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Foreword
I first met Min Xie in the 1980s at Linkoping University in Sweden. He

was working with Professor Bo Bergman, the Professor in Quality at the
University. As I recall, Min Xie was a very serious student of reliability theory
at the time. He was very familiar with the book Mathematical Theory of
Reliability by myself and Frank Proschan.

My first meeting with C. D. Lai was in 1999 at Massey University in New
Zealand. I was impressed then by his serious interest in research.

The subject of this monograph is ageing and dependence in the context
of reliability. Both of these ideas are important and controversial. Ageing is
a phenomenon experienced by both machines and people. There has been a
great deal of progress in understanding ageing relative to people by molecular
biologists such as Giusseppe Attardi at the California Institute of Technology.
Other researchers have even tried to apply ideas in mathematical reliability
theory to biological ageing. Unfortunately, it seems that this is not a useful
activity. This is because biological organisms are capable of self-repair and
reproduction while machines at this point in time are not.

Probabilistic dependence has also been discussed at length by many mathe-
maticians and philosophers. One of the best classical mathematical discussions
can be found in Statistical Independence in Probability Analysis and Number
Theory by Mark Kac (1959). However, this work is solely applied mathematics
and leaves the subject somewhat mysterious at the philosophical level which
is also the level at which applications need to be made.

From another point of view, de Finetti, in 1937, for the first time pre-
sented a rigorous and systematic treatment of the concept of exchangeability
together with the fundamental result which became known as “de Finetti’s
representation theorem.” [See Kotz and Johnson (1992)]. De Finetti’s paper
illuminates the conditions under which frequencies may be related to subjec-
tive probabilities (that is, probabilities based on judgment) and also formalizes
this connection. It replaces the classical notion of observations assumed to be
“independent and identically distributed with unknown distribution” by the
concept of exchangeable observations. This helps to resolve the mystery be-
hind the ideas of independence and dependence. De Finetti also helped in the
understanding of conditional probability. Conditional dependence is closely
tied to finite populations (i.e., all populations in this world) while uncondi-
tional independence is relative to conceptually infinite populations.

To illustrate, consider n binary random quantities (x1, x2, , xn) judged a
priori to be exchangeable, i.e., distributed with the hypergeometric distribu-
tion with parameters (N, S) where S =

∑N
i=1 xi is unknown since in this case

observations (xn+1, xn+2, , xN ) are not available. Although N is known, S is
unknown. We are interested in inference concerning S. Now (x1, x2, ...xn) are
a priori dependent, conditional on S. However, if S has a prior distribution
which is judged binomial with parameters N (the known population size) and
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n specified, then (x1, x2, , xn) are a priori unconditionally independent, with
joint probability

n∏
i=1

ρxi(1 − ρ)1−xi

Since the binomial distribution with parameters (N, ρ) is only suitable
for conceptually infinite populations, we begin to see the connection between
independence and infinite populations. (In the binomial case, N would be the
sample size, not the population size.) This is presented as an exercise on page
52 of Barlow (1998). It was pointed out to me by a colleague, Max Mendel. Of
course once (x1, x2, , xn) are observed they are no longer random quantities.
Any judgment concerning S would require knowledge of the problem at hand
and this judgment is only partly a mathematical problem.

The present monograph deals with life distributions belonging to various
classes of failure (hazard) rate functions and mean residual life functions.
The so-called ‘bathtub’ distributions are featured prominently and a brief
introduction of the Bayesian approach on ageing concepts is given. The text
provides a lot of material on test procedures and bivariate life distributions,
with various concepts and measures of dependence. The material concerning
reliability of coherent systems with positively dependent components is very
important as component lifetimes are generally dependent in practice.

The book should be considered as a very useful reference. Results of the last
three decades are brought together without delving into unnecessary detail.
The reader is referred to papers, which are listed in the bibliography. It covers
most of results in the literature pertaining to ageing classes and bivariate life
distributions; so it can be regarded as a compendium of ageing concepts. It
is encyclopedic in scope, contains much information, and will be useful to
researchers in reliability engineering and other disciplines.

Berkeley, September 2005 Richard E. Barlow
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Preface
Reliability is an important and challenging subject, which involves the

disciplines of science and engineering. Researchers in both these fields have
been working on reliability problems for several decades. The aim of this book
is to summarize various ageing and dependence concepts of the lifetimes that
have been widely studied in the field of reliability.

Chapter 1 provides a summary of the book and notations and acronyms are
also listed for easy reference later on. Chapter 2 deals with various concepts
of stochastic ageing starting with the definition of the failure rate function
(or hazard function). In this book, we will use the term failure rate instead
of hazard rate, which is more common in survival analysis. Part of the reason
is because most abbreviations such as IFR/DFR/IFRA/DFRA, etc., contain
FR which stands for failure rate. We think that more confusion will be caused
if the abbreviations are changed. Moreover, the acronym ‘failure rate’ is more
commonly used in reliability engineering, especially for non-repairable sys-
tems.

Chapters 3–7 deal with some specific concepts of ageing and lifetime distri-
butions. In particular, we consider bathtub shaped life distributions in Chap-
ter 3. Existing models are grouped and summarized with their properties
listed. Chapter 4 considers the mean residual lifetime function which is an im-
portant measure of ageing in reliability applications. Chapter 5 deals with the
Weibull distribution and its generalizations that can be flexible in modeling
lifetime data. Chapter 6 considers ageing concepts for discrete distributions.
Chapter 7 summarizes statistical tests of ageing.

Chapter 8 extends the univariate ageing concepts to two or more variables.
A brief introduction to the Bayesian approach to multivariate ageing in terms
of majorization and Schur-concavity is given.

Dependence concepts, dependence orderings and measures of dependence
are dealt with in Chapter 9. This is an extensive and important topic which
caught the attention of many authors in recent years. We emphasize the posi-
tive (negative) quadrant dependence as this property is verifiable and realistic
in many situations. All relevant results concerning dependence are summa-
rized in this chapter. However, most of these results are related to statistical
concepts and some are theoretical probability applications. We expect further
research and applications in this area to be carried out by researchers. As a
follow-up, Chapter 10 discusses the reliability of coherent systems with posi-
tively dependent components. We feel that this topic is a very important one
in reliability applications.

Last but not least, in Chapter 11, we list 33 data sets of failure times
or survival times. This could be useful for researchers and students in their
future study in this field. The book ends with a large collection of references
with nearly eight hundred entries.

It is our aim to provide a comprehensive treatment of both ageing and
dependence concepts with emphasis on reliability and survival analysis. Proofs
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of many results are omitted, especially when they are either obvious or are
long. The interested readers may refer to references listed in the bibliography
section for detailed proofs. The readers should, however, have some basic
knowledge in probability and statistics before reading this book.

Apart from the excellent classical text by Barlow and Proschan (1981),
Gertsbach (1989) is another good book on statistical reliability. There is an
excellent book on ageing, written from a Bayesian point of view, by Spizzichino
(2001). Also on dependence concepts and stochastic ageing, there is an excel-
lent book by Shaked and Shanthikumar (1994). On multivariate dependence
concepts, Joe (1997) has provided us an excellent monograph.

We hope that both reliability researchers and practitioners find the book
useful for reference and for some new ideas. This book will also be useful for
graduate students in reliability or applied probability.

This book is a summary of the work carried out by many people. It would
be too long a list if we acknowledge them one by one – most of the names
can be found in the reference list at the end of the book. We wish to thank,
in particular, Mr. John Kimmel of Springer who had guided us through the
whole project with much encouragement and professionalism. We also wish
to record our our sincere thanks to several anonymous reviewers for their
constructive comments. We appreciate very much the help from all of them,
and other colleagues and students of us.

C. D. Lai, Massey University, New Zealand
M. Xie, National University of Singapore, Singapore
September 2005
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Introduction

1.1 Aim and Scope of the Book

As the title suggests, the main aim of this book is to bring together different
facets of ageing concepts of the lifetime of a device or a system. An ageing
concept largely describes how a device ages with time. Though in most cases,
ageing has an averse effect on a ‘product’, there are some other cases in which
ageing is beneficial. These ageing concepts have a direct impact on the be-
haviors of two important reliability measures (i) the failure rate function and
(ii) the mean residual life function. These reliability measures are important
in maintenance planning, replacement planning, resource allocation and other
reliability related decisions.

Looking from another angle, these ageing concepts were defined in the first
place through the characteristics of these two named functions, especially their
shapes. Another important aspect of a reliability study is that components
of a system may not always be mutually independent so a description of how
two or more component lifetimes depend on one another may be of interest.
Further, it will be helpful to find some indices that quantify the degree or
strength of relationships between them (according to a defined concept such
as the linear dependence). Thus we will consider in this book some measures
of dependence that are relevant in reliability or survival analysis.

The present book provides a comprehensive treatment of both ageing and
dependence with the emphasis on reliability and survival analysis. Proofs of
many results are not given, but extensive references are provided, so interested
readers can refer to them. The book assumes a basic course in mathematical
statistics and some familiarity of the classical reliability text by Barlow and
Proschan (1981)“Statistical Theory of Reliability and Life Testing: Probability
Models”. It is intended that reliability researchers and practitioners may find
the book useful for reference and new ideas. This book will also be useful for
graduate students in reliability or applied probability.
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1.2 Brief Overview

Chapter 1 – Introduction

This chapter provides a bird’s eye view of the book which focuses on the
usefulness of ageing and dependence concepts in real life, particularly in reli-
ability engineering and survival analysis. We also give three lists of acronyms
and nomenclatures that will appear frequently throughout the book.

Chapter 2 – Concepts and applications of stochastic ageing

This chapter begins with defining the failure rate function (hazard rate) which
forms one of the pillars for reliability and survival analysis. We then introduce
various ageing concepts based on the reliability characteristics such as the fail-
ure rate function, survival function or the mean residual life function. Their
relative strengths are compared and a chain of relationships is given. Several
examples of lifetime distributions together with their ageing properties are
given. Special attention is given to discuss the ageing behavior of finite mix-
tures of life distributions. Partial orderings based on ageing concepts are also
introduced. The chapter ends with a discussion on some existing or potential
applications.

Chapter 3 – Bathtub shape life distributions

It is common for failure rate function (hazard rate) to have a bathtub shape.
This chapter presents theoretical and practical discussion on this and presents
several life distributions that can be used to model a bathtub curve. The
change point (turning point) of the bathtub shaped failure rate function is
also discussed as it plays an important role in establishing the optimal burn-
in time of a product. Applications of bathtub models are also indicated.

Chapter 4 – Mean residual lifetime (MRL)

This chapter focuses on the use of MRL, which is an important measure in
reliability applications. The traditional reliability analysis has been based on
the failure rate function, but usually it is the residual life that is of great inter-
est when one considers repair and replacement strategies. The former relates
only to the risk of immediate failure whereas the mean residual life summa-
rizes the entire remaining life distribution. We investigate how the shapes of
MRL are related to the shapes of the failure rate functions; these relation-
ships provide us a strategy to determine the optimal burn-in time and to
solve other maintenance problems. In addition to burn-in time determination,
the chapter also lists several other applications in diverse disciplines including
demography and social studies.
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Chapter 5 – Weibull and generalized distributions

The Weibull distribution is a generalization of the exponential distribution
that has no ageing. However, the Weibull distribution can only be used to
model increasing or decreasing failure rate distributions so it is not sufficiently
flexible. Various extensions or generalizations have been added in the reliabil-
ity literature to give rise to more flexible distributions. This chapter discusses
various properties of the Weibull distribution and its generalizations. Reliabil-
ity operations such as mixtures and formation of additive and multiplicative
systems from the Weibull family are also discussed.

Chapter 6 – Ageing concepts for discrete distributions

When the failure time is in the form of discrete measurement such as on–off
switching, a discrete distribution should be used. We review some common
discrete failure time models together with their discrete ageing properties. As
expected, most of these properties are analogous to their continuous counter-
parts. We also include an alternative definition of a failure rate which is closer
to the continuous time failure rate than the traditional definition of a discrete
failure rate.

Chapter 7 – Tests of ageing

An important problem in practice is to test the constant failure rate (hazard
rate) versus other forms of ageing property. Many tests have been proposed
in the past three decades and these tests will be discussed in this chapter.

Chapter 8 – Bivariate and multivariate ageing concepts

Univariate ageing concepts are generalized to bivariate and multivariate distri-
butions. Various versions are available for the same marginal ageing concepts.
Tests of bivariate ageing concepts are also briefly given. We also introduce the
Bayesian approach to multivariate ageing through majorization and Schur-
concavity of a joint survival function.

Chapter 9 – Dependence concepts and measures of dependence

Various types of dependence among two or more lifetime variables are consid-
ered. We pay a special attention to the so-called ‘positive dependence’ concept
such as ‘association’, positively quadrant dependent, etc. Several bivariate dis-
tributions with positive dependence property are given to illustrate the theory.
A chain of relations among positive ageing concepts is also presented.

Included also is a discussion of dependence orderings that give the relative
strength of dependence between two pairs of lifetime random variables with
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respect to the same concept. For example, we say F is more positively quad-
rant dependent than G if the joint survival function of the former dominates
the latter.

Various measures of dependence between two variables are available in
the literature, e.g., Pearson’s correlation, rank correlations, etc. We give an
overview of these measures and show how these numerical indices vary with
or are related to the dependence concepts.

Some local dependence measures, as opposed to the traditional global mea-
sures of dependence, are also introduced.

Chapter 10 – Reliability systems with dependent or independent
components

Further analysis of the use of stochastic dependence in reliability studies will
be presented. For example, dependence is common among the component
lifetimes of a system, thus it plays an important role in redundancy improve-
ment. In particular, we consider the reliability performance of parallel and
series systems of two components with dependent component lifetimes. We
discuss how the efficiency of redundancy is often determined by whether they
are positively or negatively dependent.

For a system with independent components, we examine whether active
spare allocation at the component level is superior (in some sense) to ac-
tive spare at the system level. We also compare two k-out-of-n systems with
different k or n using some partial ordering concepts.

Chapter 11 – Failure time data sets

We have collected 33 data sets of failure times or survival times which are
now given in this chapter. These data sets are arranged according to the
ageing classes they belong to. One of the primary aims of this chapter is to
illustrate the existence of real data sets that have either bathtub or upside-
down bathtub shaped failure rates. Also, the data may be a suitable testing
ground for sophisticated techniques that the original author did not think of.

1.3 Acronyms and Nomenclatures

In this book, we follow a general convention regarding the shape of a function.
We say that a function is increasing if it is nondecreasing. Similarly, we say a
function is decreasing if it is nonincreasing.

We now provide three lists of acronyms and nomenclatures: (i) general,
(ii) ageing concepts, and (iii) dependence concepts.
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Table 1.1. General List

B(a, b) The beta function of two parameters
cdf Cumulative distribution function
D A class of decreasing functions
E Expectation
E1(t) Exponential integral function
N Set of all integers
N+ Set of all positive integers
Γ(x) Gamma function
F (x) (Cumulative) distribution function
f(x) = F ′(x) Density function if exists
∈ Belongs to a class or in a class
H0 : Null hypothesis
H1 : Alternative hypothesis
I A class of increasing functions

I(a) =

{
0 if a ≤ 0
1, if a > 0 Indicator function

i.i.d. Independent and identically distributed
log Natural log (based on e)
MTTF Mean time to failure
µ Mean of lifetime variable (Mean time to failure)
µX Mean of the random variable X
µ′

k kth moment about the origin (zero)
pdf Probability density function
Pr(E) Probability of event E to occur
R Set of real numbers
R+ Set of positive real numbers
T Lifetime variable
τk|n System lifetime of a k-out-of-n system
X1, X2, ..., Xn Random sample from a population with distribution function F
X(1) < X(2) < ... < X(n) Order statistics from a sample of size n
Xi:n ith order statistic of a k-out-of-n system
[x] The largest integer that is less than or equal to x
[x]+ The largest positive integer that is less than or equal to x
X̄ Sample mean
Un U -statistic
var Variance
≤∗ Partial ordering with respect to an ageing characteristic *
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Table 1.2. Ageing Concepts and Dependence List

F̄ (t) = 1 − F (t) Survival function of a lifetime random varaible
F̄ (x| t) = F̄ (x + t)/F̄ (t) Conditional reliability of a unit of age t
F̄ (x, y) Joint survival function of X and Y
Fn(x) Empirical cdf
FX(x) (FY (y)) cdf of marginal random variable X (Y )
µ(t) Mean residual life function
MRL Mean residual life
µ(1) MTTF of the series system of two components
µ(2) MTTF of the parallel system of two components
R(·) Reliability function or survival function
r(t) Failure rate (hazard rate) function
T Lifetime random varaible
T1 Lifetime of a series system of two components
T2 Lifetime of a parallel system of two components
τ Change point
X Lifetime random varaible
IFR (DFR) Increasing (decreasing) failure rate
IFRA (DFRA) Increasing (decreasing) failure rate average
MBT Modified bathtub shaped
NBU (NWU) New better (worse) than used
NBUE (NWUE) New better (worse) than used in expectation
BT (UBT) Bathtub shaped (Upside-down bathtub shape)
DIMRL (IDMRL) Decreasing (increasing) then increasing

(decreasing) mean residual life.
NWBUE (NBWUE) New worse then better than used in expectation

(New better then worse than used in expectation)
DMRLHA Decreasing mean residual life in harmony average
DPRL-α(IPRL-α) Decreasing (Increasing) α-percentile residual life

Table 1.3. Dependence Concepts List

PQD (NQD) Positive (Negative) quadrant dependence
LTD (RTI) Left-tail decreasing (Right-tail increasing)
SI (alias PRD) Stochastically increasing (alias positively regression depen-

dent)
RCSI (LCSD) Right corner set increasing (Left corner set decreasing)
TP2 (alias LRD) Totally positive of order 2 (alias likelihood ratio dependent)
WPQD Weakly positive quadrant dependent
PDO Positive dependent ordering
RR2 Reverse regular of order 2
F̄ = 1 − F F̄ survival function, F cumulative distribution function
ρ Pearson product-moment correlation coefficient
τ Kendall’s tau
ρS Spearson’s rho
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Concepts and Applications of Stochastic
Ageing

2.1 Introduction

The concept of ageing is very important in reliability analysis. ‘No ageing’
means that the age of a component has no effect on the distribution of resid-
ual lifetime of the component. ‘Positive ageing’ (also known as ‘averse age-
ing’) describes the situation where residual lifetime tends to decrease, in some
probabilistic sense, with increasing age of a component. This situation is com-
mon in reliability engineering as components tend to become worse with time
due to increased wear and tear. On the other hand, ‘negative ageing’ has an
opposite effect on the residual lifetime. ‘Negative ageing’ is also known as
‘beneficial ageing’. Although this is less common, when a system undergoes
regular testing and improvement, there are cases for which we have reliability
growth phenomenon. Though we concentrate on positive ageing in this book,
it is being understood that a parallel development of negative ageing can also
be carried out.

Concepts of ageing describe how a component or system improves or dete-
riorates with age. Many classes of life distributions are categorized or defined
in the literature according to their ageing properties. An important aspect
of such classifications is that the exponential distribution is nearly always a
member of each class. The notion of stochastic ageing plays an important role
in any reliability analysis and many test statistics have been developed in the
literature for testing exponentiality against different ageing alternatives. Our
aim in this chapter is to provide an overview of these developments.

By ‘life distributions’ we mean those for which negative values do not
occur, i.e., F (x) = 0 for x < 0. The nonnegative variate X is thought of as
the time to failure (or death) of an electrical or mechanical component (or
organism), but other interpretations may be possible – an inter-event time is
normally necessarily positive.

In this chapter, we focus on classes of life distributions based on notions of
ageing–IFR (increasing failure rate) is perhaps the best-known, but we shall
meet several others also, and study their interrelationships whenever possible.
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The chapter may serve as a continuation of the ageing concepts developed in
the pioneering book Barlow and Proschan (1981), which was first printed by
Holt, Reinhart and Winston in 1975.

The major parts of the current chapter are devoted to

• Introducing different ageing characteristics,
• Classifications of life classes based on various ageing characteristics and

establishing their interrelationships,
• Failure rates of mixtures of distributions,
• Elementary properties of these life classes,
• Partial orderings of two life distributions based on comparison of their

ageing properties.

From the definitions of the life distribution classes, results may be derived
concerning such things as properties of systems (based upon properties of com-
ponents), bounds for survival functions, moment inequalities, and algorithms
for use in maintenance policies (Hollander and Proschan, 1984).

Most readers will know that statistical theory applied to distributions of
lifetime lengths plays an important part in both the reliability engineering
and the biometrics literature. We may also note a third applications area:
Heckman and Singer (1986) review econometric work on duration variables
(e.g., lengths of periods of unemployment, or time intervals between purchases
of a certain good), much of which, they say, has borrowed freely and often
uncritically from reliability theory and biostatistics.

Section 2.2 gives characterizations of lifetime distributions by their sur-
vival, failure rate or mean residual life functions. In Section 2.3, we list several
commonly used life distributions together with their basic properties. In Sec-
tion 2.4 we give formal definitions of ten basic ageing notions and their inter-
relationships together with a table of summary furnished with key references.
Section 2.5 discusses the properties of some of these basic ageing classes and
Section 2.6 is devoted to the non-monotonic failure rate classes such as the
bathtub and upside-down bathtub life distributions, which are important in
reliability applications. Section 2.7 briefly presents some additional but less
known ageing classes. In Section 2.8, we consider failure rates of mixtures of
life distributions. This has an important application in burn-in. Section 2.9
provides an introduction to partial ordering through which the strength of
the ageing property of the two life distributions within the same class is com-
pared. Section 2.10 considers briefly the matter of relative ageing of two life
distributions. Relative ageing is really a form of partial ordering. We discuss
in Section 2.11 how the relationship between the sth and the (s+1)th equilib-
rium distribution can be used to describe the relationship between the shape
of the failure rate and the shape of mean residual life function of a distribu-
tion. Finally in Section 2.12, we tidy up the loose ends on stochastic ageing
and the section ends with some remarks concerning future research directions
that may bridge the theory and applications.
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Abbreviations

The following table of acronyms and abbreviations will be a useful reference.
Although this has largely been given in Chapter 1, the list here gives a more
exhaustive coverage for ageing concepts.

Table 2.1. List of Ageing Class Abbreviations

Abbreviation Ageing Class
BT (UBT) Bathtub shape (Upside-down bathtub shape)
DMRL (IMRL) Decreasing mean residual life (Increasing mean residual life)
HNBUE Harmonically new better than used in expectation
(HNWUE) (Harmonically new worse than used in expectation)
IFR (DFR) Increasing failure rate (Decreasing failure rate)
IFRA (DFRA) Increasing failure rate average (Decreasing failure rate average)
L-class Laplace class of distributions
NBU (NWU) New better than used (New worse than used)
NBUE
(NWUE)

New better than used in expectation
(New worse than used in expectation)

NBUC New better than used in convex ordering
(NWUC) (New worse than used in convex ordering)
NBUFR New better than used in failure rate
(NWUFR) (New worse than used in failure rate)
NBUFRA New better than used in failure rate average
(NWUFRA) New worse than used in failure rate average
NBWUE New better then worse than used in expectation
(NWBUE) (New worse then better than used in expectation)

We note that NBUFRA is also known as NBAFR.

2.2 Characterizations of Lifetime Distributions

Rather than F (t), we often think of F̄ (t) = Pr(X > t) = 1 − F (t), which
is known as the survival function or reliability function. Here, X denotes the
lifetime of a component, i.e., time to first failure. The expected value of X is
denoted by µ. The function

F̄ (x | t) = F̄ (t + x)/F̄ (t), x, t ≥ 0, (2.1)

represents the survival function of a unit of age t, i.e., the conditional proba-
bility that a unit of age t will survive for an additional x units of time. The ex-
pected value of the remaining (residual) life, at age t, is µ(t) = E(X−t |X > t)
which may be shown to be

∫∞
0 F̄ (x | t) dx. It is obvious that µ(0) = µ.
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When F ′(t) = f(t) exists, we can define the failure rate (hazard rate or
force of mortality) of a component as

r(t) = f(t)/F̄ (t) (2.2)

for t such that F̄ (t) > 0. This can also be written as

r(t) = lim
∆→0

Pr(t ≤ X < t + ∆| t ≤ X)
∆

. (2.3)

Thus for small ∆, r(t)∆ is approximately the probability of a failure occurring
in (t, t + ∆] given no failure has occurred in (0, t].

It follows that, if r(t) exists, then

− log F̄ (t) =
∫ t

0
r(x) dx (2.4)

represents the cumulative failure (hazard) rate which may be designated by
H(t). Equivalently

F̄ (t) = exp
{

−
∫ t

0
r(x) dx

}
= exp {−H(t)} . (2.5)

A lifetime distribution can also be characterized by its mean residual life
(MRL) defined by

µ(t) = E(X − t |X > t) (2.6)

through

F̄ (t) =
µ

µ(t)
exp
{

−
∫ t

0
µ(x)−1 dx

}
, t ≥ 0. (2.7)

We will discuss MRL more fully in Chapter 4.
In short, a lifetime distribution may be characterized by F̄ (t), the con-

ditional survival function F̄ (x | t), r(t) or µ(t). In addition, Galambos and
Hagwood (1992) have shown that a life distribution may also be character-
ized by the second moment of the residual life E[(X − t)2 |X > t].

Remarks on terminology

Calling the function r(t) the failure rate in (2.2) could cause some confusion
if this terminology is not adequately explained. The confusion aries because
another ‘failure rate’ is also used by some authors in the context of a point
process of failures. We now follow the approach of Thompson (1981) to high-
light this confusion and attempt to provide a distinction between the two
concepts.

Let N(t) denote the number of failures in the interval (0, t]. Set M(t) =
EN(t) and let ξ(t) = M ′(t) and so ξ(t) is the instantaneous rate of change
of the expected number of failure with respect to time; thus we may call ξ(t)
the failure rate of the process.
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Another characteristic of interest in a failure process is

λ(t) = lim
∆→0

Pr[N(t, t + ∆) ≥ 1]
∆

. (2.8)

If λ(t) exists, then for small ∆, λ(t)∆ is approximately the probability of
failure in the interval (t, t + ∆]. Assuming the simultaneous failures do not
occur (which is true for most applications), ξ(t) = λ(t), if they exist.

Clearly, r(t) is not the same as λ(t) since the r(t)∆ as defined via (2.2)
is (approximately) a conditional probability of a failure in (t, t + ∆] whereas
λ(t)∆ is not conditional on the event prior to t.

Under the framework of a stochastic point process, Thompson (1981) dis-
cussed basic ways to characterize reliability. The distinction between the fail-
ure rate of a process, useful for repairable systems, and the failure rate of a
distribution, useful for nonrepairable systems is drawn.

In the point process literature, the failure rate of the process ξ(t) or λ(t)
is generally known as the intensity function. In reliability modeling, this is
sometimes called the ‘rate of occurrence of failure (ROCOF)’ for repairable
systems so that it is not to be confused with the traditional failure rate concept
for the lifetime distribution. For further discussion, see Ascher and Feingold
(1984).

Note that in the case of a homogeneous Poisson process, the failure rate
of the process is λ which is also the failure rate of the the exponential distri-
bution. We wish to emphasize here the ‘failure rate’ used in this book is the
failure rate of a life distribution F defined in (2.2); it is not the failure rate of
a point process of failures.

One of the reasons for our usage of the acronym ‘failure rate’ instead of
‘hazard rate’ in this book is that IHR (DHR) is rarely used in the literature
on classification of life distributions. The ‘near’ universal use of the ageing
notions such as IFR (DFR) is consistent with our choice in calling r(t) the
failure rate of a life distribution.

2.2.1 Shape of a Failure Rate Function

We assume that the failure rate function r(t) is a real-valued differentiable
function r(t) : R+ → R+. As usual, by increasing we mean nondecreasing and
by decreasing, we mean nonincreasing. r(t) is said to be

(1) strictly increasing if r′(t) > 0 for all t and is denoted by I;

(2) strictly decreasing if r′(t) < 0 for all t and is denoted by D;

(3) bathtub shaped if r′(t) < 0 for t ∈ (0, t0), r′(t0) = 0, r′(t) > 0 for t > t0,
and is denoted by BT;

(4) upside-down bathtub shaped if r′(t) > 0 for t ∈ (0, t0), r′(t0) = 0, r′(t) > 0
for t > t0, and is denoted by UBT;
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(5) modified bathtub shaped if r(t) is first increasing and then bathtub
shaped, and is denoted by MBT;

(6) roller-coaster shaped if there exist n consecutive change points 0 < t1 <
t2 < ... < tn < ∞ such that in each interval [tj−1, tj ], 1 ≤ j ≤ n + 1,
where t0 = 0, tn+1 = ∞, r(t) is strictly monotone and it has opposite
monotonicity in any two adjacent such intervals. For detailed description
of physical basis for the roller-coaster failure shaped failure rate, see Wong
(1988, 1989, 1991).

Remark 1: We wish to point out that the points at which the derivative of
the failure rate function r(t) or the mean residual life function µ(t) changes
sign are called the ‘change points’ in this book. The term ‘change point’ is
used in a different context in the statistical literature.
Remark 2: Some authors include r(t) = constant in the middle interval for
their definitions of BT and UBT. We will incorporate this more general and
yet more realistic definition in Chapter 3.
Remark 3: A MBT shape may be considered as a curve increases at the
beginning and then follows a bathtub shape, see for example, Gupta and
Warren (2001). So a MBT curve can be considered as a roller-coaster curve.
Remark 4: The roller-coaster failure rate curve was first promoted by Wong
(1989) who observed that the failure rates of many electronic systems have
generally decreasing failure rates with failure humps on them. Thus, these
failure rate curves manifested a roller-coaster shape. However, we have yet to
find any published failure rate data of this shape that can be used for our
study. Further, there is no well-known lifetime distribution that we know of
which has a failure rate function that exhibits this shape.

It is convenient to extend the above shape definitions to an arbitrary func-
tion. To that end, we say that a function g ∈ I, D, BT, UBT or MBT accord-
ingly as its shape has the appropriate characteristics. For example, g ∈ BT
means that g is first decreasing and then increasing.

Many of the failure rate functions have complex expressions because of the
integral in the denominator and thus the determination of the shape is not
straightforward. Glaser (1980) presented a method to determine the shape of
r(t) with at most one turning point. His method uses the density function
instead of the failure rate.
Note: A turning point of a function is a point at which the function has a
local maximum or a local minimum.

Define

η(t) = −f ′(t)
f(t)

. (2.9)

We will see later that this eta function plays an important role in our study
of the failure rate function r(t).
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The relationships between r(t) and η(t) are given by

d

dt
log r(t) = r(t) − η(t) (2.10)

and [
1

r(t)

]′
=

η(t)
r(t)

− 1. (2.11)

Here we obviously assume that f(t) is a twice differentiable positive density
function on (0,∞).

The above equations also suggest that the turning point of r(t) is a solution
of the equation η(t) = r(t). We can also verify that limt→∞ r(t) = limt→∞ η(t).

Theorem 2.1: (Glaser, 1980). Let η(t) be defined as in (2.9).

(a) If η(t) ∈ I, then r(t) is of type I.

(b) If η(t) ∈ D, then r(t) is of type D.

(c) If η(t) ∈ BT and (i) if there exists a y0 such that r′(y0) = 0, then r(t) is
of type BT and (ii) otherwise r(t) is of type I.

(d) If η(t) ∈ UBT and (i) if there exists a y0 such that r′(y0) = 0, then r(t)
is UBT and (ii) otherwise r(t) is of type D.

Proof: Define the reciprocal of the failure rate by

g(t) = 1/r(t) = R(t)/f(t). (2.12)

It follows that its derivative given in (2.11) may be written as

g′(t) = g(t)η(t) − 1 (2.13)

where η(t) is defined as above. Without going into detail, it can be shown
that

g′(t) =
∫ ∞

t

[f(y)/f(t)][η(t) − η(y)] dy. (2.14)

(It has been pointed out that the preceding equation implicitly requires that
f ′(t) be integrable at infinity).

We can now proceed to prove the theorem.

(a) The assumption that η′(t) > 0 for all t > 0 implies, from (2.14), that
g′(t) < 0 for all t > 0, which from (2.12), implies r(t) ∈ I.

(b) η′(t) < 0 ⇒ g′(t) > 0 for all t > 0 so r(t) ∈ D.
(c)(i) Let t0 be the change point of η so that η′(t0)=0. Claim g′′(y0) < 0. Since

g′(y0) = 0, it follows from (2.13) that g′′(y0) = g(y0)η′(y0). Therefore,
g′′(y0) < 0 ⇔ η′(y0) < 0 ⇔ y0 < t0. Suppose y0 ≥ t0. By (2.14) and
the assumption, it is obvious that g′(t) < 0 for all t > t0. Therefore,
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g′(y0) < 0, which is a contradiction. Thus y0 < t0 and g′′(y0) < 0. It is
now obvious that there is a unique root in (0,∞) to g(y) = 0, i.e., y = y0,
and g attains a maximum at this point. This implies r(t) ∈ BT with the
turning point t∗ = y0.

(c)(ii) Here we have either g′(t) > 0 for all t > 0 or g′(t) < 0 for all t > 0.
From (2.14) we have that g′(t) < 0 for all t ≥ t0. Therefore g′(t) < 0 for
all t > 0 so r(t) ∈ I.

(d) The proof is analogous to that of (c) and will be omitted here.

It is noted in Glaser (1980) that in the last two cases, determining the
existence of y0 leaves us with the original difficulty of evaluating the derivative
of r(t). However, we may simplify the problem in many situations with the
following lemma.

Lemma 2.1: Let ε = lim
t→0

f(t) and δ = lim
t→0

g(t)η(t), where g(t) = 1/r(t).

• Suppose η ∈ BT, then
(a) if either ε = 0 or δ < 1, then r(t) ∈ I.
(b) if either ε = ∞ or δ > 1, then r(t) ∈ BT.

• Suppose η ∈ UBT, then
(a) if either ε = 0 or δ < 1, then r(t) ∈ UBT.
(b) if either ε = ∞ or δ > 1, then r(t) ∈ D.

Gupta (2001) used Glaser’s theorem to determine the shapes of several
lifetime distributions that include the lognormal, inverse Gaussian, mixture of
inverse Gaussians, power quadratic exponential families, mixture of gammas,
etc.

In the proof of Theorem 2.1 above, Glaser showed that the change point
of r(t) occurs before the change point of η(t). This finding has an important
impact on the relationship between the shape µ(t) and that of r(t). We will
follow up this matter in Section 4.5.

Extension of Glaser’s Result

Gupta and Warren (2001) generalized the result of Glaser to the case where
r(t) has two or more turning points. To achieve this, they first gave the fol-
lowing theorem which relates the turning points of r(t) with those of η(t).

Theorem 2.2: Let η(t) defined as on (2.9), i.e., η(t) = − f ′(t)
f(t) and f(t) is a

twice differentiable positive density on (0,∞). If η′(t) has zeros at z1, z2, ...., zn

(n finite) such that z1 < z2 <, ...., < zn, then the the equation r′(t) = 0 has
at most one solution on [zk−1, zk] for k = 1, ..., n with z0 = 0. Thus r(t) has
at most n changes of monotonicity.
Proof: It follows from (2.14) that

g′(t)f(t) =
∫ ∞

t

f(y)[η(t) − η(y)] dy.
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Since f(t) > 0 for all t > 0, the sign and zeros of g′, and therefore of r′, are
completely determined by the integral of the right side of the equation. We
next designate this integral by

s(t) =
∫ ∞

t

f(y)[η(t) − η(y)] dy. (2.15)

We note that the zeros of s are precisely the critical (change) points of r. It
can be verified that s′(t) = η′(t)F̄ (t) so both the sign and zeros of s′ and η′

are the same. That is, both have identical monotonicity.
By the given assumption, η is monotonic on [zk−1, zk]. Since s and η have

identical monotonicity, s is monotonic on each interval [zk−1, zk], such that the
expression s(t) = 0 has at most one solution on that interval. Using the fact
that the zeros and sign of r′ are determined by s, we conclude that r′(t) = 0
has at most one solution on [zk−1, zk]. Thus the proof is completed.

The following theorem of Gupta and Warren (2001) is a generalization of
Glaser (1980) and is useful when the shape of η is known and the number of
critical points of r is known.

Theorem 2.3:

1. Suppose η ∈ UBT. Then
(a) If r′ has no zeros, then r(t) ∈ I.
(b) If r′ has one zero, then r(t) is strictly increasing except at one point

or r(t) ∈ B.
(c) If r′ has two zeros, then r(t) ∈ BT.

2. Suppose η is bathtub then upside-down bathtub. Then
(a) If r′ has no zeros, then r(t) ∈ I.
(b) If r′ has one zero, then r(t) is strictly decreasing except at one point

or r(t) ∈ UBT.
(c) If r′ has two zeros, then r(t) is bathtub then upside-down bathtub.

Proof: See Gupta and Warren (2001).
The Glaser’s extension will be applicable when considering the gamma

mixtures with common scale parameter in Section 2.8.

2.3 Ageing Distributions

There are many lifetime distributions that have been proposed. Below are a
selected few that have appeared more frequently in the literature. We do not
think a comprehensive study of these distributions is warranted in the current
text as most of them can be found in Johnson et al. (1994, 1995). Thus, only
basic properties that are related to reliability are briefly given below. Several
of these distributions will be further studied within an appropriate context
throughout Chapters 3–5.
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2.3.1 Exponential

The exponential (or negative exponential) distribution is applied in a very
wide variety of statistical procedures. Currently among the most prominent
applications are in the field of life-testing. The density function is

f(t) = λe−λt, λ > 0, t ≥ 0 (2.16)

and
F̄ (x | t) = F̄ (x), for all x, t ≥ 0

which means that its survival probability over an additional period of duration
x is the same regardless of its present age. It describes a component that does
not age with time. In case where such a simple structure is not adequate, a
modification of the exponential distribution (often a Weibull distribution) is
then used.

Also, it has a constant failure rate, i.e., r(t) = λ, for all t ≥ 0.
The exponential distribution is a special case of the gamma, Weibull, Gom-

pertz, linear failure rate and the exponential-geometric distributions to be
presented below. It is a common member of nearly every known ageing class.
It plays an important role in tests of stochastic ageing which will be discussed
in Chapter 7. Lastly, we note that

E(X) =
1
λ

, var(X) =
α

λ2 .

In general, the rth moment about zero is

µ′
r =

Γ(r + 1)
λr

.

2.3.2 Gamma

The density function of a standard two-parameter gamma distribution is

f(t) =
λαtα−1

Γ(α)
e−λt, α, λ > 0. (2.17)

If α = 1, (2.17) reduces to an exponential distribution discussed above. In fact,
the gamma distribution can be constructed from the exponential by taking
powers of the Laplace transform of the latter. If α is a positive integer, we
have an Erlang distribution. Moreover, if α = ν/2, we obtain a chi-square
distribution with ν degrees of freedom.

The gamma distribution appears naturally in the theory associated with
normally distributed random variables as the distribution of the sum of
squares of independent standard normal variables.

For general α, the distribution function does not have a closed form. How-
ever, when α is a positive integer, F (t) may be written in a closed form as
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F (t) = 1 −
α−1∑
i=0

(λt)i

i!
e−λt, for t ≥ 0. (2.18)

The rth moment about zero of the gamma distribution is

µ′
r =

Γ(α + r)
λrΓ(α)

, r = 1, 2, ....

In particular,

E(X) =
α

λ
, var(X) =

α

λ2 .

It can be shown, by a change of variable, that

r(t)−1 =
∫ ∞

0

(
1 +

u

t

)α−1
e−λudu.

It follows that r(t)−1 is increasing for 0 < α ≤ 1, decreasing for α ≥ 1. Thus
r(t) is increasing for α ≥ 1 and decreasing for 0 < α ≤ 1. The shape of r(t)
can be determined through Glaser’s eta function easily since

η(t) = −f ′(t)
f(t)

= λ − α − 1
t

. (2.19)

Here η is increasing for α > 1, constant for α = 1, and decreasing for 0 < α < 1
and thus the shape of r(t) is confirmed as stated above.

We refer the reader to Johnson et al. (1994, Chapter 17) for other facets
of this well known lifetime distribution.

Mixtures of gamma distributions will be considered in Section 2.8.2.

2.3.3 Truncated Normal

The density function of a (positively) truncated normal is given by

f(t) =
1

aσ
√

2π
e−(t−µ)2/2σ2

, for 0 ≤ t < ∞, (2.20)

where σ > 0, −∞ < µ < ∞, a =
∫∞
0 (1/σ

√
2π)e−(t−µ)2/2σ2

dt.
The mean is

E(X) = µ +
σφ
(−µ

σ

)
1 − Φ

(−µ
σ

) = µ +
σφ
(−µ

σ

)
a

where φ(·),Φ(·) are, respectively, the density and distribution function of the
standard normal random variable. Here µ is the mean of the normal distrib-
ution. Clearly, E(X) > µ and var(X) < σ2. If µ − 3σ 	 0, then a is close to
1 and E(X) ∼= µ and var(X) ∼= σ2.
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Davis (1952), after examining failure data for a wide variety of items, has
shown empirically that items manufactured and tested under close control
may be fitted with truncated normal life distributions of the form (2.20).

We note that

log f(t) = − log(aσ
√

2π) − (t − µ)2

2σ2 , t ≥ 0 (2.21)

is a concave function on [0,∞) and thus F is IFR (Barlow and Proschan,
1981, p. 77).

Though the expression for r(t) is complicated, Navarro and Hernandez
(2004) noted that the following:

1. r′(t) = (r(t) − (t − µ)/σ2)r(t),
2. r(t) > (t − µ)/σ2,
3. r(t) increases to ∞ as t → ∞,
4. lim

t→∞ r′(t) = 1/σ2,

and other properties.
The distribution here is a singly truncated normal from below. We note

that various other types of normal truncations have been investigated (see,
e.g., Johnson et al. (1994, pp. 156-162).

2.3.4 Weibull

The Weibull distribution is named after the Swedish physicist Waloddi
Weibull, who in 1939 used it to represent the distribution of the breaking
strength of materials and in 1951 for a variety of other applications. It is
perhaps the most frequently used lifetime model in the reliability literature.
Hallinan (1993) gave a comprehensive review of its properties and applica-
tions. Chapter 21 of Johnson et al. (1994) is devoted to this distribution.
A recent monograph by Murthy et al. (2003) gives nearly every facet re-
garding Weibull and its related distributions. The survival function of the
two-parameter Weibull is

F̄ (t) = exp{−(λt)α}, α, λ > 0. (2.22)

When α = 1, the Weibull distribution reduces to an exponential distrib-
ution. In fact, if X has an exponential distribution with parameter 1, then
X1/α/λ has the survival function (2.22).

The rth moment about the zero of the Weibull distribution is

µ′
r =

Γ
(

r
α + 1

)
λr

.

In particular, the mean and variance are, respectively,
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E(X) =
1
λ

Γ
(

1
α

+ 1
)

,

var(X) =
1
λ2

{
Γ
(

2
α

+ 1
)

− Γ
(

1
α

+ 1
)2
}

.

An important characteristic of the Weibull distribution is that its failure
rate r(t) has a simple form:

r(t) = αλ(λt)α−1. (2.23)

It follows that r(t) is increasing in t for α ≥ 1 and decreasing for α ≤ 1.
Mixtures of the Weibull distribution are considered in Section 2.8 below.

A more detailed study on the Weibull and its related distributions will be
given in Chapter 5.

2.3.5 Lognormal

The lognormal distribution is sometimes called the antilognormal distribution.
This alternative name has some logical basis in that it is not the distribution
of the logarithm of a normal variable (this is not even always real) but of
an exponential (that is, antilogarithm) function of such a variable. In other
words, if log X has a normal distribution, then X is said to have a lognormal
distribution. However, ‘lognormal’ is most commonly used and we will follow
this practice.

The cdf of the lognormal distribution is given by

F (t) = Φ
{

log t − α

σ

}
, σ > 0, t ≥ 0, (2.24)

where Φ(·) denotes the standardized normal distribution function. The density
function is

f(t) = (t
√

2πσ)−1 exp[−(log t − α)2/2σ2], t ≥ 0. (2.25)

The rth moment of X about the origin is

µ′
r = exp

(
rα +

1
2
r2σ2

)
.

The failure rate function of the lognormal has been shown as

r(t) =
(1/

√
2πtσ) exp

{−(log at)2/2σ2
}

1 − Φ {log(at)/σ} , (2.26)

where a = e−α .
Although the expression of r(t) is quite complicated, η(t) is however quite

simple, namely,
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η(t) = −f ′(t)
f(t)

=
1

σ2t
(σ2 + log t − α). (2.27)

An application of Glaser’s theorem shows that r(t) is UBT. Also, limt→0 r(t) =
0 and limt→∞ r(t) = 0 (Sweet, 1990). For estimation of the change point, see
Gupta et al. (1997).

Chapter 14 of Johnson et al. (1994) gives a full discussion on this dis-
tribution. Its failure rate and mean residual life will be discussed further in
Chapter 3 and Chapter 4, respectively.

2.3.6 Birnbaum-Saunders

Birnbaum and Saunders (1969a,b) introduced a lifetime distribution

F (t) = Φ

{
1
α

·
[(

t

β

)1/2

−
(

t

β

)−1/2
]}

= Φ
{

1
α

ξ

(
t

β

)}
, t > 0, (2.28)

where ξ(t) = t1/2 − t−1/2, α, β > 0 and Φ(·) denotes the cdf of the standard
normal. The density function is given by

f(t) = (αβ)−1(2π)−1/2ξ′
(

t

β

)
exp
{

− 1
2α2 ξ2

(
t

β

)}
, t > 0. (2.29)

Desmond (1986) noted that in this distributional form, derived by Birnbaum-
Saunders (1969a,b), had been previously obtained by Freudenthal and Shi-
nozuka (1961) with a somewhat different parametrization.

The random variable X that corresponds to (2.28) is a simple transforma-
tion of the the standard normal variable

X = β

[
1
2Uα +

√
( 1
2Uα2) + 1

]2
.

The above variable arises from a model representing the time to failure of
material subject to a cyclically repeated stress pattern.

It can be shown that X has a Birnbaum-Saunders distribution if

1
α

(√
X

β
−
√

β

X

)
(2.30)

has a standard normal. From this expression, Chang and Tang (1994a,b) pro-
posed a simple random variate generating algorithm for this distribution.

Surprisingly, the mean and variance of X are quite simple. These are given,
respectively, by
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E(X) = β

(
1
2
α2 + 1

)
, var(X) = β2α2

(
5
4
α2 + 1

)
.

The failure rate function r(t) cannot be given explicitly. Since both the log-
normal distribution and the Birnbaum-Saunders distribution can be derived
from the normal distribution, we expect a similarity between the two in this
respect. Indeed, a comparison between the failure rates of the Birnbaum and
Saunders and the lognormal distribution was given in Nelson (1990). While
the failure rate of Birnbaum and Saunders is zero at t = 0, then increases to
a maximum for some t0 and finally decreases to a finite positive value (i.e.,
r(t) ∈ UBT) when β = 1 and α > 0.8, the failure rate of the lognormal also
has a UBT shape but decreases to zero. It was shown in Chang and Tang
(1993) that r(t) ∈ I when α → 0. Some recent work on this distribution
can be found in Dupuis and Mills (1998), Rieck (1999) and Ng et al. (2003).
The last discussed the maximum likelihood estimates and a modification of
the moment estimates of the two parameters, and proposed a bias-correction
method for these estimates. See Chapter 33 of Johnson et al. (1995) for a
more detailed discussion on the properties of this distribution.

2.3.7 Inverse Gaussian

The name ‘inverse Gaussian’ was first applied to a certain class of distributions
by Tweedie (1947), who noted the inverse relationship between the cumulant
generating functions of these distributions and those of Gaussian (normal)
distributions. The same class of distributions was derived by Wald (1947)
as an asymptotic form of average sample number in sequential analysis and
hence the distribution is also known as the Wald distribution. The inverse
Gaussian distribution was popularized as a lifetime model by Chhikara and
Folks (1977).

The density function of the inverse Gaussian is

f(t) =

√
λ

2πt3
· exp

[
− λ

2µ2t
(t − µ)2

]
, λ > 0, t ≥ 0. (2.31)

The corresponding distribution function is

F (t) = Φ

{√
λ

t

(
t

µ
− 1
)}

+ e2λ/µΦ

{
−
√

λ

t

(
t

µ
+ 1
)}

. (2.32)

The mean and variance of the distribution are, respectively,

E(X) = µ, var(X) =
µ3

λ
.

Again, the expression for r(t) is quite complicated. However, one can verify
easily that
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η(t) =
3µ2t + λ(t2 − µ2)

2µ2t2
. (2.33)

It follows from Theorem 2.1 that that r(t) is UBT. Further, limt→0 r(t) = 0
and limt→∞ r(t) = c �= 0.

For further properties see Chhikara and Folks (1989) and Chapter 15 of
Johnson et al. (1994).

2.3.8 Gompertz

Gompertz (1825) derived possibly the earliest probability model for human
mortality. He postulated that “the average exhaustion of a man’s power to
avoid death to be such that at the end of equal infinitely small intervals
of time he lost equal portions of his remaining power to oppose destruction
which he had at the commencement of these intervals.” From this hypothesis
Gompertz deduced the force of mortality or the failure rate function as

r(t) = Bct, t ≥ 0, B > 0, c ≥ 0, (2.34)

which, when solved as a differential equation, yields the survival function as

F̄ (t) = e−B(ct−1)/ log c, t ≥ 0. (2.35)

The density function is easily obtained as

f(t) = Bcte−B(ct−1)/ log c, t ≥ 0, B > 0, c ≥ 0. (2.36)
It is clear that r(t) increases (decreases) in t if c > 1 (c < 1). For c = 1,

r(t) = B showing that the Gompertz distribution includes the exponential as
its special case.

In discussing reliability theory of ageing and longevity, Gavrilov and
Gavrilova (2001) stated that while the Weibull distribution is more commonly
applicable for failure times of technical devices, the Gompertz distribution is
more common for biological systems.

2.3.9 Makeham

The survival function of the Makeham distribution is

F̄ (t) = exp[−αt + (β/λ)(eλt − 1)], t ≥ 0, α, β, λ > 0, (2.37)

and its failure rate function is

r(t) = α + βeλt. (2.38)

It is clear that r(t) ∈ I.
In the literature, the Makeham distribution is more often called the

Gompertz-Makeham distribution. It is a generalization of the Gompertz dis-
tribution. Letting c = e in (2.35), we clearly obtain a special case of (2.37).
This distribution is widely used in life insurance, mortality studies and sur-
vival analysis in general. For a brief review, see Al-Hussaini et al. (2000).
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2.3.10 Linear Failure Rate

The survival function of the linear failure rate function is given by

F̄ (t) = exp{−λ1t − λ2t
2/2}, λ1, λ2, t ≥ 0 (2.39)

with
r(t) = λ1 + λ2t. (2.40)

The linear failure rate distribution aries often in reliability literature prob-
ably because of its simple form.

This simple two-parameter model in the IFR class is a simple special case of
the quadratic failure rate model (see Section 3.4.1) and a generalization of the
exponential distribution in a direction distinct from the gamma and Weibull
discussed in this section. While, in the IFR case, both gamma and Weibull
require the failure rate to be zero at t = 0, the linear failure rate model has
r(0) = λ1 > 0, thus providing a gentler transition from the constant failure
rate to the strict IFR property.

The linear failure rate distribution was motivated by its application to
human survival data (Kodlin, 1967, Carbone et al., 1967). Its properties have
been studied by several authors, notably Bain (1974) and Sen and Bhat-
tacharyya (1995).

A basic structural property of the linear failure rate distribution of the
minimum of two independent variables X1 and X2 having exponential (λ1)
and Rayleigh (λ2) distributions whose survival functions are given above. This
series structure provides a physical motivation in the framework of competing
risks.

We will study the mixture of two linear failure rate distributions in Section
2.8.4.

2.3.11 Lomax Distribution

The Lomax distribution is also known as the Pareto of the second kind. The
distribution may arise as a mixture distribution. Suppose X has an exponen-
tial distribution with parameter λ having density function

g(x) =
1

βαΓ(α)
xα−1e−x/β , x ≥ 0,

then the resulting unconditional survival function of X is given by

F̄ (t) = (1 + βt)−α. (2.41)

The λ here may be considered as the operating environment of a compo-
nent which varies according to a gamma distribution.

We can easily verify that



24 2 Concepts and Applications of Stochastic Ageing

E(X) =
1

β(α − 1)
, α > 1

and
var(X) =

α

(α − 1)2(α − 2)
, α > 2.

The failure rate function is given by

r(t) =
(α + 1)β
1 + βt

. (2.42)

It is easy to see that r(t) ∈ D .
The special case β = 1 corresponds to the Burr XII distribution with

c = 1, k = α (see below).

2.3.12 Log-logistic

The probability density function and the survival function are, respectively,
given by

f(t) =
kρ(ρt)k−1

[1 + (ρt)k]2
, t > 0, ρ > 0, k > 0, (2.43)

F̄ (t) =
1

1 + (ρt)k
. (2.44)

The rth moment about zero of the log-logistic distribution is

µ′
r =

1
kρ

B
( r

k
, 1 − r

k

)
.

It is easy to verify that the failure rate function is

r(t) =
kρ(ρt)k−1

1 + (ρt)k
. (2.45)

It can be shown easily that r(t) ∈ D when k ≤ 1; r(t) ∈ UBT when k > 1.
The turning point of the failure rate function is given by

t∗ =
(k − 1)1/k

ρ
.

The log-logistic distribution has proved to be quite useful in analyzing
survival data, see, e.g., Cox (1970), Cox and Oakes (1984), Bennett (1983),
O’Quigley and Struthers (1982), and Gupta, Akman and Lvin (1999). Note
that when the scale parameter ρ = 1, the log-logistic is also a special case of
Burr XII below.
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2.3.13 Burr XII

The Burr XII distribution was first introduced by Burr (1942). It includes
the exponential, Weibull, and log-logistic distributions for particular limiting
values of the parameters. Rodriguez (1977) and Tadikamalla (1980) explored
in great detail the connection between the Burr XII distributions and other
continuous distributions. Zimmer et al. (1998) and Ghitany and Al-Awadhi
(2002) have discussed properties and reliability applications of Burr XII dis-
tribution having reliability function

F̄ (t) =
1

(1 + tc)k
, k, c > 0, t > 0. (2.46)

The corresponding density function is

f(t) =
kctc−1

(1 + tc)k+1 .

For c = 1, it becomes the Pareto distribution of the second kind (the Lomax).
The rth moment about zero of the Burr XII distribution is given by

µ′
r = k

[
B
(
k − r

c
, 1 +

r

c

)]
, k >

r

c
,

where B(p, q) is the beta function defined by B(p, q) =
∫ 1
0 tp−1(1 − t)q−1 dt;

so

µ = k

[
B

(
k − 1

c
, 1 +

1
c

)]
and

var(X) = k

[
B

(
k − 2

c
, 1 +

2
c

)]
− µ2.

It is easy to verify that

r(t) =
kctc−1

(1 + tc)
, (2.47)

and

r′(t) =
ctt−2(c − 1 − tc)

(1 + tc)2
. (2.48)

For c ≤ 1, the slope is always negative, for c > 1 the slope is positive for
tc < c − 1 and negative for tc > c − 1. Thus r(t) is D for c ≤ 1 and UBT if
c > 2. The maximum failure rate occurs at t = (c − 1)1/c.

Zimmer et al. (1998) have also shown that the Burr XII can approxi-
mate several useful reliability distributions (a fact that we have noted above).
Watkins (1999) gave an algorithm for calculating the maximum likelihood es-
timates of the three-parameter Burr XII distribution. The algorithm exploits
the link between this distribution and the two-parameter Weibull distribution,
which merges as the limiting case of the former.



26 2 Concepts and Applications of Stochastic Ageing

2.3.14 Exponential-geometric (EG) and Generalization

The exponential-geometric distribution is a special case of Marshall and
Olkin’s (1997) family of exponential distributions. The current name was ap-
parently coined by Adamidis and Loukas (1998) who along with Marshall and
Olkin (1997) studied its properties in detail.

The distribution may be obtained by compounding (mixing) an exponen-
tial distribution with a geometric distribution. The density function is

f(t) = λ(1 − p)e−λt(1 − pe−λt)−2, λ > 0, 1 < p < 1. (2.49)

Here, λ is the scale parameter of an exponential distribution whereas p is the
proportion parameter of the geometric distribution. The reliability function
is given by

F̄ (t) = (1 − p)e−λt(1 − pe−λt)−1, t > 0 (2.50)

and thus the failure rate function for the EG distribution is

r(t) = λ(1 − pe−λt)−1. (2.51)

It is easy to see that the above failure rate function is decreasing in t although
the DFR property also follows from the results of Proschan (1963) on mixture.
The initial failure rate r(0) = β(1−p)−1 and the long-term failure rate r(∞) =
λ which are both finite. In contrast, the failure rate of the Weibull distribution
has r(0) = ∞ and r(∞) = 0 when the shape parameter α < 1. So the EG
distribution could be an attractive alternative to the Weibull in the case when
the long-term failure rate is finite.

The rth moment about zero is given by

µ′
r = (1 − p)r!(λrp)−1L(p; r),

where L(p; r) =
∑∞

j=1 pjj−r is the polylogarithmic function which can be
evaluated easily.

Adamidis and Loukas (1998) have considered the maximum likelihood es-
timates of the parameters p and λ and they gave an EM algorithm for the
computation of these estimates.

As mentioned above, the EG distribution is a special case of the Marshall
and Olkin (1997) family of distributions obtained by adding a parameter to
the original survival function Ḡ(t) such that

F̄ (t) =
βḠ(t)

1 − (1 − β)Ḡ(t)
, −∞ < t < ∞, 0 < β < ∞. (2.52)

For our purpose, we consider only lifetime random variables so t > 0.
The case Ḡ(t) = exp(−λt) was studied in detail, in particular, it was shown

that
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E(X) = − β log β

λ(1 − β)
,

and

mode(X) =
{

0, β ≤ 2 :
λ−1, β ≥ 2.

The failure rate function is

r(t) = λ(1 − (1 − β)e−λt)−1

which is decreasing in t for 0 < β < 1 and increasing in t for β > 1.
For β = 1 − p < 1, it reduces to the EG distribution discussed above. If

β = 1, it becomes the exponential distribution. In view of its flexility, it is
conceivable that this 2-parameter family of distributions may sometimes be a
competitor to the Weibull and gamma families.

The case where Ḡ(t) = exp{−(λt)α} will be considered in Section 5.5 as
an extended Weibull distribution.

2.4 Basic Concepts for Univariate Reliability Classes

2.4.1 Some Acronyms and Notions of Aging

The concepts of increasing and decreasing failure rates for univariate distrib-
utions have been found very useful in reliability theory. The classes of distri-
butions having these ageing properties are designated as the IFR and DFR
distributions, respectively, and have been extensively studied. Other classes
such as ‘increasing failure rate on average’ (IFRA), ‘new better than used’
(NBU), ‘new better than used in expectation’ (NBUE), and ‘decreasing mean
residual life’ (DMRL) have also been of much interest. For fuller accounts
of these classes see, e.g., Bryson and Siddiqui (1969), Barlow and Proschan
(1981), and Hollander and Proschan (1984).

A class that slides between NBU and NBUE, known as ‘new better than
used in convex ordering’ (NBUC), has also attracted some interest recently.

The notion of ‘harmonically new better than used in expectation’ (HN-
BUE) was introduced by Rolski (1975) and studied by Klefsjö (1981, 1982).
Further generalizations along this line were given by Basu and Ebrahimi
(1984a). A class of distributions denoted by L has an ageing property that
is based on the Laplace transform, and was put forward by Klefsjö (1983c).
Deshpande et al. (1986) used stochastic dominance comparisons to describe
positive ageing and suggested several new positive ageing criteria based on
these ideas – see their paper and Section 2.7 for details. Two further classes,
NBUFR (‘new better than used in failure rate’) and NBUFRA (‘new better
than used in failure rate average’) require the absolute continuity of the dis-
tribution function, and have been discussed in Loh (1984a,b), Deshpande et
al. (1986), Kochar and Wiens (1987), and Abouammoh and Ahmed (1988).
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We are now ready to give formal definitions of ten basic reliability classes.
Some of the ageing classes in this group are by no means the most impor-
tant ones ones in terms of their applications. Some members are selected for
historical reasons.

2.4.2 Definitions of Reliability Classes

Most of the reliability classes are defined in terms of the failure rate r(t),
conditional survival function F̄ (x | t) = F̄ (x+t)

F̄ (x) , or the mean residual life µ(t).
All these three functions provide probabilistic information on the residual
lifetime and hence ageing classes may be formed according to the behavior of
the ageing effect on a component.

The ten reliability classes mentioned above are defined as follows.

Definition 2.1: F is said to be IFR if F̄ (x | t) is decreasing in 0 ≤ t < ∞
for each x ≥ 0. It is a decreasing failure rate (DFR) distribution if F̄ (x | t) is
increasing in t. F is IFR (DFR) iff − log F̄ (t) is convex (concave). When the
density exists, IFR (DFR) is equivalent to r(t) = f(t)/F̄ (t) being increasing
(decreasing) in t ≥ 0 (Barlow and Proschan, 1981, p. 54).

Definition 2.2: F is said to be IFRA if −(1/t) log F̄ (t) is increasing in t ≥ 0.
This is equivalent to F̄ (αt)≥ F̄α(t), 0 < α < 0, t ≥ 0 (Barlow and Proschan,
1981, p. 84). (The latter is equivalent to − log F̄ (t) being a star-shaped func-
tion; i.e., − log F̄ (αt) ≤ −α log F̄ (t). For more information about this notion,
see Dykstra, 1985.) It is also equivalent to

∫ t

0 r(t) dx/t increasing in t ≥ 0,
because of the fact that − log F̄ (t) = H(t) =

∫ t

0 r(x) dx. It is a decreasing
failure rate in average (DFRA) distribution if −(1/t) log F̄ (t) is decreasing in
t ≥ 0 or F̄ (αt) ≤ F̄α(t) for all 0 < α < 1.

Definition 2.3: F is said to be DMRL if the mean remaining life func-
tion µ(t) =

∫∞
0 F̄ (x | t) dx is decreasing in t, i.e., µ(s) ≥ µ(t) for 0 ≤ s ≤ t.

In other words, the older the device is, the smaller is its mean residual life
(Bryson and Siddiqui, 1969). Similarly, F is said to be IMRL if µ(s) ≤ µ(t)
for 0 ≤ s ≤ t.

Definition 2.4: F is said to be new better than use (NBU) if F̄ (x | t) ≤ F̄ (x),
i.e., F̄ (x + t) ≤ F̄ (x)F̄ (t) for x, t ≥ 0. This means that a device of any
particular age has a stochastically smaller remaining lifetime than does a new
device (Barlow and Proschan, 1981). The definition here is also equivalent to
log F̄ (x + t) ≤ log F̄ (x) + log F̄ (t) ⇔ ∫ t

0 r(u) du ≤ ∫ x+t

x
r(u) du.

F is said to be new worse than used (NWU) if F̄ (x + t) ≥ F̄ (x)F̄ (t) for
all x, t ≥ 0.

Definition 2.5: F is said to be new better than used in expectation (NBUE) if∫∞
0 F̄ (x | t) dx ≤ µ for t ≥ 0. This is equivalent to

∫∞
t

F̄ (x) dx ≤ µF̄ (t).
This means that a device of any particular age has a smaller mean remaining



2.4 Basic Concepts for Univariate Reliability Classes 29

lifetime than does a new device (Barlow and Proschan, 1981). F is said to
be new worse than used in expectation (NWUE) if

∫∞
0 F̄ (x | t) dx ≥ µ for all

t ≥ 0.

Definition 2.6: F is said to be harmonically new better than used (HN-
BUE) if

∫∞
t

F̄ (x) dx ≤ µ exp(−t/µ) for t ≥ 0. There is an alternative defin-
ition in terms of the mean residual life (Rolski, 1975). This is equivalent to
1/{ 1

t

∫ t

0 µ−1(x) dx} ≤ µ. Similarly, F is said to be harmonically new worse
than used (HNWUE) if

∫∞
t

F̄ (x) dx ≥ µ exp(−t/µ) for t ≥ 0.

Definition 2.7: F is said to be a Laplace class (L)-distribution if for every
s ≥ 0,

∫∞
0 e−stF̄ (t) dt ≥ µ/(1 + s). The expression µ/(1 + s) can be written

as for
∫∞
0 exp(−sx)Ḡ(x) dx, where Ḡ(x) = exp(−x/µ). This means that the

inequality is one between the Laplace transforms of F̄ and of an exponential
survival function with the same mean as F (Klefsjö, 1983c).

Definition 2.8: F is said to be new better than used in failure rate
(NBUFR) if r(t) > r(0) for t ≥ 0 (Deshpande et al., 1986). F is said to
be new worse than used in failure rate (NWUFR) if r(t) < r(0) for t ≥ 0.

Definition 2.9: F is said to be new better than used in failure rate average
(NBAFR or NBUFRA) if r(0) ≤ 1

t

∫ t

0 r(x) dx for all t ≥ 0 (Loh, 1984ab).
Note that this is equivalent to r(0) ≤ − log F̄ (t)

t , t ≥ 0. Similarly, F is said to
be new worse than used in failure rate average (NWUFRA) if r(0) ≥ − log F̄ (t)

t
for t ≥ 0.
Definition 2.10: F is said to be new better than used in convex ordering
(NBUC) if

∫∞
y

F̄ (t |x) dt ≤ ∫∞
y

F̄ (t) dt for all x, y ≥ 0 (Cao and Wang, 1991).

Using Laplace transforms, Block and Savits (1980a) established necessary
and sufficient conditions for the IFR, IFRA, DMRL, NBU, and NBUE prop-
erties to hold.

There are many other ageing classes have been defined and some of these
‘further’ classes will be given in Section 2.7. The ten classes above are chosen
because they are easily understood, intuitively appealing with known appli-
cations. Their relevance to reliability theory and survival analysis have been
well documented in the literature, especially the first five classes.

2.4.3 Interrelationships

The following chain of implications exists among the ten ageing classes
(adapted from Deshpande et al., 1986; Kochar and Wiens, 1987):

IFR ⇒ IFRA ⇒ NBU ⇒ NBUFR ⇒ NBUFRA
⇓ ⇓
⇓ NBUC
⇓ ⇓

DMRL ⇒ NBUE ⇒ HNBUE ⇒ L
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We note that a partial chain IFR ⇒ IFRA ⇒ NBU ⇒ NBUE has long
been established (Barlow and Proschan, 1981, p. 159). For completeness, a
brief sketch of the proof is as follows.

(i) F is IFR if − log F̄ (x) is convex whereas F is IFRA if log F̄ (x) is a
star-shaped function, i.e., if − log F̄ (λx) ≤ −λ log F̄ (x) for 0 ≤ λ ≤ 1 and
x ≥ 0. Since a convex function is stared-shaped so IFR ⇒ IFRA.

F is IFRA ⇒ −(1/x) log F̄ (x) is increasing x

⇔ F̄ (x)
1
x is decreasins in x

⇔ F̄ (x + y)
1

x+y ≤ F̄ (x)
1
x ≤ F̄ (y)

1
y assuming x > y

⇒ F̄ (x + y)
x+y
x+y ≤ F̄ (x)

x+y
x

⇒ F̄ (x + y) = F̄ (x)F̄
y
x (x) ≤ F̄ (y)F̄

y
y (y) = F̄ (x)F̄ (y)

⇔ F is NBU.

(ii) Now F IFR implies that
F̄ (x + t)

F̄ (t)
decreases in t ≥ 0, in other words,

F̄ (x + t)
F̄ (t)

≤ F̄ (x + s)
F̄ (s)

for t ≥ s. Integrating both sides with respect to x, we

have µ(t) ≤ µ(s), i.e., F is DMRL.
(iii) Show NBU ⇒ NBUC ⇒ NBUE ⇒ HNBUE ⇒ L.

F is NBU ⇔ F̄ (x + y

F̄ (x)
≤ F̄ (y). Integrating both sides with respect to y so∫∞

0 F̄ (x + y) dy

F̄ (x)
≤
∫ ∞

0
F̄ (y) dy, i.e., µ(x) ≤ µ and thus F is NBUE.

Next, F NBU implies F̄ (x | t) ≤ F̄ (x) ⇒
∫ ∞

y

F̄ (x | t) dx ≤
∫ ∞

y

F̄ (x) dx

for all y ≥ 0 which implies that F is NBUC.
Letting y = 0, the preceding inequality reduces to the corresponding defi-

nition of NBUE showing that NBUC ⇒ NBUE.
Next, if F is NBUE, we have µ(t) ≤ µ for all t ≥ 0. Thus µ−1(t) ≥ 1

µ .

Therefore
∫ t

0 µ−1(x) dx ≥ t/µ or equivalently 1/{ 1
t

∫ t

0 µ−1(x) dx} ≤ µ which
implies F HNBUE.

Lastly, we want to show that if F HNBUE then F ∈ L. It can be shown
easily that ∫ ∞

0
e−stF̄ (t) dt = µ − s

∫ ∞

0
e−st

(∫ ∞

t

F̄ (x) dx

)
dt.
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As
∫∞

t
F̄ (x) dx ≤ µe−t/µ because of F ∈ HNBUE, it follows from above

equation that
∫∞
0 e−stF̄ (t) dt ≥ µ/(1 + sµ) so F ∈ L is proved.

(iv) We next want to show that NBU⇒ NBUFR ⇒ NBUFRA.

F is NBU ⇔ F̄ (t + x)
F̄ (t)

≤ F̄ (x), x, t > 0

⇔ F̄ (t + x) − F̄ (t)
F̄ (t)

≤ −F (x)

⇒ lim
x→0

F (x)
x

≤ lim
x→0

F̄ (t + x) − F̄ (t)
xF̄ (t)

⇔ f(0) ≤ f(t)
F̄ (t)

or r(0) ≤ f(t)
F̄ (t)

⇔ F is NBUFR

F is NBUFR ⇔ r(t) < r(0)

⇒ 1
t

∫ t

0 r(x) dx < r(0)

⇒ F is NBUFRA

so we have completed the proof of the chain.
In definitions 2.1–2.10 of Section 2.4.2, if we reverse the inequalities and

interchange “increasing” and “decreasing”, we obtain the classes DFR, DFRA,
NWU, IMRL, NWUE, HNWUE, L̄, NWUFR, NWUFRA, and NWUC. They
satisfy the same chain of implications. These are sometimes referred to as the
‘dual’ classes and their roles are to define negative ageing effects to a device.

2.5 Properties of the Basic Ageing Classes

The properties of interest concerning ageing classes are mainly on

(1) Preservation or closure property of an given ageing class under the relia-
bility operations of
(a) Formation of coherent systems of independent components,
(b) Addition of life lengths (convolution),
(c) Mixtures of distributions,

(2) Reliability bounds,
(3) Whether any ageing class can arise from a shock model,
(4) Moment inequalities,
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(5) Testing exponentiality against an ageing alternatives.

Item (4) will be dealt with in Section 2.5.5 whereas item (5) will be con-
sidered in Chapter 7 in detail.

2.5.1 Properties of IFR and DFR

The following properties of the IFR and DFR concepts can be found in Barlow
and Proschan (1981), Patel (1983) and many others:

1. If X1 and X2 are both IFR, so is X1 + X2; but the DFR property is not
so preserved.

2. A mixture of DFR distributions is also DFR; but this is not necessarily
true for IFR distributions.

3. Parallel systems of identical IFR units are IFR.
4. Series systems of (not necessarily identical) IFR units are IFR.
5. Order statistics from an IFR distribution have IFR distributions, but this

is not true for spacings from an IFR distribution; order statistics from a
DFR distribution do not necessarily have a DFR distribution, but spacings
from a DFR distribution are DFR.

6. The pdf of an IFR distribution need not be unimodal.
7. The pdf of a DFR distribution is a decreasing function.
8. If the rth moment (about zero) of a continuous life F distribution is

known, the IFR lower bound on F̄ (t) is

F̄ (t) ≥
{

e−αt, if t < µ
1/r
r

0, if t > µ
1/r
r ,

(2.53)

where α = [Γ(r + 1)/µr]1/r (Barlow and Proschan, 1981, p.112). The
bound is sharp.
The special case r = 1 is important in reliability applications as the first
moment is usually easy to find or estimate.

9. Let F be DFR with mean µ, then

F̄ (t) ≤
{

e−t/µ, for t ≤ µ;
µe−1

t , for t ≥ µ.
(2.54)

The IFR phenomenon is well understood and needs no further elaboration.
To put in nontechnical terms, a device having IFR lifetime deteriorates with
age, i.e., the age has an adverse effect on the device for if it has an IFR lifetime
distribution.

Defying a common expectation, DFR phenomenon also occurs quite fre-
quently. Generally speaking, a lifetime population is expected to exhibit de-
creasing failure rate (DFR) when its behavior over time is characterized by
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• ‘work hardening’ (in engineering), and
• immunity in (biological organisms).

The term ‘infant mortality phase’ is sometimes used to described the DFR
phenomenon over the early part of the life span. In a DFR population, ‘age’ is
actually beneficial to a device or an organism. Improvement of reliability might
have occurred by means of physical changes that caused self-improvement or
simply it might have been due to population heterogeneity. Indeed, the DFR
property is often inherent in mixtures of distributions.

2.5.2 Properties of IFRA

As − log F̄ (t) given in (2.4) represents the cumulative failure rate, the name
given to this class is appropriate. Block and Savits (1976) showed that the
IFRA is equivalent to Eα[h(X)] ≤ E[hα(X/α)] for all continuous nonnegative
increasing functions h and all α such that 0 < α < 1.

This ageing notion is fully investigated in the book by Barlow and Proschan
(1981). It is the smallest class containing the exponential distribution which
is closed under the formation of coherent systems as well as under convolu-
tion. The IFRA closure theorem is pivotal to many of the results given in
Barlow and Proschan (1981). The IFRA class is perhaps one of the more im-
portant ageing classes in reliability analysis. Curiously, interest about IFRA
has seemed to wane in the recent time. It has been shown that a device subject
to shocks governed by a Poisson process, which fails when the accumulated
damage exceeds a fixed threshold, has an IFRA distribution (Esary et al.,
1973).

One of the attractive properties that an IFRA (DFRA) distribution enjoys
is that its reliability bound can be obtained in terms of its known quantile.
Theorem 2.4: Let F be IFRA (DFRA) with pth quantile ξp (i.e., F (ξp) = p).
Then

F̄ (t)
{≥ (≤)e−αt, for 0 ≤ t < ξp

≤ (≥)e−αt, for t > ξp.
(2.55)

Proof: We note that the exponential survival probability e−αt has the same
pth quantile ξp as does F . Thus at least one crossing of e−α by F̄ (t) must
occur at t = ξp. By the single crossing property of an IFRA distribution with
e−λt, λ > 0 (Barlow and Proschan, 1981, p. 89), we conclude F̄ crosses with
the exponential survival function with the same quantile at most once from
above (below).

Sengupta (1994) presented a unified derivation of the upper and lower
bounds (in terms of finite moments) of IFR (DFR), IFRA (DFRA) or NBU
(NWU) reliability functions. A table of bounds on F̄ (t) based on the rth mo-
ments for various cases is also given. However, numerical methods are required
to solve for the values of these bounds.

Recently, El-Bassiouny (2003) has shown that if F is IFRA, then for all
integers r ≥ 0, k ≥ 2,
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ν(r+1) ≥ µ′
r+1

kr+1 (2.56)

where ν(r) = E[min(X1, ..., Xk)]r, µ′
r = E(Xr

1 ) and X1, ...Xk are independent
and identically distributed random variables.

Several moment inequalities for IFR (DFR) appeared much earlier and
these will be given Section 2.5.5 below.

2.5.3 NBU and NBUE

Properties of NBU, NWU, NBUE, NWUE were also well documented in the
book by Barlow and Proschan (1981). These classes of life distributions may
arise from a consideration of shock models similar to those involving IFRA
distributions. Barlow and Proschan (1981, Chapter 6) showed that these con-
cepts are useful in the study of maintenance policies.
Closure property

Abouammoh and El-Neweihi (1986) show that the NBU class is closed
under formation of parallel systems of i.i.d. components.
Probability bounds

The first three bounds below are found in Barlow and Proschan (1981, p.
188).

If F is NBU with F̄ (t) = α for a fixed value of t, then

F̄ (x)
{≥ α1/k for t

k+1 < x < t
k , k = 0, 1, ...,

≤ αk for kt ≤ x ≤ (k + 1)t, k = 0, 1, ....

The bounds are sharp.
If F is now NWU, then

F̄ (x)
{≤ α1/(k+1) for t

k+1 < x < t
k , k = 0, 1, ...,

≥ αk+1 for kt ≤ x ≤ (k + 1)t, k = 0, 1, ....

The bounds are sharp.
If F is NBUE with mean µ, then

F̄ (t) ≥
{

1 − t
µ , t ≤ µ;

0, t > µ.

The bounds are sharp.
If F is NWUE with mean µ, then

F̄ (t) ≤ µ/(µ + t), t ≥ 0

(Haines and Singpurwalla, 1974).
The next two bounds were given by Launer (1984).

(i) If F is NBUE with mean µ and variance σ2, then
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F̄ (t) ≥
{

(σ2 + µ2 − t2)/(σ2 + (µ + t)2 − t2), t ≤√µ′
2 ;

0, t >
√

µ′
2.

(ii) If F is now NWUE, then

F̄ (t) ≤
{

(σ2 + µ2)/(σ2 + (µ + t)2), 0 < t ≤ 2σ2/µ;
σ2/(σ2 + t2), 2σ2/µ ≤ t.

Launer (1984) obtained other bounds that are based on E(Xr|X > t) and
E(Xr|X ≤ t). In general, the usefulness of a bound depends on (i) how easy
a bound it can be estimated from data and (ii) how sharp the bound is.

Replacement models
Consider a system operating over an indefinite period of time. Upon failure,

repair (or replacement) is performed, requiring negligible time. The succes-
sive intervals between failures are independent, identically distributed random
variables X1, X2, ... of a renewal process. Let N(t) denote the number of re-
newals (replacements) in (0, t] and M(t) the expected number of renewals
(replacements) in (0, t], i.e., E(N(t)) = M(t).

Theorem 2.5: Let E(X) = µ < ∞ be the mean lifetime of a component.

(a) If F is NBUE , then
t

µ
− 1 ≤ M(t) ≤ t

µ
. (2.57)

(b) If F is NWUE, then

M(t) ≥ t

µ
. (2.58)

Proof: The following is essentially an abridged version of the proof given in
Barlow and Proschan (1981, pp. 169-171).

(a) Let SN(t) denote the time to the kth renewal if N(t) = k, k ≥ 0 so the
(k + 1)th renewal must occur after time t. Thus SN(t)+1 − t ≥ 0. It follows
from the classical renewal theory that E(SN(t)+1 − t) = µ[M(t) + 1] − t ≥ 0
which gives M(t) ≥ t

µ − 1. (This is true irrespective of the ageing class it
belongs to.)

On the other hand, F NBUE implies the stationary distribution F̂ (t) =
(1/µ)

∫ t

0 F̄ (x) dx ≥ F (t). This means the expected time to the first renewal
under the the stationary renewal process is smaller than under the ordinary
renewal process. Hence, M̂(t) ≥ M(t) where M̂(t) denotes the expected num-
ber of renewals in a stationary renewal process which is given by t

µ . It now
follows immediately that M(t) ≤ t

µ so the proof of (a) is completed.

(b) Suppose now F is NWUE so that F̂ (t) = (1/µ)
∫ t

0 F̄ (x) dx ≤ F (t).
Using the second part of the proof for (a) but with the inequality reversed,
we conclude that M(t) ≥ t

µ . See Barlow and Proschan (1981, p. 171 ).
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Chen (1994) showed that the distributions of these classes may be charac-
terized through certain properties of the corresponding renewal functions.

Cheng and He (1989) studied the reliability bounds on NBUE and NWUE
classes and Cheng and Lam (2002) obtained reliability bounds on NBUE from
first two known moments.

NBU-t0 and NWU-t0 Classes

Without getting side-tracked from discussing the ten basic classes, we now
introduce a new life class which is obtained by relaxing the conditions for
NBU (NWU) class somewhat. Let t0 ≥ 0.
Definition 2.11: We say that a life distribution F is new better than used
at t0 (NBU-t0) if

F̄ (x + t0) ≤ F̄ (x)F̄ (t0), for all x ≥ 0. (2.59)

The class was first introduced in Hollander et al. (1985). The dual notion
of new worse than used at t0 is defined analogously by reversing the first
inequality in the preceding equation. Several non-parametric tests dealing
with this class have been proposed in the literature. It is interesting to note
that apart from the exponential, there are some other distributions that belong
to the boundary members of NBU-t0 and NWU-t0 classes. Though not listed
along with the ten classes in Section 2.4.2, the NBU-t0 (NWU-t0) class has
been frequently discussed and referred to so it could be considered as an
important ageing class in reliability. Park (2003) gave a detailed review of its
properties and applications.

HNBUE and HNWUE

Klefsjö (1982) obtained the properties of HNBUE and HNWUE classes of life
distributions. Basu and Ebrahimi (1986) gave a survey on these classes. Cheng
and Lam (2001) gave reliability bounds on HNBUE life distributions with the
first two known moments.

Though mathematically elegant, we have yet to find any meaningful or
significant applications for HNBUE or HNWUE classes.

NBUC and NWUC

NBUC and NWUC classes were first defined by Cao and Wang (1991). These
authors showed that neither NBUC nor NWUC is closed under mixture or
formation of series systems. We have seen earlier that NBUC is sandwiched
between NBU and NBUE, i.e.,

NBU ⇒ NBUC ⇒ NBUE ⇒ HNBUE.
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Hendi et al. (1993) have shown that the new better than used in convex
ordering is closed under the formation of parallel systems with independent
and identically distributed components. Both Li et al. (2000) and Pellerey
and Patakos (2002) showed that this closure property holds for nonidentical
parallel components as well. Besides, Li et al. (2000) also presented a lower
bound of the reliability function for this class based upon the mean and the
variance. Hu and Xie (2002) gave a new proof of the closure property of NBUC
under convolution (they corrected the errors of Cao and Wang, 1991 and Li
and Kochar, 2001 regarding this closure property).

NBUFR (NWUFR)

Abouammoh and Ahmed (1988) showed that every k-out-of-n system, 1 ≤
k ≤ n, has the NBUFR property.

Gohout and Kuhnert (1997) showed that NBUFR class is closed under
the formation of coherent systems of independent components. El-Bassiouny
et al. (2004) derived a moment inequality for the class of NBUFR (NWUFR):

µ′
r ≥ (≤)

f(0)µ′
r+1

r + 1
, f(0) > 0, r ≥ 0,

where µ′
s = E(Xs), s ≥ 0 and f(t) is the density function of the distribution.

Laplace classes L and L̄
Suppose F ∈ L with mean µ, Sengupta (1995) showed that

(a) αt ≤ F̄ (t) ≤ 1 if t ≤ µ,
(b) 0 ≤ F̄ (t) ≤ 1 − αt, if t ≥ µ,

where

αt = inf
{

α : inf
s>0

[est/µ − (1 + s)(1 − α + e−s(1−t/µ)/α)] ≥ 0
}

.

The bounds are sharp. It appears the the actual computations of bounds are
nontrivial.

On the other hand, let F ∈ L̄ with mean µ, Sengupta (1995) showed that

0 ≤ F̄ (t) ≤
{

inf
s>0

s

(s + t/µ)(1 − e−s)
if t ≤ 2µ

µ/t if t ≥ 2µ

Again, the bounds are sharp.
We are of the opinion that this ageing concept has limited application.
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2.5.4 DMRL and IMRL

The properties DMRL and IMRL classes will be studied in Chapter 4 in
details. For time being, it suffices to state that the DMRL class is closed
under formation of parallel systems of i.i.d. components (Abouammoh and
El-Neweihi, 1986).

2.5.5 Summary of Preservation Properties of Classes of
Distributions

One may wish to know under what reliability operations a given class of life
distributions is preserved.

Here we consider the reliability operations of

(a) Formation of coherent systems,
(b) Addition of life lengths (convolution of distributions),
(c) Mixture of life distributions,
(d) Mixture of non-crossing life distributions,

applied to several basic classes of life distributions. The following table
adapted from Park (2003) provides a summary of these preserving (or non-
preserving) properties under reliability operations. Park’s table was itself an
update of the original table given by Barlow and Proschan (1981, p.104, 187).

Table 2.2. Preservation Under Reliability Operations

Class of life
distribution

Formation of
coherent struc-
ture

Convolution of
life distributions

Mixture of
life distributions

Mixture of
non-crossing
life distributions

IFR Not closed Closed Not closed Not closed
IFRA Closed Closed Not closed Not closed
NBU Closed Closed Not closed Not Closed
NBUE Not closed Closed Not closed Not closed
DMRL Not closed Not closed Not closed Not closed
HNBUE Not closed Closed Not closed Not closed
NBU-t0 Closed Not closed Not closed Not closed

DFR Not closed Not closed Closed Closed
DFRA Not closed Not closed Closed Closed
NWU Not closed Not closed Not closed Closed
NWUE Not closed Not closed Not closed Closed
IMRL Not closed Not closed Closed Closed
HNWUE Not closed Not closed Closed Not closed
NWU-t0 Not closed Not cloded Not closed Closed
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2.5.6 Moments Inequalities

Moment inequalities for elementary ageing classes have been in the literature
for many years. The following results are found in Barlow and Proschan (1981,
p. 116, 187).

Theorem 2.6: Let F be a continuous distribution with known mean µ and
µ′

r be the rth moment about zero. Let λr = µ′
r/Γ(r + 1).

(i) Let F be IFRA (DFRA). Then

µ′
r ≤ (≥)Γ(r + 1)µr for 0 < r ≤ 1,

µ′
r ≥ (≤)Γ(r + 1)µr for 1 < r ≤ ∞.

(2.60)

The bounds are sharp.
(ii) Let F be NBU (NWU) and λr = µ′

r/Γ(r+1), the normalized rth moment.
Then

λr+s ≤ (≥)λrλs

for r ≥ 0, s ≥ 0.
(iii) Let F be NBUE (NWUE), then

λr+1 ≤ (≥)λrλ1, for r ≥ 0.

Proof: We largely follow the approach of Barlow and Proschan (1981) in the
proof below.

(i) First, F IFRA is equivalent to F is star-shaped with respect to G where
G(t) is an exponential distribution (see Barlow and Proschan 1981, p.107 and
also Section 10.3 for a definition for ‘F is star-shaped with respect to G’.) So
F̄ crosses Ḡ at most once. Now if Ḡ(t) = exp

(
−t/λ

1/s
s

)
, then

∫ ∞

0
tsdG(t) =

∫ ∞

0
(ts/λ1/s

s ) exp
(
t/λ1/s

r

)
dt = µ′

s =
∫ ∞

0
tsdF (t),

so F̄ crosses G exactly once. Now, it can be shown that∫ ∞

0
ψ(x)xs−1F̄ (x) dx ≤

∫ ∞

0
ψ(x)xs−1Ḡ(x) dx; s > 0 (2.61)

if ψ is increasing. The inequality in (2.61) reverses if F is DFRA.
Now, let 0 < r < s, it follows from the rth moment about zero of an

exponential distribution that

µ′
r = r

∫ ∞

0
xr−1F̄ (x) dx = r

∫ ∞

0
xr−1 exp

(
−x/λ1/r

r

)
dx, (2.62)
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i.e., ∫ ∞

0
xr−1F̄ (x) dx =

∫ ∞

0
xr−1 exp

(
−x/λ1/r

r

)
dx.

Let ψ(x) = xs−r and applying (2.61), we obtain

λs =
µ′

s

Γ(s + 1)
=

1
Γ(s + 1)

∫ ∞

0
sxs−1F̄ (x) dx

≤ (≥)
∫ ∞

0

sxs−1

Γ(s + 1)
exp
(
−x/λ1/r

r

)
dx = λs/r

r ,

that is

λ1/r
r ≥ (≤)λ1/s

s , for 0 < r < s.

Letting s = 1, we prove the µ′
r = Γ(r + 1) ≥ (≤)µr for 0 < r < 1. The

inequalities are reversed for 1 ≤ r < ∞.

(ii) If F is NBU, then F̄ (x + y) ≤ F̄ (x)F̄ (y) so for r, s ≥ 0,

∫ ∞

0

∫ ∞

0
xrysF̄ (x + y) dx dy ≤

∫ ∞

0
xrF̄ (x) dx

∫ ∞

0
ysF̄ (y) dy.

Applying (2.62), the right-hand side is µr+1µs+1/(r + 1)(s + 1).
Letting x + y = u and y = v, the left-hand side of the above equation

becomes ∫ ∞

0

∫ u

0
F̄ (u)(u − v)rvs dv du =

Γ(r + 1)Γ(s + 1)
Γ(r + s + 3)

µ′
r+s+2.

It now follows immediately λr+s+2 ≤ λr+1λs+1.
If F is NWU, then λr+s+2 ≥ λr+1λs+1.

(iii) Since F is NBUE,
∫∞

x
F̄ (u) du ≤ µF̄ (x). Thus, for all r ≥ 0,∫ ∞

0
xr

∫ ∞

x

F̄ (u) du dx ≤ µ

∫ ∞

0
xrF̄ (x) dx,

i.e., ∫ ∞

0
F̄ (u)

∫ u

0
xr dx du ≤ µ

∫ ∞

0
xrF̄ (x) dx.

The left-hand side can be evaluated by integration by parts giving µ′
r+2/(r+2)

whereas the right-hand side is µ′
r+1µ because of (2.62). Thus λr+2 ≤ λr+1λ1

is now proved.
The case for NWUE can be proved similarly. We note that an important

feature of these inequalities is their simplicity.
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Interest in moment inequalities for several classes has been rekindled in
recent years. The main objective of these inequalities is to formulate test
statistics for testing a a distribution is from a particular ageing class. Unfor-
tunately, some of these have complicated expressions and those listed below
are some special cases which we think would be of interest to the readers.

Ahmad (2001) presented moment inequalities for IFR, NBU, NBUE and
HNBUE. Recently, Ahmad and Mugdadi (2004) also provided similar inequal-
ities for IFRA, NBUC and DMRL classes. In the following, we assume that
{Xi} are i.i.d. with distribution function F ; r and s are integers. We also let
ν(r) = E[min(X1, X2)]r.

(i) F IFR (Ahmad, 2001)

2(r+2)(r−1)/2ν(r) ≥ r!µr, r ≥ 2

and

ν(2r+2) ≥
(

2r + 2
r + 1

)(
1
2

)(2r+2) {
µ′

r+1
}2

.

(ii) F NBU (Ahmad, 2001)
For integer k ≥ and ri ≥ 0, i = 1, 2, ..., k(

k∑
i=1

ri + k

)
!

k∏
i=1

µri+1 ≥
k∏

i=1

(ri + 1)!µr1+...rk+k. (2.63)

For r1 = r, r2 = s, k = 2, the above inequality reduces to

(r + s + 2)!µ′
r+1µ

′
s+1 ≥ (r + 1)!(s + 1)!µ′

r+s+2 (2.64)

which is equivalent to (ii) of Theorem 2.6 above. Thus (2.63) is a gener-
alization of the result (ii) of the theorem mentioned. In view of its com-
plexity, one doubts if the above moment inequality would generate wide
applications.

(iii) F NBUE (Ahmad, 2001)

µ′
r+1µ ≥ µ′

r+2/(r + 2), r ≥ 0.

(This is the same as (iii) of Theorem 2.6 above)
(iv) F HNBUE (Ahmad, 2001)

µr+2 ≥ µ′
r+2/(r + 2)!, r ≥ 0. (2.65)

The proof of (2.65) is straightforward by noting that F HNBUE implies∫∞
x

F̄ (u) du ≤ µe−x/µ so
∫ ∞

0
xr

∫ ∞

x

F̄ (u) du dx ≤ µ

∫ ∞

0
xre−x/µ dx.
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By exchanging the order of integration and applying (2.62), the left-hand
side is µ′

r+2/ [(r + 2)(r + 1)]. The integral on the right is related the (r +
1)th moment (about zero) of the exponential distribution so the result
follows immediately.

(v) F IFRA (Ahmad and Mugdadi, 2004)

µ′
r+1 ≥ E

{
min

(
X1

α
,

X2

1 − α

)r+1
}

, r ≥ 0, 0 < α < 1, .

(vi) F NBUC (Ahmad and Mugdadi, 2004)

(r + 2)!(s + 1)!µ′
r+s+3 ≤ (r + s + 3)!µ′

r+2µ
′
s+1, r, s ≥ 0.

We note that this inequality is equivalent to (2.64) which holds for NBU
distributions.

(vii) F DMRL (Ahmad and Mugdadi, 2004)

(r + 1)E[X1{min(X1, X2)}r] ≥ (r + 2)ν(r+1)
(2) , r ≥ 0.

Abu-Youssef (2002) obtained a simple bound ν(2) ≥ (≤)µ2

2 if F is DMRL
(IMRL).

2.5.7 Scaled TTT Transform and Characterizations of Ageing
Classes

The concept of the total time on test (TTT) processes was first defined by
Barlow and Campo (1975). The TTT transform has been found useful to study
the ageing properties of the underlying distribution and at the same time can
be applied to solve geometrically some stochastic maintenance problems.

Let F be an lifetime distribution and define

F−1(p) = inf{x : F (x) ≥ p}, p ∈ [0, 1). (2.66)

Let us define

H−1
F (p) =

∫ F −1(p)

0
F̄ (x) dx, p ∈ [0, 1]. (2.67)

If the mean lifetime µ is finite, then

H−1
F (1) =

∫ F −1(1)

0
F̄ (x) dx = µ. (2.68)

The scaled total time on test transform (scaled TTT transform) is defined
by
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φ(p) = H−1
F (p)/H−1

F (1) = H−1
F (p)/µ. (2.69)

It follows from the above definition that φ(p), p ∈ [0, 1] is equivalent to
the equilibrium distribution of the probability distribution function F , if F
is non-arithmetic. The curve φ(p) versus p ∈ [0, 1], is called the scaled TTT
curve.

Classifications of ageing distributions

It follows from (2.67) that

d

dp
H−1

F (p)|p=F (t) =
1

r(t)
, t > 0, p ∈ [0, 1]. (2.70)

Theorem 2.7 Let F be a continuous lifetime distribution.

(i) F is IFR (DFR) if and only if φ(p) is concave (convex) in p ∈ [0, 1].
(ii) F is IFRA (DFRA) if and only if φ(p)/p is decreasing (increasing) in

p ∈ [0, 1].
(iii) F is NBUE (NWUE) if and only if φ(p) ≥ p (φ(p) ≤ p) for p ∈ [0, 1].
(iv) F is DMRL (IMRL) if and only if (1 − φ(p))/(1 − p) is decreasing (in-

creasing) in p ∈ [0, 1].
(v) F is HNBUE (HNWUE) if and only if φ(p) ≤ 1 − exp{−F−1(p)/µ}

(φ(p) ≥ 1 − exp{−F−1(p)/µ}) for p ∈ [0, 1].
(vi) F ∈ BT (UBT) if φ has only one reflection point u0 such that 0 < u0 < 1

and it is convex (concave) on [0, u0] and concave (convex) on [u0, 1].

Proof: Without loss of generality, we assume F (t) is absolutely continuous.
(i) The result was independently proved by Barlow and Campo (1975) and

Lee and Thompson (1976). Assuming F (t) is absolutely continuous so that
p = F (t) implies t = F−1(p). Using the chain rule, we can easily verify that
φ(p) is concave (convex) in p implies r(t) is increasing (decreasing) in t so
that the result (i) is proved.

(ii) The result was also due to Barlow and Campo (1975). The proof was
nontrivial.

(iii) The NBUE (NWUE) characterization was made by Bergman (1977).
This follows from

φ(p) ≥ (≤) p ⇔
∫ t

0
F̄ (x) dx ≥ (≤)µF (t) ⇔

∫ ∞

t

F̄ (x) dx ≤ (≥)µF̄ (t).

Langberg et al. (1980a) gave more detailed results on IFRA (DFRA) and
NBU (NWU).

(iv) The result on DMRL (IMRL) was from Klefsjö (1982). We note (1 −
φ(p))/(1 − p) is equivalent to µ(t)/µ so the result follows immediately.
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(v) The result on HNBUE (HNWUE) was also obtained by Klefsjö (1982).
This follows easily from 1 − φ(p) =

∫∞
t

F̄ (x) dx/µ.
(vi) The result on bathtub distributions was proved by Barlow and Campo

(1975). The proof follows from (i) that F is DFR iff φ is convex and F is IFR
iff φ is concave so φ lies below the 45o-line in its leftmost part and above the
line in its rightmost part.

Result (vi) was used by Aarset (1987) and Xie (1989) to derive test sta-
tistics for testing exponetiality against BT distributions.

Note that several of test statistics that are based on the scaled TTT trans-
form will be presented in Chapter 7.

2.6 Non-monotonic Failure Rates and Non-monotonic
Mean Residual Lives

Survival and failure times are frequently modelled by increasing or decreasing
failure rate distributions. While this is appropriate for many cases, it may
be inappropriate if the course of a disease is such that the mortality reaches
a peak after some finite period and then declines slowly. Gupta and Warren
(2001) gave two such examples:

• In a study of curability of breast cancer, Langlands et al. (1979) found
that the peak of mortality occurred after about three years.

• Bennett (1983) analyzed the data from Veterans Administration lung can-
cer presented by Prentice (1973) and showed that the empirical failure
rates for both low PS and high PS groups are non-monotonic. (PS =
Potassium sulfide)

Thus, we need to analyze such data sets with appropriate lifetime models that
have non-monotonic failure rates r(t).

We postpone a full discussion on these ageing classes to the next chapter.
Here we present a brief preview only.

2.6.1 Non-monotonic Failure Rates

A failure rate function falls into one of the four categories: (a) monotonic
failure rates if r(t) is either increasing or decreasing; (b) bathtub type failure
rate if r(t) has a bathtub (BT) or an upside-down bathtub (UBT) shape; and
(c) modified bathtub failure rate if r(t) is first increasing and then bathtub;
and (d) generalized bathtub failure rate if r(t) is a polynomial, or has a roller-
coaster shape or some generalization.

Lai et al. (2001) give an overview on the class of bathtub shaped failure
rate (BT) distributions. We will devote a a fuller discussion on this class of
life distributions in Chapter 3.
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2.6.2 Non-monotonic Mean Residual Lives

Recall from (2.6), the mean residual lifetime is defined as µ(t) = E(X−t |X >
t) which is equivalent to

∫∞
0 F̄ (x | t) dx =

∫∞
t

F̄ (x) dx/F̄ (t).
Recall also from Definition 2.3 that F is said to be DMRL if the mean

remaining life function
∫∞
0 F̄ (x | t) dt is decreasing in x. That is, the older the

device is, the smaller is its mean residual life and hence µ(t) is monotonic.
However, in many real life situations, the mean residual lifetime is non-
monotonic and thus there arise several ageing notions defined in terms of
the non-monotonic behavior of µ(t).

Guess et al. (1986) also defined a life class known as the increasing then
decreasing mean residual life (IDMRL). To put in simply, F is IDMRL if
µ(t) ∈ UBT. The dual class of ‘decreasing initially, then increasing mean
residual life’ (DIMRL) has its µ(t) ∈ BT. We will discuss in Chapter 4 various
facets of mean residual life, in particular, how the shapes of r(t) and µ(t) are
interrelated.

2.7 Some Further Classes of Ageing

Ageing concepts are proliferating in the literature. In addition to those lifetime
classes defined above, there are a number of other ageing classes that have
been investigated over the years. Without giving details, we just present their
acronyms, definitions and references below.

• IFR(2) (Increasing failure rate of second order) iff∫ x

0

F̄ (u + s) du

F̄ (s)
≥
∫ x

0

F̄ (u + t)
F̄ (t)

du, for allx ≥ 0, t ≥ s.

See Deshpande et al. (1986), Franco et al. (2001).
Clearly IFR ⇒ IFR(2) ⇒ DMRL.

• NBU(2) (New better than used of second order) iff∫ x

0
F̄ (u) du ≥

∫ x

0

F̄ (t + u) du

F̄ (t)
for all x, t ≥ 0.

See Deshpande et al. (1986), Franco et al. (2001), Li and Kochar (2001),
Hu and Xie (2002), Li (2004).
Clearly NBU ⇒ NBU(2) ⇒ NBUE.

• HNBUE(3) (Harmonic new better than used of third order) iff∫ ∞

x

∫ ∞

t

F̄ (u) du dt ≤ µ2e−x/µ for all x, t ≥ 0.

See Deshpande et al. (1986).

Clearly HNBUE ⇒ HNBUE(2).
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• DMRLHA (Decreasing mean residual life in harmonic average) iff

[
(1/t)

∫ t

0
(1/µ(x) dx

]−1

is decreasing in t.

See Deshpande et al. (1986).
It can be shown that DMRL ⇒ DMRLHA ⇒ NBUE.

• SIFR (Stochastically increasing failure rate)
Let Y be a random variable with cdf F and mean µ; X ′

is are i.i.d. exponen-
tial random variables with the same mean µ and the X ′

is are independent
such that X0 ≡ 0. Then F is said to be stochastically increasing failure
rate if

Pr

(
Y ≥

k+1∑
i=0

Xi/Y ≥
k∑

i=0

Xi

)
≤ Pr

(
Y ≥

k∑
i=0

Xi/Y ≥
k−1∑
i=0

Xi

)

for all k = 1, 2, .... See Singh and Deshpande (1985).

• SNBU (Stochastically new better than used). With the preceding assump-
tions, F is said to be stochastically new better than used if

Pr

(
Y ≥

k+1∑
i=0

Xi/Y ≥
k∑

i=0

Xi

)
≤ Pr(Y ≥ Xk+1)

for all k = 1, 2, .... See Singh and Deshpande (1985).
It has been shown that (i) IFR ⇒ SIFR, (ii) NBU ⇒ SNBU, and (iii)
SIFR ⇒ SNBU.

• BMRL-t0 (Better mean residual life at t0 class). The mean life declines
during the time 0 to t0, and thereafter is no longer greater than what it
was at t0. See Kulasekera and Park (1987).

• DVRL (Decreasing variance of residual life) iff σ2(t) ≤ σ2(s) for all s ≤ t
where σ2(t) = var(X − t|X ≥ t) is the variance of the residual life. See
Launer (1984).

• DPRL-α (Decreasing 100α percentile residual life) iff the α-percentile
residual life qα,F (t) defined by

qα(t) = inf{x : Ft(x) ≥ α}, 0 < α < 1, F (0) = 0

is decreasing in t ∈ [0, T ). Here Ft = 1− F̄ (t+x)/F̄ (t), x ≥ 0. See Joe and
Proschan (1984).
F is IFR ⇔ F is DPRL-α for all 0 < α < 1.

• NBUP-α (New better than used with respect to the 100α percentile) iff
F (0) = 0 and qα(t) ≤ qα(0) for all t ∈ [0, T ). See Joe and Proschan (1984).
It is easy to see that
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* DPRL-α ⇒ NBUP-α for any 0 < α < 1.
* NBU ⇔ NBUP-α for all 0 < α < 1 ⇒ NBUE.
Joe and Proschan (1984) provided other chains of relationships but we will
not elaborate on them here.

• IFR * t0 (IFR after t0) iff F̄ (bx) ≥ F̄ b(x) for all x ≥ t0 > 0 and all
t0/x ≤ b ≤ 1. See Li and Li (1998). It is easy to follow that IFR ⇒
IFR * t0.

• NBU * t0 (NBU after t0) iff F̄ (x + y) ≤ F̄ (x)F̄ (y) for all x ≥ 0 and
y ≥ t0 > 0. See Li and Li (1998).
It is easy to follow that NBU ⇒ NBU * t0.

• UBA (used better than aged) if F̄ (x + t) ≥ F̄ (x)e−t/µ(∞) for all x, t ≥ 0
and UBAE (used better than aged in expectation) if µ(t) ≥ µ(∞) for all
t ≥ 0 assuming 0 < µ(∞) < ∞. See Alzaid (1994), Willmot and Cai (2000)
and Ahmad (2004).
It has been shown that DMRL ⇒ UBA ⇒ UBAE ⇐ DVRL.

Nearly every one of these additional ageing classes is sandwiched in between
two well-known classes discussed in Section 2.4.2. There are rarely any known
distributions that belong to these further classes which are not already in
the established classes. Apart from the DVRL class, we do not find these
ageing concepts intuitive or easily interpretable. It is conceivable that more
meaningful applications may emerge in future.

2.8 Failure Rates of Mixtures of Distributions

Interest on the ageing behaviour of mixtures has a long history (Barlow and
Proschan, pp. 161-164). Mixtures arise from heterogeneous populations. A
typical case is where a population consists of two subpopulations (which may
be referred to as components of the mixtures). Mixtures also arise when we
pool data from several distributions to enlarge the sample, for example. Mix-
tures are important in burn-in (see Block and Savits, 1997). Although mix-
tures of DFR distributions are always DFR, some mixtures of IFR may also
be DFR. A well-known ‘border line’ example by Proschan (1963) exhibits the
strict DFR property of a mixture of exponential distributions that have con-
stant failure rates. Barlow (1985) and Mi (1998a), respectively, gave a Bayesian
and non-Bayesian explanation of this unexpected phenomenon. Gurland and
Sethuraman (1995) considered various types of finite and continuous mixtures
of IFR distributions and developed conditions for such mixtures to be ‘ulti-
mately’ DFR.

The density function of a mixture from two subpopulations with density
functions f1 and f2 is simply given by

f(t) = pf1(t) + (1 − p)f2(t), t ≥ 0, 0 ≤ p ≤ 1; (2.71)
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and thus the survival function of a mixture is also a mixture of the two survival
functions, i.e.,

F̄ (t) = pF̄1(t) + (1 − p)F̄2(t). (2.72)

The mixture failure rate r(t) obtained from failure rates r1(t) and r2(t)
associated with f1 and f2, respectively, can be expressed as

r(t) =
pf1(t) + (1 − p)f2(t)
pF̄1(t) + (1 − p)F̄2(t)

(2.73)

where fi(t), F̄i(t) are the probability density and survival function of the dis-
tribution having failure rate ri(t), i = 1, 2.

Let r(t) in (2.73) be expressed as

r(t) = h(t)r1(t) + (1 − h(t))r2(t) (2.74)

where h(t) = 1/(1+g(t)), g(t) = (1−p)F̄2(t)/[pF̄1(t)]. Clearly 0 ≤ h(t) ≤ 1.
We can easily generalize the above equation to accommodate mixtures of

k subpopulations giving

r(t) =
∑k

i=1 pifi(t)∑k
i=1 piF̄i(t)

(2.75)

where i = 1, 2, ...k, 0 < pi < 1,
∑k

i=1 pi = 1, k ≥ 2.

2.8.1 Mixture of Two DFR Distributions

A mixture of two DFR is again DFR; this result has been proved by Barlow
et al. (1963) and other authors but we think Gupta and Warren’s (2001)
approach is simpler.

On differentiation of (2.74), we can be verify that

r′(t) = h(t)r′
1(t) + (1 − h(t))r′

2(t) − h(t)(1 − h(t))(r1(t) − r2(t))2. (2.76)

(Navarro and Hernnandez (2004) noted that the original expression (3.2) in
Gupta and Warren (2001) was incorrect.) Since 0 ≤ h(t) ≤ 1, it is obvious
from (2.76) that the mixtures of DFR is DFR. Also Theorem 1 of Gurland
and Sethuraman (1995) can now be easily obtained.

2.8.2 Possible Shapes of r(t) When Two Subpopulations Are IFR

The behavior of mixtures of IFR distributions is unintuitive. It is easy to find
examples of subpopulations with increasing failure rate whose mixture can
have either increasing, decreasing or other shapes.
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The following are taken from Block, Li and Savits (2003a) to illustrate
that a variety of shapes can occur even for a simple mixture of two IFR
subpopulations.

Example 2.1 We consider two IFR Weibull distributions f1(t) = 2t exp
{−t2

}
and f2(t) = 3t2 exp

{−t3
}

with p = 0.5. In this case r(t) is IFR.
The next example show that a mixture of two IFR distribution gives rise

to a DFR distribution

Example 2.2 Let r1(t) = 1 − exp {−5t}, r2(t) = 6 − exp {−5t} with p = 0.5.
We note that r1(t) strictly increases to 1 and r2(t) strictly increases to 6.
However, r(t) ∈ DFR strictly decreases to 1.

Example 2.3 Take f1(t) = exp {−t} to be exponential, f2(t) = 16t exp {−4t}
to be an IFR gamma and let p = 0.5. In this case, r(t) ∈ UBT, i.e., rm(t) has
an upside-down bathtub shape.

Example 2.4 Let f1(t) = 4 exp {−4t} be exponential, f2(t) = t exp {−t} be
an IFR gamma and p = 0.5. Then r(t) ∈ BT.

Example 2.5 Consider two Weibull distributions, f1(t) = 2t exp
{−t2

}
and

f2(t) = 4t3 exp
{−t4

}
with p = 0.5. Both r1(t) and r2(t) increase to ∞. The

mixture failure rate r(t) ∈ MBT. This phenomenon is also noted in Jiang and
Murthy (1998).

The above examples show how the shape of the mixture failure rate varies
as the subpopulation failure rates and the mixing proportion p = 0.5 remains
fixed. The next example keeps the failure rates of the subpopulation fixed
while varying the mixing proportion p.

Example 2.6 Consider two increasing linear failure rates r1(t) = t + 1 and
r2(t) = 4t + 5. Block, Li and Savits (2003a) showed that

• r(t) ∈ MBT for p = 0.1,
• r(t) ∈ BT for p = 0.65,
• r(t) ∈ IFR for p = 0.95.

Gurland and Sethuraman (1995) gave a necessary and sufficient condition
for a mixture of two IFR distributions to be DFR. However, the condition
does not appear to be easily verified.

We next consider mixtures of two life distributions from the same family
of distributions possibly with different parameters.

2.8.3 Mixture of Two Gamma Densities with a Common Scale
Parameter

Consider the mixture of two gamma densities:
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f(t) = pf1(t) + (1 − p)f2(t), (2.77)

where

fi(t) =
λαitαi−1

Γ(αi)
e−λt, t > 0, αi, λ > 0, i = 1, 2. (2.78)

Assuming α1 < α2, Glaser (1980) was able to determine the shape of the
failure rate of the distribution specified by (2.77) in all cases except for one:
α1 > 1, α2−α1 > 0 with α1−1 < (α2−α1−1)2/4. For this case, he conjectured
that the mixture density is IFR.

Gupta and Warren (2001) generalized the result of Glaser (1980) and
also disproved the above conjecture. We now summarize the results of Glaser
(1980) and that of Gupta and Warren (2001) as follows.
Theorem 2.8: Assuming α1 < α2, the gamma mixture has the following
failure rate shapes:

(i) 0 < α1 < α2 ≤ 1 implies that F is DFR,
(ii) 0 < α1 < 1 < α2 implies that F is BT,
(iii) α1 = 1 < α2 ≤ 2 implies that F is IFR,
(iv) α1 = 1, 2 < α2 implies that F is BT,

and for 1 < α1 < α2,
(v)

√
α2 − 1 − √

α1 − 1 ≤ 1 implies that F is IFR, while
(vi)

√
α2 − 1 − √

α1 − 1 > 1 implies that F is IFR or MBT.

Proof: The first five cases were proved by Glaser (1980) by considering the
behavior of η′(t) with η(t) = f ′(t)/f(t) as defined in (2.9). Case (vi) was
incorrectly conjectured by Glaser but proved by Gupta and Warren (2001)
via Theorem 2.3 above.
Remark: We have not listed the case when α1 = α2 = 1. This corresponds
to the mixture of two exponential distributions. If we assume the scale para-
meters are the same as in the theorem, then the mixture has an exponential
which is both IFR and DFR. However, if the two shape parameters are dif-
ferent, then the mixture has a DFR distribution as observed by Proschan
(1963).

2.8.4 Mixture of Two Weibull Distributions

Jiang and Murthy (1998) categorized the possible shapes of failure rate func-
tion for a mixture of any two Weibull distributions in terms of five parame-
ters. The failure rate shape can be one of eight different types including IFR,
DFR, MBT, UBT and ‘roller-coaster’ shaped. They showed that, among other
authors, this mixture distribution F cannot have a BT failure rate. They also
stated that the mixture failure rates from two strictly IFR Weibull distribu-
tions with the same shape parameter can be either MBT or IFR. However,
they did not explicitly classify the two possibilities. Wondmagegnehu (2004)
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developed the work of Jiang and Murthy (1998) further but assumed the two
Weibull distributions to be strictly IFR.

Let F̄1(t) = exp{−θ1t
α} and F̄2(t) = exp{−θ2t

α} be the survival functions
of two Weibull distributions so that r1(t) = θ1αtα−1 and r2(t) = θ2αtα−1

where α > 1 and θ2 > θ1 > 0. Set β = θ2/θ1 and define

ω1 = α(β − 1) +
√

α2(β − 1)2 + 4(α − 1)2β

and

ω2 = 2α(β − 1) exp

{
(α − 1)(β + 1) +

√
α2(β − 1)2 − 4(α − 1)2β

α(β − 1)

}
.

Theorem 2.9: Let ω1 and ω2 be defined as above and p be the mixing
proportion. Further, we define

ξ =
ω1

ω1 + ω2
.

Then the mixture failure rate r(t) has

(a) a modified bathtub (MBT) shaped failure rate when 0 < p < ξ and
(b) an increasing failure rate (IFR) when ξ ≤ p < 1.

Proof: From (2.73), it is easy to verify that

r(t) = θ1αtα−1 +
(1 − p)(β − 1)θ1αtα−1

peθ1(β−1)tα + (1 − p)
. (2.79)

Letting z = eθ1(β−1)tα

, we have t = [[1/{θ1(β − 1)}] log z]1/α
. Substituting

this expression of t and b = p(1 − p) into (2.79) gives

r∗(z) =
[
bz + β

bz + 1

](
1

θ1(β − 1)
log z

)(α−1)/α

where r∗(t) = r(t)/(θ1α).
Both r(t) and r∗(z) have the same monotonicity in the corresponding

domains {t : t ≥ 0} and {z : z ≥ 0}, respectively. It is now easier to study the
shape of r(t) via r∗(z). Taking logarithm of r∗(z) and then differentiating it
with respect to z, we find

d

dz
log r∗(z) =

K(z)
αz(log z)(bz + β)(bz + 1)

,

where

K(z) = (α − 1)(bz + β)(bz + 1) − bα(β − 1)z log z.
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We then examine the derivative K ′(z) = 2b(α − 1)z[b − h(z)]. The theo-
rem can then be established, after several tedious steps, by considering the
behaviour of h(t). See Wondmagegnehu (2004) for a complete proof.

Wondmagegnehu (2004) also used several examples to illustrate possible
shapes that the mixture failure rate can encounter when the two Weibull
distributions have different shape and scale parameters.

2.8.5 Mixtures of Two Positively Truncated Normal Distributions

Navarro and Hernandez (2004) have considered the shape of the failure rate of
the mixture of two positively truncated normal distributions given in Section
2.3.3. The method is based on the s-order equilibrium distribution of a renewal
process defined by Fagiuoli and Pellerey (1993) and will be given in Section
2.9.1 below.

For a truncated normal distribution with parameter µ and σ, it is noted by
Navarro and Hernandez (2004) that its eta function defined by the negative
value of the derivative of the density over the density is given by (t−µ)/σ2. Let
fi be the two truncated normal densities with parameters µi and σi, i = 1, 2,
and f be the density of the mixture and η = −f ′/f . Also, let

w(t) =
1

1 + α(t)
,

where

α(t) =
1 − p

p

f2(t)
f1(t)

.

Assuming that σ1 = σ2 and letting δ = σ2
1/(µ2 −µ1)2, the authors showed

that

1. If δ > 1/4, then r(t) ∈ I.
2. If δ ≤ 1/4, w(0) ≥ 0, and w(0)(1 − w(0) < δ, then r(t) ∈ I.
3. If δ ≤ 1/4, w(0) ≥ 0, and w(0)(1 − w(0) ≥ δ, r(t) ∈ I or BT.
4. If δ ≤ 1/4, w(0) < 1/2, and w(0)(1 − w(0) > δ, then r(t) ∈ I or BT.
5. If δ ≤ 1/4w(0) < 1/2, and w(0)(1 − w(0) ≤ δ, then r(t) ∈ I, BT or MBT.

Moreover, the change points of η are determined by w(t)(1 − w(t)) = 0.
The key ingredient of the proof for the above results hinges on the fact

that if σ1 = σ2,

σ2
1η′(t) = 1 − (1 − w(t))w(t)

(µ2 − µ1)2

σ2
1

and η′(t) ≥ 0 iff (1 − w(t))w(t) ≤ δ.
Navarro and Hernandez (2004) also obtained a general result on the shape

of r(t) when the variances are not equal and η2(t) ≥ η1(t). The proof now
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requires the theory of s-order equilibrium distribution of the renewal process
mentioned which will be further developed in Section 2.9 and Section 2.11.

2.8.6 Mixtures of Two Increasing Linear Failure Rate
Distributions

Block, Savits and Wondmagegnehu (2003) gave explicit conditions which de-
lineate the possible shapes of the failure rate function for the mixture of two
IFR linear failure rate distributions.

Let the two increasing linear failure rates be given by, respectively,

r1(t) = c1t + d1, r2(t) = c2t + d2,

where, without loss of generality, we assume c2 ≥ c1 > 0 and d2, d1 ≥ 0. Thus
the expressions for the two component survival functions are, respectively,

F̄1(t) = exp
{

−c1t
2

2
− d1t

}
,

and

F̄2(t) = exp
{

−c2t
2

2
− d2t

}
.

Substituting the expressions for F̄1(t), F̄2(t), r1(t), r2(t) into (2.74), we have

r(t) = (c1t + d1) +
(1 − p)[c1(γ − 1)t + a]

p exp((c1/2)(γ − 1)2 + at) + (1 − p)
, (2.80)

where γ = c2/c1 ≥ 1, c2 ≥ c1 > 0, a = d2 − d1 and 0 < p < 1. It turns
out all the possible shapes are determined by these parameters: γ = c2/c1,
δ = a/

√
c1 and p. Define the following parameters:

α1 =
(δ2 + γ − 1) −√(δ2 − γ − 1)2 − 4γ

2δ2 ,

α1 =
(δ2 + γ − 1) +

√
(δ2 − γ − 1)2 − 4γ

2δ2 ,

α3 =
(γ − 1) + β

(γ − 1) + β + exp{((γ + 1) − δ2 + 2β)/2(γ − 1)}
where β =

√
(γ − 1)2 + γ.
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Non-crossing linear failure rates

We now consider the mixture failure rate for two non-crossing linear failure
rates. Its possible shapes can be summarized as follows:
Theorem 2.10: (Block, Savits and Wondmagegnehu, 2003). Consider the
mixture failure rate r(t) given in (2.50) for two non-crossing linear failure
rates r1(t) = c1t + d1 and r2(t) = c2t + d2 such that c2 > c1 > 0 and
d2 > d1 ≥ 0. Recall the expressions for α1, α2 and α3 are given as above.

(i) If δ ≤ √
γ + 1, then

(a) r(t) ∈ BT if 0 < p < α3, or
(b) r(t) ∈ IFR if α3 < p < 1.

(ii) If
√

γ + 1 < δ <
√

(γ + 1) + 2β, then
(a) r(t) ∈ MBT if 0 < p < α1,
(b) r(t) ∈ BT if α1 < p ≤ α2,
(c) r(t) ∈ MBT if α2 < p < α3, or
(d) r(t) ∈ IFR if α3 ≤ p < 1.

(iii) If δ ≥√(γ + 1) + 2β, then
(a) r(t) ∈ MBT if 0 < p < α1,
(b) r(t) ∈ BT if α1 < p ≤ α2, or
(c) r(t) ∈ IFR if α2 ≤ p < 1.

Proof: The proof is rather lengthy. See Block, Savits and Wondmagegnehu
(2003).

Linear failure rates with same slope

We now assume the two failure rate functions have the same slope, that is,
c1 = c2 = c. Define

δ =
a√
c

> 0, ζ1 =
1 −√1 − 4/δ2

2
, ζ2 =

1 +
√

1 − 4/δ2

2
.

Block, Savits and Wondmagegnehu (2003) showed that

(i) If 0 < δ ≤ 2, then r(t) ∈ IFR for all p ∈ (0, 1).
(ii) If δ > 2, then

(a) r(t) ∈ MBT if p < ζ1;
(b) r(t) ∈ BT if ζ1 < p < ζ2;
(c) r(t) ∈ IFR if ζ2 < p < 1.
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Two failure rates with the same y-intercepts

We now consider the case d1 = d2 = d. Define

ξ =
(γ − 1) + β

(γ − 1) + β + exp{((γ + 1) − δ2 + 2β)/2(γ − 1)}

where β =
√

(γ − 1)2 + γ. Block, Savits and Wondmagegnehu (2003) showed
that

(i) r(t) ∈ MBT if 0 < p < ξ;
(ii) r(t) ∈ IFR if ξ < p < 1.

Mixtures of crossing failure rates

Two linear failure rates may cross at the point t0 = −a/c1(γ − 1) so that
r1(t) > r2(t) for all t ∈ [0, t0) and r1(t) < r2(t) for all t > t0. Block, Savits
and Wondmagegnehu (2003) delineated all possible shapes that the mixture
failure rate r(t) can take assuming the two linear failure rates intersects at t0.

2.8.7 Mixtures of an IFR Distribution with an Exponential
Distribution

Gurland and Sethuraman (1995) gave the following definition:
Definition 2.12: An IFR distribution is said to be MRE if its mixture with
an exponential is ‘ultimately’ DFR for some mixing proportion p. This means
that for sufficiently large t, says t ≥ t0, the mixture failure rate is decreasing.

Gurland and Sethuraman (1995) also provided several examples that are
MRE, some of these are now listed below.

Examples

Exponential distribution
It is a well known that the mixture of two exponential distributions is

DFR (Proschan, 1963).

Gamma distribution
Let the density function of the IFR gamma distribution be

f1(t) =
λα

1

Γ(α)
e−λ1ttα−1, λ1 > 0, α > 1, t > 0

and f2(t) = λ2e
−λ2t. Then the gamma mixture with exponential is MRE for

large t. Further, if λ1 > λ2, the mixture is DFR.

Weibull distribution
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Let F̄1(t) = e−θtα

, θ, α > 0, t > 0 be the survival function of the Weibull
distribution with failure rate given by r1(t) = θαtα−1. Gurland and Sethura-
man (1995) showed that for α > 1 the Weibull distribution is MRE. Let r(t, p)
be the failure rate of the mixture pF̄1(t)+(1−p)F̄2(t) of a Weibull with an ex-
ponential having density f2(t) = λe−λt. Thus r(t, p) = pr1(t) + (1 − p)r2(t) =
pθαtα−1 + (1 − p)λ. Also, there is a turning point t0 = t0(p) such that r(t, p)
is decreasing for t ≥ t0. Using α = 3, θ = 2.5 and λ = .25, they gave plots of
r(t, p) for p = .05, .1, .5, .7, .9, .95. They observed that the turning point t0(p)
of r(t, p) decreases as p increases, because the exponential plays an increas-
ingly important role in the mixture and, accordingly, fewer items have failed.
We also observe that r(t, p) tends to λ as t → ∞.

The authors also gave an intuitive explanation of the MRE phenomenon
having r(t, p) decreasing for large t. This is because the early failure times
of the mixture come from the distribution with larger failure rates, so that
the larger failure times (in the tail of mixture) come from the distribution
that has smaller failure rate in the tail. They also sounded a warning that the
practice of pooling several IFR distributions may reverse the IFR property of
the individual samples to a DFR property.

2.8.8 Failure Rate of Finite Mixture of Several Components
Belonging to the Same Family

Al-Hussaini and Sultan (2001) gave a comprehensive review on reliability and
failure rates of mixture models. Seven finite mixture models in which the
components belonging to the same family of distributions are investigated.
These are

1. Mixtures of normal components.
2. Mixtures of lognormal components.
3. Mixtures of inverse Gaussian components.
4. Mixtures of exponential components.
5. Mixtures of Rayleigh components.
6. Mixtures of Weibull components.
7. Mixtures of Gompertz components.

Three of this list have already been considered above. Plots of failure rates
(with selected parameter values) of the mixture of two components are also
given in Al-Hussaini and Sultan (2001). We observe that, nearly every one of
these figures has an upside-down bathtub shape. This is reminiscent of the
findings of Gurland and Sethuraman (1995) who stated in their Introduction
section that ‘ many standard families of IFR distributions exhibit the property
that the mixtures of two distributions from the same family are ultimately
DFR’. We need, however, to put this statement in perspective, as we have
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seen in Section 2.8.1 that several other shapes are also possible for a mixture
of two lifetime components.
Note: Al-Hussaini and Sultan (2001) also considered mixture models with
components belonging to different families.

2.8.9 Initial and Final Behavior of Failure Rates of Mixtures

Block et at. (2001) reviewed the behavior of the failure rate of mixtures rm(t)
of several components. This review mainly draws on the results of Block and
Joe (1997), Block et al. (1993) and Block, Li and Savits (2003a). We now
summarize them below.

Initial behavior of r(t)

Let the failure rate of the finite mixtures be given by

r(t) =
∑n

i=1 pifi(t)∑n
i=1 piF̄i(t)

. (2.81)

Block, Li and Savits (2003a) showed that

r(0+) =
n∑

i=1

piri(0+) (2.82)

assuming r(0+) = fi(0+) exists; and

r′(t) =
n∑

i=1

pif
′
i(0+) +

[
n∑

i=1

fi(0+)

]2

, (2.83)

assuming both r(0+) and f ′
i(0+) exist. Note that we have used ri(0+) to

denote lim
t↓0

ri(t). The other limits are also defined similarly.

The authors also showed that the initial behavior of the failure rate rφ of
a system of several components is similar to the failure of the mixture.

Asymptotic behavior of rm(t)

The asymptotic behavior of mixtures of exponentials has been studied by
Clarotti and Spizzichino (1990) and more generally by Block et al. (1993).

(a) The first general result on mixtures of distributions is that, under mild
conditions, the asymptotic limit of the failure rate of a mixture is the same
as the limit of strongest component.



58 2 Concepts and Applications of Stochastic Ageing

(b) The second result, due to Block and Joe (1997), is that for failure rates,
which asymptotically behave like the ratios of polynomials, the even-
tual monotonicity of the mixture is the same as the monotonicity of the
strongest component. Furthermore, if the failure rate of the strongest com-
ponent is increasing, so is the failure rate of the mixture.

A similar result holds for systems except the role of the strongest subpopula-
tion is replaced by strongest minimal path set.

Block, Li and Savits (2003a) gave a definite result concerning the limit of
the failure rate of a mixture of two components. The result is now stated as
below.

Theorem 2.11: Consider a mixture of two subpopulations with failure rates
r1(t) → λ ∈ [0,∞) and r2(t) → ∞ such that

r(t) =
pf1(t) + (1 − p)f2(t)
pF̄1(t) + (1 − p)F̄2(t)

(as given in (2.73)) converges to ξ as t → ∞. Then ξ must be finite and equal
to λ.
Proof: Set F̄ (t) = pF̄1(t) + (1 − p)F̄2(t). From the assumption, we deduce
that

− log F̄ (t)
t

=
1
t

∫ t

0
r(u) du → ξ

and

log F̄1(t)
t

=
1
t

∫ t

0
r1(u) du → λ

as t → ∞. Since log F̄ (t) ≥ log
(
pF̄1(t)

)
= log p + log F̄1(t), we find that

ξ = − lim
t→∞

log F̄ (t)
t

≤ −lim inf
t→∞

{
log p

t
+

log F̄1(t)
t

}
= λ.

Thus, ξ ≤ λ < ∞.
On the other hand, since r2(t) − r1(t) → ∞,

F̄2(t)
F̄1(t)

= exp
{

−
∫ t

0
[r2(t) − r1(t)] du

}
= O(e−Kt)

for all K > 0. In particular, F̄2(t)/F̄1(t) → 0 as t → ∞. It now follows that

f(t)
F̄1(t)

= r(t)
{

pF̄1(t) + (1 − p)F̄2(t)
F̄1(t)

}
→ pξ

where f(t) = pf1(t) + (1 − p)f2(t). As f(t) ≥ pf1(t), we have
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pξ = lim
t→∞

[
f(t)
F̄1(t)

]
≥ lim sup

t→∞

[
pf1(t)
F̄1(t)

]
= pλ,

i.e., ξ ≥ λ so ξ = λ.
Corollary 2.1: Let r(t) be the failure rate of a finite mixture of subpopula-
tions with failure rates ri(t) satisfying ri(t) → ai ∈ [0,∞], 1 ≤ n, as t → ∞.
Then either r(t) → α = min1≤i≤n ai, or r(t) does not converge.
Proof: See Corollary 2.1 of Block et al. (2003a).

2.8.10 Continuous Mixtures of Distributions

Shaked and Spizzichino (2001) gave a review on the failure rate function of a
continuous mixture.

Continuous mixtures of DFR distributions

It has been shown, see for example, Barlow and Proschan (1981, p. 103), that
continuous mixtures of DFR distributions is DFR. More specifically, let Fα

be the distribution function with parameter α. Suppose α itself is a random
variable with distribution M(α), then the resultant distribution (generally
known as the mixture distribution) is expressed as

F (t) =
∫ ∞

−∞
Fα(t) dM(α).

M is called the mixing distribution. If each Fα is DFR, then mixture distrib-
ution F is DFR irrespective of the mixing distribution. The proof utilizes the
fact that the hazard transform of a mixture is concave.

For example, let F̄α(t) be an exponential survival function with α being
a gamma random variable having density m(α) = [βγαγ−1/Γ(γ)]e−βα, 0 ≤
α < ∞. Then the resulting distribution has a Pareto survival function F̄ (t) =
(1+ t/β)−γ which is DFR. A partial converse to this result is stated by Gleser
(1989) showing that a gamma distribution with scale parameter λ and shape
parameter β ≤ 1 (i.e., having decreasing failure rate) can be expressed as a
scale mixture of exponential distributions

f(x) =
∫ ∞

0
gλ(γ)γe−γx dγ, λ > 0,

where

gλ(γ) =
(γ − λ)−βλβ

γΓ(1 − β)Γ(β)
, γ ≥ λ.
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Continuous mixtures of IFR distributions

We have seen earlier that a mixture of two IFR distributions may be IFR,
DFR or other ageing classes. Gurland and Sethuraman (1994) have given some
examples of finite mixtures of rapidly increasing failure rate distributions but
the resultant mixture distributions ultimately having decreasing failure rate.

Lynch (1999) gave some general conditions under which the IFR property
is preserved by continuous mixtures. His result can be restated as follows. Let
{F̄ (t | θ) : θ ≥ 0} be a family of survival functions with univariate parameter
θ ≥ 0. Let M be the mixing distribution on [0,∞). The resultant mixture
survival function is as below:

F̄M (t) =
∫

F̄ (t | θ) dM(θ).

The main result of Lynch (1999) is that if the mixing distribution M has
an IFR distribution and if F̄ (t | θ) is log concave in the variables (t, θ), then
FM (t) is IFR.

Block, Li and Savits (2003b) showed that Lynch’s result is a special case
of Savits (1985) with the correct interpretation. They also showed that similar
closure theorems are possible for other ageing classes such as IFRA, NBU and
DMRL.

Finkelstein and Esaulova (2001) considered several types of continuous (in-
finite) mixtures of IFR distribution. In particular, the corresponding limiting
behavior of the mixture failure rate function is analyzed for the specific case
of mixing which can be interpreted in terms of the proportional hazard model.
It is found that under certain assumptions the mixture failure rate decreases
to zero as t → ∞.

2.9 Partial Orderings and Generalized Partial Orderings

Partial orderings of two life distributions have been studied quite extensively.
Essentially, we are comparing two lifetime variables X and Y in terms of
their failure rates rF (t) and rG(t), density functions f(t) and g(t), survival
functions F̄ (t) and Ḡ(t), mean residual lives µF (t) and µG(t), or other age-
ing characteristics. Ageing classes can often be characterized by some partial
orderings. For example, in Barlow and Proschan (1981, pp.105-107), IFR and
IFRA classes are characterized by ‘convex ordering’ and ‘star-shaped order-
ing’, respectively. However, these partial orderings do not fit in with the main
body of of our approach so we will not discuss them till Section 10.3. Several
authors have studied partial orderings and stochastic dominance, for example,
Desphande et al. (1986), Kochar and Wiens (1987), Singh (1989), Fagiuoli and
Pellerey (1993), Shaked and Shanthikumar (1994) and several others.

We now give definitions for several of these basic partial orderings. These
are selected on the basis that they are easily understood and there is a chain
of implications for these orderings to indicate their relative stringency.
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Definition 2.13: X is said to be greater than Y in likelihood ratio order-
ing (X ≥LR Y ) if f(t)/g(t) is increasing in t ≥ 0.
Definition 2.14: X is said to be greater than Y in weak likelihood ratio
ordering (X ≥WLR Y ) if f(t)/g(t) ≥ f(0)/g(0) for all t ≥ 0.
Definition 2.15: X is said to be greater than Y in failure rate order-
ing (X ≥FR Y ) if rF (t) ≤ rG(t) for all t ≥ 0 or F̄ (t)/Ḡ(t) is increasing
in t ≥ 0.
Definition 2.16: X is said to be greater than Y in stochastic ordering (X ≥ST
Y ) if F̄ (t) ≥ Ḡ(t), for all t ≥ 0.
Definition 2.17: X is said to be greater than Y in mean residual order-
ing (X ≥MR Y ) if µF (t) ≥ µG(t), for all t ≥ 0.

It is found that X ≥MR Y if and only if
∫∞

t
F̄ (x) dx/

∫∞
t

Ḡ(x) dx is in-
creasing in t ≥ 0 .
Definition 2.18: X is said to be greater than Y in harmonic average mean
residual ordering (X ≥HAMR Y ) if

∫∞
t

F̄ (x) dx/µF ≥ ∫∞
t

Ḡ(x) dx/µG, for all
t ≥ 0.
Definition 2.19: X is said to be greater than Y in variance residual life
ordering (X ≥VR Y ) if

∫∞
t

∫∞
x

F̄ (u) du dx/
∫∞

t

∫∞
x

Ḡ(u) du dx is increasing
for all t ≥ 0.
Definition 2.20: X is said to be greater than Y in convex ordering (X ≥CX
Y ) if

∫∞
t

F̄ (x) dx ≥ ∫∞
t

Ḡ(x) dx, for all t ≥ 0. It is sometimes known as
variable ordering (Ross, 1983). The convex ordering defined here does not
appear to be equivalent to the ‘convex ordering’ given in Barlow and Proschan
(1981, p.106).
Definition 2.21: X is said to be greater than Y in concave ordering (X ≥CV

Y ) if
∫ t

0 F̄ (x) dx ≥ ∫ t

0 Ḡ(x) dx, for all t ≥ 0.
Singh (1989) gave a chain of implications between the first eight partial

orderings .
It appears that the stochastic ordering and failure rate ordering are two

most important ones. For applications for redundancy applications in series,
parallel and k-out-of-n systems, see Boland et al. (1992, 1998), Shaked and
Shanthikumar (1995) and Boland (1998). Also, a chain of implications will be
presented in Table 2.3 connecting these concepts and some of these general-
ized partial orderings to be defined in the next subsection. We note that there
are other partial orderings introduced from different view points by various
authors. A summary of these partial orderings is given in Chapter 33 of John-
son et al. (1995). Navarro et al. (1997) also studied some stochastic partial
orderings between two doubly truncated variables.

2.9.1 Generlized Partial Orderings

There is a proliferation of generalized partial orderings in the literature over
the recent years. Several of these definitions gave rise to new ageing classes
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some of which are presented in Section 2.7 (e.g., IFR(2), NBU(2) and HN-
BUE(3)). Here, our discussion are selective rather than inclusive. Fagiuoli
and Pellerey (1993) defined several additional partial orderings based on the
survival function of an equilibrium distribution of a random variable.

Let X be an absolutely continuous non-negative random variable with
distribution function F (t) and differentiable density function f(t). Let µF (t)
denote the mean of the lifetime variable X with cdf F . The equilibrium dis-
tribution corresponding to the lifetime variable X is defined as

EF (t) =
∫ t

0
F̄ (x) dx/µF , (2.84)

and we will denote the survival equilibrium function by the function

ĒF (t) = 1 − EF (t) =
∫ ∞

t

F̄ (x) dx/µF . (2.85)

We now define the survival functions of the equilibrium distributions re-
cursively:

T̄0(X, x) = f(x), T̄−1(X, x) = −f ′(x) (2.86)

and

T̄s(X, x) =

∫∞
x

T̄s−1(X, u) du

µs−1(X)
, for integer s ≥ 1, (2.87)

where
µs(X) =

∫ ∞

0
T̄s(X, x) dx, s ≥ 0. (2.88)

The functions T̄s(X, x) were first introduced by Fagiuoli and Pellerey (1993).
Clearly, µ0(X) = 1. It follows from (2.87) and (2.88) that T̄1(X, x) = F̄ (x),
so µ1(X) = E(X). Note also T̄s(X, 0) = 1, s ≥ 1. Further, T̄2(X, x) is the
survival function of the equilibrium distribution of X from which we deduce
that T̄s(X, x) is the survival function of the equilibrium distribution of a
distribution with survival function T̄s−1(X, x).

Nanda et al. (1996) have established some interesting properties regarding
moments for s-order equilibrium distributions:

µ0(X)µ1(X)...µs(X) =
E(Xs)

s!
, s = 0, 1, ... (2.89)

from which we obtain

µs =
E(Xs)

sE(Xs−1)
, s = 1, 2, ...

In addition, Fagiuoli and Pellery (1993) also defined what we call the s-order
failure rate function
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rs(X, x) =
T̄s−1(x)∫∞

x
T̄s−1(u du)

= −
d
dx T̄s(x)
T̄s(x)

, s ≥ 0 (2.90)

and r0(X, x) = −f ′(x)
f(x) when f ′(x) exists. For s = 1, r1(X, x) = f(x)

F̄ (x) =
rF (x), the failure rate function that corresponds to X. For s = 2, r2(X, x) =
(µF (x))−1, the reciprocal of the mean residual life function of X.

Suppose Y is also another random variable with distribution function G(y)
and density g(y) having similar properties as X. We can now define four partial
orderings in X and Y by comparing their respective equilibrium distributions.

The following four definitions are generalizations of Definitions 2.15, 2.16,
2.20 and 2.21.
Definition 2.22: X is said to be greater than Y in s-FR ordering (X ≥s−FR
Y ) if T̄s(X, t)/T̄s(Y, t) is increasing in t ≥ 0. This was shown to be equivalent
to rs(X, x) ≤ rs(Y, t), for all t ≥ 0.
Definition 2.23: X is said to be greater than Y in s-ST ordering (X ≥s−ST
Y ) if

T̄s(X, t)
T̄s(Y, t)

≥ T̄s(X, 0)
T̄s(Y, 0)

, for all t ≥ 0.

This is equivalent to T̄s(X, t) ≥ T̄s(Y, t), s ≥ 1.

Definition 2.24: X is said to be greater than Y in s-CV ordering (X ≥s−CV
Y ) if ∫ t

0

T̄s(X, x) dx

T̄s(X, 0)
≥
∫ t

0

T̄s(Y, x) dx

T̄s(Y, 0)
, for all t ≥ 0.

This is equivalent to∫ t

0
T̄s(X, u) du ≥

∫ t

0
T̄s(Y, u) du, s ≥ 1.

Definition 2.25: X is said to be greater than Y in s-CX ordering (X ≥s−CX
Y ) if ∫ ∞

t

T̄s(X, x) dx

T̄s(X, 0)
≥
∫ ∞

t

T̄s(Y, x) dx

T̄s(Y, 0)
, for all t ≥ 0.

This is equivalent to∫ ∞

t

T̄s(X, u) du ≥
∫ ∞

t

T̄s(Y, u) du, s ≥ 1.

We observe that the following equivalence relationships between the clas-
sical and generalized partial orderings :

0-FR⇔LR, 1-FR⇔FR, 2-FR⇔MR, 3-FR⇔VR, 1-CX⇔CX,
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0-ST⇔WLR, 1-ST⇔ST, 2-ST⇔HAMR, 1-CV⇔CV.
These equivalences show that the generalized orderings defined in Defini-

tions 22–25 are indeed generalizations of those orderings given from Definition
2.13 through Definition 2.21. Although the approach of defining generalized
orderings through the survival functions of the s-order equilibrium distrib-
ution of X is mathematically novel, we feel that it does not have the same
intuitive appeal that is prevalent in the more basic stochastic ordering con-
cepts. On the other hand, we will see in Section 2.11 that the concept of sth
order equilibrium distribution can play an important role in fostering a link
between the shapes of the two important reliability measures, namely r(t) and
µ(t).

2.9.2 Connections Among the Partial Orderings

We now proceed to give the relationships among some classical orderings as
well as with the generalized partial orderings we have just defined. Fagiuoli
and Pellerey (1993) have shown that

s-FR ⇒ (s + 1)-FR; s-FR⇒ s-ST⇒ s-CV; s-ST⇒ s-CX.

The proofs of these implications follow directly from the definitions. Fag-
iuoli and Pellerey (1993) further showed that (s + 1)-ST ⇒ s-CV.

Combining all these relationships, we may summarize them in the following
table (bearing in mind 1-FR⇔ FR, 1-ST⇔ST,1-CX⇔CX, and 1-CV⇔CV):

Table 2.3. Chains of relationships between partial orderings

LR ⇒ FR ⇒ MR ⇒ VR ⇒ · · ·
⇓ ⇓ ⇓ ⇓
WLR ⇒ 0-CX ⇐ ST ⇒ CX ⇐ HAMR ⇒ 2-CX ⇐ 3-ST ⇒3-CX
↓ ⇓ ⇓ ↓
0-CV CV 2-CV 3-CV

2.9.3 Generalized Ageing Properties Classification

In this subsection, we discuss ageing classifications of equilibrium distributions
and their relationships to the generalized partial orderings. Recall, the failure
rate function that corresponds to the survival function T̄s(X, t) as defined in
(2.90) is:

rs(X, t) =
T̄s(X, t)∫∞

t
T̄s−1(X, x) dx

=
d
dt T̄s(X, t)
Ts(X, t)

.
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Averous and Meste (1989) proposed generalized ageing properties clas-
sification (a)–(c) below based on s-tailweight. Fagiuoli and Pellerey (1993)
presented same definitions as given by Averous and Meste (1989) but based
on rs(X, t) and T̄s(X, t) instead. This latter approach seems to be more in
line with the traditional way of defining ageing concepts through the failure
rate function r(t) and the survival function F̄ (t). Thus the concepts to be
presented below are in parallel to those basic concepts discussed in Section
2.4.
Definition 2.26: Let s be a non-negative integer and X be a lifetime random
variable.

(a) X is said to be s-IFR (s-DFR) if rs(X, t) is increasing (decreasing) in

t ≥ 0. This is equivalent to
T̄s(X, x + t)

T̄s(X, t)
is decreasing (increasing) in t for

each x ≥ 0.
(b) X is said to be s-IFRA (s-DFRA) if

∫ t

0 rs(X, x) dx/t is increasing (de-

creasing) in t ≥ 0. or equivalently,
(
T̄s(t)/T̄s(0)

)1/t is increasing in t. Note
that T̄s(0) = 1 for s ≥ 1.

(c) X is said to be s-NBU (s-NWU) if

T̄s(X, x + t)T̄s(X, 0) ≤ (≥) T̄s(X, x)T̄s(X, t) for all x, t ≥ 0.

For s ≥ 1, this becomes

T̄s(X, x + t) ≤ (≥) T̄s(X, x)T̄s(X, t).

(d) X is said to be s-NBUFR (s-NWUFR) if rs(X, t) ≥ (≤) rs(X, 0), for all t ≥
0.

(e) X is said to be s-NBAFR (s-NWAFR) if
∫ t

0 rs(X, x) dx/t ≥ (≤) rs(X, 0) for
all t ≥ 0.

(f) X is said to be s-NBUCV (s-NWUCV) if

T̄s(X, 0)
∫ t

0
T̄s(X, x + y) dy ≤ (≥) T̄s(X, x)

∫ t

0
T̄s(X, y) dy for all x, t ≥ 0.

For s ≥ 1, this becomes∫ t

0
T̄s(X, x + y) dy ≤ (≥) T̄s(X, x)

∫ t

0
T̄s(X, y) dy.

(g) X is said to be s-NBUCX (s-NWUCX) if

T̄s(X, 0)
∫ ∞

t

T̄s(X, x+y) dy ≤ (≥) T̄s(X, x)
∫ ∞

t

T̄s(X, y) dy, for all x, t ≥ 0.

For s ≥ 1, this becomes
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t

T̄s(X, x + y) dy ≤ (≥) T̄s(X, x)
∫ ∞

t

T̄s(X, y) dy.

The last two ageing classifications were due to Fagiuoli and Pellerey (1993).
We note the equivalence between the generalized ageing concepts and the

classical ageing classes as follows:

0-IFR ⇔ ILR 1-IFR ⇔ IFR
2-IFR ⇔ DMRL 3-FR ⇔ DVRL

1-IFRA ⇔ IFRA 1-NBUFR ⇔ NBUFR
2-NBUFR ⇔ NBUE 2-NBAFR ⇔ HNBUE

All the abbreviations in the table above have been introduced in Sections
2.4–2.7 and this section except ILR. This is defined as X having an increasing
likelihood ratio. It is also known as X having a PF2 (Pólya frequency of order
2) density. We note that ILR ⇒ IFR. For a definition of a PF2 density class,
see for example, Barlow and Proschan (1981, p. 76).

Fagiuoli and Pellerey (1993) also established the equivalence of the gen-
eralized partial orderings between X and its residual lifetime Xt and the
generalized ageing classes.

Hu et al. (2001) gave connections among some generalized orderings, and
characterized s-FR and s-ST orderings in terms of residual lives as well as in
terms of equilibrium distributions, respectively. The s-CX and s-CV order-
ings were also both characterized by the equilibrium distributions and by the
Laplace transforms.

Despite of their mathematical nicety, it is unclear how these generalized
orderings can be applied effectively in reliability given their apparent lack of
a meaningful interpretation.

2.9.4 Applications of Partial Orderings

First and higher order stochastic dominances which are essentially partial
orderings have important applications in econometrics (Whitmore, 1970). Ex-
amples of applications may be found in Barlow and Proschan (1981), Stoyan
(1983) and in Ross (1983), where partial orderings are used, respectively, in
reliability context, in queues, and in other stochastic processes. Singh and
Jain (1989) and Fagiuoli and Pellerey (1993) have proposed an application
to stochastic comparison between two devices that are subjected to Poisson
shock models.

Design engineers are well aware that a system where active spare allocation
is made at the component level has a lifetime stochastically larger than the
corresponding system where active spare allocation is made at the system
level. Boland and El-Neweihi (1995) investigated this principle in hazard rate
(failure rate) ordering and demonstrated that it does not hold in general.
However, they discovered that for a 2-out-of-n system with independent and
identical components and spares, active spare allocation at the component
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level is superior to active spare allocation at the system level. They conjectured
that such a principle holds in general for a k-out-of n system. Singh and Singh
(1997) have proved that for a k-out-of-n system where components and spares
have independent and identical life distributions, active spare allocation at
the component is superior to active spare allocation at the system level in
likelihood ratio ordering. This is stronger than failure (hazard) rate ordering
and thus establishing the conjecture of Boland and El-Neweihi (1995).

Boland and El-Neweihi (1995) have also established that the active spare
allocation at the component level is better than the active spare allocation
at the system level in hazard rate (failure rate) ordering for a series system
when the components are matching although the components may not be
identically distributed. Boland (1998) gave an example to show that the failure
rate (hazard rate) comparison is what people really mean when they compare
the performance of two products. For more on the failure rate (hazard rate)
and other stochastic orders and their applications, the readers should consult
Shaked and Shanthikumar (1994).

Apart from the basic partial orderings such as the likelihood ratio ordering,
stochastic ordering, failure rate ordering and the mean residual life ordering,
we have not found too many applications for the others.

2.10 Relative Ageing

Sengupta and Deshpande (1994) have studied three types of relative ageing
of two life distributions. The first of these relative ageing concepts is the par-
tial ordering originally proposed by Kalashnikov and Rachev (1986) which is
defined as follows:

Definition 2.27: Let F and G be the distribution functions of the random
variables X and Y , respectively. X is said to be ageing faster than Y (written
as X ≺c Y ) if the random variable ΛG(X) = − log Ḡ(X) has an increasing
failure rate.

If the failure rates rF (t) and rG(t) both exist with rF (t) = f(t)
1−F (t) and

rG(t) = g(t)
1−G(t) , then the above definition is equivalent to rF (t)

rG(t) being an
increasing function of t.

Another relative ageing defined in Sengupta and Deshpande (1994) is as
follows:
Definition 2.28: X ≺∗ Y (X is ageing faster than Y in average) if Z =
ΛG(X) is IFRA .

We observe that there are three types of ‘X ages faster than Y ’ depending
on whether rF (t) dominates rG(t) or being dominated by rG(t) or rF (t) crosses
rG(t) from below. In the case of rF (t) ≤ rG(t), then X is said to be greater
than Y in failure rate ordering according to Definition 2.15.
Remarks
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If X ages faster than Y , it is equivalent to Y ages slower than X.

• Suppose now X ages slower than Y , i.e., rF (t)/rG(t) is decreasing in t,
Corollary 6 of Hu et al. (2001) shows that if X ≤FR Y , then X ≤LR Y
(see Definition 2.13 for LR ordering). Note that X ≤LR Y ⇒ X ≤FR Y
without a condition.

• Suppose rs(X, t)/rs(Y, t) is decreasing in t, Theorem 5 of Hu et al. (2001)
shows that if X ≤s−FR Y , then X ≤(s−1)−FR Y for s ≥ 1. (See Definition
2.22 for s-FR ordering.) This is a converse of the result in Section 2.9.2.
which says if X ≤(s−1)FR Y ⇒ X ≤(s)−FR Y.

In Lai and Xie (2003) some results on relative ageing of two parallel struc-
tures were established. It is observed that the relative ageing property may be
used to allocate resources and for failure identification when two components
(systems) having the same mean. In particular, if ‘X ages faster than Y ’ and
that they have the same mean, then var(X) ≤ var(Y ). Several examples are
given therein. In particular, it is shown that when two Weibull distributions
have the same mean, the one that ages faster has a smaller variance.

2.11 Shapes of η Function for s-order Equilibrium
Distributions

Recall in Section 2.9, the equilibrium distribution function of a lifetime vari-
able X with cdf F is defined in (2.84), i.e.,

EF (t) =
∫ t

0
F (x) dx/µ

so the density function is given F̄ (t)/µ. Section 2.9 also defines the survival
functions of the equivalent distributions recursively via

T̄0(X, t) = f(t), T̄−1(X, t) = f ′(t)

and

T̄s(X, t) =

∫∞
t

T̄s−1(X, x) dx

µs−1(X)
, for integer s ≥ 1,

where

µs(X) =
∫ ∞

0
T̄s(X, x) dx, s ≥ 0.

It follows that (2.90) and the preceding two equations that

rs(X, t) =
T̄s−1(X, t)∫∞

t
T̄s−1(X, x) dx

s ≥ 1.
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Now let us define an s-order η function by

ηs(X, t) =
T̄s−2(X, t)∫∞

t
T̄s−2(X, x) dx

(2.91)

We assume that limx→∞ f(x) = 0.
It is now clear that

ηs(X, t) = rs−1(X, t), s ≥ 1. (2.92)

For s = 1, η1(X, t) = r0(X, t) = −f ′(t)
f(t)

. As we are now dealing with one

variable X only so we may suppress the argument X giving

ηs(t) = rs−1(t), s ≥ 1. (2.93)

Thus,

η1(t) = η(t) = −f ′(t)
f(t)

, r1(t) = r(t) = f(t)
F̄ (t) ,

η2(t) = r(t), r2(t) = 1/µ(t).
Now the relationships between the shapes of η(t) and the shapes of r(t)

have already been established by Glaser (1980) (our Theorem 2.1) and by
Gupta and Warren (2001) (our Theorem 2.2). The same relationships between
the shapes of η2(t) = r(t) of the equilibrium distribution of X and of the
shapes of r2(t) = 1/µ(t) also hold. These results can be generalized to establish
the relationship between ηs(t) and rs(t) = ηs+1(t).

Based on the above observations, Navarro and Hernandez (2004) gave the
following theorems:

Theorem 2.12: If E(Xs+1) < ∞ for s = 0, 1, 2, ..., then

(a) ηs ∈ I (D) ⇒ ηs+1 ∈ I (D);
(b) ηs ∈ BT (UBT) ⇒ ηs+1 ∈ BT or I (UBT or D).

Proof: It follows directly from Theorem 2.1 and equation (2.92).

Theorem 2.13: If E(Xs+1) < ∞ for s = 0, 1, 2, ..., then η′
s+1(t) = 0 has

at most one solution on the closed interval [zk−1, zk], where z0 = 0 < z1 <
... < zn are the zeros of η′

s(t) and η′
s+1(t) = 0 does not have any solution in

(zn,∞).
Proof: It follows directly from Theorem 2.2 and equation (2.93).

The relationship between η2(t) and η3(t) will be used to establish between
the relationships between the shapes r(t) and µ(t) in Theorem 4.2 of Chapter
4.

Mi (2004) also studied (i) the shape of η2(t) = r(t) when η1(t) =
−f ′(t)/f(t) has a roller-coaster shape with a finite number of change points
(ii) the shape of η3(t) = 1/µ(t) when η2 has a roller-coaster shape. How-
ever, Mi’s (2004) did not use the s-order equilibrium distribution approach.
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Instead, he defined η1(t) = N1(t)/D1(t) = N1(t)/
∫∞

t
N1(x) dx and η2(t) =

N2(t)/D2(t) = D1(t)/D2(t) = D1(t)/
∫∞

t
D1(x) dx and established their rela-

tionships assuming N1(t) is integrable on [0,∞).
We will revisit these results when we consider the shape of µ(t) when the

shape of r(t) is known in Chapter 4.

2.12 Concluding Remarks on Ageing

The study of length of life of human beings, organisms, structures, materials,
etc., is of great importance in the actuarial, biological, engineering and medical
sciences. It is clear that research on ageing properties (univariate, bivariate,
and multivariate) is currently being vigorously pursued. Many of the univari-
ate definitions do have physical interpretations such as arising from shock
models. The simple IFR, IFRA, NBU, NBUE, DMRL etc have been shown
to be very useful in reliability related decision making, such as replacement
and maintenance studies.

While positive ageing concepts are well understood, negative ageing con-
cepts (life improved by age) are less intuitive. Nevertheless, negative ageing
phenomenon does occur quite frequently. There have been cases reported by
several authors where the failure rate functions decrease with time. Sam-
ple examples are the business mortality (Lomax, 1954), failures in the air-
conditioning equipment of a fleet of Boeing 720 aircrafts or in semiconductors
from various lots combined (Proschan, 1963), and the life of integrated circuit
modules (Sanuders and Myhre, 1983). Gerchak (1984) reported that “Studies
conducted in various social disciplines discovered that, the longer individuals
remain in a state, the lower the chances of their leaving the state in subsequent
periods.” In general, a population is expected to exhibit decreasing failure rate
(DFR) when its behaviors over time is characterized by ‘work hardening’ (in
engineering terms), or ‘immunity’ (in biological terms). Modern phenomenon
of DFR includes reliability growth (in software reliability).

Non-monotonic ageing concepts have been found useful in many reliabil-
ity and survival analysis such as burn-in time decision. Applications of mean
residual life concepts will be given in Chapter 4 whereas applications of bath-
tub (upside-down) shaped ageing will be presented in Chapter 3. We also
refer our readers to Barlow and Proschan (1981), Bergman (1985) and Newby
(1986) for other applications.

We envisage that these concepts are of interest not only to reliability mod-
elers but also to the mainstream reliability practitioners.
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Bathtub Shaped Failure Rate Life
Distributions

3.1 Introduction

Bathtub shaped failure rate distributions have been introduced in the preced-
ing chapter. Recall, we say that a failure rate function r(t) ∈ BT if

r(t) =
f(t)
F̄(t)

(3.1)

has a bathtub or U shape, i.e., r(t) decreases first, then remains approxi-
mately constant and eventually increases. A review of this class of life dis-
tributions was given by Rajarshi and Rajarshi (1988) and another by Lai,
Xie and Murthy (2001). However, a significant amount of literature on this
subject has appeared over the last decade. Thus there is a need for another
thorough study to update the recent developments. In this chapter, we give a
detailed review of many different facets and issues relating to this important
ageing class.

Bathtub shaped failure curves were discussed in the engineering literature
a long time ago, see, e.g., Kao (1959), Kamins (1962), Shooman (1968) and
Krohn (1969). Theoretical aspects of the bathtub failure rate are much studied
in recent years. For brevity, when we say F is BT, we mean F has a bathtub
shaped failure rate function. In Chapter 11, several data sets that exhibit BT
failure rates are given. The shapes of the mean residual life function µ(t) of
BT failure rate distributions will be discussed in the next chapter.

The aim of Section 3.2 is to dispel a misconception that bathtub shaped
failure rate phenomenon is a myth. In Section 3.3 we give several definitions of
a bathtub shaped failure rate function. The main difference is whether r(t) has
one or two change points. Some basic properties are also presented. Section
3.4 provides several families of life distributions that exhibit BT failure rates.
The question of how to construct a bathtub shaped failure rate distribution is
considered in Section 3.5. This is followed by a literature review on estimating
the change point of a BT failure rate function in Section 3.6. We then preview
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the relationship between a bathtub shaped failure rate distribution and its
associated mean residual life in Section 3.7. In Section 3.8 we address the issue
of burn-in times for bathtub shaped distribution. In section 3.9 we investigate
another important class of non-monotonic failure rate distributions denoted by
UBT which is a dual life class of BT. The failure rate function r(t) in this class
has an upside-down bathtub shape. It turns out that several well known life
distributions belong to this class. For example, the lognormal distribution has
been known for a long time to have this property. In Section 3.10 we extend
our discussion of the traditional bathtub distributions to some generalized
bathtub shaped failure rate distributions which include the modified bathtub
(MBT) and the roller-coaster failure curves. Finally in Section 3.11, we outline
several applications of bathtub distributions.

3.2 Bathtub Shaped Failure Rate Is Not a Myth

In Chapter 2, many statistical ageing concepts have been defined through one
of the three functions (i.e., failure rate, survival function and mean residual
life). Essentially, these concepts describe how a component ages with time. ‘No
ageing’ means the age of a component has no effect on the distribution of the
residual lifetime. ‘Positive’ ageing describes the situation where the residual
lifetime tends to decrease, in some probabilistic sense, with increasing age of
the component. On the other hand, ‘negative ageing’ has an opposite effect
on the residual lifetime.

Monotonic ageing concepts are found to be popular among many reliability
engineers. However, in many practical applications, the effect of age is initially
beneficial (a burn-in phase where negative ageing takes place), but after a
certain period, it is age adverse indicating a ‘wear-out’ phase where ageing is
positive. It is now widely believed that many products, particularly electronic
items such as silicon integrated circuits, exhibit a bathtub shaped failure rate
function. This belief is supported by much experience and extensive data
collection in many industries.

Despite of several critiques of the role of bathtub shaped failure rate distri-
butions, see, e.g., Talbot (1977), Wong (1988) and Sherwin (1997), BT (UBT)
classes have been studied more extensively than most other ageing classes.

3.3 Definitions and Basic Properties

A class of life distributions which has received considerable attention is the
class of bathtub shaped failure rate life distributions. A systematic account of
such distributions was given by Rajarshi and Rajarshi (1988). We say that F
is BT (bathtub shaped failure rate) if its failure rate function decreases at first
and then remains constant for a period and finally it increases with time. In
other words, the failure rate function has a bathtub shape. This corresponds
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to the three distinct phases of a component or a system: early life, useful life
and wear-out as shown in Figure 3.1. During the early life period, failures
tend to be caused by manufacturing defects or birth defects in the case of
human beings. Failures in the useful life period can be called chance failures.
The wear-out region has an increasing failure rate with time because of the
older the unit the more likely it is to fail.

Fig. 3.1. Bathub shaped failure rate function

As we mentioned in the preceding section, the class of lifetime distributions
having a bathtub shaped failure rate function is very important because the
lifetime of electronic, electromechanical, and mechanical products are often
modeled with this feature. In survival analysis, the lifetime of human beings
exhibits this pattern. Several real life examples of bathtub shaped life distri-
butions can be found in Kao (1959), Krohn (1969), Lieberman (1969) and
Lawless (2003).

3.3.1 Acronyms for Bathtub Shaped Failure Rate Life
Distributions

The bathtub shaped failure rate life distributions, often known simply as bath-
tub distributions, have a failure rate curve that resembles to a bathtub shape.
Such failure rate curves are also known as U-shaped or J-shaped curve and
we are unsure who first coined the phrase ‘bathtub’ for these life distribu-
tions. Unlike other classes of ageing distributions, there appears no consistent
acronyms or abbreviations. Some of the known abbreviations are: BT, BTD,
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BFR, BTF, BTFR, BTFRD, BTR, DI, DIB, etc. It seems to us the preferred
one would be BT which we now adopt in this book.

3.3.2 Definitions

There are several variants of the definition of a bathtub shaped failure rate but
they are essentially the same. The main difference is whether the assumption
of having two change points is imposed. Barlow and Proschan (1981, p. 55)
gave a semi-formal definition of a bathtub shaped failure rate having three
phases: ‘infant mortality’ phase, ‘useful life’ phase and wear-out phase.
Definition 3.1: Let F be a cdf with a failure rate function r(t) which is
continuous. Then F is BT if there exits a t0 such that (a) r(t) is decreasing
for t < t0, (b) r(t) is increasing for t > t0, i.e., r′(t) < 0 for t < t0, r′(t0) = 0
and r′(t) > 0 for t > t0. See, for example, Glaser (1980).

Here the strict monotonicity is implied in this definition. The Glaser’s
convention differs from us in that he used ‘an increasing function’ to mean a
strictly increasing function instead of a ‘non-decreasing function’. The bathtub
curves given in this definition would probably represent some U shaped tubs
rather a traditional bathtubs as there is no interval for which r(t) is a constant.

If F is not absolutely continuous, we may define BT through the condi-
tional reliability function

F̄(x | t) =
F̄(t + x)

F̄(t)
, F̄(t) = 1 − F (t) > 0. (3.2)

Barlow and Proschan (1981, p.54) have used the conditional reliability func-
tion to define IFR and DFR concepts. The following definition arises from
such a consideration.
Definition 3.2: F is BT if there exists a t0 such that

• F̄(x | t) is strictly increasing in t for 0 ≤ t < t0, 0 ≤ x ≤ t0 − t,
• F̄(x | t) is strictly decreasing in t for t0 ≤ t < ∞, x ≥ 0.

Haupt and Schäbe (1997) among others have used this definition for a bathtub
class.

Definition 3.1 above may be modified to allow for a more ‘comfortable’
bathtub shape as the one shown in Figure 3.1
Definition 3.3: A life distribution F which is absolutely continuous and
having support [0,∞) is said to be a bathtub failure (BT) distribution if
there exists a t0 > 0 such that r(t) is decreasing for [0, t0) and increasing
on [t0,∞). Mitra and Basu (1995), among many others, have adopted this
approach.

In this definition, a bathtub with a ‘flat’ middle portion is possible though
not explicitly imposed. The point t0 is referred to as a change point of the
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distribution F by the these authors. We note, however, every point in the ‘level
flat’ part can be taken as as a ‘change point’ according to this definition.

In Mitra and Basu (1996a), {BTs} is used to denote the family of the
bathtub distributions covered by Definition 3.1 with the letter ‘s’ standing for
‘strict’, whereas {BT} is used to denote the family of bathtub distributions
covered by Definition 3.3, i.e., {BT} = {BTs}∪{IFR}∪{DFR}. To avoid any
ambiguity, we assume in this book that every member of a BT class is strictly
non-monotonic unless explicitly stated.

A more explicit definition that gives rise to curves having a definite ‘bath-
tub shape’ is as follows:
Definition 3.4: A distribution F is a bathtub shaped life distribution if there
exists 0 ≤ t ≤ t0 such that:

(a) r(t) is strictly increasing, if 0 ≤ t ≤ t1;
(b) r(t) is a constant if t1 ≤ t ≤ t2; and
(c) strictly increasing if t ≥ t2.
Park (1985) and Mi (1995), among several others, have used this definition

of a bathtub shaped failure rate function with two change points. Several
comments on these definitions are now in order:

• In Definition 3.4 above, Mi (1995) called the points t1 and t2 as the change
points of r(t). If t1 = t2 = 0, then a BT becomes an IFR; and if t1 =
t2 → ∞, then r(t) is strictly decreasing so becoming a DFR. In general,
if t1 = t2, then the interval for which r(t) is a constant degenerates to a
single point. In other words, the strict monotonic failure rate distributions
IFR and DFR may be treated as the special cases of BT in this definitions.

• In Definition 3.4, at most two change points are allowed. In other words,
the points in the flat interval (t1, t2) are not change points according to Mi
(1995) but would have been called the ‘change points’ according to Mitra
and Basu (1995).

• Definition 3.4 may be rewritten as

r(t) =

⎧⎨
⎩

r1(t), for t ≤ t1,
λ, for t1 ≤ t ≤ t2,
r2(t), for t ≥ t2;

(3.3)

where r1(t) is strictly decreasing in [0, t1] and r2(t) is strictly increasing for
t ≥ t2. We are not aware of any well known parametric BT distributions that
posses a ‘flat’ middle part. However, Jiang and Murthy (1997c) constructed
one such distribution while studying sectional models involving three Weibull
distributions. However, BT distributions with one change point are more com-
mon and several of these will be given in Section 3.1.
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• We may differentiate the types of bathtub failure rates based on the as-
ymptotic nature of r(t) as t approaches 0 and infinity. The function r(t)
may be finite or infinite at these asymptotes.

Another definition of a bathtub shaped failure rate distribution may be
defined through log F̄(t).
Definition 3.5: A life distribution F having support on [0,∞) is said to
be a bathtub shaped failure rate distribution if there exists a point t0 such
that − log F̄(t) is concave in [0, t0) and convex in [t0,∞). See for example,
Deshpande and Suresh (1990).

Marshall and Olkin (1979, p.76) have used log concavity (convexity) of
F̄ (t) to define IFR (DFR) a long time ago so the above definition of a bathtub
in terms of log F̄ cannot be considered a recent idea.

It is to be noted that the above definition of a BT distribution is quite
general and extends the idea of distributions possessing a bathtub shaped
failure rate to situations where the failure rate itself does not exists.

In studying the property of BT class, in particular its relationship with
other classes, one has to be aware of which definition of BT is used.

3.3.3 Some Further Properties

Recall when we say F is BT, we mean its failure rate function r(t) ∈ BT. Mitra
and Basu (1996a) presented some basic properties concerning the bounds for
the survival function and moments of a BT random variable T . Closure prop-
erties of the BT class under the formation of coherent systems, convolutions
and mixtures were also dealt with.

• Suppose F is BT, then F̄(t) ≤ Ḡ(t) where G is exponential with mean
{r(t0)}−1. Here t0 is a change point at which r(t) is minimum.

• E(Xk) ≤ Γ(k+1)
r(t0)k , k > 0.

• A BT life distribution F with the kth moment (about zero) equal to
E(Xk) = Γ(k+1)

{r(t0)}k is necessarily an exponential.

• Convolution of distributions from a BT class is not necessarily in the BT
class. In fact, even in the broader BT class that includes monotonic fail-
ure rate distributions is not closed under convolution. This is seen in the
following example:

F̄(t) = 1
2

(
e−t + e−t/2

)
, t ≥ 0; Ḡ(t) = e−t.

The failure rate function of the convolution H = F ∗ G is given by r(t) =
(t−1)e−t+e−t/2

te−t+2e−t/2 ; accordingly, r(0) = 0, r(2) = .5, r(4) = 0.5533 and r(t) →
0.5 as t → ∞ so r(t) does not have a bathtub shape.

• The mixture of BT distributions need not be BT.
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• Suppose we have a competing risks model: F̄(t) = F̄1(t)F̄2(t) where the
lifetime of each component is BT with a common turning point t0. Then
the lifetime of the system again has a BT distribution with t0 as one of
its turning points. (Note: the turning point here is defined as that given
in Definition 3.3. Also a competing risks model is simply a series system.)

• A parallel system of two independent BT components need not be a BT
distribution.

3.4 Families of Bathtub Shapes Failure Rate
Distributions

Many parametric families of bathtub shaped life distributions have been con-
structed from various contexts over the last two decades. Ideally, we should
classify them into groups or strata according to some common characteristics.
However, this exercise seems untenable. Instead, we summarize them into two
categories: (a) Lifetime distributions that have explicit expressions for fail-
ure rates and (b) distributions whose failure rate functions are unwieldy or
unknown. For the latter, we give only either the probability density function
or the distribution function, whichever is more convenient. The asymptotic
behavior of r(t) at the origin or infinity is given whenever possible. We aim
to list the examples of bathtub shaped failure rates in the increasing order of
sophistication from Sections 3.4.1 to 3.4.3.

3.4.1 Bathtub Distributions with Explicit Failure Rate Functions

Quadratic model and its generalization

Bain (1974, 1978) and Gore et al. (1986) considered a quadratic failure rate
model with

r(t) = α + βt + γt2; α ≥ 0, −2(αγ)1/2 ≤ β < 0, γ > 0 (3.4)

which has a bathtub shape. Here, r(0) = α, r(t) → ∞ as t → ∞.
It is easy to verify that r̂(t) = exp {r(t)} has a bathtub shape if r(t) also

has a bathtub shape. For example, BT 9 of Rajarshi and Rajarshi (1988) listed
r(t) = exp

{
α + βt + γt2

}
, α, γ ≥ 0, 0 > β ≥ −2(αγ)1/2 as having a bathtub

shape.
In fact, any increasing function of a bathtub failure rate is itself having a

bathtub shaped failure rate.

Competing risk models

(i) Murthy et al. (1973) model
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r(t) =
α

1 + βt
+ γδtδ−1, α, β, γ > 0; δ > 2. (3.5)

Here, r(0) = α, r(t) → ∞ as t → ∞.
This may be considered as a competing risks model involving a Lomax
distribution (the Pareto distribution of the second kind) and a Weibull
distribution.

(ii) Hjorth (1980) model
The case when δ = 2 in (3.5) is considered in Hjorth (1980). The failure
rate function is r(t) = α

1+βt +2γt, γ ≤ αβ
2 . Guess et al. (1998) studied the

behavior of the mean residual life of the Hjorth’s model.

A flexible family

Gaver and Acar (1979) have proposed a model that has a bathtub shaped
failure rate given by r(t) = λ + g(t) + k(t) where g(t) > 0 is a decreasing
function of t with lim

t→∞ g(t) → 0 whereas k(t) is an increasing function of

t such that k(0) = 0, lim
t→∞ k(t) → ∞ and λ is any real number such that

r(t) > 0. This is a popular method for constructing bathtub shaped failure
rate functions. Several special cases of this family are now presented below:

• r(t) = λ + θ
t+ϕ + αtp, α, θ ≥ 0; t, ϕ, p > 0; the model is an extension of

Murthy et al. (1973) and studied by Jaisingh et al. (1987). If both g(t)
and k(t) are failure rate functions, then this model is simply a competing
risks model involving three distributions.

• Canfield and Borgman (1975): r(t) = θ1α1t
α1−1 + θ2 + θ3α3t

α3−1, α3 >
2, α1 < 1. r(t) → ∞ as t → 0 or ∞.

• Hjorth (1980): r(t) = α
1+βt + γt; 0 < γ ≤ αβ. r(0) = α, r(t) → ∞, as t →

∞.

• Generalized Makeham’s curve. This is listed as No. 15 in Section 5 of
Rajarshi and Rajarshi (1988). It differs from the Gompertz-Makeham dis-
tribution as discussed in Section 2.3:
r(t) = δ exp(µt) + αβ(1 + βt)−1, µδ < αβ2, t > 0. r(0) = δ + αβ, r(t) →
∞ as t → ∞.

Additive models

These are in fact competing risk models with both components from the same
family of distributions.

• Additive Weibull model
Xie and Lai (1995) and Jiang and Murthy (1997c) considered a competing
risk model involving two Weibull distributions resulting the below failure
rate function:
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r(t) = α1/β1(t/β)α1−1 + α2/β2(t/β2)α2−1, αi > 0, βi > 0, i = 1, 2. (3.6)

The function r(t) has a bathtub shape when α1 < 1 and α2 > 1. The
turning point t0 given by

t0 =
{

α1(1 − α1)βα1
1

α2(1 − α2)βα2
2

} 1
α2−α1

.

Also r(0) = r(∞) = ∞.

• Additive Burr XII model
Burr XII distribution has been discussed in Section 2.3. Wang (2000) con-
sidered an additive Burr XII model that combines two Burr XII distribu-
tions, one with a decreasing failure rate and another one with an increasing
failure rate. The failure rate function of the additive Burr XII is given by

r(t) =
k1c1(t/s1)c1−1

s1[1 + (t/s1)c1 ]
+

k2c2(t/s2)c2−1

s2[1 + (t/s2)c2 ]
, t > 0 (3.7)

(k1, k2, s1, s2 ≥ 0, 0 < c1 < 1, c2 > 2). It was shown that r(t) has a bathtub
shape.

Modified Weibull model of Lai et al. (2003)

Lai et al. (2003) have recently proposed a ‘modified Weibull’ model which
contains the Weibull distribution as its special case. The survival function is

F̄ (t) = exp
(−atαeλt

)
, t > 0, (3.8)

with parameters a > 0, α > 0 and λ > 0. The distribution reduces to the
Weibull when λ = 0. Note that α = 0 is excluded here as it give rise to a
distribution that fails to have a density because there is a positive mass at
the origin. The distribution (3.8) has a relatively simple failure rate function:

r(t) = a(α + λt)tα−1eλt. (3.9)

We observe that if α < 1, the term tα−1 dominates for small t, whereas the
term eλt dominates for large t, thus producing the bathtub shape. Lai et al.
(2003) have established the explicit formula

t∗ =
√

α − α

λ
(3.10)

where 0 < α < 1, for the turning point of r(t). We may note that in this
model, r(t) ∈ I for α ≥ 1.

The distribution will be revisited in Section 5.5 as a generalization of the
Weibull family.



80 3 Bathtub Shaped Failure Rate Life Distributions

Sectional model with two Weibull distributions

Murthy and Jiang (1997) have considered two sectional models involving two
Weibull distributions having failure rate functions given by

r(t) =

{
(α1/β1)(t/β1)α1−1, 0 ≤ t ≤ t0,

(α2/β2)
(

t−γ
β2

)α2−1
, t0 < t < ∞;

satisfying two conditions: t0 = [βα1
1 (α/β2)α2 ]1/(α1−α2), γ = (1 − α)t0 where

α = α2/α1 so that r(t) is continuous at t0. We note that

(a) The authors considered a second model which is the same as above except
that γ = 0. Now the shift (location) parameter γ has no influence on the
shape type of the failure rate. Thus the two models are essentially the
same. For α1 < α2, r(t) would have a bathtub shape if α1 < 1 and
α2 > 1.

(b) Jiang and Murthy (1997b) extended their results giving two sectional
models involving three Weibull distributions. Four types of bathtub shapes
are possible for each of the two sectional models.

Exponential power

Smith and Bain (1975, 1976), Dhillon (1981), Paranjpe et al. (1985), Paranjpe
and Rarjasi (1986) and Leemis (1986) studied the exponential power model
having failure rate given as

r(t) = λα(λt)α−1e(λt)α

. (3.11)

For α < 1, r(t) → ∞ when t → 0 or t → ∞ so yielding a bathtub shape. In
particular, a bathtub with quite a flat middle part is achieved if α = 1/2. For
α ≥ 1, r(t) ∈ I. F̄(t) has a rather simple expression, i.e.,

F̄(t) = exp
{

−(e(λt)α − 1)
}

. (3.12)

We note that (3.12) is a straightforward generalization (by introducing
a shape parameter α) of the Gompertz-Makeham distribution discussed in
Section 2.3. The density function is given by

f(t) = λα(λt)α−1 exp
{

−(e(λt)α − (λt)α − 1)
}

. (3.13)

Dhillon (1981) has used a Weibull probability plot technique to estimate the
two parameters. The maximum likelihood estimates for λ and α were also de-
rived although numerical algorithms to compute these estimates are required.
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Weibull extension

Consider the case λ = 1 in the exponential power model. Then (3.12) becomes

F̄(t) = exp
{

−(e(t)α − 1)
}

. (3.14)

Chen (2000) introduced another parameter λ to the distribution specified
in (3.14) above so that the new cdf becomes

F̄(t) = exp
{

−λ(e(t)α − 1)
}

(3.15)

with failure rate function

r(t) = λαtα−1etα

, t ≥ 0. (3.16)

The parameter λ here does not alter the shape of the failure rate function
so (3.16) behaves similarly to the function given in (3.11). In particular, r(t) ∈
I for α ≥ 1 and r(t) ∈ BT for α < 1.

Chen (2000) has provided the exact confidence interval and the exact con-
fidence regions for the two parameters in the model.

Xie et al. (2002) extended Chen’s model by incorporating a scale parameter
β into (3.15) to give

F̄(t) = exp
{

−λβ(e(t/β)α − 1)
}

. (3.17)

They referred to (3.17) as a modified Weibull extension. We note that the
parameter β in the Weibull extension model plays a role more than a scale
parameter for the Chen’s model since β also appears as a scaling factor for
the first ‘exponent’ in (3.15). The failure rate function can be easily obtained
and is expressed as

r(t) = λβ(t/β)α−1e(t/β)α

, t ≥ 0. (3.18)

Estimates of parameter were obtained by Xie et al. (2002) and the model
was fitted to two data sets. It is found that the model compares favorably
with other existing bathtub shaped models.

We will further discuss this distribution within the context of extended
Weibull families in Section 5.5.

Double exponential power

Paranjpe et al. (1985) and Paranjpe et al. (1986) considered the following
model having

r(t) = βαtα−1 exp(βtα) exp [exp(βtα) − 1] , α < 1. (3.19)

The above expression is obviously quite complex. Clearly, r(t) → ∞ as t →
0 or t → ∞ so a bathtub shape is produced.
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The survival function is, however, quite straightforward although it does
involve 3-fold ‘exp’ :

F̄ (t) = exp {− exp [exp(βtα) − 1]} .

A percentile estimate approach may be used to estimate these parameters.

3.4.2 Finite Range Distribution Families

Finite range distributions could offer a competitive alternative to the dis-
tributions with unbounded support because all the values of any empirical
data are finite. However, a location parameter is often required and this could
limit their usefulness for reliability applications. Also, Glaser’s (1980) results
for classifying the shape of a failure function r(t) as given in Theorem 2.1 need
to be modified (Ghitany, 2004) in this case. Ghitany (2004) has provided a set
of more useful sufficient conditions to determine the shape of r(t) of a finite
distribution defined on (0, b), b < ∞ such that

• If η(t) ≤ 0 and f(b) > 0, then r(t) ∈ I (η(t) = −f ′(t)/f(t)).

• If η(t) ∈ D and f(0) = f(b) = ∞, then r(t) ∈ BT.

Below are a few models that exhibit a bathtub shape for their failure rate
functions.

• Beta distribution
Gupta and Gupta (2000) have investigated the monotonic properties of
the failure rate function of the beta distribution having pdf given by

f(t) =
1

B(p, q)
tp−1(1 − t)q−1, 0 ≤ t ≤ 1 (3.20)

with p > 0, q > 0 and B(p, q) =
∫ 1
0 yp−1(1 − y)q−1 dy. The corresponding

failure rate function is

r(t) =
tp−1(1 − t)q−1

B(p, q) − Bt(p, q)
(3.21)

where Bt(p, q) =
∫ t

0 xp−1(1 − x)q−1 dx.
Ghitany (2004) has shown that r(t) ∈ B if p < 1, independent of the value
of q > 0 and thus correcting a result of Gupta and Gupta (2000).

• Power-function distribution
Mukherjee and Islam (1983) (see also Lai and Mukherjee, 1986) proposed
a finite range distribution with a bathtub failure rate:

r(t) =
ptp−1

θp − tp
, 0 ≤ t < θ, p < 1, (3.22)

and r(t) → ∞ when t → 0 or t → θ, thus a bathtub is formed. It is obvious
that (3.22) is a special a case of (3.21).
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• Beta failure rate distribution
(Moore and Lai, 1994) proposed another finite range distribution with a
failure rate function which is an extension of a beta function of the form:

r(t) = c(t + p)a−1(q − t)b−1, 0 < a < 1, b < −1, 0 ≤ t < q, c > 0, p ≥ 0,

r(0) = cpa−1qb−1, r(t) → ∞ as t → q.

• Integrated beta failure rate distribution
Lai et al. (1998) considered a lifetime distribution with its cumulative
hazard (failure) function H(t) being proportional to a beta function, i.e.,
H(t) = ta(1 − t)b, 0 ≤ t ≤ 1. The failure rate function is given by

r(t) = ta−1(1 − t)b−1 {a − (a + b)t} , 0 < t < 1, a > 0, b < 0.

It is obvious that r(t) → ∞ as t → 0 or 1 and hence a bathtub result. A
minor extension yields

H(t) =
∫ t

0
r(x) dx = cta(1 − dt)b, b < 0, 0 < a ≤ 1, 0 < t < 1/d.

• Govindarajula distribution
Govindarajula (1977) considered a family of distributions having

r(t) =
[
λ(λ + 1)tλ−1(1 − t)2

]−1
, λ > 1, 0 < t < 1.

Clearly, r(t) → ∞ as either t → 0 or t → 1 and thus forms a bathtub
shape.

• Generalized Weibull family of distributions
Mudholkar et al. (1996) considered a generalized Weibull family having
failure rate specified by

r(t) =
α(t/β)α−1

β
[
1 − λ(t/β)1/α

] , α, β > 0; λ real.

The range of this generalized Weibull random variable is (0,∞) for λ ≤ 0
and (0, βλα) for λ > 0. r(t) has a bathtub shape for α < 1 and λ > 0.
r(t) → ∞ as t → 0 or β/λα. The distribution function is

F (t) = 1 − (1 − λ(t/β)α)1/λ
.

We will revisit this distribution in Section 5.5. for other properties.

• Haupt and Schäbe distribution
Haupt and Schäbe (1992, 1994) proposed a bathtub distribution
having the failure rate defined by
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r(t) =

⎧⎪⎨
⎪⎩

1+2β

2T
√

β2+(1+2β)t/T
(
1+β−

√
β2+(1+2β)t/T

) , 0 ≤ t ≤ T ;

0, otherwise;

(3.23)

where −1/3 < β < 1. We note that r(0) = 1+2β
2Tβ , r(t) → ∞ as t → ∞.

The cdf is given by

F (t) =

⎧⎨
⎩

1, t ≥ T

−β +
√

β2 + (1 + 2β)t/T , 0 ≤ t ≤ T
0, otherwise.

Schäbe (1994b) showed that the mean time between unscheduled removals
has an upsidedown bathtub shape.

• J-shaped distribution
Topp and Leone (1955) proposed a family of distributions with cdf given
by

F (t) =
(

t

β

)α(
2 − t

β

)α

, 0 ≤ t ≤ β < ∞ (3.24)

(0 < α < 1). The corresponding density function is

f(t) =
2α

β

(
t

β

)α−1(
1 − t

b

)(
2 − t

β

)α−1

. (3.25)

Nadarajah and Kotz (2003) provided a motivation for the model based on
the failure rate function given by

r(t) =
2α

β

y(1 − y2)α−1

1 − (1 − y2)α
, (3.26)

where y = 1 − t/β. The failure rate r(t) in (3.26) has a bathtub shape for
all α ∈ (0, 1). It attains a minimum at t = t0, where y0 = 1 − t0/β is the
root of the equation

(1 − y)α = 1 − 2αy

1 + y
, α ∈ (0, 1).

3.4.3 Bathtub Distributions with More Complicated Failure Rates

Exponentiated Weibull family

Mudholkar and Srivastava (1993) and Mudholkar and Hutson (1996) consid-
ered a Weibull distribution function that is exponentiated by a parameter θ
to give a new cdf:

F (t) = [1 − exp (−(t/β)α)]θ , 0 ≤ t < ∞, (3.27)
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and the quantile function of the model is

Q(u) = F−1(u) = β
[
− log(1 − u1/θ)

]1/α

, 0 ≤ u ≤ 1.

For θ = 1, this distribution reduces to the standard two-parameter Weibull
distribution. The special case θ = 2 was studied by Jiang and Murthy (1997a)
as a multiplicative Weibull model.

The failure rate function is

r(t) =
αθ

σα
tα−1e−(t/β)α

(1 − e−(t/β)α

)θ−1/[1 − (1 − e−(t/β)α

)θ]. (3.28)

For α > 1 and αθ < 1, the failure rate function has a bathtub shape. For
other possible shapes and ageing properties, see Section 5.5.

Gamma mixture family

Glaser (1980), Kunitz and Pamme (1993), and Pamme and Kunitz (1993) all
considered the gamma mixture of the form:

f(t) = pf1(t) + qf2(t), p + q = 1, t ≥ 0 (3.29)

where fi(t) = λαitαi−1e−λt/Γ(αi), i = 1, 2.
A bathtub failure rate occurs for either α1 > 2, α2 = 1 or α1 > 1, α2 < 1.

Section 2.8.3 shows that several other shapes are possible when the shape
parameters are appropriately restricted.

Generalized gamma

Glaser (1980), McDonald and Richards (1987a,b) and Richards and McDon-
ald (1987b) considered a generalized gamma distribution having probability
density function:

f(t) = ctαυ−1 exp[−(t/β)υ], t ≥ 0, (3.30)

α, β, υ > 0 with c being the proportional constant. A direct determination of
the shapes of the failure rate is difficult. These authors found the shapes via
Glaser’s (1980) function η = −f ′(t)/f(t).

It is found that for υ > 1, υα < 1, the failure rate function has a BT. With
appropriate choices of parameter values, the model is also able to give I, D,
or UBT failure rate curves.
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Generalized exponential distributions

• Cubic exponential family
Glaser (1980) and Cobb et al. (1983) considered a cubic exponential family
with density given by

f(t) = c exp
[−αt − βt2 − γt3

]
, c < α, t ≥ 0. (3.31)

BT distributions arise if (i) α and β real, γ > 0, or (ii) α real, β > 0, γ = 0
or (iii) α > 0, β = γ = 0.

• Exponential family of densities
Glaser (1980), Cobb (1981), Cobb et al. (1983) and Pham-Gia (1994) all
considered the density function given by

f(t) = c exp
[−αt − βt2 + γ ln t

]
= ctγ exp

[−αt − βt2
]
, γ < 0. (3.32)

BT distributions occur for (i) α real , β > 0, γ > −1 or (ii) α > 0, β =
0, γ > −1.

Piecewise exponential family

Kunitz (1989) considered a family of extremal class of distributions based on
the TTT transform φ(p) that changes once from convex to concave in (0, 1)
and that possesses the Kolmogorov distance max {∆, ε} represented by the
graph denoted as Fig. 3.2.

The corresponding life distributions have bathtub shapes and they are part
of the family of piecewise exponential distributions.

3.4.4 A Mistaken Identity: the Mixed Weibull Family

Mixtures of Weibull distributions have been considered in Section 2.8.4. Kao
(1959) considered a mixture of two Weibull distributions in the following form:

F (t) = pF1(t) + qF2(t), p + q = 1 (3.33)

where
F1(t) = 1 − exp {−tα1/β1} , β1 > 0, 0 < α1 < 1,

and
F2(t) = 1 − exp {−(t − γ2)α2/β2} , t > γ2, β2 > 0, α2 > 1.

He claimed that this Weibull mixture has a bathtub shaped failure rate
function but several other authors contradicted his result, see, e.g., Glaser
(1980), Pamme and Kunitz (1993), and Jiang and Murthy (1998) who all
showed that F defined above can never be a BT distribution. Unfortunately,
several other books cited this particular result of Kao (1959).
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Fig. 3.2. TTT-transform of a piecewise exponential distribution
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3.4.5 Some Comments on the Bathtub Shapes

Almost all the parametric distributions given above do not have an interval
for which r(t) is a constant. However, many of these would have a nearly flat
middle part if the parameters are chosen properly. For example, the additive
Weibull model considered by Xie and Lai (1995) can give rise to an approxi-
mately flat bathtub shape. It appears that only a sectional model can achieve
a constant in the middle part of r(t) to describe the ageing behavior of a
device during its ‘useful’ life phase.

It was pointed out by Haupt and Schäbe (1997) that for many of these
bathtub shaped failure rate distributions, one often resorts to extensive it-
erative procedures to find estimates of parameters. Furthermore, the main
characteristics of these distributions such as moments and quantiles are not
available in closed forms.

3.5 Construction Techniques for BT Distributions

There are many ways of constructing bathtub shaped failure rate distributions.
The following list is unlikely to be an exhaustive one.
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3.5.1 Glaser’s Technique

In Section 2.1, we saw Glaser’s (1980) results have been instrumental to deter-
mine the shape of a failure rate function from which many ageing classes were
defined. Recall, he chose a function η(t) which fulfils the following criteria:

(a) η(t) = −f ′(t)/f(t) where f(t) is a density function;
(b) there exists a t0 > 0 such that η′(t) < 0 for all t ∈ (0, t0), η′(t0) = 0 and

η′(t) > 0 for all t > t0;
(c) there exists a y0 > 0 such that

∫∞
y0

[f(y)/f(y0)]η(y0)dy − 1 = 0.

Then the life distribution that possesses these conditions will have a bathtub
shaped failure rate function.

3.5.2 Convex Function

The definition of a BT model obviously implies that a BT distribution can
be constructed by choosing a positive convex function r(t) over (0,∞) such
that

∫∞
0 r(t) dt = ∞. The quadratic model (3.4) of Bain (1974, 1978) is an

example of this constructions. The exponential quadratic model (a BT) given
by r(t) = exp{α + βt + γt2} suggests that a strictly increasing function of
a bathtub failure rate is itself has a bathtub shape (Rajarshi and Rajarshi,
1988).

3.5.3 Function of Random Variables

This procedure is due to Griffith (1982).
Let X have an exponential distribution with mean 1, and let ψ(·) be a

strictly increasing differentiable (except perhaps at m1 and m2) function on
[0,∞). Further, if ψ(·) is convex on [0, m1), linear on (m1, m2) and concave on
(m2,∞) (where possibly m1 = m2), then ψ(X) has a bathtub shaped failure
rate.

3.5.4 Reliability and Stochastic Mechanisms

• Series system (competing risks model)
Suppose we have a series system of two independent components. It is well
known that the failure rate of such a system is simply equal to the sum of
the two component failure rates. If one of them has an IFR distribution
and the other has a DFR distribution, then the system lifetime may have
a bathtub shaped failure rate function. Models obtained by Murthy et al.
(1973), Canfield and Borgman (1975), Gaver and Acar (1979) are of this
type.
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• Stochastic failure models
Consider the life distribution of a device that is subject to a sequence of
shocks occurring randomly in time according to a homogeneous Poisson
process, under appropriate conditions on the probability of surviving a
given number of shocks, Mitra and Basu (1996b) have shown that the
lifetime of the device has a bathtub shaped failure rate.

• IDMRL classes
They are also known as upside-down bathtub mean residual life distri-
butions. A bathtub shaped failure rate distribution often arises from an
IDMRL model.

• Stochastic differential equation models and population abundance distri-
butions.
Bathtub shaped failure rates may arise from mixtures of two gamma distri-
butions, mixtures of two increasing linear failure rates distributions (Sec-
tion 2.8.4), mixture of three distributions (Krohn, 1969), mixtures of two
positive truncated normal distributions (Navarro and Hernandez, 2004)
and others.

• Generalized Weibull
The Weibull distribution has often been used in the reliability literature
to describe failure times. Its failure rate function has a simple form but it
is monotonic. In order to incorporate a non-monotonic failure rate, some
form of generalization is required. For example, the exponentiated Weibull
of Mudholkar and Srivastava (1993) and the modified Weibull of Lai et al.
(2003) are two such examples. Section 5.5 is devoted to generalized Weibull
families.

3.5.5 Mixtures

Mixtures of distributions often give rise to BT distributions. For example,
Glaser (1980) showed that for 0 < α1 < 1 < α2, the gamma mixture has a
bathtub shaped failure rate. The mixture of two increasing linear failure rate
distributions also results a bathtub shape for an appropriate choice of mixing
proportion (Block, Li and Savits, 2003a). See Section 2.8 for other examples
of BT distributions that arise from mixtures.

3.5.6 Sectional Models

Shooman (1968), Colvert and Boardman (1976), and Jaisingh et al. (1987)
have all considered a bathtub shaped failure rate that is piecewise linear in
three regions. For example,

r(t) =

⎧⎨
⎩

ε1 − η1t, 0 < t ≤ t1,
ε2, t1 < t ≤ t2,
ε2 + η2(t − t2), t > t2;

(3.34)
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subject to the conditions t1 = (ε1 − ε2)/η1, ε1 > ε2 > 0, η1, η2 > 0.
Other sectional models that give rise to BT distributions were given in

Jiang and Murthy (1997b) and Murthy and Jiang (1997).

3.5.7 Polynomial of Finite Order

Jaisingh et al. (1987) and Shooman (1968) suggested a polynomial of finite
order failure model: r(t) = a0 +a1t+ ...+antn. As the constants ai, i = 0, ..., n
may be positive or negative, bathtub shapes can be achieved.

3.5.8 TTT Transform

In Kunitz (1989) and Haupt and Schäbe (1997), the total time on test (TTT)
transform was used to construct parametric BT life distributions. Recall from
Section 2.5.6, the TTT transform of a lifetime distribution F was defined as

H−1
F (t) =

∫ F −1(t)

0
F̄ (x) dx, 0 ≤ t ≤ 1,

where F−1(t) = inf{x : F (t) ≥ t}. The scaled TTT transform was also defined
earlier as φ(t) = H−1

F (t)/H−1
F (1).

Haupt and Schäbe (1997) provided the following algorithm.
Choose a twice-differentiable function φ(u) with the properties:

(1) φ(0) = 0, φ(1) = 1, 0 ≤ φ ≤ 1,

(2) the solution F (t) of the differential equation

θφ(F (t)) dF (t)
1 − F (t)

= dt, with θ = H−1
F (1) > 0,

is a lifetime distribution;
(3) φ has only one reflection point u0 such that 0 < u0 < 1 and it is convex

on [0, u0] and concave on [u0, 1].

We note that any distribution whose TTT transform has the property given
by the item (3) above is a BT distribution – see (vi) of Theorem 2.7.

3.5.9 Truncation of DFR Distribution

Schäbe (1994a) has constructed bathtub shaped failure rate distributions from
decreasing failure rate distributions by truncations.
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3.6 Change Point Estimation for BT Distributions

Change points (turning points) of r(t) are important in non-monotonic failure
rate distributions. Without loss of generality, we only consider those bathtub
shaped failure rate functions r(t) with a unique change point t∗. Clearly, r(t)
is minimum at this point so it may be taken as a possible optimal burn-in
time. (See Section 3.9 below for this concept.) Estimating the change point of
r(t) for BT (and others) distributions is particularly relevant in the context of
maintenance policies, since one would not wish to replace a component until
its age has well passed t∗. (If there are two change points, then we should not
replace the component until its age reaches the second change point.) Thus the
question of estimating t∗ becomes very relevant in reliability analysis. Since
t∗ is often a function of the model parameters, a parametric approach is often
more feasible. Let τ be an empirical estimator of t∗.

Nguyen et al. (1984) considered the estimation of the turning point of a
two-step piece-wise linear failure rate function. They observed a difficulty in
applying the maximum likelihood methodology in this situation, proposed an
estimator based on properties of a density represented as a mixture, and estab-
lished its consistency. Yao (1986) and Pham and Nguyen (1990) noted that,
under natural constraints, the maximum likelihood estimator exists, proved its
consistency, and derived the limiting distribution. Pham and Nguyen (1993)
considered estimating the turning point of a truncated bathtub shaped failure
rate function. The authors proposed two semi-parametric estimators as well as
a truncated maximum likelihood estimator and proved their consistency. As-
ymptotic distributions of estimators in the case of the aforementioned failure
rate functions were investigated by Basu et al. (1988), Loader (1991), Ghosh
and Joshi (1992), Joshi and MacEachern (1997), and Chen et al. (2001). A
Bayesian approach to the estimation problem has been considered by Ghosh
et al. (1996). Estimation of the turning point of a general bathtub shaped
failure rate function was considered by Kulasekera and Lal Saxena (1991).
They proposed a nonparametric approach to solve this problem by using the
fact that the failure rate is the ratio between the corresponding density and
survival functions. For estimating the latter two, one can use a kernel-type
density estimator and the empirical distribution function, respectively. Ku-
lasekera and Lal Saxena (1991) proved consistency and asymptotic normality
of their nonparametric estimators of the turning point. Mitra and Basu (1995)
considered nonparametric estimation of the change point of a more general
failure rate function than those discussed above. They proved consistency of
their estimator and noted that in the special case of bathtub shaped failure
functions, their estimator works under less restrictive assumptions in Kulasek-
era and Lal Saxena (1991). Suresh (1992) also obtained two estimates of the
change point; one by using the definition of BT distribution, another by a
characterization of BT distribution in terms of TTT transform. Gupta, Ak-
man and Lvin (1999) considered estimation of the turning point of the failure
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rate function in the case of the log-logistic model, proving that the maximum
likelihood estimator exists and is consistent.

Recently, Bebbington et al. (2005a) considered a parametric approach to
estimate t∗ for the modified Weibull model of Lai et al. (2003). From the
literature review above, we noted that the parametric (i.e., maximum like-
lihood based) methods sometimes encounter serious difficulties but some-
times succeed. In the case of difficulties, semi-parametric or nonparametric
approaches have been used, and satisfactory results obtained. In Bebbington
et al. (2005a), we investigated when a maximum likelihood based estimator
works and when it encounters difficulties by identifying the region(s) of the
parameter space a > 0, b ∈ (0, 1) and λ > 0 in which the estimator works.

3.7 Mean Residual Life and Bathtub Shaped Life
Distributions

3.7.1 Mean Residual Life

Recall, the mean residual life function (MRL) of a lifetime random variable is
defined as

µ(t) = E (X − t |X > t) =
[∫ ∞

t

F̄ (x) dx

]
/F̄ (t). (3.35)

Although numerous studies have been conducted on the MRL distributions
and its applications, few of them involve BT.

It is well known that the class of IFR is contained in the class of DMRL
(decreasing mean residual lifetime). A DMRL distribution need not be an IFR.
One may conjecture that BT distributions may be related to a class of life
distributions whose mean residual life µ(t) is increasing and then decreasing,
that is, the mean residual life has an upside-own bathtub shape. Indeed this
relationship has been observed empirically as pointed out by Rajarshi and
Rajarshi (1988) who said in their review article “It can be observed from the
life-tables of human and animal populations that the shape of the empirical
MRL function is upside bathtub”. Such an ‘inverse’ relationship between r(t)
and µ(t) may be seen from their functional relation

r(t) = [µ′(t) + 1] /µ(t). (3.36)

(Muth, 1977). Eq (3.36) indicates that µ′(t) ≥ −1.
Many authors (e.g., Park 1985) have discovered that the turning point

of the mean residual life function µ(t) precedes the turning point(s) of the
bathtub failure rate function r(t). In other words, the time at which a bathtub
failure rate is a minimum does not maximize the mean residual life. The mean
residual life function µ(t) in the constant failure rate region of a bathtub
shaped failure curve is not constant but decreasing.
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3.7.2 Bathtub Shaped Failure Rate and Decreasing Percentile
Residual Life Function

The ‘α-percentile residual life function’ (α-percentile RLF) was first defined
by Haines and Singpurwalla (1974). Joe and Proschan (1984) showed that this
function may be expressed as

qα,F (t) = F−1 (1 − (1 − α)F̄(t)
)
. (3.37)

In Section 2.7, we have defined an ageing class based on this function, i.e.,
we say a distribution is DFRL-α, if and only if for some α, 0<α<1, qα,F (t)
decreases in t.

Launer (1993) has shown that a bathtub-shaped failure rate distribution
is DPRL-α for all α0 <α<1 for some α0 > 0, provided there exists a t0 with
r(t0) ≥ r(0).

3.7.3 Relationships Among NWBUE, BT and IDMRL Classes

In this subsection, we preview some results in Chapter 4 on relationships
between BT distributions and non-monotonic mean residual life distributions.

We say A life distribution F having finite mean µ is said to be ‘new worse
then better than used in expectation’ (NWBUE) if there exists a point t0 such
that

µ(t)
{≥ µ, if t < t0,

≤ µ, if t ≥ t0.
(3.38)

The turning point t0 will be referred to as a change point of the distribution
F . The following theorem was due to Mitra and Basu (1994).

Theorem 3.1: Let F be a continuous and strictly increasing life distribution.
If F is BT with mean µ, then it is NWBUE.
Proof: Let φ be the scaled TTT transform defined by (2.69). It follows from
(2.68) and (2.69) that 1−φ(p)

1−p = µ(t)/µ where p = F (t).
Since F ∈ BT, it follows from result (vi) of Theorem 2.7 that φ is convex

for p < p0 and concave for p > p0 so

φ(p) =
{≤ p for p < p0,

≥ p for p ≥ p0;

since 0 ≤ φ(p) ≤ 1. Let t0 = F (p0). As F is monotonely increasing in t, it is
now clear that µ(t)/µ ≥ 1 for t < t0 and µ(t)/µ ≤ 1 for t ≥ t0 and thus we
conclude that F is NWBUE.
Remark: In the definition above, NWBUE includes DMRL and IMRL classes.
If the last two classes are excluded, a condition such as r(0)µ > 1 is required
for the theorem to hold.

The converse of the above theorem is false as can be seen from the following
example.
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In this example, we assume that the MRL of the distribution F is given
by

µ(t) =

⎧⎨
⎩

1, 0 ≤ t < 1,
t, 1 ≤ t < 2,
4/t, 2 ≤ t < ∞

so F is NWBUE with t0 = 4. The corresponding failure rate function r(t) can
be shown to be given as:

r(t) =

⎧⎨
⎩

1, 0 ≤ t < 1,
2/t 1 ≤ t < 2,
(t/4 − 1/t) , 2 ≤ t < ∞

which reveals that F is not BT.

We say that a distribution F is IDMRL if µ(t) has an upside-down shape,
i.e., µ(t) ∈ UBT. (Guess et al., 1986). Mitra and Basu (1994) showed that
If F is IDMRL(t0), then F is NWBUE(t′0) with t′0 > t0 , i.e., the class of
IDMRL distributions is a subset of NWBUE class. We will state this result
as Theorem 4.1 in Chapter 4.

Mitra and Basu (1994) have provided an example to show that a life dis-
tribution can be NWBUE without being IDMRL, i.e., the inclusion is strict.

Gupta and Akman (1995a,b) (see also Mi, 1995) showed that under some
mild condition such as r(0)µ > 1, a BT distribution has an upside-down mean
residual life function µ(t).

Analogously, we say that a life distribution F is DIMRL if its mean residual
life has a bathtub shape.

Ghitany (1998) showed that a generalized gamma distribution developed
by Agarwal and Kalla (1996) has a bathtub shaped mean residual life if the
parameters satisfy certain constraints.

Detailed relationships between a BT failure rate r(t) and its associated
µ(t) will be fully explored in Chapter 4.

3.8 Optimal Burn-in Time for Bathtub Distributions

Burn-in plays an important role in reliability engineering. Jensen and Petersen
(1982) is recognized as the first textbook completely devoted to the topic of
burn-in. In this section, we discuss the subject burn-in from the failure rate
perspective whereas in the next chapter it will be discussed from the mean
residual life angle.

3.8.1 Concepts of Burn-in

Due to the high failure rate in the early stages of component life (most notably,
silicon and integrated circuits), burn-in has been widely accepted as a method
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of screening out failures before these components are shipped to customers or
put into the field operations. That is, before delivery to the customers, the
components are tested under electrical or thermal conditions that approximate
the working conditions in field operation. Those components which fail during
the burn-in procedure will be scrapped or repaired and only those which
survive the burn-in procedure will be considered to be of good quality. These
are then shipped to customers or put into field operation.

With insufficient burn-in, high initial failure rates cause high repair costs.
On the other hand, with excessive burn-in, the reduced failure rate will be at
the cost of increased capital and recurring costs. A major problem is to decide
how long the procedure should continue. The best time to stop the burn-in
process for a given criterion to be optimized is called the optimal burn-in
time. A general background on burn-in can be found in Kuo and Kuo (1983),
Kuo (1984). For an excellent review on burn-in, see Block and Savits (1997)
or Leemis and Beneke (1990).

3.8.2 Burn-in and Bathtub Distributions

We now consider the optimal burn-in time for BT distributions under different
criteria .

Burn-in and failure rate r(t)

Wang (2000) considered that one of the uses of a bathtub shaped failure rate
distribution is that we can determine the optimum burn-in time when the
initial failure rate is too high for the product to be released directly after
production. For example, if the customers’ requirement is to have the failure
rate less than rb, then the optimal burn-in time b∗ can be determined by
r(b) = rb where t lies outside the wear-out phase. In other words, b∗ = inf{t :
r(t) = rb}.

Maximizing the reliability for a given mission time

Let the lifetime T of a component have a continuous bathtub shaped failure
rate r(t). This component is required to accomplish a mission which lasts for
time τ . The reliability of completing the mission is thus F̄(τ). If we burn-in
the component for a time b and if the component survives the burn-in, then
the conditional reliability of accomplishing the mission is given by

F̄(b + τ)
F̄(b)

= exp

(
−
∫ b+τ

b

r(t)dt

)
. (3.39)

We want to determine the optimal burn-in time such that the survival prob-
ability (3.39) above will be maximized. The set of burn-in times is defined
as
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B∗ =
{

b ≥ 0 :
F̄(b + τ)

F̄(b)
= max

t≥0

F̄(t + τ)
F̄(t)

}
. (3.40)

Alternatively,

B∗ =

{
b ≥ 0 :

∫ b+τ

b

r(s)ds = min
t≥0

∫ t+τ

t

r(s)ds

}
. (3.41)

Mi (1994b) characterized the structure of the set B∗ as below:

Theorem 3.2: Let the continuous failure rate r(t) have a bathtub shape with
change points t1 and t2, and τ > 0 be a given mission time.

• If τ ≤ t2 − t1, then the optimal burn-in occurs at each point of [t1, t2 − τ ],
i.e., B∗ = [t1, t2 − τ ].

• If τ > t2 −t1, then the optimal burn-in occurs on or before the first change
point t1, i.e., B∗ = {b∗} and b∗ ∈ [0, t1] where B∗ is defined as above.

Proof: The proof hinges on a lemma which states that if there exists 0 ≤
b1 < b2 such that the given bathtub shaped failure rate function satisfies
r(b1) = r(b2) and b2 − b1 = τ , then

∫ b+τ

b

r(t) dt ≥
∫ b2

b1

r(t) dt for b ≥ 0

and the inequality is strict whenever r(b) �= r(b+ τ). For the rest of the proof,
see Theorem 1 of Mi (1994b).

Maximizing the mean residual lifetime MRL

Often the quality of products is taken to be the lengthen of time they give
satisfactory service, i.e., their lifetime. After products are manufactured, the
only way to improve this aspect of their quality is to operate them for a fixed
period of time, say b. Suppose cost is not to be considered, it is reasonable to
set our goal for the longest mean lifetime. Accordingly, we need to determine
b such that MRL is maximized, as only those items that survives the fixed
burn-in time are placed in service. In other words, we want to find b∗ such
that

µ(b∗) = max
b≥0

{µ(b)}. (3.42)

Theorem 3.3: Assume r(t) has a bathtub shape and is differentiable with
two change points t1 and t2. Then

• t1 = 0 : there is no need to burn-in, that is, b∗ = 0;
• t2 = ∞ and t1 > 0; then we can always choose b∗ = t1;
• t1 = t2 = ∞ (F is actually DFR): the cost should be considered;
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• 0 < t1 ≤ t2 < ∞ : b∗ equals the unique change point t∗ of µ(t).

Proof: The first three results are obvious and the last will follow easily from
Theorem 4.2 of Chapter 4. We also note from Theorem 4.3 that b∗ must occur
before t1. See Mi (1995) for details.

Accordingly, we never need to burn-in products longer than the first change
point t1 unless F is DFR.

The above results establish a general principle which states that burn-in
should occur at or before the point at which a bathtub shaped failure rate
function starts increasing. Block et al. (1999) have established a framework
for determining when the above principle holds.

Optimal burn-in time under age replacement with complete repair
policy

We consider the age replacement policy described in Barlow and Proschan
(1965). Let cf denote the cost incurred for each failure in field operation and
ca, satisfying 0 < ca < cf , the cost incurred for each non-failed item which is
replaced at age T > 0 in field operation.
Theorem 3.4: Suppose the failure rate function r(t) is differentiable and
has a bathtub shape. Then under the age replacement policy with complete
repair at failure, the optimal burn-in time b∗ and the corresponding optimal
age T ∗ = T ∗(b∗) satisfy 0 ≤ b∗ ≤ t1 and b∗ + T ∗ = b∗ + T ∗(b∗) > t2, where
T ∗(b∗) is either the unique solution of the equation given below:

r(b + T )
∫ T

0

F̄(b + t)
F̄(b)

dt +
F̄(b + T )

F̄(b)
=

cf + k(b)
cf − ca

(3.43)

or equal to ∞ depending on whether (3.43) has a solution or not.
Here k(b) is the expected cost of burn-in per item:

k(b) = Er(b) = c0

∫ b

0 F̄(t)dt

F̄(b)
+

csF (b)
F̄(b)

. (3.44)

Proof: The proof is given in the appendix of Mi (1994c). It is rather long,
involving consideration of several subcases.

Cha (2000) proposed a new burn-in procedure for a repairable component.
During the burn-in period, the failed component is only minimally repaired
rather than being completely repaired. This procedure was shown to be eco-
nomical and efficient when the minimal repair method is applicable during the
burn-in processes. The properties of the optimal burn-in time b∗ and block
replacement policy T ∗ were also given.
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Burn-in time under block replacement and minimal repair policy

Mi (1995) has also obtained the optimal burn-in time under the block re-
placement and minimal repair policy. The result, as given in Theorem 2 of Mi
(1995), is rather complicated.

3.8.3 Burn-in Time for BT Lifetime under Warranty Policies

Warranty for durable goods provides a peace of mind for the consumers. It
is a written guarantee that states the manufacturer of that good will provide
labour and parts to fix or replace the defective good when necessary. Con-
sumers will feel safe when they purchase a good that comes with warranty.
However, the warranty cost may drastically reduce profitability.

Burn-in is a common procedure to improve the quality of the products
after they have been produced, but it is also costly.

Following Nguyen and Murthy (1982) and Chou and Tang (1992), we
assume that cost is additive and has the following elements:

c0 : the manufacturing cost per unit without burn-in;
c1 : the fixed setup cost of burn-in per unit;
c1 : the cost per unit time of burn-in per unit;
c3 : the shop repair or replacement cost per failure;
c4 : the extra repair or replacement cost per failure during the warranty

period.
Nguyen and Murthy (1982) proposed a model to determine the optimal

burn-in time for products sold with warranty. Let Tw > 0 be the length of
the warranty period. They considered two type of warranty policies. One is
the failure-free policy where all failed products are repaired or replaced by
independent and identically distributed one during the warranty period. The
other is the rebate policy where the consumer is refunded some amount R0(t)
if the product fails at time t during the warranty period [0, Tw]. These authors
then considered the total cost as the sum of burn-in cost and the warranty
cost. By assuming that the failure rate of products has a bathtub shape with
change points t1 = t2 (i.e., having a unique change point), they obtained
several results regarding the optimal burn-in time minimizing the total mean
cost function. Their main conclusion was that the optimal burn-in time is
no later than the unique change point. In Nguyen and Murthy’s model, the
refund amount function R0(t) is assumed to be a decreasing linear function
of t in [0, Tw].

Mi (1997) also considered the same problem but relaxed the assumptions
in two ways: (1) r(t) may have two change points according to the Definition
3.4, (2) R0(t) is an arbitrary decreasing function of t. Mi discussed different
product type-warranty policy combinations and concluded that in each case
optimal burn-in time b∗ that minimizes the total mean cost function c(b) never
exceeds the first change point t1.



3.9 Upside-down Bathtub Shaped Failure Rate Distributions 99

It is believed that the replacement-free policy favours the consumers at
the expense of the manufacturer, and the rebate (pro-rata) policy favours the
manufacturer at the expense of the consumers. Because of this, Nguyen and
Murthy (1984) introduced a mixed warranty policy that initially starts with
a replacement-free period followed by a pro-rata period. This will be more
reasonable from both the manufacturers’ and the consumers’ point of view.

In addition to the above classification, warranties can also be renewable
or nonrenewable. Mi (1999a) considered the burn-in problem under renewable
mixed warranty policy.
Theorem 3.5: Suppose the lifetime distribution F has a bathtub shaped fail-
ure rate function r(t) with change points 0 < t1 ≤ t2 < ∞. Then for the
renewable mixed warranty with decreasing rebate function R0(t) ≥ 0, the
optimal burn-in time b∗ that minimizes the mean warranty cost C(b) must
satisfy b∗ ≤ t1.
Proof: First, we note that if the underlying lifetime distribution of a new
product is F and the burn-in time is b, then the burn-in device has a distrib-
ution Fb(x) = F̄ (b + x)/F̄ (b). The remaining lifetime that corresponds to Fb

is denoted by Xb.
Since r(t) exhibits a bathtub shape so r(b) ≥ r(t1) for all b > t1. Now

r(b) ≥ r(t1) is equivalent to Xb ≤FR Xt1 (see Definition 2.15 of Section
2.9 on partial orderings of distributions). By Theorem 6 of Mi (1999a), we
have C(t1) < C(b) for all b > t1. This shows that b∗ ≤ t1 for b∗ to satisfy
C(b∗) = minb≥0 C(b). See Mi (1999a) for missing details.

3.8.4 Optimal Replacement Time and Bathtub Shaped Failure
Rate Distributions

For certain maintenance policy, a component is replaced if its age has reached
a certain level. The question aries as what would be the ‘optimal age’. Wang
(2000) considered a scenario where the product has to be replaced by a new
one when the original component has failure rate higher than a threshold
value hr. If this is taken as the criterion, then the optimal replacement age
can be determined by solving the functional equation r(t) = rb. (We restrict
t to lie in the wear-out phase). The equation can be solved numerically using
some standard algorithms. Furthermore, the hazard plot may also be used to
determine the optimum replacement time.

3.9 Upside-down Bathtub Shaped Failure Rate
Distributions

Another important family of life distributions is known as the upside-down
bathtub shaped failure rates class which is introduced in Chapter 2 and de-
noted by UBT. An UBT model is defined as having a unimodal failure rate
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function r(t) by Chang (2000). Jiang et al. (2003) considered an UBT class as
the family of distributions whose failure rates are unimodal or reverse bathtub
shaped. We are of the opinion that referring to UBT as a family of distribu-
tions having unimodal failure rates is not easily understood, since one rarely
uses ‘mode’ of a function outside the context of a random variable.

For the situations where the failure is mainly caused by fatigue or corro-
sion, the time to failure is often represented by such UBT models.

3.9.1 UBT Models

Surprisingly, there are several well known statistical models listed in Section
2.3 belong to this class. For the convenience of the reader, we give the failure
rate functions of the UBT distributions again in this subsection.

(i) Lognormal
This well known distribution has been considered in Section 2.3. Its dis-
tribution function is

F (t) = Φ
(

log t − µ

σ

)
(3.45)

with the failure rate function

r(t) =
(1/

√
2πtσ) exp

{−(log at)2/2σ2
}

1 − Φ {log(at)/σ} , (3.46)

where a = e−α. It is well known the lognormal distribution belongs the
UBT class (see Section 2.3); r(0) = 0 and r(t) → 0 when t → ∞. Sweet
(1990) gave a comprehensive analysis of the failure rate of the lognormal
distribution.

(ii) Inverse Weibull
The two-parameter Weibull distribution is given by

F (t) = 1 − e−(t/β)α

, α, β > 0. (3.47)

Let X denotes the random variable from the Weibull model. Define Y =
β2/X so that the distribution of Y is given by

F (t) = exp (−(β/t)α) . (3.48)

The distribution that associated with (3.48) is called the inverse Weibull
distribution. Jiang et al. (2001) provided a historical development and
some basic properties of this distribution. The failure rate function is
given by

r(t) = αββt−β−1e−(αt)β

/(1 − e−(αt)β

). (3.49)

In particular, it has been shown that limt→0 r(t) = limt→∞ r(t) = 0 and
r(t) ∈ UBT.
We will revisit this distribution in Section 5.4 for other properties of the
inverse Weibull.
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(iii) Inverse Gaussian
The inverse Gaussian was studied earlier in Section 2.3. The distribution
function is

F (t) = Φ

{√
λ

t

(
t

µ
− 1
)}

+ e2λ/µΦ

{
−
√

λ

t

(
t

µ
+ 1
)}

. (3.50)

Although the failure rate function is quite complicated, it has been shown
that r(t) has a UBT shape with limt→0 r(t) = limt→∞ r(t) = 0 (see, e.g.,
Chhikara and Folks, 1979). It was also shown that the time at which r(t)
attains its maximum is also the time when the mean residual life µ(t)
reaches its minimum. Hsieh (1990) has considered various methods for
estimating the critical time (change point) of r(t).

(iv) Birnbaum-Saunders
This was also studied in Section 2.3 earlier. The distribution function is

F (t) = Φ

{
1
α

·
[(

t

β

)1/2

−
(

t

β

)−1/2
]}

, t > 0. (3.51)

We note that r(t) → 1/(2α2β) as t → ∞ (see, e.g., Chang and Tang,
1993). The function r(t) ∈ UBT for 0.8 < α < 2.2 and β = 1. The critical
point of r(t) is given in Chang (1994).
A comparison between the failure rates of the Birnbaum-Saunders and
the lognormal distributions is given in Nelson (1990).

(v) Log-logistic
We have also considered this distribution in Section 2.3.

F̄ (t) =
1

1 + (ρt)k
, t > 0, ρ > 0, k > 0, (3.52)

and

r(t) =
kρ(ρt)k−1

1 + (ρt)k
. (3.53)

Gupta, Akman and Lvin (1999) have shown that r(t) ∈ UBT if k > 1 and
the critical (turning) point of the failure rate function is given by

t∗ =
(k − 1)1/k

Q
.

(vi) Exponentiated Weibull

F (t) = [1 − exp (−(t/σ)α)]θ , 0 ≤ t < ∞. (3.54)

Mudholkar et al. (1995) have shown that for α < 1 and αθ > 1, r(t) ∈
UBT. We will revisit this distribution in Section 5.5.
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(vii) Dhillon’s second model
Dhillon (1981) also constructed a second two-parameter system, with sur-
vival function

F̄ (t) = exp
[−{log(λt + 1)}β+1] , β ≥ 0, λ > 0, t > 0. (3.55)

The failure rate function is

r(t) = (β + 1)(λt + 1)−1{log(λt + 1)}β . (3.56)

For β = 1, r(t) has an UBT shape (Johnson et al., 1995, p. 645).
(viii) Mixtures

The mixture of the Weibull of shape parameter β >1 by the exponential
(Gurland and Sethuraman, 1994) has a UBT shape for all mixing pro-
portion p such that 0.05 < p < 0.95. See Section 2.8.4 for other ageing
properties of the Weibull mixtures.

(ix) Generalized gamma
The density function of the generalized gamma is

f(t) = ctαυ−1 exp[−(t/β)υ], t ≥ 0,

α, β, υ > 0 with c being the proportional constant. It was pointed out in
Section 3.4.3 that for υ < 1, υα > 1, r(t) has an UBT shape.

For other examples of UBT, see Gupta (1995) and Ghitany (1998).

3.9.2 Optimal Burn-in Decision for UBT Models

Chang (2000) considered optimal burn-in problem for UBT distributions. Un-
der a mild condition (r(0)µ < 1), a UBT distribution F has a BT shaped
mean residual life function and µ(t) may go to ∞ so maximizing MRL can-
not be the goal of an optimal burn-in decision. However, it is required that
µ(t) ≥ µ(0) = µ, where µ is denoted by MTTF as in the figure below. So an
optimal burn-in time δ should occur after tµ.

Chang (2000) provided a procedure that is based on the costs, the failure
rate function together with a constraint imposed on µ(t) as mentioned above.
He also demonstrated his procedure using the lognormal model as an example.

Chang (2000) also indicated that burn-in is not always necessary for prod-
ucts with UBT failure rate functions.

3.10 Modified and Generalized Distributions

3.10.1 Modified Bathtub Distributions

A modified bathtub shape was defined in Section 2.2.1 as a curve that is first
increasing and then having a bathtub shape.
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Fig. 3.3. Burn-in decision for products with UBT failure rate based on MRL
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Some researchers (see, e.g., Kuo and Kuo, 1983), upon collecting failure
statistical data found that component failure rates often follow a more com-
plex pattern than those described the bathtub curves. The modifications of
a bathtub curve are known as generalized/modified bathtub curves. The ma-
jor difference between the traditional and the modified bathtub curves is the
behavior during their infant mortality part. Jensen and Petersen (1982) sug-
gested a two-stage model of infant mortality: the first stage has an increasing
failure rate, indicating failures that rise from comparatively coarse defects,
such as those from imperfect manufacturing, improper handling, or defective
control processes. Such a failure rate in this first stage peaks quickly and is
followed by a period of decreasing failure rate and then increasing. In another
words, the failure rate function increases at the beginning and then follows by
a bathtub shape. We use the abbreviation MBT to denote a modified bathtub
shape and refer to a distribution F as a MBT distribution if its failure rate
has a MBT shape. Jensen and Petersen (1982) were probably the first to use
a MBT model for describing the failures of modern electronic devices.

Modified bathtub distributions are often found in mixtures of distribution
such as mixtures of gammas and mixtures of Weibulls (see Section 2.8).

Example: Extended Weibull of Marshall and Olkin

In Section 2.2.1 we introduced the extended Weibull distribution of Marshall
and Olkin (1997) constructed by adding a parameter to the survival function
Ḡ:
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F̄ (t) =
βḠ(t)

1 − β̄Ḡ(t)
,−∞ < t < ∞, β > 0, (3.57)

where β̄ = 1 − β. In particular, they considered the case when

Ḡ(t) = exp {−(λt)α} , α > 0, t > 0. (3.58)

Upon substituting (3.58) into (3.57), we have a new three-parameter extended
Weibull distribution given by

F̄ (t) =
β exp {−(λt)α}

1 − β̄ exp {−(λt)α} . (3.59)

The failure rate function is given by

r(t) = λα(λt)α−1/[1 − β̄ exp{−(λt)α}]. (3.60)

Their Fig. 2 indicates that r(t) ∈ MBT for λ = 1, α = 2, β = 0.05 or β = 0.1.

3.10.2 Generalized Bathtub Curves

Kogan (1988) introduced a set of ‘polynomial models’ of failure rates that
generalizes the traditional bathtub curves. One of his models has a shape like
the Figure 3.4 below:

Fig. 3.4. Generalized bathtub curve
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This curve has a minimum at t1 and a maximum at t0. The failure rate
function r(t) is quite flat in the interval (t1 − a, t1 + b). Kogan (1988) con-
structed a polynomial model in which a = b such that r(t1 −a) = r(t1 +a). To
begin with, he assumed that the failure rate function has a derivative given
by

r′(t) = A(t − t0)2n−1(t − t1)2m−1, t ≥ 0, A > 0, t1 ≥ t0 > 0, (3.61)

where n and m are positive integers such that A(t1 + a − t0)2n−1a2m−1 < ε.
For the special case n = m = 1, it is found that the failure rate equation is

r(t) = At3/3 − A(t0 + t1)t2/2 + At0t1t + r(0) (3.62)

subject to A(t1 − a − t0)a < ε.

Notes

• In the above curve (Fig 3.4) we have a bathtub shape for t > t0. It could
also be considered as having a modified bathtub shape.

• A different form would appear if it also has a bathtub shape for t < t0.
• Kogan (1988) gave another generalized curve which has two bathtubs

jointed by a hump.
• For a mixture involving two Weibull distributions, Jiang and Murthy

(1998) have shown that we can have both of the above two shapes. They
have also shown that in this case, the shape for small t is the same as that
for large t so that if it is increasing (decreasing) for small t then it is also
increasing (decreasing) for large t.

3.10.3 Roller-Coaster Curves

A roller-coaster curve was briefly defined in Section 2.2. Wong (1988, 1989,
1990, 1991) as well as Wong and Lindstrom (1988) considered a generaliza-
tion of the bathtub failure curve, called the roller-coaster curve. Essentially,
the name suggests that the failure rate has a roller-coaster shape, a bath-
tub with one or more humps. Wong (1991) suggested some plausible physical
reasons for the formation of the roller-coaster shape. The generation of the
shape starts with the basic failure mechanisms, which lead to the generally
decreasing failure rate. The humps could be caused by changing hazard con-
ditions, wear-out failure distribution of flawed items, distribution of flaw sizes
or residual small size flaws left in the equipment because of test and inspection
limitations.

Jiang and Murthy (1997b) considered two sectional models involving three
Weibull distributions. By considering different constraints on the parameters,
various shapes of failure rate functions result. Two of these have a ‘roller-
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coaster’ shapes. The same authors, Jiang and Murthy (1998), also considered
a mixture involving two 2-parameter Weibull distributions. They concluded
that the failure rate shape can be one of eight different types. Two of these are
monotonic whereas the rest can be viewed as ‘roller-coaster’ shaped. We also
note in passing that in addition to the two models mentioned here, these two
authors also considered a competing risk model (Jiang and Muthy, 1997c),
and a multiplicative model (Jiang and Murthy, 1997a) involving two Weibull
distributions. Bathtub shaped failure rates can arise in all these models except
the mixture model.

In Section 4.5.4, we will discuss the shape of the mean residual life function
µ(t) when the associated failure rate function r(t) has a roller-coaster shape.

3.11 Applications

There are many applications of BT distributions, both in reliability and sur-
vival analysis. Below are a few selected examples.

• Failure times of jet engine starters

Kamins (1962) synopsized a very large set of failure times of jet engines
starters in the form of histogram representation of hazard rate (failure rate).
Barlow and Proschan (1981, p. 55) used this histogram as an example of real
data which can be adequately modeled by a bathtub failure rate.

Siddiqui and Kumar (1991) used the finite range model of Mukherjee and
Islam (1983) to fit the failure data of V600 indicator tubes used in aircraft
radar sets collected by Davis (1952).

• Car failures

Xie and Lai (1995) used an additive Weibull model to analyse an actual set
of car failure times data collected during a unit test (name of the brand is
suppressed for the sake of confidentiality). The failure rate has a bathtub
shape.

• Bus motor failures

Davis (1952) obtained a large number of datasets on bus motor failures . Two
of these exhibited bathtub shaped failure rates. Bain (1974) observed that
the quadratic failure model fits well to one of these whereas Smith and Bain
(1975) found that the exponential power model fits well with the other set.

• Electronic tubes failures

Kao (1959) used a mixed Weibull distribution to fit the actual life testing
data gathered by a small-scaled life test of some 800 6AQ5A’s conducted at
Cornell University.
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• Electricity generators’ failures

Failure data of 500 MW generators were collected over 6-year period and
Dhillon (1981) found that the exponential power model fits well with this
dataset.

• Biological and ecological applications:

-Birds: Paranjpe and Rajarshi (1986) fitted the exponential model and the
double exponential power model to survival data of birds in Deevey (1947)
and Pinder et al. (1978)

-Deer: Gore et al. (1986) used the quadratic failure rate model to study
the decomposition rates of heaps of pellet of Axis axis (a deer species) in an
animal reserve.

• Halley’s mortality life data

Halley obtained the survival data of 1000 children born in the city of Breslau
in Germany (now Wroclaw in Poland). The failure rate has a bathtub shape.
Jaisingh et al. (1987) and Moore and Lai (1994) found some models that
would fit the dataset well.

• Load-capacity (stress-strength) interference

Lewis and Chen (1994) showed that the infant mortality, constant failure
rate (Poisson failures), and ageing are associated with capacity variability,
load variability and capacity deterioration, respectively. Bathtub-shaped fail-
ure rate curves are obtained when all three failure types are present.

• Non-Hodgkin’s Lymphoma survival

Alidrisi et al. (1991) obtained survival data of 989 patients treated for non-
Hodgkin’s Lymphoma from the King Faisal Specialist Hospital and Research
Center in Riyadh, Saudi Arabia. The failure rate function has a definite bath-
tub shape.

• Preventive maintenance schemes

A preventive scheme with periodic checkup has been found to be an important
device to avoid catastrophic system failure. Of late, the same scheme has been
found to be useful in the clinical follow-up studies of patients suffering from
chronic diseases such as hypertension, diabetes, cancers, etc.

–Gross and Clark (1975) has found that the bathtub failure rates are highly
applicable for preventive maintenance schemes.

–Biswas and Abid (1991) studied the optimal time for check-up in a main-
tenance scheme under bathtub and Weibull type failure rates.

• Centrifugal water pumps

Pamme and Kunitz (1993) found the mixed gamma model (which has a bath-
tub shaped failure rate for a correct choice of shape parameters) gives a good
fit to the Centrifugal Water Pumps data.
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Mean Residual Life – Concepts and
Applications in Reliability Analysis

4.1 Introduction

The mean residual lifetime (MRL) has been studied by reliabilists, statisti-
cians, survival analysts and others. Many useful results have been derived
concerning it. Given a component or a system is of age t, the remaining life-
time after t is random. The expected value of this random residual lifetime
is called the mean residual life or mean remaining life. The MRL is often an
important criterion for finding an optimal burn-in time for an item.

A review of its theory and applications was given by Guess and Proschan
(1988). Over the last two decades, many papers have been written on this
subject and thus an update has become necessary.

Let F̄ be the survival function of an item with a finite first moment µ
and X be the random variable that corresponds to F̄ assuming F (0) = 0. The
residual life random variable at age t, denoted by Xt = X−t |X > t, is simply
the remaining lifetime beyond that age. The mean residual life (also known as
the mean remaining life) is defined formally as µ(t) = E(X − t |X > t) which
can be given as

µ(t) = E (X − t |X > t) =
[∫ ∞

t

F̄ (x) dx

]
/F̄ (t). (4.1)

Clearly
µ(0) = µ = E(X). (4.2)

If F has a density f , we can then alternatively write

µ(t) =
(∫ ∞

t

xf(x) dx

)
/F̄ (t) − t. (4.3)

In industrial reliability studies of repair and replacement strategies, the MRL
function may prove to be more relevant than the failure (hazard) rate function.
The former summarizes the entire residual life distribution, whereas the latter
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relates only to the risk of immediate failure. In studies of human populations,
demographers often refer the MRL under the names of life expectancy or
expectation of life. Obviously, the MRL is of vital importance to actuarial
work relating to life insurance policies.

In Section 4.2, we investigate how the MRL is related to other ageing prop-
erties. Section 4.3 gives the MRLs of several known lifetime distributions. Sec-
tion 4.4 considers how the MRL may be broadly categorized into two groups:
monotonic and non-monotonic MRL and thus various MRL classes are de-
rived. Section 4.5 establishes the relation between non-monotonic MRL and
non-monotonic failure rate functions. In Section 4.6, we explore the effect of
burn-in to the mean residual life. We consider briefly in Section 4.7 the tests on
the mean residual classes and estimates of change points. Section 4.8 discusses
some several mean residual life functions that have special characteristics. We
consider in Section 4.9 other residual life functions that are not MRL. In Sec-
tion 4.10, we discuss some stochastic orderings of two lifetime variables based
on their the mean residual lives. The relationships between three reliability or-
derings are reviewed. The concept of univariate mean residual life is extended
to bivariate (and multivariate) mean residual life in Section 4.11. A particular
form of bivariate mean residual function is discussed in some detail. Finally
in Section 4.12, we outline some applications of this ageing characteristic and
conclude the chapter with some comments.

4.2 Mean Residual Life and Other Ageing Properties

Theoretical properties of the MRL function µ(t) were given in Cox (1962),
Kotz and Shanbhag (1980), Hall and Wellner (1981) and Bhattacharjee (1982).

It is easy to show that MRL determines the distribution uniquely, see, e.g.,
Gupta (1975) and Muth (1977).

As in the previous chapters, we let r(t) be the failure rate function defined
by

r(t) =
f(t)
F̄ (t)

, f(t) = F ′(t). (4.4)

It can be shown that
µ′(t) = µ(t)r(t) − 1. (4.5)

We note from the above that r(0)µ > 1 iff µ′(0) > 0 which is equivalent to
µ(t) increases at the beginning. This observation explains why the additional
condition stated in Theorem 4.2 in Section 4.5.2 is essential to determine the
shape of µ(t) from a BT class.

By differentiating the last equation, we can verify that

r′(t) =
µ′′(t)µ(t) − (µ′(t) + 1)µ′(t)

(µ(t))2
, t ≥ 0. (4.6)

Since log F̄ (t) = − ∫ t

0 r(x) dx, it is to see that
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F̄ (t) = exp
{

−
∫ t

0
r(x) dx

}
(4.7)

as given in (2.5) and

F̄ (t) =
µ

µ(t)
exp
{

−
∫ t

0
µ(x)−1 dx

}
, t ≥ 0. (4.8)

as given in (2.7). Differentiating the last equation with respect to t, we ob-
tain the density function that is expressed in terms of the mean residual life
function µ(x)

f(t) =
µ (µ′(t) + 1)

µ(t)2
exp
{

−
∫ t

0
µ(x)−1 dx

}
, t ≥ 0. (4.9)

Thus a life distribution is indeed determined uniquely by its MRL. In
particular, F is exponential if and only if its MRL is a constant, i.e., µ(t) = µ
for all t ≥ 0.

Limiting properties of the MRL have been studied by Meilijson (1972) and
Balkema and De Haan (1974).

Thus the survival function F̄ (t), the failure rate function r(t), and the
mean residual life function µ(t) are equivalent in the sense that knowing any
one of them, the other two can be determined provided they exist.

4.2.1 Mean Residual Life and its Reciprocity with Failure Rate

By applying the L’Hôsptal’s rule to (4.1), Calabria and Pulcini (1987) derived
the relationship

lim
t→∞ µ(t) = lim

t→∞
1

r(t)
, (4.10)

provided the latter limit exists and is finite. Then they used (4.5) to conclude
that limt→∞ µ′(t) = 0, or equivalently, that

lim
t→∞ r(t)µ(t) = 1. (4.11)

Bradley and Gupta (2003) showed that (4.11) is not true in general and (4.10)
does not imply (4.11) unless one assumes that limt→∞ r(t) is finite and strictly
positive. A simple counter example is provided by Bradley and Gupta (2003).
Consider the linear MRL of the Pareto distribution with µ(t) = A + Bt so
r(t) = (1 + B)/(A + Bt) – see (2.42). It is clear that (4.10) holds whereas
(4.11) fails. We observe that in the case here, limt→∞ r(t) = 0 which is not
strictly positive.

We will consider in Section 4.10 the question whether an ordering of two life
distributions with respect to the mean residual life implies the same ordering
with respect to the failure rate function.
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4.3 Mean Residual Lives of Some Well-known Lifetime
Distributions

Unlike the failure rate function r(t), µ(t) often has a complicated expres-
sion for many lifetime distributions. Below are a few that are mathematically
tractable. These distributions have been introduced and studied in Chapter
2.3 where reliability properties except the mean residual lives may be found.
It may be argued that the MRLs should be presented there and then, but it
was felt that they should be given after the concept of the mean residual life
has been adequately understood. For the convenience of the reader, we repeat
some of the basic formulae here.
Example 4.1: Exponential distribution

Because of the memory-less property, the mean residual life of the expo-
nential distribution F̄ (t) = e−λt is equal to its mean, i.e.,

µ(t) =
1
λ

. (4.12)

Example 4.2: Gamma distribution
Govil and Aggarwal (1983) have shown that the MRL of the gamma dis-

tribution with density

f(t) = λ(λt)α−1e−λt/Γ(α)

is given by

µ(t) =
λα−1tαe−λt

Γ(α)F̄ (t)
+

α

λ
− t. (4.13)

Recall from Section 2.3.2, the gamma distribution F is DFR for 0 < α ≤ 1
and IFR for α > 1. Since F IFR (DFR) implies DMRL (IMRL), it follows
that µ(t) ∈ IMRL for 0 < α ≤ 1 and µ(t) ∈ DMRL for α > 1. Of course, we
can confirm the shape of µ(t) directly by differentiation.
Example 4.3: Weibull distribution

The mean residual life of the 2-parameter Weibull distribution F̄ (t) =
e−(t/β)α

is rather complex in general but it can be found in Nassar and Eissa
(2003). However, for α = 2 and β =

√
2σ, it has a rather neat expression:

µ(t) =
√

2πσ {1 − Φ(t/σ)} et2/2σ2
, (4.14)

where Φ(·) is the cumulative distribution function of the standard normal.
Since F is IFR for α > 1, it follows that F is DMRL for α > 1, i.e., µ(t) ∈

D for α = 2.
Example 4.4: Inverse Gaussian distribution

F (t) = Φ

{√
λ

t

(
t

µ
− 1
)}

+ e2λ/µΦ

{
−
√

λ

t

(
t

µ
+ 1
)}

. (4.15)
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The MRL is given by (see, e.g., Gupta, 2001):

µ(t) =
(µ − t)Φ(

√
λ/t)(1 − t/µ) + (µ − t)2e2λ/µΦ(−√λ/t)(1 + t/µ)

Φ(
√

λ/t(1 − t/µ)) + e2λ/µΦ(−√λ/t(1 + t/µ))
.

(4.16)
It accentuates how complex a MRL µ(t) can be.
Example 4.5: Pareto distribution (Lomax distribution)

The Pareto distribution (of the second kind) has survival function

F̄ (t) =
[

A

A + Bt

]1/B+1

, (4.17)

with a slightly different form from (2.41). It is easy to verify that (see, e.g.,
Oakes and Dasu, 1990)

µ(t) = A + Bt, (4.18)

i.e., it has a simple linear MRL. This may partly explain why the Pareto
distribution has been widely used for modelling lifetime data.
Example 4.6: Lognormal distribution

Let erfc(t) denote the complimentary error function given by

erfc(t) =
2√
π

∫ ∞

t

e−x2
dx =

1√
2
Φ(

√
2t). (4.19)

Govil and Aggarwal (1983) have shown the the mean residual life MRL is

µ(t) =
√

eerfc[log(t/e)/
√

2]
erfc(log t/

√
2)

. (4.20)

Example 4.7: Log-logistic distribution
The log-logistic distribution was introduced in Chapter 2. Its failure rate

function is

r(t) =
kρ(ρt)k−1

1 + (ρt)k
. (4.21)

Gupta, Akman and Lvin (1999) have shown that

µ(t) =
1
ρk

[
B

(
1
k

, 1 − 1
k

)
− BA(t)

(
1
k

, 1 − 1
k

)]
(1 + (ρt)k), k > 1, (4.22)

where A(t) = (ρt)k/{1 + (ρt)k} and Bx(p, q) =
∫ x

0 yp−1(1 − y)q−1 dy.

Example 4.8: Exponential-geometric distribution
Recall from Section 2.3, the survival function of the exponential-geometric

is
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F̄ (t) = (1 − p)eβt(1 − peβt)−1, t ≥ 0.

Adamidis and Loukas (1998) derived its mean residual life function as

µ(t) = −(βp)−1eβt(1 − pe−βt) log(1 − pe−βt), t ≥ 0. (4.23)

4.4 Mean Residual Life Classes

Various classes of life distributions have been defined through MRL. We have
dealt with some of these Section in 3.7 as a consequence of BT ageing class
because r(t) is very much related to µ(t). Broadly speaking, we can categorize
the mean residual life classes into two groups on the basis of the behaviour of
the MRL function: monotonic or non-monotonic.

4.4.1 Monotonic MRL Classes

The decreasing (increasing) mean residual life ageing concept was defined by
Definition 2.3. For the ease of cross-referencing within the chapter, we give the
definition here again. So in some way, the current subsection can be considered
as a supplement to Section 2.4 and Section 2.5.
Definition 4.1: F is said to be DMRL (IMRL) if the mean remaining life
function µ(t) is decreasing (increasing) in t. That is, the older (newer) the
device is, the smaller (greater) is its mean residual life and hence µ(t) is
monotonic.

Section 2.5 does not present a discussion on the properties of this class
except its closure properties under various reliability operations. We note here
however, the DMRL classes are closed under the formation of parallel systems
as shown by Abouammoh and El-Neweihi (1986). Furthermore, Abu-Youssef
(2002) derived a simple moment inequality

ν(2) ≥ (≤)
µ2

2
(4.24)

if F is DMRL (IMRL) where ν(r) = E[min(X1, X2)]r.
The above inequality was used by the author to derive a test for testing

exponentiality against DMRL (IMRL).
Earlier, Bryson and Siddiqui (1969) proved that IFR (DFR) implies DMRL

(IMRL) (see also the chains of implications Section 2.4). They also gave a
counterexample to show that DMRL does not imply IFR. Lillo (2000) also
provided another counter example as follows.
Example 4.9: A counter example

µ(t) = e−(t−t∗)2(t − t∗ + 1), where t∗ =
1 − √

3
3

, t ≥ 0.

Clearly, µ(t) ∈ D, but r(t) is not increasing.
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A sufficient condition for a DMRL (IMRL) distribution that is also IFR
(DFR) is obtained through equation (4.7) giving:

(i) If µ(t) ∈ I and is concave, then r(t) ∈ D.
(ii) If µ(t) ∈ D and is convex, then r(t) ∈ I.

4.4.2 Non-monotonic MRL Classes

There are several ageing notions may be derived from the non-monotonic
behavior of µ(t) .

Recall from Definition 2.3, the NBUE class can be defined via the MRL
as follows:

F is said to be NBUE if the inequality∫ ∞

0
F̄ (t + x) dx ≤ µF̄ (t)

holds, i.e., ∫ ∞

0
F̄ (t + x) dx/F̄ (t) ≤ µ.

This last inequality is equivalent to µ(t) ≤ µ = µ(0) for all t ≥ 0.
Similarly F is said to be NWUE if µ(t) ≥ µ for all t ≥ 0. Thus, DMRL

implies NBUE whereas IMRL implies NWUE.
The following important non-monotonic MRL life class was briefly dis-

cussed in Section 3.7.3.
Definition 4.2: (Guess et al., 1986). A life distribution with a finite first
moment is called an increasing then decreasing mean residual life (IDMRL)
if there exists a turning point τ , 0 < τ < ∞, such that

µ(s)
{≤ µ(t), for 0 ≤ s ≤ t < τ ;

≥ µ(t), for τ ≤ s ≤ t.
(4.25)

Thus, F ∈ IDMRL if there exists 0 < τ < ∞ such that µ(t) is increasing
on [0, τ) and decreasing on [τ, ∞).

If τ → 0 then IDMRL becomes DMRL; on the other hand, as τ → ∞,
IDMRL becomes IMRL. So our definition of the IDMRL class precludes
monotonic MRL.
Remark

In their definition, Guess et al. (1986) assumed that τ ≥ 0.
The above non-monotonic MRL class has an obvious dual class associated

with it. The dual class ‘decreasing initially, then increasing mean residual
life’ (DIMRL) is obtained by reversing the above inequality (4.25). Again, we
impose the condition that 0 < τ < ∞ so DIMRL will not include DMRL or
IMRL.
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With this more restricted definition, we can say that µ(t) ∈ UBT (BT) iff
to F ∈ IDMRL (DIMRL).

We note again a more general definition of a BT (UBT) shape which
includes a ‘flat middle part’ was given in the literature, e.g., Mi (1995).

In Section 3.7.3, we also considered another ageing class NWBUE intro-
duced by Mitra and Basu (1994) who defined this ageing notion based on the
non-monotonic behaviour of MRL.
Definition 4.3: A life distribution F having support on [0,∞) (and finite
mean µ) is said to be NWBUE (new worse then better than used in expecta-
tion) if there exists a point 0 < τ < ∞ such that

µ(t)
{≥ µ, for t < τ ;

≤ µ, for t ≥ τ .
(4.26)

Similarly, we say F is NBWUE (new better then worse than used in expecta-
tion) if there exists a point τ > 0 such that

µ(t)
{≤ µ, for t < τ ;

≥ µ, for t ≥ τ .
(4.27)

Note that in the limiting case case τ → 0, (4.26) and (4.27) become µ(t) ≤ µ
and µ(t) ≥ µ, respectively, for all t ≥ 0, which corresponds to NBUE and
NWUE respectively.

Theorem 4.1 If F is IDMRL(t0), then F is NWBUE(t′0), i.e., IDMRL is a
subset of NWBUE class.
Proof: Since F is IDMRL, it follows that µ(t) increases on [0, t0) and decreases
on [t0,∞). This is equivalent to µ(t)/µ increases on [0, t0) and decreases on
[t0,∞). Therefore µ(t)/µ increases from 1 at t = 0 to µ(t0)/µ > 1 at t = t0.
From there, µ(t)/µ decreases to 1 at t = t′0 > t0 and µ(t)µ ≤ 1 for t > t′0
showing that F ∈ NWBUE.

In a similar manner, we can show that F ∈ DIMRL implies F ∈ NBWUE.
Thus, the authors showed that {IDMRL} ⊂ {NWBUE} and {DIMRL} ⊂
{NBWUE}.

Mitra and Basu (1996b) showed that the non-monotonic MRL classes
NWBUE and NBWUE may also arise from the shock models.

Deshpande et al. (1986) has proposed an ageing class called ‘decreasing
mean residual life in harmonic average’ (DMRLHA).

4.5 Non-monotonic MRL and Non-monotonic Failure
Rate

Survival and failure data often cannot be modelled by monotonic failure rate
distributions. This is particularly true where the course of a disease is such that
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the mortality rate reaches a peak after some finite period and then declines
slowly. For example, in a study of curability of breast cancer, Langlands et
al. (1979) found that the peak mortality occurred after about three years.
Bennett (1983) analyzed the same data from the Veterans Administration
lung cancer trial presented by Prentice (1973) and showed that the empirical
failure rates for both low PS and high PS groups are non-monotonic. (PS here
is the abbreviation for potassium sulfide.)

Gupta and Akman (1995a,b,c) showed that the non-monotonic behaviour
of MRL is related to the non-monotonic failure rate functions. Their results
can be summarized in Section 4.5.2 below.

4.5.1 Non-monotonic Failure Rates Life Distribution

In Chapter 2, we have briefly defined two classes of non-monotonic failure
rates that are of particular interest to us. Recall from Section 2.2.1,

(i) r(t) has a bathtub shape, if r(t) is decreasing and then increasing. Equiv-
alently, we say that r(t) ∈ BT if

r′(t)

⎧⎨
⎩

< 0, for t < τ ;
= 0, for t = τ ;
> 0, for t > τ.

(4.28)

(ii) r(t) has an upside-down bathtub shape, if r(t) is increasing and then
decreasing. Equivalently, we say that r(t) ∈ UBT if

r′(t)

⎧⎨
⎩

> 0, for t < τ ;
= 0, for t = τ ;
< 0, for t > τ.

(4.29)

In the definition given above, no provision for a ‘flat’ part is given to
the bathtub or upside-down bathtub curve. In fact, it has only one unique
turning point. Some authors denote the classes in (i) and (ii) as DIFR and
IDFR, respectively. Glaser (1980) referred to the class in (i) as type B and
the class in (ii) as type U. A bathtub shaped failure rate function r(t) that
has two possible change points is defined in Definition 3.4.

4.5.2 Relations Between MRL and Failure Rate in Terms of
Shapes and Locations of Their Change Points

There have been numerous studies conducted on the MRL functions and its
applications. Over the last few years BT and UBT shaped MRL have attracted
much attention.

It is well known that the IFR class is contained in the DMRL (decreasing
mean residual lifetime) class. A DMRL distribution need not be an IFR. One
may conjecture that a BT failure rate is related to the class of life distributions
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whose mean residual life functions µ(t) are increasing and then decreasing
(that is, each mean residual life in the class has an upside-own bathtub shape).
Indeed this relationship has been observed empirically as pointed by Rajarshi
and Rajarshi (1988) who said in their review article “It can be observed from
the life-tables of human and animal populations that the shape of the empirical
MRL function is upside bathtub.”

The following results give a general relation between the non-monotonic
failure rate r(t) and the non-monotonic mean residual life µ(t).

Theorem 4.2: Suppose r(t) is of the type BT. Then

(i) µ(t) ∈ D if r(0) ≤ 1/µ,
(ii) µ(t) is of UBT shape if r(0)>1/µ.

On the other hand, if r(t) is of the type UBT, then

(i) µ(t) ∈ I if r(0) ≥ 1/µ,
(ii) µ(t) is of the type BT if r(0)< 1/µ.

Proof: A proof was given in Gupta and Akman (1995a,b). However, it seems
more elegant to prove the theorem by utilizing the suggestion made after the
proof of Theorem 2.12 in Section 2.11. Essentially we use the relationship be-
tween the shape of the eta function η2(t) of the equilibrium distribution and
the shape of the failure rate function r2(t) of the same equilibrium distrib-
ution. Recall, in (2.84), we defined the equilibrium distribution of a lifetime
distribution F by

EF (t) =
∫ t

0
F̄ (x) dx/µF ,

and the survival equilibrium function by (2.85), that is,

ĒF (t) = 1 − EF (t) =
∫ ∞

t

F̄ (x) dx/µF .

The Glaser’s eta function, as defined in (2.9) for the equilibrium distribu-

tion, is given by η2(t) = −E′′
F (t)

E′
F (t)

= r(t). The failure rate function that corre-

sponds to EF is r2(t) =
1

µ(t)
. Now the theorem follows immediately from (c)

and (d) of Theorem 2.1 and Lemma 2.1. Note that in our current notation, the
δ in Lemma 2.1 is defined as limt→0(1/r2(t))η2(t) = limt→0 µ(t)r(t) = r(0)µ.

We note that the first part of the above theorem was also proved in Mi
(1995) although no explicit conditions on r(0)µ are imposed. This is because
his definition of a bathtub shape includes the extreme cases I or D shapes.
Remark

If follows from the remark that follows (4.5) that r(0)µ > 1 ⇔ µ′(0) > 1.
We now present the following results which determine the locations of the

turning points of µ(t) when µ(t) ∈ BT (UBT).



4.5 Non-monotonic MRL and Non-monotonic Failure Rate 119

Theorem 4.3: Let F be a continuous BT life distribution with a change point
t∗ and let r(t) be differentiable. If r(0)µ > 1, then µ(t) ∈ UBT with a unique
change point k∗ ∈ (0, t∗], i.e., k∗ < t∗.
Proof: In the proof Theorem 2.1 (c), it was shown that the change point of
r(t) occurs before the change point of η(t). Since the relationship between
η2(t) = r(t) and r2(t) = 1/µ(t) is the same as the one between η(t) and
r(t), a direct translation proves the theorem immediately. Note again that the
condition δ > 1 given in Lemma 2.1. is equivalent to r(0)µ > 1 in our present
context.

Mi (1995) has earlier also shown that the change point of a bathtub shape
r(t) is greater than or equal to the change point of its corresponding upside-
down µ(t). Guess et al. (1998) have also proved the same theorem.

Theorem 4.4: Suppose r(t) ∈ UBT and differentiable. If r(0)µ < 1, then
µ(t) ∈ BT with a unique change point k∗ ∈ (0, t∗], i.e., k∗ < t∗. Otherwise
(i.e., if r(0)µ > 1), then it is an IMRL distribution.
Proof: The proof is analogous to the preceding one except we now invoke (d)
of Theorem 2.1. See also Gupta (1995a,b), Guess et al. (1998) and Tang et al.
(1999).

The preceding two theorems show that the change point of a non-monotonic
µ(t) always precedes the change point of its corresponding r(t). They also show
us how the shape of the mean residual life function µ(t) is determined by the
shape of the failure rate function. We now discuss how the shape of µ(t) will
determine the shape of its counter part r(t). For convenience, we relabel (4.7)
as

r′(t) =
µ′′(t)µ(t) − (µ′(t) + 1)µ′(t)

(µ(t))2
, t ≥ 0. (4.30)

Theorem 4.5: Let µ(t) be a MRL and r(t) be its corresponding failure rate
function. Then

(i) If µ(t) is decreasing and convex for t ≥ 0, then r(t) is strictly increasing
for t ≥ 0.

(ii) If µ(t) is increasing and concave for t ≥ 0, then r(t) is strictly decreasing
for t ≥ 0.

Proof: Recall, a function h(t) is said to be convex if h′′(t) > 0 and concave
h′′(t) < 0. Then (i) and (ii) follow immediately from (4.30).

Result (i) was also proved by Kupka and Loo (1989).
The following theorem is due to Lillo (2000).

Theorem 4.6: Suppose µ(t) has a minimum at t = t0, then r′(t) > 0 for
some interval [t0, t0 + ε] with ε > 0; that is, both µ(t) and r(t) are increasing
at the same time in that interval.
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Proof: The assumption that µ(t) has a minimum at t = t0 implies that
µ′(t0) = 0 and µ′′(t0) > 0. It follows from the preceding equation that

r′(t0) =
µ′′(t0)
µ(t0)

> 0.

By continuity, r′(t) > 0 at least, for some interval [t0, t0 + ε]; i.e., r(t) is
increasing in that interval.
Remarks: By the an analogous proof, we can show that if µ(t) has a maxi-
mum value at t0, then both µ(t) and r(t) are decreasing in [t0, t0 + ε], ε > 0.

Mi (1995) has shown that if a device has a bathtub shaped failure rate, then
its MRL is unimodal (if r(0)µ > 1 though he did not specify this condition)
but the converse doe not hold. He demonstrated by the following example to
show that a µ(t) with a UBT shape need not have a BT shaped r(t).
Example 4.10: Consider the following distribution F with MRL given by

µ(t) =

⎧⎨
⎩

t2 + 1, if 0 ≤ t ≤ 1;
2t, if 1 ≤ t ≤ 2;
4 exp

(− 1
4 (t − 2)

)
, if t > 2.

It is easy to verify that µ(t) has an upside-down bathtub shape (i.e., µ(t) ∈
UBT) so F is IDMRL. It follows from the above equation that

r(t) =

⎧⎨
⎩

(2t + 1)/(t2 + 1), if 0 ≤ t ≤ 1;
3/(2t), if 1 ≤ t ≤ 2;
1/4 exp (1/4(t − 2) − 1)), if t > 2;

which does not have a bathtub shape. Note however, in this example, we have
r(0)µ = 1.

Ghai and Mi (1999) developed sufficient conditions for unimodal MRL
(i.e., µ(t) ∈ UBT) to imply r(t) ∈ BT. However, their definition of a bathtub
(upside-down) shaped function allows two change points as in Definition 3.4.
In particular, if the two change points are the same, then g(t) ∈ BT as defined
in Section 2.2.1. They also defined a UBT curve in the following manner:
Definition 4.4: A function k(t) �= 0 defined on [0,∞] has an upside-down
bathtub shape if g(t) = 1/k(t) has a bathtub shape. In particular, if the two
change points of 1/k(t) are equal, then k(t) ∈ UBT.
Note: In their original definition given in Mi (1995), t1 = 0 or t2 = ∞, or
both t1 = 0 and t2 = ∞ are not precluded.

As we mentioned above, Ghai and Mi (1999) gave sufficient conditions
under which the bathtub (upside-down bathtub) shaped MRL µ(t) implies
that its associated failure rate has an upside-down bathtub (bathtub) shape.

Theorem 4.7: Let t0 be the unique change point of µ(t) ∈ BT (i.e., F is
IDMRL). Suppose there exists τ0 ∈ [t0,∞) such that µ(t) is concave on [0, τ0)
and convex on [τ0,∞]. If µ′(t) is convex on [t0, τ0), then one of the following
alternatives is true for r(t):
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(1) r(t) exhibits a bathtub shape (in the sense above) that has two change
points, says t1 < t2; where t0 ≤ t1 < t2 ≤ τ0.

(2) r(t) exhibits a bathtub shape that has a unique change point, say t∗; where
t0 ≤ t∗ ≤ τ0.

Proof: µ′(t) > 0 on [0, t0] because µ(t) is UBT with change point t0. Next,
µ′′(t) < 0 because µ(t) is concave on [0, τ0] which contains [0, t0].

From (4.30), it follows that r′(t) < 0 for all t ∈ (0, t0), i.e., r(t) strictly
decreases on [0, t0]. Similarly, r(t) strictly increases on [τ0,∞). Define φ(t) =
r′(t)µ(t)2 so from (4.30), we have

φ(t) = µ′′(t)µ(t) − [1 + µ′(t)µ(t)].

Now, let

J ≡ {t0 < t < τ0 : φ(i) = 0} .

We now claim that J must be a connected set in the sense that if both
s1 < s2 belong to J , then [s1, s2] ⊆ J. To see this, we note that

φ′(t) = µ′′′(t)µ(t) − [1 + µ′(t)]µ′′(t).

On (t0, τ0), µ′′(t) ≤ 0 because

• µ(t) is concave on [t0, τ0),
• µ′′′(t) ≥ 0 since µ′(t) is assumed to be convex on (t0, τ0).

Furthermore, (4.6) implies that 1+µ′(t) ≥ 0 for any MRL function µ(t). Thus,
φ′(t) ≥ 0 on (t0, τ0): φ(t) is increasing in t ∈ (t0, τ0). From the assumption
s1, s2 ∈ J and the definition of J , it follows that any s ∈ [s1, s2] must satisfy
φ(s) = 0 : s ∈ J and consequently [s1, s2] ⊆ J .

As J is a connected set and because φ(t) is continuous on (t0, τ0), we know
that J is either a closed subinterval of (t0, τ0), or J = (t0, τ0). Three cases are
considered:

Case (i): J = [t1, t2] with t0 < t1 < t2 < t0.
Without giving details, it can be shown that r(t) exhibits a bathtub shape

with change points t1 < t2 that satisfy t0 < t1 < t2 < τ0.
Case (ii): J = (t0, τ).
We can verify in the same manner as in case (i) that r(t) has a bathtub

shape with change points t1 = t0 and t2 = τ .
Case (iii): J = {t∗} is a singleton with t0 < t∗ < τ0.
In the same manner as in Case (i), it can be verified that r(t) has a bathtub

shape with a unique change point t∗ ∈ (t0, τ0). See Ghai and Mi (1999) for
missing gaps in the proof.
Theorem 4.8: Let t0 be the unique change point of µ(t) ∈ UBT (i.e., F is
DIMRL). Suppose there exists τ0 ∈ [t0,∞) such that µ(t) is convex on [0, τ0)
and concave on [τ0,∞]. If µ′(t) is convex on [t0, τ0), then only one of the
following two alternatives is true for r(t):
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(1) r(t) exhibits an upside-down bathtub shape (in the sense above) that has
two change points, says t1 <t2; where t0 ≤ t1 <t2 ≤ τ0.

(2) r(t) exhibits an upside-down bathtub shape that has a unique change
point, say t∗; where t0 ≤ t∗ ≤ τ0.

Proof: The proof is similar to Theorem 4.7. See Ghai and Mi (1999) for
details.

Remarks

Many burn-in problems are based on the behaviour of r(t) of a device. Usually
it is inappropriate to burn-in an IFR device (i.e., r(t) ∈ I). Burn-in is partic-
ularly beneficial when r(t) exhibits either a BT shape or r(t) ∈ D. Thus it is
important to check whether a lifetime distribution has a BT shaped failure
rate based on its lifetime data. In their Remark 2, Ghai and Mi (1999) sug-
gested that “it would be nice if the practitioners could graph the FR (failure)
rate and then visualize its trend. However, the estimation of FR is not very
stable. On the other hand, since the statistical properties of estimated means
are better than those derivatives (which enter into the FR), the estimated
MRL is much more stable than estimated FR. Therefore, we can use the in-
formation provided by the graph of the estimated MRL to check whether the
underlying lifetime distribution is unimodal (or bathtub shaped) MRL.” The-
orem 4.7 and Theorem 4.8 above provide us more information on whether the
underlying distribution has a bathtub or upside-down bathtub shaped failure
rate; thus we can apply burn-in procedure to improve the quality of products
with respect to different criteria.

Examples of non-monotonic MRL with non-monotonic failure rate

The first three of following examples are found in Gupta and Akman (1995a);
the others can be found in Section 2.3. See also Muth (1980).
Example 4.11:

µ(t) = 1
1+2.3t2 , t ≥ 0 is a decreasing function in t (DMRL). It can be shown

that
r(t) = (1+2.3t2)2−4.6t

1+2.3t2 , t ≥ 0 has a BT shape and that r(0) ≤ 1/µ.
Example 4.12:

µ(t) = 1
4 (1 − t)(1 + 2t), r(t) = 5−4t

(1−t)(1+2t) , 0 ≤ t < 1.

In this case, r(t) is of type BT such that r(0) > 1/µ and µ(t) is of type UBT.
Example 4.13:

µ(t) = 1 + t2, r(t) =
1 + 2t

1 + t2
, 0 ≤ t ≤ π/2.
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In this case, r(0) ≥ 1/µ, r(t) is of type U and µ(t) is strictly increasing
(IMRL).

Several well known lifetimes distributions that have bathtub shaped µ(t)
(i.e., F is IDMRL) are now given below.
Example 4.14: Inverse Gaussian

µ(t) is given in Section 4.3. It is well-known that µ(t) ∈ BT or F is DIMRL.
Example 4.15: Lognormal

µ(t) is given in Section 4.3. It has been shown that µ(t) ∈ BT or F is
DIMRL.
Example 4.16: Log-logistic distribution

It is shown that r(t) of the log-logistic distribution is of type UBT whereas
µ(t) is of type BT when the shape parameter k > 1. (See Gupta, Akman and
Lvin, 1999).

Again, care needs to be taken as some authors, e.g., Mi (1995) included a
flat part in his definition of a bathtub or upside-down bathtub shape whereas
others, like Gupta and Akman (1995a,b), do not allow a flat part to be in-
cluded in their definitions.

The following two examples have BT shape failure rates. We now investi-
gate the shapes of their MRLs.
Example 4.17: Exponential power distribution

This was considered in Section 3.4 earlier having

r(t) = λα(λt)α−1 exp[(λt)α], α > 0, λ > 0.

When α < 1, r(t) ∈ BT. In particular it has an approximately flat bathtub
when α = 1/2, see for example, Dhillon (1981). Since r(0) = ∞ (for α < 1)
so that r(0)µ > 1. Thus by Theorem 4.2, µ(t) is of UBT shape.
Example 3.17: Hjorth Model

r(t) = δt + θ/(1 + βt).

When 0 < δ < θβ, r(t) ∈ BT. See Hjorth (1980) for other details concerning
this distribution. Now, r(0) = θ so by Theorem 4.2, F is DMRL if µ ≤ 1/θ
and F is IDMRL if µ > 1/θ. Note that µ does not have an explicit expression
so a numerical algorithm is required to compute it. Guess et al. (1998) have
obtained the change points for both r(t) and µ(t) for various combinations of
three parameter values.

A Summary

Table 4.1 gives a summary of the shapes of µ(t) of several well known distri-
butions (the table is similar to the one given by Tang et al., 1999).
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Table 4.1. Shapes of MRL for various distributions

Distributions IMRL DMRL DIMRL IDMRL
Weibull Yes Yes No No
r(t) = αλαtα−1 α < 1 α > 1 No No
Lognormal No No Yes No
F (t) = Φ

{
log t−α

σ

}
Birnbaum-Saunders No Yes Yes No

F (t) = Φ
{

1
α

·
[(

t
β

)1/2 −
(

t
β

)−1/2
]}

α → 0 α > 0.6

Inverse Gaussian No No Yes No

f(t) =
√

λ
2πt3

exp
[
− λ

2µ2t
(t − µ)2

]
Log-logistic Yes No Yes No
r(t) = kρ(ρt)k−1

1+(ρt)k k ≤ 1 k > 1
Exponential power No Yes No Yes
r(t) = βα(βt)α−1 exp[(βt)α] α ≥ 1 α < 1
Hjorth model (0 < δ < θβ) No Yes No Yes
r(t) = δt + θ/(1 + βt) µθ ≤ 1 µθ > 1

4.5.3 A General Approach Determining Shapes of Failure Rates
and MRL Functions

Recall in Section 2.2.1, we have discussed the Glaser’s method of determining
the shape of r(t) via the density function by defining

η(t) = −f ′(t)
f(t)

. (4.31)

This idea was generalized by Block et al. (2002) by considering the ratio of
two well behaved functions. Their consideration was motivated by a realization
that most reliability functions of interest are naturally expressed or can be
cleverly expressed as the ratio of two simple functions.

Let

G(t) =
N(t)
D(t)

, −∞ ≤ a < t < b ≤ ∞, (4.32)

where N(t) and D(t) are continuously differentiable with D(t) positive and
strictly monotone on (a, b). The authors showed that the shape of G(t) is very
much dependent on the shape of η(t) defined by

η(t) =
N ′(t)
D′(t)

(4.33)

as well on the monotonicity of D(t) together with the sign of L(t) = η(t)D(t)−
N(t). This result has an application in linking the shape of µ(t) to r(t) by
selecting an appropriate pair N(t) and D(t).
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Consider a special case where

η(t) = 1/r(t) =
F̄ (t)
f(t)

(4.34)

so

G(t) =
N(t)
D(t)

=
1

F̄ (t)

∫ ∞

t

F̄ (x) dx. (4.35)

It is clear that µ(t) = G(t) so the shape of MRL µ(t) can be determined
through the failure rate function r(t). In particular, Theorem 4.2 will follow
immediately from the result of Block et al. (2002). On the other hand, this
special case also follows from Theorem 2.12 which shows that the shape of the
η function of the sth-order equilibrium distribution will determine the shape
of the η function of the (s + 1)th order equilibrium distribution.

The results of Block et al. (2002) give further insights on the shape of
other reliability measures.

Recall, the residual life time of a component which has survived t units of
time is Xt = X − t|X > t. In addition to the mean residual life, one may also
be interested to consider the residual variance defined by

σ2(t) = E(X2
t ) − µ2(t) =

2
F̄ (t)

∫ ∞

t

F̄ (x)µ(x) dx − µ2(t). (4.36)

Assuming the variance of lifetime is finite, Block et al. (2002) have shown if
a positive failure rate function r(t) has a BT shape with possible two change
points, then the residual variance function σ2(t) has an UBT shape and the
change point occurs before the change point of µ(t).

Lynn and Singpurwalla (1997) viewed the burn-in concept as a process of
reduction of uncertainty of the lifetime of a component. One approach to this
is to minimize σ(t). Combining this with maximizing the mean residual life
leads Block et al. (2002) to consider balancing mean residual life and residual
variance through minimizing the the residual coefficient of variation

CV (t) = σ(t)/µ(t). (4.37)

They showed that for a BT distribution, if r(t)µ(t) has a bathtub shape,
so has the residual coefficient of variation CV (t). The proof of this result was
achieved by setting N(t) = F̄ (t)µ2(t) and D(t) = 2

∫∞
t

F̄ (x)µ(x) dx so that
η(t) = N ′(t)/D′(t) = 1−r(t)µ(t)/2 in (4.32). In this case, the optimal burn-in
time for the objective function CV (t) occurs after the change point of µ(t).
This optimal burn-in time may be before or after the first change point of
r(t).
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4.5.4 Roller-Coaster Failure Rates and Mean Residual Lives

A roller-coaster curve was defined in Section 2.2.1. Suppose r(t) has a roller-
coaster shaped failure rate and we wish to establish the shape of its corre-
sponding µ(t). Bekker and Mi (2003) gave the following results.

Theorem 4.9: Suppose that the failure rate function r(t) is differentiable
and has roller-coaster shape with change points {t1, ..., tk}. Let µ(t) be the
associated MRL function of this distribution. Then the following are true:

1. µ(t) is strictly monotone on [tk,∞) and µ(t) does not have tk as its change
point.

2. µ(t) has at most one change point in each of (tj−1, tj), 1 ≤ j ≤ k , where
t0 = 0.

3. None of the tj , 1 ≤ j ≤ k, can be a change point of µ(t), even if it is a
critical point of µ(t), i.e., µ′(tj) = 0.

4. µ(t) has at most k change points and all its change points must be in some
of the open intervals (tj−1, tj), 1 ≤ j ≤ k.

Proof: The statement of the Theorem and its proof were given in Theorem
2.4 of Bekker and Mi (2003). The nature of the proof is simple but rather
tedious.

To prove (1), we need to show that if r(t) strictly increases on [τ,∞), then
µ(t) strictly decreases in t ≥ τ ; if r(t) strictly decreases on [τ, ∞), then µ(t)
increases in t ≥ τ . To see this, we recall that

µ(t) =

∫∞
t

F̄ (x) dx

F̄ (t)
.

Let

A(t) = r(t)
∫ ∞

t

F̄ (x) dx − F (t) (4.38)

so

µ′(t) =
A(t)
F̄ (t)

. (4.39)

Now, assuming r(t) strictly increases in t ≥ τ . For any t ≥ τ , from (4.38), we
have

A(t) =
∫∞

t
r(t)F̄ (x) dx − F̄ (t)

<
∫∞

t
r(x)F̄ (x) dx − F̄ (t)

=
∫∞

t
f(x) dx − F̄ (t) = 0.

It follows from (4.39) that µ′(t) > 0 for all t ≥ τ . The case when r(t) strictly
decreasing on [t, τ) can be similarly proved. From this result, (1) follows im-
mediately.
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To prove (2), we need to show first that if r′(t) > 0 in (τ1, τ2) and µ′(τ∗) =
0, τ∗ ∈ (τ1, τ2), then µ(t) has a bathtub shape in (τ1, τ2) and achieves its
minimum value on [τ1, τ2] at t = τ∗. From (4.38), we have

A′(t) = r′(t)
∫ ∞

t

F̄ (x) dx (4.40)

so A′(t) > 0 for all t ∈ (τ1, τ2) because r′(t) > 0 in this interval. That is,
A(t) strictly increases in t ∈ (τ1, τ2). As µ′(t∗) = 0, it follows from (4.39) that
A(τ∗) = 0. Hence A(t) < 0 for t ∈ (τ1, τ

∗) and A(t) > 0 for t ∈ (τ∗, τ2).
This is equivalent to say that µ′(t) < 0 for t ∈ (τ1, τ

∗) and µ′(t) > 0 for
t ∈ (τ∗, τ2). Therefore, µ(t) strictly decreases in t ∈ (τ1, τ

∗), strictly increases
in t ∈ (τ∗, τ2), has a bathtub shape on t ∈ (τ1, τ2), and achieves its minimum
value on [τ1, τ2] at t = τ∗.

In the same manner, we can show that if r′(t) < 0 in (τ1, τ2) and µ′(τ∗) = 0
, τ∗ ∈ (τ1, τ2), then µ(t) has an upside-down bathtub shape in (τ1, τ2) and
achieves its maximum value on [τ1, τ2] at t = τ∗. We now conclude that in any
case, µ(t) does not have any critical point in (τ1, τ2) other than τ∗. Letting
τ1 ≡ tj−1 and τ2 ≡ tj we prove the statement (2).

To prove (3), we need to show that if r′(t) < 0 for t ∈ (τ1, τ
∗), r′(τ∗) =

0, r′(t) > 0 for t ∈ (τ∗, τ2) with µ(t∗) = 0; then µ(t) strictly increases in
t ∈ (τ1, τ2) , i.e., τ∗ is a critical point but not a change point of µ(t). Now
from (4.40), we see that A′(t) < 0 for t ∈ (τ1, τ

∗). This implies that A(t)
strictly decreases in t ∈ (τ1, τ

∗). Note that A(t∗) = 0, since µ′(t∗) = 0. Hence
A(t) > 0 for t ∈ (τ1, t

∗). This means µ′(t) > 0 for t ∈ (τ1, τ
∗), or µ(t) strictly

increases in t ∈ (τ1, t
∗). On the other hand, A′(t) > 0 for t ∈ (τ∗, τ2) and so

A(t) strictly increases t ∈ (τ∗, τ2). This in turn implies that A(t) > 0 and so
µ′(t) > 0 t ∈ (τ∗, τ2). Consequently, µ(t) strictly increases in t ∈ (τ∗, τ2). Thus
µ(t) strictly increases in t ∈ (τ1, τ2). Similarly, we can show that µ(t) strictly
decreases if r′(t) > 0 for t ∈ (τ1, τ

∗), r′(τ∗) = 0, r′(t) < 0 for t ∈ (τ∗, τ2) with
µ(t∗) = 0. Next, assume j ≤ k − 1, since the case when j = k is considered in
(1). Let τ1 ≡ tj−1, τ∗ ≡ tj , and τ2 = tj+1. We see from the result just proved
that tj = τ∗ cannot be a change point of µ(t) for 1 ≤ j ≤ k − 1. Thus, result
(3) is proved.

Finally, combining results (1)–(3), we see the result (4) is true.

Tang et al. (1999) gave a sufficient condition so that a roller-coaster shaped
r(t) will have a roller-coaster shaped µ(t). Bekker and Mi (2003) have shown
that this condition is also necessary.
Theorem 4.10: Suppose that the failure rate function r(t) is differentiable
and has a roller-coaster shape with change points {t1, ..., tk}. Let µ(t) be the
associated MRL function. Then the necessary and sufficient condition for µ(t)
to have a unique change point in (tj−1, tj), 1 ≤ j ≤ k, is

[µ(tj−1)r(tj−1) − 1][µ(tj)r(tj) − 1] < 1. (4.41)
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Proof: See Theorem 2.6 of Bekker and Mi (2003) and Tang et al. (1999).
We first show the sufficiency of the condition (4.41). Noting from (4.5),

i.e., µ′(t) = −1 + r(t)µ(t), we see that the condition (4.41) implies that
µ′(tj−1)µ′(tj) < 0. That is, µ′(tj−1) and µ′(tj) have different signs. Thus,
there exists t∗ ∈ (tj−1, tj), such that µ′(t∗) = 0. By part (2) of Theorem 4.9,
t∗ must be a unique change point of µ(t) in (tj−1, tj).

We leave out the proof of the necessity of the condition (4.41) as it is
quite involved and the reader can find the complete proof from the source
references.

Following almost the same approach as Block et al. (2002) which we dis-
cussed in the Section 4.5.3, Mi (2004) defined two similar functions with each
expressed as a ratio except the denominator is now an integral of the numer-
ator. More explicitly, they are

η1(t) =
N1(t)
D1(t)

=
N1(t)∫∞

t
N1(x) dx

(4.42)

and

η2 =
N2(t)
D2(t)

=
D1(t)∫∞

t
N2(x) dx

. (4.43)

The first function η1(t) is analogous to η(t) in (4.32) whereas η2(t) is similar
to G(t) in (4.31). Mi (2004) investigated the shape of η2(t) based on η1(t).
Letting η1(t) = −f ′(t)/f(t) so that η2(t) = r(t), he proved Theorem 2.2 which
was established earlier in Gupta and Warren (2001). On the other hand, by
letting η1(t) = 1/r(t) = f(t)/F̄ (t) so that η2(t) = 1/µ(t), he proved Theorem
4.10 above.

4.6 Effect of Burn-In on Mean Residual Life

The burn-in concept was discussed in Section 3.8 in relation to the BT shaped
failure rate distributions. The method is used to screen out defective compo-
nents before they are delivered to customers or put into field operation. In this
chapter, our discussion on burn-in stems from a mean residual life perspective.
Since the shapes of r(t) and µ(t) are intimately connected, some repetitions
are unavoidable. For an earlier account of burn-in, see Jensen and Petersen
(1982).

Let b be the burn-in time, which is the length of the burn-in period. The
question arises as when the burn-in process should be stopped. This obviously
depends on what reliability goal or criteria one wishes to achieve. The best
time to stop the burn-in for a given criterion to be optimized is called the
optimal burn-in time. After the burn-in (assuming the product survives the
test), it is the remaining lifetime that will be of interest to most people. The
mean of the remaining lifetime is the mean residual life µ(t). Suppose the cost
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is not to be considered, what we really want to achieve is simply the longest
MRL, then the optimal burn-in time b∗ satisfies the following condition

µ(b∗) = max
b≥0

µ(b) (4.44)

which has been given earlier by (3.42). Now, b∗ is the unique change point
if µ(t) ∈ UBT. Part (ii) of Theorem 4.2 shows that a BT distribution with
r(0)µ > 1 will give rise to a UBT shaped µ(t).

As noted by many authors, a bathtub shaped failure rate phenomenon
arises from several different modes of failure: initial failure due to initial de-
fects, a middle constant failure rate and a wear-out failure. Here, we use De-
finition 3.4 for a bathtub (upside-down) shaped function that permits a ‘flat’
middle portion. As mentioned in Block and Savits (1997), mixing two or more
different subpopulations often gives rise to bathtub shaped failure rates. It is
shown in Glaser (1980) that the mixture of two gamma distributions having
a common scale parameter but with different shape parameters α1 = 1 and
α2 > 2 gives rise to a bathtub distribution.

It is popularly believed that as the burn-in period increases, the failure
probability of a product surviving the burn-in tends to decrease, until the
beginning of the constant failure rate region of the curve (Dhillon,1983, p.
23).

Park (1985) questioned this belief by examining the effect of burn-in on
the mean residual life of a product. He found that the time at which a bathtub
failure rate is minimum does not maximize the mean residual life µ(t). The
mean residual life in the constant failure rate region of a bathtub failure rate
curve is not a constant. In fact, it follows from Theorem 4.3 that the change
point of µ(t) precedes that of r(t).

Mi (1995) presented an optimal burn-in policy to maximize the MRL when
the underlying life distribution has a bathtub shaped failure rate with change
points τ1, τ2. We bear in mind that in this paper, he has assumed a BT class
to include both IFR and DFR classes. His conclusions were given by Theorem
3.3 and we list them here again for the convenience of the reader:

• If τ1 = 0 (hence F is IFR), then set b∗ = 0 and obviously there is no need
to burn-in.

• If τ1 > 0 but τ2 = ∞, we can always choose b∗ = τ1.
• If 0 < τ1 ≤ τ2 < ∞, the optimal burn-in time b∗ must be equal to the

unique change point of µ(t) and b∗ ∈ [0, τ1].
• If τ1 = τ2 = ∞ (F is DFR), cost should be taken into consideration in

determining b∗.

Cha (2000) proposed a new burn-in procedure for a repairable component.
During the burn-in period, the failed component is only minimally repaired
rather than being completely repaired. This procedure was shown to be eco-
nomical and efficient when the minimal repair method is applicable during
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a burn-in process. The properties of the optimal burn-in time b∗ and block
replacement policy T ∗ were also given.

For other detailed literature reviews of burn-in models and methods, see for
example, Leemis and Beneke (1990), Tang and Tang (1994), and Kececioglu
and Sun (1997).

4.6.1 Optimal Burn-in Criteria

An early quantitative approach for determining optimal burn-in periods was
given by Kuo (1984). There are various criteria for ‘optimality’ depends the
objective of the user.

(i) Traditionally, the failure rate is essential to burn-in decision because of its
interpretation as the force of mortality (Chang, 2000).

(ii) Mi (1994b) used the maximization of a survival probability for a given
mission time as a criterion for an optimal burn-in time.

(iii) Mi (1994c) determined the optimal burn-in time by minimizing the costs
associated with maintenance policies and burn-in.

(iv) Mi (1995) presented an optimal burn-in policy to maximize the MRL.
(v) Nguyen and Murthy (1982) and Mi (1997) obtained burn-in time by min-

imizing the total costs that include warranty cost and burn-in.
(vi) Block et al. (2002) obtained a criterion for burn-in that balances mean

residual life and residual variance. The objective function to be minimized
is the residual coefficient of variation CV (t) defined by (4.37).

4.6.2 Optimal Burn-in for Upside-down Bathtub Distributions

Chang (2000) discussed optimal burn-in decision for products with a uni-
modal failure rate function that has an upside-down shape so that µ(t) will
have a bathtub shape. For example, the inverse Gaussian and lognormal dis-
tributions have this property. Chang (2000) formulated a total cost function
which is expressed in terms of burn-in cost, failure cost during burn-in and
warranty cost. So the optimal burn-in time which yields the minimal expected
total cost can be obtained by solving a non-linear programming problem. The
author concluded that the burn-in is not always necessary and economical for
products with an upside-down failure rate distributions.

4.7 Tests and Estimation of Mean Residual Life

Given a data set of survival times, we often wish to develop tests of H0 : F
is exponential (i.e., MRL is constant) versus the alternatives H1 : F belongs
to a MRL class. Recall, we may broadly categorize the MRL classes into (i)
Monotonic MRL and (ii) Non-monotonic MRL. We shall consider the two
classes separately below.
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4.7.1 Tests for Monotonic Mean Residual Life

In Section 7.6, We will consider the question of statistical tests for testing
exponentiality against DMRL (DMRL) and other monotonic MRL classes. A
summary of these tests will be given in Table 7.3.

4.7.2 Tests of Trend Change in Mean Residual Life

Recall, for a non-monotonic mean residual life a trend change must have
occurred. To detect the whereabout of this turning point τ and finding an
estimating for τ are important problems in survival analysis.

Mi (1995) proved that the trend change of MRL functions occurs before the
bathtub shaped failure rate changes its trend in general. Gupta and Akman
(1995a) and Guess et al. (1998) derived conditions under which DIFR (IDFR)
implies IDMRL (DIMRL). (Recall, F is DIFR (IDFR) iff r(t) ∈ BT (UBT))

Let τ be the turning point and ρ be the proportion of the population that
‘dies’ at or before the turning point τ , i.e., τ = F−1(ρ) = inf {x|F (x) ≥ ρ}. An
L−statistic, a linear combination of order statistics, is used as a test statistic.

A fuller discussion on tests of non-monotonic MRL ageing concepts will
be given in Section 7.7. A table of summary of these tests will be presented
in Table 7.4.

4.7.3 Estimation of Monotonic Mean Residual Life

Consider the function µ(t) =
[∫∞

t
F̄ (x) dx

]
/F̄ (t) which is the mean residual

life at age t.
Yang (1978) proposed the estimator

�

Mn(x) = I
(
X(n) − x

) ∫∞
x

F̄n(u)/F̄n(x).
Kochar et al. (2000) considered an estimator each for IMRL and DMRL

in the following manner.
Let 0 ≡ X(0) ≤ X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistics from a

random sample from F̄ with support [0, T ] for some finite T or [0,∞). Let F̄n

denote the empirical survival function. Define an estimate of µ(x) by
�

Mn(x) = I
(
X(n) − x

) ∫ ∞

x

F̄n(u)du/F̄n(x). (4.45)

Their estimators for µ(t) from DMRL and IMRL classes are, respectively,

M∗
n(x) = I

(
X(n) − x

)
inf
y≤x

�

Mn(y), (4.46)

and
M∗∗

n (x) = I
(
X(n) − x

)
sup
y≤x

�

Mn(y). (4.47)

Kochar et al. (2000) proposed a projection-type estimator for estimation of a
monotonic mean residual life.

Mi (1994a) proposed an estimator for the classes of life distributions that
have decreasing, increasing or upside-down MRL. This estimator also has the
uniformly strong consistency property.
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Estimation of truncated MRL

Consider a truncated mean residual life defined by

eM (t) =

∫M

x
F̄ (u)du

F̄ (t)
, t ≥ 0. (4.48)

Ghorai et al. (1982) proposed an estimator by modifying the classical product-
limit estimator of Kaplan and Meier (1958).

Na and Kim (1999) proposed a smooth nonparametric estimator of a trun-
cated MRL based on a randomly censored sample. This estimator was con-
structed from the estimator derived as the maximum likelihood estimate of
the cumulative failure rate in the class of distributions having piecewise lin-
ear failure rate functions between each pair of uncensored observations. The
asymptotic properties of this estimator was also derived.

Smooth estimation of MRL

A smooth estimator based on a modified weighting scheme is proposed by
Chaubey and Sen (1999) for µ(t).

Na and Kim (1999) proposed a spline smooth estimator of eM (x) based
on a randomly right censored sample.

4.7.4 Estimation of Change Points

Ebrahimi (1991) proposed a procedure to estimate the change point τ of MRL
for a lifetime model with a truncated upside-down bathtub shaped MRL , i.e.,
µ(t) is a non-decreasing function for t < τ and is a constant for t ≥ τ .

Mitra and Basu (1995) also considered change point estimation for the
IDMRL and NWBUE classes.

Gupta et al (1999) have obtained the maximum likelihood estimate for the
change point of the MRL based on a log-logistic model.

4.8 Mean Residual life with Special Characteristics

4.8.1 Linear Mean Residual Life Function

Hall and Wellner (1981) introduced a family of survival distributions with
linear mean residual life function µ(x) = A + Bx (B > −1, A > 0), namely

F̄ (x) = [A/(A + Bx)]1/B+1
.

The distribution above was given earlier as Example 4.5. When B > 0, B =
0 and −1< B < 0, the above definition gives respectively a Pareto, an expo-
nential and a rescaled beta distribution.
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Earlier, Morrison (1978) has shown that the gamma distribution is the
unique mixing distribution of exponentials that leads to a linearly increasing
mean residual lifetime function given by µ(t) = A + Bt. Although not specif-
ically mentioned, it is clear from the context that A > 0 and B > 0. Also, it
is well known that the gamma mixture of exponentials is simply a Pareto and
thus Morrison’s result is indeed a special case of Hall and Weller (1984).

Two further characterizations based on (4.46) were given by Oaks and
Dasu (1990).

Another characterization of the class is given by Korwar (1992) who uti-
lized the coefficients of skewness and kurtosis of the residual life distribution.

4.8.2 Proportional MRL and its Generalization

Oaks and Dasu (1990) proposed a new family of semi-parametric models re-
quiring proportional MRL.

Two survival functions F̄0(x) and F̄1(x) are said to have proportional mean
residuals if, in an obvious notation,

µ1(x) = θµ0(x), for all x ≥ 0, θ > 0. (4.49)

By inversion formula (4.9),

F̄1(x) = F̄0(x)
{∫ ∞

x

F̄0(y)dy/µ0

}
, µ0 = µ0(0). (4.50)

Maguluri and Zhang (1994) extended the above model to a regression model
with explanatory variables.

Gupta and Kirmani (1998) studied the proportional MRL further and its
relationship with the proportional hazard model was explored.

Zahedi (1991) also proposed a proportional mean remaining life model
motivated by the proportional hazard model of Cox (1972).

4.9 Other Residual Life Functions

Recall, the residual life random variable at age t, is defined by Xt = X−t |X >
t. Apart from the MRL which is the expected value of Xt, there are several
other associated functions that are of interest.

4.9.1 Residual Life Distribution Function

The distribution function of Xt is often denoted by RLD with the survival
function

F̄ (x | t) = Pr (X > t + x |X > t) . (4.51)
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Barlow and Proschan (1981, p. 53) referred to the above function as the con-
ditional reliability of a unit of age t. Several of the ageing classes presented in
Section 2.4.2 can be characterized by this function.

Now, it is well known that F̄ (x | t) = F̄ (x) if and only if X is exponentially
distributed. This identity is also known as the ‘lack of memory property’ or
‘memoryless property’. Further, using the RLD one can infer the properties
of the original distributions also; see for example, Gupta and Kirmani (1990).

4.9.2 Variance Residual Life Function

Another function which has also generated some interest in the recent years
is the variance residual life function defined as

σ2(t) = var(X − t |X > t), (4.52)

see for example, Launer (1984) and Gupta et al. (1987). An alternative ex-
pression for the residual variance in (4.52) is given by (4.36). Theses authors
studied the monotonicity of the above function and showed that σ2(t) is in-
creasing (decreasing) according to whether

ψ(t) = γ2(t) = σ2(t)/µ2(t) ≥ 1(≤ 1). (4.53)

The function γ(t) is simply the residual coefficient of variation defined by
CV (t) of (4.37).

Gupta and Kirmani (1998) gave a comprehensive treatment on this sub-
ject. Gupta and Kirmani (2000) showed that ψ(t) characterizes the distribu-
tion and presented some examples.

4.9.3 Percentile Residual Life Function

The ‘α-percentile residual life function’ (α-percentile RLF) was first defined
by Haines and Singpurwalla (1974). Joe and Proschan (1984) showed that this
function may be expressed as

qα,F (t) = F−1 (1 − (1 − α)F̄ (t)
)
, t ≥ 0. (4.54)

Recall, in Section 2.7, we have defined a distribution F to be DPRL-α (IPRL-
α) if and only if for some α, 0 < α < 1, the α-percentile RLF qα,F (t) is
decreasing (increasing) in t. See also Section 3.7.2 for its relationship with a
BT distribution.

4.10 Mean Residual Life Orderings

In Section 4.2, it was pointed out that the three reliability measures, namely,
the survival function F̄ (t), the failure rate function r(t) and the mean residual
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life function µ(t) are equivalent to one another in the sense that knowing any
of one them, the other two can be obtained. The question arises as whether
an ordering with respect to a reliability measure implies the same ordering
with respect to another reliability measure.

Consider two life time random variables X and Y with survival functions
F̄ and Ḡ, respectively. We now consider the following three partial orderings:

• Stochastic ordering: F̄ (x) ≥ Ḡ(x) for all x ≥ 0 (X ≥ST Y );
• Failure rate ordering: rF (t) ≤ rG(t) for all x ≥ 0 (X ≥FR Y ) meaning

that at the same age, the system whose lifetime is Y is more likely to
instantaneously fail than the one whose lifetime is X;

• Mean residual life ordering: µF (t) ≥ µG(t) for all t ≥ 0 (X ≥MR Y ).

These three orderings have been considered in detail in Chapter 2.9. The last
ordering (MR ordering) is particularly important in analyzing maintenance
policies and renewal processes. It has been shown that X ≥FR Y ⇒ X ≥ST
as well as X ≥FR Y ⇒ X ≥MR Y

Gupta and Kirmani (1987) have proved that the following three conditions
are equivalent:

(i) rF (t) ≤ rG(t);
(ii) F̄ (t)/Ḡ(t) is increasing in t;
(iii) F̄ (x | t) ≥ Ḡ(x | t) where Ḡ(x | t) = 1 − G(x | t), F̄ (x | t) = 1 − F (x | t)

are, respectively the residual survival functions of X and Y as defined in
(4.51).

The equivalence of (i) and (ii) are obvious, in fact, either of them define
X ≤FR Y according to Definition 2.15. The authors further proved that

1. rF (t) ≤ rG(t) ⇒ µG(t) ≤ µF (t). (We have already noted this implication
above). The converse is not true in general.

2. Suppose µG(t) ≤ µF (t) and µG(t)/µF (t) is a non-decreasing function for
all x ≥ 0, then rF (t) ≤ rG(t).

Another partial ordering that is based on the mean residual life was introduced
in Kochar and Wiens (1987) as follows:

We say that a distribution F is more decreasing mean residual life than
another distribution G if µF (F−1(u))/µG(G−1(u)) is nonincreasing in u ∈
[0, 1]. Aly (1993) considered the problem of testing for the mean residual life
ordering defined above.

4.11 Multivariate Mean Residual Life

Consider two lifetime variables X and Y having joint survival function
F̄ (x, y) = Pr (X > x, Y > y).
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A popular way to define a bivariate mean residual life function is by the
vector (µ1(x, y), µ2(x, y)), with the components of the vector given by

µ1(x, y) = E (X − x|X > x, Y > y)
µ2(x, y) = E (Y − y|X > x, Y > y) ,

(4.55)

see for example, Arnold and Zahedi (1988) and Nair and Nair (1989).
A complicated form of bivariate mean residual life function is given by

Shaked and Shanthikumar (1993).
Earlier, Johnson and Kotz (1975) defined a two-dimensional hazard rate

(r1(x, y), r2(x, y)) which they called the hazard gradient of (X, Y ) where

r1(x, y) = − ∂
∂x log F̄ (x, y)

r2(x, y) = − ∂
∂y log F̄ (x, y). (4.56)

Roy and Gupta (1996) showed that

r1(x, y) =
1+ ∂

∂xµ1(x, y)
µ1(x,y)

r2(x, y) =
1+ ∂

∂y µ2(x, y)
µ2(x,y) .

(4.57)

We will revisit these functions in Section 8.7.
Anderson et al. (1992) defined a time-dependent association measure be-

tween two survival functions via the conditional expected residual life:

φ1(x, y) =
E (X − x|X > x, Y > y)

E(X − x |X > x)
. (4.58)

We note that having values of φ1(x, y) very different from 1 would indicate
strong influence of Y on X and therefore strong (positive) association between
X and Y . φ2(x, y) can be defined analogously in terms of µ2(x, y) and the MRL
of X. Both φ1(x, y) and φ2(x, y) may be considered as a local dependence
function, a concept to be considered in Section 9.11.

4.11.1 Characterizations of Multivariate Survival Distributions
Based on Mean Residual Lives

Define the variances and the coefficients of variation of bivariate residual life,
respectively by

V1(x, y) = Var (X − x|X > x, Y > y)
V2(x, y) = Var (Y − y|X > x, Y > y) (4.59)

and
C1(x, y) = {V1(x, y)}1/2

/µ1(x, y)
C2(x, y) = {V2(x, y)}1/2

/µ2(x, y).
(4.60)

Roy and Gupta (1996) showed that the residual coefficients of variation de-
fined above can be used to characterize a bivariate exponential distribution,
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a bivariate Lomax distribution and a bivariate finite range distribution. See
also Sankaran and Nair (1993a) and Gupta and Kirman (2000). For other
extensions, see for example, Ma (1996, 1998) and Asadi (1999).

4.11.2 Bivariate Decreasing MRL

Four multivariate generalizations of univariate DMRL were proposed by
Buchanan and Singpurwalla (1977) of which we mention only the following
two in the bivariate case.

A bivaraite distribution with survival function F̄ (x, y) is said to be

1. bivariate DMRL-I (BMRL-I) if for all t ≥ 0 for which F̄ (t, t) > 0,∫∞
t

∫∞
t

F̄ (x, y) dx dy/F̄ (t, t) is nonincreasing in t, together with a simi-
lar condition for the two marginals.

2. bivariate DMRL-II (BMRL-II) if for all t ≥ 0 for which F̄ (t, t) > 0,∫∞
t

F̄ (x, x) dx/F̄ (t, t) is nonincreasing in t, together with a similar condi-
tion for the two marginals.

Ghosh and Ebrahimi (1982) discussed shock models that lead to BMRL-I and
BMRL-II, respectively.

Five decreasing bivariate (multivariate) mean residual life classes were
defined by Zahedi (1985) based on the bivariate mean residual life function
(µ1(x, y), µ2(x, y)) defined in (4.54) above.

Sen and Jain (1991b) and Bandyopadhyay and Basu (1995) have developed
tests for bivariate exponentiality against bivariate decreasing mean residual
life alternatives. See Chapter 8 for other details concerning bivariate DMRL.

4.12 Applications and Conclusions

Guess and Proschan (1988) gave an extensive coverage of possible applica-
tions of the mean residual life. There are many other studies on MRL data.
We may broadly list the following aspects:

• Survival analysis in biomedical sciences

In biomedical setting researchers analyze survivorship studies through the
MRL function µ(t). Bjerkedal (1960) gave a data set on guinea pigs’ resistance
to virulent tubercle bacilli which exhibits a bathtub shape MRL.

• Life insurance

Life length of human: High infant mortality explains the initial IMRL. De-
terioration and ageing explains the DMRL stage. Obviously, MRL is of vital
importance to actuarial work relating to life insurance policies. In fact, actu-
aries apply MRL to setting rates and benefits for life insurances.
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• Maintenance and product quality control

To eliminate the initial failures, products are often burn-in before they leave
the factory until they reach a low failure rate. One helpful tool for analysing
burn-in is to model the ageing process of a device by the MRL (see. e.g., Mi,
1995).

• Economics and social studies

In economics, MRL is applied for investigating landholding, optimal disposal
of an asset.

Guess and Proschan (1988) has postulated a situation whereby IDMRL
model may be applicable to social studies.

Length of time employees stay with certain companies: An employee with
a company for four years has more time and career invested in the company
than an employee of only two months. The MRL of the four-year employee
is likely to be longer than the MRL of the two-month employee. After this
initial IMRL (this is called ‘inertia’ by social scientists), the process of ageing
and retirement yield DMRL period.

Also, the mean residual life µ(t) is used to model the length of hospital
stay of surgical patients.

• Demography

In studies of human populations, demographers will be interested in life ex-
pectancy or expectation of life which is simply the mean residual life concept
in disguise.

• Product technology

Chinnam and Baruah (2004) have applied the mean residual life to a cutting
tool monitoring problem.

In conclusion, the mean residual life function is a very useful reliability
measure. In many ways, MRL is a more intuitive concept than the failure
rate function. Graphs of MRL provide useful information not only for data
analysis but also for presentation. Gertsbakh and Kordonsky (1969) noted
that estimation of MRL is more stable than estimation of the failure rate.
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Weibull Related Distributions

5.1 Introduction

The Weibull distribution is one of the best known lifetime distributions. It
adequately describes observed failures of many different types of components
and phenomena. Over the last three decades, numerous articles have been
written on this distribution. Hallinan (1993) presented an insightful review
by presenting a number of historical facts, and many forms of this distribu-
tion as used by the practitioners and possible confusions and errors that arise
due to this non-uniqueness. Johnson et al. (1994) devoted a comprehensive
chapter on a systematic study of this distribution. More recently, a mono-
graph written by Murthy et al. (2003) contains nearly every facet concerning
the Weibull distribution and its extensions. Lai et al. (2005) also provided a
bird’s eye view of this vast subject. Section 2.3.4 has briefly introduced the
Weibull distribution. In this chapter, we angle our discussion towards reliabil-
ity aspects of the Weibull and its related distributions. Consequently, many
other important properties of these distributions and their applications will
be glossed over. On the other hand, some repetitions of the earlier materials
will be essential in order to give a fuller picture on the Weibull and its related
distributions.

In Section 5.2, we first define a two-parameter Weibull distribution and
then consider some basic properties such as moments, parameter estimation
and failure rate function. A three-parameter Weibull distribution is introduced
in Section 5.3. We study some graphical methods for estimating parameters
and other reliability properties of this model. Three models that are derived
from a simple transformation of the Weibull variable are studied in Section
5.4. We devote Section 5.5 to study five Weibull derived models which are
extensions and generalizations of the 2-parameter Weibull. It is found that
these models are quite flexible as they are able to gives rise to various shapes
of failure rate including BT and UBT curves. In Section 5.6, we extend our
consideration from a single Weibull to two or more Weibull variables forming
mixtures, series and parallel structures as well as sectional models. Section
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5.7 deals briefly Weibull models with varying scale parameters. Section 5.8
gives a preview of some discrete Weibull distributions which are analogues
of a continuous two-parameter Weibull model. Some bivariate models with
Weibull marginals are briefly considered in Section 5.9. Finally in Section
5.10, we outline various selective applications, especially those in the reliability
context. Because of the vast literature, we are unable to cite all the source
authors and we apologize in advance for any omissions in this regard.

5.2 Basic Weibull Distribution

5.2.1 Two-parameter Weibull Distribution and Basic Properties

The two-parameter distribution with survival function

F̄ (t) = exp{−(λt)α}, α, λ > 0

was considered in Section 2.3.3 as an example of a lifetime distribution. Some
of its reliability properties were given there and then. Since the theme of this
chapter is on the Weibull and its related distributions, some of these properties
will be reviewed here for the ease of cross-referencing.

Distribution function

The distribution function of the standard two-parameter Weibull distribution
(Weibull, 1951) has an alternative form (due to a different parametrization)
given as

F (t) = 1 − exp
[
−
(

t

β

)α]
, α, β > 0, t ≥ 0. (5.1)

The present form seems more natural when a location parameter is added
to the distribution as given in the next section. The parameters α and β are
usually called the shape and scale parameters, respectively. The corresponding
reliability function is given by

F̄ (t) = exp
[
−
(

t

β

)α]
, t ≥ 0. (5.2)

We observe that both the reliability function and the failure rate function as
given in (5.10) below have simple forms which give the Weibull a head start
over other lifetime models.

Two well known special cases are the exponential distribution (α = 1) and
the Rayleigh distribution (α = 2).

If X has a two-parameter Weibull distribution, then log X is an extreme
value distribution with location parameter log(β) and scale parameter 1/α,
i.e., the pdf of Y = log X is:

f(y) = α exp {α (y − lnβ) − exp [α (y − lnβ)]} . (5.3)
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Skewness and Kurtosis

The distribution is positively skewed for small value of α. The skewness index√
β1 decreases and equals zero for α = 3.6 (approximately). Thus, for values

of α in the vicinity of 3.6, the Weibull distribution is similar in shape to
a normal distribution. The coefficient of kurtosis β2 also decreases with α
and then increases, reaching a minimum value of about 2.71 when α = 3.35
(approximately). See, e.g., Johnson et al. (1994, pp. 631-635) and Mudholkar
and Kollia (1994).

Probability density function

The probability density function that corresponds to (5.1) is given by

f(t) =
(

α

β

)(
t

β

)α−1

· exp
[
−
(

t

β

)α]
. (5.4)

The value of α has strong effects on the shape of the probability density func-
tion. For 0 < α ≤ 1, the probability density function is a monotonic decreasing
function and is convex as t increases. For α > 1, the density function has a
unimodal shape .

The mean, variance and moments

The kth moment about the origin may be obtained via its special case without
a scale parameter defined by X ′ = X/β. Now it is easy to show that

µ′
k = E(X ′k) = Γ

(
k

α
+ 1
)

, k = 1, 2, .... (5.5)

In particular, the mean and variance are, respectively;

E(X ′) = Γ
(

1
α

+ 1
)

(5.6)

and

var(X ′) = Γ
(

2
α

+ 1
)

−
{

Γ
(

1
α

+ 1
)}2

(5.7)

(Johnson et al., 1994, p.632). The last three expressions, though in a slightly
different form, have already been given in Section 2.3.4. The coefficient of
variation is:

ν =

√
Γ (2/α + 1)
Γ2 (1/α + 1)

− 1. (5.8)

The kth moment of X is obtained by

E(Xk) = βkµ′
k = βkΓ

(
k

α
+ 1
)

. (5.9)
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Failure rate function

The failure rate function of the two-parameter Weibull distribution is given
by

r(t) =
(

α

β

)(
t

β

)α−1

(5.10)

(cf. (2.23)). The shape parameter α also has a strong influence on the shape of
the Weibull failure rate. It is obvious to see that r(t) is a decreasing function
in t when 0 < α < 1, constant when α = 1 (the exponential case), and an
increasing function when α > 1. In view of the monotonic behaviour of its
failure rate function, the Weibull distribution often becomes suitable when
the conditions for ‘strict randomness’ of the exponential distribution are not
satisfied, with the shape parameter α having a value depending upon the
fundamental nature being considered. Thus the Weibull model is flexible and
can be used to model IFR or DFR ageing distributions. A moderate value of
α within 1 to 3 is appropriate in most situations (Lawless, 2003). However,
the very monotonic shape of its failure rate has also become a limitation
in reliability applications because for many real life data r(t) exhibits some
form of non-monotonic behavior. For this reason, several generalizations and
modifications of the Weibull distribution have been proposed to meet the need
of having various shapes.

Mean residual life function

Nassar and Eissa (2003) have shown that the MRL function has the following
form

µ(t) = βeτΓ (1 + 1/α) [1 − Γτ (1/α)/Γ(1/α)], τ = (t/β)α. (5.11)

Here Γτ (r) =
∫ τ

0 xr−1e−xdx is the incomplete gamma function and and Γ(·)
is defined by Γ(r) =

∫∞
0 xr−1e−xdx.

For β =
√

2 and α = 2,

µ(t) =
√

2πet2/2 (1 − Φ(t)) , t > 0 (5.12)

where Φ(·) denote the cdf of a standard normal variable.
As IFR (DFR) implies DMRL (IMRL), it follows that µ(t) decreases (in-

creases) in t for α > 1 (0 < α ≤ 1).

5.2.2 Parameter Estimation Methods

Many different methods can be applied to estimate the parameters of the
Weibull distribution. Generally, these methods can be classified into two main
categories, the graphical techniques and the statistical methods. Some fre-
quently used graphical methods include methods using the empirical cumula-
tive distribution plot (Nelson, 1982), Weibull probability plot (Nelson, 1982;
Kececioglu, 1991; Lawless, 2003), hazard rate plot (Nelson, 1982) and so on.
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Maximum likelihood estimation

Suppose there are r components in a sample of N components failed in a
sample testing. Given the failure data following the Weibull distribution, t1,
t2,..., tr are the lifetime of r failed components; let tr be the censoring time
for the rest n − r components. The likelihood function of the standard two-
parameter Weibull distribution has the form:

L(α, β) =
N !

(N − r)!

(
α

βα

)r r∏
i=1

tα−1
i exp

{
− 1

βα

[
r∑

i=1

tαi + (N − r)tαr

]}
.

(5.13)
Thus the log-likelihood function is given by:

log L(α, β) = log
[

N !
(N−r)!

]
+ r (log α − α log β)

+(α − 1)
r∑

i=1
log ti −

{
1

βα

[
r∑

i=1
tαi + (N − r)tαr

]}
.

(5.14)

Take the first derivative with respect to both parameters and then set
them to zero, we obtain

r∑
i=1

tαi log ti + (N − r)tαr log tr

r∑
i=1

tαi + (N − r)tαr
− 1

α
− 1

r

r∑
i=1

log ti = 0 (5.15)

and

β =

{
1
r

[
r∑

i=1

tαi + (N − r)tαr

]}1/α

. (5.16)

Solving the equation (5.15), we can find the maximum likelihood estimate
(MLE) of the shape parameter α, and the estimation of the scale parameter
β can then be obtained from (5.16). For estimation procedures for grouped
data, see, e.g., Nelson (1982), Lawless (2003), Cheng and Chen (1988) and
Rao et al. (1994).

Other estimation methods

The least squares estimation (LSE) and the MLE are two common methods to
estimate the Weibull parameters. While the MLE method is preferred by many
researchers because of its good theoretical properties, the LSE method, espe-
cially when used in conjunction with graphical methods such as the Weibull
probability plot (WPP) to be discussed in the next section, is most widely
used by practitioners. This is due in part to its computational simplicity.

By equating the first three moments of the Weibull distribution to the
first three sample moments and solving it, it is possible to find the moment
estimators of α, β and τ (the location parameter).
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A minimax optimization procedure for estimating the Weibull parameters
with the Kolmogorov-Smirnov distance used as the objective was proposed by
Ling and Pan (1998).

There are several other parameter estimation methods for the Weibull and
we refer our readers to the monograph by Murthy et al. (2003) for details.

Bias

It is worth noting that when dealing with complete and small samples, the
MLE and LSE estimates of the Weibull parameters, especially the shape pa-
rameter, are long known to be significantly biased (Montanari et al., 1997).
The bias is also significant for the heavy censoring cases which are common
in field conditions.

There are several methods for correcting the bias of the MLE of the Weibull
parameters, mostly in the area of dielectric breakdowns studies. We refer our
readers to Ross (1994, 1996) and Hirose (1999) for a review of various bias
correction formulas for the shape parameter.

5.2.3 Relative Ageing of Two 2-Parameter Weibull Distributions

We say that X ages faster than Y if the ratio of the failure rate of X over the
failure rate of Y is an increasing function of t. The concept of relative ageing
is a particular form of partial ordering between two lifetime random variables.
This concept was defined in Section 2.10.

Suppose we have two independent Weibull random variables X and Y with
distribution functions F (x) and G(y), respectively, given by

F (x) = 1 − exp {−(x/β2)α2} , G(y) = 1 − exp {−(y/β1)α1} . (5.17)

This ratio of the failure rate of X to the failure rate of Y is given by

β1α2

β2α1
× βα1−1

1

βα2−1
2

tα2−α1 (5.18)

which is an increasing function of t if α2 > α1.
Suppose E(X) = E(Y ), i.e., β2Γ(1 + 1/α2) = β1Γ(1 + 1/α1). Lai and Xie

(2003) have shown that var(X) ≤ var(Y ). Two Weibull distributions can also
be partially ordered with respect to the shape parameter in ‘convex ordering’
in the sense as in Barlow and Proschan (1981, p. 105). (See also Section 10.3.2
for a brief definition.)

5.3 Three-parameter Weibull distribution

Introducing a location parameter to a two-parameter Weibull distribution will
result a three-parameter Weibull distribution. This more general but also more
flexible distribution has cdf given by
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F (t) = 1 − exp
{

−
[
t − τ

β

]α}
, t ≥ τ. (5.19)

The three parameters of the distribution are given by the set θ = {α, β, τ}
with α > 0, β > 0 and τ ≥ 0; where β is a scale parameter, α is the shape
parameter that determines the appearance or shape of the distribution and τ
is the location parameter. An alternative form of a three-parameter Weibull
distribution can be expressed as

F (t) = 1 − exp {−λ (t − τ)α} , t ≥ τ. (5.20)

Here, the parameter λ combines both features of scale and shape. Clearly,
λ = β−α. For τ = 0, this becomes a two-parameter Weibull distribution.
Murthy et al. (2003) referred to this special case as the standard Weibull
model, however, Johnson et al. (1994) called a standard Weibull when β = 1
(or λ = 1) together with τ = 0 in the above equations.

Density function

The probability density function of the three-parameter Weibull is

f(t) = αβ−α(t − τ)α−1 exp
{

−
[
t − τ

β

]α}
, t ≥ τ. (5.21)

Mode and Median

The mode is at t = β
(

α−1
α

)1/α + τ for α > 1 and at τ for 0 < α ≤ 1. The
median of the distribution is at β(log 2)1/α + τ .

Moments

The kth moment of X defined by the density function (5.21) can be easily
obtained from the relationship X = βX ′ +τ with µ′

k = E(X ′k) given by (5.5).
In particular, the mean and variance of the three-parameter Weibull random
variable are, respectively,

E(X) = βΓ
(

1
α

+ 1
)

+ τ (5.22)

and

var(X) = α2Γ
(

2
α

+ 1
)

− α2
{

Γ
(

1
α

+ 1
)}2

. (5.23)
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Weibull probability plot

The Weibull probability plot (WPP) can be constructed in several ways (Nel-
son and Thompson, 1971). In the early 1970’s a special paper was developed
for plotting the data in the form F (t) versus t on a graph paper with log-log
scale on the vertical axis and log scale on the horizontal axis. A WPP plotting
of data involves computing the empirical distribution function which can be
estimated in different ways with the two standard ones being

• F̂ (ti) = i/(n + 1), the “mean rank” estimator, and
• F̂ (ti) = (i − 0.5)/n, the “median rank” estimator.

Here, the data consists of successive failure times ti, t1 < t2 < ... < tn.
For censored data (right censored or interval), the approach to obtain the
empirical distribution functions needs to be modified, see for example, Nelson
(1982).

These days, most computer reliability software packages contain programs
to produce these plots automatically from a given data set. A well known sta-
tistical package MINITAB provides a Weibull probability plot under Graph
menu >> Probability Plot.

We may use an ordinary graph paper or spreadsheet software with unit
scale for plotting. Taking logarithms twice of both sides of each of the cdf in
(5.19) yields

log(− log F̄ (t)) = α log(t − τ) − α log β. (5.24)

Let y = log(− log F̄ (t)) and x = log(t − τ). Then we have a linear equation

y = αx − α log β. (5.25)

The plot is now on a linear scale. We can now see that a WPP can indicate
a straight line if the assumption of a Weibull population for the data set
concerned is plausible. The least squares estimates derived from (5.25) can
be used as an initial estimates of the Weibull parameters. Thus the Weibull
probability plot is a favoured tool by many reliability engineers.

Weibull hazard plot

The hazard plot is analogous to the probability plot, the principal difference
being that the observations are plotted against the cumulated hazard (failure)
rate rather than the cumulated probability value. Moreover, this is designed
for censored data.

Let H(t) denote the cumulative hazard rate (also referred to as hazard
function), then F̄ (t) = exp(−H(t)) so

H(t) = − log F̄ (t) =
(

t − τ

β

)α

(5.26)
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or equivalently
H(t)1/α/β = (t − τ). (5.27)

Let y = log(t − τ) and x = log H(t), then we have

y = log β +
1
α

x. (5.28)

Rank the n survival times (including the censored) in ascending order and let
K denote the reverse ranking order of the survival time, i.e., K = n for the
smallest survival time and K =1 for the largest survival time. The hazard
is estimated from 100/K (a missing value symbol is entered at a censored
failure time). The cumulative hazard is obtained by cumulating the hazards.
The Weibull hazard plot is simply the plot arising from (5.28). See Nelson
(1972) for further details.

Both WPP and the Weibull hazard plot, in addition to providing simple
straight line fitting for parameter estimation, they also have a role in model
validation which is important in any engineering analysis.

Order statistics

Let X1, X2, · · · , Xn denote n independent and identically distributed three-
parameter Weibull random variables. Furthermore, let X(1) < X(2) < · · · ≤
X(n) denote the order statistics from these n variables. The kth order statistic
X(k) from a sample of n observations corresponds to the lifetime of a (n −
k + 1)-out-of-n system of n independent and identically distributed Weibull
components. The probability density function of X(1), is given by

f1(t) = n[1 − F (t)]n−1f(x)

= nα
β

(
t−τ
β

)α−1
e−n[(t−τ)/β]α , t ≥ τ ≥ 0.

(5.29)

It is obvious that X(1) is also distributed as a Weibull random variable, except
that α is replaced by βn−1/α. The density function of X(r) (1 ≤ r ≤ n) is

fr(t) = n!
(r−1)!(n−r)!

(
1 − e−[(t−τ)/β]α

)r−1
e−[(t−τ)/β]α(n−r+1)

×αβ−α(t − τ)α−1, t ≥ τ ≥ 0.
(5.30)

It can be shown that

E
[
(X(r))k

]
=

k∑
i=0

τ iβk−iωk−i
(r) (5.31)

where

ωk
(r) =

n!
(r − 1)!(n − r)!

Γ
(

1 +
k

α

) r−1∑
i=0

(−1)r
(

r − 1
i

)
(n − r + i + 1)1+(k/α) .
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Failure Rate Function

The failure rate function for the three-parameter Weibull is

r(t) =
f(t)
F̄ (t)

=
α

β

(
t − τ

β

)α−1

, t ≥ τ. (5.32)

It is obvious that r(t) given above is similar to its corresponding function for
the two-parameter case as given in (5.10) except the function is now defined
over [τ, ∞) instead of [0,∞).

There are many extensions, generalizations and modifications of the Weibull
distribution. They arise out of the need to model some empirical data sets
which cannot be adequately described by a three-parameter Weibull model.
For example, the monotonic property of the Weibull’s failure rate function
which is unable to capture the behavior of a data set that has a bathtub
shaped failure rate. Xie et al. (2003) reviewed several Weibull-related distri-
butions that exhibit bathtub shaped failure rates. Plots of mean residual life
from several of these Weibull derived models were given in Lai et al. (2004).
For simplicity, we simply refer these Weibull-related models as Weibull mod-
els.

5.4 Models Derived from Transformations of Weibull
Variable

We consider in this section four models derived from the Weibull variable by
a simple transformation, either linear or non-linear. These models are now
given as follows:

5.4.1 Reflected Weibull Distribution

Suppose X has a three-parameter Weibul distribution, then T = −X has a
reflected Weibull whose distribution function is

F (t) = exp
{

−
(

τ − t

β

)α}
, α, β > 0, − ∞ < t < τ. (5.33)

This is also known as type 3 extreme value distribution (Chapter 22, Johnson
et al., 1995). The density function is given by

f(t) =
(

α

β

)(
τ − t

β

)α−1

exp
{

−
(

τ − t

β

)α}
, α, β > 0,−∞ < t < ∞.

(5.34)
The failure rate function is given by
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r(t) =
(

α

β

)(
τ − t

β

)α−1 exp
{

−( τ−t
β )α

}
1 − exp

{
−( τ−t

β )α
} . (5.35)

Strictly speaking, the reflected Weibull is not suitable for reliability modelling
unless τ > 0 and (τ/β)α ≥ 9 so that Pr(0 < T < τ) ≈ 1.

5.4.2 Log Weibull Distribution

This is an extreme value distribution derived from the logarithmic transfor-
mation of the two-parameter Weibull having distribution function as given in
(5.1). The transformed variable has distribution function given by

F (t) = 1 − exp
{

− exp
(

t − a

b

)}
, −∞ < t < ∞, (5.36)

where we have let a = log β, b = 1/α. This is also known as type 1 extreme
value distribution or the Gumbel distribution. In fact, it is the most com-
monly referred to in discussions of extreme value distributions (Johnson et
al., 1995, Chapter 22). The density function is already given in (5.3)–though
in a different parametrization, i.e.,

f(t) =
1
b

exp
(

t − a

b

)
exp
{

− exp
(

t − a

b

)}
, −∞ < t < ∞.

The failure rate functions is given by

r(t) =
f(t)

1 − F (t)
=

1
b

exp
(

t − a

b

)
. (5.37)

Again, we note that since the distribution is defined over the whole real
line, it has limited roles for reliability application.

5.4.3 Inverse (or Reverse) Weibull Model

Let X denote the 2-parameter Weibull model with distribution function
1 − e−(t/β)α

. Define T as follows:

T =
β2

X
. (5.38)

Then T has a distribution function given by

F (t) = exp(−(β/t)α), α, β > 0, t ≥ 0. (5.39)

Alternatively, we may express (5.39) as

F (t) = exp(−(t/β)−α), α, β > 0, t ≥ 0. (5.40)
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The density function is

f(t) = αβαt−α−1e−(β/t)α

. (5.41)

The inverse Weibull is also known as type 2 extreme value or the Fréchet
distribution. (Johnson et al., 1995, Chapter 22). Erto (1989) has discussed
the properties of this distribution and its potential use as a lifetime model.
The maximum likelihood estimation and the least squares estimation of the
parameters of the inverse Weibull distribution have been discussed by Calabria
and Pulcini (1990).

The failure rate function is given by

r(t) =
αβαt−α−1e−(β/t)α

1 − e−(β/t)α . (5.42)

It can be shown that the inverse Weibull distribution generally exhibits a
long right tail and its failure rate function is similar to that of the log-normal
and inverse Gaussian distributions.

Jiang et al. (2001) showed that the failure rate function is unimodal
(upside-down) with the mode at t = tM given by the solution of the following
equation

z(tM )
1 − e−z(tM ) = 1 + 1/α (5.43)

where z(t) = (β/t)α and

lim
t→0

r(t) = lim
t→∞ r(t) = 0. (5.44)

This is in contrast to the standard Weibull model for which the failure rate is
either decreasing (for α < 1), constant (for α = 1) or increasing (for α > 1).

The inverse Weibull transform is given by

x = log t, y = − log (− log(F (t)) . (5.45)

The above transformation was first proposed by Drapella (1993). The plot
y versus x is called the inverse Weibull probability plot (IWPP) plot. Under
this transform, the inverse Weibull model as given in (5.39) also yields a
straight line relationship

y = α(x − log β). (5.46)

5.5 Modifications or Generalizations of Weibull
Distribution

A common factor among the generalized models considered below is that the
Weibull distribution is a special case of theirs. Either F (t) or r(t) of the
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distribution of interest is related to the corresponding function of the Weibull
distribution in some way. A common feature of these distributions is that the
mean does not have a simple expression although their failure rate function
r(t) is able to model more diverse problems than the Weibull does.

5.5.1 Extended Weibull Distribution

Marshall and Olkin (1997) proposed a modification to the standard Weibull
model through the introduction of an additional parameter ν (0 < ν < ∞).
The model is given through its survival function function

F̄ (t) =
νḠ(t)

1 − (1 − ν)Ḡ(t)
=

νḠ(t)
G(t) + νḠ(t)

(5.47)

where G(t) is the distribution function of the two-parameter Weibull and
F̄ (t) = 1 − F (t).

The case when G is an exponential distribution function has been consid-
ered as the exponential-geometric in Section 2.3.14.

When ν = 1, F̄ (t) = Ḡ(t) so the model reduces to the standard Weibull
model.

Using (5.1) as G in (5.47) the distribution function is given by

F (t) = 1 − ν exp[−(t/β)α]
1 − (1 − ν) exp[−(t/β)α]

. (5.48)

Marshall and Olkin (1997) called this the extended Weibull distribution. The
mean and variance of the distribution cannot be given in a closed form, but
they can be obtained numerically. The model may be considered as a com-
petitor to the three-parameter Weibull distribution defined in (5.19).

The resulting density function associated with (5.48) is given by

f(t) =
(αν/β)(t/β)α−1 exp[−(t/β)α]
{1 − (1 − ν) exp[−(t/β)α]}2 (5.49)

and the corresponding failure rate function is

r(t) =
(α/β)(t/β)α−1

1 − (1 − ν) exp[−(t/β)α]
. (5.50)

Marshall and Olkin (1997) carried out a partial study of the hazard (failure
rate) function. It is increasing when ν ≥ 1, α ≥ 1 and decreasing when
ν ≤ 1, α ≤ 1. If α > 1, then the failure rate function is initially increasing
and eventually increasing, but there may be an interval where it is decreasing.
Similarly, when α < 1, the failure rate function is initially decreasing and
eventually decreasing, but there may be an interval where it is increasing.

From their Fig. 2 we observe that r(t) ∈ MBT for β = 1, α = 2, ν = 0.05
or ν = 0.1.
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In view of the complexity of the mean residual life function µ(t) of the
Weibull distribution, we anticipate that the mean residual life function of
the extended Weibull is worse in terms of complexity. Lai et al. (2004) have
provided several plots of MRL for different combinations of parameter values
from this distribution.

5.5.2 Exponentiated Weibull Distribution

Mudholkar and Srivastava (1993) proposed a modification to the standard
Weibull model through the introduction of an additional parameter ν (0 <
ν < ∞). The distribution function is

F (t) = [G(t)]ν = [1 − exp{−(t/β)α}]ν , α, β > 0, t ≥ 0, (5.51)

where G(t) is the standard two-parameter Weibull distribution. The support
for F is [0, ∞).

The model was introduced as an example that can achieve a bathtub
shaped failure rate function in Section 3.4.3. Here we will give a fuller study
of this distribution.

When ν = 1, the model reduces to the standard two-parameter Weibull
model. When ν is an integer, the model is a special case of the multiplicative
model to be discussed in Section 5.6.3. The distribution has been studied
extensively by Mudholkar and Hutson (1996), Jiang and Murthy (1999) and
more recently Nassar and Eissa (2003). The density function is given by

f(t) = ν{G(t)}ν−1g(t), (5.52)

where g(t) is the density function of the standard two-parameter Weibull
distribution. So

f(t) =
αν

βα
tα−1e−(t/β)α

(
1 − e−(t/β)α

)ν−1
. (5.53)

Two special cases worth noting:
(i) For α = 1, the pdf is

f(t) =
ν

β
e−t/β

(
1 − e−t/β

)ν−1
(5.54)

which is the exponentiated exponential distribution studied by Gupta
et al (1998).

(ii) For α = 2, we obtain the two-parameter Burr type X distribution with
pdf:

f(t) =
2ν

β2 e−(t/β)2
(
1 − e−(t/β)2

)ν−1
. (5.55)
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We also note that from (5.53),

f(0) =

⎧⎨
⎩

0 if αν > 1,
β−α if αν = 1,
∞ if αν < 1.

(5.56)

The value of f(0) will have an impact on the shape of its MRL µ(t) (see
equation (4.5) and Theorem 4.2) which we will investigate following our study
of its failure rate function.

The failure rate function is given by (Mudholkar and Hutson, 1996)

r(t) =
αν(t/β)α−1[1 − exp(−(t/β)α)]ν−1 exp(−(t/β)α)

1 − [1 − exp(−(t/β)α)]ν
. (5.57)

For small t, Jiang and Murthy (1999) have shown that

r(t) ≈
(

αν

β

)(
t

β

)αν−1

. (5.58)

In other words, for small t, r(t) can be approximated by the failure rate of
a two-parameter Weibull distribution with shape parameter (αν) and scale
parameter β.

For large t , i.e., t → ∞, the term
exp(−(t/β)α)

1 − [1 − exp(−(t/β)α)]ν
in (5.57) con-

verges to 1/ν by applying the L’Hospital’s rule. It is now clear that (5.57)
converges to

r(t) ≈
(

α

β

)(
t

β

)α−1

for large t. (5.59)

In other words, for large t, r(t) can be approximated by the failure rate of a
two-parameter Weibull distribution with shape parameter α and scale para-
meter β.

Mudholkar et al. (1995), Mudholkar and Hutson (1996) and Jiang and
Murthy (1999) have all considered the shapes of r(t) and its characterization
in the parameter space. The shape of r(t) does not depend on β and varies
with α and ν. The characterization on the (α, ν)- plane is as follows:

• α ≤ 1 and αν ≤ 1: r(t) monotonically decreasing.
• α ≥ 1 and αν ≥ 1: r(t) monotonically increasing.
• α < 1 and αν > 1: r(t) has an upside-down bathtub shape.
• α > 1 and αν < 1: r(t) has a bathtub shape.

The mean residual life of the exponentiated Weibull has been given by
Nassar and Eissa (2003) for positive integer ν as:

µ(t) = ν
∑ν−1

j=0 (−1)j
(

ν − 1
j

)
/
[
(j + 1)F̄ (t)

] {
βΓ
(

1
β + 1

) [
(j + 1)−1/α

−(j + 1)−1Γ(j+1)τ

(
1
β

)
/Γ
(

1
β

)]
+ te−(j+1)τ

}
− t,

(5.60)
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where τ = (t/β)α. Thus, the mean of the distribution for ν ∈ N+ is

µ = µ(0) = νΓ
(

1
α

+ 1
) ν−1∑

j=0

(−1)j
(

ν − 1
j

)
/
[
(j + 1)−1/α

]
(5.61)

From the general theory that connecting BT (UBT) and IDMRL (DIMRL)
distributions (see Section 4.5 for details), Nassar and Eissa (2003) have estab-
lished that the shape of µ(t) as follows:

Let µ(t) be given as (5.60), then
(i) µ = α if and only if α = ν = 1.
(ii) µ(t) is DMRL (IMRL) if α ≥ 1 and αν ≥ 1 (α ≤ 1 and αν ≤ 1).
(iii) µ(t) is DIMRL with a change point tm if α < 1 and αν > 1.
(iv) µ(t) is IDMRL with a change point tm if α > 1 and αν < 1.

Nadarajah and Gupta (2005) obtained the kth moment about the origin as

µ′
k = νβkΓ

(
k

α

) ∞∑
i=0

(1 − ν)i

i!(i + 1)(k+α)/α
, k > −α, (5.62)

where (1 − ν)i = (a)i = a(a + 1)...a(a + i − 1).
If ν is an integer, then

µ′
k = νβkΓ

(
k

α

) ν−1∑
i=0

(1 − ν)i

i!(i + 1)(k+α)/α
, k > −α, (5.63)

which was established by Nassar and Eissa (2003). Equation (5.63) follows
from (5.62) because (1 − ν)i = 0 for all i ≥ ν.

5.5.3 Modified Weibull Distribution

Lai et al. (2003) proposed a modified Weibull which is an extension of the
two-parameter Weibull distribution. The distribution function is given as in
(3.8)

F (t) = 1 − exp(−atαeλt), t ≥ 0,

where the parameters λ > 0, α > 0 and a > 0. The distribution is considered
in Section 3.4.1 as an example that can give rise to a bathtub shaped failure
rate function. Here we give a fuller account of this model.

For λ = 0, it reduces to a Weibull distribution.
The density function of the modified Weibull is given by

f(t) = a(α + λt)tα−1eλt exp(−atαeλt). (5.64)

The failure rate function given in (3.9) is reproduced here for convenience
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r(t) = a(α + λt)tα−1eλt. (5.65)

The shape of the failure rate function depends only on α because of the factor
tα−1 and the remaining two parameters have no direct effect on the shapes.

(i) For α ≥ 1:

1. r(t) is increasing in t, implying an increasing failure rate function, thus F
is IFR.

2. r(0) = 0 if α > 1 and r(0) = a if α = 1.
3. r(t) → ∞ as t → ∞.

(ii) For 0 < α < 1:

1. r(t) initially decreases and then increases in t, implying a bathtub shape
for the failure rate function.

2. r(t) → ∞ as t → 0 and r(t) → ∞ as t → ∞.
3. The change point t∗, i.e., the turning point of the failure rate function, is

as given in (3.10):

t∗ =
√

α − α

λ
.

The interesting feature is that t∗ increases as λ decreases. The limiting
case when λ = 0 reduces to the standard Weibull distribution.

Like most generalized Weibull distribution, the mean of this distribution
does not have a closed form.

A simple method for parameters estimation through a WPP (Weibull prob-
ability plot) was given in Lai et al. (2003). More recently, Bebbington et al.
(2005a) have suggested an empirical estimator for the turning point t∗ and
investigated its performance using a real data set as well as a simulation study.
In a follow-up study, Bebbington et al. (2005b) have developed a methodol-
ogy to estimate the optimal burn-in time for this model based on the criterion
that the µ(t) attains its maximum at this point. Theoretical results are ac-
companied with simulation studies and applications to real data. Further, a
statistical inferential theory was developed for the difference between the min-
imum point of the corresponding failure rate function and the maximum point
of the mean residual life function.

5.5.4 Modified Weibull Extension

Another extension of Weibull was given by Xie, Tang and Goh (2002) who
called it a ‘modified Weibull extension’.

In Section 3.4.1 we have discussed how this model is related to other
earlier models. The distribution function and the failure rate functions are
given respectively by (3.17) and (3.18):
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F (t) = 1 − exp
{

−λβ
[
e(t/β)α − 1

]}
, t ≥ 0, α, β, λ > 0;

r(t) = λα(t/β)α−1 exp [(t/β)α] .

The distribution approaches to a two-parameter Weibull distribution when
λ → ∞ with β in such a manner that βα−1/λ is held constant.

For λ = 1, the above distribution is the exponential power distribution
considered in Section 3.4.1 and studied by Smith and Bain (1975, 1976). The
case with scale parameter β = 1 was considered by Chen (2000) who also
considered the estimation of parameters.

The shape of r(t) depends only on the shape parameter α.

For α ≥ 1 :
(i) r(t) is an increasing function;
(ii) r(0) = 0 if α > 1 and r(0) = λ, if α = 1;
(iii) r(t) → ∞ as t → ∞.

For 0 < α < 1 :
(i) r(t) is decreasing for t < t∗ and increasing for t > t∗ with

t∗ = β(1/α − 1)1/α. (5.66)

This implies that the failure rate function has a bathtub shape;
(ii) r(t) → ∞ for t → 0 or t → ∞;
(iii) The change point t∗ increases as the shape parameter α decreases.

For this model, the mean residual life function µ(t) does not have a closed
form although its turning point µ0 can be obtained numerically. In fact, µ(t)
attains its maximum value at t = µ0. Xie et al. (2004) have given plots of µ(t)
and r(t) for α = 0.45, 0.5, and 0.6 with β = 100, λ = 2.

Nadaraja (2005) derived explicit algebraic formulae for the kth moment
(about zero) of the distribution when 1/α is a non-negative integer.

5.5.5 Generalized Weibull Family

This model introduced in Section 3.4.2 was derived by Mudholkar and Kollia
(1994) and Mudholkar et al. (1996) from the basic two-parameter Weibull
distribution and involves an additional parameter. The quantile function for
the new model is given by

Q(u) = β
[

1−(1−u)λ

λ

]1/α

, λ �= 0

= β[− log(1 − u)]1/α, λ = 0
(5.67)

where the new parameter λ is unconstrained so that −∞ < λ < ∞. This
implies
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F (t) =

[
1 −
(

1 − λ

(
t

β

)α)1/λ
]

, α, β > 0, (5.68)

where the support is for F (t) is (0, ∞) for λ ≤ 0 and (0, β/λ1/α) for λ > 0.
So the model can be regarded as a finite range distribution listed in Section
3.4.2.

Note that the model reduces to the basic two-parameter Weibull when
λ → 0.

The proposed model was called the generalized Weibull family in Mud-
holkar et al. (1996) who has applied the model to the two-arm clinical trials
considered by Efron (1988).

Characterization of failure rate

This generalized family not only contains distributions with BT and UBT
failure rate shapes, but also allows for a broader class of montonic failure
rates. The failure rate associated with (5.68) is given by

r(t) =
α(t/β)α−1

β (1 − λ(t/β)α)
. (5.69)

The following classification was from Mudholkar et al. (1996):

1. α < 1 and λ > 0: F ∈ BT
2. α ≤ 1 and λ ≤ 0: F ∈ DFR
3. α > 1 and λ < 0: F ∈ UBT
4. α ≥ 1 and λ ≥ 0: F ∈ IFR
5. α = 1 and λ = 0: F exponential (i.e., r(t) is a constant)

It was also shown that the family (5.68) is closed under proportional haz-
ards relationships, that is, for any ν > 0, F̄ (t)ν is also a member of the family
(5.68).

Moreover, we have
1. Let θ = β/λ1/α and α = p, (5.69) reduces to the failure rate function

(3.22) of a beta distribution.
2. For λ ≤ 0, (5.69) reduces to (2.47), the failure rate of the Burr XII

distribution.

The maximum likelihood estimates of the model parameters were obtained by
Mudholkar et al. (1996).
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5.5.6 Generalized Weibull Distribution of Gurvich et al.

It has been pointed by Nadarajah and Kotz (2006) that several of the mod-
ifications of Weibull distributions discussed in this section can arise from a
representation suggested by Gurvich et al. (1997). This distribution did not
arise from a reliability perspective but from the context of modelling random
length of brittle materials. The distribution function of this class is given by

F (t) = 1 − exp {−aG(t)} , (5.70)

where G(t) is a monotonically increasing function in t such that G(t) ≥ 0.

(i) G(t) = tα exp(λt), it reduces to the model of Lai et al. (2003).
(ii) G(t) = exp(t/β)α − 1, it reduces to the model of Xie et al. (2002).
(iii) G(t) = exp ((t − a)/b)), it reduces to the log Weibull.
Several other Weibull related distributions are also contained in this family.

5.6 Models Involving Two or More Weibull Distributions

These are univariate models derived from two or more Weibull distributions.
We assume that life component i, i = 1, 2, .., n has a Weibull distribution with
cdf Fi having scale parameter αi and shape parameter βi. Four such models
are now presented below.

5.6.1 n-fold Mixture Model

Mixtures of two Weibull distributions have been considered in Section 2.8.4.
In this subsection, we recap some of the results.

Let pi be the mixing proportion of the ith subpopulation so the distribution
of the mixture model is represented by

F (t) =
n∑

i=1

piFi(t), pi ≥ 0,

n∑
i=1

pi = 1. (5.71)

We assume here the n Weibull random variables involved in the mixture
are independent. Gurland and Sethurama (1995) have considered a mixture of
the Weibull distribution with failure rate λαtα−1 and the exponential distri-
bution with failure rate λ1. For α > 1, the Weibull distribution is IFR. They
found that the resulting mixture distribution is ‘ultimately’ DFR. In fact, the
mixture with the exponential has resulted a failure rate with an upside-down
bathtub shape.

Jiang and Murthy (1995b, 1998) have categorized the possible shapes of the
failure rate function for a mixture of any two Weibull distributions in terms
of five parameters. In particular, they stated that the mixture failure rates
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from two strictly IFR Weibull distributions with the same shape parameter
β can either have a modified bathtub shape (MBT) or an increasing failure
rate. However, they did not classify the two possibilities.

Wondmagegnehu (2004) has fine-tuned the results of Jiang and Murthy
(1998) with a definite discriminant between the two classes based on the value
of the mixing proportion p with p1 = p and p2 = 1 − p as given in (5.71). In
the case where the two Weibull shape parameters are different, i.e., α1 �= α2
and both α1, α2 > 1, he used examples to illustrate all possible shapes that
the mixture failure rate can encounter.

We also note that a mixture of two Weibull distribution cannot give rise
to a BT shaped failure rate.

Reliability approximation using a finite Weibull mixture
distributions

Bučar et al. (2004) have shown that the reliability of an arbitrary system
can be approximated well by a finite Weibull mixture with positive compo-
nent weights only, without knowing the structure of the system, on condition
that the unknown parameters of the mixture can be estimated. To support
the main idea, they have presented five examples for demonstration. In order
to estimate the unknown component parameters and components weights of
the Weibull mixture, some of the already known methods were applied and
the EM algorithm for the m-fold mixture was derived. The fitted distribu-
tions obtained by different methods were compared to the empirical ones by
calculating the AIC and δc values. The authors concluded that the suggested
Weibull mixture with an arbitrary but finite number of components is suitable
for lifetime data approximation.

For other ageing characteristics of Weibull mixtures, see Gupta (1995).

5.6.2 n-fold Competing Risk Model

Again we assume here the n Weibull random variables involved in the n-fold
competing risks model are independent. The distribution function is given by

F (t) = 1 −
n∏

i=1

(1 − Fi(t)). (5.72)

The above model represents the lifetime distribution of a series system of
n independent Weibull components. Note that the failure rate function of a
series system is the sum of the failure rates of its n components. The special
case n = 2 is more widely studied.

Additive Weibull model

Jiang and Murthy (1997b) have given a parametric study of a competing risks
model involving two Weibull distributions. Earlier, Xie and Lai (1995) studied
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a 2-fold competing risks model which they called an additive Weibull model in
view of its additive property of the two failure rate functions. The reliability
function is very simple and can be given by

F̄ (t) = exp {−(t/β1)α1 − (t/β2)α2} , α1, α2, β1, β2 > 0. (5.73)

The failure rate function is also very simple and was given earlier by (3.6),
i.e.,

r(t) = α1/β1(t/β1)α1−1 + α2/β2(t/β2)α2−1, t ≥ 0.

It is easy to see that F is IFR if both shape parameters are greater than 1,
i.e., if α1 > 1 and α2 > 1; and DFR if α1 < 1 and α2 < 1.

For α1 < 1 and α2 > 1, r(t) then has a bathtub shape. This is because the
second term in the preceding equation which dominates for small t is decreas-
ing. For large t, the first term of r(t) dominates and is an increasing function.
An important feature of this model is that r(t), with an appropriate choice of
parameter values, can achieve a fairly flat middle part of the life phase so it
is able to model a population with a stable useful period. There is however,
an undesirable aspect of this model which yields rather low values of r(t) in
the middle period of the lifetime. This can be rectified by adding a ‘lift’ fac-
tor r0 to r(t) as was proposed in Lai et al. (2004). The resulting new system
corresponds to a series system of two Weibull components augmented by an
exponential component with scale parameter r0. This additional component
is arranged in series along with the first two components. Since the exponen-
tial is a special case of the Weibull distribution, the modified additive model
corresponds to a 3-fold competing risks model involving Weibull distributions.

It is obvious that that r(t) cannot achieve an UBT shape.

5.6.3 n-fold Multiplicative Model

The n-fold multiplicative model also known as the complementary risk model
in the literature, has the distribution function given by

F (t) =
n∏

i=1

Fi(t). (5.74)

If all the n component lifetimes are independent and identically distributed as
a Weibull distribution, then (5.74) is equivalent to (5.51), the exponentiated
Weibull distribution. It is easy to see that (5.74) corresponds to the distribu-
tion of a system of n independent components that are arranged in parallel.
The multiplicative model involving two Weibull distribution was studied in
detail by Jiang and Murthy (1997a). It was shown that there are only four
possible shapes of the failure rate function: (i) decreasing, (ii) increasing (iii)
UBT or (iv) MBT depending on the values of the scale and shape parameters
of the two Weibull variables. It is interesting to note that, like the case of
mixture, a BT shaped failure rate cannot be achieved.
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5.6.4 n-fold Sectional Model

The distribution function in a n-fold sectional model has n segments joined
together as follows:

F (t) =

⎧⎪⎪⎨
⎪⎪⎩

k1F1(t), 0 ≤ t ≤ t1,
1 − k2F̄2(t), t1 < t ≤ t2,
· · · · · ·
1 − knF̄n(t), t > tn−1.

(5.75)

where the sub-populations Fi(t) are the two- or three-parameter Weibull dis-
tributions and the ti’s (called partition points) are an increasing sequence.
Jiang and Murthy (1997b) and Jiang et al. (1999) considered the case where
n = 2 in detail whereas Jiang and Murthy (1997c) considered the case where
n = 3. Both cases can achieve a BT shaped failure rate; the former has a ‘V’
shape bathtub whereas the latter can attain a flat bottom provided α2 = 1
where αi is the shape parameter of the ith Weibull distribution. In the case
n = 3, Jiang and Murthy (1997c) reported that the failure rate can be one of
twenty different shapes which can be classified into five types – (i) I (ii) D (iii)
BT (iv) UBT and (v) roller-coaster shape. Thus, the sectional models involv-
ing three Weibull distributions can be used to model a variety of reliability
data.

Lai et al. (2004) also gave a plot for the mean residual life for each case.

5.6.5 Model Involving Two Inverse Weibull Distributions

Although this model does not quite fit in with the rest of this section, we
think it is nevertheless appropriate to include it here because of a similar
theme being discussed.

Recall in Section 5.4.3, the inverse Weibull is obtained by inverting
the Weibull random variable. Its distribution function is given by F (t) =
exp {−(β/t)α} , α, β, t > 0. Jiang et al. (2001) have studied three models
(mixture, competing risk and multiplicative) involving two inverse Weibull
distributions.

Mixture model

It was shown that since the failure rate of the two sub-populations are uni-
modal (UBT), the possible shapes for the mixture model are: (i) unimodal
(UBT) and (ii) bimodal (two local maxima).

Competing risk model

Interesting enough, the shapes of the failure rates in a competing risks model
are almost the same as those for the mixture model, i.e., either r(t) is UBT
or bimodal.
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Multiplicative model

After examination of the failure rate function plots for a range of parameter
values, Jiang et al (2001) found that the failure rate function is always UBT,
so is its density function.

5.7 Weibull Models with Varying Parameters

In this models the scale parameter β is a function of some supplementary
variable S. In reliability applications S represents the stress on the item and
the life of the item (a random variable with distribution F ) is a function of
S. The shape parameter is unaffected by S and hence a constant. See Section
2.6 of Murthy et al. (2003).

Arrhenius model

The relationship is given by

β(S) = exp(γ0 + γ1S). (5.76)

The model was discussed in Jensen (1995).

Power model

The relationship is given by

β(S) =
eγ0

Sγ1
. (5.77)

The power model can also be found in Jensen (1995).

Weibull proportional hazard models

The relationship is given by

r(t) = ψ(S)r0(t), (5.78)

where r0(t) is called the baseline hazard for a two-parameter Weibull distri-
bution. The only restriction on the scalar function ψ(·) is that it be positive.
Many different forms for ψ(·) have been proposed. One such is the following:

ψ(S) = exp(b0 +
k∑

i=1

bisi). (5.79)

(See Kalbfleisch and Prentice, 1980).
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5.8 Discrete Weibull Models

Here the lifetime variable X can only assume non-negative integer values
and this defines the support for F (t). Chapter 6 will give a detailed study
on this subject. Here, we merely list three discrete analogues of the Weibull
distribution.

Model-1

(Nakagawa and Osaki, 1975).

F (t) =
{

1 − qtα

0
t = 0, 1, 2, 3 · · · ,
t < 0.

(5.80)

Model-2

(Stein and Dattero, 1984).
The cumulative hazard function is given by

H(t) =
{

ctα−1

0
t = 1, 2, · · · , m,
t < 0.

(5.81)

where m is given by

m =
{

[c−{1/(α−1)}]+ if α > 1,
∞ if α ≤ 1;

(5.82)

and [ ]+ represents the integer part of the quantity inside the square brackets.

Model-3

(Padgett and Spurrier, 1985).

F (t) = 1 − exp{−
t∑

i=1

r(i)} = 1 − exp{−
t∑

i=1

ciα−1}, t = 0, 1, 2, ... (5.83)

We refer our readers to Section 6.7.1 for more discussions.

5.9 Bivariate models

These models to be presented below are multivariate extensions of the uni-
variate case so that the distribution function is given by an n-dimensional
distribution function F (t1, t2, · · · , tn). In this section we discuss only some
selective bivariate models; multivariate extensions of these models can be de-
veloped in a similar way although it generally involves more parameters. For
a fuller coverage, we refer our readers to the monograph by Murthy et al.
(2003).
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5.9.1 Marshall and Olkin (1967)

This is obtained from the power law transformation of the well known bivariate
exponential distribution (BVE) studied in Marshall and Olkin (1967). The
joint survivor function with Weibull marginals are given as:

F̄ (t1, t2) = exp{−[λ1t
α1
1 + λ2t

α2
2 + λ12 max(tα1

1 , tα2
2 )]}, (5.84)

where λi > 0, αi ≥ 0, λ12 ≥ 0; i = 1, 2. This bivariate Weibull reduces to the
bivariate exponential distribution when α1 = α2 = 1.

Lu (1992) considered Bayes estimation for the above model for censored
data.

5.9.2 Lee (1979)

A related model due to Lee (1979) involves the transformation Zi = Ti/ci and
α1 = α2 = α. The model is given by

F̄ (t1, t2) = exp {− [λ1c
α
1 tα1 + λ2c

α
2 tα2 + λ12 max(cα

1 tα1 , cα
2 tα2 )]} , (5.85)

where ci > 0, λi > 0, λ12 ≥ 0.
Yet another related model due to Lu (1989) has the survival function:

F̄ (t1, t2) = exp {−λ1t
α1
1 − λ2t

α2
2 − λ0 max(t1, t2)α0} , (5.86)

where λ′s > 0, αi ≥ 0; i = 0, 1, 2. This can be seen as a slight modification (or
generalization) of the Marshall and Olkin’s bivariate exponential distribution
due to the exponent in the third term having a new parameter.

5.9.3 Lu and Bhattacharyya (1990)-I

A general model proposed by Lu and Bhattacharyya (1990) has the form:

F̄ (t1, t2) = exp {−(t1/β1)α1 − (t2/β2)α2 − δh(t1, t2)} , (5.87)

where αi > 0, βi ≥ 0, δ ≥ 0; i = 1, 2.
Different forms for the function of h(t1, t2) yield a family of models. One

form for h(t1, t2) is the following:

h(t1, t2) =
[
(t1/β1)α1/m + (t2/β2)α2/m

]m
, m > 0. (5.88)

This yields the following survival function for the model:

F̄ (t1, t2) = exp
{

−(t1/β1)α1 − (t2/β2)α2 − δ[(t1/β1)α1/m + (t2/β2)α2/m]m
}

.

(5.89)
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5.9.4 Morgenstern-Gumbel-Farlie System

The Morgenstern-Gumbel-Farlie system of distributions (Hutchinson and Lai,
1990, Section 5.2 and Kotz et al., 2000, Section 44.13) is given by

F̄ (t1, t2) = F̄1(t1)F̄2(t2)
{
1 + γ

[
1 − F̄1(t1)

] [
1 − F̄2(t2)

]}
, −1 < γ < 1.

(5.90)
(See also Example 9.1.) With F̄i(yi) = exp{−yαi

i }, αi > 0, this yields a bivari-
ate Weibull model with the marginals being a standard Weibull in the sense
of Johnson et al. (1994).

5.9.5 Lu and Bhattacharyya (1990)-II

A different type of bivariate Weibull distributions due to Lu and Bhat-
tacharyya (1990) is given by

F̄ (t1, t2) =
[
1 +
[
{[exp(t1/β1)α1 ] − 1}1/γ + {exp[(t2/β2)α2 ] − 1}1/γ

]γ]−1
.

(5.91)
This model has a random hazard interpretation, but for no value of γ, the
model yields independence between the two variables.

5.9.6 Lee (1979)-II

Lee (1979) proposed the following bivariate Weibull distribution

F̄ (t1, t2) = exp{−(λ1t
α1
1 + λ2t

α2
2 )γ} (5.92)

where αi > 0, 0 < γ ≤ 1, λi > 0, ti ≥ 0, i = 1, 2. This is also known as
the logistic model with Weibull marginals in the multivariate extreme value
context.

The model was used by Hougaard (1986) to analyze a tumor data. A
similar model was also proposed and studied in Lu and Bhattacharyya (1990).

We note that it is easy to generate a bivariate Weibull distribution by a
marginal transformation, a popular method for constructing a bivariate model
with specified marginals (Lai, 2004).

5.10 Applications of Weibull and Related Models

There are numerous applications for Weibull and Weibull related distributions
in all aspects of life so it would be futile, perhaps unhelpful, to list them all
here. Since our theme is pitched towards reliability, we select a few applications
that are relevant in reliability context. These are arranged in alphabetical
order as follows:
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1. Adhesive wear in metals – Queeshi and Sheikh (1997).
2. Aircraft windshield failures data– Murthy et. al (2003).
3. Analysis of survival data from clinical trials – Carroll (2003).
4. Bus motor failures data – Davis (1952), Mudholkar et al. (1995)
5. Carbon fibers and composites failures – Durham and Padgett (1997).
6. Cleaning web failure times in photocopiers – Murthy et al. (2004).
7. Device failure times – Aarset (1987).
8. Failure of coatings recoil compressive failure in high performance polymers

– Almeida (1999), Newell et al. (2002).

9. Failures of brittle materials – Fok et al. (2001).
10. Failure probability prediction of concrete components – Li et al. (2003).
11. Fatigue of bearings – Cohen et al. (1984).
12. Fracture strength of glass – Keshevan et al. (1980).
13. Material strength – Weibull (1939).
14. Product warranty – Blischke and Murthy (1994, 1996); Murthy and Dja-

maludin (2002).
15. Pitting corrosion and pipeline reliability – Sheikh et al. (1990).
16. Throttle failure times – Carter (1986), Murthy et al. (2003).
17. Yield strength of steel, fatigue life of steel – Weibull (1951).
18. Die cracking in the assembly and reliability testing of flip-chip (FC) pack-

ages – Zhao (2004).
19. Large-scale multiprocessor systems – Al-Rousan and Shaout (2004).
20. Cavitation erosion resistance – Meged (2004).
21. Fracture strength data obtained from ASTM D3039 tension tests of

19 identical carbonepoxy composite specimens – Birgoren and Dirikolu
(2004).

Since the Weibull is also an extreme value distribution, it is also frequently
used to model environmental data such as rains and floods. For example,

(i) Annual flood discharge rates – Mudholkar and Hutson (1996)
(ii) Flood frequency – Heo et al. (2001)
(iii) Wind speed data – Al-Hasan and Nigmatullin (2003).
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An Introduction to Discrete Failure Time
Models

6.1 Introduction

An important aspect of lifetime analysis is to find a lifetime distribution that
can adequately describe the ageing behavior of the device concerned. Most
of the lifetimes are continuous in nature and hence many continuous life dis-
tributions have been proposed in the literature. On the other hand, discrete
failure data arise in several common situations, for example:

• Reports on field failures are collected weekly, monthly, and the observa-
tions are the number of failures, without specification of the failure times;

• A piece of equipment operates in cycles and the experimenter observes
the number of cycles successfully completed prior to failure. A frequently
referred example is a copier whose life length would be the total number
of copies it produces. Another example is the number of on/off cycles of a
switch before failure occurs;

• An experimenter often discretizes or groups continuous data.

Interests in discrete failure data came relatively late in comparison to its
continuous analogue. The subject matter has to some extent been neglected.
It was only briefly mentioned by Barlow and Proschan (1981). For earlier
works on discrete lifetime distributions, see Ebrahimi (1986), Padgett and
Spurrier (1985), Salvia and Bollinger (1982) and Xekalaki (1983).

In Section 6.2, we define a discrete version of the survival function, the
failure rate function, and the mean residual life of a discrete random vari-
able X. Section 6.3 deals with the discrete analogues of ageing classes such
as IFR, NBU, NBUE, DMRL, etc. We also provide a chain of implications
among these classes. We briefly introduce some more advanced ageing classes
in Section 6.4 but no detailed study is given. Both monotonic failure rate and
non-monotonic mean residual life functions play an important role in mod-
eling reliability data so discrete BT (UBT) and IDMRL (DIMRL) are also
defined in Section 6.5. It is shown in Section 6.6, that discrete ageing classes
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play important roles in Poisson shock models. Section 6.7 contains a number
of discrete lifetime models and their ageing properties are studied. Most of
these examples are derived from their continuous counterparts. A discussion
on the merits of these examples is presented in Section 6.8. We outline in
Section 6.9 some reliability and maintenance applications of discrete lifetime
models. Section 6.10 highlights some undesirable properties associated with
the traditional definition of the failure rate function. Finally in Section 6.11,
we present an alternative definition of a discrete failure rate concept proposed
more recently. In this new definition, the ageing concepts so derived are closer
to their continuous analogues.

6.2 Survival Function, Failure Rate and Other
Reliability Characteristics

Let the random variable X with support N+ = {1, 2, ...} be the discrete
lifetime of a component and denote by f(k) the probability of a failure occurs
at time k, i.e.,

f(k) = Pr {X = k} , k = 1, 2... (6.1)

The above definition implicitly implies that a device (component) can fail only
at times in N+. The results follow will also apply to a random variable Y with
support {a, a+1, ..} for some a ∈ (−∞,∞). All that requires is to consider the
transformed variable X = Y −a+1. In particular, the results which follow can
be applied to the random variables Y with support in {0, 1, 2...} by a simple
translation X = Y + 1.

The reliability (survival) function that corresponds to X is given by

R(k) = Pr {X > k} =
∞∑

j=k+1

f(j), k = 1, 2, ..., (6.2)

noting that R(0) = 1. The survival function may be defined over the whole
non-negative real line by

R(t) = R(k) for 0 ≤ k ≤ t < k + 1, (6.3)

where t ∈ [0,∞). Apply this definition whenever R(t) is referred to in this
chapter.

The failure rate function r(k) is defined as

r(k) = Pr(X = k |T ≥ k) =
Pr(X = k)
Pr(X ≥ k)

=
f(k)

R(k − 1)
, (6.4)

provided Pr(T ≥ i) > 0. The above equation may be expressed as

r(k) =
R(k − 1) − R(k)

R(k − 1)
. (6.5)
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We note that the discrete time failure rate function given here is believed to
be first defined in Barlow et al. (1963). It gives the conditional probability of
the failure of a device at time k, given that it has not failed by k − 1. We
also note that, in contrast to the continuous counterpart, r(i) ≤ 1, for every
integer i ≥ 0. The failure rate function defined above uniquely determines a
discrete distribution. It is important for readers to note that some authors
such as Salvia and Bollinger (1982) and Guess and Park (1988) have defined
the survival function R(k) as Pr(X ≥ k) instead of Pr(X > k) as defined in
(6.2) above; so beware of various possible notations and definitions.

Although (6.4) is widely used in the literature, there are a few problems
associate with this definition. We will discuss in detail concerning these prob-
lems and provide an alternative definition toward the end of the chapter.

Shaked et al. (1995) gave the necessary and sufficient conditions for a
sequence {r(k), k ≥ 1} to be a failure rate:

(a) For all k < m, r(k) < 1 and r(m) = 1. The distribution is defined over
{1, 2, ..., m}, or

(b) For all k ∈ N+ = {1, 2, ..}, 0 ≤ r(k) ≤ 1 and
∞∑

i=1
r(i) = ∞. The distribu-

tion is defined over k ∈ N+ in this case.

The mean residual life (or mean remaining life) at time k is defined as

µ(k) = E (X − k |X ≥ k) (6.6)

which can be rewritten as

µ(k) = E (X − k |X ≥ k) = E (X | X ≥ k) − k

=
∞∑

j=k

(j−k)P (X=j)
P (T≥k) = 0+1f(k+1)+2f(k+2)+...

R(k−1)

=
∞∑

j=k

R(j)
R(k−1)

=
∫∞

k
R(t) dt/R(k − 1).

(6.7)

The last equality follows obviously from the fact that R(k) =
∫∞

k
R(t) dt

where R(t) is interpreted by equation (6.3) for positive t. Equation (6.7) also
shows that the discrete mean residual lifetime is defined analogously to its
continuous time counterpart.

Let µ be the mean lifetime of a device, i.e., µ = E(X). Then it follows
from (6.6) and (6.7) that

µ = µ(0) = R(0) + R(1) + R(2) + R(3) + ..... =
∞∑

j=0

R(j), (6.8)

since R(−1) = 1.
Lemma 6.1:
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R(k) =
∏

1≤i≤k

(1 − r(i))

= (1 − r(1)) (1 − r(2)) .... (1 − r(k)) .
(6.9)

Proof:

1 − r(1) = 1 − f(1) = Pr(X > 1) = R(1)
1 − r(2) = 1 − f(2)

R(1) = R(1)−f(2)
R(1) = R(2)

R(1) ,

.......,

1 − r(k) = R(k)
R(k−1) , so∏

1≤i≤k

(1 − r(i)) =R(1) × R(2)
R(1) × .... × R(k)

R(k−1) = R(k),

so the lemma is proved.
The expression in (6.9) is consistent with the one appears in Mi (1993). It

now follows that

f(k) = R(k − 1)r(k) = r(k) (1 − r(1)) (1 − r(1)) ... (1 − r(k − 1)) (6.10)

and thus

µ = E (X) =
∞∑

k=0

R(k) =
∞∑

k=0

k∏
j=0

(1 − r(j)), r(0) = 0 (6.11)

if it exists.

Remarks

(a) If the support of F is now N = {0, 1, 2, ....}, we then extend our definitions
and results in (6.1)–(6.9) to include the case k = 0. We note that R(0)
would then no longer equal to 1 although µ(0) is still equal to the mean
µ with the same expression; i.e.,

µ = µ(0) = R(0) + R(1) + .... (6.12)

We need to be aware of different versions of definitions concerning discrete
lifetime distribution.

(b) There is an alternative definition for MRL which is a slight modification
of the one given above:

µ(k) = E(X − k |X > k), (6.13)

see for example, Berenhaut and Lund (2002). Using the same arguments
given earlier, we can verify that

µ(k) =
∫ ∞

k

R(t) dt/R(k) =
∞∑

j=k

R(j)/R(k) (6.14)
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which has an identical expression as its continuous counterpart, with R(t)
being defined by (6.3). We note that the two expressions of µ(k) given by
(6.7) and (6.14) have the same shape. To avoid a possible confusion, we
take µ(k) given in (6.7) as our definition for the discrete MRL function
unless otherwise stated.

(c) Define

H(k) =
k∑

j=1

r(j), k ≥ 1 (6.15)

which can be considered as a discrete time cumulative hazard function.
If {r(k), k ≥ 1} is small, we can see from (6.9) that the reliability function
can be approximated by

R(k) ≈ exp {− (r(1) + ... + r(k))} = exp(−H(k)).

It now follows from (6.10) that the probability function can also be ap-
proximated as

f(k) ≈ r(k) exp (−H(k − 1)) .

These approximations correspond to the well known representations of
R(t) and f(t) for the continuous lifetime random variables. However, the
fact that r(t) is required to be small for these approximations to hold
indicates the definition of r(t) in (6.4) may not completely resemble its
continuous counterpart.

(c) Salvia and Bollinger (1982) have shown that a necessary and sufficient
condition that {f(k)} defines a proper probability function is H(k) → ∞
as k → ∞.

The discrete version of ageing concepts given below are not fully equivalent
to the usual ageing concepts for continuous distributions. We will elaborate
these differences in subsequent sections.

6.3 Elementary Ageing Classes

Generally speaking, the discrete ageing classes are defined analogously to their
continuous counterpart. So the definitions given below come with no real
surprise.

6.3.1 IFR and DFR

Definition 6.1: F is IFR (increasing failure rate) if r(k) is increasing in
k = 1, 2, ... (Salvia and Bollinger 1982).
From (6.9), we see that R(k)/R(k − 1) = 1 − r(k). Hence it obvious that
the above definition is equivalent to R(k + 1)/R(k) decreasing in k = 1, 2, ...;
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so it is analogous to the condition that defines the continuous IFR property
(Barlow and Proschan, 1981, p. 98).
Definition 6.2: F is DFR (decreasing failure rate) if r(k) is decreasing in
k = 1, 2, ... (cf. Definition 2.1)
This is equivalent to R(k+1)/R(k) increasing in k = 1, 2, ... . This is obviously
also equivalent to the condition: R(k + 1)2 ≤ R(k)R(k + 2) (Langberg et al.
1980b).

Borrowing the idea from the continuous counterpart (Lemma 5.9 of Bar-
low and Proschan, 1981, p. 77), Gupta et al. (1997) used the log concavity
(convexity) as a sufficient condition for a discrete lifetime distribution to be
IFR (DFR). Recall,

• A distribution is log concave if and only if f(k+2)f(k) > [f(k+1)]2, k ≥ 0.
This is equivalent to

{
f(k+1)

f(k)

}
decreasing in k.

• A distribution F is log convex if and only if f(k+2)f(k) < [f(k+1)]2, k ≥
0. This is equivalent to

{
f(k+1)

f(k)

}
increasing in t.

Let η(k) = 1 − f(k+1)
f(k) . Gupta et al. (1997) defined

∆η(k) = η(k + 1) − η(k) =
f(k + 1)

f(k)
− f(k + 2)

f(k + 1)

and they showed that
(i) F is IFR if it is log concave, i.e, if ∆η(k) > 0.

(ii) F is DFR if it is log convex, i.e, if ∆η(k) < 0.

(iii) If the sequence
{

f(k+1)
f(k)

}
is constant, k ≥ 0; (this is equivalent to

f(k+1)
f(k) = f(k+2)

f(k+1) ) then f(k) = ckf(0), where c is a constant.

Three distributions are possible.
(a) F is geometric with f(k) = p(1 − p)k, k = 0, 1, 2, ....

In this case, we have a constant failure rate.
(b) F is uniform with f(k) = c, k = 0, 1, 2, ..., m.

In this case, we have IFR.

(c) f(k) =
ck

1 + c + c2 + ... + cm
, i = 0, 1, 2, ..., m.

In this case, we have IFR.

Gupta et al. (1997) also identified several IFR and DFR distributions based
on the shape of the sequence

{
f(i+1)

f(i)

}
.



6.3 Elementary Ageing Classes 173

Remark

The above definition η(k) = 1 − f(k+1)
f(k) = − f(k+1)−f(k)

f(k) is equivalent to

Glaser’s eta function η(t) = − f ′(t)
f(t) defined in (2.9) and ∆η(k) = η(k+1)−η(k)

is equivalent to η′(t) in Theorem 2.1. So the results of Gupta et al. (1997) are
parallel to Glaser’s (1980).

Properties of IFR class

For an increasing failure rate (IFR) distribution,
(i) Salvia and Bollinger (1982) gave an upper bound for the reliability

function by applying the condition r(1) ≤ r(2) ≤ ... to (6.9) so that

R(k) ≤ (1 − r(1))k ≈ exp (−r(1)k) . (6.16)

(ii) Using the above inequality and (6.11), Salvia and Bollinger (1982) also
showed that

µ ≤ [1 − r(1)]/r(1). (6.17)

(iii) Salvia (1996) showed that the MRL is bounded by

1 − r(k) ≤ µ(k) ≤ [1 − r(1)]/r(1). (6.18)

Properties of DFR class

Langberg et al. (1980b) commented that “...Discrete DFR life distributions
govern (a) in the group data case, the number of periods until failure of a
device governed by a DFR life distribution; and (b) the number of seasons
a TV show is run before being canceled. Thus DFR life distributions are of
great importance despite of their relative neglect in the reliability literature”.

Some of the properties of a DFR class are now given below.
(i) The inequalities in (6.16) and (6.17) are reversed for DFR distribu-

tions.
(ii) Langberg et al. (1980b) also showed that the class of discrete DFR

life distributions is a convex class so that θF1 + (1 − θ)F2 is DFR if
both F1 and F2 are DFR. This is parallel to the results pertaining to
the continuous counterpart. They identified the extreme points of this
convex class.

(iii) They also showed how to represent any discrete DFR distribution as
a mixture of these extreme points of the convex class.

(iv) If the mean µ = E(X) exists, Salvia (1996) showed that

[1 − r(1)] /r(1) ≤ µ(k) < µ(k − 1)/ [1 − r(1)] . (6.19)
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(v) Consider a classical recurrent event (renewal) sequence {un} defined
through the generating function:

U(z) =
∞∑

n=0

uiz
i = (1 − F(z))−1

, u0 = 1. (6.20)

It can be verified that the resulting sequence satisfies the relationship:

uk =
k∑

i=1

f(i)uk−i. (6.21)

where F(z) =
∑∞

i=1 f(i)zn is the probability generating function of
the random variable X with support in N+ = {1, 2, ...}. Berenhaut
and Lund (2002) studied the geometric convergence of un → u∞. They
have shown that if F is DFR, then

|un → u∞| ≤ 1
µ(r − 1)

r−n, n ≥ 0, r ∈ (1, RF ) (6.22)

where RF is the radius of convergence of F . Letting r ↑ rF in (6.22)
gives

|un → u∞| ≤ 1
µ(RF − 1)

R−n
F , n ≥ 0. (6.23)

6.3.2 IFRA and DFRA

Recall from Chapter 2.4, we say that a continuous distribution F is IFRA if
−(1/t) log R(t) is increasing in t ≥ 0 which is equivalent to H(t)/t increasing
in t. The equivalence of the two definitions in the continuous time case arises
from the relationship H(t) = − log R(t). The discrete analogues of these two
definitions of ageing concepts are:
Definition 6.3: F has increasing failure rate IFRA1 if 1 ≥ R0 ≥ R1 ≥ ...
such that R(k)1/k is decreasing in k. Similarly, F has decreasing failure rate
(DFRA1) if R(k)1/k is in creasing in k (Esary et al., 1973). The condition is
equivalent to − 1

k log R(k) is increasing in k.

Definition 6.4: F has increasing failure rate IFRA2 if
{

H(k)
k

}
is an in-

creasing sequence in k; H(k) = r(1)+ r(2)+ ...r(k) is defined as in (6.15). (cf.
Definition 2.2).
It has been noted by several authors, for example Lawless (2003), that Def-
initions 6.3 and 6.4 are not equivalent because − log R(k) and H(k) are not
the same for the discrete case. Applying the arithmetic-geometric inequality
to (6.9), it is easy to show IFRA1 ⇒ IFRA2; but the converse is not true. A
counter example was provided by Shaked et al. (1995). We will later provide
a chain of relationships between various discrete ageing concepts.
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6.3.3 NBU (NWU)

Recall from Section 2.4 we say that a continuous distribution F is NBU if
R(x + t) ≤ R(x)R(t) for x, t ≥ 0. This has been shown to be equivalent to∫ t

0 r(u) du ≤ ∫ x+t

x
r(u) du.

The discrete analogues of the preceding definitions are now stated below:
Definition 6.5: F is NBU1 (new better than used) if

R(j + k) ≤ R(j)R(k), j, k = 0, 1, 2, ... (6.24)

(Esary et al., 1973).
Definition 6.6: F is NBU2 (new better than used) if

k∑
i=1

r(i) ≤
j+k∑

i=j+1

r(r), k ≥ 1. (6.25)

(cf. Definition 2.4).
Shaked et al. (1995) have shown by counter examples that none of (6.24)

and (6.25) implies the others.
We have seen that all the discrete ageing classes presented so far are defined

through r(k) or R(k). In fact, this is true for most discrete ageing classes.
The dual of NBU1 may be called NWU1 which is defined by reversing the

inequality of (6.24). Similarly, NWU2 class may be defined by reversing the
inequality in (6.25).

Berenhaut and Lund (2002) showed that if F is NWU1, then the renewal
sequence {un} defined in (6.21) satisfies

|un − u∞| ≤ 1
(RF /c − 1)

(RF /c)−n
, n ≥ 0, (6.26)

where c = (1 +
√

5)/2.

6.3.4 NBUE

Definition 6.7: F is NBUE (new better than used in expectation) if

R(k)
∞∑

j=0

R(j) ≥
∞∑

j=k

R(j), k = 1, 2... (6.27)

We also observe that this is equivalent to
∑∞

j=k R(j)/R(k) ≤ µ, k = 1, 2...,
which is analogous to the similar property of the continuous NBUE notion.
(cf. Definition 2.5).
By summing both sides of (6.24) over i = 0 to ∞, it is clear that
NBU1 ⇒ NBUE.

We say that F is NBWE if the inequality in (6.27) is reversed.
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6.3.5 DMRL and IMRL

Definition 6.8: F is DMRL (decreasing mean residual life ) if the sum∑∞
j=k R(j)/R(k) is decreasing in k. (Esary et al., 1973, Ebrahimi, 1986).

Now,
∑∞

j=k R(j)/R(k) = µ(k) according to our definition in (6.13). So, the
above definition is equivalent to the the sequence {µ(k)} being decreasing in
k. Thus, the acronym ‘DMRL’ seems appropriate for this definition. Simi-
larly, F is IMRL (increasing mean residual life) if µ(k) is increasing in k or∑∞

j=k R(j)/R(k) is increasing in k. (cf. Definition 2.3).
A necessary and sufficient condition for a distribution to belong to a DMRL

was given by Ebrahimi (1986) as follows:

Theorem 6.1: F is DMRL iff there exists a decreasing sequence {an > 0}
such that for all n, the failure rate function can be expressed as

r(k) = 1 − ak

1 + ak+1
, k = 0, 1, 2, .... (6.28)

Similarly, F is IMRL (increasing mean residual life) if (6.28) holds for an
increasing sequence {an}.

To prove the theorem, we need the following lemma from Ebrahimi (1986).
Lemma 6.1: Let {an} and {bn} be two converging positive sequences and let
c > 0. If an/(c + an+1) ≡ bn/(c + bn+1) for all n, then an ≡ bn for all n.
Proof: The proof of the lemma involves essentially:

Case I: a ≡ b �= 0 and
Case II: a ≡ b = 0

where lim
n→∞ an = a and lim

n→∞ bn = b.

Proof of Theorem 6.1: Let r̄(k) = 1 − r(k). Suppose F is DMRL so µ(k)
is a decreasing in k. Now

µ(k) =
∞∑

j=k

R(j)/R(k − 1) =
∞∑

i=k+1

R(i − 1)/R(k − 1)

=
∞∑

i=k+1

i−1∏
j=k

R(j)/R(j − 1)

=
∞∑

i=k+1

i−1∏
j=k

r̄(j) by (6.9)

= r̄(k) + r̄(k)
∞∑

i=k+2

i−1∏
j=k+1

r̄(j)

= r̄(k) (1 + µ(k + 1))
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Thus,

r(k) = 1 − µ(k)
1 + µ(k + 1)

. (6.29)

So the choice of aj ≡ µ(j) gives the required representation of r(j).
Suppose the representation r̄(k) ≡ ak

1 + ak+1
holds. Since aj decreases,

lim
n→∞ an ≡ a exists and it is non-negative. Therefore lim

j→∞
aj

1 + aj+1
< 1. By

the ratio test, µ(j) converges and it can be shown that lim
j→∞

µ(j) = b. It now

follows from Lemma 6.1 that ak ≡ µ(k) for all k. This completes the proof of
the theorem.

Berenhaut and Lund (2002) also showed that the geometric bounds (6.21)
and (6.22) also hold for distributions which are IMRL.

Practically speaking, the above theorem does not appear to help us much in
identifying a discrete DMRL (IMRL) distribution. This is because the condi-
tion given in the theorem is more or less the necessary and sufficient condition
for F to be DMRL (IMRL). Note that (6.29) holds for any discrete distribu-
tion and ak = µ(k) is the only solution to the equation r(k) = 1 − ak

1+ak+1
.

Recall from Section 6.3.1, F IFR iff R(k+1)/R(k) is decreasing in k. From
this characterization, we have

µ(k) =
∞∑

j=k

R(j)/R(k − 1) =
∞∑

i=k+1

R(i − 1)/R(k − 1)

=
∞∑

i=k+1

i−1∏
j=k

R(j)/R(j − 1)

≥
∞∑

i=k+1

i−1∏
j=k

R(j + 1)/R(j) since F IFR

≥
∞∑

i=k+2

i−1∏
j=k

R(j + 1)/R(j)

=
∞∑

i=k+2

i−1∏
j=k+1

R(j)/R(j − 1) = µ(k + 1)

Hence µ(k) =
∑∞

k R(j)/R(k) is decreasing if F is IFR. Thus, IFR ⇒ DMRL.
However, the converse is not true in general. Ebrahimi (1986) has given a
sufficient condition for F ∈ IMRL to imply F ∈ IFR.
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Example 6.1

Define a0 = 1, a1 = 4/6, a2 = 3/5 and an = 1/n for all n ≥ 3. It is easy to
verify that r(k) = 1 − ai

1+ai+1
is DMRL but it is not IFR.

6.3.6 Relationships Among Discrete Ageing Concepts

So far, we have defined several discrete ageing concepts and some of which
have two versions. We now wish to provide a link to show the relative strengths
of these concepts.

First, we show IFR ⇒ IFRA1. The proof here is essentially from Ross et
al. (1980). Let r̄(k) = 1 − r(k) which decreases in k because F is IFR. It
follows from (6.9) that R(k) =

∏k
i=1 r̄(k). We need to show that R1/k(k) =

{∏k
i=1 r̄(k)}1/k is decreasing in k.
Without loss of generality, we consider k = 3 only and the general case will

follow easily. r̄(1)r̄(2)r̄(3) ≤ r̄(1)r̄(2) ×√r̄(1)r̄(2) = {r̄(1)r̄(2)}2/3 because
r̄(3)2 ≤ r̄(1)r̄(2). So {r̄(1)r̄(2)r̄(3)}1/3 ≤ {r̄(1)r̄(2)}1/2 and hence F is IFRA1.

The reverse is not true. A counterexample is now given below.
Example 6.2

Consider a sequence {r(k), k ≥ 1} defined by:

r(1) = 0.1, r(2) = 0.4, and r(k) = 0.3 for all k ≥ 3,

so F is not IFR. However, we have R(1) = 0.9, R(2) = 0.54 and for all k ≥ 3,
R(k) = 0.54 × 0.7k−2. It is now easy to show that R(k + 1)1/k+1/R(k)1/k =
(49/50)

1
k(k+1) ≤ 1 so the sequence {R(k)1/k} is decreasing and hence IFRA1

according to Definition 6.3.

We have also shown earlier that IFRA1 ⇒ IFRA2. Further, it is easy to
verify that IFRA1 ⇒ NBU1 and IFRA2 ⇒ NBU2. We have also proved that
IFR ⇒ DMRL in the preceding subsection.

To sum up these interrelationships, we give the following flow chart to link
various discrete ageing concepts:

IFR ⇒ IFRA1 ⇒ NBU1 ⇒ NBUE
⇓ ⇓

DMRL IFRA2 ⇒ NBU2

The table above is analogous to the one given for the continuous ageing
classes in Section 2.4.3.

6.4 More Advanced Ageing Classes

Let {f(k), k ∈ N} be a discrete distribution with support in N = {0, 1, 2..}
and R(k) = 1 − F (k) where F (k) =

∑k
i=0 f(i).
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The following definitions are parallel to those continuous analogues defined
in Section 2.7 and Section 2.4.
Definition 6.9: (Fagiuoli and Pellerey, 1994). A discrete distribution {f(k), k ∈
N} is said to be:-

• Discrete IFR(2) if, for all i ≥ 0,
∑k+i

j=k R(j)/R(k) is non-increasing in k;

• Discrete NBU(2) if, for all i, k ≥ 0, R(k)
∑i

j=0 R(j) ≥∑k+i
j=k R(j);

• Discrete NBUC if, for all i, k ≥ 0, R(k)
∑∞

j=i R(j) ≥∑∞
j=k+i R(j);

• NBUFR if, for all k ≥ 0, R(k + 1) ≤ R(k)R(1);
• NBAFR if, for all k ≥ 0, R(k)1/k ≤ R(k)R(1).

If {f(k), k ∈ N+}, we then change i ≥ 0 and/or k ≥ 0 above to i ≥ 1 and/or
k ≥ 1 to accommodate the change of the support. The first two are analogous
to the continuous counterparts given in Section 2.7 whereas the last three are
similar to the corresponding ones in Section 2.4. For details concerning these
definitions of discrete ageing, we refer our readers to Fagiuoli and Pellerey
(1994).

6.5 Non-monotonic Models

The family of non-monotonic models may be divided into two classes. We first
need to define the concepts of bathtub shape and upside-down bathtub shape
of a discrete sequence of real numbers:
Definition 6.10: A sequence {ai, i ≥ 0} of real numbers is said to have a
bathtub shape or an upside-down bathtub shape if there exits integers 1 ≤
n1 ≤ n2 < ∞ such that

a0 > a1 > a2 > ....an−1 > an1 = ..... = an2 < an2+1 < ...

or
a0 < a1 < a2 < ....an−1 < an1 = ..... = an2 > an2+1 > ...

See Guess and Park (1988) or Mi (1993) for this definition.

Non-monotonic failure rate distributions

Definition 6.11: F is BT (bathtub shaped failure rate) if the failure rate
r(k) = f(k)/R(k − 1) is decreasing initially and then increasing in k. Guess
and Park (1988) used an alternative abbreviation DIFR to denote this class
of distributions.
Remark: Mi (1993) showed that {r(i), i ≥ 1} has a bathtub shape iff the
sequence {f(i)/R(i), i ≥ 1} has a bathtub shape.
Definition 6.12: F is UBT (upside-down bathtub shaped failure rate) if r(k)
is increasing initially and then decreasing in k. It is also known as an IDFR
distribution in Guess and Park (1988).
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Non-monotonic mean residual life distributions

Definition 6.13: F is IDMRL (DIMRL) if the MRL sequence {µ(k)} is
increasing (decreasing) initially and then decreasing (increasing) in k. (cf.
Definition 4.2).

Using a similar proof to that of Theorem 6.1, Guess and Park (1988)
showed that F is IDMRL (DIMRL) iff there exists an upside-down (bathtub)
shaped sequence {an}, an > 0 such that r̄(k) = 1 − r(k) = an/(1 + an+1) for
n = 0, 1, 2, ...

6.5.1 BT Failure Rate and DIMRL

Guess and Park (1988) saw the relationship between the bathtub shaped fail-
ure rate and the non-monotonic behavior of the mean residual life. Although
it is often that a BT distribution gives rise to a DIMRL distribution, the
converse is not true in general. A simple example is presented in Guess and
Park (1988) where the mean residual life increases, then decreases; however,
the failure rate also increases, drops suddenly at one cycle, then increases.

Example 6.3: Guess and Park (1988)

Consider the sequence

an = θ2(|n − 40| + θ) + γ, n = 0, 1, 2, ..,

with θ = 62.71, γ = 61.71. r(k) is computed via r(k) = 1 − ak

1+ak+1
, for k =

0, 1, 2...; and µ(k) is computed through (6.7) and (6.9).
Similarly, one can construct a BT distribution F that is not IDMRL. This

phenomenon is parallel to the continuous lifetime case. Mi (1993) has given a
sufficient condition for a BT distribution that is also IDMRL. The following
theorem is analogous to Theorem 4.3.
Theorem 6.2: Let F be a lifetime distribution having support {1, 2, ...}. Let
{r(k), k ≥ 1} be the failure rate of F . If {r(k)} has a bathtub shape with
change points n1 and n2, n1 ≤ n2 < ∞; then for the sequence {µ(k), k ≥ 1}
of mean residual life there are three cases:

(i) if f(1) <
1

1 + µ∗ , then µ(k) strictly decreases, where µ∗ =
∫∞
1 R(t) dt;

(ii) if f(1) =
1

1 + µ∗ , then

µ(1) = µ(2) > µ(3) > ...;

(iii) if f(1) >
1

1 + µ∗ , then {µ(k)} has an upside-down bathtub shape with a

unique change point, denoted by m0, and m0 ≤ n1, or two change points
m0 − 1 and m0 ≤ n1.



6.5 Non-monotonic Models 181

Proof : The proof below follows closely as that of Theorem 2 of Mi (1993).

Recall, µ(i) =

∫∞
i

R(t) dt

R(i − 1)
. Then it is easy to show that

µ(i + 1) − µ(i) =
A(i)

R(i − 1)
, (6.30)

where

A(i) =
f(i)
R(i)

∫ ∞

i+1
R(t) dt − R(i). (6.31)

By the remark that follows Definition 6.11, we see that {f(i)/R(i)} also
has a BT shape with change points n1 and n2 since the sequence {r(i), i ≥ 1}
does. It is now easy to check that for any i ≥ n1,

f(i)
R(i)

∫ ∞

i+1
R(t) dt <

∫ ∞

i+1

f(t)
R(t)

R(t) dt

=
∞∑

j=i+1

f(j) = R(i), for i ≥ n1,

(6.32)

where f(t) = f(j) if t ∈ [j, j + 1). Thus A(i) < 0 for i ≥ n1.
Next, we show that

∆A(i) = A(i + 1) − A(i)

=
(

f(i + 1)
R(i + 1)

− f(i)
R(i)

)∫ ∞

i+1
R(t) dt, i ≥ 1.

As {f(j)/R(j)} has a BT shape, it follows from the preceding equation that
{A(i), i ≥ 1} also has a BT shape with the same change points n1 and n2.

Now consider the three cases.
Case (i): f(1) < 1/(1+µ∗). It can be proved that this condition is equiva-

lent to A(1) < 0. To see this, we note from (6.31) that if A(1) < 0, then from
(6.32)

f(1)
R(1)

∫ ∞

2
R(t) dt < R(1)

which implies

(1 − f(1))2

f(1)
>

∫ ∞

2
R(t) dt = µ∗ − (1 − f(1)),

and consequently [1 − f(1)]/f(1) ≥ µ∗; i.e., f(1) < 1/(1 + µ∗).
As A(i) < 0 for all i ≥ n1, it follows that A(i) < 0 for all i ≥ 1 (A(i) has

a BT shape) so by (6.30), µ(i) strictly decreases.
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Case (ii): f(1) = 1/(1 + µ∗). From the argument used in Case (i), we see
that this condition is equivalent to A(1) = 0. Since {A(i)} has a BT shape, it
follows that A(i) < 0 for all i ≥ 2 so by (6.30),

µ(1) = µ(2) > µ(3) > · · ·;
i.e., {µ(k), k ≥ 2} is strictly decreasing.

Case (iii): f(1) > 1/(1 + µ∗). Again from Case (i) we can show that the
condition is equivalent to A(1) > 0. Define the integer m0 as follows:

m0 ≡ sup{i ≥ 1 : A(i) ≥ 0}.

Since A(k) < 0 for all k ≥ n1 (thus in this case n1 > 1), we must have
1 ≤ m0 ≤ n1 − 1. Now it is obvious that A(k) ≥ 0 for k = 1, 2, ..., m0 and the
equality may hold only at k = m0; thus

µ(1) < µ(2) · ·· < µ(m0 − 1) < µ(m0) ≤ µ(m0 + 1).

Furthermore, it is true that A(k) < 0 for all k > m0. To see this we note
that by (6.31) and (6.32), we have lim

k→∞
A(k) ≤ 0. This, along with the fact

that {A(k), k ≥ 1} has a BT shape with change points n1 and n2, shows that
A(k) < 0 for all k > m0. Therefore, by (6.30) we obtain

µ(1) < µ(2) · ·· < µ(m0 − 1) < µ(m0) ≤ µ(m0 + 1) > µ(m0 + 1) > · · ·; .
i.e., the sequence {µ(k), k ≥} has an UBT shape with a unique change point
k0 = m0 + 1 ≤ n1, or two change point k0 − 1 = m0 and k0 ≤ n1.

The converse of the above theorem is not necessarily true. The preceding
example given in Guess and Park (1988) is a counter example. Mi (1993)
showed that under an additional condition the converse is true.

Notes:

• To avoid a possible confusion, we have changed Mi’s original notation µ
defined by

∫∞
1 R(t) dt to µ∗. It is clear from (6.7) that µ∗ = µ(1)R(0) =

µ(1). From (6.7) and (6.8), we see that µ(1) = R(1)+R(2)+R(3)+... = µ−
R(0) with µ = E(X), the mean time to failure. Thus µ = 1+µ(1) = 1+µ∗

since R(0) = 1. So the expression 1/(1 + µ∗) in the theorem above may
be replaced by 1/(1 + µ(1)) = 1/µ. Thus, Mi’s condition for the behavior
of MRL function µ(k) life can be replaced by f(1) < 1/µ (or r(1) < 1/µ
as f(1) = r(1)) which seems to be consistent with the condition given in
Gupta and Akman (1995a,b) for the continuous case.

• If the support for F were {0, 1, 2, ...} instead of {1, 2, ...} then f(1) would be
replaced by f(0)=r(0) whereby the condition (ii) would reduce to r(0)>
1/µ which is exactly the same as that of Gupta and Akman (1995a,b).
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Example 6.4: A discrete bathtub distribution

(Lai and Wang, 1995). A simple discrete distribution was proposed with

f(k) =
kα

N∑
x=0

xα

, k = 0, 1, 2, ..N

which has a finite range.

Fig. 6.1. Failure rate function of a finite range distribution
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Lai and Wang (1995) have shown that

1. F is IFR if α ≥ 0,
2. F has a bathtub shape failure rate if α < 0.

At N = 20, we have plotted the failure rate function r(k) in Fig. 6.1 for three
values of α. For α=−1 and N =20, the mean residual life {µ(k)} is plotted
in Fig. 6.2 which clearly displays an upside-down bathtub shape.

6.5.2 UBT Failure Rate and DIMRL

Tang et al. (1999) gave sufficient conditions under which a UBT distribution
would be DIMRL. The result is a complement to that of Mi (1993) given in
Theorem 6.2 above. It is also analogous to the second part of Theorem 4.2.
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Fig. 6.2. Mean residual life function of a finite range distribution
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Theorem 6.3: Let F be a life time distribution with support set {1, 2, ...}
and mean µ. If the failure rate sequence {r(k), k ≥ 1} has an upside-down
bathtub shape with a change point k0, then for the sequence {µ(k), k ≥ 1} of
MRL there are three cases:

1. f(1) < 1/(1+µ∗): Then {µ(k), k ≥ 1} has either a BT shape with a unique
change point m0 ≤ k0, k0 ≥ 1, or two change points at m1 = m0 − 1 and
m2 ≤ k0. Here, µ∗ =

∫∞
1 R(t) dt.

2. f(1) > 1/(1 + µ∗): Then {µ(k), k ≥ 1} is strictly increasing.
3. f(1) = 1/(1 + µ∗): Then µ(1) = µ(2) < µ(3) < ....

Proof. The proof is almost a mirror image of Theorem 6.2. See Tang et al.
(1999).

Comment

We have changed the notation µ in Theorem 3 of Tang et al. (1999) to µ∗ to
avoid a possible confusion.

6.5.3 Discrete IDMRL (DIMRL) and BT (UBT) Failure Rate

Mi (1993) has found sufficient conditions under which discrete upside-down
bathtub shaped (UBT) MRL implies its associated failure rate function having
a BT shape. His Theorem 3 is now presented as below:
Theorem 6.4: Let {µ(k)} be a mean residual life sequence for a discrete life
distribution F . Suppose {µ(k), k ≥ 1}, has a UBT shape with a unique change
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point m0 and the sequence {∆µ(k), k ≥ 1}, where ∆µ(k) = µ(k + 1) − µ(k),
has a BT shape with change point m0 + 1. Then the sequence {r(k), k ≥ 1},
of the failure rate of F has a BT shape with a unique change point k0 = m0
or k0 = m0 + 1.
Proof: It follows from (6.29) that

r(k) = 1 − µ(k)
1 + µ(k + 1)

.

Rearranging the terms gives

r(k) =
[µ(k + 1) − µ(k)] + 1

µ(k + 1) + 1
=

∆µ(k) + 1
µ(k + 1) + 1

. (6.33)

Thus,

r(k + 1) − r(k) =
µ(k + 2)∆2µ(k) − (∆µ(k + 1))2 − ∆µ(k)

[µ(k + 2) + 1][µ(k + 1) + 1]
, k ≥ 1, (6.34)

where ∆2µ(k) ≡ ∆µ(k + 1) − ∆µ(k). Let the numerator of (6.34) be defined
by

B(k) = µ(k + 2)∆2µ(k) − (∆µ(k + 1))2 − ∆µ(k).

Obviously the sign of r(k + 1) − r(k) is the same as that of B(k).
For any k ≤ k0 − 1 we have ∆2µ(k) < 0 since the sequence {µ(j), j ≥ 1}

has a BT shape with change points k0 + 1. Meanwhile k ≤ k0 − 1 implies
∆µ(k) > 0 since {µ(j), j ≥ 1} has an UBT shape with change point k0 by
assumption. Hence B(k) < 0 for k ≤ k0 − 1 and consequently from (6.34) we
see that

r(k + 1) − r(k) < 0, for 1 ≤ k ≤ k0 − 1;

i.e.,

r(1) > r(2) · · · > r(k0 − 1) > r(k0). (6.35)

For k ≥ k0 + 1, a similar argument to the above yields

∆2µ(k) > 0, for k ≥ k0 + 1. (6.36)

Note that the identity (6.33) yields

∆µ(k) + 1 > 0, for k ≥ 1. (6.37)

Hence

−(∆µ(k + 1))2 − ∆µ(k) = ∆µ(k + 1)[∆µ(k + 1) + 1] + ∆2µ(k)

> ∆2µ(k) > 0, for k ≥ k0 + 1,
(6.38)
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where the first inequality holds because of (6.37) and our assumption about
the sequence {∆µ(j), j ≥ 1}, and the second inequality follows from (6.36).
Considering (6.34) and (6.38), we conclude that r(k + 1) − r(k) > 0, for all
k ≥ k0 + 1, i.e.,

r(k0 + 1) < r(k0 + 2) < · · ·. (6.39)

If r(k0) < r(k0+1), then the inequalities (6.35)and (6.39) show that the failure
rate sequence {r(i), i ≥ 1} has a BT shape with a unique change point k0; if
r(k0) > r(k0 +1), then a unique change point k0 +1; and if r(k0) = r(k0 +1),
then two change points k0 and k0 + 1. This completes our proof.

Bekker (2002) obtained sufficient conditions under which BT shaped MRL
implies that the associated failure rate function has an UBT failure rate in
the discrete case.

6.5.4 Discrete Bathtub-shaped Failure Rate Average

Mi (1993) also defined a discrete bathtub-shaped failure average ageing con-
cept.
Definition 6.14: A discrete distribution F is said to have a bathtub shaped
failure rate average if the sequence {R̄(k)1/k, k ≥ 1} has a bathtub shape.
Theorem 6.5: Suppose F is discrete BT having support N+ = {1, 2, ..} and
r(k) has change points n1 > 1 and n2 ≥ n1. Then F has a BT shaped failure
rate average which has a unique change point, denoted by m0, and m0 ≥ n2,
or two change points m0 and m0 + 1.
Proof: The proof depends on a lemma which states that the sequence, ā(k) =
(1/k)

∑k
i=1 a(i), of the averages of an UBT shape sequence {a(k), k ≥ 1} also

has an UBT shape.
From (6.9), we have

R(n) =
n∏

i=1

(1 − r(i)).

It follows at once that

n log(R(n))1/n =
n∑

i=1

log(1 − r(i)).

Now the assumption that the sequence {r(k), k ≥ 1} has a BT shape
implies that {r̄(k), k ≥ 1} has an UBT shape with the same change points
n1 and n2, where r̄(k) = 1 − r(k). Applying the above mentioned lemma
immediately gives the result. See Theorem 1 of Mi (1993).

For non-monotonic failure rate functions, it would be desirable to consider
estimation problem of change points. We will not get into detail on this subject
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but simply note that Mi (1994d) has considered the estimation problem for a
discrete failure rate model with a single change point, i.e.,

r(k) =
{

a, if k ≤ τ ;
b, if k ≥ τ + 1.

(6.40)

He obtained a strongly consistent estimator for the change point.

6.6 Preservation under Poisson Shocks

Suppose a device is subject to shocks occurring randomly as events in a Pois-
son process with constant intensity λ. Suppose further that the device has
probability P̄k of surviving the first k shocks. Then the survival function of
the device at time t is given

H̄(t) =
∞∑

k=0

P̄k
(λt)k

k!
e−λt, t ≥ 0. (6.41)

For derivation of (6.41), see for example, Barlow and Proschan (1981). For
convenience, let P̄k = R(k − 1). The ageing properties of the discrete life
distribution {R(k), k ∈ N} are well reflected in the corresponding properties
of the continuous life distribution H(t) through the sequence {P̄k}. In other
words, if the discrete distribution defined through P̄k belongs to the ageing
class C, then the continuous distribution specified by H(t) above also be-
longs to the class C. This is shown by Esary et al. (1973) for IFR, IFRA,
DMRL, NBU and NBUE classes, by Klefsjö (1981, 1983b,c) for HNBUE and
L, by Singh and Deshpande (1985) for SIFR and SNBU, by Abouammoh and
Ahmed (1988) for NBUFR, and by Fagiuoli and Pellerey (1994) for IFR(2),
NBU(2), NBUC, NBUFR.

6.7 Examples of Discrete Time Failure Models

We now present several probability distributions used in reliability for mod-
elling lifetime of nonrepairable systems. The basic properties of each model
is given. Bracquemond and Gaudoin (2002) classified these distributions into
two families. We now add on another two. The first class consists of discrete
life distributions derived from usual continuous lifetime distributions and the
second class contains distributions derived by pre-specifying the failure rate
functions. The third class is based on the characterizations of {f(k+1)/f(k)}
as advocated in Gupta et al. (1997). The last family consists of distributions
arise from the Polya urn schemes.

To determine the shape of the failure rate function, we define
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η(k) = −f(k + 1) − f(k)
f(k)

= 1 − f(k + 1)
f(k)

, (6.42)

which is similar to η(t) = − f ′(t)
f(t) in (2.9), defined by Glaser’s (1980) for the

continuous case. Like its predecessor, η(k) can be used to characterize a dis-
tribution or determine the shape of r(k). Instead of using η(k) directly, we
use f(k+1)

f(k) for our analysis.

6.7.1 Common Discrete Lifetime Distributions Derived from
Continuous Ones

There are several lifetime distributions which are the discrete analogues of
their continuous counterparts. In what follows, we give only simple properties
of each distribution, namely, the probability function, the reliability function,
the ageing class it belongs to; and a reference where one may find a detailed
study.

Geometric distribution

(Johnson et al., 1992).

• f(k) = p(1 − p)k, k ≥ 0, 0 < p < 1 is a constant.
• R(k) = (1 − p)k.
• r(k) = p.

The failure rate is a constant so the distribution is both IFR and DFR.
Thus it is a discrete analogue of the exponential distribution. The mean time
to failure MTTF = q/p.

Negative binomial

(Johnson et al., 1992).

• f(k) =
(

n + k − 1
n − 1

)
pn(1 − p)k, k ≥ 0, n > 0, 0 < p < 1.

Similar to the gamma distribution, R(i) and r(i) of the negative binomial
are in complex forms.

•

1
r(k)

= 1 +
1(

n + k − 1
n

)
pαqk

[
1 −

k∑
i=0

(
n + i − 1

i

)
pαqi

]
, q = 1 − p,

(Gupta et al., 1997).
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However, it is easy to verify that the sequence
{

f(k+1)
f(k) = 1 + α−1

k+1 , k ≥ 1
}

is
decreasing in k if α > 1 and it is increasing in k if α < 1. Thus F is IFR for
α > 1 and DFR for α < 1.

The negative binomial is the discrete analogue of the gamma; it reduces
to the geometric if α = 1.

Type I discrete Weibull distribution

(Nakagawa and Osaki, 1975). This is an analogue of the continuous Weibull
distribution with

R(t) = e−tα

, α > 0, t ≥ 0.

For this discrete distribution,

• f(k) = q(k−1)α − qkα

, k ≥ 1, 0 < q < 1.
• R(k) = qkα

.
• r(k) = 1 − qkα−(k−1)α

.

The random variable X here denotes the number of ‘shocks’ survived by a
system and q is the probability of surviving more than one ‘shock’. As for the
continuous Weibull distribution, α is the shape parameter. The distribution is
IFR for α > 1, DFR for 0 < α < 1, and for α = 1, it reduces to the geometric
distribution.

Type II discrete Weibull distribution

(Stein and Dattero, 1984). This is a distribution with a finite support with m
being the upper bound.

• f(k) =
(

k
m

)α−1 k−1∏
j=1

[
1 − ( j

m

)α−1
]
, 1 ≤ k ≤ m.

• R(k) =
min(k,m)∏

j=1

[
1 − ( j

m

)α−1
]
.

• r(k) =
(

i
m

)α−1
, 1 ≤ k ≤ m.

Clearly, the distribution is IFR for β > 1 and DFR for 0 < α < 1 .

Type III discrete Weibull distribution

(Padgett and Spurrier, 1985). The model is flexible with respect to choice of
failure rate, analogous to the Weibull distribution in the continuous case.

• f(k) =
(
1 − e−c(k+1)α)

e
−c
∑k

j=0
jα

, k = 0, 1, 2, .., c > 0,−∞ < α < ∞
• R(k) = e

−c
∑k+1

j=0
jα

.
• r(k) = 1 − e−c(k+1)α

.
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The monotonicity of the failure rate depends on the value of the shape pa-
rameter α. For α = 0, the distribution reduces to the geometric distribution.
For α > 0, it is IFR and for α < 0, it is DFR.

‘S’ distribution

(Bracquemond and Gaudoin, 2002). This is a discrete analogue of a continuous
‘S’ distribution (Soler, 1996) that models the lifetime of a device subjected to
random stress. Let us consider a system such that, on each ‘demand’, a shock
can occur with probability p and not occur with probability 1 − p. Let π be
the probability that the system survives the first demand given that a shock
has occurred. Without giving details on how the distribution was derived, we
present the following:

• f(k) = p(1 − πk)
k−1∏
j=0

(1 − p + πj), k ≥ 1, 0 < p ≤ 1, 0 ≤ π < 1.

• R(k) =
k∏

j=1
(1 − p + pπj).

• r(k) = p(1 − πk).

It is clear that F is IFR since π < 1. If a shock occurs at each demand, then
p = 1 and we obtain a very simple expression for the failure rate: r(k) = 1−πk.
This is in fact a special case of the type III discrete Weibull distribution with
β = 1 and c = 1 − log π.

Discrete power series distribution

(Lai and Wang, 1995). This is a finite range discrete life distribution, an
analogue of the continuous finite range distribution

f(t) =
ptp−1

θp
, 0 ≤ t ≤ θ; p, θ > 0

discussed in Lai and Mukherjee (1986).

• f(k) = kα

N∑
x=0

xα

, k = 0, 1, ...., N.

• R(k) =
∑N

x=k+1
xα

c(N,α) , where c(N, α) =
∑N

x=1 xα.

• r(k) = kα∑N

x=k
xα

, i = 1, ..., N.
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Discrete geometric-Weibull distribution

This is a discrete analogue of the continuous geometric Weibull distribution in-
troduced by Zacks (1984). Let A+ = max(0, A), α > 0 and τ > 0 is a change
point in the continuous case with distribution function given by:

F (t) = 1 − e−λt−[λ(t−τ)+]α , t > 0,

where x+ = max(0, x).
The discrete analogue of the above is, for α, τ ∈ N+,

• f(k) = e−λ(k−1)−[λ(i−τ−1)+]α − e−λk−[λ(k−τ)+]α , k ≥ 1.

• R(k) = e−λk−[λ(k−τ)+]α .

• r(k) = 1 − e−λ+λα[[(k−τ−1)+]α−[(k−τ)+]α].

Exponential-geometric distribution

This was considered in Rezaei and Arghami (2002). It does not appear to be
related to its namesake in Section 2.3.14. It may be be regarded as, however,
a discrete analogue of the Gompertz distribution discussed in Section 2.3.8.

•

f(k) = αk−1 exp
{−β(k − 1)(k − 2)

2

}
−αk exp

{−βk(k − 1)
2

}
, k = 1, 2, ...

where 0 < α ≤ 1, β ≥ 0, (1 − α) + β > 0.

• R(k) = αk exp
{

−βk(k−1)
2

}
.

• r(k) = 1 − α exp{−β(k − 1)}.

6.7.2 Distributions Derived from Simple Failure Rate Functions

A simple discrete IFR

(Salvia and Bollinger, 1982).

• r(k) = 1 − c/(k + 1), k = 0, 1, ...., 0 ≤ c ≤ 1.
• f(k) = (k − c + 1) ck/ (k + 1)!
• R(k) = ck+1/(k + 1)!.
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A simple discrete DFR

(Salvia and Bollinger, 1982).

• r(k) = c/k + 1, k = 0, 1, ...; 0 ≤ c ≤ 1.
• f(k) = c(1 − c) (2 − c) ...(k − c)/(k + 1)!.

• R(k) =
(1 − c)(2 − c)..(k − c)

k!
.

The failure rate of this distribution is a discrete analogue of a continuous
Pareto distribution.

Generalized Salvia and Bollinger IFR model

(Padgett and Spurrier, 1985).

• r(k) = 1 − c/(αk + 1), k = 0, 1, ...., 0 ≤ c ≤ 1, α ≥ 0.

• f(k) = (αk − c + 1) ck/
k∏

j=0
(αj + 1)!

• R(k) = ck/
k−1∏
j=0

(αj + 1), k = 0, 1, 2, ....

Generalized Salvia and Bollinger DFR model

(Padgett and Spurrier, 1985).

• r(k) = c
αi+1 , k = 0, 1, ...; 0 ≤ c ≤ 1, α > 0.

• f(k) = c
k−1∏
j=0

(αj + 1 − c)/
k∏

j=0
(αj + 1), k ≥ 0.

• R(k) =
k−1∏
j=0

(αj + 1 − c)(αj + 1).

Example of Discrete DMRL

Define a0 = 1, a1 = 4/6, a2 = 3/5 an = 1
n , for n ≥ 3.

Then it is easy to verify that r(i) = 1 − ai

1+ai+1
is DMRL but not IFR.

• r(0) = 0.4, r(1) = 7
12 = .583, r(2) = 11

20 = .55, r(n) = n2+n−1
n(n+1) which is

increasing for n ≥ 3.

• R(0) = 0.6, R(1) = 1/4, R(2) = 9/80,...
• f(0) = 0.4, f(1) = 0.3498, f(2) = 0.1375, ...

6.7.3 Determination of Ageing from Ratio of Two Consecutive
Probabilities

This subsection is largely based on the work by Gupta et al. (1997).
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Extended Katz family

This family is characterized by the ratio

f(k + 1)
f(k)

=
α + βk

γ + k
, α > 0, β < 1, γ > 0, (6.43)

see, for example, Gurland and Tripathi (1975) and Tripathi and Gurland
(1979). Gupta et al. (1997) have shown that F is IFR if α −βγ > 0 and DFR
if α − βγ < 0.

Special cases are:
(i) Poisson distribution (Johnson et al., 1992; Lawless, 2003).

f(k) =
e−λλk

k!
, k = 0, 1, 2..., λ > 0

with
f(k + 1)

f(k)
=

λ

1 + k
.

It is clear that
{

f(k+1)
f(k)

}
decreases in k so that F is IFR.

1
r(k)

= 1 +
k!
λk

⎡
⎣eλ − 1 −

k∑
j=1

λj

j!

⎤
⎦ .

(See Gupta et al., 1997.)
(ii) Binomial

f(k) =
(

n
k

)
pk(1 − p)n−k, 0 < p < 1, k = 0, 1, ..., n

with
f(k + 1)

f(k)
=

nθ − kθ

1 + k
, θ =

p

1 − p
.

Here, α − βγ > 0 which implies F IFR.
(iii) Negative binomial

This was also considered in the previous subsection.

f(k) =
(

n + k − 1
k

)
pn(1 − p)k, 0 < p < 1, n > 0, k = 0, 1, 2, ..

f(k + 1)
f(k)

=
(n + k)(1 − p)

1 + k
,

giving α − βγ = (n − 1)(1 − p). So
if n > 1, we have IFR;
if n < 1, we have DFR;
if n = 1, we have a geometric distribution and hence a constant failure
rate.
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Log series distribution

For a log-series distribution, we have

f(k + 1)
f(k)

=
θk

1 + k
, k = 0, 1, 2, .., 0 < θ < 1,

see Johnson et al. (1992, p. 290). Since
{

f(k+1)
f(k)

}
is increasing in k, it follows

from Section 6.3.1 that F is DFR .

Waring distribution

The probability function of the Waring distribution is

f(k) =
(c − a)(a + k − 1)!c!

c(a − 1)(c + k)!
, k + 0, 1, 2, .., c > a > 0.

(Johnson et al. 1992, p. 278).
The probability ratio is given by

f(k + 1)
f(k)

=
a + k

c + k + 1

which is increasing in k and thus F is DFR.

Distribution of cluster size

The ratio of the probability functions of the so called ‘cluster size’ distribu-
tion is

f(k + 1)
f(k)

=
k − α

(k + 1)(n + 1)
, k = 0, 1, 2, .., 0 < α < 1, n ≥ 0,

see Proposition 4.4 of Lee and Whitmore (1993). Again, { f(k+1)
f(k) } is increasing

in k and hence F is DFR.

6.7.4 Polya Urn Distributions

Johnson et al. (1992) stated that numerous distributions can be built from
urn representations. The urn scheme originally considered by Eggenberger and
Polya (1923) is the following. An urn contains W white balls and R red balls.
After each drawing of a ball, a replacement policy is chosen. Polya distribu-
tions are the number of times a red ball is drawn in N drawings. Inverse Polya
distributions are the number of drawings required to obtain a specified num-
ber r of red balls (Johnson and Kotz, 1977, p. 192). Thus, there are as many
distributions as possible replacement policies. For example, if after each draw-
ing, only the chosen ball is returned in the urn, the Polya distribution reduces
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to the binomial distribution, and the corresponding inverse Polya distribution
is the negative binomial distribution (geometric distribution for r = 1).

An inverse Polya distribution with r = 1 may used to describe the discrete
lifetime of a device. Clarotti et al. (1997) have explicitly used a Polya distri-
bution for modelling a discrete lifetime. The generalized Salvia and Bollinger
distribution (Padgett and Spurrier, 1985) is also a member of inverse Polya
family. The IFR and DFR inverse Polya distributions and Eggenberger-Polya
distribution are also studied in the review by Bracquemond and Gaudoin
(2002) who also provides other detailed discussions.

6.8 Discussion on Discrete Failure Time Models

Bracquemond and Gaudoin (2002) gave a comprehensive review on discrete
lifetime distributions considered in their paper. We now summarize their dis-
cussion and conclusion here. As for the continuous case, it is important to se-
lect an appropriate model to fit a set of discrete reliability data. If the studied
phenomenon is such that a constant failure rate is acceptable, the geomet-
ric distribution is appropriate. But if the observed device is ageing (positive
or negative ageing), what distributions should be chosen? Bracquemond and
Gaudoin (2002) give two criteria:
Criteria 1:

These are:
(i) Simplicity of expression of the reliability functions.
(ii) Flexibility or ability to describe various situations.
(iii) Physical basis of the distribution and interpretation of the parameters.

Criteria 2

The quality of parameter estimates in a model.

The authors drew the following conclusions (some of which we may not agree).

1. The negative binomial is interesting only as the analogue of the gamma
distribution. Its parameters have no practical interpretation.

2. The type I Weibull distribution is very simple, flexible according to the
value of β; and its parameters have physical meaning. The maximum likeli-
hood estimator is satisfactory, except for data of high order of magnitude.

3. The type II Weibull distribution should not be used because of its bounded
support.

4. The type III Weibull distribution is simple, flexible, and its parameters
have an interpretation (not as obvious as the type I Weibull distribution).
The quality of the estimator is not very good.
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5. The ‘S’ distribution is simple and has an interesting physical meaning. But
there are some numerical and identifiability problems in the parameter
estimation which are not solved.

6. The discrete truncated logistic distribution is slightly more complex than
the Weibull distributions, is not flexible (only IFR), and its parameters
have no practical interpretation. The distribution may be defined through
its reliability function given by

R(k) =
e− k−c

d + e− k
d

1 + e− k−c
d

, k ≥ 1, c real, d > 0.

7. The geometric–Weibull distribution is clearly of great practical interest
and should be studied.

8. The IFR Polya distribution has a very interesting interpretation and its
failure rate has a simple expression. However, it is not flexible and the
estimation is not very satisfactory.

9. The Eggenberger-Polya distribution defined by its probability function

f(k) =
1

(1 + d)h/d
× (h/d)k−1

(k − 1)!
,

(
d

d + 1

)k−1

, k ≥ 1,

where we have used the notation (a)k = k(k+1)...(n+k−1). Though f(k)
has a very complex expression, but it is very flexible and the parameter h
is easily interpreted. Its main advantage is that it is the only distribution
for which the estimators have an explicit expression. Further,
• if h = d, then the failure rate is constant and the model reduces to the

geometric distribution with parameter 1/(1 + d),
• if h < d, the distribution is log convex and thus DFR, and
• if h > d, the distribution is log concave and thus IFR.

In all three cases, lim
k→∞

r(k) = 1/(1 + d).

6.9 Applications of Discrete Failure Time Models

Discrete failure rates arise in several common situations in reliability theory
where clock is not the best scale on which to describe lifetime. Below are quotes
from Shaked et al. (1995) saying “ ...For example, in weapons reliability, the
number of rounds fired until failure is more important than age in failure.
This is the case also when a piece of equipment operates in cycles and the
observation is the number of cycles successfully completed prior to failure.
In other situations a device is monitored only once per time period and the
observation then is the number of periods completed prior to the failure of
the device.”

Similar to its continuous counterpart, discrete ageing concepts are also
very useful in practical applications. We merely list a couple examples below.
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Burn-in

Mi (1993) established the relationship between the discrete bathtub shaped
failure rate distributions and the upside-down mean residual life (IDMRL).

Suppose we consider the optimal burn-in time for obtaining the longest
mean residual life in field operation. From the above Theorem 6.2 we see that
if the failure rate sequence has a bathtub shape with change points n1 and
n2, then the optimal burn-in time need not exceed the first change point n1.
See the continuous analogue given in Theorem 3.3.

Shock models

This has been discussed in Section 6.6.

Infection control in hospital

In terms of infection control of a serious disease in a hospital, what is im-
portant to the infection control clinicians is knowledge about what is likely
to happen under normal conditions. Therefore advance warning of possible
epidemics or elevated level of infection should be detected as soon as possible
in order to impose additional infection control measures. In the context of the
time to colonization of Methicillin-resistant Staphylococcus aureus (MRSA)
patients in a Brisbane hospital, Ismail and Pettitt (2004) estimated the fail-
ure rate function r(k) which they considered to have a much more useful
description of the time progress of an infection than the survival function
R(k). The failure rate r(k), the probability of a patient colonized with MRSA
on day k given that they are not colonized before day k, can be estimated
by the ratio of the number of patients colonized on day k to the number of
patients at risk on day k. The authors provided a Bayesian nonparametric
estimate as well as smoothing the failure rate for the MRSA data.

Imperfect repair modelling

Consider an item with discrete lifetime X with support in N . Let a be the
largest time epoch for which Pr(X = a) > 0. In many applications, if the
item fails at some epoch t (t �= a), then a repair of the item is attempted. If
the repair is successful, the item is brought to the functioning state, but it is
only as good as a similar item which has not failed by time t. Such a repair
is called a ‘minimal repair .’ See Barlow and Proschan (1965, pp. 96–98) and
Blumenthal et al. (1976) for early development on continuous time minimal
repair.

Shaked et al. (1995) considered a discrete time imperfect repair model in
which an item undergoes a repair upon failure. With probability p ∈ (0, 1) the
repair is unsuccessful and the item is scrapped (and is usually replaced by a
new one). With probability 1− p the repair is minimal and it is assumed that
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a repair takes negligible time. If the item fails at the time epoch then it is not
repair.

Let Tp, p ∈ (0, 1), denote the time until unsuccessful repair in the im-
perfect model. Clearly, the distribution of Tp is determined by p and by the
distribution of X. The following theorem summarizes the result.
Theorem 6.6: If X is IFR (respectively IFRA2, NBU2), then Tp, 0 < p < 1,
is IFR (respectively IFRA2, NBU2).
Proof: The result was given as Theorem 5.2 of Shaked et al. (1995).

Let rp(k) be the failure rate of Tp. Using the same argument as its contin-
uous analogue (Brown and Proschan, 1983), one can see that rp(k) = pr(k).
Since p is a constant so the shape of rp(k) is the same as r(k).

Since the conditions for discrete IFR, IFRA2 and NBU2 are all expressed
in terms of r(t) as given by Definitions 6.1, 6.4 and 6.6, respectively, it is
obvious that X and Tp are of the same class.

6.10 Some Problems of Usual Definition of Discrete
Failure Rate

The definition of the failure rate r(k) given in (6.4) is different from its con-
tinuous counterparts in several aspects. It is the conditional probability of
failure at X = k given the device has not failed by k −1 and thus r(k) ≤ 1. In
contrast, it is the product r(t)∆ (∆ small) that is approximately the probabil-
ity of immediate failure conditional on X > t for the continuous case. Hence
r(t) can be unbounded in some situation but r(k) is always finite. Moreover,
Xie, Gaudoin and Bracquemond (2002) commented that r(k) cannot grow
exponentially which is often the case for components in the wear-out lifetime
period.

Interesting enough, continuous time failure rate function is often estimated
by a probability which is always less than or equal to 1. In practice, the
failure rate for the continuous time data is estimated by the proportion of
devices failed in an interval per unit time, given that they have survived to
the beginning of the interval, that is,

r̂(t) =
number of devices failed per unit time in the interval

number of devices survived at t
,

see, e.g., Lee (1992, p. 11).
Curiously, the failure rate defined by (6.4) is not additive for a series system

of independent components. Let ri(k) be the failure rate of the ith component
so that the system failure rate is



6.11 Alternative Definition of Failure Rate and Its Ramification 199

r(k) =
R(k − 1) − R(k)

R(k)
=
∏n

i=1 Ri(k − 1) −∏n
i=1 Ri(k)∏n

i=1 Ri(k − 1)

= 1 −
n∏

i=1

Ri(k)
Ri(k − 1)

= 1 −
n∏

i=1

[1 − ri(k)] �=
n∑

i=1

ri(k).

A major problem of r(k) has already been briefly discussed in Section 6.3.2,
that is, the cumulative hazard function H(k) =

∑k
i=1 r(i) is not equivalent to

− log R(k) as in the continuous case. Thus,

H(k) =
k∑

i=1

r(i) �= − log R(k). (6.44)

Equation (6.44) is the real cause for the two versions of discrete IFRA and
NBU being nonequivalent. The above nonequivalence phenomenon has been
noted by several authors. This has prompted some authors a desire to find an
alternative definition to be discussed below.

6.11 Alternative Definition of Failure Rate and Its
Ramification

Because of the problems associated with the common definition of the failure
rate r(k), several authors including Roy and Gupta (1999), Bracquemond et
al. (2001), and Xie, Gaudoin and Bracquemond (2002) have presented an
alternative definition of a discrete failure rate function. In order to make a
distinction, the alternative failure rate function considered in this section will
be denoted by r∗(k).
Definition 6.15: For discrete distribution with reliability function R(k), the
alternative failure rate function r∗(k) is defined as

r∗(k) = log
R(k − 1)

R(k)
, k = 1, 2, .. (6.45)

The rationale and background to the introduction of this definition is as
follows. For continuous distribution, the failure rate function is defined as:

r(t) =
f(t)
R(t)

= − d

dt
log R(t).

Instead of using R(k − 1) − R(k) for f(k) which leads to the expression in
(6.5), we could use log R(k−1)− log R(k) for −d[log R(t)]/dt above and define
the failure rate as

r∗(k) = −[log R(k) − log R(k − 1)] = − log
R(k)

R(k − 1)
= log

R(k − 1)
R(k)

.
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This justifies the definition of failure rate function (6.45). Clearly, r∗(k) is not
bounded in this case.

We note that Roy and Gupta (1999) used this function and named it ‘the
second failure rate function’. Xie et al. (2002) have devoted their paper to
study this function. Here in this section, we largely follow their approach.

6.11.1 The Relationships between r(k) and r∗(k)

We have defined several discrete ageing concepts in terms of r(k) such as IFR
(DFR), IFRA2, NBU2, and BT (UBT). Xie et al. (2002) have noted that
most of the results concerning IFR (DFR) are still valid for r∗(k) because of a
simple relationship between the two definitions of failure rates r(k) and r∗(k):

r∗(k) = − log
R(k)

R(k − 1)
= − log

R(k) − R(k − 1)
R(k − 1)

= log[(1 − r(k)], (6.46)

or

r(k) = 1 − e−r∗(k), (6.47)

showing that the two concepts r(k) and r∗(k) have the same monotonic prop-
erty, i.e., r∗(k) is increasing (decreasing) if and only if r(k) is increasing (de-
creasing). Hence, we may define the discrete IFR (DFR) in terms of r∗(k)
instead.

6.11.2 Effect of Alternative Failure Rate on Ageing Concepts

Earlier, we have established that

− log R(k) �= H(k), H(k) = r(1) + r(2) + ... + r(k).

The above inequality has caused the nonequivalence between the two def-
initions IFRA1 and IFRA2. We now define an alternative cumulative haz-
ard function to be expressed in terms of r∗(k) instead of r(k):

H∗(k) = r∗(1) + r∗(2) + ... + r∗(k). (6.48)

It now follows from (6.48) that

H∗(k) = log
R(0)
R(1)

+ log
R(1)
R(2)

+ ... log
R(k − 1)

R(k)
= log

R(0)
R(k)

= − log R(k).

(6.49)
Thus, IFRA1 ⇔ IFRA2 under the new definition of the failure rate r∗(k).

Also from (6.24) that

R(j)R(k) ≥ R(j + k), j, k = 1, 2, ....
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which is equivalent to R(k) ≥ R(j+k)
R(j) . On replacing R(j) by e−H∗(j), we obtain

k∑
i=1

r∗(j) ≤
j+k∑

i=j+1

r∗(i), j, k ≥ 1

showing that NBU1 ⇔ NBU2 if the failure rate is defined by r∗(k). We may
also define the mean residual life function in terms of r∗(j) such that

µ(k) =
∞∑

j=k

R(j)
R(k−1)

=
∞∑

j=k

e−(H(j)−H(k−1))

=
∞∑

j=k

e
−
(∑j

k
r∗(i)
)
.

(6.50)

It follows that if r∗(k + 1) ≥ r∗(k), then

µ(k) =
∞∑

j=k

e−(H(j)−H(k−1)) ≥
∞∑

j=k

e−(H(j+1)−H(k))

=
∞∑

j=k+1
e−(H(j)−H(k)) = µ(k + 1).

This is obvious as we have shown in (6.47) that r(k) and r∗(k) have the same
monotonic property.

6.11.3 Additive Property for Series System

Suppose we have a series system of n independent components with failure
rate r∗

j (k), j = 1, 2, ..., n, then the system reliability is given by

R(k) =
n∏

j=1

Rj(k) =
n∏

j=1

exp

{
−

k∑
i=1

r∗
j (i)

}
= exp

⎧⎨
⎩−

n∑
j=1

k∑
i=1

r∗
j (i)

⎫⎬
⎭

= exp

⎧⎨
⎩−

k∑
i=1

n∑
j=1

r∗
j (i)

⎫⎬
⎭ = exp

{
−

k∑
i=1

r∗(k)

}

where r∗(i) is the failure rate function for the system. It is now clear that

r∗(i) =
n∑

j=1

r∗
j (i). (6.51)

Hence, the failure rate defined in (6.45) is additive for series systems, and this
well known and widely used property is now valid for discrete distributions
under this alternative definition.
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6.11.4 Examples

We now give two examples to demonstrate how the alternative failure rate
function r∗(k) can be calculated.

Example 6.5: Discrete Pareto distribution

The discrete Pareto distribution has the following reliability function

R(k) =
(

d

k + d

)c

, c, d > 0, k ≥ 1. (6.52)

Then the alternative failure rate is

r∗(k) = log R(k−1)
R(k) = log (d/k−1+d)c

(d/k+d)c

= c log k+d
k−1+d = c log

[
1 + 1

k−1+d

]
which is a decreasing in k.

Example 6.6: Discrete logistic distribution

The continuous version of the logistic model (Johnson et al., 1995, Chapter
23) is useful when the failure rate is increasing but does not increase very fast
at the beginning. The discrete version has a reliability function given by

R(k) =
e−(k−c)/d + e−k/d

1 + e−(k−c)/d
, c, d > 0, k ≥ 1. (6.53)

It can be verified that

r∗(k) = log
R(k − 1)

R(k)
= log

(
1 +

e1/d − 1
1 + e−(k−1−c)/d

)
and this is an increasing function in k and hence F is IFR. This result is
consistent with its continuous analogue.
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Tests of Stochastic Ageing

7.1 Introduction

We have seen in the last few chapters that many ageing concepts have been
defined and studied in the literature. A reasonable starting point for analyzing
a reliability or survival data set is to determine which ageing class it belongs
to. Thus, tests of stochastic ageing play an important role in any reliability
study. In this chapter, we present available tests for testing exponentiality
against various ageing classes.

The chapter is divided as follows. Section 7.2 briefly reviews the reliabil-
ity properties that characterize the exponential distribution. In Section 7.3
we give a general sketch of a test procedure for an ageing class. Section 7.4
forms the main body of the chapter outlining the known statistical tests for
univariate ageing classes, particularly the basic ageing classes defined in Sec-
tion 2.4. Reliability and survival data sets are often censored so Section 7.5
lists the known tests of ageing for censored data. Section 7.6 is devoted to
the discussion of the tests on DMRL and IMRL which are essentially the only
monotonic mean residual life classes. IDMRL (DIMRL) and NWBUE (NB-
WUE) are non-monotonic mean residual life classes that have a trend change
at a point τ . Whether the change point τ is known or whether the propor-
tion p of the population that dies before τ is known will have an impact on
the type of test statistics to be used for these classes. These and other issues
are examined in Section 7.7. Bathtub distributions feature strongly in this
book, particularly in Chapter 3. Tests of exponentiality versus bathtub are
considered in Section 7.8. For completion, three miscellaneous tests are also
discussed briefly in Section 7.9. Section 7.10 concludes the chapter on how to
choose a test statistic.
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7.2 Exponential Distribution

The exponential distribution has been widely used as a lifetime model for
many reliability situations. It plays a pivotal role in ageing concepts and tests
of ageing and its basic properties are listed in Section 2.3.1. This distribution
can be characterized in many ways, see, for example, Galambos and Kotz
(1978). Because of its important role in testing for an ageing class, we shall
discuss briefly the characterization of the exponential distribution through
two stochastic ageing properties.

Let X have an exponential distribution function F (t) = 1 − e−λt, for
t ≥ 0. A property of the exponential distribution which makes it especially
important in reliability theory and application is that the remaining life of a
used exponential component is independent of its initial age (i.e., having the
memoryless property). In other words,

Pr{X > t + x|X > x} = e−λt, t ≥ 0 (7.1)

(independent of x). This property tells us that a used exponential component
is essentially ‘as good as new’.

Let F̄ (t) = 1 − F (t) = e−λt, then (7.1) can be written equivalently as

F̄ (t + x) = F̄ (t)F̄ (x). (7.2)

Let G denote the distribution function of a non-negative continuous random
variable and let Ḡ = 1 − G. Then G is an exponential distribution if and only
if

Ḡ(t + x) = Ḡ(t)Ḡ(x). (7.3)

That is, the functional equation (7.3) characterizes the exponential distribu-
tion.

The failure rate function of the exponential lifetime is given by

r(t) =
f(t)
F̄ (t)

= λ. (7.4)

Thus, the exponential distribution has a constant failure rate. In fact, it is the
only life distribution that has this property. In other words, the exponential
distribution is also characterized by having a constant failure rate and thus it
sits at the boundary between the IFR and DFR classes. Stephens (1986) gave a
comprehensive review on goodness-of-fit tests for the exponential distribution
with explicit attention to IFR and DFR alternatives.

7.3 A General Sketch of Tests

In developing tests for different classes of life distributions, it is almost with-
out exception that the exponential distribution is used as a strawman to be
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knocked down. As the exponential distribution is always a boundary member
of an ageing class C (in the univariate case), a usual format for testing is:

H0 (null hypothesis): F is exponential versus
H1 (alternative): F ∈ C but F is not exponential.
If one is merely interested in testing whether F is exponential, then no

knowledge of the alternative is required; in such a situation, a two-tailed test
is appropriate. Ascher (1990) discussed and compared a wide selection of tests
for exponentiality. Power computations, using simulations, were done for each
procedure. In short, he found

(i) certain tests performed well for alternative distributions with non-
monotonic failure (hazard) rates while others fared well for monotonic failure
rates, and

(ii) of all the procedures compared, the score test presented in Cox and
Oakes (1984) appears to be the best if one does not have a particular alter-
native in mind.

In what follows, our discussion will focus on tests with alternatives being
specified. In other words, our aim is not to test exponentiality but rather to
test whether a life distribution belongs to a specific ageing class. A general
outline of these procedures is:

(i) Find an appropriate measure of deviation of F (under H1) from the null
hypothesis of exponentiality.

(ii) Based on this measure, some sort of U -statistics are proposed.
(iii) Large-sample properties such as the asymptotic normality and consis-

tency are proved.
(iv) Pitman’s asymptotic relative efficiencies are usually calculated for the

following families of distributions (with scale factor =1, α ≥ 0, x ≥ 0):
(a) The Weibull distribution F̄ (x) = exp{−xα}.

(b) The linear failure rate distribution F̄ (x) = exp{−x − αx2/2}.
(c) The Makeham (or Gompertz-Makeham) distribution

F̄ (x) = exp[−{x + α(x + exp(−x) − 1)}].

(d) The gamma distribution with density f(x) =
xα−1

Γ(α)
e−x.

Basic reliability properties of these ageing distributions have been given in
Section 2.3. All these distributions are IFR or DFR depending on the value
of α; hence they all belong to a wider class. Moreover, all these distributions
reduce to the exponential distribution when α = 0 or α = 1.
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7.3.1 Estimation of Survival, Failure Rate and Mean Residual Life
Functions

Some of the tests presented in this chapter involving empirical survival, fail-
ure rate or MRL functions. There is a vast literature on estimation of these
quantities but we will not review them here because this subject matter falls
outside the theme of this book. Below is a list of references pertinent to each
known method.

Estimation of survival and density functions

• Kernel method – Devroye (1989).
• Bayesian approach – Ahsanullah and Ahmed (2001).
• Minimax estimation – Yu and Phadia (1996).
• Smooth estimation – Chaubey and Sen (1996).

See Chaubey and Sen (1996) for a brief review.

Estimation of failure rates

• Nonparametric methods – A survey by Singpurwalla and Wong (1983a).
• Kernel method – Singpurwalla and Wong (1983b).
• Bayesian nonparametric methods – Ho and Lo (2001).

Estimation of MRL

• Smooth estimator – A modified weighting scheme is used to develop a
smooth estimator of µ(t) by Chaubey and Sen (1999). See also Na and
Kim (1999).

• Nonparametric estimate – Ghorai et al. (1982), Ghorai and Rejtö (1987),
Mi (1994a) and Li (1997).

• Bayesian method – Tiwari and Zalkikar (1993).
• Use of weight function – Csörgő and Zitikis (1996).
• Local linear fitting technique – to estimate the corresponding mean resid-

ual life function. The limiting behaviour of the obtained estimator is pre-
sented. (Abdous and Berred, 2005).

• Projection type estimators – estimation of a monotonic mean residual life
by Kochar et al. (2000).

7.4 Statistical Tests for Univariate Ageing Classes

Definitions of the ageing classes considered in this section can be found in
Sections 2.4–2.7.
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We shall now present several statistical procedures for testing exponen-
tiality of a life distribution against different alternatives. The alternatives to
be considered here are IFR, IFRA, NBU, NBUE, HNBUE, NBUC, NBU-t0,
DPRL-α and NBUP-α. Tests for the remaining basic classes will be discussed
in the subsequent sections. It is perhaps understandable that most proposed
tests are applicable to only one or two classes. However, Ahmad (2001) and
Ahmad and Mugdadi (2004) recently developed tests based on moments in-
equalities for testing exponentiality against IFR, IFRA, NBU, NBUE, HN-
BUE, NBUC, or DMRL. Earlier, Lai (1994) gave a review on tests of several
univariate ageing classes.

7.4.1 Some Common Bases for Test Statistics

The test statistics are usually based on some properties that characterize an
ageing class under H1. A measure �(F ) of departure of F from the exponential
distribution is often derived. The following are some of the common ones:

• Moments inequalities – Section 2.5.5.
• Inequalities for survival functions.
• Order statistics.
• Partial ordering with the exponential.
• Scaled TTT statistic – Section 2.5.6.

7.4.2 IFR Tests

An obvious alternative to the constant failure rate function is a monotonic
failure rate function (IFR or DFR). Many of the real life data exhibit this
characteristic. Hence testing of exponentiality against IFR/DFR alternatives
are widely studied, and in fact, they are among the first proposed tests in the
literature.

TTT-plot

There are several tests for IFR and IFRA alternatives. The most popular one
(as we understand it) is the ‘total time on test’ procedure. It is a popular test
because of the graphical interpretation. Let X(1) < X(2) < ... < X(n) be the
order statistics of the sample and define

τ(X(i)) =
i∑

j=1

(n − j + 1)
(
X(j) − X(j−1)

)
, i = 1, 2, ..., n. (7.5)

τ(X(i)) is called the total time on test up to the ith order statistic. Note
that τ(X(i)) is the empirical TTT transform that corresponds to the TTT-
transform function defined by
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H−1
F (t) =

∫ F −1(t)

0
F̄ (u) du

and discussed in Section 2.5.6. The scaled TTT-transform is given by

φ(t) = H−1
F (t)/H−1

F (1).
The so called TTT-plot (Barlow and Campo, 1975) is the empirical version

of the above obtained by plotting

Uj = τ(X(j))/τ(X(n)) against j/n, for j = 1, 2, ..., n, (7.6)

and then connecting the plotted points by straight lines. Based on Uj , Klefsjö
(1983a) formed different test statistics for testing exponentiality against IFR,
IFRA, NBUE and DMRL. In particular, the test statistic for IFR alternative
is given by

A2 =
n∑

j=1

αjUj (7.7)

where αj = 1
6{(n + 1)3j − 3(n + 1)2j2 + 2(n + 1)j3}.

A quick diagnostic check for IFR (DFR) property is to inspect whether
the scaled TTT-transform curve is concave (convex) lying above (below) the
diagonal line. A graphical display of such curves is given by Fig. 7.1 in Section
7.8.1.

Earlier, Barlow and Doksum (1972) proved that a test which rejects expo-
nentiality in favour of IFR when the signed area between the TTT plot and
the diagonal is large, is asymptotically minimax.

Un-test

A test designed for testing IFR solely was proposed by Ahmad (1975, 1976).
The so called Un-test is a special form of Hoeffding’s U -statistic, see Hoeffding
(1948). More specifically,

Un =
4

n(n − 1)(n − 2)(n − 3)

∑
ψ[min(Xγ1 , Xγ2), (Xγ3 + Xγ4)/2] (7.8)

where the summation
∑

extends over all combinations 1 ≤ γi ≤ n, 1 ≤ i ≤ 4
such that γ1 �= γ2, γ1 �= γ4, γ2 �= γ3, γ2 �= γ4, γ1 < γ2, and γ3 < γ4, with ψ
being the indicator function such that

ψ(a, b) =
{

1 if a > b,
0 otherwise. (7.9)

H0 is rejected in favour of H1 for large values of Un. The test was shown
to be unbiased and consistent against H1. The asymptotic normality of the
test statistic was proved. The asymptotic relative efficiency against other IFR
tests was studied for the Weibull and the linear failure rate distributions, and
it was shown that the test performs well.
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�∗
IFR-test

Belzunce et al. (1998) considered first a test for the stochastic order and then
used the measure of deviation for the stochastic order to form the basis of test
for IFR (DFR) ageing classes. Define

�n
k =

n∑
l=k+1

(
n − l + 1

n − k

)2

· (X(l) − X(l−1)), k = i, j (7.10)

which is the empirical analogue of a measure of deviation from exponentiality
toward IFR, DFR alternatives. The test statistic is

�IFR(n) =
1
n2

n−2∑
i=0

n−1∑
j=i+1

(
1 − i

n

)2(
1 − j

n

)2

(�n
i − �n

j ). (7.11)

For large or small values of �IFR(n), reject H0 in favour of H1. The �IFR(n)
test is not scale-invariant, but the test statistic

�∗
IFR =

�IFR(n)
X̄

is scale-invariant.

7.4.3 IFRA Tests

The IFRA class, an extended class of IFR, is closed under formation of coher-
ent systems. The class was studied in detail in Barlow and Proschan (1981).
Testing of exponentiality again IFRA alternatives are summarized in the fol-
lowing.

Jb-test

Deshpande (1983) developed a test specifically for IFRA class. The test grew
out of the measure of deviation of F from the exponential, which was based
on the fact that F̄ (bx) ≥ {F̄ (x)}b (x > 0, 0 < b < 1) with strict inequality
for some x when F is IFRA.

Define
µ(F ) =

∫ ∞

0
F̄ (bx) dF (x). (7.12)

If F is exponential, then µ(F ) = (b + 1)−1, whereas for all other F ’s
belonging to IFRA, µ(F ) > (b + 1)−1. Hence µ(F ) − (b + 1)−1 is a measure
of deviation of F from the exponential.

Let

hb(x, y) =
{

1 if x > by,
0 otherwise; (7.13)
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where 0 < b < 1. Define Jb as the U -statistic based on hb:

Jb =
n

(n − 1)

∑
hb(Xi, Xj) (7.14)

where
∑

denotes the summation over 1 ≤ i ≤ n, 1 ≤ j ≤ n such that
i �= j. Large values of the statistic Jb indicate the alternative hypothesis to
be accepted. The calculation Jb is as follows: Multiply each observation by b.
Arrange X1, ..., Xn and bX1..., bXn together in increasing order of magnitude.
Then

S =
n∑

i=1

Ri − n

2
(n + 1) − n (7.15)

is the number of pairs of (Xi, bXj), for i �= j, such that Xi > bXj .
Then

Jb = {n(n − 1)}−1 S (7.16)

is the statistic for testing exponentiality against IFRA.
Deshpande (1983) showed that Jb tests are U -statistics and hence asymp-

totically normally distributed. The asymptotic relative efficiency with respect
to Hollander–Proschan statistic and the cumulative TTT statistics are rea-
sonably high for b = 0.5, 0.9. Bandyopadhyay and Basu (1989) removed this
restriction and showed that the results are valid for any 0 < b < 1.

Qn-test

Kochar (1985) proposed a test statistic for IFRA which is denoted by Qn:

Qn =
n∑

i=1

J

(
i

n + i

)
/nX̄ (7.17)

where
J(u) = 2(1 − u) · [1 − log(1 − u)] − 1, (7.18)

and X(i)’s are the order statistics such that X(1) < X(2) < ... < X(n). The
test is to reject H0 for large values of Qn. The author showed that the test has
good asymptotic relative efficiencies and is consistent for testing H0 against
H1.

Link’s test

Link (1989) developed a test which is related to Deshpande’s Jb given in
(7.16). More specifically, Link’s test can be expressed in a simple form:

Γ =
2

n(n − 1)

∑
i<j

X(i)/X(j) (7.19)

where X(i) are the order statistics. The null hypothesis is rejected for large
values of Γ. This test is easy to implement and the author showed that Γ
compares favourably with its competitors in efficiency and power comparisons.
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TTT-plot

The test statistic for IFRA alternative is

B =
n∑

j=1

βjUj (7.20)

with βj = 1
6{2j3 −3j2 + j(1−3n−3n2)+2n+3n2 +n3}. The test is to reject

H0 in favour of H1 for large values of B.
See also Ahmad (1994) for a further discussion on this test.

�̂r+1-test

Recently El-Bassiouny (2003) proposed a test based on the moment inequal-
ity (2.56) for testing exponentiality against IFRA alternatives. The proposed
invariant test statistic is

�̂r+1 =
δ̂r+1

X̄(r+1)

where

δ̂r+1 =
2

n(n − 1)
∑∑

i<j

{
min(Xr+1

i , Xr+1
j ) − Xr+1

i

2r+1

}
. (7.21)

We note that δ̂r+1 is a classical U -statistic. �̂1 and �̂2 are used to test the
IFRA alternatives. The author showed that his tests are superior to other
tests that were used for comparison.

7.4.4 NBU Tests

The NBU and NBUE classes of distributions are defined in Section 2.4.1 and
their basic properties are given in Section 2.53. These ageing concepts are
useful in replacement and maintenance related studies (Barlow and Proschan,
1981, Chapter 6). Maintenance policies are followed to reduce the incidence
of system failure or to return a failed system to the operating state. In this
subsection tests against NBU class are described and those against NBUE can
be found in the next subsection.

Jn-test

Hollander and Proschan (1972) proposed a test statistic defined by

Jn = 2[n(n − 1)(n − 2)]−1 ·
∑

ψ(Xγ1 , Xγ2 + Xγ3) (7.22)

where ψ is the indicator function defined by (7.9) and the sum
∑

is over all
n(n − 1)(n − 2)/2 triples (γ1, γ2, γ3) of three integers such that 1 ≤ γi ≤
n, γ1 �= γ2, γ1 �= γ3 and γ2 < γ3. The null hypothesis F exponential is rejected
in favour of NBU alternative if Jn is small. For simplicity, we may refer to
this test as the J-test.
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δ-test

Koul (1978a) generalized the method of Hollander and Proschan (1972) by
defining a non-negative, nondecreasing, right continuous function φ(x), 0 ≤
x < 1, such that φ(0) = 0 and

∫ ∫
φ(uv) du dv < ∞ . He then proposed a

class of test statistics:

δn = n−2
n∑
i

n∑
j

φ(Sij/n) (7.23)

such that

Sij =
n∑

k=1

ψ(Xk, Xi + Xj), 1 ≤ i, j ≤ n (7.24)

where ψ is the indicator function defined as before, i.e.

ψ(a, b) =

⎧⎨
⎩

1 if a > b,

0 if a = b.

By choosing φ(u) = u, one gets the Jn test of Hollander and Proschan (1972)
discussed above. The test is rejected when δn is small. Koul (1978a) studied
the case φ(u) = u

1
2 in detail. He found that this particular statistic has an

asymptotic Pitman efficiency relative to the Jn-test equal to

• 1.873 at F̄ (x) = exp(−x − x2α/2), α > 0, x ≥ 0
• 1.054 at F̄ (x) = exp(−xα), α > 1, x ≥ 0, and
• 0.899 at the gamma survival function F̄ (x) with shape parameter α.

The consistency and asymptotic normality of this class of tests were proved
under fairly broad conditions on the underlying entities.

Generalized J-test

The J-test proposed by Hollander and Proschan (1972) has also been gener-
alized by Alam and Basu (1990) with the following motivation. So far all the
tests (H0: F exponential vs H1: F is NBU and not exponential) were based on
a fixed sample of size n. However, there are situations where evaluation of a
test item is time-consuming or the cost of evaluating a test item is prohibitive.
For these reasons and possibly other physical constraints, it is useful to make
a decision with a smaller sample size. It is well known that a two-stage test
procedure has the ability of reducing the average sample size (in comparison
with single sampling procedure), while at the same time not reducing the
power of the test too much.

Using the J-test of Hollander and Proschan together with the two-stage
test procedure, Alam and Basu (1990) gave the following decision rule for
testing NBU:
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Stage 1: Take a sample X1, ..., Xn1 of size n1.
If Jn1 < C1, reject H0.
If Jn1 > C2, accept H0.
If C1 ≤ Jn1 ≤ C2, continue to Stage 2.

Stage 2: A second sample Xn1+1, ..., Xn1+n2 of size n2 is taken.
If Jn1+n2 < C3 reject H0, otherwise accept H0.
(Note that Jnk

is defined as that given in (7.22)).
For a given significance level α one needs to find the joint distribution

of Jn1 and Jn1+n2 (which is difficult for small or moderate sample size) in
order to determine Ci, i = 1, 2, 3. Hence they derived the asymptotic joint
distribution and two tables for finding C1, C2 and C3 were constructed when
(i) α = 0.01 and (ii) α = 0.05. See Alam and Basu (1990) for a more detailed
discussion.

S-test

Another test, derived by Deshpande and Kochar (1983), is based on a linear
combination of the U -test of Ahmad (1975, 1976) and the J-test of Hollander
and Proschan (1972). The desired test statistic is given by

S = U − J (7.25)

and reject H0 if S is too large. Pitman’s asymptotic relative efficiencies of the
S-test relative to V -test of Proschan and Pyke (1972), the U -test of Ahmad
(1975) and the J-test of Hollander and Proschan (1972) were calculated.

Ln-test

Kumazawa (1983) proposed a class of statistics for testing NBU. The test
statistic is now described below. First, define a function φ such that

(i) for 0 ≤ x ≤ 1, φ(x) ≥ 0, non-decreasing, right continuous, φ(0) = 0
and

(ii)
∫

φ(u2) du < ∞. The test statistic obtained is

Ln(ψ, m) = n−1
n∑

i=1

φ(n−1 · S
(m)
i ) (7.26)

where

S
(m)
i =

n∑
j=1

ψ[X(j), mX(i)] (7.27)

for 1 ≤ i ≤ n and X(1) < X(2) < ... < X(n) are the order statistics of the
Xi’s and ψ represents the indicator function defined as before. Kumazawa
(1983) proved that the Ln-test is consistent, unbiased and asymptotically
normal. The Pitman’s efficiencies were computed and compared with some
other statistics. It was found that the Ln-test performed well against other
tests.
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�∗
NBU-test

In addition to the �∗
IFR test, Belzunce et al (1998) also proposed a test for

NBU (NWU) ageing classes. The test statistic is

�NBU(n) =
1
n

n−1∑
i=1

(
1 − i

n

)2

(�n
i − �n

j ) (7.28)

where �n
i is defined as in (7.10). The scale-invariant statistic is

�∗
NBU(n) =

�NBU(n)
X̄

.

For large or small values of �∗
NBU(n), reject the the null hypothesis in favour

of the alternatives.

7.4.5 NBUE Tests

K∗-test

Several tests for NBUE alternatives have been proposed. Hollander and
Proschan (1972) derived a test statistic K∗ which was shown to be equiv-
alent to the total time on test statistic discussed in Section 7.4.2. It is given
by the expression

K∗ ≡ K/X̄ (7.29)

where K =
1

2n2

n∑
i=1

(
3n

2
− 2i +

1
2

)
· X(i), and X(1) < X(2) < ... < X(n) are

the order statistics. Significantly large values of K∗ suggest NBUE alterna-
tives; significantly small values of K∗ suggest NWUE alternatives.

D-test

Koul (1978b) introduced what he called the D-test for NBUE alternatives, but
it appears rather complex and difficult to compute.

CV-test

de Souza Borges et al (1984) introduced a simple test using the sample coef-
ficient of variation S/X̄ where

S2 =
∑

(Xi − X̄)2/n. (7.30)

Under H0, S/X̄ is asymptotically normal with mean 1 and variance 1
n .

The CV test rejects H0 (F is exponentially distributed) in favour of H1
(NBU) for large values of |√n(S/X̄ − 1)|. In particular, large negative values
of

√
n(S/X̄ − 1) can be viewed as evidence towards the NBUE distribution,

and large positive values as evidence towards NWUE.
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Kanjo’s test

Let ∆i = X(i) − X(i−1), Di = (n − i + 1)∆i, i = 1, 2, ..., n. The test statistic
Kanjo (1993, 1994) proposed is

Vn =
n∑

j=1

j

n
Dj/(nX̄). (7.31)

It was pointed out in Kanjo (1994) that it is equivalent to the well known
total time on test statistic V ∗

n .

7.4.6 HNBUE

Tn-test

Doksum and Yandell (1984) have shown that the test based on the statistic

Tn =
1
n

n∑
i=1

exp(−Xi/X̄) (7.32)

which is asymptotically most powerful test in the class of all similar tests for
testing exponentiality against the Makeham distribution with survival func-
tion

F̄ (t) = exp [−{λt + θ(λt − exp(−λt) − 1)}] , (λ > 0, θ ≥ 0, t ≥ 0).

Singh and Kochar (1986) showed that the test based on Tn is consistent for
testing H0: F exponential vs H1: F HNBUE. A small value of Tn indicates F
being HNBUE.

TTT-test

Klefsjö (1983a,b) has shown that the total time on test statistic given in (7.5)
is also consistent for testing H0 against a much wider class HNBUE.

En-test

Kochar and Deshpande (1985) showed that the exponential score statistic
En, originally suggested by Barlow and Doksum (1972) as a possible test for
testing exponentiality against IFRA alternative, is also consistent against a
wider class of HNBUE. Here,

En =
1
n

n−1∑
i=1

log
(
1 − τ(X(i))

)
(7.33)

where τ is defined as in (7.5).
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V ∗-test

Hendi et al. (1998) introduced an exact test for the HNBUE alternative. The
scale invariant test statistic is

V ∗ =
1
X̄

∑n

j=1
X(j)

(
j

n

)
1
n

(7.34)

(X(i), the order statistics) which is similar to the one introduced by Hollander
and Proschan (1975, 1980).

Tn,a-test

Klar (2000) presented a class of tests for exponentiality against HNBUE alter-
natives which is based on the difference between the integrated distribution
function Ψ(t) =

∫∞
t

F̄ (x) dx and its empirical counterpart. The test statistic
can be represented as

Tn,a =
1

na2

n∑
j=1

e−aYj − 1
a2(1 + a)

, a > 0 (7.35)

where Yj = Xj/X̄n, for j = 1, ..., n.
For n = 1, Tn,1 is equivalent to the Tn test given in (7.32). Jammalamadaka

and Lee (1998) also considered the test statistic Tn,1.

7.4.7 NBU-t0

Recall in Section 2.5.3, we say a distribution F is new better than used of age
t0 (NBU-t0) if

F̄ (x + t0) ≤ F̄ (x)F̄ (t0) (7.36)

for all x ≥ 0. Define

A = {F : F̄ (x + t0) = F̄ (x)F̄ (t0), for all x ≥ 0}. (7.37)

Note that A is the class of boundary members of NBU-t0 and NWU-t0. Hol-
lander et al. (1986) have shown that in addition to the exponential, there are
two other distributions that are contained in A.

T -test

Hollander et al. (1986) proposed a test of the null hypothesis H0: F is in A
against H1: F is NBU-t0. Their test statistic is

T = {n(n − 1)}−1
∑

ψ(Xα1 , Xα2 + t0) − (2n)−1
n∑

i=1

ψ(Xi, t0) (7.38)
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where
∑

is the sum over all n(n − 1) sets of two integers (α1, α2) such that
1 ≤ α1 , α2 ≤ n, α1 �= α2 and ψ is an indicator function defined by (7.9). The
null hypothesis is rejected in favour of NBU-t0 if −n1/2T is large.

The authors commented that the test based on T was not intended to be a
competitor of Jn (given by (7.22)) or the total time on test statistic defined by
(7.5). The latter statistics were designed for smaller classes of alternatives. T
was designed for the relative large class of alternative A given by (7.37). They
also calculated the asymptotic relative efficiencies from which they concluded
that the T test will often be preferred when F is NBU-t0 and is not a member
of the smaller classes such as the NBU class.

Tk-test

Ebrahimi and Habibullah (1990) proposed a class of tests statistics, indexed
by a positive integer k, for testing the null hypothesis that F belongs to A
against the alternative hypothesis that F is NBU-t0.

The statistic is given by

Tk = T1k − T2k (7.39)

where

T1k =
{

1/

(
n
k

)} ∑
1≤i≤j≤n

ψ(Xi, Xj + kt0)

and

T2k =
[
1/

{
2
(

n
k

)}]∑
ψk(Xi1 , ..., Xik

)

where the sum is over all combinations of k integers (i1, ..., ik) chosen out of
(1, ..., n). Here, ψ(a, b) is defined as in (7.9), and

ψk(a1, ..., ak) =
{

1, if min ai > t0,
0, otherwise. (7.40)

If k = 1, Tk reduces to the test statistic T defined by (7.38).
From the table of Pitman’s asymptotic efficiency of Tk relative to T they

concluded the following:
(1) Although the value of k varies, there is always a k > 1 for which Tk

performs better than T for small t0.
(2) If the alternative is NBU-t0 but not NBU, then for all t0, there is a

k > 1 for which Tk performs better than T .

Ahmad’s test

Let t0 be the pth percentile so that F̄ (t0) = 1 − p. Ahmad (1998) proposed a
test statistic
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γ̂k(Fn) = 1
2 (1 − p)k − ∫∞

0 F̄n(x + kX([np])) dFn(x)

= 1
2 (1 − p)k −∑n

i=1
∑n

j=1 ψ(Xi, Xj + kX([np]))
(7.41)

where ψ is the indicator function defined in (7.9) and [x] is the largest integer
that is less than or equal to x. The details on asymptotic properties were given
in Ahmad (1998).

7.4.8 NBUC Tests

The NBUC class is defined by Definition 2.10. Using the moment inequalities
for NBUC given in Section 2.5.5, Ahmad and Mugdadi (2004) obtained a test
statistic δ̂(2) for the NBUC class:

δ̂(2) =
1

X̄3

⎧⎨
⎩ 1

n(n − 1)

∑
i �=j

∑
(XiX

2
j − X3

i )

⎫⎬
⎭ . (7.42)

The authors claimed that the proposed test is simple and efficient.

7.4.9 NBUFR (NWUFR) Test

El-Bassiouny et al. (2004) constructed a test procedure for testing exponen-
tiality against NBUFR (NWUFR) defined by Definition 2.8. It is a classical
U -statistic that was derived from the difference between a moment inequality
and the moment itself. It was shown that the proposed statistic has a high as-
ymptotic relative efficiency with respect to tests of other classes for commonly
used alternatives.

7.4.10 DPRL-α and NBUP-α Tests

Joe and Proschan (1983) developed tests for testing the null hypothesis of
exponentiality against alternatives representing decreasing 100α-percentile
residual life and the property ‘new better than used with respect to the
100α-percentile’. These classes were defined in Section 2.8. As usual, let
X(1) < X(2) < ... < X(n) be the order statistics.

Tests for DPRL-α alternative: W1:n-test

The test statistic is given by

W1:n = 1
4

n−1∑
i=0

B1
(

i
n

) · (X(i+1) − X(i)) (7.43)

where

B1(t) =
{−(1 − t)2[(1 − t)2 − 1], for 0 ≤ t < α;

(1 − t)2[2((1 − α)−4 − 1)(1 − t)2 − ((1 − α)−2 − 1)] , for α < t < 1.

Reject H0 for large values of W1:n.
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Test for NBUP-α alternative: W2:n-test

The test statistic is

W2:n =
1
2
F−1

n (α) − 1/2

n∑
i=1

[B2((i − 1)/n) − B2(i/n)], (7.44)

where Fn is the empirical distribution function and

B2(t) =
{− 1

2 [(1 − t)2 − 1], for 1 ≤ t < α;
1
2 ((1 − α)−2 − 1)(1 − t)2, for α < t ≤ 1.

7.4.11 Summary of Tests of Basic Ageing Classes

The following two tables give an overview of the tests for various ageing classes
discussed so far. Recall, all the statistical procedures were constructed to
test exponentiality of a life distribution against different alternatives ageing
classes. Two functions are used throughout the following tables of summary:

• ψ, the indicator function defined as

ψ(a, b) =
{

1 if a > b,
0 otherwse;

• φ, an increasing function.

The order statistics X(1) < X(2) < ... < X(n) from the random sample
X1, X2, ..., Xn are usually involved. Many of the tests discussed so far are U -
statistics. In order to assess the ‘goodness’ of a test, the Pitman’s asymptotic
relative efficiency is usually evaluated for comparison with other existing test
statistics that were derived to test for the same ageing alternative.

These tables of summary have four columns that give the test name, test
statistic formula, ageing alternatives and some key references. The tables aim
to provide the readers a quick and easy reference to the available tests for
various ageing classes.



220 7 Tests of Stochastic Ageing

Table 7.1. Tests on Univariate Ageing (Part 1)

Test Basic Statistic Ageing Key References
Name Alter-

natives

TTT
Plot

τ(X(i)) =
i∑

j=1
(n − j + 1)(X(j) − X(j−1)) ,

j = i, ..n.

IFR Klefsjö (1983a)

IFRA
NBUE
DMRL

Ui = τ(X(i))/τ(X(n)), T =
n∑

j=1
ajUj

Each test has a different set of a′
is

HNBUE Klefsjö (1983b)

Un Un = [4/n(n − 1)(n − 2)(n − 3)] ×∑
ψ{min(Xγ1 , Xγ2), (Xγ3 + Xγ4)/2} sum

over Ω = {γi 	= γj} ∩ {γ1 < γ2} ∩ {γ3 < γ4}

IFR Ahmad (1975, 1976)

Hoeffding (1948)
Jb Jb = n

(n−1)

∑
ψ(Xi, bXj), 0 < b < 1 IFRA Deshpande (1983)

Qn Qn =
n∑

i=1
J
(

i
n+i

)
/nX̄,

J(u) = 2(1 − u) · [1 − log(1 − u)] − 1

IFRA Kochar (1985)

Link Γ = 2
n(n−1)

∑
i<j

X(i)/X(j) IFRA Link (1989)

V ∗ V ∗ = V/X̄, V = n−4
n∑

i=1
Ci,nXi, Ci,n =

4
3 i3 − 4ni2 + 3n2i − 1

2n3 + 1
2n2 − 1

2 i2 + 1
6 i

DMRL Hollander and Pros-
chan (1975, 1980)

Jn Jn = 2[n(n − 1)(n − 2)]−1∑
ψ(Xγ1 , Xγ2 + Xγ3) 1 ≤ γi ≤ n,

γ1 	= γ2, γ1 	= γ3, γ2 < γ3

NBU Hollander and
Proschan (1972)

δ δn = n−2
n∑
i

n∑
j

φ(Sij/n), φ increasing;

Sij =
n∑

k=1
ψ(Xk, Xi + Xj)

NBU Koul (1977, 1978a)

Genea-
lized J

J test with a two-stage test procedure NBU Alam and Basu
(1990)

S S = U − J NBU Deshpande and
Kochar (1983)

Ln Ln(ψ, m) = n−1
n∑

i=1
φ(n−1 · S

(m)
i ),

S
(m)
i =

n∑
j=1

ψ[Xj , mX]

NBU Kumazawa (1983)
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Table 7.2. Tests of Univariate Ageing (Part 2)

Test Basic Statistic Ageing Key References
Name alter-

natives

K∗ K∗ = K/X̄, K = 1
2n2

n∑
i=1

(
3n
2 − 2i + 1

2

)
· X(i) NBUE Hollander and

Proschan (1972)

CV S/X̄, S2 =
n∑

i=1
(Xi − X̄)2/n NBUE

NWUE de Souza Borges
and Proschan
(1984)

Tn Tn = 1
n

n∑
i=1

exp(−Xi/X̄) HNBUE Singh and Kochar
(1986)

En En = 1
n

n−1∑
i=1

log(1 − τ(X(i))),

τ(X(i)) =
i∑

j=1
(n − j + 1)(X(j) − X(j−1))

HNBUE Kochar and Desh-
pande (1985)

T T = {n(n − 1)}−1∑ψ(Xα1 , Xα2 + t0) NBU-t0 Hollander et al.
(1985)

−(2n)−1
n∑

i=1
ψ(Xi, t0)

Tk Tk = T1k − T2k,
T1k =

∑
i=j=n

ψ(Xi, Xj + kt0)/ 2
n(n−1)

T2k = 1
2

∑
ψk(Xi1 , ..., Xik )/

(
n
k

)
,

ψk(a1, ..., ak) =

{
1, if min ai > t0,
0, otherwise.

NBU-t0 Ebrahimi and
Habibullah (1990)

W1:n W1:n = 1
4

n−1∑
i=0

B1
(

i
n

)
(X(i+1) − X(i)),

B1(t) =

{
−t̄2[t̄2 − 1], 0≤ t< α
t̄2(ᾱ−2 − 1)[2(ᾱ−2 + 1)t̄2 − 1], α< t< 1,

t̄ = 1 − t, ᾱ = 1 − α

DPRL-α Joe and Proschan
(1983, 1984)

W2:n W2:n = 1
2F −1

n (α)−
n∑

i=1
[B2((i−1)/n)−B2(i/n)], NBUP-α Joe and Proschan

(1983, 1984)

B2(t) =

{
− 1

2 [(1 − t)2 − 1], 1 ≤ t < α;
1
2 ((1 − α)−2 − 1)(1 − t)2, α < t ≤ 1.
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Table 7.3. Tests of Univariate Ageing (Part 3)

Test Basic Statistic Ageing Key References
Name alter-

natives
Stoch
compa
-rison

Based on comparing residual life at different
times

�IFR(n) > 0 IFR Belzunce et al.
(1998)

�IFR(n) < 0 DFR
�NBU(n) > 0 NBU
�NBU(n) < 0 NWU Belzunce et al.

(1998)
Test statistics based on testing stochastic order
�IFR(n) = 1

n2

∑n−2
i=0

∑n−1
j=i+1

(
1 − i

n

)2 (
1 − j

n

)2
×(�n

i − �n
j )

�NBU(n) = 1
n

∑n−1
i=1

(
1 − i

n

)2
(�n

i − �n
j )

7.5 Tests of Aging Properties When Data Are Censored

In this section, we shall briefly discuss tests of exponentiality against other
alternatives when data are randomly right censored. There are at least two
types of censoring, details of which may be found in Lawless (2003) and Nelson
(1982).

Randomly right censored data are often the only information available in a
life testing model or in clinical data. This experimental situation can formally
be modelled as follows: Let X1, X2, ..., Xn be independent identically distribu-
tion (i.i.d.) non-negative random variables having continuous life distribution
function F . Let Y1, Y2, .., Yn be i.i.d random variables having a continuous dis-
tribution function G which is unknown. The Yi’s are treated as the random
times to the right censorship. It is assumed that X’s and Y ’s are independent.
The available observations consist of the pairs {Zi, δi}, i = 1, ..., n where

Zi = min(Xi, Yi) and δi = ψ(Yi, Xi) (7.45)

(ψ is the indicator function defined in (7.9), δi = 1 would mean the ith object
is not censored, whereas δi = 0 means that the ith object is censored by Yi

on the right.)
Let Z(1) < ... < Z(n) denote the ordered Z’s and δ(1), ..., δ(n) be the δ’s

corresponding to Z(1), ..., Z(n), respectively. Most of the available tests for the
censored data are based on the so-called Kaplan-Meier estimator defined by
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F̂n(x) = 1 −
∏

{i:Z(i)≤x}

(
n − i

n − i + 1

)δ(i}
, (7.46)

see for example, Kaplan and Meier (1958) or Lee (1992). Without getting into
details we shall now give several references on tests for different alternatives:

IFRA: Wells and Tiwari (1991), Pearn and Nebenzahl (1992)
NBU: Chen et al. (1983a) and Kumazawa (1987)
NBUE: Koul and Susarla (1980)
NBAFR (NBUFRA): Tiwari and Zalkikar (1994)
NBU-t0: Hollander et al. (1985), Park (2003), Sen and Srivastava (2003)
DMRL: Chen et al. (1983b,c), Lim and Park (1993, 1997)
DPRL-α: Joe and Proschan (1983)
NBUP-α: Joe and Proschan (1983)

7.6 Tests of Monotonic Mean Residual Life Classes

It was pointed out in Chapter 4, the mean residual life (MRL) is often a more
important reliability characteristic than the failure rate function r(t). In this
section, we consider only monotonic µ(t), the mean residual life function asso-
ciated with F , so the life classes concerned are DMRL, IMRL and DMRLHA
(decreasing mean residual life in harmonic average). The definitions of the
first two classes were given in Section 2.4 whereas the last was in Section 2.7.
Many of the tests discussed in Section 7.4 are also applicable in testing for
exponentiality against DMRL (IMRL).

7.6.1 DMRL

V ∗-test

Hollander and Proschan (1975, 1980) considered a test statistic which they
called the V ∗ test for testing exponential distribution versus decreasing mean
residual life alternatives. The V ∗ test is based on a linear function of the order
statistics X(1) < X(2) < ... < X(n) from the sample, given by

V ∗ = V/X̄ (7.47)

where V = n−4
n∑

i=1
Ci,nX(i) with

Ci,n =
4
3
i3 − 4ni2 + 3n2i − 1

2
n3 +

1
2
n2 − 1

2
i2 +

1
6
i .

Significantly large values of V ∗ indicate decreasing mean residual life al-
ternatives, significantly small values of V ∗ suggest increasing mean residual
life alternatives. Langenberg and Srinivasan (1979) obtained the exact null
distribution for the test statistic V ∗.
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Vn(k)-test

Bandyopadhyay and Basu (1990) also proposed a test for testing exponential-
ity against DMRL. Their test procedure can be described as below:

Define:

Dk(x; F ) = F̄ (x)F̄ (kx) · [µ(kx) − µ(x)], 0 < k < 1, (7.48)

where µ(x) is the mean residual life of F defined by (4.1). Also define

d(F ; k) =
∫ ∞

0
Dk(x; F ) dF (x) (7.49)

which represents a measure of deviation from exponentiality towards DMRL
distributions. Now, under H0 (F exponential), δ(F ; k) = 0 and under H1 (F is
DMRL), δ(F ; k) > 0. Let the estimator δ(Fn, k) of δ(F ; k) be the test statistic
where Fn is the empirical distribution function. Define another statistic

V ∗(k, n) = [n(n − 1)(n − 2)]−1
∑

φk(Xi1 , Xi2 , Xi3) (7.50)

where the sum
∑

is taken over all permutations {i1, i2, i3} of 3 distinct inte-
gers chosen from {1, 2, ..., n}, n ≥ 3, φk = φ1(x1, x2, x3; k) − φ2(x1, x2, x3; k),
where

φ1(x1, x2, x3; k) = (x1 − kx3)ψ(x1, kx3)ψ(x2, x3) (7.51)

and
φ2(x1, x2, x3; k) = (x1 − x3)ψ(x1, x3)ψ(x2, kx3). (7.52)

As before, the indicator function ψ(a, b) = 1 or 0 depending a > b or not.
It was shown that the two statistics δ(Fn, k) and V ∗(k, n) are asymptotically
equivalent and large positive values of V ∗(k, n) favour the alternative hypoth-
esis. However, the distribution of V ∗(k, n) is not scale invariant. In order to
make the test scale invariant, the authors used the test statistic:

Vn(k) = V ∗(k, n)/X̄ (7.53)

where X̄ is the sample mean. The authors found that the asymptotic relative
efficiencies of Vn(k) with respect to V ∗ test of Hollander and Proschan (1975,
1980) are reasonably high.

For a generalization, see Bergman and Klefsjö (1989).

Ahmad’s U-test

Ahmad (1992) proposed

δ(F ) =
∫ ∞

0

(
2tF̄ (t) − ν(t)

)
dF (t). (7.54)
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as a measure of the degree of ‘DMRL-ness’ where ν(t) =
∫∞

t
F̄ (u) du. Based

on this measure, he derived a new U -statistic

Un =
∑
i<j

{φ(Xi, Xj) + φ(Xj , Xi)}/

{
2
(

n
2

)}
. (7.55)

The new test is easier to compute and performs better than several alter-
natives than previous tests.

Lim and Park (1993) generalized Ahmad’s test to accommodate the situ-
ation where the data is incomplete due to random censoring.

T̃ k
n -test

Motivated by Ahmad (1992), Lim and Park (1997) considered a generalized
measure of deviation of F from constant MRL in favour of DMRL alternatives:

∆k(F ) =
∫ ∞

0
F̄ k(t) dt −

∫ ∞

0
F̄ k−2(t)ν(t) dF (t), (7.56)

where ν(t) =
∫∞

t
F̄ (u) du. It is clear that for k = 2, (7.56) reduces to (7.54).

Their test statistic is given by T k
n = ∆k

n(Fn). The scale invariant version of
T k

n is

T̃ k
n = T k

n/X̄n. (7.57)

The above test is applicable to both complete and censored data, and it
includes Ahmad’s (1992) and Lim and Park’s (1993) as its special cases.

�̂n-test

Abu-Youssef (2002) introduced a scale-invariant test based on the moment
inequality (4.24) with

�n =
δ̂n

X̄2 (7.58)

where

δ̂n =
2

n(n − 1)
∑∑

i�=j

[
min(X2

i , X2
j ) − 1

2
XiXj

]
.

It is shown that the proposed test has high relative efficiency for some com-
monly used alternatives and it also enjoys a good power.
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δ̂(3)-test

Ahmad and Mugdadi (2004) proposed a test based on the moment inequal-
ity given in Section 2.5.4 with test statistic

δ̂(3) =
1
X̄

{
X̄ − 2

n(n − 1)
∑∑

i �=j
min(Xi, Xj)

}
. (7.59)

The proposed test is simpler than most other tests and was shown to have
very good efficiencies.

7.6.2 DMRLHA Test

Sen and Srivastava (1999) proposed a test for testing exponentiality against
DMRLHA alternative. The test statistic D∗

n is the ratio of two U -statistics and
is asymptotically normally distributed. Consistency, asymptotic unbiasedness
and Pitman’s efficiency results of the test developed have been obtained. They
have shown that the D∗

n-test can also be used to detect whether a repairable
unit in the long run depicts an increasing failure rate average property. The
test statistic is:

D∗
n =

Dn

S2 (7.60)

and

Dn =
1

4(nP3)

∑
φ1(Xi1 , Xi2 , Xi3) − 1

nP3

∑
φ2(Xi1 , Xi2 , Xi3),

where we sum over all the nP3 permutations of 3 integers {i1, i2, i3} chosen
from {1, 2, .., n}, with

φ1(X1, X2, X3) = (2X1 − X3)ψ(2X1 − X3)(2X2 − X3)ψ(2X2 − X3),

and
φ2(X1, X2, X3) = X1(X2 − X3)ψ(X2 − X3).

Table 7.3 is a summary of tests for testing against monotonic MRL .

7.7 Tests of Non-monotonic Mean Residual Life

So far we have considered various tests for several classes with monotonic fail-
ure rates and monotonic mean residual life functions. Here in this section, we
consider testing exponentiality against IDMRL and DIMRL. The definitions
of these classes were given in Section 4.4.2. Since these life distributions have
a change point τ which may or may not be known, we divide these tests into
two categories:

• Either the change point τ or its corresponding quantile p is known.
• Neither p nor τ are known.
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Table 7.4. Tests on Monotonic MRL

Test
Name

Basic Statistic /Special feature Ageing
Alter-
natives

Key References

TTT
Plot

τ(X(i)) =
i∑

j=1
(n − j + 1)(X(j) − X(j−1)),

j = i, ..n, Ui = τ(X(i))/τ(X(n)), T =
n∑

j=1
ajUj .

Each test has a different set of a′
is.

DMRL
(IMRL)

Klefsjö (1983a)

V ∗ V ∗ = V/X̄, V = n−4
n∑

i=1
Ci,nXi,

Ci,n = 4
3 i3 −4ni2 +3n2i− 1

2n3 + 1
2n2 − 1

2 i2 + 1
6 i

DMRL Hollander and
Proschan(1975,1980)

V ∗ Exact distribution of V ∗ obtained DMRL Langenberg and
Srinivasan (1979)

V c V c is a generlaization V ∗

for randomly censored model.
DMRL
(IMRL)

Chen et al. (1983b,c)

Vjk Generalization of V ∗ with V11 = V ∗ DMRL
(IMRL)

Bergman and Klefsjö
(1989)

Un Un =
∑
i<j

{φ(Xi, Xj) + φ(Xj , Xi)}/

{
2

(
n
2

)}
Ahmad (1992)

φ(X1, X2) = (3X1 − X2)ψ(X2 − X1)
The measure of DMRL is based on the first
derivative of the MRL.

DMRL

δc
n δc

n = δn/µ̂n, δn = Un, µ̂ =
∫∞
0

F̄n(x) dx.
It is the generalized Un test for
randomly censored data

DMRL Lim and Park (1993)

TTT-
like

Total time on test-like functions DMRL Aly (1990)

Scaled
TTT

Test based on the scaled TTT defined by

ϕF (t) =
∫ F −1(t)

0
F̄ (x) dx/F̄ (x)

DMRL
ordering

Aly (1993)

D∗
n

= Dn
S2

Dn = 1
4(nP3)

∑
φ1(Xi1 , Xi2 , Xi3)

− 1
nP3

∑
φ2(Xi1 , Xi2 , Xi3)

Sen and Srivastava
(1999)

φ1(X1, X2, X3) = (2X1 − X3)ψ(2X1 − X3)
×(2X2 − X3)ψ(2X2 − X3)

φ2(X1, X2, X3) = X1(X2 − X3)ψ(X2 − X3) DMRLHA



228 7 Tests of Stochastic Ageing

7.7.1 IDMRL (DIMRL) Test When Turning Point τ Is Known

Guess et al. (1986) considered the following procedures:
Let the two alternative hypotheses be given by H1: F is IDMRL (and not

constant MRL) and H ′
1: F is IDMRL (and not constant MRL).

Consider a distance function between the mean residual life at two points
s and t defined by

D(s, t) = F̄ (s)F̄ (t) {µ(t) − µ(s)} (7.61)

and a parameter induced by it:

T (F ) =
∫ τ

0

∫ t

0
D(s, t) dF (s) dF (t) +

∫ ∞

τ

∫ t

τ

D(s, t) dF (s) dF (t). (7.62)

From (7.62) we see that T (F ) is a weighted measure of the degree to which
F satisfied the IDMRL property.

Define Tn = T (Fn) where Fn is the empirical distribution from the random
sample X1, ..., Xn having cdf F . The IDMRL test procedure rejects H0 in
favour of H1 at the approximate level α if T̃n = n1/2T (Fn)/σ̂n ≥ zα (σ̂2

n is
a consistent estimator of the variance of a statistic induced by T and F ).
The DIMRL test rejects H0 in favour of H ′

1 at the approximate level α if
T̃n ≤ −zα.

7.7.2 IDMRL Test When the Proportion p Is Known

Let p = the proportion of the population that dies at or before the turning
point τ . As usual, let X(1) < X(2)... < X(n) denote the order statistics from a
random sample of F and let τ = F−1(p). We also define

j∗ =
{

np, if np is an integer
[np] + 1, if np is not an integer,

where [x] = the largest integer less than or equal to x.
Further, define Vn = n−4∑n

k=1 cknX(k) where ckn depends on p as well as
on k and n.

Three cases were considered:

• k < j∗,
• k = j∗, and
• k > j∗.

Define V ∗
n = Vn/X̄n and the standardized quantity Ṽn = n1/2V ∗

n /σ(p) is
used as the test statistic. Reject H0 in favour of H1: IDMRL if Ṽn ≥ zα. On
the other hand, we reject H0 in favour of H ′

1: DIMRL if Ṽn ≤ −zα. A table
of critical values of the test statistic was given in Guess et al. (1986).

Lim and Park (1995) provided a competitor to the known procedures such
as those given above and the Aly (1990) test. Based on the empirical powers
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of these tests against lognormal alternatives, they claimed that their test out-
performs the others for most sample sizes and most values of p (the proportion
of the population that dies at or before τ) and that all three tests achieve high
power when p is very small or very large.

The test statistic against IDMRL is obtained by

Tn = n−2
k−1∑
i=1

(4i − 3n)X(i) − 2(1 − p)2F−1
n (p)

+n−2
n∑

i=k

(−4i + 3n + 2pn)X(i)

(7.63)

where k = [np]+ = the smallest integer that is greater or equal to np. The
scale invariant test statistic is T ∗

n = Tn/X̄n. In this proposal, one rejects H0
in favour of H1 at the approximate level α if

√
3n ·T ∗

n ≥ zα. Analogously, one
rejects H0 in favour of H ′

1 if
√

3n · T ∗
n ≤ −zα.

Lim and Park (1998) considered another test statistic

Lk = 1
n(k−1)

{
n∑

i=1
X(i)

[
1 − k2

(
n−i
n

)k−1
]}

− 2(1 − p)kF−1
n (p)

+
{

n∑
i=m

X(i)

[
1 + k2

(
n−i
n

)k−1 − 2(1 − p)k−1
]} (7.64)

where m = [np]+, k ≥ 2.
The scale invariant version of test is the statistic defined as L∗

k = Lk/X̄.
When k = 2, the test reduces to that of Lim and Park (1995).

7.7.3 Tests of IDMRL When Both p and τ Are Unkown

In practice, information regarding the change point is usually lacking thus
there is a need for devising tests without known p or τ .

Aly (1990) considered a test for IDMRL using the test statistic

t2 = sup
0<p<1

n1/2�(p, Fn)/X̄ (7.65)

where

�(p, F ) = −
∫ p

0
h1(y) dy + 2

∫ 1

p

h2(y) dF−1(y). (7.66)

Here
h1(y) = (1 − y) {1 + log(1 − y)} , 0 ≤ y ≤ 1,

and
h2(y) = h1(y) − (1 − y) log(1 − p), 0 ≤ y ≤ 1.

Hawkins et al. (1992) constructed two tests based on estimates of func-
tionals that distinguish F being exponential from F being IDMRL. These
functionals are, for F ∈ IDMRL and tests 1 and 2, respectively,



230 7 Tests of Stochastic Ageing

φ1(F ) = sup{ψ
(1)
t (F ) : 0 ≤ t ≤ F−1(1 − ε)},

φ2(F ) = sup{ψ
(2)
t (F ) : t ≥ 0},

where ε > 0 is a small fixed number,

ψ
(1)
t (F ) = µ(t) − µ,

ψ
(2)
t (F ) =

∫ t

0

{
µ(x)f(x) − F̄ (x)

}
F̄ (x) dx −

∫ ∞

t

{
µ(x)f(x) − F̄ (x)

}
F̄ (x) dx.

The two test statistics are defined as

T (i)
n = n1/2X̄−1

n φi(Fn), i = 1, 2. (7.67)

Monte Carlo power comparisons of their tests with those of Guess et al. (1986)
tests indicate that test 2 generally dominates test 1 and compares well with
the latter tests when τ occurs below the 75th quantile of F . When τ exceeds
the 75th quantile, neither test 1 nor test 2 clearly dominates the other, and
neither compares well with those of Guess et al. (1986).

Na and Lee (2003) also devised a family of test statistics motivated by the
behavior of the derivative of MRL:

µ′(t) =
f(t)ν(t) − F̄ 2(t)

F̄ (t)2
, (7.68)

where ν(t) =
∫∞

t
F̄ (x) dx. Thus, µ(t) is decreasing (increasing) if and only if

f(t)ν(t) ≤ (≥)F̄ (t)2. They then considered a measure of deviation from the
null hypothesis H0 in favor of H1 given by

Tj(F ) = sup{φj(x; F ) : x ≥ 0}, j ≥ −1,

where

φj(x; F ) =
∫ x

0
F̄ j(t)[f(t)ν(t) − F̄ 2(t)] dt +

∫ ∞

x

F̄ j(t)[f(t)ν(t) − F̄ 2(t)] dt.

They showed that the derivative of φj(t; F ) has the same sign as µ′(t) and
hence F is IDMRL but not exponential if φj(x; F ) is strictly increasing (de-
creasing) for x < τ (x > τ) and Tj(F ) = φj(τ ; F ). The proposed statistics are
defined by

T ∗
j =

√
n Tj(Fn)

X̄
, (7.69)

where Fn(t) denotes the empirical distribution function. The asymptotic null
distributions of the test statistics were derived and their asymptotic critical
values were obtained based on Durbin’s approximation method.
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7.7.4 Tests for NWBUE Class

The NWBUE (NBWUE) class was defined by Definition 4.3 in terms of the
mean residual life µ(t). Recall, a distribution F ∈ NWBUE has a change point
τ such that µ(t) ≥ µ for t < τ and µ(t) ≤ µ for x ≥ τ . Mitra and Basu (1995)
considered the problem of estimating the change point τ . Hawkins and Kochar
(1997) have introduced a test which is complicated and its asymptotics rely
heavily on the theory of the empirical scaled total time on test transform.

Anis and Mitra (2005) developed a simple test based on the property that
the rth moment of F ∈ NWBUE is dominated by the rth moment of G where

G(t) =
{

0, t < τ
1 − e−(t−τ)/µ, t ≥ τ ;

and F is the exponential distribution if F and G share a common rth moment
for some r > 0. Here µ is the mean of both F and G. They then developed a
measure of deviation from the exponential for a NWBUE distribution based
on the difference of their rth moment. The test was shown to be consistent
and the asymptotic distribution of the test statistic has been obtained. The
performance of the test against other alternatives has been studied by means
of simulations.

A summary of tests of non-monotonic MRL is now given in Table 7.4 below
for ease of reference.

7.8 Tests of Exponentiality Versus Bathtub Distributions

In this section, we discuss tests of an important class of life distributions that
do not have monotonic failure rates. Recall in Definition 3.4, we say that F
is a BT (bathtub shaped failure rate) distribution if its failure rate function
decreases at first and then remains constant for a period and finally it increases
with time. The BT distribution considered below has only one turning point,
i.e., the BT shape is defined according to Section 2.2.1.

7.8.1 Test Based on Total Time on Test (TTT) Transform

Bergman (1979) suggested a test based on the TTT-(total time on test) trans-
form for testing exponentiality against bathtub shaped distributions. The con-
cept of TTT-transform was introduced in Section 2.5.6. Aarset (1985) derived
the exact distribution of this test under the null hypothesis of exponentiality.

Xie (1989) used also the TTT-plot for testing exponentiality against BT
alternative:

T =
n∑

j=1

ajUj , Ui = τ(X(i))/τ(X(n)) (7.70)

where τ(X(i)) is defined by (7.5) with appropriately chosen ai .
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Table 7.5. Tests on Exponentiality Versus Trend Change in MRL

Test
Name

Basic Statistics/Special character-
istic

Ageing
Alter-
natives

Key References

IDMRL(τ)
Procedure

τ is assumed known. Based on Tn test
which is asymptotically equivalent to V ∗

IDMRL Guess et al. (1986)

IDMRL(p)
Procedure

τ is unknown but p is known
Use V ∗ test

IDMRL Guess et al. (1986)

T ∗
n Test based on Un of Ahmad’s (1992).

ρ is assumed known.
IDMRL
(DMRL)

Lim and Park (1995)

L∗
k Test based on generalizing T ∗

n .
ρ is assumed known.

IDMRL
(DMRL)

Lim and Park (1998)

T n
1 , T n

2 Unknown change point τ and
unknown proportion ρ,
T

(i)
n = n1/2X̄−1

n φi(Fn), i = 1, 2,
φi being functionals.

IDMRL Hawkins et al. (1992)
Na and Lee (2003)

L∗
k For both censored and uncensored data.

Motivated by Ahmad’s Un test.
p is assumed known but τ unknown.

IDMRL
(DIMRL)

Lim and Park (1998)

As we pointed out in Section 7.4.2 that τ is the empirical version of the
TTT-transform that corresponds

H−1
F (t) =

∫ F −1(t)

0
F̄ (u) du,

and thus Uj is the empirical scaled TTT-transform that corresponds to

φ(t) = H−1
F (t)/H−1

F (1).

Now for 0 ≤ u ≤ 1, d
dtH

−1
F (u) = 1

r(F −1(u)) , i.e.,

φ′(u) =
1

r(F−1(u))H−1
F (1)

where r(·) is the failure rate function. Since F (t) is increasing in t, it follows
that F−1(u) is also increasing in u. We note that as

φ′′(u) =
r′(F−1(u))(1 − u)

r3(F−1(u))
,
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it is obvious φ is concave for F being IFR and convex for F being DFR. For
a bathtub distribution, Barlow and Campo (1975) showed that (see Theorem
2.7 (vi)), F ∈ BT if φ has only one reflection point u0 such that 0 < u0 < 1
and it is convex on [0, u0] and concave on [u0, 1].

We thus expect the empirical TTT-transform cure of a bathtub distribu-
tion to have an s-shape, that is, we anticipate the TTT-plot to lie below the
450-line in its leftmost part and above the line in its rightmost part (Aarset,
1987; Kunitz, 1989). The curves in Figure 7.1 below summarize the situations
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Fig. 7.1. Plot of φF against time t

Aarset (1987) also derived another test that is based on a TTT-plot which
is equivalent to the well known Cramér-von-Mises test statistic. The proposed
test statistic is

Rn =
n∑

i=1

= Uj (Uj − (2j − 1)/n) + n/3

where Uj is defined by (7.70). The null hypothesis is rejected when Rn is large.
A Monte Carlo power comparison of the two tests were performed by

Kunitz (1989).
Xie (1987) also used the total time on test concept for testing exponen-

tiality against some partially monotone alternatives. Such ageing behaviours
may arise in practical problems related to age replacements, burn-in and ac-
celerated life testing.
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7.8.2 Park’s Test for BT

Apart from tests based on TTT transforms, there are other methods available
for testing constant failure rate against bathtub shape. For example, Park
(1988) used the following statistic:

Let X(1) < X(2)... < X(n) denote the order statistics corresponding to the
random sample from F and let Fn be the empirical cdf. The test statistic is

Tn ≡
k−1∑
i=1

n−2[4i − (2 + p)n]X(i)

+
n∑

i=k

n−2[−4i + (3 + p)n]X(i) − F−1
n (p)(1 − p)(1 − 2p)

(7.71)

where k ≡ [np]+, F−1
n (p) = X(k). (Recall, [x]+ denotes the smallest integer

greater than or equal to x, p = F (t0) = the proportion of population that
dies at or before the change point t0).

Instead of using Tn, Park (1988) used the following scale invariant test

T ∗
n = Tn/X̄, X̄ =

n∑
i=1

Xi/n. (7.72)

The test rejects H0 in favour of H1 : F being BT at the approximate α
level if

√
nT ∗

n/σ0 ≥ zα, where zα is the upper α-quantile of the standard
normal distribution. We note in passing that σ0 = 1/3 − p + p2.

Although our main aim in this section is to study the testing procedures
for BT, it was shown in Theorem 4.2 that under the condition µr(0)>1, F ∈
BT implies that F is IDMRL. We have discussed several test procedures for
the IDMRL class in Section 7.7. In particular, we note that Guess et al. (1986)
have developed two testing procedures for H0: F is exponential versus H1: F
is IDMRL; one when the change point is known and the other with unknown
change point but known p, the proportion of the population that die before
the change point t0. For other test statistics, see Lim and Park (1995, 1998).

7.8.3 Graphical Tests for BT Failure Rate Distributions

Apart from the TTT-plot mentioned earlier, there are other graphical tools
for identifying bathtub shaped life distributions. For example, Kunitz and
Pamme (1991,1993) proposed a plotting technique named by the ‘ageing plot’
which is a generalization of the TTT-plot. Kunitz and Pamme (1991) consid-
ered another plotting technique which is well known in reliability literature,
namely, the so-called Weibull probability plot (WPP) defined in Section 5.3.
These authors claimed that “convex shapes in Weibull probability plot might
indicate an underlying distribution with a trend change from DFR- to IFR-
behaviour (bathtub-shaped hazard rates).”

Pamme and Kunitz (1993) discussed the combined application of graphical
tools and parametric estimation to identify a bathtub shaped failure distrib-
ution.
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For another graphical test, see Kulasekera and Saxena (1991).

7.9 Other Miscellaneous Tests

In this section we consider some tests that do not fit in with the rest but
nevertheless worth mentioning.

7.9.1 Test of Change Point of Failure Rate

Matthews and Farewell (1982) considered the testing for a constant hazard
against a change point alternative of a model specified by the failure rate
function

r(t) =
{

λ, for t ≤ τ
ρλ, for t > τ.

(7.73)

Let the loglikelihood function be denoted by L(λ, ρ, τ) and the loglikeli-
hood test statistic for testing τ = 0 (no turning point) is ∆0 = L(λ̂, ρ̂, τ̂) −
L(θ̂, 1, 0), where λ̂, ρ̂, and τ̂ are the maximum likelihood estimators and θ̂ is the
maximum likelihood estimator of the simple exponential model. The authors
concluded that 2∆0 ∼ χ2

1. See also Yao (1986) for other details.

7.9.2 Aly’s Tests for Change Point

A different type of null hypothesis has been proposed as follows. Let [x] denote
the integer part of x. Aly (1998) proposed a test for testing H0: Xi have an
unknown common distribution function F versus H1: At most one change
point such that Xi, i ≤ [nλ], have common distribution function F1 and
Xi, [nλ] < i ≤ n, have common distribution F2. Here λ ∈ (0, 1) and µ1(t) ≥
µ2(t), µi(t), i = 1, 2 being the respective MRL. Three nonparametric test
statistics q1,n, q2,n and q3,n were proposed and their limiting distributions
were obtained.

7.9.3 Testing Whether Lifetime Distribution Is Decreasing
Uncertainty

Ebrahimi (1997) proposed a distribution-free test the hypothesis H0 that un-
certainty about the residual lifetime of a component does not change, i.e., F is
exponential against the alternative hypothesis H1 that uncertainty decreases
over time.

We do not think the concept of uncertainty is sufficiently developed so we
do not think the above test would generate much interest at present.
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7.10 Final Remarks

Which test should we use if we have several competitors for testing exponen-
tiality against the same ageing alternative? This is obviously a good question
although there is no definite answer. Methods can be compared based on
statistical point of view, but one has to consider the ease of implementation
and interpretation. Statistically, there is a general broad principle we may
apply for any statistical test. When a new statistic is proposed, consistency,
unbiasedness and asymptotic normality are usually established. If there are
already other existing tests for the same ageing alternatives, Pittman’s asymp-
totic relative efficiency and power were computed and compared. Invariably,
the performance and comparison are often studied by means of simulations.
We may add that a test with good power characteristic or high efficiency may
not attract attention unless it can be implemented easily. Many of the tests
presented in this chapter are, in our opinion, are difficult to use. More research
in this area should probably be carried out.

A more important question to ask in practice is what alternatives we are
interested in. Often, monotonic failure rates are obvious choices. The bathtub-
shaped failure rate could be of interest to practitioners as well. Other age-
ing classes are of less importance although, except possibly for NBU/NBUE
classes which are useful in replacement models and decision making.
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Bivariate and Multivariate Ageing

8.1 Introduction

Various univariate classes of ageing have been introduced and studied in Chap-
ters 2-4. Also, statistical tests of these univariate ageing concepts have been
considered in Chapter 7. Naturally, one would desire to generalize these con-
cepts to multivariate lifetimes because a complex system usually consists of
several components which are working under same environment and hence
their lifetimes are generally dependent. Indeed, many such bivariate and mul-
tivariate ageing concepts have already appeared in the literature for a long
time. Two pioneering pieces of work on multivariate ageing concepts were Har-
ris (1970) and Thompson and Brindley (1972). Thus, a discussion on these
and other concepts and their tests is indeed warranted. The following aspects
of bivariate ageing concepts will be considered in this chapter:

• Bivariate reliability classes
• Bivariate IFR
• Bivariate IFRA
• Bivariate NBU
• Bivariate NBUE and HNBUE
• Bivariate decreasing mean residual life
• Bayesian notions of multivariate ageing
• Tests of bivariate ageing
• Conclusions

In this chapter, a letter ‘B’ is sometimes added as a prefix to a traditional
ageing class. This is used to indicate a bivariate extension to an existing uni-
variate ageing concept. Thus BIFR stands for bivariate increasing failure rate.
Since there are often several possible definitions of a bivariate ageing class,
only the most ‘natural’ or popular version is given this prefix.

Since a multivariate version is often an easy extension of a bivariate case,
we will not give a separate treatment in this chapter.
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8.2 Bivariate Reliability Classes

In dealing with multicomponent systems, one wants to extend the whole uni-
variate ageing properties to bivariate and multivariate distributions. Con-
sider, for example, the IFR concept in the bivariate case. Let us use the no-
tation F̄ (x1, x2) to mean the probability that item 1 survives longer than
time x1 and item 2 survives longer than time x2. We note in particular,
F̄ (x1, x2) �= 1 − F (x1, x2). Instead, the the joint survival function F̄ (x1, x2)
is related to the joint distribution function F (x1, x2) through

F̄ (x1, x2) = Pr(X > x1, Y > x2) = 1 − FX(x1) − FY (x2) + F (x1, x2).

Then a possible definition of bivariate IFR is that F̄ (x1 + t, x2 + t)/F̄ (x1, x2)
decreases in x1 and x2 for all t ≥ 0. But various other definitions of bivariate
IFR are also possible, and a multiplicity of possible definitions also occur with
the bivariate extensions of the other univariate ageing concepts. The non-
unique definition on one hand provides the researchers ample opportunities
for further development, on the other hand confuses the users.

Although we discuss only bivariate ageing concepts in this chapter, most
of these concepts are readily extendable to higher dimensions.

Multivariate version of IFR, IFRA, NBU, NBUE, DMRL, HNBUE and
of their duals have been defined and their properties have been developed
by several authors. For an earlier bibliography of available results, see for
example, Block and Savits (1981a,b), Basu et al. (1983), and Hutchinson and
Lai (1990).

8.2.1 Different Alternative Requirements

In dealing with multicomponent systems, it is of great interest to obtain suit-
able bivariate and multivariate extensions of the univariate ageing properties
mentioned above. In each case, however, several definitions are possible, be-
cause of different requirements imposed by various authors. This can be il-
lustrated in the papers by Buchanan and Singpurwalla (1977) and Esary and
Marshall (1979).

The multivariate definitions of the classes (IFR, IFRA, NBU, NBUE, and
DMRL) given by Buchanan and Singpurwalla (1977) were motivated by the
following requirements:

• The definitions should be based upon conditions imposed on the joint sur-
vival function, rather than on the corresponding random variables.

• The definitions should coincide with those that are accepted for a single
variable.
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• The definitions should lead to a chain of implications which is analogous to
the chain of implications connecting the corresponding univariate classes
as given in Chapter 2.

• The arguments which prompt the definitions should be natural extensions
of those used for the various univariate definitions.

Specifically with regard to IFRA, Esary and Marshall (1979), in contrast
to these requirements, gave six multivariate IFRA definitions which are not
based upon requirements on the joint survival function, but on generaliza-
tions of those reliability properties which explain why the univariate IFRA
concept is so important (e.g., that coherent systems have IFRA life distribu-
tions whenever their components have independent IFRA life distributions).
Further, Esary and Marshall (1979) did not intend to meet the third require-
ment of Buchanan and Singpurwalla (1977).

We note that if the marginal distributions of bivariate V distributions are
also univariate V, Buchanan and Singpurwalla (1977) called F jointly V, where
V denotes IFR, IFRA, NBU, NBUE, or DMRL. Suresh (2001) showed that
four of these strong bivariate ageing distributions (i.e., all but excluding bi-
variate IFRA) satisfy a simple moment inequality E(X2Y 2) ≤ 4 {E(XY )}2

.

8.3 Bivariate IFR

The univariate IFR class of distributions was well studied in Section 2.5.
Harris (1970) introduced the quantity

F̄ (x1 + t1, x2 + t2)/F̄ (x1, x2) (8.1)

which is seen to be a direct bivariate analogue of the univariate conditional
survival function F̄ (x+t)/F̄ (x). Equation (8.1) may be interpreted as the joint
probability of surviving additional ti units (i = 1, 2) given that component i
has survived until time xi.

Recall from Definition 2.1, a univariate distribution F is IFR if F̄ (x +
t)/F̄ (x) decreases in x for every t. Then, one definition of F being a bivariate
increasing failure rate distribution is that (8.1) decreases in x1 ≥ 0, x2 ≥ 0,
for all t1 ≥ 0, t2 ≥ 0.

There are several variants of the above, and we shall list only four of them
here.

1. F̄ (x + t, x + t)/F̄ (x, x) decreases in x ≥ 0 for all t ≥ 0.

2. F̄ (x + t1, x + t2)/F̄ (x, x) decreases in x > 0 for all t1, t2 ≥ 0.

3. F̄ (x1 + t, x2 + t)/F̄ (x1, x2) decreases in x1, x2 ≥ 0 for all t ≥ 0.
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4. F̄ (x1 + t1, x2 + t2)/F̄ (x1, x2) decreases in x1, x2 ≥ 0 for all t1, t2 ≥ 0.

Version (3) is due to Brindley and Thompson (1972); (4) is due to Harris
(1970) and (1), (2) are due to Marshall (1975a). Many other versions are
possible, but it appears that version (3) is perhaps the most important among
them. One reason for its popularity is because this condition can be interpreted
as the joint lifetime distribution of a series system of two components of
different ages decreases stochastically as the ages of the components increase.
Other reasons for its importance, according to Barlow and Proschan (1981,
pp. 152–154), are:

• The marginal lifetimes X and Y have the univariate IFR property.

• And so does min(X, Y ).

• There exists a sensible definition of multivariate IFR such that it is satis-
fied by the union of two mutually independent sets having property (3).

• The ratio F̄ (x1 + t, x2 + t)/F̄ (x1, x2) depends on t but not on x1 or x2,
if and only if the distribution is the bivariate exponential of Marshall and
Olkin (1967).

Because of its prominence, we may use BIFR to designate version (3) of bi-
variate IFR concept.

A notion upon which other versions of bivariate IFR have been based
is a generalized form of the univariate hazard rate (failure rate) r(x) =
fX(x)/F̄X(x). Basu (1971) defined the bivariate failure (hazard) rate to be

r(x1, x2) = f(x1, x2)/F̄ (x1, x2). (8.2)

But Johnson and Kotz (1973) opined that a multivariate generalization
ought appropriately to be a vector, not a scalar. So they defined

ri(x1, x2) =
∂

∂xi
log F̄ (x1, x2) =

∂

∂xi
F̄ (x1, x2)/F̄ (x1, x2) (8.3)

for i = 1, 2. The quantity r(x1, x2) = (r1(x1, x2), r2(x1, x2)) is called the
hazard gradient (see, e.g., Block, 1977a, Marshall, 1975b, and Johnson and
Kotz, 1975). According to the idea of Johnson and Kotz (1973), then, bivariate
IFR would imply that for all (x1, x2), r1 is an increasing function of x1, and
r2 is an increasing function of x2. Block (1977b) showed that F has property
(3) if and only if r(x1 + t, x2 + t) increases in t for all x1, x2 ≥ 0.

For further developments with regard to both f(x1, x2)/F̄ (x1, x2) and
r(x1, x2), see, for example, Shanbhag and Kotz (1987).

Savits (1985) also defined a multivariate IFR class based on an extension
of the characterization of univariate IFR in terms of the log concavity of the
survival function F̄ . More precisely, a non-negative random vector T is said to
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have a multivariate increasing failure rate distribution if and only if E[h(x, T )]
is log concave in x for all functions h(x, t) which are log concave in (x, t) and
are non-decreasing and continuous in t for each fixed x.

Shaked and Shanthikumar (1991b) also defined a multivariate IFR based
on multivariate stochastic comparisons of residual lifetimes.

For Bayesian approach of multivariate IFR see Section 8.11 and Section
9.7 for details.

Remarks

• Apart from those discussed above, there are several other bivariate and
conditional failure rate functions described in Cox (1972) and Shaked and
Shanthikumar (1987).

• A multivariate ageing concept differs from the univariate one which can be
described in general by the shape of failure rate function or the mean resid-
ual life function. This is because a univariate life distribution is uniquely
determined by these functions if they exist. Unfortunately, this is not
the case for bivariate ageing since there are various ways to define a bi-
variate failure rate function. Consider the definition of a bivariate failure
rate r(x, y) by Basu (1971) as given in (8.2):

f(x, y) =
∂2F (x, y)

∂x∂y
= r(x, y) · F̄ (x, y).

The solution for the above equation has not yet been found so one cannot
build a bivariate reliability model from the failure rate function as is done
in the univariate case.

• It is obvious that version (4) is stronger than version (3) which is stronger
than both (1) and (2).

• In this chapter, we generally do not discuss the relative strength of different
versions of a bivariate ageing concept.

• Negative bivariate ageing concepts can be defined by reversing the ap-
propriate inequalities and changing ‘decreasing’ to ‘increasing’ and vice
versa.

8.4 Bivariate IFRA

The univariate IFRA class was discussed in Section 2.5. As with the bivariate
IFR, several possible definitions for bivariate IFRA have been proposed by
Esary and Marshall (1979) by extending the properties that characterize the
univariate IFRA. Block and Savits (1980b) also defined a bivariate IFRA
condition designated by BIFRA which was an extension to their particular
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characterization of the univariate IFRA given in Block and Savits (1976). Let
T=(X, Y ) be a nonnegative vector with survival function F̄ (t1, t2) = Pr(X >
t1, Y > t2). The following is their definition of a bivariate IFRA.

Definition 8.1: The vector T (or its distribution function F ) is said to be
bivariate IFRA if

Eα[h(X, Y )] ≤ E[hα(X, Y )/α], (8.4)

for all continuous nonnegative increasing functions h and all α such that
0 < α < 1. Although mathematically uncomplicated, the above definition
seems to lack a meaningful physical interpretation. Since the class of all con-
tinuous nonnegative increasing functions in R is a subclass of all continuous
nonnegative increasing functions in R2, it is clear that the two component
lifetimes are individually IFRA.

Other conditions for bivariate IFRA are given below using the same enu-
meration format as Esary and Marshall (1979) and Block and Savits (1982)
(i.e., having condition Σ listed between conditions C and D):

A. F̄α(t1, t2) ≤ F̄ (αt1, αt2), where again 0 < α ≤ 1, for all t1 ≥ 0, t2 ≥ 0.

B. T is such that each monotone system formed from T is univariate IFRA.

C. T is such that there exist independent random variables X1, X2, ..., Xk and
monotone life functions τ1 and τ2, such that Ti = τi(X1, X2, ..., Xk).

Σ. T is such that there exist independent IFRA random variables X1, X2, ..., Xk

and nonempty sets Si of {1, 2..., k} such that Ti =
∑

j∈Si
Xj for i = 1, 2.

D. T is such that there exist independent IFRA random variables X1, X2, ..,
Xk and nonempty sets Si of {1, 2,..., k} such that Ti = minj∈Si Xj for
i = 1, 2.

E. T is such that min(T1, T2) is IFRA.

F. T is such that min(α1T1, α2T2) is IFRA for all α1 ≥ 0, α2 ≥ 0.

Conditions A, B, C, D, E, and F have been given by Esary and Mar-
shall (1979), and condition Σ was given by Block and Savits (1979). See also
Buchanan and Singpurwalla (1977). Note that Ti in conditions C, E, and D
represents the lifetime of a subsystem, whereas Xi denotes the lifetime of a
basic component.

The following relationships hold between BIFRA in the sense of Block and
Savits (1980b) as defined by (8.4) and the seven conditions above:
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D Σ F
⇓ ⇓ �
C ⇒ BIFRA ⇒ A

⇓ ⇓
B ⇒ E

With one possible exception, the above chain is complete, i.e., no more im-
plications are possible. The exception concerns whether Σ ⇒ C holds, though
Block and Savits (1982) conjectured that it does not.

An important property common to all these versions of bivariate IFRA is
that the marginals are univariate IFRA (Block and Savits, 1982).

We note that condition A is the second weakest version among those listed
above. It is a simple extension of an alternative definition of the univariate
IFRA in Definition 2.2. Condition E is the weakest and the bivariate expo-
nential of Marshall and Olkin (1967) given by (8.12) satisfies this condition
because min(T1, T2) is exponential (Block, 1977c). Block and Savits, (1980b)
showed that the bivariate exponential of Marshall and Olkin as well as several
others are BIFRA.

Shaked and Shanthikumar (1986) gave a review on bivariate IFRA. A
paper that includes another notion of bivariate IFRA is that of Mukherjee
and Chatterjee (1988). See also Shaked and Shanthikumar (1988).

8.5 Bivariate NBU

The univariate NBU is defined by Definition 2.4. There are also several ver-
sions of bivariate NBU based on the inequality

F̄ (x1 + t1, x2 + t2)
F̄ (x1, x2)

≤ F̄ (x1, x2), x1, x2, t ≥ 0. (8.5)

This can be interpreted as the conditional survival probability of two compo-
nents of different ages being less than the corresponding survival probability
F̄ (x1, x2) of two new components.

Consider the following five versions:

1. F̄ (x + t, x + t) ≤ F̄ (x, x)F̄ (t, t) for all t, x ≥ 0.

2. F̄ (x + t1, x + t2) ≤ F̄ (x, x)F̄ (t1, t2) for all t1, t2, x ≥ 0.

3. F̄ (x1 + t, x2 + t) ≤ F̄ (x1, x2)F̄ (t, t) for all t, x1, x2 ≥ 0.

4. F̄ (x1 + t1, x2 + t2) ≤ F̄ (x1, x2)F̄ (t1, t2) for all t1, t2, x1, x2 ≥ 0.

5. F̄ (x1 + t1, x2 + t2) ≤ F̄ (x1, x2)F̄ (t1, t2) for all t1, t2, x1, x2 ≥ 0 which
satisfy (xi − xj)(ti − tj) ≥ 0 for i, j = 1, 2.
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The first four were given by Buchanan and Singpurwalla (1977), and con-
dition (5) by Marshall and Shaked (1979). Version (3) has perhaps the great-
est intuitive appeal. In Basu and Ebrahimi (1984b), version (3) is labeled as
BNBU-I whereas version (1) is labelled as BNBU-II. Clearly, the bivariate
exponential distribution (8.12) of Marshall and Olkin (1967) designated by
BVE is the boundary member of BNBU-I and BNBU-II.

Another definition of bivariate NBU given by Marshall and Shaked (1982)
is as follows:

A bivariate vector T has a bivariate NBU distribution if

Pr[T ∈ (a + β)A] ≤ Pr(T ∈ aA) Pr(T ∈ βA), (8.6)

for every α ≥ 0, β ≥ 0 and every region A in the positive quadrant for
which X exceeds some value XA and Y exceeds some value YA. Marshall and
Shaked (1982) gave several conditions equivalent to it, and they showed that
it is implied by Block and Savits’ (1980b) bivariate IFRA given in (8.4).

Ghosh and Ebrahimi (1983) derived some multivariate NBU and NBUE
distributions from shock models.

For several other definitions of multivariate NBU, see Marshall and Shaked
(1986a), who also established relationships between them. For a review, see
Marshall and Shaked (1986b).

8.6 Bivariate NBUE and HNBUE

Less attention have been given to bivariate NBUE, DMRL, or HNBUE con-
cepts than to the preceding three bivariate ageing classes. It was pointed out
by Block and Savits (1981a) that various versions of bivariate NBUE can be
obtained by integrating versions 1-4 of bivariate NBU given in the last section.
For instance, the third one will become the condition∫ ∞

0
F̄ (x1 + t, x2 + t) dt ≤ F̄ (x1, x2)

∫ ∞

0
F̄ (t, t) dt (8.7)

for all x1, x2 ≥ 0. This can be interpreted as a used series system of two
components of ages x1 and x2, respectively, having a smaller remaining life
than a new system. Version (4) of bivariate NBUE is given by (8.19)

For convenience, we use BNBUE to denote the the bivariate NBUE concept
given by (8.7) above.

As to bivariate HNBUE, Basu et al. (1983) gave eight definitions, the
first group of four being due to Klefsjö (1980) and based upon a multivariate
version of the condition

∫∞
x

F̄ (t)dt ≤ µ exp (−x/µ) , x ≥ 0, and the second
group of four being based upon a multivariate version of the mean residual
life definition. Basu et al. (1983) gave some closure properties for the second
group of classes. See also Basu and Ebrahimi (1986).

A popular version of bivariate HNBUE to be designated by BHNBUE is
now defined as
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Definition 8.2: F is BHNBUE if

∫ ∞

0
F̄ (x1 + t, x2 + t) dt ≤

∫ ∞

0
F̄0(x1 + t, x2 + t) dt, x1, x2 ≥ 0 (8.8)

where F̄0 is the survival function of the BVE defined by (8.15).

8.7 Bivariate Decreasing Mean Residual Life

Univariate DMRL is defined by Definition 2.3 and it is shown that DMRL
⇒ NBUE. Now the bivariate NBUE condition (8.7) can be written as∫∞
0 F̄ (x1 + t, x2 + t) dt/F̄ (x1, x2) ≤ ∫∞

0 F̄ (t, t) dt. Then a moderately strong
bivariate DMRL can be defined as the conditional distribution∫ ∞

0
F̄ (x1 + t, x2 + t) dt/F̄ (x1, x2) decreases in x1, x2 ≥ 0.

Four other versions of bivariate DMRL can be derived in a similar manner
from the the corresponding four versions of bivariate NBUE, see Buchanan
and Singpurwalla (1977) for details.

Arnold and Zahedi (1988) introduced a new multivariate remaining life
function which is different from that of Buchanan and Singpurwalla (1977).
Based on this new definition, Zahedi (1985) put forward four classes of DMRL
distributions; the relations among them were also established, but their rela-
tionships with the ideas of Buchanan and Singpurwalla (1977) were not given.
The first two of these four definitions are given below.

Definition 8.3: F is said to BDMRL-I if

µi(x1 + t1, x2 + t2) ≤ µi(x1, x2), t1, t2 ≥ 0, i = 1, 2; (8.9)

where µ1(x1, x2) = E(X − x1 |X > x1, Y > x2) and µ2(x1, x2) = E(Y −
x2 |X > x1, Y > x2) are the conditional mean residual life functions intro-
duced previously in Section 4.11.

It is well known, see Gupta (2003) for example, that µ1(x1, x2) and
µ2(x1, x2) jointly determine F̄ (x1, x2). Moreover, these conditional mean
residual life functions and the hazard gradient defined in (8.3) are connected
by the relation

r1(x1, x2) =
1 + (∂/∂x1)µ1(x1, x2)

µ1(x1, x2)
, r2(x1, x2) =

1 + (∂/∂x2)µ2(x1, x2)
µ2(x1, x2)

.

Definition 8.4: F is said to BDMRL-II if

µ1(x1 + t, x2) ≤ µ1(x1, x2); µ2(x1, x2 + t) ≤ µ2(x1, x2), t ≥ 0. (8.10)
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Zahedi (1985) showed that BDMRL-I ⇒ BDMRL-II, but the converse is not
true.

Bandyopadhyay and Basu (1995) showed that the equality in (8.9) holds
if and only if X and Y are independent. Also, they showed that equality in
(8.10) holds if and only if F follows the Gumbel’s (1960) type I bivariate
exponential distribution given by

F̄ (x1, x2) = exp{−λ1x1 − λ2x2 − δx1x2}, λ1, λ2, δ > 0. (8.11)

We now give a list of references to each of the bivariate ageing concepts in
Table 8.1 below.

Table 8.1. Bivariate versions of univariate ageing concepts

Ageing References

Bivariate IFR Harris (1970), Brindley and Thompson (1972), Basu (1971),
Marshall (1975a), Marshall and Olkin (1967), Block (1977b),
Johnson and Kotz, (1973, 1975), Savits (1985), Shanbhag and
Kotz (1987), Bassan and Spizzichino (2001), Bassan et al.
(2002).

Bivariate IFRA Block and Savits (1980a), Esary and Marshall (1979),
Buchanan and Singpurwalla (1977), Block and Savits (1982),
Shaked and Shanthikumar (1986), Marshall and Shaked (1979)
Mukherjee and Chatterjee (1988).

Bivariate NBU Buchanan and Singpurwalla (1977), Marshall and Shaked (1982,
1986a,b).

Bivariate NBUE Block and Savits (1981a,b), Hanagal (1998).

Bivariate DMRL Buchanan and Singpurwalla (1977), Arnold and Zahedi (1988),
Zahedi (1985), Bassan et al. (2002).

Bivariate HNBUE Basu et al. (1983), Klefsjö (1980), Basu and Ebrahimi (1986).

8.8 Tests of Bivariate Ageing

In Chapter 7, we discussed various tests for different univariate ageing alter-
natives.

Let X and Y denote the lifetimes of two components having joint distrib-
ution function F (x1, x2) and joint survival function F̄ (x1, x2).
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In testing bivariate ageing properties, there are two problems facing us. (i)
Which bivariate exponential distribution is the null distribution? (ii) Which
version of bivariate ageing property in a given class we are dealing with?
(Remember there are several versions of bivariate IFR, bivariate NBU, etc.)

It seems to us all the authors used the bivariate exponential distribution
of Marshall and Olkin (1967) (denoted by BVE) as the null distribution. This
joint distribution has the survival function given by

F̄ (x1, x2) = exp[−λ1x1 − λ2x2 − λ12 max(x1, x2)], x1, x2 ≥ 0 (8.12)

where λ1, λ2 > 0, λ12 ≥ 0.
This bivariate distribution is chosen presumably because of (a) it was

derived from a reliability context, (b) it has the property of bivariate lack of
memory:

F̄ (x1 + t, x2 + t) = F̄ (x1, x2)F̄ (t, t). (8.13)

Clearly, the BVE is the boundary member of BNBU-I and BNBU-II. From
condition (3) in Section 8.3, it is also clear that the BVE is a boundary mem-
ber of BIFR (bivariate increasing failure rate). Without getting into details,
we now list several tests for testing H0: F is the BVE versus the alterna-
tive hypothesis H1: F belongs to one of the classes given in the forthcoming
subsections below.

H1: F is bivariate increasing failure rate (BIFR)

Both Sen and Jain (1991c) and Bandyopadhyay and Basu (1991) developed
some type of U -statistic for testing F being the BVE versus F being BIFR as
defined by version (3) in Section 8.3, i.e.,

F̄ (x1 + t, x2 + t)/F̄ (x1, x2) decreases in x1, x2 ≥ 0 for all t ≥ 0. (8.14)

H1: F is bivariate increasing failure rate in average (BIFRA)

Recall, we have referred to BIFRA as the bivariate IFRA defined by Block
and Savits (1980b). However, it seems to us the weaker version (condition A)
of the bivariate failure rate average definitions specified by

F̄α(t1, t2) ≤ F̄ (αt1, αt2), 0 < α ≤ 1, for all t1 ≥ 0, t2 ≥ 0, (8.15)

is easier to verify. This version is designated as condition A in Section 8.4.
Basu and Habibullah (1987) proposed a test statistic for testing BVE

against condition A. The test was based on the measure

∆α(F ) =
∫ ∞

0

∫ ∞

0
[F̄ 1/α(αx, αy) − F̄ (x, y)] dF (x, y),
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where F (x, y) = Pr(X ≤ x, Y ≤ y). Hanagal and Ramanathan (1998) also
developed some form of U -statistic to test the hypothesis that the lifetime
distribution is BVE against the alternative (8.15) when the sample is either
univariate or bivariate randomly censored.

H1: F is a bivariate new better than used (BNBU)

Basu and Ebrahimi (1984b) proposed two tests for testing F is a bivariate new
better than used (BNBU-I and BNBU-II). The first test statistic is called the
Jn which is the extension of the Jn-test of Hollander and Proschan (1972)
(see Section 7.4.4) to the bivariate case.

Sen and Jain (1991a) also proposed a test statistic based on a U -statistic
for testing BVE against BNBU-I (version (3) of bivariate NBU), i.e., F satisfies
the inequality

F̄ (x1 + t, x2 + t) ≤ F̄ (x1, x2)F̄ (t, t), t, x1, x2 ≥ 0. (8.16)

Both Basu and Ebrahimi (1984) and Sen and Jain (1991a) used the caterpillar
data of Barlow and Proschan (1977) to illustrate their methods.

On the other hand, Hanagal (1998) also proposed a test for testing BVE
against version (4) of bivariate NBU, i.e., F satisfies

F̄ (x1 + t1, x2 + t2) ≤ F̄ (x1, x2)F̄ (t1, t2), x1, x2, t1, t2 ≥ 0. (8.17)

The test is also a U statistic based on the measure

∆(F̄ ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

{
F̄ (x, y)F̄ (t1, t2) − F̄ (x + t1, y + t2)

}
dx dy dt1dt2.

(8.18)
Let T1 =

∑n
i=1 XiYi and T2 =

∑n
i=1 X2

i Y 2
i and set ∆̂(F̄ ) = T 2

1 −T2/4. Reject
BVE in favor of bivariate NBU of (8.17) for very large values of ∆̂(F̄ ).

H1: F is a bivariate new better than used in expectation (BNBUE)

A test statistic, denoted by Tn, was proposed by Sen and Jain (1991b) for
testing against the BNBUE alternative of (8.7).

Hanagal (1998) also derived a test for testing F BVE against F bivari-
ate NBUE (given in Buchanan and Singpurwalla, 1977) which satisfies the
inequality

∫ ∞

0

∫ ∞

0
F̄ (x1 + t1, x2 + t2)dx1dx2 ≤ F̄ (x1, x2)

∫ ∞

0

∫ ∞

0
F̄ (t1, t2)dt1dt2.

(8.19)
The above inequality derived from integrating version (4) of bivariate NBU
with respect to t1, t2.

Using the same statistic ∆̂(F̄ ) as above, BVE is rejected in favour of (8.19)
if ∆̂(F̄ ) > 0.
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H1: F is bivariate harmonic new better than used in expectation
(BHNBUE)

Basu and Ebrahimi (1984a) and Sen and Jain (1990) each proposed a test
based on Un and Dn statistics for testing against BHNBUE alternative. Hana-
gal (1997) proposed another test which he called the Vn test. A simulation
study indicated that Vn test performs better than the former two tests.

H1: F is bivariate decreasing mean residual life (BDMRL)

Bandyopadhyay and Basu (1995) proposed a class of tests for testing against
BDMRL-II. These are U -statistics and hence are asymptotically normally
distributed.

A test statistic, also denoted by Dn, was proposed by Sen and Jain (1991b)
for testing against bivariate DMRL alternative defined by

µF (x1, x2) =
1

F̄ (x1, x2)

∫ ∞

0
F̄ (x1 + t, x2 + t) dt ≥ µF0(x1, x2), (8.20)

where F0(x, y) has a bivariate exponential distribution of Marshall and Olkin
(1967) (BVE) given in (8.12).

8.8.1 Summary on Tests of Bivariate Ageing

It is our impression that tests for bivariate and multivariate stochastic ageing
are more difficult than for the univariate case, however, they would probably
offer a greater scope for applications. We anticipate that more research will
be conducted in this area. Table 8.2 below gives relevant references to each of
the bivariate ageing tests.

Table 8.2. Tests of Bivariate Ageing

Bivariate Version Key References on Bivariate Tests

IFR Sen and Jain (1991c), Bandyopadhyay and Basu (1991).
IFRA Basu and Habibullah (1987), Hanagal and Ramanathan

(1998).
DMRL Sen and Jain (1991b), Bandyopadhyay and Basu (1995).
NBU Basu and Ebrahimi (1984b), Sen and Jain (1991a), Hanagal

(1998).
NBUE Sen and Jain (1991a), Hanagal (1998).
HNBUE Basu and Ebrahimi (1984a), Sen and Jain (1990), Hanagal

(1997).
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8.9 Discrete Bivariate Failure Rates

The discrete failure rate was defined by (6.4) and an alternative version by
(6.45) in Chapter 6. In this section, we discuss the failure rates in the bivariate
setting and they can be generalized to multivariate case as given by Shaked
et al. (1995).

Suppose we have two discrete random variables X and Y each with support
lies in N+. Denote its joint probability function by

f(j, k) = Pr(X = j, Y = k), j, k ∈ N+. (8.21)

Shaked et al. (1995) defined bivariate conditional failure rate function of
(X, Y ) as follows

r1(k) = Pr(X = k, Y > k |X ≥ k, Y ≥ k), k ∈ N+. (8.22)

r2(k) = Pr(Y = k, X > k |X ≥ k, Y ≥ k), k ∈ N+. (8.23)

r12(k) = Pr(X = k, Y = k |X ≥ k, Y ≥ k), k ∈ N+. (8.24)

r1(k | j) = Pr(X = k |X ≥ k, Y = j), k > j. (8.25)

r2(k | i) = Pr(Y = k |X = i, Y ≥ k), k > i. (8.26)

provided the conditions in the above conditional probabilities have positive
probabilities. Otherwise we set these functions to be 1.

The intuitive meaning of these functions is as follows. The function r1, r2
and r12 describe the initial failure rates, that is, the failure rates before a
failure of any component. Suppose that one component failed at time i (j)
and that the other component stayed alive at that time. Then conditional on
X = i (or Y = j), the failure rate of the life component at time k > i (or
k > j) is given by r2(k | i) (or r1(k | j)).

The failure rates given in (8.22), (8.23), (8.25) and (8.26) are the discrete
analogues of the bivariate conditional failure rate functions described in Cox
(1972) and Shaked and Shanthikumar (1987). A discrete analogue of the bi-
variate failure rate, defined as f(x, y)/F̄ (x, y) in (8.2) by Basu (1971), can be
given as r(j, k) = f(j, k)/F̄ (j − 1, k − 1).

Example 8.1: Bivariate geometric distribution

Let X1, X2 and X3 be three independent geometric random variables on N+

with parameters θ1, θ2 and θ3, respectively. Consider X = X1 +X3, Y = X2 +
X3. The joint distribution of X and Y is called by Esary and Marshall (1973),
the narrow sense bivariate geometric distribution. It is the discrete bivariate
analogue of the BVE of Marshall and Olkin (1967). Shaked et al. (1995) found
the conditional failure rates of this bivariate geometric distributions as follows.
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1. r1(k) = θ1(1 − θ2)(1 − θ3), k ∈ N+.

2. r2(k) = (1 − θ1)θ2(1 − θ3), k ∈ N+.

3. r12 = θ3 + θ1θ2(1 − θ3), k ∈ N+.

4. r1(k | j) = θ1 + θ3 − θ1θ3, k > j.

5. r2(k | i) = θ2 + θ3 − θ2θ3, k > i.

8.10 Applications

Given the complexity, one would not anticipate too many real applications to
this bivariate or multivariate ageing concepts. Below are a few real or possible
applications.

8.10.1 Maintenance and Repairs

Bivariate imperfect repair

The concept of an imperfect repair was discussed in Section 6.0. The present
application of a bivariate ageing concept to a bivariate imperfect repair was
described in detail by Shaked et al. (1995). Two of several possible models of
discrete bivariate imperfect repair are described below.

(A) Two items, with original lifetimes X and Y , start to function at time
1. Upon failure an item undergoes a repair. With probability p, the repair is
unsuccessful and the item is scrapped. With probability 1 − p, the repair is
minimal. If both items fail at the same time epoch, then, each of them, inde-
pendent of each other, is successfully minimally repaired, and with probability
p, and is scrapped with p.

(B) This model is the same as the above except that if both items fail at
the same time epoch, then with probability 1 − p, both items are successfully
minimally repaired, and with probability p, both are scrapped.

Using (8.22)–(8.26), the joint distribution function of the two times to
scrap can be obtained for both models.

Maintenance and warranty

Chen and Popova (2002) proposed a new maintenance policy which minimizes
the total expected servicing cost for an item with two-dimensional warranty.
A two-dimensional warranty is characterized by a region in which a two-
dimensional plane with one axis representing age and the other one usage.
For example, when you buy a car it usually comes with 3 years or 36,000
miles warranty. They assumed that the bivariate failure rate function r(x1, x2)
either has an additive form r(x1, x2) = β1x

w
1 + β2x

w
2 or a multiplicative form

r(x1, x2) = exp (β1x
w
1 + β2x

w
2 ) where β1, β2, w > 0.
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Availability modelling

Yang and Nachlas (2001) proposed two classes of bivariate models for reli-
ability and availability. These are the models based on stochastic functional
relationships between the two variables and the models that represent the
variables as two statistically dependent entities. The first class assumes a bi-
variate failure rate as the sum of two univariate failure rates whereas the
second class has failure rate function defined by (8.2).

8.10.2 Warranty Polices

Univariate warranty polices were discussed in Section 3.8.3 in relation to the
BT distributions.

Yang and Zaghati (2002) used a two-dimensional reliability model for mod-
elling warranty data with time in service and mileage for automobile as the
two variables.

Baik et al. (2004) discussed a two-dimensional failure modelling for a sys-
tem where degradation is due to age and usage. Of course, degradation leads
to failure. In this model, the bivariate failure rate is defined as in (8.2). The
model utilizes a minimal repair policy so that the restored system is identical
to what it was before failure. An application of this model to a manufacturer’s
servicing costs for a two-dimensional warranty was given.

8.10.3 Failure Times of Pumps

First failure times of transmission (X) and transmission pump (Y ) on Cater-
pillar Tractors have been considered and analyzed by Barlow and Proschan
(1977), Basu and Habibullah (1987), Sen and Jain (1991c), Hanagal (1997)
and others.

8.11 Bayesian Notions of Multivariate Ageing

Having presented several classical definitions of multivariate ageing, the chap-
ter will be incomplete without briefly presenting the Bayesian approach to
modelling ageing. Bassan and Spizzichino (1999) commented that “These ‘tra-
ditional’ notions are specifically appropriate in the case when the dependence
is mainly due to physical interaction among the units, interpreted as com-
ponents of the same systems. Our notions are motivated from the analysis
of situations where the (Bayesian) dependence due to learning about some
unobservable quantity cannot be neglected.”

The Bayesian approach of multivariate ageing has its source from ma-
jorization and Schur functions from inequality theory. Proschan (1975) used
these ideas to obtain bounds, comparisons and inequalities in reliability and
life testing. Barlow and Mendal (1992) used these ideas to define multivari-
ate IFR for exchangeable random variables. The monograph by Spizzichino
(2001) further developed these ideas.
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8.11.1 Motivations and Historical Development of Bayesian
Approach

Among several other aspects of reliability theory, Barlow (2003) outlined a
motivation to search an alternative probabilistic approach to define ageing
concepts.

Suppose we index a life distribution, say the exponential distribution using
the mean life θ, i.e.,

F (x|θ) = 1 − e−x/θ, for x ≥ 0.

In many applications, we usually do not know the mean lifetime. Suppose,
however, we have prior knowledge concerning θ that can be prescribed by a
probability density function p(θ). Then the unconditional distribution of the
lifetime is given by∫ ∞

0
F (x|θ)p(θ) dθ =

∫ ∞

0

[
1 − e−x/θ

]
p(θ) dθ.

This unconditional distribution has a decreasing failure rate function
(Proschan, 1963). In general, IFR distributions are not closed under mixing.
This motivated Professor Richard Barlow and his colleagues to find a new
probabilistic approach to characterize ageing under the Bayesian paradigm.

8.11.2 Concepts of Ageing and Schur Concavity

Before we define Schur concavity of a function, we need to define the concept
of majorization.
Definition 8.5: The vector y = (y1, y2, ..., yn) majors x = (x1, x2, ..., xn),
written as x ≤ y, if

∑n
i=1 x[i] ≤ ∑n

i=1 y[i] and
∑n

i=1 xi =
∑n

i=1 yi. Here
x[1] ≥ x[2]... ≥ x[n] and {y[i]}, i = 1, 2, ..., n are similarly defined (see Marshall
and Olkin, 1979, pp. 7, 64).

The concept of majorization measures ‘similarity’ of vectors. The Bayesian’s
view of ageing is a relative concept. ‘Similar’ lifetimes should be more prob-
able than ‘diverse’ lifetimes, since physical and chemical processes leading to
ageing suggest more similarity with respect to lifetimes.
Definition 8.6: A function φ(·) is Schur-concave iff x ≤ y ⇒ φ(x)≥ φ(y).
Instead of just a single lifetime, we now consider a collection of exchange-
able lifetimes X1, X2, ..., Xn so they can be considered as ‘similar’. Barlow
and Mendel (1992) argued that if the n exchangeable units are ageing rel-
ative to lifetime, then one possible probability property capturing this no-
tion is that the joint survival function F̄ (x1, x2, ..., xn) = Pr(X1 > x1, X2 >
x2, ..., Xn > xn) is Schur-concave. Mathematically, Spizzichino (1992) proved
that F̄ (x1, x2, ..., xn) is Schur-concave, if and only if, for ant t > 0 and xi < xj ,
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Pr(Xi > xi+t|X1 > x1, ..., Xn > xn) ≥ Pr(Xj > xj+t|X1 > x1, ..., Xn > xn).
(8.27)

Spizzichino’s mathematical results say that among any two items from n simi-
lar items (i.e., exchangeable items) that have survived a life test, the ‘younger’
is the ‘best’ if and only if the joint survival function is Schur-concave. This
is an intuitive restatement of the IFR idea only now for for the conditional
joint survival function. This shows the role of Schur-concavity in subjective
multivariate ageing. See also Barlow and Spizzichino (1993).

Now, if F̄ (x1, x2, ..., xn|θ) is Schur-concave, then it is still Schur-concave
unconditionally since Schur-concavity is defined in terms of an inequality of
F̄ . Thus, using Schur-concavity of the joint survival function as a definition
of ageing, the difficulty with the univariate IFR definition (univariate IFR
not closed under mixing) is overcome. To put in more simply, multivariate
Schur-concavity is preserved under mixtures.

We now show the relationship between Schur-concavity and the classi-
cal IFR definition. If {Xi}, i = 1, 2, ..., n, are independent and identically
distributed, then F̄ (x1, x2, ..., xn) =

∏n
i=1 F̄X(xi) which is Schur-concave iff

log F̄X(xi) is concave where finite (Marshall and Olkin, 1979, p. 74). Since
univariate FX is IFR iff log F̄X(xi) is concave (Definition 2.1), we see that the
Bayesian definition of multivariate IFR coincides with the classical definition
in this case.

Example 8.2

Let X and Y be i.i.d. conditionally on a positive random variable Θ, with

F̄X(x|Θ = θ) = exp{−θx2}, F̄Y (x|Θ = θ) = exp{−θy2}
and

Pr(Θ > θ) = exp{−βθ}. Thus, both conditional distributions of X and Y
are Weibull with shape parameter α = 2 and hence they are both IFR. So
F̄ (x, y|θ) = F̄X(x|θ)F̄Y (y|θ) is schur-concave. Now, the joint unconditional
survival function

F̄ (x, y) =
∫ ∞

0
FX(x|θ)F̄Y (y|θ)βe−βθdθ =

β

β + x2 + y2 , x, y ≥ 0, β > 0

is clearly also Schur-concave.

8.11.3 Bayesian Notions of Bivariate IFR

The above ideas of Spizzichino (1992) were further extended to a more general
analysis of Bayesian multivariate ageing by Bassan and Spizzichino (1999) and
Bassan et al. (2002). Their approach was based on using different stochastic
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comparisons of residual lifetimes of units having different ages given the same
history specified by the set D.

Let L(X|D) denote the distribution of X conditional on D with L standing
for probability law.

Recall in Definition 2.1, we say that F is IFR iff F̄ (x|t) = F̄ (x+t)
F̄ (t) is de-

creasing in t for each x, i.e.,

F IFR ⇔ L(X − t|X > t) ≥ST L(X − t′|X > t′), for all t ≤ t′.

In the univariate residual lifetimes, the failure rate order and stochastic order
are equivalent so the above is also equivalent to

L(X − t|X > t) ≥FR L(X − t′|T > t′), for all t ≤ t′.

Bassan and Spizzichino (1999) and Bassan et al. (2002) extended this idea
of comparing the residual lifetime to define two notions of bivariate IFR as
follows.
Definition 8.7: An exchangeable pair of random variables (X, Y ) with sur-
vival function F̄ is bivariate IFR if, for t1 ≤ t2,

L(X − t1|X > t1, Y > t2) ≥ST L(Y − t2|X > t1, Y > t2). (8.28)

Definition 8.8: An exchangeable pair of random variables (X, Y ) with sur-
vival function F̄ is bivariate IFR in the strong sense (s-BIFR) if, for t1 ≤ t2,

L(X − t1|X > t1, Y > t2) ≥FR L(Y − t2|X > t1, Y > t2). (8.29)

We note that (8.28) holds if and only if the joint survival function F̄ (t1, t2)
is Schur-concave. On the other hand, a bivariate distribution F is (s-BIFR) if
and only if

R(t) =
F̄ (x + t, y)
F̄ (y + t, x)

is increasing in t , for 0 ≤ x < y.

Taking logs and then differentiating both sides with respect to t, we find
the above condition is equivalent to

rX|Y (y + t|Y > x) ≥ rX|Y (x + t|Y > y), (8.30)

where rX|Y (·|Y > y∗) denotes the conditional failure rate of X given Y > y∗.
Unless X and Y are independent, the two Bayesian multivariate ageing

concepts given by Definition 8.7 and Definition 8.8 are not equivalent. The
latter implies the former, but the converse is not true as illustrated by the
counter example presented in Bassan and Spizzichino (1999). The same article
also shows that the BVE given in (8.12) with λ1 = λ2 satisfies the s-BIFR
condition.
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Condition to yield marginal IFR

As was observed by Bassan and Spizzichino (1999), the marginal ageing prop-
erty of a Bayesian bivariate IFR need not IFR ageing unless the two compo-
nent lifetimes are independent. Bassan et al. (2002) have shown that if X is
right-tail decreasing in Y (RTD(X|Y ), see Section 9.2.7 for the definition),
i.e., Pr(X > x|Y > y) decreasing in y for all x, then F s-BIRF implies both
X and Y are IFR. This follows from letting x = 0 in (8.30) so that

rX(y + t) ≥ rX(t|Y > y) ≥ rX(t)

for all y > 0 by the RTD property. Thus, X is IFR and so is Y because of the
exchangeability.

8.11.4 Bayesian Bivariate DMRL

Bassan et al. (2002) also introduced a weak and a strong version of bivariate
DMRL ageing, in analogy to Definitions 8.7 and 8.8.
Definition 8.9: An exchangeable pair (X, Y ) is said to have bivariate DMRL
distribution if, for t1 < t2,

E(X − t1|X > t1, Y > t2) ≥ E(Y − t2|X > t1, Y > t2). (8.31)

We note that (X, Y ) satisfies (8.31) if and only if one (and hence all) of
the following equivalent conditions holds:

• ∫ ∞

t1

F̄ (x, t2) dx ≥
∫ ∞

t2

F̄ (x, t1) dx, for t1 < t2,

• ∫ ∞

t1

∫ ∞

t2

F̄ (x, y) dxdy is Schur-concave in (t1, t2),

•
µX|Y (t1|Y > t2) ≥ µX|Y (t2|Y > t1), for t1 < t2,

where µX|Y (·|Y > t2) denotes the conditional mean residual life function
of the distribution of X given Y > t2.

Since the stochastic ordering implies the mean residual ordering (see Table
2.1), it follows that bivariate IFR of Definition 8.7 implies bivariate DMRL of
Definition 8.9.
Definition 8.10: We say that an exchangeable pair (X, Y ) is bivariate DMRL
in the strong sense (s-BDMRL) if, for all t1 < t2, the following inequality
holds:

L(X − t1|X > t1, Y > t2) ≥MR L(Y − t2|X > t1, Y > t2), for t1 < t2. (8.32)

The above definition is equivalent to the following



8.11 Bayesian Notions of Multivariate Ageing 257

•

µX|Y (x + t1|Y > y) ≥ µX|Y (x + t2|Y > t2), for t1 < t2 and all x > 0

• ∫∞
x+t1

F̄ (u, t2) du∫∞
x+t2

F̄ (u, t1) du
is increasing in x > 0.

Definition 8.9 and Definition 8.10 are equivalent only when X and Y are i.i.d.
The latter is a stronger notion than the former. Bassan et al. (2002) showed
that the following bivariate Burr XII distribution

F̄ (x, y) = [1 + x3 + y3]−2, x, y ≥ 0

satisfies (8.31) but not (8.32).

8.11.5 Other Bayesian Bivariate Ageing Concepts

Other multivariate ageing concepts were also derived based on the inequality

L(X − t1|X > t1, Y > t2) ≥∗ L(Y − t2|X > t1, Y > t2), for 0 < t1 ≤ t2,
(8.33)

where ≥∗ can be one of the usual orderings such as the stochastic, failure
rate or likelihood ratio orderings. For example, Bassan and Spizzichino (2000)
derived a bivariate NBU based on this methodology. Bassan and Spizzichino
(2001) stressed that their multivaraite notions of ageing are based on one-
dimensional stochastic comparisons of residual lifetimes. Other notions of
multivariate ageing, on the contrary, are based on multivariate stochastic
comparisons (see Shaked and Shanthikumar (1991a,b, 1994). Others, such
as the classical approach discussed in Sections 8.2-6, do not involve at all
comparisons of lifetimes.

Bassan and Spizzichino (2001) also defined a notion of multivariate IFRA
but not in terms of Schur-concavity. The IFRA notion of ageing seems to be
very different from the IFR notion of ageing or its generalization in terms of
Schur-concavity.

We also note that among so many classical multivariate ageing definitions,
we find only Savits’s (1985) version of IFR has something not so remotely
related to the Schur-concavity. This reflects the Bayesian approach to ageing
is quite different from the traditional one.

Bassan and Spizzichino (2001) described several notions of multivariate
ageing for exchangeable lifetimes by means of the properties of the level sets
of the joint survival function. These properties are characterized in terms of
dependence concepts (see Chapter 9) of a suitably defined distribution. In
fact, the joint survival function F̄ is Schur-concave if and only if the level sets
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Ak = {x|F̄ (x) ≥ k} (8.34)

is Schur-concave.
We will discuss Bayesian multivariate ageing notions and their relation-

ships to dependence concepts in Section 9.7.

8.12 Conclusions

Univariate ageing concepts and tests of ageing classes are well understood but
the same cannot be said for bivariate and multivariate extensions. Usually, in
defining (traditional) multivariate notions of ageing a requirement is that the
1-dimensional marginals have the ageing property which is being extended. At
present, it seems that many of the bivariate definitions given in this chapter
lack clear physical interpretations, though it is true that some can be derived
from shock models - for details, see for example, Marshall and Shaked (1979),
Ghosh and Ebrahimi (1983) and Savits (1988). Unlike the univariate case
where there is a chain of implications among various ageing concepts (Section
2.4.3), we know of no chain of implications among various bivariate ageing
classes. The exception is the four “very strong” versions of bivariate ageing de-
fined by Buchanan and Singpurwalla (1977) and considered by Suresh (2001).
This lack of chains is not surprising given there are many possible versions
for a bivariate aging concept. The several possible bivariate extensions to a
univariate ageing concept would undoubtedly cause confusion for the users.
It is our impression that tests for bivariate and multivariate stochastic ageing
are more difficult than for the univariate case, however, they would probably
offer a greater scope for applications. Some of these applications have been
indicated in the Section 8.10.

In the Bayesian subjective approach, it is neither necessary nor appropriate
to insist on this requirement on the 1-dimensional marginals. This approach
offers a clear and definite alternative which may prove to be more useful
although we have not seen how the method is implemented in a practical
situation.

We anticipate that research in bivariate and multivariate ageing will con-
tinue to grow but one hopes a clearer ‘structure’ will emerge in future.
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Concepts and Measures of Dependence in
Reliability

9.1 Introduction

The concept of dependence permeates throughout our daily life. There are
many examples of interdependence in the medicine, economic structures and
reliability engineering, to name just a few. A typical example in engineering
is that all outputs from an equipment will depend on the inputs in a broader
sense which include material, equipment, environment and others. Moreover,
the dependence is not deterministic but of stochastic nature. Here in this
chapter, we limit the scope of our discussion to the dependence notions that
are relevant to reliability analysis.

In the reliability literature, it is usually assumed that the component life-
times are independent. However, components in the same system are used in
the same environment or share the same load, and hence the failure of one af-
fects the other components. We also have the case of so-called common cause
failure and components might fail at the same time. The dependence is usually
difficult to describe, even for very similar components. From light bulbs in an
overhead projector to engines in an aeroplane, we have dependence, and it
is essential to study the effect of dependence for better reliability design and
analysis. There are many notions of bivariate and multivariate dependence.
Several of these concepts were motivated from applications in reliability.

We may have seen abbreviations like these PQD, SI, LTD, RTI, etc over
the last three decades. As one probably would expect, they refer to some
form of positive dependence between two or more variables. We shall try
to explain them and their interrelationships in the present chapter. Positive
dependence means that large values of Y tend to accompany large values of X,
and similarly for small values. Discussion of concepts of dependence involves
refining, by means of definitions and deductions, this basic idea.

In this chapter, we focus our attention on a relatively weaker notion of
dependence, namely, the positive quadrant dependence between two variables
X and Y . We think that this easily verified form of positive dependence is
more relevant in the subject area under discussion. Also, as might be expected,
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the notions of dependence are simpler and their relationships are more readily
established in the bivariate case than the multivariate ones.

Hutchinson and Lai (1990) devoted a chapter to review concepts of de-
pendence for a bivariate distribution. More recently Joe (1997) gave a com-
prehensive treatment of the subject on multivariate dependence. Thus, our
goal here is not to provide another review; instead we shall focus our atten-
tion on the positive dependence concepts, in particular, the positive quadrant
dependence. For simplicity, we confine ourselves mainly to the bivariate case
although most of our discussion can be generalized to the multivariate situa-
tions. An important aspect of the current chapter is the availability of several
examples that are employed to illustrate the concepts of positive dependence.

In the present chapter we aim to present several dependence concepts,
positive dependence orderings and measures of dependence with the following
structure:

• Positive dependence, a general concept;
• Important conditions describing positive dependence. (We state some defi-

nitions, and examine their relative stringency and their interrelationships);
• Positive quadrant dependence: conditions and applications;
• Examples of positive quadrant dependence;
• Dependence and Bayesian multivariate ageing;
• Positive dependence orderings;
• Pearson’s product-moment correlation coefficient;
• Rank correlations; and
• Local measures of dependence.

We refer the readers to Table 1.3 for a list of some important acronyms that
will appear extensively in this chapter.

9.2 Important Conditions Describing Positive
Dependence

Concepts of stochastic dependence for a bivariate distribution play an im-
portant part in statistics. For each concept, it is often convenient to refer
to the bivariate distributions that satisfy it as a family, or a group. Here in
this chapter, we are mainly concerned with positive dependence. Although
negative dependence concepts do exist, they are often obtained by negative
analogues of positive dependence via reversing the appropriate inequity signs.

Various notions of dependence are motivated from applications in statisti-
cal reliability (see, e.g., Barlow and Proschan, 1981). The baseline, or starting
point, of a reliability analysis of systems is independence of the lifetimes of
the components. As noted by many authors, it is often more realistic to as-
sume some form of positive dependence among components of a system. In
discussing the relationships between two variables in reliability applications,
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one need not confine to the lifetime of two components. For example, in war-
ranty analysis, the longevity is often defined in terms of two variables, say age
(X) and usage (Y ). For example, when you buy a new car, it usually comes
with a 3 year or 60,000 km warranty, whichever comes first. It is obvious that
age and usage are positively correlated.

Around about 1970, several works discussed different notions of positive
dependence between two random variables, and derived some interrelation-
ships among them – for example, Lehmann (1966), Esary et al. (1967), Esary
and Proschan (1972), Harris (1970), and Brindley and Thompson (1972),
among others. Yanagimoto (1972) unified some of these notions by intro-
ducing a family of concepts of positive dependence. Some further notions of
positive dependence were introduced by Shaked (1977, 1979, 1982).

For concepts of multivariate dependence, see Block and Ting (1981) and
a more recent text by Joe (1997).

9.2.1 Six Basic Conditions

The following basic conditions describe positive dependence; these are listed
in increasing order of stringency. Lehmann (1966) is generally recognized as
the first that formalized some early notions of bivariate dependence.

1. Positive correlation, cov (X, Y ) ≥ 0.

2. For every pair of increasing functions a and b, defined on the real line R,
cov[a(X), b(Y )] ≥ 0. Lehmann (1966) showed this condition is equivalent
to

Pr(X > x, Y > y) ≥ Pr(X > x) Pr(Y > y), (9.1)

or equivalently,

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y). (9.2)

The equivalence follows from the well known equality F̄ (x, y) = 1 −
FX(x) − FY (y) + F (x, y). We say that X and Y are positively quad-
rant dependent (PQD) if and only if the above inequalities hold. Several
families of positively quadrant dependent distributions will be introduced
in Section 9.4 below.
We also note that there is a geometric interpretation for the copula of
PQD random variables–the graph of the copula must lie above the graph
of the independent copula (Nelsen, 1999, p. 156). See Section 9.4.3 for the
definition of a copula.

3. Esary et al. (1967) introduced the term ‘association’ for describing a de-
pendence condition. We say that X and Y are (positively) associated if
for every pair of functions a and b, defined on R2 which are increasing in
each of the arguments (separately),
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cov[a(X, Y ), b(X, Y )] ≥ 0. (9.3)

We note in passing a direct verification of this dependence concept is dif-
ficult in general. However, it is often easier to verify one of the alternative
positive dependence notions which imply association.

4. Y is right-tail increasing in X (written as RTI(Y|X)) if

Pr(Y > y|X > x) increasing in x for all y. (9.4)

Similarly, Y is left-tail decreasing in X (written as LTD(Y|X)) if

Pr(Y ≤ y|X ≤ x) decreasing in x for all y. (9.5)

The definitions above were due to Esary and Proschan (1972). Nelsen
(1999, pp. 156-158) also provided geometric interpretations of the graph of
the copula when the random variables are either RTI(Y |X) or LTD(Y |X).

5. Y is said to be stochastically increasing in x for all y (written as SI(Y
|X)) if for every y, Pr(Y > y|X = x) is increasing in x. Similarly, we say
that X is stochastically increasing in y for all x (written as SI(X|Y )) if
for every x, Pr(X > x|Y = y) is increasing in y. Note that SI(Y |X) is
often simply denoted by SI . Some authors (e.g., Lehmann, 1966) refer
to this relationship as Y being positively regression dependent on X (ab-
breviated by PRD) and similarly X being positively regression dependent
on Y . SI can be interpreted as the conditional survival probability of one
component increases as the life-length of the other increases.

6. Let X and Y have a joint probability density function f(x, y). Then f is
said to be totally positive of order 2 (TP2) if for all x1 < x2, y1 < y2,

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1). (9.6)

(Shaked, 1977). It is easy to show that if f is TP2, then F and F̄ (survival
function) are also TP2, i.e.,

F (x1, y1)F (x2, y2) ≥ F (x1, y2)F (x2, y1), (9.7)

and

F̄ (x1, y1)F̄ (x2, y2) ≥ F̄ (x1, y2)F̄ (x2, y1), x1 < x2, y1 < y2. (9.8)

It is easy to see that either F TP2 or F̄ TP2 implies F PQD.
The density f being TP2 is also known as ‘X and Y are likelihood ratio
dependent’ (LRD), or ‘X and Y are positively likelihood ratio dependent’
(PLRD). To avoid a possible confusion, the last acronym will not used in
this book.
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Remarks

• The LRD was first defined by Lehmann (1966) whereas the acronym TP2
was defined in a more general setting by Karlin (1968, p. 15).

• Suppose X and Y are lifetime variables such that Y is stochastically in-
creasing in X (SI(Y |X)), i.e., Pr(Y > y|X = x) is increasing in x for
every y. Then Pr(Y > y|X = x2) − Pr(Y > y|X = x1) ≥ 0 for x2 ≥ x1.
Integrating this expression with respect to y, we have

E(Y |X = x2) − E(Y |X = x1) ≥ 0, for x2 ≥ x1.

In other words, if F is SI(Y |X), then the regression curve E(Y |X = x)
is also increasing in x. Similarly, if F is SI(X|Y ), then E(X|Y = y) is
increasing in y.

• Jogdeo (1975, 1982) summarized four of the above basic conditions.
• We have not included a detailed discussion on multivariate dependence

concepts in this book although many of the conditions given above can be
extended easily to a multivariate setting.

9.2.2 The Relative Stringency of the Conditions

It is well known that these concepts are interrelated (see, e.g., Barlow and
Proschan, 1981, Chapter 5 and Joe, 1997). The six conditions we listed above
can be arranged in an increasing order of stringency. That is, (6) ⇒ (5) ⇒
(4) ⇒ (3) ⇒ (2) ⇒ (1). More precisely

RTI
↗ ↘

TP2 ⇒ SI Association ⇒ PQD ⇒ cov(X, Y ) ≥ 0
↘ ↗

LTD

Some of the proofs for the links of the chain of implications are not straight-
forward whereas some others are obvious. Our proofs below are essentially
those given in Barlow and Proschan (1981, pp. 143–144).

Step 1. Suppose f is TP2, then for x1 < x2, y1 < y2,

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1).

Divide both sides of the inequality by fX(x1)fX(x2) and integrate with respect
to y1 from −∞ to y and with respect to y2 from y to ∞, we have

Pr(Y ≤ y|X = x1) Pr(Y > y|X = x2) ≥ Pr(Y ≤ y|X = x2) Pr(Y > y|X = x1).



264 9 Concepts and Measures of Dependence in Reliability

Adding Pr(Y > y|X = x1) Pr(Y > y|X = x2) to both sides, we obtain
Pr(Y > y|X = x2) ≥ Pr(Y > y|X = x1) so F is SI(Y |X), i.e., (6) ⇒ (5).

Step 2. Suppose F is SI(Y |X) and x′
1 ≤ x′

2. Be definition,∫ ∞

y

f(x′
2, t) dt

fX(x′
2)

≥
∫ ∞

y

f(x′
1, t) dt

fX(x′
1)

so ∫ ∞

y

f(x′
2, t) dtfX(x′

1) ≥
∫ ∞

y

f(x′
1, t) dtfX(x′

2).

Integrating both sides with respect to x′
1 from x1 to x2 and with respect

to x′
2 from x2 to ∞ giving

∫ ∞

x2

∫ ∞

y

f(x, t) dt dx

∫ x2

x1

fX(x) dx ≥
∫ x2

x1

∫ ∞

y

f(x, t) dt dx

∫ ∞

x2

fX(x) dx.

Adding
∫∞

x2

∫∞
y

f(x, t) dt dx
∫∞

x2
fX(x) dx to both sides of the above inequality

we obtain

Pr(X > x2, Y > y) Pr(X > x1) ≥ Pr(X > x1, Y > y) Pr(X > x2)

so
Pr(Y > y|X > x2) ≥ Pr(Y > y|X > x1) and hence (5) ⇒ (4).

Step 3. The proof of SI(Y |X) ⇒ ‘Association’ is very long, so we refer the
reader to Esary and Proschan (1972), Lemma 1 and Lemma 2 and the theorem.

Step 4. Assume X and Y are associated. Let a(X, Y ) = 1 if X > x, 0 oth-
erwise; let b(X, Y ) = 1 if Y > y, 0 otherwise. Then a and b are increasing
functions of X and Y so cov[a(X, Y ), b(X, Y )] ≥ 0 by the definition of ‘asso-
ciation’. This is equivalent to Pr(X > x, Y > y) ≥ Pr(X > x) Pr(Y > y), i.e.,
X and Y are positively quadrant dependent. Thus (3) ⇒ (2).

Step 5. Assume X and Y are PQD. It is easy to see that PQD implies positive
correlation by applying the Hoeffding’s lemma, which states:

cov(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
[F (x, y) − FX(x)FY (y)] dx dy (9.9)

(This identity is often useful in many areas of statistics). Thus (2) ⇒ (1).

9.2.3 Associated Random Variables

Recall in Section 9.2.1, we say that two random variables X and Y are asso-
ciated if cov[a(X, Y ), b(X, Y )] ≥ 0. Obviously, this expression can be repre-
sented alternatively by
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E[a(X, Y )b(X, Y )] ≥ E[a(X, Y )]E[b(X, Y )], (9.10)

where the inequality holds for all real functions a and b that are increasing in
each component and are such that the expectations in (9.10) exist.

Barlow and Proschan (1981, p. 29) considered some practical reliability
situations for which the components lifetimes are not independent, but rather
are associated:

(a) Minimal path structures of a coherent system having components in
common;

(b) Components subject to the same set of stresses;
(c) Structures in which components share the same load, so that the failure

of one component results in increased load on each of the remaining compo-
nents.

We note that in each case the random variables of interest tend to act
similarly. In fact, all the positive dependence concepts share this characteristic.

An important application of the concept of ‘association’ is to provide prob-
ability bounds for system reliability. Many such bounds are presented in Esary
et al. (1967), also in Section 3 of Chapter 2 and Section 7 of Chapter 4 of Bar-
low and Proschan (1981). The so called mini-max bounds on the reliability of
a coherent system of associated components will be given in (9.15).

Interesting enough, the dependence concept ‘association’ was not even con-
sidered in Chapter 5 of Nelsen (1999) which deals with dependence between
variables. We are of the opinion that the condition (9.10) that defines ‘asso-
ciation’ is simply too difficult to check directly. What one normally does is to
verify one of the dependence conditions in the higher hierarchy that implies
‘association’. We believe the situations mentioned above where the depen-
dence between two components were prescribed by ‘association’ can also be
adequately described by a weaker positive dependence concept PQD.

9.2.4 RCSI and LCSD

Among the positive dependence concepts we have introduced so far, f be TP2
is the strongest. A slightly weaker notion introduced by Harris (1970) which
is called the right corner set increasing (RCSI) meaning

Pr(X > x1, Y > y1|X > x2, Y > y2) is increasing in x2 and y2 for all
x1 and y1. Similarly, we say that F is left corner set decreasing (LCSD) if
Pr(X ≤ x1, Y ≤ y1|X ≤ x2, Y ≤ y2) is decreasing in x2 and y2 for all x1 and
y1.

Shaked (1977) showed that TP2 ⇒ RCSI. The proof largely follows from
the fact that if f is TP2 then from (9.8)

F̄ (x1, y1)F̄ (x2, y2) ≥ F̄ (x1, y2)F̄ (x2, y1), x1 < x2, y1 < y2.

In fact, this inequality characterizes the RCSI property (Nelsen, 1999,
Theorem 5.2.15). Note that if the joint distribution is absolutely continuous,
then TP2 is equivalent to RSCI or LCSD.
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By choosing x1 = −∞ and y2 = −∞, we see that RCSI ⇒ RTI. Further,
Shaked (1977) showed that (see also Gupta 2003) X and Y are RSCI if and
only if r1(x, y) is decreasing in y for all x and hence r2(x, y) is decreasing in x
for all y where (r1(x, y), r2(x, y)) is the hazard gradient defined in (8.2)-(8.3).

9.2.5 WPQD

Alzaid (1990) introduced a weak PQD concept which shares most of the prop-
erties PQD. X and Y are are said to be weakly positive quadrant dependent
of type 1 (WPQD1) if

∫ ∞

x

∫ ∞

y

[Pr(X > u, Y > v) − Pr(X > u) Pr(Y > v)] dvdu ≥ 0, for everyx, y;

and weakly positive quadrant dependent of type 2 (WPQD2) if

∫ x

−∞

∫ y

−∞
[Pr(X > u, Y > v) − Pr(X > u) Pr(Y > v)]dvdu ≥ 0 for every x, y.

It is obvious that PQD implies both WPDQ1 and WPQD2 and both of
the latter two imply cov(X, Y ) ≥ 0.

9.2.6 Positively Correlated Distributions

Positive correlation is the weakest notion of dependence between two random
variables X and Y . We note that it is easy to construct a positively corre-
lated bivariate distribution. For example, such a distribution may be obtained
by simply applying a well-known trivariate reduction technique described as
follows:

Set X = X1 + X3, Y = X2 + X3, with Xi, (i = 1, 2, 3) being mutually
independent, then the correlation coefficient of X and Y is

ρ = varX3/ [var(X1 + X3)var(X2 + X3)]
1/2

> 0. (9.11)

For example, let Xi ∼ Poisson(λi), i = 1, 2, 3. Then X ∼ Poisson(λ1 +
λ3), Y ∼ Poisson(λ1 + λ3) with ρ = λ3/ [(λ1 + λ3)(λ2 + λ3)]

1/2
> 0.

X and Y constructed in this manner are also positively quadrant depen-
dent, see Example 1(ii) Lehmann (1966, p. 1139).

9.2.7 Summary of Interrelationships

We may summarize the links among these dependence notions by the follow-
ing chain of relations (in which Y is conditional on X whenever there is a
conditioning):
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RCSI ⇒ RTI ⇒ ASSOCIATION ⇒ PQD ⇒ WPQD ⇒ cov ≥ 0
⇑ ⇑ ⇑

TP2 ⇒ SI ⇒ LTD

There are other chains of relationships between various concepts of depen-
dence. A more comprehensive chain of implications is now given below:

LRD (TP2) ⇒ SI(Y |X) ⇒ RTI(Y |X) ⇐ RCSI ⇔ F̄ TP2
⇓ ⇓ ⇓ ⇓ ⇑
⇓ LTD(Y |X) ⇒ PQD ⇐ RTI(X|Y ) ⇑
⇓ ⇑ ⇑ ⇑ ⇑

F TP2 ⇔ LCSD ⇒ LTD(X|Y ) ⇐ SI(X|Y ) ⇐ LRD (TP2)

Note that in the preceding chain, ‘left corner set decreasing’ (LCSD) is equiv-
alent to F is TP2 and ‘right corner set increasing’ (RCSI) is equivalent to F̄ is
TP2. There is no known direct relationship between SI and RCSI (or LCSD).

A strong positive dependence concept defined in terms of conditional fail-
ure (hazard) rate r(x|Y = y) associated with X given Y = y was given in
Shaked (1977). It was shown that TP2 implies r(x|Y = y) decreasing in y for
every x which in turn implies both SI(X|Y ) and RCSI.

Negative Dependence

Some concepts of negative dependence were first introduced by Lehmann
(1966), and further developed by others such as Block et al. (1982). All of
these can be obtained by negative analogues of positive dependence, e.g.,
when the inequality signs in (1), (2), (4), (5) and (6) (as listed in Section
9.2.1) are reversed, we obtained negative dependence concepts. Thus, the du-
als of of (2), (4), (5) and (6) are respectively called NQD, RTD (LTI), SD,
and RR2 (Reverse regular of order 2). Also the negative analogue of RCSI is
RCSD. However, ‘association’ has no simple negative analogue by reversing
the inequality sign of (3) although a negative association concept was defined
by Joag-Dev and Proschan (1983). Further, a chain of implications analogous
to the one above can also be given.

9.3 Positive Quadrant Dependent (PQD) Concept

We have presented several notions of bivariate dependence that are well known
in the literature. The notion of positive quadrant dependence (PQD) appears
to be more straightforward and easier to verify than other notions. The rest
of the chapter mainly focuses on this dependence concept. The definition of
PQD, which was first given in (9.1) is now formally defined as follows:
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Definition 9.1: Random variables X and Y are positively quadrant depen-
dent (PQD) if the following inequality holds:

Pr(X > x, Y > y) ≥ Pr(X > x) Pr(Y > y), for all x and y

which is is equivalently to

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y), for all x and y.

Intuitively, X and Y are PQD if the probability that they are simultane-
ously small (or simultaneously large) is at least as great as it would be were
they independent. Restricting ourselves to lifetime variables, we may interpret
the last inequality as the probability represented by the joint density surface
bounded by the quadrant [0, x] × [0, y] is as great as the product of the two
probabilities represented by the areas under the marginal curves within the
respective intervals [0, x] and [0, y].

The reason why (9.1) constitutes a positive dependence concept is that X
and Y here are more likely to be large or small together compared with the
independent case.

If the inequality in probability of (9.1) is reversed, then X and Y are
negatively quadrant dependent (NQD).

PQD is shown to be a stronger notion of dependence than the positive
(Pearson) correlation but weaker than the ‘association’ which is a key concept
of positive dependence in Barlow and Proschan (1981), originally introduced
by Esary et al. (1967).

Consider a system of two components that are arranged in series. By as-
suming that the two components are independent when they are in fact pos-
itively quadrant dependent, we will underestimate the system reliability. For
parallel systems, on the other hand, assuming independence when compo-
nents are in fact positively quadrant dependent, will lead to overestimation
of system reliability (see Corollary 10.2 for a proof). This is because com-
ponent B would probably fail earlier if component A fails. This dependence,
from a practical point of view, may limit the effectiveness of adding parallel
redundancy. Thus a proper knowledge on the extent of dependence among the
components in a system will enable us to obtain a more accurate estimate of
the reliability characteristic in question.

PUOD and PLOD

Unlike other bivariate dependence concepts which can be readily extended
to the corresponding multivariate dependence of n variables, PQD is not the
case. This is because (9.1) and (9.2) are equivalent only for n = 2. For n > 2,
we say that X1, X2, ..., Xn are positively upper orthant dependent (PUOD)
if
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Pr(X1 > x1, X2 > x2, ..., Xn > xn) ≥
n∏

i=i

Pr(Xi > xi) (9.12)

and they are positively lower orthant dependent (PLOD) if

Pr(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) ≥
n∏

i=i

Pr(Xi ≤ xi). (9.13)

It is easy to prove (see, e.g., Theorem 3.2, Chapter 2 of Barlow and
Proschan, 1981) that ‘association’ implies both PUOD and PLOD.

9.3.1 Constructions of PQD Bivariate Distributions

Let F (x, y) denote the distribution function of (X, Y ) having continuous
marginal cdf’s FX(x) and FY (y) with marginal pdf’s fX = F ′

X and fY = F ′
Y ,

respectively. For a PQD bivariate distribution, the joint distribution function
may be written as

F (x, y) = FX(x)FY (y) + w(x, y) (9.14)

with w(x, y) satisfying the following conditions:
(i) w(x, y) ≥ 0.

(ii) w(x,∞) → 0, w(∞, y) → 0, w(x,−∞) = 0, w(−∞, y) = 0.

(iii)
∂2w(x, y)

∂x∂y
+ fX(x)fY (y) ≥ 0.

Note that if both X ≥ 0 and Y ≥ 0, then the condition in (ii) may be
replaced by

w(x,∞) → 0, w(∞, y) → 0, w(x, 0) = 0, w(0, y) = 0.

Lai and Xie (2000) used these conditions to construct a family of PQD dis-
tributions with uniform marginals. It is likely that there are other methods
available for constructing PQD distributions.

9.3.2 Applications of Positive Quadrant Dependence Concept to
Reliability

The notion of association is used to establish probability bounds on reliability
systems (see, e.g., Chapter 3 of Barlow and Proschan, 1981). Given a coher-
ent system of n components with minimal path sets Pi, (i = 1, 2, ..., p) and
minimal cut sets Kj , (j = 1, 2, ..., k). Let Ti denote the lifetime of the ith
component and thus pi = Pr(Ti > t) is its survival probability at time t. It
has been shown (Barlow and Proschan, 1981, pp. 35–38), that if components
are independent, then
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k∏
j=1

∐
i∈Kj

pi ≤ System Reliability ≤
p∐

j=1

∏
i∈Pj

pi . (9.15)

If, in addition, components are associated, then we have an alternative set of
bounds

n∏
i=1

pi ≤ max
1≤r≤p

∏
i∈Ps

pi ≤ System Reliability ≤ min
1≤s≤k

∐
i∈Ks

pi ≤
n∐

i=1

pi , (9.16)

where
∐n

i=1 xi = 1 −∏n
i=1(1 − xi).

As independence is a special case of ‘association’, the bounds given in
(9.16) are also applicable for a system with independent components; although
in this case, one cannot conclude that (9.16) is tighter than (9.15) or vice-
versa.

If follows from (9.16) that if we calculate the reliability of a series system
(i.e., the coherent system that has only minimal path set), assuming the com-
ponent independent when in fact they are associated, we will underestimate
the system. The reverse is true for parallel system (where the coherent system
has only one minimal cut set). One can find other details related to bounds
on reliability of a coherent system with associated components in the text by
Barlow and Proschan (1981).

A closer examination would readily reveal that if we calculate the reliability
bound of a series (parallel) system assuming the components independent
when in fact they are PUOD (PLOD), we also underestimate (overestimate)
syste reliability. This result will be demonstrated in Sections 10.4 and 10.5.

We note in passing that the concept of positive quadrant dependence is
widely used in statistics, for example: -

• Partial sums (Robbins, 1954);
• Order statistics (Esary et al., 1967);
• Analysis of variance (Kimball, 1951);
• Contingency tables (Douglas et al., 1990);

and others.

9.4 Families of Bivariate Distributions That Are PQD

Since the PQD concept is important in reliability applications, it is imperative
for a reliability practitioner to know what kinds of PQD bivariate distribu-
tions are available for reliability modelling. In this section, we list several well
known PQD distributions some of which were originally derived from a reli-
ability perspective. Most of these PQD bivariate distributions can be found,
for example, in Hutchinson and Lai (1990).
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9.4.1 PQD Bivariate Distributions with Simple Structures

The distributions whose PQD property can be established easily are now given
below.

Example 9.1

Farlie-Gumbel-Morgenstern bivariate distribution (Farlie, 1960):

F (x, y) = FX(x)FY (y) [1 + α (1 − FX(x)) (1 − FY (y))] , 0 < α ≤ 1. (9.17)

For convenience, the above family may simply be denoted by F-G-M.
This general system of bivariate distributions is widely studied in the lit-

erature. It is easy to verify that X and Y are positively quadrant dependent
if α > 0. Consider a special case of the F-G-M system where both marginals
are exponential. The joint distribution function then has the form (see, e.g.,
Kotz et al., 2000, pp. 51–52):

F (x, y) = (1 − e−λ1x)(1 − e−λ2y)
[
1 + αe−λ1x−λ2y

]
, 0 < α ≤ 1. (9.18)

Clearly,

w(x, y) = F (x, y) − FX(x)FY (y)
= αe−λ1x−λ2y(1 − e−λ1x)(1 − e−λ2x), 0 < α ≤ 1,

satisfies the conditions (i)-(iii) in Section 9.3 and hence X and Y are PQD.
Mukherjee and Sasmal (1977) have worked out the properties of a system

of two exponential components having the F-G-M distribution. The properties
are such things as the densities, means, moment generating functions, and tail
probabilities of min(X, Y ), max(X, Y ), and X + Y , these being of relevance
to series, parallel, and standby systems, respectively.

Lingappaiah (1983) was also concerned with properties of the F-G-M dis-
tribution relevant to the reliability context, but with gamma marginals.

Building upon a paper by Philips (1981), Kotz and Johnson (1984) con-
sidered a model in which component 1 and 2 were subject to ‘revealed’ and
‘unrevealed’ faults, respectively, with (X, Y ) having a F-G-M distribution,
where X= time between unrevealed faults and Y = time from an unrevealed
fault to a revealed fault.

Example 9.2

Bivariate exponential distribution:

F (x, y) = 1 − e−x − e−y + (ex + ey − 1)−1
. (9.19)

This distribution is not well known but it has a very simple structure. However,
both marginals are exponential which is used widely in reliability applications.
This bivariate distribution function can be rewritten as
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F (x, y) = 1 − e−x − e−y + e−(x+y) + (ex + ey − 1)−1 − e−(x+y)

= FX(x)FY (y) + (ex + ey − 1)−1 − e−(x+y).

Now (ex + ey − 1)−1 − e−(x+y) = (ex−1)(ey−1)
(ex+ey−1)e(x+y) = (1−e−x)(1−e−y)

(ex+ey−1) ≥ 0 and
therefore F is PQD.

Example 9.3

Bivariate Pareto distribution:

F̄ (x, y) = (1 + ax + by)−λ
, a, b, λ > 0.

(See Mardia, 1970, p. 91). Consider a system of two independent exponential
components which share a common environment factor η that can be described
by a gamma distribution. Lindley and Singpurwalla (1986) showed that the
resulting joint distribution has a bivariate Pareto distribution. It is very easy
to verify this joint distribution is PQD. For a generalization to multivariate
components, see Nayak (1987).

Example 9.4

The Durling-Pareto distribution (Bivariate Lomax):

F̄ (x, y) = (1 + x + y + kxy)−a
, a > 0, 0 ≤ k ≤ a + 1. (9.20)

Obviously, it is a generalization of Example 9.3 above. See Hutchinson (1979)
for details.

Consider a system of two dependent exponential components having a
Gumbel’s type I bivariate distribution

F (x, y) = 1 − e−x − e−y + e−x−y−θxy, x, y ≥ 0, 0 ≤ θ ≤ 1

and sharing a common environment that has a gamma distribution. Sankaran
and Nair (1993b) have shown that the resulting bivariate distribution is spec-
ified by (9.20).

It follows from (9.20) that

F̄ (x, y) − F̄X(x)F̄Y (y)

=
1

(1 + x + y + kxy)a
− 1

{(1 + x)(1 + y)}a

=
1

(1 + x + y + kxy)a
− 1

(1 + x + y + xy)a

which is nonnegative for 0 ≤ k ≤ 1. Hence, F is PQD if 0 ≤ k ≤ 1.
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9.4.2 PQD Bivariate Distributions with More Complicated
Structures

Example 9.5

Marshall and Olkin’s bivariate exponential distribution:
The BVE of Marshall and Olkin (1967) was earlier given by (8.12) with

survival function

Pr (X > x, Y > y) = exp {−λ1x − λ2y − λ12 max(x, y)} , λ′s ≥ 0. (9.21)

It has become a widely used bivariate exponential distribution over the last
three decades. Marshall and Olkin’s bivariate exponential distribution was
derived from a reliability context and it is often denoted by BVE.

Suppose we have a two-component system subjected to shocks that are
always fatal. These shocks are assumed to be governed by three independent
Poisson processes with parameters λ1, λ2 and λ12, according as the shock
applies to component 1 only, component 2 only, of both components, respec-
tively. Then the joint survival function is given by (9.21).

Barlow and Proschan (1981, p. 129) showed that X and Y are PQD.

Example 9.6

Bivariate distribution of Block and of Basu (1976):

F̄ (x, y) = 2+θ
2 exp [−x − y − θ max(x, y)]

− θ
2 exp [−(2 + θ) max(x, y)] , θ, x, y ≥ 0.

This was constructed to modify Marshall and Olkin’s bivariate exponential
which has a singular part. It is in fact a reparameterization of a special case of
Freund’s (1961) bivariate exponential distribution. The marginal is F̄X(x) =
1+θ
2 exp [−(1 + θ)x] − θ

2 exp ((1 + θ)x) and a similar expression for F̄Y (y). It
is easy to show that this joint distribution is PQD.

Example 9.7

Kibble’s (1941) bivariate gamma distribution:
The joint density function is

fρ(x, y; α) = fX(x)fY (y) exp {−ρ(x + y)/(1 − ρ)}
×Γ(α)

1−ρ (xyρ)−(α−1)/2Iα−1

(
2
√

xyρ

1−ρ

)
, 0 ≤ ρ < 1; (9.22)

with fX , fY being the marginal gamma probability density functions with the
same shape parameter α > 0. Here Iα(·) is the modified Bessel function of the
first kind and the αth order.

Lai and Moore (1984) showed that the distribution function is given by
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F (x, y; ρ) = FX(x)FX(y) + α

∫ ρ

0
ft(x, y; α + 1) dt.

Since α
∫ ρ

0 ft(x, y; α + 1)dt ≥ 0, it follows that F (x, y) ≥ FX(x)FY (y).
For the special case when α = 1, the Kibble’s gamma becomes the well

known Moran-Downton bivariate exponential distribution. Downton (1970)
presented a construction from a reliability perspective. He assumed that the
two components C1 and C2 receive shocks occurring in independent Poisson
streams at rates λ1, λ2, respectively, and that the numbers N1 and N2 shocks
needed to cause failure of C1 and C2, respectively, have a bivariate geometric
distribution.

For applications of Kibble’s bivariate gamma, see, e.g., Hutchinson and
Lai (1990).

Example 9.8

Bivariate exponential distribution of Sarmanov:
Sarmanov (1966) introduced a family of bivariate densities of the form:

f(x, y) = fX(x)fY (y) {1 + ωφ1(x)φ2(y)} (9.23)

where
∫∞

−∞ φ1(x)fX(x)dx = 0,
∫∞

−∞ φ2(y)fY (x)dy = 0 and ω satisfies the
condition that 1 + ωφ1(x)φ2(y) ≥ 0 for all x and y.

Lee (1996) discussed four main properties of the Sarmanov family, two of
which are of particular interest to us.

(a) The conditional distribution of Y given X = x is

Pr(Y ≤ y|X = x) = FY (y) + ωφ1(x)
∫ y

−∞
fY (t)φ2(t) dt.

(b) The regression of Y on X is

E (Y |X = x) = µY + ωνY φ1(x)

where νX =
∫∞

−∞ tφ1(t)fX(t) dt, νY =
∫∞

−∞ tφ2(t)fY (t) dt.

(c) Further, it was shown that f is TP2 if ωφ′
1(x)φ′

2(y) ≥ 0 for all x and y,
and RR2 if ωφ′

1(x)φ′
2(y) ≤ 0 for all x and y. Here φ′

1 and φ′
2 are derivatives

of φ1 and φ2, respectively.

Lee (1996) derived a bivariate exponential distribution with joint density
given below:

f(x, y) = λ1λ2e
−(λ1x+λ2y)

{
1 + ω

(
e−x − λ1

1+λ1

)(
e−y − λ2

1+λ2

)}
, (9.24)

where −(1+λ1)(1+λ2)
max(λ1λ2,1) ≤ ω ≤ (1+λ1)(1+λ2)

max(λ1,λ2)
; φ1(x) = e−x − λ1

1+λ1
and φ2(y) =

e−y − λ2
1+λ2

.
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F (x, y) =
(1− e−λ1x)(1− e−λ2y)+ ωλ1λ2

(1+λ1)(1+λ2)

(
e−λ1x−e−(λ1+1)x

) (
e−λ2y−e−(λ2+1)y

)
≥ FX(x)FY (y)

whence X and Y are shown to be PQD if 0 ≤ ω ≤ (1+λ1)(1+λ2)
max(λ1,λ2)

.

Example 9.9

Bivariate normal distribution:
The bivariate standard normal has a density function given by

f(x, y) =
(
2π
√

1 − ρ2
)−1

exp
[
− 1

2(1−ρ2) (x
2 − 2ρxy + y2)

]
, −1 < ρ < 1.

(9.25)
X and Y are PQD for 0 ≤ ρ < 1, and NQD for −1 < ρ ≤ 0. We note

that ρ is the correlation coefficient between X and Y . This result follows
straightaway from the following lemma:

Lemma 9.1

Let (X1, Y1) and (X2, Y2) be two standard bivariate normal distributions, with
correlation coefficients ρ1 and ρ2, respectively. If ρ1 ≥ ρ2, then
Pr(X1 > x, Y1 > y) ≥ Pr(X2 > x, Y2 > y).

The above is known as the Slepian inequality (Gupta, 1963, p. 805 ).
By letting ρ2 = 0 (thus ρ1 ≥ 0), we establish that X and Y are PQD. On

the other hand, letting ρ1 = 0 (thus ρ2 ≤ 0), X and Y are then NQD.

9.4.3 PQD Bivariate Uniform Distributions

A copula is a multivariate distribution function whose marginals are uniform
over (0, 1). In the two-dimensional case, a copula C(u, v) is simply a bivariate
uniform distribution. Any continuous bivariate distribution F with specified
marginals can be represented by a copula through the marginal transforma-
tions U = FX(X) and V = FY (Y ):

F (x, y) = C(FX(x), FY (y)). (9.26)

The last equation is generally known as the Sklar’s Theorem. For a formal
definition and properties of a copula see Nelsen (1999, Chapter 2).

Unlike F with non-uniform marginals, there is a clearer geometrical in-
terpretation for PQD copulas. If U and V are PQD, then the graph of the
copula of X and Y lies on or above the graph of the independence copula
Π. There are similar geometric interpretations of the graph of the copula
when the two random variables satisfy one or more of the tail monotonic-
ity properties–interpretations which involve the shape of regions determined
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by the horizontal and vertical sections of the copula. See Nelsen (1999, pp.
157–158) for further details.

Joe (1997, p. 19) considered the concepts of positive quadrant dependence
(PQD) and the concordance ordering (more PQD) to be discussed in Section
9.6 below as basic to the parametric families of copulas in determining whether
a multivariate parameter is a dependence parameter.

There are many examples of copulas that are PQD, for example:

Example 9.10

Ali-Mikhail-Haq family:

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
, θ ∈ [0, 1]. (9.27)

(Ali et al., 1978.) It is clear that the copula is PQD. In fact, it can be shown
that it is a copula that corresponds to the Durling-Pareto distribution given
in Example 9.4.

Nelsen (1999, p 152) has pointed out that if X and Y are PQD, then their
copula C is also PQD. Nelsen’s book provides a comprehensive treatment on
copulas and a number of examples of PQD copulas can be found therein.

Generalised F-G-M family of copulas

The so-called bivariate F-G-M (Farlie-Gumbel-Morgenstern) distribution given
in Example 9.1 earlier was originally introduced by Morgenstern (1956) for
Cauchy marginals. Gumbel (1960) investigated the same structure for expo-
nential marginals.

It is easy to show that the F-G-M copula is given by

Cα(u, v) = uv[1 + α(1 − u)(1 − v)], 0 ≤ u, v ≤ 1,−1 ≤ α ≤ 1. (9.28)

It is clear that the F-G-M copula is PQD for 0 ≤ α ≤ 1.
It was Farlie (1960) who extended the construction by Morgenstern and

Gumbel to
Cα(u, v) = uv[1 + αA(u)B(v)], 0 ≤ u, v ≤ 1, (9.29)

where A(u) → 0 and B(v) → 0 as u, v → 1 and A(u), B(v) satisfy certain
regularity conditions ensuring that C is a copula. Here, the admissible range
of α depends on the functions A and B.

If A(u) = B(u) = 1 − u, we then have the classical one parameter F-G-M
family (9.28).

Huang and Kotz (1999) considered the following two types:

(i) A(u) = (1 − u)p, B(v) = (1 − v)p, p > 1,−1 ≤ α ≤
(

p+1
p−1

)p−1
,

(ii) A(u) = (1 − up), B(v) = (1 − vp), p > 0,−(max{1, p})−2 ≤ α ≤ p−1.
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We note that copula (ii) was investigated earlier by Woodworth (1966).
Bairamov and Kotz (2002) introduced further generalizations such that
(iii) A(u) = (1 − u)p, B(v) = (1 − v)q, p > 1, q > 1 (p �= q),

− min

{
1,

(
1 + p

p − 1

)p−1(1 + q

q − 1

)q−1
}

≤α≤min

{(
1 + p

p − 1

)p−1

,

(
1 + q

q − 1

)q−1
}

.

(iv) A(u) = (1 − un)p, B(v) = (1 − vn)q, p ≥ 1; n ≥ 1,

− min

{
1
n2

(
1 + np

n(p − 1)

)2(p−1)

, 1

}
≤ α ≤ 1

n

(
1 + np

n(p − 1)

)p−1

.

Bairamov et al. (2001) considered a more general F-G-M model:
(v) A(u) = (1 − up1)q1 , B(v) = (1 − vp2)q2 , p1, p2 ≥ 1; q1, q2 > 1,

satisfying the following inequalities

− min

{
1,

1
p1p2

(
1 + p1q1

p1(q1 − 1)

)q1−1( 1 + p2q2

p2(q2 − 1)

)q2−1
}

≤

α ≤ min

{
1
p1

(
1 + p1q1

p1(q1 − 1)

)q1−1

,
1
p2

(
1 + p2q2

p2(q2 − 1)

)q2−1
}

.

Motivated by a desire to construct positive quadrant distributions, Lai and
Xie (2000) derived a new family of F-G-M copulas that possesses the PQD
property with

(vi) A(u) = ub−1(1 − u)a, B(v) = vb−1(1 − v)a, a, b ≥ 1; 0 ≤ α ≤ 1
so that the copula parametrized by α is

Cα(u, v) = uv + αubvb(1 − u)a(1 − v)a, a, b ≥ 1, 0 ≤ α ≤ 1. (9.30)

Bairamov and Kotz (2003) have shown that the range of α in (9.30) can be
extended and they also provided the ranges of α for which the copulas (i)-(v)
are PQD. These feasible ranges are now summarized by the Table 9.1 below.

9.5 Some Related Issues on Bivariate Dependence

9.5.1 Examples of Bivariate Positive Dependence Stronger than
PQD Condition

So far, we have presented only the families of bivariate distributions that are
PQD, a weaker notion of the positive dependence discussed in this chapter.
We now introduce some bivariate distributions that also satisfy more stringent
conditions, bearing in mind the stochastically increasing (SI) condition is also
known as positively regression dependent (PRD) condition.
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Table 9.1. Range of dependence parameter α for some positive quadrant dependent
F-G-M copulas.

Type Range of α for which the copula is PQD

Copula (i) 0 ≤ α ≤
(

p+1
p−1

)p−1
.

Copula (ii) 0 ≤ α ≤ p−1.

Copula (iii) 0 ≤ α ≤ min
{(

1+p
p−1

)p−1
,
(

1+q
q−1

)q−1
}

, p > 1, q > 1.

Copula (iv) 0 ≤ α ≤ 1
n

(
1+np

n(p−1)

)p−1
.

Copula (v) 0 ≤ α ≤ min

{
1

p1

(
1+p1q1

p1(q1−1)

)q1−1
, 1

p2

(
1+p2q2

p2(q2−1)

)q2−1
}

.

Copula (vi) 0 ≤ α ≤ 1
B+(a,b)B−(a,b) , B+1, B− are some functions of a and

b.

TP2: The bivariate normal distribution

The bivariate normal density is TP2 if and only if their correlation coefficient
0 ≤ ρ < 1 (see, e.g., Barlow and Proschan, 1981, p. 149). Abdel-Hameed and
Sampson (1978) have shown that the bivariate density of the absolute normal
distribution is also TP2.

TP2: Sarmanov’s bivariate exponential distribution

In Example 9.8, the result in (c) indicates that a member of the Sarmanov’s
family is TP2 if ωφ′

1(x)φ′
2(y) ≥ 0. For exponential marginals, φi(t) = e−t −

λi/(1 + λi) decreases in t so ωφ′
1(x)φ′

2(y) ≥ 0 iff 0 < ω ≤ (1+λ1)(1+λ2)
max(λ1,λ2)

.

SI: Marshall and Olkin’s bivariate exponential distribution

X and Y of Marshall and Olkin’s bivariate distribution are associated due to
having a variable in common in the construction procedure. In fact, Barlow
and Proschan (1981, p. 132) showed that Y is stochastically increasing in X
(SI) which in turn implies ‘association’.

SI: F-G-M bivariate exponential distribution

Rödel (1987) showed that for a F-G-M distribution, X and Y are SI if α > 0.
The following is a direct and easy proof for the case with exponential marginals
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such that α > 0:

Pr (Y ≤ y|X = x) = (1 − α(2e−x − 1)(1 − e−y)) + α(2e−x − 1)(1 − e−2y)
= (1 − e−y) + α(2e−x − 1)(e−y − e−2y).

Thus,
Pr (Y > y|X = x) = e−y − α(2e−x − 1)(e−y − e−2y)

which is clearly increasing in x for every y from which we conclude that X
and Y are positively regression dependent if α > 0.

SI: Kibble’s bivariate gamma distribution

Rödel (1987) showed that Kibble’s bivariate gamma distribution given as Ex-
ample 9.7 in Section 9.4.2 is also SI which is a stronger concept of positive
dependence than PQD.

SI: Sarmanov’s bivariate exponential distribution

The conditional distribution that corresponds to (9.23) is

Pr (Y ≤ y|X = x) = FY (y) + ωφ1(x)
∫ y

0
φ2(z)fY (z)dz,

where
φi(x) = e−x − λi

1 + λi
, i = 1, 2.

It follows that, for positive ω, Pr (Y > y|X = x) = e−λ2y−ωφ1(x)
∫ y

0 φ2(z)fY (z)dz

increases in x because
∫ y

0 φ2(z)fY (z) dz ≥ 0 and φ1(x) decreases in x; so Y is
stochastically increasing in x if 0 ≤ ω ≤ (1+λ1)(1+λ2)

max(λ1,λ2)
.∫ y

0 φ2(z)fY (z) dz ≥ 0 follows from φ2(z)fY (z) being a decreasing function,
φ2(0)fY (0) > 0 so

∫ y

0 φ2(z)fY (z) dz ≥ ∫∞
0 φ2(z)fY (z) dz = 0.

SI: The bivariate exponential distribution of Example 9.2

The distribution function is

F (x, y) = 1 − e−x − e−y + (ex + ey − 1)−1

It can shown easily that

Pr (Y ≤ y|X = x) = 1 − e2x

(ex + ey − 1)2

and hence

Pr (Y > y|X = x) =
{

ex

(ex + ey − 1)

}2

which is increasing in x for all y so Y is SI in X.
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Remark

The bivariate dependence concept SI is a relatively strong concept which is
second only to TP2 in our summary table which does not include the de-
creasing conditional failure rate notion. It seems the condition SI is relatively
easy to verify in general. Besides, the condition is also easy to interpret as its
meaning is intuitively comprehensible.

RCSI: BVE of Marshall and Olkin

Consider Example 9.5 given by (9.21). By using max(x1, y1) + max(x2, y2) ≤
max(x2, y1) + max(x1, y2) for 0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2, we can show that
F̄ (x1, y1)F̄ (x2, y2) ≥ F̄ (x2, y1)F̄ (x1, y2) and hence RCSI by the characteriza-
tion property in Section 9.2.4

RCSI: Bivariate distribution of Block and Basu

Consider the distribution of Block and Basu (1976) considered in Example
9.6. Gupta (2003) showed that (X, Y ) is RCSI.

RTI: Durling-Pareto distribution (bivariate Lomax)

Lai, Xie and Bairamov (2001) showed that X and Y are right-tail increasing
if k ≤ 1 and right-tail decreasing if k ≥ 1. From the chains of relationships in
Section 9.2.7, it is known that right-tail increasing implies ‘association’. Thus
X and Y are associated if k ≤ 1.

9.5.2 Examples of NQD and Other Negative Ageing

Although the main theme of this current chapter is on positive dependence,
it is a common knowledge that negative dependence does exist in various
reliability situations. For the acronyms of negative ageing, see the end of
Section 9.2.7. Several bivariate distributions discussed in Section 9.4 above,
namely, the bivariate normal, F-G-M family, Durling-Pareto distribution and
bivariate exponential distribution of Sarmanov are NQD when the ranges of
the dependence parameter are appropriately specified.

Example 9.11

Gumbel’s bivariate exponential distribution (also known as the Gumbel’s type
I bivariate exponential distribution):

F (x, y) = 1 − e−x − e−y + e−(x+y+θxy), 0 ≤ θ ≤ 1.

F (x, y) − FX(x)FY (y) = e−(x+y+θxy) − e−(x+y) ≤ 0, 0 ≤ θ ≤ 1;

showing that F is NQD. It is well known (see Kotz et al., 2000, p. 351) that
−0.40365 ≤ corr(X, Y ) ≤ 0.

This is an example where X and Y can only be negatively dependent.



9.5 Some Related Issues on Bivariate Dependence 281

Example 9.12

In Example 9.4 above, we can see easily that the Durling-Pareto distribution
is NQD if 1 < k ≤ a + 1.

Example 9.13

The bivariate normal as given in Example 9.9 is NQD if −1 < ρ ≤ 0. In fact,
it is also SD and RR2 for negative ρ.

Example 9.14

Follow from Example 9.8 and Section 9.1, see that the Sarmanov’s bivariate
exponential distribution is RR2 and NQD for −(1+λ1)(1+λ2)

max(λ1λ2,1) ≤ ω ≤ 0.

Example 9.15

Lehmann (1966) presented the following situations for which negative quad-
rant dependence occurs:

• Consider the rankings of n objects by m persons. Let X and Y denote the
rank sum for the ith and the jth object, respectively. Then X and Y are
NQD.

• Consider a sequence of n multinomial trials with s possible outcomes.
Let X and Y denote the number of trials resulting in outcome i and j,
respectively. Then X and Y are NQD.

9.5.3 Concluding Remarks on Concepts of Dependence

Concepts of stochastic dependence are widely applicable in statistics. Given
some of these concepts have arisen from reliability contexts, it seems rather
unfortunate that not many reliability practitioners have caught up with this
important subject. This observation is transparent since the assumption of
independence is still prevailing in the majority of reliability analyses. Among
the dependence concepts, the correlation is still the most widely used concept
in applications. ‘Association’ is advocated and studied in Barlow and Proschan
(1981). On the other hand, PQD is a relatively weaker condition and it is
easier to verify and to interpret. A stronger positive dependence notion SI is
also easier to verify in general. It is interpreted as the conditional survival
probability of one component increases as the lifetime of the other component
increases.

On reflection, this apparent lack of wider applications of the dependence
concepts may due in part to the fact that many of the proposed dependence
models are often not readily applicable. One would hope that in the near
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future, more applied probabilists and reliability engineers would get together
forging a partnership to bridge the gap between the theory and applications
of stochastic dependence.

9.6 Links Between Dependence Concepts and Bivariate
Ageing Notions

It is conceivable that bivariate ageing concepts would be somehow related to
the dependence properties between two lifetime variables. But the question
of whether there is a strong link between the existing non-Bayesian ageing
concepts and the existing dependence concepts remains unanswered. The fol-
lowing two examples appear to indicate there is some relationship between
the two.

Example 9.16

Consider the BVE of Marshall and Olkin (1967) given in Example 9.5. Eq
(8.14) shows that F̄ (x1 + t, x2 + t) = F̄ (x1, x2)F̄ (t, t). Hence

F̄ (x1 + t, x2 + t)/F̄ (x1, x2) decreases in x1, x2 ≥ 0 for t ≥ 0 and so F
is BIFR according to the definition given in Section 8.3. Also the BVE of
Marshall and Olkin is BIFRA as shown by Corollary 4.2 of Block and Savits
(1980b). In fact it satisfies most of the bivariate ageing concepts discussed in
Chapter 8.

On the other hand the BVE also satisfies the SI(Y |X) (Example 9.5) and
the RCSI (see Section 9.5.1). So there seems to have some link between the
two.

Example 9.17

Consider Kibble’s bivariate gamma distribution discussed in Example 9.7.
Block and Savits (1980b, Section 4) showed that it is BIFRA. On the other
hand, Section 9.4 and Section 9.5 show that it satisfies the PQD and SI con-
ditions, respectively.

It follows from Section 9.2.3 that the bivariate IFRA conditions C, D and
Σ can be easily shown to imply ‘association’ (Block and Savits, 1982). On the
other hand, the same authors also showed that the conditions A (≡ F), B, E
and especially BIFRA do not even imply PDQ which is one of the weakest
positive dependence notion.

We conclude this section with following quotes from Block and Savits
(1982) on this issue of relationship between ageing and dependence concepts.
“The opinion which is now generally held is that various concepts of positive
dependence are not intimately related to useful definitions for nonparamet-
ric multivariate life classes. In other words, if a multivariate lifetime has an



9.7 Dependence Concepts and Bayesian Multivariate Ageing 283

increasing failure rate average, then it need not follow that the lifetime be
positively dependent in some sense. In fact, if such a definition implies posi-
tive dependence, then it is probably too strong”. Two decades have now gone
by, we feel that the same conclusion is still be valid. More research in this
area should probably be carried out.

9.7 Dependence Concepts and Bayesian Multivariate
Ageing

In Section 9.2 we defined several bivariate dependence concepts and in Chap-
ter 8 we discussed bivariate and multivariate ageing concepts as well as the
Bayesian multivariate ageing notions. We now ask ourselves again ‘is there
any link between these two notions: the multivariate dependence notion and
the multivariate ageing notion?’ In the last section, we see there is no strong
relation as far as non-Bayesian ageing is concerned. In Section 8.10 we discuss
Bayesian notions of multivariate ageing without considering dependence con-
cepts. More recently, some definite attempts have been made by Bayesians to
link the two was attempted recently.

Bassan and Spizzichino (2001, 2003) and others have proposed some
Bayesian multivariate ageing via some dependence concepts discussed in
this chapter. The background to this approach is provided by Barlow and
Spizzichno (1993) who defined a two-dimensional function

h(x, y) = Ḡ−1(F̄ (x, y)) (9.31)

where Ḡ is the univariate survival function and F̄ is the joint survival function
of the exchangeable variables X and Y . The function h has the same ‘level
curves’ as F̄ . See (8.34) for the definition regarding a level set.

Bassan and Spizzichino (2001) defined a bivariate ageing function

B(u, v) = exp
{−Ḡ−1(F̄ (− log u, − log v))

}
, u, v ∈ [0, 1]. (9.32)

It now follows from (9.31) that (9.32) can be written as

B(u, v) = exp {−h(− log u, − log v)} . (9.33)

Bassan and Spizzichino (2001) pointed out that the function B shares many
properties of a copula, but it need not be 2-increasing. More specifically,

B(0, v) = B(u, 0) = 0, B(u, 1) = u, B(1, v) = v, 0 ≤ u, v ≤ 1,

but
B(u + h, v + k) + B(u, v) − B(u + h, v) − B(u, v + k)

need not be positive.

Definition 9.2: Let X and Y be two exchangeable random variables with
bivariate ageing function B defined in (9.32).
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1. (X, Y ) is said to be bivariate new better than used (bivariate NBU) if B
is PQD.

2. (X, Y ) is said to be bivariate increasing failure rate (bivariate IFR) if B
is LTD.

3. (X, Y ) is said to be bivariate PF2 if B is SI.

Note that a univariate distribution is said to be PF2 if it has a log-concave
density. Also a PF2 distribution is necessary to be IFR but the converse is
not true. Hence PF2 is a stronger ageing condition than IFR (Barlow and
Proschan, 1981, pp. 76–77).

Bassan and Spizzichino (2001, 2003) showed that (X, Y ) is bivariate NBU
if and only if

Pr(X > t|Y > r) ≥ Pr(Y > t + r|Y > r). (9.34)

This relationship can be given the following interpretation: conditional on
a same history according to which one item is new and another item is aged
at least r, the new item is preferred. The notion bivariate NWU is defined by
reversing the above inequality (Bassan and Spizzichino, 2003).

It is also shown in Bassan and Spizzichino (2001) that (X, Y ) is bivariate
IFR if and only if

B(us, v) ≥ B(u, vs), u ≥ v, 0 < s < 1. (9.35)

This is found to be equivalent to the joint survival function F̄ to Schur-
concave. So the bivariate IFR here is the same as the weaker version defined
by Definition 8.7

Note: We have not used the abbreviation BNBU or BIFR to avoid a
possible confusion with the classical bivariate ageing defined in Section 8.4
and Section 8.5.

We note that the above Bayesian approach taken by these authors was
not directly linking the traditional ageing concepts with positive dependence;
rather, they defined new multivariate ageing through positive dependence
concepts. These new definitions are not intuitive appealing as far as we are
concerned.

Example 9.18

Consider the bivariate Burr distribution considered by Bassan and Spizzichino
(2003) given by

F̄ (x, y) =
β

β + x2 + y2 , β > 0, x, y ≥ 0. (9.36)

It is easy to see that F̄ is Schur-concave, so B(us, v) ≥ B(u, vs), u ≥
v, 0 < s < 1. In fact, B(u, v) ≥ B(u)B(v) so B is PQD hence (X, Y ) has
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bivariate NBU by Definition 9.2. It is also obvious that F̄ (x, y) ≥ F̄ (x)F̄ (y)
so that X and Y are also PQD.

It seems that while the traditional approach of multivariate ageing lacks
connection with dependence concepts, the Bayesian approach has integrated
dependence concepts into some of the definitions of multivariate ageing.

9.8 Positive Dependence Orderings

Consider two bivariate distributions having the same pair of marginals FX

and FY . It is assumed that the marginal variables of each joint distribution
are positively dependent. Naturally, we would like to know which of the two
bivariate distributions is more positively dependent. In other words, we wish
to order the two given bivariate distributions by the extent of their positive de-
pendence between the two marginal variables with higher in ordering meaning
more positively dependent. Here in this section the concept of positive depen-
dence ordering is introduced. The following definition is found in Kimeldorf
and Sampson (1987).
Definition 9.3: A relation � on a family of all bivariate distributions is a
positive dependence ordering (PDO) if it satisfies the following ten conditions:

P(0) F � G ⇒ F (x,∞) = G(x,∞) and F (∞, y) = G(∞, y);
P(1) F � G ⇒ F (x, y) ≤ G(x, y) for all x, y;
P(2) F � G and G � H ⇒ F � H;
P(3) F � F ;
P(4) F � G and G � F ⇒ F = G;
P(5) F− � F � F+; where F+(x, y) = min[F (x,∞), F (∞, y)] and

F−(x, y) = max[F (x,∞) + F (∞, y) − 1, 0];
P(6) (X, Y ) � (U, V ) ⇒ (a(X), Y ) � (a(U), V ) where the (X, Y ) �

(U, V ) means the relation � holds between the corresponding bivariate dis-
tributions.

P(7) (X, Y ) � (U, V ) ⇒ (−U, V ) � (−X, Y );
P(8) (X, Y ) � (U, V ) ⇒ (Y, X) � (V, U); and
P(9) Fn � Gn, Fn → F in distribution, Gn → G in distribution ⇒ F �

G, where Fn, F, Gn, G all have the same pair of marginals.
Joe (1997) gave a comprehensive treatment of dependence orderings. Sec-

tion 3.6 of Drouet Mari and Kotz (2001) also contains a good summary on
this subject. In what follows, we let F and G be the joint distributions of
(X, Y ) and (X ′, Y ′), respectively, having the same marginals FX and FY .

9.8.1 More PQD

Tchen (1980) defined a bivariate distribution G to be more positively quadrant
dependent (more PQD) than a bivariate distribution F having the same pair



286 9 Concepts and Measures of Dependence in Reliability

of marginals (written as (X, Y ) ≤PQD (X ′, Y ′)) if G(x, y) ≥ F (x, y) for all
(x, y) ∈ R2 or equivalently, Ḡ(x, y) ≥ F̄ (x, y) for all (x, y) ∈ R2. It was
shown that PQD partial ordering is a PDO. In Section 10.4, we will discuss
an application of ‘more PQD’ to the effectiveness of parallel redundancy when
two component lifetimes are PQD.

Note that ‘more PQD’ is also known as ‘more concordant’ in the depen-
dence concepts literature.

Example 9.19

Generalized F-G-M copula
Lai and Xie (2000) constructed a new family of PQD dependent bivariate

distributions which is a generalization of the F-G-M copula :

Cθ(u, v) = uv + θubvb(1 − u)a(1 − v)a, a, b ≥ 1, 0 ≤ θ ≤ 1. (9.37)

Let the dependence ordering be defined through the ordering of θ. It is clear
from (9.37) that when θ < θ′, then Cθ(u, v) ≤ Cθ′(u, v).

Example 9.20

Bivariate normal with positive correlation coefficient ρ.
The Slepian inequality in Section 9.4.2 says Pr(X1 > x, Y1 > y) ≥ Pr(X2 >

x, Y2 > y) if ρ1 ≥ ρ2. Thus a more PQD ordering can be defined in term of
the positive correlation coefficient ρ.

Example 9.21

Ali-Mikhail-Haq family (see Example 9.10) has

Cθ(u, v) =
uv

1 − θ(1 − u)(1 − v)
, θ ∈ [0, 1].

It is easy to see that Cθ′ ≥ Cθ if θ′ > θ, i.e., Cθ′ is more PQD than Cθ.

9.8.2 More SI

The distribution G is said to be more (positively) regression dependent (or
more stochastically increasing, written as (X, Y ) ≤SI (X ′, Y ′)), if, for real y
and y′,

Pr(Y ≤ y|X = x) ≤ Pr(Y ′ ≤ y′|X ′ = x) ⇒
Pr(Y ≤ y|X = x′) ≤ Pr(Y ′ ≤ y′|X ′ = x′), for any x′ > x.

(9.38)

(Yanagimoto and Okamoto, 1969). The ordering was also expressed in terms
of quantiles of the conditional distributions. A slight modification of the
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above definition was given by Capéraà and Genest (1990). It is clear that
if (X, Y ) ≤SI (X ′, Y ′) and X and Y are independent, then Y ′ is stochastically
increasing in X ′.
Note: Since we have not assumed X and Y (hence X ′ and Y ′) are exchange-
able it is perhaps necessary to replace the above ordering notation by ≤SI(Y |X)
showing the conditioning.

Example 9.22

Clayton’s (1978) bivariate distribution has the form

F (x, y) =
[
FX(x)θ + FY (y)θ − 1

]−1/θ
, θ ≥ 0.

Fang and Joe (1992) showed F is increasing with respect to ≥SI as θ increases.

9.8.3 More Associated

G is said to be more associated than F , written as (X, Y ) ≤AS (X ′, Y ′), if
there exist increasing functions φ and ψ such that for x1, x2 in the support of
X and y1, y2 in the support of Y ,

x1 ≤ x2
y1 ≤ y2

}
⇒
{

φ(x1, y1) ≤ φ(x2, y2)
ψ(x1, y1) ≤ ψ(x2, y2)

φ(x1, y1) < φ(x2, y2)
ψ(x1, y1) > ψ(x2, y2)

}
⇒
{

x1 < x2
y1 > y2

(X ′, Y ′) ∼ (φ(X, Y ), ψ(X, Y )).

(Schriever, 1987). In the special case φ(x, y) = x, G is more regression depen-
dent than F (as defined above). Fang and Joe (1992) imposed more conditions
on φ and ψ so that the modified ordering satisfies more properties of PDO
in Definition 9.3. These equivalent forms of ‘more associated’ and ‘more SI’
orderings are more easily checkable for some bivariate distributions. For sev-
eral parametric bivariate families, the dependence orderings are shown to be
equivalent to the ordering of the parameter. We note also that if X and Y are
independent, then G is ‘more associated’ than F is equivalent to X ′ and Y ′

are associated.

Example 9.23

A special case of Marshall and Olkin’s BVE is given by

Pr (X > x, Y > y) = exp {−(1−λ)(x + y)−λ max(x, y)} , x, y ≥ 0, 0 ≤ λ ≤ 1.
(9.39)

Fang and Joe (1992) showed that the distribution is increasing with respect
to ‘more associated’ ordering as λ increases but not with respect to ‘more SI’.

Block et al. (1990) studied ‘more associated’ ordering in detail for bivariate
empirical distributions.



288 9 Concepts and Measures of Dependence in Reliability

9.8.4 More TP2

Kimeldorf and Sampson (1987) have defined a TP2 ordering as follows: Let
I × J be a rectangle, and G(I, J) and F (I, I) be the associated probabilities.
We write I1 < I2 , if all x ∈ I1 and for all y ∈ I2, x < y. We say that
(X, Y ) ≤TP2 (X ′, Y ′) if for all I1 < I2 and for all J1 < J2,

F (I1, J1)F (I2, J2)G(I1, J2)G(I2, J1)
≤ F (I1, J2)F (I2, I1)G(I1, J1)G(I2, J2). (9.40)

When F is the product of the marginals FX and FY , then the above condition
reduces to g being TP2 where g is the joint density of (X ′, Y ′). Kimeldorf and
Sampson (1987) showed that the TP2 ordering is a PDO.

Example 9.24

Kimeldorf and Sampson (1987) showed that the F-G-M copula that corre-
sponds to Example 9.1 and given by (9.28):

Cα(u, v) = uv + αuv(1 − u)(1 − v), 0 ≤ u, v ≤ 1, −1 ≤ α ≤ 1

can be ordered by the relation (9.40). Note however, this ordering holds for
−1 ≤ α ≤ 0 even though X and Y are RR2 for α < 0.

Genest and Verret (2002) have shown that in this ordering, the bivariate
normal with given means and variances can be ordered by their correlation
coefficient although very few other distributions meet the condition (9.40).

Capéraà and Genest (1990) also defined an ordering G ‘more LRD’ than F .
Although the dependence concepts LRD and TP2 are the same when the joint
density function exists, this latter definition is not equivalent to the earlier
one.

9.8.5 Relations Among Different Partial Orderings

The following chain of implications holds for dependence orderings:

≥SI ⇒ ≥AS ⇒ ≥PQD

(Yanagimoto and Okamoto, 1969; Schriever, 1987). Kimeldorf and Sampson
(1987) showed that ≥TP2 ⇒ ≥PQD. However, Capéraà and Genest (1990)
showed that ≥TP2 �⇒ ≥SI. We are unsure if ≥TP2 ⇒ ≥AS.
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9.8.6 Other Positive Dependence Orderings

G is said to be more positive definite dependent (PDD) than F , if

cov(a(X), a(Y )) ≥ cov(a(X ′), a(Y ′)),

for all continuous function a for which covariances exist (Rinott and Pollack,
1980).

Averous and Dortet-Bernadet (2000) used the approach of Capéraà and
Genest (1990) to order bivariate distributions by their degree in the LTD
(left-tail decreasing) and RTI (right-tail increasing) sense.

In conclusion, orderings of bivariate random variables seem to be a fruitful
and inexhaustible area of research which attracts both theoretical and applied
statisticians.

9.8.7 Multivariate Dependence Ordering

In Section 9.3, we have defined the multivariate dependence concepts PLOD
and PUOD which are equal to PQD in the bivariate case. Joe (1997, p. 37)
defined the orderings ‘more PLOD’ and ‘PUOD’ and ‘more POD’ as follows.

Let X= (X1, X2, ..., Xn) and Y = (X ′
1, X

′
2, ..., X

′
n) be two random vectors

with joint distributions F and G, respectively.
G is said to be more PLOD than F if

Pr(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn) ≤ Pr(X ′
1 ≤ x′

1, X
′
2 ≤ x′

2, ..., X
′
n ≤ x′

n)
(9.41)

and G is more PUOD than F if

Pr(X1 > x1, X2 > x2, ..., Xn > xn) ≤ Pr(X ′
1 > x′

1, X
′
2 > x′

2, ..., X
′
n > x′

n)
(9.42)

G is more POD (more concordant) than F if both (9.41) and (9.42) hold. For
other properties of the multivariate concordance see Joe (1990).

Denuit et al. (2002) have ordered two vectors of multivariate random sums
of positive random variables by PLOD, PUOD and POD. Their results lead
to some actuarial applications. Belzunce and Semeraro (2004) also considered
some dependence properties and orders among multivariate distributions and
studied their preservation under mixtures. Their results were applied to reli-
ability and risk theory.

Jogdeo (1978), Lindqvist (1988), and Belzunce et al. (2002) proved preser-
vation results under mixtures for positive association whereas Shaked and
Spizzichino (1998), Scarsini and Spizzichino (1999) and Khaledhi and Kochar
(2001) proved preservation results for some other multivariate notions of pos-
itive dependence.

There are several other types of positive dependence ordering in the liter-
ature and we recommend the reader to consult the text by Joe (1997). Shaked
and Shanthikumar (1994) gave a comprehensive treatment on stochastic or-
derings and applications.



290 9 Concepts and Measures of Dependence in Reliability

9.9 Measures of Dependence

Dependence properties and measures of dependence are interrelated. Having
discussed the former, we now consider the latter. There are three prominent
global measures of dependence: Pearson’s product-moment correlation coeffi-
cient, Kendall’s tau and Spearman’s rho. Using a more modern terminology,
we refer the latter two as measures of association.

If X and Y are not totally dependent, then it may be helpful to find some
quantities that can measure the strength or degree of dependence between
them. If such a measure can be expressed as a scalar, it is often more conve-
nient to refer to it as an index. We may ask what conditions ought an index to
satisfy or what desirable properties should have in order to be useful. Rényi
(1959) proposed a set of seven conditions for this purpose, and showed that
the maximal correlation (see, for e.g., Hutchinson and Lai, 1990, p. 183) ful-
fils all of them. Lancaster (1982) has modified and enlarged Rényi’s set of
axioms to nine conditions.

Let δ(X, Y ) denote an index of dependence between X and Y . The follow-
ing, apart from the last condition, is Lancaster’s version of Rényi’s conditions.
Condition (9) is taken from Schweizer and Wolff (1981) instead of Lancaster
(1982), as the latter is expressed in highly technical language.

1. δ(X, Y ) is defined for any pair of random variables, neither of them
being constant with probability 1. This is to avoid trivialities.

2. δ(X, Y ) = δ(Y, X). But notice that while independence is a symmetric
property, total dependence is not, as one variable may be determined by the
other, but not vice versa.

3. 0 ≤ δ(X, Y ) ≤ 1. Lancaster said that this is an obvious choice, but not
every one will agree.

4. δ(X, Y ) = 0 if and only if X and Y are mutually dependent. Notice how
strong this condition is made by the ‘only if’.

5. If the functions a and b map the spaces of X and Y in one-to-one manner,
respectively, onto themselves, then δ(a(X), b(Y )) = δ(X, Y ). The condition
means that the index remains invariant under one-to-one transformation of
the marginal random variables.

6. δ(X, Y ) = 1 if and only if X and Y are mutually completely dependent.
7. If X and Y are jointly normal, with correlation coefficient ρ, then

δ(X, Y ) = |ρ|.
8. In any family of distributions defined by a vector parameter θ, δ(X, Y )

must be a function of θ.
9. If (X, Y ) and (Xn, Yn), n = 1, 2, ..., are pairs of random variables with

joint distribution F and Fn, respectively, and if {Fn} converges to F , then
limn→∞ δ(Xn, Yn) = δ(X, Y )

Comments on the above conditions:



9.10 Pearson’s Product-Moment Correlation Coefficient 291

• A curious feature of the list is its mixture of the trivial and/or unhelpful
with the strong and/or deep. We would say that (1), (3), (7) and (8) fall
into the first category (unless there are subtle consequences to them that
elude us), whereas (2), (4), (5) and (6) fall into the second. We are unsure
about (9).

• Summarising, conditions (2), (5), (4) and (6) say that we are looking for a
measure that is symmetric in X and Y , is defined by the ranks of X and
the ranks of Y , attains 0 only in the case of independence, and attains 1
whenever there is mutual complete dependence.

• Condition (3) is too restrictive for correlations, as the the range of these
is traditionally from −1 to +1.

• (6) is stronger than the original condition which says δ(X, Y ) = 1 if either
X = a(Y ) or Y = b(X) for some functions a and b, i.e., if X and Y are
functionally dependent. Rényi intentionally left out the converse implica-
tion, i.e., δ(X, Y ) = 1 only if X and Y are functionally dependent, as he
felt it to be too restrictive. The strengthening from functional dependence
to mutual complete dependence is possibly due to Lancaster himself.

• Condition (7) is not appropriate to rank correlations - it should be replaced
by δ being a strictly increasing function of |ρ|, as is done by Schweizer and
Wolff (1981).

• Schweizer and Wolff (1981) claimed that at least for nonparametric mea-
sures, Rényi’s original conditions are too strong.

• The chief point about these axioms is not their virtues or demerits, either
individually or as a set, but that they make us think about what we meant
by dependence and what we want from a measure of it. They provide a
yardstick against which to measure the properties of different measures.

As we have indicated earlier, the present chapter mainly discusses three
measures of dependence: Pearson’s product moment correlation, Kendall’s tau
and Spearman’s rho. None of the three satisfies all the axioms given above.

9.10 Pearson’s Product-Moment Correlation Coefficient

Pearson’s product-moment correlation coefficient is a measure of the strength
of the linear relationship between two random variables, its definition being

ρ(X, Y ) =
cov(X, Y )√

var(X)var(Y )
, (9.43)

cov(X, Y ) = E{[X −E(X)][Y −E(Y )]} being the covariance of X and Y , and
var(X) and var(Y ) being the variances of X and Y . If either of the variables
is a constant, the correlation coefficient is undefined.

It is clear that |ρ(X, Y )| ≤ 1; equality occurs only X and Y are linearly
dependent; ρ takes the same sign as the slope of the regression line. Suppose
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the marginals FX(x) and FY (y) are given. Then ρ can take all values in the
range −1 to +1 if and only if constants α and β exist such that αx + βy has
the same distribution as Y , and the distributions are symmetrical about their
means (Moran, 1967)

If X and Y are independent, then ρ(X, Y ) = 0. However, zero corre-
lation does not imply independence - hence, condition (4) of the Section
9.9 is not satisfied. (Between uncorrelatedness and independence lies ‘semi-
independence’. This means that E(Y |X) = E(Y ) and E(X|Y ) = E(X). See
Jensen, 1988.) As is well known, adding constants to X and Y does not alter
ρ(X, Y ), and neither multiplying X and Y by constant factors with the same
sign. As ρ(X, Y ) may be negative, condition (3) is violated. Furthermore,
ρ(X, Y ) is not invariant under monotonic transformations of the marginals,
so condition (5) is not satisfied. And as ρ(X, −X) = −1, the ‘if’ part of
condition (6) is not satisfied. Condition (7) and (8) are obviously satisfied.
Condition (9) is satisfied – we can prove this by using the continuity theo-
rem for two-dimensional characteristic functions (Cramér, 1999, p. 102) and
the expansions of such characteristic functions in terms of product moments
(Bauer, 1972, pp. 264–265).

As to estimating the correlation in a sample of n bivariate observations
(x1, y1), ....(xn, yn), the usual formula is

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

, (9.44)

where x̄ and ȳ are the respective sample means.
If (x1, y1), ....(xn, yn) are n independent pairs of observations from a bi-

variate normal distribution, r is a maximum likelihood estimate and approxi-
mately unbiased estimator of ρ. A disadvantage of r is that it is very sensitive
to contamination of sample of outliers. Devlin et al. (1975) have compared r
with various other estimators of ρ with respect to their robustness; see Rup-
pert (1988) for ideas on multivariate “trimming” (i.e., removal of extreme
values).

ρ(X, Y ) will be abbreviated to ρ whenever there is no ambiguity.

9.10.1 Robustness of Sample Correlation

The distribution of r has been thoroughly reviewed in Chapter 32 of Johnson
et al. (1995). While the properties of r for the bivariate normal are clearly
understood, the same cannot be said about non-normal bivariate populations.
Cook (1951), Gayen (1951) and Nakagawa and Niki (1992) obtained expres-
sions for the first four moments of r in terms of the cumulants and cross-
cumulants of the parent population. However, the size of the bias and the
variance of r are still rather hazy for general bivariate nonnormal populations
when ρ �= 0, since the cross cumulants are difficult to quantify in general. Al-
though several nonnormal populations have been investigated, the messages
on the robustness of r are conflicting (Johnson et al., 1995, p. 580).
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Hutchinson (1997) noted that the sample correlation is possibly a poor
estimator. Using the bivariate lognormal as a case study on the robustness of
r as an estimate of ρ, Lai et al. (1999) found that for smaller sample sizes, r
has a large bias and large variance when ρ �= 0 with skewed marginals; thus
they supported the claim that r is not a robust estimator. Researchers should
be remindful of the underlying assumptions of the population before reporting
the size of of r. Edwardes (1993) showed that in the case of the BVE of (9.21),
Kendall’s t statistic (defined by τ̂ in (9.48)) is superior to r in estimating the
correlation coefficient of this joint distribution.

9.10.2 Interpretation of Correlation

Rodriguez (1982) described the historical development of correlation, and
stated that although Karl Pearson was aware that high correlation between
two variables may be due to a third variable, this was not generally recognized
until Yule’s (1926) paper. One aspect of difficulty of interpreting correlation
is that it is still all too easy to confuse it with causation.

Rodriguez argued that, in order to interpret a calculated correlation, an
accompanying probability model for the chance variation in the data is nec-
essary, the two most common ones being as follows.

• The bivariate normal distribution. In this case, r estimates the parame-
ter ρ; confidence intervals may be constructed for ρ and hypothesis tests
carried out.

• The simple regression model, yi = α + βxi+ random error. Here, r2 rep-
resents the proportion of total variability (as measured by the sum of
squares) in the y′s which can be explained by the linear regression. That
is,

r2 =
∑n

i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(9.45)

where ŷi is the predicted value of yi, calculated from the estimated re-
gression equation. In the regression context, the xi are often chosen, not
random, and thus there is no underlying bivariate distribution for r to be
an estimate of a parameter in.

Even so, said Elffers (1980), “It can be difficult (i) to decide when a par-
ticular value of ρ indicates association strong enough for a given purpose,
and (ii) in a given situation, to weigh the losses involved in obtaining more
strongly associated variables against the gains.” Elffers therefore put forwards
functions of the correlation that can be interpreted as probability of taking a
wrong decision in certain situations.

Though they are elementary, it perhaps worth emphasizing these four
points.

• r = 0.0 does not mean that there is no relationship between the x′s and
y′s. A scatterplot might reveal a clear (though nonlinear) relationship.
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• And even if the correlation is close to 1, the relationship may be obviously
nonlinear, either to the eye when plotted directly, or because a transfor-
mation reveals a relationship that is incompatible with linearity. If X is
uniform distribution over the range 8 to 10, and Y is proportional to X2,
then the correlation between X and Y is approximately 0.999 (Blake, 1979,
Example 6.18).

• Lots of different-looking sets of points can all produce the same value of
r (see Chambers et al., 1983, Section 4.2, for eight scatterplots, all having
r=0.7).

• The value of r calculated from a small sample may be totally misleading
if not viewed in the context of its likely sampling error.

We may add that for some bivariate distributions, ρ may not even exist.
For example, the bivariate Pareto distribution (see e.g., Chapter 52 of Kotz
et al., 2000), ρ does not exist when 0 < c ≤ 2.

In view of the above, the computation of r should be accompanied by the
use of such devices as scatterplots. When the data are not from a bivariate
normal population, r provides only limited information about the observa-
tions. Barnett (1985), citing two scatterplots in Barnett (1979) has expressed
the view that for highly skew bivariate distributions, such as those with ex-
ponential marginals, the ordinary correlation coefficient is not a very useful
measure of association.

History of correlation coefficients

Drouet Mari and Kotz (2001) devoted their Chapter 2 to describe the histor-
ical development of ‘independent event’ and the correlation coefficient; and
they also conducted a brief tour of its early applications and misinterpre-
tations. The readers should find this account of the early development of
statistical dependence useful.

9.11 Rank Correlations

Kendall’s tau (τ) and Spearman’s rho (ρS) are the best known rank correlation
coefficients. Essentially, these are measures of correlation between rankings,
rather than between actual values, of X and Y ; they are unaffected by any
increasing transformation of X and Y , whereas the Pearson product-moment
correlation coefficient ρ is unaffected only by linear transformations.

Let (xi, yi) and (xj , yj) be two observations from (X, Y ) of continuous ran-
dom variables. The two pairs (xi, yi) and (xj , yj) are said to be concordant if
(xi, yi)(xj , yj) > 0 and discordant if (xi, yi)(xj , yj) < 0.
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9.11.1 Kendall’ tau

Kendall’s tau is defined as the probability of concordance minus the proba-
bility of discordance:

τ = Pr[(X − X ′)(Y − Y ′) ≥ 0] − Pr[(X − X ′)(Y − Y ′) ≤ 0], (9.46)

where (X, Y ) and (X ′, Y ′) are two independent pairs of random variables from
a common cdf F .

The above equation is equivalent to

τ = cov[sgn(X ′ − X), sgn(Y ′ − Y )] where sgn = sign.

Alternatively, τ may be defined as

τ = 4
∫ ∫

F (x, y)f(x, y) dx dy − 1. (9.47)

The sample version of τ is known as the Kendall’s t statistic defined as

τ̂ =
c − d

c + d
= (c − d)/

(
n
2

)
(9.48)

where c denotes the number of concordant pairs and d the number of dis-
cordant pairs from a sample of n observations from (X, Y ). τ̂ is an unbiased
estimator of τ .

Since τ is invariant under any increasing transformations, it may be defined
via the copula C of X and Y ; see, for e.g., Nelsen (1999, p. 129) or Section
9.4.3:

4
∫ 1

0

∫ 1

0
C(u, v)c(u, v) du dv − 1 = 4E(C(U, V )) − 1. (9.49)

The table below adapted from Edwardes (1993) gives Kendall’s τ ’s to-
gether with Pearson’s ρ’s for some well known bivariate distributions with the
exponential integral defined as E1(x) =

∫∞
x

exp(−z)z−1 dz.

TP2 and Kendall’s τ

Recall in Section 9.2.1, an absolutely continuous distribution function F is
said to be totally positive of order 2 (TP2) if the joint density f(x, y) satisfies
f(x2, y2)f(x1, y1) − f(x2, y1)f(x1, y2) ≥ 0 for all x1 < x2 and y1 < y2.

Nelsen (1992) proved that τ
2 represents an average measure of total posi-

tivity for the density f defined by

T =
∫ ∞

−∞

∫ y2

−∞

∫ ∞

−∞

∫ x2

−∞
[f(x2, y2)f(x1, y1)−f(x2, y1)f(x1, y2)]dx1dy1dx2dy2,

for all x1 < x2 and y1 < y2, showing that τ is indeed a measure of a strong
dependence concept.
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Table 9.2. Pearson’s ρ and Kendall’s τ for some well known bivariate distributions

Distribution Example ρ τ

Bivariate normal 9.9 ρ 2
π

sin−1(ρ)

F-G-M copula 9.1 α/3 2α/9
F-G-M exponential 9.1 α/4 2α/9

BVE 9.5 λ12
λ1+λ2+λ12

λ12
λ1+λ2+λ12

Gumbel’s type I
exponential

9.11 exp(1/θ)E1(1/θ)/θ
–1

− exp(2/θ)E1(2/θ)

9.11.2 Spearman’s rho

As with Kendall’s τ , the population version of the measure of association
known as Spearman’s rho (denoted by ρS) is based on concordance and dis-
cordance. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent pairs of
random variables with a common distribution function F . Then ρS is defined
to be proportional to the probability of concordance minus the probability of
discordance for the two pairs (X1, Y1) and (X2, Y3), i.e.,

ρS = 3
(

Pr [(X1 − X2)(Y1 − Y3) > 0]−Pr [(X1 − X2)(Y1 − Y3) < 0]
)
. (9.50)

Equation (9.50) is really the grade correlation and can be expressed in terms
of a copula:

ρS = 12
∫ 1

0

∫ 1

0
C(u, v) du dv − 3

= 12
∫ 1

0

∫ 1

0
uv dC(u, v) − 3

= 12E(UV ) − 3. (9.51)

Rewriting the above equation as

ρS =
E(UV ) − 1

4
1
12

, (9.52)

showing that Spearman’s rank correlation between X and Y is simply the
Pearson’s product moment correlation coefficient between the uniform variates
U and V .

Quadrant dependence and Spearman’s ρS

Recall in Section 9.2.1, a pair (X, Y ) is said to be positively quadrant depen-
dent (PQD) if F (x, y)−FX(x)FY (y) ≥ 0 for all x and y, and negatively quad-
rant dependent (NQD) when the inequality is reversed (see Section 9.2.7 for
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details). Nelsen (1992) considered that the expression F (x, y) − FX(x)FY (y)
measures ‘local’ quadrant dependence at each point of (x, y) ∈ R2. It is well
known (see Schweizer and Wolff, 1981, and the references cited therein) that
the population version of Spearman’s rho is given by

ρS = 12
∫ ∞

−∞

∫ ∞

−∞
[F (x, y) − FX(x)FY (y)] dFX(x) dFY (y). (9.53)

It follows from the above equation that 1
12ρS represents an average measure of

quadrant dependence, where the average is taken with respect to the marginal
distributions of X and Y . It is easy to see from (9.1) that when X and Y are
PQD, ρS ≥ 0. Similarly, if X and Y are NQD, ρS ≤ 0.

The sample Spearman’s correlation for a sample of size n is

R =
12

n(n2 − 1)

∑
i

(
ri − n + 1

2

)(
si − n + 1

2

)
(9.54)

where ri = rank(xi), and si = rank(yi).
Another common form for R is

R = 1 − 6
∑

i d2
i

n(n2 − 1)
, (9.55)

where di = ri − si. R is not unbiased, and the expectation of R of a sample
of size n is E(R) = (n−2)ρS+3τ

(n+1) → ρS as n → ∞.

If the distribution of (X, Y ) is a bivariate normal with correlation ρ, then
ρS = 6

π sin−1 ρ
2 and τ = 2

π sin−1 ρ.
The copula that corresponds to Marshall and Olkin’s bivariate exponential

(as given in Example 9.5) is known as the distribution of Cuadras and Augé
(1981) :

C(u, v) =
{

u1−cv foru ≥ v,
uv1−c foru < v.

Cuadras and Augé (1981) determined that Pearson’s correlation is 3c/(4− c).
Since the marginals are uniform, so ρS is the same. It may also be shown that
τ = c/(2 − c) and hence ρS = 3τ/(2 + τ).

For the F-G-M distribution (as given in Example 9.1) with uniform mar-
ginals, it can be shown that ρS = α/3 and τ = 2α/9; hence ρS = 3τ/2.

Chapter 13 of Hutchinson and Lai (1990) presented rank correlations for
several other bivariate distributions in addition to those mentioned above.

Remarks

• Independence of X and Y implies that τ = ρS = 0, but the converse
implication does not hold.

• τ and ρS are both restricted to the range −1 to +1, attaining these limits
for perfect negative and perfect positive relationships, respectively.
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• If X and Y are positively quadrant dependent, then τ ≥ 0 and ρS ≥ 0.
• If two distributions F and F ′ have the same marginals and F is more

concordant (more PQD) than F ′ (i.e., F ≥ F ′), then τ and ρS are at least
as great for F as for F ′ (Tchen, 1980, Corollary 3.2). See Section 9.8 for
dependence orderings.

• It has already been said that the sample correlation r is very sensitive to
outliers; the sample counterparts of τ and ρS are less so, but Gideon and
Hollister (1987) proposed a statistic that is more resistant to the influenced
of outliers.

• For a review that includes rank correlations, see Nelsen (1999).

9.11.3 The Relationship between Kendall’s tau and Spearman’s
rho

While both Kendall’s tau and Spearman’s rho measure of the probability of
concordance between two variables with a given distribution, the values of
ρS and τ are often quite different. In this section we will determine just how
different ρS and τ can be. We begin by giving explicit relationships between
the two indices for some of the distributions we have considered; these are
summarized in Table 9.3 below

Table 9.3. Relationship between ρS and τ

Distribution Relationship
Bivariate normal ρS = 6

π
sin−1( 1

2 sin πτ
2 )

F-G-M ρS = 3τ/2

Marshall & Olkin (BVE) ρS = 3τ/(2 + τ)

Raftery family ρS = 3τ(8 − 5τ)/(4 − τ)2

We may now ask what is the relation between τ and ρS for other distri-
butions, and can this relation be used to determine what is the shape of an
empirical distributions? (By “bivariate shape”, we mean the shape remaining
once univariate shape has been discarded by ranking.)

Various examples indicate a precise relation between the two measures
does not exist for every bivariate distribution but bounds or inequalities can
be established. We shall now summarize some general relationships below (see
Kruskal, 1958):

• −1 ≤ 3τ − 2ρ ≤ 1 (first set of universal inequalities),
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• 1+ρ
2 ≥ ( 1+τ

2

)2, and 1−ρ
2 ≥ ( 1−τ

2

)2 (second set of universal inequalities).

Combining the preceding two sets of inequalities yields a slightly improved
set

3τ − 1
2

≤ ρS ≤ 1 + 2τ − τ2

2
, τ ≥ 0 and

τ2 + 2τ − 1
2

≤ ρS ≤ 1 + 3τ

2
, τ ≤ 0.

(9.56)
Another relationship worths noting (see for example, Nelsen, 1999):

E(W ) =
1
12

(3τ − ρS),

where W = F (X, Y )−FX(X)FY (Y ) which corresponds to a measure of quad-
rant dependence. So E(W ) is the ‘expected’ measure of quadrant dependence.

A figure depicting ρS as a function of τ can be plotted for which the pair
(τ, ρS) lies within a shaded region bounded by four constraints given in the
preceding set of inequalities. Such a figure with bounds for ρS and τ can be
found in Nelsen (1999, p. 104).

These bounds are remarkably wide: for instance, when τ = 0, ρS can range
between −0.5 and +0.5. Daniels (1950) commented that the assumption that
τ and ρS describe more or less the same aspect of a bivariate population of
ranks may be far from true, and suggested circumstances in which the message
conveyed by the two indices is quite different. (“The worse discrepancy...occurs
when the individuals fall into two groups of about equal size, within which
corresponding pairs of ranks are nearly all concordant, but between which
they are nearly all discordant”–Daniels, 1950, p.190). But Fieller et al. (1957)
did not think this would happen very often, saying that although after trans-
forming the margins to normality, the resulting bivariate distribution will not
necessary be the bivariate normal, “we think it likely that in practical situ-
ations it would not differ greatly from this norm”, adding “This is a field in
which further investigation would be of considerable interest”.

For a give value of τ , how much do distributions differ in their values of
ρS? Table 13.1 of Hutchinson and Lai (1990) shows that although ρS could
theoretically take on a very wide range of values, for the distributions consid-
ered the values are all very similar. The distributions that are most different
from the others are Marshall and Olkin’s, with its singularity in the pdf. at
y = x, and Kimeldorf and Sampson’s, with its oddly shaped support. With
these exceptions, at τ = 0.5, ρS lies in the range .667 to .707, even though it
could theoretically takes any value between .250 and .875. This suggests the
following question to close with: is there some class of bivariate distributions
which includes nearly all of those occur, for which only a narrow range of
ρS (for given τ) is possible? For instance, if every quantile of y for given x
decreases with x, and vice versa (i.e., X and Y are PRD), can bounds for ρS

in terms of τ be found? Hutchinson and Lai (1990) has conjectured that when
X and Y are PRD (SI), ρS ≤ 3τ/2.

Nelsen (1999, pp. 168-169) has constructed a polynomial copula:
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C(u, v) = uv + 2θuv(1 − u)(1 − v)(1 + u + v − 2uv)

for which ρS > 3τ/2 if θ ∈ (0, 1/4). Hence the above conjecture was proved
to be false.

The above mentioned table shows us the bounds of ρS in terms of τ appear
to be much narrower than implied by (9.56). In fact, as pointed out in Capéraà
and Genest (1993) that quite a few well known bivariate distributions with
their ρS and τ being of the same sign have their |ρS | ≥ |τ |.

This overwhelming circumstantial evidence raises the question of identify-
ing, by means of necessary and sufficient conditions on the joint distribution
F (x, y), the weakest possible type of stochastic dependence between X and
Y that will guarantee either ρS > τ ≥ 0 or ρS < τ ≤ 0.

Capéraà and Genest (1993) have provided a partial answer to this question
and we now summarize their results in the following.

Let X and Y be two continuous random variables, then

ρS ≥ τ ≥ 0, (9.57)

if Y is left-tail decreasing and right-tail increasing in X. The same inequality
holds if X is left-tail decreasing and right-tail increasing in Y .

Also, ρS ≤ τ ≤ 0 if Y is left-tail increasing and right-tail decreasing in X.
The same inequality holds if X is left-tail increasing and right-tail decreasing
in Y .

If (X, Y ) is PQD (positively quadrant dependent), then

3τ ≥ ρS ≥ 0,

(see Nelsen, 1999, p. 153). Now, it has been shown in Section 9.2.7 that both
left-tail decreasing and right-tail increasing imply PQD. It now follows from
(9.57) that

3τ ≥ ρS ≥ τ ≥ 0,

if Y is simultaneously LTD and RTI in X or X is simultaneously LTD and RTI
in Y . However, Nelsen (1999, p.158) gives an example showing that positive
quadrant dependence alone is not sufficient to guarantee ρS ≥ τ .

9.11.4 Other Concordance Measures

Gini index

The Gini measure of association may be defined through the copula C:

γC = 4
[∫ 1

0
C(u, 1 − u) du −

∫ 1

0
[u − C(u, u)] du

]
. (9.58)

(See Nelsen, 1999, p. 146).
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Blomqvists β

This coefficient β, also known as the quadrant test of Blomqvist (1950), eval-
uates the dependence at the ‘center’ of a distribution where the ‘center’ is
given by (x̃, ỹ), with x̃ and ỹ being the medians of the two marginals. For
this reason, β is often called the medial correlation coefficient. Note that
F (x̃) = G(ỹ) = 1

2 .
Formally, β is defined as

β = 2 Pr[(X − x̃)(Y − ỹ)] − 1 = 4H(x̃, ỹ) − 1, (9.59)

which shows β = 0 if X and Y are independent.
Since H(x̃, ỹ) = C( 1

2 , 1
2 ), β = 4C( 1

2 , 1
2 ) − 1.

It was pointed out in Nelsen (1999, pp. 148-149) that although Blomqvist’s
β depends on the copula only through its value at the center of [0, 1]× [0, 1], it
can nevertheless often provide an accurate approximation to Spearman’s ρS

and Kendall’s τ , as the following example illustrates:

Example 9.25

Let C(u, v) = uv
1−θ(1−u)(1−v) , θ ∈ [−1, 1] be the copula for the Ali-Mikhail-

Haq family. It can be shown that that the expressions for ρS and τ involve
logarithms and dilogarithm function. However, it is easy to verify that β =

θ
4−β . If we reparametrize the expressions for ρS and τ by replacing θ by
4β/(1 + β), and expand each of the results in a Maclurin series, we obtain
ρS = 4

3β + 44
75β3 + 8

28β4 + ... ; τ = 8
9β + 8

15β3 + 16
45β4 + .... Thus 4β

3 and 8β
9

are reasonable second-order approximation to ρS and τ .

9.12 Local Measures of Dependence

We have seen that ρS is an average measure of the PQD dependence and τ is
an average measure of total positive dependence. Kotz et al. (1990) presented
an example to show that a distribution with a high ρS may not be a PQD.
This example is given again in page 171 of Drouet Mari and Kotz (2001).
Thus, global measures have some drawbacks. Drouet Mari and Kotz (2001,
p. 149) gave the following rationale for defining a local index (measure) of
dependence:

“These indices (global measures) are defined from the moments of the
distribution on the whole plane and can be zero when X and Y are not in-
dependent. One needs therefore the indices which measures the dependence
locally. In the case when X and Y are survival variables, one needs to identify
the time of maximal correlation: for example the delay before the first symp-
tom of a genetic disease by members of the same family will appear. The pairs
(X, Y ) and (X ′, Y ′) can have the same global measure of dependence but may
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possess two different distributions H and H ′: a local index will allow us to
compare their variation in time. The variations with x and y of some local
indices allow us to characterize certain distributions and conversely choosing
a shape of variation for an index allows us sometimes to choose an appropriate
model.”

9.12.1 Definition of Local Dependence

The following definitions can be found in Drouet Mari and Kotz (2001):
Definition 9.4: If V (x0, y0) is an open neighbourhood of (x0, y0), then a
distribution F (x, y) is PQD in the neighbourhood V (x0, y0) provided

F̄ (x, y) ≥ F̄X(x)F̄Y (y), for all (x, y) ∈ V (x0, y0).

If V (x0, y0) = (x0,∞) × (y0,∞), we then say F is remaining PQD. We
use the term ‘remaining’ here to indicate a part in R2 beyond a certain point
(x, y). In the same manner, a local or remaining LRD can be defined.

9.12.2 Local Dependence Function of Holland and Wang

The following concepts were introduced by Holland and Wang (1987a,b) and
motivated from the contingency table for two discrete random variables. Con-
sider an s × s contingency table with cell proportions pij . For any two pairs
of indices (i, j) and (k, l), the cross-product ratio is

αij,kl = (pijpkl)/(pilpkj), 1 ≤ i, k ≤ (r − 1), 1 ≤ j, l ≤ (s − 1). (9.60)

Yule and Kendall (1937, Section 5.15) and Goodman (1969) suggested
consideration of the following set of cross-product ratios:

αij = (pijpj+1j+1)/(pij+1pi+1j), 1 ≤ i ≤ (r − 1), 1 ≤ j ≤ (s − 1). (9.61)

Also, let γij = log αij . Both αij and γij measures the association in the
2× 2 subtables formed at the intersection of the pairs of adjacent rows and
columns. They are invariant under multiplications of rows and columns.

Now let us go back to the continuous case. Let R(f) = {(x, y) : f(x, y) > 0}
be the region of non-zero probability density function which has been parti-
tioned by a very fine rectangular grid. The probability content of a rectangle
containing the point (x, y) with sides dx and dy is approximately f(x, y) dx dy.
This probability may be viewed as one cell probability of a large two-way ta-
ble, the cross-product ratio in (9.60) may be expressed as

α(x, y; u, v) =
f(x, y)f(u, v)
f(x, v)f(u, y)

, x < u, y < v, (9.62)

assuming that the four points are in R(f). The function in (9.62) is called the
cross-product ratio function.
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For a LRD (TP2) distribution, we have α(x, y; u, v) > 1. The logarithm of
α(x, y; u, v), denoted by

θ(x, y; u, v) = log α(x, y; u, v), (9.63)

has been used by Holland and Wang (1987b) to derive a local measure of
LRD.

Based on (9.63), Holland and Wang (1987a,b) defined a local dependence
function

γ(x, y) = lim
dx,dy→0

θ(x, y; x + dx, y + dy)
dxdy

=
∂2

∂x∂y
log f(x, y) (9.64)

assuming the partial derivative of the second order exists.
The above local dependence function can be rewritten as

γ(x, y) = lim
dx,dy→0

1
dxdy

log
(f(x, y)f(x + dx, y + dy)

f(x + dx, y)f(x, y + dy)

)
. (9.65)

Holland and Wang (1987b) showed that γ(x, y) ≥ 0 (for all x for all y) is
equivalent to f(x, y) belonging to TP2 or X and Y are LRD. Hence γ(x, y) is
an appropriate local measure of LRD (TP2) dependence.

9.12.3 Properties of γ(x, y)

We shall assume that R(f) is a rectangle, R2 may also be regarded as a
rectangle for this purpose. (If R(f) is not a rectangle, then the shape of
R(f) can introduce dependence between X and Y of a different nature from
local dependence – we will take up this issue in the next section.) Note also,
Drouet Mari and Kotz (2001, p. 189) regarded γ(x, y) as a local measure of
LRD dependence although it was refereed to as the local dependence function
in Holland and Wang (1987a,b).

The following is a list of the properties

• −∞ < γ(x, y) < ∞.

• γ(x, y) = 0 for all (x, y) ∈ R(f) if and only if X and Y are independent.
γ(x, y) reveals more information about the dependence than other indices;
recall, for example, that the product-moment correlation ρ may be zero
without being independent.

• γ(x, y) is symmetric.
• γ(x, y) is marginal free, thus changing the marginals has an unchanged

γ(x, y), in particular,
∂2 log c(u, v)

∂u∂v
= γ(x, y), FX(x) = u, FY (y) = v where

c is the density of the associated copula.
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• Holland and Wang (1987b) mentioned that when γ(x, y) is a constant, any
monotone function of that constant will be a ‘good’ measure of association,
But when γ(x, y) changes sign in R(f), most measures of association will
be inadequate or even misleading.

• γ(x, y) is a function only of the conditional distribution of Y given X, or
of X given Y .

• If X and Y have a bivariate normal distribution with correlation coefficient
ρ, then γ(x, y) = ρ

1−ρ2 , a constant. Conversely if γ(x, y) is a constant, Jones
(1998) pointed out that the density function f(x, y) should have the form
a(x; θ)b(y; θ) exp(θxy).

Jones (1996) has shown, using a kernel method, that γ(x0, y0) is a local
version of the linear correlation coefficient.

9.12.4 Clayton-Oakes Association Measure

Clayton (1978) and Oakes (1989) defined the following association measure
which we consider to be a local dependence function:

θ(x, y) =
F̄S12

S1S2
,

where S12 =
∂2F̄ (x, y)

∂x∂y
, S1 =

∂F̄ (x, y)
∂x

, and S2 =
∂F̄ (x, y)

∂y
. For a motivation

for this definition, see Clayton (1978).
The following properties of θ(x, y) are related to the positive dependence

concept RCSI, a weaker concept than LRD (TP2). (Recall, we say X and Y
are RCSI if Pr(X > x, Y > y |X > x′, Y > y′) is increasing in x′ and y′ for
all x, y – see Section 9.2.4.) It is shown in Gupta (2003) that

• θ(x, y) > 1 if and only if X and Y are RCSI.
• θ(x, y) = 1 if and only if X and Y are independent.

9.12.5 Local ρS and τ

We can restrict ρS and τ to an open neighbourhood V (x0, y0) of (x0, y0), and
define (see Drouet Mari and Kotz, 2001, p.172) local ρS and τ as

ρS,(x0,y0) =
12
∫ ∫

V (x0,y0)
(C(u, v) − uv) du dv∫ ∫

V (x0,y0)
dudv

, (9.66)

and

τ(x0,y0) =
4
∫ ∫

V (x0,y0)
C(u, v)dC − 1∫ ∫

V (x0,y0)
dC

(9.67)
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noting that FX(x) = u, FY (y) = v for all (x, y) ∈ V (x0, y0). We may interpret
ρS,(x0,y0)/12 as the average on the local PQD property whereas τ(x0,y0)/2 as
the average on the local LRD (TP2).

When V (x0, y0) = (x0,∞) × (y0,∞), it is straightforward to estimate
τ(x0,y0) by counting the remaining concordant and discordant pairs, and to
estimate the variance of this estimator from n0, the number of remaining
observations.

9.12.6 Local Correlation Coefficient

Suppose the standard deviations of X and Y are, respectively, σX and σY .

Let µ(x) = E(Y |X = x), σ2(x) = var(Y |X = x) and β(x) =
∂µ(x)

∂x
, then the

local correlation of Bjerve and Doksum (1993) is defined as

ρ(x) =
σXβ(x)

(σXβ(x))2 + σ(x)2
. (9.68)

If (X, Y ) has a bivariate normal distribution, then β(x) = β and σ(x) = σ.
The local correlation coefficient ρ(x) has the following properties:

• −1 ≤ ρ(x) ≤ 1.
• X and Y being independent implies ρ(x) = 0 for all x.

• ρ(x) = ±1 for almost all X is equivalent to Y being a function of X.
• In general ρ(x) is not symmetric, but it is possible to construct a sym-

metrized version.
• ρ(x) is scale-free but not marginal-free, i.e., linear transformations of X

and Y , X∗ = aX + b and Y ∗ = cY + d, with c and d having the same
sign, leave ρ(x) unchanged, but the the transformation U = FX(X) and
V = FY (Y ) result in ρ(u) which is different from ρ(x).

Note that if ρ(x) ≥ 0 for all x, then F is PRD. We can therefore define a
local PRD when ρ(x) is positive in a neighbourhood of (x0, y0).

9.12.7 Local Linear Dependence Function

Bairamov et al. (2003) have defined a ‘local linear dependence function’
H(x, y) which provides a local point of view on dependence at a point (x, y).
Let µ(x) = E(Y |X = x) and Let µ(y) = E(X|Y = y), then

H(x, y) =
E(X − µ(y))E(Y − µ(x))√
E(X − µ(y))2 · E(Y − µ(x))2

.

Here H(x, y) is obtained from the expression of the linear correlation co-
efficient by replacing the expectations E(X) and E(Y ) by the conditional
expectations µ(x) = E(Y |X = x) and µ(y) = E(X|Y = y), respectively.
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After some algebraic manipulation the expression can be rewritten as:

H(x, y) =
ρ + ϕX(y)ϕY (x)√

(1 + ϕ2
X(y))(1 + ϕ2

Y (x))
(9.69)

where ϕX(y) = E(X)−µ(y)√
varY

and ϕY (x) = E(Y )−µ(x)√
varX

.

9.12.8 Applications of Several Local Indices in Survival Analysis

In the field of survival analysis, there is a need for time-dependent measures of
dependence, to identify, for example in medical studies, the time of maximal
association between the interval from remission to relapse and the next interval
from relapse to death, or to determine the genetic character of a disease by
comparing the degree of association between the lifetimes of monozygotic
twins (Hougaard, 2000).

The following applications are described in Section 6.3.8 of Drouet Mari
and Kotz (2001):

• Covariance function of Prentice and Cai (1992),
• The conditional covariance rate of Dabrowska et al. (1999).

9.13 Conclusion

In this chapter, we present several concepts of multivariate dependence, in
particular bivariate positive dependence. While there does not appear to have
relationship between the traditional concepts of dependence and ageing con-
cepts, there is a strong relationship between positive dependence and rank
correlations such as Kendall’s τ and Spearman’s ρS . Also the relationship be-
tween these two non-parametric measures of association can be interpreted
by positive dependence concepts such as PQD and LTD, RTI. (PQD implies
3τ ≥ ρS ≥ 0; whereas simultaneous LTD and RTI implies 3τ ≥ ρS ≥ τ ≥ 0).

Although the concept of local dependence and measure of local dependence
are not fully developed yet, they would likely provide us more information
about the dependence between two time intervals as in the medical studies
example mentioned in the last section.
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Reliability of Systems with Dependent
Components

10.1 Introduction

In this chapter, we consider reliability properties of a system of components
rather than an individual component. There are several simple system struc-
tures that appear often in the literature. These are: (i) series, (ii) parallel
redundant, (iii) k-out-of-n and (iv) standby (cold) redundant. Traditionally,
it is assumed that the component lifetimes are independent; however, this as-
sumption is not realistic in many practical applications. Thus, bivariate and
multivariate distributions are required for modelling reliability of systems with
two or more components.

In Section 10.2, we give several bivariate distributions together with vari-
ous properties of their order statistics. Section 10.3 discusses the effectiveness
of redundancy in general and Section 10.4 studies various aspects of parallel
systems, including how the stochastic dependence between lifetime variables
affects the mean lifetime of a parallel system of two components. Section 10.5
examines the reliability properties of a series structure. Ageing classes for se-
ries and parallel systems with two dependent components are considered in
Section 10.6. It is followed by Section 10.7 which discusses k-out-of-n systems.
Three partial orderings are considered for comparing two such reliability sys-
tems. A general discussion on consecutive k-out-of n:F systems is given in
Section 10.8. Next, Section 10.9 discusses how to allocate spares optimally to
a k-out-of-n system. This is then followed by a study on standby redundant
systems in Section 10.10. Finally, we suggest some future research directions
concerning reliability systems in Section 10.11.

10.2 Bivariate Distributions for Modelling Lifetimes of
Two Components

Because of component lifetimes of a system may be dependent on each other,
we need probability models that prescribe the dependence structures among
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these lifetime variables. For simplicity, we start with a system of two com-
ponents so only a bivariate distribution will be necessary to link the two
pre-specified marginals of interest.

Let FX and FY denote the distribution functions of the component life-
times X and Y , respectively. Also, let T1 = min(X, Y ) and T2 = max(X, Y )
denote the lifetimes of the series and parallel systems of two components, re-
spectively. The reliability properties of the order statistics T1 and T2 are of
special interest. In what follows, we present several joint distributions either
in the form of the joint survival function F̄ (x, y) or the joint density func-
tion f(x, y) whichever is more convenient to us. The first five distributions
have already appeared in Section 9.4 and Section 9.5. For each model, the
correlation coefficient is also given as a measure of strength of their linear
dependence. It is followed by the density functions of T1 and T2 denoted by
f(1)(t) and f(2)(t), respectively. The mean times to failure of T1 and T2, de-
noted by µ(1) and µ(2), respectively, will also be included. For derivations of
these expressions, we refer the readers to the source references cited.

For notational convenience, we will use F(i)(t) and R(i)(t) to denote the
distribution function and the survival function of Ti, respectively, for i = 1, 2.
Since

R(1)(t) = F̄ (t, t) = Pr(X > t, Y > t) = 1 − FX(t) − FY (t) + F (t, t), (10.1)

which implies

R(1)(t) = Pr(X > t, Y > t) = F̄X(t) + F̄Y (t) − (1 − F (t, t))
= F̄X(t) + F̄Y (t) − R(2)(t),

i.e.,

R(1)(t) + R(2)(t) = F̄X(t) + F̄Y (t). (10.2)

It is now easy to verify that

f(1)(t) + f(2)(t) = fX(t) + fY (t). (10.3)

It now follows at once that

µ(1) + µ(2) = E(T1) + E(T2) = E(X) + E(Y ) = µX + µY . (10.4)

The last identity shows that the sum of the mean time to failure of the se-
ries structure and the mean time to failure of the parallel structure remains
constant irrespective of bivariate distributions provided the marginals remain
unchanged.

It is also clear that if X and Y are independent, then T1 is IFR (DFR) if
both X and Y are.
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10.2.1 Examples of Bivariate Distributions Useful for Reliability
Modelling

The following distributions are commonly found in the statistics and reliability
literature.

Gumbel’s type I bivariate exponential distribution

The joint survival function of this distribution is

F̄ (x, y) = P (X > x, Y > y) = e−x−y−θxy, x, y ≥ 0, 0 ≤ θ ≤ 1 (10.5)

(Gumbel, 1960). The correlation coefficient is

ρ = −1 +
∫ ∞

0

e−y dy

1 + θy
= −1 + θ−1eθ−1

E1(θ−1) (10.6)

where E1 is the exponential integral function defined by

E1(x) =
∫ ∞

x

t−1e−t dt. (10.7)

The correlation is, of course, zero for θ = 0, and it decreases to -0.40365 as θ
increases to 1.

The density functions of Ti are, see Kotz et al. (2003) for example,

f(1) = 2(1 + θt)e−2t−θt2 , (10.8)

f(2) = 2e−t − 2(1 + θt)e−2t−θt2 . (10.9)

The mean lifetimes of the respective systems are, respectively

µ(2) = 2 − eη√
πη[1 − Φ(

√
2η)], η =

1
θ
, (10.10)

and
µ(1) = eη√

πη[1 − Φ(
√

2η)], η =
1
θ
. (10.11)

Here, Φ denotes the cdf of the standard normal.
We have also shown in Example 9.11 of Chapter 9 that X and Y are

negatively quadrant dependent.
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F-G-M bivariate exponential distribution

The F-G-M distribution with exponential marginals has joint density

f(x, y) = λ2e−λ(x+y)[1 + α(2e−λx − 1)(2e−λy − 1)], x, y ≥ 0, (10.12)

(−1 ≤ α ≤ 1); see for example, Chapter 44 Section 13 of Kotz et al. (2000).
The distribution is given as Example 9.1 and it was shown that X and Y are
SI (PRD) if α > 0. The correlation coefficient is

ρ =
1
4
α, −1 ≤ α ≤ 1.

The density functions of T1 and T2 are, respectively,

f(1)(t) = 2λ(1 + α)e−2λt − 6λαe−3λt + 4λαe−4λt, (10.13)

and

f(2)(t) = 2λe−λt − 2λ(1 + α)e−2λt + 6λαe−3λt − 4λαe−4λt; (10.14)

and the two means are

µ(1) =
µ

2
(1 +

2
3
ρ); µ(2) =

µ

2
(3 − 2

3
ρ), µ =

1
λ

. (10.15)

Marshall and Olkin’s bivariate exponential

This widely known bivariate exponential distribution (BVE) has survival func-
tion given as:

F̄ (x, y) = exp [−λ1x − λ2y − λ12 max(x, y)] , x ≥ 0, y ≥ 0,
(10.16)

(Marshall and Olkin, 1967) where λ′s are nonnegative parameters. The BVE
is given as Example 9.5 in the preceding chapter and it is found that X and
Y are also SI (PRD). Note that X and Y are independent iff λ12 = 0. The
correlation coefficient is

ρ =
λ12

λ1 + λ2 + λ12
.

It is easy to verify that

f(1) = λe−λt, t ≥ 0,

and

f(2) = (λ1 + λ12)e−(λ1+λ12)t + (λ2 + λ12)e−(λ2+λ12)t − λe−λt (10.17)

where λ = λ1 +λ2 +λ12. (See, for e.g., Baggs and Nagaraja, 1996 and Franco
and Vivo, 2002). It is easy to see that
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µ(1) =
1
λ

; µ(2) =
1

(λ1 + λ12)
+

1
(λ2 + λ12)

− 1
λ

. (10.18)

If λ1 = λ2, then

E(T2) =
3
2θ

− ρ

2θ
, θ = λ1 + λ12. (10.19)

Moran-Downton’s bivariate exponential

The density function of the Moran-Downton’s bivariate exponential in the
standard form was given by Downton (1970):

f(x, y) =
1

1 − ρ
exp
{−(x + y)

1 − ρ

}
I0

(
2
√

xyρ

1 − ρ

)
, 0 ≤ ρ ≤ 1, x, y ≥ 0, (10.20)

where I0(·) is the modified Bessel function of the first kind of zero order.
The distribution is a special case α = 1 of Kibble’s bivariate gamma listed
as Example 9.7 in the previous chapter. The correlation coefficient for this
model is simply 0 ≤ ρ ≤ 1; the density functions of Ti are, respectively,

f(1)(t) = exp(−t) + exp
(
− 2t

1−ρ

)
I0

(
2ρ1/2t
1−ρ

)
− exp(−t)

∫ t

0 exp
{

−x(1+ρ)
1−ρ

}
I0

(
2ρ1/2x
1−ρ

)
dx,

(10.21)

f(2)(t) = 2e−t − f(1)(t),

and their respective means are

µ(1) = 1 − 1
2
(1 − ρ)1/2, µ(2) = 1 +

1
2
(1 − ρ)1/2. (10.22)

Bivariate Lomax distribution (Durling-Pareto)

The bivariate Lomax distribution originally studied in Durling (1975) is a
simple bivariate distribution that can be applied to a reliability context. It is
also known as the Durling-Pareto distribution given as Example 9.4 earlier.
A special case of this distribution has been used by Lindley and Singpurwalla
(1986) to model two independent exponential component lifetime variables
that are affected by an environmental factor. This distribution also arises
through the characterizations based on some ageing properties such as the
failure rate and mean residual life, see Roy (1989) and Ma (1996). It has also
been derived by Sankaran and Nair (1993b) as a joint distribution of a two-
component dependent system having Lomax marginals. The bivariate Lomax
distribution has the following survival function:

F̄ (x, y) = Pr(X > x, Y > y) = (1 + x + y + kxy)−a
, x ≥ 0, y ≥ 0, (10.23)



312 10 Reliability of Systems with Dependent Components

( 0 ≤ k ≤ a + 1, a > 0). The correlation coefficient was given in Lai, Xie and
Bairamov (2001):

ρ =
(1 − k)(a − 2)

a2 F (1, 2; a + 1; (1 − k)), 0 ≤ k ≤ (a + 1), (10.24)

where F (a, b : c; z) is the Gauss’ hypergeometric function (see, for example,
Chapter 15 of Abramowitz and Stegun, 1964).

The survival function for T1 is F̄(1) = F̄ (t, t) = (1 + 2t + kt2)−a; so

f(1)(t) = 2a(1 + kt)(1 + 2t + kt2)−(a+1), (10.25)

and
f(2)(t) = a(1 + t)−(a+1) − f(1)(t).

The mean lifetimes of the respective systems are

µ(1) =
π

4
− 1

2
= 0.29; µ(2) = 2 − 0.29 = 1.71, for a = 2, k = 2. (10.26)

For the case where a = 1, 0 ≤ k ≤ 2,

µ(1) =
∫ ∞

0

(
1 + 2t + kt2

)−1
dt =

⎧⎪⎨
⎪⎩

−1
2
√

1−k
log 1−√

1−k
1+

√
1−k

, 0 < k < 1
1, k = 1

1√
k−1

(
π
2 − arctan 1√

k−1

)
, 1 < k ≤ 2.

(10.27)
When a = 2, the following relation holds:∫ ∞

0

(
1 + 2t + kt2

)−2
dt =

1
2 (1 − k)

+
k

2(k − 1)

∫ ∞

0

(
1 + 2t + kt2

)−1
dt.

Numerical computation is required for other values of a and k. Lai, Xie and
Bairamov (2001) have shown that X and Y are PQD for 0 ≤ k ≤ 1 and NQD
for 1 ≤ k ≤ (a + 1).

Type B bivariate extreme value distribution

This is also known as the logistic model. The distribution was first briefly
studied by Gumbel (1960) and then by Hougaard (1986) who derived it from
a survival analysis context. The joint cdf is

F̄ (x, y) = exp
[
−
(

x

θ1

)r

−
(

y

θ2

)r]1/r

, r ≥ 1, x, y ≥ 0, θ1, θ2 > 0. (10.28)

The correlation coefficient was obtained in Tawn (1988) giving
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ρ =
[Γ(1/r)]2

rΓ(2/r)
− 1. (10.29)

Baggs and Nagaraja (1996) have shown that

f(1)(t) = λe−λt, t ≥ 0

and

f(2)(t) =
1
θ1

e−tθ1 +
1
θ2

e−tθ2 − λe−λt, (10.30)

where λ = [θ−r
1 + θ−r

2 ]1/r, r > 0. Clearly, the two means are given by

µ(1) =
1
λ

, µ(2) =
1
θ1

+
1
θ2

− 1
λ

. (10.31)

Further, since (xr + yr)1/r ≤ (x + y) for postive x and y; so F̄ (x, y) ≥
F̄X(x)F̄Y (y) and thus X and Y are PQD.

Arnold and Strauss’ exponential conditionals distribution

This bivariate exponential distribution studied in Arnold et al. (1999, p. 80)
is not well known. Its joint density function is

f(x, y) =
k(c)
d2 exp

{
−x

d
− y

d
− cxy

d2

}
, c, d > 0 (10.32)

where

k(c) =
ce−1/c

E1(−1/c)
.

The correlation coefficient is

ρ =
c + k(c) − k2(c)

k(c)(1 + c − k(c))
< 0.

Here E1 is defined as in (10.7) which is equivalent to −Ei given in Arnold et
al. (1999). Navarro et al. (2004) showed that

f(1)(t) =
2cde−(1+cdt)2/c

(1 + cdt)E1(−1/c)
(10.33)

and

f(2)(t) =
2cd

(1 + cdt)E1(−1/c)

{
e−(c−1+dt) − e−(1+cdt)2/c)

}
. (10.34)

They also showed that

µ(1) = −d/c + 2dk(c)e1/c
√

π/c3Φ(−
√

2/c) (10.35)

and
µ(2) = 2dk(c) − µ(1).
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10.2.2 Other Bivariate Distributions

The distributions for parallel and series systems based on other bivariate dis-
tributions are given by following authors:

• Bivariate and multivariate normal: Gupta and Gupta (2001).
• Freund’s (1961) bivariate exponential: Baggs and Nagaraja (1996).
• Friday and Patil’s bivariate exponential: Baggs and Nagaraja (1996) and

Franco and Vivo (2002).
• Raftery’s models: Baggs and Nagaraja (1996) and Franco and Vivo (2002).

10.3 Effectiveness of Redundancy for Reliability System

10.3.1 Redundancy

Redundancy is a common method to increase reliability in an engineering
design. There are many papers dealing with optimal allocation of redundancy
in reliability systems, see e.g., Coit and Smith (1996), Levitin et al. (1998),
Kuo and Prasad (2000) and Ng and Sancho (2001). Motivated to enhance
reliability, Mi (1998b) considered the question of which component should be
‘bolstered’ or ‘improved’ in order to stochastically maximize the lifetime of
a parallel system, series system, or, in general, a k-out-of n system. Boland
et al. (1988, 1991) investigated the redundancy importance of components in
complex systems. However, the objective of adding redundancy is to increase
the reliability of the system and the effect on the system reliability should be
carefully investigated. The effectiveness of adding redundancy depends on the
reliability of each component reliability and its ageing properties.

There are various types of redundancy:

• parallel redundancy (also known hot or active redundancy),
• standby redundancy (also known as cold redundancy). (The spare compo-

nent is put to use upon the failure of the original component), and
• redundancy at component level versus system level.

Xie and Lai (1996) studied the effectiveness of adding a single component
to a parallel system consisting of several independent components. Let µn

denote the mean lifetime of a parallel system of n independent identically
distributed components. They have shown that

µn+1 − µn ≤ µn − µn−1. (10.36)

Thus the gain in mean life time from an additional component in a parallel
redundancy decreases as the number of parallel components increases.
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10.3.2 Effectiveness of Parallel Redundancy of Two Independent
and Identical Components

Xie and Lai (1996) have defined the effectiveness of a parallel system of two
identical and independent components by

ep(X) = (µ(2) − µX)/µX , (10.37)

where µX denotes the mean of X. For example, if both X and Y are indepen-
dent and identically distributed having a common Weibull distribution with
shape parameter α, then

ep(X) = 1 − 2−1/α. (10.38)

We see that ep is smaller if α > 1 and larger if α < 1. Note that α > 1
implies the Weibull distribution is IFR and α < 1 implies that it is DFR. In
fact, Xie and Lai (1996) have shown that this result is true in general, i.e.,
parallel redundancy of two independent DFR component is more effective
than two independent IFR components. Before we state and prove the next
theorem, we need to define two partial orderings between two distributions
that were used quite substantially in Barlow and Proschan (1981). As stated
at the beginning of Section 2.9, their definitions would be postponed until
now.

Let FX and FY be continuous distributions, FY is strictly increasing on
its support. We say that FX is convex with respect to FY if F−1

Y FX(x) is a
convex function in x on the support of FX . FX is star-shaped with respect to
FY if (1/x)F−1

Y FX(x) is increasing for x ≥ 0. Also the first partial ordering
is stronger than the second. See Barlow and Proschan (1981, pp. 106-107).

Theorem 10.1: If the distribution of a component is IFR (DFR), then the
effectiveness of a parallel systems (as defined above) of two i.i.d. components
is less (greater) than 1/2.
Proof: Let X have distribution FX with mean µX and Y have distribution
FY with mean µY . We now divide the proof into two steps although it is
essentially taken from Xie and Lai (1996).

(i) We show that if FX is convex with respect to FY , then ep(X) ≤ ep(Y ).
Define Z = (µY /µX)X which implies µZ = µY and FZ(z) = FX ((µX/µY )z).
As FX is convex with respect to FY it is clear that FZ is also convex with
respect to FY . It then follows that FZ is also star-shaped respect to FY and
hence F̄Z crosses F̄Y at most once.

As µZ = µY , it now follows from Theorem 7.6 of Barlow and Proschan
(1981, p. 122) that µ(2) based on FZ is less than the corresponding one that
is based on FY so the ep(Z) ≤ ep(Y ). On the other hand, it is easy to see that
eP (X) = ep(Z) so eP (X) ≤ ep(Y ).

(ii) Let X be the lifetime of the IFR component. Results 5.4 of Barlow and
Proschan (1981, p.107) show that FX is convex with FY (t) = 1−exp(−t/µX).
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We note from (10.38) above that the effectiveness for the exponential compo-
nent is 1/2 and thus we complete the proof the theorem.

10.3.3 Parallel Redundancy of Two Independent but Nonidentical
Components

How does the diversity of components in a parallel system affect the system
failure rate? Boland et al. (1994) have considered a 2-component parallel sys-
tem having exponential components with parameters λ1 and λ2 such that
λ1 + λ2 is fixed. They showed that the more diverse the parameters (λ1, λ2)
are, the better is the system in the failure rate sense (i.e., the smaller failure
rate). This phenomenon was also observed by Barlow and Proschan (1981,
p.83). Boland et al. (1994) also noted that this type of result does not extend
to parallel systems with more than three components.

10.3.4 Dependence Concepts and Redundancy

In Xie and Lai (1996), as in many other related studies on parallel redundancy,
it is assumed that the components are independent. This assumption is rarely
valid in practice. In fact, in reliability analysis, the component lifetimes are
usually dependent. Two components in a reliability structure may share the
same load or may be subject to the same set of stresses. This will cause the
two lifetime random variables to be related to each other, or to be dependent.
Usually the failure times of the components tend to be longer or shorter at
the same time, indicating the existence of some form of positive dependence.

When the components are dependent, the problem of effectiveness in
adding an active component to a system may be different from the inde-
pendent case. In particular, we are interested to investigate how the degree of
the correlation will affect the increase in the mean system lifetime. In general,
a system becomes more complex once we assume the component lifetimes are
dependent. Thus we take a realistic approach to consider only some simple
forms of dependence such as the cases when the component lifetimes are either
positively dependent or negatively dependent so that they can be modelled
by a bivariate or a multivariate lifetime distribution.

We have seen in the preceding chapter that there is a multitude of notions
of bivariate dependence defined in the literature. Several of the more common
dependence concepts are given in Section 9.2. We have studied in detail the
notion of positive quadrant dependence (PQD) and concluded that it is more
straightforward and easier to verify than other notions we are aware of. In
the next two sections, we consider how this dependence property affects the
efficiency of a parallel or a series system.
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10.4 Parallel Systems

Parallel redundancy is a common approach to increase system reliability and
mean time to failure. When studying systems with redundant components,
it is usually assumed that the component lifetimes are independent; however
this assumption is seldom valid in practice. As mentioned earlier, the effec-
tiveness of adding a dependent component may be quite different from adding
an independent one. In this section we investigate how the degree of corre-
lation affects the increase in the mean lifetime for parallel redundancy when
the two components are positively quadrant dependant. Gains in MTTF of
a 2-component parallel system are compared for four bivariate exponential
distributions. Various bounds for the mean system life time are also derived.
The results are useful to reliability analysts as well as to designers who are
required to take into account the possible dependence among the components .

10.4.1 Mean Time to Failure of a Parallel System of Two
Independent Components

Assuming X and Y are i.i.d., it is easy to follow from (10.4) that

µ(2) = 2µX −
∫ ∞

0
F̄ 2(t) dt, (10.39)

where FX(t) = FY (t) = F (t). If the two components are not identical, the
above equation may be replaced by

µ(2) = µX + µY −
∫ ∞

0
F̄X(t)F̄Y (t) dt. (10.40)

10.4.2 Mean Lifetime of a Parallel System with Two PQD
Components

As before, we let T2 = max(X, Y ) which denotes the system lifetime of a par-
allel system of two components. Recall, (X, Y ) is said to be positive quadrant
dependent if

Pr (X ≤ x, Y ≤ y) ≥ Pr(X ≤ x) Pr(Y ≤ y). (10.41)

The condition in (10.41) may be restated alternatively as:

Pr (X > x, Y > y) ≥ Pr(X > x) Pr(Y > y). (10.42)

Since Pr(X > x, Y > y) = F̄ (x, y) = 1 − Pr(X ≤ x) − Pr(Y ≤ y) + Pr(X ≤
x, Y ≤ y), it is clear that expressions (10.41) and (10.42) are equivalent.
µ(2) of three PQD distributions will be presented at the end of a subsequent
subsection.
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Kotz et al. (2003) showed that if X and Y are identically distributed PQD
nonnegative random variables, then

µ(2) = E(T2) ≤ 2µX −
∫ ∞

0
F̄ 2(t) dt, (10.43)

where F (t) = FX(t) = FY (t) is the common distribution function and F̄ (t) =
1 − F (t) is the common survival function.

Note that the right-hand side of Equation (10.43) is simply the expected
lifetime of the parallel system when the components are independent. In other
words, the gain in mean lifetime of the system by parallel redundancy is
smaller for PQD components than for the independent ones. For ease of refer-
encing, we use µI

(1) and to µI
(2) to denote the mean lifetimes of the series and

parallel system, respectively, when the two component lifetimes are indepen-
dent. So (10.43) may be expressed as µ(2) ≤ µI

(2) if X and Y are positively
quadrant dependent.

Bounds on reliability of a component can be obtained when the ageing
class is known. For components with increasing failure rate (IFR), we have
from (2.53) (see also Barlow and Proschan, 1981, p.113) that

F̄ (t) ≥
{

e−t/µ for t < µ,
0 for t ≥ µ;

(10.44)

a simple lower reliability bound based on the the first moment.
For IFR parallel components that are PQD, it was shown in Kotz et al.

(2003) that an upper bound for the mean time to failure is given by

µ(2) ≤ 2µ − µ

2
+

µe−2

2
=

µ

2
(
3 + e−2) . (10.45)

We note in Section 9.4 that the Moran-Down bivariate exponential with
ρ ≥ 0, the Marshall and Olkin’s with 0 ≤ ρ < 1, the F-G-M with 0 ≤ ρ < 1 as
well as the bivariate Lomax with 0 ≤ k ≤ 1 are all PQD distributions which
may be used for modelling PQD components.

Nonidentical components

If we now assume that X and Y are not identically but retain the PQD
property, it is easy to see that the upper bound (10.43) can be generalized to

µ(2) = E(T2) ≤ µX + µY −
∫ ∞

0
F̄X(t)F̄Y (t) dt, (10.46)

see Navarro and Lai (2005). If X and Y are exponentially distributed, the
above inequality may be written as

µ(2) ≤ µI
(2) = µX + µY − µXµY

µX + µY
. (10.47)
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10.4.3 Mean Lifetime of a Parallel System with Two NQD
Components

Recall from Section 9.2.7, X and Y are negatively quadrant dependent if the
inequality in (10.42) is reversed.

Kotz et al. (2003) also showed that if X and Y are NQD nonnegative iden-
tically distributed random variables, then the inequality in (10.46) is reversed,
i.e.,

µ(2) ≥ µX + µY −
∫ ∞

0
F̄ 2(t)dt. (10.48)

They also showed that for two identical DFR components that are NQD,
then the inequality becomes

µ(2) ≥ µ

(
3
2

− e−2

2

)
. (10.49)

Example of bounds: Bivariate Lomax distribution case.
The joint distribution is given by (10.23) with marginal cdf (1 + x)−a. It

was shown in Kotz et al. (2003) that X and Y are PQD for 0 ≤ k ≤ 1 and
they are NQD for 1 ≤ k ≤ a + 1.

The marginal mean is 1 when a = 2. For k > 1, we only consider the case
k = 2 so that X and Y are NQD. The system mean is

µ(2) = 2µX − ∫∞
0 F̄ (t, t) dt

= 2µX − ∫∞
0

(
1 + 2t + 2t2

)−2
dt

= 2 − (−.5 + .5 × π
2

)
= 2.5 − π

4 = 1.71

Applying the inequality (10.48), we get a lower bound

µ(2) ≥ 2µX −
∫ ∞

0
F̄ 2(t)dt = 2 − 1

3
= 1.67

which has a relative error of 2.3% if the bound is taken as an estimate.
We observe that the Lomax distribution (Pareto distribution of the second

kind) is DFR. Thus, our result here is in line with the earlier result for inde-
pendent case whereby adding (in parallel) a DFR component is more efficient
than adding an IFR component. If X and Y are NQD and not identically
distributed, then

µ(2) = E(T2) ≥ µI
(2) = µX + µY −

∫ ∞

0
F̄X(t)F̄Y (t) dt. (10.50)

Further, for NQD exponential components,

µ(2) ≥ µI
(2) = µX + µY − µXµY

µX + µY
. (10.51)
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10.4.4 Relative Efficiency from Different Joint Distributions

For a two-component parallel redundancy system with given cdf’s FX and FY ,
different joint distributions can be used to model the dependence structure.
A measure of efficiency of a system design can be expressed in terms of the
increase in the mean lifetime of the system for each bivariate distribution.
Thus the question arises as to which joint distribution would yield a higher
efficiency. We also investigate how the correlation of X and Y will influence
the efficiency of the system.

Main results

Consider two nonnegative random variables X and Y which denote, respec-
tively, the lifetime of two components arranged in parallel. Assuming that
they are PQD, we shall now investigate the type of joint distribution that
would provide a higher efficiency measured by the value of µ(2), the MTTF
of a parallel system of two components.
Theorem 10.2: Suppose F (x, y) and F ∗(x, y) have the same pair of marginal
distributions FX and FY . If F̄ (t, t) ≥ F̄ ∗(t, t), i.e., R(1)(t) ≥ R∗

(1)(t), then
R(2)(t) ≤ R∗

(2)(t). In particular, µ(2) ≤ µ∗
(2).

Proof: The first part of the proof follows directly from (10.2) given as

R(1)(t) + R(2)(t) = R∗
(1)(t) + R∗

(2)(t) = F̄X(t) + F̄Y (t).

Next, it is obvious that R(2)(t) ≤ R∗
(2)(t) implies µ(2) ≤ µ∗

(2).

Note R(2)(t) ≤ R∗
(2)(t) is equivalent to T2 ≤ST T ∗

2 . See Definition 2.16.

Partial orderings of two positively dependent distributions were discussed
in Section 9.8, particularly the ordering with respect to PQD. We now use
this ordering to compare the mean lifetimes of two parallel systems, each has
component lifetimes X and Y .
Corollary 10.1: Suppose F and F ∗ are both PQD distributions. If F is
more PQD than F ∗, i.e., F̄ (x, y) ≥ F̄ ∗(x, y) for all x, y, then µ(2) ≤ µ∗

(2). In
particular, the parallel redundancy with X and Y being independent results
in the maximal gain in mean lifetime whereas the case when X

a.s.= Y provides
the least gain (assuming they are identically distributed).
Proof: The stated result here is essentially the same one as given in Theorem
2 of Kotz et al. (2003). From (10.1) and (10.2), we find
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µ(2) = µ1 + µ2 −
∞∫
0

F̄ (t, t) dt

= µ1 + µ2 −
(∞∫

0
F̄ (t, t) dt −

∞∫
0

F̄Y (t)F̄Y (t) dt +
∞∫
0

F̄X(t)F̄Y (t) dt

)

= µ1 + µ2 −
∞∫
0

F̄X(t)F̄Y (t) dt −
[∞∫

0

{
F̄ (t, t) − F̄X(t)F̄Y (t)

}
dt

]

= µI
(2) −

[∞∫
0

{
F̄ (t, t) − F̄X(t)F̄Y (t)

}
dt

]
(10.52)

where µI
(2) denotes the mean of the parallel system lifetime when the two

components are independent.
For PQD distributions, the square bracket

B =

⎡
⎣ ∞∫

0

{
F̄ (t, t) − F̄X(t)F̄Y (t)

}
dt

⎤
⎦ (10.53)

is always larger than 0.
Now, it is also obvious that B is larger for F̄ than for F̄ ∗ provided the

stated assumption given in the corollary is valid. When X and Y are inde-
pendent, B = 0 so that µ(2) is maximized and is denoted by µI

(2).
If the two component lifetimes are identical and completely dependent,

i.e., X
a.s.= Y , it follows from (10.53) that B is maximal. In fact, it follows from

(10.1) that µ(2) = µX . This should be expected since two parallel components
behave as if they are of one component if X

a.s.= Y . Thus from (10.52), µ(2) is
minimum when the two components are completely dependent.

Corollary 10.2 If X and Y are PQD, then
(i) µ(2) ≤ µI

(2) and

(ii) µ(1) ≥ µI
(1)

where µI
(1) and µI

(2), respectively, denote the mean times to failures of the
series and parallel systems of two independent components.
Proof: (i) is obvious from (10.53) whereas (ii) follows from (10.4).

Theorem 10.3: If F is more PQD than F ∗, then ρ ≥ ρ∗ where ρ and ρ∗ are
the corresponding correlation coefficients under F and F ∗, respectively.

Proof: This is a simple consequence of Hoeffding’s lemma:

cov(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞

[
F̄ (x, y) − F̄X(x)F̄Y (y)

]
dxdy. (10.54)

In conclusion, if F is more PQD than F ∗, then T1 ≥ST T ∗
1 which is equivalent

to T2 ≤ST T ∗
2 . The latter partial ordering implies µ(2) ≥ µ∗

(2).

A similar result but with a reversed inequality holds for the more NQD
case. Since negative dependence is not common in reliability and the proof is
similar, we omit the detail here.
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We note that the converse of Theorem 10.3 is not true in general. However,
for some distributions, the correlation coefficient is a dependence parameter
so the bivariate distributions can be ordered by its values. In other words,
two bivariate distributions can be partially ordered by the magnitude of their
correlation coefficients.

Example 10.1:

Marshall and Olkin’s bivariate exponential distribution
Recall, the survival function of the BVE is given by (10.16):

F̄ (x, y) = exp {−λ1x − λ2 − λ12 max(x, y)} , x, y ≥ 0.

In Section 10.2.1, the Pearson’s product moment correlation is given as
ρ = λ12

λ1+λ2+λ12
. Without loss of generality, we now assume λ1 = λ2 and

reparametrize the distribution by letting θ = λ1 + λ12 and ρ = λ12
λ1+λ2+λ12

,
(10.16) can be rewritten as

F̄ (x, y) = exp
[
−θ(x + y) +

2θρ{(x + y) − max(x, y)}
(1 + ρ)

]
, x, y ≥ 0, (10.55)

where θ > 0 and 0 ≤ ρ < 1. Note that θ is the scale parameter for both X
and Y and it is independent of ρ. It is now obvious that

F̄ (x, y) − FX(x)FY (y)

= exp {−θ(x + y)} exp
[
2θρ{(x + y) − max(x, y)}

(1 + ρ)
− 1
]

, x, y ≥ 0

(10.56)
which increases with ρ.

Example 10.2:

Bivariate F-G-M distribution
The survival function of the bivariate F-G-M distribution with marginals

FX and FY is given by

F̄ (x, y) = F̄X(x)F̄Y (y) [1 + αFX(x)FY (y)] , −1 < α < 1, x, y ≥ 0. (10.57)

For the purpose under discussion, we assume 0 ≤ α < 1. For the exponential
marginals, the joint density is given in (10.12) and ρ = α

4 so that F (x, y) −
FX(x)FY (y) increases with ρ provided α > 0.
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Example 10.3:

Moran-Downton bivariate exponential distribution
The joint density function is given as in (10.20), i.e.,

f(x, y) =
1

1 − ρ
exp
{−(x + y)

1 − ρ

}
I0

(
2
√

xyρ

1 − ρ

)
, 0 ≤ ρ ≤ 1, x, y ≥ 0,

where I0(·) is the modified Bessel function of the first kind of zero order. The
correlation coefficient for this model is simply 0 ≤ ρ ≤ 1. It was shown in
Note 2 of Lai and Moore (1984) that F (x, y) − FX(x)FY (y) increases with ρ.

10.4.5 MTTF Comparisons of Three PQD Bivariate Exponential
Distributions

We shall now compare the MTTFs of two-component parallel systems under
three different well known bivariate exponential models for which X and Y
are positively quadrant dependent. The three distributions concerned are

(i) F-G-M bivariate exponential with positive α,

(ii) Marshall and Olkin’s bivariate exponential (BVE) and
(iii) Moran-Downton’s exponential.
Using the results obtained from Section 10.2, the mean times to failure of

the above three models, as expressed in terms of their correlation coefficients
after rescaling to unit mean for their marginals, are given in Table 10.1. The
rescaling of the marginal means to 1 is required for ease of comparison of the
three models.

Table 10.1. µ(2) and the range of correlation for three bivariate exponential distri-
butions.

Bivariate Distribution Mean Lifetime µ(2) Range of ρ

F-G-M 1.5 − ρ/3 0 ≤ ρ < 1/4

Marshall and Olkin 1.5 − ρ/2 0 ≤ ρ < 1

Moran-Downton 1 +
√

(1−ρ)
2 0 ≤ ρ < 1

Note that for each bivariate exponential model listed in the table, µ(2)
decreases as ρ increases. This is expected as we have shown in the preceding
subsection that these distributions become more PQD as ρ increases.
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Comparison of µ(2) for a given ρ

One can easily verify that 3
2 − ρ

2 ≤ 1 + 1
2 (1 − ρ)1/2, for all 0 ≤ ρ ≤ 1 and

therefore the Moran-Downton model yields a higher mean time to failure than
the Marshall and Olkin’s for a given ρ. Further, it is also easy to show that
3
2 − ρ/3 ≤ 1 + 1

2 (1 − ρ)
1
2 , for 0 ≤ ρ ≤ 3

4 . Since the maximum range of ρ
for the F-G-M is 0 ≤ ρ < 1/4, it follows that the Moran-Downton model
also yields a higher mean time to failure than the F-G-M model for a given ρ
within this range. On the other hand, it is clear that the F-G-M model gives
a higher MTTF than Marshall and Olkin’s model for 0 ≤ ρ < 1/4. These
conclusions would be of an important factor when investigating or designing
parallel systems.

We also wish to compare the effect of correlation on the mean system
lifetime for the above three bivariate distributions. By differentiating µ(2) in
Table 10.1 with respect to ρ, we see that the Moran-Downton model yields
the smallest rate of reduction in the mean system lifetime as a function of ρ,
for 0 ≤ ρ < 1/4. This study is useful both in reliability analysis and also for
design when the effect of component dependence expressed through ρ should
be taken into consideration.

10.4.6 Efficiency of Redundancy by NQD Components

As NQD is a mirror image of PQD, we can obtain results concerning efficiency
of the parallel redundancy in an opposite direction to that of PQD given
earlier.

Corollary 10.3: Let F and F ∗ be two NQD distributions with the same
marginals. If F is more NQD than F ∗, then µ(2) ≥ µ∗

(2).

Proof: F is more NQD than F ∗ iff F̄ (x, y) ≤ F ∗(x, y) ≤ FX(x)FY (y).. The
result now follows directly from (10.52) and (10.53).

Mean lifetime under Gumbel’s bivariate exponential distribution

Another simple bivariate exponential distribution which has attracted much
attention in the literature is the Gumbel’s type I bivariate exponential dis-
tribution (with exponential marginals), see Gumbel (1960). Its joint survival
distribution is given by (10.6), i.e.,

F̄ (x, y) = P (X > x, Y > y) = e−x−y−θxy, x, y ≥ 0, 0 ≤ θ ≤ 1.

Clearly, this distribution is NQD for 0 ≤ θ ≤ 1. In fact, there exists no value of
θ for which F could be PQD. Therefore, this bivariate distribution is rather
different from the other exponential distributions discussed in the previous
section because of this property. It can be shown, see for example, Kotz et al.
(2003):
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µ(2) = 2 − e1/θ
√

π
θ

[
1 − Φ

(√
2/θ
)]

, (10.58)

where Φ(·) is the standard normal distribution function.
The correlation coefficient between X and Y is as given in (10.6), i.e.,

ρ = −1 + θ−1eθ−1
E1(θ−1) where E1(z) is an exponential integral which is

tabulated in Abramowitz and Stegun (1964, pp. 239-241). As θ → 0, ρ → 0
(X and Y are independent when θ = 0) and as θ increases, ρ decreases,
reaching a minimum value of –0.40365 for θ = 1. This distribution is thus
useful for models with negative correlations between two variables.

Unlike the situation of the above three bivariate exponential distributions,
we were unable to express µ(2) explicitly in terms of ρ here. However, a plot
of numerical values of µ(2) against ρ as given in Figure 1 of Kotz et al. (2003)
shows, that it is almost linearly decreasing in ρ. Table 10.2 provides some
numerical values of µ(2) for some selected values of ρ.

Table 10.2. Table of µ(2) versus ρ

ρ 0.00 -0.10 -0.25 -0.40
µ(2) 1.500 1.527 1.570 1.615

10.5 Series Structures

The failure rate function of a series system of n independent components is
simply expressed as the sum of the failure rate functions of the components.
However, removing the assumptions of independence alters the simple nature
of the system.

Chapter 2 of Barlow and Proschan (1981) clearly shows that if we calculate
the reliability of a series system assuming components are independent when
in fact they are associated but not independent, we will underestimate system
reliability. This statement is also true if we assume the lifetimes of the n
components X1, X2, .., Xn are positively upper orthant dependent (PUOD) (a
multivariate positive dependence concept sense as defined in Section 9.3), see
example, Joe (1997, pp. 20-21). The inequality is, as given by (9.12)

Pr(X > t1, X2 > t2, .., Xn > tn) ≥
n∏

i=1

Pr(X > ti). (10.59)

The left hand side of the above equation is simply the reliability function of
a series system of n components when ti = t.

We now restrict our discussion to the 2-component series structure. The
mean lifetime of such a system is denoted by µ(1). We have indirectly discussed
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its properties while studying µ(2) in the preceding section. Recall from (10.4),
the identity µ(1) + µ(2) = µX + µY always holds regardless whether X and Y
are independent or not. So it is a ‘zero-sum’ game for the two ‘players’ µ(1)
and µ(2). It is a gain (loss) for µ(1) if X and Y are PQD (NQD). Here, we have
interpreted ‘loss’ as a loss in the sense of efficiency in the parallel redundancy.
On the other hand, it is a loss (gain) for µ(2) if X and Y are PQD (NQD).
Effectively, one’s increase in its mean lifetime causes a decrease in the other
one’s mean lifetime.

Also, µ(1) =
∫∞
0 F̄ (t, t) dt, it is easy to see that µ(1) ≥ (≤)µI

(1) if X and Y

are PQD (NQD). If both components are exponentially distributed then

µ(1) ≥ (≤)µI
(1) =

µXµX

µX + µY
, (10.60)

if PQD (NQD) assumption holds.
Chao and Fu (1991) studied the reliability of a large series system under

a Markovian structure with component lives being discrete and finite.

10.5.1 Series and Parallel System of n Positive Dependent
Components

Suppose n component lifetimes are positively lower orthant dependent (PLOD)
as defined by (9.13). Then it is clear that the MTTF of the parallel sys-
tem is smaller than its corresponding system with n independent compo-
nents. Unlike the 2-component case, one cannot infer that the mean life-
time of the n-component series system is greater than its counterpart with
n independent components. If, however, the lifetimes are also PUOD as de-
fined by (9.12), then the positively dependent series system gives a larger
MTTF than the independent case. Even in the situation where the compo-
nent lifetimes are both PUOD and PLOD, we cannot conclude that it is a
zero-sum situation. For illustration, suppose we have 3-component system
with component lifetimes X, Y and Z. Let Ti be the ith order statistic so
E(X)+E(Y )+E(Z) = E (T1)+E (T2)+E (T3) . Here, T1, T2 and T3 denote
the lifetimes of the 3-component series system, 2-out-of-3 system and the 3-
component parallel system, respectively. If the three component lifetimes are
both PUOD and PLOD, then the MTTF of the series system will gain but
the parallel system will lose in comparison to the independent case but we are
unclear about the 2-out-of-3 system. The amount of reduction experienced
by the n-component parallel system due to dependence will not be the same
amount gained by the n-component series system. This is because E(T2) will
also be influenced by the dependence among the three components. Thus,
more research in this aspect is warranted.
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10.6 Ageing Classes for Series and Parallel Systems with
Two Dependent Components

In the case of a series system of two independent exponential components,
the system failure rate is constant so it is both IFR and DFR. On the other
hand, the failure rate of a parallel system is also IFR if the two exponential
components are identical. However, if the two exponential components are
unlike, it is neither IFR nor DFR but it is IFRA because the system is coherent
(Barlow and Proschan, 1981, pp. 82-84).

10.6.1 Ageing Class

A generalized hyperexponential (GH) distribution of n components if its den-
sity f(t) can be represented as

f(t) =
n∑

i=1

aiλie
−λit, (10.61)

where λi > 0 and ai is a real number. It is shown that some of the densities
f(1) and f(2) discussed in Section 10.2 have GH distributions.

For n = 2, the pdf of a generalized GH is given by

f(t) = a1λ1e
−λ1t + a2λ2e

−λ2t. (10.62)

It is easy to see that a1λ1 + a2λ2 ≥ 0 is a necessary and sufficient condition
for (10.62) to be a probability density function (Bartholomew, 1969). Baggs
and Nagaraja (1996) gave the following result.

Theorem 10.4: Suppose a GH distribution of two components with prob-
ability density function given in (10.62). If λ1 < λ2, then the distribution
is

(i) IFR if a2 < 0 or a1 < 0, both subject to a1 + a2 = 1,

(ii) DFR if 0 < a2 < 1 and a1 + a2 = 1.

Proof: Integrating both sides of (10.62) from 0 to ∞, is clear that a1 +a2 = 1
since f(t) is assumed to be a density function.

Now the failure rate function of the 2-component GH distribution is

r(t) =
a1λ1e

−λ1t + a2λ2e
−λ2t

a1e−λ1t + a2e−λ2t

which is increasing in t ≥ 0 iff r′(t) ≥ 0. It can be shown easily that this is
equivalent to −a1a2 < 0.

(i) If a2 < 0, then a1 > 0 so −a1a2 > 0 and hence the distribution is IFR.
(ii) If 0 ≤ a2 < 1, then a1 > 0 so −a1a2 < 0 and thus r′(t) < 0. In fact, it

is well known that a convex mixture of two exponential distribution is DFR.
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The situation for a GH distribution of three components is more compli-
cated as indicated in Baggs and Nagaraja (1996). Franco and Vivo (2002)
gave the following result:
Theorem 10.5: Let X be a generalized mixture of three exponential distrib-
utions with pdf f(t) =

∑3
i=1 aiλie

−λit such that λi > 0, a1 > 0, a2 and a3 are
real. Let s = a1a2λ1λ2(λ1 − λ2)2 + a1a3λ1λ3(λ1 − λ3)2 + a2a3λ1λ2(λ2 − λ3)2,
then the following results hold:

(i) If ai > 0 for i = 1, 2, 3, then X is DFR.
(ii) If a2 > 0, a3 < 0, then X is DFR when s ≥ 0. Anyway, it cannot be

IFR.
(iii) If a2 < 0, a3 < 0, then X is IFR when s ≤ 0. Anyway, it cannot be

DFR.
(iv) If a2 < 0, a3 > 0, then X cannot be DFR. Moreover, X is IFR when

either s ≤ 0 and τ ≤ 0, or g(t) ≤ 0, where

τ =
1

λ3 − λ1
log

a3λ3(λ3 − λ2)
a1λ1(λ3 − λ1)

and

g(t) = a1a2λ1λ2(λ1 − λ2)2e−(λ1+λ2)t + a1a3λ1λ3(λ1 − λ3)2e−(λ1+λ3)t

+a2a3λ2λ3(λ2 − λ3)2e−(λ2+λ3)t.

Proof: The proof is quite long, see Theorem 3 of Baggs and Nagaraja (1996)
and Corollary 3.5 of Franco ad Vivo (2002).

T1 and T2 of the F-G-M bivariate exponential, T2 of the Marshall and
Olkin’s bivariate exponential and T2 of type B bivariate extreme values have
shared a common property, i.e., they all have a GH distribution. The ageing
properties of Ti from these and those other bivariate distributions discussed
in Section 10.2 are now given below.

• F-G-M bivariate exponential: The series system cannot be IFR because
s > 0. The parallel system is a GH of four components so the classification
above cannot be applied (Franco and Vivo, 2002).

• Marshall and Olkin’s bivariate exponential: The series system is exponen-
tial so it is both IFR and DFR. The parallel system is neither IFR nor
DFR if the two exponential components have different parameters. How-
ever, if the two components are identical, it follows from (10.17) that T2
has a GH distribution of two components so T2 is IFR by Theorem 10.4. In
the case the two component lives are independent and identical, then T2
being IFR has already been established by Barlow and Proschan (1981).

• Type B extreme value distribution: The series system has an exponential
distribution so is both IFR and DFR. The parallel system is neither IFR
nor DFR.
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• Moran-Downton bivariate exponential (assuming both components having
unit mean): Wang et al. (2003) have shown that T1 cannot possibly be
IFRA while it is possible to be DFRA. However, it is possible that T2
is IFRA. Numerical calculations suggests T1 is DFRA and T2 is IFR for
0 ≤ ρ < 1.

• Bivariate Lomax distribution (Durling-Pareto): It follows from (10.25) that
the failure rate function for T1 is 2a(1 + kt)(1 + 2t + kt2)−1 which is
decreasing in t for 0 ≤ k ≤ 2 for which the series system is DFR but the
ageing class for the parallel system is yet to be established. (Recall, X and
Y are independent if k = 1.)

• Arnold and Strauss’ exponential conditionals model: Navarro et al. (2004)
showed that T1 is IFR when 0 ≤ c ≤ 3.862, BT when c > 3.82. T2 is not
DFR. Numerically, it has an upside-down bathtub shaped failure rate.

• Raftery’s three bivariate exponential models: Baggs and Nagaraja (1996)
have shown that T2 is IFR under the three models. However, T1 has a
failure rate that may be constant, increasing, decreasing or non-monotonic.

• Gupta and Gupta (2001) have shown that the distributions of the mini-
mum and maximum of a multivariate normal retain the IFR property.

10.7 k-out-of-n Systems

Let X1, X2, .., Xn denote n independent component lifetimes of a system with
Xi:n being their ith order statistic. A k-out-of-n system functions if and only
if at least k components function. When k = n, the systems has a series
structure whereas for k = 1, it reduces to a parallel structure. Thus, a k-out-
of-n system is more general than either a series or a parallel structure. Hence,
the result for this system holds for both series and parallel structures.

The lifetime of this system is simply given by the order statistic Xn−k+1:n.
To simplify the notations, we denote this order statistic by τk|n = Xn−k+1:n.
So in this notation, τn|n and τ1|n denote the lifetimes of the series and parallel
systems, respectively.

10.7.1 Reliability of a k-out-of-n System

Consider a k-out-of-n system in which n lifetime components are independent
and identically distributed having a common cdf F and pdf f . Then it can be
shown easily that the reliability of such a system is given by

RS(t) =
n!

(n − k)!(k − 1)!

n−k∑
j=0

(
n − k

j

)
(−1)n−k−j

n − j
(F̄ (t))n−j . (10.63)
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Special cases

(1) Series system (k = n)

RS(t) = (F̄ (t))n.

(2) Parallel system (k = 1)

RS(t) = n

n−1∑
j=0

(
n − 1

j

)
(−1)n−j−1

n − j
(F̄ (t))n−j .

Reliability of a k-out-of-n system sharing a common environment

In assessing the reliability of a system of n components, it is rarely possible
to test the entire system under the actual operational environment. Instead,
the component reliabilities are often determined by life tests conducted under
controlled environment which is generally harsher or gentler than the opera-
tional environment. Therefore, when considering the reliability of a k-out-of-n
system, we may need to take into accounts these environmental effects.

Suppose the environment factor Z has a distribution with moment gener-
ating function MZ , Gupta (2002) has shown that the reliability of the system
under consideration is given by

R∗
S(t) =

n−k∑
j=0

(
n
j

)(
n − j − 1

k − 1

)
MZ [−(n − j)H(t)] (10.64)

where H(t) is the cumulative hazard corresponding to F .
Gupta (2002) has discussed two examples: (i) Z has a gamma distribution

and (ii) Z has an inverse Gaussian distribution.

10.7.2 Ageing properties of a k-out-of-n system

We now discuss the ageing class of distribution to which the distribution of the
system belongs to. The results are now summarized by the following theorem
which was given by Gupta (2002).

Theorem 10.6: Let F be the parent distribution of the independent and
identically distributed components.

(1) If F is IFR (IFRA), then the distribution of the k-out-of-n system is IFR
(IFRA).

(2) If F is DFR (DFRA), then the distribution of the k-out-of-n system is
not necessarily DFR (DFRA).

(3) If F is NBUE, then the distribution of the parallel system (1-out-of-n) is
NBUE.
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(4) If F is DMRL, then the distribution of the parallel system (1-out-of-n) is
DMRL.

Proof: The proof is based on the fact that the lifetime of the k-out-of-n
system is simply the order statistic Xn−k+1:n. Now (1) and (2) follow from
Takahasi (1988); (3) and (4) from Abouammoh and El-Neweihi (1986).

Takahasi (1988) also showed that if Xk:n = τn−k+1|n is DFR, then
Xk−1:n = τn−k+2|n is also DFR.

Remarks
(i) The identical distribution of the component lifetimes are necessary. For

example, a parallel system of two nonidentical exponential components is not
IFR (Barlow and Proschan, 1981, p. 83)

(ii) The examples in Section 10.6 show that the independence assumption
in this theorem is also necessary. For example, T1 is no longer IFR if the two
components lifetimes have a F-G-M bivariate exponential distribution.

10.7.3 Comparative Studies of Two k-out-of-n Systems

A comparison between systems A and B is often required for reliability design
or planning. However, one needs to know what do we mean when we say sys-
tem A is ‘better’ than system B. For example, a designer may need to consider
allocation of spares at component level versus system level. For a meaningful
comparison, we resort to the concept of a partial ordering. The readers may
recall several definitions of partial orderings given in Section 2.9, particularly
concerning stochastic ordering, failure rate ordering and likelihood ratio or-
dering. For ease of referencing, here we give these definitions again with the
obvious notations. We say:

(i) X is said to be smaller than Y in likelihood ratio ordering (X ≤LR Y )
if f(t)/g(t) is increasing for all t ≥ 0.

(ii) X is said to be smaller than Y in failure rate ordering (X ≤FR Y ) if
rF (t) ≥ rG(t) for all t ≥ 0 or F̄ (t)/Ḡ(t) is increasing in t ≥ 0.

(iii) X is said to be smaller than Y in stochastic ordering (X ≤ST Y ) if
F̄ (t) ≤ Ḡ(t), for all t ≥ 0.

It follows from Section 2.9 that ≤LR ⇒ ≤FR ⇒ ≤ST.
Comment: The reader should note that many authors refer to the failure
rate ordering as the hazard rate ordering.

Boland (1998) has argued that when people say product A is superior to
product B, they probably mean that the failure rate of product B is greater
than that of product A. Thus, using the failure rate as a means to compare
basic systems seems justifiable. We also note from the definition (iii) that
X ≤ST Y implies that E(X) ≤ E(Y ).

We now wish to compare two k-out-of-n systems of independent compo-
nents by partial orderings.
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Stochastic ordering of k-out-of-n systems

Let Y1, Y2, .., Yn be another set of independent components with their order
statistic Yi:n. The lifetime of this second k-out-of-n system is denoted by
τ ′
k|n = Yn−k+1:n.

It was shown, see for example, Boland and Proschan (1994) that τk|n ≤ST
τ ′
k|n if Xi ≤ST Yi for all i = 1, 2, ..., n. In fact, this is true for any coherent

system with life function τ . This follows from the fact that the structure
function of a coherent system is increasing with each component reliability.
Hence the system with the stronger set of components will stochastically live
longer (Boland and Proschan, 1994).

Failure rate ordering of k-out-of-n systems

(a) Lynch et al. (1987) and Singh and Vijayasree (1991) established that if
both X ′s and Y ′s are i.i.d. such that

Xi ≤FR Yi, (10.65)

then
Xk:n ≤FR Yk:n, k = 1, 2, ..., n (10.66)

which also implies τk|n ≤FR τ ′
k|n. Boland et al. (1994) have shown by

counter examples that if both X ′s and Y ′s are nonidentical, then (10.66)
does not hold.

(b) Boland and Proschan (1994) have shown that if both X ′s and Y ′s are not
identically distributed but Xi ≤FR Yj , i, j = 1, 2, .., n, then (10.66) also
holds.

(c) Shaked and Shanthikumar (1995) showed that (10.66) holds under condi-
tions weaker than those of Boland and Proschan (1994). (Essentially, they
required Xi ≤ST Yπi

, i = 1, 2, ..., n, for some permutation π of (1, 2, .., n)).

Comparisons of k-out-of-n systems with respect to failure rate
ordering

We now consider the case where two k-out-of-n systems do not have the same
k or n.

It is clear that τn|n ≤ST τn−1|n... ≤ST τ1|n or equivalently X(1) ≤ST
X(2) ≤ST ... ≤ST X(n). Boland et al. (1998) have shown that this result
extends to failure rate ordering in general, i.e.,

τn|n ≤FR τn−1|n ≤FR ... ≤FR τ1|n. (10.67)

Further, Boland et al. (1994) also obtained the following results:

Theorem 10.7: Suppose we have n independent and identically distributed
component lifetimes X1, ..., Xn.
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(a) τk+1|n ≤FR τk|n for all k = 1, 2, ..., n − 1.

(b) If Xi ≤FR Xn for all i = 1, 2, ..., n − 1, then τk|n−1 ≤FR τk|n for k =
1, 2, ..., n − 1.

(c) If Xn ≤FR Xi for all i = 1, 2, ..., n − 1, then τk|n ≤FR τk−1|n−1 for k =
2, ..., n.

Proof: The proof is quite involved. Part (a) is from Theorem 3.1, Part (b)
from Theorem 3.3 and part (c) from Theorem 3.4, all of Boland et al. (1994).

Hu and He (2000) have also proved the result (c) of the above theorem
without imposing the condition Xn ≤FR Xi, i = 1, 2, .., n − 1 while assuming
only Xi be independent but not necessary identically distributed.

Comparisons of k-out-of-n systems with respect to reversed failure
rate ordering

The reversed failure (hazard) rate of a lifetime random variable X is defined
as

νF (t) = f(t)/F (t), t > a, (10.68)

where a = inf{t : F (t) > 0}.
We say that X is smaller than Y in the reversed failure rate order-

ing (X ≤RF Y ) if νF (t) ≤ νG(t) where G is the distribution function of Y .
See for example, Shaked and Shanthikumar (1994, p. 24), for more details
concerning the reversed failure rate order.

Block et al. (1998) established analogous results of Boland et al. (1994)
with respect to the reversed failure rate ordering.

Theorem 10.8: Assuming the n component lifetimes are independent and
identically distributed, we have

(a) τk+1|n ≤RF τk|n for all k = 1, 2, ..., n − 1.
(b) If Xn ≤RF Xi for all i = 1, 2, ..., n − 1, then τk|n ≤RF τk−1|n−1 for k =

2, ..., n.

Proof: The proof is similar to Boland et al. (1994). See Block et al. (1998)
for more detail.

Hu and He (2000) established an ordering in the reversed failure rate of
the following form.

Theorem 10.9: Let X1, X2, ..., Xn be independent (but not necessarily iden-
tically distributed) lifetimes. Then

τk|n−1 ≤RF τk|n, for k = 2, ..., n.

Proof: The proof is very long and we refer the reader to Hu and He (2000)
for details.
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Let Xk:n denote the kth order statistic from X1, X2, ..., Xn. The above
theorem may be expressed more conveniently in terms of partial ordering as

Xi:n ≤FR Xi:n−1 and Xi:n−1 ≤RF Xi+1:n

Stochastic comparisons of parallel systems of heterogenous
exponential components

Let X1, X2, .., Xn be n independent exponential random variables with Xi

having failure rate λi, i = 1, 2, ..., n. Also, let Y1, Y2, .., Yn be another set of in-
dependent exponential random variables with λ∗

i as the failure rate of Yi. Fur-
ther, let λ = (λ1, λ2, ..., λn) and λ∗ = (λ∗

1, λ
∗
2, ..., λ

∗
n). Pledger and Proschan

(1971) showed that if λ majors λ∗, then τn|n ≡ τ ′
n|n (i.e., identically distrib-

uted) and τk|n ≥ST τ ′
k|n for all k = 1, 2, ..., n − 1. (See Definitions 8.5 and 8.6

for the concepts of majorization and Schur-concavity).
For the special case n = 2 and k = 1 (i.e., a 2-component parallel system),

Boland et al. (1994) partially strengthened the above results from stochastic
ordering to failure rate ordering. They proved that the failure rate of a par-
allel system of two independent exponential components is Shur-concave in
(λ1, λ2), the component failure rates. More precisely, suppose λ1 +λ2 is fixed,
the more diverse of the λ′s, the smaller the failure rate of the parallel system
τ1|2 is. They also concluded with a counter example that this result cannot
be generalized for arbitrary n.

We now let Y1, Y2, .., Yn be independent exponential random variables with
Yi having failure rate λ̄ =

∑n
i=1 λi/n. Let τ ′

k|n denote the lifetime of the k-
out-of-n system of the exponential components represented by Y ’s. Dykstra
et al. (1997) showed that τ1|n ≥FR τ ′

1|n. This gives a convenient upper bound
on the failure rate of of τ1|n. They also showed that the distribution of τ1|n
is more dispersed than τ ′

1|n in the sense that the difference between any two
quantiles of the distribution τ1|n is greater than the difference between the
corresponding quantiles of the distribution of τ ′

1|n. In other words, we have
var(τ1|n) ≥ var(τ ′

1|n).

Returning to the special case k = 1, n = 2 again, Dykstra et al. (1997)
strengthened the result of Boland et al. (1994) from failure rate ordering to
likelihood ratio ordering. It was shown that

(λ,λ2) majors (λ∗
1, λ

∗
2) ⇒ τ1|n ≥LR τ ′

1|n.

In the light of the counter example of Boland et al. (1994) discussed in a
prior paragraph, the present result of a parallel system of two exponential
components cannot be extended beyond the case n = 2.
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10.7.4 Ageing Properties Based on the Residual Life of a
k-out-of-n System

Kochar and Kirmani (1995) studied stochastic orderings of normalized spac-
ings from DFR distributions where the spacing Xn−k+1:n − Xn−k:n repre-
sents the lifetime between (n − k)th and (n − k + 1) failures and also may be
considered as an additional lifetime to be gained on using a (k − 1)-out-of-n
rather than a k-out-of-n system. Likewise, Kirmani (1996) studied stochastic
orderings of spacings from increasing mean residual life (IMRL) distributions.

The residual life of a k-out-of-n system, given that the (n − k)th failure
has occurred at time t, is given by the conditional random variable

RLSk,n,t ≡ (Xn−k+1:n − Xn−k:n |Xn−k:n), (10.69)

and the residual lifetime of the k-out-of-k system (a series) is denoted by

LSk = X1:k − α (10.70)

where α = inf{Support(X)}.
Langberg et al. (1980a) provided the following characterizations:

F is IFR (DFR) ⇔ RLSk,n,t ≥ST (≤ST)RLSk,n,t′ for all t′ ≥ t ≥ α and
F is NBU (NWU) ⇔ LSk ≥ST (≤ST)RLSk,n,t for all t ≥ α, 1 ≤ k < n.

Belzunce et al. (1999) studied the situations given above when the sto-
chastic order is replaced by some well known ageing and variability orders.

Li and Chen (2004) investigated the ageing properties of RLSk,n,t with
independent but non-identical components.

10.7.5 Dependent Component Lifetimes

Conventionally, it is assumed that the failure of any component of a k-out-
of-n system does not affect the remaining ones. In practice, the failure of a
component will somewhat influence the remaining components. For example,
the breakdown of an aircraft’s engine will increase the load on the remaining
engines so that their lifetimes may be shortened. For this reason, sequential
order statistics have been introduced (see, e.g., Cramer and Kamps, 2001), as
an extension to the (ordinary) order statistics, to model sequential k-out-of-n
systems where the failures of components would possibly affect the remain-
ing ones. It seems some simplification is required for this methodology to be
understood more widely.

Navarro et al. (2004) study reliability properties of k-out-of-n system under
(i) multivariate Gumbel’s type 1 exponential distribution, (ii) multivariate
Arnold and Strauss exponential distribution, and (iii) multivariate normal
distribution. We note that (i) and (ii) are multivariate versions of (10.5) and
(10.32), respectively.
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Navarro et al. (2005) studied stochastic comparisons among coherent sys-
tems (including k-out-of-n) with identical but possibly dependent components
using signatures. See also Hu and Hu (1998) for comparisons of order statistics
between dependent and independent random variables.

Rychlik (2001) obtained upper bounds for the means of k-out-of-n systems
with dependent IFR, DFR, IFRA and DFRA components expressed in terms
of the mean and variance of the common component life distribution.

10.8 Consecutive k-out-of n:F Systems

The consecutive k-out-of-n:F system has n independent components that are
linearly connected in such a way that the system fails if and only if at least k
consecutive components fail. If the n components are arranged in a circle, the
resulting system is known as the circular consecutive k-out-of-n:F system. In
this section, we consider only the linear system unless otherwise stated.

Similarly, a consecutive k-out-of-n:G system consists of an ordered (lin-
early connected) sequence of n independent components such that the system
operates if and only if at least k consecutive components operate. Clearly,
there is a relationship between the consecutive k-out-of-n:F and G systems in
the one dimensional case (though not true for two-dimensional case which will
not be discussed in this book). Kuo et al. (1990) showed that a consecutive
k-out-of-n:G system is a mirror image of a consecutive k-out-of-n:F system.
For this reason, we restrict our discussion to the latter one.

For a comprehensive survey of reliability studies of this and related systems
see Chao et al. (1995), Chang et al. (2000) and Mokhlis (2001).

There are two main advantages of using a consecutive k-out-of-n:F system
for reliability modelling:

• it usually has a much higher reliability than the series system,
• it is often less expensive than the parallel system.

Example 10.4: Telecommunication system introduced by Chiang
and Niu (1981)

A sequence of n microwave stations transmit information from place A to
place B. The microwave stations are equally spaced between places A and B.
Each microwave station is able to transmit information to a distance up to
k microwave stations. This system fails if and only if at least k consecutive
microwave stations fail. (Chiang and Niu, 1981).

Example 10.5: Oil pipe system of Chiang and Niu (1981)

A system for transporting oil by pipes from A to point B has n pumps.
Pump stations are equally spaced between A and B. Each pump station can
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transport the oil a distance of k pump stations. If one pump is down, the flow
of oil could not be interrupted because the next station could carry the load.
However, when at least k consecutive pumps station fail, the oil flow stops
and the system fails.

Example 10.6: Railway station introduced by Kuo et al. (1990)

A railway station has n lines that receive and send trains. Consider an over
size train that requires k consecutive lines in order to enter into the station
without delay. Then the reliability that the train enters the station without
delay is itself the probability that at least k consecutive lines which are not
in use are available. This is an example of linear consecutive k-out-of-n:G
systems.

10.8.1 Reliability and Lifetime Distribution

The consecutive k-out-of-n:F and its related systems have caught the attention
of many engineers and researchers because of its high reliability and low cost.

Reliability evaluation

Much attention has been devoted to compute the reliability R(k, n; p) of the
system where the components are i.i.d. with the same reliability p and failure
probability q = 1−p. R(k, n; p) contains a summation of binomial coefficients
so it is difficult to calculate in general. The system reliability can be evaluated
through recursive equations or by approximations.

An exact formula for computing the reliability of a linearly connected
system was given by Lambiris and Papastavridis (1985) as

R(k, n; p) =
n∑

j=0

(
n − jk

j

)
(−1)j(pqk)j − qk

n∑
j=0

(
n − jk − k

j

)
(−1)j(pqk)j .

(10.71)
A popular method is to imbed the consecutive k-out-of-n:F in a Markov

chain. In particular, Fu (1986) successfully introduced a (k + 1)-state Markov
chain which simplified the probability structure of the system considerably.
Subsequently, Fu and Hu (1987), Chao and Fu (1989, 1991) developed a sim-
ple formula for general case of independent but not necessarily identically
distributed components with reliability pi:

R(k, n; p1, p2, ..., pn) = π0 ·
n∏

i=1

Mi · u′ (10.72)

where π0 = (1, 0, ..., 0), u= (1, 1, ..., 1, 0) and
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Mi =

⎛
⎜⎜⎜⎜⎝

pi qi 0 ... 0 0
pi 0 qi ... 0 0
: : : : :
pi ... 0 qi

0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎠ .

Aki (2001) used the method of conditional probability generating functions
(developed in statistical distribution theory of runs) to compute the exact
reliability of a consecutive k-out-of-n system with i.i.d. components.

Lambiris and Papastavridis (1985) also derived an exact formula for the
system reliability of the circular consecutive k-out-of-n system with i.i.d. com-
ponents. It was given by

RC(k, n; p) =
n∑

j=0

(
n − jk

j

)
(−1)j(pqk)j

+k

n∑
j=0

(
n − jk − k − 1

j

)
(−1)j(pqk)j+1 − qk, k ≤ n.

(10.73)

For a survey of these developments, see Chao et al. (1995), Mokhlis (2001).

Reliability bounds

Simple upper and lower bounds were also been proposed by several authors.
These bounds are often employed when the value of n or k is so large that
the exact computation of the reliability is not achievable.

Two well known bounds are:

1. The inequalities of Fu (1985)

(1 − qk)n−k+1 ≤ R(k,n :p) ≤ (1 − pqk)n−k+1, q = 1 − p. (10.74)

2. Bounds based on the application of the Poisson approximation (Barbour
et al., 1992 and Barbour et al., 1995)

ν − ε ≤ R(k, n; p) ≤ ν + ε (10.75)

where

ν = e−pqk(n−k+1) − qk+1e−pqk(n−2k),

ε = (1 − e−pqk(n−k+1) + qk+1(1 − e−pqk(n−2k)))(2k + 1)pqk

Muselli (2000) obtained the following improved reliability bounds:

(1 − qk)(n−k)/hL+1 ≤ R(k, n : p) ≤ (1 − qk)(n−k)/hU+1 (10.76)
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where

hU = hU (k, p) =
1 − qk

p
, (10.77)

hL = hL(k, p) =
(1 − qk)k/{(1−qk)k/p}

p
, (10.78)

and n ≥ k ≥ max(q/p, 1).

Lifetime distribution of consecutive k-out-of-n:F systems

Explicit formula was given for the lifetime distribution of a consecutive k-
out-of-n:F system in Aki and Hirano (1996). It is a linear combination of
distributions of order statistics of the lifetimes of n i.i.d. components. The
cases where Xi follows the exponential, the Weibull and the Pareto were
derived.

10.8.2 Structure Importance of Consecutive k-out-of-n
Systems

Reliability importance was defined by Birnbaum (1969) as a partial derivative
of system reliability with respect to component reliability.

Lin et al. (1999) obtained, through the relationship with the Fibonacci
sequence of order k a closed form solution of structure importance for each
component.

10.8.3 Algorithms for Determining Optimal Replacement Policies
for Consecutive k-out-of-n Systems

Costs arise when a system fails and when components are replaced. Flynn
and Chung (2002) developed a branch and bound algorithm for computing
optimal replacement policies in consecutive k-out-of-n systems to minimize
the long-run average undiscounted cost per period. Extensive computational
experiments find this algorithm is effective when n ≤ 40 or k is near n;
however, the computation can be intractable when n > 40 and 2 ≤ k <
n − 15. This deficiency prompted Flynn and Chung (2004) to find a heuristic
algorithm which is highly effective for each n and k tested.

10.8.4 Ageing Property

Cui et al. (1995) have proved that if k is fixed in a consecutive k-out-of-n
system with independent and identically distributed increasing failure rate
(IFR) lifetimes, there exists nk for which the system does not preserve IFR
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when n ≥ nk. They also provided the complete solutions for the cases k = 4
and k = 5. However, the method is tedious for larger k.

The results by Cui et al. (1995) suggest that the system will eventually lose
IFR property for a given k when n increases. Cui (2002) presented a bound
ñk for nk such that when n > ñk, the system does not preserve IFR. Further,
ñk has an explicit expression.

10.8.5 Consecutive-k-out-of-n:F System with Markov Dependence

So far, we have assumed the component lifetimes of a k-out-of-n:F system
are mutually independent. In practice, the failure probability of a component
increases as the number of failed components increases as illustrated by the
example in Fu (1986). If the failure probability of component i depends upon
only component (i − 1), then we say the components are Markov dependent.
Fu and Hu (1987) computed the reliability of such a system when the number
of components is large; whereas Papastavridis and Lambiris (1987) computed
the reliability of such a system via recurrence relation. Ge and Wang (1990)
gave a direct and exact method to compute the reliability of this Markov-
dependent system.

Consecutive k-out-of-n:F repairable system with exponential
distribution and (k-1)-step Markov dependence

Lam and Ng (2001) have introduced a general consecutive k-out-of-n:F re-
pairable system with exponential distribution and (k−1)-step Markov depen-
dence. The lifetime of a component is also an exponential random variable,
its parameter depends on the number of consecutive failed components that
precede the component. The repair time is also an exponential random vari-
able. A priority repair rule on the basis of the system failure risk is adopted. A
linear consecutive 3-out-of-4:F system and a circular consecutive 3-out-of-4:F
system were investigated.

10.9 On Allocation of Spares to k-out-of-n Systems

The problem of where and how to allocate redundant components is an inter-
esting and important problem in reliability theory and its applications. Much
work has been reported in the literature, see for example, El-Neweihi et al.
(1986), Boland et al. (1988, 1991, 1992), Shaked and Shanthikumar (1992),
El-Neweihi and Sethuraman (1993), Singh and Misra (1994) and Mi (1998b,
1999b). Much of the past research in this subject centered on the k-out-of-n
systems because the problem becomes complicated when one deals with an
arbitrary coherent system.
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Active redundancy with a spare to a k-out-of-n system

An active (also known as hot or warm) redundant spare works simultaneously
with one of the components in the system, while a standby spare only begins
to operate when the component for which it is standing ceases to function.
We will consider the latter type of redundancy in Section 10.10.

Suppose we have a k-out-of-n system where the components are ordered
stochastically (without loss of generality X1 ≤ST X2... ≤ST Xn), Boland and
Proschan (1994) considered two scenarios of active redundancy:

1. There exists an independent component with lifetime X available as a
‘common’ spare which can be placed in redundancy with any component
in the system.

2. There are a set of independent components with lifetimes Y1, Y2, ..., Yn

(where Xi = Yi in the stochastic sense, ie., they have a common distrib-
ution) available for redundancy such that the ‘like’ spare having lifetime
Yi can only be used as a spare for the ith component.

Let X ∨Y = max(X, Y ) denote the resulting lifetime of an active redundancy.
Boland et al. (1992) and Boland and Proschan (1994) showed that

τk|n(X1, ..., Xi−1, Xi ∨ X, Xi+1, ..., Xn)

is stochastically decreasing in i = 1, 2, ..., n. It follows therefore that such a
stochastically ordered k-out-of-n system, it is always stochastically preferable
to perform active redundancy of a ‘common’ spare on weaker components.
This finding is perhaps not surprising for series system where it is known the
weakest component is the most important. It is more surprising for more gen-
eral k-out-of-n systems (1 < k < n) since stochastically weakest component
is not necessarily be the most important at all points of time.

Boland and Proschan (1994) went on to consider the situation where
one is to allocate one ‘like’ component actively to the k-out-of-n system.
It was shown that in general, there is no optimal selection for the ‘like’
active redundancy allocation. They found however, for the series system,
τn|n(X1, ..., Xi−1, Xi∨Yi, Xi+1, ..., Xn) is stochastically decreasing in i whereas
for the parallel system, τ1|n(X1, ..., Xi−1, Xi∨Yi, Xi+1, ..., Xn) is stochastically
increasing in i.

Optimal active redundancy allocation of r spares in k-out-of-n
system

In a related but a different problem, Mi (1998b) considered a k-out-of-n sys-
tem consisting of n + r (1 ≤ r ≤ n) available components of which r will be
used for active redundancy. In other words, from the given n+ r components,
r components are selected to be used as active redundancy, another r compo-
nents to receive active redundancies (i.e., these r components are bolstered).
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The problem of which r components should be used for active redundancy,
and where to allocate them in order to maximize the lifetime of the resulting
k-out-of-n system was studied.

Let C1, C2, ..., Cn+r denote the (n+ r) components and Xi be the lifetime
of Ci, i = 1, 2, ..., (n + r), such that X1 ≤ST X2 ≤ST ... ≤ST Xn+r. The main
result of Mi (199b) indicates that the optimal active redundancy allocation is
to place Ci in redundancy with C2r−i+1(1 ≤ i ≤ r). In other words, under the
usual stochastic ordering ‘≤ST’ the first r weakest components should be used
for active redundancy and allocate in reverse order to the the next r weakest
components.

Allocation of spares at component level versus at system level

Design engineers are well aware that a system where active spare allocation is
made at the component level has a lifetime stochastically larger than the sys-
tem where active spare allocation is made at the system level, see for example,
Barlow and Proschan (1981, p. 23). Boland and El-Neweihi (1995) considered
this principle in failure rate ordering and demonstrated it does not hold in
general. However, they showed that for a 2-out-of-n system, with indepen-
dent and identical original components and spares, active spare allocation at
the component level is superior (in the failure rate ordering sense) to active
spare at the system level. They conjectured that such a principle holds for
general k-out-of-n when all the components and all the spares are identically
distributed. Singh and Singh (1997) proved that a k-out-of-n system, when
components lives are independent and identical, active spare allocations at
the component level is superior to active spare allocation at the system level
in likelihood ratio ordering. Since ≥LR⇒≥FR, Singh and Singh (1997) have
in fact proved the conjecture of Boland and El-Neweihi (1995), and in fact a
stronger result.

10.10 Standby Redundant System

The standby redundant components neither degrade nor fail while in standby.
When inserted into the system as active components, their state is new. Thus,
‘standby’ redundant is also known ‘cold’ redundant.

10.10.1 Standby Redundancy in k-out-of-n Systems

We assume in this subsection that all the component lifetimes are indepen-
dent. Let X be the lifetime of the original component and X∗ the lifetime of
the standby component which may be similar but not necessarily identically
distributed. The total lifetime is X + X∗ and its density is the convolution of
the two densities.
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Assuming the component lifetimes are ordered in the likelihood ratio sense,
i.e., X1 ≤LR X2 ≤LR ... ≤LR Xn, Boland and Proschan (1994) considered the
allocation of a common standby spare to a series or parallel and showed that
for a series system τn|n(X1, ..., Xi−1, Xi + X, Xi+1, ..., Xn) is stochastically
decreasing in i and τ1|n(X1, ..., Xi−1, Xi + X, Xi+1, ..., Xn) is stochastically
increasing in i. On the other hand, if a ‘like’ standby component with lifetime
Yi is allocated, then the parallel system τ1|n(X1, ..., Xi−1, Xi+Yi, Xi+1, ..., Xn)
is stochastically increasing in i. Here, we have also assumed that Yi are ordered
in the likelihood ratio sense.

For most results in reliability theory concerning parallel systems of compo-
nents, there is a ‘dual’ result for series system. Curiously, this does not seem
to be the case for the last result. Boland and Proschan (1994) gave a counter
example.

10.10.2 Standby Redundancy at Component Versus System Level

A question aries as to what extent is standby redundancy at the component
level better (either in stochastic or failure rate ordering) than standby redun-
dancy at the system level?

Boland and El-Neweihi (1995) have shown that when considering standby
redundancy and stochastic ordering, redundancy at the component level is
better than redundancy at the system level for series systems, while the reverse
is true for parallel systems. What does it suggest about more general k-out-of
n system? We do not have a definite answer at present. However, the above
authors showed that for the 2-out-of 3 system with three i.i.d. exponential
components, standby redundancy at the system level is better than at the
component (in the stochastic order sense).

What can we say about standby component and system redundancy for
the failure rate ordering? Boland and El-Neweihi (1995) also showed that for n
i.i.d. exponential components that are arranged in series, standby redundancy
at the component level is better (in failure rate sense) than standby system
redundancy. Thus, more research is needed to enlighten us concerning the
efficiency of redundancy for a general k-out-of-n system with respect to failure
rate ordering when components are not exponentially distributed.

10.10.3 Dependent Components

Lai (1985) has considered a 2-component standby redundant system in which
the lifetime follows the Moran-Downton bivariate exponential distribution as
given in (10.20).

Let Ts = X +Y where the subscript denotes ‘standby’. Thus Ts represents
the lifetime of the standby system. Assuming equal means, i.e., µX = µY = µ,
Lai (1985) showed that the density of Ts is

fTs(t) =
µ√
ρ

sinh
{√

ρµt

1 − ρ

}
exp
{

− µt

1 − ρ

}
. (10.79)
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The survival function of this standby system is

F̄Ts
(t) = (cosh

√
ργt +

√
ρ

−1 sinh
√

ργt)e−γt; γ =
µ

1 − ρ
. (10.80)

The mean and variance are, respectively

E(Ts) =
2
µ

; var(Ts) =
2(1 + ρ)

µ2 . (10.81)

The failure rate function is

rs(t) = µ {1 +
√

ρ coth γt}−1
, γ =

µ

1 − ρ
. (10.82)

The function rs(t) is increasing in t so FTs
∈ IFR.

10.11 Future Directions

There are several directions of possible research.
(i) The traditional studies on the reliability allocation and system design

optimization may be extended to the case of dependent components when
redundancy is applied to existing components.

(ii) In this chapter, we focuss mainly on system reliability characteristics
with two dependent components. It is possible to extend our study to mul-
tiple components although it is well known that parallel redundancy is only
effective for small number of components. Also, as indicated in Section 10.5.1,
dependence in a multiple-component system needs to be explored further.
Obviously multivariate distributions are required when dealing with multiple
dependent components and we refer our readers to Kotz et al. (2000) for a
rich source of information on multivariate modelling.

(iv) The sequential k-out-of-n system modelled by sequential statistics
as discussed in Section 10.7.5 seems to offer a practical alternative to the
traditional k-out-of-n system. The new methodology is built upon the belief
that a damage caused by failures will increase stress on the remaining active
components. Further research is needed to simplify the approach so that it
can be more widely understood.

(iii) As seen in Section 10.10.2, except in the case with independent ex-
ponential components, the effectiveness of standby redundancy to a system
is still unclear when the comparison is made either in the sense of stochastic
ordering or in the failure rate ordering. The situation will be even more com-
plex if the components lifetimes are positively dependent without assuming
exponentiality. Thus more research is warranted on this subject.

(v) Estimation of dependence based on failure rate data and testing of
dependence could be of interest.
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Failure Time Data

11.1 Introduction

This chapter provides data sets that are known to belong to a particular
ageing class. We believe that many readers will welcome having a number of
data sets reproduced here as academic staff like to give their students data
that is real rather than contrived. Only the numbers are extracted here, and
the readers should consult the original source for detailed analysis done. In
several cases, the data sets have also been analyzed by other researchers.

In Section 11.2, a rough guide on how to select a model from many plau-
sible models such as the Weibull models discussed in Chapter 5. We discuss
briefly in Section 11.3 how survival functions and failure rate functions can be
estimated from a data set as well as the structure of our data presentation.
Sections 11.4–11.8 list various data sets according to their ageing classifica-
tions. Finally in Section 11.9 we refer the readers to other sources of survival
and reliability data which may be useful to them.

11.2 Empirical Modelling of Data

We have discussed in Chapter 5 a large number of Weibull-related models
which were simply referred to as Weibull models. They exhibit a wide range
of shapes for density and failure rate functions which make them suitable for
modelling complex failure data sets. The question arises as which model is
suitable to fit a particular ‘Weibull like’ data set. Here in this section, we
provide a general guideline on empirical modelling.

It is well accepted that empirical modelling usually involves three steps:
model selection, estimation of model parameters and model validation. In the
context of Weibull models, a selection procedure may be based on WPP plots.
This is possible because of the availability of WPP or generalized WPP plots
for all the Weibull models in Sections 5.4 and 5.5. Of course, the shape of the
density and failure rate functions will also be valuable in the selection step.
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An add-on advantage of the WPP plots is that they provide crude estimates
of model parameters. These serve as a starting point for steps 2 and 3.

It has been suggested that an alternative method to estimate model para-
meters is through a least squares fit. Basically speaking, it involves selecting
the parameters to minimize a function given by

J(θ) =
n∑

i=1

(y(ti; θ) − yi)2, (11.1)

where y(ti; θ) using vector parameter θ and yi is the corresponding value ob-
tained from the data. The optimization can be carried out using any standard
optimization packages. The least squares method not only furnishes us para-
meter estimates, it also helps to select a Weibull model. If one of the potential
candidates has a value for J(θ) which is considerably smaller than that for the
other models, then undoubtedly it can be accepted as the most appropriate
model for modelling the given data set. If two or more Weibull models give
rise to roughly the same value of J(θ), one would need to examine additional
properties of the WPP plots to decide on the final model. Other approaches
such as bootstrap and jackknife may be employed for the final selection. For
more on this, see Murthy et al. (2003) and Murthy et al. (2004).

A couple of comments on step 3 of our empirical modelling may be in order.
There are many statistical tests for validating a model. These generally require
data that is different from the data used for model selection and parameter
estimation. A smaller data set may pose a problem, as there will be no separate
data left after model selection and parameter estimation (Murthy et al., 2003,
p. 288, 290). In this situation, the same data is used for both estimation and
validation but we need to take into account the loss in the degree of freedom.
For a general approach on parameter estimation and model validation, we refer
the readers to the book by Meeker and Escobar (1998) for further details.

11.3 Data Presentation and General Comments on
Reliability Estimation

The data in this chapter appear in three formats:
(i) Ungrouped data presented as exact values.
(ii) Ungrouped data with some being right censored.
(iii) Data presented as frequency tables.

Some brief comments may be warranted on how to obtain numerical esti-
mates and to determine the shapes of the failure rates from the data sets.

• For censored and ungrouped data, the survival function may be estimated
by Kaplan and Meier’s (1958) product-limit method:
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Ŝ(t) =
∏

t(r)≤t

n − r

(n − r + 1)
, (11.2)

where t(r) is uncensored.
• When the data are in group form, one may obtain the percentiles using

the method discussed by Kendall, Stuart, and Ord (1987, pp. 50-51).
• An approximate trend of failure rate may be seen from the curvature of

the cumulative hazard function H(t) versus failure time plot– see Nelson
(1982, Chapter 4) and Section 5.3. Plots of the cumulative hazard give us
useful information about the shape of the failure rate; note, for example,
that H(t) is linear if r(t) is constant, and convex if r(t) is monotonic.

• Non-monotonic failure rates such as the bathtub or upside-down bathtub
shaped failure rates may by identified by a total on time test (TTT) plot,
see, for example, Aarset (1987).

• Section 3.4 of Lawless (2003) gives nonparametric estimates of failure rate
functions as well various numerical smoothing techniques.

The data sets provided in this chapter that have either monotonic or non-
monotonic failure rates. So they belong to various ageing classes. We have
endeavored to group them according to their ageing characteristics.

A plus sign after a failure time in the tables below indicates a censored
observation.

11.4 IFR Data

First bus-motor failure data–Table 11.1

Data source: Davis (1952).
The data was reanalyzed by Mudholkar et al (1995).

Table 11.1. First bus-motor failures (1,000 miles)

Class interval Observed frequency

0-20 6
20-40 11
40-60 16
60-80 25

80-100 34
100-120 46
120-140 33
140-160 16
160-up 4
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Second bus-motor failure data–Table 11.2
Data source: Davis (1952).
Reanalyzed by Mudholkar et al (1995).

Table 11.2. Second bus-motor failure (1,000 miles)

Class interval Observed frequency

0-20 19
20-40 13
40-60 13
60-80 15
80-100 15
100-120 18
120-up 11

Aluminium coupon failure–Table 11.3
Lifetimes of 101 strips of aluminium coupon.
Data Source: Birnbaum and Saunders (1958).

Table 11.3. Lifetimes of 101 strips of aluminium coupon

370 706 716 746 785 797 844 855 858 886 930 960 988 990 1000
1010 1010 1016 1018 1020 1055 1085 1102 1102 1108 1115 1120 1134 1140 1199
1200 1200 1203 1222 1235 1238 1252 1258 1262 1269 1270 1290 1293 1300 1310
1313 1318 1330 1355 1390 1416 1419 1420 1420 1450 1452 1475 1478 1481 1485
1502 1505 1513 1522 1522 1530 1540 1560 1567 1578 1594 1602 1604 1608 1630
1642 1674 1730 1750 1750 1763 1768 1781 1782 1792 1820 1868 1881 1890 1893
1895 1910 1923 1940 1945 2023 2100 2130 2215 2268 2240

Electric carts failures–Table 11.4

Time to first failure of 20 electric carts data.
Data source: Zimmer et al. (1998).

The survival function is estimated by R̂(ti) = 1 − i
21 . Cumulated hazard

plot gives a straight line indicating the the failure time distribution could be
either IFR or DFR so an exponential distribution will fit well.

Batteries failure data–Table 11.5

Lifetimes (in cycles) of sodium sulphur batteries (Batch 2).
Data source: Ansell and Ansell (1987).
Data reanalyzed by Phillips (2003).
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Table 11.4. Time to first failure of 20 electric carts

ti 0.9 1.5 2.3 3.2 3.9 5.0 6.2 7.5 8.3 10.4
R̂(ti) 0.952 0.905 0.857 0.809 0.761 0.714 0.667 0.619 0.571 0.524

ti 11.1 12.6 15.0 16.3 19.3 22.6 24.8 31.5 38.1 53.0
R̂(ti) 0.476 0.429 0.381 0.333 0.286 0.238 0.190 0.142 0.095 0.048

Table 11.5. Failure times (in cycles) of 20 batteries

76 82 210 315 385 412 491 504 522 646+
678 775 884 1131 1446 1824 1827 2248 2385 3077

Other reported references

Failure times of 112 patients with multiple myeloma–Carbone et al. (1967).

11.5 DFR Data

Times to breakdown of an insulating fluid–Table 11.6

Times to breakdown of an insulating fluid between electrodes at voltage of 34
kV (minutes).
Data source: Nelson (1982, p. 105).
Data reanalyzed by Zimmer et al. (1998).

Leukemia-free survival times–Table 11.7

Leukemia-free survival times (in months) of 51 autologous transplant patients.
Data source: Ghitany and Al-Awadhi (2002).

Pressure vessels–Table 11.8

Time to failure (in hours) for 20 pressure vessels.
Data source: Keating et al (1990).

Pooled air conditioning failure data of airplanes–Table 11.9

Data source: Proschan (1963).
The data set consists of successive failure intervals of each member of a

fleet of 13 Boeing 720 jet planes. The pooled data of 213 observations were first
analyzed by Proschan (1963) and further discussed in Dahiya and Gurland
(1972), Gleser (1989) and Adamidis and Loukas (1998). The failure interval
containing a major overhaul was omitted from the listing since the length of
that failure may be affected by major overhaul. Those values are represented
by ∗∗ in the table.
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Table 11.6. Insulating fluid failure

i ti log(ti) R̂(ti)

1 0.19 -1.66 0.95
2 0.78 -0.25 0.90
3 0.96 -0.04 0.85
4 1.31 0.27 0.80
5 2.78 1.02 0.75
6 3.16 1.15 0.70
7 4.15 1.42 0.65
8 4.67 1.54 0.60
9 4.85 1.58 0.55
10 6.50 1.87 0.50
11 7.35 1.99 0.45
12 8.01 2.08 0.40
13 8.27 2.11 0.35
14 12.06 2.49 .030
15 31.75 3.46 0.25
16 32.52 3.48 .020
17 33.91 3.52 0.15
18 36.71 3.60 0.10
19 72.89 4.29 0.05

Table 11.7. Leukemia-free survival times (in months) of 51 autologous transplant
patients

0.658 0.822 1.414 2.500 3.322 3.816 4.737 4.836+ 4.934
5.033 5.757 5.855 5.987 6.151 6.217 6.447+ 8.651 8.717
9.441+ 10.329 11.480 12.007 12.007+ 12.237 12.401+ 13.059+ 14.474+
15.000+ 15.461 15.757 16.480 16.711 17.204+ 17.237 17.303+ 17.644+
18.092 18.092+ 18.750+ 20.625+ 23.158 27.730+ 31.184 32.434+ 35.921+
42.237+ 44.638+ 46.480+ 47.467+ 48.322+ 56.086

Table 11.8. Pressure vessels failure

0.75 1.7 20.8 28.5 54.9 126 175 236 274 290
363 458 776 828 871 970 1278 1311 1661 1787
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Table 11.9. Interval between failures of the air conditioning system

Plane number
7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 8044 8045
194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209
41 58 60 48 56 87 11 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 54

181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 85 67

169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27

201 84 27 ** 21 16 88 130 14
118 44 ** 15 42 106 46 230
** 59 153 104 20 206 5 66
34 29 26 35 5 82 5 61
31 118 326 12 54 36 34
18 25 120 31 22
18 156 11 216 139
67 310 3 46 210
57 76 14 111 97
62 26 71 39 30
7 44 11 63 23

22 23 14 18 13
34 62 11 191 14

** 16 18
130 90 163
208 1 24
70 16

101 52
208 95

Coal-mining disasters data–Table 11.10

Data source: Maguire et al. (1952).
The data set gives the intervals in days between successive coal-mining

disasters in Great Britan for the period 1875–1951. A disaster is defined as
involving the dealth of 10 or more men. Data analyzed by Cox and Lewis
(1978, p. 4) and Adamidis and Loukas (1998).
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Table 11.10. Intervals in days between successive coal-mining disasters

378 286 871 66
36 114 48 291
15 108 123 4
31 188 457 369

215 233 498 338
11 28 49 336

137 22 131 19
4 61 182 329

15 78 255 330
72 99 195 312
96 326 224 171

124 275 566 145
50 54 390 75

120 217 72 364
203 113 228 37
176 32 271 19
55 23 208 156
93 151 517 47
59 361 1613 129

315 312 54 1630
59 354 326 29
61 312 1312 217
1 275 348 7

13 78 745 18
189 17 217 1357
345 120 120
20 644 275
81 467 20

11.6 NBU Data

Chronic granulocytic leukemia patients data–Table 11.11

Data on survival times of 43 patients suffering chronic granulocytic leukaemia.
Data source: Bryson and Siddiqui (1969).
Data reanalyzed in Hollander and Proschan (1975).

Table 11.11. 43 patients suffering chronic granulocytic leukemia survival times

7 47 58 74 177 232 273 285 317 429
440 445 455 468 495 497 532 571 579 581
650 702 715 779 881 900 930 968 1077 1109
1314 1334 1367 1534 1712 1784 1877 1886 2045 2056
2260 2429 2509
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11.7 Bathtub Shaped Failure Rates Data

Failure times of 50 devices (Aarset data)–Table 11.12
The original data set of 50 failure times of devices are ranked in the table
below.
Data source: Aarset (1987).
Lai et al. (2003) used a modified Weibull model to fit this data set.

Table 11.12. Aarset data

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

Third bus-motor failures–Table 11.13
Data source: Davis (1952).
Data reanalyzed by Mudholkar et al. (1995)– see their Table 5.

Table 11.13. Third bus-motor failures

Class interval (1,000 miles) Observed frequency
0-20 27
20-40 16
40-60 18
60-80 13
80-100 11
100-up 16

Fourth bus-motor failures–Table 11.14
Data source: Davis (1952).
Data reanalyzed by Mudholkar et al. (1995).

Table 11.14. Fourth bus-motor failures

Class interval (1,000 miles) Observed frequency
0-20 34
20-40 20
40-60 15
60-80 15
80-up 12
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External leakage of centrifugal pumps–Table 11.15
Table of first external leakage of 32 centrifugal pumps.
Data source: Pamme and Kunitz (1993).
Data analyzed by Pamme and Kunitz (1993)

Table 11.15. External leakage of 32 centrifugal pumps

666 687 1335 2044 2195 2281 2708 2764 2940 2970
2972 3004 3564 3955 4133 4230 4805 5200 5384 5766
6222 6267 6714 6794 7398 7532 7659 8696 8740 9213
9740 12213

Car failure data–Table 11.16

This is an actual set of failure time data collected during unit testing.
Data source: Xie and Lai (1995).
Data set was analyzed in Xie and Lai (1995) using an additive Weibull model.

Table 11.16. Car failures data

Time interval 1 2 3 4 5 6 7 8 9
Number of failures 53 29 29 36 13 25 22 16 18
Time internal 10 11 12 13 14 15 16 17 18
Number of failures 8 22 11 13 5 5 4 1 1

Failure times of 406 units of a hydromechanical device–Table 11.17

Data source: Hjorth (1980).

Halley’s mortality data–Table 11.18

Data source: Halley’s (1693).
Data re-tabulated in Jaisingh et al. (1987). This data set was also discussed
in Nelson (1982, pp. 17-18).

Leukemia-free survival times of allogenic transplant patients–Table
11.19

The table gives Leukemia-free survival times (in months) of 50 allogenic trans-
plant patients.
Data source: Ghitany and Al-Awadhi (2002).
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Table 11.17. Failure times of 406 units of a hydromechanical device data

Working hours No. of failures No. of censored units
0 4 -
1-5 4 -
6-10 1 -
11-20 2 -
21-40 2 1
41-60 7 1
61-100 14 6
101-150 24 11
151-200 9 56
201-250 14 110
251-300 6 20
301-350 1 19
351-400 3 37
401-450 2 36
451-500 - 10
501-600 - 6

Table 11.18. Halley’s mortality data

t f(t) F (t) F̄ (t) r(t)
0 - 0 1.000 -
0-5 .290 .290 .710 .058
5-10 .057 .347 .653 .016
10-15 .031 .378 .622 .010
15-20 .030 .408 .592 .010
20-25 .032 .440 .560 .011
25-30 .037 .477 .523 .013
30-35 .042 .519 .481 .016
35-40 .045 .564 .436 .019
40-45 .049 .613 .387 .022
45-50 .052 .665 .335 .027
50-55 .053 .718 .282 .032
55-60 .050 .768 .232 .035
60-65 .050 .818 .182 .043
65-70 .051 .869 .131 .056
70-75 .053 .922 .078 .081
75-80 .044 .966 .034 .113
80-85 .034 1.00 0.00 .200
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Table 11.19. Leukemia-free survival times (in months) of 50 allogenic transplant
patients

0.030 0.493 0.855 1.184 1.1283 1.480 1.776 2.138 2.500
2.763 2.993 3.324 3.421 4.178 4.441+ 5.691 5.855+ 6.941

6.941+ 7.993+ 8.882 8.882 9.145+ 11.480 11.513 12.105+ 12.796
12.933+ 13.849+ 16.612+ 17.138+ 20.066 20.329+ 22.368+ 26.766+ 28.717+
28.717+ 32.928+ 33.783+ 34.221+ 34.770+ 39.539+ 41.118+ 45.033+ 46.033+
46.941+ 48.289+ 57.041+ 58.322+ 60.625+

Appliance failure data–Table 11.20

The data below show the number of cycles to failure for a group of 60 electrical
appliances in a life test. The failure times have been ordered for convenience.
Data source: Page 112 of Lawless (2003).
Data were grouped and failure rate function was estimated by three methods:
Adaptive regression spline, smoothing spline and natural cubic spline. The
plot by the first method clearly indicates a bathtub shape.

Table 11.20. Appliance failure data

14 34 59 61 69 80 123 142 165 210
381 464 479 556 574 839 917 969 991 1064
1088 1091 1174 1270 1275 1355 1397 1477 1578 1649
1702 1893 1932 2001 2161 2292 2326 2337 2628 2785
2811 2886 2993 3122 3248 3715 3790 3857 3912 4100
4106 4116 4315 4510 4584 5267 5299 5583 6065 9701

500 MW generator’s failure data–Table 11.21

Data contains 36 times to the first failure of 500 MW generators collected
over 6-year period. The empirical cumulative hazards (see Section 5.3 for
computation) are included in the table for completion sake.
Data source: Dhillon (1981). A bathtub shaped failure distributions was fitted
to the data set by Dhillon (1981).

Load-haul-dump-A machine failures data (LHD-A data)–Table
11.22

The table consists of 44 failure times (in hours) which refer to all subsystems
of the machine, i.e., engine, hydraulic and air-conditioning subsystems, brakes,
transmissions, tyres and wheels, body and chassis.
Data Source : Kumar et al (1989). Also analyzed by Pulcini (2001).
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Table 11.21. 36 MW generators’ times to first failure

Item
Number

Failure
Time

Cumulative
Hazard

1 58 0.028
2 70 0.059
3 90 0.086
4 105 0.116
5 113 0.147
6 121 0.179
7 153 0.212
8 159 0.247
9 224 0.283
10 421 0.320
11 570 0.359
12 596 0.399
13 618 0.441
14 834 0.485
15 1019 0.531
16 1104 0.579
17 1497 0.629
18 2027 0.682
19 2234 0.738
20 2372 0.797
21 2433 0.860
22 2505 0.927
23 2690 0.998
24 2877 1.075
25 2879 1.158
26 3166 1.249
27 3455 1.349
28 3551 1.460
29 4378 1.585
30 4872 1.728
31 5085 1.895
32 5272 2.095
33 5341 2.345
34 8952 2.678
35 9188 3.178
36 11399 4.178

Table 11.22. LHD-A data

16 39 71 95 98 110 114 226 294
344 555 599 757 822 963 1077 1167 1202

1257 1317 1345 1372 1402 1536 1625 1643 1675
1726 1736 1772 1796 1799 1814 1868 1894 1970
2042 2044 2094 2127 2291 2295 2299 2317



358 11 Failure Time Data

Times between failures of a 180-ton rear dump truck–Table 11.23

Table 11.23. Time between failures (1000’s of hours) of a 180-ton rear dump truck

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
0.02 0.02 0.03 0.04 0.06 0.08 0.10 0.10
0.12 0.12 0.12 0.13 0.14 0.15 0.15 0.15
0.16 0.16 0.17 0.18 0.18 0.19 0.20 0.21
0.22 0.23 0.25 0.26 0.28 0.28 0.30 0.32
0.34 0.36 0.38 0.39 0.41 0.41 0.42 0.43
0.44 0.44 0.45 0.45 0.50 0.53 0.56 0.58
0.58 0.61 0.62 0.62 0.62 0.64 0.66 0.70
0.70 0.70 0.72 0.77 0.78 0.78 0.80 0.82
0.83 0.85 0.86 0.96 0.97 0.98 0.99 1.05
1.06 1.07 1.18 1.35 1.36 1.42 1.55 1.59
1.65 1.73 1.77 1.79 1.80 1.91 2.09 2.14
2.15 2.15 2.31 2.33 2.36 2.36 2.43 2.45
2.50 2.51 2.58 2.64 2.68 3.08 3.94 4.12
4.33 4.42 4.53 4.88 4.97 5.11 5.32 5.55
6.63 6.89 7.62 11.41 11.76 11.85 12.36 13.22

Data source: Coetzee (1996). The original data is given in actual observed
times (in hours).
Analyzed by Coetzee (1996) and Pulcini (2001).

Other reported but untabulated data sets with bathtub shaped
failure rates

Survival data of 898 patients treated for non-Hodgkin’s lymphoma data was
analyzed in Alidrisi et. al (1991).
Failure times data of an electronic device (142 observations with 55 being
censored. Data analyzed in Haupt and Schäbe (1992) but not tabbulated.

11.8 Upside-down Bathtub Shaped Failure Rates Data

Arm A data on head-and-neck-cancers patients–Table 11.24

The table contains Arm A data on the survival times (in days) of 51 head-
and-neck-cancers patients.
Data source: Efron (1988).
Data reanalyzed by Mudholkar et al. (1995).
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Table 11.24. Survival times (in days) for patients head-and-neck-cancer

7 34 42 63 64 74+ 83 84 91
108 112 129 133 133 139 140 140 149
154 157 160 160 165 173 176 185+ 218
225 241 248 273 277 279+ 297 319+ 405
417 420 440 523 523+ 583 594 1101 1116+
1146 1226+ 1349+ 1412+ 1417

Lung cancer patients survival data–Tables 11.25-27
The table contains Veterans Adminstration lung cancer trial data. A sub-

group of 97 patients with no prior therapy. The data represent the days of
survival for lung cancer patients since therapy.
Data source: Prentice (1973).
Data reanalyzed by Gupta, Akman and Lvin (1999) using a log-logistic model.
The table was then subdivided into two groups.

Table 11.25. 97 lung cancer patients data

72 228 10 110 314 100+ 42 144 30 384 4 13 123+
97+ 59 117 151 22 18 139 20 31 52 18 51 122
27 54 7 63 392 92 35 117 132 162 3 95 162
216 553 278 260 156 182+ 143 105 103 112 87+ 242 111
587 389 33 25 357 467 1 30 283 25 21 13 87
7 24 99 8 99 61 25 95 80 29 24 83+ 31
51 52 73 8 36 48 7 140 186 19 45 80 52
53 15 133 111 378 49

Table 11.26. Low PS (X1 ≤ 50) – 35 observations

10 314 144 4 123+ 59 151 18 20 18 7 63 392
35 3 216 242 33 25 1 25 21 13 7 80 29
248 48 7 19 45 80 15 49
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Table 11.27. High PS (X1 > 50) – 62 observations

72 228 110 100+ 42 30 384 13 97+ 117 22 139 31 52
51 122 27 54 92 117 132 162 95 162 553 278 260 156
182+ 143 105 103 112 87+ 111 587 389 357 467 30 283 87
24 99 8 99 61 25 95 83+ 31 51 52 73 36 140
186 52 53 133 111 378

Acute nonlymphoblastic leukaemia data–Table 11.28

The table contains times from remission to relapse for 84 patients with acute
nonlymphoblastic leukaemia.
Data source: Glucksberg et al. (1981).
This was reanalysed in Ebrahimi (1991). Censored observations have been
dropped in Ebrahimi (1991). Only ordered remission durations for 51 patients
were listed here.

Table 11.28. Remission to relapse times for 51 leukaemia patients

24 46 57 57 64 65 82 89
90 90 111 117 128 143 148 152

166 171 186 191 197 209 223 230
239 247 254 258 264 269 270 273
284 294 304 304 332 341 393 395
487 510 516 518 518 534 608 642
697 955 1160

Flood discharge rates in Iowa–Table 11.29

Data source: United States Water Resources Council (1977).
Data analyzed in Mudholkar and Hutson (1996). Rate unit is in (ft3/s).

Table 11.29. The consecutive annual flood discharge rates (1935-1973) of the Floyd
River at James, Iowa

1935-1944 1460 4050 3570 2060 1300 1390 1720 6280 1360 7440
1945-1954 5320 1400 3240 2710 4520 4840 8320 13900 71500 6250
1955-1964 2260 318 1330 970 1920 15100 2870 20600 3810 725
1965-1973 7500 7170 2000 829 17300 4740 13400 2940 5660
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Guinea pigs survival data–Table 11.30

The table only contains one set of of the guinea pigs survival times (in days)
of guinea pigs infected with virulent tubercle bacilli.
Data source: Bjerkedal (1960) contains analyzes of two studies (Study M and
Study P). The observed survival times, by study and regimen, were listed in
their Table 6. Ghai and Mi (1999) mentioned that Bjerkedal (1960) gave a
real data set which exhibits an upside-down bathtub shaped mean residual
life function but we are unsure of which one of the data sets has this property.

Table 11.30. Survival times of guinea pigs infected with virulent tubercle bacilli

18 36 50 52 86 87 89 91 102 108 114 114 115
118 119 120 149 160 165 166 167 167 173 178 189 209
212 216 273 278 279 292 341 355 367 380 382 421 421
432 446 455 463 474 505 545 546 569 576 590 603 607
608 621 634 634 637 638 641 650 663 685 688 725 735

Repair times for an airborne communication transceiver–Table
11.31
Data source: The following maintenance data set was reported in Von Alven
(1964) and Chhikara and Folks (1977) on active repair times (in hours) for an
airborne communication transceiver:

Table 11.31. Repair times for an airborne communication transceiver

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8
1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2
2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4
7.0 7.5 8.8 9.0 10.3 22.0 24.5

Bearing lifetimes data–Table 11.32

Lifetimes (millions of revolutions) of 23 ball bearings are given below.
Data source: Dumonceaux and Antle (1973).
The data set was reanalyzed by Jiang et al. (2003).

Failure of electronic devices–Table 11.33

Lifetimes of 18 electronic devices are given below.
Data source: Wang (2000).
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Table 11.32. Bearing lifetimes

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Table 11.33. 18 electronic devices’ lifetimes

5 11 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

11.9 Other Sources of Survival and Reliability Data

Lee (1992) contains several survival data sets from various sources.

• Exercise Table 2.2: Life table for the total population (of 100,000 life
births), in the United States, 1959–1961.

• Table 3.1: Survival data for 30 resected melanoma patients.
• Table 3.4: Tumor-free times (days) of 90 rates on three different diets.
• Table 3.5: Life table for male patients with localized cancer of rectum

diagnosed in Connecticut, 1935–1934 and 1945–1954.
• Table 4.7: A life table analysis of 2418 males with angina pectoris.
• Exercise Table 4.2 A life table analysis of females with angina pectoris.
• Table 6.3: Calculations of survivorship functions for Group 2 of rats ex-

posed to DMBA.
• Table 6.4: Lifetimes of 101 strips of aluminum coupon.

Nelson (1982) contains a few real failure and survival times data sets.

• Page 17: Halley’s mortality table.
• Page 105: Times to breakdown of an insulating fluids.
• Page 111: Connection strength data.
• Page 113: Class-H insulation life data.
• Page 121: Appliance cord data.
• Page 124: Insulation fluid times to breakdown with censoring.
• Page 133: Fan data and hazard calculations.
• Page 138: Transformer failure rates and hazard calculations.
• Page 141: Turn failure data and hazard calculations.
• Page 144: Winding data and cumulative hazards.
• Page 186: Hazard calculations for individual coils.
• page 529: Cycles to snubber data.

Lawless (2003) contains a lot of lifetime data sets throughout the text.Its
Appendix G “Data Sets” gives detailed backgrounds of several sets of data.
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Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000), Continuous Multivariate
Distributions, Vol 1: Models and Applications, 2nd Edition, Wiley, New
York.

Kotz, S. and Johnson, N. L. (1984), Some replacement-times distributions in
two-component systems, Reliability Engineering, 7, 151–157.

Kotz, S., Lai, C. D. and Xie, M. (2003), The expected lifetime when adding
redundancy in systems with dependent components, IIE Transactions, 35,
1103–1110.

Kotz, S. and Shanbhag, D. N. (1980), Some new approaches to probability
distributions, Advances in Applied Probability, 12, 903–921.

Kotz, S., Wang, Q. and Hung, K. (1990), Interrelations among various defin-
itions of bivariate positive dependence, IMS Lecture Notes, Vol 16, Topics
in Statistical Dependence, pp. 333–349, Institute of Mathematical Statis-
tistics, Hayward, California.

Koul, H. L. (1977), A test for new is better than used, Communications in
Statistics—Theory and Methods, 6, 563–573.

Koul, H. L. (1978a), A class of tests for testing new is better than used, The
Canadian Journal of Statistics, 6, 249–271.

Koul, H. L. (1978b), Testing for new is better than used in expectation, Com-
munications in Statistics—Theory and Methods, 7, 685–701.

Koul, H. L. and Susarla, V. (1980), Testing for new better than used in ex-
pectation with incomplete data, Journal of the American Statistical Asso-
ciation, 75, 952–956.

Krohn, C. A. (1969), Hazard versus renewal rate of electronic items, IEEE
Transactions on Reliability, R-18(2), 64–73.

Kruskal, W. H. (1958), Ordinal measures of association, Journal of the Amer-
ican Statistical Association, 53, 814–861.



390 References

Kulasekera, K. B. and Park, H. D. (1987), The class of better mean residual
life at age t0, Microelectronics and Reliability, 27, 725–35.

Kulasekera, K. B. and Lal Saxena, K. M. (1991), Estimation of change point
in failure rate models, Journal of Statistical Planning and Inference, 29,
111-124.
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RCSI, 265
RTI, 262
SI, 262
TP2, 262
WPQD, 266

Dependence concepts
chain of implications, 267
relative stringency, 263, 264

Dependence ordering
more associated, 287

Dependent k-out-of-n system, 336
Discrete DFR

properties, 174
Discrete IFR

properties, 173
Discrete distribution

discrete Pareto, 202
Discrete ageing

BT, 179
DFR, 172
DMRL, 176
IFR, 171, 172
IFR(2), 179
IFRA1, 174
IFRA2, 174
IMRL, 176
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NBAFR, 179
NBU, 175
NBU(2), 179
NBU1, 175
NBU2, 175
NBUC, 179
NBUE, 175
NBUFR, 179
UBT, 179

Discrete distribution
bathtub, 186
binomial, 193
cluster size, 194
discrete logistic, 202
Eggenberger-Polya, 196
extended Katz family, 193
finite range, 183
generalized Salvia and Bollinger, 192
geometric, 188
geometric-Weibull, 191
log series, 194
negative binomial, 188, 193
Pareto , 192
Polya, 194
power series, 190
survival function, 168
Waring, 194
Weibull type I, 189
Weibull type II, 189
Weibull type III, 189

Discrete failure rate
Alternative definition, 199
definition, 169
discrete power series, 190
exponential-geometric, 191
finite range, 183
geometric, 188
geometric-Weibull, 191
log series, 194
negative binomial, 188
‘S’ distribution, 190
type I discrete Weibull, 189
type II discrete Weibull, 189
type III discrete Weibull, 190

Discrete failure time models
discussion, 195

Distribution function
residual life, 134

Effectiveness
measure, 315
redundancy, 314

Effectiveness of parallel redundancy
IFR components, 315

Efficiency of parallel redundancy
NQD vomponents, 324

Empirical modelling, 345
Equilibrium distribution, 62, 118

survival function, 62
Estimation

change point of BT failure rate, 91
change point of non-monotonic

classes, 132
Monotonic MRL, 131
truncated MRL, 132

Eta function
η(t), 12
s-order equilibrium distribution, 68
definition, 13
discrete, 188

Examples of
NQD distributions, 280
PQD distributions, 271
SI distributions, 279
TP2, 278

Examples of copulas, 276
Exponential

mixture with gamma, 55
mixture with Weibull, 56

F-G-M
arbitrary marginals, 322

F-G-M family
generalized, 277
properties, 271

Failure rate
integrated beta, 83
additive Weibull, 79
bivariate, 241
BT, 74
Burr XII, 25
competing risk model, 77
confusion, 11
definition, 10
discrete, 168
double exponential, 81
exponential, 16
exponential power, 80
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exponential-geometric, 26
exponentiated, 153
extended Weibull, 151
gamma, 17
generalized Weibull, 157
Gompertz, 22
Hjorth’s model, 78
inverse Weibull, 150
J-shaped, 84
linear, 23
log Weibull, 149
log-logistic, 24
lognormal, 19
Lomax, 24
Makeham, 22
mixture, 48
modified Weibull, 155
modified Weibull extension, 156
non-monotonic, 44
of a point process, 11
ordering, 61
power function, 82
quadratic model, 77
reflected Weibull, 148
shapes, 11
terminology, 10
versus hazard rate, 10
Weibull, 19

Failure rate function
s-order, 62

Failure rate of
finite mixture, 56

Failure rate ordering
same as hazard rate ordering, 331

Force of mortality, 10

Generalized
ageing concepts, 66
ageing properties, 64
bathtub shaped, 44
partial orderings, 63

Generalized partial orderings, 63
Glaser’s η function, 118
Glaser’s technique, 12, 88

discrete, 188
extension, 14
generalization, 124

Halley’s mortality data, 107, 354

Hazard gradient, 240
Hazard rate

see ‘failure rate’, 11
Hazard rate ordering

see failure rate ordering, 331
Hypothesis

alternative, 205
general sketch, 205
null, 205

Imperfect repair, 197
bivariate, 251

Intensity function, 11
Interrelationships

among ageing classes, 29
among dependence concepts, 265
discrete ageing classes, 178

k-out-of-n
ageing properties, 330
allocation of spares, 340
dependent components, 335
optimal active redundancy allocation,

342
order statistics, 329
ordering of two systems, 332
reliability, 329
residual life, 335
sharing common environment, 330
standby redundancy, 343
system, 37, 329

k-out-of-n systems
comparison of, 332

Kaplan and Meier’s product-limit
method, 346

Kendall’s tau
relationship with Spearman’s rho,

298
Kendall’s tau

average TP2, 295

RLSk,n,t, 335
Limit of MRL function, 111
Linear MRL, 111
Link

ageing and positive dependence, 282
Local dependence

γ(x, y) function, 303
ρS , 304
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τ , 304
Clayton-Oakes association measure,

304
definition, 302
local correlation coefficient, 305

Local dependence function, 303
Holland and Wang, 302

Local indices
for survival analysis, 306

Local linear dependence function, 306
Log concave, 172
Log convex, 172

Maintenance and repair, 251
Maintenance and replacement models,

36
Marshall and Olkin’s family, 26
Mean residual life

applications, 137
Weibull, 142
bivariate, 136
definition, 45, 109
DIMRL, 94
discrete, 169
DMRL, 28, 176
estimation, 131
IDMRL, 89
IMRL, 28, 176
linear, 132
monotonic, 114
non-monotonic, 115
of exponential-geometric, 114
of gamma, 112
of inverse Gaussian, 113
of log-logistic, 113
of lognormal, 113
of Pareto, 113
of Weibull, 112
ordering, 61, 135
reciprocity with failure rate, 111
relation to BT change point, 92
relation to BT distribution, 92
relation to other ageing properties,

111
roller-coaster failure rate, 126
tests of trend change, 131

Measure of dependence
axioms, 290
Kendall’ tau, 295

local, 301
product-moment correlation, 291
Spearman’s rho, 296
time-dependent, 306

Minimal repair, 197
Mixed warranty policy, 99
Mixture of

IFR with exponential, 55
two DFR distributions, 48
two gammas, 49
two IFR distributions, 49
two inverse Weibulls, 161
two linear failure rates, 53
two Weibulls, 50

Mixtures
n Weibull distributions, 158
asymptotic behavior, 57
asymptotic behavior of failure rate,

57
continuous, 59, 60
finite, 47
initial behavior of failure rate, 57

Mixtures of distributions, 33
Modified bathtub shaped, 12, 51
Moment inequality

bivariate ageing classes, 239
Moments inequalities

univariate ageing classes, 41
Monotonic ageing classes, 114
MRL classes

monotonic, 114
non-monotonic, 115

MTTF
comparisons, 323
definition, 102
mean time to failure, 188

Multivariate ageing definition
requirements, 239

Multivariate dependence ordering, 289

n-fold
competing risks, 159
mixture, 158
multiplicative, 160

Negative ageing, 72
Negative dependence

definitions, 267
Negative dependence ordering

more NQD, 324
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Negative dependence concept
LTI, 267
RCSD, 267
RR2, 267
RTD, 267
SD, 267

Non-monotonic ageing classes, 116
Normalized spacing, 335
NQD

examples, 281

Optimal
burn-in criteria, 130
burn-in for UBT distributions, 130
burn-in time, 94

Optimal replacement time
for BT distributions, 99
for UBT distributions, 100

Other ageing classes, 45

Parallel system of
heterogeneous exponential compo-

nents, 334
two components, 317
two NQD components, 319
two PQD components, 317

Partial ordering
chain of relationships, 61
concave ordering, 61
convex ordering, 61
F convex with resect to G, 315
F star-shaped with resect to G, 315
failure rate, 61
harmonic average mean residual

ordering, 61
likelihood ratio ordering, 61
mean residual ordering, 61
more decreasing mean residual life,

135
more dispersed, 334
relative ageing, 68
reversed failure rate, 333
stochastic ordering, 61
variance residual life ordering, 61
weak likelihood ratio ordering, 61

Partial orderings
applications, 66
chain of relationships, 64
classical, 60

generalized, 62
parallel system of exponential

components, 334
Percentile residual life function, 134
Piecewise exponential

family, 86
TTT-transform, 87

Point process, 11
Poisson

distribution, 193
process, 11
shocks, 187

Positive ageing, 72
Positive dependence

preservation under mixtures, 289
Positive dependence concept

decreasing conditional failure rate,
267

Positive dependence concepts
see dependence concepts, 263

Positive dependence ordering
conditions, 285
more associated, 287
more concordant, 286
more LRD, 288
more LTD, 289
more PLOD, 289
more POD, 289
more PQD, 286
more PUOD, 289
more regression dependent, 286
more SI, 287
more TP2, 288
PDD, 289
PDO, 285

Positive dependence orderings
chain of implications, 288
definition, 285

Positively correlated, 266
PQD

applications, 270
constructions, 269
examples, 271–277

Preservations
Poisson shocks, 187

Properties of
discrete DFR, 173
discrete IFR, 173
IFR and DFR, 32
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IFR and IFRA, 33
NBU and NBUE, 34

Proportional MRL, 133

Rank correlation
Blomqvist’s β, 301
Gini index, 300
Kendall’s τ , 295
Spearman’s ρS , 296

Relationships among classes
NWBUE, BT and IDMRL, 93

Relationships between r(k) and r∗(k),
200

Relative ageing, 67
Reliability bound

DFR class, 32
IFR class, 32
IFRA distributions, 33

Reliability bounds
consecutive k-out-of-n:F

reliability bounds, 338
Reliability function, 9
Renewal sequence, 174
Repairable systems, 11
Residual

life of a component, 125
variance, 125

Residual coefficient of variation, 125
Residual life distribution function, 133
Reversed failure rate, 333
Robustness of sample correlation, 292
Roller coaster curve, 105
Roller-coaster failure rate and

roller-coaster MRL, 128
Roller-coaster shaped

failure rate, 12, 105

‘S’ distribution, 190
s-CV ordering, 63
s-CX ordering, 63
s-FR ordering, 63
s-ST ordering, 63
s-BDMRL, 256
s-BIFR, 255
Sample correlation coefficient, 292
Sample estimate of τ

Kendall’s t, 295
Scaled TTT transform, 42

test, 208

Schur-concavity
definition, 253
multivariate IFR, 254
two exponential parameters, 334

Sectional model
n-fold, 161
two Weibull distributions, 80

Series system
additive property, 201
bounds on MTTF, 325

Shape of failure rate
bathtub, 11
decreasing, 11
increasing, 11
modified bathtub, 12
upside-down bathtub, 11

Shapes of a function, 12
Sklar’s theorem, 275
Slepian inequality, 275
Spearman’s rho

avaerage PQD, 297
Standby redundancy

component vs system level, 343
definition, 342
dependent components, 343

Star-shaped function, 30
Summary

presevation of ageing properties, 38
shapes of MRL for various distribu-

tions, 123
tests of ageing classes, 219
tests of monotonic MRL, 226
tests of non-monotonic MRL, 231

Survival function, 9
discrete, 168
estimation, 206

τk|n, 329
Test of constant hazard

versus change point, 235
Test of DMRLHA

D∗
n-test, 226

Test of DPRL-α, 218
Test of exponentiality

general approach, 205
Test of NBUC, 218
Test of NBUFR, 218
Test of NBUP-α, 219
Tests
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general sketch, 205
Tests of

MRL, 130
Tests of ageing

censored data, 222
non-monotonic mean residual life, 226

Tests of bivariate ageing, 247, 249
Tests of BT

graphical, 234
Park’s Tn∗, 234
TTT-transform, 231

Tests of DMRL
V ∗-test, 223
Vn(k)-test, 224
δ̂(3)-test, 226
�̂n-test, 225
Ahmad’s U -test, 224

Tests of HNBUE, 215
En-test, 215
Tn,a-test, 216
Tn-test, 215
V ∗-test, 216
TTT-test, 215

Tests of IDMRL
τ and p unknown, 229
proportion p known, 228
turning point known, 228

Tests of IFR
�∗

IFR-test, 209
TTT-plot, 207

Un-test, 208
Tests of IFRA

Jb-test, 209
Qn-test, 210
�̂r+1-test, 211
Link’s test, 210
TTT-plot, 211

Tests of NBU
Jn-test, 211
Ln-test, 213
S-test, 213
δ-test, 212
�∗

NBU-test, 214
Generalized J-test, 212

Tests of NBU-t0
T -test, 216
Tk-test, 217
Ahmad’s test, 217

Tests of NBU-t0, 216

Tests of NBUE, 214
D-test, 214
K∗-test, 214
CV-test, 214
Kanjo’s test, 215

Tests of NWBUE, 231
Total time on test

TTT, 42
Trivariate reduction technique, 266
Turning point

definition, 12

UBT
burn-in, 102
definition, 11
discrete failure rate, 183
failure rate, 99
failure rate models, 100
MRL, 119
shape of its MRL, 118

UBT models
examples, 100

Ultimately DFR, 55
Unimodal, 122

density, 141
UBT, 161
upside-down, 150

Univariate distribution
beta, 82
Birnbaum-Saunders, 20
Burr X, 152
Burr XII, 25, 79
chi-square, 16
double exponential power, 81
Erlang, 16
exponential, 16
exponential-geometric (EG), 26
exponentiated exponential, 152
exponentiated Weibull, 84, 152
extended Weibull, 151
finite range families, 82
Fréchet, 150
gamma, 16
generalized exponential, 86
generalized gamma, 85
generalized hyperexponential (GH),

327
generalized Weibull, 156, 157
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Generalized Weibull of Mudholkar
etc, 83

Gomertz, 22
Gompertz-Makeham, 22
Gumbel, 149
Hjorth’s, 78, 123
inverse Gaussian, 21
inverse Weibull, 149
J-shaped, 84
linear failure rate, 23
log Weibull, 149
log-logistic, 24
lognormal, 19
Lomax, 23
Makeham, 22
modified Weibull, 79, 154
modified Weibull extension, 155
Pareto of the second kind, 23
power function, 82
Rayleigh, 140
reflected Weibull, 148
standard Weibull, 145
three-parameter Weibull, 144
truncated normal, 17
two-parameter Weibull, 140
type 3 extreme value, 148
Weibull, 18, 139

Upside-down bathtub shaped, 11, 99

Variance
residual life, 46

Variance residual function, 134

Warranty
two dimensional, 251

Warranty policy
renewable mixed, 99
two dimensional, 252

Weibull distribution
failure rate function, 142
mixture, 50
mode and median, 145
moments, 141
MRL, 142
order statistics, 147
parmeters estimates, 142
probability density function, 141

Weibull hazard plot, 146, 147
Weibull models

bivariate, 163
exponentiated, 152
extended, 151
extended Weibull, 151
inverse, 150
modified, 155
reflected, 148
with varying parameters, 162

Weibull parameters
estimates, 143

Weibull probability plot, 146
Weibull proportional hazard models,

162

Xi:n, 329

Yi:n, 332
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