 1

n

n∑

i=1

η(Xi, Yi) +
s∑

j=1

π̂j log

∫

X

∫

Yj

eη +
λ

2
J(η), (7.46)

for η(x, y) = ηx + ηy + ηx,y. The minimizer in H =
{
f : J(f) <∞

}
is gen-

erally not computable, but that in H∗ = NJ ⊕ span
{
RJ ((Xi, Yi), ·)

}
shares

the same convergence rates; see §9.2. Define μf (g|j) =
∫
X
∫
Yj
gef/

∫
X
∫
Yj
ef
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and vf (g, h|j) = μf (gh|j)−μf (g|j)μf (h|x). The Newton updating formula
(7.7) on page 241 again holds verbatim for the minimization of (7.46) in
H∗, with μf (g) and Vf (g, h) modified as

μf (g) =
K∑

j=1

π̂jμf (g|j), Vf (g, h) =
K∑

j=1

π̂jvf (g, h|j).

The Kullback-Leibler distance is now defined by

KL(η, ηλ) =

K∑

j=1

πj

{

μη(η − ηλ|j)− log

∫

X

∫

Yj

eη + log

∫

X

∫

Yj

eηλ

}

,

with the relative Kullback-Leibler distance given by

RKL(η, ηλ) =

K∑

j=1

πj

{

log

∫

X

∫

Yj

eηλ − μη(ηλ|j)
}

.

The cross-validation and computation are again trivial to modify.

7.10 Bibliographic Notes

Sections 7.1 and 7.2

Penalized likelihood density estimation was pioneered by Good and Gaskins
(1971), who used a square root transform for positivity and resorted to
constrained optimization to enforce unity. The logistic density transform
was introduced by Leonard (1978), and (7.12) was proposed by Silverman
(1982) to ensure unity without numerically enforcing it. The early work
was largely done in the univariate context, although the basic ideas are
applicable in more general settings. Using B-spline basis with local support,
O’Sullivan (1988a) developed a fast algorithm similar to that of §3.10.1 for
the computation of Silverman’s estimate.
The one-to-one logistic density transform through a side condition was

introduced in Gu and Qiu (1993), where an asymptotic theory was devel-
oped that led to the computability of the estimate through H∗ on generic
domains. The estimation of the Poisson process and the link to Silverman’s
estimate was also noted by Gu and Qiu (1993).

Section 7.3

With a varying smoothing parameter λ in (7.7), a performance-oriented
iteration similar to that in §5.2.1 was developed by Gu (1993b). This
approach does not bode well with multiple smoothing parameters, however,
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as analytical derivatives similar to those behind Algorithm 3.2 are lacking.
The direct cross-validation presented here was developed in Gu and Wang
(2003).

Section 7.4

The strategy for the handling of numerical singularity is similar to the one
discussed in Gu (1993b, Appendix). The flop counts are largely taken from
Golub and Van Loan (1989).
The rescaling of the domain for numerical integration on multidimen-

sional cubes is discussed in Gu and Wang (2003).
The Kullback-Leibler projection was developed in Gu (2004).

Section 7.5

The Buffalo snowfall data have been analyzed by numerous authors using
various density estimation methods such as density-quantile autoregressive
estimation (Parzen 1979), average shifted histograms (Scott 1985), and
regression spline extended linear models (Stone, Hansen, Kooperberg, and
Truong 1997). The estimates presented here differ slight from the ones
shown in Gu (1993b), where a performance-oriented iteration was used to
select the smoothing parameter.
The analysis of the CDC blood transfusion data presented here differ

slightly from the one in Gu (1998c), where a performance-oriented iteration
was used to select the smoothing parameters.

Section 7.6

An early reference on length-biased sampling and its applications is Cox
(1969). The empirical distributions for data in the settings of Examples 7.7
and 7.8 were derived and their asymptotic properties studied by Vardi
(1982, 1985) and Gill, Vardi, andWellner (1988). The empirical distribution
for the truncated data of Example 7.9 was studied by Woodroofe (1985),
Wang, Jewell, and Tsay (1986), Wang (1989), and Keiding and Gill (1990).

The smoothing of the empirical distribution for length-biased data of
Example 7.6 through the kernel method was studied by Jones (1991).
The general formulation of penalized likelihood density estimation for bi-
ased and truncated data as presented in this section is largely taken from
an unpublished technical report (Gu 1992d).

Section 7.7

The materials of this section are largely taken from Gu (1995a). We esti-
mate f(y|x) as a “bivariate” function on generic domains X and Y, where
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X and Y can both be multivariate. A similar approach to conditional den-
sity estimation can be found in Stone, Hansen, Kooperberg, and Truong
(1997).
Most nonparametric regression techniques, such as the local polynomial

methods (Cleveland 1979; Fan and Gijbels 1996) with the kernel methods
as special cases, primarily concern the conditional mean. Work has also
been done for the estimation of conditional quantiles (Koenker, Ng, and
Portnoy 1994). Cole (1988) and Cole and Green (1992) considered a three-
parameter model on the y axis in the form of Box-Cox transformation
and estimated the three parameters as functions of x through penalized
likelihood; the conditional mean and conditional quantiles could be easily
obtained from the three-parameter model.

Section 7.8

The materials of this section are mainly taken from Gu and Ma (2011) . It is
a special case of conditional density estimation, yet it includes numerous
models in the literature as special cases of its own.
Regression with multinomial responses has been studied by Kooperberg,

Bose, and Stone (1997) and Lin (1998). For Y = {0, 1}Γ, a product of binary
domains, Gao (1999) and Gao, Wahba, Klein, and Klein (2001) attempted
a direct generalization of (5.1).

Section 7.9

The term response-based sampling was coined by Manski (1995). Paramet-
ric or partly parametric estimation of the odds ratio or the conditional
density f(y|x) under such a sampling scheme have been studied by Ander-
son (1972), Prentice and Pyke (1978), Cosslett (1981), and Scott and Wild
(1986), among others. The empirical joint distribution based on enriched
samples was derived by Morgenthaler and Vardi (1986) and was used as
weights in their kernel estimate of f(y|x). A version of penalized likelihood
estimation adapted from Good and Gaskins (1971) was proposed by Ander-
son and Blair (1982) for the case of K = 2. The formulation of this section
was largely taken from an unpublished technical report (Gu 1995b).

7.11 Problems

Section 7.1

7.1 Verify (7.5).

7.2 Verify (7.6) and (7.7).



7.11 Problems 283

Section 7.2

7.3 Verify (7.11).

7.4 Show that the minimizer η̃∗ of (7.12) satisfies the unity constraint∫
X e

η̃∗
dx = 1.

Section 7.3

7.5 For Lf,g(α) = log
∫
X e

f+αgdx as a function of α, verify that L̇f,g(0) =

μf (g) and L̈f,g(0) = Vf (g).

7.6 Plugging (7.3) into (7.17), show that the minimizing coefficients satisfy
(7.7).

7.7 Verify the cross-validation estimate given in (7.22) for prebinned data.

Section 7.4

7.8 Premultiply (7.7) by G̃−T , and show that the linear system reduces
to (7.25).

Section 7.6

7.9 Show that the Newton update for the minimization of (7.26) satisfies
(7.7), with μf (g) and Vf (g, h) modified as in (7.27).

7.10 Derive the counterpart of (7.21) for use with (7.26).

7.11 Show that with (t,X) generated according to the scheme of Example
7.9, with A = {t < x}, f(x) supported on (0, a), and g(t) uniform on (0, a),
X is length-biased from a density proportional to xf(x).

Section 7.7

7.12 Show that the Newton update for the minimization of (7.30) satisfies
(7.7), with μf (g) and Vf (g, h) defined as in (7.31).

7.13 Derive the counterpart of (7.21) for use with (7.30).
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Section 7.8

7.14 Verify that (7.35) is the same as (5.1) applied to Bernoulli data.

7.15 Consider H〈x〉 on X , with a reproducing kernel R〈x〉(x1, x2) and an
inner product J〈x〉(f, g), and H〈y〉 on Y = {0, . . . ,K}, with the reproducing
kernel R〈y〉(y1, y2) = I[y1=y2] − 1

K+1 and the inner product

(f, g)〈y〉 = fT (I − 1
K+111

T )g.

Verify that in the tensor product space H〈x〉 ⊗ H〈y〉, with a reproducing
kernel R〈x〉(x1, x2)R〈y〉(y1, y2), the inner product is given by

J(f, g) = 1
K+1

∑K
y=0 J〈x〉

(
(I −Ay)f, (I −Ay)g

)
,

where Ayf = 1
K+1

∑K
y=0 f(y).

7.16 Plugging (7.3) into (7.40), derive the Newton updating equation for
the minimization of (7.40) with respect to (dT , cT , b̃T )T .

Section 7.9

7.17 Show that the odds ratio of (7.43) depends only on the interaction
ηx,y.

7.18 Assuming the connected case and nj > 0, j = 1, . . . , s, show that
the minus log likelihood of (7.44) is strictly convex in η = ηx + ηy + ηx,y.



8
Hazard Rate Estimation

For right-censored lifetime data with possible left-truncation, (1.6) of Ex-
ample 1.3 defines penalized likelihood hazard estimation. Of interest are
the selection of smoothing parameters, the computation of the estimates,
and the asymptotic behavior of the estimates.
The existence and the computability of the penalized likelihood hazard

estimates are discussed in §8.1, and it is shown that the numerical struc-
ture of hazard estimation parallels that of density estimation, as given in
§7.1. In §8.2, a natural Kullback-Leibler loss is derived under the sam-
pling mechanism, and a cross-validation scheme for smoothing parameter
selection is developed to target the loss. It turns out that the algorithms
for density estimation as developed in §§7.3 and 7.4 are readily applica-
ble to hazard estimation after trivial modifications. Modeling tools such
as Bayesian confidence intervals, Kullback-Leibler projection, and frailty
models for correlated data are discussed in §8.3, along with open-source
software. Real-data examples are given in §8.4. Also of interest are the
estimation of relative risk in a proportional hazard model through penal-
ized partial likelihood (§8.5), which is shown to be isomorphic to density
estimation under biased sampling, and models that are parametric in time
(§8.6), which can be fitted following the lines of non-Gaussian regression,
as discussed in Chap. 5.
Similar to density estimation, the computability of the hazard estimates

is through the notion of efficient approximation based on the asymptotic
convergence rates, which will be discussed in Chap. 9.

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 8,
© Springer Science+Business Media New York 2013
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8.1 Preliminaries

Let T be the lifetime of an item, Z be the left-truncation time at which
the item enters study, and C be the right-censoring time beyond which
the item is dropped from surveillance, independent of each other. Let U
be a covariate and T |U follow a lifetime distribution with survival function
S(t, u) = P (T > t |U = u). Observing independent samples (Zi, Xi, δi, Ui),
i = 1, . . . , n, where X = min(T,C), δ = I[T≤C], and Z < X , one is to
estimate the hazard rate λ(t, u) = −∂ logS(t, u)/∂t.
When parametric models are assumed on the time axis, hazard estimation

is not much different from non-Gaussian regression as treated in Chap. 5;
see §8.6. Assuming a proportional hazard model λ(t, u) = λ0(t)λ1(u), one
may treat the base hazard λ0(t) as nuisance and estimate the “univariate”
relative risk λ1(u) through penalized partial likelihood; see §8.5.
The main subject of this chapter is the estimation of the “bivariate”

hazard function λ(t, u) = eη(t,u) through the minimization of

− 1

n

n∑

i=1

{

δiη(Xi, Ui)−
∫ Xi

Zi

eη(t,Ui)dt

}

+
λ

2
J(η) (8.1)

in a reproducing kernel Hilbert space H =
{
f : J(f) < ∞

}
of functions

defined on the domain T ×U . With U a singleton and λ = 0, the nonpara-
metric maximum likelihood yields a delta sum estimate of λ(t) correspond-
ing to the Kaplan-Meier estimate of the survival function; see Kaplan and
Meier (1958). With λ = ∞, one fits a parametric model in the null space
NJ =

{
f : J(f) = 0

}
of the penalty. The time domain T is understood

to be [0, T ∗] for some T ∗ finite, which is not much of a constraint, as all
observations are finite in practice.

Let L(f) = −n−1
∑n

i=1

{
δif(Xi, Ui) −

∫ Xi

Zi
ef(t,Ui)dt

}
be the minus log

likelihood. When the maximum likelihood estimate uniquely exists in the
null spaceNJ , the following lemmas establish the existence of the minimizer
of (8.1) through Theorem 2.9.

Lemma 8.1 L(f) is convex in f , and the convexity is strict if f ∈ H is
uniquely determined by its restriction on

⋃n
i=1

{
(Zi, Xi)× {Ui}

}
.

Proof: For α, β > 0, α+ β = 1,

∫ X

Z

eαf(t,U)+βg(t,U)dt ≤
{∫ X

Z

ef(t,U)dt

}α{∫ X

Z

eg(t,U)dt

}β

= exp

{

α log

∫ X

Z

ef(t,U)dt+ β log

∫ X

Z

eg(t,U)dt

}

≤ α

∫ X

Z

ef(t,U)dt+ β

∫ X

Z

eg(t,U)dt,
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where the first inequality (Hölder’s) is strict unless ef(t,U) ∝ eg(t,U) on

(Z,X) and the second is strict unless
∫ X

Z ef(t,U)dt =
∫X

Z eg(t,U)dt. The
lemma follows. �

Lemma 8.2 L(f) is continuous in f if f(t, u) is continuous in t, ∀u ∈ U ,
∀f ∈ H.

Proof: The lemma follows from the continuity of evaluation in H and the

Riemann sum approximations of
∫ X

Z ef(t,U)dt. �
A few examples follow.

Example 8.1 (Cubic spline with no covariate) A singleton U char-

acterizes the absence of covariate. Take T = [0, 1] and J(η) =
∫ 1

0
η̈2dt.

One has NJ = span{1, t}. �

Example 8.2 (Cubic spline with binary covariate) Consider U =
{1, 2}. Take T = [0, 1] and

J(η) = θ−1
m

∫ 1

0

(
η̈(t, 1) + η̈(t, 2)

)2
+ θ−1

c

∫ 1

0

(
η̈(t, 1)− η̈(t, 2)

)2

= θ−1
m Jm(η) + θ−1

c Jc(η),

where Jm(η) penalizes the mean log hazard and Jc(η) penalizes the contrast.
The null space is given by NJ = span

{
I[u=1], I[u=2], tI[u=1], tI[u=2]

}
. See

Example 2.7 of §2.4.4.
Setting θc = 0 and NJ = span

{
I[u=1], I[u=2], t

}
, one obtains a propor-

tional hazard model. The proportional hazard model can also be obtained
from Example 8.1 using the partial spline technique of §4.1, by adding a
term βI[u=2] to the log hazard, λ(t, u) = eη(t)+βI[u=2] . �

Example 8.3 (Tensor product cubic spline) Consider U = [0, 1] and
T = [0, 1]. The tensor product cubic spline of Example 2.5 in §2.4.3 can be
used in (8.1) for the estimation of the log hazard; see also Example 2.8 in
§2.4.5. An additive model characterizes a proportional hazard model. �

Similar to the situation for density estimation, a minimizer ηλ of (8.1) in
H =

{
f : J(f) <∞

}
is, in general, not computable, but one may calculate

a minimizer η∗λ in a data-adaptive finite-dimensional space

H∗ = NJ ⊕ span
{
RJ

(
(T̃j , Ũj), ·

)
, j = 1, . . . , q

}
, (8.2)

for
{
(T̃j , Ũj)

}q
j=1

⊆
{
(Xi, Ui), δi = 1

}
a random subset of the failure cases,

which shares the same asymptotic convergence rates as ηλ; see §9.3.4.
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From now on, we shall focus on η∗λ but drop the star from the notation.
Plugging into (8.1) the expression

η(t, u) =

m∑

ν=1

dνφν(t, u) +

q∑

j=1

cjRJ

(
(T̃j , Ũj), (t, u)

)
= φTd+ ξT c, (8.3)

the calculation of ηλ reduces to the minimization of

Aλ(c,d) = − 1

n
δT (S̃d+ R̃c) +

1

n

n∑

i=1

∫ Xi

Zi

exp
(
φT

i d+ ξTi c
)
dt+

λ

2
cTQc

(8.4)
with respect to c and d, where S̃ is n×m with the (j, ν)th entry φν(Xi, Ui),
R̃ is n× q with the (i, j)th entry ξj(Xi, Ui) = RJ

(
(T̃j , Ũj), (Xi, Ui)

)
, Q is

q × q with the (j, k)th entry RJ

(
(T̃j , Ũj), (T̃k, Ũk)

)
, φi is m × 1 with the

νth entry φν(t, Ui), and ξi is q × 1 with the jth entry ξj(t, Ui).

Write μf (g) = (1/n)
∑n

i=1

∫Xi

Zi
g(t, Ui)e

f(t,Ui)dt and Vf (g, h) = μf (gh).

Taking derivatives of Aλ in (8.4) at η̃ = φT d̃+ ξT c̃ ∈ H∗, one has

∂Aλ

∂d
= −S̃Tδ/n+ μη̃(φ) = −ST1/n+ μφ,

∂Aλ

∂c
= −R̃Tδ/n+ μη̃(ξ) + λQc̃ = −RT1/n+ μξ + λQc̃,

∂2Aλ

∂d∂dT
= Vη̃(φ,φ

T ) = Vφ,φ, (8.5)

∂2Aλ

∂c∂cT
= Vη̃(ξ, ξ

T ) + λQ = Vξ,ξ + λQ,

∂2Aλ

∂d∂cT
= Vη̃(φ, ξ

T ) = Vφ,ξ,

where S and R have N =
∑n

i=1 δi rows corresponding to observations with
δi = 1; this is virtually a carbon copy of (7.5) on page 241; see Problem 8.1.
With the altered definitions of μf (g), Vf (g, h), S, R, and Q, the Newton
updating equations (7.6) and (7.7) also hold verbatim for the minimization
of Aλ(c,d) in (8.4).
Note that μf (g) as defined above generally involves O(n) integrals unless

Ui’s are heavily duplicated, so one faces similar numerical burden with
continuous covariates as with the conditional density estimation of §7.7.
One again may trade statistical performance for numerical efficiency via
penalized pseudo likelihood; see §10.4.

8.2 Smoothing Parameter Selection

Smoothing parameter selection for hazard estimation parallels that for den-
sity estimation. Performance-oriented iteration works fine when the co-
variate is absent, but it is numerically less efficient when the covariate is
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present. The direct cross-validation is as effective as the indirect one and
is simpler to implement.
A Kullback-Leibler distance is derived for hazard estimation under the

sampling mechanism, and a cross-validation score is derived to track the
Kullback-Leibler loss. The cross-validation procedure is nearly a carbon
copy of the one derived for density estimation, so the computation follows
trivially. The effectiveness of the cross-validation score is evaluated through
simple simulation.
As in §§3.2, 5.2, and 7.3, the dependence of entities on θβ is suppressed

in the notation.

8.2.1 Kullback-Leibler Loss and Cross-Validation

Denote by N(t) = I[t≤X,δ=1] the event process. Under independent censor-

ship, the quantity eη(t,u)dt is the conditional probability that N(t) makes
a jump in [t, t + dt) given that t ≤ X and U = u; see, e.g., Fleming and
Harrington (1991, p. 19). The Kullback-Leibler distance

eηdt log
eηdt

eηλdt
+ (1− eηdt) log

1− eηdt

1− eηλdt

=
{
(η − ηλ)e

η − (eη − eηλ)
}
dt+O

(
(dt)2

)

measures the proximity of the estimate eηλdt to the true “success” proba-
bility eηdt. Weighting by the at-risk probability

S̃(t, u) = P (Z < t ≤ X |U = u) = E
[
I[Z<t≤X]

∣
∣U = u

]

and accumulating over T × U , one has a Kullback-Leibler distance

KL(η, ηλ) =

∫

U
m(u)

∫

T

{
(η − ηλ)e

η − (eη − eηλ)
}
S̃(t, u)dt

= E

[ ∫

T

{(
η(t, U)−ηλ(t, U)

)
eη(t,U)−

(
eη(t,U)−eηλ(t,U)

)}
Y (t)dt

]

,

(8.6)

where Y (t) = I[Z<t≤X] is the at-risk process, m(u) is the density of U , and
the expectation is with respect to Z, X , and U . Dropping terms that do
not involve ηλ, one obtains a relative Kullback-Leibler distance,

RKL(η, ηλ) = E

[ ∫

T

{
eηλ(t,U) − ηλ(t, U)eη(t,U)

}
Y (t)dt

]

,

and its empirical version,

1

n

n∑

i=1

∫ Xi

Zi

eηλ(t,Ui)dt− 1

n

n∑

i=1

∫ Xi

Zi

ηλ(t, Ui)e
η(t,Ui)dt. (8.7)
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The first term of (8.7) is readily computable, but the second term μη(ηλ)
involves the unknown η(t, u).

Write A(t) =
∫ t

0
eη0(s,U)Y (s)ds. Conditioning on Z and U , M(t) =

N(t) − A(t) is a martingale; see, e.g., Fleming and Harrington (1991,

§1.3). For predictable function h(t), the Stieltjes integral
∫ t

0
h(s)dM(s)

is also a martingale; see, e.g., Fleming and Harrington (1991, §2.4). A
deterministic (meaning independent of M(t)) continuous function is pre-
dictable. For h(t, u) continuous in t, ∀u ∈ U , and independent of Z and X ,
E
[ ∫

T h(t, U)dM(t)
]
= 0, where M(t) depends on Z, X , and U . “Estimat-

ing” 0 by the sample mean n−1
∑n

i=1

∫
T h(t, Ui)dMi(t), one has

0 ≈ 1

n

n∑

i=1

{∫

T
h(t, Ui)dNi(t)−

∫

T
h(t, Ui)I[Zi<t≤Xi]e

η(t,Ui)dt

}

=
1

n

n∑

i=1

{

δih(Xi, Ui)−
∫ Xi

Zi

h(t, Ui)e
η(t,Ui)dt

}

, (8.8)

which, upon setting h(t, Ui) = η
[i]
λ,η̃(t, Ui), yields

μ̃η(ηλ) =
1

n

n∑

i=1

∫ Xi

Zi

η
[i]
λ,η̃(t, Ui)e

η(t,Ui)dt ≈ 1

n

n∑

i=1

δiη
[i]
λ,η̃(Xi, Ui), (8.9)

where η
[i]
λ,η̃ minimizes the delete-one version of the quadratic approximation

of (8.1) at η̃ = ηλ. The derivation of the quadratic approximation is left as
an exercise (Problem 8.2).

Write ξ̆ =
(
φT , ξT

)T
, R̆ = (S,R), and H = Vη̃

(
ξ̆, ξ̆

T )
+ diag(O, λQ).

Similar to (7.19) on page 245,

η
[i]
λ,η̃(Xi, Ui) = ηλ(Xi, Ui)−

1

n−1 ξ̆(Xi, Ui)
TH−1

(
δiξ̆(Xi, Ui)−R̆T1/n

)
,

(8.10)

where
∑n

i=1 δiξ̆(Xi, Ui) = R̆T1; see Problem 8.3. It follows that

μ̃η(ηλ) =
1

n

n∑

i=1

δiηλ(Xi, Ui)−
tr
(
R̆H−1R̆T

)

n(n− 1)
+

tr
(
1T R̆H−1R̆T1

)

n2(n− 1)
.

(8.11)

Substituting (8.11) for the second term in (8.7), one gets a cross-validation
estimate of the relative Kullback-Leibler distance,

V (λ) = − 1

n

n∑

i=1

{

δiηλ(Xi, Ui)−
∫ Xi

Zi

eηλ(t,Ui)dt

}

+ α

{
tr
(
R̆H−1R̆T

)

n(n− 1)
−

tr
(
1T R̆H−1R̆T1

)

n2(n− 1)

}

, (8.12)
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FIGURE 8.1. Effectiveness of cross-validation for hazard estimation. Left : Rela-
tive efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner boxes).
Center : L(λv) with α = 1 versus L(λv) with α = 1.4 for a singleton U . Right :
L(λv) with α = 1 versus L(λv) with α = 1.4 for U = [0, 1].

for α = 1, where the first term is the minus log likelihood of ηλ. The
computation of cross-validated hazard estimates requires little change to
the algorithm developed for density estimation.

8.2.2 Empirical Performance

Simple simulations were conducted to explore the empirical performance
of cross-validation. Take a singleton U and a test hazard

λ0(t) = eη(t) = 24(t− 0.35)2 + 2.

Samples of size n = 150 were generated with Ti from λ0(t), Ci from a
truncated exponential distribution with P (C > c) = I[c≤1]e

−4c/3, and Zi

from an exponential distribution with P (Z > z) = e−5z. Using the cubic
spline of Example 8.1 and setting q = N in (8.3), three estimates were
calculated for each replicate, one minimizing the symmetrized Kullback-
Leibler distance

L(λ) = L(η, ηλ) =
1

n

n∑

i=1

∫ Xi

Zi

(
η(t, Ui)− ηλ(t, Ui)

)(
eη(t,Ui) − eηλ(t,Ui)

)
dt

(8.13)
and the other two minimizing V (λ) of (8.12) with α = 1, 1.4, yielding an
optimal loss L(λo) and two cross-validation losses L(λv). The results from
one hundred replicates are summarized in Fig. 8.1, with the relative efficacy
L(λo)/L(λv) shown in the left half of the left frame and the comparison of
α = 1, 1.4 in V (λ) shown in the center frame; two cases are off the chart in
the center frame, (0.406, 0.111) and (0.236, 0.056), both in favor of α = 1.4.

The observed number of failures N =
∑150

i=1 δi ranged from 90 to 117 over
the one hundred replicates, and the overall empirical censoring rate was
4,743/15,000=31.6%.
The experiment was repeated with U = [0, 1] and a test hazard

λ2(t, u) = eη(t,u) =
(
24(t− 0.35)2 + 2

)(
3(u− 0.5)2 + 0.5

)
. (8.14)
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Samples of size n = 150 were generated with Ui ∼ U(0, 1), Ti|Ui from
λ2(t, Ui), and Ci and Zi as above, and estimates were calculated using the
tensor product cubic spline of Example 8.3; the interaction term ηt,u was
included in estimation even though η2(t, u) had an additive structure. In-
stead of q = N , we used q = 31 ≈ 10n2/9 ξj ’s in (8.3) and the same set was
used in the three estimates for each sample. The results from one hundred
replicates are also summarized in Fig. 8.1, in the right half of the left frame
and in the right frame; the relative efficacy is similar to that in conditional
density estimation seen in Fig. 7.11. The observed number of failures N
ranged from 81 to 104 over the one hundred replicates, and the overall
empirical censoring rate was 5,805/15,000=38.7%.

8.3 Inference and Software

Numerically, hazard estimation has much in common with density esti-
mation, and the Kullback-Leibler projection is well-posed. Without the
complication of a normalizing constant, hazards are also like regression
functions, on which one may apply tools such as Bayesian confidence inter-
vals and mixed-effect models for correlated data.
Software implementation of the tools is embodied in the sshzd suite in

gss, whose usage is illustrated via simulated examples. For large data sets
with continuous covariates, one may have to sacrifice some performance,
using instead the sshzd1 suite of §10.4.

8.3.1 Bayesian Confidence Intervals

Following the calculus of §7.8.3, write η = φTd+ξT c = ψTa as in (8.3) and
refer η and (dT , cT )T = a interchangeably. The quadratic approximation
of (8.1) at η̃ = ηλ can be written as

1

2n
(a− ã)T (nH)(a− ã) + C,

where H is as in (8.10), η̃ = ψT ã, and C is a constant; (8.1) is the posterior
likelihood of the data divided by n, so the posterior of a is approximately
normal with mean ã and covarianceH+/n, whereH+ is the Moore-Penrose
inverse of H . The posterior of η(t, u) is thus approximately normal with
mean η̃(t, u) = ψT(t, u)ã and variance s2(t, u) = ψT(t, u)H+ψ(t, u)/n.
Bayesian confidence intervals of η(t, u) are given by η̃(t, u)± z1−α/2 s(t, u).
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8.3.2 Kullback-Leibler Projection

Given η̂ ∈ H0 ⊕H1, its Kullback-Leibler projection η̃ in H0 minimizes

KL(η̂, η) =
1

n

n∑

i=1

∫ Xi

Zi

{
eη̂(t,Ui)

(
η̂(t, Ui)− η(t, Ui)

)
−
(
eη̂(t,Ui) − eη(t,Ui)

)}
dt

over η ∈ H0. Writing Aη̃,g(α) = KL(η̂, η̃ + αg) for g ∈ H0, one has

0 = Ȧη̃,g(0) =
1

n

n∑

i=1

∫ Xi

Zi

(
eη̂(t,Ui) − eη̃(t,Ui)

)
g(t, Ui)dt.

It then follows, for ηc ∈ H0, that

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc).

One may take eηc =
∑n

i=1 δi/
∑n

i=1(Xi − Zi), the maximum likelihood
estimate of a constant hazard model; see Problem 8.4.

8.3.3 Frailty Models for Correlated Data

Adding random effects zTb to the log hazard η(t, u), where b ∼ N(0, B),
one obtains frailty models for correlated survival data. The estimation is
via the minimization of

− 1

n

n∑

i=1

{

δi
(
η(Xi, Ui) + zTi b

)
−
∫ Xi

Zi

eη(t,Ui)+zTi bdt

}

+
1

2n
bTΣb+

λ

2
J(η),

(8.15)
where Σ = B−1, often structured, contains correlation parameters, say γ.
The Newton updating equation is straightforward to derive (Problem 8.5),
and the tuning parameters (λ, γ) can be jointly selected via the cross-
validation of §8.2. Bayesian confidence intervals follow the same calculus
as in §8.3.1 but with a = (dT , cT ,bT )T and a modified H matrix to be
derived in Problem 8.5. The Kullback-Leibler projection can be computed
with zTb treated as an offset.
To fit a frailty model for correlated data, one may use the random

argument discussed in §6.2.6 in a sshzd call.

8.3.4 R Package gss: sshzd Suite

Penalized likelihood hazard estimation is implemented in the sshzd suite,
whose usage shall be illustrated using a synthetic example. The following
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sequence generates a sample of size n = 150 with T |U from λ2(t, u) of
(8.14) and fits a tensor product cubic spline to the log hazard:

rhzd2 <- function(n) {

u <- runif(n); wk0 <- 3*(u-.5)^2+.5

wk1 <- (-log(runif(n))/wk0-.343)/8

wk1 <- sign(wk1)*abs(wk1)^(1/3)+.35

wk2 <- -log(runif(n))/2/wk0

cbind(pmin(wk1,wk2),u)

}

rtest2 <- function(n) {

wk <- rhzd2(n); tt <- wk[,1]; u <- wk[,2]

cens <- pmin(-log(runif(n))*3/4,1)

z <- -log(runif(n))/5

x <- pmin(tt,cens)

delta <- tt<=cens

ok <- x>z

while(m <- sum(!ok)) {

wk[!ok] <- rhzd2(m)

tt[!ok] <- wk[!ok,1]; u[!ok] <- wk[!ok,2]

cens[!ok] <- pmin(-log(runif(m))*3/4,1)

z[!ok] <- -log(runif(m))/5

x[!ok] <- pmin(tt[!ok],cens[!ok])

delta[!ok] <- tt[!ok]<=cens[!ok]

ok <- x>z

}

cbind(x,delta,z,u)

}

set.seed(2375)

xdzu <- rtest2(150)

x <- xdzu[,1]; delta <- xdzu[,2]

z <- xdzu[,3]; u <- xdzu[,4]

fit <- sshzd(Surv(x,delta,z)~x*u)

where the follow-up time x must appear in the right-hand side of the model
formula. Projecting the fit into the space of additive models, one has

project(fit,inc=c("x","u"))$ratio

# 0.1589023

In this case, the Kullback-Leibler projection failed to detect the additive
structure of the true log hazard.
To evaluate the fitted hazard, say at (t, u) = (0.5, 0.5), one may use

hzdrate.sshzd(fit,data.frame(x=.5,u=.5))

# 1.360889
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FIGURE 8.2. Hazard estimation on T = [0, 1] and U = [0, 1]. The estimated
eη(t,u) are in solid lines, the 95% Bayesian confidence intervals in faded lines,
and the test hazard λ2(t, u) = {24(t − 0.35)2 + 2}{3(u − 0.5)2 + 0.5} in dashed
lines. Left : u = 0.1. Right : u = 0.5. The dotted lines from above are proportional
to the size of the risk set,

∑n
i=1 I[Zi<t≤Xi].

To evaluate eη(t,u) on a grid of t at selected u values, try something like

tt <- seq(.01,.95,length=48)

est <- hzdcurve.sshzd(fit,tt,data.frame(u=c(.1,.5)),

se=TRUE)

which can then be plotted along with Bayesian confidence intervals, the
test hazard, and the size of the risk set

∑n
i=1 I[Zi<t≤Xi] as in Fig. 8.2:

plot(tt,est$fit[,1],type="l",ylim=c(0,15))

lines(tt,est$fit[,1]*exp(1.96*est$se[,1]),col=5)

lines(tt,est$fit[,1]/exp(1.96*est$se[,1]),col=5)

hzd2 <- function(t,u) (24*(t-.35)^2+2)*(3*(u-.5)^2+.5)

lines(tt,hzd2(tt,.1),lty=2)

risk <- apply(outer(tt,z,">")&outer(tt,x,"<"),1,sum)

lines(tt,15-risk/15,lty=3)

Note that est$fit is the estimated hazard eη(t,u) but est$se is the stan-
dard error of the log hazard η(t, u). It is reassuring to see that the Bayesian
confidence intervals are tighter at u = 0.5 than at u = 0.1. The peak size
of the risk set was 71.

8.4 Case Studies

We now apply the techniques developed so far to analyze a few real data sets.

8.4.1 Treatments of Gastric Cancer

The survival times of 90 gastric cancer patients are listed in Moreau et al.
(1985). Half of the patients were treated by chemotherapy, the other half by
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FIGURE 8.3. Treatments of gastric cancer. Left : Chemotherapy.Right : Combined
therapy. The estimated eη(t,u) are in solid lines, the 95% Bayesian confidence
intervals in faded lines, and the hazard eη(t,u) under the other treatment in dashed
lines. The dotted lines from the above are proportional to the size of the risk set.

chemotherapy combined with radiotherapy. There were 37 recorded deaths
and 8 censorings in each of the treatment groups. The follow-up times
ranged from 1 to 1,519 days. The data are included in gss as a data frame
gastric with elements futime, status, and trt.
The following sequence loads the data and fits the model specified in

Example 8.2; T is mapped onto [0, 1] internally:

data(gastric)

fit.gastric <- sshzd(Surv(futime,status)~futime*trt,

data=gastric,nbasis=90)

The option nbasis=90 allows q up to n = 90 but the maximum it can take
is q = N =

∑n
i=1 δi. The fit can then be plotted as in Fig. 8.3:

tt <- seq(0,1519,length=50)

est <- hzdcurve.sshzd(fit.gastric,tt,

data.frame(trt=as.factor(1:2)),TRUE)

plot(tt,est$fit[,1],type="l",ylim=c(0,.004))

lines(tt,est$fit[,1]*exp(1.96*est$se[,1]),col=5)

lines(tt,est$fit[,1]/exp(1.96*est$se[,1]),col=5)

lines(tt,est$fit[,2],lty=2)

r1 <- apply(outer(tt,gastric$futime,"<")[,1:45],1,sum)

lines(tt,.004-r1/45*.002,lty=3); abline(h=.004,lty=3)

The combined therapy appeared to take a heavier toll than chemotherapy
alone in the early going, but for those who survived beyond about 500 days,
the comparison was reversed. This, however, does not necessarily mean that
radiation would eventually benefit. The stronger patients would probably
survive a long time anyway, regardless of the therapy, but for the rest of
the patients, radiation seemed to kill many of them before long.



8.4 Case Studies 297

Fit with Interaction

days after transplant days after transplant

ag
e 

at
 tr

an
sp

la
nt

 −5 

 −
4.

5 

 −4.5 

 −
4 

 −4 

 −3.5 

 −3.5 

 −3 

 −3 

 −2.5 

 −2 

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

++

+
++

+

++

+
+

+

+

+

+

+

+

+

+

+
++

++

+
+

+

+

+
+

+

++

+

+

+

+

++

+

+

+

+
+

++

+

++

+

+

+

+

+

+

+

Proportional Hazard Fit

ag
e 

at
 tr

an
sp

la
nt

 −
4.5 

 −4 

 −4 

 −3.5 

 −3 

 −2.5 

 −2 

 −2 

 −1.5 

0 10 20 30 40 50 60

10
20

30
40

50
60

10
20

30
40

50
60

0 10 20 30 40 50 60

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

++

+
++

+

++

+
+

+

+

+

+

+

+

+

+

+
++

++

+
+

+

+

+
+

+

++

+

+

+

+

++

+

+

+

+
+

++

+

++

+

+

+

+

+

+

+

FIGURE 8.4. Hazard after heart transplant. The contours are the estimated
log λ̃(t∗, u), with deceased (circles) and censored (pluses) patients superimposed.

8.4.2 Survival After Heart Transplant

We shall now fill in more details concerning the analysis of the Stanford
heart transplant data previewed in §1.4.3. The data are included in gss as
a data frame stan with elements time, status, age, and futime, where
futime is the square root of time. The follow-up times after transplant
were between 0 and 3,695 days, and the ages of patients at transplant were
between 12 and 64. As mentioned in §1.4.3, a square root transform t∗ =

√
t

was applied on the time axis to spread the data more evenly.
The following sequence loads the data and fits a tensor product cubic

spline to the log hazard log λ̃(t∗, u) = η̃(t∗, u):

data(stan)

fit.stan <- sshzd(Surv(futime,status)~futime*age,

data=stan,nbasis=200)

Projecting into the space of additive models, one has

project(fit.stan,inc=c("futime","age"))$ratio

# 0.09302142

The strength of the interaction term is moderate, and one may also fit a
proportional hazard model:

fit1.stan <- sshzd(Surv(futime,status)~futime+age,

data=stan,nbasis=200)

The fits can then be plotted as contours as shown in Fig. 8.4:

t.gd <- seq(0,max(stan$futime),length=51)

u.gd <- seq(min(stan$age),max(stan$age),length=51)
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FIGURE 8.5. Hazard after heart transplant: Proportional hazard fit. Left :
Contours of 100λ̃(t∗, u), with deceased (circles) and censored (pluses) patients su-
perimposed. Center : Base hazard eη∅+ηt with 95% Bayesian confidence intervals,
on the original time scale. Right : Age effect eηu with 95% Bayesian confidence
intervals. Estimates via the penalized partial likelihood of §8.5 are superimposed
in dashed lines in the center and right frames.

grid <- expand.grid(futime=t.gd,age=u.gd)

est <- hzdrate.sshzd(fit.stan,grid)

dead <- stan$status==1

contour(t.gd,u.gd,matrix(log(est),51,51))

points(stan$futime[!dead],stan$age[!dead],pch="+",col=3)

points(stan$futime[dead],stan$age[dead],col=3)

The two fits are visually close to each other, especially in data-dense areas.
Figure 1.4 for the proportional hazard fit is reproduced in Fig. 8.5, with

the contours of 100λ̃(t∗, u):

est1 <- hzdrate.sshzd(fit1.stan,grid)

contour(t.gd,u.gd,matrix(100*est1,51,51))

points(stan$futime[!dead],stan$age[!dead],pch="+",col=3)

points(stan$futime[dead],stan$age[dead],col=3)

the base hazard eη∅+ηt = eη̃∅+η̃t/(2
√
t) on the original time scale:

est.b <- hzdrate.sshzd(fit1.stan,data.frame(futime=t.gd),

se=TRUE,inc=c("1","futime"))

plot(t.gd^2,est.b$fit/2/t.gd,type="l",ylim=c(0,.01))

lines(t.gd^2,est.b$fit/2/t.gd*exp(1.96*est.b$se),col=5)

lines(t.gd^2,est.b$fit/2/t.gd/exp(1.96*est.b$se),col=5)

abline(h=0,lty=3)

and the age effect eηu :

est.a <- hzdrate.sshzd(fit1.stan,data.frame(age=u.gd),

se=TRUE,inc=c("age"))

plot(u.gd,est.a$fit,type="l",ylim=c(0,5))

lines(u.gd,est.a$fit*exp(1.96*est.a$se),col=5)
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lines(u.gd,est.a$fit/exp(1.96*est.a$se),col=5)

abline(h=0,lty=3)

It is seen that once a patient survived the initial shock, the hazard rate
would remain stable over extended time period. The relative risk was flat
for younger patients up to about 40 years of age, then quickly took off for
older patients.

8.5 Penalized Partial Likelihood

Assume a proportional hazard model λ(t, u) = λ0(t)λ1(u). Treating the
base hazard λ0(t) as a nuisance parameter, one may estimate the relative
risk λ1(u) using penalized partial likelihood.
The estimation of relative risk through penalized partial likelihood is

isomorphic to density estimation under biased sampling, as treated in §7.6,
so no new estimation techniques are needed here. Models for the relative
risk have much in common with regression models, for which one may add
parametric (partial) terms as in §4.1, add random effects as in §8.3.3, and
calculate Bayesian confidence intervals as in §§7.8.3 and 8.3.1. Software
tools are illustrated using simulated and real data examples.

8.5.1 Partial Likelihood and Biased Sampling

Let Yi(t) = I[Zi<t≤Xi] be the at-risk process of the ith observation. For the

estimation of the relative risk λ1(u) = eη(u), Cox (1972) proposed to work
with the partial likelihood,

n∏

i=1

(
eη(Ui)

∑n
k=1 Yk(Xi)eη(Uk)

)δi

=

N∏

j=1

(
eη(U

∗
j )

∑n
k=1 Yk(Tj)e

η(Uk)

)

, (8.16)

where (Tj , U
∗
j ) are the observed lifetimes and the corresponding covariates.

Note that the relative risk is defined only up to a multiplicative constant,
so a side condition Aη = 0 on the log relative risk would be needed to pin
down the function to be estimated; see related discussion on logistic density
transform in §7.1.
Writing

∫
f =

∑n
k=1 f(Uk), e

η/
∫
eη defines a probability density on the

discrete domain {Uk, k = 1, . . . , n}. One may write

eη(U
∗
j )

∑n
k=1 Yk(Tj)e

η(Uk)
=
wj(U

∗
j )e

η(U∗
j )

∫
wj(u)eη(u)

,

where wj(u) is defined by wj(Uk) = Yk(Tj). Hence, the partial likelihood
of (8.16) can be cast as a likelihood for density estimation under biased
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sampling; see §7.6. The estimation of relative risk can be conducted via the
minimization of the penalized partial likelihood functional

1

N

N∑

j=1

{

η(U∗
j )− log

n∑

i=1

Yi(Tj)e
η(Ui)

}

+
λ

2
J(η), (8.17)

which is in fact a special case of (7.26); computation and smoothing
parameter selection follow the procedures outlined in §7.6.2. Further de-
tails are left as exercises (Problems 8.6 and 8.7).

8.5.2 Inference

Following §§7.8.3 and 8.3.1, one may write η = φTd + ξT c = ψTa, plug
it into (8.17), and derive Bayesian confidence intervals for η based on the
quadratic approximation of (8.17) at its minimizer ηλ.
Given η̂ ∈ H0 ⊕H1, one may calculate its Kullback-Leibler projection η̃

in H0 via the minimization of

KL(η̂, η) =
1

N

N∑

j=1

{∑n
i=1(η̂ − η)(Ui)Yi(Tj)e

η̂(Ui)

∑n
i=1 Yi(Tj)e

η̂(Ui)
−log

∑n
i=1 Yi(Tj)e

η̂(Ui)

∑n
i=1 Yi(Tj)e

η(Ui)

}

over η ∈ H0. It is easy to verify that KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc),
where ηc ∈ H0 is a constant. As is the case in regression settings, the
minimization of KL(η̂, η) can be ill-posed.
As in §8.3.3, mixed-effect (frailty) models can be used to accommodate

correlated data; the fitting function sscox to be discussed below also has
the optional argument random described in §6.2.6. The computation, cross-
validation, and Bayesian confidence intervals follow straightforward mod-
ifications, and the Kullback-Leibler projection can be computed with the
random effects treated as an offset.

8.5.3 R Package gss: sscox Suite

Tools for penalized partial likelihood are implemented in the sscox suite,
whose usage shall be illustrated using synthetic example. We recycle the
simulated data used in §8.3.4, with T |U from λ2(t, u) of (8.14):

set.seed(2375); xdzu <- rtest2(150)

x <- xdzu[,1]; delta <- xdzu[,2]

z <- xdzu[,3]; u <- xdzu[,4]

where rtest2 is listed in §8.3.4. To estimate the relative risk, one may use

fit.cox <- sscox(Surv(x,delta,z)~u,

type=list(u=list("cubic",c(0,1))))
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FIGURE 8.6. Estimation of relative risk and base hazard. Left : λ1(u) = eη(u)

with 95% Bayesian confidence intervals. Right : λ0(t) = eζ(t) with 95% Bayesian
confidence intervals; the dotted line from above is proportional to the size of the
risk set,

∑n
i=1 I[Zi<t≤Xi]. The test functions are superimposed in dashed lines.

which can be plotted on a grid as in the left frame of Fig. 8.6:

gd <- ((1:50)-.5)/50

est.u <- predict(fit.cox,data.frame(u=gd),se=TRUE)

plot(gd,est.u$fit,type="l",ylim=c(0,2))

lines(gd,est.u$fit*exp(1.96*est.u$se),col=5)

lines(gd,est.u$fit/exp(1.96*est.u$se),col=5)

lam1 <- (3*(gd-.5)^2+.5); cc <- mean(log(lam1))

lines(gd,lam1/exp(cc),lty=2)

predict returns the relative risk eη(u) but the standard error is for η(u).
We took care to specify the domain U = [0, 1] in fit.cox so that∫ 1

0 η(u)du = 0, allowing a definitive factorization of λ2(t, u) = λ0(t)λ1(u)
as plotted in Fig. 8.6 in dashed lines.
Treating the estimated relative risk λ1(u) = eη(u) as known, the base

hazard λ0(t) = eζ(t) can be estimated via the minimization of

− 1

n

n∑

i=1

{

δiζ(Xi)−
∫ Xi

Zi

eζ(t)+oidt

}

+
λ

2
J(ζ),

where oi = η(Ui) = logλ1(Ui). This can be achieved using sshzd with an
offset term:

risk <- predict(fit.cox,data.frame(u=u))

fit.base <- sshzd(Surv(x,delta,z)~x,offset=log(risk))

The base hazard can then be plotted on a grid as in the right frame of
Fig. 8.6:

est.t <- hzdcurve.sshzd(fit.base,gd,se=TRUE)

plot(gd,est.t$fit,type="l",ylim=c(0,20))

lines(gd,est.t$fit*exp(1.96*est.t$se),col=5)
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lines(gd,est.t$fit/exp(1.96*est.t$se),col=5)

lines(gd,(24*(gd-.35)^2+2)*exp(cc),lty=2)

r.set <- apply(outer(gd,z,">")&outer(gd,x,"<="),1,sum)

lines(gd,20-r.set/8,lty=3); abline(h=20,lty=3)

We now add two more terms to η(u) that should not be there, one
parametric and one nonparametric:

set.seed(5732); u2 <- runif(150); u3 <- runif(150)

fit1.cox <- sscox(Surv(x,delta,z)~u+u2,partial=~u3)

The Kullback-Leibler projection can be calculated to assess these terms:

project(fit1.cox,inc=c("u"))$ratio

# 0.2348213

project(fit1.cox,inc=c("u2","u3"))$ratio

# 0.8118954

The estimate seems to contain structures that are not in the test hazard.

8.5.4 Case Study: Survival After Heart Transplant

For the Stanford heart transplant data of §§1.4.3 and 8.4.2, the following
sequence estimates, evaluates, and plots the relative risk eη(u) as shown in
the right frame of Fig. 8.5 in dashed lines:

fit2.stan <- sscox(Surv(futime,status)~age,

data=stan,nbasis=200)

u.gd <- seq(min(stan$age),max(stan$age),length=51)

est2.a <- predict(fit2.stan,data.frame(age=u.gd),se=TRUE)

plot(u.gd,est2.a$fit,type="l",ylim=c(0,5))

lines(u.gd,est2.a$fit*exp(1.96*est2.a$se),col=5)

lines(u.gd,est2.a$fit/exp(1.96*est2.a$se),col=5)

Note that one may simply use the untransformed time in the place of
futime to obtain the same fit. Pretending the estimated relative risk as
known, one may estimate, evaluate, and plot the base hazard as shown in
the center frame of Fig. 8.5 in dashed lines:

risk <- predict(fit2.stan,stan)

fit2.b <- sshzd(Surv(futime,status)~futime,data=stan,

offset=log(risk),nbasis=200)

t.gd <- seq(0,max(stan$futime),length=51)

est2.b <- hzdcurve.sshzd(fit2.b,t.gd,se=TRUE)

plot(t.gd^2,est2.b$fit/2/t.gd,type="l",ylim=c(0,.01))

lines(t.gd^2,est2.b$fit/2/t.gd*exp(1.96*est2.b$se),col=5)

lines(t.gd^2,est2.b$fit/2/t.gd/exp(1.96*est2.b$se),col=5)

abline(h=0,lty=3)

Visually, the estimates through penalized partial likelihood are nearly
indistinguishable from those resulting from the joint estimation via (8.1).



8.6 Models Parametric in Time 303

8.6 Models Parametric in Time

When parametric models are assumed on the time axis, one usually needs
to estimate a parameter of the lifetime distribution as a function of the
covariate. The problem is similar to non-Gaussian regression as treated in
Chap. 5, although the response likelihood may not belong to an exponential
family.
We discuss the accelerated life models through location-scale families for

the log lifetime. Details are then spelled out, in parallel to §§5.4.2–5.4.6,
concerning the Weibull, log normal, and log logistic families; software tools
are in the gssanova, gssanova0, and gssanova1 suites.

8.6.1 Location-Scale Families and Accelerated Life Models

Let F (z) be a cumulative distribution function on (−∞,∞) and f(z) be its
density. A location-scale family is given by P (X ≤ x|μ, σ) = F

(
(x−μ)/σ

)
,

where μ is the location parameter and σ > 0 is the scale parameter.
Assume a location-scale family for logT . The survival function and the

hazard function are easily seen to be

S(t) = 1− F (z), λ(t) =
1

σt

f(z)

1− F (z)
, (8.18)

where z = (log t− μ)/σ. We shall write η = μ for the rest of the section.
Let σ be a constant and η be a function of a covariate u with η(u0) = 0

at a “control” point u0. It follows that

S(t|u) = 1−F
(
(log t− η(u))/σ

)
= 1−F

(
log(te−η(u))/σ

)
= S(te−η(u)|u0),

so the covariate is effectively rescaling the time axis. Such models are known
as accelerated life models.

Example 8.4 (Extreme value and Weibull distributions) Setting
F (z) = 1 − e−w with f(z) = we−w, where w = ez, one has the extreme
value distribution. When logT follows an extreme value distribution, T
follows a Weibull distribution with survival function and hazard function

S(t) = exp
{
− e(log t−η)/σ

}
= exp

{
− (t/eη)1/σ

}
= exp

{
− (t/β)ν

}
,

λ(t) =
1

σt
e(log t−η)/σ =

1

σt

(
t

eη

)1/σ

=
ν

t

(
t

β

)ν

, (8.19)
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where ν = 1/σ is called the shape parameter and β = eη is called the scale
parameter.When ν = 1, the Weibull distribution reduces to the exponential
distribution. �

Example 8.5 (Normal and log normal distributions) Setting F (z)
= Φ(z), the cumulative distribution function of the standard normal with

f(z) = φ(z) = e−z2/2/
√
2π, one has the normal distribution. When logT

follows a normal distribution, T is log normal with survival function and
hazard function

S(t) = 1− Φ(z), λ(t) =
1

σt

φ(z)

1− Φ(z)
, (8.20)

where z = (log t− η)/σ. �

Example 8.6 (Logistic and log logistic distributions) Setting F (z)
= w/(1 + w) with f(z) = w/(1 + w)2, where w = ez, one has the lo-
gistic distribution. When logT follows a logistic distribution, T follows a
log logistic distribution with survival function and hazard function

S(t) =
1

1 + ez
, λ(t) =

1

σt

ez

1 + ez
, (8.21)

where z = (log t− η)/σ. �

The minus log likelihood of (Z,X, δ) is seen to be

−
{
δ logλ(X ; η, σ)−

∫X

Z λ(t; η, σ)dt
}
= l(η, σ), (8.22)

where λ(t; η, σ) spells out the dependence of λ(t) on the parameters η and σ;
see Problem 1.2. Observing (Zi, Xi, δi, Ui), i = 1, . . . , n, one may estimate
η via the minimization of

− 1

n

n∑

i=1

{
δi logλ(Xi; ηi, σ)−

∫ Xi

Zi

λ(t; ηi, σ) dt
}
+
λ

2
J(η), (8.23)

where ηi = η(Ui); the smoothing parameter λ is not to be confused with
the hazard rate λ(t, u) = λ

(
t; η(u), σ

)
. To calculate the minimizer ηλ of

(8.22), one may iterate on (5.3) (p. 177). Fix σ and define

h1(t; η) = −∂ logλ(t; η, σ)
∂η

, h2(t; η) =
∂h1(t; η)

∂η
.

One has

u =
dl

dη
= δh1(X ; η)−

∫ X

Z

h1(t; η)λ(t; η, σ)dt =

∫
h1(t; η)dM(t),

w =
d2l

dη2
= δh2(X ; η)−

∫ X

Z

h2(t; η)λ(t; η, σ)dt +

∫ X

Z

h21(t; η)λ(t; η, σ)dt

=

∫
h2(t; η)dM(t) +

∫
h21(t; η)dA(t),



8.6 Models Parametric in Time 305

where M(t) = N(t) − A(t) is a martingale, N(t) = I[t≤X,δ=1] is the event

process, and A(t) =
∫ t

0
I[Z<s≤X]λ(s; η, σ)ds; see §8.2.1. By martingale prop-

erties, one has E[u] = 0 and E[u2] =E[w]; see, e.g., Fleming and Harring-
ton (1991, §2.7). See also §9.3.1. Since

∫
h2(t; η)dM(t) can be negative,

one may set it to its mean value zero and use only the second term of w,∫
h21(t; η)dA(t), which is always positive.

8.6.2 Kullback-Leibler and Cross-Validation

Following the lines of §8.2.1, one has the Kullback-Leibler distance

KL(η, ηλ) =
1

n

n∑

i=1

∫ Xi

Zi

{

λ(t, ηi) log
λ(t, ηi)

λ(t, ηλ,i)
− λ(t, ηi) + λ(t, ηλ,i)

}

dt

(8.24)
and the relative Kullback-Leibler distance

RKL(η, ηλ) =
1

n

n∑

i=1

∫ Xi

Zi

{
λ(t, ηλ,i)− λ(t, ηi) logλ(t, ηλ,i)

}
dt, (8.25)

where ηλ,i = ηλ(Ui). Following (8.9), (8.25) is to be estimated by the cross-
validation score

1

n

n∑

i=1

∫ Xi

Zi

λ(t, ηλ,i)dt−
1

n

n∑

i=1

δi logλ
(
Xi, η

[i]
λ,i

)
, (8.26)

where η
[i]
λ,i = η

[i]
λ (Ui) for η

[i]
λ the delete-one estimate of η. The performance

of ηλ can be assessed through the symmetrized Kullback-Leibler distance

L(λ) =
1

n

n∑

i=1

∫ Xi

Zi

(
λ(t, ηi)− λ(t, ηλ,i)

)
log

λ(t, ηi)

λ(t, ηλ,i)
dt. (8.27)

8.6.3 Weibull Family

For the Weibull family of Example 8.4, one has, for ν = 1/σ,

l(η, ν) = −δ
{
ν(logX − η) + log ν

}
+ (Xν − Zν)e−νη; (8.28)

see Problem 8.8. Note that logλ(t, u) = ν
(
log t − η(u)

)
+ log(ν/t), so the

Weibull model is also a proportional hazard model, with the relative risk
proportional to e−νη(u). It is easily seen that h1(t; η) = ν and h2 = 0.
Fixing ν, one may iterate on (5.3) using

ũi = ν
(
δi − (Xν

i − Zν
i )e

−νη̃i
)
,

w̃i = ν2(Xν
i − Zν

i )e
−νη̃i ,
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where η̃i = η̃(Ui). Fixing ηi = η(Ui), one may estimate ν by minimizing

− 1

n

n∑

i=1

{
δi
(
ν(logXi − ηi) + log ν

)
− (Xν

i − Zν
i )e

−νηi
}

The situation is the same as in §5.4.6 for regression with negative binomial
responses, and for ν unknown, one may alternate the updating of η and ν.
To drive performance-oriented iteration, one may use Uw(λ) with σ

2 = 1.

Kullback-Leibler and Direct Cross-Validation

With logλ(t, η) = ν(log t− η) + log(ν/t), (8.26) looks like

1

n

n∑

i=1

{
(Xν

i − Zν
i )e

−νηλ,i − δi
(
ν(logXi − ηλ,i) + log ν

)}

+
ν

n

n∑

i=1

δi
(
η
[i]
λ,i − ηλ,i

)
,

where δi
(
η
[i]
λ,i − ηλ,i

)
= δi

{
η
[i]
λ (Ui) − ηλ(Ui)

}
are non-negative. Replacing

δi
(
η
[i]
λ,i − ηλ,i

)
by δi

∣
∣η[i]λ,ηλ

(Ui)− ηλ(Ui)
∣
∣, the lines leading to (5.18) yields

Vg(λ) =
1

n

n∑

i=1

{
(Xν

i − Zν
i )e

−νηλ,i − δi
(
ν(logXi − ηλ,i) + log ν

)}

+ α
tr(AwW

−1)

n− trAw

ν

n

n∑

i=1

δi|ũi| (8.29)

for α = 1, where terms not involving η can be dropped for ν known but
are necessary for ν unknown. Fixing ν, (8.27) reads

L(λ) =
ν

n

n∑

i=1

(Xν
i − Zν

i )(e
−νηi − e−νηλ,i)(ηλ,i − ηi), (8.30)

and the Kullback-Leibler projection of η̂ minimizes

KL(η̂, η) =
1

n

n∑

i=1

(Xν
i − Zν

i )
{
νe−νη̂i(ηi − η̂i) + e−νηi − e−νη̂i

}
,

where η̂i = η̂(Ui).

Empirical Performance

Parallel to the simulations for the families of §5.4, Weibull failure times
Ti|ui were drawn on ui = (i − 0.5)/100, i = 1, . . . , 100 with ν = 2 and

β(u) = eη(u) = 3
{
105u11(1− u)6 + 103u3(1− u)10

}
+ 1, (8.31)
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FIGURE 8.7. Effectiveness of Vg(λ) and Uw(λ) in Weibull simulation. Left : Rel-
ative efficacy L(λo)/L(λd) (solid) and L(λo)/L(λp) (faded), with α = 1 (wider
boxes) and α = 1.4 (thinner boxes). Center : L(λd) (solid) or L(λp) (faded) with
α = 1 versus those with α = 1.4. Right : L(λd) with α = 1.4 versus L(λp) with
α = 1.4.

along with exponential censoring times satisfying P (Ci ≥ c) = e−c/2β(ui)

and truncation times satisfying P (Zi ≥ z) = e−2z/β(ui).
For each of the one hundred replicates generated, five cubic splines were

fitted to the log scale function η(u), one minimizing L(λ) of (8.30) at L(λo),
two from performance-oriented iteration driven by Uw(λ) for α = 1, 1.4 with
performances L(λp), and two minimizing Vg(λ) of (8.29) for α = 1, 1.4 with
performances L(λd). The results are summarized in Fig. 8.7. The fudge
factor α = 1.4 helps both methods, but the choice between direct and
indirect cross-validation seems to be a toss up.

Software Illustration

The following sequence generates a sample of (Xi, δi, Zi)|ui used in the
simulation above and fits a cubic spline to the log scale function using
performance-oriented iteration, with ν = 2 known:

test <- function(x)

{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))+1}

rtest.wei <- function(u) {

mu <- test(u)

tt <- rweibull(u,2,mu)

cens <- rweibull(u,1,2*mu)

z <- rweibull(u,1,mu/2)

x <- pmin(tt,cens)

delta <- tt<=cens

ok <- x>z

while(m <- sum(!ok)) {

tt[!ok] <- rweibull(m,2,mu[!ok])

cens[!ok] <- rweibull(m,1,2*mu[!ok])

z[!ok] <- rweibull(m,1,mu[!ok]/2)

x[!ok] <- pmin(tt[!ok],cens[!ok])
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FIGURE 8.8. Cubic spline Weibull regression with censored and truncated data.
The estimated E[T |u] = eη(u)Γ(1+ν−1) are in solid lines, the 95% Bayesian con-
fidence intervals in dashed lines, and the test function in dotted lines. The data
are superimposed as circles (failures) or pluses (censorings) along with at-risk
processes I[Zi<t≤Xi] in faded vertical lines. Left : Estimate via indirect cross-val-
idation with a known ν = 2. Right : Estimate via direct cross-validation with an
estimated ν = 1.88.

delta[!ok] <- tt[!ok]<=cens[!ok]

ok <- x>z

}

cbind(x,delta,z)

}

u <- ((1:100)-.5)/100

set.seed(2375); y <- rtest.wei(u)

fit1.wei <- gssanova1(y~u,"weibull",nu=2)

where y should have at least two columns containing (Xi, δi). The fit can
then be plotted as in the left frame of Fig. 8.8:

est1 <- predict(fit1.wei,data.frame(u=u),se=TRUE)

plot(u,y[,1],type="n")

for (i in 1:100)

lines(c(u[i],u[i]),c(y[i,1],y[i,3]),col=5)

points(u,y[,1],pch=c("+","o")[y[,2]+1])

gg <- gamma(1+1/fit1.wei$nu)

lines(u,gg*exp(est1$fit))

lines(u,gg*exp(est1$fit+1.96*est1$se),lty=5)

lines(u,gg*exp(est1$fit-1.96*est1$se),lty=5)

lines(u,gg*test(u),lty=3)

A fit through direct cross-validation can be similarly obtained, as plotted
in the right frame of Fig. 8.8, with an estimated ν = 1.88:

fit.wei <- gssanova(y~u,"weibull",id.basis=fit1.wei$id)

fit.wei$nu

# 1.881233
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8.6.4 Log Normal Family

For the log normal family of Example 8.5, one has, for ν = 1/σ,

l(η, ν) = −δ
(
log φ(z̆)− log

(
1− Φ(z̆)

)
+ log ν

)
+ log

1− Φ(z̃)

1− Φ(z̆)
, (8.32)

where z̆ = ν(logX − η) and z̃ = ν(logZ − η); see Problem 8.9. It is easy
to verify that h1(t; η) = ν

{
φ(z)/

(
1 − Φ(z)

)
− z
}
, where z = ν(log t − η).

Fixing ν, one may iterate on (5.3) using

ũi = ν δi

(
φ(z̆i)

1− Φ(z̆i)
− z̆i

)

− ν

(
φ(z̆i)

1− Φ(z̆i)
− φ(z̃i)

1− Φ(z̃i)

)

,

w̃i =

∫ Xi

Zi

h21(t; ηi)λ(t; ηi, ν)dt =

∫ Xi

Zi

ν2
(

φ(z)

1− Φ(z)
− z

)2
φ(z)

1− Φ(z)

νdt

t
,

where z̆i = ν(logXi − ηi) and z̃i = ν(logZi − ηi). It can be shown that

w̃i = ν2
{(

1

2

(
φ(z̆i)

1− Φ(z̆i)

)2

− z̆iφ(z̆i)

1− Φ(z̆i)
− log

(
1− Φ(z̆i)

)
)

−
(
1

2

(
φ(z̃i)

1− Φ(z̃i)

)2

− z̃iφ(z̃i)

1− Φ(z̃i)
− log

(
1− Φ(z̃i)

)
)}

; (8.33)

see Problem 8.10. Fixing ηi = η(Ui), one may estimate ν via minimizing

− 1

n

n∑

i=1

{

δi
(
logφ(z̆i)− log

(
1− Φ(z̆i)

)
+ log ν

)
− log

1− Φ(z̃i)

1− Φ(z̆i)

}

.

To drive performance-oriented iteration, one may use Uw(λ) with σ
2 = 1.

Kullback-Leibler and Direct Cross-Validation

With logλ(t, η) = logφ(z)− log
(
1− Φ(z)

)
+ log(ν/t), (8.26) looks like

1

n

n∑

i=1

{

log
1− Φ(z̃i)

1− Φ(z̆i)
− δi

(
logφ(z̆i)− log

(
1− Φ(z̆i)

)
+ log ν

)
}

+
1

n

n∑

i=1

δi
(
logλ(Xi, ηλ,i)− logλ(Xi, η

[i]
λ,i)
)
.

Replacing the non-negative δi
(
logλ(Xi, ηλ,i) − logλ(Xi, η

[i]
λ,i)
)
by a linear

approximation δi
∣
∣h1(Xi, ηλ,i)

(
η
[i]
λ,ηλ

(Ui)− ηλ(Ui)
)∣
∣, one is led to

Vg(λ) =
1

n

n∑

i=1

{
log

1− Φ(z̃i)

1− Φ(z̆i)
− δi

(
logφ(z̆i)− log

(
1− Φ(z̆i)

)
+ log ν

)}

+ α
tr(AwW

−1)

n− trAw

1

n

n∑

i=1

δi
∣
∣h1(Xi, ηλ,i)ũi

∣
∣ (8.34)
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α = 1.4.

for α = 1. L(λ) of (8.27) does not simplify further and the Kullback-Leibler
projection of η̂ minimizes KL(η̂, η) as defined in (8.24).

Empirical Performance

Log normal failure times Ti|ui were drawn, with ν = 2 and β(u) = eη(u)

as in (8.31), on ui = (i − 0.5)/100, i = 1, . . . , 100, along with exponential
censoring times satisfying P (Ci ≥ c) = e−c/2β(ui) and truncation times
satisfying P (Zi ≥ z) = e−2z/β(ui). Results from one hundred replicates are
shown in Fig. 8.9; one replicate is off the chart in the center frame, with
L(λd) at (0.579, 0.061) and L(λp) at (0.445, 0.061).

Software Illustration

The following sequence generates a sample of (Xi, δi, Zi)|ui used in the
simulation above and fits a cubic spline to η(u) using performance-oriented
iteration, with ν = 2 known; rtest.lognorm is nearly a duplicate of
rtest.wei in §8.6.3 so only a few lines are listed here:

rtest.lognorm <- function(u) {

mu <- test(u)

tt <- exp(rnorm(u)/2+log(mu))

...

while(m <- sum(!ok)) {

tt[!ok] <- exp(rnorm(m)/2+log(mu[!ok]))

...

}

cbind(x,delta,z)

}

u <- ((1:100)-.5)/100

set.seed(2375); y <- rtest.lognorm(u)

fit1.lognorm <- gssanova1(y~u,"lognorm",nu=2)
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FIGURE 8.10. Cubic spline log normal regression with censored and truncated

data. The estimated E[T |u] = eη(u)+1/2ν2

are in solid lines, the 95% Bayesian
confidence intervals in dashed lines, and the test function in dotted lines. The data
are superimposed as circles (failures) or pluses (censorings) along with at-risk
processes I[Zi<t≤Xi] in faded vertical lines. Left : Estimate via indirect cross-val-
idation with a known ν = 2. Right : Estimate via direct cross-validation with an
estimated ν = 2.07.

The fit can then be plotted as in the left frame of Fig. 8.10:

est1 <- predict(fit1.lognorm,data.frame(u=u),se=TRUE)

plot(u,y[,1],type="n")

for (i in 1:100)

lines(c(u[i],u[i]),c(y[i,1],y[i,3]),col=5)

points(u,y[,1],pch=c("+","o")[y[,2]+1])

gg <- exp(1/2/fit1.lognorm$nu^2)

lines(u,gg*exp(est1$fit))

lines(u,gg*exp(est1$fit+1.96*est1$se),lty=5)

lines(u,gg*exp(est1$fit-1.96*est1$se),lty=5)

lines(u,gg*test(u),lty=3)

A fit through direct cross-validation can be similarly obtained, as plotted
in the right frame of Fig. 8.10, with an estimated ν = 2.07:

fit.lognorm <- gssanova(y~u,"lognorm",

id.basis=fit1.lognorm$id.basis)

fit.lognorm$nu

# 2.067286

8.6.5 Log Logistic Family

For the log logistic family of Example 8.6, one has, for ν = 1/σ,

l(η, ν) = −δ
(
z̆ − log(1 + ez̆) + log ν

)
+ log

1 + ez̆

1 + ez̃
, (8.35)
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where z̆ = ν(logX − η) and z̃ = ν(logZ − η); see Problem 8.11. Since
h1(t; η) = ν/(1+ ez), where z = ν(log t− η), one may iterate on (5.3) using

ũi =
νδi

1 + ez̆i
− ν

(
1

1 + ez̃i
− 1

1 + ez̆i

)

,

w̃i =

∫ Xi

Zi

h21(t; ηi)λ(t; ηi, ν)dt =

∫ Xi

Zi

ν2

(1 + ez)2
ez

1 + ez
νdt

t

=
ν2

2

(
1

(1 + ez̃i)2
− 1

(1 + ez̆i)2

)

.

Fixing ηi = η(Ui), one may estimate ν through the minimization of

− 1

n

n∑

i=1

{

δi
(
z̆i − log(1 + ez̆i) + log ν

)
− log

1 + ez̆i

1 + ez̃i

}

,

To drive performance-oriented iteration, one may use Uw(λ) with σ
2 = 1.

Kullback-Leibler and Direct Cross-Validation

With logλ(t, η) = z − log(1 + ez) + log(ν/t), (8.26) looks like

1

n

n∑

i=1

{

log
1 + ez̆i

1 + ez̃i
− δi

(
z̆i − log(1 + ez̆i) + log ν

)
}

+
1

n

n∑

i=1

δi
(
logλ(Xi, ηλ,i)− logλ(Xi, η

[i]
λ,i)
)
,

and (8.34) becomes

Vg(λ) =
1

n

n∑

i=1

{

log
1 + ez̆i

1 + ez̃i
− δi

(
z̆i − log(1 + ez̆i) + log ν

)
}

+ α
tr(AwW

−1)

n− trAw

ν

n

n∑

i=1

δi|ũi|
1 + ez̆i

. (8.36)

L(λ) of (8.27) does not simplify further and the Kullback-Leibler projection
of η̂ minimizes KL(η̂, η) as defined in (8.24).

Empirical Performance

Log logistic failure times Ti|ui were drawn, with ν = 2 and β(u) = eη(u)

as in (8.31), on ui = (i − 0.5)/100, i = 1, . . . , 100, along with exponential
censoring times satisfying P (Ci ≥ c) = e−c/2β(ui) and truncation times
satisfying P (Zi ≥ z) = e−2z/β(ui). Results from one hundred replicates are
shown in Fig. 8.11; two faded points are off the chart in the center frame,
with L(λp) at (0.635, 0.018) and (0.865, 0.186).
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Software Illustration

The following sequence generates a sample of (Xi, δi, Zi)|ui used in the
simulation above and fits a cubic spline to η(u) using performance-oriented
iteration, with ν = 2 known; rtest.loglogis is nearly a duplicate of
rtest.wei in §8.6.3 so only a few lines are listed here:

rtest.loglogis <- function(u) {

mu <- test(u)

tt <- exp(rlogis(u)/2+log(mu))

...

while(m <- sum(!ok)) {

tt[!ok] <- exp(rlogis(m)/2+log(mu[!ok]))

...

}

cbind(x,delta,z)

}

u <- ((1:100)-.5)/100

set.seed(2375); y <- rtest.loglogis(u)

fit1.loglogis <- gssanova1(y~u,"loglogis",nu=2)

The fit can then be plotted as in the left frame of Fig. 8.12:

est1 <- predict(fit1.loglogis,data.frame(u=u),se=TRUE)

plot(u,y[,1],type="n")

for (i in 1:100)

lines(c(u[i],u[i]),c(y[i,1],y[i,3]),col=5)

points(u,y[,1],pch=c("+","o")[y[,2]+1])

gg <- gamma(1+1/fit1.loglogis$nu)*

gamma(1-1/fit1.loglogis$nu)

lines(u,gg*exp(est1$fit))

lines(u,gg*exp(est1$fit+1.96*est1$se),lty=5)
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FIGURE 8.12. Cubic spline log logistic regression with censored and truncated
data. The estimated E[T |u] = eη(u)Γ(1 + σ)Γ(1− σ) are in solid lines, the 95%
Bayesian confidence intervals in dashed lines, and the test function in dotted lines.
The data are superimposed as circles (failures) or pluses (censorings) along with
at-risk processes I[Zi<t≤Xi] in faded vertical lines. Left : Estimate via indirect
cross-validation with a known ν = 2. Right : Estimate via direct cross-validation
with an estimated ν = 1.96.

lines(u,gg*exp(est1$fit-1.96*est1$se),lty=5)

lines(u,gg*test(u),lty=3)

A fit through direct cross-validation can be similarly obtained, as plotted
in the right frame of Fig. 8.12, with an estimated ν = 1.96:

fit.loglogis <- gssanova(y~u,"loglogis",

id.basis=fit1.loglogis$id.basis)

fit.loglogis$nu

# 1.960357

8.6.6 Case Study: Survival After Heart Transplant

The following sequence loads the Stanford heart transplant data of §§1.4.3
and 8.4.2 and fits a Weibull model to the data:

data(stan)

fit3.stan <- gssanova(cbind(time+.01,status)~age,

data=stan,family="weibull",

nbasis=200)

The follow-up times in the records were rounded to whole days and there
was a recorded death at 0, and we choose to add 0.01 to the follow-up times
instead of deleting the 0. With an ANOVA decomposition η(u) = η∅+ηu(u),
the relative risk is given by λ1(u) = e−νηu(u), which can be plotted as
shown in the left frame of Fig. 8.13, where the estimate via penalized partial
likelihood seen in the right frame of Fig. 8.5 is superimposed:
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FIGURE 8.13. Hazard after heart transplant: Weibull fit. Left : The fitted rela-
tive risk λ1(u) = e−νηu(u) (solid) along with 95% Bayesian confidence intervals
(faded). Right : The fitted log base hazard log λ0(t) = ν(log y − η∅) + log(ν/t)
(solid) along with 95% Bayesian confidence intervals (faded). The estimates via
penalized partial likelihood seen in the right and center frames of Fig. 8.5 are
superimposed in dashed lines.

nu <- fit3.stan$nu

u.gd <- seq(min(stan$age),max(stan$age),length=51)

est3 <- predict(fit3.stan,data.frame(age=u.gd),

se=TRUE,inc="age")

plot(u.gd,exp(-nu*est3$fit),type="l",ylim=c(0,5))

lines(u.gd,exp(-nu*(est3$fit-1.96*est3$se)),col=5)

lines(u.gd,exp(-nu*(est3$fit+1.96*est3$se)),col=5)

lines(u.gd,est2.a$fit,lty=2)

lines(u.gd,est2.a$fit*exp(1.96*est2.a$se),lty=2,col=5)

lines(u.gd,est2.a$fit/exp(1.96*est2.a$se),lty=2,col=5)

where est2.a is from §8.5.4. The log base hazard is seen to be log λ0(t) =
ν(log t − η∅) + log(ν/t), which can be plotted as shown in the right frame
of Fig. 8.13, where the estimate through penalized partial likelihood seen
in the center frame of Fig. 8.5 is superimposed:

est3.b <- predict(fit3.stan,data.frame(age=35),

se=TRUE,inc="1")

t.gd <- seq(0,max(stan$futime),length=51)

lhzd <- nu*(2*log(t.gd)-est3.b$fit)+log(nu/t.gd^2)

plot(t.gd^2,lhzd,type="l",ylim=c(-9,-5))

lines(t.gd^2,lhzd-nu*1.96*est3.b$se,col=5)

lines(t.gd^2,lhzd+nu*1.96*est3.b$se,col=5)

lines(t.gd^2,log(est2.b$fit/2/t.gd),lty=2)

lines(t.gd^2,log(est2.b$fit/2/t.gd)+1.96*est2.b$se,

lty=2,col=5)

lines(t.gd^2,log(est2.b$fit/2/t.gd)-1.96*est2.b$se,

lty=2,col=5)
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where est2.b is from §8.5.4. The estimates of relative risk are close to each
other, while the estimates of the base hazard differ quite a bit, as can be
expected.

8.7 Bibliographic Notes

Section 8.1

Absent of covariate, penalized likelihood hazard estimation was studied by
Anderson and Senthilselvan (1980), Bartoszyński, Brown, McBride, and
Thompson (1981), O’Sullivan (1988a), Antoniadis (1989), and Gu (1994).
With covariate, the estimation of the “bivariate” hazard function through
penalized full likelihood was formulated and studied by Gu (1996, 1998c).

Section 8.2

A performance-oriented iteration similar to that in §5.2.1 and Gu (1993b)
was proposed and illustrated by Gu (1994) for U a singleton, where a
martingale moment estimate similar to (8.9) was used to derive an indirect
cross-validation score. The direct cross-validation score presented here is
adapted from §7.3.
A comprehensive treatment of the counting process approach to survival

analysis and the related martingale structure can be found in Fleming and
Harrington (1991). A technically less demanding exposition can be found
in Gill (1984).

Section 8.3

Bayesian confidence intervals for log hazard were derived and illustrated in
Du and Gu (2006).
The Kullback-Leibler projection was developed in Gu (2004).
The frailty models for correlated data were studied in Du and Ma (2010).

Section 8.4

The gastric cancer data was used as an example by Moreau, O’Quigley, and
Mesbah (1985) to illustrate their goodness-of-fit test for the proportional
hazard model; the p-value of the test calculated on the data was between
0.01 and 0.02, indicating the inadequacy of the proportional hazard model.

The analysis of the Stanford heart transplant data presented here differs
slightly from the one in Gu (1998c), where a performance-oriented iteration
was used to select the smoothing parameters.
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Section 8.5

Partial likelihood was proposed by Cox (1972) based on a conditioning
argument, and maximum partial likelihood has become the golden standard
for the parametric estimation of relative risk. Penalized partial likelihood
was studied by O’Sullivan (1988b); see also Hastie and Tibshirani (1986)
and Gray (1992). The isomorphism between partial likelihood and likeli-
hood under biased sampling has its root in Cox’s conditioning argument.

Zucker and Karr (1990) considered a generalization of the proportional
hazard model of the form λ(t, u) = λ0(t)λ1

(
β(t), u

)
, where λ1

(
β(t), u

)
was

parametric in u with a time-varying parameter β(t), and β(t) was estimated
via penalized partial likelihood.

Section 8.6

Accelerated life models are among classical tools in reliability and survival
analysis; see, e.g., Kalbfleisch and Prentice (1980, §2.3). Basic properties
of the Weibull, the log normal, and the log logistic distributions can be
found in Kalbfleisch and Prentice (1980, §2.2) along with properties of
other lifetime distributions. Parametric linear models for μ(u) have been
implemented by Terry Therneau in his survival package, ported to R from
the Splus original by Thomas Lumley.
The direct cross-validation scores have not appeared in the literature.

8.8 Problems

Section 8.1

8.1 Verify (8.5).

Section 8.2

8.2 Using the calculus leading to (7.16) on page 244, one can obtain the
quadratic approximation of (8.1).

(a) Define Lf,g(α) = (1/n)
∑n

i=1

∫Xi

Zi
e(f+αg)(t,Ui)dt, where f and g are

functions and α is real. Calculate L̇f,g(0) and L̈f,g(0).

(b) Obtain the quadratic approximation of (8.1) at η̃.

8.3 Verify (8.10).
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Section 8.3

8.4 Consider a constant hazard model λ(t, u) = λ for (Xi, δi, Zi, Ui). Show
that the maximum likelihood estimate is given by

λ̂ =
∑n

i=1 δi/
∑n

i=1(Xi − Zi).

8.5 Plugging (8.3) into (8.15), derive the Newton updating equation for
minimizing (8.15) with respect (dT , cT ,bT )T .

Section 8.5

8.6 Discuss basic properties of (8.17), such as the existence and uniqueness
of the minimizer.

8.7 Applying the techniques developed in §7.6 to the estimation of relative
risk via the minimization of (8.17), characterize the Kullback-Leibler loss
that is targeted by cross-validation.

Section 8.6

8.8 Verify the minus log likelihood (8.28) for the Weibull family.

8.9 Verify the minus log likelihood (8.32) for the log normal family.

8.10 Verify (8.33) for
∫ Xi

Zi
h21(t; ηi)λ(t; ηi, ν)dt.

(a) Verify that

d

dz

(
φ(z)

1− Φ(z)

)

=

(
φ(z)

1− Φ(z)
− z

)
φ(z)

1− Φ(z)
.

(b) Calculate (8.33) via integration by parts.

8.11 Verify the minus log likelihood (8.35) for the log logistic family.
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Asymptotic Convergence

In this chapter, we develop an asymptotic theory concerning the rates of
convergence of penalized likelihood estimates to the target functions as the
sample size goes to infinity. The rates are calculated in terms of problem-
specific loss functions derived from the respective stochastic settings.
The primary tool used in the development is the eigenvalue analysis in

a Hilbert space, of which a brief introduction is given in §9.1. Convergence
rates are established in §9.2 for the density estimates of Chap. 7, in §9.3 for
the hazard estimates of §§8.1–8.4, and in §9.4 for the regression estimates
of Chaps. 3, 5 and §8.6. For density estimation and hazard estimation, the
notion of efficient approximation allows the practical computation of the
estimates. For regression, the theory is developed in a setting more general
than that of §5.1.
When an estimate is sought in a space H for the target function η0 �∈ H,

the estimate converges to a Kullback-Leibler projection η∗0 of η0 in H, at
the same rates as established for the convergence to η0 ∈ H.

9.1 Preliminaries

Let V (f) be a quadratic functional that defines a statistically interpre-
table metric so that a small V (η̂ − η) indicates a good estimate η̂ of η.
The asymptotic convergence rates of penalized likelihood estimates can
be characterized through an eigenvalue analysis of J(f) with respect to

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 9,
© Springer Science+Business Media New York 2013
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V (f), to be discussed below. Following the convention of §2.1.1, abstract
concepts are set in boldface at the point of definition and are followed by
simple examples set in italic.
A quadratic functional B is said to be completely continuous with

respect to another quadratic functional A, if for any ε > 0, there exist
a finite number of linear functionals L1, . . . , Lk such that Ljf = 0, j =
1, . . . , k, implies that B(f) ≤ εA(f); see Weinberger (1974, §3.3).
Consider the space P [0, 1] of periodic functions permitting the Fourier

series expansion (4.2) on page 127. Define B(f) = 2
∫ 1
0 f

2dx, A(f) =

2
∫ 1

0

(
f (m)

)2
dx, and

L2μf =

∫ 1

0

f(x) sin 2πμxdx,

L2μ+1f =

∫ 1

0

f(x) cos 2πμxdx, μ = 0, 1, . . . .

A function f satisfying Ljf = 0, j = 1, . . . , 2k − 1, has an expression

f(x) =

∞∑

μ=k

(aμ cos 2πμx+ bμ sin 2πμx)

and, consequently,

B(f) =

∞∑

μ=k

(a2μ + b2μ) ≤
1

(2πk)2m

∞∑

μ=k

(a2μ + b2μ)(2πμ)
2m =

1

(2πk)2m
A(f).

Hence, B is completely continuous with respect to A.
When B is completely continuous with respect to A and, hence, to

A + B, there exist eigenvalues λν and the associated eigenfunctions
ψν such that

B(ψν , ψμ) = λνδν,μ, (A+B)(ψν , ψμ) = δν,μ,

where δν,μ is the Kronecker delta and 1 ≥ λν ↓ 0; see Theorem 3.1 of

Weinberger (1974, p. 52). Write φν = λ
−1/2
ν ψν . It follows that

B(φν , φμ) = δν,μ, A(φν , φμ) = ρνδν,μ,

where 0 ≤ ρν = λ−1
ν − 1 ↑ ∞. We refer to ρν as the eigenvalues of A

with respect to B and to φν as the associated eigenfunctions. Functions
satisfying A(f) < ∞ can be expressed as a Fourier series expansion
f =

∑
ν fνφν , where fν = B(f, φν) are the Fourier coefficients.

Take φ2μ = sin 2πμx, φ2μ+1 = cos 2πμx, μ = 0, 1, . . . , in the periodic
function example given above. It is easy to see that

B(φν , φμ) = δν,μ, A(φν , φμ) = (2π#ν/2$)2m δν,μ, ν, μ = 1, 2, . . . ,
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where #ν/2$ is the integer part of ν/2. The eigenvalues ρν = (2π#ν/2$)2m
grow at a rate ν2m. The Fourier coefficients are given by f2μ = bμ, f2μ+1 =
aμ, μ = 0, 1, . . . .
To possibly achieve noise reduction in estimation, the effective dimension

of the model space has to be kept finite, and to make the procedure non-
restrictive, the dimension has to be expandable when more data become
available. When V is completely continuous with respect to J , this can be
achieved through constraints of the form J(f) ≤ ρ with ρ→∞ as n→∞
or, equivalently, by Theorem 2.12, through penalized likelihood with λ→ 0
as n → ∞. The growth rate of the eigenvalues ρν of J with respect to V ,
which typically is at νr for some r > 1, dictates how fast λ should approach
0, as will be seen in the sections to follow.
A few examples are given in the rest of the section.

Example 9.1 (Polynomial splines) Consider J(f) =
∫ 1

0

(
f (m)

)2
dx and

V (f) =
∫ 1

0 f
2w(x)dx on X = [0, 1], where w(x) satisfies 0 < c1 < w(x) <

c2 < ∞ for some c1, c2. V is known to be completely continuous with
respect to J , and it can be shown that ρν � ν2m. See, e.g., Utreras (1981).

For J(f) =
∫ 1

0
(Lf)2dx with L given in (4.75) on page 157, the same

results hold as
∫ 1

0 (Lf)
2dx is equivalent to

∫ 1

0

(
f (m)

)2
dx. �

Let {ϕν} be a sequence of functions on [0, 1] satisfying
∫ 1

0
ϕνϕμdx = δν,μ

and
∫ 1

0 ϕ̈ν ϕ̈μdx = σνδν,μ, where ν
4 � σν ↑ ∞. The first two entries are

ϕ1 = 1 and ϕ2 =
√
12(· − 0.5), with σ1 = σ2 = 0.

Example 9.2 (Tensor product cubic spline) Consider X = [0, 1]2.

Write Ṽ (f) =
∫ 1

0

∫ 1

0 f
2dx〈1〉dx〈2〉 and

J̃(f) = J1,00(f) + J00,1(f) + J1,01(f) + J01,1(f) + J1,1(f),

where

J1,00(f) =

∫ 1

0

{∫ 1

0

f̈11dx〈2〉

}2

dx〈1〉,

J00,1(f) =

∫ 1

0

{∫ 1

0

f̈22dx〈1〉

}2

dx〈2〉,

J1,01(f) =

∫ 1

0

{∫ 1

0

f
(3)
112dx〈2〉

}2

dx〈1〉,

J01,1(f) =

∫ 1

0

{∫ 1

0

f
(3)
122dx〈1〉

}2

dx〈2〉,

J1,1(f) =

∫ 1

0

∫ 1

0

(f
(4)
1122)

2dx〈1〉dx〈2〉.
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The sequence
{
ϕν(x〈1〉)ϕμ(x〈2〉)

}
are orthonormal with respect to Ṽ (f, g)

and are orthogonal with respect to J̃(f, g). More precisely, Jβ(f)’s define
square norms in Hβ , where

H1,00 =
{
ϕν(x〈1〉)ϕ1(x〈2〉)

}
ν≥3

,

H00,1 =
{
ϕ1(x〈1〉)ϕν(x〈2〉)

}
ν≥3

,

H1,01 =
{
ϕν(x〈1〉)ϕ2(x〈2〉)

}
ν≥3

,

H01,1 =
{
ϕ2(x〈1〉)ϕν(x〈2〉)

}
ν≥3

,

H1,1 =
{
ϕν(x〈1〉)ϕμ(x〈2〉)

}
ν,μ≥3

.

The null space of J̃(f) is given by NJ̃ =
{
ϕν(x〈1〉)ϕμ(x〈2〉)

}
ν,μ=1,2

. Putting

{σνσμ}ν,μ≥3 in an increasing order as {σ̃ν}, it can be shown that σ̃ν grow
at a rate faster than (ν/ log ν)4 but slower than ν4; see, e.g., Wahba (1990,
§12.1).
When w(x) is bounded away from 0 and∞, V (f) =

∫ 1

0

∫ 1

0 wf
2dx〈1〉dx〈2〉

is equivalent to Ṽ (f). For θβ > 0, β = {1, 00}, {00, 1}, {1, 01}, {01, 1}, and
{1, 1}, J(f) =

∑
β θβJβ(f) is equivalent to J̃(f). V is thus completely

continuous with respect to J , and the eigenvalues ρν of J with respect to
V satisfy β1ν

4−ε < ρν < β2ν
4 for some 0 < β1 < β2 <∞ and ν sufficiently

large, ∀ε > 0. If H1,1 is eliminated with θ1,1 = 0, ε can be set to 0. �

Example 9.3 (Thin-plate splines) For the thin-plate splines of §4.3,
Jd
m(f) in (4.17) on page 134 is defined on the unbounded domain (−∞,∞)d,

on which the usual L2 norm is not defined.
Consider a bounded domain Ω satisfying certain boundary conditions.

Let J(f) be the integral of (4.17) restricted to Ω and V (f) =
∫
Ω
f2dx.

It can be shown that V is completely continuous with respect to J and
ρν � ν2m/d; see Cox (1984) and Utreras (1988). This does not address the
thin-plate splines directly, but appears to be as close as one can get. �

Example 9.4 (Spherical splines) For the spherical splines of §4.4,
V (f) =

∫
S f

2(x)dx is completely continuous with respect to J̃m(f) of (4.46)
on page 146, and ρν � νm. �

9.2 Rates for Density Estimates

Denote by eη0/
∫
X e

η0 the density to be estimated and by eη̂/
∫
X e

η̂ the
estimate through the minimization of (7.1). We shall establish the asymp-
totic convergence rates in terms of the symmetrized Kullback-Leibler
distance

SKL(η0, η̂) = μη0(η0 − η̂) + μη̂(η̂ − η0),
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where μη(f) =
∫
X fe

η/
∫
X e

η, and in terms of V (η̂ − η0) = Vη0(η̂ − η0),
where Vη(f) = μη(f

2)− μ2
η(f).

The rates are first established for the minimizer η̃ of the quadratic ap-
proximation of (7.1) at η0, then extended to η̂ by bounding the magnitude
of η̂− η̃. The rates are further extended to the minimizer η̂∗ of (7.1) in H∗

of (7.2), by bounding the magnitudes of η̂− η∗ and η∗− η̂∗, where η∗ is the
projection of η̂ in H∗. The geometry in the spaces and the Fourier series
expansion provide convenient tools throughout the analysis.
When η0 �∈ H, the estimates are seen to converge to a Kullback-Leibler

projection of η0 in H at the same rates. The theory can also be easily
adapted for the analysis of conditional density estimates and of estimates
based on samples that are subject to selection bias.

9.2.1 Linear Approximation

Take V (f) = Vη0(f). The following conditions are needed in our analysis.

Condition 9.2.1 V is completely continuous with respect to J .

Condition 9.2.2 For ν sufficiently large and some β > 0, the eigenvalues
ρν of J with respect to V satisfy ρν > βνr, where r > 1.

Consider the quadratic approximation of (7.1) at η0, which is given by

− 1

n

n∑

i=1

η(Xi) + μη0(η) +
1

2
V (η − η0) +

λ

2
J(η); (9.1)

see (7.16) on page 244. Plugging the Fourier series expansions η =
∑

ν ηνφν
and η0 =

∑
ν ην,0φν into (9.1), one has

∑

ν

{

− ην

(
1

n

n∑

i=1

φν(Xi)− μη0(φν)

)

+
1

2
(ην − ην,0)

2 +
λ

2
ρνη

2
ν

}

. (9.2)

Write βν = n−1
∑n

i=1 φν(Xi)− μη0(φν ). The Fourier coefficients that min-
imize (9.2) are given by

η̃ν = (βν + ην,0)/(1 + λρν).

The minimizer η̃ =
∑

ν η̃νφν of (9.1) is called a linear approximation of η̂
since it is linear in φν(Xi). Straightforward calculation yields

V (η̃ − η0) =
∑

ν

(η̃ν − ην,0)
2 =

∑

ν

β2
ν − 2βνλρνην,0 + λ2ρ2νη

2
ν,0

(1 + λρν)2
,

λJ(η̃ − η0) =
∑

ν

λρν(η̃ν − ην,0)
2 =

∑

ν

λρν
β2
ν − 2βνλρνην,0 + λ2ρ2νη

2
ν,0

(1 + λρν)2
.
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Note that E[βν ] = 0 and E
[
β2
ν

]
= n−1. It follows that

E
[
V (η̃ − η0)

]
=

1

n

∑

ν

1

(1 + λρν)2
+ λ
∑

ν

λρν
(1 + λρν)2

ρνη
2
ν,0,

E
[
λJ(η̃ − η0)

]
=

1

n

∑

ν

λρν
(1 + λρν)2

+ λ
∑

ν

(λρν)
2

(1 + λρν)2
ρνη

2
ν,0.

(9.3)

These quantities can be bounded with the help of the following lemma.

Lemma 9.1 Under Condition 9.2.2, as λ→ 0, one has

∑

ν

λρν
(1 + λρν)2

= O
(
λ−1/r

)
,

∑

ν

1

(1 + λρν)2
= O

(
λ−1/r

)
,

∑

ν

1

1 + λρν
= O

(
λ−1/r

)
.

Proof : We prove the first equation.

∑

ν

λρν
(1 + λρν)2

=

( ∑

ν<λ−1/r

+
∑

ν≥λ−1/r

)
λρν

(1 + λρν)2

= O
(
λ−1/r

)
+O

(∫ ∞

λ−1/r

λxr

(1 + λxr)2
dx

)

= O
(
λ−1/r

)
+ λ−1/rO

(∫ ∞

1

xr

(1 + xr)2
dx

)

= O
(
λ−1/r

)
.

The other two follow similar arguments. �

Theorem 9.2 Assume J(η0) <∞. Under Conditions 9.2.1 and 9.2.2, as
n→∞ and λ→ 0,

(V + λJ)(η̃ − η0) = Op

(
n−1λ−1/r + λ

)
.

Proof : Note that
∑

ν ρνη
2
ν,0 = J(η0) <∞. The theorem follows from (9.3)

and Lemma 9.1. �
When η0 is “supersmooth,” in the sense that

∑
ν ρ

p
νη

2
ν,0 < ∞ for some

p > 1, the rates can be improved to O
(
n−1λ−1/r + λp

)
, for p up to 2; see

Problem 9.1.
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9.2.2 Approximation Error and Main Results

We now turn to the approximation error η̂ − η̃. Define

Af,g(α) = − 1

n

n∑

i=1

(f + αg)(Xi) + log

∫

X
ef+αg +

λ

2
J(f + αg),

Bf,g(α) = − 1

n

n∑

i=1

(f + αg)(Xi) + μη0(f + αg)

+
1

2
V (f + αg − η0) +

λ

2
J(f + αg).

It is easy to verify that (Problem 9.2)

Ȧf,g(0) = − 1

n

n∑

i=1

g(Xi) + μf (g) + λJ(f, g), (9.4)

Ḃf,g(0) = − 1

n

n∑

i=1

g(Xi) + μη0(g) + V (f − η0, g) + λJ(f, g). (9.5)

Setting f = η̂ and g = η̂ − η̃ in (9.4), one has

− 1

n

n∑

i=1

(η̂ − η̃)(Xi) + μη̂(η̂ − η̃) + λJ(η̂, η̂ − η̃) = 0, (9.6)

and setting f = η̃ and g = η̂ − η̃ in (9.5) yields

− 1

n

n∑

i=1

(η̂− η̃)(Xi)+μη0(η̂− η̃)+V (η̃−η0, η̂− η̃)+λJ(η̃, η̂− η̃) = 0. (9.7)

Combining (9.6) and (9.7), it follows that

μη̂(η̂ − η̃)− μη̃(η̂ − η̃) + λJ(η̂ − η̃)

= V (η̃ − η0, η̂ − η̃) + μη0(η̂ − η̃)− μη̃(η̂ − η̃). (9.8)

Now, define

C(α) = μη0+α(η̃−η0)/σ(η̂ − η̃)− μη0(η̂ − η̃),

where σ =
{
V (η̃ − η0)

}1/2
= op(1). A Taylor expansion gives C(α) =

α
(
1 + o(1)

)
V (η̃ − η0, η̂ − η̃)/σ, where o(1) is with respect to α → 0. This

leads to

μη̃(η̂ − η̃)− μη0(η̂ − η̃) = C(σ) = V (η̃ − η0, η̂ − η̃)
(
1 + op(1)

)
, (9.9)

as λ→ 0 and nλ1/r →∞. Now, define D(α) = μη̃+α(η̂−η̃)(η̂− η̃). It can be

shown that Ḋ(α) = Vη̃+α(η̂−η̃)(η̂ − η̃). By the mean value theorem,

μη̂(η̂ − η̃)− μη̃(η̂ − η̃) = D(1)−D(0) = Ḋ(α) = Vη̃+α(η̂−η̃)(η̂ − η̃), (9.10)

for some α ∈ [0, 1]. The following condition is needed to proceed.
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Condition 9.2.3 For η in a convex set B0 around η0 containing η̂ and η̃,
c1V (f) ≤ Vη(f) holds uniformly for some c1 > 0.

Condition 9.2.3 is satisfied when the members of B0 have uniform upper
and lower bounds on domain X .

Theorem 9.3 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Condi-

tions 9.2.1–9.2.3, as λ→ 0 and nλ1/r →∞,

(V + λJ)(η̂ − η̃) = op
(
n−1λ−1/r + λp

)
.

Consequently,

(V + λJ)(η̂ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof : From (9.8)–(9.10), and Condition 9.2.3,

c1V (η̂ − η̃) + λJ(η̂ − η̃) ≤ op
(
V (η̃ − η0, η̂ − η̃)

)

= op
({
V (η̂ − η̃)V (η̃ − η0)

}1/2)
.

The theorem follows from Theorem 9.2 after trivial manipulation. �

Theorem 9.4 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Condi-

tions 9.2.1–9.2.3, as λ→ 0 and nλ1/r →∞,

SKL(η0, η̂) = Op

(
n−1λ−1/r + λp

)
.

Proof : Setting f = η̂ and g = η̂ − η0 in (9.4), one has

μη0(η0 − η̂) + μη̂(η̂ − η0)

=

{
1

n

n∑

i=1

(η̂ − η0)(Xi)− μη0(η̂ − η0)

}

− λJ(η̂, η̂ − η0) (9.11)

For the first term on the right-hand side of (9.11), write

1

n

n∑

i=1

(η̂ − η0)(Xi)− μη0(η̂ − η0) =
∑

ν

(η̂ν − ην,0)βν ,

where η̂ν are the Fourier coefficients of η̂ and βν = n−1
∑n

i=1 φν(Xi) −
μη0(φν). By the Cauchy-Schwartz inequality,

∑

ν

∣
∣(η̂ν − ην,0)βν

∣
∣ ≤
{∑

ν α
2
ν(η̂ν − ην,0)

2
}1/2{∑

ν α
−2
ν β2

ν

}1/2
,

for some sequence αν . Setting α
2
ν = 1 + λρν , one has

∣
∣
∣
∣
1

n

n∑

i=1

(η̂−η0)(Xi)−μη0(η̂−η0)
∣
∣
∣
∣ ≤
{
(V+λJ)(η̂−η0)

}1/2
Op

(
n−1/2λ−1/2r

)
,

(9.12)
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where
∑

ν

(1 + λρν)(η̂ν − ην,0)
2 = (V + λJ)(η̂ − η0) = Op

(
n−1λ−1/r + λp

)

by Theorem 9.3, and E
[∑

ν(1+λρν)
−1β2

ν

]
= O

(
n−1λ−1/r

)
by Lemma 9.1

and the fact that E
[
β2
ν

]
= n−1. Hence,

∣
∣
∣
∣
1

n

n∑

i=1

(η̂ − η0)(Xi)− μη0(η̂ − η0)

∣
∣
∣
∣ = Op

(
n−1λ−1/r + n−1/2λ−1/2r+p/2

)
.

(9.13)
Similarly, λJ(η̂, η̂ − η0) = λJ(η̂ − η0) + λJ(η0, η̂ − η0), where

λJ(η0, η̂ − η0) =
∑

ν

λρνην,0(η̂ν − ην,0)

≤
{∑

ν

(1 + λρν)(η̂ν − ην,0)
2

}1/2

×
{

λp
∑

ν

(λρν)
2−p

1 + λρν
ρpνη

2
ν,0

}1/2

=
{
(V + λJ)(η̂ − η0)

}1/2
O
(
λp/2

)
.

By Theorem 9.3,
∣
∣λJ(η̂, η̂ − η0)

∣
∣ = Op

(
n−1λ−1/r + λp

)
. Combining this

with (9.13), the theorem follows. �

9.2.3 Efficient Approximation

As was noted in §7.1, the minimizer η̂ of (7.1) in H is, in general, not
computable. The minimizer η̂∗ in a space

H∗ = NJ ⊕ span
{
RJ(Zj , ·), j = 1, . . . , q

}

was computed instead, where {Zj} is a random subset of {Xi} and hence
also an i.i.d. sample from eη0(x)/

∫
X e

η0(x). We shall now establish the same
convergence rates for η̂∗ under an extra condition.

Condition 9.2.4 V (φνφμ) ≤ c2 holds uniformly for some c2 > 0, ∀ν, μ.

Condition 9.2.4 virtually calls for uniformly bounded fourth moments of
φν(X). The condition appears mild, as φν typically grow in roughness
but not necessarily in magnitude, but since φν are generally not available
in explicit forms, the condition is extremely difficult to verify from more
primitive conditions, if at all possible.

Lemma 9.5 Under Conditions 9.2.1, 9.2.2, and 9.2.4, as λ → 0 and
qλ2/r →∞, V (h) = op

(
λJ(h)

)
, ∀h ∈ H�H∗.
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Note that q ≤ n, so when λ → 0 and qλ2/r → ∞, nλ1/r → ∞.
The computational cost of η̂∗ is of the order O(nq2), thus a smaller q
is preferred. The optimal convergence rate Op

(
n−pr/(pr+1)

)
is achieved at

λ � n−r/(pr+1), hence it is sufficient to have q � n2/(pr+1)+ε, ∀ε > 0.
Proof of Lemma 9.5: For h ∈ H�H∗, since h(Zj) = J

(
RJ(Zj , ·), h

)
= 0,∑q

j=1 h
2(Zj) = 0. Write h =

∑
ν hνφν . It follows that

V (h) ≤ μη0(h
2) =

∑

ν

∑

μ

hνhμμη0(φνφμ)

=
∑

ν

∑

μ

hνhμ

{

μη0(φνφμ)−
1

q

q∑

j=1

φν(Zj)φμ(Zj)

}

≤
{
∑

ν

∑

μ

1

1 + λρν

1

1 + λρμ

×
{
1

q

q∑

j=1

φν(Zj)φμ(Zj)− μη0(φνφμ)

}2
}1/2

×
{∑

ν

∑

μ

(1 + λρν)(1 + λρμ)h
2
νh

2
μ

}1/2

= Op

(
q−1/2λ−1/r

)
(V + λJ)(h),

where Lemma 9.1 and the fact that

E

[
1

q

q∑

j=1

φν(Zj)φμ(Zj)− μη0(φνφμ)

]2
≤ c2

q

are used. The lemma follows. �
Let η∗ be the projection of η̂ in H∗. Setting f = η̂ and g = η̂ − η∗ in

(9.4), one has

− 1

n

n∑

i=1

(η̂ − η∗)(Xi) + μη̂(η̂ − η∗) + λJ(η̂, η̂ − η∗) = 0. (9.14)

Adding and subtracting μη0(η̂ − η∗), and noting that J(η∗, η̂ − η∗) = 0,

{
1

n

n∑

i=1

(η̂−η∗)(Xi)−μη0(η̂−η∗)
}

−
(
μη̂(η̂−η∗)−μη0(η̂−η∗)

)
= λJ(η̂−η∗).

(9.15)
Similar to (9.12), one has

∣
∣
∣
∣
1

n

n∑

i=1

(η̂−η∗)(Xi)−μη0(η̂−η∗)
∣
∣
∣
∣ = Op

(
n−1/2λ−1/2r

){
(V +λJ)(η̂−η∗)

}1/2
,

(9.16)
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and similar to (9.9), it can be shown that

μη̂(η̂ − η∗)− μη0(η̂ − η∗) = V (η̂ − η0, η̂ − η∗)
(
1 + op(1)

)
. (9.17)

Theorem 9.6 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Condi-

tions 9.2.1–9.2.4, as λ→ 0 and qλ2/r →∞,

λJ(η̂ − η∗) = Op

(
n−1λ−1/r + λp

)
,

V (η̂ − η∗) = op
(
n−1λ−1/r + λp

)
.

Proof : Combining (9.15)–(9.17) and applying Theorem 9.3,

λJ(η̂ − η∗) = Op

(
n−1/2λ−1/2r + λp/2

){
(V + λJ)(η̂ − η∗)

}1/2
.

The theorem follows from Lemma 9.5. �
We can now obtain the rates for (V + λJ)(η̂∗ − η∗) and, in turn, for

(V + λJ)(η̂∗ − η̂). Condition 9.2.3 needs to be modified to include η̂∗ and
η∗ in the convex set B0.

Theorem 9.7 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Condi-

tions 9.2.1–9.2.4, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η∗) = op
(
n−1λ−1/r + λp

)
,

(V + λJ)(η̂ − η̂∗) = Op

(
n−1λ−1/r + λp

)
.

Proof : Setting f = η̂∗ and g = η̂∗ − η∗ ∈ H∗ in (9.4), one has

− 1

n

n∑

i=1

(η̂∗ − η∗)(Xi) + μη̂∗(η̂∗ − η∗) + λJ(η̂∗, η̂∗ − η∗) = 0. (9.18)

Setting f = η̂ and g = η̂ − η̂∗ in (9.4), one gets

− 1

n

n∑

i=1

(η̂ − η̂∗)(Xi) + μη̂(η̂ − η̂∗) + λJ(η̂, η̂ − η̂∗) = 0. (9.19)

Adding (9.18), (9.19) and subtracting (9.14), some algebra yields

μη̂∗(η̂∗ − η∗)− μη∗(η̂∗ − η∗) + λJ(η̂∗ − η∗) = μη̂(η̂
∗ − η∗)− μη∗(η̂∗ − η∗);

remember that J(η̂ − η∗, η∗) = J(η̂ − η∗, η̂∗) = 0. In view of (9.9), (9.10),
and Condition 9.2.3,

c1V (η̂∗ − η∗) + λJ(η̂∗ − η∗) ≤
∣
∣V (η̂ − η∗, η̂∗ − η∗)

∣
∣(1 + op(1)

)
.

The theorem follows after applying the Cauchy-Schwartz inequality and
Theorem 9.6. �
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Theorem 9.8 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Condi-

tions 9.2.1–9.2.4, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η0) = Op

(
n−1λ−1/r + λp

)
,

SKL(η0, η̂
∗) = Op

(
n−1λ−1/r + λp

)
.

Proof : The first part of the theorem follows from Theorems 9.3, 9.6, and 9.7.
For the second part, set f = η̂ and h = η̂∗ − η0 in (9.4). This yields

− 1

n

n∑

i=1

(η̂∗ − η0)(Xi) + μη̂(η̂
∗ − η0) + λJ(η̂, η̂∗ − η0) = 0.

Hence,

μη0(η0 − η̂∗) + μη̂∗(η̂∗ − η0)

=μη0(η0 − η̂∗) + μη̂∗(η̂∗ − η0)

+
1

n

n∑

i=1

(η̂∗ − η0)(Xi)− μη̂(η̂
∗ − η0) + λJ(η̂, η0 − η̂∗)

=λJ(η̂, η0 − η̂∗) +

{
1

n

n∑

i=1

(η̂∗ − η0)(Xi)− μη0(η̂
∗ − η0)

}

+
{
μη̂∗(η̂∗ − η0)− μη̂(η̂

∗ − η0)
}
.

The first term on the right-hand side is of the order Op

(
n−1λ−1/r +λp

)
by

arguments similar to ones used in the proof of Theorem 9.4. The second
and the third terms are of the same order in view of (9.16) and (9.17),
Theorem 9.7, and the first part of this theorem. �

9.2.4 Convergence Under Incorrect Model

It has been implicitly assumed thus far that η0 ∈ H. In the case η0 �∈
H, say an additive model is fitted while the interaction is present in η0,
modifications are needed in the problem formulation. The convergence rates
remain valid under the modified formulation, however.
Suppose the minimizer of RKL(η0, η) = log

∫
X e

η − μη0(η) exists in H,
then it is the Kullback-Leibler projection of η0 in H, to be denoted by η∗0 ,
which is probably the best proxy of η0 one can hope to estimate in the
context. It is known that μη∗

0
(h) = μη0(h), ∀h ∈ H. Substituting η∗0 for η0

everywhere in §§9.2.1–9.2.3, all results and arguments remain valid if

E

[
1

n

n∑

i=1

φν(Xi)− μη∗
0
(φν )

]2
=

1

n
,

E

[
1

n

n∑

i=1

φν(Xi)φμ(Xi)− μη∗
0
(φνφμ)

]2
≤ c2

n
.
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These equations hold under an extra condition.

Condition 9.2.0 gh− Cgh ∈ H for some constant Cgh, ∀g, h ∈ H.

Note that if μη0(gh−Cgh) = μη∗
0
(gh−Cgh), then μη0(gh) = μη∗

0
(gh). The

key requirement here is that J(gh) < ∞ whenever J(g) < ∞, J(h) < ∞;
the constant Cgh takes care of the side condition on log density. Condi-
tion 9.2.0 is satisfied by all the spaces appearing in the examples in Chap. 7.

9.2.5 Estimation Under Biased Sampling

Now, consider the setting of §7.6. Observations (ti, Xi) are taken from
T × X with X |t ∼ w(t, x)eη0(x)/

∫
X w(t, x)e

η0(x), and the density estimate

eη̂/
∫
X eη̂ is obtained via the minimization of (7.26). The theory developed

in the proceeding sections remain valid with due modifications, although
some of the intermediate op rates might have to be replaced by the respective
Op rates.
Let m(t) be the limiting density of ti on T . Write

μη(f |t) =
∫
X f(x)w(t, x)e

η(x)

∫
X w(t, x)e

η(x)
, vη(f |t) = μη(f

2|t)− μ2
η(f |t),

and define

μη(f) =

∫

T
m(t)μη(f |t), Vη(f) =

∫

T
m(t)vη(f |t).

The convergence rates are given in terms of

SKL(η0, η̂) =

∫

T
m(t)

{
μη0(η0 − η̂|t) + μη̂(η̂ − η0|t)

}

and V (η̂ − η0), where V (f) = Vη0 (f).
For the theory of §§9.2.1–9.2.3 to hold in this setting, Conditions 9.2.1

and 9.2.2 need little change except for the definition of V . Conditions 9.2.3
and 9.2.4 shall be modified as follows.

Condition 9.2.3b For η in a convex set B0 around η0 containing η̃, η̂,
η∗, and η̂∗, c1vη0(f |t) ≤ vη(f |t) ≤ c2vη0(f |t) holds uniformly for some
0 < c1 < c2 <∞, ∀f ∈ H, ∀t ∈ T .

Condition 9.2.4b
∫
T m(t)

{
vη0(φν , φμ|t)

}2≤ c3 holds uniformly for some
c3 <∞, ∀ν, μ.

To apply the arguments of §9.2.4, the relative Kullback-Leibler distance
shall be modified as RKL(η0, η) =

∫
T m(t)

{
log
∫
X w(t, x)e

η(x) − μη0(η|t)
}
.

Details are straightforward to work out and are left as an exercise
(Problem 9.3).
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9.2.6 Estimation of Conditional Density

For the estimation of the conditional density f(y|x) = eη0(x,y)/
∫
Y e

η0(x,y)

via the minimization of (7.30), the theory is also easy to modify.
Let f(x) be the marginal density of X on X . Write

μη(g|x) =
∫
Y g(x, y)e

η(x,y)

∫
Y e

η(x,y)
, vη(g|x) = μη(g

2|x)− μ2
η(g|x)

and define

μη(g) =

∫

X
f(x)μη(g|x), Vη(g) =

∫

X
f(x)vη(g|x).

The convergence rates are given in terms of

SKL(η0, η̂) =

∫

X
f(x)

{
μη0(η0 − η̂|x) + μη̂(η̂ − η0|x)

}

and V (η̂ − η0), where V (g) = Vη0 (g).
For the theory of §§9.2.1–9.2.3 to hold for conditional density estimates,

Conditions 9.2.1 and 9.2.2 need little change except for the definition of V .
Conditions 9.2.3 and 9.2.4 shall be modified as follows.

Condition 9.2.3c For η in a convex set B0 around η0 containing η̃, η̂,
η∗, and η̂∗, c1vη0(g|x) ≤ vη(g|x) ≤ c2vη0(g|x) holds uniformly for some
0 < c1 < c2 <∞, ∀g ∈ H, ∀x ∈ X .

Condition 9.2.4c There exist c3, c4, c5 <∞, such that
∫
X f(x)

{
vη0(φν , φμ|x)

}2 ≤ c3,∫
X f(x)vη0 (φνφμ, φνφμ|x) ≤ c4,
∫
X f(x)

{
μη0(φνφμ|x)− μη0(φνφμ)

}2 ≤ c5,

hold uniformly, ∀ν, μ,

To apply the arguments of §9.2.4, the relative Kullback-Leibler distance
shall be modified as RKL(η0, η) =

∫
X f(x)

{
log
∫
Y e

η − μη0(η|x)
}
, and the

constant Cgh in Condition 9.2.0 may be a function of x. Details are left as
an exercise (Problem 9.4).

9.2.7 Estimation Under Response-Based Sampling

Consider the connected case in the setting of §7.9, where the strata Yj are
sampled with probability πj , and the samples (X,Y )|Yj are taken from
eη0(x,y)/

∫
X×Yj

eη0(x,y). Write

μη(f |j) =
∫
X×Yj

feη
∫
X×Yj

eη
, vη(f |j) = μη(f

2|j)− μ2
η(f |j)
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and define

μη(f) =

s∑

j=1

πjμη(f |j), Vη(f) =

s∑

j=1

πjvη(f |j).

The rates for the minimizers of (7.46) can be derived in terms of

SKL(η0, η̂) =

s∑

j=1

πj
{
μη0(η0 − η̂|j) + μη̂(η̂ − η0|j)

}

and V (η̂ − η0), where V (f) = Vη0(f). The conditions needed are similar
to those for conditional density estimates. The relative Kullback-Leibler
distance is defined by RKL(η0, η) =

∑s
j=1 πj

{
log
∫
X×Yj

eη − μη0(η|j)
}
.

Further details are left as an exercise (Problem 9.5).

9.3 Rates for Hazard Estimates

The convergence rates for the minimizers of (8.1) are to be established in
this section. The martingale structure of censored lifetime data, which was
mentioned in §§8.2.1 and 8.6.1, serves as the primary tool for the stochastic
calculations involved.
Some basic facts concerning the martingale structure are summarized,

and a quadratic functional V is derived under the sampling structure.
The rates are given in terms of V (η̂− η0) and in terms of the symmetrized
version of KL(η0, η̂) as defined in (8.6). The analysis parallels that in §9.2.

9.3.1 Martingale Structure

Write N(t) = I[X≤t,δ=1], Y (t) = I[Z<t≤X], and A(t) =
∫ t

0
eη0(s,U)Y (s)ds,

as in §8.2.1. Under independent censorship, M(t) = N(t)−A(t) is a mar-
tingale conditional on U and Z. We shall now summarize some martingale
properties needed in the asymptotic analysis. The results are quoted from
Fleming and Harrington (1991, §2.7) and Gill (1984).
First of all, one has E

[
M(t)

∣
∣U,Z

]
= 0 and

E
[
M2(t)

∣
∣U,Z

]
= E

[
A(t)

∣
∣U,Z

]
=

∫ t

0

eη0(s,U)E
[
Y (s)

∣
∣U,Z

]
ds.

For any deterministic function h(t, u) continuous in t, ∀u (so it is locally

bounded predictable), the Stieltjes integral
∫ t

0 h(s, U)dM(s) is a martingale

as long as
∫
T h

2(t, U)eη0(t,U)E
[
Y (t)

∣
∣U,Z

]
dt <∞. It follows that

E
[ ∫ t

0
h(s, U)dM(s)

∣
∣U,Z

]
= 0,

E
[{∫ t

0
h(s, U)dM(s)

}2∣∣U,Z
]
=

∫ t

0

h2(s, U)eη0(s,U)E
[
Y (s)

∣
∣U,Z

]
ds.
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This yields

E

[∫ t

0

h dN(s)

]

−
∫

U
m(u)

∫ t

0

h eη0 S̃ds = E

[ ∫ t

0

h dM(s)

]

= 0, (9.20)

E

[{∫ t

0

h dM(s)

}2]

= E

[∫ t

0

h2dA(s)

]

=

∫

U
m(u)

∫ t

0

h2eη0 S̃ds, (9.21)

where S̃(t, u) = E
[
Y (t)

∣
∣U = u

]
= P

(
Z < t ≤ X

∣
∣U = u

)
. Furthermore,

E

[{∫ t

0

h dN(s)−
∫

U
m(u)

∫ t

0

h eη0 S̃ds

}2
]

= E

[{∫ t

0

h dM(s) +

∫ t

0

h eη0Y (s)ds−
∫

U
m(u)

∫ t

0

h eη0 S̃ds

}2
]

= E

[{∫ t

0

h dM(s)

}2
]

+ E

[{∫ t

0

h eη0Y (s)ds−
∫

U
m(u)

∫ t

0

h eη0 S̃ds

}2
]

, (9.22)

where E
[ ∫ t

0 h dM(s)
{ ∫ t

0 h e
η0Y (s)ds−

∫
U m(u)

∫ t

0 h e
η0 S̃ds

}∣
∣U,Z

]
=0 be-

cause
∫ t

0 h e
η0Y (s)ds−

∫
U m(u)

∫ t

0 h e
η0 S̃ds is predictable.

Note that δ η(X,U) =
∫
T η(t, U)dN(t),

∫X

Z
eη(t,U)dt =

∫
T e

η(t,U)Y (t)dt.
The penalized likelihood functional (8.1) on page 286 shall be written as

− 1

n

n∑

i=1

{∫

T
ηidNi(t)−

∫

T
eηiYidt

}

+
λ

2
J(η), (9.23)

where ηi(t) = η(t, Ui). Define

V (f) =

∫

U
m(u)

∫

T
f2(t, u)eη0(t,u)S̃(t, u)dt. (9.24)

Convergence rates for the minimizer η̂ of (9.23) shall be established in terms
of V (η̂ − η0) and

SKL(η0, η̂) =

∫

U
m(u)

∫

T

(
eη̂(t,u) − eη0(t,u)

)(
η̂(t, u)− η0(t, u)

)
S̃(t, u)dt,

which is the symmetrized version of KL(η0, η̂) defined in (8.6) on page 289.

9.3.2 Linear Approximation

The following conditions are needed in our analysis, which are carbon copies
of Conditions 9.2.1 and 9.2.2 but with V as defined in (9.24).
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Condition 9.3.1 V is completely continuous with respect to J .

Condition 9.3.2 For ν sufficiently large and some β > 0, the eigenvalues
ρν of J with respect to V satisfy ρν > βνr, where r > 1.

Consider the quadratic functional

− 1

n

n∑

i=1

{∫

T
ηidNi(t)−

∫

T
ηie

η0,iYidt

}

+
1

2
V (η − η0) +

λ

2
J(η), (9.25)

where η0,i(t) = η0(t, Ui). Plugging the Fourier expansions η =
∑

ν ηνφν
and η0 =

∑
ν ην,0φν into (9.25), the minimizer η̃ of (9.25) has Fourier

coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

where βν = n−1
∑n

i=1

∫
T φν,idMi(t) with φν,i(t) = φν(t, Ui). From (9.20),

(9.21), and the fact that
∫
U m(u)

∫
T φ

2
νe

η0 S̃dt = V (φν) = 1, it is easy to

see that E[βν ] = 0 and E
[
β2
ν

]
= n−1. See Problem 9.6.

Theorem 9.9 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under

Conditions 9.3.1 and 9.3.2, as n→∞ and λ→ 0,

(V + λJ)(η̃ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof : See the proof of Theorem 9.2. �

9.3.3 Approximation Error and Main Results

We now turn to the approximation error η̂ − η̃. Define

Af,g(α) = − 1

n

n∑

i=1

{∫

T
(f + αg)idNi(t)−

∫

T
e(f+αg)iYidt

}

+
λ

2
J(f + αg),

Bf,g(α) = − 1

n

n∑

i=1

{∫

T
(f + αg)idNi(t)−

∫

T
(f + αg)ie

η0,iYidt

}

+
1

2
V (f + αg − η0) +

λ

2
J(f + αg).

It can be shown that

Ȧf,g(0) = − 1

n

n∑

i=1

{∫

T
gidNi(t)−

∫

T
gie

fiYidt

}

+ λJ(f, g), (9.26)

Ḃf,g(0) = − 1

n

n∑

i=1

{∫

T
gidNi(t)−

∫

T
gie

η0,iYidt

}

+ V (f − η0, g) + λJ(f, g). (9.27)
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Setting f = η̂ and g = η̂ − η̃ in (9.26), one has

− 1

n

n∑

i=1

{∫

T
(η̂− η̃)idNi(t)−

∫

T
(η̂− η̃)ieη̂iYidt

}

+λJ(η̂, η̂− η̃) = 0, (9.28)

and setting f = η̃ and g = η̂ − η̃ in (9.27), one gets

− 1

n

n∑

i=1

{∫

T
(η̂ − η̃)idNi(t)−

∫

T
(η̂ − η̃)ie

η0,iYidt

}

+ V (η̃ − η0, η̂ − η̃) + λJ(η̃, η̂ − η̃) = 0. (9.29)

Subtracting (9.29) from (9.28), some algebra yields

1

n

n∑

i=1

∫

T
(η̂ − η̃)i(e

η̂ − eη̃)iYidt+ λJ(η̂ − η̃)

= V (η̃ − η0, η̂ − η̃)− 1

n

n∑

i=1

∫

T
(η̂ − η̃)i(e

η̃ − eη0)iYidt. (9.30)

One needs the following conditions in addition to Conditions 9.3.1 and 9.3.2
to proceed.

Condition 9.3.3 For η in a convex set B0 around η0 containing η̂ and η̃,
c1 ≤ eη(t,u)−η0(t,u) ≤ c2 holds uniformly for some 0 < c1 < c2 <∞.

Condition 9.3.4
∫
U m(u)

∫
T φ

2
νφ

2
μe

kη0 S̃dt ≤ c3, ∀ν, μ, for some c3 < ∞,
k = 1, 2.

By the mean value theorem, Condition 9.3.3 implies the equivalence of
V (η−η0) and SKL(η0, η) for η in B0. When η0 is bounded, Condition 9.3.4
essentially asks for a uniform bound on the fourth moments of φν .

Lemma 9.10 Under Conditions 9.3.1, 9.3.2, and 9.3.4, as λ → 0 and
nλ2/r →∞,

1

n

n∑

i=1

∫

T
f2
i e

η0,iYidt = V (f) + op
(
(V + λJ)(f)

)
,

where fi = f(t, Ui). Similarly,

1

n

n∑

i=1

∫

T
figie

η0,iYidt = V (f, g) + op
({

(V + λJ)(f)(V + λJ)(g)
}1/2)

.
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Proof : We only prove the first statement. The same arguments apply to
the second. Write τ(f) =

∫
U m(u)

∫
T fe

η0 S̃dt. Using the Fourier series
expansion f =

∑
ν fνφν , one has

∣
∣
∣
∣
∣
1

n

n∑

i=1

∫

T
f2
i e

η0,iYidt− V (f)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

ν

∑

μ

fνfμ

{
1

n

n∑

i=1

∫

T
φν,iφμ,ie

η0,iYidt− τ(φνφμ)

}∣∣
∣
∣
∣

≤
{
∑

ν

∑

μ

1

1 + λρν

1

1 + λρμ

×
{
1

n

n∑

i=1

∫

T
φν,iφμ,ie

η0,iYidt− τ(φνφμ)

}2
}1/2

×
{∑

ν

∑

μ

(1 + λρν)(1 + λρμ)f
2
ν f

2
μ

}1/2

= Op

(
n−1/2λ−1/r

)
(V + λJ)(f),

where the Cauchy-Schwartz inequality, Lemma 9.1, and the fact that

E

[{
1

n

n∑

i=1

∫

T
φν,iφμ,ie

η0,iYidt− τ(φνφμ)

}2
]

= O(n−1) (9.31)

are used. To see (9.31), note that

E

[{∫

T
φνφμe

η0Y dt−
∫

U
m(u)

∫

T
φνφμe

η0 S̃dt

}2
]

= E

[{∫

T
φνφμe

η0(Y − S̃)dt

}2
]

+ E

[{∫

T
φνφμe

η0 S̃dt−
∫

U
m(u)

∫

T
φνφμe

η0 S̃dt

}2
]

≤ E

[(∫

T
|φνφμ|eη0 S̃1/2dt

)(∫

T
|φνφμ|eη0 S̃−1/2E

[
(Y − S̃)2

∣
∣U
]
dt

)]

+ E

[{∫

T
φνφμe

η0 S̃dt

}2
]

≤ E

[{∫

T
|φνφμ|eη0 S̃1/2dt

}2
]

+

∫

U
m(u)

∫

T
φ2νφ

2
μe

2η0 S̃2dt

≤ 2c3.



338 9. Asymptotic Convergence

This completes the proof. �

Theorem 9.11 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.3.1–9.3.4, as λ→ 0 and nλ2/r →∞,

(V + λJ)(η̂ − η̃) = Op

(
n−1λ−1/r + λp

)
.

Consequently,

(V + λJ)(η̂ − η0) = Op

(
n−1λ−1/r + λp

)
,

SKL(η0, η̂) = Op

(
n−1λ−1/r + λp

)
.

Proof : By the mean value theorem, Condition 9.3.3, and Lemma 9.10,
(9.30) leads to

(c1V + λJ)(η̂ − η̃)
(
1 + op(1)

)

≤
{(
|1− c|V + λJ

)
(η̂ − η̃)

}1/2
Op

({(
|1− c|V + λJ

)
(η̃ − η0)

}1/2)

for some c ∈ [c1, c2]. The theorem follows Theorem 9.9. �

9.3.4 Efficient Approximation

As was noted in §8.1, the minimizer η̂ of (8.1) in H is, in general, not
computable. The minimizer η̂∗ in a space

H∗ = NJ ⊕ span
{
RJ

(
(X̃j , Ũj), ·

)
, δ̃j = 1

}

was computed instead, where
{
(X̃j , Ũj , δ̃j)

}q
j=1

⊆
{
(Xi, Ui, δi)

}n
i=1

is a

random subset. We now establish the convergence rates for η̂∗.
For h ∈ H �H∗, one has δ̃jh(X̃j , Ũj) = δ̃jJ

(
RJ

(
(X̃j , Ũj), ·

)
, h
)
= 0, so

∑q
j=1

∫
T h

2
jdÑj(t) =

∑q
j=1 δ̃jh

2(X̃j , Ũj) = 0, where Ñj(t) = I[X̃j≤t,δ̃j=1]

and hj(t) = h(t, Ũj).

Lemma 9.12 Under Conditions 9.3.1, 9.3.2, and 9.3.4, as λ → 0 and
qλ2/r →∞, V (h) = op

(
λJ(h)

)
, ∀h ∈ H�H∗.

Proof : Define τ(f) =
∫
U m(u)

∫
T fe

η0 S̃dt. From (9.20)–(9.22), Condition
9.3.4, and the proof of (9.31), one has

E

[{∫

T
φνφμdN(t)− τ(φνφμ)

}2
]

= E

[{∫

T
φνφμdM(t)

}2
]

+ E

[{∫

T
φνφμe

η0Y dt− τ(φνφμ)

}2
]

≤ τ(φ2νφ
2
μ) + 2c3 ≤ 3c3.
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By the same arguments used in the proof of Lemma 9.10,

V (h) =

∣
∣
∣
∣
1

q

q∑

j=1

∫

T
h2jdÑj(t)− V (h)

∣
∣
∣
∣ = Op

(
q−1/2λ−1/r

)
(V + λJ)(h).

The lemma follows. �

Theorem 9.13 Let η∗ be the projection of η̂ in H∗. Assume
∑

ν ρ
p
νη

2
ν,0 <

∞ for some p ∈ [1, 2]. Under Conditions 9.3.1–9.3.4, as λ→ 0 and qλ2/r →
∞,

λJ(η̂ − η∗) = Op

(
n−1λ−1/r + λp

)
,

V (η̂ − η∗) = op
(
n−1λ−1/r + λp

)
.

Proof : Setting f = η̂ and g = η̂ − η∗ in (9.26), one has

− 1

n

n∑

i=1

{∫

T
(η̂ − η∗)idNi(t)−

∫

T
(η̂ − η∗)ie

η̂iYidt

}

+ λJ(η̂, η̂ − η∗) = 0.

(9.32)

Some algebra yields

λJ(η̂ − η∗) =
1

n

n∑

i=1

∫

T
(η̂ − η∗)idMi(t)

− 1

n

n∑

i=1

∫

T
(η̂ − η∗)i(e

η̂ − eη0)iYidt; (9.33)

remember that J(η∗, η̂− η∗) = 0. Now, with βν = n−1
∑n

i=1

∫
T φν,idMi(t),

∣
∣
∣
∣
1

n

n∑

i=1

∫

T
(η̂ − η∗)idMi(t)

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

ν

(η̂ν − η∗ν)βν

∣
∣
∣
∣

=

{∑

ν

(1 + λρν)(η̂ν − η∗ν)
2

}1/2{∑

ν

(1 + λρν)
−1β2

ν

}1/2

=
{
(V + λJ)(η̂ − η∗)

}1/2
Op

(
n−1/2λ−1/2r

)
. (9.34)

By the mean value theorem, Condition 9.3.3, and Lemmas 9.10 and 9.12,

∣
∣
∣
∣
1

n

n∑

i=1

∫

T
(η̂ − η∗)i(e

η̂ − eη0)iYidt

∣
∣
∣
∣

= op
({
λJ(η̂ − η∗)(V + λJ)(η̂ − η0)

}1/2)
; (9.35)
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see Problem 9.7. Plugging (9.34) and (9.35) into (9.33) and applying The-
orem 9.11 and Lemma 9.12, one has

λJ(η̂ − η∗) =
{
λJ(η̂ − η∗)

}1/2{
Op

(
n−1/2λ−1/2r

)
+ op

(
λp/2

)}
.

The theorem follows. �
We shall now calculate (V +λJ)(η̂∗−η∗). Setting f = η̂∗ and g = η̂∗−η∗

in (9.26), one has

− 1

n

n∑

i=1

{∫

T
(η̂∗ − η∗)idNi(t)−

∫

T
(η̂∗ − η∗)ie

η̂∗
i Yidt

}

+ λJ(η̂∗, η̂∗ − η∗) = 0. (9.36)

Setting f = η̂ and g = η̂ − η̂∗ in (9.26), one gets

− 1

n

n∑

i=1

{∫

T
(η̂− η̂∗)idNi(t)−

∫

T
(η̂− η̂∗)ieη̂iYidt

}

+λJ(η̂, η̂− η̂∗) = 0.

(9.37)

Adding (9.36), (9.37) and subtracting (9.32), and noting that J(η̂−η∗, η∗) =
J(η̂ − η∗, η̂∗) = 0, some algebra yields

1

n

n∑

i=1

∫

T
(η̂∗ − η∗)i(e

η̂∗
− eη

∗
)iYidt+ λJ(η̂∗ − η∗)

=
1

n

n∑

i=1

∫

T
(η̂∗ − η∗)i(e

η̂ − eη
∗
)iYidt (9.38)

see Problem 9.8. Condition 9.3.3 has to be modified to include η∗ and η̂∗

in the convex set B0.

Theorem 9.14 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.3.1–9.3.4, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η∗) = Op

(
n−1λ−1/r + λp

)
.

Consequently,

(V + λJ)(η̂∗ − η0) = Op

(
n−1λ−1/r + λp

)
,

SKL(η0, η̂
∗) = Op

(
n−1λ−1/r + λp

)
.

Proof : By the mean value theorem, Condition 9.3.3, Lemma 9.10, and
Theorem 9.13, (9.38) leads to

(c1V + λJ)(η̂∗ − η∗) ≤
{
(V + λJ)(η̂∗ − η∗)

}1/2
Op

(
n−1/2λ−1/2r + λp/2

)
.

The first part of the theorem follows. The rest is straightforward. �
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9.3.5 Convergence Under Incorrect Model

For η0 �∈ H, one defines the relative Kullback-Leibler distance as

RKL(η0, η) =

∫

U
m(u)

∫

T

{
eη(t,u) − η(t, u)eη0(t,u)

}
S̃(t)dt.

The minimizer η∗0 of RKL(η0, η) in H, when it exists, satisfies

∫

U
m(u)

∫

T
f(t, u)

{
eη

∗
0 (t,u) − eη0(t,u)

}
S̃(t)dt = 0, ∀f ∈ H.

Substituting η∗0 for η0 in §§9.3.1–9.3.4, the analysis remain valid under a
couple of extra conditions.

Condition 9.3.0 fg ∈ H, ∀f, g ∈ H.

Condition 9.3.5
∫
U m(u)

∫
T φ

2
ν

(
eη0 − eη

∗
0

)2
S̃dt < c4 holds uniformly for

some c4 <∞, ∀ν.

Further details are left as an exercise (Problem 9.9).

9.4 Rates for Regression Estimates

We now establish convergence rates for regression estimates, which include
those discussed in Chaps. 3, 5 and §8.6.
A formulation more general than (5.1) is presented, and a quadratic

functional V is defined in the general setting. Rates are established in
terms of V (η̂ − η0). The first step is, once again, the analysis of a linear
approximation η̃.

9.4.1 General Formulation

Denote by l(η; y) a minus log likelihood of η with observation y. We shall
consider the penalized likelihood functional

1

n

n∑

i=1

l
(
η(xi);Yi

)
+
λ

2
J(η). (9.39)

When η is the canonical parameter of an exponential family distribution,
(9.39) reduces to (5.1) on page 176. The general formulation of (9.39) cov-
ers the noncanonical links used in the gamma family, the inverse Gaussian
family, and the negative binomial family of §5.4. It also covers the log like-
lihoods of §8.6, where η(x) was written as μ(u) and y consisted of several
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components. The dispersion parameter of an exponential family distribu-
tion can be absorbed into λ, known or unknown, but the ν parameter in
the negative binomial family of §5.4.6 and in the accelerated life models of
§8.6 is assumed to be known.
Write u(η; y) = dl/dη and w(η; y) = d2l/dη2; it is assumed that

E
[
u
(
η0(x);Y

)]
= 0, E

[
u2
(
η0(x);Y

)]
= σ2E

[
w
(
η0(x);Y

)]
, (9.40)

which hold for all the log likelihoods appearing in §§5.4 and 8.6, where
σ2 is a constant. Let f(x) be the limiting density of xi. Write vη(x) =
E
[
w
(
η(x);Y

)]
and define

V (g) =

∫

X
g2(x)vη0 (x)f(x)dx. (9.41)

The specific forms of V for the families of §§5.4 and 8.6 are easy to work
out; see Problem 9.10. Convergence rates for the minimizer η̂ of (9.39) shall
be established in terms of V (η̂ − η0).

9.4.2 Linear Approximation

The following conditions are needed in our analysis, which are carbon copies
of Conditions 9.2.1 and 9.2.2 but with V as defined in (9.41) in the regres-
sion setting.

Condition 9.4.1 V is completely continuous with respect to J .

Condition 9.4.2 For ν sufficiently large and some β > 0, the eigenvalues
ρν of J with respect to V satisfy ρν > βνr, where r > 1.

Consider the quadratic functional

1

n

n∑

i=1

u
(
η0(xi);Yi

)
η(xi) +

1

2
V (η − η0) +

λ

2
J(η). (9.42)

Plugging the Fourier series expansions η =
∑

ν ηνφν and η0 =
∑

ν ην,0φν
into (9.42), it is easy to show that the minimizer η̃ of (9.42) has Fourier
coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

which are linear in βν = −n−1
∑n

i=1 u
(
η0(xi);Yi

)
φν(xi); see Problem 9.11.

Note that E[βν ] = 0 and E
[
β2
ν

]
= σ2/n. The following theorem can be

easily proved parallel to Theorem 9.2.

Theorem 9.15 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.4.1 and 9.4.2, as n→∞ and λ→ 0,

(V + λJ)(η̃ − η0) = Op

(
n−1λ−1/r + λp

)
.
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9.4.3 Approximation Error and Main Result

We now turn to the approximation error η̂ − η̃. Define

Ag,h(α) =
1

n

n∑

i=1

l
(
(g + αh)(xi);Yi

)
+
λ

2
J(g + αh),

Bg,h(α) =
1

n

n∑

i=1

u
(
η0(xi);Yi

)
(g + αh)(xi)

+
1

2
V (g + αh− η0) +

λ

2
J(g + αh).

It can be easily shown that

Ȧg,h(0) =
1

n

n∑

i=1

u
(
g(xi);Yi

)
h(xi) + λJ(g, h), (9.43)

Ḃg,h(0) =
1

n

n∑

i=1

u
(
η0(xi);Yi

)
h(xi) + V (g − η0, h) + λJ(g, h). (9.44)

Setting g = η̂ and h = η̂ − η̃ in (9.43), one has

1

n

n∑

i=1

u
(
η̂(xi);Yi

)
(η̂ − η̃)(xi) + λJ(η̂, η̂ − η̃) = 0, (9.45)

and setting g = η̃ and h = η̂ − η̃ in (9.44), one gets

1

n

n∑

i=1

u
(
η0(xi);Yi

)
(η̂− η̃)(xi)+V (η̃− η0, η̂− η̃)+λJ(η̃, η̂− η̃) = 0. (9.46)

Subtracting (9.46) from (9.45), some algebra yields

1

n

n∑

i=1

{
u
(
η̂(xi);Yi

)
− u
(
η̃(xi);Yi

)}
(η̂ − η̃)(xi) + λJ(η̂ − η̃)

= V (η̃ − η0, η̂ − η̃)− 1

n

n∑

i=1

{
u
(
η̃(xi);Yi

)
− u
(
η0(xi);Yi

)}
(η̂ − η̃)(xi).

(9.47)

By the mean value theorem,

u
(
η̂(xi);Yi

)
− u
(
η̃(xi);Yi

)
= w

(
η1(xi);Yi

)
(η̂ − η̃)(xi),

u
(
η̃(xi);Yi

)
− u
(
η0(xi);Yi

)
= w

(
η2(xi);Yi

)
(η̃ − η0)(xi),

(9.48)

where η1 is a convex combination of η̂ and η̃, and η2 is that of η̃ and η0.
To proceed, one needs the following conditions in addition to Condi-

tions 9.4.1 and 9.4.2.
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Condition 9.4.3 For η in a convex set B0 around η0 containing η̂ and
η̃, c1w

(
η0(x);Y

)
≤ w

(
η(x);Y

)
≤ c2w

(
η0(x);Y

)
holds uniformly for some

0 < c1 < c2 <∞, ∀x ∈ X , ∀Y .

Condition 9.4.4 Var
[
φν(X)φμ(X)w

(
η0(X), Y

)]
≤ c3 for some c3 < ∞,

∀ν, μ.

To understand the practical meanings of these conditions, one needs to work
out their specific forms for the families of §§5.4 and 8.6 (Problem 9.12).
Roughly speaking, Condition 9.4.3 concerns the equivalence of the infor-
mation in B0 and Condition 9.4.4 asks for a uniform bound for the fourth
moments of φν(X).

Lemma 9.16 Under Conditions 9.4.1, 9.4.2, and 9.4.4, as λ → 0 and
nλ2/r →∞,

1

n

n∑

i=1

g(xi)h(xi)w
(
η0(xi);Yi

)

= V (g, h) + op
({

(V + λJ)(g)(V + λJ)(h)
}1/2)

.

Proof : Write τ(g) =
∫
X g(x)vη0 (x)f(x)dx. Under Condition 9.4.4,

1

n

n∑

i=1

φν(xi)φμ(xi)w
(
η0(xi);Yi

)
− τ(φνφμ) ≤

c3
n
.

Write g =
∑

ν gνφν and h =
∑

ν hνφν . Similar to the proofs of Lemmas 9.5
and 9.10, as nλ2/r →∞,
∣
∣
∣
∣
1

n

n∑

i=1

g(xi)h(xi)w
(
η0(xi);Yi

)
− V (g, h)

∣
∣
∣
∣

=

∣
∣
∣
∣
∑

ν

∑

μ

gνhμ

{
1

n

n∑

i=1

φν(xi)φμ(xi)w
(
η0(xi);Yi

)
− τ(φνφμ)

}∣
∣
∣
∣

≤
{
∑

ν

∑

μ

1

1 + λρν

1

1 + λρμ

×
{
1

n

n∑

i=1

φν(xi)φμ(xi)w
(
η0(xi);Yi

)
− τ(φνφμ)

}2
}1/2

×
{∑

ν

∑

μ

(1 + λρν)(1 + λρμ)g
2
νh

2
μ

}1/2

=
{
(V + λJ)(g)(V + λJ)(h)

}1/2
Op

(
n−1/2λ−1/r

)

= op
({

(V + λJ)(g)(V + λJ)(h)
}1/2)

,
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where the Cauchy-Schwartz inequality and Lemma 9.1 are used. �

Theorem 9.17 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.4.1–9.4.4, as λ→ 0 and nλ2/r →∞,

(V + λJ)(η̂ − η̃) = Op

(
n−1λ−1/r + λp

)
.

Consequently,

(V + λJ)(η̂ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof : Substituting (9.48) into (9.47), and applying Condition 9.4.3 and
Lemma 9.16, one has

(c1V + λJ)(η̂ − η̃)
(
1 + op(1)

)

≤
{(
|1− c|V + λJ

)
(η̂ − η̃)

}1/2
Op

({(
|1− c|V + λJ

)
(η̃ − η0)

}1/2)
,

for some c ∈ [c1, c2]. The theorem follows Theorem 9.15. �

9.4.4 Efficient Approximation

While the minimizer η̂ of (9.39) in H is always computable, the computa-
tion is in general of order O(n3). For more scalable computation, one may
consider the minimizer η̂∗ in a space

H∗ = NJ ⊕ span
{
RJ (zj , ·), j = 1, . . . , q

}
,

where {zj} is a random subset of {xi}. We now establish the convergence
rates for η̂∗.

Lemma 9.18 Under Conditions 9.4.1, 9.4.2, and 9.4.4, as λ → 0 and
qλ2/r →∞, V (h) = op

(
λJ(h)

)
, ∀h ∈ H�H∗.

Proof : For h ∈ H � H∗, h(zj) = J
(
RJ (zj , ·), h

)
= 0. Denote by Ỹj the

response associated with zj. Similar to the proof of Lemma 9.16,

V (h) =

∣
∣
∣
∣V (h)− 1

q

q∑

j=1

h2(zj)w
(
η0(zj); Ỹj

)
∣
∣
∣
∣ = Op

(
q−1/2λ−1/r

)
(V + λJ)(h).

The lemma follows. �
Let η∗ be the projection of η̂ in H∗; one also needs to include η∗ and η̂∗

in the convex set B0 in Condition 9.4.3. Note that η̂ − η∗ ∈ H � H∗, so
J(η∗, η̂ − η∗) = 0. Setting g = η̂ and h = η̂ − η∗ in (9.43), one has

1

n

n∑

i=1

u
(
η̂(xi);Yi

)
(η̂ − η∗)(xi) + λJ(η̂, η̂ − η∗) = 0. (9.49)
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By the mean value theorem and Condition 9.4.3, (9.49) leads to

λJ(η̂ − η∗) = − 1

n

n∑

i=1

{
u
(
η̂(xi);Yi

)
− u
(
η0(xi);Yi

)}
(η̂ − η∗)(xi)

− 1

n

n∑

i=1

u
(
η0(xi);Yi

)
(η̂ − η∗)(xi)

= − c

n

n∑

i=1

w
(
η0(xi);Yi

)
(η̂ − η0)(xi)(η̂ − η∗)(xi)

− 1

n

n∑

i=1

u
(
η0(xi);Yi

)
(η̂ − η∗)(xi) (9.50)

for some constant c; remember that J(η∗, η̂− η∗) = 0. By Lemma 9.16, the
first term in (9.50) is of the order

∣
∣
∣
∣
c

n

n∑

i=1

w
(
η0(xi);Yi

)
(η̂ − η0)(xi)(η̂ − η∗)(xi)

∣
∣
∣
∣

=
{
(V + λJ)(η̂ − η0)(V + λJ)(η̂ − η∗)

}1/2
Op(1). (9.51)

For the second term, one has

∣
∣
∣
∣
1

n

n∑

i=1

u
(
η0(xi);Yi

)
(η̂ − η∗)(xi)

∣
∣
∣
∣

=

∣
∣
∣
∣
∑

ν

(η̂ − η∗)ν
{ 1
n

n∑

i=1

u(η0(xi);Yi)φν (xi)
}∣∣
∣
∣

≤
{∑

ν

(η̂ − η∗)2ν(1 + λρν)

}1/2{∑

ν

β2
ν

1 + λρν

}1/2

=
{
(V + λJ)(η̂ − η∗)

}1/2
Op

(
n−1/2λ−1/2r

)
, (9.52)

where η̂−η∗ =
∑

ν(η̂−η∗)νφν and E
[
β2
ν

]
= σ2/n. Combining (9.50)–(9.52)

and applying Theorem 9.17 and Lemma 9.18, trivial manipulation yields
the following theorem.

Theorem 9.19 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.4.1–9.4.4, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂ − η∗) = Op

(
n−1λ−1/r + λp

)
.

We now turn to η̂∗− η∗. Setting g = η̂ and h = η̂− η̂∗ in (9.43), one has

1

n

n∑

i=1

u
(
η̂(xi);Yi

)
(η̂ − η̂∗)(xi) + λJ(η̂, η̂ − η̂∗) = 0. (9.53)
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Setting g = η̂∗ and h = η̂∗ − η∗ in (9.43) leads to

1

n

n∑

i=1

u
(
η̂∗(xi);Yi

)
(η̂∗ − η∗)(xi) + λJ(η̂∗, η̂∗ − η∗) = 0. (9.54)

Adding (9.53), (9.54) and subtracting (9.49), some algebra yields

1

n

n∑

i=1

{
u
(
η̂∗(xi);Yi

)
− u
(
η∗(xi);Yi

)}
(η̂∗ − η∗)(xi) + λJ(η̂∗ − η∗)

=
1

n

n∑

i=1

{
u
(
η̂(xi);Yi

)
− u
(
η∗(xi);Yi

)}
(η̂∗ − η∗)(xi); (9.55)

note that J(η̂ − η∗, η∗ − η̂∗) = 0. By the mean value theorem, Condi-
tion 9.4.3, and Lemma 9.16, the first term on the left-hand side of (9.55)
is equal to

cV (η̂∗ − η∗) + op
(
λJ(η̂∗ − η∗)

)

for some constant c ≥ c1 > 0. Similarly, the right-hand side is of the order

{
(V + λJ)(η̂∗ − η∗)(V + λJ)(η̂ − η∗)

}1/2(
1 + op(1)

)
.

Combining these with Theorems 9.17 and 9.19, one obtains the following
theorem.

Theorem 9.20 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 9.4.1–9.4.4, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η∗) = Op

(
n−1λ−1/r + λp

)
.

Consequently,

(V + λJ)(η̂∗ − η̂) = Op

(
n−1λ−1/r + λp

)
,

(V + λJ)(η̂∗ − η0) = Op

(
n−1λ−1/r + λp

)
.

9.4.5 Convergence Under Incorrect Model

For η0 �∈ H, one may define the relative Kullback-Leibler distance as

RKL(η0, η) =

∫

X
E
[
l
(
η(x);Y

)]
f(x)dx,

where the expectation is taken under η0. The minimizer η∗0 of RKL(η0, η)
in H, when it exists, satisfies

∫

X
g(x)E

[
u
(
η∗0(x);Y

)]
f(x)dx = 0, ∀g ∈ H.
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Substituting η∗0 for η0 in (9.42) but not in the definition of V , Theorem 9.15
may be proved under some extra condition that assures uniformly bounded
E
[
β2
ν

]
. For Theorem 9.17 to hold, further conditions are also needed to

ensure the uniform boundedness of

E
[{
φν(X)φμ(X)w

(
η∗0(X);Y

)
− τ(φνφμ)

}2]
;

details are tedious. It would be easier to work with specific families than
with the general setting; see Problem 9.13.

9.5 Bibliographic Notes

Section 9.1

An general theory of eigenvalue analysis can be found in Weinberger (1974).
Results on eigenvalues related to smoothing splines can be found in, e.g.,
Cox (1984, 1988) and Utreras (1981, 1983, 1988), among others. Example
9.2 is taken from Gu (1996).

Section 9.2

An asymptotic theory was developed by Silverman (1982) for the minimizer
of (7.12), which laid the groundwork for later analysis. Cox and O’Sullivan
(1990) developed a general asymptotic theory for penalized likelihood esti-
mates, of which the estimate of Silverman (1982) was listed as an example.
The materials of §§9.2.1–9.2.3 represent a refinement of the analysis found
in Gu and Qiu (1993, §§5 and 6), where the efficient approximation was
first proposed and studied. The analysis of §9.2.4 was noted by Gu (1998b).
The adaptations of §§9.2.5–9.2.7 are found in Gu (1992d, 1995a, 1995b).

Section 9.3

The materials of this section are a refined version of the analysis found in
Gu (1996). For U a singleton, the analyses of Antoniadis (1989) and Cox
and O’Sullivan (1990) apply, but not to the efficient approximation.

Section 9.4

The analysis in the general setting as presented is adapted from that of Gu
and Qiu (1994), where η was taken as the canonical parameter of an expo-
nential family distribution, as in §5.1. The analysis of Cox and O’Sullivan
(1990) also applies in the setting of §5.1. The efficient approximation is
taken from Gu and Kim (2002).
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Convergence rates for penalized least squares estimates have been studied
extensively in the literature. For results on multidimensional domains, see
Cox (1984), Utreras (1988), Chen (1991), and Lin (2000).

9.6 Problems

Section 9.2

9.1 Assume
∑

ν ν
prη2ν,0 < ∞ for some p > 1. Show that the rates in

Theorem 9.2 can be improved to Op

(
n−1λ−1/r + λp

)
, with p up to 2.

9.2 Verify (9.4) and (9.5).

9.3 In the setting of §9.2.5, state and prove the counterparts of all the
lemmas and theorems appearing in §§9.2.1–9.2.3.

9.4 In the setting of §9.2.6, state and prove the counterparts of all the
lemmas and theorems appearing in §§9.2.1–9.2.3.

9.5 In the setting of §9.2.7, state and prove the counterparts of all the
lemmas and theorems appearing in §§9.2.1–9.2.3.

Section 9.3

9.6 Show that the minimizer η̃ of (9.25) has Fourier coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

where

βν =
1

n

n∑

i=1

∫

T
φν,idMi(t)

for φν,i(t) = φν(t, Ui) satisfy E[βν ] = 0 and E
[
β2
ν

]
= n−1.

9.7 Prove (9.35).

9.8 Prove (9.38).

9.9 When η0 �∈ H, substituting η∗0 of §9.3.5 for η0 in §§9.3.1–9.3.4, show
that the convergence rates remain valid under Conditions 9.3.0–9.3.5.
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Section 9.4

9.10 Specify the definition V (g) =
∫
X g

2(x)vη0 (x)f(x)dx for the families
of §§5.4 and 8.6.

9.11 Show that the minimizer η̃ of (9.42) has Fourier coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

where

βν = − 1

n

n∑

i=1

u
(
η0(xi);Yi

)
φν(xi)

satisfy E[βν ] = 0 and E
[
β2
ν

]
= σ2/n.

9.12 Specify Conditions 9.4.3 and 9.4.4 for the families of §§5.4 and 8.6.

9.13 For the families of §§5.4 and 8.6, specify the extra conditions needed
to extend Theorems 9.15 and 9.17 to the case η0 �∈ H.



10
Penalized Pseudo Likelihood

The density estimation of (7.1) is infeasible on high-dimensional X due
to the prohibitive cost of

∫
X e

η(x) via multivariate numerical integration.
As an alternative, Jeon and Lin (2006) proposed a certain penalized pseudo
likelihood, replacing

∫
X e

η(x) by an integral of the form
∫
X η(x)ρ(x) for

some ρ(x), which is computable as sums of products of univariate integrals.
The conditional density estimation of (7.30) with a continuous Y can

be crippled computationally by repeated numerical integrations, so can the
hazard estimation of (8.1) with continuous covariates Ui. Pseudo likelihoods
can also be devised in these settings to avoid repeated numerical integra-
tions, gaining numerical efficiency at the cost of performance degradation.
Parallel developments are presented in the settings of density estimation

(§10.1), conditional density estimation (§10.3), and hazard estimation
(§10.4). For the approach to be practically viable, one needs smoothing
parameter selection methods that are also void of the offending numerical
ingredients. Likewise, the Kullback-Leibler projection is to be replaced by
certain square error projections in the respective settings. Open-source soft-
ware is illustrated using simulated and real-data examples, and empirical
comparisons are made against the respective penalized likelihood methods
in terms of numerical efficiency and statistical performance.
Under the technical framework developed in Chap. 9, one can also

calculate the asymptotic convergence rates for the estimates obtained via
penalized pseudo likelihood (§§10.2, 10.3.6, and 10.5).

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7 10,
© Springer Science+Business Media New York 2013
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10.1 Density Estimation on Product Domains

For the computation of (7.1), integrals of the form
∫
X h(x)e

η(x) have to be
performed over and over while η(x) is being updated iteratively, as seen in
(7.5)–(7.7). Numerical integration is costly on high dimensional domains,
which limits the practical applicability of the method. In an effort to relieve
the numerical burden associated with multidimensional integrations, Jeon
and Lin (2006) proposed to calculate the minimizer ηλ of

1

n

n∑

i=1

e−η(Xi) +

∫

X
η(x)ρ(x) +

λ

2
J(η) (10.1)

for some known density ρ(x) on X , and the resulting density estimate is of
the form f(x) ∝ eηλ(x)ρ(x).
An informal analysis reveals how (10.1) works, and the existence and

the computation of the minimizer of (10.1) are similar to that of (7.1).
A cross-validation scheme is devised for smoothing parameter selection,
and a certain square error projection provides an alternative to Kullback-
Leibler projection in the setting; the key here is to avoid integrals of the
form

∫
X h(x)e

η(x). Empirical performances are assessed and software tools
are illustrated using simulated and real-data examples.
The asymptotic convergence rates of the minimizers of (10.1) are to be

found in §10.2.

10.1.1 Pseudo and Genuine Likelihoods

To see how (10.1) works, let n → ∞ and λ → 0 in (10.1) and consider
the limiting convex functional P (η) =

∫
X
{
e−η(x)f(x) + η(x)ρ(x)

}
. Write

Aη̃,h(α) = P (η̃ + αh), where η̃ minimizes P (η) and α is a scalar. One has

Ȧη̃,h(0) =
∫
X
{
ρ(x)− e−η̃(x)f(x)

}
h(x) = 0, ∀h,

so f(x) = eη̃(x)ρ(x). The quadratic approximation of P (η) at η̃ is thus

P (η) = Aη̃,η−η̃(1) ≈ Aη̃,η−η̃(0) + Ȧη̃,η−η̃(0) +
1
2 Äη̃,η−η̃(0)

= P (η̃) + 1
2

∫
X
(
η(x) − η̃(x)

)2
ρ(x)

Parallel analysis can be performed on the limiting functional of (7.1),
G(η) = −

∫
X η(x)f(x) + log

∫
X e

η(x), with Bη̃,h(α) = G(η̃ + αh),

Ḃη̃,h(0) =
∫
X
{( ∫

X e
η̃(x)
)−1

eη̃(x) − f(x)
}
h(x) = 0, ∀h,

and

G(η) ≈ G(η̃) + 1
2

[ ∫
X
(
η(x) − η̃(x)

)2
f(x)−

{ ∫
X
(
η(x)− η̃(x)

)
f(x)

}2]
;

see Problem 10.1. The contrast between the pseudo likelihood and the
genuine likelihood can be perceived via P (η) and G(η).
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10.1.2 Preliminaries

Write L(f) = n−1
∑n

i=1 e
−f(Xi)+

∫
X f(x)ρ(x). It is easy to verify that L(f)

is continuous, convex, and Fréchet differentiable. Let {φν}mν=1 be a basis of
NJ =

{
f : J(f) = 0

}
and S be an n ×m matrix with the (i, ν)th entry

φν(Xi). If S is of full column rank, then L(f) is strictly convex in NJ , and
L(f) + λJ(f) is strictly convex in H. See Problem 10.2. By Theorem 2.9,
the minimizer of (10.1) uniquely exists when S is of full column rank, which
we will assume.
Suppose J(f) annihilates constant and consider a tensor sum decompo-

sition H = {1} ⊕ G. Writing η = d+ g with g ∈ G, (10.1) becomes

1

n

n∑

i=1

e−g(Xi)−d +

∫

X

{
g(x) + d

}
ρ(x) +

λ

2
J(g). (10.2)

Fixing g(x), noting that
∫
X ρ(x) = 1, the d that minimizes (10.2) is given

by ed = n−1
∑n

i=1 e
−g(Xi); the minimizer of (10.1) is seen to be “normal-

ized” to satisfy n−1
∑n

i=1 e
−η(Xi) = 1. Plugging this back into (10.2) and

dropping terms not involving g(x), one has a “profile” functional

log

{
1

n

n∑

i=1

e−g(Xi)

}

+

∫

X
g(x)ρ(x)dx +

λ

2
J(g). (10.3)

Without loss of inferential efficiency, one may minimize (10.1) in a space

H∗ = NJ ⊕ span
{
RJ (Zj , ·), j = 1, . . . , q

}
, (10.4)

where {Zj} is a random subset of {Xi}; see §10.2.3. One has an expression,

g(x) =
∑

ν

dνφν(x) +
∑

j

cjRJ (Zj , x) = φ
Td+ ξT c, (10.5)

where {φν} is a basis of NJ � {1} and ξj(x) = RJ(Zj , x). Plugging (10.5)
into (10.3), one has

Aλ(c,d) = log

{
1

n

n∑

i=1

e−φT
i d−ξT

i c

}

+ bT
φd+ bT

ξ c+
λ

2
cTQc, (10.6)

where φi = φ(Xi), ξi = ξ(Xi), bφ =
∫
X φ(x)ρ(x), bξ =

∫
X ξ(x)ρ(x), and

Q is q × q with the (j, k)th entry J(ξj , ξk) = RJ (Zj , Zk).

For X =
∏

γ Xγ a product domain and RJ (x, y) =
∑

β θβRβ(x, y), φν(x)
and Rβ(Zj , x) are products of functions on the marginal domains, thus
one may set ρ(x) =

∏
γ ργ(x〈γ〉) and compute the integrals bφ and bξ

as (sums of) products of univariate integrals; with such a ρ(x), conditional
independence implications of the ANOVA structures in η(x) also remain in-
tact. Among good choices of ργ(x〈γ〉) are density estimates on the marginal
domains, parametric or nonparametric.
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Taking derivatives of Aλ(c,d) in (10.6) at g̃ = φT d̃+ξT c̃ ∈ H∗, one has

∂Aλ

∂d
= −μg̃(φ) + bφ = −μφ + bφ,

∂Aλ

∂c
= −μg̃(ξ) + bξ + λQc̃ = −μξ + bξ + λQc̃,

∂2Aλ

∂d∂dT
= Vg̃(φ,φ

T ) = Vφ,φ, (10.7)

∂2Aλ

∂c∂cT
= Vg̃(ξ, ξ

T ) + λQ = Vξ,ξ + λQ,

∂2Aλ

∂d∂cT
= Vg̃(φ, ξ

T ) = Vφ,ξ,

where μg(f) =
∑n

i=1 e
−g(Xi)f(Xi)/

∑n
i=1 e

−g(Xi) and Vg(f, h) = μg(fh)−
μg(g)μg(h). The Newton updating equation is thus

(
Vφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ

)(
d

c

)

=

(
μφ − bφ + Vφ,g

μξ − bξ + Vξ,g

)

, (10.8)

where Vφ,g = Vg̃(φ, g̃) and Vξ,g = Vg̃(ξ, g̃); see Problem 10.3.

10.1.3 Smoothing Parameter Selection

To make (10.1) work in practice, one needs an accompanying method for
smoothing parameter selection. Integrals of the form

∫
X h(x)e

η(x) are to be
avoided, so the cross-validation of §7.3 does not work here. As an alternative
to the Kullback-Leibler distance, consider a loss function

L̃(η, ηλ) =

∫

X

{
e(η−ηλ)(x) − (η − ηλ)(x) − 1

}
ρ(x), (10.9)

where eη(x)ρ(x) = f(x) is the true density and ηλ(x) is the minimizer of
(10.1); note that ex − x − 1 has a unique minimum at x = 0. Dropping
terms not involving ηλ, one has the relative loss

∫

X
e−ηλ(x)f(x) +

∫

X
ηλ(x)ρ(x), (10.10)

where the first term may be estimated by a cross-validated sample mean,

n−1
∑n

i=1 e
−η

[i]
λ (Xi), for η

[i]
λ minimizing some delete-one version of (10.1).

Write η = d + g = d + ξT c in (10.1) and denote its minimizer by ηλ =
η̃ = d̃+ g̃ = d̃+ ξT c̃, where in an abuse of notation we merge (φ, ξ), (d, c)
and rewrite φTd + ξT c in (10.5) as ξT c. Fixing d̃, consider the quadratic
approximation of (10.1) at η̃ as a function of c,

1

n

n∑

i=1

wi

{
1−ξTi (c−c̃)+

1

2
(c−c̃)T ξiξ

T
i (c−c̃)

}
+d̃+bT c+

λ

2
cT Q̃c, (10.11)
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where bT = (bT
φ ,b

T
ξ ), Q̃ = diag(O,Q), and

wi = e−η̃(Xi) = e−d̃−g̃(Xi) = ne−g̃(Xi)/
∑n

l=1 e
−g̃(Xl).

The solution of (10.11) is c̃, with an expression c̃ = H−1d, where H =
n−1

∑n
i=1 wiξiξ

T
i + λQ̃ and d = n−1

∑n
i=1 wi(1 + g̃i)ξi − b for g̃i = ξ

T
i c̃ =

g̃(Xi). Solving a delete-one version of (10.11),

1

n

∑

j �=i

wj

{
1− ξTj (c− c̃) +

1

2
(c − c̃)T ξjξ

T
j (c− c̃)

}
+ d̃+ bT c+

λ

2
cTQc,

one has c̃[i] =
(
H − n−1wiξiξ

T
i

)−1(
d − n−1wi(1 + g̃i)ξi

)
. One may use

d̃+ g̃
[i]
i = d̃+ ξTi c̃

[i] as η
[i]
λ (Xi). Since

(
H − n−1wiξiξ

T
i

)−1
= H−1 +

n−1wiH
−1ξiξ

T
i H

−1

1− n−1wiξ
T
i H

−1ξi
,

some algebra yields g̃
[i]
i = g̃i − ai/(1− ai), where ai = n−1wiξ

T
i H

−1ξi; see
Problem 10.4. A cross-validation estimate of (10.10) is thus

V (λ) =
1

n

n∑

i=1

e−ηλ(Xi) +

∫

X
ηλ(x)ρ(x) + α

1

n

n∑

i=1

e−ηλ(Xi)
(
eai/(1−ai) − 1

)

(10.12)
for α = 1, which is the pseudo likelihood plus an extra term.
As outlined in §3.5.3, the minimization of cross-validation scores typically

involves quasi-Newton iteration using starting values from Algorithm 3.3
on page 84. For V (λ) in (10.12) to deliver adequate performances, however,
one must stop at the starting values and forgo the quasi-Newton iteration.
As a univariate function of λ for fixed θβ ’s, V (λ) in (10.12) follows (10.10)
reasonably well, but as a multivariate function of θβ’s, it often loses track
of its target, yielding poor performances or even outright disasters.

Empirical Performance

Simulations were conducted to explore the empirical performance of cross-
validation. On [0, 1]3, samples of size n = 300 were taken from the test
density f3(x) given in (7.24) on page 246. Note that (X1⊥X2)|X3 here, so
the correct model has log density of the form

η = η∅ + η1 + η2 + η3 + η1,3 + η2,3.

Using tensor product cubic splines under the correct model specification
and setting q = 100 in (10.4), three estimates were calculate for each
replicate, two with the smoothing parameters λv “minimizing” the cross-
validation score (10.12) with α = 1, 1.4, respectively, and the other with λo
minimizing the symmetrized Kullback-Leibler distance
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FIGURE 10.1. Effectiveness of cross-validation for density estimation. Left : Rel-
ative efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner boxes).
Center : L(λv) with α = 1 versus L(λv) with α = 1.4 on [0, 1]3. Right : L(λv) with
α = 1 versus L(λv) with α = 1.4 on [0, 1]5.

L(λ) =

∫

X
(η − ηλ)(x)f(x)dx +

∫

X
(ηλ − η)(x)fλ(x)dx,

where fλ ∝ eηλ(x)ρ(x) is the estimated density; despite the use of L̃(η, ηλ)
in (10.9) for the derivation of V (λ), we still use the standard symmetrized
Kullback-Leibler distance to assess the performance. As noted above, only
two passes of fixed-θ minimization were performed to locate λv through
Algorithm 3.3, but λo did minimize L(λ) as a multivariate function. The
results from one hundred replicates are summarized in Fig. 10.1, with the
relative efficacy L(λo)/L(λv) shown in the left half of the left frame and
the comparison of α = 1, 1.4 in V (λ) shown in the center frame; α=1.4 is
prefered to α=1.
On [0, 1]5, consider (X2, X3, X4)

T ∼ N (μ,Σ) with μ = (0.5)1 and

Σ−1 =
(

62 −15 0
−15 62 −30
0 −30 62

)
, X1 = Y1− 0.4X2− 0.1, and X5 = Y2 +0.3X4− 0.1,

then truncate to X = [0, 1]5, where Y1, Y2 ∼ f1(y) the normal mixture
given in (7.23), independent of (X2, X3, X4)

T and of each other. Note that
(Xi⊥Xj)|(the rest) for (i, j) = (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), and
the correct model has log density of the form

η = η∅ + η1 + η2 + η3 + η4 + η5 + η1,2 + η2,3 + η3,4 + η4,5.

Sample of size n = 600 were generated and estimates were calculated with
q = 100. The results from one hundred replicates are shown in Fig. 10.1,
with the relative efficacy in the right half of the left frame and the com-
parison of α = 1, 1.4 in the right frame.

Comparison Against Penalized Likelihood

For each of the replicates used in Fig. 10.1, the two cross-validated estimates
via (10.1) were recalculated using q = 10n2/9 in (10.4), along with the
estimate through (7.1) using the same ξj(x) = RJ (Zj , x) and with the
default α = 1.4 in V (λ) of (7.21) on page 245; the quasi-Newton step was
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FIGURE 10.2. Comparison against penalized likelihood. Left : L0 via (7.1) over
L(λv) via (10.1), with α = 1 (wider boxes) and α = 1.4 (thinner boxes). Center :
L(λv) with α = 1 versus L(λv) with α = 1.4 on [0, 1]3. Right : L(λv) with α = 1
versus L(λv) with α = 1.4 on [0, 1]5.

also skipped for the estimates via (7.1) to put things on equal footing.
The results are shown in Fig. 10.2, where L0 are the performances achieved
by the estimates via (7.1), and L(λv) are the performances achieved by the
estimates via (10.1), the same as in Fig. 10.1.
For the one hundred replicates on [0, 1]3 with n = 300 and q = 36,

estimates via (10.1) with α = 1.4 took a total of 62.5CPU seconds on a
linux server, the estimates via (7.1) using a 2,527-point quadrature took
296.4CPU seconds, and (7.1) with a 3,679-point quadrature took 405.9CPU
seconds. For the one hundred replicates on [0, 1]5 with n = 600 and q = 42,
the estimates via (10.1) with α = 1.4 took 180.3CPU seconds, the esti-
mates via (7.1) using a 10,063-point quadrature took 1839.7CPU seconds,
and (7.1) with a 17,103-point quadrature took 3,232.8CPU seconds.
The computation of (10.1) are O(nq2), whereas that of (7.1) largely

depends on the quadrature size. As the dimension goes up, adequate quadra-
ture sizes become astronomical, rendering (7.1) numerically infeasible.

10.1.4 Square Error Projection

To compute the Kullback-Leibler projection of §7.4.3, one needs integrals
of the form

∫
X h(x)e

η(x), which is to be avoided here. As an alternative,

one may consider Ṽ (η̂−η) =
∫
X (η̂−η)2(x)ρ(x)dx−

{ ∫
X (η̂−η)(x)ρ(x)dx

}2

for η̂ ∈ H0 ⊕ H1, and calculate the square error projection of η̂ in H0 by
minimizing Ṽ (η̂ − η) over η ∈ H0; Ṽ (η̂ − η) is a proxy of the symmetrized
Kullback-Leibler distance (see §10.2), and it is invariant to the normalizing
constant.
Let η̃ be the square error projection of η̂ in H0 and consider Aη̃,h(α) =

Ṽ
(
η̂ − (η̃ + αh)

)
for h ∈ H0. Since Ȧη̃,h = 0, Ṽ (η̂ − η̃, h) = 0, ∀h ∈ H0.
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FIGURE 10.3. Density estimation on X = [0, 1]3: Fitted conditional distribution
f(x〈1〉|x〈2〉 = 0.5, x〈3〉 = 0.5). Left : Conditional density. Center : Conditional
cumulative distribution function. Right : Quantiles of conditional distribution.
Fit via (10.1) is in solid and fit via (7.1) in faded.

The uniform distribution corresponds to ηu = − log ρ(x), and when ηu ∈
H0, Ṽ (η̂ − η̃, η̃ − ηu) = 0, so Ṽ (η̂ − ηu) = Ṽ (η̂ − η̃) + Ṽ (η̃ − ηu). When the
ratio Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) is small, one may safely cut out H1.
With ρ(x) =

∏
γ ργ(x〈γ〉), the calculations involved are sums of products

of univariate integrals, and ηu ∈ H0 when H0 includes all the main effects.

10.1.5 R Package gss: ssden1 Suite

Density estimation via penalized pseudo likelihood is implemented in the
ssden1 suite. The following sequence generates a sample from f3(x) given
in (7.24) on page 246 and fits a tensor product cubic spline to the log
density, where rtest3 is listed in Example 7.4 on page 251:

set.seed(5732); x <- rtest3(300)

x1 <- x[,1]; x2 <- x[,2]; x3 <- x[,3]; rg <- c(0,1)

domain <- data.frame(x1=rg,x2=rg,x3=rg)

fit <- ssden1(~x1*x2*x3,domain=domain)

Three marginal densities ργ(x〈γ〉), γ = 1, 2, 3 are estimated internally via

(7.1) to form ρ(x) =
∏3

γ=1 ργ(x〈γ〉). The square error projection suggests
the elimination of the terms x1:x2 and x1:x2:x3, and one may refit with-
out these terms; only interactions need to be listed in project, as all main
effects are automatically included internally:

project(fit,c("x1:x3","x2:x3"))$ratio

# 0.02169527

fit <- ssden1(~(x1+x2)*x3,domain=domain)

The utility functions dssden, cdssden, cpssden, and cqssden are shared
by ssden and ssden1, though the results from dssden are unnormalized for
ssden1 fits. The conditional distribution f(x〈1〉|x〈2〉 = .5, x〈3〉 = .5) based
on the ssden1 fit is shown in Fig. 10.3 in solid lines, with that based on
the ssden fit seen in Fig. 7.4 superimposed in faded lines.
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With all interactions included, a ssden fit took 22.29CPU seconds on
a linux laptop and a ssden1 fit took 0.63CPU seconds. With only x1:x3

and x2:x3 included, a ssden fit took 8.67CPU seconds and a ssden1 fit
took 0.5CPU seconds.

10.1.6 Case Study: Transcription Factor Association

Gene expression is largely regulated by transcription mechanisms, in which
transcription factors bind to DNA segments in the promoter regions of
the target genes to turn on or shut off gene expression. Some transcription
factor association strength scores, normalized to be between 0 and 5.132242,
were compiled by Ouyang, Zhou, and Wong (2009) for 12 transcription
factors and 18,936 genes, with a higher score indicating the proximity of
the gene to the binding sites of the transcription factor along the genome.
The data are available at

http://www.pnas.org/content/suppl/2009/12/04

/0904863106.DCSupplemental/SD2.txt

and one may read the data into R as a data frame:

SD2<-read.table("SD2.txt",header=TRUE); SD2<-SD2[,-(1:2)]

with elements E2f1, Mycn, Zfx, Myc, Klf4, Tcfcp2l1, Esrrb, Nanog, Oct4,
Sox2, Stat3, and Smad1, which are the 12 transcription factors.
A log density involving all main effects and two-way interactions was

fitted to SD2:

mn <- apply(SD2,2,min); mx <- apply(SD2,2,max)

domain <- data.frame(rbind(mn,mx)); set.seed(5732)

fit.sd2<-ssden1(~(E2f1+Mycn+Zfx+Myc+Klf4+Tcfcp2l1

+Esrrb+Nanog+Oct4+Sox2+Stat3+Smad1)^2,

domain=domain,data=SD2)

where domain specifies the domain X = [0, 5.132242]12 used in (10.1).
To check how irreplaceable each interaction is, one may try:

lab.sd2 <- fit.sd2$terms$labels[-(1:12)]

r.sd2 <- project(fit.sd2,lab.sd2,drop1=TRUE)$ratio

where lab.sd2 collects the
(
12
2

)
= 66 interaction terms and drop1=TRUE

in the call to project orders 66 “drop-one-term” projections, with r.sd2

containing 66 “drop-one-term” Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) ratios labeled by the
dropped terms; these may be perceived as the “strengths” of the terms.
Projecting into the space with all the main effects plus the top six interac-
tions, one has Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) = 2.92%:

project(fit.sd2,lab.sd2[rev(order(r.sd2))[1:6]])

# 0.0292398
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FIGURE 10.4. Stronger interactions in the SD2 fit. The labels on the edges indi-
cate the “strengths” of the interactions.

A graph illustrating the six terms in lab.sd2[rev(order(r.sd2))[1:6]]

is shown in Fig. 10.4. Apart from the first six terms, the rest of the terms
all have “strengths” no better than 0.21%, thus are individually dispens-
able. The overall “weakness” of the interactions suggests weak correlations
among the variables.
The transcription factors E2f1, Mycn, Zfx, and Myc seem to work in

concert, so do Tcfcp2l1 and Esrrb but to a lesser extent; the rest of the
field appear to act independently.
Due to the huge sample size and the large number of terms, one needs

ample RAM to run the analysis. On a linux server with 32Gb RAM
(though 16 should be sufficient), fit.sd2 took around 25min to obtain,
and project(...,drop1=TRUE) took about 20min to execute.

10.2 Density Estimation: Asymptotic Convergence

The analysis of §9.2 can be adapted to study the asymptotic convergence of
the density estimates via (10.1). Let f0(x) = eη0(x)ρ(x) be the density to be
estimated satisfying

∫
X e

η0(x)ρ(x) = 1 and η̂(x) be the minimizer of (10.1);

in general,
∫
X e

η̂(x)ρ(x) �= 1. Define V (f) =
∫
X f

2(x)ρ(x). Convergence
rates in this section are in terms of V (η − η0).
Consider Ṽ (f) =

∫
X {f(x) −

∫
X f(x)ρ(x)}2ρ(x) < V (f); Ṽ (η − η0) is

invariant to the normalizing constant, and rates in V (η − η0) imply rates
in Ṽ (η − η0). For a density f(x) ∝ eη(x)ρ(x), the symmetrized Kullback-
Leibler distance between f0 and f is seen to be

SKL(η0, η) =

∫

X

{
(η − η0)(x) −

∫

X
(η − η0)(x)f̃ (x)

}2
f̃(x), (10.13)
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where f̃(x) ∝ eη̃(x)ρ(x) for η̃ a convex combination of η and η0; see Problem
10.5. Ṽ (η − η0) can thus be viewed as a proxy of SKL(η0, η).
For comparison, convergence rates of the estimates via (7.1) are in terms

of
∫
X
{
(η − η0)(x)−

∫
Y(η − η0)(x)f0(x)

}2
f0(x), as seen in §9.2.

10.2.1 Linear Approximation

As in §9.2, the following conditions are needed for the analysis.

Condition 10.2.1 V is completely continuous with respect to J .

Condition 10.2.2 For ν sufficiently large and some β > 0, the eigenvalues
ρν of J with respect to V satisfy ρν > βνr, where r > 1.

Consider the quadratic functional

1

n

n∑

i=1

−e−η0(Xi)η(Xi) +

∫

X
η(x)ρ(x) +

1

2
V (η − η0) +

λ

2
J(η). (10.14)

Plugging the Fourier series expansions η =
∑

ν ην φν and η0 =
∑

ν ην,0 φν
into (10.14), its minimizer η̃ has Fourier coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

where βν = n−1
∑n

i=1

{
e−η0(Xi)φν(Xi)−

∫
X φν(x)ρ(x)

}
. It is easy to verify

that E[βν ] = 0 and E[β2
ν ] ≤ n−1

∫
X φ

2
ν(x)e

−η0(x)ρ(x).

Condition 10.2.3 For some c3 <∞, e−η0(x) < c3.

Under Condition 10.2.3, E[β2
ν ] ≤ c3/n, noting that V (φν) = 1.

Theorem 10.1 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.2.1–10.2.3, as n→∞ and λ→ 0,

(V + λJ)(η̃ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof: See the proof of Theorem 9.2. �

10.2.2 Approximation Error and Main Results

We now turn to the approximation error η̂ − η̃. Define

Af,g(α) =
1

n

n∑

i=1

e−(f+αg)(Xi) +

∫

X
(f + αg)(x)ρ(x) +

λ

2
J(f + αg),

Bf,g(α) =
1

n

n∑

i=1

−e−η0(Xi)(f + αg)(Xi) +

∫

X
(f + αg)(x)ρ(x)

+
1

2
V (f + αg − η0) +

λ

2
J(f + αg).
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It is easy to verify that

Ȧf,g(0) =
1

n

n∑

i=1

−e−f(Xi)g(Xi) +

∫

X
g(x)ρ(x) + λJ(f, g), (10.15)

Ḃf,g(0) =
1

n

n∑

i=1

−e−η0(Xi)g(Xi) +

∫

X
g(x)ρ(x) + V (f − η0, g) + λJ(f, g).

(10.16)

Setting f = η̂ and g = η̂ − η̃ in (10.15), one has

1

n

n∑

i=1

−e−η̂(Xi)(η̂− η̃)(Xi)+

∫

X
(η̂− η̃)(x)ρ(x)+λJ(η̂ , η̂− η̃) = 0, (10.17)

and setting f = η̃ and g = η̂ − η̃ in (10.16) yields

1

n

n∑

i=1

−e−η0(Xi)(η̂ − η̃)(Xi) +

∫

X
(η̂ − η̃)(x)ρ(x)

+ V (η̃ − η0, η̂ − η̃) + λJ(η̃, η̂ − η̃) = 0. (10.18)

Subtracting (10.18) from (10.17), one has

λJ(η̂ − η̃)− 1

n

n∑

i=1

{
e−η̂(Xi) − e−η̃(Xi)

}
(η̂ − η̃)(Xi)

=
1

n

n∑

i=1

{
e−η̃(Xi) − e−η0(Xi)

}
(η̂ − η̃)(Ui) + V (η̂ − η̃, η̃ − η0). (10.19)

Condition 10.2.4 For η in a convex set B0 around η0 containing η̂ and
η̃, c1 < eη0(x)−η(x) < c2 holds uniformly for some 0 < c1 < c2 <∞.

Condition 10.2.5
∫
X φ

2
ν(x)φ

2
μ(x)e

−η0(x)ρ(x) < c4 for some c4 <∞, ∀ν, μ.

Under Condition 10.2.4, by the mean value theorem, one has

c1
n

n∑

i=1

e−η0(Xi)(η̂ − η̃)2(Xi) ≤ − 1

n

n∑

i=1

{
e−η̂(Xi) − e−η̃(Xi)

}
(η̂ − η̃)(Xi),

(10.20)
and for some c ∈ (c1, c2),

− c

n

n∑

i=1

e−η0(Xi)(η̂ − η̃)(Xi)(η̃ − η0)(Xi)

=
1

n

n∑

i=1

{
e−η̃(Xi) − e−η0(Xi)

}
(η̂ − η̃)(Xi). (10.21)
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Under Condition 10.2.5, parallel to Lemma 9.16 on page 344, one has

∣
∣
∣
1

n

n∑

i=1

e−η0(Xi)g(Xi)h(Xi)− V (g, h)
∣
∣
∣

= Op

(
n−1/2λ−1/r

){
(V + λJ)(g)(V + λJ)(h)

}1/2
; (10.22)

see Problem 10.6. Substituting (10.20)–(10.22) into (10.19), some manipu-
lations yield, as λ→ 0 and nλ2/r →∞,

(c1V +λJ)(η̂− η̃) ≤
(
|1− c|+ op(1)

){
(V +λJ)(η̂− η̃)(V +λJ)(η̃− η0)

}1/2
,

which, in combination with Theorem 10.1, leads to the following theorem.

Theorem 10.2 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.2.1–10.2.5, as λ→ 0 and nλ2/r →∞,

(V + λJ)(η̂ − η0) = Op(n
−1λ−1/r + λp).

10.2.3 Efficient Approximation

Now consider the minimizer η̂∗ of (10.1) in a space

H∗ = NJ ⊕ span{RJ(Zj , ·), j = 1, . . . , q},
where {Zj} is a random subset of {Xi}.

Lemma 10.3 Under Conditions 10.2.1–10.2.3 and 10.2.5, as λ → 0 and
qλ2/r

→∞, V (h) = op
(
λJ(h)

)
, ∀h ∈ H �H∗.

Proof: For h ∈ H�H∗, h(Zj) = J
(
RJ(Zj , ·), h

)
= 0. Similar to (10.22),

V (h) =

∣
∣
∣
∣V (h)− 1

q

q∑

j=1

e−η0(Zj)h2(Zj)

∣
∣
∣
∣ = Op

(
q−1/2λ−1/r

)
(V + λJ)(h).

The lemma follows. �

Let η∗ be the projection of η̂ in H∗; J(η∗, η̂ − η∗) = 0. The convex set
B0 in Condition 10.2.4 should also contain η̂∗ and η∗. Setting f = η̂ and
g = η̂ − η∗ in (10.15), one has

− 1

n

n∑

i=1

e−η̂(Xi)(η̂ − η∗)(Xi) +

∫

X
(η̂ − η∗)(x)ρ(x) + λJ(η̂, η̂ − η∗) = 0,

which can be rearranged as

λJ(η̂ − η∗) =
1

n

∑

i

{
e−η̂(Xi) − e−η0(Xi)

}
(η̂ − η∗)(Xi)

+
1

n

∑

i

e−η0(Xi)(η̂ − η∗)(Xi)−
∫

X
(η̂ − η∗)(x)ρ(x). (10.23)
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The first term on the right-hand side of (10.23) is
(
c+op(1)

)
V (η0−η̂, η̂−η∗)

for some c by (10.21) and (10.22); parallel to (9.16) on page 328, the second

term is of the order Op(n
−1/2λ−1/2r)

{
(V + λJ)(η̂ − η∗)

}1/2
. Combining

these with Lemma 10.3 and Theorem 10.2, one has the following theorem.

Theorem 10.4 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.2.1–10.2.5, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂ − η∗) = Op(n
−1λ−1/r + λp).

Setting f = η̂ and g = η̂ − η̂∗ in (10.15), one has

− 1

n

n∑

i=1

e−η̂(Xi)(η̂−η̂∗)(Xi)+

∫

X
(η̂−η̂∗)(x)ρ(x)+λJ(η̂−η̂∗, η̂) = 0, (10.24)

and setting f = η̂∗ and g = η̂∗ − η∗ in (10.15) leads to

− 1

n

n∑

i=1

e−η̂∗(Xi)(η̂∗ − η∗)(Xi) +

∫

X
(η̂∗ − η∗)(x)ρ(x)

+ λJ(η̂∗ − η∗, η̂∗) = 0. (10.25)

Adding (10.24), (10.25) and subtracting (10.23), some algebra yields

λJ(η̂∗ − η∗)− 1

n

n∑

i=1

{
e−η̂∗(Xi) − e−η∗(Xi)

}
(η̂∗ − η∗)(Xi)

= − 1

n

n∑

i=1

{
e−η̂(Xi) − e−η∗(Xi)

}
(η̂∗ − η∗)(Xi); (10.26)

noting that J(η̂∗−η∗, η̂−η∗) = 0. By Condition 10.2.4 and (10.22), the left-
hand side of (10.26) is no less than

(
c1+op(1)

)
V (η̂∗−η∗)+λJ(η̂∗−η∗), and

the right-hand side is
(
c+ op(1)

)
V (η̂− η∗, η̂∗− η∗). These, in combination

with Theorems 10.2 and 10.4, lead to the following theorem.

Theorem 10.5 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.2.1–10.2.5, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η0) = Op(n
−1λ−1/r + λp).

10.3 Conditional Density Estimation

As an alternative to (7.30) of §7.7, one may estimate the conditional density
f(y|x) ∝ eη(x,y)ρ(x, y) via the minimization of

1

n

n∑

i=1

{

e−η(Xi,Yi) +

∫

Y
η(Xi, y)ρ(Xi, y)

}

+
λ

2
J(η), (10.27)
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where ρ(x, y) is some known conditional density on the domain X × Y
satisfying

∫
Y ρ(x, y) = 1, ∀x ∈ X . This works similar to (10.1), and the

integral
∫
Y η(Xi, y)ρ(Xi, y) can largely be pre-computed.

With an ANOVA decomposition η = η∅ + ηx + ηy + ηx,y, η∅ + ηx does
not cancel out in (10.27), contrasting (7.30), though it does in the estimate
f(y|x) = eη(x,y)ρ(x, y)/

∫
Y e

η(x,y)ρ(x, y). It is necessary to include η∅ + ηx
in η for (10.27) to work; see §10.3.6.
A good portion of the developments here nearly duplicate those in §10.1,

for which the discussions will be brief; these include the existence and
the computation of the minimizer of (10.27), the cross-validation score for
smoothing parameter selection, and the square error projection. Software
tools are illustrated via simulated and real-data examples, and comparisons
are made against the penalized likelihood estimates through (7.30).
The asymptotic analysis of §10.2 applies to the minimizer of (10.27) with

trivial modifications (§10.3.6).

10.3.1 Preliminaries

One shall minimize (10.27) in a reproducing kernel Hilbert space H on
X × Y with a square (semi) norm J(f). Write

L(f) = n−1
∑n

i=1

{
e−f(Xi,Yi) +

∫
Y f(Xi, y)ρ(Xi, y)

}
.

It is easy to verify that L(f) is continuous, convex, and Fréchet differen-
tiable. Let {φν}mν=1 be a basis of NJ =

{
f : J(f) = 0

}
and S be an n×m

matrix with the (i, ν)th entry φν(Xi, Yi). The minimizer of (10.27) uniquely
exists when S is of full column rank, which we assume.
When J(f) annihilates constant, the minimizer of (10.27) satisfies

1

n

n∑

i=1

e−η(Xi,Yi) =
1

n

n∑

i=1

e−d−g(Xi,Yi) = 1,

where g ∈ G = H� {1} minimizes a “profile” functional parallel to (10.3),

log

{
1

n

n∑

i=1

e−g(Xi,Yi)

}

+
1

n

n∑

i=1

∫

Y
g(Xi, y)ρ(Xi, y) +

λ

2
J(g). (10.28)

Without loss of inferential efficiency, one may minimize (10.27) in a space

H∗ = NJ ⊕ span{RJ(Vj , ·), j = 1, . . . , q}, (10.29)

where {Vj} is a random subset of
{
(Xi, Yi)

}
. One has, for u = (x, y),

g(u) =
∑

ν

dνφν(u) +
∑

j

cjRJ(Vj , u) = φ
Td+ ξT c, (10.30)
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where {φν} is a basis of NJ �{1} and ξj(u) = RJ (Vj , u). Plugging (10.30)
into (10.28), one has

Aλ(c,d) = log

{
1

n

n∑

i=1

e−φT
i d−ξT

i c

}

+ bT
φd+ bT

ξ c+
λ

2
cTQc, (10.31)

where φi = φ(Xi, Yi), ξi = ξ(Xi, Yi), bφ = n−1
∑n

i=1

∫
Y φ(Xi, y)ρ(Xi, y),

bξ = n−1
∑n

i=1

∫
Y ξ(Xi, y)ρ(Xi, y), and Q is q × q with the (j, k)th entry

J(ξj , ξk) = RJ (Vj , Vk); (10.31) appears as a carbon copy of (10.6), and
(10.7), (10.8) hold verbatim but with a modified definition of

μg(f) =
∑n

i=1 e
−g(Xi,Yi)f(Xi, Yi)/

∑n
i=1 e

−g(Xi,Yi).

Note that the integrals bφ, bξ can be computed once for all, which is the
key to the numerical efficiency of (10.27).
The ρ(x, y) function is an important part of (10.27). A simple choice is

to set ρ(x, y) = eη(y)/
∫
Y e

η(y), an estimate of the marginal density on Y.
Alternatively, one may pretend Y ∼ N

(
μ(x), σ2

)
, for Y on [a, b], estimate

μ(x) and σ2 using the techniques of Chap. 3, then sets

ρ(x, y) =
φ
(
(y − μ(x))/σ

)

Φ
(
(b− μ(x))/σ

)
− Φ
(
(a− μ(x))/σ

) , (10.32)

where φ(x) is the standard normal density and Φ(x) is the distribution
function. For Y =

∏
γ [aγ , bγ ], one may use (10.32) on marginal domains

and take their product as ρ(x, y).

10.3.2 Smoothing Parameter Selection

To devise a cross-validation scheme for smoothing parameter selection with
the minimizer ηλ of (10.27), consider a loss function

L̃(η, ηλ) =

∫

X
f(x)

∫

Y

{
e(η−ηλ)(x,y) − (η − ηλ)(x, y)− 1

}
ρ(x, y), (10.33)

where f(y|x) = eη(x,y)ρ(x, y) and f(x) is the limiting density of Xi.
Dropping terms not involving ηλ, one has the relative loss

∫

X
f(x)

∫

Y
e−ηλ(x,y)f(y|x) +

∫

X
f(x)

∫

Y
ηλ(x, y)ρ(x, y). (10.34)

The second term in (10.34) can be substituted by its empirical version
n−1

∑n
i=1

∫
Y ηλ(Xi, y)ρ(Xi, y), and the first term, E

[
e−ηλ(X,Y )

]
, may be

estimated by a cross-validated sample mean, n−1
∑n

i=1 e
η
[i]
λ (Xi,Yi), where
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η
[i]
λ minimizes some delete-one version of (10.27). The derivation leading to
(10.12) then yields a cross-validation estimate of (10.34),

V (λ) =
1

n

n∑

i=1

{

e−ηλ(Xi,Yi) +

∫

Y
ηλ(Xi, y)ρ(Xi, y)

}

+ α
1

n

n∑

i=1

e−ηλ(Xi,Yi)
(
eai/(1−ai) − 1

)
, (10.35)

for α = 1, where ai = n−1wiξ
T
i H

−1ξi as in (10.12) but with the mod-
ified wi = ne−g̃(Xi,Yi)/

∑n
l=1 e

−g̃(Xl,Yl), ξi = ξ(Xi, Yi), and in turn H =

n−1
∑n

i=1 wiξiξ
T
i +λQ̃. Unlike V (λ) in (10.12), however, one does not have

to stop at the starting values when minimizing V (λ) in (10.35).

Empirical Performance

Recall the simulations of §7.7.2 on X = [0, 1] and Y = [0, 1]; the test
distribution is as given in (7.34), f(y|x) ∝ φ

(
(y − μx)/σx

)
I[0<y<1], with

μx = x3−x2+x− 0.2 and three versions of σx: σ1 = 0.3, σ2 = 0.15(1+x),
and σ3 = 0.15(2− x). Samples of size n = 200 were drawn with Xi on the
grid 0.005(0.01)0.995, two each.
Tensor product cubic splines were calculated as minimizers of (10.27)

with two versions of ρ(x, y), ρ1(x, y) a penalized likelihood estimate of
the marginal density f(y) and ρ2(x, y) as specified in (10.32). Estimates
were obtained with the smoothing parameters minimizing the symmetrized
Kullback-Leibler distance

L(λ) =
1

n

n∑

i=1

∫

Y

{

log
f(y|Xi)

fλ(y|Xi)
f(y|Xi) + log

fλ(y|Xi)

f(y|Xi)
fλ(y|Xi)

}

at λo, and minimizing V (λ) of (10.35) at λv with α = 1, 1.4. The same set
{Vj} of size q = 33 ≈ 10(200)2/9 were used in (10.29) for all the estimates
based on the same sample.
One hundred replicates were drawn with each of the three σx and the

simulation results are summarized in Fig. 10.5, parallel to Fig. 7.11 on page
266. Despite the use of L̃(η, ηλ) in (10.33) for the derivation of (10.35),
performance is measured by the same L(λ) used in §7.7.2. It appears that
ρ2(x, y) works much better in the simulation settings and α = 1.4 is gen-
erally preferred to α = 1.

Comparison Against Penalized Likelihood

Penalized likelihood estimates via (7.30) were also calculated for the
replicates, for smoothing parameters minimizing the cross-validation score
in (7.21), duly modified for use with (7.30), with the default α=1.4.



368 10. Penalized Pseudo Likelihood
R

el
at

iv
e 

E
ffi

ca
cy

σ1 σ2 σ3

σ1 σ2 σ3

R
el

at
iv

e 
E

ffi
ca

cy

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

0.00 0.05 0.10 0.15

0.
00

0.
05

0.
10

0.
15

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

L(λv) for α=1
L(

λ v
) f

or
 α

=
1.

4

L(
λ v

) f
or

 α
=

1.
4

L(λv) for α=1

L(λv) for α=1

L(
λ v

) f
or

 α
=

1.
4

L(
λ v

) f
or

 α
=

1.
4

L(λv) for α=1

FIGURE 10.5. Effectiveness of cross-validation for conditional density estimation.
Left : Relative efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner
boxes); σ1 = 0.3, σ2 = 0.15(1 + x), σ3 = 0.15(2 − x). Center : L(λv) with α = 1
versus L(λv) with α = 1.4, for σx = 0.3. Right : L(λv) with α = 1 versus L(λv)
with α = 1.4, for σx = 0.15(1 + x) (solid) and σx = 0.15(2− x) (faded). The top
row corresponds to ρ1(x, y) and the bottom row to ρ2(x, y).
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FIGURE 10.6. Performance comparisons of penalized likelihood of (7.30)
versus penalized pseudo likelihood of (10.27). L0 achieved by (7.30) with
α = 1.4 in (7.21) over L(λv) achieved by (10.27). From left to right :
σx = 0.3, 0.15(1 + x), 0.15(2 − x). Wider boxes correspond to α = 1 in (10.35)
and thinner boxes to α = 1.4. The faded lines mark equal performance.

Performance comparisons of the penalized likelihood of (7.30) versus the
penalized pseudo likelihood of (10.27) are shown in Fig. 10.6. It is a bit
surprising that for the test distribution with σx = 0.15(2−x), (10.27) with
ρ2(x, y) actually outperforms (7.30).
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The one hundred estimates via (7.30) in the center frame of Fig. 10.6
took about 5,400CPU seconds to compute on a linux server, and those
through (10.27) with ρ2(x, y) and α = 1.4 took about 280CPU seconds.

10.3.3 Square Error Projection

The Kullback-Leibler projection of §7.7.3 involves integrals of the form∫
Y h(Xi, y)e

η(Xi,y) as with (7.30), which we strive to avoid here. As an
alternative, one may consider a square error

Ṽ (η̂ − η) =

∫

X
f(x)

∫

Y

{

(η̂ − η)(x, y)−
∫

Y
(η̂ − η)(x, y)ρ(x, y)

}2

ρ(x, y)

for η̂ ∈ H0 ⊕ H1, and calculate the square error projection of η̂ in H0 by
minimizing Ṽ (η̂ − η) over η ∈ H0; Ṽ (η̂ − η) is a proxy of the symmetrized
Kullback-Leibler distance, and is invariant to the normalizing constants.
Let η̃ be the square error projection of η̂ in H0. One has Ṽ (η̂− η̃, h) = 0,

∀h ∈ H0. The uniform conditional density corresponds to ηu=− log ρ(x, y),
and when ηu ∈ H0, Ṽ (η̂ − ηu) = Ṽ (η̂ − η̃) + Ṽ (η̃ − ηu).
While the projection tool is easy to derive, model selection is more

involveds here. The conditional density is of the form f(y|x) ∝ eη(x,y)ρ(x, y),
and ANOVA structures in η(x, y) may not have conditional independence
implications when ρ(x, y) gets in the way. A ρ(x, y) constant along X is less
intruding, but it could perform poorly as seen in the simulations of §10.3.2.

10.3.4 R Package gss: sscden1 Suite

The sscden1 suite in gss implements conditional density estimation via
the minimization of (10.27). The following sequence draws a sample from
(7.34) on page 265 with σx = 0.15(2− x) and calculates a cross-validated
estimate with ρ(x, y) given by (10.32):

rfc3 <- function(x) {

mu <- x^3-x^2+x-.2; sd=.15*(2-x)

y <- (rnorm(length(x))*sd+mu)

ok <- (y>0)&(y<1)

while(m <- sum(!ok)) {

y[!ok] <- (rnorm(m)*sd[!ok]+mu[!ok])

ok <- (y>0)&(y<1)

}

y

}

xx <- ((1:100)-.5)/100; x <- rep(xx,2)

set.seed(5732); y <- rfc3(x)

fit <- sscden1(~x*y,~y,ydomain=data.frame(y=c(0,1)))
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FIGURE 10.7. Conditional density estimation via (10.27) on X = [0, 1] and
Y = [0, 1]. The 5th, 25th, 50th, 75th, and 95th percentiles of the fitted f(y|x)
are in solid lines, those of the test distributions in faded lines, and the data in
circles. Estimates via (7.30) are also shown in dashed lines. Form left to right :
σx = 0.3, 0.15(1 + x), 0.15(2 − x).

Shown in the right frame of Fig. 10.7 are the 5th, 25th, 50th, 75th, and
95th percentiles of the fitted f(y|x), with the data superimposed:

quan <- qsscden(fit,c(.05,.25,.5,.75,.95),

data.frame(x=xx))

plot(x,y,col=3); for (i in 1:5) lines(xx,quan[i,])

Also superimposed are the respective percentiles of the test distribution
(faded) and those of an estimate via (7.30) (dashed); the latter was obtained
using the sscden suite discussed in §7.7.4 and was shown in Fig. 7.12 on
page 267. Parallel results with σx = 0.3 and σx = 0.15(1+ x) are shown in
the left and the center frames of Fig. 10.7, respectively.
The syntax of sscden1 is largely identical to that of sscden, except

that one needs to specify ρ(x, y). In the call above, we used the default
rho=list("xy"), which generates ρ(x, y) internally using (10.32); with
rho=list("y"), an estimate of the marginal density on Y will be generated
internally to use as ρ(x, y).
One may also generate ρ(x, y) externally and pass it into sscden1 via

the argument rho, to be evaluated through

rho$fun(x,y,rho$env,outer.prod)

where rho$env contains constants and the logical flag outer.prod indicates
whether to return a vector of ρ(xi, yi) or the matrix ρ(x,yT ); rho$env
must be a list object at least containing a quadrature on Y in the elements
rho$env$qd.pt and rho$env$qd.wt.
From left to right in Fig. 10.7, the three solid fits using sscden1 took

1.51, 1.40, and 1.63CPU seconds on a linux laptop, in order. The respective
dashed fits using sscden took 21.4, 38.2, and 43.9CPU seconds.
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FIGURE 10.8. Thickness of U.S. Lincoln Pennies. Left : Continuous fits. Right :
Fits with built-in break. The lines are the 5th, 25th, 50th, 75th, and 95th per-
centiles of the fitted f(y|x), with the default sscden1 fits in solid, the sscden1

fits with rho=list("y") in faded, and the sscden fits in dashed. The data, with
the year jittered, are superimposed in circles. The vertical dotted lines mark the
position of the break.

10.3.5 Case Study: Penny Thickness

We now look at a sscden1 fit to the penny thickness data of §7.7.5, shown
in the left frame of Fig. 10.8 in solid lines with the data superimposed:

data(penny); set.seed(5732)

fit <- sscden1(~year*mil,~mil,data=penny,

ydomain=data.frame(mil=c(49,61)))

yy <- 1944+(0:92)/2

quan <- qsscden(fit,c(.05,.25,.5,.75,.95),

data.frame(year=yy))

plot(penny$year+.1*rnorm(90),penny$mil,ylim=c(49,61))

for (i in 1:5) lines(yy,quan[i,])

Also superimposed are a sscden fit in dashed lines and a sscden1 fit
with rho=list("y") in faded lines. Parallel fits with a built-in break at
year=1974.5 are shown in the right frame of Fig. 10.8.
The support of f(y|x) seems to vary greatly with x, and rho=list("y")

barely holds up in the left frame but completely breaks down in the right.
The default sscden1 fits with rho=list("xy") appear to be closer to the
data than the sscden fits.
The solid fits using sscden1 in the left and the right frames of Fig. 10.8

took around 1CPU second each on a linux laptop. The respective dashed
fits using sscden took about 20 and 11CPU seconds.
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10.3.6 Asymptotic Convergence

The theory of §10.2 can be readily modified for the conditional density
estimation via (10.27). Denote by eη0(x,y)ρ(x, y) the conditional density to
be estimated satisfying

∫
Y e

η0(x,y)ρ(x, y) = 1, ∀x ∈ X , and by η̂(x, y) the
minimizer of (10.27). It is clear that the space H must contain the ANOVA
components η∅ and ηx in order for η0 ∈ H.
Define V (g) =

∫
X f(x)

∫
Y g

2(x, y)ρ(x, y), where f(x) is the limiting
density of Xi. Apart from the modified definition of V , little change is
needed in Conditions 10.2.1 and 10.2.2 and in the statements of the theo-
rems. Conditions 10.2.3–10.2.5 shall be trivially modified as follows.

Condition 10.3.3 For some c3 <∞, e−η0(x,y) < c3.

Condition 10.3.4 For η in a convex set B0 around η0 containing η̂, η̃, η̂∗,
and η∗, c1 < eη0(x,y)−η(x,y) < c2 holds uniformly for some 0 < c1 < c2 <∞.

Condition 10.3.5
∫
X f(x)

∫
Y φ

2
ν(x, y)φ

2
μ(x, y)e

−η0(x,y)ρ(x, y) < c4, ∀ν, μ,
for some c4 <∞.

The efficient approximation η̂∗ minimizes (10.27) in a space

H∗ = NJ ⊕ span{RJ(Vj , ·), j = 1, . . . , q},

where {Vj} is a random subset of
{
(Xi, Yi)

}
.

10.4 Hazard Estimation

As an alternative to (8.1), one may estimate a covariate-dependent hazard
eη(t,u) via the minimization of

1

n

n∑

i=1

{

δie
−η(Xi,Ui)ρ(Xi, Ui) +

∫ Xi

Zi

η(t, Ui)ρ(t, Ui)dt

}

+
λ

2
J(η), (10.36)

where ρ(t, u) is a known positive function. This works similar to (10.1), and

the integral n−1
∑n

i=1

∫Xi

Zi
η(t, Ui)ρ(t, Ui)dt can largely be pre-computed.

The existence and the computation of the minimizer of (10.36) is similar
to that of (10.1) and (10.27), and a cross-validation score similar to (10.35)
can be used for smoothing parameter selection. The Bayesian confidence in-
tervals can be adapted, and a square error projection replaces the Kullback-
Leibler projection. Software tools are illustrated via simulated and real-
data examples, and comparisons are made against the penalized likelihood
estimates through (8.1).
Parallel to the analysis of §9.3, asymptotic convergence rates can be

calculated for the minimizer of (10.36), which is the subject of §10.5.
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10.4.1 Preliminaries

One minimizes (10.36) in H on T × U with a square (semi) norm J(f).

Write L(f) = n−1
∑n

i=1

{
δie

−f(Xi,Ui)ρ(Xi, Ui) +
∫Xi

Zi
f(t, Ui)ρ(t, Ui)dt

}
.

It is easy to verify that L(f) is continuous, convex, and Fréchet differ-
entiable. Let {φν}mν=1 be a basis of NJ =

{
f : J(f) = 0

}
, (Tj, Ũj) be

the N =
∑n

i=1 δi observed lifetimes, and S be N × m with the (j, ν)th

entry φν(Tj , Ũj). If S is of full column rank, then L(f) is strictly convex
in NJ , and L(f) + λJ(f) is strictly convex in H. See Problem 10.7. By
Theorem 2.9, the minimizer of (10.36) uniquely exists when S is of full
column rank, which we will assume.
Without loss of inferential efficiency, one may minimize (10.36) in a space

H∗ = NJ ⊕ span
{
RJ

(
(T̃j, Ũj), ·

)
, j = 1, . . . , q

}
, (10.37)

where
{
(T̃j , Ũj)

}q
j=1

⊆
{
(Xi, Ui), δi = 1

}
is a random subset of the failure

cases; see §10.5.3. One has an expression

η(t, u) =
∑

ν

dνφν(t, u) +
∑

j

cjRJ(T̃j , Ũj; t, u) = φ
Td+ ξT c. (10.38)

Plugging (10.38) into (10.36), one has

Aλ(c,d) =
1

n

n∑

i=1

δiρie
−φT

i d−ξT
i c + bT

φd+ bT
ξ c+

λ

2
cTQc, (10.39)

where ρi = ρ(Xi, Ui), φi = φ(Xi, Ui), ξi = ξ(Xi, Ui),

bφ =
1

n

n∑

i=1

∫ Xi

Zi

φ(t, Ui)ρ(t, Ui)dt, bξ =
1

n

n∑

i=1

∫ Xi

Zi

ξ(t, Ui)ρ(t, Ui)dt,

and Q is q × q with the (j, k)th entry J(ξj , ξk) = RJ

(
(T̃j, Ũj), (T̃k, Ũk)

)
;

note that bφ and bξ can be computed once for all.

Taking derivatives of Aλ(c,d) at η̃ = φT d̃+ ξT c̃ ∈ H∗, one has

∂Aλ

∂d
= −μη̃(φ) + bφ = −μφ + bφ,

∂Aλ

∂c
= −μη̃(ξ) + bξ + λQc̃ = −μξ + bξ + λQc̃,

∂2Aλ

∂d∂dT
= Vη̃(φ,φ

T ) = Vφ,φ, (10.40)

∂2Aλ

∂c∂cT
= Vη̃(ξ, ξ

T ) + λQ = Vξ,ξ + λQ,

∂2Aλ

∂d∂cT
= Vη̃(φ, ξ

T ) = Vφ,ξ,
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where μf (g) = n−1
∑n

i=1 δiρie
−f(Xi,Ui)g(Xi, Ui) and Vf (g, h) = μf (gh).

This simply duplicates (10.7) but with modified definitions of entities. The
Newton updating equation is virtually the same as (10.8); see Problem 10.8.
The ρ(t, u) function acts to replace eη(t,u) as the weight w(t, u) in a

weighted mean square error V (η̂ − η) =
∫
U m(u)

∫
T (η̂ − η)2wS̃dt, where

m(u) is the density of U and S̃(t, u) = P (Z < t ≤ X |U = u) is the at-risk
probability; see §10.5. One may set ρ(t, u) = eη(t) as a hazard estimate via
(8.1) absent of covariate, or set ρ(t, u) as an estimate parametric in t using
the techniques of §8.6.

10.4.2 Smoothing Parameter Selection

For smoothing parameter selection with the minimizer ηλ of (10.36), con-
sider a loss function similar to (10.33),

L̃(η, ηλ) = E
[ ∫

T
{
e(η−ηλ)(t,U) − (η − ηλ)(t, U)− 1

}
ρ(t, U)Y (t)dt

]
.

Dropping terms not involving ηλ, one has the relative loss,

E
[ ∫

T e
−ηλ(t,U)ρ(t, U)eη(t,U)Y (t)dt

]
+ E

[ ∫
T ηλ(t, U)ρ(t, U)Y (t)dt

]
.

(10.41)

A cross-validation estimate of the first term in (10.41) is available by setting

h(t, Ui) = e−η
[i]
λ (t,Ui)ρ(t, Ui) in (8.8) on page 290, where η

[i]
λ minimizes some

delete-one version of (10.36), and the second term may be substituted by
its empirical version, yielding

1

n

n∑

i=1

δiρie
−η

[i]
λ (Xi,Ui) +

1

n

n∑

i=1

∫ Xi

Zi

ηλ(t, Ui)ρ(t, Ui)dt. (10.42)

With the same abuse of notation as in (10.11), write η = ξT c in (10.36)
and denote its minimizer by ηλ = η̃ = ξT c̃. The quadratic approximation
of (10.36) at η̃ virtually duplicates (10.11), but with wi = δiρie

−η̃i for
η̃i = η̃(Xi, Ui). Solving the delete-one version, one again has

η
[i]
λ (Xi, Ui) = ξ

T
i c

[i] = ξTi c−
ai

1− ai
= ηλ(Xi, Ui)−

ai
1− ai

where ai = n−1wiξ
T
i H

−1ξi as in (10.12) but with the modified wi and in
turn H = n−1

∑n
i=1 wiξiξ

T
i + λQ̃. Plugging this into (10.42), one gets

V (λ) =
1

n

n∑

i=1

{

δiρie
−ηλ(Xi,Ui) +

∫ Xi

Zi

ηλ(t, Ui)ρ(t, Ui)dt

}

+ α
1

n

n∑

i=1

δiρie
−ηλ(Xi,Ui)

(
eai/(1−ai) − 1

)
, (10.43)

for α = 1. Unlike (10.12) but similar to (10.35), one does not need to stop
early for (10.43) to work.
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FIGURE 10.9. Effectiveness of cross-validation for hazard estimation. Left : Rel-
ative efficacy L(λo)/L(λv) with α = 1 (wider boxes) and α = 1.4 (thinner boxes).
Center : L(λv) with α = 1 versus L(λv) with α = 1.4, for ρ1(t, u). Right : L(λv)
with α = 1 versus L(λv) with α = 1.4, for ρ2(t, u). Faded points are L(λv) with
α = 1.4 versus L0 via (8.1).

Empirical Performance

Recall the simulation of §8.2.2 on U = [0, 1] with the test hazard λ2(t, u) as
given in (8.14) on page 291. Estimates were also calculated via (10.36) using
the same samples and the same

{
(T̃j , Ũj)

}
of size q = 31 in (10.37), with

two versions of ρ(t, u), ρ1(t, u) = eη(t) a hazard estimate via (8.1) absent
of covariate, and ρ2(t, u) = (ν/t)eν{log t−η(u)} obtained via the Weibull
regression of §8.6.3.
For each replicate and each version of ρ(t, u), three estimates were

calculated, one minimizing the symmetrized Kullback-Leibler distance L(λ)
of (8.13) at λo, and two minimizing V (λ) of (10.42) with α = 1, 1.4 at λv.
The results are summarized in Fig. 10.9, where comparisons against the
estimates via (8.1) are also shown in the center and right frames in faded
points; a solid point in the center frame is off the chart. The two versions
of ρ(t, u) delivered similar performances in the setting, α = 1.4 was slightly
preferred to α = 1, and the estimates via (10.36) actually did slightly better
than those via (8.1).
The one hundred replicates with ρ1(t, u) and α = 1.4 took 233.2CPU

seconds on a linux server, those with ρ2(t, u) and α = 1.4 took 232.5CPU
seconds, and those via (8.1) took 5451.5CPU seconds.

10.4.3 Inference

The inferential and modeling tools of §8.3 are readily adapted.

Bayesian Confidence Intervals

With the same abuse of notation as in (10.11), write η = ξT c in (10.36)
and refer η and c interchangeably. The quadratic approximation of (10.36)
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at η̃ = ηλ can be written as

1

2n
(c− c̃)T (nH)(c− c̃) + C,

where H = n−1
∑n

i=1 wiξiξ
T
i + λQ̃, for wi = δiρie

−η̃i and Q̃ = diag(O,Q).
This may be perceived as an approximate posterior likelihood of c, with
mean c̃ and covariance H+/n, where H+ is the Moore-Penrose inverse
of H . The posterior of η(t, u) is thus approximately normal with mean
η̃(t, u) = ξT(t, u)c̃ and variance s2(t, u) = ξT(t, u)H+ξ(t, u)/n. Bayesian
confidence intervals of η(t, u) are given by η̃(t, u)± z1−α/2 s(t, u).

Square Error Projection

Consider the empirical version of V (η̂ − η) =
∫
U m(u)

∫
T (η̂ − η)2ρS̃dt,

Ṽ (η̂ − η) =
1

n

n∑

i=1

∫ Xi

Zi

{
(η̂ − η)(t, Ui)

}2
ρ(t, Ui)dt.

For η̂ ∈ H0 ⊕ H1, one may calculate its square error projection in H0 by
minimizing Ṽ (η̂ − η) over η ∈ H0. Let η̃ be the square error projection of
η̂ in H0 and consider Aη̃,h(α) = Ṽ

(
η̂ − (η̃ + αh)

)
for h ∈ H0. One has

Ȧη̃,h(0) = Ṽ (η̂ − η̃, h) = 0, ∀h ∈ H0.

For ηc ∈ H0, Ṽ (η̂ − η̃, η̃ − ηc) = 0, so Ṽ (η̂ − ηc) = Ṽ (η̂ − η̃) + Ṽ (η̃ − ηc).
When the ratio Ṽ (η̂ − η̃)/Ṽ (η̂ − ηc) is small, one may safely cut out H1.

One may take eηc =
∑n

i=1 δiρi/
∑n

i=1

∫ Xi

Zi
ρ(t, Ui)dt, which is the constant

hazard minimizing
∑n

i=1

{
δiρie

−η +
∫ Xi

Zi
ηρ(t, Ui)dt

}
.

Frailty Models for Correlated Data

The frailty model of §8.3.3 can be estimated via the minimization of

1

n

n∑

i=1

{

δie
−(η(Xi,Ui)+zTi b)ρ(Xi, Ui) +

∫ Xi

Zi

(
η(t, Ui) + zTi b

)
ρ(t, Ui)dt

}

+
1

2n
bTΣb+

λ

2
J(η). (10.44)

The Newton updating equation is straightforward to derive, and the tuning
parameters can be jointly selected via (10.43). Bayesian confidence inter-
vals are straightforward to adapt and the square error projection can be
computed with zTb treated as an offset.

10.4.4 R Package gss: sshzd1 Suite

Hazard estimation via (10.36) is implemented in the sshzd1 suite. The fol-
lowing sequence generates a sample of size n = 150 with T |U from λ2(t, u)
of (8.14) and fits a tensor product cubic spline to the log hazard:
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FIGURE 10.10. Hazard estimation on T = [0, 1] and U = [0, 1]. The estimated
eη(t,u) are in solid lines, the 95% Bayesian confidence intervals in faded lines,
and the test hazard λ2(t, u) = {24(t − 0.35)2 + 2}{3(u − 0.5)2 + 0.5} in dashed
lines. Left : u = 0.1. Right : u = 0.5. The estimate via (8.1) is superimposed in
dotted lines. The dotted lines from above are proportional to the size of the risk
set,

∑n
i=1 I[Zi<t≤Xi].

set.seed(2375)

xdzu <- rtest2(150)

x <- xdzu[,1]; delta <- xdzu[,2]

z <- xdzu[,3]; u <- xdzu[,4]

fit <- sshzd1(Surv(x,delta,z)~x*u)

where rtest2 was listed in §8.3.4. Projecting the fit into the space of ad-
ditive models, one has

project(fit,inc=c("x","u"))$ratio

# 0.02643945

To evaluate the fitted hazard, say at (t, u) = (0.5, 0.5), one may use

hzdrate.sshzd(fit,data.frame(x=.5,u=.5))

# 1.320611

The estimated λ(t, u) = eη(t,u) is shown in Fig. 10.10, superimposed with
the estimate via (8.1) seen in Fig. 8.2.
The syntax of sshzd1 is largely identical to that of sshzd, except for

the specification of ρ(t, u); the default rho=list("marginal") specifies
a covariate-free ρ(t, u) = eη(t) via (8.1), and rho=list("weibull") uses
ρ(t, u) = (ν/t)eν{log t−η(u)} with η(u) and ν from the Weibull regression
of §8.6.3, both calculated internally. One may also create ρ(t, u) externally
and pass it into sshzd1 via rho, to be evaluated through

rho$fun(t,u,rho$env,outer.prod)

This is similar to sscden1 of §10.3.4, but one does not need to supply in
rho$env a quadrature on T as it is generated internally.
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FIGURE 10.11. Hazard after heart transplant: Proportional hazard fit. Left : Con-
tours of 100λ̃(t∗, u), with deceased (circles) and censored (pluses) patients su-
perimposed. Center : Base hazard eη∅+ηt with 95% Bayesian confidence intervals,
on the original time scale. Right : Age effect eηu with 95% Bayesian confidence
intervals. The Estimate via (8.1) is superimposed in dotted lines.

10.4.5 Case Study: Survival After Heart Transplant

For a quick analysis of the Stanford heart transplant data of §1.4.3 and
§8.4.2, one may try:

data(stan)

fit.stan <- sshzd1(Surv(futime,status)~futime*age,

data=stan,nbasis=200)

project(fit.stan,inc=c("futime","age"))$ratio

# 0.03536646

fit1.stan <- sshzd1(Surv(futime,status)~futime+age,

data=stan,nbasis=200)

The proportional hazard fit is shown in Fig. 10.11, superimposed with the
estimate via (8.1) seen in Fig. 8.5.
The solid fit in Fig. 10.11 using sshzd1 took 8.6CPU seconds on a linux

laptop; the dotted fit using sshzd took 51.8CPU seconds.

10.5 Hazard Estimation: Asymptotic Convergence

Denote by eη0(t,u) the hazard to be estimated and by η̂(t, u) the minimizer
of (10.36). Define

V (f) =

∫

U
m(u)

∫

T
f2(t, u)ρ(t, u)S̃(t, u)dt, (10.45)

where ρ(t, u) replaces eη0(t,u) in (9.24) on page 334 for the definition of
V (f). Convergence rates here are in terms of V (η̂−η0) as defined in (10.45).
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The analysis is adapted from that of §9.3, from which much of the
notation is inherited. It is convenient to write (10.36) as

1

n

n∑

i=1

{∫

T
e−ηiρi dNi(t) +

∫

T
ηiρiYidt

}

+
λ

2
J(η), (10.46)

where ρi = ρ(t, Ui) and the rest of the terms are as in (9.23).

10.5.1 Linear Approximation

Conditions 9.3.1 and 9.3.2 are recycled, but with V as defined in (10.45).

Condition 10.5.1 V is completely continuous with respect to J .

Condition 10.5.2 For ν sufficiently large and some β > 0, the eigenvalues
ρν of J with respect to V satisfy ρν > βνr, where r > 1.

Consider the quadratic functional

1

n

n∑

i=1

{

−
∫

T
ηie

−η0,iρidNi(t)+

∫

T
ηiρiYidt

}

+
1

2
V (η−η0)+

λ

2
J(η), (10.47)

where η0,i(t) = η0(t, Ui). Plugging the Fourier expansions η =
∑

ν ηνφν
and η0 =

∑
ν ην,0φν into (10.47), the minimizer η̃ of (10.47) has Fourier

coefficients

η̃ν = (βν + ην,0)/(1 + λρν),

where βν = n−1
∑n

i=1

∫
T φν,ie

−η0,iρidMi(t) with φν,i(t) = φν(t, Ui). From

(9.20) and (9.21), one has E[βν ] = 0, E
[
β2
ν

]
= n−1

∫
U m(u)

∫
T φ

2
νe

−η0ρ2S̃dt.

Condition 10.5.3 For some c3 <∞, e−η0(t,u)ρ(t, u) < c3.

Under Condition 10.5.3, E
[
β2
ν

]
≤ c3/n, noting that

∫
U m(u)

∫
T φ

2
νρS̃dt =

V (φν) = 1.

Theorem 10.6 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.5.1–10.5.3, as n→∞ and λ→ 0,

(V + λJ)(η̃ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof: See the proof of Theorem 9.2. �
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10.5.2 Approximation Error and Main Results

We now turn to the approximation error η̂ − η̃. Define

Af,g(α) =
1

n

n∑

i=1

{∫

T
e−(f+αg)iρidNi(t) +

∫

T
(f + αg)iρiYidt

}

+
λ

2
J(f + αg),

Bf,g(α) =
1

n

n∑

i=1

{

−
∫

T
(f + αg)ie

−η0,iρidNi(t) +

∫

T
(f + αg)iρiYidt

}

+
1

2
V (f + αg − η0) +

λ

2
J(f + αg).

It can be shown that

Ȧf,g(0) =
1

n

n∑

i=1

{

−
∫

T
gie

−fiρidNi(t) +

∫

T
giρiYidt

}

+ λJ(f, g),

(10.48)

Ḃf,g(0) =
1

n

n∑

i=1

{

−
∫

T
gie

−η0,iρidNi(t) +

∫

T
giρiYidt

}

+ V (f − η0, g) + λJ(f, g). (10.49)

Setting f = η̂ and g = η̂ − η̃ in (10.48), one has

1

n

n∑

i=1

{

−
∫

T
(η̂ − η̃)ie−η̂iρidNi(t) +

∫

T
(η̂ − η̃)iρiYidt

}

+ λJ(η̂, η̂ − η̃) = 0,

(10.50)
and setting f = η̃ and g = η̂ − η̃ in (10.49), one gets

1

n

n∑

i=1

{

−
∫

T
(η̂ − η̃)ie

−η0,iρidNi(t) +

∫

T
(η̂ − η̃)iρiYidt

}

+ V (η̃ − η0, η̂ − η̃) + λJ(η̃, η̂ − η̃) = 0. (10.51)

Subtracting (10.51) from (10.50), some algebra yields

λJ(η̂ − η̃)− 1

n

n∑

i=1

∫

T
(η̂ − η̃)i(e

−η̂ − e−η̃)iρidNi(t)

=
1

n

n∑

i=1

∫

T
(η̂ − η̃)i(e

−η̃ − e−η0)iρidNi(t) + V (η̃ − η0, η̂ − η̃). (10.52)

Condition 10.5.4 For η in a convex set B0 around η0 containing η̂ and
η̃, c1 ≤ eη0(t,u)−η(t,u) ≤ c2 holds uniformly for some 0 < c1 < c2 <∞.
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Condition 10.5.5
∫
U m(u)

∫
T φ

2
νφ

2
μρ

kS̃dt ≤ c4, ∀ν, μ, for some c4 < ∞
and k = 1, 2.

Parallel to Lemma 9.10, one has the following lemma.

Lemma 10.7 Under Conditions 10.5.1–10.5.3 and 10.5.5, as λ → 0 and
nλ2/r →∞,

1

n

n∑

i=1

∫

T
figie

−η0,iρidNi(t) = V (f, g) + op
({

(V +λJ)(f)(V +λJ)(g)
}1/2)

.

Proof: The proof parallels that of Lemma 9.10. One needs to bound

1

n

n∑

i=1

∫

T
φν,iφμ,ie

−η0,iρidNi(t)− τ(φνφμ)

=
1

n

n∑

i=1

{∫

T
φν,iφμ,ie

−η0,iρidMi(t) +

∫

T
φν,iφμ,iρiYidt− τ(φνφμ)

}

,

where τ(f) =
∫
U m(u)

∫
T fρS̃dt. Under Conditions 10.5.3 and 10.5.5,

E

[{∫

T
φνφμe

−η0ρ dM(t)

}2
]

=

∫

U
m(u)

∫

T
φ2νφ

2
μe

−η0ρ2S̃dt ≤ c3c4.

By the arguments behind (9.31), E
[{ ∫

T φνφμρ Y dt − τ(φνφμ)
}2] ≤ 2c4;

see Problem 10.9. The lemma follows. �

Theorem 10.8 Assume
∑

ν ρ
p
νη

2
ν,0 < ∞ for some p ∈ [1, 2]. Under Con-

ditions 10.5.1–10.5.5, as λ→ 0 and nλ2/r →∞,

(V + λJ)(η̂ − η0) = Op

(
n−1λ−1/r + λp

)
.

Proof: By the mean value theorem, Condition 10.5.4, and Lemma 10.7,
(10.52) leads to

(c1V +λJ)(η̂− η̃) ≤
(
|1− c|+ op(1)

){
(V +λJ)(η̂− η̃)(V +λJ)(η̃− η0)

}1/2

for some c ∈ [c1, c2]. The theorem follows Theorem 10.6. �

10.5.3 Efficient Approximation

Now consider the minimizer η̂∗ of (10.46) in a space

H∗ = NJ ⊕ span
{
RJ

(
(X̃j , Ũj), ·

)
, δ̃j = 1

}
,

where
{
(X̃j , Ũj, δ̃j)

}q
j=1

⊆
{
(Xi, Ui, δi)

}n
i=1

is a random subset. The fol-

lowing lemma replicates Lemma 9.12.
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Lemma 10.9 Under Conditions 10.5.1–10.5.3 and 10.5.5, as λ → 0 and
qλ2/r →∞, V (h) = op

(
λJ(h)

)
, ∀h ∈ H�H∗.

Proof: For h ∈ H � H∗, δ̃jh(X̃j , Ũj) = δ̃jJ
(
RJ

(
(X̃j , Ũj), ·

)
, h
)
= 0, so

∑q
j=1

∫
T h

2
je

−η0,jρjdÑj(t) =
∑q

j=1 δ̃jh
2(X̃j , Ũj)e

−η0(X̃j ,Ũj)ρ(X̃j , Ũj) = 0,

where hj(t) = h(t, Ũj), η0,j(t) = η0(t, Ũj), ρj(t) = ρ(t, Ũj), and Ñj(t) =
I[X̃j≤t,δ̃j=1]. By the arguments in the proofs of Lemmas 9.10 and 10.7,

V (h) =

∣
∣
∣
∣V (h)− 1

q

q∑

j=1

∫

T
h2je

−η0,jρjdÑj(t)

∣
∣
∣
∣ = Op

(
q−1/2λ−1/r

)
(V +λJ)(h).

The lemma follows. �

Let η∗ be the projection of η̂ in H∗; J(η∗, η̂ − η∗) = 0. The convex set
B0 in Condition 10.5.4 should also contain η̂∗ and η∗.

Theorem 10.10 Assume
∑

ν ρ
p
νη

2
ν,0 <∞ for some p ∈ [1, 2]. Under Con-

ditions 10.5.1–10.5.5, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂ − η∗) = Op

(
n−1λ−1/r + λp

)
.

Proof: Setting f = η̂ and g = η̂ − η∗ in (10.48), one has

1

n

n∑

i=1

{

−
∫

T
(η̂−η∗)ie−η̂iρidNi(t)+

∫

T
(η̂−η∗)iρiYidt

}

+λJ(η̂, η̂−η∗) = 0,

(10.53)
which can be rearranged as

λJ(η̂ − η∗) =
1

n

n∑

i=1

∫

T
(η̂ − η∗)i(e

−η̂ − e−η0)idNi(t)

+
1

n

n∑

i=1

∫

T
(η̂ − η∗)ie

−η0,iρidMi(t). (10.54)

By the mean value theorem, Condition 10.5.4, and Lemma 10.7, the first
term on the right-hand side of (10.54) is

(
c + op(1)

)
V (η0 − η̂, η̂ − η∗)

for some c ∈ (c1, c2); parallel to (9.16), the second term is of the order

Op(n
−1/2λ−1/2r)

{
(V +λJ)(η̂−η∗)

}1/2
. Combining these with Lemme 10.9

and Theorem 10.8, the theorem follows. �

Setting f = η̂∗ and g = η̂∗ − η∗ in (10.48), one has

1

n

n∑

i=1

{

−
∫

T
(η̂∗ − η∗)ie

−η̂∗
i ρidNi(t) +

∫

T
(η̂∗ − η∗)iρiYidt

}

+ λJ(η̂∗, η̂∗ − η∗) = 0, (10.55)
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Setting f = η̂ and g = η̂ − η̂∗ in (10.48), one gets

1

n

n∑

i=1

{
−
∫

T
(η̂ − η̂∗)ie

−η̂iρidNi(t) +

∫

T
(η̂ − η̂∗)iρiYidt

}
+λJ(η̂, η̂−η̂∗) = 0,

(10.56)

Adding (10.55), (10.56) and subtracting (10.53), some algebra yields

λJ(η̂∗ − η∗)− 1

n

n∑

i=1

∫

T
(η̂∗ − η∗)i(e

η̂∗ − eη
∗
)iρidNi(t)

= − 1

n

n∑

i=1

∫

T
(η̂∗ − η∗)i(e

η̂ − eη
∗
)iρidNi(t). (10.57)

By the mean value theorem, Condition 10.5.4, and Lemma 10.7, the left-
hand side of (10.57) is no less than

(
c1+op(1)

)
V (η̂∗−η∗)+λJ(η̂∗−η∗), and

the right-hand side is
(
c+ op(1)

)
V (η̂− η∗, η̂∗− η∗). These, in combination

with Theorems 10.8 and 10.10, lead to the following theorem.

Theorem 10.11 Assume
∑

ν ρ
p
νη

2
ν,0 <∞ for some p ∈ [1, 2]. Under Con-

ditions 10.5.1–10.5.5, as λ→ 0 and qλ2/r →∞,

(V + λJ)(η̂∗ − η0) = Op

(
n−1λ−1/r + λp

)
.
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Density estimation through the minimization of (10.1) was proposed by
Jeon and Lin (2006). The cross-validation of (10.12), the square error pro-
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Hazard estimation via (10.36) was studied in Du and Gu (2009). The asymp-
totic analysis of §10.5 is adapted from §9.3; a brief outline is found in Du
and Gu (2009) in an appendix.
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10.7 Problems

Section 10.1

10.1 Let G(η) = −
∫
X η(x)f(x) + log

∫
X e

η(x) and Bη̃,h(α) = G(η̃ + αh).

Calculate Ḃη̃,h(0) and B̈η̃,h(0), where η̃ minimizes G(η).

10.2 Let {φν , ν = 1, . . . ,m} be a basis of NJ =
{
f : J(f) = 0

}
and S be

n×m with the (i, ν)th entry φν(Xi). Consider

L(f) =
1

n

n∑

i=1

e−f(Xi) +

∫

X
f(x)ρ(x).

(a) Prove that L(f) is continuous, convex, and Fréchet differentiable.

(b) Prove that if S is of full column rank, then L(f) is strictly convex in
NJ .

(c) Prove that if S is of full column rank, then L(f) + λJ(f) is strictly
convex in H.

10.3 Verify the Newton updating equation (10.8).

10.4 For c̃ = H−1d and c̃[i] =
(
H −n−1wiξiξ

T
i

)−1(
d−n−1wi(1+ g̃i)ξi

)
,

verify that ξTi c̃
[i] = ξTi c̃− ai/(1− ai), where ai = n−1wiξ

T
i H

−1ξi.

Section 10.2

10.5 Consider densities f0(x) ∝ eη0(x)ρ(x) and f(x) ∝ eη(x)ρ(x). Write
SKL(η0, η) = Ef log

(
f(X)/f0(X)

)
+ Ef0 log

(
f0(X)/f(X)

)
.

(a) Verify that

SKL(η0, η) =

∫
X (η − η0)(x)e

η(x)ρ(x)
∫
X e

η(x)ρ(x)
−
∫
X (η − η0)(x)e

η0(x)ρ(x)
∫
X e

η0(x)ρ(x)
.

(b) Define A(α) = SKL
(
η0, η0+α(η−η0)

)
. Verify (10.13) using the mean

value theorem.

10.6 Under Conditions 10.2.1, 10.2.2 and 10.2.5, prove (10.22) using ar-
guments similar to those in the proof of Lemma 9.16.
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Section 10.4

10.7 Let {φν , ν = 1, . . . ,m} be a basis of NJ =
{
f : J(f) = 0

}
, (Tj , Ũj)

be the N =
∑n

i=1 δi observed lifetimes, and S be N ×m with the (j, ν)th

entry φν(Tj, Ũj). Consider

L(f) =
1

n

n∑

i=1

{

δie
−f(Xi,Ui)ρ(Xi, Ui) +

∫ Xi

Zi

f(t, Ui)ρ(t, Ui)dt

}

.

(a) Prove that L(f) is continuous, convex, and Fréchet differentiable.

(b) Prove that if S is of full column rank, then L(f) is strictly convex in
NJ .

(c) Prove that if S is of full column rank, then L(f) + λJ(f) is strictly
convex in H.

10.8 State the Newton updating equation for the minimization of (10.39).

Section 10.5

10.9 Under Condition 10.5.5, verify that

E

[{∫

T
φνφμ ρ Y dt−

∫

U
m(u)

∫

T
φνφμ ρ S̃dt

}2
]

≤ 2c4.



Appendix A
R Package gss

In this appendix, we outline the overall design of the R package gss. The
code is assembled from three primary components, (i) utilities for the cre-
ation of the null space basis φν and the reproducing kernels Rβ , (ii) utilities
implementing various modeling and data analytical tools, and (iii) the nu-
merical engines that perform the bulk of the computation.

A.1 Model Construction

The utilities for the creation of φν and Rβ consists of numerous mkphi and
mkrk functions and the assembler mkterm that puts things together using
inputs from the model formula and the type argument.
For an example, consider the model formula in an ssanova call

ssanova(y~x1*x2)

with x1 and x2 both numerical vectors for which the default type is the
cubic spline; this is Example 2.5 on page 44. The model formula yields four
model terms in an ANOVA decomposition, 1, x1, x2, and x1:x2, with 1

containing one φν = 1 and no Rβ, x1 and x2 each containing one φν and
one Rβ , and x1:x2 containing one φν and three Rβ ’s.
The φν(x) are to be evaluated via

phi$fun(x,nu,phi$env)

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7,
© Springer Science+Business Media New York 2013
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where x is the argument and phi$env contains constants. Similarly,Rβ(x, y)
are to be evaluated through

rk$fun(x,y,nu,rk$env,outer.prod)

where x and y are the arguments, rk$env contains constants, and one may
calculate Rβ(x,y

T ) with outer.prod=TRUE.
In the rest of the section, we spell out how the marginal spaces are

configured, how tensor product spaces are constructed, and how one may
enter marginal configurations that are not “canned” in the package.

A.1.1 Marginal Configurations

For the construction of tensor product reproducing kernel Hilbert spaces
discussed in §2.4, one simply takes the products of marginal kernels. The
marginal spaces are individually configured, independent of each other.
The marginal configurations are directly used for the main effects in an

ANOVA decomposition.

Numerical Vectors

For x a numerical vector, the default type is the cubic spline with a para-
metric contrast in span

{
φ(x)

}
with reproducing kernel Rp(x, y) = φ(x)φ(y)

and a nonparametric contrast in the space generated by the reproducing
kernel Rn(x, y), where φ(x) = k1(x) and Rn(x, y) = k2(x)k2(y)− k4(x− y)
after the domain [a, b] is mapped onto [0, 1]; this is the formulation of §2.3.3
with m = 2. The default domain is the data range extended by 5% on both
ends, and to override the default, one may specify it via something like

type=list(x=list("cubic",c(a,b)))

Replacing "cubic" by "linear", with or without direct domain specifi-
cation, one configures a linear spline with no “parametric contrast” and
Rn = k1(x)k1(y) + k2(x− y).
To configure the periodic splines of §4.2.1, one may use

type=list(x=list("per",c(a,b)))

where "per" is the short version of "cubic.per" and the domain [a, b] must
be specified; there is no parametric contrast and Rn(x, y) = −k4(x−y) after
mapping [a, b] onto [0, 1]. Replacing "per" by "linear.per", one has the
linear periodic spline with Rn(x, y) = k2(x− y).
To configure the trigonometric spline of (4.63) on page 152, one may use

type=list(x=list("trig",c(a,b)))

where, after mapping [a, b] onto [0, 1], one has the parametric contrast
in span

{
φ1(x), φ2(x)

}
, for φ1(x) =

√
2 cos 2πx and φ2(x) =

√
2 sin 2πx,

with Rp(x, y) = φ1(x)φ1(y) + φ2(x)φ2(y) and the nonparametric contrast
generated by Rn(x, y) = −k4(x− y)− 2 cos 2π(x− y)/(2π)4.
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Numerical Matrices

For x a numerical matrix, the default type is the thin-plate splines of §4.3.
The default order is m = 2, which may or may not satisfy 2m− d > 0. The
default “normalizing mesh” {ui} in (4.23), (f, g)0 =

∑
i pif(ui)g(ui), are

taken as the sampling points {xi} with pi ∝ 1. The parametric contrast is
in span

{
φν(x)

}
of dimension

(
d+m−1

d

)
− 1 with Rp(x, y) =

∑
ν φν(x)φν(y),

where φν(x) satisfying (φν , 1)0 = 0 are obtained numerically. The non-
parametric contrast are generated by the reproducing kernel Rn(x, y) =
(I−P(x))(I −P(y))E

(
|x− y|

)
as given in (4.26). To override the default m,

{ui}, or pi, use something like

type=list(x=list("tp",list(order=m,mesh=u,weight=p)))

To configure the spherical splines of §4.4 for x two-dimensional, one uses
something like

type=list(x=list("sphere",2))

where the order m = 2 is the default so can be omitted in the type specifi-
cation; other orders available are m = 3, 4. There is no parametric contrast

and Rn(x, y) =
q2m−2(x·y)−1/(2m−1)

2π(2m−2)! as given in (4.45). It is assumed that

x[,1] is the latitude in degrees in the range of [−90, 90] and x[,2] is the
longitude in degrees in the range of [−180, 180].

Factors

For x a factor, we use the constructions of §2.2. The contrast is finite-
dimensional so technically is always parametric, but we decide to penalize
it when the number of levels K ≥ 3. Hence, for X = {1, 2}, one has a
parametric contrast in span

{
I[x=1]−1/2

}
with Rp(x, y) = I[x=y]−1/2. For

X =
{
1, . . . ,K

}
, K ≥ 3, one has a nonparametric contrast generated by

Rn(x, y) = I[x=y] − 1/K
For x an ordered factor with K ≥ 3, one has Rn(x, y) = B(x, y), where

B = (CTC)+ for a (K−1)×K matrix C given by

C =

⎛

⎜
⎜
⎜
⎝

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
. . .

. . .
...

...
0 . . . 0 . . . −1 1

⎞

⎟
⎟
⎟
⎠
.

A.1.2 Construction of Interaction Terms

For interaction terms in an ANOVA decomposition, one takes products of
the Rp’s and Rn’s of the marginals involved. A product containing at least
one Rn is penalized, adding an Rβ to the scene. A product containing only
Rp’s is unpenalized, contributing φν ’s.
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For an example, consider a two-way interaction x1:x2, where x1 is
configured as a cubic spline with a one-dimensional Rp〈1〉 and x2 is config-
ured as a thin-plate spline on (−∞,∞)2 of order m = 2 with Rp〈2〉 of di-
mension

(
2+2−1

2

)
−1 = 2. The term contains two φν ’s, namely φ〈1〉φ1〈2〉 and

φ〈1〉φ2〈2〉, and three Rβ ’s, namely Rn〈1〉Rp〈2〉, Rp〈1〉Rn〈2〉, and Rn〈1〉Rn〈2〉.

A.1.3 Custom Types

The built-in support for marginal configurations as listed in §A.1.1 should
satisfy most practical needs. In case some applications call for configura-
tions not on the list, all is not lost, as the user can enter his own configu-
rations via

type=list(x=list("custom",par))

where par is a list object with elements nphi, mkphi, mkrk, and env.
As an example, consider an reimplementation of the trigonometric spline

of (4.63) with

par <- list(nphi=2,mkphi=mkphi.trig,

mkrk=mkrk.trig,env=c(a,b))

where nphi=2 specifies the dimension of span
{
φν(x)

}
, env=c(a,b) specifies

the domain [a, b], mkphi takes env as input to create φν(x),

mkphi.trig <- function(env) {

## save constants

env <- list(min=min(env),max=max(env))

## create phi

fun <- function(x,nu,env) {

x <- (x-env$min)/(env$max-env$min)

switch(nu,cos(2*pi*x),sin(2*pi*x))

}

## return phi and constants

list(fun=fun,env=env)

}

and mkrk takes env as input to create Rn(x, y),

mkrk.trig <- function(env) {

## save constants

env <- list(min=min(env),max=max(env))

## create rk

fun <- function(x,y,env,outer.prod=FALSE) {

x <- (x-env$min)/(env$max-env$min)

y <- (y-env$min)/(env$max-env$min)

rk <- function(x,y) {
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k4 <- function(x) ((x-.5)^4-(x-.5)^2/2+7/240)/24

-k4(abs(x-y))-2*cos(2*pi*(x-y))/(2*pi)^4

}

if (outer.prod) outer(x,y,rk)

else rk(x,y)

}

## return rk and constants

list(fun=fun,env=env)

}

The precise scaling of φν is not of much practical importance, but when
nphi is 2 or more, the relative scaling of φν has real implications if the
variable is to be involved in interactions, as Rp(x, y) =

∑
ν φν(x)φν(y).

When nphi=0, there is no parametric contrast and mkphi is not used.

A.2 Modeling and Data Analytical Tools

Besides the model formula and type specifications that dictate the model
construction through φν and Rβ , other model components can be entered
via optional arguments such as weights, offset, partial, and random.
Primary data analytical tools include the Kullback-Leibler projection and
the Bayesian confidence intervals.
All fitting functions but ssanova9 accept an optional argument weights.

For the penalized least squares regression of ssanova and ssanova0, the
argument provides the wi in (3.9) on page 64. For everything else, the argu-
ment provides the multiplicity counts of replicated observations. Weights
for ssanova9 are entered via the mandatory argument cov.
The optional argument offset is a familiar component in standard mod-

eling suites such as lm and glm. The regression suites accept offset, so
does sshzd. For (conditional) density estimation that requires normaliza-
tion, offset does not make much practical sense. For the estimation of log
hazard, information is rarely available to justify an offset, except for the
estimation of the base hazard following the estimation of relative risk via
sscox, as shown in §8.5.
Parametric terms can be entered through an optional argument partial

as discussed in §4.1; it is assumed to be a formula of numerical vectors.
The regression suites and hazard estimation suites accept partial, while
the density estimation suites do not due to normalization. For a binary
variable, one may either enter it through partial as a numerical vector or
in the model formula as a factor, but a partial term can not take part in
tensor products.
Parametric random effects can be entered via the optional argument

random, which is accepted by ssanova, gssanova, gssanova1, ssllrm,
and the hazard estimation suites. The algorithms of §3.4 are incompatible



392 Appendix A. R Package gss

TABLE A.1. Modeling and data analytical tools implemented for gss suites.

weights offset partial random project CI

ssanova ◦ × × × × ×
ssanova9 × × × ×
ssanova0 ◦ × × ×
gssanova × × × × × ×
gssanova1 × × × × × ×
gssanova0 × × × ×
ssden × ×
ssden1 × ×
sscden × ×
sscden1 × ×
ssllrm × × × ◦
sshzd × × × × × ×
sshzd1 × × × × ×
sscox × × × × ×

with (6.4) on page 218, so ssanova0 and gssanova0 can not accommodate
random. The approach implemented in ssanova9 is an alternative, not in
addition, to the mixed-effect models of §6.2, and weights and random are
replaced in ssanova9 by the mandatory argument cov. Random effects do
not make much practical sense in density estimation due to normalization,
except that in ssllrm they can be propagated into versions for multivariate
responses as shown in §7.8.4.
The Kullback-Leibler/square-error projection is implemented for all but

ssanova0 and gssanova0 fits. The random effects, if present, are treated
as an offset.
Bayesian confidence intervals can be calculated for η using the fitted val-

ues and the associated standard errors, for regression estimates and hazard
estimates. For density estimation, normalization invalidates the notion of
interval estimate. For hazard estimates, the fitted values returned from
hzdrate.sshzd and predict.sscox are eη but the standard errors are for
η. For ssllrm fits, Bayesian confidence intervals only make sense for the
y-contrasts as discussed in §7.8.3.
The discussions above are summarized in Table A.1, where the ×’s mark

the “usual” meaning/implementation and the ◦’s mark “unusual” meaning
or restricted implementation. Some setting-specific entries are also worth
noting, which include the argument domain for ssden and ssden1, ydomain
for sscden and sscden1, and the cosine diagnostics of §3.7 for Gaussian
and non-Gaussian regression fits.
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A.3 Numerical Engines

The algorithms of §3.4, while highly efficient, rely on a special structure
not available in general, and the legacy RKPACK routines are only used to
power the ssanova0 and gssanova0 suites. For the other suites, computa-
tional strategies are as outlined in §3.5.3, with the likes of cross-validation
scores minimized via quasi-Newton iterations using numerical derivatives.
For the density estimation and hazard estimation suites plus gssanova,

the computation consists of two nested iteration loops, with the inner loop
calculating penalized likelihood estimates with fixed tuning parameters,
and the outer loop minimizing the likes of cross-validation scores for tun-
ing parameter selection. With a single tuning parameter, the outer loop is
performed through an R function nlm0 for univariate minimization that op-
erates on three-point quadratic interpolation with golden-section safe-guard
(Gill et al. 1981, §§4.1.2.3–4.1.2.4) . With multiple tuning parameters, the
outer loop is carried out via the R function nlm that implements the quasi-
Newton algorithm of Dennis and Schnabel (1996). The inner loop Newton
iteration, with safe-guards such as step-halving, is executed in FORTRAN
routines, that in turn call BLAS and LINPACK routines for numerical
linear algebra operations.
For the ssanova and ssanova9 suites, the inner loop is unnecessary, as

the penalized least squares estimates are directly available from numeri-
cal linear algebra operations. For the gssanova1 suite, the performance-
oriented iteration executes the algorithms for ssanova in each step.
With multiple smoothing parameters, we use Algorithm 3.3 on page 84

to obtain starting values of θβ for quasi-Newton iteration:

1. Set θ̃−1
β ∝ tr(Qβ) so that tr(θ̃βQβ) contribute equally to tr(Q) for

Q =
∑

β θ̃βQβ, then calculate η̂ =
∑

ν φν +
∑

β ηβ with a single

smoothing parameter λ, where ηβ = θ̃β
∑

j cjRβ(zj , ·).

2. Set θβ,0 ∝ (η, η)β = (ηβ , ηβ)β = θ̃2β c
TQβ c, then minimize the selec-

tion criterion with a single smoothing parameter λ at λ0.

One then fix λ = λ0 and iterate on θβ using θβ,0 as starting values. Such a
starting value algorithm is invariant of the relative scaling of Rβ .
The starting value algorithm proves to be highly effective, and multi-

variate quasi-Newton optimization with numerical derivatives is compu-
tationally costly, so the θ iteration from θβ,0 could be chasing the “last
20%” performance at a cost many times over the initial one. For all the
fitting functions except ssanova0, gssanova0, and ssden1, one may choose
to skip the θ iteration by setting skip.iter=TRUE; the skipping of the θ
iteration is enforced in ssden1 as noted in §10.1.3. In the presence of corre-
lation parameters, however, as in the mixed-effect models or in ssanova9,
the computational savings via skip.iter=TRUE could be less significant.



Appendix B
Conceptual Critiques

In this appendix, we discuss a few conceptual issues concerning nonpara-
metric statistical models. The arguments are presented in the context of
penalty smoothing, but the implications likely reach beyond. Empirical ev-
idences in supprt of the arguments are obtained through simple simulations
in the setting of penalized least squares regression.
The central issue in our discussion concerns the proper indexing of non-

parametric models, and it will be argued that the usual, easy-to-work-with
model indices do not properly “register” estimates based on different sam-
ples from the same source. Consequently, some widely accepted notions
and perceptions are on wrong footings, and some popular practices seem
misguided.

B.1 Model Indexing

Consider Yi = η(xi) + εi, xi = (i − 0.5)/n, i = 1, . . . , n, where n = 100,

η(x) = 1 + 3 sin(2πx− π),

and εi ∼ N(0, 1). One hundred replicates were generated from the setting,
and for each replicate, cubic spline estimates minimizing

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η̈(x)

)2
dx

C. Gu, Smoothing Spline ANOVA Models, Springer Series
in Statistics 297, DOI 10.1007/978-1-4614-5369-7,
© Springer Science+Business Media New York 2013
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FIGURE B.1. Model indices λ and ρ. Left : A λ ↔ ρ mapping (solid) in cubic
spline simulation and the envelop (faded) containing one hundred such mappings.
Center : Relative efficacy of λ̃, ρ̃, and ρ0 in cubic spline simulation. Right : Relative
efficacy of λ̃, ρ̃, and ρ0 in linear spline simulation.

were calculated for λ on a grid log10(nλ) = (−5)(.05)(−1). Recorded for
each of the estimates ηλ are the mean square error

L(η, ηλ) = n−1
∑n

i=1

(
ηλ(xi)− η(xi)

)2
(B.1)

and a roughness index

ρ =
∫ 1

0

(
η̈λ(x)

)2
dx.

Associated with the optimal ηλ on the grid that minimizes L(η, ηλ) for
each replicate, one has the optimal λo and the optimal ρo; the one hundred
log10(nλo) range between −3.45 and −2.25 with the median at −2.85, and
the one hundred log10 ρo range between 3.776 and 3.923 with the median
at 3.858. The smoothing parameter λ has no place in the data generation
setting, whereas the test function η(x) has a roughness index log10 ρ0 =
log10

(
(12π2)2/2

)
= 3.846.

Remember the equivalence between (1.1) and (1.2); see Theorem 2.12.
The mapping λ↔ ρ is one-to-one, but the mapping varies from sample to
sample. Plotted in the left frame of Fig.B.1 are one of the λ↔ ρ mappings
from the simulation (solid) and the envelop containing all one hundred such
mappings (faded). The envelop is not too wide so rates of λ and ρ should
be comparable across-replicates, but with exact quantification, at most one
of λ and ρ can be used to “register” estimates based on different replicates.
The much tighter range of ρo as compared to the range of λo is not quite

enough to put ρ over λ, as one could argue that the scales of λ and ρmay not
be comparable. Instead, we set the median log10(nλ̃) = −2.85 as a “typical”
optimal λ value and the median log10 ρ̃ = 3.858 as a “typical” optimal ρ
value, and assess the relative efficacy of these choices. The relative efficacy
of λ̃ is simply L(η, ηλo)/L(η, ηλ̃), where λo varies from replicate to replicate.
For ρ̃, we have to settle with approximations, using for each replicate the
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estimate on the λ grid that has the smallest | log10 ρ− 3.858|. The relative
efficacy of λ̃ and ρ̃ are summarized in the center frame of Fig. B.1 along
with that of ρ0.
For the same one hundred replicates of simulated data, we also calculated

linear spline estimates minimizing

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η̇(x)

)2
dx

for λ on a grid log10(nλ) = (−2.5)(.05)(1.5). The roughness index is now

ρ =
∫ 1

0

(
η̇λ(x)

)2
dx,

with log10 ρ0 = log10
(
(6π)2/2

)
= 2.250. The corresponding log10(nλo)

have a range of [−1.2,−0.5] with the median at log10(nλ̃) = −0.9, and the
corresponding log10 ρo have a range of [2.181, 2.356] with the median at
log10 ρ̃ = 2.255. The relative efficacy of such λ̃, ρ̃, and ρ0 are shown in the
right frame of Fig. B.1.
Statistical estimation is a compromise between the data and the model,

where the model is best characterized by a set of constraints. Model con-
straints are clearly spelled out in standard parametric models, but are vague
or implicit at best with nonparametric estimation. The equivalence between
penalized and constrained optimizations provides a means for one to study
the subtle issue of model indexing in the context of penalty smoothing, and
the empirical results shown in the center and right frames of Fig.B.1 con-
firm the fact that, across-replicates, estimates with the same ρ have more
in common than estimates with the same λ.
While ρ is the conceptually “correct” model index, it is impossible to

work with in practice, both in numerical computation and in theoretical
analysis. Throughout this book, we have worked exclusively with λ, and
the results remain valid, for they either concern only rates but not exact
quantifications, or they are replicate-specific so the mapping λ ↔ ρ is
one-to-one in the context, or both. The ρ index appears useless operation-
wise, but it can help to explain a few “mysterious” phenomena that led to
misguided perceptions and practices in the literature.

B.2 Optimal and Cross-Validation Indices

Despite the asymptotic optimality established by Li (1986) and the largely
excellent empirical performances in simulations and applications, cross-
validation had over the years received its share of criticisms in the literature.
Some of the concerns are valid, such as the occasional wild failures, which
can be tamed by the use of a fudge factor. Other concerns mainly involve
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FIGURE B.2. Optimal and cross-validation λ and ρ. Left : λo versus λv in cubic
spline simulation (solid) and in linear spline simulation (faded). Center : ρo versus
ρv in cubic spline simulation. Right : ρo versus ρv in linear spline simulation. The
vertical faded lines in the center and right frames mark the respective ρ0.

the “unfavorable” behaviors of the minimizers of the cross-validation scores,
which can be misperceived.
For each of the estimates in the simulations of §B.1, also recorded are

the cross-validation score with a fudge factor α = 1.4,

V (λ) =
n−1YT

(
I −A(λ)

)2
Y

{
n−1tr

(
I − αA(λ)

)}2 .

Associated with the ηλ that minimizes V (λ) on the grid for each replicate,
one has the cross-validation indices λv and ρv. Plotted in the left frame of
Fig.B.2 are λo versus λv for the one hundred replicates in the cubic spline
simulation (solid) and in the linear spline simulation (faded), where the
negative correlation between λo and λv is evident. Such negative correlation
was well publicized in the literature concerning a few versions of cross-
validation scores in various settings, and in light of this, cross-validation
was charged as acting “counter-intuitively,” prompting the developments
of alternative approaches to smoothing parameter selection; see, e.g., Scott
and Terrell (1987) and Hall and Johnstone (1992).
Were the λ index comparable across-replicates, such negative correlation

would indeed signal trouble. Given the discussion of §B.1, however, the
negative correlation in λ is inconsequential. Plotted in the center and right
frames of Fig. B.2 are the respective ρo versus ρv in the cubic and linear
spline simulations, where negative correlation is nowhere to be found.
Further discussions on this and related issues can be found in Gu (1998a).

B.3 Loss, Risk, and Smoothing Parameter
Selection

The mean square error L(λ) = L(η, ηλ) of (B.1) is a replicate-specific loss
function, and the optimal indices λo and ρo vary from replicate to repli-
cate. If one must take expectation of the loss, lining up estimates with
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FIGURE B.3. Optimal and cross-validation λ and ρ. Left : L(λ̃o) versus L(λv).
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spline simulation are in solid and those from linear spline simulation in faded.

common ρ appears conceptually “correct” though practically impossible
to perform, whereas expectation with fixed-λ is effectively mixing oranges
with tangerines and grapefruits.
If risk could be calculated with fixed-ρ, then from the center and right

frames of Fig. B.1, one could infer that the risk-optimal ρ would largely
match the performance of the loss-optimal ρo. The λ-indexed risk function
R(λ) = E

[
L(λ)

]
has its conceptual flaws, and we now evaluate it empiri-

cally. Averaging over the replicates in the simulations of §B.1, we obtained
empirical versions of R(λ), whose minimizers on the grids gave the “risk-
optimal” log10(nλ̃o) = −2.8 ≈ −2.85 = log10(nλ̃) for cubic spline estimates
and log10(nλ̃o) = −0.9 = log10(nλ̃) for linear spline estimates. Plotted in
the left frame of Fig. B.3 are L(λ̃o) versus L(λv) in the cubic spline simula-
tion (solid) and in the linear spline simulation (faded). The “risk-optimal”
λ̃o did do better, but was helped by extra knowledge unknown to cross-
validation. The very existence of points below the dotted line, 19 solid and
18 faded, speaks to the fact that λ̃o is not optimal. It is one thing to cal-
culate the rate of L(λ) via R(λ), as was done in the asymptotics of §3.2,
but it is a different matter to define the notion of optimality through the
exact minimization of R(λ).
Merit-wise, the loss L(λ) is no doubt more appealing than the risk R(λ)

as the performance measure, but questions were raised in the literature con-
cerning the practical feasibility of pursuing L(λ), with the main argument

being the slow convergence rates of the likes of λ̂o − λo; see, e.g., Hall and
Marron (1991). We however shall argue below that the slow convergence of

λ̂o −λo could be as inconsequential as the negative correlation between λo
and λv as seen in the left frame of Fig. B.2.
Aiming to minimize L(λ) via a selection method such as cross-validation,

the success/failure of the method is naturally assessed through the likes of
relative efficacy L(λo)/L(λv). The loss curve could be steep or flat near λo,
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and could have different slopes on different sides of λo, thus the difference
λv − λo could be a poor proxy of L(λo)/L(λv). Furthermore, the λ index
has no place in the data generation setting, and the optimal λo assumes
its meaning only via the loss function L(λ), so its “estimation” accuracy
should also be assessed through L(λ). Shown in the center frame of Fig.B.3
are L(λv)/L(λo) versus λv/λo in the simulations, where the distance be-
tween λv and λo is measured on the more natural log scale; L(λv)/L(λo)
does generally increase as λv moves away from λo, as expected, but the
exact quantification is far too scattered for λv/λo to be a reliable proxy of
L(λv)/L(λo). Plotted in the right frame of Fig. B.3 are λv/λo versus ρv/ρo
in the simulations, showing that the raw distance between “λo” and “λ̂o”
may also depend on the particular “λ” (model index) in use.
In summary, a “risk-optimal” λ based on R(λ) has its flaws conceptually

and empirically, and the slow convergence rates of the likes of λ̂o − λo
may not have any bearing on the practical feasibility of targeting L(λ) in
smoothing parameter selection. In fact, the asymptotic optimality of cross-
validation in terms of losses, as discussed in §§3.2, 6.2.3, and 6.3.3, provide
direct, positive solutions to loss-minimizing smoothing parameter selection.

B.4 Degrees of Freedom

Model constraints in nonparametric estimation are intrinsically adaptive
and typically also implicit, whereas those in parametric models are pre-
specified explicitly. Despite the fundamental difference, numerous attempts
have been made in the literature to extend familiar notions and practices
in parametric statistics to nonparametric estimation. One popular notion
of such is the so-called “degrees of freedom” as a model complexity index
in nonparametric regression, which we shall scrutinize below.
Recall the smoothing matrix A(λ) introduced in Chap. 3 satisfying Ŷ =

A(λ)Y, which resembles the hat matrix H = X(XTX)−1XT for a lin-
ear regression model Y = Xβ + ε. The trace of the smoothing matrix,
trA(λ), was deemed by many as the “effective number of parameters,” or
the “degrees of freedom,” and suggestion was made to possibly select the
smoothing parameters by specifying the “degrees of freedom;” see, e.g.,
Hastie and Tibshirani (1990).
Write ν = trA(λ). Given the sampling points xi, the mapping λ ↔ ν

is one-to-one, independent of Yi, so ν is simply a reparameterization of
λ. The trace of a matrix is much more intuitive than a λ in front of a
roughness penalty, however, and the smoothing matrix can be defined for
all nonparametric regression methods, so ν appears to provide an intuitive,
universal index for model complexity. Unfortunately, the very appeal of the
ν index is where it falters.
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in cubic spline simulation. Center : Histogram of νo in linear spline simulation.
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right frame mark the minima.

Recall the simulations of §B.1, where for cubic splines log10(nλo) range
between −3.45 and −2.25 with the median log10(nλ̃) = −2.85, which trans-
late into a νo range of [5.08, 9.14] and the median ν̃ = 6.77; for linear
splines, the log10(nλo) range [−3.45,−2.25] corresponds to a νo range of
[9.35, 20.00] and the median log10(nλ̃) = −0.9 to ν̃ = 14.44. Histograms
of νo are shown in the left and center frames of Fig. B.4. Depicted in the
right frame of Fig. B.4 are the empirical risk functions R(ν) indexed by
ν in the cubic and linear spline simulations. Within the respective fam-
ilies of estimates, namely the cubic splines and the linear splines, the ν
index is equivalent to the λ index, sharing its conceptual flaws but offering
nothing new. Across different families of estimates, it is hard to reconcile
a “cubic-spline-optimal” ν ≈ 7 with a “linear-spline-optimal” ν ≈ 14; the
“risk-optimal” ν̃o are 6.60 and 14.44 in the cubic and linear spline simu-
lations, respectively, corresponding to log10(nλ̃o) values of −2.8 and −0.9.
When the “optimal” values are territory-dependent, an index perceived to
be “universal” only serves to mislead.
In parametric statistics, the degrees of freedom code the dimensions of

the prospective model spaces. The notion is not defined through the trace
of any matrix, and in many settings there is no matrix to talk about yet
degrees of freedom are indispensable in inference. The fact that the trace
of the hat matrix in linear regression models matches the dimension of the
model space is conceptually a coincidence. In the context of nonparametric
regression, model complexity depends on a variety of factors including the
structure of the smoothing matrix, but loading everything on a matrix trace
oversimplifies the matter.
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