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Preface

This book is a result of many years of teaching introductory statistical theory at the
Johns Hopkins University Department of Biostatistics. It is designed for advanced
undergraduates or master’s level students.

The approach used is to introduce students to statistical theory without the use
of too many advanced mathematical concepts which often inhibit the understanding
of the basic philosophical foundations of statistics. In particular, attention is paid to
the continuing debate on the foundations of statistics and the reasons why statistics
“works” using any one of the major philosophical approaches to the subject. Most
standard texts pay little or no attention to the contrasts between schools of statistical
thought and how they related to each other. In particular I emphasize the Law of
Likelihood as a way to connect various approaches.

Students must be made aware of the fact that there are no agreed upon methods
for solving all of the problems to which modern statistics is asked to find solutions.
I suspect that many of the current ad hoc procedures currently used will continue
to be used for decades to come. A student can, however, be equipped at a modest
level of mathematics with tools necessary to understand the myriad of statistical
methods now available. The explosion of statistical packages in the last twenty years
makes it possible for almost any one to perform analyses deemed intractable just a
few years ago. This book is about some of the basic principles of statistics needed
to criticize and understand the methods for analyzing complex data sets. I have
included a short chapter on finite population sampling since I believe that every
statistician should have some knowledge of the subject and since it forms the basis
for much of what we know about contemporary society. It also clearly illustrates
the need for some understanding of the foundations of statistics. I also included a
section in the appendix on interpretations of probability, a subject which is often
omitted in statistics texts. The remainder of the appendix consists of material on
probability and some mathematical concepts which I find convenient to have in one
place for reference.

A word on regularity conditions is in order. It often happens that a result is true
provided some conditions are assumed. These are called regularity conditions.
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viii Preface

In this book I am cavalier about these since being precise provides an additional
layer of mathematics and often obscures the statistical concepts. In many cases it is
easier to prove results from scratch rather than verify a list of regularity conditions.

I have tried to cite references for the many examples in the text. Unfortunately,
as is often the case when lecture notes are developed into a book, some sources have
been forgotten. I apologize in advance for these omissions and will correct them on
the website as I become aware of them. The text is deliberately thin on exercises.
Many more (with solutions) will appear on the website.

I thank the many students who have suffered through versions of these notes.
I thank Richard Royall for many discussions and advice on statistics in general and
likelihood in particular. Finally, I thank my wife, Savilla, for putting up with me.

Baltimore, Maryland Charles A. Rohde
July 2014
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Chapter 1
Introduction

1.1 Introductory Example

I have a list of 100 individuals, numbered 1–100. Associated with each is their
disease status, diseased, d, or not diseased, d.

I select a random sample (without replacement) of size 20 and record the disease
status of each individual selected.

From basic probability theory the probability of obtaining x diseased in the
sample of size 20 is given by the hypergeometric, i.e.,

P(X = x) =

(
D
x

)(
100−D
20−x

)

(
100
20

) for max{0, D− 80} ≤ x ≤ min{20, D}

where D is the number of diseased individuals among the 100.

1. The problem is to use the observed value of x and the model, the hypergeometric,
to learn about D. Equivalently, we want to learn about the proportion of diseased
individuals p = D/100.

2. This is the fundamental problem of parametric statistical inference, reasoning
from observed data to the parameters of the population which generated the data.

3. In fact, everything you need to know (well, almost everything) about parametric
statistical inference is present in this example.

Suppose that the observed value in the sample was x = 5. What have we learned
about D?

1. Clearly we have learned that D cannot be 0, 1, 2, 3, 4.
2. Nor can it be 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, or 86.
3. What about 16 or 53 or 81?

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__1
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2 1 Introduction

The sample proportion is

p̂ =
5

20

and we might reason that the population proportion is about the same so that

D̂

N
=

5

20
or D̂ = 25

is a good guess for the value of D.

1. But, how good?
2. What about values close to D̂, etc.?

1.1.1 Likelihood Approach

For any value of D we can calculate the probability of observing 5 in our sample.
Thus

PD(5) =

(
D
5

)(
100−D

15

)

(
100
20

) for D = 0, 1, 2, . . . , 100 (1.1)

It seems axiomatic that D2 does better than D1 at explaining the observed data if

PD2(5) > PD1(5)

which is a simple statement of the Law of Likelihood to be formalized later.
Comparisons between values of D can be facilitated by dividing each of the

probabilities in (1.1) by their maximum. We call this the likelihood of D:

L (D; data) =
PD(data)

maxD PD(data)
(1.2)

A graph of L vs D provides a visual display of the relative merits of each value
of D in explaining the observed data.

In addition we can find the values of D such that

L (D; data) ≥ 1

k
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Fig. 1.1 1/8 likelihood interval for D

This interval is called a 1
k likelihood interval. Choice of the value of k will be

explained later.
Here is the likelihood and the 1

8 likelihood for this example (Fig. 1.1).

1.1.2 Bayesian Approach

Suppose now that I tell you that I selected D by drawing a number, at random
between 0 and 100, i.e.,

P(D = d) =
1

101
for d = 0, 1, 2, . . . , 100

This distribution is called a prior distribution for D.
By Bayes theorem we have

P(D|X = 5) =
P(X = 5;D)P(D)
∑100

d=0 PX = 5; d)P(d)
=

(
D
5

)(
100−D
20−5

)

∑100
d=0

(
d
x

)(
100−d
20−5

) (1.3)

We can graph this density function which is called the posterior distribution
of D.
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Fig. 1.2 Credible interval for D

We can also find an interval I such that the posterior probability that D ∈ I is
100(1− α)% and

P(D2|X = 5) ≥ P(D1|X = 5) if D2 ∈ I and D1 /∈ I

This interval is called a highest posterior density (HPD) interval or posterior
interval or Bayes or credible interval.

Here is the posterior distribution for this example and a 95 % posterior interval,
called a 95 % credible interval (Fig. 1.2).

1.1.3 Frequentist Approach

Another approach to this problem is the frequentist confidence interval approach.
The “logic” behind this approach is

(i) If D were large, observing 5 or less in the sample is unlikely. The upper
confidence limit, DU (x), is the smallest D such that

PD(X ≤ 5) ≤ α

2

Note that P(X ≤ 5) decreases as D increases.



1.1 Introductory Example 5

(ii) If D were small, observing 5 or more in the sample is unlikely. The lower
confidence limit, DL(x), is the largest D such that

PD(X ≥ 5) ≤ α

2

Note that P(X ≥ 5) decreases as D decreases.
(iii) The interval [DL(x), DU (x)] has the property that

PD {[DL(X), DU (X)] � D} ≥ 1− α for any D

(iv) The value of PD {[DL(X), DU (X)] � D} is called the coverage probability
of the interval which is called a confidence interval.

Choice of α will be discussed later.
Here is a graphical display of the confidence interval for this example (Fig. 1.3) .

1.1.4 Comments on the Example

The hypergeometric example shows the essence of the likelihood, Bayesian and
frequentist approaches to statistical inference.
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Fig. 1.3 Confidence interval for D
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1. Likelihood

(a) Easy to understand but doesn’t suggest conclusions.
(b) Turns out to be hard to use in complicated problems.
(c) However, it does depend only on the data and the model.

2. Bayesian

(a) Gives us what we want, probability statements about parameters.
(b) However it requires prior probabilities which, for some, means it is not

objective and thus not appropriate for science.
(c) More later on “Objective Bayes” where priors are chosen so as to have

minimal impact on the posterior.

3. Frequentist

(a) Uses data not observed in the process of making inferences.
(b) For decades it has been the approach of choice despite difficulty of

interpretation.
(c) Its use sometimes leads to “silly conclusions.”

1.1.5 Choice of k and α

Choice of the values of k and α is somewhat arbitrary, but the following simple
experiment provides some guidance:

1. I have two coins in my pocket: one is a normal quarter, and the other is a quarter
with two heads.

2. I select a coin at random and toss it c times. Each toss is a head.
3. What is the probability that the quarter I am tossing is the two-headed one?

By Bayes theorem

P(th|c heads)

is given by

P(c heads|thP(th)
P(c heads|th)P(th) + P(c heads|n)P(n)

which reduces to
(
1× 1

2

)
(
1× 1

2

)
+
(

1
2c × 1

2

) =
2c

2c + 1

1. If c = 3 this posterior probability is 8/9 while the posterior probability that it
was the normal quarter is 1/9.

2. For c = 4 these probabilities are 16/17 and 1/17.
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3. For c = 5 they are 32/33 and 1/33.
4. This suggests 8, 16, or 32 as values for k.

For the choice of α note that c = 4 gives a posterior probability of 1/17 for the
normal quarter which is a reasonable explanation of the reason α is often chosen
to be 0.05, i.e., this value of α corresponds to being quite skeptical that the coin is
really the normal coin.

1.2 What Is Statistics?

There are a variety of views of what constitutes statistical inference.

• “the purpose of inductive reasoning, based on empirical observations, is to
improve our understanding of the systems from which these observations are
drawn”
Fisher [17]

• “A statistical inference will be defined for the purposes of the present paper to
be a statement about statistical populations made from given observations with
measured uncertainty.”
Cox [9]

• “statistics is concerned with decision making under uncertainty”
Chernoff and Moses [7]

• “the problem of inference, or how degrees of belief are altered by data”
Lindley [29]

• “By statistical inference I mean how we find things out—whether with a view
to using the new knowledge as a basis for explicit action or not—and how it
comes to pass that we often acquire practically identical opinions in the light of
evidence”
Savage [45]

• We aim, in fact, at methods of inference which should be equally convincing to
all rational minds, irrespective of any intentions they may have in utilizing the
knowledge inferred. We have the duty of formulating, of summarizing, and of
communicating our conclusions, in intelligible form, in recognition of the right
of other free minds to utilize them in making their own decisions.
Fisher [16]

• A statistical analysis of a data set, . . ., is supposed to conclude what the data
say and how far these conclusions can be trusted.

• Statistics is the theory of accumulating information (evidence) especially
information (evidence) that arrives a little bit at a time.
Bradley Efron

• Statistics is the study of algorithms for data analysis.
Rudy Beran
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• Its most important task is to provide objective quantitative alternatives to
personal judgment for interpreting the evidence produced by experiments and
observational studies.
Royall [43]

With such a wide variety of different conceptions about what constitutes statistics
it is not surprising that many have a distaste for the subject.

1.2.1 General Setup

The following pictures illustrate the statistical approach to scientific problems
starting with the basic example.

Learning about D

Population
(N,D)

Random
Sample

Data
d out of n

Inference
about

D

Statistical Model
Hypergeometric
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Scientific Learning

NatureExperiment

Data
Theory

Conclusions

In this book we will concentrate on the inference part of the last diagram.

1.2.2 Scope of Statistical Inference

I will take the following as a working definition of statistical inference.

Statistical inference is the process of learning about probability models using
observed data.

To be more specific suppose we have observed data x assumed to be modeled
by a probability density function f . The goal of statistical inference is then to learn
about f .
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Scientific Learning and Statistics

Nature
(Parameters)

Experiment

Data
Theory

Inference
about

Parameters

Statistical
Model

More precisely:

1. Given observed data what do we know about f?
2. How well do we know it?
3. How do we convey what we know?

or

1. Given observed data what evidence do we have about f?
2. How strong is the evidence?
3. How do we convey the evidence?



Chapter 2
The Statistical Approach

2.1 The Setup

Assume that we have observed data D = x which was the result of a random
experimentX (or can be approximated as such). The data are then modelled using

1. A sample space, X for the observed value of x
2. A probability density function for X at x, f(x; θ)
3. A parameter space for θ, Θ

The inference problem is to use x to infer properties of θ.

2.2 Approaches to Statistical Inference

The major approaches to statistical inference are:

1. Frequentist or classical
2. Bayesian
3. Likelihood

2.3 Types of Statistical Inference

There are four major statistical inferences:

1. Estimation: Select one value of θ, the estimate, to be reported. Some measure of
reliability is assumed to be reported as well.

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__2
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12 2 The Statistical Approach

2. Testing: Compare two values (or sets of values) of θ and choose one of them
as better.

3. Interval Estimation: Select a region of θ values as being consistent, in some
sense, with the observed data.

4. Prediction: Use the observed data to predict a new result of the experiment.

Note that the first three inferences can be defined as functions from the sample
space to subsets of the parameter space. Thus estimation of θ is achieved by defining

θ̂ : X �→ Θ

Then the observation of x results in θ̂(x) as the estimated value of θ for the observed
data. Similarly hypothesis testing maps X into {Θ0,Θ1} and interval estimation
maps X into subsets (intervals) of Θ.

2.4 Statistics and Combinants

2.4.1 Statistics and Sampling Distributions

Since inferences are defined by functions on the sample space it is convenient to
have some nomenclature.

Definition 2.4.1. A statistic is a real or vector-valued function defined on the
sample space of a statistical model.

The sample mean, sample variance, sample median, and sample correlation are
all statistics.

Definition 2.4.2. The probability distribution of a statistic is called its sampling
distribution.

A major problem in standard or frequentist statistical theory is the determination
of sampling distributions:

1. Either exactly (using probability concepts)
2. Approximately (using large sample results)
3. By simulation (using R or similar statistical software)

2.4.2 Combinants

Definition 2.4.3. A combinant is a real or vector-valued function defined on the
sample space and the parameter space such that for each fixed θ it is a statistic.
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Thus a combinant is defined for pairs (x, θ) where x is in the sample space and
θ is in the parameter space. For each θ it is required to be a statistic.

The density function f(x; θ) is a combinant, as are the likelihood and functions
of the likelihood.

Definition 2.4.4. If f(x; θ) is the density of x the score function is the combinant
defined by

s(θ;x) =
∂f(x : θ)

∂θ

(This assumes differentiation with respect to θ is defined.)

Definition 2.4.5. The score equation is the equation (in θ) defined by

s(θ;x) =
∂f(x : θ)

∂θ
= 0

The solution to this equation gives the maximum likelihood estimate, MLE, of θ.

Combinants are used to determine estimates, interval estimates, and tests as well as
to investigate the frequency properties of likelihood-based quantities.

2.4.3 Frequentist Inference

In the frequentist paradigm inference is the process of connecting the observed
data and the inference (statements about the parameters) using the sampling
distribution of a statistic. Note that the sampling distribution is determined by the
density function f(x; θ).

2.4.4 Bayesian Inference

In the Bayesian paradigm inference is the process of connecting the observed
data and the inference (statements about the parameters) using the posterior
distribution of the parameter values. The posterior distribution is determined
by the model density and the prior distribution of θ using Bayes theorem (this
implicitly treats f(x; θ) as the conditional f(x|θ) of X given θ):

p(θ|x) = f(x; θ)prior(θ)
f(x)
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where f(x) is the marginal distribution of X at x.

f(x) =

∫

Θ

f(x; θ)prior(θ)dθ

2.4.5 Likelihood Inference

In the likelihood paradigm inference is the process of evaluating the statistical
evidence for parameter values provided by the likelihood function.

The statistical evidence for θ2 vis-a-vis θ1 is defined by

Ev(θ2 : θ1;x) =
f(x; θ2)

f(x; θ1)

Values for this ratio of 8, 16, and 32 are taken as moderate, strong, and very strong
evidence, respectively.

Note that if we define the likelihood of θ as

L (θ;x) =
f(x; θ)

f(x; θ̂)

where θ̂ is the maximum likelihood estimate of θ, then the statistical evidence for
θ2 vs θ1 can be expressed as

Ev(θ2 : θ1;x) =
L (θ2;x)

L (θ1;x)

and the posterior of θ can then be expressed as

p(θ|x) = L (θ;x)prior(θ)
f(x)

i.e., the posterior is proportional to the product of the likelihood and the prior.

2.5 Exercises

As pointed out in the text if f(x; θ) is the density function of the observed data
(x1, x2, . . . , xn) and θ is the parameter, then

(a) The likelihood, L (θ;x), is

L (θ) =
f(x; θ)

f(x; θ̂)

where θ̂ maximizes f(x; θ) and is called the maximum likelihood estimate of θ.
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(b) The score function is

∂ ln[f(x; θ)]

∂θ

(c) The observed Fisher information is

J(θ) = − ∂2 ln[f(x; θ)]

∂θ2

evaluated at θ = θ̂.
(d) The expected Fisher information, I(θ), is the expected value of J(θ), i.e.,

I(θ) = −E

{
∂2 ln[f(x; θ)]

∂θ2

}

1. Find the likelihood, the maximum likelihood estimate, the score function, and
the observed and expected Fisher information when x1, x2, . . . , xn represent the
results of a random sample from

(i) A normal distribution with expected value θ and known variance σ2

(ii) A Poisson distribution with parameter θ
(iii) A Gamma distribution with known parameter α and θ

2. For each of the problems in (1) generate a random sample of size 25, i.e.:

(i) Take σ2 = 1 and θ = 3.
(ii) Take θ = 5.

(iii) Take α = 3 and θ = 2.

For (i)–(iii) plot the likelihood functions.
3. Suppose that Yi for i = 1, 2, . . . , n are independent, each normal with expected

value βxi and variance σ2 where σ2 is known and the xi are known constants.

(i) Show that the joint density is

f(y;β) = (2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(yi − β xi)
2

}

(ii) Find the score function.
(iii) Show that the maximum likelihood estimate for β is

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

(iv) Find the observed Fisher information.
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(v) Using (iii) find the likelihood for β.
(vi) Find the sampling distribution of β̂. Remember that the sum of independent

normal random variables is also normal.
(vii) Show that the sampling distribution of −2 ln[L (β;y)] is chi-square with 1

degree of freedom.



Chapter 3
Estimation

3.1 Frequentist Concepts

As previously indicated the major problems of inference are estimation, testing, and
interval estimation.

1. Of these estimation is the easiest to understand and in certain respects the most
important.

2. Intuitively, a point estimate is simply a guess as to the value of a parameter of
interest.

3. Along with this guess it is customary to provide some measure of reliability.

We assume a statistical model (X , f(x ; θ),Θ) for X and an observed value xobs.
From the classical, frequentist, point of view an estimate is evaluated on the basis

of its properties if used repeatedly, i.e., based on its sampling distribution.
To be precise in discussing estimation we often need to distinguish between:

1. The true value of the parameter being estimated, θ0
2. The estimator, i.e., the rule by which we calculate the estimate
3. The estimate, i.e., the actual estimate determined by the estimator evaluated at a

particular observed value of X , xobs

4. Other values of the parameter, θ

Note that an estimator is a statistic, and its probability distribution is called
its sampling distribution. We typically denote an estimator by θ̂n, neglecting the
dependence on X but emphasizing the dependence on the sample size. Properties of
the sampling distribution determine which of the several estimators is preferred in a
given problem and whether an estimator is “good.”

© Springer International Publishing Switzerland 2014
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3.1.1 Bias, Unbiasedness, and Standard Errors

The most important properties of the sampling distribution of an estimator are

1. Its location, e.g., Eθ0(θ̂n).
2. If Eθ0(θ̂n) = θ0. The estimator θ̂n is said to be an unbiased estimator.
3. The bias of an estimator is

Bn(θ0) = Eθ0(θ̂n)− θ0

4. The standard error of an estimator is defined as

s.e.(θ̂) =
√

var(θ̂n)

5. The standard error of an estimator is the natural measure of reliability for an
estimator in frequentist statistics.

6. Note that the standard error of an estimator is the standard deviation of the
sampling distribution of the estimator.

3.1.2 Consistency

Definition 3.1.1. If the true value of the parameter is θ0 an estimator is consistent if

θ̂n
p−→ θ0

Intuitively, an estimator is consistent if for large sample sizes the probability
that the estimator is “close to” the true parameter value is near one. Recall that
convergence in probability means that

lim
n→∞ P(|θ̂n − θ0| < ε) = 1

Most statisticians consider consistency a minimal requirement for an estimator.
Unfortunately, consistency, as are most properties of sampling distributions, is of
little help in evaluating a particular estimate. It is only a property which guarantees
closeness with high probability but not for any particular sample.

Example. If X1, X2, . . . , Xn are independent and identically distributed with
expected value θ and variance σ2 then

Xn
p→ θ

by the weak law of large numbers so that Xn is a consistent estimator of θ.
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If we define a new estimator, θ̃n, as

θ̃n =

{
−17 n ≤ n1

Xn n > n1

then θ̃n is also consistent. If, however, n1 = 1010
10

this estimator is of no
practical use.

Use of consistency as a criterion should include some simulation to ensure at least
some level of decent small-sample behavior. The same is true of other asymptotic
properties.

Example. Consider the Bernoulli trial model, i.e., X1, X2, . . . , Xn are independent
and

P(X = x) =

{
p if x = 1

1− p if x = 0

This might represent the result of a sample of n individuals and recording their
disease status, 1 being diseased, 0 disease free. The usual estimator is the observed
frequency and is given by

p̂n =
X

n

where

X = X1 +X2 + · · ·+Xn

Note that

Ep0(p̂n) = p0

so that p̂n is an unbiased estimator. Also note that

var(p̂n) =
p0(1− p0)

n

and hence the standard error of p̂n is

s.e.(p̂n) =

√
p0(1− p0)

n

Recall that Markov’s inequality states that if Y is a nonnegative random variable
then for any δ > 0

P(Y ≥ δ) ≤ E(X)

δ
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By Markov’s inequality we have that

Pp0(|p̂n − p0| < ε) ≥ 1− p0(1 − p0)

nε2
→ 1 as n → ∞

so that p̂n is a consistent estimator.

3.1.3 Mean Square Error

Consistency is a large sample property. A criterion useful for small samples is mean
square error.

Definition 3.1.2. The mean square error of an estimator is

MSE = Eθ(θ̂n − θ)2

It easy to show that

MSE(θ̂n) = Vθ(θ̂n) + [Bias(θ̂n)]2

i.e., the mean square error equals the variance plus the bias squared.

Theorem 3.1.1. If the mean square error of an estimator approaches 0 as n → ∞,
then it is consistent.

Proof of this result simply uses Markov’s inequality.

3.1.4 Asymptotic Distributions

Another useful property of estimators is their asymptotic distribution which can
serve as a large sample approximation to their sampling distribution.

Definition 3.1.3. An estimator θ̂n is asymptotically normal if

θ̂n − θ0

vn(θ̂n)

d−→ N(0, 1)

Note that the expected value of θ̂n is not necessarily θ0 and that vn(θ̂n) is not
necessarily the standard error of θ̂n.
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Example. For Bernoulli trials the central limit theorem implies that

p̂n − p
√
p(1− p)/n

d−→ N(0, 1)

We may replace p in the standard error by p̂ and still have asymptotic normality.

Example. Assume that we have a sample x = x1, x2, . . . , xn which is a realized
value of X = (X1, X2, . . . , Xn) where the Xi are iid N (μ, σ2) and σ2 is known.
Of interest is inference on μ.

The joint density is given by

f(y;μ) =

n∏

i=1

(2πσ2)−
1
2 exp

{
− (xi − μ)2

2σ2

}

A natural estimate of μ is x and this is also the maximum likelihood estimate.
Since

Eμ(Xn) = μ

Xn is an unbiased estimator for μ. The variance of Xn is σ2/n so that the mean
square error is

MSE(Xn) =
σ2

n

This tends to 0 as n → ∞ so that Xn is a consistent estimator of μ.
We also know that the distribution of Xn is

N

(
μ,

σ2

n

)

It is trivially asymptotically normal since

X − μ

σ/
√
n

is exactly normal (0,1)

3.1.5 Efficiency

Comparison of estimators is achieved by considering the relative efficiency.

Definition 3.1.4. The relative efficiency of two estimators θ̂
(1)
n and θ̂

(2)
n of a

parameter θ is
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MSE(θ̂(2)n )

MSE(θ̂(1)n )

Generally speaking if the relative efficiency is less than one we prefer θ̂
(2)
n

because it has smaller mean square error.
If the estimators are unbiased then the above criteria say to choose the estimator

with the smallest variance.

Example (Dangers of Frequentist Statistics). . Suppose we observe X1 and X2

independent each with pdf given by

f(x; θ) =

{
1
2 if x = θ + 1
1
2 if x = θ − 1

where θ is an integer.

Then the joint distribution of X1 and X2 is given by

Pθ(X1 = θ − 1, X2 = θ − 1) = 1/4

Pθ(X1 = θ − 1, X2 = θ + 1) = 1/4

Pθ(X1 = θ + 1, X2 = θ − 1) = 1/4

Pθ(X1 = θ + 1, X2 = θ + 1) = 1/4

Consider the estimator of θ defined by

θ̂ =

{
X1+X2

2 X1 
= X2

X1 + 1 X1 = X2

The sampling distribution of θ̂ is given by

Pθ(θ̂ = θ) =
3

4
; Pθ(θ̂ = θ + 2) =

1

4

It follows that

Eθ(θ̂) = θ +
1

2
and Eθ(θ̂

2) =
3θ2

4
+

(θ + 2)2

4
= θ2 + θ + 1

and hence

Vθ(θ̂) =
{
θ2 + θ + 1

}
−
{
θ2 + θ +

1

4

}
=

3

4
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The mean square error of θ̂ is

Eθ(θ̂ − θ)2 = Vθ(θ̂) + (Bias(θ̂)
2

=
3

4
+

1

4

= 1

Consider the unbiased estimator θ̃ = θ̂ − 1/2 which has mean square error

Eθ(θ̃ − θ)2 = Vθ(θ̂ − 1/2) + [Bias(θ̃)]2 = Vθ(θ̂) =
3

4

Thus θ̃ has smaller mean square error than θ̂ but is always wrong whereas θ̂ is
right 75 % of the time.

The moral is: blind adherence to frequentist criteria can lead to undesirable
statements.

3.1.6 Equivariance

Definition 3.1.5. An estimating procedure or property is equivariant if the estima-
tor of g(θ) is g(θ̂n).

This is an appealing property but is not possessed by many popular estimators.
We will prove in a later section that maximum likelihood estimators are equivariant.

We know that Xn is an unbiased estimator of μ. However X
2

n is not an unbiased
estimator of μ2 since

Eμ(X
2

n) = [Eμ(Xn)]
2 + Vμ(Xn) = μ2 +

σ2

n

Thus unbiased estimators do not possess the equivariance property.
In the binomial we know that p̂ = X/n is unbiased. However, if we are interested

in the odds, i.e., p
1−p , then the natural estimator p̂

1−p̂ does not even have an expected
value since there is a positive probability that p̂ = 1.

3.2 Bayesian and Likelihood Paradigms

We defer detailed discussion of the use of the Bayes and likelihood approaches to
estimation in later chapters.
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1. Essentially the Bayesian uses as an estimate a measure obtained from the
posterior distribution of the parameter such as the posterior mean or median.
Reliability is assessed by the posterior standard error of that estimate.

2. In the likelihood paradigm the focus is not directly on estimation. However,
the maximum of the likelihood occurs at the parameter value which is most
consistent with the observed data and is thus a natural estimate. The curvature of
the likelihood function at the maximum can be used as a measure of reliability.

3.3 Exercises

1. Show that MSE = V(θ̂) + [B(θ̂)]2.
2. Suppose that X1, X2, . . . , Xn are independent each exponential, i.e., each Xi

has pdf

f(x; θ) =
e−x/θ

θ
x ≥ 0

This pdf is often used to model response or survival times.

(a) Find the joint density of the Xi and hence find the score function.
(b) Using the score function show that the maximum likelihood estimator for θ

is θ̂ = X . Show that it is unbiased, consistent, and find its variance.
(c) Using the joint density you found in (a) and the maximum likelihood estimate

you found in (b) show that the likelihood function for θ is

L (θ;x) =
f(x; θ)

f(x; θ̂)
=

(
θ̂

θ

)n

exp

{

−n

(
θ̂

θ
− 1

)}

(d) The exponential is a special case of the Gamma which has pdf

f(y; θ) =
yα−1e−y/β

Γ(α)βα
y ≥ 0

(i.e., α = 1 and β = θ). It is known that if X1, X2, . . . , Xn are independent
each gamma (αi, β) then

Sn = X1 +X2 + . . .+Xn

has a Gamma pdf with parameters

α = α1 + α2 + · · ·+ αn and β
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Using this fact show that the pdf of Y = nθ̂ is

f(y; θ) =
yn−1 exp

{
− y

θ

}

Γ(n)θn

3. A scientist needs to weigh three objects O1, O2, and O3 each of which weighs
between 0.5 and 1.0 g. Unfortunately she only has a scale which can weigh
objects only if their weight exceeds 1 g.

(a) Show that she can get a weight for each one by weighing them two at a time,
i.e., she weighs O1 and O2 together and gets Y1 and so on.

(b) Find the variance of her estimated weights (assume weights are uncorrelated).

4. Suppose that X1, X2, . . . , Xn are independent with density function (continu-
ous) f and distribution function F .

(a) Find an expression for the density function of

Yn = max{X1, X2, . . . , Xn}

(b) Find an expression for the density function of

Y1 = min{X1, X2, . . . , Xn}

5. Suppose that the density of X is

f(x) = exp {−(x− θ)} for x ≥ θ

and that we have X1, X2, . . . , Xn independent each with density f .

(a) Write down the joint density of X1, X2, . . . , Xn.
(b) Find the maximum likelihood estimator for θ. Note you cannot do this by

differentiating (why?).

6. (Bonus Problem) Suppose that X1, X2, . . . , Xn are independent each uniform
on the interval [0, θ] where θ > 0.

(a) Find the distribution of Yn = max {X1, X2, . . . , Xn}.
(b) Show that the limiting distribution of Zn where

Zn = n(θ − Yn)

is exponential θ, i.e.,

f(z; θ) = θ−1e−z/θ z ≥ 0
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Note that the limiting distribution is not normal.
(c) Generate 1,000 samples of size 50 from a uniform on [0, 5] and plot the

histogram of Z50. Superimpose the plot of the limiting distribution.
(d) Show that the MLE of θ is Yn.
(e) Discuss the asymptotic distribution of 2Xn which is an unbiased estimator

of θ.
(h) Compare the estimators in (d) and (e).



Chapter 4
Interval Estimation

4.1 The Problem

In this chapter we describe methods for finding interval or set estimators mainly
illustrated using random samples from the normal distribution.

The importance of interval estimation is that it most clearly provides an answer
to summarizing the information in the data about a parameter. Indeed, many
professional journals now are suggesting that intervals be reported as opposed to
the results of hypothesis tests.

4.2 Frequentist Approach

A general method of obtaining interval estimates for θ assumes that we have a
statistic Tn such that

(i) small values of Tn are rare if θ is large
(ii) large values of Tn are rare if θ is small

where rare is defined by

Pθ(Tn ≤ tobs) ≤ α/2 and Pθ(Tn ≥ tobs) ≤ α/2

and α is small (usually α = 0.05).
Then a 100(1− α)% confidence interval for θ has upper endpoint

θU (tobs) = min
θ

{θ : Pθ(Tn ≤ tobs) ≤ α/2}

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__4
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and lower endpoint

θL(tobs) = max
θ

{θ : Pθ(Tn ≥ tobs) ≤ α/2}

1. The interval of θ values defined by

θL(Tn) ≤ θ ≤ θU (Tn)

is called a 100(1− α)% confidence interval for θ.
2. 1− α is called the coverage probability of the interval.
3. A fundamental problem in using frequentist confidence intervals is the

determination of coverage probabilities.
4. This can be done exactly using the distribution of Tn, asymptotically, approxi-

mately (using the bootstrap) or by simulation.

The interval is a random interval. Once an observed value, tobs, is substituted for
Tn, the resulting interval, given by,

θL(tobs) ≤ θ ≤ θU (tobs)

either covers θ or it doesn’t. We don’t know which.
The fact that an interval estimate has little to do with a particular data set (the so-

called single case) is well known but little appreciated. As Neyman himself put it:
“The available models are then used to deduce rules of behavior (or statistical

decision functions) that, in a sense, minimize the frequency of wrong decisions.
It would be nice if something could be done to guard against errors in each
particular case. However, as long as the postulate is maintained that the
observations are subject to variation affected by chance (in the sense of the
frequentist theory of probability), all that appears possible to do is to control
the frequencies of errors in a sequence of situations {Sn}, whether similar, or
all very different.” Neyman [35]

4.2.1 Importance of the Long Run

As an example to illustrate the importance of the long-run concept suppose that we
observe X1 and X2 independent each with pdf given by

f(x; θ) =

{
1
2 if x = θ + 1

1
2 if x = θ − 1

where θ is an integer.
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The “interval” defined by

I (X1, X2) =

{
X1+X2

2 X1 
= X2

X1 + 1 X1 = X2

is a 75 % confidence “interval” for θ.
To see this note that

Pθ(I (X1, X2) ⊇ θ) =

= Pθ(I (X1, X2) ⊇ θ|X1 
= X2)Pθ(X1 
= X2)

+ Pθ(I (X1, X2) ⊇ θ|X1 = X2)Pθ(X1 = X2)

= (1)×
(
1

2

)
+

(
1

2

)
×
(
1

2

)

=
1

2
+

1

4

= 0.75

Suppose now that we observe

X1 = 4 and X2 = 6

Then we know that

θ − 1 = 4 and θ + 1 = 6

so that θ is exactly 5, i.e., there is no uncertainty left.
But a frequentist can only say that this is a 75 % confidence interval for θ i.e.

beware the particular case as Neyman advised.

4.2.2 Application to the Normal Distribution

Given a random sample from a normal distribution with known variance σ2 we let
Tn = Xn. Then

Pμ(Xn ≤ xobs) = P

(
Z ≤

√
n(xobs − μ)

σ

)

where Z is a standard normal random variable.
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It follows that for the upper endpoint we have

√
n(xobs − μU )

σ
= −z1−α/2

or

μU (xobs) = xobs + z1−α/2
σ√
n

Similarly the lower endpoint is given by

μL(xobs) = xobs − z1−α/2
σ√
n

The interval

xobs ± z1−α/2
σ√
n

is called a 100(1− α) confidence interval for the parameter μ. Typically the value
of α is taken to be 0.05 in which case z1−α/2 = 1.96.

Since X is the natural estimator of μ which has variance σ2/n the interval has
the approximate form

estimate ± 2 s.e.

where s.e. is the standard error of the estimator (square root of the variance of the
estimator).

The random interval defined by

[μL(X), μU (X)]

has coverage probability 1− α since

Pμ

{
μL(X) ≤ μ ≤ μU (X)

}
= P

{
X − z1−α/2

σ√
n
≤ μ ≤ X + z1−α/2

σ√
n

}

= Pμ

{
−z1−α/2 ≤

√
n(μ−X)

σ
≤ z1−α/2

}

= Pμ

{
−z1−α/2 ≤

√
n(X − μ)

σ
≤ z1−α/2

}

= P
{
−z1−α/2 ≤ Z ≤ z1−α/2

}

= 1− α
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4.3 Pivots

Definition 4.3.1. A pivot, t(X, θ), is any combinant such that the distribution of
t(X, θ) does not depend on θ.

Example. A simple, but important, example of a pivot is based on a random sample
from the normal distribution with known variance σ2. A pivot is

Zn(μ) =

√
n(Xn − μ)

σ

The distribution of Zn(μ) is normal with mean 0 and variance 1 and does not
depend on μ.

Example. Another pivot is

Tn(μ) =

√
n(Xn − μ)

s

where the assumptions are the same as in the previous example, but now σ2 is
unknown. The distribution of Tn(μ) is known as Student’s t distribution with n− 1
degrees of freedom. The quantity s is the square root of s2 where

s2 =
1

n− 1

n∑

i=1

(Xi −Xn)
2

In both of the previous examples, we can find a confidence interval for μ by
noting that

P

(
−z1−α/2 ≤

√
n(Xn − θ)

σ
≤ z1−α/2

)
= 1− α

for the first example and

P

{
−t1−α/2(n− 1) ≤

√
n(Xn − θ)

s
≤ t1−α/2(n− 1)

}
= 1− α

for the second example.
Thus the confidence intervals are

Xn ± z1−α/2
σ√
n

and Xn ± t1−α/2(n− 1)
s√
n

The process of converting the probability statement about the pivot to a statement
about the parameter is called inversion. It is a very general method of obtaining
confidence intervals when a pivot can be found. It is also the basis for the bootstrap
to be discussed in a later chapter.
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Example. Still another example of a pivot under the same setup with a normal
distribution is

(n− 1)s2

σ2

which has a chi-square distribution with n − 1 degrees of freedom under the same
assumptions as in the second example.

It follows that

P

(
χ2
α/2(n− 1) ≤ (n− 1)s2

σ2
≤ χ2

1−α/2(n− 1)

)
= 1− α

so that a confidence interval for σ2 is

(n− 1)s2

χ2
1−α/2(n− 1)

≤ σ2 ≤ (n− 1)s2

χ2
α/2(n− 1)

4.4 Likelihood Intervals

Under the normal model, i.e., X1, X2, . . . , Xn independent, each with a N(μ, σ2)
distribution with σ2 known, the maximum likelihood estimate for μ is x so that the
likelihood is given by

L (μ;x) =
exp
{
−
∑n

i=1(xi − μ)2/2σ2
}

exp {−
∑n

i=1(xi − x)2/2σ2}

which reduces to

L (μ;x) = exp
{
− n

2σ2
(μ− x)2

}

Note that L (μ;x) ≥ 1/k if and only if

L (μ;x) ≥ 1

k

or

exp

{
−n(μ− x)2

2σ2

}
≥ 1

k

Taking logs yields

−n(μ− x)2

2σ2
≥ − ln(k)
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which is equivalent to

n(μ− x)2 ≤ 2 ln(k)σ2

and finally to

|μ− x| ≤
√

2 ln(k)σ2

n

The interval
[

x−
√

2 ln(k)σ2

n
, x+

√
2 ln(k)σ2

n

]

is called a 1/k likelihood or support interval for μ.
This interval represents

1. Those values of μ for which the likelihood, relative to the best supported value,
is less than 1/k.

2. Equivalently, values of μ outside of this interval have at least one value of μ, the
MLE, which is k times better supported.

Likelihood intervals have not been widely used but the following indicates that
maybe this is a mistake.

Fisher uses this normalized likelihood to evaluate the reasonableness of different values of
the parameter and states (p. 76) that values for which the likelihood is less than 1/15 “are
obviously open to grave suspicion.” It is to be regretted that the use of this cutoff point of
1/15 has not become nearly as popular as Fisher’s other famous proposal of using 0.05 as a
cutoff point for the significance level of a test. Had this proposal become widely accepted,
statistical practice would have been significantly changed for the better.

Bayarri et al. [2]

4.5 Bayesian Approach

The normal example can also be considered from a Bayesian perspective. Assume
that prior knowledge about μ can be represented by a normal distribution centered
at μp with variance σ2

μ.
Then the posterior density of μ is the product of the density of x given μ

f(x|μ) = (2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(xi − x)2 +
(nx− μ)2

2σ2

}
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and the prior for μ

π(μ) = (2πσ2
μ)

−1/2 exp

{
− (μ− μ0)

2

2σ2
μ

}

Thus the posterior density for μ is proportional to

exp

{
−1

2

(
n

σ2
+

1

σ2
μ

)
μ2 +

(
nx

σ2
+

μ0

σ2
mu

)
μ

}

It follows that the posterior distribution for μ is normal with mean μ∗ and
variance σ2

∗ (see Chap. 21 for derivation)
where

μ∗ =

(
n

σ2
+

1

σ2
μ

)−1 [
nx

σ2
+

μ0

σ2
μ

]

and

σ2
∗ =

(
n

σ2
+

1

σ2
μ

)−1

The mean of the posterior can be written in a variety of ways. First note that it is
a weighted average of the sample mean x and the prior mean μ0

μ∗ = wx+ (1− w)μ0

where

w =
n
σ2

n
σ2 + 1

σ2
μ

i.e. weight the sample mean and the prior inversely proportional to their variances.
It follows that the sample mean x “shrinks” toward the prior mean. This fact can

be more precisely expressed by writing

μ∗ = x+
1

σ2
μ

(μ0 − x)

1. If x > μ0, then μ∗ is less than x.
2. If x < μ0, then μ∗ is greater than x.
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4.6 Objective Bayes

The “prior” distribution for μ which is uniform over the entire real line is an
improper prior (does not have a finite integral) and corresponds to σ2

μ = ∞.
This “prior” is an example of a reference prior. Loosely speaking a reference prior
allows the likelihood to dominate the prior in the calculation of the posterior.

For this prior the posterior mean and variance are x and σ2/n.
The interval defined by

μL(x) = x− z1−α/2σ/
√
n , μU (x) = x+ z1−α/2σ/

√
n

is called a 100(1 − α) Bayesian or credible interval for μ. The credible interval
satisfies

P(μ ≥ μU (x)) = P

(√
n(μ− x)

σ
≥

√
n(μU (x)− x)

σ

)
=

α

2

and

P(μ ≤ μL(x)) = P

(√
n(μ− x)

σ
≤

√
n(μL(x)− x)

σ

)
=

α

2

It follows that the credible interval satisfies

P

{
x− z1−α/2

σ√
n
≤ μ ≤ x+ z1−α/2

σ√
n

}
= 1− α

Note that in the Bayesian formulation μ is random so that the above statement
is a probability statement about μ for fixed x, i.e., the posterior probability that μ is
in the credible interval is 1− α.

Note, however, that this particular prior cannot represent prior belief because it
is not a probability distribution.

4.7 Comparing the Intervals

The intervals for the normal distribution with known variance are

1. Frequentist: x± 1.96σ/
√
n (α = 0.05)

2. Objective Bayes x± 1.96σ/
√
n (α = 0.05)

3. Likelihood x± 2.04σ/
√
n (k = 8)

As Brad Efron said in a seminar at Johns Hopkins several years ago

estimate ± 2 standard error

has good credentials in any statistical theory.
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4.8 Interval Estimation Example

In the case of a normal distribution the three approaches to interval estimation
lead to virtually identical results with different interpretations so there appears to
be no need to worry about the different interpretations from a practical perspective.
As we will see good approximate confidence intervals are of this form for a wide
variety of problems. However, only a small change to the experimental setup leads
to considerable differences as the following example shows.

Example. This is a modified version of Cox’s [9] example.

1. Two young investigators A and B are interested in the same problem.
2. A has sufficient funds to take 100 observations.
3. B thinks another approach might be better but doesn’t have funds to investigate

both. B decides to toss a coin, taking 4 observations if the coin falls heads and
100 observations if it falls tails. (If he takes 4 observations he would use the
remaining funds to investigate something else.)

Techniques used by both investigators yield independent observations which are
normal with mean μ and variance σ2 where σ2 is known. For investigator A the
confidence interval is thus

x± 1.96σ

10

As luck would have it the coin toss by B resulted in a tail. After making 100
observations B observed the same sample mean as A. B thus reports the same
interval as A

x± 1.96σ

10

To be certain about his methods B consults a statistician who, after hearing the
experimental setup, tells him that his confidence interval should be

x± 2.58σ

10

because it is better, i.e., shorter on average.
The statistician reasoning is simple: we want a confidence interval for μ that has

the right coverage probability (0.95) and is short.
Consider the following two confidence interval procedures:

(a) Always use x ± 1.96σ/
√
n which implies that when n = 4 the interval is

x± 1.96σ/2 while if n = 100 the interval is x± 1.96σ/10.
(b) If n = 4 use x± 1.68σ/2 while if n = 100 use x± 2.58σ/100.
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Both of these intervals are “valid” 95 % confidence intervals in the sense that
before the experiment is performed we can have 95 % confidence that the interval
will contain μ:

1. For (a) the coverage probability is 1
2 (0.95) +

1
2 (0.95) = 0.95

2. For (b) the coverage probability is 1
2 (0.91) +

1
2 (0.99) = 0.95

Which of these two intervals is better? Consider the expected length.

1. For (a) the expected length is

E(L) =
1

2
(2)(1.96)σ/2 +

1

2
(2)(1.96)σ/10 = 1.96σ

(
1

2
+

1

10

)
= 1.176σ

2. For (b) the expected length is

E(L) =
1

2
(2)(1.68)σ/2 +

1

2
(2)(2.58/10)σ = σ

(
1.68

2
+

2.58

10

)
= 1.098σ

Thus (b) provides an interval with shorter expected length.
Although the statistician is right it is difficult to explain to investigator B why the

evidence produced by his data set is not the same as that produced by A. After all,
the same sample mean was observed with the same variance and the same number
of observations. And yet the interval reported by B has length 0.516σ while that
reported by A has length 0.392σ. Procedure (b) has a confidence coefficient of 0.95.
It is probabilistically correct but does not seem logical.

1. In general frequentist procedures should take into account any and all aspects of
the experimental setup even if it appears unrelated to the observed data. That is
stopping rules, peeks at data before the experiment is finished, etc.

2. The fact is, most statisticians do not do this but still claim to be frequentists, i.e.,
they use the methods they want and interpret them how they want.

4.9 Exercises

1. Show that MSE = V(θ̂) + [B(θ̂)]2.
2. Suppose that X1, X2, . . . , Xn are independent each exponential, i.e., each Xi

has pdf

f(x; θ) =
e−x/θ

θ
x ≥ 0

This pdf is often used to model response or survival times.

(a) Find the joint density of the Xi and hence find the score function.
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(b) Using the score function show that the maximum likelihood estimator for θ
is θ̂ = X . Show that it is unbiased and consistent and finds its variance.

(c) Using the joint density you found in (a) and the maximum likelihood estimate
you found in (b) show that the likelihood function for θ is

L (θ;x) =
f(x; θ)

f(x; θ̂)
=

(
θ̂

θ

)n

exp

{

−n

(
θ̂

θ
− 1

)}

(d) The exponential is a special case of the Gamma which has pdf

f(y; θ) =
yα−1e−y/β

Γ(α)βα
y ≥ 0

(i.e., α = 1 and β = θ). It is known that if X1, X2, . . . , Xn are independent
each gamma (αi, β) then

Sn = X1 +X2 + . . .+Xn

has a Gamma pdf with parameters

α = α1 + α2 + · · ·+ αn and β

Using this fact show that the pdf of Y = nθ̂ is

f(y; θ) =
yn−1 exp

{
− y

θ

}

Γ(n)θn

(e) Using the result of (d) show that nθ̂/θ is a pivot and find the density of the
pivot.

(f) Using the density of the pivot show how to find L and U such that

P

{

L ≤ nθ̂

θ
≤ U

}

= 1− α

Note that R parametrizes the Gamma in terms of α and 1/β.
(g) The following are the response times in milliseconds to a light stimulus for

10 animals.

{70, 11, 66, 5, 20, 4, 35, 40, 29, 8}

Using the result in (f) calculate the 95 % confidence interval for θ and
interpret. Also calculate the 1/8 likelihood interval for θ and interpret.
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3. A scientist needs to weigh three objects O1, O2, and O3 each of which weighs
between 0.5 and 1.0 g. Unfortunately she only has a scale which can weigh
objects only if their weight exceeds 1 g.

(a) Show that she can get a weight for each one by weighing them two at a time,
i.e., she weighs O1 and O2 together and gets Y1 and so on.

(b) Find the variance of her estimated weights (assume weights are uncorrelated).

4. Suppose that X1, X2, . . . , Xn are independent with density function (continu-
ous) f and distribution function F .

(a) Find an expression for the density function of

Yn = max{X1, X2, . . . , Xn}

(b) Find an expression for the density function of

Y1 = min{X1, X2, . . . , Xn}

5. Suppose that the density of X is

f(x) = exp {−(x− θ)} for x ≥ θ

and that we have X1, X2, . . . , Xn independent each with density f .

(a) Write down the joint density of X1, X2, . . . , Xn.
(b) Find the maximum likelihood estimator for θ. Note you cannot do this by

differentiating (why?).
(c) Using the results of the previous problem or otherwise.

6. (Bonus Problem) Suppose that X1, X2, . . . , Xn are independent each uniform
on the interval [0, θ] where θ > 0.

(a) Find the distribution of Yn = max {X1, X2, . . . , Xn}.
(b) Show that the limiting distribution of Zn where

Zn = n(θ − Yn)

is exponential θ, i.e.,

f(z; θ) = θ−1e−z/θ z ≥ 0

Note that the limiting distribution is not normal.
(c) Generate 1,000 samples of size 50 from a uniform on [0, 5] and plot the

histogram of Z50. Superimpose the plot of the limiting distribution.
(d) Show that the MLE of θ is Yn.
(e) Find a confidence interval for θ using the fact that Yn/θ is a pivot.
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(f) Compare to the exponential interval based on the large sample approximation
you obtained in (b).

(g) Discuss the asymptotic distribution of 2Xn which is an unbiased estimator
of θ.

(h) Find a confidence interval for θ based on the results in (g) and compare to
the interval in (e).



Chapter 5
Hypothesis Testing

5.1 Law of Likelihood

Suppose that hypothesis f specifies that the probability that the random variable X
takes on the value x is f(x) and hypothesis g specifies that the probability that the
random variable X takes on the value x is g(x).

Axiom 5.1.1. (Law of Likelihood). The observation x is statistical evidence
supporting g over f if and only if

g(x) > f(x)

Moreover, the likelihood ratio

LR =
g(x)

f(x)

measures the strength of the statistical evidence.

The Law of Likelihood provides a natural way of measuring evidence provided
by data. It is almost a tautology and seems like a sensible way of defining support
for one hypothesis vs another. It was not, however, formulated explicitly until the
early 1960s. Rather less intuitive procedures were formulated and developed first.

Note that when we have a parametric statistical model (X , f(x; θ),Θ) the Law
of Likelihood states that

L (θ1;x)

L (θ0; θ0)

measures the statistical evidence for θ1 vs θ0 provided by the data x.

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__5

41



42 5 Hypothesis Testing

5.2 Neyman-Pearson Theory

5.2.1 Introduction

Given the basic statistical model (X , f(x ; θ),Θ) the inference called hypothesis
testing is

“Based on data X = x decide whether θ ∈ Θ0 or whether θ ∈ Θ1” where
Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅, i.e., the two hypotheses are incompatible:

1. The hypothesis H0 : θ ∈ Θ0 is called the null hypothesis.
2. The hypothesis H1 : θ ∈ Θ1 is called the alternative hypothesis.

The term null hypothesis arose because of the common experimental practice of
investigating a control group and a treated group. If the treatment is ineffective then
the difference between the treated group and the control group should be 0 or “null.”

Since the null hypothesis is either true or not, and since we can either reject or
retain the null hypothesis on the basis of the observed data, we see that we have the
following possibilities:

Action taken
Retain null Reject null

H0 true � Type I error
H1 true Type II error �

where a �indicates that a correct action has been taken.
The hypothesis testing problem is to use the data X = x to determine which of

the two actions to take. Typically this means that we select a region C such that if the
observed data is in C we reject H0 and otherwise we retain H0 (do not reject H0).
The region C is called the critical region of the test.

A function ϕ such that

ϕ(x) =

{
1 x ∈ C
0 otherwise

is called a test function.
We have a solution to the hypothesis testing problem if we can find C or

equivalently the test function ϕ.
Neyman and Pearson focused on the probabilities of the two types of error. For a

given critical region C we have

1. P(Type I error) = PH0(X ∈ C) = EH0 [ϕ(X)]
2. P(Type II error) = 1− PH1(X ∈ C) = 1− EH1 [ϕ(X)]

Note that using a “smaller” critical region C∗ ⊂ C decreases the probability of a
Type I error but increases the probability of a Type II error since for C∗ ⊂ C:
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P(Type II error using C∗) = 1− PH1(X ∈ C∗)

≥ 1− PH1(X ∈ C)

= P(Type II error using C)

It follows that it is not possible to simultaneously reduce the probabilities of both
types of errors. The Neyman–Pearson solution to this problem was to observe that
one reasonable criterion is to

1. Fix the probability of a Type I error of the test so as not to exceed some value α,
called the significance level. The maximum value of the Type I error probability
when θ ∈ Θ0 is called the size of the test.

2. Among all tests with size less than or equal to α choose the test that maximizes
the power:

power = 1− P(Type II error)

Equivalently choose that test which minimizes the probability of a Type II error
subject to size less than or equal to α.

The hypothesis testing problem has thus been reduced to a formal maximization
problem:

Choose C such that
∫

C
f(x; θ)dλ(x) is maximized for θ ∈ Θ1

subject to

∫

C
f(x; θ)dλ(x) ≤ α for θ ∈ Θ0

Note. I will write

∫
g(x)dλ(x) =

{∫
g(x)dx x continuous∑

g(x) discrete

to avoid having to treat the continuous and discrete cases separately.

Definition 5.2.1. Pθ(X ∈ C) is called the power function of the test based on C.

As stated the problem cannot be solved for general Θ0 and Θ1.
There is a complete solution, however, when Θ0 = {θ0} and Θ1 = {θ1},

i.e., when both the null and alternative hypotheses are simple, consisting of one
point each.
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5.2.2 Neyman-Pearson Lemma

Theorem 5.2.1 (Neyman–Pearson Lemma). For testing the simple hypothesis
H0 : θ = θ0 vs the simple alternative H1 : θ = θ1 the likelihood ratio test,
ϕ(x), defined by

ϕ(x) =

{
1 if f(x;θ1)

f(x;θ0)
> c

0 otherwise

where c is chosen so that

Eθ0 [ϕ(X)] = α

is the most powerful test of size α.

Proof . A test of

H0 : θ = θ0 vs H1 : θ = θ1

is equivalent to using a test function ϕ(x), where ϕ(x) = 0 if H0 is not rejected and
ϕ(x) = 1 if H0 is rejected. ��

The size of the test can be written as

α = Pθ0 [ϕ(X) = 1] = Eθ0 [ϕ(X)]

Similarly the power can be written as

Pθ1 [ϕ(X) = 1] = Eθ1 [ϕ(X)]

where Eθ denotes expectation under the probability distribution specified by θ
If ϕ(x) corresponds to the likelihood ratio test then

Eθ0 [ϕ(X)] = α

Let ϕ∗(x) be another test satisfying

Eθ0 [ϕ
∗(X)] = Eθ0 [ϕ(X)] = α

We will show that

Power of ϕ∗ = Eθ1 [ϕ
∗(X)] ≤ Eθ1 [ϕ(X)] = Power of LR Test
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First note that

ϕ∗(x)[f(x; θ1)− cf(x; θ0)] ≤ ϕ(x)[f(x; θ1)− cf(x; θ0)]

which holds since

1. If ϕ(x) = 1 then f(x; θ1)− cf(x; θ0) > 0
2. If ϕ(x) = 0 then fθ1(x) − cfθ0(x) < 0

Now integrating both sides of the above inequality with respect to x gives

Eθ1 [ϕ
∗(X)]− cEθ0 [ϕ

∗(X)] ≤ Eθ1 [ϕ(X)]− cEθ0 [ϕ(X)]

and thus

c {Eθ0[ϕ(X)]− Eθ0 [ϕ
∗(X)]} ≤ Eθ1 [ϕ(X)]− Eθ1 [ϕ

∗(X)]

The conclusion follows since the left-hand side of this inequality is 0 by
assumption.

Example. In the vicinity of a nuclear reprocessing plant, four cases of childhood
leukemia were observed over a certain period of time. From a national registry only
0.25 cases would have been expected. Of interest is whether the data are consistent
with the national rates. This is a typical application of the Poisson distribution (rare
independent events). The hypothesis testing approach is as follows.

Suppose that X1, X2, . . . , Xn are independent, each Poisson with parameter θ.
We are interested in testing

H0 : θ = θ0 vs H1 : θ = θ1

where θ1 > θ0. The likelihood ratio is

θsn1 e−nθ1

λsn
0 e−nθ0

=

(
θ1
θ0

)sn

e−n(θ1−θ0)

Rejecting when this ratio is “large” is equivalent to rejecting when sn is “large”
which is determined by requiring that c be such that

Pθ0(Sn ≥ c) ≤ α

Since Sn has a Poisson distribution with parameter nθ0 when H0 is true this
probability can be easily calculated. In our application n = 1 and θ0 = 0.25 and we
find that c = 1. Thus we should reject θ0 = 0.25.

Here is the likelihood function for this example (Fig. 5.1):
Note that the ratio of the probability of observing four cases with θ = 0.76

(the lower limit of the 1/32 likelihood interval) is given by R as



46 5 Hypothesis Testing

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta

lik
el

ih
oo

d

Max at  4

1/ 32 LI ( 0.76 , 11.78 )

Poisson Likelihood 4 Observed Cases

Fig. 5.1 Poisson likelihood

dpois(4,.76)/dpois(4,.25)
[1] 51.28663

which shows overwhelming evidence against θ = 0.25 in favor of θ = 0.76.

5.2.3 Using the Neyman-Pearson Lemma

The key idea is to find the critical region or test which satisfies two conditions:

1. The critical region consists of large values of the likelihood ratio, i.e.,

C =

{
x :

f(x; θ1)

f(x; θ0)
≥ c

}

2. The critical value c is determined so that

Pθ0(C) ≤ α

If we can find a statistic t whose distribution is known when θ0 is true and
such that

C = {x : t(x) ∈ T }
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where

Pθ0(T ) ≤ α

then we can define the test in terms of t which is, in many cases, simpler.

Example. Suppose that X1, X2, . . . , Xn are independent each normal with mean μ
and variance σ2 where σ2 is assumed known. We are interested in testing

H0 : μ = μ1 vs H1 : μ = μ2

where μ2 > μ1.

The likelihood ratio is

(2πσ2)−n/2 exp
{
−
∑n

i=1(xi − μ2)
2/2σ2

}

(2πσ2)−n/2 exp {−
∑n

i=1(xi − μ1)2/2σ2}

which reduces to

exp

{
nxμ2

σ2
− nxμ1

σ2
− nμ2

2

2σ2
+

nμ2
1

2σ2

}

where we have used the fact that for any μ

n∑

i=1

(xi − μ)2 =

n∑

i=1

x2
i − 2nxμ+ nμ2

The likelihood ratio can be rewritten as

exp

{
n(μ2 − μ1)

σ2

[
x− μ1 + μ2

2

]}

Rejecting when the likelihood ratio is “large” is equivalent to rejecting when x is
“large.”

That is we choose d so that

α = Pμ1(X ≥ d)

= Pμ1

(√
n(X − μ1)

σ
≥

√
n(d− μ1)

σ

)

= P

(
Z ≥

√
n(d− μ1)

σ

)

where Z has a (standard) normal distribution with mean 0 and variance 1.
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Thus for any α we have

z1−α =
(
√
n(d− μ1)

σ
or d = μ1 + z1−α

σ√
n

We thus reject H0 in favor of H1 whenever the observed value of X , xobs exceeds d.

5.2.4 Uniformly Most Powerful Tests

Sometimes the form of the test is the same for all values of the alternative parameter,
e.g., for all values the parameter greater than θ0. In such cases we call the test
uniformly most powerful. Such tests arise mainly in one sided tests for the
exponential family.

5.2.5 A Complication

In the previous example suppose that

xobs = μ1 + 2
σ√
n

Then we would reject when α = 0.05 since z.95 = 1.645.
Suppose now that μ2 = μ1 + σ. For these values of xobs and μ2 the likelihood

ratio is given by

exp

{
n

(
2√
n
− 1

2

)}

For n = 16 this ratio is exactly 1 and decreases rapidly as n increases (for n = 30
it is 0.02), indicating that even though H0 is rejected in favor of H1 the data are 50
times more likely under H0 than under H1.

That is, the use of the Neyman-Pearson Lemma is incompatible with the Law of
Likelihood (Fig. 5.2).

5.2.6 Comments and Examples

The Neyman–Pearson Lemma is one of the great results in statistics and dominated
statistics for most of the twentieth century. It paved the way for decision theory and
other important advances in statistical theory. But is it all that useful or logical?
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To be explicit consider the following situation:

n = 30 iid Bernoulli trials with parameter θ

and

H0 : θ =
1

4
, H1 : θ =

3

4

The most powerful test of size α = 0.05 rejects H0 in favor of H1 if the observed x
exceeds 12, i.e., the critical region is

C = {12, 13, 14, . . . , 30}

Note that, for a given x, the likelihood ratio for θ1 = 3/4 vs θ0 = 1/4 is given by

LR(x) =
L1(x)

L0(x)

=

(
30
x

) (
3
4

)x ( 1
4

)30−x

(
30
x

) (
1
4

)x ( 3
4

)30−x

= 3x
(
1

3

)30−x

= 32x−30
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Thus if x = 12 the likelihood ratio is

LR = 32(12)−30 = 3−6 =
1

729

Thus even though we reject θ = 1/4 in favor of θ = 3/4, θ = 1/4 is 729 times
more probable than θ = 3/4 for the value x = 12.

Note also that we have the following:

If x = 13 =⇒ LR = 1
81

If x = 14 =⇒ LR = 1
9

If x = 15 =⇒ LR = 1

Thus 15 leads to equal support for H0 vis-a-visH1 even though Neyman-Pearson
theory says to reject H0 in favor of H1.

5.2.7 A Different Criterion

Suppose, instead of minimizing the probability of a Type II error for fixed
probability of a Type I error, we choose the test to minimize a linear combination of
the two error probabilities. That is, we choose the critical region C so that

k

∫

C
f(x; θ0)dλ(x) +

[
1−
∫

C
f(x; θ1)dλ(x)

]

is minimized. Essentially this says that we view the Type I error probability as k
times more important than the Type II error probability.

Note that the above expression can be written as

1 +

∫

C
[kf(x; θ0)− f(x; θ1)] dλ(x)

This is clearly minimized whenever

[kf(x; θ0)− f(x; θ1)] ≤ 0

i.e., C is given by

C =

{
x :

f(x; θ1)

f(x; θ0)
≥ k

}

which is precisely the Law of Likelihood if k > 1.
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In this formulation there is no need to fix the probability of a Type I error.
The test depends only on the value of the likelihood ratio at the observed value
x and not on unobserved values of x. Thus a simple change in the function to be
minimized results in an entirely different methodology, one that does not depend on
the unobserved values of x [8].

5.2.8 Inductive Behavior

Neyman and Pearson defended their solution to the hypothesis testing problem by
means of the concept of inductive behavior.

If a rule R unambiguously prescribes the selection of action for each possible outcome . . .,
then it is a rule of inductive behavior.

Neyman [34]

(Mathematical) statistics is a branch of the theory of probability. It deals with problems
relating to performance characteristics of rules of inductive behavior based on random
experiments.

Neyman [34]
Performance characteristics relate to the properties of the sampling distribution

of a statistic on which a test (or other inference) is based.
For testing problems the Neyman-Pearson theory assures us that if we use a test

with significance level α, then, in repeated use, we will make a Type I error at most
100α% of the time.

5.2.9 Still Another Criterion

Suppose we have to make n tests of a simple H0 vs a simple H1 based on data
x1, x2, . . . , xn where the density under Hi0 is fi0 and the density under Hi1 is fi1
for i = 1, 2, . . . , n.

Let the test function for the ith test be ϕi, i.e.,

ϕi(xi) =

{
1 Reject Hi0 when xi is observed
0 Retain Hi0 when x is observed

and let αi denote the size of the ith test (probability of rejecting Hi0 when Hi0 is
true) and let γi denote the power of the ith test (probability of rejecting Hi0 when
Hi1 is true.

By the Neyman–Pearson Lemma we know that the best test function for the ith
test is given by
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ϕ(xi) =

{
1 fi1(xi) ≥ cifi0(xi)

0 fi1(xi) < cifi0(xi)

i.e., this choice of ci maximizes the power for fixed size.
In the spirit of inductive behavior we could decide to choose a test which

maximized the average power for a fixed average size. Pitman [37]

Theorem 5.2.2. The test function which maximizes the average power of the n tests
for fixed average size has c = ci, i.e., the same value of c is used in all tests.

As Pitman [37] says:

This result suggests that, to some extent, a particular numerical value of a likelihood ratio
means the same thing, whatever the experiment. This is obvious when we have a priori
probabilities for H0 and H1; for if the prior odds of H1 vs H0 are p1/p0, the posterior odds
are (p1/p0)(f1/f0), and all that comes from the experiment is the ratio f1/f0.

Pitman’s result can be thought of as yet another justification of the Law of
Likelihood.

5.3 p-Values

Scientifically, reporting that the hypothesis of a difference between a treatment and
a control group is rejected, is not very interesting. Scientists demand a measure of
the strength of evidence against a null hypothesis. The p-value of a test is supposed
to fill this gap.

Definition 5.3.1. The p-value is the probability, under the null hypothesis, of a test
statistic as or more extreme than actually observed.

We shall see that it does not measure evidence and in fact is a rather useless
quantity.

Formally, if T is a test statistic for which large values lead to rejection of the
hypothesis, the p-value is defined as

p-value = P0(T ≥ tobs)

where tobs is the observed value of the test statistic. Note that the p-value is
computed under the null hypothesis. There is no explicit alternative (the alternative
implicitly defines what values of the test statistic are extreme however).

The p-value can also be viewed as the smallest size at which we can reject the
null hypothesis. The p-value originally arose as a result of a test of significance in
which a null hypothesis is deemed unsupported by the data if the observed result or
more extreme is unlikely (has low probability) under the null hypothesis.
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In Fisher’s words

The force with which such a conclusion is supported is that of a simple disjunction: Either
son theory developed test staurred, or the theory . . . is not true.

Fisher [17]
As the Neyman–Pearson theory developed test statistics it was natural that they

were given a similar interpretation.

In applications, there is usually available a nested family of rejection regions corresponding
to different significance levels. It is then good practice to determine not only whether the
hypothesis is accepted or rejected at the given significance level, but also determine the
smallest significance level α̂ = α̂(x), the critical level, at which the hypothesis would
be rejected for the given observation. This number gives an idea of how strongly the data
contradict (or support) the hypothesis, and enables others to reach a verdict based on the
significance level of their choice.

Lehmann [27]
But does the p-value provide a measure of how strongly the data contradict (or

support) a hypothesis? Jeffreys wrote

. . . a hypothesis which may be true may be rejected because it has not predicted observable
results which have not occurred.

Jeffreys [24]

Example. The following example is taken from Royall [43]. Suppose we are
interested in the null hypothesis that θ = 0.5 in 20 Bernoulli trials and the implicit
alternative is that θ < 0.5. We use the test statistic x, the number of successes, and
small values of x are extreme in the sense that they are not likely under the null
hypothesis.

Suppose that the result is reported to you and I in a code. You have a code book
and I do not. I only know the code for the number 6.

Suppose the result is reported as x = 6. Thus we both know that 6 successes
occurred in 20 Bernoulli trials.

Your p-value is

P(6 or less successes when p = 0.5) = 0.06

Since I can observe only 6 or not 6, the observed value is the most extreme for
me so that my p-value is

P(6 successes when p = 0.5) = 0.04

If it were true that the p-value measured evidence against the hypothesis that
p = 0.5 then I have stronger evidence than you. Clearly this is illogical.

Example. This example comes from Good (1985). Consider the following “casino”
game. There is an urn with 100 balls, W of which are white the remainder are
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black. Assume that W > 0 and that n balls are drawn at random with replacement.
Of interest is the hypothesis that the proportion of white balls is 1

2 . For simplicity
assume that n is a perfect square and is even. Note that the permissible parameter
values are

Θ = {0.01, 0.02, . . . , 0.99}

Suppose that we observe

robs =
n

2
+
√
n

The P-value is then

P -value(two-sided) = 2Pθ0 {R ≥ robs}

= 2Pθ0

{
R ≥ n

2
+
√
n
}

= 2Pθ0

{
R− n

2√
n/4

≥ 2

}

≈ 2P(Z ≥ 2)

= 0.0455

According to traditional p-value concepts we have “evidence against the null that
θ = 0.5.” But it is clear that the observed proportion is

robs
n

=
n
2 +

√
n

n
=

1

2
+

1√
n

which for n large enough is arbitrarily close to 1
2 .

Thus we can be nearly certain that θ = 0.5 (and in fact the observed proportion
can be much closer to 0.5 than any other permissible value of the proportion) despite
having evidence against it by P-value standards.

Thus the phrase “P-values provide evidence against the null” is nonsense. Note
that the 0.05 cutoff is not the problem. Any other cutoff could be used with similar
results (although larger sample sizes are needed). The following is a graph of the
likelihood ratio at 0.51 to that of 0.50 plotted vs sample size (Fig. 5.3).

What we see from the graph is that the Law of Likelihood shows that the support
for p=0.51 vs p=0.50 never reaches 8 (moderately strong evidence) and after a
sample size of 40,000 shows that 0.50 is better supported than 0.51
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Fig. 5.3 Likelihood ratio for Good’s example

5.4 Duality of Confidence Intervals and Tests

Consider a situation where we have data x consisting of an observed value of X
which has a distribution depending on a parameter θ.

Assume that we have a test for θ with significance level α.
Define the acceptance region A(θ0) for this test as

A(θ0) = {x : H0 : θ0 is not rejected}

i.e., A(θ0) is the collection of all values of x such that the hypothesis θ0 is accepted.
By the definition of a test we have that

Pθ0 [X /∈ A(θ0)] ≤ α

where α is the significance level of the test. Now define, for each x, the set C(x) by

C(x) = {θ0 : x ∈ A(θ0)}

Then we have that for all θ0

Pθ0 [C(X)] ≥ 1− α

i.e., C(X) is a 1− α confidence set for θ.
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Conversely if we have a 1− α confidence set for θ and if we define

A(θ0) = {x : θ0 ∈ C(x)}

then A(θ0) is the acceptance region of an α level significance test for θ0.
Loosely speaking, what we have is that to every test there is a corresponding

confidence interval (all those parameter values not rejected by the test). Conversely
to every confidence interval there is a test (values outside of the interval are rejected).
Thus tests and confidence intervals are dual.

Example. Let X1, X2, . . . , Xn be IID each normal with mean μ and variance σ2.
The t-test for μ = μ0 rejects μ0 if

∣
∣
∣
∣

√
n(x− μ0)

s

∣
∣
∣
∣ > t1−α/2(n− 1)

where

s2 =
1

n− 1

n∑

i=1

(xi − x)2

and t1−α/2(n−1) is the 1−α/2 percentile of the Student’s t distribution with n−1
degrees of freedom.

It follows that

A(μ0) =

{
x :

∣∣
∣
∣

√
n(x− μ0)

s

∣∣
∣
∣ ≤ t1−α/2(n− 1)

}

Hence the 1− α level confidence interval is given by

x± t1−α/2(n− 1)
s√
n

5.5 Composite Hypotheses

In the case where the hypotheses are not simple many types of tests have been
proposed. The most important of which is the likelihood ratio test.

Definition 5.5.1. The likelihood ratio test rejects for x ∈ C where

C =

{
x : LR(x) =

maxθ∈Θ0 f(x; θ)

maxθ∈Θ f(x; θ)
≤ c

}
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and c is chosen so that

Pθ (X ∈ C) ≤ α for θ ∈ Θ0

Likelihood ratio tests are the natural generalization of the Neyman–Pearson
Lemma to composite hypotheses. Most of the tests used in standard statistical
packages such as analysis of variance tests, analysis of deviance tests, and chi-
square tests are all likelihood ratio tests or are equivalent to likelihood ratio tests
for large samples.

In typical applications the likelihood ratio is given by

LR(x) =
f(x; θ̂0)

f(x; θ̂)

where θ̂ is the maximum likelihood estimate of θ in the (full) model and θ̂0 is the
maximum likelihood estimate of θ when θ is constrained to lie in Θ0.

The likelihood ratio test has the attractive property that under the null hypothesis
and certain regularity conditions, the asymptotic distribution of

−2 ln[LR(X)] is chi-square

with degrees of freedom equal to the number of parameters in the full model minus
the number of parameters in the (reduced) constrained model.

5.5.1 One-Way Analysis of Variance

Consider a one-way analysis of variance problem. That is, we have p groups and r
observations per group. We assume further that all observations are realized values
of independent normal random variables with

E(Yij) = μi and V(Yij) = σ2

To develop the likelihood ratio test we first find the maximum for the full model.
The joint density is given by

p∏

i=1

r∏

j=1

(2πσ2)−1/2 exp

{
− (yij − μi)

2

2σ2

}

which has logarithm given by

−rp

2
ln(2π)− rp

2
ln(σ2)− 1

2σ2

p∑

i=1

r∑

j=1

(yij − μi)
2
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The partial derivative with respect to μi is thus

1

2σ2

r∑

j=1

(yij − μi)

and it follows that the maximum likelihood estimate of μi is

μ̂i = yi+

i.e., the mean of the ith group.
The partial derivative with respect to σ2 is

− rp

2σ2
+

1

2σ4

p∑

i=1

r∑

j=1

(yij − μi)
2

and it follows that the maximum likelihood estimate of σ2 is given by

σ̂2 =
1

rp

p∑

i=1

r∑

j=1

(yij − yi+)
2

For these values of μi and σ2 the log of the joint density is given by

−rp

2
ln(2π)− rp

2
ln(σ̂2)− n

2

and hence the denominator of the likelihood ratio test is given by

(2π)−rp/2[σ̂2]−rp/2e−rp/2

which is the maximum for the full model.
Now we obtain the maximum for the reduced model. If the composite hypothesis

H0 : μ1 = μ2 = · · · = μp = μ is true then the joint density, f(y, μ, σ2), is
given by

p∏

i=1

r∏

j=1

(2πσ2)−1/2 exp

{
− (yij − μ)2

2σ2

}

which has logarithm

−rp

2
ln(2π)− rp

2
ln(σ2)− 1

2σ2

p∑

i=1

r∑

j=1

(yij − μ)2
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The partial derivatives with respect to μ and σ2 are thus

1

2σ2

p∑

i=1

r∑

j=1

(yij − μ)

and

− rp

2σ2
+

1

2σ4

p∑

i=1

r∑

j=1

(yij − μ)2

It follows that

μ̃ = y++ and σ̃2 =
1

rp

p∑

i=1

r∑

j=1

(yij − y++)
2

The maximized log of the joint density is thus

−rp

2
ln(2π)− rp

2
ln(σ̃2)− rp

2

Hence the numerator of the likelihood ratio test is given by

(2π)−rp/2[σ̃2]−rp/2e−rp/2

which is the maximum over the reduced model.
Thus the likelihood ratio is

LR(y) =

[
σ̂2

σ̃2

]rp/2
=

[ ∑p
i=1

∑r
j=1(yij − yi+)

2

∑p
i=1

∑r
j=1(yij − y++)

2

]rp/2

Since

p∑

i=1

r∑

j=1

(yij − y++)
2

can be written as

p∑

i=1

r∑

j=1

(yij − yi+)
2 + r

p∑

i=1

(yi+ − y++)
2

the likelihood ratio is given by

⎧
⎨

⎩
1

1 + SSB
SSE

⎫
⎬

⎭

rp/2
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where

SSB = r

p∑

i=1

(yi+ − y++)
2 and SSE =

p∑

i=1

r∑

i=1

(yij − yi+)
2

are the between-group sum of squares and the within-group sum of squares.
The hypothesis is rejected whenever

SSB
SSE

is too large, i.e., whenever the estimated variability between the sample means
(SSB) is too large relative to the variability within the groups (SSE).

The test is formally based on rejecting whenever

Fobs =
SSB/(p− 1)

SSE/p(r − 1)
≥ F1−α(p− 1, p(r − 1)

because we know the distribution of F , under the null hypothesis, is F with (p− 1)
and p(r − 1) degrees of freedom. This test is called the F-test, named after Fisher,
although in this form it was first derived by Snedecor.

5.6 The Multiple Testing Problem

Consider a problem in which we have N hypotheses

H01, H02, . . . , H0N

where N may be large (as it is in microarray problems). We also have N
corresponding alternative hypotheses

HA1, HA2, . . . , HAN

For each individual problem suppose that we have a “good” test procedure which
has an appropriate α and good power against the alternative. Also assume that the
tests are independent. It is tempting to use each test at level α and state a conclusion
such as

x of the tests rejected H0i

and the significance level is α.
From a frequentist’s point of view this is incorrect: the overall significance level

is much larger than α. To see this note that
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Overall α = P(Reject at least one of the H0i when all are true)

= 1− P(Do not reject any of the H0i when all are true)

= 1− (1− α)N

A small table indicates the problem:

N α = 0.05 α = 0.01 α = 0.001

1 0.050 0.010 0.001
2 0.098 0.020 0.002
5 0.226 0.049 0.005

10 0.401 0.096 0.010
25 0.723 0.222 0.025
50 0.923 0.395 0.049

100 0.994 0.634 0.095

Note that for the widely level of α = 0.05, for ten tests, the actual level is 40 %
as opposed to the nominal level of 5 %.

Many methods exist to “correct” this problem:

1. Bonferoni adjustment
2. False Discovery Rate
3. Dozens of others including Duncan’s multiple range test, Fisher’s LSD approach,

Duncan’s k ratio test, Tukey’s HSD, etc.

The basic scientific logic does not seem right, however. Consider an investigator
who carefully designs a study to see the impact of vitamin supplements on bone
loss in the elderly. Several hundred people are monitored, some on the vitamin
regimen, the others not. Each person’s bone loss is measured along with lots of
other covariates such as gender, socioeconomic status, ethnicity, diet histories, etc.

The analysis is carefully done, and as expected, vitamin supplementation is
associated with a significant decrease (p < 0.05) in bone loss. The results are
submitted to the New Science in Medicine Journal. A referee asks whether or
not tests were done on the association of bone loss with the other covariates.
The response from the investigator is “of course” why not take advantage of the
information available from my well-done study?

The response from the referee, a traditional frequentist, is as expected: after you
adjust for the multiple tests, your results are no longer significant and of no use to
our audience. Thank you for your submission and better luck next time.

Scientifically it makes no sense not to look at other aspects of the study and this
should have no impact on the strength of the conclusions for the primary variable of
interest. The fact that traditional frequentist methods force this dependence seems
illogical.
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5.7 Exercises

1. Using the Neyman–Pearson Lemma develop a test for λ = λ0 vs λ = λ1 > λ0

in the exponential distribution.

2. If X1, X2, X3, X4, X5
d∼ Bernoulli(5, θ) to test θ = . vs θ > 0.5 show that we

have a 1/16 level test if we reject if
∑5

i=1 Xi = 5 or if X1 = 0, X2 = 1, X3 =
1, X4 = 1, X5 = 1. Comment on the reasonableness of this test.



Chapter 6
Standard Practice of Statistics

6.1 Introduction

Most commonly used statistical methods, interval estimation (confidence intervals),
estimation, hypothesis tests, and significance tests have as justification their prop-
erties under repeated sampling. This is the frequency interpretation of statistical
methods and is the basis for much (most) of the statistical methods commonly
applied to data in research and practice. This chapter is based on Table 2.1 in Royall.
What we have shown in Chaps. 3–5 is that many of the standard statistical results
are misleading.

6.2 Frequentist Statistical Procedures

6.2.1 Estimation

• Procedure
An estimator t(X) depending on a random variable X

• Property of Procedure
Determined by the distribution of X

The expected value of t(X) is θ
The standard error of t(X) is σ
E[t(X)] = θ , var [t(X)] = σ2

• Observation Realized value of a random variable X

X = x, assumed to be generated by fθ

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__6

63
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• Result of Procedure: Fixed by observing X = x

An estimate, t(x)
an estimate of variability, σ(x)

• “Usual” Interpretation: Property used to interpret results

1. The observation x provides evidence that θ is near t(x).
2. The smaller σ(x), the stronger the evidence.

6.2.2 Confidence Intervals

• Procedure
An interval [�(X) , u(X)] depending on a random variable X

• Property of Procedure
Determined by the distribution of X

1. We are 95 % confident that the random interval [�(X), u(X)] will contain θ.
2. The confidence coefficient is

P [�(X) ≤ θ ≤ u(X)] = 0.95

• Observation: Realized value of a random variable X

X = x, assumed to be generated by fθ

• Result of Procedure: Fixed by observing X = x

An interval [�(x), u(x)]

• “Usual” Interpretation: Property used to interpret results

1. The observation x provides evidence that θ is in the interval [�(x), u(x)].
2. Large confidence coefficient means strong evidence.

6.2.3 Hypothesis Testing

• Procedure

A test δ(X) depending on a random variable X
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• Property of Procedure
Determined by the distribution of X

1. The Type I error probability is α.
2. The Type II error probability is β.

• Observation: Realized value of a random variable X

X = x, assumed to be generated by fθ

• Result of Procedure: Fixed by observing X = x. A selected hypothesis:

H1 if δ(x) = 1, H0 if δ(x) = 0

• “Usual” Interpretation: Property used to interpret results

1. The observation x provides evidence in favor of the selected hypothesis.
2. Small α and β mean strong evidence.

6.2.4 Significance Tests

• Procedure
A statistic t(X) depending on a random variable X

• Property of Procedure
Determined by the distribution of X
The probability of extreme values of t

• Observation: Realized value of a random variable X

X = x, assumed to be generated by fθ

• Result of Procedure: Fixed by observing X = x

1. A P -value defined by P [t(X) ≥ t(x)].
2. The P -value is calculated under the assumption that H0 is true.

• “Usual” Interpretation: Property used to interpret results.

1. The observation x provides evidence against the null hypothesis.
2. The smaller the P -value the stronger the evidence.



Chapter 7
Maximum Likelihood: Basic Results

7.1 Basic Properties

As we have seen once we have an estimator and its sampling distribution we can
easily obtain confidence intervals and tests regarding the parameter. We now develop
the theory of estimation focusing on the method of maximum likelihood, which for
parametric models is the most widely used method. This will also supply us with a
collection of statistical methods for important problems.

For comparing two values of a parameter, θ2 vs θ2, a natural role is played by the
likelihood ratio

LR(θ2, θ1;x) =
f(x; θ2)

f(x; θ1)

According to the Law of Likelihood the likelihood ratio represents the statistical
evidence in the data for comparing θ2 to θ1.

The score function is defined by

s(θ;x) =
∂ ln[f(x; θ)]

∂θ

The score function plays a major role in the theory of maximum likelihood
estimation.

Example. Consider n iid normal random variables with parameters θ, σ2 where σ2

is known. Then

f(x; θ) = (2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(xi − θ)2

}
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and

f
′
(x; θ) = f(x; θ)

1

σ2

n∑

i=1

(xi − θ)

It follows that

f
′
(x; θ)

f(x; θ)
=

n(x− θ)

σ2

As a random variable we have that the score function has expected value 0 and
variance n/σ2 when evaluated at the true θ.

Because of the Law of Likelihood a natural estimate of θ is that value of θ which
maximizes the likelihood or the log of the likelihood.

Assuming that ln[f(x; θ)] is differentiable with respect to θ the maximum
likelihood estimate is then the solution to

∂ ln[f(x; θ)]

∂θ
= 0

which is called the likelihood or score equation. If there are r parameters we
differentiate with respect to each and equate to 0, obtaining r equations. Note that
one needs to check the second derivative to ensure a maximum.

Example 1 (Binomial). . If X is binomial with parameter θ then

f(x; θ) =

(
n

x

)
θx(1 − θ)n−x x = 0, 1, . . . , n

First note that if x = 0 then f(0; θ) = (1 − θ)n and in this case θ̂ = 0. If x = n

then f(n; θ) = θn and in this case θ̂ = 1.

For x = 1, 2, . . . , n− 1 we have that

ln[f(x; θ)] = ln[

(
n

x

)
] = x ln(θ) + (n− x) ln(1 − θ)

and

∂ ln[f(x; θ)]

∂θ
=

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)

It follows that

θ̂ =
x

n
for x = 0, 1, . . . , n
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Note that it is unbiased with variance θ(1 − θ)/n so that it is also consistent.

Example 2.. Let Y1, Y2, . . . , Yn be iid each normal with mean μ and variance σ2.
Then we have

f(y; θ) =

n∏

i=1

(2πσ2)−1/2 exp

{
− (yi − μi)

2

2σ2

}

= (2πσ2)−n/2 exp

{
−
∑n

i=1(yi − μ)2

2σ2

}

It follows that the log likelihood is given by

ln[f(y; θ) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑

i=1

(yi − μ)2

Thus we have that

∂ ln[f(x; θ)]

∂μ
=

1

σ2
n(y − μ)

and

∂ ln[f(x; θ)]

∂σ2
= − n

2σ2
+

∑n
i=1(yi − μ)2

2σ4

and it follows that

μ̂ = y and σ̂2 =
1

n

n∑

i=1

(yi − y)2

7.2 Consistency of Maximum Likelihood

1. Consider the case where there are only two possible values of the parameter θ2
and θ1.

2. Also suppose that we have n observations which are realized values of
independent and identically distributed random variables having density f(x; θ2)
or f(x; θ1).

The maximum likelihood estimate is defined by

θ̂ =

{
θ2 if f(x1, x2, . . . , xn; θ2) ≥ f(x1, x2, . . . , xn; θ1)

θ1 otherwise
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1. Assume with no loss of generality that θ2 is the true value of the parameter.
2. The maximum likelihood estimator is consistent if

Pθ2(θ̂ = θ2) −→ 1

We note that θ̂ = θ2 if and only if

f(x1, x2, . . . , xn; θ2)

f(x1, x2, . . . , xn; θ1)
=

n∏

i=1

f(xi; θ2)

f(xi; θ1)
> 1

Equivalently

n∑

i=1

ln

[
f(xi; θ2)

f(xi; θ1)

]
> 0

Now note that the random variables

Yi = ln

[
f(Xi; θ2)

f(Xi; θ1)

]
i = 1, 2, . . . , n

are independent and identically distributed.
Moreover

Eθ2(Yi) =

∫
ln

[
f(x; θ2)

f(x; θ1)

]
f(x; θ2)λ(dx)

= −
∫

ln

[
f(x; θ1)

f(x; θ2)

]
f(x; θ2)λ(dx)

> −
∫ [

f(x; θ1)

f(x; θ2)
− 1

]
f(x; θ2)λ(dx)

= 0

By the law of large numbers we have that

1

n

n∑

i=1

Yi
p−→ Eθ2(Y ) > 0

and hence

Pθ2(θ̂ = θ2) −→ 1

i.e., θ̂ is consistent:

1. The same proof holds provided the parameter space Θ is finite.
2. The more general case where Θ is an interval requires more delicate arguments

and is of technical, not statistical interest.
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7.3 General Results on the Score Function

We know that
∫

f(x; θ)dλ(x) = 1

for any density function f(x; θ). Recall that for a function g we write

∫
g(x; θ)dλ(x) =

{∫
g(x; θ)dx g continuous∑

g(x; θ) g discrete

Assuming that we can differentiate under the integral or summation sign, we
have that

∫
∂f(x; θ)

∂θ
dλ(x) = 0

Now note that

∂f(x; θ)

∂θ
=

∂ ln[f(x; θ)]

∂θ
f(x; θ)

It follows that

Eθ

{
∂ ln[f(x; θ)]

∂θ

}
= 0

Thus the expected value of the score function is 0.
If we differentiate again we have that

∫
∂2f(x; θ)

∂θ2
λ(x) = 0

Noting that

∂2f(x; θ)

∂θ2
=

∂

∂

[
∂f(x; θ)

∂θ

]

=
∂

∂

[
∂ ln[f(x; θ)]

∂θ
f(x; θ)

]

we see that

∂2f(x; θ)

∂θ2
=

[
∂2 ln[f(x; θ)]

∂θ2

]
f(x; θ)
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+

[
∂ ln[f(x; θ)]

∂θ

]
∂f(x; θ)

∂θ

The right-hand side may be written as

[
∂2 ln[f(x; θ)]

∂θ2

]
f(x; θ) +

[
∂ ln[f(x; θ)]

∂θ

]2
f(x; θ)

It follows that

Eθ

{[
∂ ln[f(x; θ)]

∂θ

]2}

= −Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

and hence

Vθ

{
∂ ln[f(x; θ)]

∂θ

}
= −Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

The quantity

−Eθ

{[
∂2 ln[f(x; θ)]

∂θ2

]}

is called the (expected) Fisher information and

−
[
∂2 ln[f(x; θ)]

∂θ2

]

is called the (observed) Fisher information.

7.4 General Maximum Likelihood

1. Let X be a random variable with density f(x; θ).
2. Assume that the parameter space Θ is an interval and that f(x; θ) is sufficiently

smooth so that derivatives with respect to θ are defined and that differentiation
under a summation or integral is allowed.

3. Finally assume that the range of X does not depend on θ.

Under weak regularity conditions it follows from the previous section that

Eθ

{[
∂ ln[f(X ; θ)]

∂θ

]}
= 0

Eθ

{[
∂ ln[f(X ; θ)]

∂θ

]2}

= −Eθ

{[
∂2 ln[f(X ; θ)]

∂θ2

]}
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Thus the random variable

U(θ) =

[
∂ ln[f(X ; θ)]

∂θ

]

i.e., the score function has expected value and variance given by

Eθ[U(θ)] = 0 ,Vθ[U(θ)] = i(θ)

where

i(θ) = −Eθ

{[
∂2 ln[f(X ; θ)]

∂θ2

]}

is the expected Fisher information for a sample size of one.

Example. If X is normal with mean θ and variance σ2 with σ2 known then

ln[f(x; θ)] = −1

2
ln[2πσ2]− 1

2σ2
(x− θ)2

and hence

∂ ln[f(x; θ)]

∂θ
=

x− θ

σ2

and

∂2 ln[f(x; θ)]

∂θ2
= − 1

σ2

so Fisher’s information is

i(θ) =
1

σ2

Example. If X is Bernoulli θ then

f(x; θ) = θx(1− θ)1−x

and hence

ln[f(x; θ)] = x ln(θ) + (1− x) ln(1− θ)

It follows that
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∂ ln[f(x; θ)]

∂θ
=

x

θ
− 1− x

1− θ

and

∂2 ln[f(x; θ)]

∂θ2
= − x

θ2
− 1− x

(1− θ)2

so Fisher’s information is

i(θ) =
1

θ
+

1

1− θ
=

1

θ(1 − θ)

If we have a random sample X1, X2, . . . , Xn from f(x; θ) and if

ui(θ) =
∂ ln[f(xi; θ)]

∂θ

then

U(θ) =
1

n

n∑

i=1

Ui(θ)

is the sample mean of n iid random variables with expected value 0 and vari-
ance i(θ). It follows that

√
n U

d−→ N[0, i(θ)]

by the central limit theorem.
Define the maximum likelihood estimate of θ as that value of θ which maximizes

f(x; θ) or equivalently ln[f(x; θ)].
Thus we solve

∂ ln[f(x; θ)]

∂θ
= 0

or when f(x; θ) =
∏n

i=1 f(xi; θ) we solve

u(θ) =
n∑

i=1

ui(θ) = 0

Since we can write, using Taylor’s theorem,

u(θ̂) = u(θ) +
du(θ)

dθ
(θ̂ − θ) + v(θ∗)

(θ̂ − θ)2

2

where
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v(θ∗) =
d2u(θ)

dθ2

∣
∣
∣∣
∣
θ=θ∗

and θ∗ is between θ and θ̂.
Since u(θ̂) = 0 we have

(θ̂ − θ)

[
du(θ)

dθ
+ v(θ∗)

(θ̂ − θ)

2

]

= −u(θ)

It follows that

√
n(θ̂ − θ) =

1√
n
u(θ)

[
− 1

n
du(θ)
dθ − 1

nv(θ
∗) (

̂θ−θ)
2

]

Application of the results of the preceding section shows that

√
n(θ̂ − θ)

d−→ N(0, [i(θ)]−1)

where i(θ) is Fisher’s information for a sample of size 1.

7.5 Cramer-Rao Inequality

If t(x) is any unbiased estimator of θ i.e.

E[t(X)] = θ

then
∫

t(x)f(x; θ)dλ(x) = θ

Assuming that we can differentiate under the integral or summation sign, we
have that

∫
t(x)

∂ ln[f(x; θ)]

∂θ
f(x; θ)dλ(x) = 1

and hence

C

{
t(X),

[
∂ ln[f(X ; θ)]

∂θ

]}
= 1
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It follows that

V[t(X)]V

{
∂ ln[f(X ; θ)]

∂θ

}
≥ 1

or

V[t(X)] ≥ 1

I(θ)

where I(θ) is the expected Fisher information. Thus the smallest variance for an
unbiased estimator is the inverse of Fisher’s information. This result is called the
Cramer–Rao inequality.

Since 1/I(θ) is the large sample variance of the maximum likelihood estimator
we have the result that the method of maximum likelihood produces estimators
which are asymptotically efficient, i.e., have smallest variance.

7.6 Summary Properties of Maximum Likelihood

1. Maximum likelihood have the equivariance property: i.e., the maximum likeli-
hood estimate of g(θ), ĝ(θ), is g(θ̂).

2. Under weak regularity conditions maximum likelihood estimators are
consistent, i.e.,

θ̂
p−→ θ

3. Maximum likelihood estimators are asymptotically normal:

√
n(θ̂ − θ0)

d−→ N(0, v(θ0))

where v(θ0) is the inverse of Fisher’s information.
4. Maximum likelihood estimators are asymptotically efficient, i.e., in large

samples

V(θ̂) ≤ V(θ̃)

where θ̃ is any other consistent estimator which is asymptotically normal.

The regularity conditions under which the results on maximum likelihood
estimators are true consist of conditions of the form:

(i) The range of the distributions cannot depend on the parameter.
(ii) The first three derivatives of the log likelihood function with respect to θ exist

are continuous and have finite expected values as functions of X .
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7.7 Multiparameter Case

All of the results for maximum likelihood generalize to the case where there are p
parameters θ1, θ2, . . . , θp. Let

θ =

⎡

⎢
⎢
⎢
⎣

θ1
θ2
...
θp

⎤

⎥
⎥
⎥
⎦

If the pdf is given by

f(x; θ)

the maximum likelihood or score equation is

∂ ln[f(x; θ)]

∂θ
=

⎡

⎢
⎢
⎢
⎢
⎣

∂ ln[f(x;θ)]
∂θ1

∂ ln[f(x;θ)]
∂θ2
...

∂ ln[f(x;θ)]
∂θp

⎤

⎥
⎥
⎥
⎥
⎦
= 0

Fisher’s information matrix

I(θ)

has i− j element given by

− ∂2 ln[f(x; θ)]

∂θi∂θj

Note that it is a p× p matrix.
Under regularity conditions, similar to those for the single parameter case we

have

1. The maximum likelihood estimate of g(θ), ĝ(θ), is g(θ̂).
2. Maximum likelihood estimators are consistent, i.e.,

θ̂
p−→ θ

3. Maximum likelihood estimators are asymptotically normal:

(θ̂ − θ0) ≈ N(0,Vn(θ0))

where Vn(θ0) is the inverse of Fisher’s information matrix. We can replace θ0

by θ̂ to use this result to determine confidence intervals.
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7.8 Maximum Likelihood in the Multivariate Normal

Let y1,y2, . . . ,yn be independent each having a multivariate normal distribution
with parameters μ and Σ, i.e.,

fYi(yi;μ,Σ) = (2π)−
p
2 [det(Σ)]−

1
2 exp

{
−1

2
(yi − μ)�Σ−1(yi − μ)

}

The joint density is thus

fY(y;μ,Σ) = (2π)−
np
2 [det(Σ)]−

n
2 exp

{

−1

2

n∑

i=1

(yi − μ)�Σ−1(yi − μ)

}

We will show that the maximum likelihood estimates of μ and Σ are

μ̂ = y =
1

n

n∑

i=1

yi

and

Σ = S =
1

n

n∑

i=1

(yi − y)(yi − y)�

i.e., the j − k element of S is

1

n

n∑

i=1

(yij − yj)(yik − yk)

essentially the sample covariance between the jth and kth variable.
The first step is to note that

n∑

i=1

(yi − μ)�Σ−1(yi − μ)

can be written as

n∑

i=1

(yi − y)�Σ−1(yi − y) + n(y − μ)�Σ−1(y − μ)

or

ntr
[
Σ−1S

]
+ n(y − μ)�Σ−1(y − μ)
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where the trace of a square matrix, tr(A), is the sum of the diagonal elements, i.e.,

tr(A) =
p∑

i=1

aii

Thus the joint density fY(y;μ,Σ) = can be written as

(2π)−
np
2 [det(Σ)]−

n
2 exp

{
−n

2
tr
[
Σ−1S

]
− n

2
(y − μ)�Σ−1(y − μ)

}

It follows immediately that the maximum likelihood estimate of μ is y and the joint
density at μ̂ and Σ̂ = S is thus

fY(y; μ̂, Σ̂) = (2π)−
np
2 [det(S)]−

n
2 exp

{
−np

2

}

The ratio

fY(y; μ̂, Σ̂)

fY(y;μ,Σ)

is thus equal to

[det(S)]−
n
2 exp

{
−np

2

}

[det(Σ)]−
n
2 exp

{
−n

2 tr
[
Σ−1S

]
− n

2 (y − μ)�Σ−1(y − μ)
}

which is greater than or equal to

det(Σ−1S)−
n
2 exp

{
−np

2
+

n

2
tr
[
Σ−1S

]}

This ratio is greater than or equal to 1 if and only its logarithm is greater than or
equal to 0. The logarithm is

n

2

{
− ln

[
det(Σ−1S)

]
− p+ tr

[
Σ−1S

]}

If λ1, λ2, . . . , λp are the characteristic roots of Σ−1S then it can be shown that

1. λi ≥ 0 for each i
2. det(Σ−1S) =

∏p
i=1 λi

3. tr(Σ−1S) =
∑p

i=1 λi

It follows that the log of the ratio is greater than or equal to

n

2

{

−
p∑

i=1

ln(λi)−
p

2
+

p∑

i=1

λi

}
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or

n

2

{
p∑

i=1

[λi − 1− ln(λi)]

}

which is greater than or equal to zero since

a− 1− ln(a) ≥ 0 for any positive real number

Thus the maximum likelihood estimators for the multivariate normal are

μ̂ = y and Σ̂ = S

We usually use

n

n− 1
S

as the estimator so that the estimated components of Σ are exactly the sample
covariances and variances.

7.9 Multinomial

Suppose that X1, X2, . . . , Xk have a multinomial distribution, i.e.,

f(x1, x2, . . . , xk; θ1, θ2, . . . , θk) = n!

k∏

i=1

θxi

i

xi!

where

0 ≤ xi ≤ n each i = 1, 2, . . . , k and
k∑

i=1

xi = n

and

0 ≤ θi ≤ 1 each i = 1, 2, . . . , k and
k∑

i=1

θi = 1

Note that

θk = 1−
k−1∑

i=1

θi and xk = n−
k−1∑

i=1

xi
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The maximum likelihood estimates of the θi are found by taking the partial
derivatives of the log likelihood with respect to θi for i = 1, 2, . . . , k − 1 where
the log likelihood is

ln[f(x, θ] = ln(n!)−
k∑

i=1

ln(xi!) +
k∑

i=1

xi ln(θi)

Since θk = 1− θ1 − θ2 − · · · − θk−1 we have

∂ ln[f(x, θ)]

∂θi
=

xi

θi
− xk

θk

for i = 1, 2, . . . , k − 1. It follows that the maximum likelihood estimates satisfy

xiθ̂k = θ̂ixk for i = 1, 2, . . . , k − 1

Summing from i = 1 to k − 1 yields

(n− xk)θ̂k = (1− θ̂k)xk

and hence

nθ̂k = xk

so that

xixk

n
= θ̂ixk or θ̂i =

xi

n

The second derivatives of the log likelihood are given by

∂2 ln[f(x, θ)]

∂θ2i
= −xi

θ2i
− xk

θk

which has expected value

−nθi
θ2i

− nθk
θ2k

= − n

θi
− n

θk

and

∂2 ln[f(x, θ)]

∂θi∂θj
= −xk

θ2k
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which has expected value

−nθk
θ2k

= − n

θk

Thus Fisher’s information matrix, I(θ), is given by

I(θ) = n

⎡

⎢
⎢
⎢
⎢
⎣

1
θ1

+ 1
θk

1
θk

· · · 1
θk

1
θk

1
θ2

+ 1
θk

· · · 1
θk

...
...

. . .
...

1
θk

1
θk

· · · 1
θk−1

+ 1
θk

⎤

⎥
⎥
⎥
⎥
⎦

Fisher’s information can be written in matrix form as

n

[
D(θ)−1 +

1

θk
11�

]

where D(θ) is a k − 1× k − 1 matrix with diagonal elements θ1, θ2, . . . , θk−1 and
1 is a k − 1 column vector with each element equal to 1.

The general theory of maximum likelihood then implies that

√
n(θ̂ − θ)

d−→ N
(
0, [i(θ)]−1

)

where i(θ) is Fisher’s information matrix with n = 1.
It is easy to check that

[i(θ)]−1 = D(θ)− θθ�

or

[i(θ)]−1 =

⎡

⎢
⎢⎢
⎣

θ1(1− θ1) −θ1θ2 · · · −θ1θk−1

−θ2θ1 θ2(1− θ2) · · · −θ2θk−1

...
...

. . .
...

θk−1θ1 −θk−1θ2 · · · θk−1(1− θk−1)

⎤

⎥
⎥⎥
⎦

which we recognize as the variance covariance matrix of X1, X2, . . . , Xk−1

Standard maximum likelihood theory implies that

n(θ̂ − θ)�[i(θ] (θ̂ − θ)
d−→ χ2(k − 1)

Now note that

n(θ̂ − θ)�[i(θ](θ̂ − θ)
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is equal to

n(θ̂ − θ)�
[
D(θ)−1 +

1

pk
11�

]
(θ̂ − θ)

and hence to

n(θ̂ − θ)�D(θ)−1(θ̂ − θ) +
n

θk
(θ̂ − θ)�11�(θ̂ − θ)

This last expression simplifies to

n
k−1∑

i=1

(θ̂i − θi)
2

θi
+

n

θk

[
k−1∑

i=1

(θ̂i − θi)

]2

which in turn simplifies to

k−1∑

i=1

(xi − nθi)
2

nθi
+

n

θk
(θk − θ̂k)

2

and to

k−1∑

i=1

(xi − nθi)
2

nθi
+

(xk − nθk)
2

nθk

This finally reduces to

k∑

i=1

(xi − nθi)
2

nθi

Noting that E(Xi) = nθi = Ei this last formula may be written as

k∑

i=1

(Xi − Ei)
2

Ei

which is called Pearson’s chi-square statistic. For large n, it has a chi-square
distribution with k − 1 degrees of freedom.



Chapter 8
Linear Models

8.1 Introduction

There is no doubt that the linear model is one of the most important and useful
models in statistics. In this chapter we discuss the estimation problem in linear
models and discuss interpretations of standard results.

While some of the detailed formulas appear complex they are based on two
simple ideas:

1. The Pythagorean theorem
2. Solving two or three linear equations

8.2 Basic Results

Suppose we have a response y, an n× 1 vector, and a set of covariates

1,x1, . . . ,xp

which we collect in an n× (p+ 1) matrix Z.
If we represent yi as a linear combination of the covariates we have

yi =
∑

j=0

zijαj or y = Zα

where zi0 ≡ 1 for all i.

Assumption 1. y is a realized value of a random vector Y where

E(Y) = Zα and Var(Y) = Iσ2

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
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Assumption 2. y is a realized value of a random vector Y where

Y
d∼ MVN(Zα , Iσ2)

Definition 8.2.1. The least squares estimate of α is the minimizer over α of

SSE(α;y) =

n∑

i=1

⎛

⎝yi −
p∑

j=0

zijαj

⎞

⎠

2

= (y − Zα)�(y − Zα)

Theorem 8.2.1. The least squares estimate of α is given by

α̂ = (Z�Z)−1Z�y

Moreover the minimum value can be expressed as

(y−Zα̂)�(y−Zα̂) = y�y−α̂�Z�Zα̂ = y�y−y�Z(Z�Z)−1Z�y = y�DZy

where

DZ =: I− Z(Z�Z)−1Z�

Proof.

SSE(α;y) = (y − Zα)�(y − Zα)

= [(y − Zα̂) + (Zα̂ − Zα)]�[(y − Zα̂) + (Zα̂ − Zα)]

= (y − Zα̂)�(y − Zα̂) + (Zα̂− Zα)�(Zα̂− Zα)

+2(Zα̂− Zα)�(y − Zα̂)

= (y − Zα̂)�(y − Zα̂) + (α̂−α)�Z�Z(α̂ −α)

The conclusion follows if the “cross-product” term vanishes.
To show that the “cross-product” term vanishes we note that

2(Zα̂− Zα)�(y − Zα̂) = 2(α̂−α)�Z�(y − Z(Z�Z)−1Z�y) = 0

For the minimum value note that

(y − Zα̂)�(y − Zα̂) = y�y − 2y�Zα̂+ α̂�Z�Zα̂

= y�y − α̂�Z�Zα̂

= y�y − y�Z(Z�Z)−1Z�y

= y�[I− Z(Z�Z)−1Z�]y

= y�DZy
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Under Assumption 2 the density of y is given by

f(y;α, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2
(y − Zα)�(y − Zα)

}

= (2πσ2)−n/2 exp

⎧
⎪⎨

⎪⎩
− 1

2σ2

n∑

i=1

⎛

⎝yi −
p∑

j=0

zijαj

⎞

⎠

2
⎫
⎪⎬

⎪⎭

It is obvious that the least squares and maximum likelihood estimates are
equal:

1. α̂ is unbiased since

E(α̂) = E[(Z�Z)−1Z�Y

= (Z�Z)−1Z�
E[Y]

= (Z�Z)−1Z�Zα

= α

2. The variance of α̂ is (Z�Z)−1σ2 since

Var(α̂) = Var[(Z�Z)−1Z�Y]

= (Z�Z)−1Z�Var(Y)Z(Z�Z)−1

= (Z�Z)−1σ2

3. If Assumption 2 is satisfied then since α̂ is a linear combination of normally
distributed random variables it follows that

α̂
d∼ MVN[α , (Z�Z)−1σ2]

8.2.1 The Fitted Values and the Residuals

The fitted values are defined as

ŷ = Zα̂ = Z(Z�Z)−1Z�y = HZy

where

HZ =: Z(Z�Z)−1Z� is called the hat matrix
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and the residuals are defined as

e = y − ŷ = [I−HZ ]y = DZy

where

DZ =: I− Z(Z�Z)−1Z�

Note that HZ and DZ are symmetric and idempotent and that

HZDZ = O

Note that

y = e+ ŷ and e�ŷ = 0

so that

y�y = ŷ�ŷ + e�e

which is just the Pythagorean theorem.
Note that

SSE = Y�DZy

so that the residual or error sum of squares is a quadratic form.
If Y�QY is a quadratic form then it is known that

E(Y�QY) = tr[QVar(Y)] + E(Y)�QE(Y)

where tr(A) is the trace of A, i.e.,
∑n

i=1 aii.
Since the error sum of squares is a quadratic form we have that

E[SSE] = tr[DZIσ
2] + (Zα)�DZZα

Clearly

tr[DZIσ
2] = σ2tr[I− Z(Z�Z)−1Z�] = σ2[tr(I)− tr{Z(Z�Z)−1Z�}]

= (n− p− 1)σ2

and since

DZZ = O
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we have that

SSE
n− p− 1

is an unbiased estimator of σ2

8.3 The Basic “Regression” Model

If we write Z = [1,X], α0 = β0, and αj = βj then the equations Z�Zα̂ = Z�y
become

[
n 1�X

X�1 X�X

] [
β̂0

β̂

]

=

[
1�y
X�y

]

It follows that

β̂0 =
1

n
1�(y − Xβ̂)

Substituting into the second equation we get

X�1

{
1

n
1�(y − Xβ̂)

}
+ X�Xβ̂ = X�y

or

X�D1Xβ̂ = X�D1y

where D1 = I− 1
n11�

Thus

β̂ = (X�D1X)−1X�D1y

Note that for any vectors z and w we have

z�D1w = z�
[
I− 1

n
11�

]
w

= z�w − 1

n
z�1w�1

=

n∑

i=1

ziwi − nzw

=
n∑

i=1

(zi − z)(wi − w)
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i.e., z�D1w is n − 1 times the sample covariance of z and w. It follows that the
estimates of the regression coefficients are determined by the sample covariances
(correlations) of the covariates and the sample covariances (correlations) of the
covariates with the response.

If X = x, i.e., p = 1, we have a simple linear regression model and

β̂ =
x�D1y

x�x
=

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2

Note that

y − 1β̂0 − Xβ̂ = y − 1y − D1Xβ̂ = D1y − D1Xβ̂

so that

(y − 1β̂0 − Xβ̂)�(y − 1β̂0 − Xβ̂) = y�D1y − β̂
�
X�D1Xβ̂ = y�D1Xy

where

D1X = D1 − D1X(X�D1X)−1X�D1

The previous equation may be written as

SSE = y�D1y − β̂
�
X�D1Xβ̂

so that

n∑

i=1

(yi − y)2 = SSE + β̂
�
X�D1Xβ̂

It follows that

R2 =:
β̂
�
X�D1Xβ̂

∑n
i=1(yi − y)2

is the proportion of variability in y “explained by” regression on X. It is called R2.
Recall that y has mean y and that ŷ has mean y since

ŷ = 1β̂0 + Xβ̂ = 1y + D1Xβ̂
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It follows that

y�D1y =

n∑

i=1

(yi − y)2

y�D1ŷ = β̂
�
X�D1Xβ̂

ŷ�D1ŷ = β̂
�
X�D1Xβ̂

Thus the square of the sample correlation between y and ŷ is

[y�D1ŷ]
2

y�D1yŷ�D1ŷ
=

[β̂
�
X�D1Xβ̂]2

[β̂
�
X�D1Xβ̂]

∑n
i=1(yi − y)2

= R2

which is the reason for the expression R2.

8.3.1 Adding Covariates

Suppose now that we add some covariates c1, c2, . . . , cq to the model. Then we have

Z = [1, c1, c2, . . . , cq,x1,x2, . . . ,xp] = [1,C,X]

and

α� = [β0,γ,β]

The equations Z�Zα̂ = Z�y become

⎡

⎣
1�1 1�C 1�X

C�1 C�C C�X

X�1 X�C X�X

⎤

⎦

⎡

⎢
⎣
β̂0

γ̂

β̂

⎤

⎥
⎦ =

⎡

⎣
1�y
C�y
X�y

⎤

⎦

Solving for β̂0 gives

β̂0 =
1

n
1�[y − Cγ̂ − Xβ̂]

Substituting into the second equation gives

C�1

{
1

n
1�[y − Cγ̂ − Xβ̂]

}
+ C�Cγ̂ + C�Xβ̂ = C�y
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or

C�D1Cγ̂ + C�D1Xβ̂ = C�D1y

Substituting into the third equation gives

X�1

{
1

n
1�[y − Cγ̂ − Xβ̂]

}
+ X�Cγ̂ + X�Xβ̂ = X�y

or

X�D1Cγ̂ + X�D1Xβ̂ = X�D1y

Thus the equations to be solved for γ̂ and β̂ are

C�D1Cγ̂ + C�D1Xβ̂ = C�D1y

X�D1Cγ̂ + X�D1Xβ̂ = X�D1y

Solving for γ̂ yields

γ̂ = (C�D1C)−1C�D1[y − Xβ̂]

Substituting into the second equation yields

X�D1C
{
(C�D1C)−1C�D1[y − Xβ̂]

}
+ X�D1Xβ̂ = X�D1y

or

X�D1CXβ̂ = X�D1Cy

where

D1C = D1 − D1C(C�D1C)−1CD1

It follows that

β̂ = (X�D1CX)−1X�D1Cy

8.3.2 Interpretation of Regression Coefficients

Suppose now that X = x, i.e., we are interested in one covariate in the presence of
some other covariates C. The estimate is given above and is

β̂ = (x�D1Cx)
−1x�D1Cy =

x�D1Cy

x�D1Cx



8.3 The Basic “Regression” Model 93

The residuals for the model which has just C are given by eC = D1Cy and if
we fit x onto [1,C] the residuals are xC = D1Cx.

The simple linear regression coefficient of a regression of eC onto XC is then

e�CxC

x�
CxC

=
y�D1CD1Cx

x�D1CD1Cx
=

y�D1Cx

x�D1Cx
= β̂

Thus the regression coefficient in a model can be interpreted as follows:

1. Fit (regress) the response y onto [1,C] and obtain the residuals eC .
2. Fit (regress) the covariate x onto [1,C] and obtain the residuals xC .
3. The regression coefficient of X in the full model based on [1,C,x] is the simple

linear regression coefficient in a model which fits eC onto xC .

Thus we “adjust”, remove the effect of C on both y and x. The association which
remains is what is measured by the regression coefficient of x in the full model.

8.3.3 Added Sum of Squares

Now note that

y − 1β̂0 −Cγ̂ −Xβ̂ = y − 1
{
1

n
1�[y −Cγ̂ −Xβ̂]

}
−Cγ̂ −Xβ̂

= D1y −D1Cγ̂ −D1Xβ̂

= D1y −D1C
{
(C�D1C)−1C�D1[y −Xβ̂]

}
−D1Xβ̂

= D1y −D1C(C�D1C)−1CD1y −D1CXβ̂

= [D1C −D1CX(X�D1CX)−1X�D1C ]y

It follows that

(y − 1β̂0 − Cγ̂ − Xβ̂)�(y − 1β̂0 − Cγ̂ − Xβ̂) = y�D1Cy − β̂
�
X�D1CXβ̂

Note that y�D1Cy is the error sum of squares for the model which has only the
covariates C. Thus

β̂
�
X�D1CXβ̂

is the additional sum of squares explained by the covariates X in the presence of C.
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8.3.4 Identity of Regression Coefficients

Also note that the estimates of β are the same without C in the model if and only if
C�D1X = O, i.e., the covariates in C are uncorrelated with the covariates in X.

8.3.5 Likelihood and Bayesian Results

The likelihood for α is given by

L (α;y) =
f(y;α, σ2)

f(y; α̂, σ2)
=

(2πσ2)−n/2 exp
{
− 1

2σ2 (y − Zα)�(y − Zα)
}

(2πσ2)−n/2 exp
{
− 1

2σ2 (y − Zα̂)�(y − Zα̂)
}

This reduces to

L (α;y) = exp

{
− 1

2σ2
(α− α̂)�Z�Z(α− α̂)

}

It can be shown that the likelihood for, say, αq is

exp

{

−
(αq − α̂q)

2z�q DZ1zq

2σ2

}

It follows that the likelihood function for any regression coefficient is of the form

exp

{

− (β − β̂)2

2var(β̂)

}

which is simply based on the sampling distribution of β̂.
This result holds exactly for the linear regression model but only approximately

for other generalized linear models.
For Bayesian inference on regression parameters the likelihood result just

obtained along with the assumption that the priors are relatively flat yields the result
that the posterior distribution of β is normal with center at β̂ and variance equal to
the sampling variance of β̂.

The last two results explain why there is little numerical difference in the results
obtained for frequentist, likelihood, and Bayesian approaches to linear models
despite the enormous conceptual and interpretation differences.
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8.4 Interpretation of the Coefficients

Consider a regression model with just two covariates, x1 and x2, and an inter-
cept, i.e.,

E(Y ) = β0 + β1x1 + β2x2

If x2 is increased by 1 unit the expected response is

E(Y ) = β0 + β1x1 + β2(x2 + 1)

and hence the difference between the expected responses is β2. A similar result
holds for β1.

Thus the interpretation of the coefficient of covariate x in a regression model is
that it represents the change in the expected response if that covariate is increased
by one unit and all other covariates are unchanged.

8.5 Factors as Covariates

A special role in regression models is played by covariates which define a
categorization of the response variable, i.e., gender, ethnicity, income level, disease
status, exposure status, etc.

In such cases it makes no sense to fit the covariate as is. Instead we assume that
the covariate has been coded so that its values are 1, 2, . . . , q.

The covariate in this case is called a factor and the values 1, 2, . . . , q are called
its levels. q new covariates f1x, f2x, . . . , fqx are now constructed of the form

f1x =

{
1 xi = 1

0 otherwise
, f2x =

{
1 xi = 2

0 otherwise
, · · · fqx =

{
1 xi = q

0 otherwise

Obviously if an intercept is included in the model we need only include q − 1 of
these covariates. It is customary and useful in subsequent interpretations to let level
1 of the factor be the control against which all other levels will be compared. Under
the model with x coded as a factor the expected response for observations at level 1
of the factor is

E(Y ) = β0

and the expected response for observations at level j of the factor is

E(Y ) = β0 + γj
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Hence the coefficient of a covariate corresponding to a level of a factor represents
the difference between the expected response at level j and the expected response
at level 1; all other covariates held constant.

If we have two covariates x1 and x2, both of which are factors with q1 levels for
x1 and q2 levels for x2, the situation is slightly more complicated. We first set up q1
new covariates for x1 and q2 covariates for x2. We use in the model only q1 − 1 of
the covariates for x1 and q2 − 1 covariates for x2.

In addition we recognize that the difference between the expected response for
the jth level of factor x1 and the first level of factor x1 may depend on the level
of x2. For example, the effect of a hormone supplement (high or low) may differ
between males and females. This is called interaction and is captured in the model
by defining (q1 − 1)(q2 − 1) new covariates as the product of the covariates for
each factor. The regression coefficients of these covariates are called interaction
coefficients.

The resulting model can be summarized in the following table of expected
responses.(In the table α’s indicate factor x1, the γ’s indicate factor x2, and the
αγ’s indicate the interaction coefficients.)

Level of Level of factor x2

factor x1 1 2 · · · q2
1 β0 β0 + γ2 · · · β0 + γq2
2 β0 + α2 β0 + α2 + γ2 + (αγ)22 · · · β0 + α2 + γq2 + (αγ)2q2
...

...
...

. . .
...

q1 β0 + αq1 β0 + αq1 + γ2 + (αγ)22 · · · β0 + αq1 + γq2 + (αγ)q1q2

It is obvious that the interaction coefficients are the difference between two
differences, i.e.,

(αγ)jk = [E(Y )jk − E(Y1k)]− [E(Yj1)− E(Y11)]

and measures the extent to which the effect of x1 differs between level k of factor
x2 and level 1 of factor x2.

Example. For two factors x1 and x2, each at two levels with x1 representing disease
status and x2 representing exposure status, we the table of expected responses is

Disease Exposure status
status Not exposed Exposed
No disease β0 β0 + γ2
Disease β0 + α2 β0 + α2 + γ2 + (αγ)22

In this table the effect of exposure in the no disease group is

E(Y |E,ND)− E(Y |NE,ND) = [β0 + γ2]− [β0] = γ2
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The effect of exposure in the diseased group is

E(Y |E,D)−E(Y |NE,D) = [β0+α2+γ2+(αγ)22]− [β0+α2] = γ2+(αγ)22

It follows that the difference is

exposure effect in D − exposure effect in ND = (αγ)22

The interaction coefficient (αγ)22 thus measures whether exposure has the same
effect in the diseased group as it does in the not diseased group.

8.6 Exercises

1. Let Y1, Y2, . . . , Yn be normal with

E(Yi) = μ ; i = 1, 2, . . . , n

and

C(Yi, Yj) =

{
σ2 j = i

ρσ2 j 
= i

where ρ > −1/(n− 1).

(a) Find the expected value and variance of Y .
(b) What implications does this have for confidence intervals, on μ, etc.?
(c) Why does ρ, the correlation between Yi and Yj , have to be larger than

− 1/(n− 1)?

2. In a regression model it is commonly said that the interpretation of β2 is the
change in the expected response if the covariate x2 changes by 1 unit with all
other covariates held fixed.

(a) Suppose that the regression model is

E(Yi) = β0 + β1xi + β2x
2
i

i.e., x1 = x and x2 = x2. Obviously we can’t hold x fixed and change x2 by
1 unit. How do we interpret β2 in this case?

(b) Suppose the regression model is

E(Yi) = β0 + β1x1i + β2x2i + β3x1ix2i

Obviously we can’t hold x1 and x2 fixed and change x1x2 by 1 unit. How do
we interpret β3 in this case?
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3. Let Y1, Y2, . . . , Yn be independent and normally distributed with

E(Yi) = μi and V(Yi) = σ2

Let x11, x22, . . . , xn1 and x12, x22, . . . , xn2 be the values of two covariates
x1 and x2.

(a) Let the large model be defined by

μi = β0 + β1xi1 + β2xi2

Show that the maximum likelihood estimates of β0, β1, β2 and σ2 in the large
model are given by

β̂lm
0 = y − β̂lm

1 x1 − β̂lm
2 x2

σ̂2
lm =

n∑

i=1

(yi − β̂lm
0 − β̂lm

1 xi1 − β̂lm
2 xi2)

2/n

where β̂lm
1 and β̂lm

2 satisfy

c11β̂
lm
1 + c12β̂

lm
2 = c1y

c12β̂
lm
1 + c22β̂

lm
2 = c2y

and

c11 =
∑n

i=1(xi1 − x1)
2

c22 =
∑n

i=1(xi2 − x2)
2

c12 =
∑n

i=1(xi1 − x1)(xi2 − x2)

c1y =
∑n

i=1(xi1 − x1)(yi − y)

c2y =
∑n

i=1(xi2 − x1)(yi − y)

Hence show that the maximized likelihood for the large model is given by

(2πσ̂2
lm)−n/2 exp

{
−n

2

}

(b) Now consider the small model defined by

μi = β0 + β1xi1

Show that the maximum likelihood estimates of β0, β1, and σ2 under the small
model are given by

β̂sm
0 = y − β̂sm

1 x1

σ̂2
sm =

n∑

i=1

(yi − β̂sm
0 − β̂sm

1 xi1)
2/n
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where β̂sm
1 satisfies

c11β̂
sm
1 = c1y

Hence show that the maximized likelihood for the small model is given by

(2πσ̂2
sm)−n/2 exp

{
−n

2

}

(c) From parts (a) and (b) show that the likelihood ratio for the small model vs
the large model is given by

(
σ̂2
lm

σ̂2
sm

)n/2

(d) From (a) show that

β̂lm
1 = β̂sm

1 − c12
c11

β̂lm
2

(e) Also from (a) show that

β̂lm
2 =

c2y − c12
c11

c1y

c22 − c212
c11

(f) Using (d) and (e) show that

rlmi =: yi − β̂lm
0 − β̂lm

1 xi1 − β̂lm
2 xi2

reduce to

rlmi = yi − y − β̂lm
1 (xi1 − x1)− β̂lm

2 (xi2 − x2)

= yi − y − β̂sm
1 (xi1 − x1) + β̂lm

2

[
xi2 − x2 −

c12
c11

(xi1 − x1)

]

Thus show that

SSElm =:

n∑

i=1

[rlmi ]2 =

n∑

i=1

(yi − y)2 − [β̂sm
1 ]2c11 − [β̂lm

2 ]2
[
c22 −

c212
c11

]

(g) Show that

yi − β̂sm
0 − β̂sm

1 xi1 = yi − y − β̂sm
1 (xi1 − x1)
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and hence that

SSEsm =:

n∑

i=1

(yi − β̂sm
0 − β̂sm

1 xi1)
2 =

n∑

i=1

(yi − y)2 − [β̂sm
1 ]2c11

(h) From (f) and (g) it follows that

σ̂2
lm

σ̂2
sm

=
SSElm

SSEsm
=

SSElm

SSElm + [β̂lm
2 ]2

[
c22 − c212

c11

]

Explain why rejecting when the likelihood ratio is small is equivalent to
rejecting when β̂lm

2 is large relative to σ̂2
lm.

(i) Find the expected value, variance, and distribution of β̂lm
2

(j) It can be shown that

SSElm

(n− 3)σ2

d∼ χ2(n− 3)

and is independent of β̂lm. Explain why the likelihood ratio test of β2 = 0
is equivalent to rejecting using a Student’s t statistic with n − 3 degrees of
freedom.



Chapter 9
Other Estimation Methods

9.1 Estimation Using Empirical Distributions

9.1.1 Empirical Distribution Functions

Suppose that we have sample data x1, x2, . . . , xn assumed to be observed values of
independent random variables each having the same distribution function F where

F (x) = P(X ≤ x)

Define new random variables Zi as the indicator functions of the interval
(−∞, x], i.e.,

Zi(x) =

{
1 Xi ≤ x

0 otherwise

Note that the Zi(x) are independent and are Bernoulli random variables with
parameter F (x), i.e.,

P(Zi(x) = 1) = P(Xi ≤ x) = F (x)

It follows that, for any fixed x, we have that

Sn(x) =

n∑

i=1

Zi(x)

has a binomial distribution with parameters F (x) and n.

© Springer International Publishing Switzerland 2014
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Definition 9.1.1. The empirical distribution function, F̂n(x) is defined as

F̂n(x) =
Sn(x)

n

The empirical distribution function is the natural estimator of F , the population
distribution function, for the following reasons:

1. F̂n(x) is unbiased, i.e.,

E[F̂n(x)] = F (x) for any x

2. The variance of F̂n(x) is given by

V

[
F̂n(x)

]
=

F (x)[1 − F (x)]

n

3. F̂n(x) is consistent, i.e.,

F̂n(x)
p−→ F (x) for any x

The above results follow from the fact that nF̂n(x) = Sn is binomial with
parameters n and F (x).

There are two important additional properties of F̂n(x):

1. Glivenko–Cantelli Theorem
Under the assumption of iid Xi’s we have

sup
x

∣
∣
∣F̂n(x) − F (x)

∣
∣
∣

p−→ 0

i.e., the maximum difference between F̂n(x) and F (x) is small for large n.
2. Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality

Under the assumption that the Xi’s are iid

P

(
sup
x

|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 for any ε > 0

The implication of the last result is that if we define

L(x) = max{F̂n(x) − εn, 0} and U(x) = min{F̂n(x) + εn, 1}

where

εn =

√
ln(2/α)

2n
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then we have that

P {L(x) ≤ F (x) ≤ U(x) for all x} ≥ 1− α

i.e., we have a 100(1− α)% confidence interval for F (x).

1. The previous two results, particularly the first, have been called the fundamental
theorems of mathematical statistics because they show that we can, with high
probability, learn about F using a random sample from a population assumed to
have distribution F .

2. In most statistical applications we can do better (use smaller n) since we assume
that F is specified by a small number of parameters.

3. In fact, in many cases, we are not interested in F itself but some other function
such as the mean or variance of the population.

9.1.2 Statistical Functionals

In mathematics a functional is a function whose domain is a set of functions.

Definition 9.1.2. A statistical functional, θ = T (F ), is any function of the
distribution function F .

Almost any parameter of interest is a statistical functional, e.g., the mean,
median, and quantiles. Since the sample distribution function is the natural estimate
of the distribution function the following gives the natural estimates of statistical
functionals.

Definition 9.1.3. The plug-in estimator of the statistical functional θ = T (F ) is

θ̂n = T (F̂n)

i.e., to estimate T (F ) plug in (substitute) F̂n for F .

9.1.3 Linear Statistical Functionals

One important class of statistical functionals are the linear statistical functionals.

Definition 9.1.4. A linear statistical functional is a statistical functional of the
form

T (F ) =

∫
r(x)dF (x) for some function r
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where by
∫
r(x)dF (x) we mean

∑

x∈X
r(x)f(x) or

∫

x∈X
r(x)f(x)dx

depending on whether F is discrete or continuous.

For linear functionals we have the following two important results:

(i) The plug-in estimator for a linear functional is

T (F̂n) =
1

n

n∑

i=1

r(Xi)

(ii) Assuming that we can find an estimate, ŝ.e., of the standard error of T (F̂n), an
approximate 100(1− α) confidence interval for T (F ) is given by

T (F̂n) ± z1−α/2ŝ.e.

The reason for the second statement is that it is often true that

T (F̂n − T (F ))

ŝe
d−→ N(0, 1)

We then use the standard pivotal argument for the normal distribution to obtain
the approximate confidence interval for T (F ).

9.1.4 Quantiles

One other class of statistical functionals is of major importance, the quantiles of a
distribution.

Definition 9.1.5. If F has a density function f then the pth quantile of F is
defined by

T (F ) = F−1(p)

The plug-in estimate of the p quantile is

T (F̂n) = inf
x
{x : F̂n(x) ≥ p}

and is called the pth sample quantile.
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The following are important quantiles:

p Name Estimate
1
10

− 9
10

Deciles Sample deciles
1
4
, 3

4
Quartiles Sample quartiles

1
2

Median Sample median

9.1.5 Confidence Intervals for Quantiles

Let X1, X2, . . . , Xn be independent with distribution function F . Suppose that we
want a confidence interval for ηp, the pth quantile of F , i.e.,

p = F (ηp) = P(Xi ≤ ηp)

Define Z1, Z2, . . . , Zn by

Zi =

{
1 if Xi < ηp
0 otherwise

The Zi are independent Bernoulli with

P(Zi = 1) = P(Xi < ηp) = p

It follows that

Sn =

n∑

i=1

Zi is binomial (n, p)

Now define the order statistics, Xn1, Xn2, . . . , Xnn, as the ordered values of
X1, X2, . . . , Xn from smallest to largest.

Note that

Sn ≥ j ⇐⇒ Xnj < ηp

and

Sn ≤ k − 1 ⇐⇒ Xnk ≥ ηp

These last two facts allow us to determine confidence limits for ηp since

P(Xnj < ηp ≤ Xnk) = P(j ≤ Sn ≤ k − 1)
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The last probability can be obtained from the binomial distribution with
parameter p, i.e.,

P(j ≤ Sn ≤ k − 1) = P(Sn ≤ k − 1)− P(Sn ≤ j − 1)

Thus all we need to do is find j and k such that

P(Sn ≤ k − 1)− P(Sn ≤ j − 1) ≥ 1− α

and we will have a 100(1− α)% confidence interval for ηp.
This interval is nonparametric since we do not need to assume the specific form

of F . In cases where we are willing to assume a specific form for F we can do
better, i.e., have a shorter confidence interval.

Where to start for j and k? Note that

Sn − np
√
np(1− p)

≈ N (0, 1)

so that

P(Sn ≤ k − 1) ≈ P

(

Z ≤ k − 1− np
√
np(1− p)

)

i.e.,

k − 1 ≈ np+ z1−α/2

√
np(1− p)

Similarly

j − 1 ≈ np− z1−α/2

√
np(1− p)

Start with this j and k and iterate.

9.2 Method of Moments

The method of moments is related to the plug-in method. If

αj = E(Xj)

the plug-in method of estimation equates αj to the sample moment

α̂j =
1

n

n∑

i=1

xj
i

where xi denotes the ith observation from a random sample. This defines the
estimate of αj
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The method of moments uses the fact that the population moments are functions
of the parameters θ and solves the equations

αj(θ) = α̂j for j = 1, 2, . . . , k

assuming that there are k parameters

θ1, θ2, . . . , θk

The method of moments enjoys some reasonable properties in the frequentist
paradigm:

1. Consistency, i.e., θ̂n
p−→ θ

2. Asymptotic normality, i.e.,

√
n(θ̂n − θ)

d−→ N(0,Σ)

where Σ is determined by the solution to the equations defining the estimates.

9.2.1 Technical Details of the Method of Moments

Consider n iid random variablesX1, X2, . . . , Xn and define the sample moments by

X
1
=

1

n

n∑

i=1

Xi, X
2
=

1

n

n∑

i=1

X2
i , . . . , X

k
=

1

n

n∑

i=1

Xk
i

and let

αr = E(Xr) and μr = E(X − μ)r where μ = E(X)

be the corresponding population moments (moments of the distribution of X).
Provided that the expected value of X2k exists the central limit theorem

guarantees that

Y = (X
1
, X

2
, . . . , X

k
)

are jointly asymptotically normal. More precisely,

√
n[Y − E(Y)]

d−→ N (0 , Σ)
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where

E(Y) =

⎡

⎢
⎢
⎢
⎣

E(X)

E(X2)
...

E(Xk)

⎤

⎥
⎥
⎥
⎦

and Σ is given by

⎡

⎢
⎢
⎢
⎣

var(X) cov(X,X2) · · · cov(X,Xk)

cov(X2, X) var(X2) · · · cov(X2, Xk)
...

...
. . .

...
cov(Xk, X) cov(Xk, X2) · · · var(Xk)

⎤

⎥
⎥
⎥
⎦

To obtain approximations to the sampling distributions of method of moment
estimators we use the Delta method. Let g be a continuous and differentiable
function and define

∇g(α) =

⎡

⎢
⎢
⎢
⎢
⎣

∂g(y1,y2,...,yk)
∂y1

∂g(y1,y2,...,yk)
∂y2

...
∂g(y1,y2,...,yk)

∂yk

⎤

⎥
⎥
⎥
⎥
⎦

y1=α1,y2=α2,...,yk=αk

then the Delta method applies and we have that

√
n[g(X

1
, X

2
, . . . , X

k
)− g(α1, α2, . . . , αk)]

converges in distribution to a

N
(
0, θ2

)

distribution where

θ2 = ∇�
g (α)Σ∇g(α)

More generally if g1, g2, . . . , gr are continuous and differentiable functions let
g = (g1, g2, . . . , gr) and let

∇g(y) =
∂g(y)

∂y
=

⎡

⎢
⎢
⎢
⎢
⎣

∂g1(y)
∂y1

∂g2(y)
∂y1

· · · ∂gr(y)
∂y1

∂g1(y)
∂y2

∂g2(y)
∂y2

· · · ∂gr(y)
∂y2

...
...

. . .
...

∂g1(y)
∂yk

∂g2(y)
∂yk

· · · ∂gr(y)
∂yk

⎤

⎥
⎥
⎥
⎥
⎦

be evaluated at
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y1 = α1, y2 = α2, . . . , yk = αk

to obtain ∇g(α), then

√
n

⎡

⎢
⎢⎢
⎢
⎣

g1(X
1

n, X
2

n, . . . , X
k

n)− g1(α1, α2, . . . , αk)

g2(X
1

n, X
2

n, . . . , X
k

n)− g2(α1, α2, . . . , αk)
...

gr(X
1

n, X
2

n, . . . , X
k

n)− gr(α1, α2, . . . , αk)

⎤

⎥
⎥⎥
⎥
⎦

converges in distribution to a

N (0,V)

distribution where

V = ∇�
g (α)Σ∇g(α)

9.2.2 Application to the Normal Distribution

The following are some general relationships between the central moments (the μ’s)
and the moments (the α’s) which are valid for any distribution.

μ1 = 0

α1 = μ

μ2 = α2 − μ2

α2 = μ2 + μ2

μ3 = α3 − 3α2 + μ3

α3 = μ3 + 3α2μ− μ3

μ4 = α4 − 4α3μ+ 6α2μ
2 − 3μ4

α4 = μ4 + 4α3μ− 6α2μ
2 + 3μ4

Suppose now that X is normal with mean μ and variance σ2. Then we have

μ1 = 0

μ2 = σ2

μ3 = 0

μ4 = 3σ4
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and hence for the normal distribution

α1 = μ

α2 = σ2 + μ2

α3 = 3σ2μ+ μ3

α4 = μ4 + 6μ2σ2 + 3σ4

It follows that

var(X) = σ2

cov(X,X2) = E(X3)− E(X2)E(X)

= 3σ2μ+ μ3 − (σ2 + μ2)μ

= 2μσ2

var(X2) = E(X4)− [E(X2)]2

= μ4 + 6μ2σ2 + 3σ4 − (σ2 + μ2)2

= 2σ4 + 4μ2σ2

Thus

√
n

[
X

1 − E(X)

X
2 − E(X2)

]

converges in distribution to

N

([
0

0

]
,

[
σ2 2μσ2

2μσ2 2σ4 + 4μ2σ2

])

Example 1. Asymptotic distribution of s2. If we let

g(x1, x2) = x2 − [x1]2

Then

g(x1, x2) =
1

n

n∑

i=1

x2
i − (x)2 =

1

n

n∑

i=1

(xi − x)2

and hence

∂g(x1, x2)

∂x1 = −2x1

∂g(x1, x2)

∂x2 = 1
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Evaluating at x1 = μ and x2 = σ2 + μ2 yields

∂g(μ, σ2)

∂μ
= −2μ

and

∂g(μ, σ2)

∂σ2
= 1

It follows that the asymptotic distribution of S2 satisfies

√
n(S2 − σ2)

d−→ N(0, v2)

where

v2 = [−2μ, 1]

[
σ2 2μσ2

2μσ2 2σ4 + 4μ2σ2

] [
−2μ

1

]

=
[
0, 2σ4

] [−2μ

1

]

= 2σ4

Since X
1
= X and S2 are independent it follows that their joint distribution

satisfies

√
n

[
X − μ

S2 − σ2

]
d−→ N

([
0

0

]
,

[
σ2 0

0 2σ4

])

Example 2 (Effect size). The effect size is defined as

μ

σ

It is a widely used measure of the importance of a variable. If we let

g(x, s2) = x1(s
2)−1/2

then we have a natural estimate of the effect size based on the method of moments.
Note that

∂g(x, s2)

∂x
= (s2)−1/2

∂g(x, s2)

∂s2
= −x(s2)−3/2/2
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Evaluating these at x = μ and s2 = σ2 we have

∂g(μ, σ2)

∂μ
=

1

σ

and

∂g(μ, σ2)

∂σ2
= − μ

2σ3

It follows that

√
n

(
x

s
− μ

σ

)
d−→ N(0, v2)

where

v2 =
[

1
σ − μ

2σ3

]
[
σ2 0

0 2σ4

] [
1
σ

− μ
2σ3

]

which reduces to

v2 = 1 +
μ2

2σ2

Example 3 (Coefficient of variation). The coefficient of variation is defined as

σ

μ

and is a widely used measure of variability.
If we let cv = 1

x/s then we have a natural estimate of the coefficient of variation.
It follows that

√
n

(
s

x
− σ

μ

)
d−→ N(0, v21)

where

v21 =

(
−σ2

μ2

)(
1 +

μ2

2σ2

)(
−σ2

μ2

)

which reduces to

v21 =
σ2

μ2

(
1

2
+

σ2

μ2

)
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9.3 Estimating Functions

The method of moments and maximum likelihood are examples of obtaining
estimates using estimating functions.

Definition 9.3.1. A function g such that the equation

g(y; θ̂) = 0

defines θ̂ as an estimate of θ is called an estimating function. The equation itself
is called an estimating equation.

Definition 9.3.2. The estimating function g is an unbiased estimating function if

E[g(Y; θ)] = 0 for all θ

9.3.1 General Linear Model

Example 1. In a general linear model, i.e.,

E(Y) = Xβ ; var (Y) = σ2I

where Y is n× 1, X is n× (p+ 1), the estimating function

g(y;β) = X�(y − Xβ)

defines the least squares estimate of β.

9.3.2 Maximum Likelihood

Example 2. If Y has density f(y ; θ) the estimating function

g(y ; θ) =
∂ ln[f(y ; θ)]

∂θ

defines the maximum likelihood estimate of θ.
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9.3.3 Method of Moments

Example 3. Let Y1, Y2, . . . , Yn be iid f(y ; θ) and define

ȳr =

∑n
i=1 yi
n

; μr(θ) = Eθ(Y
r)

Then the estimating function g(y; θ) with rth component equal to

ȳr − μr(θ)

defines the moment estimator of θ.

9.3.4 Generalized Linear Models

Example 4. Let Y1, Y2, . . . , Yn be independent where fi is of the exponential
type, i.e.,

fi(yi ; θ) = exp

{[
yiθi − b(θi)

ai(φ)

]
+ ci(yi ; φ)

}

Then it is easy to show that

μi = E(Yi) = b(1)(θi)

A function h such that

h(μi) = h[b(1)(θi)] = x�
i β

is called a link function and ηi = h(μi) is called a linear predictor.
The link is called canonical if

ηi = xT
i β = θi

and in this case

μi(β) = b(1)(θi)

For canonical links the maximum likelihood estimating equations are given by

n∑

i=1

[
yi − μi(β)

ai(φ)

]
∂θi
∂βj

= 0

for j = 1, 2, . . . , p
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Note that

∂μi(β)

∂βj
= b(2)(θi)

∂θi
∂βj

so that

∂θi
∂βj

=

∂μi(β)
∂βj

b(2)(θi)

Thus the maximum likelihood equations are

n∑

i=1

[
yi − μi(β)

vi

]
∂μi(β)

∂βj
for j = 1, 2, . . . , p

where vi is the variance of Yi. In matrix form the maximum likelihood equations are

n∑

i=1

[
∂μi(β)

∂β

]� [
yi − μi(β)

vi

]
= 0

These equations specialize to the general linear model, the logistic regression
model, the log linear model, and many other commonly used models.

Each of the above examples yields an unbiased estimating function. In R we have
the packages LM and GLM.

9.3.5 Quasi-Likelihood

Example 5. The estimating function

n∑

i=1

[
∂μi(β)

∂β

]�
v−1
i (yi − μi(β))

where vi is the variance of Yi defines the quasi-likelihood estimator and it can be
used regardless of whether the family is of the exponential type since it depends
only on the mean and variance of Yi.

9.3.6 Generalized Estimating Equations

Example 6. Consider clustered data (either defined as repeated measures over time
on the same individual or as clusters defined by family or environmental facts).
Specifically let the observations (responses) from the ith cluster be

(yi1, yi2, . . . , yini) for i = 1, 2, . . . ,m



116 9 Other Estimation Methods

Let

E(Yij) = μij where h(μij) = x�
ijθ

where h is a link function and let

μi(θ)
� = (μi1(θ), μi2(θ), . . . , μini(θ))

for i = 1, 2, . . . ,m.
The GEE estimating equations are defined by

m∑

i=1

[
∂μi(θ)

∂θ

]�
[V(Yi)]

−1
[yi − μi(θ)] = 0

In R there is a package GEEpack (and others). These methods were introduced
by Liang and Zeger. See Diggle et al. [11] for details.

9.4 Generalized Method of Moments

Suppose there exists a function g X ×Θ �→ R
p such that

μg(θ0) = E {g(X, θ0)} = 0

where μg(θ0) 
= 0 for θ 
= θ0.
The generalized method of moments replaces E by Ê, the sample average, to

obtain

μ̂g(θ) =
1

n

n∑

i=1

g(Xi, θ)

Then θ̂ is chosen to minimize

μ̂g(θ)
�Wμ̂g(θ)

where W is a weighting matrix (assumed positive definite). The optimum choice of
W is Σ where

Σ = Varθ0

{
∂g(Y, θ)

∂θ

}
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Under weak conditions, such a θ̂ satisfies:

• Consistency
• Asymptotic normality, i.e.,

√
n(θ̂ − θ0)

d−→ MVN(0,G�ΣG)

where

G =
∂g(Y, θ)

∂θ

All of these facts arise from routine Taylor’s expansions. In R there is a package
GMM.

9.5 The Bootstrap

Most estimation methods have the property that they produce estimators which have
the property that

θ̂n − θ

s.e.(θ̂n)

d→ N(0, 1)

so that

θ̂n ± z1−α/2s.e.(θ̂n)

is an approximate 100(1− α)% confidence interval for θ.

9.5.1 Basic Ideas

The bootstrap, developed by Bradley Efron, is a method which can be used, with few
assumptions, to estimate the standard error of a statistic and to calculate approximate
confidence intervals for the parameter the statistic estimates.

Assume that Tn is a statistic, that is, Tn is some function of the observed data
which is a random sample from F . The variance of Tn and distribution of Tn is of
interest.

We write

VF (Tn)

to denote this variance and note that it depends on the unknown F .
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VF(Tn) VFn
^ (Tn) Vboot(Tn)E A

The Bootstrap

Fig. 9.1 The bootstrap

The following two steps constitute the basis of the bootstrap (Fig. 9.1):

1. Estimate VF (Tn) by V
̂Fn
(Tn)

2. Approximate V
̂Fn
(Tn) by simulation

1. The approximation error of F by the sample distribution function is the most
likely of the approximations to be large since it requires that the sample
distribution function be close, in some sense, to the true distribution function.

2. Thus it will work well if the sample is “representative” and if n is not too small.
3. The approximation error of the sampling distribution of Tn, assuming that F̂n is

the true distribution function, by simulation is expected to be small.

9.5.2 Simulation Background

1. If Y1, Y2, . . . , YB is a random sample from a population with distribution G then
the law of large numbers implies that

1

B

B∑

i=1

Yj
p−→ E(Y )

i.e., if we draw a (large) sample from population G we can approximateE(Y ) by
the sample mean.

2. This result is easily generalizable to any function of Y , say h(Y ), which has
finite mean, i.e.,

1

B

B∑

i=1

h(Yi)
p−→ E[h(Y )]

3. Assuming that variances exist it follows that

1

B

B∑

i=1

(Yi − Y B)
2 =

1

B

B∑

i=1

Y 2
i − (Y B)

2

converges in probability to E(Y 2)− [E(Y )]2, i.e., to V(Y ).
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4. Thus the sample variance of the Yi’s can be used to approximate the variance
of G. It follows that if we can simulate random samples from a population with
distribution G, then we can get a good approximation to the expected value and
variance of G.

R and other computer packages provide functions which allow selection of
random samples from a variety of distributions, e.g., rnorm, rgamma, rbinom, etc.
For other distributions and to understand how random samples are generated recall
the following basic result from probability theory.

If X is a random variable with a continuous distribution function F then the
random variable U = F (X) has a uniform distribution on the interval [0, 1].

Proof.

FU (u) = P(U ≤ u)

= P({x : F (x) ≤ u})

= P({x : x ≤ F−1(u)})

= F [F−1(u)]

= u

This result is called the probability integral transformation and provides,
among other things, a method of obtaining a random observation from any
continuous distribution. Simply generate a random uniform, then, F−1(U)has
distribution F . More generally, generate u1, u2, . . . , un, independent with each
observation on a uniform on [0, 1]. Then

x1 = F−1(u1), x2 = F−1(u2), . . . , xn = F−1(un)

is a random sample from F .
Computer scientists have discovered much more efficient ways to generate such

samples, but the above result is important because it shows that we can always
simulate from any distribution function.

9.5.3 Variance Estimation Using the Bootstrap

It is clear from the previous section that we can use simulation to approximate
V

̂Fn
(Tn). This requires the simulation of the distribution of Tn when the data are

assumed to have population distribution F̂n.
Note that F̂n puts probability mass 1/n on each sample point. Thus, drawing an

observation from F̂n is equivalent to drawing one point at random from the original
data set, i.e., to simulate
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X∗
1 , X

∗
2 , . . . , X

∗
n

from F̂n it is sufficient to draw n observations from the original data set
x1, x2, . . . , xn with replacement.

Assuming that F̂n adequately estimates F we thus have one sample from
the original distribution function. Hence we can, by simulation, approximate the
sampling variance of the statistic Tn.

Here is the bootstrap method for variance estimation.

1. Draw n observations x∗
1, x

∗
2, . . . , x

∗
n at random, with replacement from the

original data set.
2. Compute the statistic T ∗

n = g(x∗
1, x

∗
2, . . . , x

∗
n).

3. Repeat steps 1 and 2 a large number, B, of times to obtain

T ∗
n1, T

∗
n2, . . . , T

∗
nB

called the bootstrap replicates and their sample mean.

T
∗
n =

1

B

n∑

i=1

T ∗
ni

4. The bootstrap estimate of the variance of Tn is then given by

varbs =
1

B

B∑

i=1

(T ∗
ni − T

∗
n)

2

Note that T ∗
n1, T

∗
n2, . . . , T

∗
nB can be used to estimate the distribution function of

Tn (Fig. 9.2).

9.6 Confidence Intervals Using the Bootstrap

9.6.1 Normal Interval

There are many ways to find confidence intervals using the bootstrap.
If the distribution of Tn = θ̂n is approximately normal, then use

θ̂n ± z1−α/2ŝ.e.bs

In the R function boot.ci this method is called “norm.”
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F

X1 X2 Xi Xn−1 Xn

bst(1) bst(2) bst(i) bst(B−1) bst(B)

Random Sample of Size n from F

B Random Samples of Size n with Replacement from
XiX1( X2 Xn−1 Xn )... ...

Compute

g[bst(1)] g[bst(2)] g[bst(i)] g[bst(B−1)] g[bst(B)]

Approximate Distribution of g(X)

The Bootstrap Process

Fig. 9.2 The bootstrap process

9.6.2 Pivotal Interval

Recall that a pivot, p(Y, θ), is any function of a random variable Y and a parameter
θ such that the distribution of p(Y, θ) does not depend on θ.

Example. The best known example of a pivot is

Zn =

√
n(Y n − θ)

σ

where

Y n =
1

n

n∑

i=1

Yi

and the Yi’s are iid each normal with mean μ and known variance σ2. The
distribution of Zn is normal with mean 0 and variance 1 and does not depend on μ.

The standard inversion shows that

yn ± z1−α/2se

is a 100(1− α)% confidence interval for μ.
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The pivotal method for the bootstrap defines

Rn(θ̂, θ) = θ̂n − θ

and assumes that it is a pivot with distribution function H . If H is known, standard
inversion gives the confidence interval. Since H is unknown, it is estimated from
the quantiles of the bootstrap.

In the R function boot.ci, this interval is called “basic.”

9.6.3 Percentile Interval

Given the bootstrap replicates

θ̂∗n1, θ̂
∗
n2, . . . , θ̂

∗
nB

The percentile interval is simply defined as

[
θ∗α/2 , θ∗1−α/2

]

where θ∗α/2 is the α/2 quantile of the set of bootstrap replicates and θ∗1−α/2 is the
1− α/2 quantile of the set of bootstrap replicates.

In the R function boot.ci this interval is called “perc.”
The R library boot has a wide variety of bootstrap functions.

9.6.4 Parametric Version

There is also a parametric version of the bootstrap in which we

1. Assume the model density is known.
2. Estimate parameters by maximum likelihood or some other methods.
3. Use the estimates to draw random bootstrap samples from the known distribution,

substituting the estimated parameter values for the parameters.
4. Use the resulting bootstrap distribution to assess standard errors, confidence

limits, etc.
5. This version is particularly useful to check on approximations such as the delta

method.
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9.6.5 Dangers of the Bootstrap

All you ever learn using the bootstrap, without further modeling assumptions, are properties
of ̂Fn. Unless you have a way of saying how much and/or in what ways knowledge of ̂Fn

can be transformed into knowledge of F , the bootstrap can only tell you about ̂Fn, not
about F [46].

9.6.6 The Number of Possible Bootstrap Samples

If we have a sample size of n there are only
(
2n− 1

n− 1

)

possible bootstrap samples. To see this imagine n boxes defined by n− 1 lines

| | · · · | |

The first bootstrap observation can be put one of the n boxes, the second into n+ 1
possible positions, the third n+ 2, . . ., the nth into 2n− 1 positions.

1. The total is

n(n− 1) · · · (2n− 1) = (2n− 1)(n−1) =
(2n− 1)!

(n− 1)!

2. The balls can be ordered in n! ways so that the total number of possible samples is

(2n− 1)!

(n− 1)!n!
=

(
2n− 1

n− 1

)

3. Thus it would be possible to enumerate all the possible samples.

Recalling that (Stirling’s Approximation)

r! ≈ (2πr)−1/2rre−r

we have that
(
2n− 1

n− 1

)
≈ [2π(2n− 1)]−1/2(2n− 1)2n−1e−(2n−1)

[2πn]1/2nnen[2π(n− 1)]1/2(n− 1)n−1

=

[
2n− 1

2πn(n− 1)

]1/2 {n
[
2− 1

n

]}2n−1

nn
{
n
[
1− 1

n

]}n−1
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=

√
2− 1

n

2πn(1− 1
n )

[
2− 1

n

]2n−1

[
1− 1

n

]n−1

≈ (πn)−1/222n−1

Thus we have

n 5 10 15 20 30

Samples 102 105 108 1011 1017

One can also show that the original sample is the most probable of these to occur.



Chapter 10
Decision Theory

10.1 Introduction

• In this chapter we introduce some of the ideas and notation of decision theory.
• At one time it was thought that all statistical problems could be cast in the

decision theoretic framework and statistics could thus be reduced to a study of
optimization techniques.

• This subsided, partly due to the complexity of real-world problems and partly
due to the realization that inference was more subtle than optimization.

• Nevertheless some knowledge of the basic concepts is useful for consolidation
of ideas and as an introduction to Bayesian ideas.

10.1.1 Actions, Losses, and Risks

In the basic statistical model (X , f(x, θ),Θ) we consider an action space, A, which
represents all of the actions or decisions which the experimenter might consider
regarding θ.

Examples of actions include

1. The action space might be the parameter space itself. In this case we have the
estimation problem.

2. The action space might be deciding between two hypotheses H0 and H1. Here
the action space is A = {ao, a1} and we have a hypothesis testing problem.

3. The action space might be the selection of a subset of the parameter space where
we are confident that the subset contains the parameter. In this case we have an
interval estimation problem.

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__10
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Definition 10.1.1 (Loss function). Associated with each action and each value of
the parameter is a loss function, L, such that if we take action a when θ is the
true value of the parameter then we incur a loss L(θ, a), i.e., the loss function is a
mapping:

L : Θ×A �→ R

• Choice of a loss function depends on the action and the consequences of making
a wrong decision (choosing the wrong action).

• In certain problems conventional loss functions are typically chosen.

Example. In the estimation problem typical loss functions are

• Squared error loss L(θ, a) = (a− θ)2

• Absolute error loss L(θ, a) = |a− θ|
• 0–1 loss

L(θ, a) =

{
0 a = θ

1 a 
= θ

Example. In the hypothesis testing problem we choose

L(θ0, a) =

{
c0 a 
= θ0
0 a = θ0

L(θ1, a) =

{
c1 a 
= θ1
0 a = θ1

Definition 10.1.2 (Decision space). Given a sample space X and an action space
A the decision space, D, is defined by

if x ∈ X occurs then we take action a = d(x)

Thus a decision function maps the sample space to the action space, d : X �→ A,
and hence the decision space, D, is a collection of functions mapping X to A.

Definition 10.1.3. The risk function, R, is a function of d ∈ D and X defined by

R(θ, d) = Eθ[L(θ, d(X)]

The basic idea in decision theory is that the experimenter or decision maker
should

1. Compare decision functions based on their risk function.
2. Choose that decision function which minimizes the risk.
3. It is essentially a frequentist concept since risks are averages over the sample

space.
4. One central problem in decision theory is that there is usually no decision rule

which uniformly ( for all θ) minimizes the risk.
5. Therefore certain criteria are set up to reduce the number of decision rules and

then search for a decision rule in this smaller collection.
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10.2 Admissibility

Definition 10.2.1. If d and d
′

are two decision rules d is said to strictly domi-
nate d

′
if

(i) R(θ, d) ≤ R(θ, d
′
) for all θ

(ii) R(θ, d) < R(θ, d
′
) for at least one θ

Applying frequentist ideas we would prefer d to d
′
.

Definition 10.2.2. A decision rule is inadmissible if it is strictly dominated by
another decision rule and admissable otherwise.

Finding admissable decision rules is not easy.

10.3 Bayes Risk and Bayes Rules

Definition 10.3.1 (Bayes risk). If π is a prior distribution for θ then the Bayes risk
of the decision procedure δ for the prior π is

r(π, δ) = Eπ {R(θ, δ)}

The Bayes decision rule minimizes the Bayes risk.

Note that

r(π, δ) =

∫

Θ

{∫

X
L[θ, δ(x)]f(x; θ)dm(x)

}
π(θ)dλ(θ)

Under weak regularity conditions we can write

r(π, δ) =

∫

Θ

{∫

X
L[θ, δ(x)]f(x; θ)dλ(x)

}
π(θ)dλ(θ)

=

∫

X

{∫

Θ

L(θ, δ(x)]f(x; θ)π(θ)dλ(θ)

}
dλ(x)

=

∫

X

{∫

Θ

L[θ, δ(x)]π(θ|x)dλ(θ)
}
f(x)dλ(x)

where

π(θ|x) = f(x; θ)π(θ)

f(x)
and f(x) =

∫

Θ

f(x; θ)π(θ)dλ(θ)
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A Bayes decision rule is thus one in which we minimize the posterior risk
∫

Θ

L[θ, δ(x)]π(θ|x)dλ(θ)

1. Under weak conditions a Bayes rule with a proper prior is admissable and
conversely every admissable decision rule, under weak conditions, is a Bayes
rule with respect to some prior (possibly improper).

2. This result is what is known as a complete class theorem in which all admissable
decision rules are characterized.

3. In frequentist statistics, the search for admissable rules involves a consideration
of Bayes rules.

4. In Bayesian statistics the focus is on Bayes rules from the start.

10.4 Examples of Bayes Rules

Consider a random sample of size n from the normal distribution with parameters
μ and σ2 where σ2 is known. Assume that the prior for μ is normal centered at μ0

and variance σ2
μ (both assumed known).

We need to find the posterior distribution of μ. We can write

Y = 1μ+ Z1

where Z1 is normal with mean vector 0 and variance covariance matrix σ2In.
We can also write

μ = μ0 + Z2

where Z2 is normal with mean 0 and variance σ2
μ and is independent of Z1.

It follows that

[
Y

μ

]
=

[
1

1

]
μ0 +

[
In 1

0� 1

] [
Z1

Z2

]

and hence the joint distribution of Y and μ is normal with

E

[
Y

μ

]
=

[
1

1

]
μ0

and

V

[
Y

μ

]
=

[
σ2In + σ2

μ11� σ2
μ1

σ2
μ1

� σ2
μ

]
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• The conditional distribution of μ given Y = y is thus normal (from theory on
the multivariate normal).

• It follows that the Bayes estimator of μ is thus the conditional expected value of
μ given Y = y (using squared error loss).

• The formula for this expected value is

E(μ) + C(μ,Y)[V(Y)−1[y − E(Y)]

or

μ0 + σ2
μ1

� [σ2I+ σ2
μ11�]−1

[y − 1μ0]

For a matrix of the form

aI+ b11�

The equation

[aI+ b11�][cI+ d11�] = acI+ (bc+ ad+ nbd)11� = I

shows that

[aI+ b11�]−1 = cI+ d11�

where

c =
1

a
; d =

−b

a(a+ nb)

In our case

a = σ2 ; b = σ2
μ

It follows that

σ2
μ1

� [σ2I+ σ2
μ11�]−1

= σ2
μ1

�
[
1

σ2
I−

σ2
μ

σ2 + nσ2
μ

]

which reduces to

σ2
μ

σ2 + nσ2
μ

1�
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and hence the Bayes estimator is

μ0 +
nσ2

μ

σ2 + nσ2
μ

(y − μ0)

which can be written as

nσ2
μy + σ2μ0

σ2 + nσ2
μ

The Bayes estimator can be written in two equivalent forms

ny
σ2 + μ0

σ2
μ

n
σ2 + 1

σ2
μ

i.e., as a weighted combination of the usual estimator y and the prior mean μ0 with
weights equal to the variance of y and the variance of the prior distribution.

A second way to rewrite the Bayes estimator is as

y − σ2

σ2 + nσ2
μ

(y − μ0)

i.e., the usual estimator is “shrunk” toward the prior mean. The amount of shrinkage
depends on how far away the sample mean is from the prior mean, the sample size
n, and the prior variance.

10.5 Stein’s Result

In 1955 Charles Stein proved the remarkable result that the sample mean as an
estimator of the mean of a multivariate normal distribution was inadmissible using
squared error loss if the dimension of the parameter vector was greater than or equal
to 3. This result lead to important insights into the nature of statistical procedures
and the development of shrinkage estimators, etc.

The Stein estimator is

δS(X) = [1− s(X)]X =

[

1− (p− 2)
∑p

j=1 X
2
j

]

X

where X is assumed multivariate normal with mean μ and variance covariance
matrix I.
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The following argument is due to Dennis Lindley. Suppose now that we have
the same assumptions as above, but we add the assumption that the μi are iid
N (0, σ2), i.e.,

μ is MVN (0, σ2I)

Then X and μ are jointly multivariate normal with mean vectors given by

E(X) = E[E(X|μ)] = E(μ) = 0 and E(μ) = 0

and variances and covariances given by

var (X) = E[var (X|μ)] + var [E(X|μ)]
= I+ var (μ)
= I+ σ2I

var (μ) = σ2I

cov (X,μ) = E(Xμ�)
= E{[E(X|μ]μ)�}
= E[μμ�]
= σ2I

It follows that the conditional distribution of μ given X is multivariate normal
with mean vector

δB(X) =
σ2

1 + σ2
X

so that the Bayes estimator of μ would be δB(X). We note that the Bayes estimator
may be written as

δB(X) =

(
1− 1

1 + σ2

)
X

Now note that since the Xi are independent each normal with mean 0 and
variance 1 + σ2 we have that

1

1 + σ2

p∑

j=1

X2
j ∼ χ2(p)

Thus a natural estimate of 1/(1 + σ2) is, for p ≥ 3,

p− 2
∑p

j=1 X
2
j

= s(X)

and we have another, simpler, derivation of the Stein estimator which shows that it
is not as mysterious as first thought.
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10.6 Exercises

1. The LINEX loss function for estimation is defined by

L(θ, a) = β
{
eα(a−θ) − α(a − θ)− 1

}
α 
= 0, β > 0

(a) Plot the LINEX loss function for b = 1 and α = 0.2, 0.5, 1 (use as horizontal
axis a− θ).

(b) Do the same for b = 1 and α = −0.2,−0.5,−1 (use as horizontal axis a−θ).
(c) Show that the posterior expected value of the LINEX loss function is

r(a, π) = E

{
β
[
eα(a−θ) − α(a− θ)− 1

]}

= β
{
eαaM(−α)− α(a− θ)− 1

}

where θ is the mean of the posterior and M(−α) is the moment generating
function of the posterior evaluated at t = −α.

(d) Find the Bayes rule for (c).
(e) Find the Bayes rule when the posterior is a normal distribution with mean μ

and variance σ2.



Chapter 11
Sufficiency

11.1 Families of Distributions

We consider a set of observations x thought to be a realization of some random
variable X whose probability distribution belongs to a set of distributions

F = {f(· ; θ) : θ ∈ Θ}

The distributions in F are indexed by a parameter θ, i.e., the parameter θ determines
which of the distributions is used to assign probabilities to X. The set Θ is called
the parameter space and F is called the family of distributions. F along with X
constitutes the probability model for the observed data.

Example 1. The binomial family in x is the observed number of successes in n
Bernoulli trials and X is the random variable with density in

F =

(
n

x

)
θx(1 − θ)n−x x = 0, 1, 2, . . . , n , θ ∈ [0, 1]

Example 2. The Poisson family defined by

x = (x1, x2, . . . , xn)

X = (X1, X2, . . . , Xn)

F =

{

fX(x; θ) =

n∏

i=1

θxie−θ

xi!
, 0 < θ < ∞ ; xi = 0, 1, 2, . . .

}

© Springer International Publishing Switzerland 2014
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Example 3. Let X = (X1,X2, . . . ,Xn) be iid as f where fF is defined by

F =

{

fX : fX(x) =

n∏

i=1

f(xi)

}

where f is any distribution on the nonnegative integers. This is a large family and
cannot be indexed by a parameter.

11.1.1 Introduction to Sufficiency

Consider the number of coin tosses which are heads out of 5 tosses. We might use
as the probability model X ∼ binomial(5, θ). To compare the evidence for θ1 vs θ2
given an observation of 4 heads, the Law of Likelihood suggests that we consider
the ratio

f(4, θ1)

f(4, θ2)
=

(
5
4

)
θ41(1 − θ1)(

5
4

)
θ42(1 − θ2)

of the two likelihoods. Note that in using the Law of Likelihood it is only the ratio
of likelihoods that matters.

Thus we need only define the likelihood L(θ) up to a multiplicative constant. For
example,

L(θ) =

(
5

4

)
θ4(1− θ)

achieves its maximum at θ = 4
5 so that

L (θ) =

(
5
4

)
θ4(1− θ)

(
5
4

) (
4
5

)4 (
1− 4

5

)

achieves its maximum of 1 at θ = 4
5 but is an equivalent version of the likelihood

since

L(θ1)

L(θ2)
=

L (θ1)

L (θ2)
=

θ41(1− θ1)

θ42(1− θ2)

Suppose now that we are given the additional information that the result of the
5 tosses was (H,H,H, T,H). Then X = (X1,X2,X3,X4,X5) represents the
results of 5 iid Bernoulli trials, i.e.,

fXi =

{
θ if xi = 1

1− θ if xi = 0
= θxi(1 − θ)1−xi
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and hence

fX(x; θ) =
5∏

i=1

fXi(xi; θ) = θ
∑5

i=1 xi(1− θ)5−
∑5

i=1 xi

Thus if we observe x = (1, 1, 1, 0, 1) then
∑5

i=1 xi = 4 and the likelihood ratio
for comparing θ1 to θ2 is given by

L(θ1)

L(θ2)
=

θ41(1− θ1)

θ42(1− θ2)

Note that this likelihood ratio is exactly the same as if we are only told that the
number of heads is 4.

It follows that knowing the order in which the observed results occurred does not
provide any additional information about θ. Put another way, knowing the number of
heads to be 4, i.e.,

∑5
i=1 xi = 4, the additional fact that x = (1, 1, 1, 0, 1) provides

no additional information about θ.
For Bernoulli trials this is true in general since

P

(

X = x; θ|
n∑

i=1

xi = s

)

=
P (X = x and

∑n
i=1 Xi = s)

P (
∑n

i=1 Xi = s)

=
P (
∑n

i=1 Xi = s; θ|X = x)P (X = x; θ)

P (
∑n

i=1 Xi = s)

=
δ(s,

∑n
i=1 xi)θ

∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

(
n
s

)
θs(1− θ)n−s

=

{
θs(1−θ)n−s

(ns)θs(1−θ)n−s
if s =

∑n
i=1 xi

0 otherwise

=

{
1

(ns)
if s =

∑n
i=1 xi

0 otherwise

where

δ(a, b) =

{
1 if a = b

0 otherwise

Thus if
∑n

i=1 Xi = s, X must be one of the
(
n
s

)
sequences consisting of s 1’s and

(n− s) 0’s. Each of these sequences has the same probability which is independent
of θ.
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In this example each of these possible sequences has probability 1
5 . If, given

S =
∑5

i=1 Xi = 4, we consider the Law of Likelihood for comparing θ1 to θ2 we
find that

fX|S=4((1, 1, 1, 0, 1); θ1)

fX|S=4((1, 1, 1, 0, 1); θ2)
=

1
5
1
5

= 1

i.e., if we know S = 4 knowledge of x provides no additional information about θ.
Thus knowledge of S is sufficient and S is an example of a sufficient statistic.

Definition 11.1.1. Given random variables X and a family of probability distri-
butions F for X, a statistic S is sufficient for the family F if the conditional
distribution of X given S is the same for every member of the family F .

Definition 11.1.2. If F is indexed by a parameter θ we say that S is a sufficient
statistic for θ if the conditional distribution of X given S is the same for all θ ∈ Θ.
Thus S is a sufficient statistic for θ if and only if

P (X ∈ A|S = s)

is the same for all θ ∈ Θ.

Note. X itself is a sufficient statistic since for any set A

P (X ∈ A|X = x) =

{
1 x ∈ A

0 otherwise

Naturally we are interested in sufficient statistics which “reduce” the amount of
data (i.e., have a smaller dimension).

11.1.2 Rationale for Sufficiency

The rationale for restricting attention to sufficient statistics runs as follows. Given
X = x and t(X) = t, if t is sufficient then the conditional distribution of X given
t(X) = t does not depend on θ. If we are given the value of t(X), say t, then we can
generate X

′
according to the conditional distribution, f(x|t). It follows that X

′
has

the same probability distribution as X and hence the inferences based on X
′

about
θ should be the same. In this context post-randomization which does not depend
on θ can provide no additional information about θ.
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11.1.3 Factorization Criterion

It can be difficult to find conditional distributions. Fisher and Neyman produced the
factorization criterion.

Theorem 11.1.1. Let X have pdf fX(x ; θ) for θ ∈ Θ. A statistic S = s(X) is a
sufficient statistic for θ if and only if there exist functions g and h such that

fX(x ; θ) = g(s(x) ; θ)h(x)

where h(x) does not depend on θ.

Example. Let X = (X1, X2, . . . , Xn) where the Xi are iid N(θ, 1). Then

fX(x ; θ) =
n∏

i=1

(
1√
2π

)
exp

{
− (xi − θ)2

2

}

=

(
1

2π

)n
2

exp

{
−
∑n

i=1(xi − θ)2

2

}

= exp

{
−n(x̄− θ)2

2

}[(
1

2π

)n
2

exp

{
−
∑n

i=1(xi − x̄)2

2

}]

It follows that s(X) = X̄ is a sufficient statistic for θ.

Example. Let X = (X1, X2, . . . , Xn) where the Xi are iid N(θ1, θ2) where

−∞ < θ1 < +∞ ; 0 < θ2 < +∞

Then

fX(x ; θ) =
n∏

i=1

(
1√
2πθ2

)
exp

{
− (xi − θ1)

2

2θ2

}

=

(
1

2πθ2

)n
2

exp

{
−
∑n

i=1(xi − θ1)
2

2θ2

}

=

(
1

θ2

)n
2

exp

{
−
∑n

i=1(xi − x̄)2

2θ2
− n(x̄− θ1)

2

2θ2

}[(
1

2π

)n
2

]

and it follows that

s(X) =

(

X̄,

n∑

i=1

(Xi − X̄)2

)

is a sufficient statistic for θ = (θ1, θ2).
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More generally, if X has pdf fX(x) ∈ F , then a statistic S = s(X) is a sufficient
statistic for F if and only if

fX(x) = g(s(x))h(x)

where h(x) is the same for all f ∈ F .

Example. Let X = (X1, X2, . . . , Xn) where the Xi are iid uniform on 0, θ. Then

fX(x ; θ) =

{
1
θn 0 < x1, x2, . . . , xn < θ

0 otherwise

Here we must build in the dependence of the range of X into the functions g and h.
Let y1 ≤ y2 ≤ · · · ≤ yn denote the ordered values of x1, x2, . . . , xn. The

corresponding statistic is called the order statistic. Define

1(a, b) =

{
1 if a ≤ b

0 otherwise

then

fX(x ; θ) =
1

θn
1(yn ; θ)

[
n∏

i=1

1(xi ; yn)

]

and hence Yn = max(X1, X2, . . . , Xn) is a sufficient statistic for θ.

Note. It is often quite difficult to prove that a statistic is not a sufficient statistic
using the factorization theorem. It may be that we are not clever enough in the use
of the criterion.

Example. Given the family of distributions F

F =

{

fX : fX(x) =

n∏

i=1

f(xi) ; f is a continuous pdf

}

Let Y be the order statistic. Then

fX(x) =

n∏

i=1

f(xi) =

n∏

i=1

f(yi)

for any f ∈ F so that Y is a sufficient statistic for F .
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11.1.4 Sketch of Proof of the Factorization Criterion

Let s(X) be a sufficient statistic for θ. Then

fX(x ; θ) = P (X = x ; θ)

= P (s(X) = s(x) ; θ)P (X = x|s(X) = s(x))

The first term in the last expression is a function of θ and s(x) while the second
does not involve θ since s(X) is a sufficient statistic for θ. Hence the factorization
criteria is satisfied.

Conversely if fX(x) = g(s(x) ; θ)h(x) then

fX|s(X)(x|s(X) = s0 ; θ) =
P (X = x , s(x) = s0 ; θ)

P (s(X) = s0 ; θ)

=
δ(s(x), s0)fX(x ; θ)

P (s(X) = s0 ; θ)

=
δ(s(x), s0)g(s0 ; θ)h(x)

P (s(X) = s0 ; θ)

where

δ(a, b) =

{
1 a = b

0 otherwise

If

A = {x : s(x) = s0}

then

P (s(X) = s0 ; θ) =
∑

x′∈A

fX(x′ ; θ)

=
∑

x′∈A

g(s0 ; θ)h(x
′)

= g(s0 ; θ)
∑

x′∈A

h(x′)

It follows that

P (X = x|s(X) = s0 ; θ) =
δ(s(x), s0)g(s0 ; θ)h(x)

g(s0 ; θ)
∑

x′∈A h(x′)

=
δ(s(x), s0)h(x)∑

x′∈A h(x′)

which does not depend on θ so that s(X) is a sufficient statistic.
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11.1.5 Properties of Sufficient Statistics

• If s(X) is sufficient for a family F , then s(X) is sufficient for a subfamily of F ,
but it may not be sufficient for a larger family.

– If X1, X2, . . . , Xn are iid N(θ1, θ2) then (X̄,
∑n

i=1(Xi − X̄)2) is sufficient
for (θ1, θ2) and for the case in which X1, X2, . . . , Xn are iid N(θ1, 1).

– If X1, X2, . . . , Xn are iid N(θ1, 1) then X̄ is sufficient, but it is not sufficient
when X1, X2, . . . , Xn are iid N(θ1, θ2).

• If t(X) = u(s(X)) and t(X) is sufficient then s(X) is sufficient. This follows
since to calculate t(X) we need only know the value of s(X) and not the value
of X itself.

• Any one-to-one function of a sufficient statistic is also a sufficient statistic.
For example, for n Bernoulli trials X1, X2, . . . , Xn the following are sufficient
statistics:

– X
–
(
eX1+X2 ,

∑n
i=3 Xi

)

– S =
∑n

i=1 Xi

– 1
S

In this situation can we reduce the data further by considering a function of S =∑n
i=1 Xi? For example,

h(S) = |S − 1

2
|

g(S) =

{
1 S ≥ n

2

0 otherwise

The answer in this case is no. S is a minimal sufficient statistic as is 1
S and eS .

11.1.6 Minimal Sufficient Statistics

The basic idea of a minimal sufficient statistic S is that the statistic is sufficient and
the data cannot be reduced beyond S without losing sufficiency. More precisely:

Definition 11.1.3. A sufficient statistic S is a minimal sufficient statistic if it
is a function of every other sufficient statistic. Thus S is a minimal sufficient
statistic if

1. S is sufficient.
2. S can be calculated from any other sufficient statistic.

Finding minimal sufficient statistics involves the use of the likelihood function.
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Definition 11.1.4. Let X have pdf fX(x ; θ). Given that X = x is observed we
call the function of θ,

L(θ ; x) = c(x)fX(x ; θ),

the likelihood function. Here c(x) is any function of x which does not depend on θ.

By the Law of Likelihood, the comparison of two θ values requires only the ratio
of the likelihood at the two values. Consequently we call fX(x ; θ) or any constant
multiple of fX(x; θ) the likelihood function of θ for data x. Note that the likelihood
function is a statistic and is the minimal sufficient statistic for θ.

Example. If X1, X2, . . . , Xn are iid Poisson with parameter θ then for a fixed θ
we have

fX(x ; θ) =
θ
∑

i xie−nθ

∏
i xi!

while for a fixed value of X = x we have

L(θ ; x) =
θ
∑

i xie−nθ

∏
i xi!

= c(x)θ
∑

i xie−nθ

Theorem 11.1.2. The likelihood function is the minimal sufficient statistic, i.e., we
can determine the likelihood function from any other sufficient statistic.

Example. Let X1, X2, . . . , Xn be iid Bernoulli trials. Then

fX(x ; θ) = θ
∑

i xi(1 − θ)n−
∑

i xi

To determine the likelihood function we need only know
∑

i xi. Conversely, if we
know the likelihood function

L(θ ; x) = cθ
∑

i xi(1− θ)n−
∑

i xi

then we know
∑

i xi.
By contrast, if t(X) = (t1(X), t2(X) = (X1 +X2, X3 + · · ·+Xn) then t(X)

is sufficient and we can calculate the likelihood function from t(X), but from the
likelihood function we cannot calculate the values of t1(X) and t2(X) so that t(X)
is not a minimal sufficient statistic.
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Theorem 11.1.3. A statistic s(X) is minimally sufficient if and only if, for any two
points x and y in the sample space,

s(x) = s(y) ⇐⇒ fX(x ; θ) = c(x,y)fX(y ; θ)

where c(x,y) does not involve θ. In other words x and y generate the same
likelihood function.

Example. In n Bernoulli trials

fX(x ; θ) = cfX(y ; θ)

means that the ratio

fX(x ; θ)

fX(y ; θ)

must not involve θ or

θ
∑

i xi(1− θ)n−
∑

i xi

θ
∑

i yi(1− θ)n−
∑

i yi
=

(
θ

1− θ

)∑

i xi−
∑

i yi

must be free of θ, i.e.,
∑

i xi must equal
∑

i yi. Therefore
∑

iXi is the minimal
sufficient statistic.

Example. If X1, X2, . . . , Xn are iid Gamma(r, λ) then

fX(x ; r, λ) =
λnr (

∏n
i=1 xi)

r−1
exp {−λ

∑n
i=1 xi}

[Γ(r)]n

Thus

fX(x ; r, λ)

fX(y ; r, λ)
= c

is free of r and λ if and only if

(
∏n

i=1 xi)
r−1

exp {−λ
∑n

i=1 xi}
(
∏n

i=1 yi)
r−1

exp {−λ
∑n

i=1 yi}
= c

i.e., if and only if
∏n

i=1 xi =
∏n

i=1 yi and
∑n

i=1 xi =
∑n

i=1 yi. Thus

(

n∏

i=1

Xi ,

n∑

i=1

Xi)

is the minimal sufficient statistic.
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Example. If X1, X2, . . . , Xn are iid N(μ, σ2) then

fX(x ;μ, σ2)

fX(y ; μ, σ2)
= c

is free of μ and σ2 if and only if

(x̄,
∑

i

(xi − x̄)2) = (ȳ,
∑

i

(yi − ȳ)2)

Therefore

(X̄,
∑

i

(Xi − X̄)2)

is the minimally sufficient statistic as is

(
∑

i

Xi,
∑

i

X2
i )

Example. If X1, X2, . . . , Xn are iid Cauchy then

fX(x ; θ) =

(
1

π

)n n∏

i=1

1

1 + (xi − θ)2

Thus

fX(x ; θ)

fX(y ; θ)
= c

is free of θ if and only if

{xj : j = 1, 2, . . . , n} = {yj : j = 1, 2, . . . , n}

It follows that the minimal sufficient statistic is the order statistic. Note that in this
case the minimal sufficient statistic is n dimensional even though the parameter
space is one dimensional. Recall also that the distribution of X̄ for the Cauchy is
the same as the distribution of each Xi.
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11.2 Importance of Sufficient Statistics in Inference

11.2.1 Frequentist Statistics

Suppose that t(X) is an estimator of θ with mean square error MSEt(θ). Let s(X)
be a sufficient statistic for θ. Define a new estimator t̃(S) by

t̃(S) = E[t(X)|S]

Note that by sufficiency of S this conditional expectation does not depend on θ so it
is an estimator of θ.

Theorem 11.2.1 (Rao-Blackwell). The mean square error of t̃(S) is no larger than
the mean square error of t, i.e.,

MSEt̃(θ) ≤ MSEt(θ)

Proof.

MSEt(θ) = E[t(X)− θ)]2

= E
{
[t(X)− t̃(S)] + [t̃(S)− θ)]

}2

= E
{
[t(X)− t̃(S)]2

}
+ E

{
[t̃(S)− θ)]2

}

+2E
{
[t(X)− t̃(S)][t̃(S)− θ)]

}

= E
{
[t(X)− t̃(S)]2

}
+MSEt̃(θ)

Since

E
{
[t(X)− t̃(S)][t̃(S)− θ)]

}
= E

{
[t̃(S)− θ)]E

{
[t(X)− t̃(S)]|S

}}
= 0

It follows that

MSEt̃(θ) ≤ MSEt(θ)

If we consider testing problems then since the basis of tests is the likelihood ratio
which clearly depends only on the sufficient statistic it is obvious that tests depend
only on the sufficient statistic, all other parts of the data being irrelevant provided
the model is true.

11.2.2 Bayesian Inference

If s(X) is a sufficient statistic then by the factorization theorem

f(x; θ) = g(s; θ)h(x)
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so that the posterior distribution of θ is

p(θ|x) = f(x; θ)p(θ)∫
Θ
f(x; θ)p(θ)dm(θ)

=
g(s; θ)h(x)p(θ)∫

Θ g(s; θ)h(x)p(θ)dm(θ)

=
g(s; θ)p(θ)∫

Θ g(s; θ)p(θ)dm(θ)

Thus the posterior distribution of θ depends only on s so Bayesian statistics depends
only on the value of the sufficient statistic.

11.2.3 Likelihood Inference

By the factorization theorem

f(x; θ) = g(s; θ)h(x)

Thus the maximum of the likelihood over θ occurs when g(s; θ) is maximized so
that the likelihood function satisfies

L (θ;x) =
f(x; θ)

f(x; θ̂)
=

g(s; θ)h(x)

g(s; θ̂)h(x)
=

g(s; θ)

g(s; θ̂)

depends only on s so likelihood-based methods depend only on the value of the
sufficient statistic assuming the model is true.

11.3 Alternative Proof of Factorization Theorem

If the density of X can be factored as

fX(x; θ) = h(x|t)g(t; θ)

where h does not depend on θ then t is a sufficient statistic for θ. To see this note that

f(x, t; θ) = h(x|t)g(t; θ) = fX(x; θ)

It follows that

f(t; θ) =

∫

A

f(x, t; θ) =

∫

A

h(x|t)g(t; θ)dμ(x) = g(t; θ)

∫

A

h(x|t)dμ(x)
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where

A = {x : g(x) = t}

and hence

f(x; θ|t) = f(x, t; θ)

f(t; θ)
=

h(x|t)∫
A
h(x|t)dμ(x)

which is independent of θ so that t is sufficient for θ.

11.4 Exercises

1. If X1, X2, . . . , Xn are iid with a Beta(a,b) pdf find the minimal sufficient statistic
for (a,b).

2. If X1, X2, . . . , Xn are iid with a uniform pdf over θ− 1/2, θ+1/2) pdf find the
minimal sufficient statistic for θ.

3. If X1, X2, . . . , Xn are iid with a uniform pdf over θ − ρ, θ + ρ) pdf find the
minimal sufficient statistic for θ and rho.

4. If Y1, Y2, . . . , Yn are independent N(β0 + β1xi, σ
2) where the xi are known find

the minimal sufficient statistic for β0, β1 and σ2.



Chapter 12
Conditionality

12.1 Ancillarity

Conditioning arguments are at the center of many disputes regarding the foundations
of statistical inference. We present here only some simple arguments and examples.

Definition 12.1.1. A statistic A is ancillary (for θ) if its distribution does not
depend on θ.

The basic idea in conditioning is that, since A provides no information on θ,
we should use the conditional distribution, given A, for inference on θ. The idea
originated with R.A. Fisher and has been discussed and disputed for decades. In
some problems most statisticians condition on A, in other problems they do not.

In most problems the sample size is considered fixed, i.e., ancillary even though
it may be determined by availability of funds or other considerations not related
to the problem (θ) of interest. Similarly in regression type problems (linear models,
generalized linear models, etc.) most statisticians condition on the covariates (design
matrix). There seems to be no definite guidelines for when to condition and when
not to condition.

Example. Cox introduced the following example. Consider two measuring devices.
Device P produces measurements which are normal with mean θ and variance σ2

and device I produces measurements which are normal with variance k2σ2 where k
is much larger than 1. Which instrument is used is decided by the flip of a fair coin
so that the precision of the measurement (i.e., what instrument is used) is ancillary.

Thus we would report the value of the measurement and the associated value of
precision σ2 or k2σ2 depending on the instrument actually used. However, if we do
not condition, the true variance of X is

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__12

147



148 12 Conditionality

V(X) = E [V(X |F )] + V [E(X |F )]

=
σ2

2
+

k2σ2

2

Note that

σ2 < σ2

(
1

2
+

k2

2

)
< k2σ2

so that the reported standard error will be either too small or too large.

Example (Valliant, Dorfman and Royall). There is a population of size 1,000 from
which we have selected a random sample of size 100 without replacement. The
population mean is estimated by the sample mean which has variance estimated by

V(Y s) =

(
1− 100

1000

)
s2

100
where s2 =

∑
i∈s(yi − ys)

2

99

and s denotes the set of items selected.
Before we drew the sample, we considered doing a complete census of all 1,000

objects, but we had another study of interest. To decide whether to do the complete
census or a sample of size 100 and the other study we flipped a coin. If the result
was a head we did the complete census; if the result was a tail we took the sample
of size 100.

The variance of the sample mean is

V(Y s) =
1

2
V(Y s|n = 100) +

1

2
V(Y s|n = 1000) =

1

2
V(Y s|n = 100)

Using this an estimate of variability is clearly wrong, yet it is correct from a
frequentist point of view. Note that the same variance would be required if we had
done the complete census. In this case any confidence interval would consist of a set
of points whereas we know the population mean exactly! Clearly there is need for
conditioning in situations like this.

12.2 Problems with Conditioning

Examples in the previous section indicate that we should condition whenever there
is an ancillary statistic. Unfortunately this is not always so easy. An excellent review
article by Ghosh et al. [19] provides many examples and extensions. In particular
there are examples given where there is no unique ancillary statistic.
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Some authors have suggested that there are really two major types of
ancillarity:

1. Experimental
2. Mathematical

Experimental ancillaries are those such as sample size, covariates, etc., i.e.,
situations where most statisticians routinely condition. Mathematical ancillaries are
those that arise because of the specific nature of the statistical model.

Example (Continuous uniform). Let X1, X2, . . . , Xn be iid with pdf

f(x; θ1, θ2) =

{
1
Δ θ1 ≤ x ≤ θ2
0 elsewhere

(12.1)

where Δ = θ2 − θ1.

The joint density is given by

f(x1, x2, . . . , xn ; θ1, θ2) =

{
1

Δn all xi ∈ [θ1, θ2]

0 elsewhere
(12.2)

It follows that the minimum and maximum of X1, X2, . . . , Xn are minimal
sufficient statistics for θ1 and θ2.

The joint distribution of the minimum and maximum from a random sample with
distribution function F and density function f is easily shown to be

f(y1, yn) = n(n− 1)[F (yn)− F (y1)]
n−2f(y1)f(yn) (12.3)

where Y1 is the minimum of the Xi’s and Yn is the maximum
For the uniform distribution, we have that

F (y; θ1, θ2) =
1

Δ

∫ y

θ1

dx =
y − θ1
Δ

so that the joint pdf of Y1 and Yn is given by

f(y1, yn; θ1, θ2) =
1

Δn
n(n− 1)(yn − y1)

n−2 θ1 ≤ y1 ≤ yn ≤ θ2

Let θ1 = θ − ρ and θ2 = θ + ρ, then we have that Δ = 2ρ and hence the joint
density is

f(y1, yn; θ) =
n(n− 1)(yn − y1)

n−2

ρn
; θ − ρ ≤ y1 ≤ yn ≤ θ + ρ
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If we assume that ρ is known, then the likelihood function for θ is

L (θ) = 1 ; yn − ρ ≤ θ ≤ y1 + ρ

For the special case where ρ = 1/2 it is easy to show that [Y1, Yn] is a
100
(
1− 1

2n−1

)
confidence interval for θ.

Suppose now that

n = 5 and y1 = 0.01, yn = 0.99

Then the 100(1− 1
16 )% = 93.75% confidence interval for θ is .01 to .99. But since

y1 ≥ θ − 1

2
; yn ≤ θ +

1

2

if and only if

0.51 = 0.01 + 0.5 ≥ θ and 0.49 = 0.99− 0.5 ≤ θ

with certainty.
Thus with these observed values of y1 and yn we are certain that

0.49 ≤ θ ≤ 0.51

and yet our 93.75 % confidence interval is

0.01 ≤ θ ≤ 0.99

This is silly.
As Cox points out it is imperative to condition on the ancillary statistic in this

example which is the range R = Yn − Y1.



Chapter 13
Statistical Principles

13.1 Introduction

A number of principles for evaluating the evidence (information) provided by data
have been formulated:

• The repeated sampling principle: evidence (information) is evaluated using
hypothetical repeated sampling.

• The sufficiency principle: evidence (information) should depend only on the
value of a sufficient statistic.

• The conditionality principle: evidence (information) should depend only on the
experiment actually performed.

• The likelihood principle: evidence (information) resulting from observations
with proportional likelihoods should be the same.

• The Bayesian coherency principle: evidence (information) from data is used to
obtain (beliefs) using Bayes theorem which requires consistent (coherent) betting
behavior.

• Birnbaum’s confidence concept: a concept of statistical evidence is not
plausible unless it finds “strong evidence” for H2 as against H1 with small
probability (α) when H1 is true and with much larger probability (1 − β) when
H2 is true.

We focus on the sufficiency, conditionality, and likelihood principles and their
implications. The sufficiency and conditionality principles were shown to be
“equivalent” to the likelihood principle by Birnbaum in 1962 which caused a major
stir and revival of interest in the foundations of statistics. Recent work by Mayo [32]
and Evans [14] has cast doubt on the force of Birnbaum’s result. Another proof of
the Likelihood Principle has been advanced by Gandenberger [18]. Nevertheless, the
clarity with which Birnbaum presented the relevant concepts is still of great value.

© Springer International Publishing Switzerland 2014
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152 13 Statistical Principles

The discussions are done only for a discrete sample space thus avoiding measure
theoretic difficulties. However, references and comments will be made on the
generalizations to other sample spaces.

13.1.1 Birnbaum’s Formulation

Consider a random variable X with discrete sample space

X = {x1, x2, . . . , xk}

and discrete parameter space

Θ = {θ1, θ2, . . . , θr}

and model probabilities

f(xi; θj)

Represent the model probabilities as a matrix

X
θ x1 x2 · · · xk

θ1 f(x1; θ1) f(x2; θ1) · · · f(xk ; θ1)

θ2 f(x1; θ2) f(x2; θ2) · · · f(xk ; θ2)

...
...

...
. . .

...

θr f(x1; θr) f(x2; θr) · · · f(xk ; θr)

Note that the row sums are 1. Elements in the columns are the (unscaled)
likelihoods of θ for that value of x. In particular, note that if two elements in
a column are equal than that value of x equally supports the θ values in the
corresponding rows in the sense that the same probability is assigned to x by each
of the θ values.

Regarding the discrete nature of the representation: “If we believe, as we must,
that the real world is finite then this representation is universal.” Moreover it allows
careful discussion of the essentials of statistical principles without the troubles of
the infinite. Actual applications of modern statistics in which computers play such
an important role all computations (graphs, etc.) really are based on finite sample
spaces and parameter spaces.
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In Basu’s words:

I hold firmly to the view that this contingent and cognitive universe of ours is in reality
only finite and, therefore, discrete. In this essay we steer clear of the logical quicksands of
“infinity” and the “infinitesimal”. Infinite and continuous models will be used in the sequel,
but they are to be looked upon as mere approximations to the finite realities.

Now suppose that we have another random variable Y with distribution specified
as follows:

Y
θ y1 y2 · · · yn

θ1 g(y1; θ1) g(y2; θ1) · · · g(yn; θ1)

θ2 g(y1; θ2) g(y2; θ2) · · · g(yn; θ2)
...

...
...

. . .
...

θr g(y1; θr) g(y2; θr) · · · g(yn; θr)

i.e., we have the same parameter space but different sample spaces and a different
density function. Again note that the row sums are 1.

Suppose that for some value of X , xo, and some value of Y , yo, we have that

f(xo, θi) = cg(yo; θi)

for i = 1, 2, . . . , r where c > 0
i.e., the likelihood functions for xo and yo are the same:

xo yo

f(xo; θ1)
1
c
f(yo; θ1)

f(xo; θ2)
1
c
f(yo; θ2)

...
...

f(xo; θr)
1
c
f(yo; θr)

The likelihood principle simply says that one cannot learn anymore about θ from
xo than one can from yo or equivalently the evidence (information) provided by xo

is the same as that provided by yo.

13.1.2 Framework and Notation

Consider a statistical model for random X

E = (X , f(x; θ),Θ)
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We assume that X is discrete and that Θ is discrete as well so that

f(x; θ) = P (X = x; θ)

gives the probability of observing x when θ is the value of the parameter.
For a given observed value of X , say x, the pair (E , x) is an instance of statistical

evidence which we write as

Ev(E , x)

Note that we have not explicitly defined statistical evidence nor what we
might use it for.

Definition 13.1.1. A statement that two statistical models E and E∗ with the same
parameter space and observed values x and x

′
represent equivalent (statistical)

evidence is written as

Ev(E , x) = Ev(E∗, x
′
)

13.1.3 Mathematical Equivalence

Definition 13.1.2 (Principle of mathematical equivalence). If two observations x
and x

′
have the same probability for all parameter values then Ev(E1, x) is equal to

Ev(E2, x
′
), i.e.,

f(x; θ) = f(x
′
; θ) for all θ ∈ Θ =⇒ Ev(E1, x) = Ev(E2, x

′
)

The principle of mathematical equivalence simply states that relabelling of
observations should not affect the evidence provided by the observations.

This was anticipated by Pratt [38] in his review of Lehman’s book where he said:

A relabeling of the possible outcomes which does not affect the outcome actually observed
surely should not change an inference or decision.

For example suppose that experiments 1 and 2 have probabilities given by

P1 =

[
0.9 0.1

0.3 0.7

]
P2 =

[
0.1 0.9

0.7 0.3

]

i.e., outcome 1 in experiment E1 has probability 0.9 when θ = 1 and probability 0.3
when θ = 2. Similarly outcome 2 in experiment E2 has probability 0.9 when θ = 1
and probability 0.3 when θ = 2.

Mathematical equivalence simply says that

Ev(E1, 1) = Ev(E2, 2)
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13.1.4 Irrelevant Noise

Let xs be a specified possible outcome of E .

• Define a binary random variable Z , independent of X , such that

P(Z = z) =

{
c z = 1

1− c z = 0

where 0 ≤ c ≤ 1 and is known.
• Further define the random variable Y as a function of X and Z by

Y =

{
1 if x = xs and z = 1

0 otherwise

Define the experiment E∗ by

E∗ = (Y, gθ,Θ)

where

gθ(1) = g(1; θ) = c f(xs; θ) and gθ(0) = g(0; θ) = 1− c f(xs; θ)

Let Ev (E , xs) denote the evidence about θ when E is performed and xs

is observed. Similarly let Ev (E∗, 1) denote the evidence when E∗ arises from
performance of E and y = 1 is observed.

Definition 13.1.3 (Principle of irrelevant noise).

Ev (E , xs) = Ev (E∗, 1)

We call E∗ the stochastically censored version of E .

Suppose, for instance, an experiment has possible outcomes a, b, c, d, . . . , x. Suppose Meter
1 tells the outcome, while Meter 2 tells only whether the outcome was or was not d. If in fact
the outcome is d, you would learn this from reading either meter and would want, therefore,
to make the same inference or decision; yet the result of a significance test would ordinarily
depend on which meter you were reading.

[38]

13.2 Likelihood Principle

Definition 13.2.1 (Likelihood Principle). If E and E∗ are two experiments with
common parameter space Θ and two outcomes xs ∈ X and ys ∈ Y are such that

f(xs; θ) = c f∗(ys; θ) for all θ ∈ Θ
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for some positive c then

Ev (E , xs) = Ev (E∗, ys)

13.3 Equivalence of Likelihood and Irrelevant Noise
Plus Mathematical Equivalence

Theorem 13.3.1. The likelihood principle and the irrelevant noise principle plus
mathematical equivalence are equivalent.

Let L stand for the likelihood principle, IN stand for the irrelevant noise principle,
and ME stand for the mathematical equivalence principle. Then the statement of the
theorem is

L ⇐⇒ IN + ME

Proof.

L =⇒ IN + ME

Obviously

L =⇒ ME

In the setup of the irrelevant noise principle we have that

g(1; θ) = c f(xs; θ) for all θ ∈ Θ

Thus if the likelihood principle is assumed to be true

Ev (E∗, 1) = Ev (E , xs)

which is simply the statement of the principle of irrelevant noise, i.e.,

L =⇒ IN

and hence the likelihood principle implies the principle of irrelevant noise and the
principle of mathematical equivalence.

IN + ME =⇒ L

Suppose now that (E1, xs) and (E2, ys) are such that the parameter space is the
same and

f1(xs; θ) = c f2(ys; θ) for all θ ∈ Θ



13.3 Equivalence of Likelihood and Irrelevant Noise Plus Mathematical. . . 157

for some positive c. We may assume c ≤ 1 (if not just write f2(ys; θ) =
1
cf(xs; θ)

and now 1
c < 1).

Now define E∗
1 by taking c1 = 1 and x = xs, then

f∗
1 (1; θ) = f1(xs; θ) for all θ ∈ θ

Similarly define E∗
2 by taking c2 = c and y = ys, then

f∗
2 (1; θ) = cf2(ys; θ) for all θ ∈ θ

Note that E∗
1 is the stochastically censored version of E1 and E∗

2 is the stochasti-
cally censored version of E .

Now note that

f∗
1 (1, θ) = f1(xs; θ)

= c f2(ys; θ)

= f∗
2 (1; θ)

for all θ ∈ Θ. Thus (E∗
1 , 1) and (E∗

2 , 1) are mathematically equivalent and hence

Ev (E∗
1 , 1) = Ev (E∗

2 , 1)

Thus we have, assuming the principle of irrelevant noise

Ev (E1, xs) = Ev (E∗
1 , 1) = Ev (E∗

2 , 1) = Ev (E2, ys)

i.e.,

Ev (E1, xs) = Ev (E2, ys)

i.e.,

IN + ME =⇒ L

Pratt again anticipated this result:

In the meter reading example: A direct continuation of this argument shows an inference
or decision should depend on the probability under the possible hypotheses of the
outcome observed only (and this only up to multiplication by a constant). The use of
probabilities of other outcomes also, as in the Neyman-Pearson formulation, inevitably
leads to inconsistencies.

[38] �



158 13 Statistical Principles

13.4 Sufficiency, Conditionality, and Likelihood Principles

In the context of a statistical model we recall that

Definition 13.4.1. A statistic s is sufficient if f can be written as

f(x; θ) = g[s(x); θ]p[x|s(x)]

where

• g[s(x); θ] is the pdf of s(X) at x,
• the pdf of X given s(X) = s(x), p(x|s), does not depend on θ.

Let (E
′
, s) denote the instance of statistical evidence determined by the statistical

model for the experiment defined by

E
′
= (S,Θ, g)

where S = {s : s = s(x), x ∈ X} and g is the pdf of s.

Definition 13.4.2 (Sufficiency principle). The sufficiency principle S states that if
s is a sufficient statistic then

Ev(E , x) = Ev(E ′
, s(x))

In short the sufficiency principle says that whatever the evidence in (E , x) is, it is
equivalent to the evidence provided by (E ′

, s(x)) The sufficiency principle simply
states that post-randomization does not influence the amount of evidence provided
by an experiment.

In the context of a statistical model an ancillary statistic is defined by

Definition 13.4.3. A statistic h is said to be an ancillary statistic if f can be
written as

f(x; θ) = p[h(x)]g[x; θ|h(x)]

where

• g[x; θ|h(x)] is the conditional pdf of X given h(X) and
• the pdf of h, p(h) = P [h(X) = h] does not depend on θ.

In the presence of an ancillary statistic the instance of statistical evidence (E, x)
can be represented as follows:

• Let (Eh, x) denote the model of statistical evidence determined by the statistical
model

Eh = (Xh,Θ, gh) where Xh = {x : h(x) = h}
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• The statistical model E = (X ,Θ, f) can then be thought of as a mixture model
with components Eh having probabilities given by gh.

Definition 13.4.4 (Conditionality principle). The conditionality principle C:
states that if h is an ancillary statistic then

Ev(E, x) = Ev(Eh, x) where h = h(x)

In short, the conditionality principle says that whatever the evidence in (E, x) is, it
is equivalent to the evidence in (Eh, x) if h is ancillary. The conditionality principle
simple states that a pre-randomization (which does not depend on θ) should have no
impact on the evidence provided by the experiment.

Recall the likelihood principle:

Definition 13.4.5 (Likelihood principle). The likelihood principle L states that if

f(x; θ) = cf∗(x∗; θ) for some c > 0 and all θ ∈ Θ

then

Ev(E, x) = Ev(E∗, x∗)

In short, the likelihood principle states that whatever the evidence is in two
experiments with the same likelihood it is equivalent.

13.5 Fundamental Result

Theorem 13.5.1 (Birnbaum, 1962). The conditionality principle and the suffi-
ciency principle imply the likelihood principle and conversely.

If L denotes the likelihood principle, C denotes the conditionality principle, and S
denotes the sufficiency principle Birnbaum’s result states that

L ⇐⇒ S and C

As previously mentioned there are now doubts about Birnbaum’s proof which we
present here. Consequently one either believes the likelihood principle or not. Since
it is “equivalent” to other sensible procedures it must be accorded some prominence.

proof. Let E and E
′

denote two statistical models having a common parameter
space Θ, i.e.,

E = (X ,Θ, fθ) and E
′
= (Y,Θ, gθ)
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Let x ∈ X and y ∈ Y determine the same likelihood function, i.e.,

fθ(x) = f(x; θ) = cgθ(y) = cg(y; θ)

for some c > 0 and all θ ∈ Θ.
We will show that

Ev(E, x) = Ev(E
′
, y)

using the conditionality and sufficiency principles.
Define a mixture model E∗ by the statistic h where

h = 1 =⇒ E is observed
h = 2 =⇒ E

′
is observed

and

P (H = h) =

{
k h = 1

1− k h = 2

where

k =
1

(1 + c)

Note that the distribution of h(X) does not depend on θ so that h(X) is ancillary.
If z represents an outcome of E∗ and hθ(z) = h(z; θ) is the pdf we have

h(x, θ) = kf(x; θ)

=
1

1 + c
f(x; θ)

=
c

1 + c
g(y; θ)

= (1− k)g(y; θ)

= h(y; θ)

Hence by the sufficiency principle S we have that

Ev(E∗, x) = Ev(E∗, y)

By the conditionality principle C we have

Ev(E∗, x) = Ev(E, x) and Ev(E∗, y) = Ev(E
′
, y)
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It follows that

Ev(E, x) = Ev(E∗, x) = Ev(E∗, y) = Ev(E
′
, y)

�

13.6 Stopping Rules

Consider a model in which observations are taken one at a time. Let X1, X2, . . . be
a sequence of random variables in a sequential experiment. Assume that the joint
density of X(j) = X1, X2, . . . , Xj), f(x(j); θ) exists for all j.

Definition 13.6.1. A stopping rule is a sequence

τ = (τ0, τ1, . . .)

where τm is a function of x(m) for m ≥ 1 and

τ0 = {1}, τm = {0, 1} m ≥ 1

Thus τm(x(m) = 1 means we stop after observing the mth X and τm(x(m) = 0
means we take another observation.

Definition 13.6.2. The stopping time N is the random sample size in the sequen-
tial experiment. It depends on τ and the data. The stopping time is proper if

P(N < ∞; θ) = 1 for all θ

We consider only proper stopping times.

Example. Let X1, X2, . . . be iid each N(0, 1). Consider the stopping rule defined
by

τ0 = 1 ; τm =

{
1 xm ≥ km−1/2

0 otherwise

i.e., we sample until the sample mean exceeds k times the standard error. The Law
of the iterated logarithm shows that this is a proper stopping rule, but the expected
time until we stop is infinite!

It follows that the joint density at the point where stopping occurs is

gθ(x1, x2, . . . , xn; θ) =

⎧
⎨

⎩

n−1∏

j=0

[1− τj(x
(j)]

⎫
⎬

⎭
τn(x

(n) f(x(n); θ)
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Definition 13.6.3 (SR). The stopping rule principle simply states that the evidence
about θ depends only of f(x(n); θ) and not on the stopping rule.

If the likelihood principle is true then since the likelihood functions for these
two experiments are the same it follows that the likelihood principle implies that the
stopping rule principle is true.

The implications of the stopping rule principle are profound in that any stopping
rule which does not depend on the parameter value is irrelevant at the analysis stage.

13.6.1 Comments

In classical statistics one has to be very careful about stopping rules. Suppose in the
second example of the previous section if one analyzed the results as if the sample
size was fixed then one could be sure to reject the null hypothesisμ = 0 even though
it is true. This is called sampling to a foregone conclusion.

13.6.2 Jeffreys/Lindley Paradox

Suppose that X1, X2, . . . , Xn are independent normal with mean θ and variance 1.
Then

f(x; θ) = (2π)−n/2 exp

{
−
∑n

i=1(xi − θ)2

2

}

Assume that we have a prior of the form

π(θ) =

{
λ θ = 0

(1− λ)(2πρ2)−1/2 exp
{
− θ2

2ρ2

}
θ 
= 0

Then it can be shown that the posterior probability that θ = 0 is over 50 % for
an observed value of x equal to kn−1 and suitable values of n, ρ, k and λ. That is,
even though we have observed a value of the sample mean 3 standard errors from
0 (which a frequentist would say constituted evidence against θ = 0) we have a
posterior probability of over 50 % that θ = 0, hardly evidence against θ = 0.

If the stopping rule principle is adopted the intentions of the experimenter are not
relevant.

Savage put it best:

I learned the stopping rule principle from Professor Barnard, in conversations in the summer
of 1952. Frankly, I then thought it a scandal that anyone in the profession could advance an
idea so patently wrong, even as today I can scarcely believe that some people resist an idea
so patently right.
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Example. Berger-Wolpert [3] Consider an experiment with two treatment groups
T1 and T2 and a control group C with results as follows: If one compares T1 and

Treatment

Result C T1 T2

Success 8 12 2

Failure 12 8 8

C, one finds that there is no significant difference. If one compares the pooled data
from C and T2 with T1 there is a significant difference.

If, in a report, the experimenter says that T2 was thought to be not different from
the control (and hence pooling is justified), how can we know for sure that this
was the case and it was not manipulating the data to gain significance? We can’t.
The likelihood principle says that we needn’t be concerned about the experimenters
intentions.

13.6.3 Randomization

Consider an experiment involving n pairs of subjects matched in some way so as to
compare a treatment T = 1 vs a control C = 0. Let the pairs be denoted

{(S0
1 , S

1
1), (S

0
2 , S

1
2), . . . , (S

0
n, S

1
n)}

i.e., ((S0
j , S

1
j ) denotes the jth pair of subjects in which one of the subjects, S0

j gets
the control, and the other subject, S1

j , gets the treatment.
Randomization is often used to decide which of the subjects gets the treatment.

Let (r1, r2, . . . , rn) denote the realized result of the randomization, i.e.,

P (Ri = 0) = P (Ri = 1) =
1

2

The experimental result will be (x1, x2, . . . , xn) where

xi =

{
0 if control is better
1 if treatment is better

The randomization analysis uses the test statistic

X =

n∑

i=1

xi

and rejects if X is too large the p-value is

P (X ≥ x =

n∑

i=1

xi) =

n∑

j=x

(
n

j

)
2−n
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Note that the p-value is based solely on the probabilities assigned by the random-
ization procedure. Once, however, the randomization is applied the conditionality
principle applies and these probabilities are irrelevant!

A much more sensible solution is to define θ as the proportion of the population
where the treatment is superior to the control,

Then the joint density of the randomization probabilities R and X is given by

f(r,x; θ) = 2−nθx(1− θ)n−x

where x =
∑n

i=1 xi. We may then base inference on the likelihood function

L (θ, x) =
θx(1− θ)n−x

θ̂x(1− θ̂)n−x

where θ̂ = x/n.

13.6.4 Permutation or Randomization Tests

Consider two samples

X1, X2, . . . , Xm and Y1, Y2, . . . , Yn

where the Xi’s are assumed to be iid. as FX and the Yi’s are assumed to be iid.
as FY . Of interest is the null hypothesis FX = FY vs the alternative hypothesis
that FX 
= FY . In this form a test was introduced by R.A. Fisher called the Fisher
Randomization Test. Another name for this test is the permutation test.

Suppose that there is a test statistic T for which large values indicate that the
null hypothesis is not true. If N = m + n then under the null hypothesis all N !
permutations of the data are equally likely. If we compute the test statistic for each
of the permutations then the permutation distribution of T is defined as

P0(Tj) =
1

N !
for j = 1, 2, . . . , N !

The p-value for the permutation test is given by

P0(T > tobs) =
1

N !

N !∑

j=1

1(Tj > tobs)

where 1(A) is the indicator function of the set A.
The permutation test is very attractive since it makes very few assumptions (none

in fact about the form of the distribution). There exist packages which calculate the
exact p-values for a variety of problems.
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However, the Fisher Randomization Test, along with other permutation test, has
doubtful scientific validity as the following example due to D.V.Lindley shows:

13.6.4.1 Lindley’s Example on Permutation Tests

Two scientists decide to conduct an experiment to compare a treatment T and a
control C. Four experimental units will be used, two units for the control and two
for the treatment.

There are thus six possible designs. Experimenter A selects one of the six
possible designs at random. Experimenter B does not like either of the designs
(T, T, C,C) or (C,C, T, T ) and decides to select his design at random from the
remaining four designs. As it turned out experimenter A, as the result of selecting
a design at random, chose to use the design (T,C, T, C) while experimenter B
happened to also randomly choose (T,C, T, C) as his design.

The designs and the results needed for the randomization test are given below:

Design Differences

A

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

B

⎧

⎪

⎨

⎪

⎩

TTCC

TCTC

TCCT

CTTC

CTCT

CCTT

+4

+2

0

0

−2

−4

Results 5,4,3,2

where the differences are treatment minus control.
Assuming that large values of the difference indicate superiority of the treatment

the p-value for experimenter A is

p-valueA = P0(D = +2) + P0(D = +4) =
1

6
+

1

6
=

1

3

since the observed value was D = +2.
The p-value for experimenter B is

p-valueB = P0(D = +2) =
1

4

Thus we have two experimenters who did exactly the same experiment with
exactly the same result and yet they have two entirely different p-values. As Lindley
comments:

Randomization analysis is surely not logical.



Chapter 14
Bayesian Inference

14.1 Frequentist vs Bayesian

In the frequentist approach to parametric statistical inference:

1. Probability models are based on the relative frequency interpretation of
probabilities.

2. Parameters of the resulting probability models are assumed to be fixed, unknown
constants.

3. Observations on random variables with a probability model depending on the
parameters are used to construct statistics. These are used to make inferential
statements about the parameters.

4. Inferences are evaluated and interpreted on the basis of the sampling distribution
of the statistics used for the inference. Thus an interval which claims to be a 95 %
confidence interval for θ has the property that it contains θ 95 % of the time in
repeated use.

5. In all cases inferences are evaluated on the basis of data not observed.

Bayesian statistics, on the other hand:

1. Allows probabilities to be degrees of belief.
2. Probability statements can be made about parameters and represent degrees of

belief about a parameter.
3. From observations with a given probability model and a prior distribution we

determine the probability distribution of the parameter given the observed data
using Bayes theorem.

4. Any inferential statements are then based on this distribution.
5. Since inferences depend on the prior the degrees of belief and hence inferences

can differ for a given set of observations.

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__14
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14.2 The Bayesian Model for Inference

The basic parametric statistical model is

(X , f(x; θ),Θ)

We observe X which has sample space X . The probability density for X = x is
f(x; θ); θ is a parameter(s) having values in the parameter space Θ.

In the Bayesian approach

1. f(x; θ) is interpreted as the conditional probability density of x given θ.
2. We interpret f(x; θ) as f(x|θ) implicitly replacing the ; by a | indicating

conditioning on θ.
3. A prior density, p(θ), of θ which describes our beliefs about θ before the data is

observed, is assumed.
4. Bayes theorem is then used to obtain the posterior distribution, P(θ|x) of θ given

the data x, i.e.,

P(θ|x) = f(x; θ)p(θ)

f(x)

1. Where

f(x) =

∫

Θ

f(x; θ)p(θ)μ(dθ)

is a normalizing constant (the marginal distribution of x).

The posterior result may also be written as

P(θ|x) ∝ L (θ;x)g(θ)

where L (θ;x) is the likelihood of θ having observed x. The posterior represents
what we believe about θ after we have observed the data. It represents an updating
of our beliefs about θ having observed the data.

14.3 Why Bayesian? Exchangeability

If X1, X2, . . . , Xn are independent and identically distributed (iid) then for any
(x1, x2, . . . , xn) the joint density f(x1, x2, . . . , xn) can be written as

f(x1, x2, . . . , xn) =

n∏

i=1

f(xi)

where f(x) is the density function of any X at x.
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A permutation of x = (x1, x2, . . . , xn), π(x), is any rearrangement of x. For
example, (xi1 , xi2 , . . . , xin). There are n! such permutations.

Definition 14.3.1. If

f(π(x)) = f(x)

for every permutation and every x the random variables X1, X2, . . . , Xn are said to
be exchangeable.

Clearly if X1, X2, . . . , Xn are iid then they are exchangeable.

Theorem 14.3.1. If X1, X2, . . . , Xn are iid given θ then they are exchangeable

Proof. For any x1, x2, . . . , xn we have

f(x1, x2, . . . , xn) =

∫

Θ

f(x1, x2, . . . , xn|θ)g(θ)dμ(θ)

=

∫

Θ

n∏

i=1

f(xi|θ)g(θ)dμ(θ)

=

∫

Θ

n∏

j=1

f(xij |θ)g(θ)dμ(θ)

=

∫

Θ

f(xi1 , xi2 , . . . , xin |θ)g(θ)dμ(θ)

= f(xi1 , xi2 , . . . , xin)

A famous theorem due to de Finetti provides a partial converse to the fact that
conditionally iid random variables are exchangeable. �

Theorem 14.3.2 (de Finetti). If X1, X2, . . . is a sequence of random variables
which are exchangeable for every n then there is a distribution g such that

f(x1, x2, . . . , xn) =

∫

Θ

n∏

i=1

f(xi|θ)g(θ)dμ(θ)

i.e., X1, X2, . . . , Xn can be viewed as conditionally independent given θ where θ
has distribution defined by g

Jose Bernardo, a leading proponent of the use of Bayesian statistics, states:

It is important to realize that if the observations are conditionally independent, -as it is
implicitly assumed when they are considered to be a random sample from some model-, then
they are necessarily exchangeable. The representation theorem, -a pure probability theory
result- proves that if observations are judged to be exchangeable, then they must indeed be
a random sample from some model and there must exist a prior probability distribution over
the parameter of the model, hence requiring a Bayesian approach.
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Note however that the representation theorem is an existence theorem: it generally does
not specify the model, and it never specifies the required prior distribution. The additional
assumptions which are usually necessary to specify a particular model are described in
particular representation theorems. An additional effort is necessary to assess a prior
distribution for the parameter of the model.

The key point is that exchangeability implies the existence of a prior and provides
a powerful justification for the use of Bayesian methods to describe beliefs.

Other justifications for the use of Bayesian methods are based on the concept of
utilities and decision making and rely on the concept of coherence:

1. One important point in using Bayesian methods is that the choice of prior need
not reflect true prior knowledge about the parameter.

2. This is the basis for the objective Bayes approach. The prior in this case
represents that function of the parameter which has minimal impact on the
posterior.

3. It need not be a proper probability distribution, but the posterior is required to be
a proper probability distribution.

In fact some Bayesians are even more forthright:

The posterior density is a probability density on the parameter (space), which does not mean
that the parameter need be a genuine random variable. This density is used as an inferential
tool, not as a truthful representation.

[31]
Let X be binomial with parameters n and θ where we assume that n is known.

That is

f(x; θ) =

(
n

x

)
θx(1− θ)n−x

for x = 0, 1, . . . , n. Suppose we represent prior information by a distribution of the
form

g(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)

where α and β are both positive.
This prior is a Beta distribution with parameters α and β and

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

It is known that B(α, β) is given by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
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where

Γ(δ) =

∫ ∞

0

tδ−1e−tdt

for δ > 0 is the Gamma function.
With this choice of prior we have that

f(x) =

∫

Θ

f(x; θ)g(θ;α, β)dθ

=

∫ 1

0

(
n

x

)
θx(1− θ)n−x θ

α−1(1 − θ)β−1

B(α, β)
dθ

=

(
n
x

)

B(α, β)

∫ 1

0

θx+α−1(1− θ)n−x+β−1dθ

=

(
n
x

)
B(x+ α− 1, n− x+ β − 1)

B(α, β)

Thus the posterior density of θ is given by

g(θ|x) = θx+α−1(1− θ)n−x+β−1

B(x+ α, n− x+ β)

i.e., a beta distribution with parameters x+α and n−x+β. Note that the posterior
distribution depends on the parameters α and β

It is known that the Beta distribution with parameters α
′

and β
′

has expected
value given by

α
′

(α′ + β′)

Thus the expected value of the posterior is given by

(x+ α)

(n+ α+ β)

which is a natural Bayes estimate of θ,
Note that this estimate is not the same as the conventional estimate x/n.
In fact

x+ α

n+ α+ β
= (1− wn)

x

n
+ wn

α

α+ β
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where

wn =
α+ β

n+ α+ β

i.e., the posterior mean is a weighted combination of the prior mean and the usual
estimate.

This may also be written as

x+ α

n+ α+ β
=

x

n
− wn

(
x

n
− α

α+ β

)

which shows that the usual estimate is “shrunk” toward the prior mean. Note that
the shrinkage factor, wn, approaches 0 for large sample sizes.

Suppose that we have observed x1, x2, . . . , xn assumed to be realized values of
independent random variables which are Poisson with parameterλ. Then the density
given λ is

f(x1, x2, . . . , xn;λ) =

n∏

i=1

λxie−λ

xi!
=

λnxe−nλ

∏n
i=1 xi!

Assume a prior for λ of the form

p(λ) =
λα−1e−λ/β

Γ(α)βα

i.e., a Gamma distribution with parameters α > 0 and β > 0
Then the posterior of λ is proportional to

λnx+α−1e−λ(n+1/β)

and hence the posterior is Gamma with parameters

a = nx+ α and b =
1

n+ 1
β

One natural (Bayes) estimate of λ is the mean of the posterior given by

ab =
nx+ α

n+ 1
β

Note that the posterior mean can be written as

(1 − wn)x + wnαβ
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where

wn =
1

1 + nβ

Thus the posterior mean is a linear combination of the prior mean and the
maximum likelihood estimate. This can also be written as

x− wn (x− αβ)

which again shows the shrinkage of the usual estimate to the prior mean. Again note
that for large n the posterior mean is very nearly equal to the maximum likelihood
estimate.

Another estimate is the mode of the posterior which, in this case, is given by

x+ α−1
n

1 + 1
nβ

For large n this is very nearly equal to the maximum likelihood estimate (this result
is true quite generally).

Suppose that Y obeys a general linear model, i.e., Y is normal with

E(Y) = Xβ and V(Y) = Iσ2

Suppose further that the prior distribution for β is also normal with mean and
variance-covariance matrix given by

E(β) = β0 and V(β) = V

The joint distribution of Y and β is thus also normal with

E

([
Y

β

])
=

[
X

I

]
β

and

V

([
Y

β

])
=

[
Iσ2 + XVX� XV

VX� V

]

It then follows that the posterior distribution of β given Y = y is normal with

E(β) = β0 + VX� [Iσ2 + XVX�]−1
XV(y − Xβ0)
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and

V(β) =
[
I+ XVX�]−1

Lots of complex, but routine, matrix algebra shows that the mean of the posterior
distribution of β can be written as

[
(X�X)σ−2 + V−1

]−1 {
σ−2X�Xb+ V−1β0

}

where b is the least squares estimate

b = (X�X)−1X�y

i.e., the mean of the posterior is a weighted linear combination of the prior mean β0

and the maximum likelihood estimate b.
Examples 1–3 have priors which are conjugate.
If a prior and a posterior belong to the same family of distributions they are said

to be conjugate.

14.4 Stable Estimation

Intuitively, with large amounts of data, the impact of the prior should be small.
More formally, if the likelihood L (θ|x) is highly concentrated over a region

Θs ⊂ Θ, then the posterior will satisfy

π(θ|x) ≈ L (θ;x)∫
Θs

L (θ;x)dμ(θ)
θ ∈ Θs

Thus the prior has essentially no impact on the posterior and we have robustness
to prior misspecification.

This is called stable estimation.

14.5 Bayesian Consistency

If the posterior converges to a distribution which is concentrated at the true value of
the parameter θ0 we have Bayesian consistency.

Under weak regularity conditions most commonly used models with sensible
priors lead to a posterior which is consistent.
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14.6 Relation to Maximum Likelihood

1. Suppose that X1, X2, . . . , Xn are iid with pdf f(x; θ) where

θ = (θ1, θ2, . . . , θp)

2. Assume that the prior π(θ) and f(x; θ) are positive and twice differentiable near
the maximum likelihood estimate of θ, θ̂.

3. Then under suitable regularity conditions (similar to those for maximum like-
lihood estimation) we have the Bernstein-von Mises result as stated in Berger
(1987).

The posterior density of θ

πn(θ|x) =
f(x; θ)π(θ)

f(x)

can be approximated for large n in the following four ways:

(i) πn is approximately MVN (μ∗(x), V(x)) where μ∗(x) and V
∗(x) are the

posterior mean and posterior covariance matrix.

(ii) πn is approximately MVN
(
θ̂
∗
; [Iπ(x)]−1

)
where θ̂

∗
is the generalized

maximum likelihood estimate for θ, i.e., the maximum likelihood estimator
for θ is the model with likelihood

L ∗(θ,x) = f(x; θ)π(θ)

and Iπ(x) is the p× p matrix with (i, j) element given by

Iπ
ij(x) = −

[
∂2 ln[f(x; θ)π(θ)]

∂θi∂θj

]

θ=
̂θ

∗

(iii) πn is approximately MVN
(
θ̂; [Î(x)]−1

)
where θ̂ is the maximum likelihood

estimate for θ and Î(x) is the p × p observed Fisher information matrix with
(i, j) element given by

Îij(x) = −
[
∂2 ln[f(x; θ)

∂θi∂θj

]

θ=
̂θ
= −

n∑

k=1

[
∂2 ln[f(xk; θ)

∂θi∂θj

]

θ=
̂θ

(iv) πn is approximately MVN
(
θ̂; [I(θ̂)]−1

)
where θ̂ is the maximum likelihood

estimate for θ and I(θ) is the p × p expected Fisher information matrix with
(i, j) element given by
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Iij(θ) = −nEθ

[
∂2 ln[f(X1; θ)]

∂θi∂θj

]

In general the approximations are ordered (i)–(iv) with (i) better than (ii), (ii)
better than (iii), and (iii) better than (iv).

If the prior is “uninformative” then the result gives “objective” posterior approx-
imations.

It follows that large sample posterior intervals are approximately

θ̂n ± z1−α/2

√
1

n i(θ̂)

It also follows that large sample posterior intervals for g(θ) are given by

g(θ̂n)± z1−α/2

√
|g(1)(θ̂n)|
n i(θ̂)

Remember Efron’s statement that estimate plus or minus two standard errors has
good credentials in any theory of statistical inference.

14.7 Priors

Many scientists and statisticians often say that they would use Bayesian methods
if they could find or justify use of a particular prior. What they are arguing about
is the choice of prior not the basic methodology, i.e., there is an acceptance of the
treatment of parameters as random. Exchangeability ensures that there is a prior.

Much has been written on the choice of priors and much more will surely be
written.

Example. Consider a room which we are told is square and between 10 and 20 feet
on a side. If θ1 is the parameter representing the length of a side, pleading ignorance
leads to a prior of the form

p(θ1) =

{
1
10 if 10 ≤ θ1 ≤ 20

0 elsewhere

If θ2 is the parameter representing the area of the room then again pleading
ignorance leads to a prior of the form

p(θ2) =

{
1

400 if 100 ≤ θ2 ≤ 400

0 elsewhere
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Note that the probability that the length of the side is between 10 and 15 feet is
1
2 which corresponds to an area between 100 and 225 square feet.

The probability assigned to this area under the ignorance model for the area is

∫ 225

100

1

400
dθ2 =

θ2
400

∣
∣∣
∣
∣

225

100

=
225− 100

400
=

125

400
=

5

8

Thus, the two ignorance assignments are not compatible.

Reference: Bayesianism: Its Scope and Limits, Elliott Sobel
Many view the above example as a key counterexample to the use of Bayesian

statistics. If it were, interest in Bayesian statistics would have waned decades ago.
What has happened is the search for priors which are transformation invariant

and yet, in some sense, do not convey “much” prior information, i.e., the prior is
dominated by the likelihood, even for small samples.

14.7.1 Different Types of Priors

Basically there are four approaches:

1. A formal mathematical approach which uses conjugate priors
2. An ad hoc approach which uses vague, flat, or uniform priors to represent

“ignorance”
3. A formal approach using reference priors which are designed to “let the data

speak for themselves”
4. A formal approach which elicits information to determine a truly subjective

prior

14.7.1.1 Conjugate Priors

If, in a given problem, there is a prior which, when combined with the likelihood,
yields a posterior which is in the same family as the prior, then the prior is said to
be a conjugate prior. It is tacitly assumed that a case can be made that this prior
represents prior beliefs about the parameter.

Conjugate priors have the great advantage that closed forms can be obtained for
the posterior and hence inferences are computationally simple.

Conjugate priors are not often available, but they are in one special family of
distributions called the exponential family.

For example:

(i) If the likelihood is binomial then the beta distribution is a conjugate prior.
(ii) If the likelihood is Poisson then the Gamma distribution is a conjugate prior.

(iii) If the likelihood is normal then the normal is a conjugate prior.
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Thus many of the simplest inference problems have conjugate priors and hence
closed form expressions for the posterior distributions can be found.

More generally linear combinations of conjugate priors can be used to find priors.
There are compendiums of conjugate priors available, e.g, Fink [15]

14.7.2 Vague Priors

Vague priors, also called flat or non-informative priors, are priors which are such
that they are constant over the range of parameter values for which the likelihood is
moderate in size.

Thus the posterior is essentially the likelihood normalized so as to integrate or
sum to 1.

Whenever the prior is of this type it is usually not a density. There is, for example,
no constant density that integrates to 1 over the interval [0,∞).

Thus one always needs to check that the posterior is in fact a density function
when flat priors are used. Such a posterior is called proper.

Vague priors are supposed to represent ignorance, i.e., any parameter value is
considered to be equally likely a priori. However this means that while we are
ignorant about θ we are not ignorant about g(θ) since its density will not be uniform.
(The Jacobian of the transformation form θ to g(θ) is not, in general, a constant.)

Thus vague priors are not transformation invariant. Reread the slides on the
problem of ignorance.

14.7.2.1 Jeffrey’s Priors

Jeffrey’s priors are a class of default priors which are translation invariant.
These priors, when applicable, choose the prior

p(θ) ∝
√

i(θ)

where i(θ) is Fisher’s information. For the multiple parameter case these priors are
of the form

p(θ) ∝
√
det(i(θ)

i.e., to the determinant of Fisher’s information matrix for a sample of size 1.

Example. For the Bernoulli we know that Fisher’s information is i(θ) =
1/[θ(1− θ)] so that the Jeffrey’s prior is given by

i(θ) =
1

θ1/2(1− θ)1/2
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and hence the posterior for a binomial using Jeffrey’s prior is given by

p(θ|x) ∝ θx−
1
2 (1− θ)n−x− 1

2

i.e., a beta distribution with parameter a = x+ 1/2 and b = n− x+ 1/2.

Example. For the normal with known variance, Jeffrey’s prior is given by

p(θ) = 1

which is an improper prior. For the normal with unknown mean and variance
Jeffrey’s prior is given by

g(θ, σ2) =
1

σ

which is also an improper prior. In both cases the posterior is a proper prior.

Jeffrey’s priors are not flat, but they are transformation invariant and are widely
used.

14.7.2.2 Reference Priors

In the last three decades much work has been done on developing a class of prior
distributions, called reference priors, which “let the data speak for themselves.”
Essentially these priors maximize the distance between the prior and the posterior,
using distance specified by the Kullback-Leibler divergence.

“Intuitively, a reference prior for θ is one which maximizes what is not known about θ,
relative to what could possibly be learnt from the result of a particular experiment. More
formally a reference prior for θ is defined to be one which maximizes, within some class
of candidate priors, the missing information about the quantity of interest θ, defined as a
limiting form of the amount of information about its value which data from the assumed
model could possibly provide.”

The amount of missing information is defined in terms of the Kullback-Leibler
divergence. Determination of these priors is quite technical, but often they turn out
to be Jeffrey’s prior.

“Reference priors are not descriptions of personal beliefs; they are proposed as formal
consensus priors to be used as standards for scientific communication.”

The quotations above are from papers by Bernardo. His website has excellent
papers on objective Bayes procedures.

Here is a short summary of reference priors for common statistical problems:
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Likelihood Prior Posterior
Binomial Beta(1/2,1/2) Beta(x+1/2,n-x+1/2)
Poisson λ−1/2 Gamma(x+1/2,1)
Normal (known σ2) Constant Normal(x, σ2/n)
Normal (unknown σ2) σ−1 Student’st

A complete list of reference priors appears in [56].

14.7.2.3 Subjective Priors

One important method of obtaining priors is to convene a group of experts in the
field under study and have them assess a prior distribution. Much has been written
about this under the name prior elicitation.



Chapter 15
Bayesian Statistics: Computation

15.1 Computation

• By Bayes theorem the posterior density of θ is given by

p(θ|x) = f(x; θ)p(θ)

f(x)

where

f(x) =

∫

Θ

f(x; θ)p(θ)dm(θ)

• The calculation of the posterior thus requires calculation of an integral of the
likelihood weighted by the prior.

• Usually this integral can only be determined in closed form for conjugate priors.

• For many years Bayesian analysis was reduced to using conjugate priors
(resulting in only a few practical applications)

• Or in relying on large sample approximations using large sample maximum
likelihood results.

• The introduction of fast reliable computing has changed all of that.

15.1.1 Monte Carlo Integration

Suppose that we want to evaluate

I =

∫
h(x)f(x)dx = Ef [h(X)]

© Springer International Publishing Switzerland 2014
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where f is a density function. Given random sample X1, X2, . . . , Xn, where n is
large then the law of large numbers tells us that

1

n

h∑

i=1

(Xi)
p−→ E[h(X)]

Thus

1

n

n∑

i=1

h(xi)

is an estimate of the integral I. The variance of this estimate is estimated by

s2I =
1

n− 1

n∑

i=1

(yi − y)2

where yi = h(xi). It follows that the standard error of the approximation to the
integral is estimated by

√
s2

n

Sampling from any density function is relatively easy since we can generate
uniform [0, 1] random variables and use the fact that if Y has distribution function
F then F−1(Y ) is uniform [0, 1].

15.1.2 Importance Sampling

If we know how to draw samples from f there is no problem in approximating
∫

h(x)f(x)dx

If, however, we do not know how to draw samples from f basic Monte Carlo
sampling will not be feasible. If we know how to sample from g we can write

I =

∫
h(x)f(x)dx =

∫
h(x)f(x)

g(x)
g(x)dx = Eg(Y )

where

Y =
h(X)f(X)

g(X)
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Since we can simulate from g, we obtain X1 = x1, X2 = x2, . . . , Xn = xn

from g and approximate I by

1

n

n∑

i=1

yi =
1

n

n∑

i=1

h(xi)f(xi)

g(xi)

This is called importance sampling. It works well provided the tails of the density
g are thicker than the tails of the density f but is otherwise similar to f .

15.1.3 Markov Chain Monte Carlo

The basic problem of evaluating

I =

∫
h(x)f(x)dx

can also be solved by constructing a Markov chain X1, X2, . . . whose stationary
distribution has density f . Then by a law of large numbers for Markov chains,

1

n

n∑

i=1

h(Xi)
p−→ Ef [h(X)]

Hence we can obtain a sample from f(x) and use this sample to approximate f and
hence the posterior.

There are a variety of different algorithms to perform markov chain monte carlo
(MCMC). One important one is Gibbs Sampling.

15.1.4 The Gibbs Sampler

The Gibbs sampler is a method that generates observations from a marginal density
f without having to calculate f . To understand Gibbs sampling it is necessary to
understand a little about stochastic processes. I have included in the appendix a
short section on stochastic processes.

Suppose that y is k dimensional. Let y(0) be an initial starting value and define

fi(yi|y−i)

to be the conditional density of Yi given the rest of the Yi’s, i.e., y−i is the k − 1
dimensional vector obtained by eliminating the ith coordinate of y. At the end of
the jth step we have calculated
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y(j) = (y
(j)
1 , y

(j)
2 , . . . , y

(j)
k )

We then generate the next random observation as follows:

1. Generate a random observation y
(j+1)
1 from

f1(y1|Y2 = y
(j)
2 , Y3 = y

(j)
3 , . . . , Yk = y

(j)
k )

2. Generate a random observation y
(j+1)
2 from

f2(y2|Y1 = y
(j+1)
1 , Y3 = y

(j)
3 , . . . , Yk = y

(j)
k )

3. Generate a random observation y
(j+1)
3 from

f3(y3|Y1 = y
(j+1)
1 , Y2 = y

(j+1)
2 , . . . , Yk = y

(j)
k )

...........................................................................
(k) Generate a random observation y

(j+1)
k from

fk(yk|Y1 = y
(j+1)
1 , Y2 = y

(j+1)
2 , . . . , Yk−1 = y

(j+1)
k−1 )

Then

y(j+1) = (y
(j+1)
1 , y

(j+1)
2 , . . . , y

(j+1)
k )

The sequence

y(0),y(1), . . . ,y(j),y(j+1), . . .

is a realization of a Markov chain, under suitable conditions, for j large the
distribution of y(j) will converge to the stationary distribution which can be shown
to be f(y).

Hence we have a random observation from f(y). We repeat this process a large
number N of times and then have a (large) random sample from f which can be
used to estimate f or some other function of f .

15.1.5 Software

Fortunately there is now much software available to obtain posterior densities using
MCMC. The most widely used of these is WinBUGS which is short for Bayesian
analysis using Gibbs Sampling implemented for Windows. It appears to be no longer
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supported by its developers, but there are excellent alternatives, namely JAGS (Just
Another Gibbs Sampler), MCMCPack in R, STAN, etc. Even SAS now has an
excellent PROC for doing Bayesian analysis. The excellent texts by Albert and
Huff, in addition to providing introductions to Bayesian statistics, provide R code
for doing many of the basic analyses. The text by Marin and Robert [31] also should
be mentioned as should ABC (Approximate Bayesian Computation).



Chapter 16
Bayesian Inference: Miscellaneous

16.1 Bayesian Updating

Suppose you have obtained a posterior distribution for θ based on data y1. At a later
date you are given data y2 whose distribution depends on the same parameter and is
independent of the previous data. Then we have that

p(θ|y1, y2) =
f(y1, y2; θ)g(θ)∫

Θ
f(y1, y2; θ)g(θ)dθ

=
f(y2; θ)f(y1; θ)g(θ)∫

Θ f(y2; θ)f(y1; θ)g(θ)dθ

=
f(y2; θ)

f(y1;θ)g(θ)
f(y1∫

Θ f(y2; θ)
f(y1;θ)g(θ)

f(y1)
dθ

=
f(y2; θ)p(θ|y1)∫

Θ
f(y2; θ)p(θ|y1)dθ)

i.e., “yesterday’s posterior becomes today’s prior.”
This feature of Bayesian inference is very compatible with the way in which

science operates, incorporating information in a logical and orderly way.

16.2 Bayesian Prediction

Suppose that we have observed X1 = x1, X2 = x2, . . . , Xn = xn where the Xi

are iid as f(x; θ). Suppose that interest focuses on the prediction of Xn+1, the next
(or a later value of X).

© Springer International Publishing Switzerland 2014
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We note that

f(xn+1|x1, x2, . . . , xn) =
f(x1, x2, . . . , xn, xn+1)

f(x1, x2, . . . , xn)

=

∫
Θ f(x1, x2, . . . , xn, xn+1, θ)p(θ)dθ

f(x1, x2, . . . , xn)

=

∫
Θ
f(x1, x2, . . . , xn; θ)p(θ)f(xn+1; θ)dθ

f(x1, x2, . . . , xn)

=

∫

Θ

p(θ|x1, x2, . . . , xn)f(xn+1; θ)dθ

Example. We have X1, X2, . . . , Xn as iid normal with mean θ and known variance
σ2 and we want to predict Xn+1, the next value of X . We know that the posterior
of μ is

p(μ|x) = [(2πσ2
∗)]

−1/2 exp

{
− (μ− μ∗)2

2σ2∗

}

where

μ∗ =
1

n
σ2 + 1

σ2
o

(
nx

σ2
+

μo

σ2
o

)
and σ2

∗ =
1

n
σ2 + 1

σ2
o

and μ0, σ2
0 are the mean and variance of the conjugate prior for μ.

It follows that the predictive density for xn+1 is

p(xn+1(x|x) =
∫ ∞

−∞
p(μ|x)f(xn+1;μ)dμ

or

∫ ∞

−∞
(2πσ2

∗)
−1/2 exp

{
− (μ− μ∗)2

2σ2∗

}
(2πσ2)−1/2 exp

{
− (xn+1 − μ)2

2σ2

}
dμ

which reduces to

K

∫ ∞

−∞
exp

{
−μ2

2

(
1

σ2∗
+

1

σ2

)
+ μ

(
μ∗
σ2∗

+
xn+1

σ

)}
dμ

where

K =
exp
{
− μ2

∗
2σ2∗

− x2
n+1

2σ2

}

√
2πσ2∗

√
2πσ2
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Now note that

∫ ∞

−∞

exp
{
− (μ−a)2

2b2

}

√
2πb2

= 1

implies that

∫ ∞

−∞
exp

{
− μ2

2b2
+

μ

b2

}
dμ =

√
(2πb2 exp

{
a2

2b2

}

so that to evaluate the integral we only need to identify a and b.
Note that

b2 =
1

1
σ2∗

+ 1
σ2

=
σ2
∗σ

2

σ2∗ + σ2

and that

a

b2
=

(
μ∗
σ2∗

+
xn+1

σ

)

so that

a =

(
μ∗
σ2∗

+
xn+1

σ

)
b2

and hence

a2

2b2
=

1

2

(
μ∗
σ2∗

+
xn+1

σ2

)2

b2

It follows that p(xn+1|x) is given by

⎧
⎪⎨

⎪⎩

exp
{
− μ2

∗
2σ2∗

− x2
n+1

2σ2

}

√
2πσ2∗

√
2πσ2

⎫
⎪⎬

⎪⎭

×

{√
2πσ2∗

√
2πσ2

√
σ2∗ + σ2

exp

{
1

2

(
μ∗
σ2∗

+
xn+1

σ2

)2

b2

}}

or
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1
√
2π(σ2∗ + σ2)

exp

{
− μ2

∗
2σ2∗

−
x2
n+1

2σ2

}

×

exp

{
μ2
∗σ

2

2σ2∗(σ2∗ + σ2)
+

x2
n+1σ

2∗
2σ2(σ2∗ + σ2)

− μ∗xn+1

(σ2∗ + σ2)

}

which reduces to

1
√
2π(σ2∗ + σ2)

exp

{
− (xn+1 − μ∗)2

2(σ2∗ + σ2)

}

i.e., normal with mean μ∗ and variance σ2
∗ + σ2.

For the same problem we can note that

Xn+1 = μ+ Zn+1

where Zn+1
d∼ N(0, σ2) is independent of X1, X2, . . . , Xn so that

X̂n+1 = μ̂+ Zn+1
d∼ N(μ, σ2/n+ σ2)

A totally ad hoc but reasonable predictor.

16.3 Stopping Rules in Bayesian Inference

Recall that t(x) is a sufficient statistic for θ if

f(x; θ) = h(x)g(t(x); θ)

where h(x) does not depend on θ. As previously noted, with prior p(θ), the posterior
of θ is

p(θ|x) = f(x; θ)p(θ)∫
Θ
f(x; θ)p(θ)dθ

=
g(t(x); θ)h(x)p(θ)∫

Θ
g(t(x); θ)h(x)p(θ)dθ

=
g(t(x); θ)p(θ)∫

Θ
g(t(x); θ)p(θ)dθ

i.e., the posterior depends only on the sufficient statistic, t(x).
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In many applications the sufficient statistic can be written as

t(x) = [a(x), s(x)]

where the density of a(x) does not depend on θ.

Definition 16.3.1. A statistic a(x) is said to be ancillary if the distribution of a(x)
does not depend on θ.

In the case of an ancillary statistic we have

g(t(x); θ) = g(s(x); θ|a(x))g(a(x); θ)

= g(s(x); θ|a(x))g(a(x))

It follows that

p(θ|x) = g(s(x); θ|a(x))g(a(x))p(θ)∫
Θ g(s(x); θ|a(x))g(a(x))p(θ)dθ

=
g(s(x); θ|a(x))p(θ)∫

Θ g(s(x); θ|a(x))p(θ)dθ

Thus in Bayesian inference, in the presence of an ancillary statistic, we may use
the distribution of the sufficient statistic conditional on the ancillary statistic as the
basic “likelihood.”

Consider the Bernoulli trial model in which

f(x1, x2, . . . , xn) =

n∏

i=1

f(xi; θ) = θsn(1 − θ)n−sn

where sn = x1 + x2 + . . .+ xn is the sufficient statistic.
It is clear that (n, sn) is a sufficient (minimal). If we write

g(n, sn; θ) = g(sn; θ|n)g(n|θ)

where g(n|θ) does not depend on θ then we may base inference on

g(sn; θ|n) =
(
n

sn

)
θsn(1− θ)n−sn

the binomial density.
If in the same problem we write

g(n, sn; θ) = g(n; θ|sn)g(sn; θ)
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and we assume that for all sn ≥ 1, g(sn; θ) does not depend on θ then sn is ancillary
and inference can be based on

g(n; θ|sn)

which is a negative binomial distribution, i.e.,

g(n : θ|sn) =
(
n− 1

sn − 1

)
θsn(1− θ)n−sn

Note that the posterior distributions for each of these situations are the same

p(θ|sn) ∝ θsn(1 − θ)n−snp(θ)

This is a result of the likelihood principle in Bayesian inference.

Principle 16.3.1 (Likelihood Principle). Whenever two likelihood functions are
proportional, i.e.,

g1(x1; θ) ∝ g2(x2; θ) for all θ,

then the posterior densities for θ are identical.

As the example shows, while it is obvious that the sample size n is usually
fixed in advance of the experiment, inferences can be the same under different rules
for the termination of the experiment. This has important practical considerations.
In particular can we consider n as being fixed if

• “Stop when you have obtained a significant result.”
• “Stop when you run out of money.”

What we know is that, provided the rule which leads to the final n does not depend
on θ, Bayesian inferences should be the same.

Definition 16.3.2 (Stopping Rule). A stopping rule h, for sequential sampling
from a sequence x1 ∈ X1, x2 ∈ X2, . . . is a sequence of functions

hn : X1 ×X2 × · · · × Xn �→ [0, 1]

such that

• If x(n) = (x1, x2, . . . , xn) is observed stop with probability h(x(n)

• Otherwise observe xn+1

• A stopping rule is proper if the distribution ph(n) guarantees that the sample
size is finite

• A stopping rule is deterministic if h(x(n) ∈ {0, 1}; otherwise it is said to be a
randomized stopping rule
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In the general case it is necessary to consider the data resulting from a sequential
experiment as consisting of both n, as chosen by the rule, h, and the observed values
x(n) = x1, x2, . . . , xn. Thus the probability model is of the form f(n, x(n); θ|h),
i.e., we must condition on h.

Suppose we ignore the sampling rule h and analyze the data as if the observed
sample size was fixed in advance, i.e., we assume that

f(n, x(n); θ|h) = f(x(n); θ)

What are the consequences of such an assumption?

Example. Consider Bernoulli trials with parameter θ and a stopping rule h
defined by

h1(1) = 1 ; h1(0) = 0 ; h2(x1, x2) = 1 for all x1, x2

i.e., if the first trial is a success we stop; if it is a failure we observe x2 and stop.

This is clearly a biased sampling rule since it seems to be in favor of larger values
of θ.

Note, however, that

f(n = 1, x1 = 1; θ|h) = f(x1; θ|n = 1, h)P(n = 1; θ|h)

= f(x1 = 1; θ)

= θ

and for x = 0, 1

f(n = 2, x1 = 0, x2 = x; θ|h) = f(x1, x2 = x; θ|n = 2, h)P(n = 2; θ|h)

= f(x1 = 0; θ|n = 2, h)f(x2 = x; θ|x1 = 0, n = 2, h)P(n = 2; θ|h)

= f(x2 = x; θ|x1 = 0)f(x1 = 0; θ)

= (1 − θ)θx(1 − θ)1−x

It follows that for all (n, x(n)) we have that

f(n, x(n); θ|h) = f(x(n); θ)

and hence the posteriors will be the same and thus Bayesian inferences will be the
same.

Theorem 16.3.1. For any stopping rule, h, as defined in the previous definition we
have that

f(n, x(n); θ|h) ∝ f(x(n); θ) θ ∈ Θ
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where f(x(n); θ) is the fixed sample size parametric model for x(n). That is, stopping
rules as defined are likelihood non-informative, and posterior inferences will not
depend on the stopping rule.

Suppose that x1, x2, . . . , xn are iid as normal with mean θ and variance 1.
Also suppose that an investigator wants to “prove” that θ is not 0 by sampling
until the p-value is less than α. That is sample until x exceeds k(α)/

√
n, e.g.,

k(0.05) = 1.96.
Thus the stopping rule is

hn(x(n) =

{
1 if |xn| > k(α)/

√
n

0 if |xn| ≤ k(α)/
√
n

This can be shown by the Law of the Iterated Logarithm when θ = 0 to be a
proper stopping rule and hence is likelihood non-informative.

Does this mean that a Bayesian can be tricked by such an investigator? After all
the posterior with vague prior is N(x, 1/n) so that a 1− α credible interval is

x± k(α)/
√
n

Thus the credible interval does not contain the true value θ = 0!
A solution is provided when we realize that θ = 0 is a special value of the

parameter (as is any point null hypothesis). If we assign a positive prior probability
π to θ = 0 and a normal conjugate prior with large variance to the rest of the
parameter, i.e., use a prior of the form

p(θ) = π1θ=0(θ) + (1 − π)1θ 	=0(θ)N(θ, 0, σ2
0)

The resulting posterior consists of a spike at θ = 0 given by

π∗ =

{
1 +

1− π

π

(
1 + nσ2

0

)−1/2
exp

[
1

2
(
√
nx)2(1 + nσ2

0)
−1

]}−1

Suppose now that α is very small so that k(α) is large. In this case n is likely to
be large and when we stop we have x ≈ k(α)/

√
n and in this case

π∗ ≈
{
1 +

1− π

π

(
1 + nσ2

0

)−1/2
exp

[
1

2
k2(α)

]}−1

≈ 1

Thus, even though a frequentist argument would say that θ 
= 0 a careful
Bayesian argument shows that the posterior probability that θ = 0 is close to one!
This is another variant of the Jeffrey’s Lindley paradox and shows, once again, the
basic incompatibility of frequentist and Bayesian inferences.
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16.4 Nuisance Parameters

Suppose that the parameter θ can be written as θ = (φ, λ) where φ is of interest and
λ is called a nuisance parameter.

1. Classical statistics has no general theory regarding inference in the presence of
nuisance parameters. A variety of ad hoc techniques is used, e.g., pivots and
marginalization.

2. Bayesian inference on the other hand has a logical surefire way to deal with
nuisance parameters: simply assign them a prior and integrate them out.

Thus first calculate

p(θ|x) = f(x; θ)p(θ)

f(x)

and then

p(φ|x) =
∫

p(θ|x)dλ =

∫
p(phi, λ|x)dλ

where

f(x) =

∫
f(x;φ, λ)p(φ, λ)dφdλ

Alternatively we might calculate the integrated likelihood for φ as

f(x;φ) =

∫
f(x;φ.λ)p(λ|φ)dλ

and use this likelihood to calculate the posterior for φ as

p(φ|x) = f(x;φ)p(φ)

f(x)

In any case the elimination of nuisance parameters is straightforward but depends
heavily on the prior; reference priors are the best choice.

16.5 Summing Up

No inferential argument in statistics has anything going for it unless a sensible Bayesian
interpretation can be found for it.

D. Basu



Chapter 17
Pure Likelihood Methods

17.1 Introduction

As we have seen in previous chapters use of the likelihood is important in frequentist
methods and in Bayesian methods. In this chapter we explore the use of the
likelihood function in another context, that of providing a self-contained method of
statistical inference. Richard Royall in his book, Statistical Evidence: A Likelihood
Paradigm, carefully developed the foundation for this method building on the work
of Ian Hacking and Anthony Edwards. Royall lists three questions of interest to
statisticians and scientists after having observed some data

1. What do I do?
2. What do I believe?
3. What evidence do I now have?

In the context of the usual parametric statistical model where we have an
observed value xobs of random X having sample space X , parameter space Θ,
and probability density function f(xobs; θ) at the observed value, xobs of X the
first question is a decision theoretic problem re the actions to be taken on the basis
of the model and the observed data and the second concerns what do I believe about
θ given the observed data and presumably some prior knowledge about θ. The third
question concerns characterizing what evidence the data has provided us about θ
and requires no actions or beliefs. It is simply a question of “what do the data say”
(about θ).

We have already stated the Law of Likelihood:

Axiom 17.1.1. (Law of Likelihood). For two parameter values, θ1 and θ0, in the
model X , f(x; θ),Θ), the magnitude of the likelihood ratio

L(θ1, θ0;xobs) =
f(xobs; θ1)

f(xobs; θ0)

© Springer International Publishing Switzerland 2014
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measures the statistical evidence for θ1 vs θ0. If the ratio is greater than 1 we have
statistical evidence for θ1 vs θ0 while if less than 1 we have statistical evidence for
θ0 vs θ1.

I have used the term statistical evidence so as to not conflict with the use of the
word evidence in other contexts, e.g., in P-values. We say the statistical evidence for
θ1 vs θ0 is of strength k > 1 if L(θ1, θ0;xobs) > k.

17.2 Misleading Statistical Evidence

Since we are dealing with probability models it is possible to observe a value, xobs,
for which L(θ1, θ0;xobs) > k, and yet θ0 is true. This is called misleading evi-
dence. The following is called the universal bound and shows that the probability
of misleading evidence can be kept small by choice of k.

Theorem 17.2.1. The probability of misleading evidence is bounded by 1/k, i.e.,

Pθ0

{
f(X; θ1)

f(X; θ0)
≥ k

}
≤ 1

k

Proof. Let M be the set

M =

{
x :

f(X; θ1)

f(X; θ0)
≥ k

}

Then
∫

M

f(x; θ0)dμ(x) ≤
∫

M

1

k
f(x; θ1)dμ(x)

≤ 1

k

∫

X
f(x; θ1)dμ(x)

=
1

k

In fact a much stronger result is true. Consider a sequence of observations

Xn = (X1, X2, . . . , Xn)

such that if A is true then Xn ∼ fn and when B is true Xn ∼ gn. The likelihood
ratio

gn(xn)

fn(xn)
= zn
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is the LR in favor of B after n observations. Then we have the following theorem.

Theorem 17.2.2. If A is true then

PA(Zn ≥ k for some n = 1, 2, . . .) ≤ 1

k

Robbins [41]
In many circumstances the universal bound is far too conservative. Consider the

situation where we have X1, X2, . . . , Xn where the Xi are iid as N(μ, σ2) where,
for simplicity, σ2 is assumed known. The joint density is given by

f(y;μ) =
n∏

i=1

(2πσ2)−
1
2 exp

{
− (yi − μ)2

2σ2

}

After some algebraic simplification the likelihood ratio for comparing μ1 vs μ0

is given by

exp

{(
x̄− μ0 + μ1

2

)
n(μ1 − μ0)

σ2

}

It follows that the likelihood ratio exceeds k if and only if

n(μ1 − μ0)

σ2

(
x̄− μ1 + μ0

2

)
≥ ln(k)

Thus, without loss of generality, if μ1 − μ0 > 0, the likelihood ratio exceeds k if
and only if

x̄ ≥ μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

Thus the probability of misleading statistical evidence when H0 = μ0 is assumed
true is given by

PMLEV1 = Pμ=μ0

{
f(X;μ1)

f(X;μ0
≥ k

}

= Pμ=μ0

{
X ≥ μ1 + μ0

2
+

σ2

nμ1 − μ0
ln(k)

}

= Pμ=μ0

{√
n(X − μ0)

σ
≥

√
n(μ1 − μ0)

2σ
+

σ ln(k)√
n(μ1 − μ0)

}

= P

(
Z ≥

√
nc

2
+

ln(k2)√
nc

)



200 17 Pure Likelihood Methods

= Φ

(
−c

√
n

2
− ln(k)

c
√
n

)

where Φ(z) is the standard normal distribution function evaluated at z and

c =
|μ1 − μ0|

σ

If μ1 − μ0 < 0 similar calculations show that the probability of misleading
evidence when μ0 is assumed true is given by the same expression. It follows that
the probability of misleading evidence when H0 = μ0 is true is

PMLEV = Φ

(
−c

√
n

2
− ln(k2)

c
√
n

)

where

c =
|μ2 − μ1|

σ

and Φ is the standard normal distribution function. The function

B(c, k, n) = Φ

(
−c

√
n

2
− ln(k)

c
√
n

)

has been called the bump function by Royall.
Also note that c is often called the effect size in the social science literature

and represents the difference between μ0 and μ1 in standard deviation units. The
following are rules of thumb for judging the magnitude of the effect size:

• c ≤ 0.1 trivial
• 0.1 < c ≤ 0.6 small
• 0.6 < c ≤ 1.2 moderate
• c ≥ 1.2 large

Note that the derivative with respect to c of the bump function is

φ

(
−c

√
n

2
− ln(k)

c
√
n

)(
−
√
n

2
+

ln(k)

c2
√
n

)

which vanishes when
√
n

2
=

ln(k)

c2
√
n

i.e., when
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c =

√
2 ln(k)

n
= c∗

The second derivative with respect to c is

φ
(
− c

√
n

2 − ln(k)

c
√
n

)(
−

√
n
2 + ln(k)

c2
√
n

)2
φ
(
− c

√
n

2 − ln(k)

c
√
n

)

+
(
− 2 ln(k)

c3
√
n

)

which is negative when c = c∗ so that the bump function has a maximum at c = c∗

given by

B(c∗, k, n) = Φ

(
−c∗

√
n

2
− ln(k)

c∗
√
n

)
= Φ(−

√
2 ln(k))

It is well known that

t

1 + t2
φ(t) ≤ Φ(−t) ≤ 1

t
φ(t)

so that

Φ(−
√
2 ln(k)) ≤ 1

√
2 ln(k)

φ(
√

2 ln(k))

=
1

2
√
π ln(k)

exp
{
−(
√
2 ln(k))2/2

}

=
1

2
√
π ln(k)

exp {− ln(k)}

=
1

k2
√
π ln(k)

which is considerably less than the universal bound of 1/k.

17.2.1 Weak Statistical Evidence

Again, since we are dealing with probability models, it is possible to observe a
value, xobs, for which

1

k
< L(θ1, θ0;xobs) < k
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This is called weak statistical evidence. We have weak evidence in the example of
normally distributed observations if and only if

− ln(k) ≤
(
x̄− μ1 + μ0

2

)
n(μ1 − μ0)

σ2
≤ ln(k)

If μ1 − μ0 > 0 the condition for weak statistical evidence is that x must lie
between

μ1 + μ0

2
− σ2

n(μ1 − μ0)
ln(k)

and

μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

If we define

gn(μ0, μ1, k) =
μ1 + μ0

2
+

σ2

n(μ1 − μ0)
ln(k)

then the condition for weak evidence becomes

gn(μ0, μ1, 1/k) ≤ x̄ ≤ gn(μ0, μ1, k)

and the probability of weak evidence is given by

Pr
{
gn(μ0, μ1, 1/k) ≤ X̄ ≤ gn(μ0, μ1, k)

}

which is easily evaluated under H0 and H1 since X̄ has an N
(
μ, σ

2

n

)
distribution.

Now we note that

√
n

σ
[gn(μ0, μ1, k)− μ0] =

c
√
n

2
+

ln(k)

c
√
n

It follows that the probability of weak evidence, Pμ=μ0 (WEV), is given by

Φ

(
c
√
n

2
+

ln(k)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k)

c
√
n

)

Similarly

√
n

σ
[gn(μ0, μ1, k)− μ2] =

−c
√
n

2
+

ln(k)

c
√
n
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It follows that the probability of weak evidence Pμ=μ1 (WEV) is given by

Φ

(
c
√
n

2
+

ln(k)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k)

c
√
n

)

If we define

W (x, y) = Φ

(
c
√
n

2
+

ln(k1)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k2)

c
√
n

)

then the two probabilities are given by

W1 = P1(WEV) = W (k2, k1)

and
W2 = P2(WEV) = W (k1, k2)

There is nothing that requires the same level of statistical evidence be the same
for μ1 vs μ0 as for μ0 vs μ1. That is we say we have statistical evidence for μ1 vs
μ0 of level k1 if L(θ1, θ0;xobs) > k1 and statistical evidence for μ0 vs μ1 of level
k0 if L(θ0, θ1;xobs) > k0.

We then have the following summary of results for the normal distribution
example.

• When H0 is true the probability of misleading evidence for H1 at level k1 defined
by (L1/L0 ≥ k1) is

M0 = Φ

(
−c

√
n

2
− ln(k2)

c
√
n

)

• When H0 is true the probability of weak evidence is

W0 = Pμ=μ0

(
1

k0
≤ L1

L0
≤ k1

)

= Φ

(
c
√
n

2
+

ln(k1)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k0)

c
√
n

)

• When H1 is true the probability of misleading evidence for H0 at level k0 defined
by (L0/L1 ≥ k0 is

M1 = Φ

(
−c

√
n

2
− ln(k1)

c
√
n

)
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• When H1 is true the probability of weak evidence is

W1 = Pμ=μ1

(
1

k0
≤ L2

L1
≤ k1

)

= Φ

(
c
√
n

2
+

ln(k0)

c
√
n

)
− Φ

(
c
√
n

2
− ln(k1)

c
√
n

)

17.2.2 Sample Size

There is no doubt that one of the questions most asked of a statistician is

How many observations do I need?

Actually the usual question is how many subjects do I need to get a statistically
significant result that is publishable? This question is easily answered, so let us
consider refining the question.

Suppose that we will observe X1, X2, . . . , Xn assumed independent and identi-
cally distributed as normal with mean μ and variance σ2 assumed known (usually
based on past work with similar instruments, and so on). Of interest is a (null)
hypothesis H0 : μ = μ0 and an alternative H1 : μ = μ1 where without loss
of generality we assume that μ1 > μ0. It is assumed that μ1 represents a value of
μ which is of scientific importance,i.e., if μ1 is true then a result of scientific or
practical importance has been discovered.

The Neyman–Pearson theory has been used for decades to determine sample size
is the default method. It is required in submitting grants to NIH, NSF, FDA, etc., as
well as in reporting the results of published studies and dissertations. The Neyman–
Pearson approach to sample size selection is as follows:

1. Choose a value α for the significance level (usually α = 0.05).
2. Choose a value 1− β for the power (usually β = 0.20 so that the power is 0.8).
3. Select the sample size n so that

P (Type I error) = P (reject H0|H0 true) = α

1− P (Type II error) = P (reject H0|H1 true) = 1− β

In the case of a normal distribution with known variance we have that

P (Type I error) = P (X ≥ C|μ = μ0)

= P

(√
n(X − μ0

σ
≥

√
n(C − μ1)

σ

∣
∣∣
∣
∣
μ = μ0

)

= 1− Φ

(
C − μ1

σ

)
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and it follows that

C = μ0 + z1−α/2
σ√
n
= μ0 + 1.645

σ√
n

if α = 0.05

and

Power = P (X ≥ C|μ = μ1)

= P

(

X ≥ μ0 + z1−α/2
σ√
n

∣
∣
∣
∣
∣
μ = μ1

)

= P

(√
n(X − μ1)

σ
≥ z1−α/2 − (μ1 − μ0)

√
n

σ

∣
∣
∣
∣
∣
μ = μ1

)

= 1− Φ

(
z1−α/2 − (μ1 − μ0)

√
n

σ

)

= 1− Φ(z1−α/2 − c
√
n)

In order to have power 1− β we must have

Φ

(
z1−α/2 − (μ1 − μ0)

√
n

σ

)
= β

i.e.,

z1−α/2 − (μ1 − μ0)

√
n

σ
= zβ

or

z1−α/2 − zβ = (μ1 − μ0)

√
n

σ

and it follows that

n =
(z1−α/2 + z1−β)

2

c2

where

c =
μ1 − μ0

σ

This is the prototype of sample size formulas.
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The Neyman-Pearson approach is inadequate when we want to quantify statisti-
cal evidence for H1 vs H0 we now consider the selection of sample size necessary
to quantify statistical evidence. Recall that there are four probabilities involved:

1. The probability of misleading statistical evidence for H1 when H0 is true
2. The probability of misleading statistical evidence for H0 when H1 is true
3. The probability of weak statistical evidence when H0 is true
4. The probability of weak evidence when H1 is true

The analogue to the Type I error probability is the probability of finding
misleading evidence for H1 when H0 is true. For the normal distribution we have
the correspondence for α = 0.05 and M0 given by

α = 0.05 M0 = Φ

(
−c

√
n

2
− ln(8)

c
√
n

)

and if we take c = 0.5, a moderate effect size, we have the correspondence

α = 0.05 M0 = Φ

(
−
√
n

4
− 4 ln(8)√

n

)

For the analogue to the Type II error we must be more careful. The probability of
failing to find evidence supporting H1 when H0 is true is composed of two parts:

1. The probability of misleading evidence in favor of H0 when H1 is true
2. The probability of weak evidence when H1 is true

For the normal distribution we have the correspondence

β = P (Type II error) = Φ

(

z1−α/2 − (μ2 − μ1)

√
n

σ

)

M1 +W1 = Φ

(

− c
√
n

2
− ln(k1)

c
√
n

)

+ Φ

(

c
√
n

2
+

ln(k1)

c
√
n

)

− Φ

(

c
√
n

2
− ln(k2)

c
√
n

)

= 1− Φ

(

c
√
n

2
− ln(k2)

c
√
n

)

= Φ

(−c
√
n

2
+

ln(k2)

c
√
n

)

and if β = 0.2, c = 0.5 and k2 = 8 we have

β = 0.2 ; M2 +W2 = Φ

(
−
√
n

4
+

2 ln(8)√
n

)

For the Neyman Pearson sample size formula for α = 0.05, β = 0.20 and
c = 0.5 we get a sample size of

n =
(1645 + 0.84)2

0.52
= 25
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For this sample size we find that M1 +W1 is equal to

M1 +W1 = Φ

(

−
√
25

4
+

2 ln(8)√
25

)

= Φ(−0.418) = 0.34

Thus the conventional sample size formula does not lead to a small probability of
finding weak evidence.

Exercises in Royall’s book show that the this is true in general, i.e., conventional
sample size formulas do not guarantee finding strong evidence.

17.3 Birnbaum’s Confidence Concept

Recall Birnbaum’s confidence concept which he advocated after becoming skeptical
of the likelihood principle.

A concept of statistical evidence is not plausible unless it finds “strong evidence”
for H2 as against H1 with small probability (α) when H1 is true and with much
larger probability (1− β) when H2 is true.

What the results in the sample size section show is that it is possible in certain
cases to satisfy the confidence concept with sufficient observations.

17.4 Combining Evidence

Suppose that we have two independent estimators, t1 and t2 of a parameter θ where
t1 is normal with expected value θ and variance v1 and t2 is normal with expected
value θ and variance v2. Assume that v1 and v2 are known.

The joint density of t1 and t2 is

f(t1, t2; θ) =
1

2π
√
v1v2

exp

{
− (t1 − θ)2

2v1
− (t2 − θ)2

2v2

}

which has logarithm

−ln[2π
√
v1v2]−

(t1 − θ)2

2v1
− (t2 − θ)2

2v2

The derivative with respect to θ is thus

(t1 − θ)

v1
− t2 − θ

v2
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and hence the maximum likelihood estimate of θ is

θ̂ =
t1
v1

+ t2
v2

1
v1

+ 1
v2

At this value of θ the joint density is

f(t1, t2; θ̂) =
1

2π
√
v1v2

exp

{

− (t1 − θ̂)2

2v1
− (t2 − θ̂)2

2v2

}

and hence the likelihood for θ is

L (θ; t1, t2) =
f(t1, t2; θ)

f(t1, t2; θ̂)
=

1
2π

√
v1v2

exp
{
− (t1−θ)2

2v1
− (t2−θ)2

2v2

}

1
2π

√
v1v2

exp
{
− (t1−̂θ)2

2v1
− (t2−̂θ)2

2v2

}

or

L (θ; t1, t2) = exp

{
t1θ

v1
+

t2θ

v2
− θ2

2v1
− θ2

2v2
− t1θ̂

v1
− t2θ̂

v2
+

θ̂2

2v1
+

θ̂2

2v2

}

= exp

{
θ

(
t1
v1

+
t2
v2

)
− θ2

2

(
1

v1
+

1

v2

)
− θ̂

(
t1
v1

+
t2
v2

)

+
θ̂2

2

(
1

v1
+

1

v2

)}

= exp

{

θθ̂

(
1

v1
+

1

v2

)
− θ2

2

(
1

v1
+

1

v2

)
− θ̂2

2

(
1

v1
+

1

v2

)}

= exp

{
−1

2

(
1

v1
+

1

v2

)(
θ2 − 2θθ̂ + θ̂2

)}

= exp

{

−
(

1

v1
+

1

v2

)
(θ − θ̂)2

2

}

= exp

{
(θ − θ̂)2

2v

}

where

v =
1

1
v1

+ 1
v2

which is a normal likelihood centered at θ̂ and curvature v.
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This is a likelihood version of the standard result that to combine unbiased
uncorrelated estimators weight inversely as their variance and divide the result by
the sum of the weights.

In general note that if we have x1 observations from f(x; θ) and independent
observations x2 from f(x; θ) then the evidence for θ1 vs θ0 based on (x1,x2) is

f(x1,x2; θ1)

f(x1,x2; θ0)
=

[
f(x1; θ1)

f(x1; θ0)

] [
f(x2; θ1)

f(x2; θ0)

]

i.e., evidence is multiplicative.

17.5 Exercises

1. Suppose that X1, X2, . . . , Xn are iid, each Poisson with parameter λ. Let k = 8,
n = 1, 10, 25. Draw graphs of the probability of misleading evidence for λ1 = 2
vs λ0 = 1.

2. Repeat Exercise 1 for the binomial with n = 10, 25, 100, 1000 and p = 0.6 vs
p = 0.5.



Chapter 18
Pure Likelihood Methods and Nuisance
Parameters

18.1 Nuisance Parameters

18.1.1 Introduction

In most, if not all, statistical problems we have not one parameter but many.
However, we are often interested in inference or statements on just one of the
parameters. Suppose then that the parameter of interest is θ and that the remaining
parameters, called nuisance parameters, are denoted by γ.

The elimination of nuisance parameters so as to focus on the parameter of interest
is a complex problem in statistics with no universal solution. In fact, in some cases,
there may be no way to overcome the problem without additional related data.

Recall that a statistical model is a collection (family) of probability distributions.
The family is parametric if it can be indexed by a k-dimensional parameter vector
Δ where Δ ∈ Rk. In most applications the elements of Δ consist of two types:

• Parameters of primary interest denoted by θ
• Parameters not of primary interest denoted by γ and called nuisance parameters

The most important case occurs when

Δ = (θ, γ)

and θ ∈ Θ ⊆ Rp, γ ∈ Γ ⊆ Rk−p

The parameters θ and γ are said to be

variation independent if Δ = Θ× Γ

Example. Let X be normal with mean μ and variance σ2. Then μ and σ2 are
variation independent and we might have

© Springer International Publishing Switzerland 2014
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θ = μ, γ = σ2 or θ = σ2, γ = μ

Example. Again let X be normal with mean μ and variance σ2 with σ2 known.
We might have θ = |μ| and γ = sign(μ).

Suppose now that we have n observations y1, y2, . . . , yn which are observed
values of independent random variables Y1, Y2, . . . , Yn. The joint density is then

fy(y; δ) =

n∏

i=1

fYi(yi; δi)

There are two important situations

(1) δi = (θ, γ)
(2) δi = (θ, γi)

In the first case the number of nuisance parameters is independent of the sample
size while in the second case the number of nuisance parameters increases with the
number of observations.

18.1.2 Neyman-Scott Problem

Suppose that Y1, Y2, . . . , Yn are independent with normal distributions where

E(Yi) = E

([
Yi1

Yi2

])
=

[
μi1

μi2

]

and

var(Yi) = var

([
Yi1

Yi2

])
=

[
σ2 0

0 σ2

]

and that

θ = σ2 ; γ = (μ1, μ2, . . . , μn)

The joint density, f(y;σ2, μ1, μ2, . . . , μn), is given by

n∏

i=1

(2πσ2)−1 exp

{
− 1

2σ2
(yi1 − μi)

2 − 1

2σ2
(yi2 − μi)

2

}

Clearly the maximum likelihood estimate of μi is yi which yields a maximized
likelihood with respect to γ of
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(2πσ2)−1 exp

{

− 1

2σ2

n∑

i=1

S2
i

}

where

S2
i =

2∑

j=1

(yij − yi)
2

The log likelihood is given by

−n ln(2πσ2)− 1

2σ2

2∑

i=1

S2
i

which has the first derivative

− n

σ2
− 1

2σ4

n∑

i=1

S2
i

It follows that the maximum likelihood estimate of σ2 is given by

σ̂2 =
1

2n

n∑

i=1

S2
i

Recall that

S2
i

σ2
∼ chi-square(1)

so that

E(S2
i ) = σ2 and var (S2

i ) = 2σ4

It follows that

E(σ̂2) =
σ2

2
and var (σ̂2) =

σ4

2n

and hence

σ̂2 p−→ σ2

2

i.e., σ̂2 is not a consistent estimator for σ2.
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18.2 Elimination Methods

Assume that the basic model consists of a sample space X and a family of
distributions P indexed by two parameters θ ∈ Θ and γ ∈ Γ, which may be vector
valued.

We also assume, for simplicity, that the full parameter space Δ is equal to Θ×Γ,
i.e., θ and γ are variation independent.

The following is a partial list (with overlap) of techniques which have been used
to eliminate the parameters in Γ. In general some information about θ is lost when
any of these approaches are used:

• Replace the model (X , P(θ,γ)) by a new model (T , Qθ) where, as the notation
indicates, the family Q is indexed by θ alone. Marginal and conditional
likelihoods fit into this category.

• Replace the parameter γ by an estimate γ̃ and use the model (X , P(θ,γ̃)). Profile
and estimated likelihoods are examples of this type of approach as are the usual
methods of inference in generalized linear models and other types of regression
models.

• Use a pivot or other argument to obtain a statistic whose distribution is free of
the nuisance parameter. Inference on θ is then based on this statistic.

• Restrict attention to a class of inference procedures such as unbiased estimators,
unbiased tests, fixed size confidence intervals, etc., whose repeated sampling
properties are free of the nuisance parameter.

• Eliminate the nuisance parameter from the risk function (or estimating equations)
by maximization (minimization) and choose the decision rule for θ based on this
new risk function (estimating equation).

• Choose a prior for γ, integrate out (marginalize) over γ, and base inference on
the remaining likelihood which is called the integrated likelihood.

• Use an indirect method to obtain a statistics whose distribution depends only
on θ.

18.3 Evidence in the Presence of Nuisance Parameters

From the perspective of this chapter, i.e., “what do the data say?” about θ,
The likelihood ratio

L(θ2;x)
L(θ1;x)

measures the statistical evidence for θ2 vs θ1. Thus the basic methodology is to “look
at the likelihood function.” The problem is that when the dimension of Θ = p > 1
it is hard to visualize and understand the likelihood function.
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Example. In a N(μ, σ2) problem we may be interested in μ alone. We want to know
“What do the data say” about μ? In this analysis σ2 is a nuisance parameter.

The likelihood ratio for comparing μ2 to μ1 is, after simplification,

exp

{
n(μ2 − μ1)

σ2

[
x− μ2 + μ1

2

]}

and the presence of σ2 shows that the evidence is dependent on the value of σ2.

Example. In the two-binomial problem where the model for P(θ1,θ2)

(X = x, Y = y) is

(
n1

x

)
θx1 (1− θ1)

n1−x

(
n2

y

)
θy2(1− θ2)

n2−y

we may ask “what do the data say” about

θ1, or θ2,
θ1
θ2

(the relative risk)
θ1(1−θ1)
θ2/(1−θ2)

(the odds ratio)

It would be possible to do a contour plot of L(θ1, θ2;x) which would completely
represent the evidence about θ1, θ2. But we would like to break the problem down
into components and look at them one at a time.

Suppose then that the parameter is (θ, γ) where θ is of interest and γ is the
nuisance parameter. The question is then: “What do the data say” about θ?

• That is, we want to look at the evidence about θ2 vs θ1.
• Which is better supported and by how much?
• The problem is that the likelihood ratio

L(θ2, γ0;x)
L(θ1, γ0;x)

measures the support for θ2 vs θ1 when γ = γ0. In general this depends on the
specific value of γ0.

18.3.1 Orthogonal Parameters

Sometimes the ratio is free of γ, i.e., suppose the likelihood function factors as

L(θ, γ;x) = L1(θ;x)L2(γ;x)
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In this case

L(θ2, γ;x)
L(θ1, γ;x)

=
L1(θ2;x)L2(γ;x)

L1(θ1;x)L2(γ;x)
=

L1(θ2;x)

L1(θ1;x)

so that L1(θ;x) may be used as a likelihood for θ. In such a case we say that θ and
γ are orthogonal parameters.

Example. In the case of two independent binomials the likelihood for θ1 and θ2 is

θx1 (1− θ1)
n1−xθy2(1 − θ2)

n2−y = L1(θ1)L(θ2)

and hence

L1(θ1;x) = θx1 (1− θ1)
n1−x is the likelihood function for θ1

L(θ2; y) = θy2 (1− θ2)
n2−y is the likelihood function for θ2

Example. Suppose that X and Y are independent Poisson with means λ1, λ2 and
that we are interested in

θ =
λ1

λ1 + λ2

The joint density of X and Y is given by

fX,Y (x, y) =
λx
1λ

y
2e

−λ1e−λ2

x!y!
x, y = 0, 1, 2, . . .

where 0 < λ1 < ∞ and 0 < λ2 < ∞. We can reparametrize as

θ =
λ1

λ1 + λ2
, γ = λ1 + λ2

Thus

λ1 = θγ λ2 = γ − λ1 = γ(1− θ)

The joint density of X and Y in terms of the new parameters is

fX,Y (x, y) =
(θγ)xe−θγ [γ(1− θ)]ye−θ(1−γ)

x!y!

=
θx(1− θ)yγx+ye−γ

x!y!

It follows that

L1(θ;x, y) ∝ θx(1− θ)y and L2(γ;x, y) ∝ γx+ye−γ
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More generally if Xi, Yi are independent observations from the above model then

L(λ1, λ2) ∝ λ
∑

i xie−nλ1λ
∑

i yi

2 e−nλ2

L(θ, γ) ∝ θ
∑

i xi(1− θ)
∑

i yiγ
∑

i xi+
∑

i yie−nγ

so that

L1(θ) ∝ θ
∑

i xi(1− θ)
∑

i yi

and
L2(γ) ∝ γ

∑

i xi+
∑

i yie−nγ

What if we reparametrize differently? For example, let λ2 = γ be the nuisance
parameter. Then

(λ1, λ2) �→ (θ, γ) and θ =
λ1

λ1 + λ2
, γ = λ2

and hence

λ1 =
θ

1− θ
γ , λ2 = γ

In this case

L(θ, γ;x, y) ∝
(

θ

1− θ

)x

γx+ye−γe−
θγ
1−θ

and the parameters are not orthogonal:

• The point is that it is not obvious whether an orthogonal reparametrization exists,
i.e., does there exist γ(λ1, λ2)such that (λ1, λ2) �→ (θ, γ) is 1–1 and L(θ, γ)
factors?

• And even when there is an orthogonal reparametrization it might be hard to find.

18.3.2 Orthogonal Reparametrizations

If there exists an orthogonal reparametrization, L(θ) is unique. That is, even if there
is more than one way to reparametrize in terms of θ and an orthogonal nuisance
parameter γ, the likelihood for θ is unique.

One very important special case when orthogonalization is possible is when X
has a p-dimensional normal distribution, i.e.,

X
d∼ MVN(μ,Σ)
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where Σ is fixed and known but not necessarily diagonal and

μ = (μ1,μ2)

where μ1 is q dimensional and μ2 is p − q dimensional. This model can be
reparametrized in terms of a mean vector θ = (θ1, θ2), where θ1 equals μ1 and
is orthogonal to θ2. Moreover this orthogonal likelihood is the one obtained from
the marginal distribution of X1.

Define θ = Aμ, where

A =

[
I 0

−Σ21Σ
−1
11 I

]

The likelihood for μ is proportional to

exp

{
−1

2
(y − μ)�Σ−1(y − μ)

}

so the likelihood for θ = A−1μ is

exp

{
−1

2
(y −A−1θ)�Σ−1(y −A−1θ)

}

which may be rewritten as

exp

{
−1

2
(Ay − θ)�[AΣA�]−1(Ay − θ)

}

Now note that

Ay − θ =

[
I 0

−Σ21Σ
−1
11 I

] [
y1

y2

]
−
[
θ1

θ2

]
=

[
y1

y∗
2

]

and that

AΣA� =

[
I 0

−Σ21Σ
−1
11 I

] [
Σ11 Σ12

Σ21 Σ22

] [
I −Σ−1

11 Σ12

0 I

]

=

[
Σ11 0

0 Σ22 − Σ21Σ
−1
11 Σ12

]

It follows that the likelihood for θ is proportional to

exp

{

− 1

2
(y1 − θ1)

�Σ−1
11 (y1 − θ1)

}

exp

{

− 1

2
(y∗

2 − θ2)
�[Σ−1

22 − Σ21Σ
−1
11 Σ12]

−1(y∗
2 − θ2)

}
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It is clear that the orthogonal likelihood for θ1 = μ1 is the first term which is simply
the likelihood for μ1 based on the marginal distribution of y1.

This result generalizes directly: for any linear function θ = ��μ of interest.
Reparametrize in terms of

θ = Lμ where L =

[
��

L1

]
is non-singular

The distribution of Y ∗ = LY is MVN(θ,LΣL�) and the above result applies
so that the likelihood function for ��μ is that from the marginal distribution of
��Y , i.e., from a N (��μ, ��Σ�) distribution.

We can’t always orthogonalize, however. For example, In an N (μ, σ2) model
where we are interested in θ = μ, there is no γ(μ, σ2) such that

(μ, σ2) �→ (θ, γ) is 1-1 and θ, γ are orthogonal

18.4 Varieties of Likelihood

In problems involving nuisance parameters various kinds of likelihoods have been
introduced. These include:

True Likelihoods:

1. Marginal likelihood
2. Conditional likelihood

True likelihoods are characterized by the fact that they are based on the distribution
of a statistic S which is observable and whose distribution depends only on the
parameter of interest.

Pseudo-likelihoods:

1. Estimated likelihood (also called sliced likelihood)
2. Profile likelihood (also called concentrated likelihood)
3. Modified or adjusted profile likelihood
4. Partial likelihood
5. Composite likelihood
6. Quasi-likelihood
7. Canonical likelihood
8. Penalized likelihood
9. Empirical likelihood

10. Approximate likelihood
11. Pivotal likelihood
12. Predictive likelihood
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13. h likelihood
14. Induced likelihood
15. Indirect likelihood
16. Many others

The pseudo-likelihoods are derived from the full likelihood of the observations
and are not, in general, observable.

Example. The profile likelihood for μ in a normal (μ, σ2) model is obtained by
maximizing

(2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(xi − μ)2

}

with respect to σ2 for fixed μ. It is easy to show that

σ̃2(μ) =
1

n

n∑

i=1

(xi − μ)2

Hence the profile likelihood for μ is proportional to

[
n∑

i=1

(xi − μ)2

]−n/2

This is maximized when μ = x so that the profile likelihood is given by

[∑n
i=1(xi − x)2

∑n
i=1(xi − μ)2

]n/2

since

n∑

i=1

(xi − μ)2 =

n∑

i=1

(xi − x)2 + n(μ− x)2

the profile likelihood is given by

{
1

1 + t2(μ)
n−1

}n/2

where

t2(μ) =
n(μ− x)2

s2

is the square of the Student’s t statistic.
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18.5 Information Loss

A major concern in reducing the experiment to another experiment, based on a
statistic, is the amount of information lost in the reduction.

If nuisance parameters γ are present we suppose that there are statistics U and V

such that

f(x; θ, γ) = fV (v; θ, γ)fU |V (u; v, θ, γ)fX |U,V (x; u, v, θ, γ)

If x is a one to one function of (u, v) then V is partially sufficient for θ if

fU|V (u; v, θ, γ) = fU|V (u; γ, v)

i.e., the distribution of U given V does not depend on θ.
If x is in a one-to-one correspondence with (u, v) and V is degenerate then U is

partially ancillary for θ if

fU|V (u; v, θ, γ) = fU (u; γ)

i.e., the distribution of U V does not depend on θ.
In both these cases data reduction can take place. We must assume, however, that

the amount of information in the ignored factor of the likelihood provides little or no
information about the parameter of interest. Unfortunately, all attempts to formalize
a concept of lack of information have been lacking in generality. Jorgenson

18.6 Marginal Likelihood

In some circumstances we can find a statistic S that has a distribution which depends
on θ but does not depend on γ. In this case fS(s, θ) is a true likelihood and is called
the marginal likelihood of θ. In general if S, V is a sufficient statistic for (θ, γ) and
we have that

fU,V (u, v; θ, γ) = fV (v; θ)fU|V (u; v, θ, γ)

The function

fV (v; θ)

is the basis for the marginal likelihood of θ. This implies that there is little
information about θ contained in the second factor.
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Example. If Y1, Y2, . . . , Yn are iid N(μ, σ2), then the distribution of

S2 =

n∑

i=1

(Yi − Ȳ )2

does not depend on μ, so its distribution may be used as a marginal likelihood.
More precisely, the distribution of U = S2/σ2 is chi-square with n− 1 degrees of
freedom, i.e.,

fU (u) =
u

n−1
2 −1 exp

{
−u

2

}

2
n−1
2 Γ

(
n−1
2

)

It follows that the distribution of

V = S2 = σ2U

is given by

fV (v, σ
2) =

v
n−1
2 −1 exp

{
− v

2σ2

}

2
n−1
2 Γ

(
n−1
2

)
(σ2)

n−1
2

which defines the marginal likelihood for σ2.

18.7 Conditional Likelihood

In some circumstances we can find a statistic S such that the distribution of Y
given S depends on θ but does not depend on γ, the nuisance parameter. In this
case fY |S

¯
(y, θ) is a true likelihood and is called the conditional likelihood of θ.

More generally, if S is a statistic such that

f(x; θ, γ) = fU (u; θ, γ)fX|U (x; θ, u)

then the likelihood based on fX|U (x; θ, u) is called a conditional likelihood. In this
case the factor fU (u; θ, γ) should not contain much information about θ. Note that
in general the maximum of this likelihood is not the same as the overall maximum
likelihood estimate.

Example. Let X and Y be independent binomial, n1, p1 and n2, p2, respectively.
Interest focuses on the odds ratio

θ =

p2

1−p2

p1

1−p1
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Consider the conditional distribution of Y given S = X + Y :

fY |S(y|s) =
P (Y = y, S = s)

P (S = s)

=
P (Y = y,X = s− y)

P (S = s)

=

(
n1

s−y

)(
n2

y

)
ps−y
1 (1− p1)

n1−s+ypy2(1− p2)
n2−y

∑
z

(
n1

s−z

)(
n2

z

)
ps−z
1 (1− p1)n1−s+zpz2(1− p2)n2−z

=

(
n1

s−y

)(
n2

y

)
θy

∑
z

(
n1

s−z

)(
n2

z

)
θz

This distribution is known as the non-central hypergeometric distribution with
parameters n1, n2, s, and non-centrality parameter θ. It forms the basis of Fisher’s
exact test in frequentist statistics. Note that the maximum of this likelihood is not
the maximum likelihood estimate obtained by maximizing the full likelihood.

Note that both marginal and conditional likelihoods are true likelihoods. They
arise, however, mainly in exponential families and in group families of distributions.

18.7.1 Estimated Likelihoods

Since we can’t always orthogonalize or find marginal or conditional likelihoods how
do we eliminate nuisance parameters?

One simple idea would be to estimate the nuisance parameters and consider the
likelihood function for θ with the nuisance parameters replaced by the estimate,
i.e., use

Le(θ) = L(θ, γ̂)

which is called the estimated likelihood.
Usually the estimate is chosen to be a consistent estimator of γ, e.g., the

maximum likelihood estimate.
Consider the probability of misleading evidence at

θ = θ0 +
c√
niθθ

We have that

Pθ0

[
Le(θ)

Le(θ0)

]
→ Φ

(
−(1− ρ2θγ)

1
2

[
c

2
+

ln(k)

c

])
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where

[
iθθ iθγ
iγθ iγγ

]
is the information matrix

and

ρ2θγ =
i2θγ

iθθiγγ

Reference: Royall [44] gives the details.
If, ρθγ 
= 0, the probability of misleading evidence can be large. In fact the

maximum value is

Φ
(
−
√
1− ρ2θγ

√
2 ln(k)

)

which approaches Φ(0) = 1
2 as |ρθγ | → 1. Thus, with estimated likelihood there

is no guaranteed bound on the probability of misleading evidence, even in large
samples.

Example. In the N(μ, σ2) problem the likelihood function is

L(μ, σ2) ∝ 1

2σ2

n
2

exp

{

− 1

2σ2

n∑

i=1

(xi − μ)2

}

The estimated likelihood is obtained by substituting the maximum likelihood
estimate of σ2, i.e.,

σ̂2 =
1

n

n∑

i=1

(xi − x)2

so that

Le(μ) = L(μ, σ̂2) ∝ exp

{
−n
∑n

i=1(xi − μ)2

2
∑n

i=1(xi − x)2

}

The estimated likelihood is given by

Le ∝ exp

{
− t2

n− 1

}

where t is the Student’s t statistic with n− 1 degrees of freedom.

Note that the estimated likelihood is not invariant under reparametrization.
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18.8 Profile Likelihood

18.8.1 Introduction

We consider the situation where θ is the parameter of interest and γ is the nuisance
parameter (γ may be vector valued). Thus the complete likelihood is given by

Lik (θ; γ, x)

The profile likelihood for θ is defined by

Likp(θ;x) = max
γ

Lik(θ, γ, x) = Lik(θ, γ̂(θ))

where γ̂(θ) denotes the value of γ which maximizes the likelihood Lik(θ, γ, x)
for fixed θ. The profile likelihood is not a true or genuine likelihood and hence
it does not obey the universal bound for the probability of misleading evidence.
If the likelihood is orthogonal then use of the profile likelihood will uncover
the orthogonal likelihood.

Example. Let X1, X2, . . . , Xn be iid each N (θ, 1) and let Y be independent of the
Xi’s with pdf which is N (λ, exp{−nθ2}. The parameter of interest is θ and λ is the
nuisance parameter. The joint density of X1, X2, . . . , Xn, and Y is given by

f(x, y; θ, λ) =

[
(2π)−n/2 exp

{
−1

2

n∑
i=1

(xi − θ)2

}][
(2π exp{−nθ2})−1/2 exp

{
− (y − λ)2

2e−nθ2

}]

= (2π)−(n+1)/2 exp

{
− 1

2

n∑
i=1

x2
i + nxθ − (y − λ)2

2e−nθ2

}

where x is the sample mean of the xi’s.
The log of the joint density is given by

− (n+ 1)

2
ln(2π)− 1

2

n∑

i=1

x2
i = nxθ − (y − λ)2

2e−nθ2

and for fixed θ the maximum likelihood estimate of λ is given by the solution to

2(y − λ)

2e−nθ2 = 0

so that λ̂(θ) = y.
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It follows that the profile likelihood for θ is given by

f(x, y; θ, λ)

∣
∣
∣∣
∣
λ= ̂λ(θ)

= (2π)−(n+1)/2 exp

{

−1

2

n∑

i=1

x2
i + nxθ

}

If we used the profile likelihood to measure the evidence for θ2 vs θ1 we
would find

Likp(θ2)

Likp(θ1)
=

enxθ2

enxθ1
= enx(θ2−θ1)

Consider now the probability of misleading evidence when θ1 = 0 and
θ2 = θ > 0

Pθ1

(
Likp(θ2)
Likp(θ1)

≥ k

)
= P0

(
enXθ ≥ k

)

= P0(nXθ ≥ ln(k))

= P0

(√
n(X) ≥ ln(k)√

n

)

= 1− Φ

(
ln(k)√

n

)

which tends to 1/2 as n increases. Thus the universal bound does not hold in general
for profile likelihoods.

Note that in this example it would be foolish to use the profile likelihood for the
elimination of the nuisance parameter λ. The marginal distribution of X is normal
with mean θ and variance 1/n which does not depend on λ. Hence we may base a
marginal likelihood on

fX(x; θ) = (
√
2π/n)−n/2 exp

{
−n(x− θ)2

2

}

This is maximized when θ = x, so a marginal likelihood for θ is given by

Likp(θ,x, y) = exp

{
−n(θ − x)2

2

}

which is the normal likelihood with σ2 = 1/n and since X is N (θ, 1/n) the
probabilities of misleading evidence (and weak evidence) have the same properties
of those derived previously for the normal distribution with known variance.
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18.8.2 Misleading Evidence Using Profile Likelihoods

Despite the fact that profile likelihoods do not obey the universal bound we can
consider their use as if it were a true likelihood and investigate the consequences.

Royall [44] proves that when γ has a fixed dimensional and we have

X1, X2, . . . , Xn i.i.d. with pdf f(x; θ, γ)

where f is smooth, then for n large the probability of observations giving a profile
likelihood ratio of k or larger is approximated by the bump function with σ2

replaced by the first element iθθ(γ) in the inverse of the information matrix for
one observation.

More precisely Royall proves that

Pθ1

(
Likp(θ2;xn)

Likp(θ1;xn)
≥ k

)
−→ Φ

(
− c

2
− ln(k)

c

)

where

|θ1 − θ2| = c

(
iθθ

n

)1/2

In particular this result implies that the probability of misleading evidence is
approximately φ(−2(ln(k))1/2) when

θ2 = θ1 ± (2 ln(k))1/2
(
iθθ

n

)1/2

Example. Let Y1, Y2, . . . , Yn be iid N(μ, σ2). Then the likelihood of μ and σ2 is
given by

(2πσ2)−
n
2 exp

{

− 1

2σ2

n∑

i=1

(yi − μ)2

}

for which the MLEs of μ and σ2 are known to be

μ̂ = ȳ and σ̂2 =
1

n

n∑

i=1

(yi − ȳ)2

The likelihood evaluated at the MLE of μ and σ2 is thus

(2π)−
n
2

[∑n
i=1(yi − ȳ)2

n

]−n
2

exp
{
−n

2

}
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Note that Fisher’s information matrix for one observation is given by

i(μ, σ
2) =

[
1
σ2 0

0 1
2σ4

]

so that

iμμ = σ2

The MLE of σ2 for fixed μ is given by

σ̂2(μ) =
1

n

n∑

i=1

(yi − μ)2

The likelihood evaluated at this value of σ2 is thus

(2π)−
n
2

[∑n
i=1(yi − μ)2

n

]−n
2

exp
{
−n

2

}

It follows that the profile likelihood for μ is given by

Likp(μ;y) =

[∑n
i=1(yi − ȳ)2

∑n
i=1(yi − μ)2

]n
2

since

n∑

i=1

(yi − μ)2 =
n∑

i=1

(yi − ȳ)2 + n(μ− ȳ)2

the profile likelihood for μ may be written as

Likp(μ;y) =

⎡

⎣ 1

1 + n(μ−ȳ)2

(n−1)s2

⎤

⎦

n
2

=

[
1

1 + t2(μ)
n−1

]n
2

where (n− 1)s2 =
∑n

i=1(yi − ȳ)2 and

t2(μ) =
n(y − μ)2

s2

is the square of Student’s t statistic.
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For a 1
k likelihood interval we require

⎡

⎣ 1

1 + n(μ−ȳ)2

(n−1)s2

⎤

⎦ ≥
(
1

k

) 2
n

or

|μ− ȳ| ≤
√

s2

n
(n− 1)

[
k

2
n − 1

]

which is similar to the interval obtained for the known variance case.

Example. The MLE for μ with σ2 fixed is μ̂ = ȳ. The likelihood evaluated at this
value of μ is thus

(2π)−
n
2 (σ2)−

n
2 exp

{

− 1

2σ2

n∑

i=1

(yi − ȳ)2

}

so that the profile likelihood for σ2 is given by

Lpl (σ
2;y) =

(2π)−
n
2 (σ2)−

n
2 exp

{
− 1

2σ2

∑n
i=1(yi − ȳ)2

}

(2π)−
n
2

[∑n
i=1(yi−μ)2

n

]−n
2

exp
{
−n

2

}

which reduces to

[∑n
i=1(yi − ȳ)2

nσ2

]n
2

exp

{
−n

2

∑n
i=1(yi − ȳ)2

nσ2
− n

2

}

If we define

u =

∑n
i=1(yi − ȳ)2

nσ2

then the 1
k likelihood interval may be written as

ueu ≥ ek−
2
n

Note that in this case the profile likelihood is very similar to the marginal likelihood
for σ2 based on the distribution of

n∑

i=1

(Yi − Y )2

Which of these to use? In general use a true likelihood if it is available.
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18.8.3 General Linear Model Likelihood Functions

Consider the general linear model

Y ∼ MVN (Xβ, Iσ2)

where, for simplicity, we treat σ2 as known. In this model, X is n × p of rank
p < n and β is a p× 1 vector of unknown parameters. The following result can be
established.

Theorem 18.8.1. If L�β is a set of linear functions of β, then the profile likelihood
function for L�β is

exp

{
− 1

2σ2
(L�β − L�b)�[L�(X�X)−1L]−1(L�β − L

¯
�b)
}

where b is the least squares estimate of β.

Theorem 18.8.2. If a general linear model is written in the form

Y ∼ MVN (Xβ +Zγ, Iσ2)

then the profile likelihood for γ is given by

�(γ;y) = exp

{
− 1

2σ2
(γ − γ̂)�Z�DZ(γ − γ̂)

}

where γ̂ is any solution to the equations

Z�DZγ̂ = Z�Dy and D = I −X(X�X)−1X�

18.8.4 Using Profile Likelihoods

Given a profile likelihood for a parameter θ we define the k unit likelihood interval
for θ as

{θ : Likp(θ;y) ≥ k}

where typical choices of k are 1
8 and 1

32 . Values of θ not in the k unit interval have
a value of θ (the MLE) which has a likelihood 1

k greater.

Example 1. If y1, y2, . . . , yn are a random sample from a normal distribution with
parameters μ and σ2 where σ2 is known then the previous sections yield the
likelihood for μ as
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exp

{
− (μ− ȳ)2

2σ2

}

so that the k unit likelihood interval is given by

{

μ : ȳ −

√

2 log

(
1

k

)√
σ2

n
≤ μ ≤ ȳ +

√

2 log

(
1

k

)√
σ2

n

}

If we take k = 1
8 , then the 1

8 likelihood interval becomes

{

μ : ȳ − 2.04

√
σ2

n
≤ μ ≤ ȳ + 2.04

√
σ2

n

}

which is clearly related to the conventional 95% confidence interval for μ.

Example 2. In a simple linear regression model in which y1, y2, . . . , yn are inde-
pendent with common variance σ2 and

E(Yi) = β0 + β1xi

where the xi are known, the profile likelihood of β1 is given by

exp

{
− (β1 − b1)

2
∑n

i=1(xi − x̄)2

2σ2

}

where

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

It follows that the 1
8 profile likelihood interval for β1 is given by

{

β1 : b1 − 2.04

√
σ2

∑n
i=1(xi − x̄)2

≤ β1 ≤ b1 + 2.04

√
σ2

∑n
i=1(xi − x̄)2

}

Example 3. In a multiple linear regression model in which y1, y2, . . . , yn are
independent with common variance σ2 and

E(Yi) = β0 + β1xi1 + · · ·+ βpxip

where the xi are known the profile likelihood of βj is given by

exp

{
− (βj − bj)

2

2σ2c(j+1,j+1)

}
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where bj is the least squares estimate of βj obtained by solving the least squares
equations

XTXb = XTy

and c(j+1,j+1) is the j + 1, j + 1 element of the inverse of the matrix XTX .
It follows that the 1

8 profile likelihood interval for βj is given by

{
βj : bj − 2.04

√
σ2c(j+1,j+1) ≤ βj ≤ bj + 2.04

√
σ2c(j+1,j+1)

}

Note that this interval is different from that obtained if a simple linear regression
model is used with the single covariate xj in which case the interval is

{

βj : bj − 2.04

√
σ2

∑n
i=1(xij − x̄+j)2

≤ βj ≤ bj + 2.04

√
σ2

∑n
i=1(xij − x̄+j)2

}

Example 4. Consider a one-way analysis of variance model in which we have the
model

E(Yij) = μ+ τi for i = 1, 2, . . . , p j = 1, 2, . . . , ni

The canonical contrasts τi − τi′ are linearly estimable with maximum likelihood
estimates given by

τ̂i − τi′ = ȳi+ − ȳi′+

Since the variance of ȳi+ − ȳi′+ is

σ2

(
1

ni+
+

1

ni′+

)

the 1
8 likelihood interval for τi − τi′ is given by

ȳi+ − ȳi′+ ± 2.04

√

σ2

(
1

ni+
+

1

ni′+

)

18.8.5 Profile Likelihoods for Unknown Variance

Theorem 18.8.3. If a general linear model is written in the form

Y ∼ MVN (Xβ +Zγ, Iσ2)
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where σ2 is unknown, then the profile likelihood for γ is given by

�(γ;y) =

{

1 +
(γ − γ̂)�Z�DZ(γ − γ̂)

SSE

}−n
2

where SSE is the error sum of squares in the full model, D = I−X(X�X)−1X�.

Proof. The density of Y is given by

fY (y;β, σ2,γ) = (2πσ2)−
n
2 exp

{
− 1

2σ2
(y −Xβ +Zγ)(2)

}

Maximizing over β and σ2 yields

β̃ = (X�X)−1X�(y −Zγ)

nσ̃2 = (y −Xβ̃ −Zγ)(2)

Note that

y −Xβ̃ −Zγ = y −X(X�X)−1X�(y −Zγ)−Zγ

= D(y −Zγ)

where D = I −X(X�X)−1X�

so that

nσ̃2 = [D(y −Zγ)](2)

Thus we have

fY (y; β̃, σ̃2,γ) = (2πσ̃2)−
n
2 exp

{
−n

2

}

Maximizing fY (y;β, σ2,γ) over β,σ2 and γ yields the equations

X�Xβ̂ +X�Zγ̂ = X�y

Z�Xβ̂ +Z�Zγ̂ = Z�y

nσ̂2 = (y −Xβ̂ −Zγ̂)(2)

It follows that

β̂ = (X�X)−1X�(y −Zγ̂)

γ̂ = (Z�DZ)−Z�Dy



234 18 Pure Likelihood Methods and Nuisance Parameters

and hence

y −Xβ̂ −Zγ̂ = y −X(X�X)−1X�(y −Zγ̂)−Zγ̂

= D(y −Zγ̂)

Thus

nσ̂2 = [D(y −Zγ̂)](2)

It follows that the profile likelihood for γ is given by

fY (y; β̃, σ̃2,γ)

fY (y; β̂, σ̂2, γ̂)
=

{
σ̃2

σ̂2

}−n
2

or

fY (y; β̃, σ̃2,γ)

fY (y; β̂, σ̂2, γ̂)
=

{
[D(y −Zγ)](2)

D(y −Zγ̂)](2)

}−n
2

Now note that

[D(y −Zγ)](2) = {D[(y −Zγ̂) + (Zγ̂ −Zγ)]}(2)

= (y −Zγ̂)�D(y −Zγ̂)

+(γ̂ − γ)�Z�DZ(γ̂ − γ)

+2(γ̂ − γ)�Z�D(y − Zγ̂)

= SSE + (γ̂ − γ)�Z�DZ(γ̂ − γ)

Thus the profile likelihood for γ is given by

Lp(γ;y) =

{

1 +
(γ̂ − γ)�Z�DZ(γ̂ − γ)

SSE

}−n
2

as claimed. �

18.9 Computation of Profile Likelihoods

There is an R package, developed by Leena Choi, called Profile Likelihood which
can be used to find profile likelihoods for a variety of common models.
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18.10 Summary

We have provided some examples that suggest that the use of pseudo-likelihoods can
be fruitful in representing the evidence about a parameter of interest in the presence
of nuisance parameters. A complete solution for all problems is too much to hope
for. Indeed even the problem of evidence for composite hypotheses is not solved.
See Zhang [57] and Bickel [4] for some possibilities.



Chapter 19
Other Inference Methods and Concepts

19.1 Fiducial Probability and Inference

R.A. Fisher introduced the concept of fiducial probability and used in to develop
fiducial inference. Counterexamples though the years have lead to its lack of use in
statistics.

Example. Consider a deck of N cards numbered 1, 2, . . . , N . One card is drawn at
random, its number denoted by U . Then

P(U = u) =
1

N
u = 1, 2, . . . , N (19.1)

Suppose now that we add an unknown number θ to U . We are not told the observed
value ofU , uobs, or the value of θ but we are told the observed value, tobs = uobs+θ,
of the total T = U+θ. Note that we could see tobs if and only if one of the following
outcomes occurred:

(U = 1, θ = tobs − 1), (U = 2, θ = tobs − 2), . . . , (U = N, θ = tobs −N)

1. Given the value of tobs there is a one-to-one correspondence between the values
of U and θ. If we knew θ then we could determine the value of uobs.

2. If we do not know the value of θ then observing T = tobs will tell us nothing
about uobs.

3. Thus the state of uncertainty regarding uobs will be the same after the observation
of tobs as it was before.

© Springer International Publishing Switzerland 2014
C.A. Rohde, Introductory Statistical Inference with the Likelihood
Function, DOI 10.1007/978-3-319-10461-4__19
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Therefore we assume that (19.1) holds, and we can write

P(θ = tobs − u) = P(U = u) =
1

N
u = 1, 2, . . . , N

which we call the fiducial probability distribution of θ.

Example. Assume that X
d∼ N(θ, 1) and define U = T − θ. Then U

d∼ N(0, 1). If
we observe T = tobs then tobs arises from a pair of values (U = u, θ = tobs−u) so
that given tobs there is a one-to-one correspondence between the possible values of
U and θ. Again, since θ is unknown we will learn nothing about which value of U

occurred. Thus we may assume that U
d∼ N(0, 1) even after T = tobs is observed.

Thus we can calculate (fiducial) probabilities about θ by transforming them into
probability statements about U , i.e.,

θ ≤ y ⇐⇒ U ≥ tobs − y

so that

PF (θ ≤ y) = P(U ≥ tobs − y) = Φ(y − tobs)

where Φ(w) =
∫ w

−∞ e−z2/2/
√
2πdz. Note that such probability statements are the

same as if we treated θ as a random variable with a normal distribution with mean t
and variance 1. Thus the fiducial distribution of θ is N(tobs, 1). The fiducial density
is the derivative with respect to θ, i.e.,

pF (θ; tobs) =
1√
2π

exp

{
− (θ − tobs)

2

2

}

Kalbfleisch lists sufficient conditions for the fiducial argument to apply:

1. A single real-valued parameter.
2. A minimal sufficient statistic T exists for θ.
3. There is a pivot U(T, θ) such that

(i) For each θ, U(t, θ) is a one-to-one function of t
(ii) For each t, U(t, θ) is a one-to-one function of θ

These assumptions which are compounded when we move to more than one
parameter mean that the scope of fiducial inference is severely limited. In fact it
is largely ignored in most modern treatments of statistics.

Suppose that X1, X2, . . . , Xn are iid each N(μ, σ2) where σ2 is known. Then,
whatever the value of μ, we know that for every value of α ∈ [0, 1] we can find an
upper 100(1− α)% confidence interval for μ, namely

X + z1−α
σ√
n
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which we know has the property that

P

{
μ ≤ X + z1−α

σ√
n

}
= 1− α

considered as a function of the random variable X . Fisher noted that the left hand-
side has all of the properties of a distribution function defined over the parameter
space and thus proceeded to define the fiducial distribution of μ for fixed X = xobs

and its derivative as the fiducial density of μ given xobs. Thus we can speak of the
fiducial probability, PF (A) that μ ∈ A calculated as

PF (μ ∈ A) =

∫

A

1√
2π

exp

{
−
√
n(μ− xobs)

2

2σ2

}
dμ

As another example let X1, X2, . . . , Xn be iid each uniform on (0, θ). Then
Y = max {X1, X2, . . . , Xn} is the minimal sufficient statistic which has distri-
bution function

FY (y; θ) = Pθ(Y ≤ y) = [Pθ(X ≤ y)]
n
=
[y
θ

]n

It follows that

P

(
Y

θ
≤ y

)
= P (Y ≤ yθ) = yn

19.1.1 Good’s Example

Suppose that X is a random variable with density function

fX)(x; θ) =
θ2(x+ a)e−xθ

aθ + 1
where a > 0, θ > 0, x ≥ 0

which has distribution function

F (x; θ) =

∫ x

0

f(t; θ)dt

=

∫ x

0

θ2(t+ a)e−tθ

aθ + 1
dt

=
θ2

aθ + 1

∫ x

0

(t+ a)e−tθdt
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Now note that
∫ x

0

(t+ a)e−tθdt =

∫ x

0

te−tθdt+ a

∫ x

0

e−tθdt

= − te−tθ

θ

∣∣
∣
∣
∣

x

0

+
1

θ

∫ x

0

e−tθdt+ a

∫ x

0

e−tθdt

= −xe−xθ

θ
+

1 + aθ

θ

∫ x

0

e−tθdt

= −xe−xθ

θ
+

1 + aθ

θ2
[
1− e−xθ

]

It follows that

FX(x; θ) = 1− e−xθ

[
1 +

xθ

aθ + 1

]

The fiducial density of θ is the derivative of FX(x; θ) with respect to θ or

Fx(θ) =
xθe−xθ

(aθ + 1)2
[a+ (a+ x)(1 + aθ)]

Suppose we now observe, independently of X , another random variable Y with
density

fY (y; θ) =
θ2(y + b)e−xθ

bθ + 1
where b > 0, θ > 0, x ≥ 0 and b 
= a

If we use the fiducial density based on X as a “prior” for θ and combine it with
the density for Y the resulting posterior would be

PXY (θ;x, y) = Fx(θ)fY (y; θ)

which is equal to

xθe−xθ

(aθ + 1)2
[a+ (a+ x)(1 + aθ)]

θ2(y + b)e−yθ

bθ + 1

If fiducial probabilities behaved like true probabilities it should make no difference
whether we observed X or Y first. If we used the fiducial density for θ based on Y
and combined it with density of X the resulting posterior would be

PYX(θ; y, x) = Fy(θ)fX(x; θ)
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which is equal to

yθe−yθ

(bθ + 1)2
[b+ (b + x)(1 + bθ)]

θ2(x + a)e−xθ

aθ + 1

The laws of probability would say that these two expressions should be equal. They
are clearly not. So fiducial probabilities are not compatible with Bayes theorem and
hence are not warranted.

19.1.2 Edward’s Example

Consider two hypotheses θ = +1 or θ = −1 and suppose that there are two possible
outcomes of a random variable X , X = +1 or X = −1. The probability model
for X is

Pθ=+1(X = x) =

{
p x = +1

q x = −1
; Pθ=−1(X = x) =

{
q x = +1

p x = −1

Since when θ = +1, X = +1 with probability p, and when θ = −1, X = −1 with
probability p, we have that

P(Xθ = +1) with probability p.

This statement is true in general and when X = +1 is equivalent to the statement

P(θ = +1|X = +1) = p

which is the fiducial probability statement about θ following from observing that
X = +1.

Thus starting with no prior information and performing an experiment which is
uninformative we arrive at a statement of probability for θ.

Suppose now that p = q = 1
2 . Then

(i) There is no information about θ a priori
(ii) The observation of X is totally uninformative about θ

(iii) The likelihood ratio for comparing θ = +1 to θ = −1 is 1 indicating that,
based on the observation, we have no preference for θ = +1 vs θ = −1

However we find, using the fiducial argument, that

PF (θ = +1) =
1

2
whatever the value of X

Thus we have another example which casts doubt on the veracity of the fiducial
argument.
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19.2 Confidence Distributions

Recently there has been a great deal of research on confidence distributions which
reduce, in many cases, to fiducial distributions, but which are solidly in the
frequentist camp.

Definition 19.2.1. A function Cn(θ;xn : X × Θ �→ [0, 1] is called a confidence
distribution if

(i) Cn(θ;xn) is a distribution function over Θ for each fixed xn ∈ X
(ii) At the true parameter point Cn(θ0,xn) as a function of xn ∈ X has a uniform

distribution over [0, 1]

Cn(θ;xn : X × Θ �→ [0, 1] is an asymptotic confidence distribution if (ii) is
satisfied only asymptotically.

The paper by Xie and Singh [55] provides a useful review of the ideas. The following
graph shows the unification of frequentist ideas using the confidence density:

Confidence Density Example

Point Estimates

θ

95% CI

P-Value

M m m

M=mode
m=median
m=mean

19.2.1 Bootstrap Connections

If θ̂ is an estimator of θ let the bootstrap estimator be θ̂∗. When the asymptotic
distribution of θ̂ is symmetric then the sampling distribution of θ̂−θ is estimated by
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the bootstrap distribution of θ̂−θ̂∗. In this case an asymptotic confidence distribution
is given by

Cn(θ) = 1− P(θ̂ − θ̂∗ ≤ θ̂ − θ|x) = P(θ̂∗ ≤ θ|x)

the bootstrap distribution of θ̂.

19.2.2 Likelihood Connections

If we normalize a likelihood function L (θ;x) so that the area under the normalized
likelihood function is 1, i.e., we form

L ∗(θ;x) =
L (θ;x)∫

Θ L (θ;x)dθ

then, under certain conditions, we obtain an asymptotic normal confidence
distribution.

Similarly, under the usual regularity conditions for maximum likelihood, we can
use the normalized profile likelihood as an asymptotic confidence distribution for a
parameter of interest.

It is also possible to construct approximate likelihoods using confidence dis-
tributions. Efron considered a confidence density c(θ;x) for the parameter of
interest. He then considered doubling the data set by introducing another data
set, considered independent of the first but having exactly the same data x. Then
construct the confidence density c(θ,x,x) based on the doubled data set using
the same confidence intervals to define the density. Then the implied likelihood
function is

Limp(θ;x) =
c(θ;x,x)

c(θ;x)

19.2.3 Confidence Curves

Birnbaum introduced the idea of a confidence curve to summarize confidence
intervals and levels of tests in one curve. In terms of confidence distributions the
confidence curve is given by

CC(θ) = 2min{Cn(θ;x), 1− Cn(θ;x)}

Thus a confidence distribution is simply a combinant such that for each xn ∈ X
it is a distribution function as θ varies over Θ and for fixed θ = θ0 it has a uniform
distribution as xn varies over X .
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Example. Let

Xi
d∼ N(μ, σ2) i = 1, 2, . . . , n

be independent with σ2 known. Then

Cn(μ;xobs) = Φ

(
μ− xobs

σ/
√
n

)
where Φ(y) =

∫ y

−∞

e−z2/2

√
2π

dz

is a confidence distribution for μ.

19.3 P-Values Again

Given the widespread importance of genomics P-values are now used more than
ever. It is important to remember that P-values are observed values of a random
variable and hence have intrinsic variability.

19.3.1 Sampling Distribution of P-Values

The P-value is defined, for a test statistic T , with distribution function FH0(t)
assuming the null hypothesis is true as

PH0(T ≥ tobs) where tobs is the observed value of T

Note that the P-value is given by 1−FH0(tobs) and can be considered as an observed
value of the random variable Y = 1 − FH0(T ). The distribution function of Y
assuming the null hypothesis is true is

FY (y) = PH0(Y ≤ y)

= PH0 {1− FH0(T ) ≤ y}

= PH0 {FH0(T ) ≥ 1− y}

= 1− PH0 {FH0(T ) ≤ 1− y}

= 1− PH0

{
T ≤ F−1

H0
(1− y)

}

= 1− FH0

{
F−1
H0

(1 − y)
}

= 1− (1− y)

= y
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for 0 < y < 1. That is, the P-value under the null hypothesis has a uniform
distribution. This fact has been known for decades, but P-values are not reported
with a standard error as other statistics are.

If the alternative hypothesis is true assume that T has a distribution function
GH(t). Then

FY (y) = PH(Y ≤ y)

= PH {1− FH0(T ) ≤ y}

= PH {FH0(T ) ≥ 1− y}

= 1− PH {FH0(T ) ≤ 1− y}

= 1− PH

{
T ≤ F−1

H0
(1− y)

}

= 1−GH

{
F−1
H0

(1 − y)
}

Under suitable regularity conditions the density of Y under the alternative
hypothesis is

fY (y) =
dFY (y)

dy

=
d
[
1−GH

{
F−1
H0

(1− y)
}]

dy

= −gH
{
F−1
H0

(1− y)
} 1

−fH0

{
F−1
H0

(1− y)
}

=
gH
{
F−1
H0

(1− y)
}

fH0

{
F−1
H0

(1 − y)
}

Note that for the observed value of T , tobs, we have y = 1−FH0(tobs) and hence
the density evaluated at the observed value of T , tobs, is given by

gH
{
F−1
H0

(1− y)
}

fH0

{
F−1
H0

(1− y)
} =

gH
{
F−1
H0

[FH0(tobs)]
}

fH0

{
F−1
H0

[FH0 (tobs)]
} =

gH(tobs)

fH0(tobs)

the likelihood ratio!
P-values have been under heavy fire in the last few years for overstating the

importance of effects observed in clinical and other investigations [48]. The results
above due to Donahue [12] and others have been used by Boos and Stefanski [5] to
explain why P-values overstate the conclusions of studies. The results of Goodman
[21] are also relevant. The bottom line appears to be that use of P-values is not the
way to present the evidence from studies that rely on statistical analysis to report
their conclusions.
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19.4 Severe Testing

Severe testing is a concept claimed to be useful for post-data inference. The ideas are
best illustrated through an example and I follow the example in Mayo and Spannos
[33]. Suppose that X1, X2, . . . , Xn are iid each N(μ, σ2) where σ = 2, that n =
100, and we choose α = 0.025 for a one-sided test of

H0 : μ ≤ 12 vs μ > 12

Since, under H0, Xn
d∼ N(12, 2/10), we reject using the Neyman-Pearson theory if

d(xobs) =

√
n(xobs − 12)

2
≥ 1.96 ⇐⇒ xobs ≥ 12.4

Suppose now that we observe xobs = 11.8. Then we would not reject H0 :
μ = 12. If a value of μ equal to 12.2 was deemed to be of scientific or substantive
importance we can ask the question do we have evidence that μ < 12.2? Mayo
suggests calculating the severity with which μ < 12.2 passes the test. The severity
with which μ = 12.2 passes the test in cases where H0 is accepted is defined in this
situation as

Pμ(X > xobs) = Pμ=12.2

{
X > 11.8

}

= Pμ=12.2

{√
100(X − 12.2)

2
>

√
100(11.8− 12.2)

2

}

= P {Z > −2}

= 0.977

Note that the power of the test at 12.2 is

Pμ=12.2

{
X > 12.4

}
= Pμ=12.2

{√
100(X − 12.2)

2
>

√
100(12.4− 12.2

2

}

= P {Z > 1}

= 0.159

Mayo and Spannos define the attained power in this situation as

Pμ

{
X > xobs

}

so that the severity with which μ passes the test is simply the attained power at μ
when the observed outcome leads to acceptance of the null hypothesis.
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Suppose now that the null hypothesis is rejected. In the example suppose that
xobs = 12.6. The null hypothesis that μ = 12 is rejected. Again, assuming that
μ = 12.2 is of scientific or substantive interest, do we have evidence of a value
of μ of scientific interest? Mayo and Spannos suggest calculating the severity of
μ > 12.2 defined by

Pμ

{
X ≤ xobs

}
= Pμ=12.2

{
X ≤ xobs

}

= Pμ=12.2

{
X ≤ 12.6

}

= Pμ=12.2

{√
100(X − 12.2)

2
≤

√
100(12.6− 12.2)

2

}

= P {Z ≤ 2}

= 0.977

Note that in the case of a hypothesis which is rejected the severity is simply 1 minus
the attained power.

Severe testing does a nice job of clarifying the issues which occur when a
hypothesis is accepted (not rejected) by finding those values of the parameter (here
mu) which are plausible (have high severity) given acceptance. Similarly severe
testing addresses the issue of a hypothesis which is rejected by finding those values
of the parameter μ which are plausible (have high severity) given rejection. Note
that severity is a function of the test, T , the hypothesis, H , and the observed data,
xobs. Thus it is inherently a random variable and the standard results on p-values
and their distributions apply to severity as well. Also note that conventions need to
be established for when severity is judged to be high.

Finally note that most of the existing examples implicitly seem to require a
monotone likelihood ratio so that members of the exponential family are included,
but whether or not other distributions are covered under the existing theory is
unknown.

19.5 Cornfield on Testing and Confidence Intervals

The following quotes by Jerry Cornfield (1966) indicate that the problems with
frequentist statistics have been known for a long time.

Cornfield defines the α-postulate as “All hypotheses rejected the same critical
level have equal amounts of evidence against them.”

The following example will be recognized by statisticians with consulting
experience as a simplified version of a very common situation. An experimenter,
having made n observations in the expectation that they would permit the rejection
of a particular hypothesis, at some predetermined significance level, say 0.05,
finds that he has not quite attained this critical level. He still believes that the
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hypothesis is false and asks how many more observations would be required to
have reasonable certainty of rejecting the hypothesis if the means observed after n
observations are taken as the true values. He also makes it clear that had the original
n observations permitted rejection he would simply have published his findings.
Under these circumstances it is evident that there is no amount of additional
observations, no matter how large, which would permit rejection at the 0.05 level. If
the hypothesis being tested is true, there is a 0.05 chance of it having been rejected
after the first round of observations. To this chance must be added the probability
of rejecting after the second round, given failure to reject after the first, and this
increases the total chance of erroneous rejection to above 0.05. In fact as the total
number of observations in the second round is indefinitely increased the significance
approaches 0.0975 (=0.05 +0.95 ×0.05) if the 0.05 criteria is retained. Thus no
amount of additional evidence can be collected which would provide evidence
against the hypothesis equivalent to rejection at the P = 0.05 level and adherents of
the α-postulate would presumably advise him to turn his attention to other scientific
fields. The reasonableness of this advice is perhaps questionable (as is the possibility
that it would be accepted). In any event it does not seem possible to argue seriously
in the face of this example that all hypotheses rejected at the .05 level have equal
amounts of evidence against them.

The confidence set yielded by a given body of data is the set of all hypotheses
not rejected by the data, so that the relation between hypothesis test and confidence
limits is close. In fact the confidence limit equivalent of the α-postulate is “All
statements made with same the confidence coefficient have equal amounts of
evidence in their favor.” That this may be seen no more reasonable the α-postulate
is suggested by the very common of inference about the ratio of two normal means.
The most selective unbiased confidence set for the unknown ratio has the following
curious characteristic: for every sample point there exists an α > 0 such that
all confidence limits with coefficients ≥ 1 − α are plus to minus infinity. But to
assert that the unknown ratio lies between plus and minus infinity with confidence
coefficient of only 1 − α is surely being overcautious. Even worse, the postulate
asserts that there is less evidence for such an infinite interval than there is for a finite
interval about a normal mean, but made with coefficient 1 − α

′
where α

′
< α.

The α-postulate cannot therefore be considered anymore reasonable than it is for
hypothesis testing.

It has been proposed by proponents of confidence limits that this clearly
undesirable characteristic of the limits on a ratio be avoided by redefining the sample
space so as to exclude all sample points that lead to infinite limits for given α. This
is equivalent to saying that if the application of a principle to given evidence leads
to an absurdity then the evidence must be discarded. It is reminiscent of the heavy
smoker, who, worried about the literature relating smoking to lung cancer, decided
to give up reading.



Chapter 20
Finite Population Sampling

20.1 Introduction

It is fair to say that most of the information we know about contemporary society is
obtained as the result of sample surveys. Real populations are finite and the branch
of statistics which treats sampling of such populations is called survey sampling.
For many years survey sampling remained the province of “survey samplers” with
very little input from statisticians involved in the more traditional aspects of the
subject. The decades of the 1970s, 1980s, and 1990s saw somewhat successful
mergers of the two areas using new approaches to finite population sampling theory
based on prediction theory and population based models.

20.2 Populations and Samples

Definition 20.2.1. A population is a set of N units, labeled 1, 2, . . . , N . With each
unit is an associated characteristic Yi.

Of interest is either the population total T or the population average Ȳ defined by

T =

N∑

i=1

Yi and Ȳ =
T

N

Definition 20.2.2. A sample of size n from a population is an ordered subset s of
the N units which define the population.

We will only consider sampling without replacement so that each element in the
population can appear at most once in the sample.
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20.3 Principal Types of Sampling Methods

There are a myriad of different sampling methods. Here are the most important:

Simple Random Sampling: In simple random sampling each set of n elements of
the population has the same chance of being selected, i.e., each sample has the
same selection probability.

Systematic Sampling: In systematic sampling we assume that the population can
be labeled with the integers 1, 2, . . . , N where N is the number of elements in
the population:

• The sampling consists of selecting a random start and then selecting every kth
element until the sample size of n is reached.

• If the population is randomly ordered then systematic sampling is equivalent
to simple random sampling.

Stratified Sampling: In stratified sampling supplementary information is used to
divide the population into K mutually exclusive groups called strata. A simple
random sample is then selected from each stratum:

• The advantage of stratified sampling is that if the strata are internally
homogeneous then the estimate of the population total or mean will have a
smaller standard error than under simple random sampling.

Cluster Sampling: In cluster sampling the population is divided into K mutually
exclusive groups, as in stratified sampling, called clusters:

• Unlike stratified sampling, in cluster sampling, a random sample of k clusters
is selected, and a simple random sample selected from each of the selected
clusters.

• The advantages of cluster sampling lie in the fact that it often gives economies
of selection.

• Cluster sampling is particularly suited to situations in which the sampling
frame (list of population elements) consists of clusters rather than the indi-
vidual units, e.g., interest is on a sample of individuals, but we have available
only a list of households.

• Cluster sampling is also called multistage sampling and it can be extended to
multiple levels, i.e., a sample of clusters, then a sample of subclusters within
clusters, etc.

Probability Proportional to Size: If the sample selected from each stratum or
cluster is proportional to the size of the stratum or cluster the sampling is called
probability proportional to size (PPS) sampling.

Two-Stage Sampling: In this method of sampling a large first-stage sample is
selected and information obtained which is used to design the final stage sample
which gathers complete information on the final selected sample.

Replicated Sampling: In this type of sampling the final sample consists of a set
of samples, each selected in an identical fashion:



20.4 Simple Random Sampling 251

• The purpose of replicated sampling is to investigate non-sampling errors such
as non-response and to calculate valid standard errors when the sampling
process is complex.

Panel Sampling: Samples are taken at two points in time with sample overlap
designed to measure possible time trends.

20.4 Simple Random Sampling

We now discuss the simplest setting which has been generalized ad nauseam to form
the basis of the conventional approach to survey sampling.

Consider a population of size N

P = {y1, y2, . . . , yN}

Of interest is the population total

T =
N∑

i=1

yi

If we have a random sample, s, taken without replacement the natural estimator is

T̂ =
N

n

n∑

i∈s

yi

The standard approach to this problem is to define

Zi =

{
1 i ∈ s

0 otherwise

Then

T̂ =
N

n

N∑

i=1

yiZi

Under simple random sampling without replacement we have that

P(Zi = 1) =

(
N−1
n−1

)

(
N
n

) =

(N−1)!
(N−n)!)(n−1)!

N !
n!(N−n)!

=
n

N
= E(Zi)
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It follows that

E(Z2
i ) = P(Zi = 1) =

n

N

and hence

var(Zi) =
n

N
− n2

N2
=

n

N2
(N − n)

Now note that for i 
= j

E(ZiZj) = P(Zi = 1, Zj = 1) = P(Zi = 1)P(Zj = 1|Zi = 1) =
n

N

n− 1

N − 1

It follows that

cov(Zi, Zj) =
n

N

n− 1

N − 1
−
( n

N

)2
=

n

N

(
n− 1

N − 1
− n

N

)
= − n

N2(N − 1)
(N−n)

Thus

Var(T̂ ) =
N2

n2
Var(

n∑

i=1

yiZi)

=
N2

n2

n∑

i=1

n∑

j=1

yiyjcov(Yi, Yj)

= (N − n)
S2

n

where

S2 =
1

N − 1

N∑

i=1

(yi − y)2

We now have an estimate of the total and, by replacing S2 by its natural estimate
the sample value s2 an estimate of the variance. There are central limit theorems for
finite populations, Lehmann [28], so that the usual methods allow the formation of
a confidence interval for the population total.

20.5 Horvitz–Thompson Estimator

A general approach to the problem of finite population sampling is provided by the
Horvitz–Thompson estimator [22] and its generalizations which also appear in a
variety of other problems.
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Consider a population of N objects, each with an associated characteristic yi.
Using a sample s = {i1, i2, . . . , in} it is desired to estimate the population total T
defined by

T =

N∑

i=1

yi

The selection probabilities are denoted by

(π1, π2, . . . , πN )

and are assumed known. That is,

πi = P(object i selected)

Similarly the probabilities of selecting i and j of the objects are assumed known and
given by

πij i 
= j

The Horvitz–Thompson estimator is defined by

T̂ =
∑

i∈s

yi
πi

If we define Bernoulli random variables by

Zi =

{
1 if object i is in the sample s
0 otherwise

then we have that

E(Zi) = πi and V(Zi) = πi(1− πi)

and

C(Zi, Zj) = E(ZiZj)− E(Zi)E(Zj) = P(Zi = 1, Zj = 1)− πiπj = πij − πiπj

for i 
= j.
The Horvitz–Thompson estimator can be written in terms of the Zi’s as

T̂ =

N∑

i=1

yi
πi

Zi
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Note that the only randomness is given by the Zi’s.
It is clear that T̂ is unbiased since

E(T̂ ) = E

(
N∑

i=1

yi
πi

Zi

)

=

N∑

i=1

yi
πi

E(Zi) =

N∑

i=1

yi = T

Similarly

V(T̂ ) = V

(
N∑

i=1

yi
πi

Zi

)

=

N∑

i=1

(
yi
πi

)2

V(Zi) +

N∑

(i,j);j 	=i

(
yiyj
πiπj

)
C(Zi, Zj)

=
N∑

i=1

(
y2i
πi

)
(1 − πi) +

N∑

(i,j);j 	=i

yiyj

(
πij − πiπj

πiπj

)

If sampling is at random without replacement, then we have that

πi =

(
N−1
n−1

)

(
N
n

) =
n

N

and

πij = P(Zi = 1, Zj = 1)

= P(Zj = 1 | Zi = 1)P(Zi = 1)

=
(n− 1)

(N − 1)

n

N

Thus we have that

V(T̂ ) =

N∑

i=1

(
y2i
πi

)
(1− πi) +

N∑

(i,j);j 	=i

yiyj

(
πij − πiπj

πiπj

)

=

N∑

i=1

(
y2i
n/N

)
(1− n/N) +

N∑

(i,j);j 	=i

yiyj

⎛

⎝

[
n−1
N−1

] [
n
N

]
−
[
n
N

] [
n
N

]

[
n
N

] [
n
N

]

⎞

⎠

=
N − n

n

N∑

i=1

y2i −
N − n

n(N − 1)

N∑

(i,j);j 	=i

yiyj
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=
N − n

n

⎡

⎣
N∑

i=1

y2i −
1

N − 1

N∑

i=1

yi

⎛

⎝
N∑

j=1

yj − yi

⎞

⎠

⎤

⎦

=
N − n

n(N − 1)

[

N

N∑

i=1

y2i −
(

N∑

i=1

yi

)]

=
N(N − n)

n(N − 1)

(
N∑

i=1

y2i −Ny2

)

=
N(N − n)

n
S2

where

S2 =
1

N − 1

[
N∑

i=1

(y2i −Ny2

]

=
1

N − 1

N∑

i=1

(yi − y)2

y =
1

N

N∑

i=1

yi

Thus we recover the results of the first section.
The Horvitz–Thompson estimator provides a unifying approach to finite popula-

tion sampling theory from a frequentist or sampling theory perspective Overton and
Stehman [36].

20.5.1 Basu’s Elephant

However, the Horvitz–Thompson estimator cannot be used uncritically as Basu’s
elephant example shows.

The circus owner is planning to ship his 50 adult elephants and so he needs a rough estimate
of the total weight of his elephants. As weighing an elephant is a cumbersome process, the
owner wants to estimate the total weight by weighing just one elephant. Which elephant
should he weigh? So the owner looks back on his records and discovers a list of the
elephant’s weights taken 3 years ago. He finds that 3 years age Sambo the middle sized
elephant was the average (in weight) elephant in his herd. He checks with the elephant
trainer who reassures him (the owner) that Sambo may still be considered the average
elephant in the herd. Therefore, the owner plans to weigh Sambo and take 50 y (where
y is the present weight of Sambo) as an estimate of the total weight

Y = Y1 + Y2 + . . . Y50

of the 50 elephants. But the circus statistician is horrified when he learns of the owner’s
purposive sampling plan. “How can you get an unbiased estimate of Y this way?” protests
the statistician. So, together they work out a compromise sampling plan. With the help of
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a table of random numbers they devise a plan that allots a selection probability of 99
100

to
Sambo and equal selection probabilities of 1

4900
to each of the other elephants. Naturally

Sambo is selected and the owner is happy. “How are you going to estimate Y ?, asks the
statistician. “Why? The estimate ought to be 50y of course”, says the owner.
“Oh! no! That cannot possibly be right,” says the statistician, “I recently read an article
in the Annals of Mathematical Statistics where it is proved that the Horvitz–Thompson
estimator is the unique hyper-admissable estimator in the class of all generalized polynomial
unbiased estimators.” What is the Horvitz–Thompson estimator in this case?” asks the
owner, duly impressed. “Since the selection probability for Sambo in our plan was 99

100
,”

says the statistician, the proper estimate of Y is 100y
99

and not 50y.” “And how would you
have estimated Y ,” inquires the incredulous owner, “if our sampling plan made us select,
say, the big elephant Jumbo?”. “According to what I understand of the Horvitz–Thompson
estimation method,” says the unhappy statistician, “ the proper estimate of Y would then
have been 4900y, where y is Jumbo’s weight.” That is how the circus statistician lost his
circus job and perhaps became a teacher of statistics!

[1]
Basu’s elephant example has been criticized by many as being “too extreme” to

be useful in practice. However the following passage from Einbeck et al. [13] shows
that this may be hasty.

The goal of this paper was to show that there exists an striking analogy between
the theories of sampling and smoothing, leading to a similar discrepancy between
theoretically optimal and practically useful weighting schemes. We believe that
this tells us an important lesson about statistical methods in general: weighting is
performed in virtually all statistical disciplines, and a usual way of motivating such
weights is to look at theoretical, bias-minimizing criteria. These criteria will often
suggest to choose weights inversely proportional to some kind of selection proba-
bility (density). This however makes the estimator extremely sensitive to extreme
observations (which correspond to Jumbo in Sect. 1 and the outlying predictors in
Sect. 2). Hence, we advise to be careful with bias-minimizing estimators if there
are any observations which might be labeled by the terms “extreme,” “undesired,”
“outlying,” “weak,” “needy,” and the like, and it is likely that this holds far beyond
the scope of sampling and smoothing.

20.5.2 An Unmentioned Assumption

Suppose now that the population is

C = {y1, y2, . . . , yN}

where one of the yi’s is of the order 1010
10

and all the other y’s are equal to 1 + δi
where |δi| < ε and ε is very small, say .01. Then the probability that a random
sample of size n does not contain the large y is

(N − 1)

N

(N − 2)

(N − 1)

(N − 3)

(N − 2)
· · · (N − n)

(N − n+ 1)
= 1− n

N
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Thus if N = 1000 and n = 100 the probability the a random sample will not contain
the large y is 0.9. Thus even though random sampling ensures that on average we
get an unbiased estimator of the population total 90 % of the random samples are
truly bad, i.e., they greatly underestimate the population total.

The point is that having a random sample is no guarantee that it is a good sample.
Why then is random sampling so popular and advocated by almost everyone?
There seems to be a tacit assumption that the population being sampled consists
of “similar objects.” Then situations such as just discussed do not arise. The model-
based approach to sampling legitimizes this by placing a model on the y’s not the
randomization process and bases sampling theory and practice on predicting the
unobserved y’s. Advocates of the randomization procedure (and there are many)
protest the validity of the model assumptions. Fortunately the differences in practical
settings are small, but it again points out the frailness of statistical theory: something
must be assumed.

20.6 Prediction Approach

Suppose we have a sample from a population (often called the target population),
how do we estimate the total T ?

One way to understand the problem is to decompose the population total as
follows:

T =

N∑

i=1

Yi =
∑

s

Yi +
∑

sc

Yi = Ts + Tsc

where sc is the complement of s with respect to the sample s, i.e., sc consists of
those units in the population which are not in the sample, Ts is the total of the
observed sample, and Tsc is the total of the unobserved values of Y .

Thus the problem of estimating T is reduced to one of predicting the total of
the unobserved values, Tsc , using the observed total Ts. It is natural to do this by
estimating the average value of Y using the sample data by computing ȳ and then
using (N − n)ȳ as the estimate of the total of the unobserved Y ′s. The estimate of
the total is then taken to be

T̂ = Ts + (N − n)ȳ = Ts +
(N − n)

n
Ts =

N

n
Ts

As appealing as the approach seems it is useful to have a formal statement of its
validity so that in more complex situations we may develop analogous procedures
under more general models.

Let us assume that Y1, Y2, . . . , YN are generated by a random process such that

E(Yi) = μ ; var (Yi) = σ2; and the Y’s are independent
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This simple model reflects the fact that the unobserved Y values have “something
in common” with the observed values which will allow us to make inferences about
them using the observed data.

It can be shown that under these assumptions, T̂ = N
n Ts, is that estimator of

T which minimizes E(T̂ − T )2 among all linear functions of the observed data
which are unbiased, i.e., satisfy E(T̂ − T ) = 0. This result generalizes to more
complicated linear models relating the observed and unobserved values and provides
a convenient framework for discussing finite population sampling.

The estimator T̂ = N
n Ts is often called the “expansion” estimator of T .

Under the model assumptions the estimator T̂ satisfies E(T̂ −T ) = 0 and is thus
an unbiased estimator of the population total. The expected squared error is thus the
variance which of T̂ − T under the model is given by

E(T̂ − T )2 = var (T̂ − T )

= var

(
(N − n)

n
Ts − Tsc

)

=
(N − n)2

n2
nσ2 + (N − n)σ2

= (N − n)

(
N − n

n
+ 1

)
σ2

= N2
(
1− n

N

) σ2

n

The expected squared error thus provides a natural measure of variability for the
estimator. The term (1− n

N ) is called the finite population correction factor. Note
that if the sample size equals the population size (n = N) then the variance of the
estimator is zero since we know the population total in this case. An approximate
95% confidence interval for the population total is given by

T̂ ± 2N

√
1− n

N

σ√
n

20.6.1 Proof of the Prediction Result

Assume that Y1, Y2, . . . , YN are random variables generated by a random process
R. The problem is to use the sampled items, ys to predict θ =

∑N
i=1 �iYi, i.e., a

linear function of the Y ’s. The simplest, most natural predictor, L, satisfies

(i) Linearity, i.e., L =
∑

i∈s hiYi

(ii) Unbiasedness,i.e, E(L− θ)2 = 0
(iii) Minimum mean square error, i.e., choose hi to minimize E(L− θ)2
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The simplest assumption on the random process is that the Y ’s are uncorrelated with
mean μ and variance σ2. In this case unbiasedness requires that

E[
∑

i∈s

hiYi −
N∑

i=1

�iYi] =
∑

i∈s

hiμ−
N∑

i=1

�iμ

=

[
∑

i∈s

hi −
N∑

i=1

�i

]

μ

= 0

i.e.,
∑

i∈s hi =
∑N

i=1 �i. The mean square error of the predictor is the same as its
variance because of the unbiasedness condition and we have

E[L− θ]2 = V

[
∑

i∈s

hiYi −
N∑

i=1

�iYi

]

= V

[
∑

i∈s

(hi − �i)Yi −
∑

i/∈s

�iYi

]

=
∑

i∈s

(hi − �i)
2σ2 +

∑

i/∈s

�2iσ
2

Thus we need to minimize (using Lagrange multipliers)

g(h, λ) =
∑

i∈s

(hi − �i)
2σ2 +

∑

i/∈s

�2iσ
2 + λ(

∑

i∈s

hi =
N∑

i=1

�i)

It follows that

∂g(h, λ)

∂hi
= 2hiσ

2 + λ

and

∂g(h, λ)

∂λ
=
∑

i∈s

hi −
N∑

i=1

�i

It follows that

2
∑

i∈s

hiσ
2 + nλ = 0
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and hence

λ = −2σ2

n

N∑

i=1

�i

Thus

hi = − 1

2σ2
λ =

1

n

N∑

i=1

�i =
Δ

n

and the predictor is

Δ

n

∑

i∈s

yi = Δys

Note that if each �i = 1 then the predictor is Nys/n, the expansion estimator.

20.7 Stratified Sampling

One of the most important methods of sampling finite populations is called
stratified sampling. In stratified sampling the population is divided into K mutually
exclusive subsets, called strata, and a simple random sample drawn from each.
In essence then stratified sampling may be viewed as taking K independent
simple random samples, one from each stratum. The reasons for using stratified
sampling are:

1. Under certain conditions the standard error of the estimates obtained using
stratified sampling may be much smaller than using simple random sampling.
This leads to shorter confidence intervals for parameters of interest and more
precise inferences.

2. The estimation procedures are no more complicated since we simply combine
simple random samples over strata, weighting inversely as the variance.

3. The costs involved in taking a stratified sample may not be substantially greater
than those for a simple random sample and the resulting reduction in standard
errors may be worthwhile.

20.7.1 Basic Results

We assume that there are Ni units in the ith stratum with associated characteristics
Yi1, Yi2, . . . , YiNi . The total for the ith stratum is Ti =

∑Ni

j=1 Yij . Assuming simple
random sampling, with a sample of size ni in the ith stratum:
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1. The estimate of the total in the ith stratum is given by

T̂i = Tsi +
(Ni − ni)

ni
Tsi =

Ni

ni
Tsi

where si denotes the sample in the ith stratum.
2. It follows that the estimate of the population total is given by

T̂ =

K∑

i=1

Ni

ni
T̂si

In order to determine the standard error of T̂ we must make some model
assumptions:

(a) The Yij are assumed independent.
(b) E(Yij) = μi.
(c) var (Yij) = σ2

i .

Under these assumptions we have that

T̂ − T =

K∑

i=1

[
Tsi +

(Ni − ni)

ni
Tsi

]
−

K∑

i=1

(
Tsi + Tsci

)

=
K∑

i=1

[
(Ni − ni)

ni
Tsi − Tsci

]

Since each term in brackets has expected value equal to zero it follows that
E(T̂ − T ) = 0. The expected squared error thus satisfies

E(T̂ − T )2 =

K∑

i=1

[(
(Ni − ni)

ni

)2

niσ
2
i + (Ni − ni)σ

2
i

]

=

K∑

i=1

Ni(Ni − ni)
σ2
i

ni

=
K∑

i=1

N2
i (1−

ni

Ni
)
σ2
i

ni

20.8 Cluster Sampling

Assume that the population of N individuals is arranged into K clusters of sizes
N1, N2, . . . , NK , respectively. The value of the response variable Y for individual
j in cluster i is denoted by Yij .
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Cluster sampling proceeds by first selecting a random sample of k clusters and
then selecting a random sample from each of the selected clusters. In order to
develop expressions for the estimate and its variance we need a model describing
the process which generates the response variable:

1. One simple model which appears to capture the principal features of clustering
is as follows:

E(Yij = μ

cov (Yij , Ylm) =

⎧
⎨

⎩

σ2
i i = l, j = m

ρiσ
2
i , i = l, j 
= m

0 i 
= l

2. This simple model appears to capture the fact that objects within clusters (e.g.,
households) may not be independent.

3. Let s denote the sample of k clusters and si denote the sample of size ni drawn
from the ith selected cluster.

The population total can then be written as the sum of three components:

T =
∑

i∈s

∑

j∈si

Yij +
∑

i∈s

∑

j∈sci

yij +
∑

i∈sc

Ni∑

j=1

Yij

1. The first term represents the observed total of the units in the selected sample of
clusters.

2. The second term represents the total of the unobserved units in the selected
sample of clusters

3. The third term represents the total of the units in the unobserved clusters.

The estimator T̂opt is unbiased and has minimum mean square prediction error
under the model given by

T̂opt =
∑

i∈s

∑

j∈si

Yij +
∑

i∈s

(Ni − ni)
[
ωiȲsi + (1 − ωi)μ̂

]
+
∑

i∈sc

Niμ̂

where

ωi =
ρini

(1− ρi + niρi)

μ̂ =
∑

i∈s

uiȳsi

ui =

ωi

ρiσ2
i∑

j∈s
ωj

ρjσ2
j
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See Lohr [30] for an introductory treatment of finite population sampling from
both the randomization and modeling point of view.

20.9 Practical Considerations

20.9.1 Sampling Frame Problems

The basic requirement of a sampling frame is that each element in the population
should appear once and only once to ensure that correct probability calculations can
be made. Consider the problems connected with a telephone survey:

• Missing elements, an individual does not have a telephone or it is an unlisted
number.

• The elements are clustered since there is usually one number per family.
• Individuals can be listed more than once, e.g., at home and with a car phone.
• Some numbers are inapplicable, e.g., the numbers for time, weather, etc.

Of the problems with the sampling frame the most important is the problem of non-
coverage.

20.9.2 Nonresponse

In any real sampling situation the problem of non-response is extremely
important:

• Total nonresponse means that some individuals fail to respond to any of the
survey.

• Item nonresponse means that some individuals fail to respond to part of the
survey.

• The effect of nonresponse is to invalidate standard errors of estimates and thus to
cast doubt on the conclusions reached from the survey.

• For item response there are a variety of imputation or “missing data” procedures
which can be used, under model assumptions to obtain estimates in the presence
of nonresponse. This is currently a very active research area in statistics.

20.9.3 Sampling Errors

Sampling errors, described by the standard errors of estimates, are part of every
survey and can be reduced by careful use of supplementary information to increase
the precision of the sample.
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20.9.4 Non-sampling Errors

Non-sampling errors are much more damaging than sampling errors since they
cannot be quantified and consist mainly of non-coverage errors and nonresponse
errors. Any sample survey should try to minimize the total survey error defined as
the sum of the sampling errors and the non-sampling errors.

20.10 Role of Finite Population Sampling
in Modern Statistics

As statisticians and big data scientists accumulate more and more data from the
web the principles of finite population sampling will become more important; in
particular the notion of population sampled will become paramount to inference.



Chapter 21
Appendix: Probability and Mathematical
Concepts

21.1 Probability Models

21.1.1 Definitions

Definition 21.1.1. A statistical experiment is a “random” phenomenon which
yields a unique outcome called a sample point or an elementary event.

Definition 21.1.2. A sample space Ω is the collection of all sample points relative
to a statistical experiment. We denote sample points by ω.

Definition 21.1.3. An event is a collection of sample points.

Definition 21.1.4. An event space is a nonempty collection of events

In probability theory we assume that every event space is a σ-algebra. That is,

Definition 21.1.5. Let Ω be set. A class of subsets of Ω, W , is said to be a σ-
algebra if the following conditions are satisfied:

(i) W is nonempty.
(ii) E ∈ W implies EC ∈ W .

(iii) If E1, E2, . . . is a denumerable collection of sets in W then ∪∞
i=1Ei ∈ W .

If the sample space is the set of real numbers, R, or Rn the event space is taken
to the collection of all Borel sets which includes sets of the form (a, b], open sets,
closed sets, etc. It is very hard to find a non-Borel set.

Definition 21.1.6. Let Ω be a sample space and let W be a σ-algebra over Ω.
A probability measure P on W is a function P : W �→ [0, 1] such that

(i) P(Ω) = 1
(ii) P(E) ≥ 0 for all E ∈ W

© Springer International Publishing Switzerland 2014
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(iii) If E1, E2, . . . is a finite or denumerable collection of mutually exclusive events
(Ei ∩ Ej = ∅; i 
= j) in W then

P(∪∞
i=1Ei) =

∞∑

i=1

P(Ei)

Definition 21.1.7. A probability space or probability model is the triple
(Ω,W ,P) where Ω is a sample space, W is a σ-algebra, and P is a probability
measure on W .

21.1.2 Properties of Probability

1. If E ∈ W then P(EC) = 1− P(E)
2. P(∅) = 0
3. If E1, E2 ∈ W and E1 ⊆ E2 then P(E1) ≤ P(E2)
4. P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)
5. (Boole’s Inequality) If E1, E2, . . . is a denumerable collection of events in

W then

P(∪∞
i=1Ei) ≤

∞∑

i=1

P(Ei)

21.1.3 Continuity Properties of Probability Measures

Definition 21.1.8. A sequence of sets E1, E2, . . . , is said to be increasing (non-
decreasing) if En ⊆ En+1 for n = 1, 2, . . . and decreasing (non-increasing) if
En ⊇ En+1 for n = 1, 2, . . ..

Theorem 21.1.1. If {En} is a increasing or decreasing sequence of sets we have

P( lim
n→∞En) = lim

n→∞P(En)

21.1.4 Conditional Probability

Definition 21.1.9. The conditional probability of B given A, P(B | A), is
defined as

P(B | A) = P(B ∩ A)

P(A)

provided P(A) > 0.
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21.1.5 Properties of Conditional Probability

1. Let (Ω,W ,P) be a probability space, let P(A) > 0, and define P(• | A) to be
the conditional probability given A for any event in W . Then (Ω,W ,P(• | A))
is a probability space.

2. (Multiplication Rule) If P(∩k
i=1Ei) > 0 then

P(∩k
i=1Ei) = P(E1)P(E2 | E1)× · · · × P(Ek | ∩k−1

i=1 Ei)

3. A partition, P , of a sample space, Ω, is a non-empty denumerable collection of
mutually exclusive events in W such that Ω = ∪∞

i=1Ei.
4. (Law of Total Probability) If E1, E2, . . . is a partition of Ω such that P(Ei) > 0

for all i then for any event E in W

P(E) =

∞∑

i=1

P(E | Ei)P(Ei)

5. (Bayes Theorem) If P(E) > 0 and P is a partition of Ω such that P(Ei) > 0 for
all i then

P(Ei | E) =
P (P | Ei)P(Ei)∑∞

j=1 P(E | Ej)P(Ej)

6. (Simpson’s Paradox) It is possible to have

P(A | B ∩ C) ≥ P(A | BC ∩ C) and P(A | B ∩ CC) ≥ P(A | BC ∩CC)

and yet

P(A | B) < P(A | BC)

21.1.6 Finite and Denumerable Sample Spaces

If Ω is finite or denumerable we can assign probabilities to all events E ∈ W by
defining

P(E) =
∑

ω∈E

p(ω)
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where p(ω) is called a probability density function and has the properties

(i) p(ω) ≥ 0 for all ω ∈ Ω
(ii)
∑

ω∈Ω p(ω) = 1

Such probability models are called discrete probability models.

21.1.6.1 Random Sampling from a Population

A population of size N is a set of N objects.

Definition 21.1.10. A sample of size n from a population is an n-tuple of the form

(a1, a2, . . . , an)

where ai is an object in the population for each i.

Definition 21.1.11. A sample is said to be

1. With replacement if each element in the population can appear more than once
in the sample

2. Without replacement if each element in the population can appear at most once
in the sample

Definition 21.1.12. A sample is said to be a random sample if the probability of
its selection is equal to the reciprocal of the number of possible samples.

21.1.6.2 Combinatorics

1. Given two sets A and B having m and n, elements respectively, there are m× n
ordered pairs of the form (ai, bj) where ai ∈ A and bj ∈ B.

2. Given r sets A1, A2, . . . , Ar containing m1,m2, . . . ,mr elements, respectively,
there are m1 ×m2 × · · · ×mr r-tuples of the form

(a1, a2, . . . , ar); ai ∈ Ai for i = 1, 2, . . . , r

3. A permutation of a set containing n elements is an arrangement of the elements
of the set to form an n-tuple. There are n! permutations of a set containing n
elements where n! is defined as n(n− 1) · · · 3 · 2 · 1. By convention 0! = 1. This
convention is related to the Gamma function.

4. Given a set containing n elements the number of subsets of size x is given by

(
n

x

)
=

n!

x!(n − x)!
=

(n)x
x!
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where (n)x = n(n− 1) · · · (n− x+1) =
∏x−1

i=0 (n− i). This expression is read
as n choose x and is called the number of combinations of n items taken x at
a time.

Result 21.1.1. Given a population of size N there are

(i) Nn samples of size n with replacement
(ii) N(N − 1)× · · ·× (N −n+1) = (N)n samples of size n without replacement

21.1.6.3 Two Important Discrete Probability Models

Result 21.1.2. Given a population of size N containing D objects of type A and
N −D objects of type A the probability that a random sample of size n contains x
objects of type A is

(i)

p(x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n

if sampling is with replacement where p = D/N . This probability model is
called the binomial probability distribution with parameters n and p.

(ii)

p(x) =

(
n

x

)
(D)x(N −D)(n−x)

(N)n
for x = 0, 1, . . . ,min (n,D)

if sampling is without replacement. This probability model is called the
hypergeometric probability distribution with parameters N , D, and n.

21.1.7 Independence

Definition 21.1.13. Events A and B are independent if

P(A ∩B) = P(A)P(B)

Theorem 21.1.2. Events A and B are independent if and only if

P(B | A) = P(B)
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Definition 21.1.14. Events E1, E2, . . . , En are independent if

P(∩i∈SEi) =
∏

i∈S

P(Ei) where S is any subset of {1, 2, . . . , n}

21.1.7.1 Independent Trial Models

Let W1,W2, . . . ,Wn be σ-algebras over Ω1,Ω2, . . . ,Ωn, respectively. Define

Ω = Ω1 × Ω2 × · · · × Ωn

On Ω define events E by

E = {ω : ω = (ω1, ω2, . . . , ωn) where ω1 ∈ E1, ω2 ∈ E2, . . . , ωn ∈ En}

and E1 ∈ W1, E2 ∈ W2, . . . , En ∈ Wn. Finally let W be the σ-algebra generated
by events of the form E.

Definition 21.1.15. The experimental setup just defined is called an experiment
with n trials.

Definition 21.1.16. If P is a probability on W then the experiment with n trials is
said to be an experiment with n independent trials if

P(E) =

n∏

i=1

Pi(Ei)

where Ei ∈ Wi for i=1,2,. . . ,n, E ∈ W , and Pi is a probability measure on Wi for
i=1,2,. . . ,n.

21.1.7.2 Bernoulli Trial Models

Definition 21.1.17. An experiment is said to be Bernoulli trial experiment if

(i) Each Ωi consists of two sample points, ω1, ω2, the same for each i
(ii) The trials are independent

(iii) The probabilities are homogeneous from trial to trial, i.e.,

Pi({ω1}) = P({ω1}) for i = 1, 2, . . . , n

We call the two events in a Bernoulli trial model success and failure.



21.1 Probability Models 271

21.1.7.3 Results on Bernoulli Trial Models

1. The number of successes, x, in n Bernoulli trials has probability distribution
given by

p(x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n

i.e., the binomial distribution with parameters n and p where p is the probability
of a success on any trial.

2. The probability distribution of the trial number, x, on which the first success
occurs (waiting time until the first success) is

p(x) = (1 − p)x−1p for x = 1, 2, . . .

This probability distribution is called the geometric distribution with parame-
ter p.

3. The probability distribution of the trial number, x, on which the rth success
occurs (waiting time until the rth success) is

p(x) =

(
x+ r − 1

r − 1

)
(1− p)x−rpr for x = r, r + 1, . . .

This probability distribution is called the negative binomial distribution with
parameters r and p.

4. Given k successes in n Bernoulli trials the probability that a particular trial
resulted in a success is k/n.

21.1.7.4 Multinomial Trial Models

Definition 21.1.18. An experiment is said to be multinomial trial experiment if

(i) Each Ωi consists of k ≥ 2 sample points, ω1, ω2, . . . , ωk, the same for each i
(ii) The trials are independent

(iii) The probabilities are homogeneous from trial to trial, i.e.,

Pi({ωj}) = P({ωj}) for i = 1, 2, . . . , n and j = 1, 2, . . . , k
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21.2 Random Variables and Probability Distributions

21.2.1 Measurable Functions

Definition 21.2.1. Let Ω be a set and let W be a σ-algebra over Ω. A function f:
Ω �→ R is said to be W- measurable if the inverse image of every Borel set is in
W , i.e.,

X−1(B) = {ω : f(ω) ∈ B} ∈ W}

for every Borel set B.

21.2.2 Random Variables:Definitions

Definition 21.2.2. Let (Ω,W , P ) be a probability space. A random variable X is a
real-valued measurable function on Ω:

1. X is a random variable if and only if {ω : X(ω) ≤ x} is in W .
2. If X and Y are random variables so are cX , X2, X + Y , XY and | X |.

21.2.3 Distribution Functions

Definition 21.2.3. If X is a random variable on (Ω,W ,P) then (R,B,Q) is a
probability space where

Q(B) = P (X−1(B)) = P({ω : X(ω) ∈ B}) for B ∈ B

Q is called the probability measure induced (on R) by X and is called the
probability distribution of X or the distribution of X.

Definition 21.2.4. The distribution function, F , of X is defined as

F (x) = P({ω : X(ω) ≤ x}) for all x ∈ R

21.2.3.1 Properties of Distribution Functions

1. F (−∞) = 0, F (+∞) = 1.
2. F is non-decreasing.
3. F is right continuous, i.e., limΔ→0 F (x+Δ) = F (x) where Δ > 0.
4. The set of discontinuity points of F is at most denumerable.
5. We write F (x) = P(X ≤ x) even though it is misleading.
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Definition 21.2.5. Any real-valued function F defined on R which is non-
decreasing, right continuous, and for which F (−∞) = 0; F (+∞) = 1 is
called a distribution function.

Result 21.2.1. Given a distribution function F , there exists a unique probability
measure P on B such that (R,B,P) is a probability space. Thus a distribution func-
tion determines the underlying probability measure and conversely. The probability
measure P on B is defined by

P( (−∞, x] ) = F (x) for x ∈ R

21.2.4 Discrete Random Variables

Definition 21.2.6. A random variable X on (Ω,W ,P) is said to be discrete if there
exists a countable set C = {x1, x2, . . .} ⊂ R such that

P(X ∈ C) = P({ω : X(ω) ∈ C}) = 1

The points of C are called discrete points or mass points. For a discrete random
variable the function f: R �→ [0, 1], where

f(x) = P(X = x) = P ({ω : X(ω) = x})

is called the probability density function (pdf) of X.

21.2.4.1 Results and Examples—Discrete Random Variables

1. The distribution function for a discrete random variable is a step function with
step height equal to f(x) = P(X = x) = F (x)− F (x−) where
F (x−) = limΔ→0 F (x−Δ) ; Δ > 0

2. X has a Bernoulli pdf if

f(x) = px(1 − p)1−x x = 0, 1

3. X has a binomial pdf with parameters n and p if

f(x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n
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4. X has a geometric pdf with parameter p if

f(x) = (1 − p)x−1p for x = 1, 2, . . .

5. X has a negative binomial distribution with parameters r and p if

f(x) =

(
x− 1

r − 1

)
px−rpr for x = r, r + 1, . . .

6. X has a Poisson pdf with parameter λ if

f(x) =
λxe−λ

x!
for x = 0, 1, . . .

21.2.5 Continuous Random Variables

Definition 21.2.7. The random variable X defined on (Ω,W , P ) is said to be an
(absolutely) continuous random variable if its distribution function can be written as

F (x) =

∫ x

−∞
f(u)du

where

f(x) ≥ 0 and
∫ +∞

−∞
f(x)dx = 1

f(x) is called the pdf (probability density function) of X.

21.2.5.1 Properties and Examples of Continuous Random Variables

1. The distribution function of a continuous random variable is differentiable almost
everywhere and

dF (x)

dx
= f(x)

2. X has a uniform distribution if

f(x) = 1 for 0 ≤ x ≤ 1 and 0 elsewhere
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3. X has a rectangular distribution with parameter θ > 0 if

f(x) =
1

θ
for 0 ≤ x ≤ θ and 0 elsewhere

4. X has a bf exponential distribution with parameter θ > 0 if

f(x) =
1

θ
e−θx for x ≥ 0 and 0 elsewhere

5. Z has a standard normal or Gaussian(0,1) distribution if

f(z) =
1√
2π

e−z2/2 for −∞ < z < +∞

6. X has a Gamma distribution with parameters α > 0 and β > 0 if

f(x) =
xα−1e−x/β

Γ(α)βα
for x ≥ 0 and 0 elsewhere

where

Γ(α) =

∫ ∞

0

xα−1e−xdx

7. X has a Beta distribution with parameters α > 0 and β > 0 if

f(x) =
xα−1(1− x)β−1

B(α, β)
for 0 ≤ x ≤ 1 and 0 otherwise

where

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α+ β)

8. The survival function associated with a distribution function is defined as

S(x) = P(X > x) = 1− F (x)

Definition 21.2.8. X has a distribution which belongs to the exponential family if

f(x) = exp {
k∑

j=1

aj(θ)tj(x)− c(θ) + h(x)}

where θ is a k-dimensional vector of real-valued parameters and the set of values of
x for which f(x) > 0 (called the support of f) does not depend on θ.



276 21 Appendix: Probability and Mathematical Concepts

21.2.6 Functions of Random Variables

Result 21.2.2. If X is a random variable on (Ω,W ,P) and g : R �→ R is a
measurable function on (R,B) then Y = g(X) = (g ◦X)(ω) is a random variable
on (Ω,W ,P).

• The distribution of Y is given by

P(B) = P(X ∈ g−1(B)) = P({ω : ω ∈ X−1(g−1(B))}) for B ∈ B

• The distribution function of Y is given by

FY (y) = P({x : g(x) ≤ y }) = P({ω : g(x(ω)) ≤ y})

The pdf of Y = g(X) if it exists is obtained as follows:

(i) If X is discrete then Y = g(X) is discrete and

fY (y) =
∑

S

f(x) where S = {x : y = g(x)}

(ii) If X is continuous and Y = g(X) is discrete then

fY (y) =

∫

S

f(x)dx where S = {x : y = g(x)}

(iii) If X is continuous and Y = g(X) is continuous then

FY (y) =

∫

S

f(x)dx where S = {x : g(x) ≤ y} and fY (y) =
dFY (y)

dy

(iv) If X is continuous and g is differentiable and one to one then

fY (y) = fX [g−1(y)]J(x, y)

where

J(x, y) =

∣
∣
∣
∣∣
∣

dx

dy

∣
∣
∣∣
∣
x=g−1(y)

J(x, y) is called the Jacobian of the transformation.
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Example 21.2.1. 1. If Z has a standard normal distribution and X = μ + σZ then
X has a N(μ, σ2) distribution and

f(x) =
1

σ
√
2π

exp− (x− μ)2

2σ2

2. If Z has a standard normal distribution and X = Z2 then X has a chi-
square distribution with one degree of freedom. The chi-square distribution with
r degrees of freedom is defined as the Gamma distribution with parameters
α = r/2 and β = 2.

21.3 Random Vectors

21.3.1 Definitions

Definition 21.3.1. Let (Ω,W ,P) be a probability space. A random vector X is a
function X : Ω �→ Rk such that the inverse image of every Borel set in Bk is in W
We write X = (X1, X2, . . . , Xk) and call Xi the ith coordinate or the ith
projection of X.

21.3.1.1 Properties of Random Vectors

1. If X is a random vector then each coordinate is a random variable.
2. If X1, X2, . . . , Xk are random variables on the same probability space then X =

(X1, X2, . . . , Xk) is a random vector.
3. The joint probability distribution of X is defined by

Q(B) = P(X−1(B)) = P({ω : X(ω) ∈ B}) for B ∈ Bk

4. The joint distribution function of X is defined as

F (x) = P(X ≤ x)

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk)

= P({ω : X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xk(ω) ≤ xk})

5. Properties of joint distribution functions: in two dimensions we have

(i) F (x1, x2) = P(X1 ≤ x1, X2 ≤ x2)
(ii) 0 ≤ F (x1, x2) ≤ 1)
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(iii) F (x+h1, x2 + h2) − F (x1 + h1, x2) − F (x1, x2 + h2) + F (x1, x2) ≥ 0
for h1 ≥ 0, h2 ≥ 0

(iv) F (−∞, x2) = F (x1,−∞) = 0
(v) F (+∞,+∞) = 1

21.3.2 Discrete and Continuous Random Vectors

Definition 21.3.2. A random vector X is discrete if there exists a countable set
C = {x1,x2, . . .} ⊂ R such that P(X ∈ C) = 1.

The function f(x) = P(X = x) is called the joint pdf of X and satisfies

0 ≤ f(x ≤ 1 and
∑

x1

∑

x2

· · ·
∑

xk

f(x1, x2, . . . , xk) = 1

Definition 21.3.3. A random vector X is continuous if there exists a function f
such that the distribution function of X is given by

F (x1, x2, . . . , xk) =

∫ xk

−∞
· · ·
∫ x1

−∞
f(u1, . . . , uk)du1 · · · duk

f is called the joint pdf of X and satisfies

f(x) > 0 and
∫ +∞

−∞
· · ·
∫ +∞

−∞
f(x1, . . . , xk)dx1 · · · dxk = 1

21.3.3 Marginal Distributions

Let S1 and S2 be nonempty subsets of the integers 1,2,. . . ,k containing p and q
elements, respectively, where p+ q = k, such that

S1 ∪ S2 = {1, 2, . . . , k} and S1 ∩ S2 = ∅

If X is a k-dimensional random vector, write

X = (X1,X2)

where

X1 = (Xi1 , Xi2 , . . . , Xip) and X2 = (Xj1 , Xj2 , . . . , Xjq )
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and

S1 = {i1, i2, . . . , ip} ; S2 = {j1, j2, . . . , jq}

Definition 21.3.4. The marginal distribution function of X1 is given by F (x1,∞)
whereF (x1,x2) is the distribution function of (X1,X2). In particular, the marginal
distribution function of Xi is obtained when S1 = {i}

If X is a discrete random vector then the pdf of X1 is given by

fX1(x1) =
∑

all x2

f(x1,x2)

where f(x1,x2) is the joint pdf of X. Similarly if X is a continuous random vector
then the pdf of X1 is given by

fX1(x1) =

∫

all x2

f(x1,x2)

where f(x1,x2) is the joint pdf of X.
If X = (X,Y ) these two formulas reduce to

fX(x) =
∑

all y

f(x, y) and fX(x) =

∫ +∞

−∞
f(x, y)dy

21.3.4 The Multinomial Distribution

Definition 21.3.5. The random vector X is said to have a multinomial distribution
with parameters n, p1, p2, . . . .pk if its pdf is given by

fX(x) = n!

k∏

i=1

pxi

i

xi!
for x ∈ S

where

S = {x : xi = 0, 1, . . . , n x1 + x2 + · · ·+ xk = n}

and

0 ≤ pi ≤ 1 ; p1 + p2 + · · ·+ pk = 1
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21.3.4.1 Multinomial Results

1. The multinomial distribution gives the probability of the number of times
outcomes ω1, ω2, . . . , ωk occur in n multinomial trials.

2. The marginal distribution of any subset of the multinomial is also multinomial.
In particular the marginal distribution of Xi is binomial (n, pi).

21.3.5 Independence of Random Variables

Definition 21.3.6. The random variables X1, X2, . . . , Xn are independent if

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) =

n∏

i=1

P(Xi ∈ Bi)

for all Borel sets Bi

21.3.5.1 Properties of Independent Random Variables

1. If X1, X2, . . . , Xn are independent, A ⊂ {X1, X2, . . . , Xn}, and g and h are
measurable functions then g(A) and h(AC) are independent.

2. If X is a random vector its components X1, X2, . . . , Xn are independent if and
only if the joint distribution function of X satisfies

FX(x) =

n∏

i=1

FXi(xi)

where FXi is the marginal distribution function of Xi for i=1,2,. . . ,n.
3. If X has a pdf then its components are independent if and only if the joint pdf

satisfies

fX(x) =

n∏

i=1

fXi(xi)

where fXi is the marginal pdf of Xi for i=1,2,. . . ,n.
4. If X = (X1,X2) then X1 and X2 are independent if and only if

FX1,X2(x1,x2) = FX1(x1)FX2(x2)



21.3 Random Vectors 281

21.3.6 Conditional Distributions

Definition 21.3.7. Let X be a k-dimensional random vector with pdf f(x). Let
A ⊂ Rk be an event such that P(X ∈ A) > 0. Then the conditional pdf of X given
X ∈ A is defined as

f(x | X ∈ A) =
f(x)1A(x)

P(X ∈ A)

where 1A is the indicator function of the set A.

Definition 21.3.8. Let X and Y have joint distribution specified by the joint pdf
fX,Y and let the marginal pdf of X be fX. Then the conditional pdf of Y given
X = x is defined as

f(y | x) = fX,Y(x,y)

fX(x)

21.3.6.1 Properties and Examples of Conditional Distributions

1. For fixed x, f(y | x) is a pdf.
2. (Generalization of the Law of Total Probability) The marginal pdf of Y is

given by

fY(y) =

∫

all x

f(y | x)fX(x)dx

3. If X is multinomial then the conditional distribution of any subset of X given
another subset of X is also multinomial.

21.3.7 Functions of a Random Vector

Definition 21.3.9. If X is a k-dimensional random vector and g : Rk �→ Rp where
p ≤ k is a measurable function then Y = g(X) is a random vector with probability
distribution given by

PY(B) = P({x : g(x) ∈ B})

and distribution function given by

FY(y) = P({x : g(x) ≤ y})
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Result 21.3.1. If X has pdf fX then Y has pdf fY given by :

(i) fY(y) =
∑

By
fX(x) if X is discrete where By = {x : g(x) = y}.

(ii) fY(y) =
∫
By

fX(x)dx if X is continuous and Y is discrete where

By = {x : g(x) = y}

(iii) fY(y) = ∂FY(y)
∂y where

FY(y) =

∫

By

fX(x)dx

if X is continuous, Y is continuous, and By = {x : g(x) ≤ y}.
(iv) If X has joint pdf fX(x) and Y= g(x), assume thatx andy are n-dimensional

and that g is one-one. The density of Y at y is given by

fY (y) = fX [g−1(y)]
∣
∣det[J(x,y)]x=g−1(y)

∣
∣

where

J(x,y) =

⎡

⎢
⎢
⎢⎢
⎣

∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yn
∂x2

∂y1

∂x2

∂y2
· · · ∂x2

∂yn

...
...

. . .
...

∂xn

∂y1

∂xn

∂y2
· · · ∂xn

∂yn

⎤

⎥
⎥
⎥⎥
⎦

is the Jacobian (matrix) of the transformation.
Note that J(x,y) is often easier to calculate using the relationship

J(x,y) = [J(y,x)]−1

where

J(y,x) =

⎡

⎢
⎢⎢
⎢
⎣

∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xn

...
...

. . .
...

∂yn

∂x1

∂yn

∂x2
· · · ∂yn

∂xn

⎤

⎥
⎥⎥
⎥
⎦

Example 21.3.1. 1. If X and Y are independent binomial random variables with
parameters n1, n2, p, respectively then X + Y has a binomial distribution with
parameters n1 + n2, p.

2. If X and Y are independent Poisson random variables with parameters λ1, λ2,
respectively then X + Y has a Poisson distribution with parameters λ1 + λ2.
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3. If X is N(μ1, σ
2
1), Y is N(μ2, σ

2
2) and X and Y are independent then X + Y is

N(μ1 + μ2, σ
2
1 + σ2

2).
4. If X is Gamma(α1, β) and Y is Gamma(α2, β) and X and Y are independent,

then X + Y is Gamma(α1 + α2, β).
5. If X is N(0, 1) and Y is N(0, 1) and X and Y are independent then X/Y has a

Cauchy distribution with parameters 0 and 1.
6. If X is Cauchy(μ1, σ1) and Y is Cauchy(μ2, σ2) and they are independent then

X + Y has a Cauchy distribution with μ = μ1 + μ2 and σ + σ1 + σ2.

21.3.8 The Multivariate Normal Distribution

Definition 21.3.10. If X is a k-dimensional random vector its matrix representation
is the k by 1 vector given by

X =

⎡

⎢
⎢
⎢
⎣

X1

X2

...
Xk

⎤

⎥
⎥
⎥
⎦

Definition 21.3.11. If Z1, Z2, . . . , Zk are independent each normal with parame-
ters 0 and 1 the k-dimensional random vector Z defined by Z = (Z1, Z2, . . . , Zk)
is said to have a standard multivariate normal distribution with parameters 0 and I.
Here 0 is a k by 1 vector of 0’s and I is the k by k identity matrix.

Definition 21.3.12. If Z is standard multivariate normal then its pdf is given by

fZ(z) =
1

(2π)k/2
exp{−1

2
z�z} for −∞ < z < +∞

Definition 21.3.13. X has a multivariate normal distribution in k dimensions with
parameters μ and Σ if

X = μ+ BZ

where Z is standard multivariate normal in k dimensions and Σ = BB�.

Result 21.3.2. The pdf of the k-dimensional multivariate normal with parameters
μ and Σ written as MVN (μ,Σ) is given by

fX(x) =
1

(2π)k/2(detΣ)1/2
exp

{
−1

2
(x − μ)�Σ−1 (x− μ)

}
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21.3.8.1 Properties of the Multivariate Normal Distribution

1. If X is MVN (μ,Σ) then

Y = a+ CX

is MVN(a+Cμ,CΣC�) where Y is p dimensional, p ≤ k, a is a p by 1 vector,
and C is a p by p matrix of rank p.

2. If (X,Y) is MVN (μ,Σ) where

μ =

[
μx

μy

]
and Σ =

[
Σxx Σxy

Σyx Σyy

]

then the marginal distribution of X is MVN (μx,Σxx).
3. The conditional distribution of Y given X = x is

MVN (μy + ΣyxΣ
−1
xx (x− μx),Σyy − ΣyxΣ

−1
xxΣxy)

21.4 Expected Values

21.4.1 Expected Value of a Random Variable

Definition 21.4.1. If X is a random variable with pdf f then the expected value of
X , E(X), is defined as follows:

(i) If X is discrete then

E(X) =
∑

x∈S

xf(x) where S is the set of discrete(mass) points of X

(ii) If X is a continuous random variable then

E(X) =

∫ +∞

−∞
xf(x)dx

provided both the sum and the integral converge absolutely.

Definition 21.4.2. The expected value of a random variable exists (is finite) if and
only if both E(X+) and E(X−) are finite where

X+ = X · 1X≥0 and X− = X · 1X<0

and 1 is the indicator function. In this case

E(X) = E(X+) + E(X−)
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21.4.1.1 Notation

We sometimes write

E(X) =

∫
xdF (x) or E(X) =

∫
xf(x)dμ(x)

to denote the expected value of X, which covers both the discrete and the continuous
case using a single notation. In this notation μ denotes counting measure if X is
discrete and Lebesgue measure if X is continuous.

Result 21.4.1. If X is a random variable with expected value equal to μ then

1. If X is discrete with mass points 0, 1, 2, . . .

μ =
∞∑

x=0

[1− F (x)] =
∞∑

x=0

P (X > x)

2. If X is a continuous random variable with distribution function F

μ =

∫ +∞

0

[1− F (x)]dx −
∫ 0

−∞
F (x)dx

3. If Y = g(X) where g : R �→ R is measurable then the expected value of Y is
given by

E(Y ) =

∫
yfY (y)dμ(y) =

∫
g(x)fX(x)dμ(x)

which has been called the Law of the Unconscious Statistician.

21.4.1.2 Properties of Expected Values

1. If c is a constant then E(c) = c
2. If c is a constant then E[cg(X)] = cE[g(X)]
3. If c1, c2 are constants then

E[c1g1(X) + c2g(X)] = c1E[g1(X)] + c2E[g2(X)]

and more generally

E

[
n∑

i=1

cigi(X)

]

=

n∑

i=1

ciE[gi(X)]

4. If g1(X) ≤ g2(X) for all values of X then E[g1(X)] ≤ E[g2(X)]
5. If X ≥ 0 then E(X) ≥ 0
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21.4.2 Distributions and Expected Values

Theorem 21.4.1. Two distribution functions F and G are equal if and only if

EF [u(X)] = EG[u(X)] for all bounded continuous functions u

21.4.3 Moments

Definition 21.4.3. The rth moment of the random variable X, μ′
r is defined as

E(Xr) provided E(| X |r) is finite.

Definition 21.4.4. The rth central moment of the random variable X, μr, is
defined as
E(X − μ)r provided E[(| (X − μ) |r)] is finite where μ is the expected value of X.

21.4.4 Properties and Results on Expected Values and
Moments

1. The mean of X is defined as μ = E(X).
2. The variance, V(X), of X is defined as E[(X − μ)2].
3. V(X) = E(X2)− [E(X)]2.
4. The mean, μ, of X minimizes E(X − c)2.
5. If X is random variable with E(X) = μ and V(X) = σ2 then the standardized

version of X is defined as

Z =
X − μ

σ

and E(Z) = 0 and V(Z) = 1.
6. Markov’s Inequality: For any positive random variable Y we have

P(Y ≥ k) ≤ E(Y )

k
for any positive k

7. Chebyshev Inequality. Let X be random variable and assume that μ = E(X)
and V(X) = σ2 exist. Then

P(| X − μ |) ≥ γσ) ≤ 1

γ2

8. Jensen’s Inequality. If g : R �→ R is a convex function then

E[g(X)] ≥ g(E(X))
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21.4.5 Other Functionals of a Distribution

Definition 21.4.5. The pth quantile of the distribution F , or the random variable
X , is defined as any number ηp satisfying

F (ηp−) ≤ p ≤ F (ηp) or P(X < ηp) ≤ p ≤ P(X ≤ ηp)

Result 21.4.2. 1. The median of X is the 0.5 quantile, i.e., the median, η, satisfies

P(X < η) ≤ 1/2 ≤ P(X ≤ η)

2. The median, η, minimizes E(| X − c |).
3. The quartiles of X are the 0.25 and 0.75 quantiles.
4. The deciles of X are the 0.1, 0.2,. . . , 0.9 quantiles.

21.4.6 Probability Generating Functions

Definition 21.4.6. If X is a discrete random variable with sample space {0,1,2,. . . }
the probability generating function of X is

P (s) =

∞∑

k=0

skpk

where pk = P (X = k). P(s) converges for | s | ≤ 1

21.4.6.1 Properties of Probability Generating Functions

1. The pgf uniquely determines the pdf.
2. The moments of a random variable with pgf P(s), if they exist, can be found by

differentiating the pgf, more precisely,

E[X(X − 1) · · · (X − r + 1)] =
drP (s)

drs

∣
∣
∣
∣∣
s=1

3. E[X(X − 1) · · · (X − r + 1)] is called the rth factorial moment of X .
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21.4.7 Moment-Generating Functions

Definition 21.4.7. The moment-generating function of a random variable X is
defined as

M(t) = E(etX)

provided the expectation is finite for some t ∈ T where T is an interval of real
numbers containing 0.

21.4.7.1 Properties of Moment-Generating Functions

1. If the mgf exists it uniquely determines the pdf.
2. If the mgf exists then M(t) = P (et) where P(s) is the pgf.
3. If the mgf of X exists then the moments of X can be found by differentiating the

mgf, more precisely,

drM(t)

drt

∣
∣
∣
∣
∣
t=0

= E(Xr)

4. If the moment-Generating function of X exists then

M(t) =

∞∑

r=0

μ′
rt

r

r!

5. If the moment-Generating function of X exists, then

e−μtM(t) =

∞∑

r=0

μrt
r

r!

21.4.8 Cumulant Generating Functions and Cumulants

Definition 21.4.8. If the mgf function of X exists then the cumulant generating
function, cgf, of X, K(t), is defined as K(t) = ln M(t).

Definition 21.4.9. The rth cumulant of X is defined as coefficient of tr/r! in the
expansion of K(t) around t=0 and is denoted by κr
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21.4.8.1 Properties of Cumulants

(i) The first four cumulants in terms of the first four central moments are

(1) κ1 = μ1

(2) κ2 = μ2

(3) κ3 = μ3

(4) κ4 = μ4 − 3μ2
2

(ii) The first four central moments in terms of the first four cumulants are

(1) μ1 = κ1

(2) μ2 = κ2

(3) μ3 = κ3

(4) μ4 = κ4 + 3κ2
2

(iii) For symmetric distributions all odd cumulants are zero.

Definition 21.4.10. The skewness of X is defined as

κ3/σ
3 = μ3/σ

3

Definition 21.4.11. The kurtosis of X is defined as

κ4/σ
4 =

μ4 − 3μ2
2

σ4

21.4.9 Expected Values of Functions of Random Vectors

Definition 21.4.12. If X is a random vector and g : Rk �→ R is a Borel measurable
function then the expected value of Y = g(X) is given by

E(Y ) =

∫

all y

yfY (y)dμ(y) =

∫

all x

g(x)fX(x)dμ(x)

where fY (y) is the pdf of Y and fX is the pdf of X.

21.4.9.1 Properties and Definitions

1. The expected value of
∑n

i=1 aiXi is given by

E(

n∑

i=1

aiXi) =

n∑

i=1

aiE(Xi)

where a1, a2, . . . , an are constants.
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2. The covariance of X and Y is defined as

C (X,Y ) = E[(X − μX)(Y − μY )] = E(XY )− μXμY

where μX = E(X) and μY = E(Y ).
3. C (X,Y ) = C (Y,X).
4. C (X,X) = V (X).
5. C (X, c) = 0 where c is a constant.
6. (Cauchy-Schwarz Inequality) [C(X,Y )]2 ≤ V(X)V(Y ) with equality holding

if and only if Y = a+ bX for some constants a and b.
7. The correlation of X and Y is defined as

corr (X,Y ) = ρXY =
C (X,Y )

√
V (X)V (Y )

where V (X) is the variance of X and V (Y ) is the variance of Y .
8. | corr (X,Y ) |≤ 1 with equality holding if and only if Y = a + bX for some

constants a and b.
9. Variance of a linear combination

V (
n∑

i=1

aiXi) =
n∑

i=1

n∑

j=1

aiajC (Xi, Xj)

10. Covariance of two linear combinations

C (

n∑

i=1

aiXi,

m∑

j=1

bjYj) =

n∑

i=1

m∑

j=1

aibjC (Xi, Yj)

11. C (aX + bY, cX + dY ) = (ac)V (X) + (bd)V (Y ) + (ad+ bc)C (X,Y ).
12. V (X + Y ) = V (X) + V (Y ) + 2C (X,Y ).
13. V (X − Y ) = V (X) + V (Y )− 2C (X,Y ).
14. X and Y are uncorrelated if C (X,Y ) = 0.
15. If X and Y are independent then they are uncorrelated but not conversely.
16. If X1, X2, . . . , Xn are pairwise uncorrelated (C (Xi, Xj) = 0 for i 
= j) and

E(Xi) = μ ; V (X) = σ2 then

E(X) = μ and V (X) =
σ2

n

where

X̄ =

∑n
i=1 Xi

n

17. If X and Y are independent then E(XY ) = E(X)E(Y )



21.4 Expected Values 291

18. If X1, X2, . . . , Xn are independent with Xi having mgf Mi(t) then the mgf of
the sum Sn =

∑n
i=1 Xi is given by

MSn(t) =

n∏

i=1

Mi(t)

21.4.10 Conditional Expectations and Variances

1. The conditional expectation of Y given X = x is defined as

E(Y | X = x) =

∫ +∞

−∞
yf(y | x)dμ(y)

2. The function E(Y | X) whose value at x is E(Y | X = x) is a random variable.

3. E[E(Y | X)] = E(Y ).

4. The conditional variance of Y given X = x is defined as

V (Y | X = x) =

∫ +∞

−∞
(y − μY |x)2f(y | x)dμ(y)

where μY |x is the conditional expectation of Y given X = x.

5. The function V (Y | X) whose value at x is V (Y | X = x) is a random variable.

6. Conditional variance formula

V (Y ) = E[V (Y | X)] + V [E(Y | X)]

7. The conditional covariance of Y and Z given X = x is defined as

C ((Y, Z) | X) =

∫ +∞

−∞

∫ +∞

−∞
(y − μY |x)(z − μZ|x)f(y, z | x)dμ(y, z)

8. The function C ((Y, Z) | X) whose value at x is C ((Y, Z) | X = x) is a random
variable.

9. Conditional covariance formula

C (Y, Z) = E[C ((Y, Z) | X)] + C [E(Y | X),E(Z | X)]
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21.5 What Is Probability?

Bruno de Finetti, one of the foremost probabilists of the twentieth century, wrote:

Probability does not exist.

De Finetti’s statement has something to do with the many different ways we use
probability, i.e., the different kinds of A for which we make statements such as

the probability of A is P(A)

Examples of A include

• A is the event that a coin will come up heads in 20 tosses.
• A is the statement that a defendant is guilty.
• A is the statement that a treatment cures a disease.
• A is the statement that it will rain tomorrow.
• A is the event that the mean of n iid normal(0,1) random variables will exceed

1/
√
n.

Consider a situation in which we have a coin which consists of a euro and a
quarter, the heads being the euro and the tail the quarter. Does this new coin have
an intrinsic probability, θ, of falling heads if tossed? If so what does it mean? If not
what do we mean by inference about θ?

Probabilists view de Finetti’s statement as almost irrelevant as do many statis-
ticians who adopt the view that probability is a measure with norm 1 on a σ-field
of events, subsets of a sample space, i.e., a probability space consists of (Ω,W ,P)
whereΩ is a sample space,W is a σ-field of subsets ofΩ, and P has the properties:

(i) P (Ω) = 1
(ii) 0 ≤ P (E) ≤ 1 for all E ∈ W

(iii) If E1, E2, . . . is a denumerable collection of mutually exclusive sets in W then

P (∪∞
i=1Ei) =

∞∑

i=1

P (Ei)

the so-called axiom of countable additivity.

As is well known these axioms imply the entire array of probability results useful
in statistics.

However

• They do not tell us how to interpret probabilities.
• Nor how we can convey the results of statistical analyses to scientists and the

public, e.g., how do we convey the meaning of a confidence interval or a Bayesian
interval when the “event” is a statement about a parameter?
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The “three” standard interpretations of probability are:

1. Frequency interpretation
2. Belief interpretation
3. Logical interpretation

The first interpretation leads to “classical” or “frequentist” statistics while the
second and third lead to “Bayesian” statistics both “subjective” and “objective.”

21.5.1 Frequency Interpretation

. . . the probability of an event is the long-run frequency with which the event occurs in a
certain experimental setup or in a certain population

Shafer [47]
For example if an experiment is performed n times and an event A occurs k

times then the relative frequency of A is k
n . If this fraction converges to say, p, as n

increases, then p is the probability of A in the frequency interpretation.

• Note that the frequency interpretation only applies when the experiment can be
repeated and we have convergence of the relative frequency.

• The scope is narrow.
• What about conditional probability and independence?
• What about the convergence of k

n?
• Which trials?
• How long a run?
• Real or hypothetical trials?

Any event occurs exactly once (in all its detail) so only non-trivial frequencies
can be defined unless the event is considered as one of a “more general” type of
event. How to choose this type is called “typing” Granularity is also an issue, i.e.,
in n trials relative frequencies can only be of the form c/n and yet some physical
events can have irrational probabilities. We can always transform into “single case,”
e.g., 1,000 trials of a coin toss can be considered as one trial of 1,000 tosses.

If we allow infinite number of trials we need to consider the “order” of the trials
to obtain relative frequency, e.g., an even number among the non-negative integers
has frequency 1/2 if the order is

(1, 2, 3, 4, 5, . . .)

and frequency 1/4 if the order is

(1, 3, 5, 2, 7, 9, 11, 4, 13, 15, 17, 6, 19, 21, 23, 8, . . .)
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This is called the reference sequence problem:

• No evidence in favor of any event implies equal probability for each of the events.
• Circular and implies symmetry.
• Different kinds of symmetry imply different probabilities for the same phe-

nomenon.

Thus the probability is considered to be a value independent of the observer. It gives the
approximate value of the relative frequency of an event in a long sequence of experiments.
. . .
As the probability of a random event is an objective value which does not depend on the
observer, one can approximately calculate the long run behaviour of such events, and the
calculations can be empirically verified.
In everyday life we often make subjective judgements concerning the probability of a
random event. The mathematical theory of probability, however, does not deal with these
subjective judgements but with objective probabilities.

Renyi [40]

21.5.2 Belief Interpretations

Consider collections of propositions or sentences and new sentences made by
combining sentences according to certain rules. A sentence or proposition is either
true or false and the rules for building new sentences are such that the truth of a new
sentence is determined by the truth of the combining sentences and the type of rule.

The logical structure of the combinations are “and,” “or,” and “not.” These are
represented as follows:

and & or
∧

or
∨

not ∼ or ¬
Consider two sentences A and B. The truth value of the combinations is as

follows:

Sentence Truth-value
A B A & B A ∨ B ¬ A
T T T T F
T F F T F
F T F T T
F F F F T

Consider now a collection of sentences (or events or hypotheses) E1, E2, . . ..

• A betting strategy between you, Y , and nature, N , is a setup in which you pay
p(Ei) units to nature to play and receive 1 unit from nature if Ei occurs.

• The strategy is defined as fair if you are not certain to have a positive gain or a
positive loss.

Howson and Urbach [23] prove the following:
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Theorem 21.5.1 (Ramsey, deFinetti). In order for a betting strategy to be fair,
the p(Ei) (called betting prices) must have the following properties:

1. 0 ≤ p(Ei) for all i.
2. If E is always true p(E) = 1.
3. If E1 and E2 are mutually exclusive then p(E1 ∨E2) = p(E1) + p(E2).

To prove (1) we have the following payoff matrix:

Event Ei Payoff to Y

T 1− p(Ei)

F −p(Ei)

If p(Ei) < 0 then you are certain to gain either |p(Ei)| or 1+ |p(Ei)| so p(Ei) must
be nonnegative.

To prove (2) we note that if E is certain to occur your payoff is 1− p(E) which
is a certain loss if p(E) > 1 and a certain gain if p(E) < 1. Hence p(E) = 1

To prove (3) let E1 and E2 be mutually exclusive with betting prices p1 and p2.
If you bet on both E1 and E2 then the payoff matrix is

Event status
E1 E2 Payoff to Y

T F 1− p(E1)− p(E2)

F T 1− p(E1)− p(E2)

F F −[p(E1) + p(E2)]

(E1 and E2 are mutually exclusive so E1 and E2 cannot both be true).
This is equivalent to the following bet on E1 ∨ E2:

Event E1 ∨ E2 status Payoff to Y

T 1− p(E1)− p(E2)

F −p(E1)− p(E2)

For another bet on E1 ∨ E2 with stake r the payoff matrix would be

Event E1 ∨ E2 status Payoff to Y

T 1− r

F −r

Combining these two bets into one strategy shows that the difference in payoffs
would be

Event E1 ∨ E2 status Payoff difference to Y

T r − p(E1)− p(E2)

F r − p(E1)− p(E2)

which is certain to result in a gain or loss unless r = p(E1) + p(E2).
Hence betting prices must obey the laws of probability.
How one decides their specific personal or subjective probability of a particular

event can be done using the following scheme:
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Suppose that you are interested in determining the probability of an event E.
Consider two wagers defined as follows:

Wager 1 : You receive $100 if the event E occurs and nothing if it does not occur.
Wager 2 : There is a jar containing x white balls and N−x red balls. You receive

$100 if a white ball is drawn and nothing otherwise.

You are required to make one of the two wagers. Your probability of E is taken
to be the ratio x/N at which you are indifferent between the two wagers.

• The belief interpretation is a gambling interpretation, e.g., if your probability of
event A is p then your odds on a gamble for which you receive 1 unit if A occurs
is p/(1− p) to 1. Conversely if you are willing to bet on A with odds a to 1 then
your probability is a/(1 + a). Similarly bets against A are defined and required
to be consistent with those for bets on A.

• Probabilities so defined obey Kolmogorov’s axioms provided you act in such a
way to avoid certain loss (Dutch book argument).

• Conditional probabilities for B given A are simply probabilities so assigned
under the additional condition that A has occurred.

• Linearity of money, i.e., betting amount may depend on the units involved which
may mean the result does not hold.

• In the definition of conditional probability, rewritten as

P(A ∩B) = P(A)P(B|A)

and called the Rule of Compound Probability there is the assumption that B
follows A and that its probability under these circumstances is well defined.

Is the interpretation normative or descriptive, i.e.,

1. Do the probabilities describe how we should behave (normative)?
2. Do they describe how we actually behave (descriptive)? Lots of work shows that

people don’t behave according to the axioms.
3. While not important to statistical analysis it is important to consumers of

statistical results.

21.5.3 Rational Belief Interpretation

• The probability of A is the degree to which we should believe that A will occur
based on our evidence.

• This interpretation can be made precise. Derivation assumes “reasonable” prop-
erties of belief.

Cox [10] develops the properties of probability for propositions. A proposition
is a statement denoted by a. A proposition may be true or false. There are three
methods of working with propositions to form new propositions:
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1. Contradictory denoted by ∼ and defined by

∼a = not a

2. Conjunction of a and b denoted by a∧ b and defined by

a∧ b = a and b

3. Disjunction of a and b denoted by a∨ b and defined by

a∨ b = a or b

These methods have properties which Cox uses to develop the basic properties
of probability using just two axioms:

Axiom 21.5.1. The probability of an event on given evidence determines the
probability of its contradictory on the same evidence.

Axiom 21.5.2. The probability on given evidence that both of two events are true
is determined by their separate probabilities, one on the given evidence, the other
on this evidence with the additional assumption that the first event is true.

Thus we have the properties of probability derived from two axioms.
Some problems with this interpretation are:

• Why should belief for A or B depend only on beliefs for A and B?
• Conditional belief in B given A may depend on how we learned about A, i.e.,

there is a uniqueness question for P(B|A).

21.5.4 Countable Additivity Assumption

The axiom of countable additivity cannot be justified in the frequency definition
of probability. Under an additional assumption it can be justified in the subjective
approach.

Let {E1, E2, . . .} be a collection of mutually exclusive events whose union is the
sample space Ω. Let pi = P (Ei) and let ΔiΘi be the corresponding stakes where

Δi = ±1 and Θi ≥ 0 for i = 1, 2, . . . ,
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The loss that would occur if Ek is true would be given by

Lk =

∞∑

i=1

piΔiΘi −ΔkΘk

Thus, a loss is certain if Lk > 0 for all k = 1, 2, . . ..

Theorem 21.5.2. If only a finite amount of money changes hands then the
probabilities are coherent (certain loss is not possible) if and only if

∑∞
i=1 pi = 1.

21.5.5 Lindley’s Wheel

Imagine a perfectly balanced roulette wheel of diameter 1/2π so that the circumfer-
ence is 1. If the pointer on this wheel is spun where it stops produces a point which
is equally likely to lie anywhere on the circumference. Call this a random point. If
we cut the circle we have a line of unit length and a point which is equally likely,
to be anywhere on the line. (By equally likely we mean that a bet as to whether the
point will lie in a subinterval A depends only on the length of the interval and not
its position).

If we now consider the spin of another identical wheel, similarly cut, we have a
unit square with the property that any region of area A is as equally likely as any
other region of area A. This leads to defining the probability of the event that the
point is in A as the area of A. The total area is 1.

It is easily seen that probability so defined has the properties we assume, i.e.,

1. P (Ω) = 1
2. 0 ≤ P (A) ≤ 1 for any A
3. P (A ∪B) = P (A) + P (B) if A ∩B = ∅

21.5.6 Probability via Expectations

This approach is due to Peter Whittle [53]. Whittle uses expectation as the basic
concept. Let Ω be a sample space (set) of points ω and let W be a σ-algebra over Ω.
Define a random variable to be a real-valued function from the sample space such
that the inverse image of every Borel set is in the σ-algebra W .

Define the expectation operator, E, to be a function from the set of all random
variables to the real line which satisfies the following axioms:

Axiom 1: If X ≥ 0 then E(X) ≥ 0
Axiom 2: If c is a constant then E(cX) = cE(X)
Axiom 3: E(X1 +X2) = E(X1) + E(X2)
Axiom 4: E(1) = 1



21.5 What Is Probability? 299

Axiom 5: If a sequence of random variables {Xn : n = 1, 2, . . .} increases
monotonically to a limit X then E(Xn) = E(X)

The probability of an event A, P(A), is then defined as

P(A) = E(1A) for any A ∈ W

The motivation for the use of expectations is based on a concept of average.
Suppose that we have a collection (set) of N individuals. Assume that to each
individual ωi there is an associated value of a real-valued quantity X which we
call a random variable. Suppose further that there are nk individuals with value xk.
Then the population average of X is given by

Av(X) =
1

N

∑

k

nkxk =
∑

k

pkxk

where pk is the proportion of the individuals having value xk. Averages such as
these are a facet of everyday life and understood by all.

It is easy to see that Av, as just defined, satisfies the first four of the axioms. The
fifth axiom is added as a continuity condition and allows probability to satisfy the
axiom of countable additivity.

Consider a large population (size N ) from which we have selected a “random”
sample of size n << N . We find that x individuals in the sample have incomes
satisfying condition C. Of interest is the proportion D/N in the population which
have condition C.

Belief, logical, and frequentists agree (well mostly agree) that a reasonable
probability model for the observed data is the binomial, i.e.,

P(x) =

(
n

x

)
θx(1− θ)n−x

for x = 0, 1, 2, . . . , n (provided we assume n < D).
While agreeing on the basic model advocates of the different interpretations of

probability differ on the manner in which x provides information on θ:

1. The frequentist or classical statistician assumes that θ is fixed and uses properties
of those values of x not observed to make inferences. These are the usual P-value
and confidence interval statements.

2. The belief and the logical approaches to interpretation of probabilities are willing
to assume knowledge of θ in the form of a probability distribution prior and then
calculate the posterior distribution of θ and base inferences on this.

Why is it such a “big deal” that inferences are interpreted differently? Because
each approach can show the other is inadequate, i.e., the frequentists stridently
demand to know how a prior can be justified while the Bayesian can demonstrate
incoherence of some frequentist statements not to mention that the frequentist is
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silent with respect to single case situations. That being said, the frequentist some-
times use, Bayesian ideas to develop procedures and evaluates using frequentist
methods and the Bayesian checks procedures to see their frequentist properties.

21.6 Final Comments

• The philosophy of probability is concerned with how the definition can be
related to real events (i.e., interpretation of probabilities) and how the properties
indicated in the definition can be justified (derivation of probability axioms).
These are necessarily related.

• The philosophy of statistics is concerned with how one should use a probability
model for a given observed data to make inferences about the model (usually the
model is specified by a few unknown parameters and inference is intended to
answer questions about these parameters).

In most statistical settings we need to know only the first two interpretations of
probability. Of these the frequency interpretation is the best known but least capable
of justifying while the subjective interpretation is easily justified but hard to apply
in many scientific contexts.

Two quotes illustrating differing points of view toward applications of
probability:

Probability only works if we do not attempt to define what probability means in the real
world.

Williams [54]

The probability of an event is the relative frequency with which I expect the event to occur.

Anonymous

21.7 Introduction to Stochastic Processes

21.7.1 Introduction

Definition 21.7.1. A stochastic process is an indexed collection of random vari-
ables or vectors usually written as

{Xt; t ∈ T }

Clearly a random variable is a stochastic process as is a random vector or a
sequence of random variables. In short the study of random variables is a special
case of the study of stochastic processes.
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What makes stochastic processes useful is

• Modeling of dependent random variables
• Richness of potential applications
• Richness of the theory
• Potential for inference research
• Applications to Bayesian inference

21.7.2 Types of Stochastic Processes

Usually we think of the index set T as time so that we are interested in modelling
random phenomena that evolve over time. This leads to the first major classification
of the types of stochastic processes: that based on the nature of the the index set and
the nature of the sample space called the state space.

This later notion reflects the type of thinking about phenomena occurring over
time: the state of the process at time t.

Index set State space
(Time) Discrete Continuous
Discrete
Continuous

• n Bernoulli trials or an infinite sequence of Bernoulli trials is a discrete time,
discrete state stochastic process.

• A sequence of continuous random variables is a discrete time, continuous state
stochastic process.

• The Poisson process is a continuous time, discrete state stochastic process.
• The Weiner process is a continuous time, continuous state stochastic process.

By definition a stochastic process is an indexed collection of random variables.
Since a random variable is a function defined on a probability space a stochastic
process may be viewed as a function of two variables, the state space and the time
index. If time is fixed at t the value of the stochastic process is Xt a random variable.
If the value of the state space is fixed at ω ∈ Ω then the value of the stochastic
process is

{xt(ω) : ω ∈ Ω}

which is called the sample path or realization of the stochastic process. (Recall the
distinction between a random variable and its observed value).

A second way of classifying stochastic processes is by their evolution over time,
i.e., how properties of the joint distribution of a subset of the random variables
change over time.
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If we consider a sequence of independent identically distributed random variables
with 0 expected value, i.e.,

X1, X2, . . . , Xn, . . . or {Xt : t = 1, 2, . . .}

where

E(Xt) = 0, t ∈ T

then we know that

• The distribution of Xn+1 is independent of the preceding random variables
X1, X2, . . . , Xn

• The distribution of Xn does not depend on n
• If Sn+1 = X1 +X2 + · · ·+Xn+1 then

E(Sn+1|X1, X2, . . . , Xn) = Sn

These three properties lead to definitions of three major classes of stochastic
processes.

• Markov processes (the distribution at time t + Δ depends only on the present,
Xt, not on the history of the process)

• Stationary processes (certain properties of the distribution of the process remain
constant over time)

• Martingales (the expected value of the process at time t depends only on the
state of the process at the immediately preceding time point).

Each of these classes of processes has a well-developed theory and a broad range
of “applications.”

21.7.3 Markov Processes

To set some notation define the history, Ht−, of the stochastic process as

Ht− = {X1, X2, . . . , Xt−}

Thus for example

E[Xt|Ht−]
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is the expected value of Xt given the history of the process up to the present time
and

fXt,Xt+s(xt, xt+s|Ht−)

is the joint density of Xt and Xt+s (s > 0) given the history of the process up to t.
Roughly speaking a Markov process is a stochastic process in which the present

state determines the future evolution of the process. More formally a sequence
X1, X2, . . . is a (discrete time) Markov process if

P (Xn+1 ≤ x|Hn) = P (Xn+1 ≤ x|X1, X2, . . . , Xn)

= P (Xn+1 ≤ x|Xn)

for all x.
If, in addition, this probability does not depend on n the Markov process

is said to be (time) homogeneous. Much of the development of the theory of
Markov processes hinges on a careful use of the law of total probability and the
multiplication rule.

Suppose that the random variables have densities (discrete or continuous). Then
the Markov condition is

fXn+1|Hn
(x) = fXn+1|Xn

(x)

Thus if the process is Markov and homogeneous we have that the joint density of
X1, X2, . . . , Xn+1 is given by

fX1(x1)fX2|X1
(x2|x1) · · · fXn+1|Xn

(xn+1|xn)

using the multiplication rule.
Suppose now that 1 ≤ n1 < n and n1 < n2 < n . Then the law of total

probability says that

fXn+1|Xn1
(x|y)

is given by

∫

Z

fXn+1|Xn2
(x|xn2 , z)fXn2 |Xn1

(z|xn1 = y)dm(z)

which is called the Chapman–Kolmogorov equation. It is a direct consequence of
the law of total probability.
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21.7.4 Markov Chains

When the state space is discrete a Markov process is said to be a Markov chain.

Definition 21.7.2. A Markov chain is a discrete state, discrete time stochastic
process which satisfies

P (Xn+1 = x|Hn) = P (Xn = x|Xi = xi; i = 0, . . . , n)

= P (Xn+1 = x|Xn = xn)

For all n ≥ 1, all values of x0, x1, . . . , xn and x.

The evolution of a Markov chain is thus described by the collection of transition
probabilities

P (Xn+1 = x|Xn = xn)

Since the sample space is countable with no loss of generality we assume that the
state space is

Ω = {1, 2, . . .}

i.e., the integers. As useful terminology we say that the chain is in state i if Xn = i
and has visited state j if Xt = j for some t = 1, 2, . . . , n− 1.

In general the transition probabilities depend on n.

Definition 21.7.3. A Markov chain is (time) homogeneous if

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i) = pij

The matrix whose elements are the pij is called the matrix of transition proba-
bilities. It is easy to see that a matrix of transition probabilities has the following
properties:

pij ≥ 0 and
∑

j

pij = 1 for each i

Consider the case where the chain has two states, 0 and 1. The transition matrix
is thus

P =

[
1− p01 p01
p10 1− p10

]
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If we assume that the initial probabilities are p0 and p1 then the probability of
state 0 at time 1 is given by

p1(0) = p0p00 + p1p10 = p0(1− p01) + p1p10

Similarly the probability of being in state 1 at time 1 is

p1(1) = p0p01 + p1p11 = p0p01 + p1(1− p10)

In general the probability of state 0 at time n+ 1 given state 0 at time n is given
by

pn+1(0) = pn(0)p00 + pn(1)p10 = pn(0)(1− p01) + pn(1)p10

and the probability of state 1 at time n+ 1 given state 0 at time n

pn+1(1) = pn(0)p01 + pn(1)p11 = pn(0)p01 + pn(1)(1− p10)

again using the law of total probability.
In matrix notation we thus have

[pn+1(0) , pn+1(1)] = [pn(0) , pn(1)]

[
1− p01 p01
p10 1− p10

]

and it follows that

[pn+1(0) , pn+1(1)] = [p0 , p1]

[
1− p01 p01
p10 1− p10

]n

Consider

det

([
1− p01 − λ p01

p10 1− p10 − λ

])
= 0

which defines the eigenvalues of P. The above equation is equivalent to

[(1− p01)− λ][(1 − p01)− λ]− p01p10 = 0

which reduces to

λ2 − (2 − p01 − p10)λ+ 1− p01 − p10 = 0
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so that

λ =
1

2

[
2− p01 − p10 ±

√
(2− p01 − p10)2 − 4(1− p01 − p10

]

=
1

2
[(2− p01 − p10)± (p01 + p10)]

Hence the two characteristic roots are given by

λ = 1 and λ = 1− p01 − p10

The equation

[
1− p01 p01
p10 1− p10

] [
x1

x2

]
=

[
x1

x2

]

reduces to

(1− p01)x1 + p01x2 = x1p10x1 + (1− p10)x2 = x2

so that

p01(x2 − x1) = 0 p10(x2 − x1) = 0, i.e., x1 = x2

If λ = 1− p01 − p10 the equation

[
1− p01 p01
p10 1− p10

] [
x1

x2

]
= λ

[
x1

x2

]

reduces to

p01x2 = −p10x1

i.e., we can let

x1 = p01 and x2 = −p10

Then we have that

[
1− p01 p01
p10 1− p10

] [
1 p01
1 −p10

]
=

[
1 λp01
1 −λp10

]
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i.e.,

PQ =

[
1 λp01
1 −λp10

]

where

Q =

[
1 p01
1 −p10

]

Note that

Q−1 = − 1

p01 + p10

[
−p10 −p01
−1 1

]

and hence

Q−1PQ

is equal to

− 1

p01 + p10

[
−p10 −p01
−1 1

] [
1 λp01
1 −λp10

]

or

Q−1PQ = D

where

D =

[
1 0

0 λ

]

and λ = 1− p01 − p10.
It follows that

p = QDQ−1 and hence Pn = QDnQ−1

Thus we have that

[pn+1(0) , pn+1(1)] = [p0 , p1]P
n

= [p0 , p1]QDnQ−1
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Matrix multiplication shows that

[pn+1(0) , pn+1(1)] =

[
p01

p01 + p10
,

p10
p01 + p10

]
+

λn

p01 + p10
[a , −a]

where

a = p0p01 − p1p10 = p0(p01 + p10)− p10

If p01 + p10 < 1 we have that λ < 1 and hence

[pn+1(0) , pn+1(1)] −→
[

p01
p01 + p10

,
p10

p01 + p10

]

which is called the stationary distribution of the chain.

Definition 21.7.4. A state i is said to be persistent or recurrent if the probability
that the process returns to i is 1; i.e.,

P (Xn = i for some n ≥ 1 | X0 = i) = 1

Otherwise, the state is said to be transient:

• A state i in a Markov chain can communicate with state j written i → j if
pij(n) > 0 for some n; i.e., it is possible to eventually get to state j having
started from state i.

• Two states intercommunicate if i communicates with j and conversely. In this
case we write i ↔ j.

• It can be shown that the state space of a Markov chain can be written as

S = T ∪ C1 ∪C2 ∪ . . .

where T is the collection of transient states and the sets of states C1, C2, . . .
consist of distinct sets of states which intercommunicate (such a set of states is
called an irreducible set of states).

• If all states in the chain are irreducible the chain is said to be irreducible.

The structure of a Markov chain can be simple or complicated. For example, the
chain with transition matrix

P =

⎡

⎣
p00 p01 p02
p10 p11 p12
p20 p21 p22

⎤

⎦

can exhibit dramatically different behavior depending on the pij ’s.
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If p02 = 0, p12 = 0, p20 = 0, p21 with all other entries positive, i.e.,

P =

⎡

⎣
p00 p01 0

p10 p11 0

0 0 1

⎤

⎦

It is clear that if the process starts in state 0 or 1 it stays in those two states while if
it starts in state 2 it stays there. State 2 is called an absorbing state.

If p02 = 10−6, p12 = 10−6, p20 = 10−6, p21 = 10−6, i.e., positive, i.e.,

P =

⎡

⎣
p00 p01 − 10−6 10−6

p10 p11 0

10−6 10−6 1− 2× 10−6

⎤

⎦

then the process reaches every state infinitely often, but the times between visits
from 2 to 0 or 1 and conversely are very long.

If

P =

⎡

⎢⎢
⎢
⎣

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

. . .
...

⎤

⎥⎥
⎥
⎦

then no matter where the process starts it never returns to that state.
A major result in Markov chain theory is that if a chain is irreducible with all

states persistent with finite mean recurrence times then there is a unique stationary
distribution π given by the solution to

π�P = π�

Moreover the mean recurrence time of state i is π−1
i .

21.8 Convergence of Sequences of Random Variables

21.8.1 Introduction

In this section we consider two types of convergence of a sequence of random
variables: convergence in probability and convergence in distribution (often called
convergence in law or weak convergence). These two types of convergence suffice
for most statistical applications.
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Definition 21.8.1. Let X1, X2, . . . , Xn and X be random variables

(i) Xn converges to X in probability written Xn
p−→ X if

P(|Xn −X | > ε) → 0 as n → ∞ for every ε > 0

(ii) Xn converges to X in distribution written Xn
d−→ X if

P(Xn ≤ x) → P(X ≤ x) as n → ∞ for all continuity points x of F

i.e.,

lim
n→∞ Fn(x) = F (x) if F is continuous at x

where Fn is the distribution function of Xn and F is the distribution function
of X .

21.8.2 Basic Techniques

There are two basic limit theorems used to show convergence in probability and
convergence in distribution. Both relate to the behavior of the sample average

Xn =
Sn

n
where Sn = X1 +X2 + · · ·+Xn

Theorem 21.8.1 (Weak law of large numbers). If X1, X2, . . . , Xn are uncorre-
lated with mean μ and finite variance σ2 then

Xn =
Sn

n

p−→ μ

Theorem 21.8.2 (Central limit theorem). IfX1, X2, . . . , Xn are independent and
identically distributed with mean μ and variance σ2 then

Sn − E(Sn)√
var (Sn)

=

√
n
(
Xn − μ

)

σ

d−→ N (0, 1)

21.8.3 Convergence in Probability

Definition 21.8.2. Xn converges in probability to a constant c, written Xn
p−→ c

if for every ε > 0

lim
n→∞P(|Xn − c| < ε) = lim

n→∞P({ω : | Xn(ω)− c |< ε} = 1
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More precisely, Xn converges to c in probability if for every ε > 0 and δ > 0 there
exists a positive integer N(ε, δ) such that n > N(ε, δ) implies

P({ω : | Xn(ω)− c |< ε}) ≥ 1− δ

Definition 21.8.3. Xn converges to X in probability, written Xn
p−→ X , if

| Xn −X | p−→ 0

Theorem 21.8.3. If Xn
p−→ c and g is continuous at c then

g(Xn)
p−→ g(c)

Theorem 21.8.4. If g is a continuous function and Xn
p−→ X then

g(Xn)
p−→ g(X)

21.8.3.1 op, Op Definitions and Results

For convergence in probability of sequences of random variables there are useful
analogues to o and O for sequences of numbers.

Definition 21.8.4. Xn = op(bn) if for all δ > 0, ε > 0 there exists an integer
N(δ, ε) such that n > N(δ, ε) implies

P(| Xn |< ε |bn|) ≥ 1− δ

Definition 21.8.5. Xn = Op(bn) if for all δ > 0, there exists an integer N(δ) and
a constant K(δ) such that n > N(δ) implies

P(| Xn |< K(δ) |bn|) ≥ 1− δ

21.8.3.2 Special Cases

1. Xn = op(1) means convergence in probability to 0.
2. Xn = Op(1) means bounded in probability.

Result 21.8.1. 1. Xn = op(an), Yn = op(bn) implies XnYn = op(anbn).
2. Xn = Op(an), Yn = Op(bn) implies XnYn = Op(anbn).
3. Xn = op(an), Yn = Op(bn) implies XnYn = op(anbn).
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Result 21.8.2. If r is a real-valued function defined on D such that r(0) = 0 and
Tn (defined on D) converges in probability to 0, then for every m > 0:

1. If r(h) = o(|h|m) as h → 0, then r(Tn) = op(|h|m).
2. If r(h) = O(|h|m) as h → 0, then r(Tn) = Op(|h|m).

21.8.4 Convergence in Distribution

Definition 21.8.6. X1, X2, . . . converges in distribution to X , written

Xn
d−→ X

if for every continuity point of F , the distribution function of X ,

lim
n→∞Fn(x) = F (x)

where Fn is the distribution function of Xn.

Result 21.8.3. If Xn
d−→ X then Xn = Op(1).

Result 21.8.4. If Z denotes the standard normal distribution with expected value 0
and variance 1 and

Xn − μn

σn

d−→ Z for some μn , σn

then

Xn − μn

σn
= Op(1) and hence Xn = μn +Op(σn)

21.8.5 Extension to Vectors

By defining

||a|| =

√√√
√

k∑

i=1

a2i

for any vector a with coordinates a1, a2, . . . , an the sequence of random vectors Xn

converges in probability to the random vector X written Xn
p−→ X if

lim
n→∞P (||Xn − X|| > ε) = 1
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All of the results on convergence in probability are true for the vector-valued case
since this type of convergence is obviously equivalent to convergence of each of the
coordinates. The definitions of op and Op are the same with the understanding that
||an|| replaces |an|.

For convergence in distribution in the vector case the situation is a little more
complicated because of the difficulty in dealing with distribution functions in k
dimensions. The Cramer-Wold device is used to deal with this situation.

Theorem 21.8.5 (Cramer-wold device). Xn
d−→ X if and only if

k∑

i=1

tiXn(i)
d−→

k∑

i=1

tiX(i) for all t ∈ Rk

where ti is the ith coordinate of t, Xn(i) is the ith coordinate of Xn and X(i) is
the ith coordinate of X.

The vector central limit theorem is

Theorem 21.8.6. Let X1,X2, . . . ,Xn be independent and identically distributed
with mean vector μ and variance covariance matrix Σ then

√
n(Xn − μ)

d−→ MVN (0,Σ)

21.8.6 Results on Convergence in Probability
and in Distribution

Result 21.8.5. If |Xn − Yn|
p−→ 0 and Yn

d−→ Y then Xn
d−→ Y .

This result may be stated as: If Yn
d−→ Y and Xn − Yn = op(1) then Xn

d−→ Y .

Theorem 21.8.7. Convergence in probability implies convergence in distribution,
i.e.,

if Xn
p−→ X then Xn

d−→ X

Result 21.8.6. If Xn
d−→ X and Yn

p−→ 0 then

XnYn
p−→ 0

This result may be stated as: If Xn
d−→ X and Yn = op(1) then YnXn = op(1).
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Theorem 21.8.8 (Slutsky’s theorem).

(i) If Xn
d−→ X and Sn

p−→ c then

Sn +Xn
d−→ c+X

(ii) If Xn
d−→ X and Sn

p−→ c then

SnXn
d−→ cX

(iii) If Xn
d−→ X and Sn

p−→ c then

Xn/Sn
d−→ X/c

21.8.7 The Delta Method

Result 21.8.7 (Univariate delta method). If

√
n(Yn − μ)

d−→ N(0, σ2)

and g : R �→ R is differentiable at x = μ with derivative g′(μ) then

√
n(g(Yn)− g(μ))

d−→ N(0, [g′(μ)]2σ2)

Result 21.8.8 (Multivariate delta method). If

√
n(Yn − μ)

d−→ MVN(0,Σ)

where Yn and μ are k dimensional and g : Rk �→ Rs has components

g1(x), g2(x), . . . , gs(x)

such that each gi has continuous partial derivatives at x = μ then

√
n(g(Yn)− g(μ))

d−→ MVN (0,V)

where

V = (∇g(μ))Σ(∇g(μ))T
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and

(∇g(μ))

is the s by k matrix with i-j element equal to the partial derivative of gi(x) with
respect to xj evaluated at x = μ.

The most important special case occurs when s = 1. Then

∇g(μ) =

[
∂g(x)

∂x1
,
∂g(x)

∂x2
, · · · , ∂g(x)

∂xk

]

x=μ

21.9 Sets

21.9.1 Definitions

Definition 21.9.1. A set is a collection of points or elements:

1. The empty set ∅ is the set containing no points.
2. All sets under consideration are assumed to consist of points of a fixed nonempty

set Ω (called a space).
3. Points of Ω are denoted by ω or x.
4. Capital letters such as E1, E2, . . . denote sets and {ω} denotes the set consisting

of the single point ω.
5. If ω is a point in the set E, we write ω ∈ E while if ω is not a point in the set E

we write ω 
∈ E.
6. To describe a set E we write

E = {ω : S(ω)}

i.e., E is the set of all points such that the statement S(ω) is true. Alternatively we
shall write {. . . . . .} where all points in E are written down inside the brackets.

Definition 21.9.2. A set of sets is called a class. Classes are denoted by script
letters, e.g., W . The set of all subsets of Ω is called the power set of Ω and is
denoted by 2Ω.

Definition 21.9.3 (Set inclusion). A set E is said to be contained in a set F if
ω ∈ E implies ω ∈ F . This relation is written E ⊂ F .

Note that ∅ ⊂ E ⊂ Ω for every set E and that the relation of set inclusion is reflexive
and transitive, i.e.,

E ⊂ E ; E ⊂ F, F ⊂ G ⇒ E ⊂ G
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Definition 21.9.4 (Set equality). Sets E and F are said to be equal if E ⊂ F and
F ⊂ E.

Note that set equality is reflexive, symmetric, and transitive, i.e.,

E = E, E = F ⇒ F = E and E = F, F = G ⇒ E = G

Definition 21.9.5 (Difference of two sets). The difference of two sets E−F is the
set defined as

E − F = {ω : ω ∈ E and ω 
∈ F}

Definition 21.9.6 (Complement). The complement of E is denoted by Ec and is
equal to Ω− E.

Definition 21.9.7 (Intersection of two sets). The intersection of two sets E and F
is defined as

E ∩ F = {ω : ω ∈ E and ω ∈ F}

Definition 21.9.8 (Mutually exclusive). If E ∩ F = ∅, E and F are said to be
disjoint or mutually exclusive.

Definition 21.9.9 (Union of two sets). The union of two sets E and F is defined as

E ∪ F = {ω : ω ∈ E or ω ∈ F}

Definition 21.9.10. More generally if T is any set then

∪t∈TEt = {ω : ω ∈ Et for some t ∈ T }

∩t∈TEt = {ω : ω ∈ Et for all t ∈ T }

21.9.2 Properties of Set Operations

1. (E ∪ F ) ∪G = E ∪ (F ∪G) and (E ∩ F ) ∩G = E ∩ (F ∩G)
2. E ∪ F = F ∪E and E ∩ F = F ∩ E
3. (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G) and E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G)
4. E ∪ Ec = Ω and E ∩ Ec = ∅
5. (E ∪ F )c = Ec ∩ F c

6. E − F = E ∩ F c

7. (Ec)c = E
8. Ωc = ∅ and ∅c = Ω
9. E ⊂ F ⇒ F c ⊂ Ec
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10. (E1 × E2) ∩ (E3 × E4) = (E1 ∩E3)× (E2 ∩ E4)
11. (E × F )c = (Ec × F c) ∪ (E × F c) ∪ (Ec × F )
12. (∪t∈TEt)

c
= ∩t∈TEt

13. (∩t∈TEt)
c
= ∪t∈TEt

21.9.3 Indicator Functions

Definition 21.9.11. If A is a set, its indicator function is

1A(ω) =

{
1 ω ∈ A

0 otherwise

21.9.3.1 Properties of Indicator Functions

(i) 1AC = 1− 1A

(ii) 1A∩B = 1A1B

(iii) 1A∪B = 1A + 1B − 1A1B

21.9.4 Counting and Combinatorics

Definition 21.9.12 (n-tuple). If E1, E2, . . . , En are sets, an n-tuple is an element
of the form

(a1, a2, . . . , an) where a1 ∈ E1, a2 ∈ E2, . . . , an ∈ En

ai is called the ith coordinate of the n-tuple.

Two n-tuples are said to be equal if each coordinate of one is equal to the
corresponding coordinate of the other.

Note. An ordered pair with first coordinate a and second coordinate b is an element
of the form (a, b). Also note that (a, b) = (c, d) if and only if a = c and b = d.
n-tuples are natural generalizations of this concept. A formal (set) definition of an
ordered pair is

(a, b) = {{a}, {a, b}}.

Definition 21.9.13 (Cartesian product). If E1, E2, . . . , En are sets then their
Cartesian product is defined as

E1 × E2 × · · · × En = {(ω1, ω2, . . . , ωn) : ω1 ∈ E1, ω2 ∈ E2, . . . , ωn ∈ En}
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Definition 21.9.14. A set will be said to be:

1. Finite if its elements can be put into a one to one correspondence with the integers
1, 2, . . . , n for some finite integer n

2. Denumerable if its elements can be put into a one to one correspondence with
the natural numbers N where N = {1, 2, 3, . . .}

3. Non-denumerable otherwise.

Result 21.9.1 (Elementary counting rules).

1. Given two sets A and B having m and n elements, respectively, there are m× n
ordered pairs of the form (ai, bj) where ai ∈ A and bj ∈ B

2. Given r sets A1, A2, . . . , Ar containing m1,m2, . . . ,mr elements, respectively,
there are m1 ×m2 × · · · ×mr r-tuples of the form

(a1, a2, . . . , ar); ai ∈ Ai for i = 1, 2, . . . , r

3. A permutation of a set containing n elements is an arrangement of the elements
of the set to form an n-tuple. There are n! permutations of a set containing n
elements where n! is defined as n(n− 1) · · · 3 · 2 · 1. By convention 0! = 1. This
convention is related to the Gamma function.

4. Given a set containing n elements the number of subsets of size x is given by

(
n

x

)
=

n!

x!(n − x)!
=

(n)x
x!

where

(n)x = (n− x+ 1) · · ·n =
x−1∏

i=0

(n− i)

This expression is read as n choose x and is called the number of combinations
of n items taken x at a time.

5. Given a set, P , containing N objects, a sample of size n < N is an n tuple each
element of which is an object in the set. If duplicates are allowed the sampling
is said to be with replacement. If not allowed the sampling is said to be without
replacement:

(i) Nn samples of size n with replacement.
(ii) N × (N − 1) × · · · × (N − (n − 1)) =

∏n−1
i=0 (N − i) ≡ (N)n ≡ Nn

samples of size n without replacement. The symbol Nn is called the falling
factorial or Pochhammer symbol.
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21.10 σ-Algebras and Borel Sets

21.10.1 σ-Algebras

Definition 21.10.1. Let Ω be set. A class of subsets of Ω, W , is said to be a
σ-algebra if the following conditions are satisfied:

(i) W is nonempty.
(ii) E ∈ W implies EC ∈ W .

(iii) If E1, E2, . . . is a denumerable collection of sets in W , then ∪∞
i=1Ei ∈ W .

21.10.1.1 Properties and Examples of σ-Algebras

1. The set of all subsets of Ω is a σ-algebra called the power set of Ω and denoted
by 2Ω.

2. The trivial σ-algebra is {∅,Ω}.
3. The intersection of any collection of σ-algebras is a σ-algebra.
4. If C is a collection of subsets of Ω the intersection of all σ-algebras containing C

is called the σ-algebra generated by C.

21.10.2 Borel σ-Algebras

Definition 21.10.2. The Borel σ-algebra is the σ-field over R, the set of real
numbers, generated by the class of sets of the form

(a, b] ; a, b ∈ R ; a < b

1. We denote the Borel σ-algebra by B.
2. The elements of B are called Borel sets.
3. The Borel σ-algebra in Rn, denoted by Bn, is the σ-algebra generated by

rectangles of the form

(a1, b1]× (a2, b2]× · · · × (an, bn]

where ai < bi for i = 1, 2, . . . , n.

21.10.3 Properties and Examples of Borel Sets

1. Every open interval (a, b), a, b ∈ R is a Borel set.
2. Every one point set {a} is in B.
3. [a, b] = (a, b] ∪ {a} ∈ B.
4. (−∞, a] ∈ B.
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21.10.4 Measurable Functions

1. A constant function is measurable.
2. The indicator function, 1E , of a set in W is measurable where

1E(ω) =

{
1 ω ∈ E

0 ω /∈ E

3. If f and g are measurable functions and c is a constant then the functions cf, f2,
f + g, fg and | f | are also measurable functions.

4. A function f is a measurable function if and only if

{ω : f(ω) ∈ (−∞, b] } ∈ W for b ∈ R

21.10.5 Borel Sets in n Dimensions

Definition 21.10.3. The Borel algebra, Bk on Rk, is the σ-algebra generated by the
class of sets of the form

C = (a1, b1]× (a2, b2]× · · ·× (ak, bk] such that ai < bi ai, bi ∈ R for i = 1, 2, . . . , k

21.11 Background: Limits, o, and O Notation

The study of limit theorems and asymptotic results of interest in probability and
statistics requires a reasonably careful attention to convergence of sequences of real
numbers, sequences of events, and limits of functions.

21.11.1 Notation

1. {an : n ∈ N} where N = {1, 2, . . .} is the set of natural numbers will denote a
sequence of real numbers. For brevity we write an to denote such a sequence.

2. | an | will denote the absolute value of an.
3. A sequence is an element of the set RN of all functions from the set of integers

to the set of real numbers.
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21.11.2 Limits of Sequences

Definition 21.11.1. Let an for n = 1, 2, . . . denote a sequence of real numbers. The
sequence is said to have a limit a as n → ∞ if for every ε > 0 there is an integer,
N(ε), such that

n ≥ N(ε) =⇒ |an − a| < ε

Definition 21.11.2. The sequence an is said to be bounded if there exists a K > 0
and an integer, N(K), such that

n ≥ N(K) =⇒ |an| ≤ K

Definition 21.11.3. The sequence an is said to be monotone non-decreasing
(nonincreasing) if an ≤ an+1 ; n = 1, 2, . . . (an+1 ≤ an ; n = 1, 2, . . .).

A fundamental property of the set of real numbers is that a bounded monotone
sequence has a limit.

21.11.3 liminf and limsup

Definition 21.11.4 (infimum). The infimum or greatest lower bound �, of a set
S of real numbers, is the number � satisfying

(i) � ≤ x for all x ∈ S.
(ii) for all x > � there is a x1 ∈ S less than x.

Definition 21.11.5 (supremum). The supremum υ or least upper bound of a set
of real numbers S is the number υ satisfying

(i) υ ≥ x for all x ∈ S and
(ii) for all x < υ there is a x1 ∈ S greater than x.

Definition 21.11.6 (limsup). Let {an} be a sequence of real numbers which is
bounded above. Then

A = lim sup an = inf
m

{
sup
n≥m

an

}
= lim

m→∞Bm

since Bm = supn≥m an is a monotone non-increasing sequence. If an is not
bounded above then we define lim sup an = +∞.
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Definition 21.11.7 (liminf). Let {an} be a sequence of real numbers which is
bounded below. Then

a = lim inf an = sup
m

{
inf
n≥m

an

}
= lim

m→∞ bm

since bm = infn≥m an is a monotone nondecreasing sequence. If an is not bounded
below we define lim inf an = −∞.

21.11.3.1 Results on liminf and limsup

Result 21.11.1. 1. lim inf an ≤ lim sup an
2. lim inf an = lim sup an ⇐⇒ lim an exists and in this case the three are equal.
3. lim inf an + lim inf bn ≤ lim inf (an + bn)
4. lim sup (an + bn) ≤ lim sup an + lim sup bn
5. If x > lim sup an then an < x for all but a finite number of values of n i.e.,

an < x eventually

6. If x < lim sup an then an > x for infinitely many values of n, i.e.,

an > x infinitely often (i.o.)

7. If x < lim inf an then an > x for all but a finite number of values of n, i.e.,

an > x, eventually,

8. If x > lim inf an then an < x for infinitely many values of n, i.e.,

an > x infinitely often(i.o.)

21.11.4 Sequences of Events

Definition 21.11.8. If {En} is a sequence of events we define

lim supEn = ∩∞
m=1 ∪∞

n=m En = {ω : ω ∈ En for infinitely many n}

i.e, lim supEn is the set {En, i.o.}.
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Definition 21.11.9. If {En} is a sequence of events we define

lim inf En = ∪∞
m=1 ∩∞

n=m En = {ω : ω ∈ En for all but a finite number of n}

i.e., lim inf En is the set {En, eventually}.

Definition 21.11.10. If En is a sequence of events and

lim inf En = lim supEn

the common limit is called the limit of En written as limEn

Result 21.11.2. Let IE(ω) be the indicator function of E. Then for all ω

Ilim supEn(ω) = lim sup[IEn(ω)]

Ilim inf En(ω) = lim inf[IEn(ω)]

21.11.5 o,O Definitions and Results

Definition 21.11.11. an = o(bn) if for every ε > 0 there exists an integer N(ε)
such that

n ≥ N(ε) =⇒ | an |< ε | bn |

In particular an = o(1) means that the limit of an is equal to 0.

Definition 21.11.12. an = O(bn) if there exists a number K > 0 and an integer
N(K) such that

n > N(K) =⇒ | an |< K | bn |

In particular an = O(1) means that an is ultimately bounded.

21.11.6 Results and Special Cases

Result 21.11.3. 1. an = o(bn) if and only if an = |bn|o(1).
2. an = O(bn) if and only if an = |bn|O(1).
3. an = o(bn) implies can = o(bn).
4. an = O(bn) implies can = O(bn).
5. bn = O(bn).
6. O(bn

1)O(bn
2) = O(bn

1bn
2).
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7. o(bn
1)o(bn

2) = o(bn
1bn

2).
8. o(bn

1) + o(bn
2) = o(max(bn

1, bn
2)).

9. O(bn
1) +O(bn

2) = O(max(bn
1, bn

2)).
10. In general the order of magnitude of a sum of o and O terms is equal to the

largest order of magnitude of the terms in the sum provided that the number of
terms does not depend on n.

21.11.7 Extension to Functions

Definition 21.11.13. Let f : D �→ R and let g : D �→ R where D ⊂ R. If � ∈ D
then

(i) f(x) = o(g(x)) as x → � means that f(xn) = o(g(xn)) for every sequence xn

such that xn → � as n → ∞.
(ii) f(x) = O(g(x)) as x → � means that f(xn) = O(g(xn)) for every sequence

xn such that xn → � as n → ∞.

Example. 1. If f : R �→ R and f is continuous at x0 then

f(x) = f(x0) + o(1)

2. If f : R �→ R and f is differentiable at x0 with derivative f ′(x0) then

f(x) = f(x0) + f ′(x0)(x − x0) + o(| x− x0 |)

3. (Taylor’s Formula) If f : R �→ R and f is m times differentiable at x0 then

f(x) =

m∑

i=0

f (r)(x0)(x− x0)
r

r!
+ o(| x− x0 |m)

where f (r)(x0) denotes the rth derivative of f evaluated at x0.

21.11.8 Extension to Vectors

The notion of o and O extend easily to vectors.

1. {an : n ∈ N} where N = {1, 2, . . .} is the set of natural numbers will denote
a sequence of k-dimensional vectors each coordinate of which is a real number.
For brevity we will write an to denote such a sequence.
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2. ‖ an ‖= (a2n1 + a2n2 + · · · + a2nk)
1/2 will denote the norm or length of an. If

k=1 then ‖ an ‖=| an |, the absolute value of an.
3. bn will denote a sequence of real numbers.

Definition 21.11.14. an = o(bn) if for every ε > 0 there exists an integer N(ε)
such that

n > N(ε) =⇒ ‖ an ‖< ε | bn |

Definition 21.11.15. an = O(bn) if there exists a number K > 0 and an integer
N(K) such that

n > N(K) =⇒ ‖ an ‖> K | bn |

Result 21.11.4. 1. an = O(1) means that an is bounded.
2. an = o(1) means that an → 0 as n → ∞.
3. an = O(bn) if and only if an = bnO(1).
4. an = o(bn) if and only if an = bno(1).
5. an = O(bn) implies can = O(bn).
6. an = o(bn) implies can = o(bn).

21.11.9 Extension to Vector-Valued Functions

Definition 21.11.16. Let f : D �→ Rk and let g : D �→ (0,∞) where D ⊂ RN . If
� ∈ D, then

1. f(x) = O(g(x)) as x → � means that f(xn) = O(g(xn)) for every sequence
xn such that xn → � as n → ∞.

2. f(x) = o(g(x)) as x → � means that f(xn) = o(g(xn)) for every sequence xn

such that xn → � as n → ∞.

Definition 21.11.17. If f : RN �→ R, then f is said to be of class C(m+1) if all
(m+ 1)th order partial derivatives exist and are equal.

Result 21.11.5 (Taylor’s formula in multidimensions). Let f : RN �→ R and
let f be of class C(m+1). Then the rth term of Taylor’s formula (multidimensional
version) is given by

T (r) =
1

r!

N∑

i1=1

N∑

i2=1

· · ·
N∑

ir=1

[
∂rf(x)

∂xi1∂xi2 · · · ∂xir

]

x=x0

r∏

k=1

(xik − x0ik )
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and Taylor formula’s is

f(x) =

m∑

r=0

T (r) + o(‖ x− x0 ‖m)

Result 21.11.6. An important special case of the multidimensional Taylor formula
occurs when f : RN �→ R has continuous partial derivatives at x = x0. In this case

f(x) = f(x0) +

N∑

j=1

fj(x0)(xj − xj0) + o(‖ x− x0 ‖)

where fj(x0) is the jth partial derivative of f evaluated at x0 and xj is the jth
coordinate of x, i.e.,

fj(x0) =
∂f(x)

∂xj

∣
∣∣
∣
∣
x=x0
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