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Preface

This book was developed while I was teaching graduate courses on analysis, design and
optimization of structures, in the United States, Europe and Israel. Structural analysis is
a main part of any design problem, and the analysis often must be repeated many times
during the design process. Much work has been done on design-oriented analysis of
structures recently and many studies have been published. The purpose of the book is
to collect together selected topics of this literature and to present them in a unified
approach. It meets the need for a general text covering the basic concepts and methods
as well as recent developments in this area. This should prove useful to students,
researchers, consultants and practicing engineers involved in analysis and design of
structures. Previous books on structural analysis do not cover most of the material
presented in the book.

The book deals with the problem of multiple repeated analyses (reanalysis) of
structures that is common to numerous analysis and design tasks. Reanalysis is needed
in many areas such as structural optimization, analysis of damaged structures, nonlinear
analysis, probabilistic analysis, controlled structures, smart structures and adaptive
structures. It is related to a wide range of applications in such fields as Aerospace
Engineering, Civil Engineering, Mechanical Engineering and Naval Architecture.

In a typical structural design process, the analysis must be repeated numerous times
due to changes in the size of elements, the material properties, the geometry of the
structure (coordinates of joints), the topology (number and orientation of elements and
joints) and support conditions. The high computational cost involved in repeated
analyses is one of the main obstacles in the solution of structural optimization problems,
and only methods that do not involve many time consuming analyses are useful. In
structural damage analysis, it is necessary to analyze the structure for various changes.
It is difficult to determine a priori what damage scenarios should be checked, and
numerous analyses are required to evaluate various hypothetical scenarios. In nonlinear
analysis the set of updated linear equations must be solved repeatedly many times
during the solution process.

Design-oriented analysis is intended for efficient and accurate repeated analyses of
structures. The book introduces effective computational procedures for reanalysis. The
necessary background material on structural analysis needed in the rest of the book is
summarized in the first two chapters. However, the reader is expected to be familiar

xi



xii

with the basic concepts of matrix analysis of structures. Various analysis models are
considered in the book, including linear and nonlinear analysis, eigenproblems and
design sensitivity analysis. The text does not present a survey on reanalysis methods.
Rather, part 1 concentrates on various concepts and methods that form the basis of the
unified approach presented in part 2. To clarify the presentation, many illustrative
examples and numerical results are demonstrated. No specific system of units is used in
the examples, However, in some examples actual dimensions of the structure and
specified magnitude of forces have been used.

In part 1 (Chapters 1–6) the basic concepts of design-oriented analysis are introduced
and various reanalysis methods are developed. In part 2 (Chapters 7–12) the concepts
and the methods presented in part 1 are integrated into a unified approach for effective
reanalysis of structures. Recent developments and applications in this area are discussed
in this part of the book. Some sections of the book are necessary for continuity, while
others are needed only for those interested in greater depth in a particular topic. Many
sections are independent and can be omitted, or their order can be changed.

The approach presented in the book is suitable for a wide range of applications. It
combines several advantages in terms of generality, ease-of implementation, flexibility,
efficiency and accuracy. The approach is suitable for various types of changes in the
structure and different types of structures. The solution procedure uses the stiffness
analysis formulation and it can be integrated into available finite element programs.
Calculation of derivatives is not required, and the approach is most attractive in cases
where derivatives are not readily available or not easy to calculate. The accuracy of the
results, and the efficiency of the calculations can be controlled by the level of
simplification and the amount of information considered. Highly accurate results can be
achieved at the expense of more computational effort by considering high-order
approximations. On the other hand, very efficient solutions can be obtained by
simplified low-order approximations. In certain cases exact solutions can be achieved
with a small computational effort.

Chapter 1 presents introductory material on analysis and reanalysis of structures.
Various types of changes in the structure are discussed, including changes in the
structural model itself, and the scope of the text is described.

In Chapter 2 some background material on analysis of structures is introduced.
Linear elastic analysis, analysis of continuum structures, nonlinear analysis and
dynamic analysis are briefly described.

Chapter 3 deals with the statement of reanalysis problems. Formulations of linear,
nonlinear and eigenproblem reanalysis are presented and various direct as well as
approximate reanalysis methods are reviewed.

Direct methods, giving exact closed-form solutions, are presented in Chapter 4.
These methods are efficient in situations where a relatively small proportion of the
structure is changed (e.g., changes in cross sections of only a small number elements).

Chapter 5 presents the most simple and most efficient local approximations. These
include the common Taylor series, the binomial series, simplified first-order
approximations and improved series approximations.



In Chapter 6 we describe global approximations such as polynomial-fitting
techniques, the response surface approach, reduced basis methods and the conjugate
gradient method. These approximations are usually obtained by analyzing the structure
at a number of design points, and they are valid for large changes in the structure.

Chapter 7 presents the combined approximations approach. The basic concepts of
combining various methods into a unified solution approach are introduced. The
advantage is that the efficiency of local approximations and the improved accuracy of
global approximations are combined to obtain effective solution procedures. Some
typical cases, where exact or accurate solutions can be achieved, are developed.

Chapter 8 describes simplified solution procedures that can be derived from the
general approach. The various procedures include approximate and most efficient
techniques as well as direct methods that provide exact solutions. We can view some
conventional approximations and direct methods as particular cases of the general
approach presented.

In Chapter 9 we discuss reanalysis for topological and geometrical changes.
Developing reanalysis methods for such changes is most challenging, since the
structural model itself is changed. Both approximate and exact solutions are
demonstrated for various cases of deletion and addition of elements and joints, as well
as changes in the joint coordinates. Solution procedures are developed for the most
challenging problem where the number of degrees of freedom is changed.

In Chapter 10 we develop procedures for calculating the response derivatives with
respect to design variables for designs where results of exact analysis are not available.
Accurate derivatives can be obtained for such designs with a reduced computational
effort.

Nonlinear reanalysis is discussed in Chapter 11. The unified approach presented is
most suitable for solving efficiently the updated linear equations in such problems.

Vibration reanalysis by the unified approach is developed in Chapter 12. Solutions
are demonstrated for problems of eigenvector reanalysis, where we evaluate the mode
shapes, and eigenvalue reanalysis, where we calculate the eigenvalues.

Uri Kirsch
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Introduction1

1.1   ANALYSIS AND REANALYSIS

Structural analysis is a most exciting field of activity, but it is clearly only a support
activity in the larger field of structural design. Analysis is a main part of the
formulation and the solution of any design problem, and it often must be repeated many
times during the design process. The analysis process helps to identify improved
designs with respect to performance and cost.

Referring to behavior under working loads, the objective of the analysis of a given
structure is to determine the internal forces, stresses and displacements under
application of the given loading conditions. In order to evaluate the response of the
structure it is necessary to establish an analytical model, which represents the structural
behavior under application of the loadings. An acceptable model must describe the
physical behavior of the structure adequately, and yet be simple to analyze. That is, the
basic assumptions of the analysis will ensure that the model represents the problem
under consideration and that the idealizations and approximations used result in a
simplified solution. This latter property is essential particularly in the design of complex
or large systems.

Two categories of mathematical models are often considered:
Lumped-parameter (discrete-system) models.
Continuum-mechanics-based (continuous-system) models

The solution of discrete analysis models usually involves the following steps:
Idealization of the system into a form that can be solved. The actual structure is
idealized as an assemblage of elements that are interconnected at the joints.
Formulation of the mathematical model. The equilibrium requirements of each
element are first established in terms of unknown displacements, and the element
interconnection requirements are then used to establish the set of simultaneous
analysis equations for the unknown displacements.
Solution of the model. The response is calculated by solving the simultaneous
equations for the unknown displacements; the internal forces and stresses of each
element are calculated by using the element equilibrium requirements.

1.1.1   Structural Analysis

3



The overall effectiveness of an analysis depends to a large degree on the numerical
procedures used for the solution of the equilibrium equations [1]. The accuracy of the
analysis can, in general, be improved if a more refined model is used. In practice, there
is a tendency to employ more and more refined models to approximate the actual
structure. This means that the cost of an analysis and its practical feasibility depend to a
considerable degree on the algorithms available for the solution of the resulting
equations. Because of the requirement that large systems be solved, much research
effort has been invested in equation solution algorithms.

The time required for solving the equilibrium equations can be a high percentage of
the total solution time, particularly in nonlinear analysis or in dynamic analysis, when
the solution must be repeated many times. An analysis may not be possible if the
solution procedures are too costly or unstable.

Linear Elastic Analysis. In elastic analysis the forces must satisfy the conditions of
equilibrium, and produce deformations compatible with the continuity of the structure
and the support conditions. That is, any method must ensure that both conditions of
equilibrium and compatibility are satisfied. In linear analysis we assume that
displacements (translations or rotations) vary linearly with the applied forces. That is,
any increment in a displacement is proportional to the force causing it. This assumption
is based on the following two conditions:

The material of the structure is elastic and obeys Hooke's law.
All deformations are assumed to be small, so that the displacements do not
significantly affect the geometry of the structure and hence do not alter the forces
in the members. Thus, the changes in the geometry are small and can be neglected.

a.
b.

The majority of actual structures are designed to undergo only small and linear
deformations. In such cases the principle of superposition can be applied.

Linear elastic analysis involves the solution of a set of simultaneous linear equations.
The displacement (stiffness) method [2, 3], which is the most commonly used analysis
method, is considered throughout this text. The method is described in Section 2.1.

Continuum Structures. Elastic analysis of continuum structures, such as plates and
shells, is usually performed by the numerical finite elements method [1, 4]. This
method can be regarded as an extension of the displacement method to two- and three-
dimensional continuum structures. The actual continuum is replaced by an equivalent
idealized structure composed of discrete elements, referred to as finite elements,
connected together at a number of nodes. By assuming displacement fields or stress
patterns within an element, we can derive a stiffness matrix. A set of simultaneous
algebraic equations is formed by applying conditions of equilibrium at every node of
the idealized structure. The solution gives the nodal displacements, which in turn are
used to determine the stresses. The finite elements method is described in Section 2.2.

4 Chapter 1
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Nonlinear Analysis. Considering separately material nonlinear effects and geometric
nonlinear effects, we can categorize different nonlinear analysis problems. A nonlinear
relationship between the applied forces and the resulting displacements exists under
either of two conditions:

a.

b.

The stress-strain relation of the material of the structure is nonlinear (material non-
linearity). Material non-linearity is considered in plastic analysis.
The stress-strain relation is within the linear-elastic range, but the geometry of the
structure changes significantly during an application of the loads (geometrical non-
linearity).

Nonlinear analysis of structures is usually carried out in an iterative process. The study
of nonlinear behavior of structures includes plastic analysis and buckling of structures.
The basic problem in nonlinear analysis is the solution of a set of nonlinear equations.
Depending on the history of the loading, the stiffness of the structure may be softening
or stiffening, the equilibrium path may be stable or unstable, and the structure itself
may be at a stage of loading or unloading. All such phenomena are typified by the
occurrence of critical points such as the limit points and snap-back points in the load-
deflection curves.

The solution process of nonlinear analysis problems can be carried out by different
methods [5, 6], including an incremental (Euler) solution scheme, the iterative Newton-
Raphson method and combined incremental/iterative solutions (full or modified
Newton-Raphson or the initial stress method). A requirement for the solution method is
its ability to overcome the numerical problems associated with various types of
behavior. Nonlinear analysis is briefly described in Section 2.3.

Dynamic Analysis. The purpose of dynamic analysis is to determine internal forces,
stresses and displacements under application of dynamic (time varying) loads [7]. In
general, the structural response to any dynamic loading is expressed in terms of the
displacements of the structure. The eigenproblem is to find the free-vibration
frequencies and the mode shapes of the vibrating system. The solution of the
eigenproblem for large structures is often the most costly phase of a dynamic response
analysis, and calculation of the eigenvalues and eigenvectors requires much
computational effort. The discretized model of a complicated system may have
numerous degrees of freedom. Therefore, it is customary in dynamic analysis to reduce
the equations of motion to a much smaller number before the dynamic response is
calculated [8]. The reduction of degrees of freedom is most important because the
solution must be performed successively at many different times to generate the time
history of the response. Dynamic analysis is briefly described in Section 2.4.

1.1.2   Design Variables
A structural system can be described by a set of quantities, some of which are viewed as
variables during the design process. Those quantities defining a structural system that
are fixed during the design are called pre-assigned parameters. Those quantities that are
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not pre-assigned are called design variables. The pre-assigned parameters together with
the design variables completely describe a design. Quantities are designated as pre-
assigned parameters for a variety of reasons. It may be that the designer is not free to
choose certain parameters, or it may be known from experience that a particular value
of the parameter produces good results. From a physical point of view, the design
variables that are varied during the design process may represent [9]:

the mechanical or physical properties of the material;
the topology of the structure, i.e., the pattern of connection of members (number
and orientation of elements and joints);
the geometry of the structure (coordinates of joints);
the cross-sectional dimensions or the sizes of elements.

a.
b.

c.
d.

From a mathematical point of view, it is important to distinguish between continuous
and discrete design variables. In cases of discrete variables with a large number of
values uniformly distributed over a given interval, use of a continuous variable
representation is often satisfactory, followed by selection of the nearest available
discrete value. When a strictly discrete design variable is handled in this way, it is
categorized as pseudo-discrete. However, it should be recognized that situations arise
when it will be essential to employ discrete or integer variables; for example, the
number of elements in the structure is an integer.

Material selection presents a special problem with conventional materials, as they
have discrete properties, i.e., a choice is to be made from a discrete set of variables.
Application of high-performance composite materials in structural components has
encouraged further consideration of material properties as design variables. For
example, in fiber composites the volume fraction of fibers or the modulus of elasticity
in the longitudinal direction of carbon fibers could be considered as design variables.

Topological optimization is perhaps the most challenging class of problems in
structural optimization because there exists an infinite number of possible topologies,
which are difficult to classify and quantify. At the same time, topological optimization
is of considerable importance because it leads to significant material savings. The
topology of the structure can be optimized automatically in many cases when elements
are allowed to reach zero size. This permits elimination of some uneconomical elements
during the optimization process. In other cases, however, it may be necessary to
represent some design variables as integer variables and to declare the existence or
absence of a structural element. An example of an integer topological variable is a truss
member joining two nodes, which is limited to the values 1 (the member exists), or 0
(the member is absent). Other examples of integer topological variables include the
number of spans in a bridge, the number of columns supporting a roof system, or the
number of elements in a grillage system.

Geometrical variables may represent, for example, the coordinates of joints in a truss
or in a frame. Other examples for this class of variable include the location of supports
in a bridge, the length of spans in a continuous beam, and the height of a shell structure.
In general, the geometry of the structure is represented by continuous variables.
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Cross-sectional dimensions are the simplest design variables. The cross-sectional
area of a truss member, the moment of inertia of a flexural member, or the thickness of
a plate are some examples of this class of design variable. In certain cases a single
design variable is adequate to describe the cross section, but a more detailed design with
several design variables for each cross section may be necessary. For example, if the
axial buckling of members is considered, the cross-sectional dimensions which define
the area and the moment of inertia can be taken as design variables. In practical design,
cross-sectional variables may be restricted to some discrete values, e.g. the areas of
commercial steel section shapes.

It should be noted that a change in the cross sections or in the geometry might affect
the topology. For example, the topology will be changed due to zero areas during sizing
modifications or the coalescence of joints during geometrical modifications. In addition,
the geometry might be affected by topological changes due to elimination of members
and joints.

Changes in the design often affect only the numerical values of the coefficients of the
analysis equations. However, in some cases of topological changes, members and joints
are deleted or added and the structural model is allowed to vary during the design
process. The following cases of topological changes are considered in this text [10]:

Deletion and addition of members, where the number of Degrees of Freedom
(DOF) is unchanged (Figure 1.1a). In this case the number of analysis equations is
also unchanged and only the numerical values of the coefficients of the equations
are modified.
Deletion and addition of members, and deletion of some joints, where the number
of DOF is decreased (Figure 1.1b). In this case it is necessary to change the
analysis model such that the deleted DOF are not included in the modified analysis
equations.
Deletion and addition of members, and addition of some joints, where the number
of DOF is increased (Figure 1.1c). In this case it is necessary to augment the
analysis model such that the new degrees of freedom are included in the modified
analysis equations.

a.

b.

c.

The resulting structures may be classified as follows:

Stable (S) structures. This is the typical case where the modified equilibrium
equations can be solved.
Conditionally Unstable (CU) structures. In this case the forces in the structure
satisfy equilibrium conditions for a specific loading. That is, the structure can carry
only specific loading conditions, and it is unstable for another loading condition.
Unstable (U) structures, where the structure or part of it is unstable for a general
loading condition. In this case the modified equilibrium equations cannot be solved
and a collapse of the structure will occur.

a.

b.

c.

1.1.3   Changes in the Structural Model
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To illustrate the various cases, consider the initial ten-bar truss shown in Figure 1.2
subjected to two concentrated loads. The number of unknown forces is fourteen (ten
member forces and four support reactions) and the number of independent equilibrium
conditions is twelve (twice the number of joints). The truss is statically indeterminate
having two redundant members, thus various cases of deletion of two members could be
considered. For all forty-five possible cases of deletion of two members, the resulting
structure might be stable, conditionally unstable or unstable. Only twenty-nine of the
resulting structures are stable (Figure 1.3), whereas four structures are conditionally
unstable (Figure 1.4) and twelve structures are unstable (Figure 1.5). Some of the
conditionally unstable structures could be transformed into stable structures by deleting
or adding zero force members. It is instructive to note that conditionally unstable
structures could be obtained also by addition of some members and joints. In addition,
various stable and conditionally unstable structures could be obtained by deletion of
three or four members, as can be observed in Figures. 1.6 and 1.7.

8
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Repeated analysis or reanalysis is needed in various problems of structural analysis,
design and optimization. In general, the structural response cannot be expressed
explicitly in terms of the structure properties, and structural analysis involves solution
of a set of simultaneous equations. Reanalysis methods are intended to analyze
efficiently structures that are modified due to changes in the design. The object is to
evaluate the structural response (e.g. displacements, forces and stresses) for such
changes without solving the complete set of modified simultaneous equations. The
solution procedures usually use the original response of the structure. Some common
problems, where multiple repeated analyses are needed, are described in the following.

In structural optimization the solution is iterative and consists of repeated analyses
followed by redesign steps. The high computational cost involved in repeated
analyses of large-scale problems is one of the main obstacles in the solution
process. In many problems the analysis part will require most of the computational
effort, therefore only methods that do not involve numerous time-consuming
implicit analyses might prove useful. Reanalysis methods, intended to reduce the
computational cost, have been motivated by some typical difficulties involved in
the solution process. The number of design variables is usually large, and various
failure modes under each of several load conditions are often considered. The
constraints are implicit functions of the design variables, and evaluation of the
constraint values for any assumed design requires the solution of a set of
simultaneous analysis equations.
In structural damage analysis, it is necessary to analyze the structure for various
changes due to deterioration, poor maintenance, damage, or accidents. In general
many hypothetical damage scenarios, describing various types of damage, should
be considered. These include partial or complete damage in various elements of the
structure and changes in the support conditions. Numerous analyses are required to
assess the adequacy of redundancy and to evaluate various hypothetical damage
scenarios for various types of damage.
In the design of the construction stages of complex structures, it might be necessary
to analyze repeatedly structures that are modified during the construction. The
modified structures are subjected to different loading conditions. The changes in
the structure may include additional elements and different support conditions.
Nonlinear analysis of structures is usually carried out in an iterative process. The
solution process can be performed by different methods but, in general, a set of
updated linear equations must be solved repeatedly. Similarly, many of the
vibration (or eigenproblem) solution techniques are based on matrix iteration
methods. To calculate the mode shapes it is necessary to solve repeatedly a set of
updated analysis equations.
Reanalysis methods might prove useful in other applications such as probabilistic
analysis, controlled structures, smart structures, adaptive structures, and for
conceptual design problems.

1.1.4  Reanalysis of Structures
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1.2  SCOPE OF TEXT

This text consists of two parts. In part 1 (Chapters 1 – 6), the basic concepts of design-
oriented analysis are introduced and various reanalysis methods are developed. In part
2 (Chapters 7–12) the concepts and the methods presented in part 1 are integrated into
a unified approach for effective analysis and reanalysis of structures. The most recent
developments and applications in this area are discussed in this part of the book.

In Chapter 2 some background material on analysis of structures is introduced and
the following analysis problems are briefly described:

Section 2.1 describes linear elastic analysis, where displacements are assumed to
vary linearly with the applied forces. This assumption is based on the two
conditions that the material is elastic and obeys Hooke's law, and the changes in the
geometry are so small that they can be neglected. Linear analysis involves the
solution of a set of simultaneous linear equations. The displacement (stiffness)
method, which is the most commonly used analysis method, is considered
throughout the book.
Elastic analysis of continuum structures such as plates and shells is presented in
Section 2.2, and the numerical finite element method is briefly described. To apply
the method, it is necessary first to convert the continuum into a system with a finite
number of unknowns so that the problem can be solved numerically. The structure
is divided into finite elements and the elements are assumed to be interconnected at
a discrete number of nodal points situated on the element boundaries. A
displacement function, in terms of nodal-displacement parameters, is then chosen
to represent the displacement field within each element. The stiffness matrix and
the load matrix are derived and the unknown nodal displacements are computed by
solving the set of equilibrium equations
Section 2.3 presents nonlinear analysis, where the displacements are nonlinear
functions of the applied forces. The nonlinear relationship is a result of inelastic
material (material non-linearity) or significant changes in the geometry
(geometrical non-linearity). The basic problem in nonlinear analysis is the solution
of a set of nonlinear equations. The solution is usually carried out by a combination
of incremental and iterative techniques, and involves repeated solution of linearized
equations.
Section 2.4 describes dynamic analysis, where displacements and stresses under
application of dynamic loads are determined. The discretized model of a
complicated structural system may have numerous degrees of freedom. Therefore,
it is customary to reduce the number of equations of motion to a much smaller
number before dynamic response is calculated. The solution of the eigenproblem
for large structures is one of the costly phases of a dynamic response analysis.

a.

b.

d.

c.

Chapter 3 deals with the statement of reanalysis problems. Given an initial structure and
its response, the reanalysis problem considered in the text is to evaluate efficiently and
accurately the modified response for successive changes in the structure properties
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without solving the complete set of modified analysis equations. Formulations of linear,
nonlinear and vibration reanalysis problems are presented in Section 3.1, and various
reanalysis methods are reviewed in Section 3.2.

Direct methods, giving exact closed-form solutions, are presented in Chapter 4.
These methods are efficient in cases of low-rank modifications in the stiffness matrix.
In particular, such methods are applicable to situations where a relatively small
proportion of the structure is changed and the number of modified elements in the
stiffness matrix is limited (e.g., changes in cross section areas of only a small number
elements). Direct methods are usually based on the Sherman-Morrison and Woodbury
formulae for the update of the inverse of a matrix. Solutions obtained by the formulae
are discussed in Section 4.1, and methods for direct calculation of the response that are
based on the formulae are presented in Section 4.2.

Chapter 5 presents the most simple and most efficient local approximations such as
the Taylor series, the binomial series, simplified first-order approximations and
improved series approximations. Local approximations are based on information
calculated at a single point. Accurate results can often be achieved by these methods
with a small computational effort for small changes in the structure. In Section 5.1 the
common Taylor series and the binomial series approximations are presented and the
relationship between the two basic approximations is discussed. The two
approximations differ in the efficiency of the calculations and in the ease of
implementation, but they become equivalent under certain conditions. In Section 5.2
various simplified first-order approximations, using intermediate variables, are
presented. The common direct and reciprocal approximations, as well as conservative
and convex approximations, are discussed and compared. Intermediate variables can
improve the accuracy of conventional series approximations with little computational
effort. Some improved series approximations are discussed in Section 5.3. Conventional
series approximations can be improved significantly by scaling procedures. The concept
of scaling is introduced and methods for improved-scaled approximations, using simple
procedures for selecting the scaling multiplier, are developed.

Chapter 6 describes global approximations such as polynomial-fitting techniques, the
response surface approach, reduced-basis methods and the conjugate gradient method.
These approximations are obtained by analyzing the structure at a number of design
points, and they are valid for large changes in the structure. In general, global
approximations provide accurate results but they may require much computational
effort, particularly in cases of large numbers of design variables. Polynomial-fitting
techniques tend to give accurate solutions in cases where the response functions can be
well approximated by low-order polynomials. The quadratic fitting, the cubic fitting,
least-square solutions and the response surface approach are discussed in Section 6.1.
Reduced-basis methods, introduced in Section 6.2, demonstrate how analysis problems
with large numbers of degrees of freedom may be transformed into much smaller
problems with corresponding small systems of equations. Reanalysis by the conjugate
gradient method is discussed in Section 6.3.

Chapter 7 presents a combined approximations approach. The basic concepts of
combining various methods into a unified solution approach are introduced. The
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advantage is that the efficiency of local approximations (series expansion) and the
improved quality of global approximations (the reduced basis method) are combined to
obtain effective solution procedures. The effectiveness of the approach depends, to a
great extent, on the appropriate choice of the basis vectors. The problem of determining
these vectors is discussed, and generation of vectors for which the reduced set of
analysis equations becomes uncoupled is demonstrated. Some typical cases where
accurate and exact solutions can be achieved by the combined approximations approach
are developed, equivalence of the approach presented with a preconditioned conjugate
gradient method is demonstrated, and various methods of error evaluation are presented.

Chapter 8 describes simplified solution procedures that can be derived from a general
solution approach. We can view some conventional approximations and direct methods
as particular cases of the general approach presented. The preferred procedure for a
specific application depends on efficiency and accuracy considerations. In general,
better accuracy can be achieved at the expense of more computational effort.
Approximate solution procedures are presented in Section 8.1. Application of low-order
approximations in structural optimization and analysis of damaged structures is
illustrated, the efficiency of the various procedures is demonstrated, and limitations on
the design changes are discussed. We demonstrate in Section 8.2 a procedure to obtain
exact solutions by the unified approach for simultaneous rank-one changes in the
stiffness matrix. This procedure is efficient when the number of changed members in
the structure is much smaller than the number of degrees of freedom. It is shown that
solutions obtained by the approach presented are equivalent to those given by the
Sherman-Morrison-Woodbury formulae.

Reanalysis for topological and geometrical changes is discussed in Chapter 9.
Developing methods for such changes is most challenging, since the structural model
itself is changed and the resulting response might be significantly different. Most
approximate reanalysis methods are not suitable for such changes and provide
inadequate or meaningless results. In this chapter reanalysis procedures for various
topological and geometrical changes are introduced. Approximate and exact solutions
are demonstrated for various cases of deletion and addition of elements and joints, as
well as changes in the joint coordinates. In particular, we develop solution procedures
for the most challenging problem where the number of degrees of freedom is changed.

Design sensitivity analysis deals with the calculation of changes in the response of
the structure resulting from changes in the design variables describing the structure. The
derivatives of the response vector with respect to the system parameters are referred to
as the sensitivity coefficients. The latter are used in various design and optimization
problems. Most approximations that are adequate for structural reanalysis are not
sufficiently accurate for sensitivity analysis. In Chapter 10 we develop procedures for
calculating the response derivatives with respect to design variables, for designs where
results of exact analysis are not available. Exact analytical derivatives, obtained by the
direct method and the adjoint-variable method, are presented in Section 10.1. Some
procedures for calculation of approximate derivatives are developed in Section 10.2 and
results obtained by various methods are compared in Section 10.3. Calculation of
second-order derivatives is demonstrated in Section 10.4 and computational procedures
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are presented in Section 10.5. Accurate derivatives are obtained for significant changes
in the design with a reduced computational effort.

Chapter 11 demonstrates solution of nonlinear reanalysis problems. These problems
can be solved by different methods but no matter what method is used a set of updated
linear equations must be solved repeatedly during the solution process. It is shown that
the combined approximations approach is most suitable for calculating efficiently the
updated linear equations in nonlinear analysis problems.

Vibration reanalysis by the combined approximations approach is developed in
Chapter 12. Solutions of eigenvector reanalysis, where we evaluate the mode shapes,
and eigenvalue reanalysis, where we calculate the eigenvalues, are demonstrated.

1.3 REFERENCES

1.
2.
3.

4.

5.

6.

7.

8.

9.

10.

Bathe, K.J. Finite Element Procedures, Prentice Hall, NJ, 1996.
Ghali, A. and Neville A. M. Structural Analysis, E & FN SPON, London, 1997.
Weaver, W. Jr. and Gere J.M. Analysis of Framed Structures, second edition, Van
Nostrand Reinhold, New York, 1980.
Hughes, T.J.R. The Finite Element Method - Linear Static and Dynamic Finite
Element Analysis, Prentice Hall, NJ, 1987.
Crisfield, M. A. Nonlinear Finite Element Analysis of Solids and Structures, Vol. 1:
essentials, John Wiley & Sons, Chichester, 1997.
Levy, R. and Spillers, R.S. Analysis of Geometrically Nonlinear Structures,
Chapman & Hall, New York, 1995.
Clough R. W. and Penzien J. P. Dynamics of  Structures, McGraw-Hill, New York,
1993.
Noor, A. K. Recent advances and applications of reduction methods, Appl. Mech.
Rev. 47 (1994) 125-146.
Kirsch, U. Structural Optimization, Fundamentals and Applications, Springer-
Verlag, Berlin, 1993.
Kirsch, U. and Papalambros, P.Y. Structural reanalysis for topological
modifications, Structural Optimization, 21 (2001) 333-344.



This page intentionally left blank



2 Structural Analysis

Some background material on analysis of structures is given in this chapter. The
objective of structural analysis is usually to determine the internal forces, stresses and
displacements of a structure under application of the working loads. The forces must
satisfy the conditions of equilibrium and produce deformations compatible with the
continuity of the structure and the support conditions.

Any method of elastic analysis must ensure that both conditions of equilibrium and
compatibility are satisfied. In linear elastic analysis, presented in Section 2.1, it is
assumed that displacements vary linearly with the applied forces. That is, any increment
in a displacement is proportional to the force causing it. Linear elastic analysis involves
the solution of a set of simultaneous linear equations. The displacement (stiffness)
method, which is the most commonly used analysis method, is considered throughout
this text. Various topics associated with the method are discussed in the comprehensive
literature related to structural analysis (e.g. [1, 2]).

Elastic analysis of continuum structures, such as plates and shells, using the
numerical finite element method, is given in Section 2.2. The method can be regarded as
an extension of the displacement method to two- and three-dimensional continuum
structures. The actual continuum is replaced by an equivalent idealized structure
composed of discrete elements, referred to as finite elements, connected together at a
number of nodes. By assuming displacement fields or stress patterns within an element,
we can derive a stiffness matrix. A set of simultaneous algebraic equations is formed by
applying conditions of equilibrium at every node of the idealized structure. The solution
gives the nodal displacements, which in turn are used to determine the stresses. The
finite elements method is discussed in various texts related to this topic (e.g. [3, 4]).

Nonlinear analysis, where the displacements are nonlinear functions of the applied
forces, is described in Section 2.3. The nonlinear relationship is a result of inelastic
material (material non-linearity) or significant changes in the geometry (geometrical
non-linearity). A basic problem in nonlinear analysis is the solution of the nonlinear set
of equations. The solution is usually carried out by a combination of incremental and
iterative techniques, and involves repeated solution of linearized equations. A
requirement for the solution method is its ability to overcome the numerical problems
associated with various types of behavior. Nonlinear analysis is discussed in various
texts related to this topic (e.g. [5, 6]).

17
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Dynamic analysis, where displacements, stresses, and forces under application of
dynamic (time varying) loads are determined, is discussed in Section 2.4. In general, the
structural response to any dynamic loading is expressed in terms of the displacements of
the structure. The solution of the eigenproblem for large structures is often the most
costly phase of a dynamic response analysis, and calculation of the eigenvalues and
eigenvectors requires much computational effort. It is customary in dynamic analysis to
reduce the number of equations of motion to a much smaller number before dynamic
response is calculated. Reduced-basis methods are presented later in Section 6.2.
Detailed discussion on dynamic analysis is given elsewhere (e.g. [3, 7]).

2.1 LINEAR ANALYSIS OF FRAMED STRUCTURES

Framed structures are systems consisting of members that are long in comparison to the
dimensions of their cross section. Typical framed structures are beams, grids, and plane
and space trusses and frames. In linear elastic analysis we assume that displacements
(translations or rotations) vary linearly with the applied forces, that is, any increment in
a displacement is proportional to the force causing it. This assumption is based on the
following two conditions:

The material of the structure is elastic and obeys Hooke's law.
All deformations are assumed to be small, so that the displacements do not
significantly affect the geometry of the structure and hence do not alter the forces
in the members. Thus, the changes in the geometry are small and can be neglected.

a.
b.

The majority of actual structures are designed to undergo only small and linear
deformations. In such cases the principle of superposition can be applied. In elastic
analysis we refer to behavior under working loads. The objective of the analysis of a
given structure is to determine the internal forces, stresses and displacements under the
given loads. The forces must satisfy the conditions of equilibrium and produce
deformations compatible with the continuity of the structure and the support
conditions. That is, any method of elastic analysis must ensure that both conditions of
equilibrium and compatibility are satisfied.

In this section the displacement (stiffness) method is described. In this method joint
displacements, chosen as the analysis unknowns, are determined from the conditions of
equilibrium. The internal forces and the stresses are then determined by superposition of
the effects of the external loads and the separate joint displacements.

The relations presented here form the basis for elastic analysis by various methods. The
equilibrium equations are*

* The following symbols have been used throughout this text: bold letters represent matrices or column
vectors; superscripts T represent transposed matrices or vectors; subscripts d denote diagonal matrices.

2.1.1 Basic Relations
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where the elements of matrix C depend on the undeformed geometry of the structure; N
is the vector of members' forces; and the vector R represents the external loads. The
constitutive law is

where is a diagonal matrix of member stiffnesses and e is the vector of member
displacements. The compatibility equations relate the member displacements e to the
nodal displacements r by

where

Various analysis methods can be derived from these basic relations. The displacement
(stiffness) method is considered in this text.

Substituting Eqs. (2.2), (2.3) and (2.4) into Eq. (2.1) gives the displacement method
equilibrium equations

Denoting the system stiffness matrix by K, where

and substituting into Eq. (2.5) yields

Example 2.1. The purpose of this example is to demonstrate the basic relations of
elastic analysis. Consider the four-bar truss shown in Figure 2.1 [8]; the equilibrium
equations (2.1) are

and the constitutive law of Eq. (2.2) is
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where E is the modulus of elasticity and is the cross-sectional area of the ith
member. The compatibility equations (2.3) are

and the displacement method equilibrium equations (2.7) are

In the displacement method, joint displacements, chosen as the analysis unknowns, are
determined from the conditions of equilibrium. The internal forces and stresses are then
determined by superposition of the effects of the external loads and the separate joint
displacements.

The equilibrium equations to be solved by the displacement method are

2.1.2  Solution by the Displacement Method
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where K = stiffness matrix and the elements represent the force in the ith coordinate
due to unit displacement in the jth coordinate are computed in the restrained
structure and i and j are coordinates corresponding to displacement degrees of
freedom); r = the vector of unknown displacements; = the vector of forces
corresponding to the unknown displacements in the restrained structure; the vector
of external loads corresponding to the unknown displacements if there are no
loads acting in the direction of degrees of freedom). The load vector is defined as

and Eq. (2.8) becomes [see Eq. (2.7)]

The vector of unknown displacements r is computed by solving the set of simultaneous
equations (2.9). Final member forces N at any desired points in the structure are given
by the following superposition equations

where = vector of forces due to loads in the restrained structure and = matrix of
forces due to unit value of the components of r in the restrained structure.

In many cases, where the loads act only in the directions of the nodal displacements,
and the stresses can be determined from Eq. (2.10) by

where S is the stress transformation matrix.
All equations are related to the action of a single loading. In the case of several

loading conditions, all vectors will be transformed into matrices so that each of their
columns will correspond to a certain loading condition. The elements of K, and S are
functions of the material properties, the geometry of the structure and members' cross-
sections. If the loads on the structure are predetermined, the elements of R and
depend only on the geometry of the structure.

Example 2.2. To illustrate solution by the displacement method, consider the
continuous beam shown in Figure 2.2a [8]. The beam has a constant flexural rigidity
EI, E is the modulus of elasticity, I is the moment of inertia, L represents the spans, P
represents the loads and the object is to find the forces at the left-end support, and

The structure has two degrees of freedom, the two support rotations and which
are the unknown displacements. The coefficients computed in the restrained structure
are (Figures 2.2b and 2.2c)
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Substituting into Eq. (2.9) we find the unknown displacements

The resulting forces N are computed by Eq. (2.10) as

2.2   CONTINUUM STRUCTURES

Analysis of continuum structures is usually carried out by the finite element method.
To apply the method, it is necessary first to convert the continuum into a system with a
finite number of unknowns so that the problem can be solved numerically. This
procedure involves the following steps:

The structure is divided into finite elements defined by fictitious lines or surfaces.
The elements are assumed to be interconnected at discrete nodal points situated on
the element boundaries. The degrees of freedom at the nodes, called nodal-
displacement parameters, normally refer to the displacements at the nodes.
A displacement function, in terms of nodal-displacement parameters, is chosen to
represent the displacement field within each element. Based on the displacement
function, a stiffness matrix is written to relate the nodal forces to nodal-
displacement parameters. The principle of virtual work or the principle of
minimum total potential energy can be used to do this.

a.
b.

c.

The choice of a good displacement function is most important, as badly chosen
functions will lead to inaccurate analysis results. The displacement function must have
the same number of unknown constants as the total number of degrees of freedom of
the element. It must be balanced with respect to the coordinate axes and it must allow
the element to undergo rigid-body movement without any internal strain. The
displacement function also must be able to represent states of constant stress or strain.
Otherwise, the stresses will not converge to a continuous function as progressively
smaller elements are used in the idealization of the structure. It also must satisfy the
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compatibility of displacements along the boundaries with adjacent elements. That is,
the function values, and sometimes their first derivatives, are required to be continuous
along the boundaries. If all of the above conditions are satisfied, the idealization of the
whole system will generally provide a lower bound to the strain energy, and
convergence can be guaranteed as the mesh size is successively reduced. However, a
number of elements that do not completely satisfy the conditions of compatibility along
the boundaries have been successfully used, even though convergence is not assured.

Once the displacement function has been determined, it is possible to obtain all the
strains and stresses within the element and to formulate the stiffness matrix and a
consistent load matrix. The load matrix represents the equivalent nodal forces, which
replace the action of external distributed loads.

Consider a linear elastic two-dimensional element (see Figure 2.3), for which the
displacement function f can be written in the form

where f may have three components (for a three-dimensional body), two translation
components u, v (for plane stress, Figure 2.3a), or simply be equal to the transverse
deflection w (for a plate in bending, Figure 2.3b); P is a function of the coordinates x
and y only; and H is a vector of undetermined constants. Note that the element of
Figure 2.3a has six degrees of freedom representing the translations u and v for each
node, while the element of Figure 2.3b has nine degrees of freedom (vertical deflection
w, and two rotations at each of the three nodes).

Applying Eq. (2.12) repeatedly to the nodes of the element one after the other, we
obtain the following set of equations relating the nodal parameters to the constants H
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The elements of matrix C are functions of the relevant nodal coordinates. From Eq.
(2.13), the undetermined constants H can be expressed as

Substituting Eq (2.14) into Eq. (2.12), we have

In many cases, the displacement function is constructed directly in terms of the nodal
parameters

where L is a function of x, y and the coordinates of the nodes. Comparing Eq. (2.15)
with Eq. (2.16), it is clear that

The vector of generalized strain (normal strain, shear strain, bending or twisting
curvature) can be expressed in the form

where the elements of B are derived by appropriate differentiation of L [Eq. (2.16)]
with respect to x and y. The vector of generalized stresses is given by

where d is a symmetric elasticity matrix, representing the material properties of the
element. Substituting Eq. (2.18) into Eq. (2.19) yields

The product d B is called the stress matrix S, and Eq. (2.20) can be written as

To formulate the stiffness and the consistent load matrices, we consider an element
subjected to concentrated forces at the nodes together with the uniformly distributed
loads q per unit area. Writing the expression for the total potential energy of the
element, differentiating with respect to the nodal parameters one after another and then
(using the principle of minimum total potential energy) setting them equal to zero, we
obtain the set of simultaneous equations
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where the two integrals are over the volume V and the area of the element Equation
(2.22) can be written as

where the element stiffness matrix is defined by

and the consistent load vector is given by

being the consistent load vector for distributed loads q

The stiffness relationship can also be derived by the principle of virtual work, and Eq.
(2.26) can be obtained by equating the virtual work done by the equivalent nodal forces
and virtual work done by the distributed loads for the same set of permissible virtual
displacements.

Consider the simple element of Figure 2.3a with the following displacement function
[see. Eq. (2.12)]

Writing Eq. (2.27) for each of the nodes, we have



Structural Analysis 27

The constants H can be expressed in terms of nodal displacements [Eq. (2.14)] by
inversion of Eq. (2.28)

where a, b, c, are constants expressed in terms of the nodal coordinates
is the area of the element). From Eq. (2.29) we may find the matrix

corresponding to the vector of nodal-displacement parameters, Thus and are
given by

From Eqs (2.27) and (2.30) we may find the matrix L [see Eq. (2.17)]

The strains for a plane problem are given by

Differentiation of the displacement function
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gives the following expressions for

The matrix B relating the strains to the nodal displacements is thus given by [see
Eq.(2.18)]

Since the elements of B are constants, the strains inside the element must all be
constant. This type of element is often called constant strain triangular element.

The elasticity matrix d [Eq. (2.19)] can be shown to be

where

for plane stress,

for plane strain,

for both cases,

Since the elements of the stress matrix S =d B [see Eq. (2.20)] are constants, stresses
within an element will also be constant and the result would be stress discontinuities
from one element to the next. In practice, this can be overcome either by considering the



Structural Analysis 29

stress values at the centroid of each element, or by using a method of averaging, in
which the stresses of all the elements surrounding a node are summed and then
averaged. These average stresses are then assigned to the node concerned.

The stiffness matrix, can now be computed by Eq. (2.24). Since the elements of
B and d are constants, the integration is equivalent to multiplying the integrand by the
volume of the element, V,

For uniformly distributed body forces in the x and y directions of magnitude and
per unit area, the consistent load vector, is given by [see Eqs. (2.26) and (2.31)]

namely, 1/3 of the total load acting on the element is assigned to each node.
Consider the square isotropic plate of constant thickness shown in Figure

2.4a [1], which is free along three edges and fixed at the other edge. The displacement
conditions are at the fixed edge, and along the line of symmetry.
Poisson's ratio is the modulus of elasticity is E = 1.0, and the object is to find
the stress distribution in the plate. Using the finite-element idealization shown in Figure
2.4b, the unknown displacements for the right-hand half of the plate are

and the corresponding external applied force vector is

The stiffness matrices of the elements are computed by Eq. (2.37), and the
assembled matrix K is then computed by assuming the contribution of the elements.
Solving the equations

we find the nodal displacements r shown in Figure 2.4c. The stress in each element is
then calculated by Eq. (2.20). The element stresses are shown in Figure 2.4d.
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2.3   NONLINEAR ANALYSIS

In practical nonlinear analysis, the external forces are introduced in stages. Solution of
the nonlinear set of equations is usually carried out by an incremental/iterative
technique, such as a predictor-corrector method. This is accomplished by solving the
equations for successive values of a load or displacement parameter, such that the
solution corresponding to a particular value of the parameter is used to calculate a
suitable approximation (predictor) for the displacements r at a different value of the
parameter. This approximation is then chosen as an initial estimate of r in a corrective-
iterative procedure such as the Newton-Raphson technique. The solution process can be
carried out by different methods (see, e.g. [5]), including an incremental (Euler)
scheme, the iterative Newton-Raphson method, and combined incremental/iterative
solutions. Full or modified Newton-Raphson methods are often considered. In the latter
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method, the same tangent stiffness matrix is used in the iteration cycles in order to save
computing a new matrix in each cycle.

Geometrically nonlinear analysis is presented in Section 2.3.1 and material non-
linearity is briefly described in Section 2.3.2.

2.3.1  Geometrical Non-linearity
For illustrative purposes assume an iterative solution process, using the Newton-
Raphson method. Starting with linear analysis, we first calculate the initial
displacements by the linear analysis equations

where is the given elastic stiffness matrix and is the given external force vector.
The matrix is often given in the decomposed form

where is an upper triangular matrix. The member forces N are calculated for the
deformed geometry. Considering both the compatibility equations and the constitutive
law, the member forces are some nonlinear functions N(r) of the displacements r

The forces computed by Eq. (2.43) are now not in equilibrium with the external forces
The internal forces corresponding to the member forces N, are determined by

the equilibrium equations of the deformed geometry

where the elements of matrix C(r) depend on the deformed geometry.
The out-of-balance (residual) force vector and the tangent stiffness matrix are

defined as

where is the geometric stiffness matrix, whose elements are functions of
the deformed geometry and the member forces. The out-of-balance forces correspond
to a load vector that is not yet balanced by element stresses, and hence an increment in
the nodal-point displacements is required. The elements of the tangent stiffness matrix
can be calculated by the expression
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It can be observed from Eqs. (2.44) and (2.47) that the elements of are some
functions of N and r. The vector of displacements due to the out-of-balance forces

is calculated by the modified equilibrium equations, written for the deformed
geometry,

Starting with the initial displacements we update the displacements iteratively by

redefining as the updated displacement at the previous cycle.
The most frequently used iteration scheme for the solution of the nonlinear analysis

equations is the Newton Raphson method. In the solution process the following
quantities are calculated repeatedly:

the member forces N [Eq. (2.43)];
the corresponding internal force vector [Eq. (2.44)];
the out-of-balance force vector [Eq. (2.45)];
the tangent stiffness matrix [Eq. (2.47)];
the displacements due to the out-of-balance forces [Eq. (2.48)]; and
the updated displacements r [Eq. (2.49)]

where and are some small predetermined parameters.
This procedure is a simplified version of the Newton-Raphson method. Different

variations and improvements might be considered [5]. These include an incremental
(Euler) solution, retaining the original decomposed tangential matrix during several
iterations, or combined incremental-iterative methods. The correct evaluation of the
tangent stiffness matrix is important. However, because of the expense involved in
evaluating and factoring a new tangent stiffness matrix, it can be more efficient to
evaluate the matrix only at certain times. In the modified Newton-Raphson method a
new tangent stiffness matrix is established only at the beginning of each load step.

These calculations are repeated until convergence occurs. Typical convergence
conditions, related to the norms of and are
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2.3.2 Material Non-linearity
Material non-linearity can arise when the stress-strain relationship of the material is
nonlinear in the elastic and/or in the plastic range. For a bilinear moment-curvature
relationship in plastic analysis of frames, for example, the structure behaves linearly
until the first plastic hinge has developed. Under increasing load, the structure
continues to behave linearly, generally with a reduced stiffness, until a second hinge is
formed. The same behavior continues under increasing load until sufficient hinges have
developed to form a failure mechanism.

In the simplest incremental method the applied forces R are divided into increments.
The load increments are applied one at a time and an elastic analysis is carried out. For
the ith load increment the equilibrium equations are solved. The
stiffness matrix depends upon the stress level reached in the preceding increment.
Thus, for the ith increment, the modulus of elasticity is the slope of the stress-strain
diagram at the stress level reached in the increment i-1. The displacements obtained by
the solution of the equilibrium equations for each load increment are summed to give
the final displacements. The advantage of the incremental method is its simplicity. It
can also be used for geometrically nonlinear analysis. For this purpose, the stiffness
matrix for the increment i is based on the geometry of the structure and the internal
forces determined in the preceding increment, i-1.

The Newton-Raphson or the modified Newton-Raphson methods can also be used to
analyze structures with material non-linearity. In the Newton-Raphson method the full
load is introduced, and an approximate solution is obtained and corrected by a series of
iterations. A new tangent stiffness matrix is used in the solution of the linear equations
in each iteration. In the modified Newton-Raphson method the load is introduced in
stages. To avoid generating a new stiffness matrix in each iteration cycle, the tangent
stiffness matrix determined in the first cycle for each load stage is employed in all
subsequent cycles, before proceeding to the next load stage. That is, a new tangent
stiffness matrix is introduced only in the first cycle of each new load increment.

2.4 DYNAMIC ANALYSIS

An elastic structure disturbed from its equilibrium condition by the application and
removal of forces will oscillate about its position of static equilibrium. Thus, the
displacements will vary periodically between specific limits in either direction. The
distance of either of these limits from the position of equilibrium is the amplitude of the
vibration. We may distinguish between the following two types of motion:

Free-vibration motion, where no external forces act on the structure, and the motion
may continue with the same amplitude for an indefinitely long time.
Damped free-vibration, where forces tending to oppose the motion act on the
structure. In practice there are always such forces, which cause the amplitude to
diminish gradually until the motion ceases.
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For ease of exposition, consider a structure with no damping. The equations of motion
are

where M is the mass matrix and K is the stiffness matrix, the elements of both matrices
being functions of the structure properties. The unknown displacement vector r(t), the
acceleration vector and the load vector R(t) are functions of the time variable t.

Mathematically, Eq. (2.51) represents a system of linear differential equations of
second order and, in principle, the solution can be obtained by standard procedures for
the solution of differential equations with constant coefficients. In practical analysis, the
common procedures can be divided into two methods of solution (the choice of one
method or the other is determined by their relative numerical effectiveness):

Direct integration, where Eqs. (2.51) are integrated using a numerical step-by-step
procedure. The term direct means that prior to the numerical integration, no
transformation of the equations into different form is carried out. Direct numerical
integration is based on the idea that the equations are satisfied only at discrete time
intervals. In addition, the method is based on the assumption that a variation of
displacements, velocities and accelerations within each time interval has a certain
form. The form of this assumption determines the accuracy, stability, and cost of
the solution procedure.
Mode superposition, where the equilibrium equations are transformed into a form
in which the step-by-step solution is less costly. This method may be more
effective if the integration must be carried out for many time steps.

The discretized model of a complicated structural system may have many degrees of
freedom. Therefore, it is customary in dynamic analysis to reduce the equations of
motion to a much smaller number before dynamic response is calculated. In dynamic
problems, the reduction of degrees of freedom is more important than in static
problems, because the solution must be performed successively at many different
times, to generate the time history of the response. In this section, a general formulation
of dynamic analysis is considered. Reduction methods are discussed in Section 6.2.

Some of the methods used in dynamic analysis are particularly useful when the
applied load causing the dynamic response is of the form

where the external load distribution, R, may have any form but remains constant, and
only its amplitude f(t) varies with time.

2.4.1  The Eigenproblem
Ignoring the notation of the time variable (t), we obtain the equations of motion for a
freely vibrating undamped system by omitting the load vector from Eq. (2.51)
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The problem of vibration analysis consists of determining the conditions under which
the equilibrium conditions of Eq.(2.53) are satisfied.

Assuming that the free-vibration motion is simple harmonic, we find

where is the circular frequency. Substituting Eq. (2.54) into Eq. (2.53) and
rearranging gives

where the quantities are the eigenvalues indicating the square of the free-
vibration frequencies, while the corresponding displacement vectors r express the
eigenvectors, or mode shapes of the vibrating system. For a system having n degrees of

freedom, the frequency vector represents the frequencies of
the n modes of vibration possible in the system. The mode having the lowest frequency
is called the first mode; the next higher frequency is the second mode, etc.

Equation (2.55) represents the generalized eigenproblem (e.g., see [3, 7]). If the
solution is considered in order to obtain eigenvalues and eigenvectors the problem is
referred to as an eigenproblem, whereas if only eigenvalues are to be calculated, the
problem is called an eigenvalue problem.

A dynamic response calculation is substantially more costly than a static analysis.
Whereas in a static analysis the solution is obtained in one step, in dynamic analysis the
solution is required at a number of discrete points over the time interval considered.
Considering a mode-superposition analysis, the main computational effort is spent in
the solution of the eigenprolem, which also requires considerably more effort than a
static analysis. Since exact solution of the eigenproblem can be prohibitively expensive,
approximate solution techniques have been developed, primarily to calculate the lowest
eigenvalues and corresponding eigenvectors, when the order of the system is large.

The shape of the vibrating system can be determined by solving for all the
displacements in terms of any one coordinate. For convenience the displacement vector
associated with the mth mode of vibration is usually expressed in dimensionless form by
dividing all the components by one reference component (usually the largest). The
resulting vector, called the mth mode shape is given by
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where is taken as the reference component. The square matrix made up of the n
mode shapes is represented by

A common eigenproblem is the one to be solved in vibration mode superposition
analysis. The generalized eigenproblem considered in this case is

where the eigenvalues are the free vibration frequencies squared, and the eigenvectors
are the corresponding mode shape vectors. Some properties of the eigenproblem are
discussed in the following. An important property of the eigenvalues of the problem is
that they are the roots of the characteristic polynomial Consider the
eigenpair satisfying

and also the relations

which fixes the lengths of the eigenvectors. Then the eigenvectors satisfy the
orthogonality conditions

where is the Kronecker delta, for which and Using these

relations, we may write the following conditions that the eigenvctors must satisfy

where is a matrix of the eigenvectors and is a diagonal matrix of the
corresponding eigenvalues. The orthogonality relations discussed here hold also for the
eigenvectors of the problems encountered in buckling analysis presented in Section 2.5.

For the eigenproblem of Eq. (2.58), the object is often to calculate the smallest
eigenvalues and the corresponding eigenvectors. All solution methods are iterative.



Structural Analysis 37

Once an eigenvalue is known, the corresponding eigenvector can be obtained without
iteration from In addition, if we have evaluated by iteration, we
can obtain the required eigenvalue by the Rayleigh quotient

A basic question in considering an effective solution method is whether we should first
solve for the eigenvalue and then calculate the eigenvector, or vice versa, or whether it
is more economical to solve for both simultaneously. The answer to this question
depends on various properties of the problem under consideration. The effectiveness of
a solution method depends on the possibility of a reliable use of the procedure and the
cost of solution, determined essentially by the number of high-speed storage operations
and an efficient use of backup storage devices.

The common solution methods can be subdivided into the following groups,
corresponding to the basic properties used in the solution process [3.]:

Vector iteration methods (e.g. inverse iteration).
Transformation methods(e.g. Jacobi iteration).
Polynomial iteration methods.
Methods that employ the sequence property of the characteristic polynomials.

There are many variants of these procedures. The Lanczos method and the subspace
iteration method use a combination of the properties used in the above methods.

Many of the vibration (or eigenproblem) solution techniques are based on the matrix
iteration approach. The use of iteration to evaluate the vibration mode of a structure is a
very old concept that originally was called the Stodola method. To calculate the first-
mode shape, Eq. (2.55) can be rewritten in an iterative form. Since only the shape is
needed, the frequency is dropped from this equation to obtain

where k denotes the iteration number, is the displacement vector in the previous

iteration and is the resulting improved shape. Defining the dynamic matrix D as

and substituting into Eq. (2.64) yields
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To initiate the iteration procedure for evaluating the first mode shape, a trial
displacement vector is assumed that is a reasonable estimate of this shape. The
improved iteration vector is then obtained by normalizing the shape There are

various ways to obtain convenient normalized vectors. Normalizing the shape by
dividing it by an arbitrary reference element of the vector gives

This operation has the effect of scaling the reference element of the vector to unity. In
general, the vector is normalized with respect to its largest element. It has been proven
that the iteration process converges to the first-mode shape [3, 7]. Other mode shapes
can be calculated by similar procedures. By repeating the process sufficiently, we can
improve the mode-shape approximation to any desired level of accuracy. That is, after s
cycles

where the proportionality between and can be achieved to any specified
accuracy and the resulting shape is accepted as the first mode shape. The frequency can
be obtained from Eq. (2.68) by selecting the degree of freedom having the maximum
displacement

Matrix iteration can be used to evaluate higher order modes as well, by assuming
shapes that contain no lower-mode components. In the iteration procedure of Eqs.
(2.66), (2.67) the stiffness matrix K is often given from the initial analysis in the
decomposed form of Eq. (2.42), taking advantage of its narrow banded character.

2.5   COLLAPSE AND BUCKLING ANALYSIS

The objective of a nonlinear analysis is in many cases to estimate the maximum load
that a structure can support prior to structural instability or collapse. In the analysis the
load distribution on the structure is known, but the load magnitude that the structure
can sustain is unknown.

The collapse analysis of a structure requires, in general, an incremental load analysis,
which should include the geometrical and material non-linearities. Structural
imperfections can also have a major effect on the predicted load-carrying capacity of the
structure.
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For the calculation of the linearized buckling load, it is assumed that the elements in
the stiffness matrix vary linearly. The linearized buckling analysis gives a reasonable
estimate of the collapse load only if the collapse displacements are relatively small, and
any changes in the material properties do not significantly violate the assumption of
linearity. The stiffness matrix and the externally applied loads are expressed as

where subscripts t-dt and t denote times (i.e. load levels), and is a scaling factor.
At collapse or buckling the tangent stiffness matrix is singular, and hence the condition
for calculating is

or,  equivalently

where is a nonzero vector. Substituting Eq. (2.70) into Eq. (2.73), we obtain the
eigenproblem

or, after rearranging

The eigenvalues give the buckling loads, and the eigenvectors represent the
corresponding buckling modes. Since only the smallest positive eigenvalues are of
interest, rewrite Eq. (2.75) as

where

The eigenvalues are all positive, and usually only the smallest values are of
interest. Having evaluated the value of is obtained from Eq. (2.77), and then the
buckling (or collapse) load is given by Eq. (2.71)
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This analysis can be performed equally well when geometrical or material non-
linearities are considered.
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3  Reanalsis of Structures

3.1  FORMULATION OF REANALYSIS PROBLEMS

3.1.1  Linear Reanalysis
Linear reanalysis is encountered in numerous design and optimization problems. The
formulation presented in this section is general, and covers a wide range of problems
[1]. Assuming the displacement method of analysis (as given in summary form in
Section 2.1.2), we can state a typical reanalysis problem as follows:

a. Given an initial design, the corresponding stiffness matrix and the load vector
the displacements are computed by the equilibrium equations [Eq. (2.9)]

where the symmetric positive-definite stiffness matrix is usually given from the
initial analysis in the decomposed form

b.
and  is an upper triangular matrix.
Assume a change in the structure and corresponding changes in the stiffness
matrix and in the load vector. The modified stiffness matrix K and the modified
load vector R are given by

In general, the elements of the stiffness matrix K are some explicit functions of the
design variables. The changes are functions of the members' cross-sections, the
material properties, the geometry and the topology of the structure. The elements of
the load vector R are usually assumed to be independent of the design variables,

41
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c.

that is, In certain cases where changes in the load vector are considered,
the elements of the vector of changes depend on the geometry and the topology
of the structure.
The object is to estimate the modified displacements r due to the changes in the
structure, without solving the complete set of modified analysis equations

Once the displacements have been evaluated, the stresses are readily calculated using
the explicit stress-displacement relations of Eq. (2.11). Thus, reanalysis methods
essentially replace the formal solution of the analysis equations (3.5).

In this formulation the initial stiffness matrix  the load-vector and the
corresponding displacements are given from initial analysis of the structure. It is
shown in the following that the reanalysis formulation might prove useful also in cases
where results of exact analysis are not available, that is, the initial displacements are
not known. The object in this case is to evaluate r expressed in the form of Eq. (3.5) for
the stiffness matrix K, where matrices and can be chosen such that the solution
is simple and effective. The simplest approach is to choose as a diagonal matrix
consisting of the diagonal elements of K. That is, matrices and are defined as

and the initial displacements are given directly by

It will be shown later (example 7.4) that despite this poor selection of the initial
displacements accurate results can be achieved by the reanalysis approach presented
in Chapter 7.

3.1.2   Nonlinear Reanalysis
The basic equations of nonlinear analysis are summarized in Section 2.3. In a typical
geometrically nonlinear analysis the following set of equations is repeatedly solved
[Eqs. (2.46), (2.48)]

where is the given elastic stiffness matrix; is the geometric stiffness matrix
whose elements are changed from one iteration cycle to another; is the tangent
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stiffness matrix; and is the vector of displacements due to the out-of-balance
(residual) forces The latter forces are given by Eq. (2.45) as

where is the given external force vector and is the vector of internal forces,
whose elements are functions of the deformed geometry and are changed from one
iteration cycle to another.

Starting with the initial displacements computed by [Eq. (2.41)]

we update the displacements r iteratively by the recurrence relation [Eq. (2.49)]

In a typical iterative solution process using the Newton-Raphson method, the out-of-
balance force vector the geometric stiffness matrix the displacements due to
the out-of-balance forces and the updated displacements r are calculated repeatedly
for a number of iteration cycles until convergence occurs.

The reanalysis approach described in this text can be used for efficient calculation of
the displacements at each iteration cycle, where both the geometric stiffness matrix

and the out-of-balance forces are modified. Defining

then from Eqs. (3.8) and (3.9)

It can be observed that the modified equations (3.5) and (3.13) are of similar form. That
is, the problem of nonlinear analysis [Eq. (3.13)] can be stated in the form of linear
reanalysis [Eq. (3.5)].

In general nonlinear reanalysis, the matrix of stiffness changes and the vector of
force changes consist of the following two parts:

a.
b.

The changes and due to the nonlinear behavior, as given by Eqs. (3.12).
The changes and in the elastic stiffness matrix and in the external force
vector, respectively, due to changes in the design variables.
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Thus, the changes and are expressed as

The modified equations to be solved at each iteration cycle are

Starting with linear analysis, solution of the nonlinear reanalysis problem involves
the following two parts:

a. We first calculate the initial displacements by the linear equilibrium equations
(3.10). Nonlinear analysis is then carried out by the iterative procedure described in
Section 2.3.1. At each iteration cycle it is necessary to solve repeatedly the
linearized equations (3.13). The reanalysis approach presented in Chapter 7 can be
used for this purpose.
For the changes and due to a change in the design, the nonlinear
reanalysis process is similar to that of nonlinear analysis, with and [Eq.
(3.14)] replacing and respectively [Eq. (3.12)]. The elements of the
matrix and the vector are constant during the solution process, whereas
the elements of the geometric stiffness matrix and the vector of internal
forces are updated after each iteration cycle.

b.

The solution process is carried out for various changes and in the design as
necessary, with the initial decomposed being unchanged. Solution of nonlinear
reanalysis problems is discussed in Chapter 11.

3.1.3   Vibration Reanalysis
In a typical eigenproblem, the following set of initial analysis equations is solved for an
initial structure [see Eq. (2.55)]

where is the stiffness matrix, is the mass matrix, are the eigenvalues,
is the circular free-vibration frequency, and are the corresponding displacement

vectors (the eigenvectors) or mode shapes of the vibrating system. Assume a change in
the design and a corresponding change in the stiffness and mass matrices such that the
modified matrices are expressed as
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where and are the changes in the stiffness and mass matrices, respectively, due
to the change in the design.

The modified analysis equations are given by

where are the modified eigenvalues, is the circular frequency of the
modified structure, and r are the corresponding displacement vectors (the mode shapes)
or modified eigenvectors of the vibrating system.

Denoting the right hand side vectors of Eqs. (3.16) and (3.18) as

and substituting Eqs. (3.19) into Eqs. (3.16) and (3.18) we find

The vibration reanalysis problem under consideration can be stated as follows.
Suppose the initial values and the initial eigenvectors and eigenvalues are
first calculated. The object is to evaluate efficiently and accurately the modified
eigenvectors r and eigenvalues due to various changes in the design, such that the
modified analysis equations (3.21) are satisfied. In this formulation, the elements of K
and M are explicit functions of the design variables whereas the elements of the right
hand side vector R are functions of M, r and

The modified analysis equations (3.21) can be expressed in a form similar to that of
Eq. (3.5)

where and are defined as [see Eqs. (3.17) and (3.19)]
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It can be observed that the modified equations (3.5) and (3.22) are of similar form and,
therefore, the vibration reanalysis problem can be stated in the form of linear
reanalysis.

The reanalysis approach presented in this text can be used to solve eigenvalue
problems when results of initial analysis are not available. The object is to solve the
modified equations (3.22), where results of previous analysis are not known. Assuming
the initial diagonal stiffness matrix then from Eq. (3.17) we have

Assuming some reasonable initial displacements we can determine the modified
displacement r by the reanalysis approach presented in Chapter 7. Solution of vibration
reanalysis problems is discussed in Chapter 12.

Collapse and buckling reanalysis (Section 2.5) can be formulated in a similar way.
The different mathematical expressions for the various reanalysis problems presented in
this section are summarized in Table 3.1.

3.2  REANALYSIS METHODS

Several comprehensive reviews on reanalysis methods have been published [e.g. 2-4].
The various methods may be divided into the following two general categories:

a.

b.

Direct methods, giving exact closed-form solutions and applicable to situations
where a relatively small part of the structure is changed.
Approximate methods, giving approximate solutions, with the accuracy being
dependent on the type of changes. Approximate methods are usually suitable for
situations where changes occur for large parts of the structure.

The two classes of reanalysis methods are reviewed in this section.
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3.2.1  Direct Methods
Direct reanalysis methods are efficient for low-rank changes in the stiffness matrix. In
particular, these methods are applicable to situations where a relatively small
proportion of the structure is changed and the changes in the stiffness matrix can be
represented by a small sub-matrix (for example, in cases where the cross sections of
only a few members are changed). Direct methods are inefficient when the sub-matrix
of changes in the system stiffness matrix is large.

Direct methods are usually based on the Sherman-Morrison [5] and Woodbury [6]
formulae for the update of the inverse of a matrix. Surveys on these methods are given
elsewhere [7 - 9]. A comprehensive historical survey of the origin of these formulae is
presented in [8]. It has been shown [9] that various reanalysis methods may be viewed
as variants of these formulae. Several methods for calculating the modified response
due to changes in the structure were proposed in the late sixties and the early seventies.
Most of these improved methods are based on the Sherman-Morrison identity [e.g. 10 -
12]. Direct methods are described in Chapter 4.

The Combined Approximations (CA) method presented in Chapter 7 provides exact
solutions under certain conditions. It is shown in Sections 8.2.2 and 8.2.3 that in such
cases exact solutions achieved by the CA method and Sherman-Morrison-Woodbury
formulae are equivalent.

Other direct methods include the Virtual Distortion Method (VDM, [13 - 14]) and
the Theorems of Structural Variation (TSV, [15 - 20]). These two methods, also called
load-based methods [9], require collinear loads to be applied to the modified members
in order to compute an influence matrix. In the VDM, a reduced set of equations is then
solved for a set of scalar multipliers of the influence vectors. In the TSV approach the
modified member forces are given in terms of the original forces and forces due to unit
loadings, while the nodal displacements are given in terms of the original displacements
and displacements due to unit loadings.

3.2.2  Approximate Methods
Approximate reanalysis methods are suitable for cases of changes in large parts or all
of the structure. These methods have been used extensively in structural optimization to
reduce the number of exact analyses and the overall computational cost during the
solution process. Reduction of the computational cost, in turn, allows the solution of
practical design problems.

In general, the following factors are considered in choosing an approximate
reanalysis method for a specific application:

a.
b.
c.

The accuracy of the calculations (the quality of the approximations).
The computational effort involved (the efficiency of the method).
The ease-of-implementation.

The implementation effort is weighted against the performance of the algorithms as
reflected in their computational efficiency and accuracy. The quality of the results and
the efficiency of the calculations are usually two conflicting factors. That is, better
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approximations are often achieved at the expense of more computational effort. In
various applications the different levels of analysis range from inexpensive and
inaccurate to costly and accurate.

The common approximations can be divided into the following classes [4, 21]:

a. Local approximations (called also single-point approximations), such as the first-
order Taylor series expansion or the binomial series expansion about a given design
point. Local approximations are based on information calculated at a single point.
These methods are very efficient but they are effective only for small changes in
the design variables. For large changes in the design the accuracy of the
approximations often deteriorates and the results may become meaningless. That is,
the approximations are valid only in the vicinity of a design point. To improve the
quality of the results, reciprocal cross-sectional areas have been assumed as design
variables [22, 23]. A hybrid form of the direct and reciprocal approximations,
which is more conservative than either, can also be introduced [24]. This
approximation has the advantage of being convex [25], but it has been found that
the hybrid approximation tends to be less accurate than either the direct or the
reciprocal approximation. More accurate convex approximations can be introduced
by the method of moving asymptotes [26], but the quality of the results might be
dependent on the selection of these asymptotes. Another possibility to improve the
quality of the results is to consider second-order approximations [27, 28] but this
considerably increases the computational effort. Local approximations are
discussed in Chapter 5.

b. Global approximations (called also multipoint approximations), such as polynomial
fitting, response surface or reduced basis methods [29 - 33]. These approximations
are obtained by analyzing the structure at a number of design points, and they are
valid for the whole design space (or, at least, large regions of it). In response
surface methods [e.g. 30, 31], the response functions are replaced by simple
functions (polynomials), which are fitted to data computed at a set of selected
design points. So far, the use of response surface methods has been limited to
problems with a relatively small number of design variables. In reduced basis
methods [32, 33] the response of a large system, which was originally described by
a large number of degrees of freedom, is approximated by a linear combination of a
few pre-selected basis vectors. The problem is then stated in terms of a small
number of unknown coefficients of the basis vectors. The approach is most
effective when highly accurate approximations can be introduced by the reduced
and much smaller system of equations. A basic question in using reduced basis
methods is the choice of an appropriate set of the basis vectors. Response vectors of
previously analyzed designs could be used, but an ad hoc or intuitive choice may
not lead to satisfactory approximations. In addition, calculation of the basis vectors
requires several exact analyses of the structure for the basis designs, which involves
extensive computational effort. In summary, global approximations may require
much computational effort, particularly in problems with large numbers of design
variables. Global approximations are introduced in Chapter 6.
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c. Combined approximations. In the second part of this text, we develop a third class
of approximations, called Combined Approximations (CA). In this approach we
attempt to give global qualities to local approximations. This can be achieved by
considering the terms of local (series) approximations as basis vectors in a global
(reduced basis) expression. It has been shown that this choice of basis vectors
provides accurate results. The advantage is that the efficiency of local
approximations and the improved quality of global approximations are combined to
obtain an effective solution procedure. The CA is a general approach, but it also
can be viewed as a specific method, where the binomial series terms are used as
basis vectors in specific reduced basis approximations. The approach is versatile,
providing different options and possibilities in applications. The main
developments of the approach are briefly reviewed in this section. The basic
concepts of the approach are discussed in Chapter 7 and some simplified solution
procedures derived from the approach are described in Chapter 8.

Initially, the main objective in developing the CA method was to simplify design
optimization procedures for practical structures. Later, it was found that the method
might prove useful not only in structural optimization but also in various analysis and
design tasks. In particular, solutions for the following classes of problems have been
developed:

a.

b.

c.

Linear analysis. Solutions of complete analysis, various reanalysis problems
(including topological and geometrical changes, accurate and exact solutions) and
design sensitivity analysis problems.
Nonlinear analysis. Solutions of both complete analysis and reanalysis, for
geometrically nonlinear problems.
Vibration analysis. Solutions of both complete analysis and reanalysis of typical
eigenproblems.

Several studies in the early eighties [34, 35] showed that improved local
approximations could be achieved by scaling the initial design such that the changes in
the design variables are reduced. The advantage is that the solution is still based on
results of a single exact analysis. Scaling procedures significantly improve the accuracy
of the results with little computational effort. It has been demonstrated that scaling is
useful for various types of design variables and response functions. Several criteria for
selecting the scaling multiplier have been proposed, based on geometrical [34] and
mathematical [35] considerations. In the early nineties it was found [36 - 38] that
scaling of both the initial design and the modified approximate displacements can be
expressed in a reduced basis form, using transformations of variables. Scaling concepts
are described in Section 5.3.

Extending the concept of scaling to include also the approximate displacements, in
addition to the initial design, significantly improved the results. The effectiveness of the
CA method in approximations of displacements in problems of cross-section
optimization as well as geometrical and topological optimization has been demonstrated
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[36 - 44]. It has been shown [40] that accurate approximations can be achieved by the
method for very large changes in the design variables by considering only first-order
approximations (only two basis vectors). Good approximate results have been
demonstrated for displacements, stresses and forces.

In the mid nineties, it was shown that the CA method provides the exact solution in
certain cases [41]. Specifically, exact solutions are achieved for some cross-sectional
variables if for any change in a member only one basis vector (the first-order term) is
considered. For simultaneous changes in several members, exact solutions are achieved
if for each changed member a corresponding basis vector is considered. This result is
valid also for all types of topological changes in the structure, namely, elimination and
addition of members and joints [42]. Exact and accurate solutions for all types of
topological changes [44] and geometrical changes [45] were demonstrated.

It has been shown [9] that exact solutions achieved by the CA method and the
Sherman-Morrison-Woodbury formulae are equivalent. The CA method and the
Sherman-Morrison formula both find that the change in nodal displacements due to a
change in the cross section area of a truss member is a multiple of the response to a pair
of collinear forces acting at the ends of the member. It has been shown also that this
result can be generalized to any structural member such as a frame element or a plate
element. Exact reanalysis by the CA method and its relationship with the Sherman-
Morrison-Wooodbury formulae are discussed in Section 8.2. The performance of the
CA method in reanalysis of damaged structures, including topological changes in
dynamic reanalysis of grillage and frame structures, was studied in the late nineties [46 -
48]. Nearly exact solutions were achieved for significant changes in the structural
response as a result of elimination of primary elements in bridge structures.
Applications of the CA method in structural optimization and reanalysis of damaged
structures are demonstrated in Chapter 8. Solution of reanalysis problems for
geometrical and topological changes is discussed in Chapter 9.

Most approximations that might be adequate for structural reanalysis are not
sufficiently accurate for design sensitivity analysis. It has been shown [49, 50] that the
CA method can be used also for effective approximations of the response derivatives for
designs where results of exact analysis are not available. Accurate results have been
achieved by either the direct method or the adjoint-variable method for calculating
derivatives. Design sensitivity analysis by the CA method is discussed in Chapter 10.

It has been shown in the late nineties that by using a Gram-Schmidt
orthonormalization procedure a new set of basis vectors can be generated such that the
reduced set of analysis equations becomes uncoupled [51, 52]. For any assumed number
of basis vectors, the results obtained by considering either the original set of basis
vectors or the new set of uncoupled basis vectors, are identical. The advantage in using
the latter vectors is that all expressions for evaluating the displacements become explicit
functions of the parameters of the structure. As a result, additional vectors can be
considered without modifying the calculations that have been already carried out. In
addition, the uncoupled system is more well-conditioned.

The CA method has been used successfully in the solution of nonlinear analysis and
dynamic reanalysis problems. It has been shown [51] that the method is good for
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calculating the modified displacements at each iteration cycle of nonlinear analysis.
Accurate results and significant savings in computational effort have been reported in
reanalysis of eigenproblems [47, 53, 54], Application of the method in nonlinear
reanalysis is demonstrated in Chapter 11 and solution of vibration problems is discussed
in Chapter 12.

Some considerations related to the accuracy of the results and convergence of the
solution process have been studied [55, 56]. It has been shown that a preconditioned
conjugate gradient method and the CA method provide theoretically identical results.
As a result, some convergence criteria and error expressions developed for conjugate
gradient methods can be used for the CA method. The method has been successfully
applied to both low-rank and moderately high-rank modifications to structures [57].
Accurate results were reported for large scale systems [58] and reliability analysis
problems [59].

In summary, the CA method is based on a general approach, which is suitable for
various structural analysis and reanalysis problems, including sensitivity analysis,
nonlinear analysis and dynamic analysis. The method has been used for various types of
changes in the structure, including cross-sectional, topological and geometrical changes.
Accurate results can be achieved efficiently for significant changes in the structure, and
exact solutions are obtained in certain cases. Finally, the efficiency of the calculations
and the accuracy of the results can be controlled by the level of simplification and the
amount of information considered. That is, better accuracy can be achieved at the
expense of more computational effort.
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4 Direct Methods

Direct (closed form) reanalysis methods are efficient for low-rank changes in the
stiffness matrix. In particular, these methods are applicable to situations where a
relatively small proportion of the structure is changed and the changes in the stiffness
matrix can be represented by a small sub-matrix. Direct methods are inefficient when
the sub-matrix of changes in the system stiffness matrix is of high-rank or large.

The rank of a matrix A (rank A) is the dimension of the linear space spanned by its
columns. Rank A is equal to the maximum number of linearly independent columns (or
rows) of A. Rank A is also equal to the order of the square sub-matrix of A of greatest
order whose determinant does not vanish.

Direct methods are usually based on the Sherman-Morrison [1] and Woodbury [2]
formulae for the update of the inverse of a matrix. Surveys on these methods are given
elsewhere [3 - 5]. A comprehensive historical survey of the origin of these formulae is
presented in [4]. It has been shown [5] that various reanalysis methods may be viewed
as variants of these formulae. When the stiffness matrix is modified by a rank-one
increment, the solution can be updated inexpensively with the Sherman-Morrison
formula by solving the initial analysis equations with a different right-hand side vector,
which is a factor of the matrix increment. Similarly, solution for a higher-rank change in
the stiffness matrix can be carried out by superposition of rank-one changes. This is
reflected in the Woodbury formula.

The Sherman-Morrison formula for exact solutions for a single rank-one change is
introduced in Section 4.1. The Woodbury formula for exact solutions in cases of
multiple rank-one changes is presented in Section 4.2. Exact solutions for general
changes in the design are developed in Section 4.3.

4.1   A SINGLE RANK-ONE CHANGE

For a change of rank-one in the n × n stiffness matrix , the matrix of changes can
be expressed in terms of the vectors v, w and a scalar as
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where the scalar is positive or negative, depending on the sign of the stiffness
change, and

The Sherman-Morrison (S-M) formula, giving the change in the inverse of a matrix due
to a rank-one change can be expressed in terms of v and w as

Using the relation of Eq. (4.2), we can express the S-M formula in terms of v and as

Define the vector t by

Post-multiplying Eq. (4.4) by the load vector and substituting Eqs. (3.1) and (4.5),
we obtain the S-M formula

If

Eq. (4.6) becomes

In summary, solution by the S-M formula for evaluating the modified displacements,
due to a rank-one change in the stiffness matrix , involves the following steps:

a.

b.
c.

The vector t is calculated by Eq. (4.5). It can be observed that this step is equivalent
to the solution of the initial analysis equations with a different right-hand side
vector.
The scalar a is determined by Eq. (4.7).
The modified displacements are calculated by Eq. (4.8).
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4.2  MULTIPLE RANK-ONE CHANGES

For m rank-one changes (i = 1, 2, ..., m) in the n × n stiffness matrix, the total
change in stiffness can be expressed in terms of the matrices V, W and a diagonal
matrix H as

where matrices V and W are of order n × m, matrix H is of order m × m and

The Woodbury formula, giving the change in the inverse of a matrix due to a rank-m
change is given in terms of V and W as

Using Eq. (4.10), we can express the Woodbury formula in terms of V and H as

Define the matrix T by

Post-multiplying Eq. (4.12) by and substituting Eqs. (3.1) and (4.13), we obtain the
Woodbury formula

Denoting the right-hand term in parentheses, called the capacitance matrix, by C

defining the vector A as

and substituting into Eq. (4.14), we find the modified displacements
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In summary, solution by the Woodbury formula for evaluating the modified
displacements, due to m rank-one changes in the stiffness matrix, involves the
following steps:

a.
b.
c.

The matrix T is calculated by Eq. (4.13).
The vector A is determined by Eq. (4.16).
The modified displacements are calculated by Eq. (4.17).

It can be observed that calculation of matrix T by Eq. (4.13) is equivalent to the
solution of the initial analysis equations with m different right-hand side vectors. In
addition, calculation of the vector A involves solution of the m × m set of Eq. (4.16).
When the rank of m is small compared to the order of K, the main cost is the solution
of Eq. (4.13). For a banded matrix K of order n and bandwidth b, this will require about
mnb multiplications. The factorization of the matrix will require about
multiplications. Therefore, the above solution process is effective only when the ratio
m/b is a relatively small fraction.

Example 4.1 - Exact Solutions by the S-M Formula. To illustrate the calculation of
the exact displacements by the S-M Formula, consider the ten-bar truss shown in
Figure 4.1. The truss is subjected to a single loading condition of two concentrated
loads, the modulus of elasticity is E =30 000 and the eight analysis unknowns are the
horizontal (to the right) and the vertical (downward) displacements at joints 1, 2, 3 and
4, respectively. Assuming the initial cross-sectional areas X = 1.0, we will present the
solution for two separate changes.

Case 1. For a change in member 1.
Case 2. For a change in member 2.

The corresponding matrices of change, and are given by
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where are the members lengths and

The vectors and are computed by Eq. (4.5)
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and the scalars and are computed by Eq. (4.7)

The final modified displacements obtained by the S-M formula for both cases are
computed by Eq. (4.8)

Case 1

Case 2

4.3   GENERAL PROCEDURE

Assume the general case where the incremental stiffness matrix can be compressed,
by eliminating zero columns and rows, to form a reduced incremental matrix of
size equal to the number of changed columns (or rows) in matrix K. The relation
between and is given by

where b is a Boolean matrix with linearly independent rows, each of which contains all
zeroes except for one unit value, located at the column number where a change in K
occurs.
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It has been shown [6] that the following formula for computing can be derived
from the Sherman-Morrison identity

where I is the identity matrix. Note that both matrices I and are of size
equal to that of In addition, for and Eqs. (4.11) and (4.19) are
equivalent.

The following procedure [6] utilizes symmetry and positive definiteness properties to
compute the modified displacements directly. Assume that the initial stiffness matrix
is available from the initial analysis in the decomposed form

where is an upper triangular matrix. Denote

where is the change in the displacements. Post multiplying Eq. (4.19) by and
substituting Eqs. (3.1) and (4.21) yields

The reduced unsymmetrical matrix can readily be shown to be
nonsingular, even when is singular. Using from Eq. (4.20) we define the
symmetric influence matrix of unit changes, Q, by

where the rectangular matrix Z is defined as

The matrix Z can be produced by a forward-substitution process performed on
Using Eqs. (4.23) and (4.24), we can write Eq. (4.22) as

This equation can be written in convenient positive-definite form by extracting the
matrix Q as a common factor from the matrix to be inverted, as follows
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Matrices Q and can be shown to be positive definite, thus pivoting is
unnecessary in the triangularization. An optimal order of calculation is proposed
elsewhere [6, 7] and illustrated in the following numerical example.

Example 4.2. To illustrate calculation of exact displacements by the procedure of Eq.
(4.26), consider a structure with the following initial values

Changes are made to the structure as follows

To determine by Eq. (4.26), we calculate the following intermediate values

The matrix is factorized into
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and the vectors, are calculated by

The final results for Eqs. (4.26) and (4.21) are
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5  Local Approximations

Local (single-point) approximations of displacements and stresses are often used in
various design and optimization problems. Some of these approximations are presented
in this chapter. In Section 5.1, the common Taylor series and the binomial series
approximations are described. The relationship between the two series approximations
is discussed and it is shown that for the common case of homogeneous displacement
functions they are equivalent.

Various first-order approximations, using intermediate variables, are presented in
Section 5.2. These approximations may significantly improve the accuracy of the results
with almost no additional computational effort. The approximations presented include
the common direct and reciprocal approximations, as well as conservative and convex
approximations.

The basic concepts of scaling of a design are introduced in Section 5.3. A method for
improving the accuracy of the approximations by scaling of the initial design is
developed, using either geometrical or mathematical considerations for selecting the
scaling multiplier. It is shown that the accuracy of conventional series approximations
can be improved significantly with little computational effort. Scaling of both the initial
design and some terms of the resulting approximations is then presented and it is shown
that these scaled approximations can be expressed in a reduced basis form.

5.1   SERIES EXPANSION

A typical series expansion of the displacements r can be expressed as

where (i = 1, ..., s) are the series terms and s is the number of terms considered. The
common Taylor series and binomial series approximations are described in this section.

5.1.1  The Taylor Series
Taylor series is one of the most commonly used approximations in optimization of
structures. For a vector X of design variables the first three terms of the series, obtained
by expanding r about an initial design point , are given by
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where = the vector of initial displacements, matrix of first derivatives of r

with respect to X at ; matrix of second derivatives of the jth component of r

with respect to X at ; vector of changes in the design variables;
and  jth component of vector

The main difficulty in using Taylor series is the calculation of high-order derivatives.
The first-order (two term) approximations require evaluation of the first derivatives of
displacements which can readily be calculated [see Chapter 10]. Once the matrix
of first derivatives is available, each reanalysis involves only calculation of the product

This is probably the most efficient reanalysis model.
If the accuracy of the first-order approximations is insufficient, second-order

methods might be needed. These methods can be divided into two groups:

a.

b.

Methods based on calculation of the complete matrices. An advantage of this

approach is that all available second-order information is used. However, the
computational effort involved in this calculation might be prohibitive.
Methods based on consideration of only the diagonal elements of matrices [e.g.

1, 2]. Neglecting the off-diagonal elements of matrices will considerably

reduce the computational effort for the second order approximations. In addition,
the use of diagonal second order derivatives will provide separable approximations
which are desirable in some applications.

5.1.2  The Binomial Series
Consider the modified analysis equations (3.5), which can be rearranged to read

Writing this equation as the recurrence relation

where is the value of r after the kth cycle, and assuming the initial value
we obtain the following series
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where I is the identity matrix. The matrix B and the vector are defined by

That is, the first three terms of the series are given by

We see that the series terms can be calculated by the recurrence relation

In many applications the load vector is unchanged, that is and . In such
cases the first term is already given from initial analysis of the structure. It will
be shown in Section 7.1.1 that calculation of the series terms by Eq. (5.8)
involves only forward and backward substitutions in cases where is given from the
initial analysis in the decomposed form of Eq. (3.2).

The series of Eq. (5.5) can be obtained in an alternative way as follows.
Premultyplying Eq. (3.5) by and substituting Eqs. (5.6) yields

Premultiplying Eq. (5.9) by and expanding

gives the binomial series of Eq. (5.5). It will be shown in Section 5.1.3 that the terms of
the binomial series [Eq. (5.7)] are equivalent to those of the Taylor series [Eq. (5.2)] for
homogeneous displacement functions.

Both the Taylor series and the binomial series are based on information on a single
design. As a result, the accuracy of the results might be insufficient for large changes in
the design, where problems of slow convergence or divergence of the series may be
encountered. Several methods have been proposed to improve the series convergence.
These include the Jacobi iteration, block Gauss-Seidel iteration, dynamic acceleration
and scaling of the initial design [3 - 5]. It will be shown in Section 5.3 that some of
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these methods significantly improve the accuracy of the results with little computational
effort. The accuracy can be improved further by considering the binomial series terms
as basis vectors in the reduced basis method, as will be shown in Chapter 7.

The advantage of using the binomial series is that, unlike the Taylor series,
calculation of derivatives is not required and high-order terms can readily be calculated.
This makes the method more attractive in various applications where derivatives are not
available or difficult to calculate. Assuming for example first-order (two-term)
approximations, we must repeat only the calculation of B for each trial design. This
requires calculation of a single vector by forward and backward substitutions.

In some particular cases, repeated calculation of the series terms involves almost no
computational effort. Consider for example the common case of approximations along
the line defined by

where

The elements of matrix are constant, representing the given direction of
movement, and the scalar a is the step size variable. If [see Eq. (5.6)] and

the terms of the binomial series [Eqs. (5.7)] become

where the elements of vectors and are constant, defined by

That is, once and are calculated, then for any assumed it is necessary to

calculate only the products and
For a change of rank-one in the stiffness matrix, the matrix of changes can be

expressed in the form of Eq. (5.12) where the elements of matrix are again
constant, and the scalar is the step size variable.

5.1.3  Homogeneous Functions
In many structural design problems the displacements, the stresses and the forces are
homogeneous functions of the design variables [6]. It will be shown in this section that
in such cases the Taylor series and the binomial series become equivalent. Assume that
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the displacements r are homogeneous functions of degree m in the vector of design
variables X, for which we have by definition

where is a scalar multiplier. Euler theorem on homogeneous functions states that

It is instructive to note that the derivatives of homogeneous functions of degree m are
homogeneous functions of degree m-1, that is

These properties can be used to obtain simplified local approximations of
displacements [6, 7].

Assuming the first-order Taylor series expansion of the displacements r

and substituting Eq. (5.16) into Eq. (5.18), we find

Consider, for example, the common case of cross-sectional design variables. If the
elements of the stiffness matrix are linear functions of X and the elements of the load
vector are constant ( ) then the displacements are homogeneous functions of
degree m = -1 in X, and Eq. (5.19) becomes

Differentiating Eq. (3.1) with respect to a design variable X and rearranging gives

For a change of a single variable the stiffness matrix K can be expressed
as

where the elements of matrix are constant. From Eq. (5.22), the elements of matrix
are constants given by



70 Chapter 5

Substituting Eqs. (5.21) and (5.23) into Eq. (5.18) yields

From Eq. (5.22) matrix can be expressed as

Substituting Eqs. (5.6) and (5.25) into Eq. (5.24) yields

This expression is identical to the first two terms of Eq. (5.5). That is, for the common
case of homogeneous displacement functions of degree m = -1, the first-order Taylor
series and the first-order binomial series are equivalent.

5.2  INTERMEDIATE VARIABLES

Various approximations can be improved by using intermediate variables, defined
by

A typical example is the general form

where p is a predetermined parameter. One of the more popular intermediate variables
is the reciprocal of [8]

The reason for this is that displacements and stresses in determinate structures are often
linear functions of the reciprocal variables. For statically indeterminate structures, the
use of these variables also proves to be a useful device to obtain better approximations,
because the response functions are nearly linear functions of the variables. Intermediate
variables are often most effective for homogeneous functions [4, 6].

One disadvantage of the reciprocal approximation is that it becomes infinite if any
is zero. This difficulty can be overcome by the simple transformation [9]
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where the values of are typically small compared to representative values of the
corresponding

Consider the first order Taylor series expansion of a constraint function g(X) in terms
of the design variables denoted as a direct approximation

where n is the number of design variables. To improve the quality of the results, g can
be expressed in terms of the reciprocal variables [Eq. (5.29)]. The resulting
expression, denoted as a reciprocal approximation is given by

5.2.1  Conservative and Convex Approximations
In some applications it is desirable to introduce conservative approximations
for the constraint Since the constraint is expressed as is a
conservative approximation if it is more positive than g. Conservative approximations
are useful, for example, in optimal design procedures where it is desired that all
intermediate solutions lie in the feasible region. Such procedures have an advantage
from a practical point of view in that the solution process can be stopped at any time
with a resulting feasible solution. A hybrid form of the direct and reciprocal
approximations, which is more conservative than either, can be introduced [10].
Subtracting the reciprocal from the direct approximation, we derive the form of this
conservative approximation:

The sign of each term in the sum is determined by the sign of the ratio

which is also the sign of the product It is possible to create a
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conservative approximation which includes the more positive term for each design
variable

where

It should be noted that this approach does not ensure that the approximate constraint is
conservative with respect to the true constraint. The conservative approximation is only
more conservative than both the linear and the reciprocal approximations.

A function f(X) is said to be convex if, on the line connecting every pair of points
and in its domain of definition, the value of the function is less than or equal to a
linear interpolation and The conservative approximation has the advantage
of being a convex approximation [11], However, it has been found that this
approximation tends to be less accurate than either the direct or the reciprocal
approximation.

The Method of Moving Asymptotes (MMA) is intended to introduce more accurate
approximations [12]. Using this method, we define the intermediate variables such that
the degree of convexity, and hence conservativeness, of the approximation can be
adjusted. Instead of using direct and reciprocal variables, the method employs one of the
intermediate variables

where and are specified parameters that may be changed. Based on this
transformation, the moving asymptotes approximation is formulated as

where
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Since all the coefficients in Eq. (5.37) are non-negative, the approximations for g are
convex functions. The approximated functions are driven by the selected values for the
parameters and which act as asymptotes.

The moving asymptotes approximation is general; the direct approximation and the
conservative approximation can be viewed as the following special cases:

For no intermediate variables are considered, and the direct
formulation of Eq. (5.31) is obtained.
For the conservative formulation of Eq. (5.34) is obtained.

Other values of and are possible, and these values may even be modified during
the solution process. However, it is not at all straightforward to find suitable values for
the asymptotes. To avoid the possibility of any unexpected division by zero, move
limits and canbe chosen such that and The closer  and

are chosen to the more curvature is given to the approximate function, and the
more conservative becomes the approximation of the original function. By choosing
and far away from the approximate function becomes close to linear.

Both formulations of Eqs. (5.34) and (5.37) are based on first-order convex
approximations that attempt to simulate curvature of the functions. The MMA method
offers more flexibility through the moving asymptotes and

5.2.2  Intermediate Response Functions
In statically determinate structures the element forces are independent of the cross-
sectional variables while the stresses are not. In statically indeterminate structures the
element forces might be nearly linear functions of the design variables even when the
stresses are highly nonlinear functions of the variables. As a result, improved
approximations of stresses can be developed by using element forces as intermediate
response quantities. That is, instead of using first-order approximations of the stresses
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it is possible to use the forces as intermediate response quantities to obtain [13]

Note that the approximation of Eq. (5.41) is exact for statically determinate structures.
In general, Eq. (5.41) produces a more accurate approximation than Eq. (5.40) because
it captures the cross coupling between the effect of and on the stress. This cross
coupling is present because the stress is a nonlinear function of the element force
which is a function of the and the element variable This can be seen by
examining the second partial derivatives of Eqs. (5.40) and (5.41). The second partial
derivative ofEq. (5.40) is zero while the second derivative of Eq. (5.41) is

Example 5.1 - First-Order Approximations Using Intermediate Variables. To
illustrate various first-order approximations using intermediate variables, consider the
constraints [4]

Assuming the initial point we obtain the following expressions.

a. Direct-linear approximations [Eq. (5.31)]

b. Conservative-convex approximations [Eq. (5.34)]
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c. Moving asymptotes approximations [(5.37)]

The various approximations are demonstrated in Figure 5.1. For the MM A, the closer
and are chosen to the more curvature is given to the approximate functions, and
the more conservative become the approximations of the original constraints.

5.3  IMPROVED SERIES APPROXIMATIONS

Concepts of scaling presented in this section can be used to significantly improve the
accuracy of series approximations. In addition, these concepts help to understand the
physical meaning of the results obtained by the CA method presented in Chapter 7, and
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explain the good accuracy of the approximations. The following two types of scaling
will be considered in this section:

a.

b.

The uniform scaling of the initial design, where the initial stiffness matrix is
multiplied by a scalar multiplier, and the exact displacements after scaling can
readily be determined. This type of scaling is most effective in cases where the
scaled design represents a better initial point then the original design.
Scaling of displacements, where some of the terms of the approximate
displacements are multiplied by scalar multipliers to improve the accuracy of the
results.

5.3.1  Scaling of the Initial Design
Scaling of the initial stiffness matrix is carried out by multiplying the initial stiffness
matrix by a positive scaling multiplier to obtain the modified matrix

From Eqs. (3.1), (3.5) and (5.43), it is clear that for the exact displacements
after scaling can be calculated directly by

where  is the vector of initial displacements. It should be noted that Eq. (5.43)
represents only an algebraic operation and it does not require linear dependence of the
stiffness matrix on the design variables. Only when all elements of K are linear
functions of the design variables X, will the matrix correspond to the design

In the general case where the elements of K are some nonlinear functions of X,
the scaled stiffness matrix might not have the usual physical meaning. The exact
stresses after scaling are calculated by substituting the scaled displacements (5.44) into
the stress-displacement relations.

For the reanalysis problem under consideration the object is to evaluate the
approximate displacements for various changes in the initial design. To improve the
accuracy of the binomial approximations [Eq. (5.5)] it is possible to assume a scaled
stiffness matrix as an initial point instead of . Then, the modified displacements
become some functions of as will be shown in the following.

Consider first the common case where the modified design is a scaled design as
given by Eq. (5.43). Then and matrix B [Eq. (5.6)] becomes

where I is the identity matrix. For we have and the remaining terms of
the binomial series become linearly dependent [Eqs. (5.7)]
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Thus, the exact modified displacements are determined directly by Eq. (5.44).
Consider the general case where the modified design is not a scaled design. Rewrite

the expression of K [Eq. (3.3)] in terms of as [see Figure 5.2]

If the scaled design is assumed as an initial point instead of , then the modified
stiffness matrix K can be expressed in terms of the corresponding changes instead
of the original changes From Eq. (5.47), is given by

Assume and as initial values instead of  and , respectively.
Then for  the binomial series [Eq. (5.5)] becomes

where is defined as

and B is given by Eq. (5.6). It can be observed that for matrix becomes B and
Eqs. (5.47) and (5.49) are reduced to Eqs. (3.3) and (5.5), respectively. Substituting Eq.
(5.50) into Eq. (5.49) and rearranging yields
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where is given by Eq. (5.6), are defined by Eqs. (5.8), and the coefficients
are given by (for s = 5)

The approximations of Eq. (5.51) are termed Scaled Approximations (SA). The
modified displacements are now some functions of the multiplier and it is possible to
choose such that the accuracy of the approximations is improved.

Selecting the Scaling Multiplier. Procedures for selecting the scaling multiplier have
been proposed in several studies [3-5]. Criteria for selecting based on either
geometrical or mathematical considerations are demonstrated in the following.

To establish a geometrical criterion for selecting the scaling multiplier express the
angle between the vector of the modified design variables X and the vector of the
initial design variables by [see Figure (5.3)]
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where denotes absolute value of X. The design variables X can be expressed as

If is selected such that the change in the design variables is reduced, then the
accuracy of the approximate modified displacements are generally improved. Choosing
for example perpendicular to the bisector of we find from the condition

that

It will be shown later in this chapter by numerical examples that by using this
geometrical criterion, the approximations of Eq. (5.51) provide much better results than
the binomial series without scaling Other possibilities for selecting on the
basis of geometrical considerations (such as perpendicular to or to X) are
demonstrated elsewhere [3].

An alternative mathematical approach for selecting is to minimize the Euclidean
norm of that is

where denotes the dimension of matrix B. One drawback of using the criterion of Eq.
(5.56) is that the elements of matrix B must be calculated. Since this operation involves
much computational effort, we may use an alternative criterion which minimizes the
Euclidean norm of the second term in the series of Eq. (5.49), that is [5]

Substituting from Eq. (5.50) into Eq. (5.57), differentiating and setting the result
equal to zero, yields

where
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The terms are the elements of and the terms are the elements of that are
already given by Eq. (5.7). The effect of on the quality of the approximations is
demonstrated by the following numerical examples.

Example 5.2 - Scaled Approximations, Cross Section Changes. The object of this
example is to demonstrate the accuracy of the results achieved by scaled
approximations for cross section changes. Consider the ten-bar truss shown in Figure
5.4 subjected to a single loading condition of two concentrated loads. The design
variables are the members' cross-sectional areas, the initial cross section areas  are
equal to unity, the modulus of elasticity is 30000, and the eight analysis unknowns are
the horizontal and vertical displacements at joints 1, 2, 3 and 4, respectively. The stress
constraints are and the minimum size constraints are
Assuming the weight as an objective function, we find the optimal (minimum weight)
design [4]

The line from the initial design to the optimal design is given by

where ∆X* is defined as

In this example, results will be demonstrated for various α  values. Summarized in
Tables 5.1 and 5.2 are results calculated by the following two methods, assuming first-
order (two-term) and second-order (three-term) approximations:



Local Approximations 81

Scaled Approximations using a Geometrical criterion [Eqs. (5.49), (5.55)].
Scaled Approximations using a Mathematical criterion [Eqs. (5.49), (5.58)].

As expected, the errors involved in the approximations increase with and smaller
errors are obtained for second-order approximations (Table 5.2). Results obtained by
the binomial approximations [Eq. (5.5) which are equivalent to the Taylor series in the
present case of homogeneous displacement functions] are not shown since very large
errors were obtained even for the smallest change

Example 5.3. Scaled Approximations, Geometrical Changes. To demonstrate the
accuracy of the results achieved by scaled approximations for geometrical changes,
consider the initial geometry of the ten-bar truss shown in Figure 5.4 with a fixed
uniform cross-sectional area of unity for all members. Assuming the depth of the truss
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as a single geometrical variable, Y, approximate displacements evaluated by the
and the for Y = 540 and Y = 720 (increase in the depth of the truss by 50% and
100%, respectively) are summarized in Tables 5.3 and 5.4. Again, higher accuracy is
achieved for smaller values and for second-order approximations (Table 5.4). In
addition, better results were obtained by the method.

5.3.2 Scaling of Displacements
It has been noted that scaling of the initial design may improve the accuracy of the
results. It is shown in this section how the approximate displacements can be expressed
in a reduced basis form, by extending the concept of scaling to include additional
multipliers.

Assuming, for example, three terms of the scaled approximations [Eq. (5.51)], the
resulting displacements are given by

where are defined by Eqs. (5.6), (5.8) and the coefficients
are given by [see Eq. (5.52)]



Local Approximations 83

Multiplying the first term and the second term of Eq. (5.60) by scaling multipliers
and respectively, we find

Substituting Eq. (5.61) into Eq. (5.62) gives

Denoting

and substituting Eq. (5.64) into Eq. (5.63) gives

where the matrix and the vector y are defined as

That is, scaling of the initial design and the first two terms of the scaled approximations
of Eq. (5.60) gives the expression of Eq. (5.65). This equation can be viewed as a
reduced basis expression, as will be shown in Section 6.2. Once the coefficients y have
been calculated, the scaling parameters can be uniquely determined by Eqs.
(5.64).
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6  Global Approximations

Global (multipoint) approximations are obtained by analyzing the structure at a number
of design points, and they are valid for the whole design space (or, at least, large
regions of it). This type of approximation may require much computational effort,
particularly in problems with large numbers of design variables. This difficulty can be
alleviated by the approach presented in Chapter 7.

Polynomial fitting and response surface methods are introduced in Section 6.1. In
response surface methods, the response functions are replaced by simple functions
(polynomials), which are fitted to data computed at a set of selected design points. So
far in practice, the use of these methods has been limited to problems with a few design
variables.

Reduced-basis methods are presented in Section 6.2. Using this approach, we
approximate the response of a large system, which is originally described by many
degrees of freedom, by a linear combination of a few pre-selected basis vectors. The
problem is then stated in terms of a small number of unknown coefficients of the basis
vectors. This approach is most effective in cases where highly accurate approximations
can be achieved by the reduced system of equations. A basic question in using reduced
basis methods relates to the choice of an appropriate set of the basis vectors. Response
vectors of previously analyzed designs could be used, but an ad hoc or intuitive choice
of these vectors may not lead to satisfactory approximations. In addition, calculation of
the basis vectors requires several exact analyses of the structure for the basis design
points, which might involve extensive computational effort. A method for selecting the
basis vectors that provides efficient and accurate results is presented in Section 7.1.1.

The conjugate gradient method described in Section 6.3 is an iterative method for
solving a set of linear equations. The problem can be stated equivalently as the
minimization of a quadratic function. The method generates a set of conjugate vectors
such that the solution requires little storage and computation. If the quadratic function is
minimized sequentially in an n dimensional space, once along each of a set of n
conjugate directions, the minimum will be found at or before the nth step, regardless of
the starting point. A preconditioned conjugate gradient method, intended to accelerate
convergence of ill-conditioned problems by transformation of the set of linear
equations, is then developed.

85
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6.1  POLYNOMIAL FITTING AND RESPONSE SURFACE

When the number of design variables is small it might be practical to analyze the
structure at a number of design points, and use the response at those points to construct
a polynomial approximation to the response at other points. Polynomial approximations
obtained by analyzing the structure at a number of design points are global
approximations. Obtaining such approximations can be quite expensive for problems
with large numbers of design variables. For example, if the object is to fit the structural
response by a quadratic polynomial, it is necessary to analyze the structure for at least
n(n+1)/2 design points (typically, many more are required to ensure a robust
approximation), where n is the number of design variables [1].

The most common global approximation is the response surface approach. Using this
approach, we compute the response functions at a number of points, and then fit an
analytical response surface, such as a polynomial, to the data. Construction of a
response surface often relies on the theory of experiments [2] and is an iterative process
that begins with the assumption of the analytical form of the response surface, for
example, a quadratic polynomial. The approximation contains a number of unknown
parameters, such as polynomial coefficients, that must be adjusted to match the function
to be approximated. Analyses are performed at a number of selected design points, and
a least square solution is typically used to extract the parameter values from the analysis
results. Then the response surface is used to predict the response at a number of selected
test points, and statistical measures are used to assess the accuracy of the response
surface. If the fit is not satisfactory, the process is repeated, and further experiments are
made, or the model is improved by removing and/or adding terms.

Response surface techniques have not been used extensively in structural analysis
(see [3] for applications in structural optimization). This may be due to the fact that the
number of analyses required in constructing the response surface increases dramatically
with the number of design variables. The method is practical only for problems with a
small number of design variables.

6.1.1  Polynomial Fitting
Polynomial-fitting techniques are most efficient and tend to give solutions with
sufficient accuracy when the response functions can be well approximated by low-
order polynomials. Polynomial fitting is often used to obtain explicit approximations of
the displacements along a line. While series expansions are based on a single exact
analysis, polynomial fitting techniques usually require analyses or calculation of the
displacement derivatives for several designs. Since more information is used in this
class of approximate methods, compared with series expansion, the quality of the
approximations is higher at the expense of more computational effort.

Quadratic Fitting. For quadratic fitting we assume that the function of the single
variable can be approximated by the quadratic function
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The constant coefficients a, b and c can be determined by computing the value
of at three different values, and solving the equations

If we use and where is a pre-selected step size, Eqs.
(6.2) become

Solving for a, b, and c, we find

Similarly, quadratic fitting of the displacement vector r can be approximated by

where the constants a, b, c can be determined from results of analyses of three designs.
Using for example results of exact analyses at substituting the
corresponding values r*, r**, r*** into Eq. (6.5) and solving for a, b, c gives

Assuming conditions that are based on calculation of displacements and displacement
derivatives at and displacements at i.e.,
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and substituting into Eq. (6.5), we find

Cubic Fitting. If the derivatives of f with respect to are readily computed, a
two-point cubic interpolation can be used. The function is approximated by

The parameters a, b, c, and d can be determined by solving the following equations for
points and

Assuming A = 0 and and solving Eqs. (6.11), we find

The constants for cubic fitting of the displacement vector r

can be determined in a similar way from the values of displacements and displacement
derivatives at two points, , and ,
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Example 6.1 – Comparison of Various Approximations. Consider the three-bar truss
shown in Figure 6.1. The modulus of elasticity is 30 000 and the cross-sectional areas
are equal to unity. The geometric variables represent the location of the free
node. Two cases of changes along a line are considered [4]:
Case a

Case b

Figure 6.2 shows the results obtained for the horizontal displacement for the two cases
by the following methods:

A = exact solution.
B = first-order Taylor series [Eq. (5.2)].
C = second-order Taylor series [Eq. (5.2)].
D = quadratic fitting [Eq. (6.9)].
E = quadratic fitting [Eq. (6.6)].
F = cubic fitting [Eq. (6.13)].
G = first-order binomial series [Eq. (5.5)].

It can be seen that the first-order approximations (methods B and G) provide poor
results. Better accuracy is obtained by second-order approximations (method C), and
the best results are achieved by the polynomial fitting techniques (methods D, E, F).
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6.1.2   Least-Square Solutions
It is possible to evaluate the displacements by solving a reduced set of equations
obtained from a least-square solution. Assume, for example, that the displacement
vector r of a new design can be approximated by a linear combination of s
displacement vectors of previously analyzed designs (s is assumed to be
much smaller than the number of degrees of freedom n)

where is the n×s matrix of the displacement vectors and y is a vector of coefficients
to be determined, defined as

The errors in the equilibrium equations for the approximation of Eq. (6.14) are given by
the residual load vector
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Following the least squared concept to minimize the square of the errors we may
write the quadratic form q(y)

Substituting Eq. (6.16) into Eq. (6.17), differentiating with respect to y and setting the
result equal to zero, we obtain the set of s×s linear equations

where the s×s matrix A and the s×1 vector b are given by

The solution process to find r involves the following steps [5]:

a.
b.
c.
d.

The modified stiffness matrix K is introduced.
The matrix A and the vector b are determined by Eqs. (6.19).
The coefficients y are calculated by solving the set of Eq. (6.18).
The displacements r are evaluated by Eq. (6.14).

It should be noted that although may be very small, the error in the solution might
still be large. On the other hand, for an accurate solution must be small. Therefore,
a small residual is a necessary but not a sufficient condition for an accurate
solution. To obtain more information on the solution errors the corresponding residual
displacements vector is expressed as

An analysis can be performed that uses the condition number of K, defined by the ratio
of the maximum and minimum eigenvalues, to evaluate the solution errors. It has been
shown [6] that a large condition number means that solution errors are more likely.

Example 6.2 – Least-Square Solutions. Consider the ten-bar truss shown in Figure 6.3
subjected to two loads. The modulus of elasticity and the initial cross-section areas
are equal to unity. The eight unknowns are the horizontal and vertical displacements at
joints 1, 2, 3 and 4, respectively. The stress constraints are and the
minimum size constraints are Assuming the weight as an objective function,
we find that the cross-section areas for the optimal (minimum weight) design are [7]

The following two cases of modified designs relative to X*=1.0 are considered:
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a. The nearly scaled design of

b. The far-from-scaled optimal design

For second-order approximations [two terms of Eq. (6.14)] the displacements obtained
by the Least-Square (LS) solutions are summarized in Table 6.1. Accurate results are
obtained in case a for large changes (up to 900%) in the design variables. The high
quality of the results can be explained by the fact that the modified design is relatively
close to a scaled design. The results obtained in case b are less accurate, due to the
nature of change in cross sections (simultaneous changes of up to +905% and -90%).
High-order terms could be used to improve the accuracy.

6.2  REDUCED BASIS

It has been noted that in many structural analysis and design problems, a large system
of simultaneous equations must be solved repeatedly in order to evaluate the response
of the structure. This process will involve much computational effort, particularly for
large-scale, nonlinear and time-dependent (dynamic) problems.
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The basic idea of the reduced-basis approach is that of transforming a problem with a
large number of Degrees of Freedom (DOF) into one with a much smaller number of
DOF. The response of the system, which was originally described by a large number of
DOF, is approximated by a linear combination of a few pre-selected basis vectors. The
problem is then stated in terms of a small number of unknown coefficients of the basis
vectors. The resulting analysis model is more efficient, since only the corresponding
small system of equations must be solved during reanalysis. This approach is most
effective in cases where highly accurate approximations can be achieved by the reduced
system of equations.

The solution process involves the following two main stages:

a.

b.

Generation of a number of basis vectors for approximating the response of the
system.
Determination of the unknown coefficients of the basis vectors, using a variational
technique.

The reduced-basis approach has been used successfully for various applications. The
status and some developments of reduced-basis methods and their application to various
mechanics problems are reviewed and summarized elsewhere [8]. Applications in
several areas such as eigenvalue problems, nonlinear vibrations, and dynamic analysis
are discussed in that review.

The reduced-basis approach for static analysis is presented in Section 6.2.1. We
derive the reduced set of equations and discuss considerations for selecting the basis
vectors. The more complicated problem of dynamic analysis is considered in Section
6.2.2. We review some reduced basis models and describe a method for generating the
basis vectors.

6.2.1  Static Analysis

The Reduced Set of Equations. In the approach presented in this section [9], we
assume that the displacement vector r of a new design can be approximated by a linear
combination of pre-selected s linearly independent basis vectors, also called global
approximation vectors, [see Eq. (6.14)]

where we assume that s is much smaller than the number of degrees of freedom n, is
the n×s matrix of the basis vectors and y is a vector of coefficients to be determined
[Eqs.(6.15)]
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The space spanned by the global approximation vectors (matrix is usually referred
to as the reduced basis subspace.

The justification for using this approach is that the large number of degrees of
freedom describing the response of the system is often dictated by such considerations
as complex topology or numerous changes in the system properties, rather than by the
complexity of the response. The power of the reduced basis method derives from the
fact that for many systems of practical interest, the transformation of Eq. (6.21) can
provide highly accurate approximations of r, even when s is very much smaller than n.

The modified analysis equations (3.5) are now approximated by a smaller system of
equations in the new unknowns y. Substituting Eq. (6.21) into Eq. (3.5) and
premultiplying the resultant equation by gives the s×s system

Introducing the notation

and substituting Eq. (6.24) into Eq. (6.23), we obtain

The s×s matrix is full but is symmetric and much smaller in size than the n×n matrix
K of the original system. That is, rather than computing the exact solution by solving
the large n×n system in Eq. (3.5), we first solve the smaller s×s system in Eq. (6.25) for
y, and then evaluate the approximate displacements r for the computed y by Eq. (6.21).

The reduced set of Eqs. (6.25) can be obtained from the total potential energy
expression

Substituting Eq. (6.21) into Eq. (6.26) gives

Differentiating Eq. (6.27) with respect to y, setting the result equal to zero and using
the symmetry of  K, we obtain the following conditions for minimum potential energy

From Eq. (6.24), these conditions are equivalent to the reduced set of Eqs.(6.25).
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Selecting the Basis Vectors. The reduced-basis method is often based on analyzing the
structure at a number of points, and it may thus be classified as a global approximation
method. The effectiveness of the method depends, to a great extent, on the appropriate
choice of the basis vectors (the global approximation vectors) which span
the reduced basis subspace. Displacement vectors of previously analyzed designs could
be used, but it should be emphasized that an ad hoc or intuitive choice of such vectors
may not lead to satisfactory approximations. In addition, calculation of the basis
vectors requires several exact analyses of the structure for the basis design points,
which might involve extensive computational effort.

Proper selection of the basis vectors is perhaps the most important factor affecting
the successful application of the reduced-basis method. Of course, an ideal set of basis
vectors will provide accurate results with a small computational effort. Specifically, the
following criteria must be satisfied in arriving at the basis vectors to be used [10]:

Linear independence.
Low computational expense in their generation, and simplicity of automatic
selection of their number.
Good approximation properties, in the sense of high accuracy of the solution
obtained by using these vectors.
Simplicity of obtaining the system response characteristics using these vectors.

The first criterion is necessary for convergence of the approximation process and the
latter three criteria govern the computational efficiency of the method and its
effectiveness. The proper selection of the basis vectors depends on the system response
characteristics being approximated, as well as the particular application.

6.2.2  Dynamic Analysis
From the viewpoint of computational effort, the reduction of degrees of freedom is
more important in dynamic problems than in static problems, because the solution must
be performed successively at many different times to generate the time history of the
response. Since the discretized model of a complicated structural system may have
many degrees of freedom, it is customary to reduce the equations of motion before the
dynamic response is calculated.

In a mode-superposition analysis, the main computational effort is spent in solving
the eigenproblem. Since exact solution of the eigenproblem can be prohibitively
expensive, approximate solution techniques have been developed, primarily to calculate
the lowest eigenvalues and corresponding eigenvectors, when the order of the system is
large. Those degrees of freedom that are not required to appear in the global finite
element model are eliminated by static condensation. In the calculation of frequencies
and mode shapes, the basic assumption of static condensation is that the mass of the
structure can be lumped at only some specific degrees of freedom without much effect
on the accuracy of the results. The Rayleigh-Ritz analysis is a general technique for
finding approximations to the lowest eigenvalues and corresponding eigenvectors of the
eigenproblem.
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A comprehensive review with numerous references on reduced-basis methods is
given elsewhere [8]. The earliest applications of these methods have been to eigenvalue
problems, and date back to the early 1960's. At that time, the calculation of the
eigenvalues and eigenvectors of large systems by the available algorithms required
much computational effort. The earliest reduction method applied to linear dynamic
problems is the classical modal superposition technique, in which the global
approximation vectors are selected to be linear vibration modes. In the analysis of linear
structures the response is often expressed in terms of the undamped free vibration mode
shapes, using only the lower modes. The main analytical problem then becomes the
evaluation of the mode shapes, and the problem of reducing the number of degrees of
freedom is transferred to this phase of the analysis.

The different reduced-basis methods for eigenproblems can be classified according
to the selection of the basis vectors into two general categories:

a.

b.

Single step methods, where both the basis vectors and the reduced equations are
generated at a single step and then used to evaluate the approximate eigenvectors
and eigenvalues. Examples for this class of methods include Rayleigh-Ritz
reduction (projection method), static condensation, and dynamic substructuring or
component mode synthesis techniques.
Multi-step methods, or generalized reduction methods, in which the basis vectors
and the reduced equations are modified in successive iterations. In some of these
methods the initial matrix consists of very simple vectors. Examples of these
methods include the Lanczos method and subspace iteration.

Two of the most widely used modal methods for transient structural analysis are the
mode-displacement method and the mode-acceleration method. In these two methods
the dynamic response is approximated by a linear combination of modal displacements
and modal accelerations, respectively. To improve the convergence rate of modal
methods, a higher-order modal method can be used. In an effort to avoid the cost
associated with calculating the eigenmodes, other choices have been proposed for the
reduced-basis subspace. These include Taylor subspace, in which the global
approximation vectors are the various-order time derivatives of the response, Lagrange
subspace, in which the response vectors at various times are selected as the
approximation vectors, Runge-Kutta subspace and Krylov subspace. A comprehensive
discussion and references on these and other methods are given elsewhere [8].

Using transformations similar to those of Eq. (6.21), we can express the total
displacement vector r in terms of the free-vibration mode shapes as

where n is the number of degrees of freedom, is the modal amplitude, and the
components of y are the normal coordinates of the structure.
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Some problems may occur if exact eigenvectors are used in the mode superposition
analysis. First, the solution of the eigenproblem for large structures is often the most
costly phase of a dynamic response analysis. In addition, the number of eigenvectors
required to obtain an accurate dynamic solution is not known until after the
eigenproblem is solved.

The Reduced Problem. Considering again the equations of motion (2.51) and ignoring
the notation of the time variable (t) we find

A standard model reduction process for the system of Eqs. (6.30) can be described as
the simple coordinate transformation of Eq. (6.21). Substituting the latter equation into
Eq. (6.30) and pre-multiplying the resultant equation by we obtain

where the reduced quantities are defined as

The transformation matrix could be a modal matrix containing normal modes of the
system. The model reduction process is then just the standard modal superposition
technique (the mode-displacement method), and Eq. (6.31) is a set of uncoupled linear
ordinary differential equations. More generally, could contain general Ritz vectors or
so-called "assumed modes" [11].

The Rayligh-Ritz approximation method (see e.g. [12]) has been used widely to
reduce the dimension of the equations of motion. The method is based on the
assumption that the displacement vector can be expressed in terms of a set of assumed
shapes. The latter are taken as approximations of corresponding true vibration mode

shapes Orthogonal Ritz vectors, which are not the eigenvectors of the system,
have been used successfully in the reduction process [13]. The crucial step in the
analysis is the choice of the Ritz coordinates, which must be efficient in the sense that a
relatively small number of assumed shapes will be sufficient for reliable analysis of the
dynamic response.

One approach to dealing with the problem of the adequacy of the assumed set of
displacement vectors, known as subspace or simultaneous iteration, is to apply iterative
improvement of the vectors. In this method, the trial vectors are all subjected to inverse
iteration combined with some technique (such as Gram-Schmidt orthogonalization) that
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forces convergence to independent shapes. The convergence is to the lowest undamped
vibration mode shapes, and then coordinate transformation leads to an uncoupled set of
modal equations. It frequently is assumed that this modal coordinate transformation is
the most efficient method of dynamic response analysis because the independent modal
equations can be solved separately and the total response is obtained by superposition
(due to orthogonalization, all matrices are diagonal).

The Krylov Sequence and Lanczos Method. The basis vectors of the Krylov subspace
consist of the following vectors

where s is the number of vectors considered, r1 is an arbitrary starting vector and
matrix D is defined as [see Eq. (2.65)]. When the starting vector in the
Krylov subspace is selected to be the static response due to the given loads, the global
approximation vectors are referred to as Ritz vectors. Various studies deal with the
application of Ritz vectors to large eigenproblems and the assessment of the
computational effort required for predicting the dynamic response of large systems by
using different modal methods and the Lanczos method. Lanczos method dates back to
1950 [13]. It is equivalent to the discrete Rayleigh-Ritz reduction, with vectors in the
Krylov sequence selected as the global approximation vectors. The method generates
the latter vectors [Eq. (6.33)], and the sequence converges to the eigenvector
corresponding to the smallest eigenvalue of the eigenproblem of Eq. (2.55).

The Lanczos coordinates are a very effective set of Ritz vectors, where the vectors
are derived by a procedure that is similar in many respects to the matrix iteration
analysis of the fundamental vibration modes [Eq. (2.66)]. In the derivation of the
Lanczos coordinates, each step of the iteration sequence yields one Lanczos shape,
whereas the standard matrix iteration procedure gives only the fundamental mode shape
and the iteration serves only to improve the approximation to the true vibration shape.

The Lanczos algorithm involves supplementing the Krylov sequence with Gram-
Schmidt orthogonalization process at each step. The result is a set of M-orthonormal
vectors that is used to reduce the dimension of the dynamic equation set. These vectors
do not have the full uncoupling property of the mode shapes, but they are much less
expensive to generate.

Load Dependent Ritz Vectors. Ritz methods have long been used to approximate the
dynamic response of structures and as model reduction techniques to reduce the size of
large-scale models. The Ritz vectors are an attractive alternative to standard
eigenvectors (normal modes), since Ritz vectors can be computed with significantly
less computational effort. A proper choice of Ritz vectors, employed as starting vectors
within some eigenvalue solvers, can significantly accelerate the iteration process of an
eigenvalue solver.

Load dependent Ritz vectors are a particular class of Ritz vectors where information
about the loading on the structure is used to generate the vectors. A procedure for
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generating special Lanczos coordinates, called derived Ritz vectors [12, 14] is described
in the following. The initial vector of the coordinate sequence is the deflected shape
resulting from static application of the dynamic load distribution, and the subsequent
vectors account for inertial effects on the dynamic response. The following notation is
used in the derivation of the vectors:

The preliminary deflected shape calculated as the first step in the derivation of each
vector is denoted by where the subscript is the number of the derived vector.
After orthogonalization with the preceding vectors the vector is distinguished by a
bar over the symbol.
After normalization the final form of the derived vector is designated by the Ritz
vector symbol

The derivation of the vectors involves the following steps [12]. To derive the first
vector, the static equilibrium equations

are first solved for the preliminary deflected shape In this solution, we use the
banded form of K. The vector is then normalized to obtain the first derived Ritz
vector

so that it provides a unit generalized mass, that is

Calculation of the second vector starts with solution of the equilibrium equations

to obtain the deflected shape resulting from the inertial load that is induced
when the system is vibrating in the first vector shape Then, the shape is made
mass orthogonal to the first vector by the Gram-Schmidt procedure to obtain

Finally, this shape is normalized to obtain the second derived Ritz vector
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so that

Derivation of further vectors proceeds in essentially the same way. It has been shown
[12] that when a vector is made orthogonal to the two preceding shapes, it
automatically is orthogonal to all preceding shapes.

In summary, derivation of the vector involves the following steps:

a. The deflected shape is obtained by solving

b. The shape is made mass orthogonal with respect to the two preceding vectors
by calculating

where

c. The shape is normalized to obtain by calculting

where the desired unit generalized mass is given by

The derived Ritz vectors are used to perform a dynamic analysis in the same way as
any other set of Ritz vectors. It has been shown that the unique orthogonality property
of these Lanczos vectors makes it possible to organize the equations of motion in a
special tri-diagonal form [12].
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6.3  THE CONJUGATE GRADIENT METHOD

6.3.1  Solution Procedure
The Conjugate Gradient (CG) method can be used as an iterative method for solving
the linear set of Eq. (3.5)

where K is an n×n symmetric and positive-definite matrix. This problem can be stated
equivalently as minimization of the quadratic function

A set of n nonzero vectors is said to be conjugate with respect to a given
n×n symmetric positive-definite matrix K, if

It can be shown that any set of vectors satisfying this property is also linearly
independent. A set of conjugate vectors possesses a powerful property [15]; namely, if
the quadratic function Q is minimized sequentially, once along each of a set of n
conjugate directions, the minimum of Q will be located at or before the nth step,
regardless of the starting point. The order in which the directions are used is immaterial
to this property.

There are many ways to choose the conjugate directions. The CG method is a
conjugate directions method with a special property. In generating its set of conjugate
vectors, it can compute a new vector by using only the previous vector and the current
gradient. This property implies that the method requires little storage and computation.
The method was developed in the 1950s as a method for finding exact solutions of
symmetric positive definite systems [16]. Some years later the method came to be
viewed as an iterative method that could give good approximate solutions to systems in
much fewer than n steps [17, 18].

To solve the problem of Eq. (6.47) by the CG method, we start with the initial
estimate at the initial point

The residual of the linear system (6.47) is then calculated by

The first direction of minimization, is the steepest descent direction of the quadratic
function Q [Eq. (6.48)], at the initial point given by
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A sequence of vectors is then generated by the method. The vectors generated are
given by the expression

where is the one-dimensional minimizer of the quadratic function Q along
given explicitly by

The residual of the linear system of Eq. (6.47) is calculated by

The (k+1)th direction, is selected by

The scalar is determined by the requirement that and must be conjugate with
respect to K [see Eq. (6.49)]. By pre-multiplying Eq. (6.56) by and imposing the

condition we find the following expression for

In summary, for the calculated [Eq. (6.50)], [Eq. (6.51)] and [Eq. (6.52)], the
following calculations are carried out at each iteration:

The scalar is calculated by Eq. (6.54).
The vector is calculated by Eq. (6.53).
The residual of the linear system of Eq. (6.47) is calculated by Eq. (6.55).
The scalar is calculated by Eq. (6.57).
The direction is calculated by Eq. (6.56).

Each search direction and residual are constrained by the Krylov subspace of
degree k for defined as
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The rate of convergence of the above procedure depends on the eigenvalue
distribution of K and the initial approximation The convergence is faster when the
condition number of K, defined by the ratio of the maximum and minimum eigenvalues,
is smaller and/or when K has clustered eigenvalues.

6.3.2  Preconditioned Conjugate Gradient
The CG properties are valid only in exact arithmetic. For ill-conditioned problems the
convergence of the method might be slow, mainly due to round-off errors, when
working with inexact arithmetic. For such problems, the conjugate directions are no
longer exactly conjugate after some iteration cycles. It is possible to accelerate the rate
of convergence by transformation of the linear system of Eqs. (6.47) such that the
eigenvalue distribution of K is improved [19, 20]. The key to this process, which is
known as preconditioning, is a change of variables from r to via a nonsingular
matrix C called the pre-conditioner

Substituting Eq. (6.59) into Eq. (6.47) and pre-multiplying the resulting equation by
we obtain the following new system of equations

Define

Substitution of Eqs. (6.61) into Eq. (6.60) gives the new system

Note that when K is symmetric and positive-definite and C has full rank, is also
symmetric and positive-definite. The convergence rate of the CG method applied to Eq.
(6.62) will depend on the eigenvalues of the preconditioned matrix rather than those
of K. The aim is to choose the pre-conditioner C such that the condition number of

is much smaller than the condition number of the original matrix K. Alternatively, C
could be chosen such that the eigenvalues of are clustered.

It is possible to apply the CG method directly on the new system of Eq. (6.62).
However, in this case it would be necessary to calculate and store the new (typically

large) matrix and to perform extensive computational effort at each iteration cycle.
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Alternatively, the tilde notation can be used during the solution procedure applied to Eq.

(6.62), also for the auxiliary vectors and , where

The relation between the residuals and is given by

Define an auxiliary vector

If no preconditioning is used, then and We can write the resulting
Preconditioned Conjugate Gradient (PCG) method with the original variables r, using
modified formulas for and

For the calculated [Eq. (6.50)], [Eq. (6.51)], [Eq. (6.52)] and [see Eq. (6.65)],
each iteration cycle of the PCG method involves the following steps:

The scalar is calculated by Eq. (6.66).
The vector is calculated by Eq. (6.53).
The residual of the linear system (6.47) is calculated by Eq. (6.55).
The vector is calculated by [see Eq. (6.65)].
The scalar is calculated by Eq. (6.67).
The direction is calculated by Eq. (6.68).
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Various pre-conditioners C have been proposed (e.g. [19]). The best choice of C
could be the inverse factor where U is an upper triangular matrix given by the
Cholesky factorization With this choice, the preconditioned matrix becomes
equal to the identity matrix However, in this
case much computational effort is needed to calculate matrix Alternatively,
matrix C can be chosen as [21]

where is an upper triangular matrix, given by the Cholesky factorization
In this case the only additional work, compared with the CG algorithm, is the
computation of the auxiliary vector i.e., the solution of the system of equations [see
Eq. (6.65)]

for which guarantees the preconditioning effect. Solution of Eq. (6.70) is easy, as

we already dispose the Cholesky factor of The preconditioned matrix for the
chosen C is

It can be noted that for we obtain and the preconditioned matrix is

equal to the identity matrix If the
eigenvalues of K are close to the eigenvalues the preconditioned matrix is close to
the identity matrix, and the convergence of the PCG is extremely fast. Obviously, the
smaller or simpler (e.g., a rank-one change) is the change the closer is K to

It will be shown in Section 7.3.2 that the PCG method presented in this section and
the CA method presented in Chapter 7 are equivalent [21].
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7  Combined Approximations (CA)

Given the initial stiffness matrix  in the decomposed form of Eq. (3.2) and the initial
displacement vector , the problem considered in this chapter (see Section 3.1) is to
estimate the modified displacements r due to changes in the design, without solving the
complete set of modified analysis equations.

The Combined Approximations (CA) approach developed in this chapter is based on
the integration of several concepts and methods, most of them presented in previous
chapters. These include series expansion, reduced basis, matrix factorization and Gram-
Schmidt orthonormalization. In the approach presented, the terms of the binomial series
are used as high quality basis vectors in a reduced basis expression. The advantage is
that efficient local approximations (series expansion) and accurate global
approximations (the reduced basis method) are combined to achieve an effective
solution procedure. Due to the nature of the selected basis vectors, high accuracy is
often achieved by considering only a few vectors. Yet, the accuracy of the results can
always be improved at the expense of more computational effort, by considering higher-
order terms.

The main advantages of the CA approach, which can be studied in terms of several
criteria, are as follows:

a. Generality. Various analysis models (linear, nonlinear, static, dynamic), different
types of structures (trusses, frames, grillages, continuum structures) and all types of
changes in the design (cross-sectional, geometrical, topological and material) may
be considered. The changes can be of different extent, varying from changes in
only a few variables to changes in all elements of the structure. As well, changes in
the structural model itself may be considered,
Accuracy of the results. Accurate approximations are achieved for significant
changes in the design of large structures. It is possible to improve the accuracy of
the results by considering higher-order information. In certain cases exact solutions
can be achieved.
Efficiency. Similar to local approximations, the calculations are based on results of
a single exact analysis. The number of algebraic operations and the total CPU effort
are usually much smaller than those needed to carry out complete analysis of the
modified design.

109

b.

c.
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d. Flexibility. The efficiency of the calculations and the accuracy of the results can be
controlled by the level of simplification and the amount of information considered.
Depending on the problem to be solved, various simplified versions of the approach
may be considered. While simple approximations are often sufficient, better
accuracy can always be achieved at the expense of more computational effort.
Ease of implementation. The method can readily be used with a general finite
element system. Calculation of derivatives is not required and the solution steps are
straightforward.

The CA approach is introduced in Section 7.1. Using the reduced-basis method
described in Section 6.2, we transform a problem with a large number of degrees of
freedom (DOF) into a problem with a much smaller number of DOF. Thereafter, only
the corresponding small system of equations must be solved during reanalysis. The
effectiveness of the method depends, to a great extent, on the appropriate choice of the
basis vectors. In the approach presented, the first few terms of the binomial series
expansion are considered as basis vectors. It is shown that this selection has several
advantages in terms of generality, accuracy of the results, computational efficiency and
ease of implementation.

It is shown in Section 7.2 that Gram-Schmidt orthogonalization with respect to K,
generates a set of vectors for which the reduced set of analysis equations becomes
uncoupled. The advantage then is that all expressions for evaluating the modified
displacements become explicit functions of the design variables. As a result, additional
terms can be considered without modifying the calculations that have been already
carried out for previous terms. In addition, the uncoupled system is more well-
conditioned.

Accurate solutions achieved by the CA approach are discussed in Section 7.3. The
high accuracy achieved by the method with a small number of basis vectors for very
large changes in the design is demonstrated and explained. It is shown that a
Preconditioned Conjugate Gradient (PCG) method and the CA method provide identical
results. Thus, various convergence criteria and error evaluation rules developed for PCG
methods can be applied also for the CA method. Nearly exact solutions are obtained
with a small number of basis vectors when the basis vectors come close to being
linearly dependent. Such solutions are also achieved when the angle between the two
vectors representing the initial design and the modified design is small, or when there is
a low-rank change in the stiffness matrix.

7.1  COUPLED BASIS VECTORS

7.1.1  Determining the Basis Vectors
In the approach presented in this chapter the first few terms of the binomial series
expansion are used as basis vectors. A typical series expansion of the displacements r
can be expressed as

e.
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where are the series terms and s is the number of terms considered.
Taylor series expansion is one of the most commonly used approximations in structural
design and the terms of the series can be used as basis vectors. The major difficulty
with this selection is that calculation of high-order derivatives is usually not
practicable; therefore only linear (first-order) terms are considered, which limits the
quality of the approximations. The first-order Taylor series terms have been used as
basis vectors in some studies on the reduced-basis method (e.g. [1]).

It has been shown in Section 5.1.3 that the binomial series and the Taylor series are
equivalent under certain circumstances. The advantage of using the binomial series is
that, unlike the Taylor series, calculation of derivatives is not required. This makes the
method more attractive in various applications where derivatives are not available. In
addition, higher-order terms can readily be calculated.

The binomial series approximation is given by [Eq. (5.5)]

where I is the identity matrix. The matrix B and the vector are defined by Eq. (5.6),
and the basis vectors are calculated by the recurrence relation of Eq. (5.8)

In many applications, the load vector is unchanged, that is and . In
such cases the first term is already given from initial analysis of the
structure.

Matrix Factorization. In general, a square matrix A can be factorized into a product of
two matrices

where the factors are triangular matrices. Specifically, U is an upper triangular matrix
having pivots on its diagonal and L is a lower triangular matrix having 1's on its
diagonal. Thus, the L U factorization of Eq. (7.4) is unsymmetrical.

Divide U by a diagonal matrix D that contains the pivots (it is convenient to keep the
same letter U for this new upper triangular matrix that has 1's on its diagonal). Then, the
triangular factorization can be written as

where both L and U have 1's on their diagonal.
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If A is a symmetric matrix, then and the factorization of Eq. (7.5) is also
symmetric, that is

Finally, in cases where A is a symmetric positive-definite matrix (that is,
for every nonzero vector), then the factorization Eq. (7.6) can be written as the Choleski
factorization or

where U is an upper triangular matrix.

Calculation of the Series Terms. It is shown in the following that calculation of the
basis vectors by Eq. (7.3) involves only forward and backward substitutions if  is
given from the initial analysis in the decomposed form of Eq. (3.2) The
vector for example, is calculated from

We first solve for the vector of unknowns t by the forward substitution

is then calculated by the backward substitution

Similarly, the kth term is calculated from

7.1.2  Solution Procedure
Given the initial stiffness matrix in the decomposed form of Eq. (3.2), the initial
load vector and the initial displacement vector , calculation of the modified
displacements r by the CA method for any assumed changes in the stiffness matrix
and changes in the load vector involves the following steps:

Calculate the modified stiffness matrix K and load vector R by Eqs. (3.3) and (3.4).
Since the initial values  and are already given, this step involves only
calculation of and
Calculate the basis vectors by [Eqs. (7.3)]

a.

b.
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It has been shown in Section 7.1.1 that calculation of the basis vectors involves
only forward and backward substitutions.
For large changes in the design, the elements of the basis vectors become very large
due to large values. To overcome numerical round off errors, it is possible to
normalize a basis vector by dividing it by an arbitrary reference element of the
vector (say, the first element to obtain the normalized vector

This operation scales the first element of the vector to unity. It does not change the
final solution, as shown in step e below.
Calculate the reduced stiffness matrix and load vector by Eqs. (6.24)c.

This calculation is straightforward and does not involve much computational effort.
Calculate the vector of coefficients y by solving the s×s system in Eqs. (6.25)d.

In cases where the number of basis vectors s is much smaller than the number of
degrees of freedom n, it is necessary to solve only the smaller s×s system in Eq.
(7.15) for y instead of computing the exact solution by solving the large n×n system
in Eq. (3.5).
Evaluate the final displacements by [Eq.(6.21)]e.

Equation (7.16) shows that the transformation of Eq. (7.13) does not change the
final solution (but only the corresponding scalars

The above solution procedure is most effective in cases of low-order approximations
(e.g. two or three basis vectors). Good accuracy is often achieved with only a small
number of basis vectors, as is shown in this chapter by numerical examples.
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Example 7.1 – Evaluation of Displacements, Forces and Stresses. In this example
low-order approximations of displacements, stresses and forces for structural
optimization are demonstrated. Consider the ten-bar truss shown in Figure 7.1. The
design variables X are the member cross-sectional areas, the initial cross section areas

are all unity, the modulus of elasticity is 30000, and the eight analysis unknowns are
the horizontal and vertical displacements at joints 1, 2, 3 and 4, respectively. The stress
constraints are the minimum size constraints are and the
objective function represents the weight. The optimal (minimum weight) design is [2]

The line from the initial design to the optimal design is given by

where is the step size variable, and is the direction vector defined as

Consider the modified design corresponding to with cross section areas

Results obtained with 2, 3, and 4 basis vectors are summarized in Tables 7.1, 7.2 and
7.3. The forces and the stresses are computed by the force-displacement and stress-
displacement relations [Eqs. (2.10) and (2.11)]. It was found that acurate results are
obtained with 4 basis vectors. Only two exact analyses are needed to reach the
optimum when 3 basis vectors are used for reanalysis.
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7.2  UNCOUPLED BASIS VECTORS

7.2.1  Determining the Basis Vectors
The Gram-Schmidt orthogonalization procedure can be used to generate a new set of
basis vectors such that the reduced set of analysis equations [Eq, (7.15)] becomes
uncoupled with respect to K. This procedure has been used for nonlinear analysis [3]
and linear reanalysis of structures [4]. For any assumed number of basis vectors, the
results obtained by considering the reduced set of equations, for either the original set
of basis vectors or the new set of uncoupled vectors, are identical. The advantage in
using the latter vectors is that all expressions for evaluating the displacements become
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explicit functions of the design variables. As a result, additional vectors can be
considered without modifying the calculations that already were carried out for
previous terms. It is shown in this section how the new set of uncoupled basis vectors is
generated.

It can be observed from Eq. (7.14) that the elements of the reduced stiffness

matrix are given by

The object is to transform the reduced system of Eqs. (7.15) into an uncoupled set of
equations. This can be done by generating a set of new vectors from
the original vectors such that for any two vectors and

where is the kronecker delta, for which

We say that the vectors and are orthogonal with respect to K if the condition of
Eq. (7.18) is satisfied. The new basis vectors, which are linear combinations of the
original vectors, are generated as follows.

The first normalized vector is chosen as

To generate the second normalized vector we first define the non-normalized vector
which is a linear combination of and by

where is chosen such that the orthogonality condition [see Eq.(7.18)]

is satisfied. Substituting Eq. (7.21) into the condition of Eq. (7.22) yields
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Since  [Eq. (7.20)], then Eq. (7.23) becomes

Substituting Eq. (7.24) into Eq. (7.21) gives

Finally, normalizing we obtain the second normalized vector

Additional basis vectors are generated in a similar way. The resulting general
expressions for all i = 2,..., s vectors are

where and are the ith non-normalized and normalized vectors, respectively.
Now, we will show how the new basis vectors are used to evaluate the

displacements. It is observed [Eq. (7.18)] that for the basis vectors the
diagonal elements of the new reduced stiffness matrix equal unity and all other elements
equal zero. That is, the new reduced stiffness matrix is the identity matrix I. Define the
matrix of new basis vectors and the vector of new coefficients z by

Rather then the reduced system of Eq. (7.15) we have [see Eq. (7.14)]

As expected, this system is uncoupled, and the coefficients z can be determined
directly by Eq. (7.29). The final displacements are given by the explicit expression [see
Eq.(7.16)]
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The displacements calculated by Eq. (7.30) can be expressed as an additively separable
quadratic function of the basis vectors by

One advantage in using the new vectors is that all expressions for evaluating the
displacements are explicit functions of the original basis vectors, and therefore, explicit
functions of the design variables. This can be seen from the following expressions:

The stiffness matrices K and load vectors R are explicit functions of the
design variables.
The basis vectors are explicit functions of and R [Eqs. (7.3)].
The new basis vectors are explicit functions of and K [Eqs. (7.20) and (7.27)].
The final displacements r are explicit functions of and R [Eq. (7.31)].

In summary, calculation of any new basis vector leads to an additional term in the
displacements expression [Eq. (7.31)]. As a result, additional vectors can be considered
without modifying the calculations that already were carried out.

It will be shown later by example 7.2 that, while the normalized vectors are of
similar magnitude, the values of the coefficients and, therefore, the corresponding
terms of the series of Eq. (7.31) are gradually decreased. Transformation of the
binomial series terms [Eq. (7.3)] into the terms of the CA series [Eq. (7.31)] provides
accurate solutions even in cases where the binomial series diverges.

7.2.2  Solution Procedure
Calculation of the modified displacements r for any assumed changes in the
stiffness matrix and changes in the load vector involves the following steps:

These steps are identical to those described in Section 7.1.2 for the original basis
vectors.
Generate the normalized basis vectors. The first vector is given by Eq. (7.20)

a, b.

c.

The additional normalized vectors are generated by Eqs. (7.27)
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where and are the ith non-normalized and normalized vectors, respectively.
Evaluate the displacements by Eq. (7.31)d.

The accuracy of the results for a specific number s of basis vectors can be evaluated by
the methods described in Section 7.3.3. If the accuracy is insufficient, additional basis
vectors are introduced by steps b and c and the updated displacements are evaluated by
step d. Equations (7.33) and (7.34) show that additional vectors can be considered
without modifying the calculations that were carried out already.

7.3  ACCURATE SOLUTIONS

7.3.1  Linearly Dependent Basis Vectors
As noted in Section 6.2.1, linear independence of the basis vectors is necessary for
convergence of the reduced-basis approximations. The vector of approximate
displacements [Eq. (7.16)] is a linear combination of the basis vectors The
latter vectors are said to be linearly independent if the relation

can be satisfied only for the trivial case, that is, only for the case where all the
coefficients are identically zero. If the relation is satisfied and at least one
of the coefficients is different from zero, then the basis vectors are said to
be linearly dependent, with the implication that one vector is a linear combination of
the remaining vectors.

It is shown in the following that an exact solution is obtained by the CA method in
cases where a newly created vector becomes a linear combination of the previous
vectors [5]. For simplicity of presentation assume that and therefore, To
achieve a convenient expression for the exact solution of the modified design,
premultiply Eq. (3.5) by and substitute Eqs. (3.1) into the resulting equation to
obtain

where matrix B is defined by Eq. (7.3). Premultipling Eq. (7.36) by gives the
exact modified displacements
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To obtain a convenient expression for the approximate displacements in terms of the
assumed s basis vectors, substitute the expressions of the basis vectors [Eq. (7.3)] into
Eq. (7.16). We obtain

Assuming that the approximate solution of Eq. (7.38) involving s terms is equal to the
exact solution of Eq. (7.37), premultiplying both equations by (I + B) and rearranging
we obtain the linear expression for an additional term

where are scalar multipliers given by

Equation (7.39) shows that when the reduced basis expression with s terms [Eq. (7.38)]
is equal to the exact solution, then the (s+l)th basis vector is a linear combination of
the previous s vectors. That is, the s+1 basis vectors are linearly dependent.

In general the CA method provides approximate solutions, but accurate solutions are
often achieved with only a small number of basis vectors. It is expected that accurate
(nearly exact) solutions will be achieved when the high-order basis vectors come close
to being linearly dependent on all previous vectors. Two basis vectors and are
close to being linearly dependent if

where is the angle between the two vectors. Various numerical examples show
that the basis vectors determined by the CA method satisfy the condition of Eq. (7.41),
as the basis vectors index i is increased, even for very large changes in the design.

7.3.2  Equivalence of the CA Method and the PCG Method
The Conjugate Gradient (CG) method and the Preconditioned Conjugate Gradient
(PCG) method were presented in Section 6.3. It is shown in this section that the PCG
method and the CA method provide identical results [6] if matrix C is chosen as [see
Eq. (6.69)]
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where is an upper triangular matrix, given by the Cholesky factorization of the
initial stiffness matrix Applying k iterations of the CG method to Eq. (6.47)
is equivalent to the minimization of the quadratic function Q [Eq. (6.48)] on the Krylov
subspace of degree k, defined as

where the residual vector is given by Eq. (6.51). In the particular case where the CG
method is applied to the preconditioned system [Eq. (6.62)] with [Eq. (7.42)],
the quadratic function

is minimized in the kth iteration on the Krylov subspace

Denote Assuming the initial point then [see Eq. (6.61)]

Since it is observed that [see Eqs. (3.3), (6.61)]

and so on, so that

Hence the minimizer of [Eq. (7.44)] on [Eq. (7.47)] is of the form

To return to the original variables, pre-multiply Eq. (7.48) [and thus Eq. (7.47)] by C
to obtain [see Eq. (6.63)]
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In summary, in the kth iteration of the PCG method applied to Eq. (6.47), with the
preconditioned matrix of Eq. (7.42) and the initial approximation we minimize
the quadratic function Q [Eq. (6.48)] on the Krylov subspace of Eq. (7.49). In the CA
method, we introduce an n×k matrix by means of vectors defined recurrently by Eq.
(7.3). The approximate solution of Eq. (6.47) is then obtained by solving the reduced
system of Eq. (7.15), and interpolating by Eq. (7.16). But this is just the same as
minimizing the quadratic functional Q from Eq. (6.48) on a subspace defined by Eq.
(7.49). The conclusion is that the solution found by the CA method with an n×k matrix

is fully equivalent to k iterations of the PCG method with the preconditioned matrix
of Eq. (7.42) and the initial value

7.3.3  Error Evaluation
In this section convergence properties of the CG method and the CA (PCG) method are
discussed. We introduce upper bound on errors for the CA method based on previously
developed criteria for evaluating the errors in the CG method.

The CG Method. In exact arithmetic the CG method will terminate at the solution in at
most n iterations. What is more remarkable is that when the distribution of the
eigenvalues of K has certain favorable features, the method will identify the solution in
much less than n iterations. In particular, it has been shown [e.g. 7, 8] that if K has only
m distinct eigenvalues, then the CG method will terminate at the solution in at most m
iterations. In addition, if the eigenvalues of K occur in m distinct clusters, the CG
iterates will approximately solve the problem after m steps.

Define the usual energy norm

If K has eigenvalues the following estimate gives a useful
characterization of the convergence behavior of the CG method [9]

Another, more approximate, convergence expression for the CG method is

where is the Euclidean condition number of K, defined by the ratio of the
maximum and minimum eigenvalues
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This bound often gives a large overestimate of the error, but it can be useful when the
only information we have about K is estimates of the extreme eigenvalues.

The CA (PCG) Method. The series of basis vectors [Eq. (7.2)] converges if and only if
[10]

which in turn holds if and only if where is the spectral radius (the largest
eigenvalue) of matrix B.

To evaluate the errors involved in the binomial series approximations, we see that the
sum of the additional terms in the series of Eq. (7.2), beyond the first s terms,

can be expressed as

This expression is bounded from above by [11]

Evidently, for large changes (and corresponding large elements of B) this bound
may become very large.

In the CA method, we solve the problem [Eqs. (7.14), (7.15)]

It was previously noted that the CA solution with k basis vectors is equivalent to k
iterations of the PCG method. Applying results from the CG method, the error bound
for k basis vectors in the CA method (equivalent to k steps in the CG method) is given
by an expression similar to Eq. (7.53), with the preconditioned matrix
replacing K,
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where

Consider the approximate displacements expressed in the uncoupled form of Eq.
(7.31). The errors in the results for a specific number of basis vectors s can be evaluated
by assessing the size of the elements of the sth term

If the solution process converges, the size of the elements of the vector in Eq. (7.62)
can be used as a convergence criterion, namely

where is a small number and is the Euclidean norm. Since the normalized vectors
are of similar magnitude whereas the values of the coefficients are gradually

decreased, an alternative convergence criterion is

where is again a small number.

7.3.4 Scaled and Nearly Scaled Designs
Scaled Designs. It is shown in this section that the basis vectors are linearly dependent
in cases where the modified design is a scaled initial design. It was noted in Section 5.3
that scaling of the initial design is carried out by multiplying the initial stiffness matrix

by a positive scaling multiplier to obtain the modified matrix [Eq. (5.43)]

For R = R* the exact displacements after scaling are given by [Eq. (5.44)]

In general, the elements of K are some nonlinear functions of the design variables. The
condition of Eq. (7.65) represents only an algebraic operation and it does not require
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linear dependence of K on the design variables. For the case where the modified design
is given by the scaled stiffness matrix [Eq. (7.65)], the binomial series matrix B
becomes

where I is the identity matrix. It is observed that the resulting basis vectors [Eqs. (7.3)]
become linearly dependent, that is

Thus, consideration of the single basis vector with a coefficient will provide
the exact solution as given by Eq. (7.66).

Nearly Scaled Designs. Assume a change in the design so that the modified design can
be expressed as

where is the vector of initial design variables, is the vector of design changes,
is the direction of change and is a scalar describing the magnitude of change.

Both the direction of change and the magnitude of change may significantly affect the
accuracy of the approximations. This effect can be quantified by the cosine of the angle

between the vector of the modified design and the vector of initial design

where denotes the absolute value of X. Figure 7.2 shows that various designs,
obtained by scaling a certain modified design, provide identical angles. For example,
the two modified designs A at and D at
correspond to an identical It has been found [5] that high accuracy is achieved with a
small number of basis vectors for designs A (representing a small change in the design)
and D (representing a very large change in the design), as both correspond to a small
value. More basis vectors are needed for designs B and C that correspond to larger
These observations are limited to the space formed by the vectors and X. For the
complete design space, smaller values do not always guarantee better approximations.
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Example 7.2 - Large Changes in the Design. The object of this example is to
demonstrate the accuracy of the results achieved by the CA method for very large
changes in the design. Consider again the classic ten-bar truss shown in Figure 7.1,
subjected to a single loading condition of two concentrated loads. The design variables
X are the member cross-sectional areas, the initial cross section areas are all unity,
the modulus of elasticity is 30000, and the eight analysis unknowns are the horizontal
and vertical displacements at joints 1, 2, 3 and 4, respectively. The stress constraints for
all ten members are and the minimum size constraints are
Assuming the weight as an objective function, we find the optimal (minimum weight)
design [2]

The line from the initial design to the optimal design is given by

where is defined as

For (the optimum) the change in the design is very large: members 1 and 3 are
increased by 700%, member 4 is increased by 300%, members 7, 8, 9 are increased by
467%, and the topology is changed by effectively eliminating members 2, 5, 6, 10 and,
therefore, joint 2 (displacements 3 and 4). Only two exact analyses are needed to reach
the optimum when 3 basis vectors are used for reanalysis.

To illustrate the effect of various design changes on the accuracy of the results, three
typical cases are considered (see designs A, B and C in Figure 7.2 and Table 7.4):
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Small change in the design (up to -10% and +70%), The modified
design is given by (Design A).
Large change in the design (up to -50% and +350%), The
modified design is given by (Design B).
Very large change in the design (up to -99% and +700%), (the
optimum). The modified design is given by (Design C).

a.

Results obtained by the Conjugate Gradient (CG) and the CA methods are given in
Tables 7.5, 7.6. For the given direction the number of iterations needed to achieve
a certain accuracy increases with . For two-digit accuracy, 8 iterations are needed for
convergence by the CG method. For the CA (PCG) method, only 3 basis vectors
(iterations) are needed for 4 vectors are needed for and 5 vectors are
needed for Define the error at every iteration step as

where

The errors in the displacements for the various cases are shown in Table 7.7.
Table 7.8 shows that the condition numbers of are much smaller than those of the

corresponding K. The larger the changes in the design are (larger values), the larger
are the condition numbers of both K and In addition, the matrices for various
values have clustered eigenvalues.

b.

c.
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Consider again the results For design C Figure 7.3 shows how the norm of
the terms of the series of basis vectors (the binomial series) is increased and the series
diverges. Figure 7.4 shows the norms of the uncoupled basis vectors and Figure 7.5
shows the coefficients While the norms of are of similar order of magnitude, the
coefficients are gradually decreased. Thus, the CA terms are also gradually
decreased. Figure 7.6 shows how the norm of the terms decreases and the series
converges as the number of basis vectors is increased.

The values of obtained for design C [see Eq. (7.41)] are
Since the basis vectors determined

by the CA method are close to being linearly dependent, accurate results are obtained
even for very large changes in the design.
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The main conclusions drawn from this example are as follows:

The reduced basis coefficients can significantly change the convergence properties
of the series of basis vectors (the binomial series). Accurate results are obtained by
the CA method even in cases where the series of basis vectors diverges.
For any given direction vector the magnitude of determines the value of
For an exact solution is achieved by scaling the initial displacements. For a
given number of basis vectors and direction of change the accuracy of the
results depends on The larger is, the larger is the angle and the more basis
vectors will be needed to achieve adequate accuracy.

a.

b.
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7.3.5  High-Order Approximations
The accuracy of low-order approximations might be insufficient for large changes in
large-scale problems. In such cases a larger number of basis vectors (high-order terms)
might be needed to improve the accuracy of the approximations. Results obtained by
high-order approximations are presented in this section. The object of the examples
presented is to illustrate the accuracy achieved by the CA method for some structures
having a larger number of degrees of freedom. In all examples the design variables are
the member cross-sectional areas and the initial cross section areas equal unity. The
results indicate that the number of vectors needed to achieve a certain accuracy is not
significantly increased with the size of the structure. Then, it is shown by a numerical
example how the CA method can be used for complete analysis in cases where the
results of an initial analysis are not available.

Example 7.3 - Various Structures. Results obtained with different numbers of basis
vectors for several examples are demonstrated in the following. In all examples
hundred cases of random changes in the cross-sections were assumed. The structures
considered are as follows [4, 12]:

The 50-bar cantilever truss shown in Figure 7.7, subjected to a single tip load.
The 204-bar bridge truss shown in Figure 7.8, subjected to 3 concentrated loads.
Various large-scale rectangular space trusses made up of the double-layer segments
consisting of two horizontal layers connected by diagonals shown in Fig. 7.9. The
resulting structures are supported along the four edges and subjected to uniformly
distributed loads. Results are demonstrated for 356-bar and 968-bar space trusses.

a.
b.
c.

The numbers of basis vectors needed for the various structures to limit maximum errors
to 1% and 0.1% are shown in Table 7.9. It is observed that the difference in the
numbers of basis vectors required for the two cases of errors is small. In addition, the
number of vectors is not significantly increased with the size of the structure.
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Example 7.4 - Complete Analysis. Initially, the CA method was intended for
reanalysis of structures where results from initial analysis are known. It is shown in this
example how the method can also be used in cases where the results of an initial
analysis are not available. The object is to solve the analysis equations, expressed in the
form of Eq. (3.5), where K (the stiffness matrix of the design to be analyzed) is known,
matrices and are to be defined, and is unknown. Since results of previous
analysis are not available, the simplest approach is to choose as a diagonal matrix

consisting of the diagonal elements of K

As a result the initial displacements corresponding to the initial stiffness matrix are
uncoupled and given directly by

It should be noted that might represent several substructures, which are completely
different from the actual structure represented by K, as is shown in the following. Since
the initial and the modified displacements are of different nature, the CA procedure
may require high-order terms to achieve adequate accuracy.

Consider again the ten-bar truss shown in Figure 7.1, subjected to a single loading
condition of two loads. The modulus of elasticity is 30 000 and the 8 analysis unknowns
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are the horizontal and the vertical displacements at joints 1, 2, 3 and 4, respectively. The
object is to analyze the structure for cross-sectional areas equal to unity.

With the initial structure as given by Eq. (a), the initial design consists of four
different substructures with cross sections corresponding to the stiffness coefficients ,
as shown in Fig. 7.10. The initial displacements calculated by Eq. (b) are given by

The requested displacements obtained by considering various numbers of basis vectors
are shown in Table 7.10. The results indicate that, despite the very poor initial
displacements, the CA procedure converges to the exact solution.
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8  Simplified Solution Procedures

Various solution procedures that can be viewed as particular cases of the CA method
are summarized in this chapter. As noted earlier, the accuracy of the results and the
efficiency of the calculations are usually two conflicting factors. That is, better
accuracy can be achieved at the expense of more computational effort by considering
additional information. The CA method is most effective in cases where highly
accurate approximations can be achieved by considering only a small number of basis
vectors. Moreover, simplified procedures, such as the Binomial Approximations (BA)
and the Scaled Approximations (SA), are often sufficiently accurate.

Some low-order approximations used in structural optimization and in the analysis of
damaged structures are demonstrated in Sections 8.1.1 and 8.1.2. These include the
first- and second-order approximations of the BA, SA and CA methods. Efficiency
considerations are discussed in Section 8.1.3. It is shown that the number of algebraic
operations and the computational cost involved in solution by the CA method are
significantly smaller than those required for complete analysis. Limitations on design
changes, intended to limit the errors occurring in low-order approximations, are
presented in Section 8.1.4. The common design variable limits, often used for local
approximations (such as the Taylor series and the BA), are not suitable for the SA and
the CA methods. More rational limitations on the design changes are demonstrated for
these methods.

A procedure to obtain exact solutions by the CA method for simultaneous rank-one
changes in the stiffness matrix is demonstrated in Section 8.2. Solutions obtained by the
CA method and the Sherman-Morrison-Woodbury formulae in such cases are
equivalent. The procedure presented is efficient when the number of changed members
in the structure is much smaller than the number of degrees of freedom.

8.1 LOW-ORDER APPROXIMATIONS

The low-order approximations considered in this section are summarized in Table 8.1.
The BA method can be used in itself as an approximation of the displacements. This
could be more efficient than using the series terms as basis vectors in the CA method
since it is not necessary to calculate the multipliers y. Considering only the first three
terms, the displacements computed by the BA method are given by [see Eq. (5.1)]

137
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where the series terms are determined by Eq. (5.7). Calculation of the series terms
involves only forward and backward substitutions and the method requires a small
computational effort. As with other local approximations, this simple solution
procedure is suitable only for small changes in the design. The accuracy of the
approximations is insufficient or unacceptable for large changes in the structure, where
problems of slow convergence or divergence of the series may be encountered.

The SA method involves slightly more calculations then the BA method, but the
quality of the results is improved. Considering only three terms of the series, we
evaluate the displacements by [see Eq. (5.51)]

The series coefficients are functions of a single scaling multiplier We calculate
the coefficients by [see Eq. (5.52)]

The scaling multiplier is calculated by one of the criteria described in Section 5.3.1.
We calculate by the geometrical criterion of Eq. (5.55)
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where  and X are the vectors of the initial design variables and the modified design
variables, respectively. Alternatively, using the mathematical criterion of Eq. (5.57),
we  calculate by Eq. (5.58)

where

The terms   are the elements of  and the terms are the elements of that are
already given by Eq. (5.7).

The CA method described in Chapter 7 involves more calculations then the SA
method, but the quality of the results is significantly improved. Considering only three
basis vectors, we evaluate the displacements by [see Eq. (7.16)]

Results achieved by the Combined Approximations of order 1 (CA1, considering two
basis vectors) and the Combined Approximations of order 2 (CA2, considering three
basis vectors) are demonstrated in this section.

8.1.1  Structural Optimization
In many problems low-order approximations of the displacements provide sufficiently
accurate results. In most structural optimization problems it is necessary to analyze
structures that are modified repeatedly due to successive changes in the design. The
number of repeated analyses needed during the solution of structures with large
numbers of variables and constraints is often a function of the problem size and might
be very large. In addition, each repeated analysis involves solution of the implicit
analysis equations and extensive computational effort. The high computational cost
involved in repeated analyses of large-scale structures is one of the main obstacles in
the solution process. Since the analysis part of design requires most of the
computational effort, only design methods that do not involve many time-consuming
analyses during optimization will prove useful. Application of low-order
approximations in structural optimization is demonstrated in the following example.
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Example 8.1 – Structural Optimization. To compare results achieved by various
simplified procedures, consider again the classic ten-bar truss of example 7.2 shown in
Figure 8.1. The truss is subjected to a single loading condition of two concentrated
loads, the design variables are the member cross-sectional areas, the initial cross section
areas equal unity, the modulus of elasticity is 30000, and the eight analysis unknowns
are the horizontal and vertical displacements at joints 1, 2, 3 and 4, respectively. The
stress constraints are the minimum size constraints are
and the optimal (minimum weight) design is [1]

To illustrate results for various directions of change in the design space, the following
three cases of changes in the design variables are considered (see Figure 8.2, and
Table 8.2):

large changes in all the design variables and
large changes in the design variables for members 1, 4, 5 and 10 and a small
small changes in the design variables for members 1, 4, 5 and 10 and a large

a.
b.
c.

where is the angle between the vectors of the modified design X and the initial
design  [see Eq. (5.53) and Figure 5.3]. Results obtained by the first-order (two-
terms) BA, Scaled Approximations using the geometrical criterion and CA
methods are summarized in Table 8.3. As expected, for large changes in the design
(cases a and b) the BA approximations diverge. In case a where the modified design is
a scaled design, the exact solution is achieved by both the and the CA methods. In
case b, good results are achieved by both methods for very large changes in the design.
In case c, for a small change in the design variables and a large angle good accuracy
is achieved only by the CA method.
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The line from the initial design to the optimal design is given by

where is the vector of design changes, defined as



Simplified Solution Procedures 143

and is the step-size variable. For (the optimum) the change in the design is
very large: members 1 and 3 are increased by 700%, member 4 is increased by 300%,
members 7, 8, 9 are increased by 467%, and the topology is changed by effectively
eliminating members 2, 5, 6 and 10, and hence joint 2 (displacements 3 and 4).

To illustrate results for various magnitudes of change in the design variables, the
following three cases of change are considered:

a.
b.
c.

A small step size,
A medium step size,
A large step size, (the optimum).

Results obtained by the Binomial Approximations (BA) and the Combined
Approximations (CA) are summarized in Table 8.4.

Considering the CA method, it is observed that the larger the step size is, more terms
(basis vectors) are required to achieve a certain level of accuracy. For two-digit
accuracy, only two terms are needed for 3 terms are needed for and 5
terms are needed for

Considering the BA method, 3 terms are needed for very slow convergence
is obtained for and meaningless results due to divergence are obtained for

Figures 8.3 and 8.4 show typical results for (the optimum) and different
numbers of terms.

In summary, for the CA method good accuracy is achieved by low-order
approximations (CA1 and CA2) even in cases where the BA method diverges.
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8.1.2 Reanalysis of Damaged Structures
In structural damage analysis, it is necessary to analyze the structure for various
changes due to deterioration, poor maintenance, damage, or accidents. In general, it is
difficult to determine a priori what damage scenarios should be checked and the
computational effort required for a systematic comprehensive damage analysis might
become prohibitive. Numerous analyses are required to assess the adequacy of
redundancy and to evaluate various hypothetical damage scenarios for various types of
damage. Because of all the possible combinations of damage in m elements for a
structure consisting of n elements, the resulting number of analyses might be very large
even for relatively small m and moderate scale structures. Table 8.5 shows the number
of combinations of damage (approximate expressions) and typical numbers for small m

and medium scale structures (n = 100 - 1000). Evidently, it is not practical to
analyze all possible combinations. Even for significantly reduced numbers of analyses
it is still necessary to use an efficient reanalysis procedure for analyzing numerous
possible damage conditions.

The CA method can be used to analyze efficiently and accurately various possible
situations of damage. Since the assumed damage scenarios usually involve changes in a
small number of elements, results achieved by low-order CA are sufficiently accurate.
Given the basis vectors for changes in various single members, it is then easy to
evaluate the response of the structure for a change in any combination of several
members. The method can be used for various cases of damage analysis, including:
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a.

b.

Partial damage, where the element is still capable of carrying some loading after
damage has occurred. Deteriorated section properties and changed member forces
can represent the effect of such damage of a member on the structural response.
This approach can be used when analysis shows that a limit state analysis is
needed. A reanalysis can be done for further incremental loadings. A member
which reaches its ultimate force can be represented, for subsequent analysis, by
zero cross section (or zero stiffness) and corresponding equivalent ultimate forces
acting on its ends.
Total damage of an element, where the element is incapable of carrying any
loading after damage, and it is therefore eliminated from the structure for
subsequent analyses.

Example 8.2 - Analysis of a Damaged Grillage. A grillage model is often used to
analyze load effects in common types of highway bridge structures [2]. This example
shows damage in members and external supports of a grillage. Member damage could
be due to corrosion, fracture or collision consequences. The support damage could be
due to foundation scour, collision effects or seismic actions.

In grillage structures, each member is represented by at least two variables, i.e. the
moment of inertia for bending and the moment of inertia for torsion. These variables
might be dependent, but the CA method does not require any predetermined
relationship. The problem considered in this example is as follows: Given the initial
moments of inertia for bending  and for torsion  the corresponding stiffness matrix

, and the displacements r*, evaluate the modified displacements r due to various
changes in the cross sections corresponding to damage in some members and
external supports.

Consider the grillage shown in Fig. 8.5, consisting of three longitudinal beams and
supported by six clamped supports at joints D, E, F, G, H and I. Assume arbitrary units
with material constants E = G = 1.0 and initial moments of inertia  The
grillage is subjected to three vertical loads, acting upward at the
three free joints A, B and C. The elements of the displacement vector are vertical
displacement, rotation about the Y axis and rotation about the Z axis, at joints A, B, C,
respectively. The total number of degrees of freedom is nine.

To illustrate results for changes in member sections, consider the following cases:

a.
b.

Reducing member 3 by 50%,
Reducing member 5 by 50%,

In both cases exact solutions are achieved by the CA2 procedure (only three basis
vectors), as shown in Table 8.6 [3,4].

Results obtained by the CA2 method and a complete exact analysis for three cases of
elimination of a single member are summarized in Table 8.7:
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a.
b.
c.

Elimination of member 1 (Figure 8.6a).
Elimination of member 3 (Figure 8.6b).
Elimination of member 5 (Figure 8.6c).

Elimination of member 3 or member 5 could be viewed as complete damage either of
the element or the end supports of the member. It can be seen that exact solutions are
achieved by the CA2 procedure for the cases of eliminating either member 1 or member
3, and that good accuracy is achieved for the case of eliminating member 5. Table 8.8
shows the approximate displacements obtained by the CA2 procedure when both
members 3 and 5 are eliminated simultaneously (Figure 8.6d). Even for drastic changes
in the displacements (see the initial displacements in Tables 8.6, 8.7 and 8.8), good
accuracy has been achieved. Application of this approach to damage analysis scenarios
with highway bridge foundations are demonstrated elsewhere [5].
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Example 8.3 - Renalysis of a Damaged Frame [4, 6]. To evaluate the quality of the
results by the CA1 procedure (only two basis vectors) for frames, the five-story two-
bay steel frame subjected to three horizontal loads shown in Figure 8.7 is analyzed for
three cases of damage at the connections A, B and C. These connection damages are
assumed to be such that the connection may continue to transmit shear forces but not
bending moments from beam to column.

This damage scenario is motivated by recent seismic events in California and Japan
in which beam-to-column connections were damaged in steel buildings. The aim of this
example is to investigate the consequences on structural behavior of the damage done to
the connections. These analyses, which could also be done in advance of expensive field
inspections to physically check the damage, are carried out using the efficient CA1
procedure for predicting responses and selecting connections whose failure would have
the greatest effect on the frame behavior in the event of seismic occurrences.

It is assumed that in each case a hinge is formed at the location of connection
damage (loss of flexural rigidity). In all three cases the exact solution is achieved by the
CA1 procedure. That is, the complete analysis problem with (15 joints and 3 degrees of
freedom per joint) 45 degrees of freedom is reduced to a problem with only two
unknowns. Results obtained by the CA1 procedure for vibration analysis of a similar
frame are demonstrated in example 12.3.

8.1.3   Efficiency of the Calculations
The computational effort involved in the CA method is somewhat larger than that for
the simple series approximations, such as the BA and the SA methods. The BA
approximations involve only calculation of the series terms. It has been noted that
calculation of each term involves only forward and backward substitutions, if K* is
given in the decomposed form of Eq. (3.2). The CA method requires in addition,
calculation of the modified stiffness matrix K and some extra algebraic operations.
These operations slightly increase the computational cost but accurate approximations
can be achieved in cases where the BA and the SA methods provide poor or
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meaningless results. If the uncoupled basis vectors are used, it is also necessary to
generate these additional vectors. As noted earlier, the uncoupled vectors are explicit
functions of the original vectors. Therefore, once the original vectors are determined,
calculation of the uncoupled vectors and the final displacements is straightforward.

The efficiency of reanalysis by the CA method, compared with complete analysis of
the modified design, can be measured by various criteria, e.g. the CPU effort or the
number of algebraic operations. It is then possible to relate the computational effort to
various parameters such as the number of degrees of freedom, the number of basis
vectors considered and the accuracy of the results. A small number of basis vectors is
often sufficient to achieve adequate accuracy. It has been found that for small problems
with moderate changes in the design two or three vectors are often sufficient. For
medium problems with large changes, five or six vectors might be needed, and for large
problems, nine or ten vectors are often sufficient.

Solution of various problems indicates that calculation of each basis vector involves
about 2% of the CPU time needed for complete analysis. It is found that for five to six
basis vectors the total CPU effort is reduced by more than 75%, compared with
complete analysis of the modified design. Using the CA method for an accurate
nonlinear analysis of a space frame with about 300 degrees of freedom, the resulting
CPU effort was reduced by more than 60% compared to a complete analysis [7].

The number of algebraic operations needed to solve an set of equations by
complete analysis is where n is the number of displacement degrees of freedom.
The number of operations needed by the CA method is where s is the
number of basis vectors considered. The ratio P between the former and the latter
numbers for various n and s values is shown in Figure 8.8. For example, for n = 500 and
s = 10 the value of P is approximately 5. That is, the number of algebraic operations
needed by the CA method is about 20% of the number needed for complete analysis.
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8.1.4  Limitations on Design Changes
To prevent significant errors occurring for low-order approximations due to large
changes in the design variables, limitations on the design changes are often imposed.
These limitations, called move limits, are commonly expressed as upper and lower
limit constraints on the design variables. Several strategies for adjusting the common
move limits in structural optimization have been proposed. One approach is to use an
automated move limit strategy, based on effectiveness coefficients, which quantify a
design variable's impact [8, 9]. Other approaches include sensitivity-based exponential
methods [10, 11] and move limits based on global and local considerations [12].

The common move limit constraints are effective particularly for local series
approximations. On the other hand, these constraints are not suitable for the combined
approximations presented in Chapter 7. Alternative constraints, which are more rational
and more effective, have been proposed [13] and are described in this section. Two
types of move limit constraints for limiting the errors involved in various low-order
approximations are presented and discussed in the following:

a.

b.

The common design variable move limits, which are explicit side constraints on the
design variables. These constraints are the simplest, but they are suitable only for
the conventional series approximations (e.g., the BA method) where accurate
results can be achieved only for small changes in the design variables.
Angle move limits, which are nonlinear constraints on the angle between the
vectors of the initial design and the modified design. These explicit and simple
constraints are more suitable for the improved SA and CA methods.

Design Variable Move Limits. Considering conventional series approximations such
as the Taylor series or the binomial series, the following move limit constraints are
often assumed

where and are predetermined lower and upper limits, respectively, on the
design variable changes given by

The main advantage of using the move limits constraints is the simple and explicit
nature of the side constraints. An alternative approach, used in trust region algorithms
[14], is to restrict the solutions to some region around by constraints of the form

where is the radius of the region to be restricted. Constraints of the type of Eqs. (8.8)
or (8.10) are generally effective only for conventional local approximations, where
small changes in the design variables are assumed. They are not effective for the SA
and the CA methods applied to find accurate solutions for large changes.
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Since the errors involved in the approximations are not known in advance, one
problem in applying these constraints is that it is difficult to define appropriate move
limits a priori. For computational efficiency in structural optimization problems it is
desirable to initially choose large values for the move limits, so that the imposed limits
will not slow convergence. As the design process progresses, the move limits can be
gradually reduced. One reason for reducing the move limits is that the accuracy of the
approximations is required to be higher as we get closer to the optimum. The move
limits are reduced also in cases where successive solutions start to oscillate between
vertices of the feasible region.

Angle Constraints. It was previously shown that accurate results are achieved for very
large changes in the variables by the SA and CA methods in cases where the modified
design is relatively close to a scaled design. This is the case if the angle between the
vectors X and (Figure 5.3) is small. This angle can be determined by Eq. (5.53).
Since accurate results are expected for small angles , it might prove useful to apply
the angle constraints

where and are predetermined limits. Figure 8.9 shows that the explicit constraints
of Eq. (8.11) define a large conical region, rather than the relatively small region
defined by the local approximation constraints [Eq. (8.8) box or Eq. (8.10) circle] in the
neighborhood of .

8.2  EXACT SOLUTIONS

In general, the CA method provides approximate solutions for high-rank changes in the
stiffness matrix. Two cases where exact solutions are obtained were presented in
Chapter 7. Exact solutions are obtained if a basis vector becomes linearly dependent on
all of the previous vectors (Section 7.3.1). Such solutions are obtained also if the
modified design is a scaled design (Section 7.3.4). It is shown in this section that exact
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solutions are obtained efficiently for a small number of simultaneous rank-one changes
in the stiffness matrix. Solutions obtained by the CA method and the Sherman-
Morrison-Woodbury formulae in such cases are equivalent.

8.2.1 Multiple Rank-One Changes
In this section we develop exact solutions for changes in a small number of elements.
For  the first and the second basis vectors are linearly dependent if

where y is a scalar different from zero and is an arbitrary displacement vector.
Substituting into Eq. (8.12) and pre-multiplying by yields

It is observed that the condition of Eq. (8.13) is equivalent to the case of uniform
scaling where

Two successive basis vectors and are linearly dependent if

for some scalar y different from zero. The condition of Eq. (8.14) is satisfied for
arbitrary displacements   if

For the second and the third basis vectors  and respectively, this condition
reduces to

The condition of Eq. (8.16) is satisfied in cases of rank-one changes in the stiffness
matrix. Consider for example the typical case of a change in the cross-sectional area of
a single truss member. An exact solution is obtained by the CA method with only two
basis vectors as [15]

where the subscript i denotes changes in member i. That is, corresponds to the
change in the stiffness matrix of member i. The expression of Eq. (8.17) can
readily be extended to the general case of changes in m members, where the exact
solution is given by [15]

and
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Exact solutions by Eq. (8.18) are efficient in cases where m << n, that is, the number of
changes is much smaller than the number of degrees of freedom for the structure.

8.2.2 Equivalence of the CA Method and the S-M Formula
It is shown in this section that for a change in the cross-sectional area of a single truss
member, the exact solutions obtained by the CA method [Eq. (8.17)] and the S-M
formula [Eq. (4.8)] are equivalent [16].

For a change in a single truss member i, the expression for an exact solution by the
CA method is [Eq. (8.17)]

where is defined as

and is the matrix of changes in the stiffness due to a change in member i. The term
in Eq. (8.20) represents a pair of collinear forces on the ends of a modified truss

member. Thus, the basis vector may be viewed as an influence coefficient vector
measuring the effect of the change in element i on the displacement vector [Eq.
(8.19)]. To determine the change in the displacement vector consider the modified
analysis equations (3.5). For R = R* the latter equations can be expressed as

Since the change is of rank-one, the expression of Eq. (4.1) can be considered.
Substituting Eqs. (4.1) and (4.5) into Eq. (8.20) gives

Substituting Eqs. (4.1), (8.19), (8.20) and (8.22) into Eq. (8.21) and pre-multiplying by
yields

Solving Eq. (8.23) for gives
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Substituting Eqs. (8.22) and (8.24) into Eq. (8.19) yields

Substituting Eq. (4.7) into Eq. (8.25) gives Eq. (4.8). That is, solutions by the S-M
formula [Eq. (4.8)] and the CA method [Eq. (8.17)] are equivalent.

8.2.3  Equivalence of the CA Method and the Woodbury Formula
For simultaneous changes in m truss members, it was shown in Section 8.2.1 that the
exact solution by the CA method can be expressed as [Eq. (8.18)]

where the basis vectors are given by [see Eq. (8.20)]

Thus, Eq. (8.18) for a rank-m change in K represents a linear combination of rank-one
changes in the displacements. From the Woodbury formula, as given by Eqs. (4.13)
through (4.17), the change in the displacements can be expressed as

The solution steps using the Woodbury formula are summarized below.

Each column of the matrix T is calculated by applying a pair of collinear forces
representing one column of the matrix V and solving Eq. (4.13).
The coefficients are calculated by Eq. (4.16), which is an m × m linear system.
The change in the displacements is calculated by Eq. (8.28).

It is seen that the CA method and the Woodbury formula involve exactly the same
computations.

8.2.4  Solution Procedure
Consider the case of m rank-one simultaneous changes in the stiffness matrix (for
example, simultaneous changes in m truss members). It was noted in Section 8.2.1 that
an exact solution is obtained if one basis vector is selected for each changed member.
This procedure is efficient when the number of changed members is much smaller than
the number of degrees of freedom. If some of the basis vectors are linearly dependent,
the exact solution is obtained with a smaller number of basis vectors.

Based on the expressions presented in Section 8.2.1, an exact reanalysis procedure is
now developed. For the given initial values and , the solution process involves the
following steps [15]:
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a. Calculation of the constant vectors The basis vectors are calculated by Eq.
(8.20)

where is the contribution of the ith member to It is observed that when the
basis vectors are linear functions of the changes in cross sections they can be
expressed as

where are constant vectors defined as

That is, the vectors are the constant derivative vectors It was noted in
Section 7.1.2 that multiplying a basis vector by any scalar does not change the
approximate solution [but only the corresponding scalar see Eq. (7.13)].
Therefore, the constant vectors can be considered as basis vectors instead of
for the whole solution process. In addition, calculation of the basis vectors involves
only forward and backward substitutions, if is given in a decomposed form of
Eq. (3.2) from the initial analysis.
Calculation of the coefficients For any assumed set of changes in m
members, the matrix K is found by

b.

where the matrices are linear functions of For the given basis vectors, the
matrix and the vector are then found by Eq. (7.14), and the coefficients are
calculated by solving the set of m×m equations (7.15).
The final exact displacements are calculated by [see Eq. (8.18)]c.

Example 8.4 - Exact Solutions by the CA Method. To illustrate calculation of the
exact displacements by the CA method, consider again the ten-bar truss shown in
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Figure 8.10. Solution of this example by the S-M Formula was demonstrated in
example 4.1. The truss is subjected to a single loading condition of two concentrated
loads, the initial cross-sectional areas are X= 1.0, the modulus of elasticity is 30 000
and the eight analysis unknowns are the horizontal and the vertical displacements at
joints 1, 2, 3 and 4, respectively.

The vectors and [Eq. (8.31)], calculated for changes in each of the 10 cross
sections, are shown in Table 8.9. The final exact displacements can readily be
determined for any assumed set of changes in the cross sections by multiplying the
given vectors by the corresponding and
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Assume for example the following two separate changes:

Case 1. A change in member 1.
Case 2. A change in member 2.

The basis vectors for the two cases are given in Table 8.9, the scalars calculated by Eq.
(8.24) are and (see calculation of v , t in example 4.1) and the
final exact displacements, determined by Eq. (8.19), are:

Case 1

Case 2

Assuming simultaneous changes and in members 1, 2 and 3,
respectively, the following exact expression for the displacements is obtained [see Eq.
(8.33) and Table 8.9]
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Assuming the optimal changes in the three cross sections, and
solution of the reduced CA problem gives
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9  Topological and Geometrical Changes

Changes in the topology and the geometry of the structure are encountered particularly
in layout optimization problems [e.g. 1]. Layout optimization means the simultaneous
selection of the optimal variables describing

the topology (i.e. spatial sequence of members and joints);
the geometry (i.e. the location of joints); and
the cross-sectional dimensions (sizing).

Layout optimization is perhaps the most challenging class of problems in structural
optimization because there exists a large number of possible topologies and they are
difficult to classify and quantify. Moreover, at each point of the available space,
potential members may run in a large number of directions. At the same time, layout
optimization is of considerable importance because it results in much greater material
savings than pure cross-section optimization.

Layout optimization is usually based on a ground structure, which is the union of all
potential members. During the optimization procedure, non-optimal members are
eliminated and the optimal size of the remaining members is determined. From the
viewpoint of the ground structure approach, layout optimization can also be defined as a
special case of cross-section sizing optimization in which cross-sectional areas may take
on a zero value. An alternative to this approach is an incremental synthesis approach in
which, starting with a few members, new members and joints are progressively added.

Because of the complexity in simultaneous optimization of the geometry, the
topology and the cross sections, two classes of problems are often considered in
optimization of the structural layout:

Topological optimization, where members are usually removed from the highly
connected ground structure, to derive an optimum topology with the corresponding
cross sections; that is, both the topological and the sizing variables are optimized
simultaneously.
Geometrical optimization, where the coordinates of joints and the cross-sectional
sizes are treated as design variables and optimized simultaneously.

161

a.

b.
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In this chapter topological and geometrical changes of the structure are considered.
Various changes in the topology are considered in Section 9.1. Developing a reanalysis
method for topological changes is most challenging, since the structural model is
changed and the resulting response might be significantly different from the initial
response. Most approximate reanalysis methods are not suitable for such changes and
provide inadequate or meaningless results. It is shown that accurate approximations can
be achieved efficiently by the CA method for significant changes in the topology.
Moreover, for some structures, such as trusses, exact solutions can be achieved by the
solution procedure described in Section 8.2.4.

Geometrical changes are considered in Section 9.2. Accurate approximations for
changes affecting a large number of members are discussed in Section 9.2.1. Exact
solutions for changes affecting only a small number of members are demonstrated in
Section 9.2.2.

The approach presented in this chapter is suitable for all types of structures. For
simplicity of presentation small-scale truss structures are used. In all examples the
cross-sectional areas are equal to unity.

9.1  TOPOLOGICAL CHANGES

Topological optimization has some basic difficulties involved in the solution process
compared to fixed-layout optimization. One basic problem is that the structural model
is itself allowed to vary during the design process. Discrete structures are generally
characterized by the fact that the finite element model of the structure is not modified
during the optimization process. In topological design, however, since members are
added or deleted during the design process, both the finite element model and the set of
design variables change. These phenomena greatly complicate the design and analysis
interactions. Another difficulty is that the number of possible element-joint
connectivities grows dramatically as the number of possible joint locations is increased.
This number might be very large particularly in structures of practical size. These
difficulties have motivated the use of approximate analysis in topological optimization.



Topological and Geometrical Changes 163

Most reanalysis methods are suitable for the simple cases where the number of
Degrees of Freedom (DOF), or the number of analysis equations, is unchanged. The
reanalysis approach considered in this section is suitable for problems where the
number of DOF and the sizes of K, rand R are changed. The following typical cases of
changes in the topology are considered (see Figure 9.1):

Deletion and addition of members, where the number of DOF is unchanged (Figure
9. la). In this case, the number of analysis equations is also unchanged and only
numerical values of the coefficients of the equations are modified. It is shown that
exact solutions can be obtained efficiently by the CA method in cases where the
number of changed members is relatively small.
Deletion and addition of members, and deletion of some joints, where the number
of DOF is decreased (Figure 9.1b). It is shown that in this case approximate
reanalysis by the CA method with a reduced number of unknowns provides
accurate results even when the resulting structure is conditionally unstable.
Deletion and addition of members, and addition of some joints, where the number
of DOF is increased (Figure 9.1c). In this case it is necessary to augment the
analysis model such that the new degrees of freedom are included in the modified
analysis equations. A general solution procedure is developed, where an exact
modified initial analysis is first efficiently carried out. The modified initial analysis
is then used for reanalysis of further topological modifications.

9.1.1 Number of DOF is Unchanged
In cases where the number of DOF is unchanged, the general formulation presented in
Section 3.1 can be considered for various topological changes. Evaluation of modified
displacements by the CA method for such cases is described in Chapter 7.

It was noted in Section 8.2 that exact solutions could be obtained efficiently by the
CA method for low-rank changes in the stiffness matrix [2, 3]. Exact solutions obtained
by the CA method for topological changes are demonstrated in this section. The
solution procedure described in Section 8.2.4 can be used also in cases where members
are deleted or added [3, 4]. The procedure is efficient in cases where the number of
changed members is much smaller than the number of degrees of freedom.

As a typical example consider the case of deletion or addition of m truss members.
The exact solution is achieved by the CA method if one basis vector is introduced for
each changed member by Eq. (8.29)

where is the contribution of the ith member to The solution is given by Eq.
(8.33)

a.

b.

c.
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where is the vector of initial displacements. When some of the basis vectors are
linearly dependent, the exact solution is achieved for a smaller number of vectors.

Example 9.1 – Conditionally Unstable Structures. To illustrate exact solutions for
modified designs representing conditionally unstable structures, consider again the
initial ten-bar truss shown in Fig. 9.2 subjected to a single loading condition of two
concentrated loads. The modulus of elasticity is 30000 and the eight analysis unknowns
are the horizontal and the vertical displacements at joints 1, 2, 3 and 4, respectively. The
following conditionally unstable modified structures are solved [5]:

a.
b.
c.
d.

Elimination of members 2+6 (Figure 9.3a).
Elimination ofmembers 4+9 (Figure 9.3b).
Elimination of members 5+8+9 (Figure 9.3c).
Elimination of members 4+5+8+9 (Figure 93d).

The exact solutions are found for all the above cases by second-order approximations
(CA2, only 3 basis vectors), as summarized in Table 9.1.
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Irrelevant results because of conditional instability

Example 9.2 – 50-Bar Truss. Consider the cantilever truss shown in Figure 9.4a. The
truss is subjected to a single load at the tip, the member cross section areas are equal to
unity, the modulus of elasticity is 10 000 and the 40 unknowns are the X direction
(horizontal) and the Y direction (vertical) displacements in joints 2 through 21,
respectively. Members are designated as follows: 1-10 = top chord; 11-20 = bottom
chord; 21-40 = diagonals; 41-50 = verticals. Eliminating 10 diagonal members
(members 22, 24, .., 40) to obtain the topology shown in Figure 9.4b, the resulting
displacements and member forces found by the CA method and exact analysis are
given in Tables 9.2 and 9.3 [3]. It is observed that results achieved by second-order
approximations (CA2, only 3 basis vectors) are very close to the exact solution.

Example 9.3 – 19-Bar Truss [4]. Consider the tower truss shown in Figure 9.5 with
nineteen cross-sectional area variables, subjected to a single loading condition of two
concentrated loads. The modulus of elasticity is 10000 and the twelve analysis
unknowns are the horizontal and the vertical displacements at joints 2, 3, 4, 6, 7, and 8,
respectively. With initial cross-sectional areas of unity and an initial nineteen-bar
topology, the following four cases are solved by considering 0.001 (practically zero)
cross-section areas for the eliminated members (see Figure 9.6):
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a.
b.
c.
d.

Elimination of six members (Figure 9.6a).
Elimination of seven members (Figure 9.6b).
Elimination of nine members (Figure 9.6c).
Elimination of members as in case c and optimization of the remaining members to
find the optimal cross section areas
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The results shown in Table 9.4 indicate that high accuracy is achieved by the CA2
procedure for most cases of these large topological changes.

9.1.2  Number of DOF is Decreased
This type of reanalysis problem is encountered in many topological optimization
problems where some members and joints are deleted from an initial ground structure,
which consists of numerous members and joints. As a result, the number of DOF is
decreased and the number of analysis equations is changed.

The sizes of the stiffness matrix and the load vector are decreased according to the
number of joints deleted from the structure. The modified stiffness matrix and the
modified load vector can be expressed as

where K and R are the modified stiffness matrix and the modified load vector,
respectively, of the complete set of equations, including the original degrees of
freedom; and and are the stiffness sub-matrix and the load sub-vector,
respectively, of the modified structure with the reduced number of degrees of freedom.
The set of modified equations (3.5) to be solved is reduced to
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where is now a reduced vector of modified displacements. Despite the reduction in
the size of the stiffness matrix, the number of modified analysis equations is often large
and efficient reanalysis might prove useful.

Since some analysis equations become zero identities, stiffness analysis of the
complete set of modified equations cannot be carried out. It is also noted that the
resulting structure represented by Eq, (9.5) might be conditionally unstable. In which
case, the modified stiffness matrix is singular and, again, exact analysis cannot be
carried out. The reduced stiffness matrix used by the CA method is usually not
singular even in cases when the modified stiffness matrix is singular. Therefore,
approximate reanalysis by the CA method with a reduced number of unknowns may
provide accurate results even when the modified matrix is singular. If the number of
basis vectors considered is smaller than the number of degrees of freedom of the
modified structure, the usual CA procedure will provide accurate results efficiently.

Example 9.4 - 2050-Bar Truss. Consider a minimum compliance (external work) truss
topology design problem for a truss with a ground structure of 51×11 nodes. The
potential bars connect all neighboring nodes as shown in Figure 9.7. All the nodes on
the left-hand-side are fixed and the bottom node at the right-hand-side is subject to a
vertical load. Altogether there are 2050 bars and 1100 degrees of freedom (nodal
displacements). The optimal topology is shown in Figure 9.8 and the compliance of the
optimal design is

Results achieved by the CA method are demonstrated for different systems defined
by various values of the initial and the modified stiffness matrices. These matrices are
given (through the design variables X) by a parameter according to

where is a vector of initial constant numbers 1/2050 and

is the optimal design vector from Figure 9.8. All design vectors satisfy the

feasibility constraint Table 9.5 shows minimal and maximal values of the

design variables for various values, and indicates the significant changes in X.

The condition numbers of the original matrix K and the preconditioned matrix
[see Eq. (7.54)] for various modified designs are shown in Table 9.6. It can be seen that

the condition numbers of matrices are much smaller than those of K. The compliance
and the errors for various initial designs, modified designs and numbers of basis vectors
are shown in Tables 9.7 and 9.8. For the initial design and modified designs

iterations are needed to achieve accurate solutions. For the initial
designs and modified designs only 3 iterations are
needed to achieve accurate results.
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9.1.3 Number of DOF is Increased
In cases where some members and joints are added to the initial structure, the number
of DOF is increased, the number of analysis equations is changed, and the sizes of the
stiffness matrix and the load vector are increased accordingly.

Let us define the augmented stiffness matrix and the augmented load vector
with the increased number of DOF, by

Upon increasing the number of DOF, the matrix of changes and the vector of
changes can be expressed in terms of corresponding sub-matrices and sub-vectors
as
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where and are the changes in stiffness coefficients and in the loads,
respectively, corresponding to the original DOF; and are the changes
corresponding to the new DOF; and and are the changes in the coefficients
corresponding to both the original and the new DOF.

The modified stiffness matrix and the modified load vector are given by

where the new degrees of freedom are included in the set of modified analysis
equations. The number of added DOF is usually small, compared with the original
number of DOF. It is shown in the following that in such cases it is possible to
calculate the modified displacements efficiently using the CA method.

Some procedures for using the CA method in cases where the number of DOF is
increased have been previously proposed [3, 7]. The procedure presented in this section
is more general and provides more accurate results [5], Upon increasing the number of
DOF, it is necessary first to establish a Modified Initial Analysis (MIA), such that the
new degrees of freedom are included in the analysis model. For the augmented stiffness
matrix and the augmented load vector [Eq. (9.6)], the MIA model can be selected such
that reanalysis will be convenient. Once the MIA is established, it is then possible to
analyze structures modified due to addition or deletion of members, keeping the number
of degrees of freedom unchanged.

The MIA is established as follows. The matrix of changes in the stiffness is
expressed first as a sum of the two matrices and by

These two matrices are defined in such a way that the modified initial analysis is easy
to carry out. The modified initial stiffness matrix is expressed as

Matrices and are defined as
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where is a scalar multiplier to be selected Substituting the expressions of
and [Eqs. (9.6) and (9.11), respectively] into Eq. (9.10) yields

The rationale of this selection is that, once the decomposed form of Eq. (3.2) is
available, factorization of the modified initial stiffness matrix

is straightforward. Specifically, matrix can be expressed as

where the elements of matrix are already given. That is, the rows and columns
corresponding to the original degrees of freedom are unchanged and only rows and
columns corresponding to the new degrees of freedom are calculated. In general the
number of added joints is small, and the factorization of Eq. (9.13) involves a small
computational effort.

Concerning the selected value of it is observed that yields

One drawback of this selection is that matrix is not necessarily positive definite and
the factorization of Eq. (9.13) might not be possible. In such cases we can use the
symmetric factorization

where is a lower triangular matrix and is a diagonal matrix. It should be noted
that matrix does not represent a real structure and experience has shown that the
accuracy of the approximations deteriorates in this case.

In the following procedure, this difficulty is overcome by selecting a small value
such that matrix [Eq. (9.12)] is a good approximation of the matrix [since

see Eqs. (9.6), (9.7)]. With these definitions, the solution procedure
involves the following two stages.
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a. The modified initial analysis (MIA) is established. Assuming a small  value, we
calculate and factorize the matrix [Eqs. (9.12), (9.13)]. Since the decomposed
form of Eq. (3.2) is available, this operation involves a small computational effort.
The modified initial displacements are then calculated by solving

b.
This calculation involves only forward and backward substitutions.
Once the vector has been determined, the displacements due to the remaining
change in the stiffness matrix [Eq. (9.11)] are calculated. The modified
equations to be solved are

The solution process involves using the CA procedure described in Section 7.1 for
the simple case where the number of DOF is unchanged, with and R
replacing and  respectively, as initial values.

Example 9.5  -  Number of DOF is Increased [5]. To illustrate reanalysis for the case
of addition of members and joints, consider the initial six-bar truss shown in Figure
9.9a. The six unknowns are the horizontal and the vertical displacements at joints 1, 2
and 3, respectively. The initial displacement vector and the decomposed stiffness
matrix are given by

Assume addition of one joint and four members to obtain the ten-bar truss shown in
Figure 9.9b. Reanalysis is carried out in the following two stages:

a. The Modified Initial Analysis (MIA) is carried out. Selecting the initial
decomposed stiffness matrix is given by [Eq. (9.14)], where is already given
as above. Thus, it is necessary to calculate only the sub-matrices as
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For the found from Eq. (9.14), calculation of the modified initial displacement
vector through Eq. (9.17) involves only forward and backward substitutions. The
result is

It is observed that, due to the small change in stiffness, the displacements of the
original degrees of freedom have changed only slightly.

b. The displacements due to the remaining change in the stiffness matrix are
calculated. Employing the CA procedure described in Section 7.1.2, with

and R replacing and respectively, as initial values, we achieve the
exact solution with only three basis vectors (CA2, second-order approximations):

9.2 GEOMETRICAL CHANGES

In geometrical optimization the coordinates of joints and the cross-sectional sizes are
treated as design variables and optimized simultaneously. In general, the design
variables are assumed to be continuous, and numerical search algorithms are used to
find the optimum. It is usually assumed that the topology is fixed, unless some of the
joints coalesce during the solution process. The difficulties associated with the
common problem of cross-section optimization (i.e., the implicit nature of the



Topological and Geometrical Changes 177

constraints and the large numbers of variables and constraints) are magnified in
problems of geometrical optimization. That is, the problem size is increased and the
need for multiple repeated analyses is a major obstacle in applying structural
optimization methods to large-scale structures.

Geometrical changes are conceptually similar to cross-section changes in the sense
that the number of degrees of freedom is usually unchanged. However, since the
displacements are highly nonlinear functions of the design variables, it is difficult to
achieve accurate approximations. In addition, changes in the geometry significantly
affect the response of the structure. Accurate and exact solutions for geometrical
changes are demonstrated in this section.

It was noted in Section 7.3 that accurate approximations are obtained by the CA
method in various cases. It is shown in Section 9.2.1 that accurate solutions can be
achieved for geometrical changes if the basis vectors are close to being linearly
dependent or, for nearly-scaled geometries, when the angle between the two vectors
representing the initial design and modified design is small.

It is shown in Section 9.2.2 that exact solutions can be achieved efficiently for
geometrical changes by viewing these changes as corresponding topological changes.
Modifying the coordinates of a single joint, it is possible to obtain the exact solution for
the new design by viewing the change in the geometry as two simultaneous changes in
the topology: all members connected to the joint are deleted, and new members are
added at the modified location [3, 8].

The approach presented is suitable for different types of structures and design
variables. For illustrative purposes truss structures are considered in this section.
Arbitrary units and cross sectional areas equal to unity are assumed in all examples.

9.2.1 Accurate Solutions

Example 9.6 - Nearly Dependent Basis Vectors (Ten-Bar Truss).  Consider the ten-bar
truss shown in Figure 9.10 with two geometrical variables, the depth D and the panel
width W. With the initial values W = D = 360, then for W = D = 720 (increase of 100%
in the length of all members), the exact solution is simply

To demonstrate the accuracy of low-order approximations achieved by the CA method
for various geometrical changes, assume the first-order (CA1, only 2 basis vectors) and
the second-order (CA2, only 3 basis vectors) procedures for the following three cases
of modified geometries [8]:

a,
b.
c.

W= 360, D = 540 (increase of 50% in the depth).
W= 360, D = 720 (increase of 100% in the depth).
W= 180, D= 720 (decrease of 50% in the width and increase of 100% in the depth).
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From the results summarized in Table 9.9 it is observed that the changes in the
geometry lead to significant changes in the displacements. The high accuracy of the
results is explained by the fact that the basis vectors determined by the CA method are
close to being linearly dependent [two basis vectors and are close to being linearly
dependent if the condition of Eq. (7.41) is satisfied, where is the angle between the
two vectors]. In Case b, for example, cos and cos for the three
basis vectors of the CA2 procedure.
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Example 9.7 - Nearly Scaled Designs (50-Bar Truss).  Consider the initial geometry
of the cantilever truss shown in Figure 9.11. The truss is subjected to a single load at
the tip, the member cross section areas are equal to unity, the modulus of elasticity is
10 000 and the 40 unknowns are the X direction (horizontal) and the Y direction
(vertical) displacements in joints 2 through 21, respectively. Two geometric variables
are considered, the depth D and the panel width W. Exact solution is achieved with a
single basis vector for all designs where the ratio between the depth and the width of
the truss is unchanged. The reason is that the vertical and the horizontal joint
coordinates are changed such that the geometry is scaled (the lengths of all members
are changed by the same percentage and the direction cosines are unchanged).

With the initial design D = W = 1.0, the following two cases of changes in the
geometry are solved [8]:

a.
b.

A change of 20% in the depth D = 1.2 (Figure 9.11 a).
A change of 100% in the depth D = 2.0 and 90% in the width W= 1.9 (Figure
9.11b).

The results are given in Table 9.10 for the CA1 procedure (first-order approximations,
only two basis vectors). Comparing the results obtained for the two cases of
geometrical changes, we see that better approximations are achieved in case b,
involving larger changes in the geometry. This is attributed to the fact that the modified
geometry is relatively close to a scaled geometry (D = W) for case b, for which the
exact solution is achieved with a single basis vector.
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Example 9.8 - 130-Bar Truss. To illustrate changes in the geometry of larger
structures, consider the 130-bar truss shown in Figure 9.12. The ten-story three-bay
truss is subjected to ten equal horizontal loads of magnitude 10.0. The following two
types of change in the geometry are solved [8]:

Type a
Changes in the distance X defining the horizontal location of the column from the
left (Figure 9.13a). For the initial design  X=200, the following changes are considered:

Case al: X= 250 (increase of 25%).
Case a2: X= 300 (increase of 50%).
Case a3: X= 350 (increase of 75%).

Type b
Symmetrical changes in the distance X defining the location of the outer joints (Figure
9.13b). For the initial design X=200, the following changes are considered:

Case b1: X= 100 (decrease of 50%).
Case b2: X= 50 (decrease of 75%).
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The maximum horizontal displacements at the top left joint obtained by the CA and
exact methods for various numbers of basis vectors are summarized in Table 9.11 and
the corresponding errors in the approximations are shown in Table 9.12. It is observed
that the larger is the change in the geometry the more the number of basis vectors
needed to achieve accurate results. Similar errors are obtained for other displacements
for the truss.
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Example 9.9 - Various Changes in the Geometry and the Topology. To illustrate the
quality of the results for various changes in the geometry and the topology of the
structure, consider the initial ten-bar truss design shown in Figure 9.14a. Three
different cases of changes in the structural layout are considered [3]:
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Changing the topology by eliminating members 8, 9, 10 (Figure 9.14b).
Changing the geometry by increasing the depth by 100% (Figure 9.14c).
Changing the topology and the geometry by simultaneous elimination of members
8, 9, 10 and increasing the depth by 100% (Figure 9.13d).

Approximate results achieved by the CA1 and CA2 procedures are summarized in
Tables 9.13, 9.14, 9.15. It is observed that good accuracy is achieved by the CA1
procedure. The results achieved by the CA2 procedure are very close to the exact
solutions.
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9.2.2 Exact solutions
Exact solutions can be achieved efficiently by the CA method for low-rank
modifications in the structure, by viewing these changes as corresponding topological
changes. For example, changing the coordinates of a single joint, we can obtain the
exact solution for the new design by viewing the change in the geometry as the
following two successive changes in the topology:

All members connected to that joint are deleted.
New members are added at the modified location of the joint.

a.
b.

It is noted that the number of basis vectors needed to achieve the exact solution is equal
to the number of changed members. However, it is found that a smaller number of
vectors are often sufficient.

Example 9.10 Change in a Small Number of Members. Consider the nine-bar truss
with the initial geometry shown in Figure 9.15a [8]. To calculate displacements for the
modified geometry shown in Figure 9.15b, members 8 and 9 connected to joint 4 are
deleted from the structure and new members 10 and 11 are added at the new location of
joint 4. The matrix of changes in the stiffness matrix is

where
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Since four members have been changed, four basis vectors are needed to achieve the
exact solution. In the present case, the matrices corresponding to the two vertical
members 9 and 11 are linearly dependent and, therefore, only three basis vectors are
required to obtain the exact displacements

9.3 REFERENCES

1. Rozvany, G.I.N. Bendsoe, M.P. and Kirsch, U. Layout optimization of structures
(Feature article), Applied Mechanics Reviews 48 (1995) 41-118.



2.

3.

4.

5.

6.

7.

8.

186 Chapter 9

Kirsch, U. and Liu S. Exact structural reanalysis by a first-order reduced basis
approach, Structural Optimization 10 (1995) 153-158.
Kirsch, U. and Liu, S. Structural reanalysis for general layout modifications, AIAA
Journal 35 (1997) 382-388.
Kirsch, U. Efficient reanalysis for topological optimization, Structural
Optimization 6 (1993) 143-150.
Kirsch, U. and Papalambros, P.Y. Structural reanalysis for topological
modifications, Structural Optimization, 21 (2001) 333-344.
Kirsch, U. Kocvara, M. and Zowe, J. Accurate reanalysis of structures by a
preconditioned conjugate gradient method, Int. J. Num. Meth. Engrg. (to be
published 2002).
Chen, S. Huang, C. and Liu, Z. Structural approximate reanalysis for topological
modifications by finite element systems, AIAA Journal 36 (1998) 1760-1762.
Kirsch, U. and Papalambros, P.Y. Exact and accurate reanalysis of structures for
geometrical changes, Engineering with Computers (to be published 2001).



10 Design Sensitivity Analysis

Design sensitivity analysis deals with the calculation of changes in the response of the
structure resulting from changes in the parameters describing the structure. The
derivatives of the response vector with respect to the system parameters are usually
referred to as the sensitivity coefficients. The latter are used to:

predict the changes in the system response due to changes in the parameters;
select a search direction in design optimization problems;
construct explicit approximations of the constraint functions in terms of the
structural parameters (e.g. first-order Taylor series approximations);
generate approximations for the response of a modified system, including
approximate reanalysis models;
assess the effects of uncertainties in the structural properties (material properties,
geometric parameters and other parameters) on the system response.

Methods of design sensitivity analysis can be divided into the following classes:

a.

b.

Analytical methods, which are widely used and often demonstrate good
performance. However, implementation of these methods is difficult in some
problems, such as shape optimization, where analytical derivatives of the stiffness
matrix are not easy to obtain.
“Semi-analytical”, or “quasi-analytical” methods, based on finite-difference
evaluation of the right-hand-side vector, the so-called “pseudo load”. These
methods combine ease-of-implementation and computational efficiency, and they
have been implemented in several finite element programs. However, the errors
associated with the finite difference approximation of the right-hand-side vector
can be substantial [1,2].
Finite-difference methods, which are the easiest to implement and therefore they
are quite popular. For a problem with n design variables, finite difference
derivative calculations require repetition of the analysis for n+1 different stiffness
matrices. This procedure is usually not efficient compared to analytical and semi-
analytical methods. Employing approximate reanalysis methods can reduce the
large computational effort involved in finite difference calculations.

c.

187
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The two general methods used for calculating the sensitivity coefficients of the
system response are:

The direct method, which is based on the implicit differentiation of the analysis
equations that describe the system response with respect to the desired parameters,
and the solution of the resulting sensitivity equations.
The adjoint-variable method, where an adjoint physical system is introduced whose
solution permits the rapid evaluation of the desired sensitivity coefficients.

It has been noted [3] that a predominant contributor to the cost and time of the
optimization of large structural systems is the calculation of derivatives. Moreover, the
calculation of derivatives for a given design involves structural analysis of the design.
There has been much interest in efficient procedures for calculating the sensitivity
coefficients. However, most approximations that are adequate for structural reanalysis
are not sufficiently accurate for sensitivity analysis.

The problem considered in this chapter is to evaluate the displacement derivatives for
modified designs where the displacement response of the design is not available by
exact analysis. Once the displacement derivatives are available, stress derivatives can be
evaluated by direct differentiation of the stress-displacement relations. When results of
exact analysis for the modified design are available, calculation of exact displacement
derivatives is straightforward and approximations are usually not needed. It has been
shown [4, 5] that the CA method presented in Chapter 7 can be used also for effective
approximation of derivatives. Accurate results have been achieved efficiently by either
the direct method or the adjoint-variable method.

Exact analytical derivatives, obtained by the direct method and the adjoint-variable
method, are presented in Section 10.1. Three alternative sensitivity analysis methods for
calculation of approximate derivatives by the CA method are developed in Section 10.2:

The Direct Approximation (DA) method.
The Adjoint-Variable Approximation (AVA) method.
The Finite-Difference Approximation (FDA) method.

a.
b.
c.

Results obtained by the various methods are presented and compared in Section 10.3.
Calculation of second-order derivatives is demonstrated in Section 10.4, and
computational procedures for evaluating the approximate displacements, the first-order
derivatives and the second-order derivatives for a modified design by the CA method
are developed in Section 10.5.

10.1 EXACT ANALYTICAL DERIVATIVES

Exact analytical derivatives by the direct method and the adjoint-variable method are
developed in this section. For simplicity of presentation a single design variable,
denoted by is considered.
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10.1.1 Direct Method
Differentiating Eq. (3.1) with respect to a design variable and rearranging yields

The direct approach involves solution of Eq. (10.1) for and then taking the
desired component. For multiple design variables, Eq. (10.1) must be solved repeatedly
for each design variable. To obtain derivatives of a single displacement we compute

where is a vector having unit value at the jth location and zeros elsewhere.
Equations (10.1) and (3.1) have the same coefficient matrix . If the decomposed

form of Eq. (3.2) is available from initial analysis then only forward and backward
substitutions are needed to solve for

In many problems the load vector R is assumed to be independent of the design
variables. In such cases and Eq. (10.1) is reduced to the form

10.1.2 Adjoint-Variable Method
Premultiplying Eq. (10.1) by and substituting Eq. (10.2) yields

The adjoint-variable vector is defined as the solution of the set of equations

Substituting Eq. (10.5) into Eq. (10.4) gives
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where use is made of the symmetry of The adjoint-variable method involves
solution of Eq. (10.5) for and then calculation of by Eq. (10.6). Assuming

that the load vector is independent of the design variables then Eq. (10.6) is reduced to
the form

10.2  APPROXIMATE FIRST-ORDER DERIVATIVES

In the presentation that follows, the CA method presented in Section 7.1 is considered.
Assume, for illustrative purposes, approximations along the line

where is a variable representing the step size and is a given matrix of changes in
the stiffness. Assume also that the load vector is independent of the design variables so
that the basis vectors are given by [see Eq. (7.3)]

where s is the number of terms considered and are vectors of constant
elements, given by

and is a matrix of constant elements, defined as [see Eq. (7.3)]
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10.2.1 Direct Approximations (DA)
In the direct method, differentiation of Eq. (7.16) with respect to yields

where is the matrix of basis vectors and y is the vector of unknown coefficients. The
derivatives are calculated by differentiating Eq. (7.15) and rearranging

where, from Eqs. (7.14) we have (for R = R*)

For the line of Eq. (10.8), the matrix becomes [see Eq. (10.9)]

Introduction of the modified stiffness matrix K by Eq. (10.8) is straightforward since
the elements of matrix are constant. In addition, the derivatives

obtained by differentiation of Eq. (10.8) are also constant. In summary, given the initial
stiffness matrix in the decomposed form of Eq. (3.2) and the initial displacements r*,
evaluation of the approximate first-order derivatives by the DA method for any
assumed involves the following steps:

a.

b.
c.
d.

Determine the matrices and [Eqs. (10.15), (10.16)]. For the line of
Eq. (10.8) this step involves only calculation of

Calculate the matrix and the vector [Eq. (10.14)].
Calculate the vector by solving the set of s × s equations (10.13).
Evaluate the derivatives by Eq. (10.12).
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10.2.2 Adjoint-Variable Approximations (AVA)
The approximate displacement derivatives can be evaluated by first solving the set of
modified equations

for the adjoint-variable vector Since Eqs. (3.5) and (10.17) have the same

coefficient matrix, we can apply a computational procedure similar to that used for
evaluation of the approximate displacements, with r and R replaced by and

respectively. Assuming that is known from analysis of the initial design [Eq.

(10.5)], and the approximate displacements are known from prior approximate analysis,
evaluation of analytical derivatives by the AVA method for any modified design
involves the following steps:

a.

b.

Calculate the basis vectors and introduce matrix of the basis vectors,
where [see similar calculation of r by Eqs. (10.9) and (10.10)]

Calculation the vectors involves only forward and backward
substitutions, if is given in the decomposed form of Eq. (3.2).
Calculate the elements of and by [see Eqs. (7.14)]

c.

d.

Calculate the coefficients y by solving the set of s×s equations [see Eq. (7.15)]

Evaluate the vector by [see Eq. (7.16)]

e. Evaluate the approximate derivatives by [Eq. (10.7)]
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10.2.3 Finite Difference Approximations (FDA)
In cases where analytical derivatives of the displacements are not easy to implement,
the finite difference (FD) method can be used. In this section, the FD method is
considered only for purposes of comparison between methods.

In the forward-difference method, the displacement derivatives are computed from
the exact displacements at the two points and by

where is a predetermined step-size. The accuracy can be improved by adopting the
central-difference method

where the derivatives are computed from the exact displacements at the two points
and When is known, application of Eq. (10.23) involves

only one additional calculation of the displacements at while Eq. (10.24)
requires calculation at two points and

The two FD methods of Eqs. (10.23) and (10.24) are compared in the following with
the corresponding Finite Difference Approximations (FDA) methods. These methods
use the approximate displacements (computed by the CA method). The
corresponding expressions are given by

Calculation of approximate derivatives by the FDA method [Eq. (10.25) or Eq. (10.26)]
involves evaluation of the approximate displacements at two points.

Example 10.1 - Low-Order Approximations of Derivatives. To illustrate the accuracy
of the results achieved by second-order approximations (CA2 – only three basis
vectors), consider again the ten-bar truss shown in Fig. 10.1. The modulus of elasticity
is 30000 and the eight analysis unknowns are the horizontal and the vertical
displacements at joints 1, 2, 3 and 4, respectively. The initial cross-sectional areas are

the stress constraints are and the minimum size constraints
are Assuming the minimum weight as the design objective, the optimal
design is [6]



194 Chapter 10

Assume the line from the initial design to the optimal design

where is a variable representing the step size and is defined as

Exact and approximate displacement derivatives achieved by various methods are
shown in Tables 10.1 through 10.4 for and (the optimum).
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10.3 COMPARISON OF RESULTS

10.3.1 Accuracy of the Calculations
The accuracy of the calculations by all methods depends on the accuracy of the
approximate displacements. In the examples presented, good displacement
approximations have been achieved for very large changes in the design variables. In
general the accuracy of the DA and AVA methods is similar. However, the AVA
method involves approximations of both r and therefore, poor results might be
obtained by this method for some values.

For the FDA method, the central-difference procedure provides better results than the
forward-difference procedure. The truncation error is minimized by reducing the step-
size  but a small step-size amplifies the round-off errors in the displacements. This is
the step-size dilemma where a large step-size generates large truncation errors while a
small step-size generates large round-off errors. Some considerations for choosing the
forward-difference step-size are discussed elsewhere [7]. In structural optimization,
truncation errors are not of major importance since it is often sufficient to find the
average rate of change in the structural behavior and not necessarily the accurate local
rate of change at a given point. Therefore, to eliminate round-off errors due to
approximations it is recommended to increase the step-size.

10.3.2 Computational Efficiency
Evaluation of the approximate displacements requires calculation of the elements of
matrix As noted in Section 7.1.1, calculation of the basis vectors involves only
forward and backward substitutions, if is given in the decomposed form of Eq. (3.2).
The additional calculations [the terms of Eq. (7.14), determination of y by solving the
set of s×s equations (7.15), and multiplication of the basis vectors by y] are
straightforward. The FDA method requires additional evaluation of the approximate
displacements at one or two points.

To compare the DA method and the AVA method, assume that the two methods
involve a similar computational effort for calculating a single vector of derivatives. The
adjoint-variable method is superior to the direct method when derivatives of a limited
number of displacements must be calculated [8, 9]. Let m be the number of
displacements considered, the adjoint-variable method requires calculation of m adjoint-
vectors In the direct method, the number of vectors that must be determined is
where n is the number of variables and is the number of loading conditions.
Depending on the values of m and one method is to be preferred over the other. In
cases where the direct method is less efficient than the adjoint-variable
method. In most design optimization problems the number of displacements to be
calculated may become large because stress constraints are also considered. Often,
however, only derivatives of critical constraints are calculated. The number of critical
constraints does not change significantly with the number of loading conditions, and is
usually of the same order as the number of design variables. Therefore, the adjoint-
variable method is often preferable for multiple loading conditions.
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10.3.3 Ease-of-Implementation
All approximate methods require evaluation of the approximate displacements. That is,
matrices and are first determined and then some quantities are
calculated by simple algebraic operations. The FDA is the easiest method to implement
since it requires only evaluation of the approximate displacements at one (forward-
differences) or two (central-differences) additional points.

The AVA method requires calculation of in a procedure similar to that used for
evaluating the approximate displacements. In addition, it is necessary to calculate
derivatives of the stiffness matrix with respect to design variables. When analytical
derivatives are not easy to obtain, a semi-analytical method (finite-difference
evaluation), which is easy-to-implement, can be used.

The DA method involves calculation of derivatives of both K and Once again, in
cases of cumbersome calculation of analytical derivatives, a semi-analytical method can
be employed. However, as noted earlier, the errors associated with finite-difference
approximations of these derivatives can be substantial.

10.4 SECOND-ORDER DERIVATIVES

Higher-order derivatives can be evaluated in a similar way to that for first-order
derivatives. Calculation of approximate second-order derivatives by the direct method
is demonstrated in this section. Differentiating Eq. (10.1) with respect to and
rearranging gives the following expression for the exact second-order derivatives

Equations (10.27), (10.1) and (3.1) have the same coefficient matrix If the
decomposed form of Eq. (3.2) is available then only forward and backward
substitutions are needed to solve for

To obtain approximate second-order derivatives, Eq. (10.12) is differentiated with
respect to giving

The second-order derivatives in Eq. (10.28) are obtained by differentiation of
Eqs. (10.13) with respect to The result, after rearranging, is
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The second-order derivatives and in Eq. (10.29) are obtained by
differentiation of Eqs. (10.14) with respect to , giving

For the line defined by Eq. (10.8), the second-order derivatives and
in Eq. (10.30) are obtained by differentiation of Eqs. (10.15) and (10.16) with respect
to giving

10.5 COMPUTATIONAL PROCEDURE

In a typical optimization process it is necessary to evaluate the response for numerous
modified designs. Only for some of the designs it is necessary also to evaluate the
response derivatives. When results of exact analysis for the modified design are
available, calculation of exact response derivatives is straightforward and approximate
procedures are usually not needed. The approach presented in this section is intended
for problems where the displacement response of the modified design is not available
by exact analysis. A computational procedure for evaluating the approximate
displacements, the first-order derivatives, and the second-order derivatives for a
modified design by the CA method is presented. It can be observed that calculations of
various quantities involve similar algebraic operations [see Table 10.5].

Given the initial stiffness matrix in the decomposed form of Eq. (3.2) and the initial
displacement vector from exact analysis of the initial design, the solution process
involves the following steps.

a. Introduction of  the coefficient matrices. Calculate the modified matrix K by Eq.
(3.3) and determine the matrices and For the line defined by Eq.



Design Sensitivity Analysis 199

b.

(10.8), the elements of matrix areconstant [Eq. (10.16)] and the elements of
matrix equal zero [Eq. (10.32)].
Introduction of  the basis vectors. Calculate the basis vectors by Eq.
(7.12). As noted earlier, this calculation involves only forward and backward
substitutions. For the line of Eq. (10.8), the elements of the vectors are constant
[see Eqs. (10.9), (10.10)]. The elements of matrices and are also
constant. That is, once the constant basis vectors have been determined, they apply
for any value.
Introduction of  the reduced quantities. First, calculate the reduced matrix and
the reduced vector by Eqs. (7.14). Then, calculate the matrix and the
vector by Eq. (10.14). Finally, calculate the matrix and the
vector by Eq. (10.30).
Calculation of  the reduced unknowns.  First, calculate the unknown coefficients y
by solving the set of s×s equations (7.15). Then, calculate the vector by
solving the set of s×s  equations (10.13). Finally, calculate the vector by
solving the set of s×s equations (10.29).
Calculation of the final unknowns. First, evaluate the final displacements by Eq.
(7.16). Then, evaluate the derivatives by Eq. (10.12). Finally, evaluate the
second-order derivatives by Eq. (10.28).

e.

c.

d.

Example 10.2 - Accurate Derivatives by the CA Method [5]. To illustrate the accuracy
of the results achieved by the CA method, consider again the ten-bar truss of example
10.1 shown in Figure 10.1. Results of exact analysis are given for the initial design

Assume the line from the initial design to the optimal design
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where is a variable representing the step size and is defined as

Evaluation of the displacements, the displacement first-derivatives and the
displacement second-derivatives with respect to are illustrated for
and (the optimum). The corresponding cross-section areas are summarized in
Table 10.6. The results given in Tables 10.7 - 10.9 for various numbers of basis vectors
show that 2-3 vectors provide good accuracy, and that the accuracy is improved even
more by considering additional vectors. The percentage errors obtained for the
displacements and displacement derivatives are summarized in Table 10.10. It is
observed that the order of magnitude of the percentage of errors is the same for
and The accuracy of the derivatives depends on the accuracy of the
approximate displacements. Specifically, the errors in the displacements and in the
displacement derivatives are of the same order of magnitude. In conclusion, for only 2-
3 basis vectors, good accuracy is achieved for very large changes in the design, for both
displacements and displacement derivatives. The second-order derivatives have not
been calculated for since at this point joint 2 is effectively eliminated.
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11 Nonlinear Reanalysis

It was noted in Section 2.3 that solution of a set of nonlinear equations for structural
analysis can be carried out by different methods (e.g. [1]). In general, no matter what
method is used, a set of updated linear equations must be repeatedly solved during the
solution process. In addition, the structure stiffness matrix is often decomposed into
upper and lower triangular matrices. As a result, the CA method is also most suitable
for nonlinear analysis, as is shown in this chapter. The solution steps of geometric
nonlinear analysis problems are summarized in Section 11.1. Application of the CA
method in geometric nonlinear analysis is demonstrated in Section 11.2, and nonlinear
reanalysis by the method is presented in Section 11.3.

11.1 GEOMETRIC NONLINEAR ANALYSIS

Geometric nonlinear analysis described in Section 2.3.1 involves the following steps.
Starting with linear analysis, we first calculate the initial displacements by the linear
analysis equations [Eq. (2.41)]

where is the elastic stiffness matrix and is the external force vector. In the
solution process the following calculations are repeated until convergence occurs:

Calculate the member forces N, which are functions of the displacements r [see Eq.
(2.43)]

Calculate the corresponding internal force vector by Eq. (2.44)

where the elements of matrix C(r) depend on the deformed geometry.

207

a.

b.
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c.

d.

e.

f.

Calculate the out-of-balance (residual) force vector by Eq. (2.45)

Calculate the tangent stiffness matrix by Eq. (2.47)

Calculate the displacements due to the out-of-balance forces by Eq. (2.48)

Evaluate the updated displacements r by Eq. (2.49)

redefining as the updated displacement at the previous cycle.

11.2 NONLINEAR ANALYSIS BY THE CA METHOD

It was shown in previous chapters that the CA method is most effective in reanalysis of
linear structures, where the changes in the stiffness matrix K depend only on the design
variables. It is shown in this section that the method is suitable also for nonlinear
analysis of structures, as demonstrated elsewhere [2]. In particular, the method can be
used to calculate efficiently the displacements due to the out-of-balance forces at
each iteration cycle. As a result, significant reductions in the computational effort
involved in the repeated solution of the modified equations can be achieved.

Given the elastic stiffness matrix and the corresponding initial displacements
calculated by the linear equilibrium equations (11.1), the modified equilibrium
equations to be solved at each iteration cycle are given by [see Eqs. (2.46), (11.4) and
(11.6)]

where is the geometric stiffness matrix whose elements change from one iteration
cycle to another; is the tangent stiffness matrix, accounting for elastic and geometric
stiffnesses; is the given external force vector; is the vector of internal forces,
whose elements are functions of the deformed geometry and change from one iteration
cycle to another; and is the vector of displacements due to the out-of-balance forces

Defining [see Eq. (3.12)]
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then Eq. (11.8) becomes [Eq. (3.13)]

Note that Eq. (3.5) for linear reanalysis and Eq. (11.10) are of similar form. That is, the
problem of nonlinear analysis can be stated in the form of linear reanalysis where both
the stiffness matrix and the load vector are changed.

To solve the problem of Eq. (11.10) by the CA method, a procedure similar to that
described in Section 7.1.2 for linear reanalysis can be employed. Evaluation of the
displacements involves the following steps:

a.

b.

c.

Calculate the tangent stiffness matrix and the modified load vector
Since the initial values and are already given, this step

involves only calculation of and (i.e., and respectively).
Calculate the basis vectors (i = 1,..., s) by [see Eq. (7.12)]

where is the matrix of basis vectors [Eqs. (11.11)], defined as

As previously noted, the calculation of the basis vectors involves only forward and
backward substitutions.
Calculate the reduced stiffness matrix and the reduced load vector by Eqs.
(7.14) with and replacing K and R, respectively

where s is the number of basis vectors considered and matrix B is defined as
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d. Evaluate the displacements in Eq. (11.10) by [see Eq. (7.16)]

where the vector of coefficients in Eq. (11.15) is calculated by
solving the set of s×s equations [Eq. (7.15)]

It might prove useful to use the procedure described in Section 7.2.2 for uncoupled
basis vectors. In such cases, the following procedure is considered instead of steps c
and d above. Generate new set of basis vectors (i = 1, ..., s) by [see Eqs. (7.32),
(7.33)]

Then evaluate the displacements by [see Eq. (7.34)]

where is the matrix of the new basis vectors

If the accuracy is insufficient, additional basis vectors are introduced and the updated
displacements are evaluated by Eq. (11.19). Consideration of an additional basis
vector involves only calculation of the additional term added to

the approximate displacements expression of Eq. (11.19).

11.3 NONLINEAR REANALYSIS BY THE CA METHOD

In this section, the CA method is used for nonlinear reanalysis, considering both
changes due to the effect of geometrical non-linearity and changes in the design [3]. In
this general case of nonlinear reanalysis, the matrix of changes and the vector of
changes are expressed as [see Eq. (3.14)]



Nonlinear Reanalysis 211

where the two parts of and are as follows:

a.

b.

the change is the geometric stiffness matrix and the change is
the internal force vector [see Eq. (11.9)]; and
the change in the elastic stiffness matrix and the change in the load
vector due to changes in the design.

If the external forces are unchanged, then the change in the load vector becomes
i.e., the change [Eqs. (11.2) and (11.3)] depends

only on r. Thus, the nonlinear reanalysis process consists of the following parts:

a.

b.

Start with linear analysis and first calculate the initial displacements by the linear
equilibrium equations (11.1). Then, carry out nonlinear analysis by the iterative
procedure described in Section 11.1. Use the CA method to solve the modified
equilibrium equations (11.10) at each iteration cycle.
For a change in the design the nonlinear reanalysis process is similar to that
of nonlinear analysis, with the following different definition of the tangent stiffness
matrix

For any given change in the design, the elements of the matrix are constant
whereas the elements of the geometric stiffness matrix are updated after
each iteration. The CA method is used to solve the modified equations at each
iteration cycle, as described in Section 11.1 for nonlinear analysis.

The solution process can be performed for various successive changes in the design
as necessary, with the initial decomposed being unchanged.

Example 11.1 – Nonlinear Analysis.  To illustrate the solution steps of nonlinear
analysis, consider the simple two-bar truss shown in Figure 11.1, subjected to two
external forces. The modulus of elasticity is 10 000 and the cross sectional area of both
members is The initial displacements are first calculated by Eq.
(11.1), where

Substituting the given numerical data into Eq. (11.11) yields
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Assume small strains such that where are the members lengths
and are the nodal displacements shown in Figure 11.1. The force in member 1
can be expressed in terms of the displacements as

Using a similar expression for the force in member 2 gives the following vector of
member forces N [Eq. (11.2)]

The internal force vector [Eq. (11.3)] consists of the horizontal and vertical
components of the member forces, i.e.,

and the out-of-balance forces [Eq. (11.4)] are given by
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For the elements of the tangent stiffness matrix [Eq. (11.5)] are

The displacements due to [Eq. (11.6)] and, hence, the updated displacements r
[Eq. (11.7)] are then calculated by [see Eqs. (f),(g)]

Starting with [Eq. (b)], we obtain the results for three iteration cycles
shown in Table 11.1. The iterative process converges very fast for this simple example.
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An alternative procedure is to improve the initial displacements by calculating first
the, so-called tangential predictor [1], Calculating the tangent stiffness matrix for the
given we first calculate the displacements r by solving the set of equations

The result is The Newton-Raphson iteration then proceeds as
shown in Table 11.2. Again, fast convergence is achieved for this simple example.

Example 11.2 - Nonlinear Reanalysis by the CA Method. The object of this example
is to illustrate the solution steps by the CA method for nonlinear reanalysis using low-
order approximations with the original set of basis vectors [Eqs. (11.11)].

Considering again the two-bar truss presented in example 11.1 and shown in Figure
11.1, we first calculate the initial displacements by Eq. (11.1), where

For the first iteration cycle, the modified equations to be solved are [Eq. (11.8)]

The vector and the matrix are calculated by [see Eqs. (11.9)]
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The basis vectors are calculated by [see Eqs. (11.11), (11.12)]

The reduced stiffness matrix and the reduced load vector are calculated by [see
Eqs. (11.13)]

The multipliers y and the displacements are calculated by [see Eqs. (11.15), (11.16)]
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Since the number of basis vectors is equal to the number of degrees of freedom, the CA
method provides the exact solution (see the first iteration in Table 11.1).

Assume a reduction of 50% in the cross section areas, the tangent stiffness matrix for
the first iteration cycle is calculated by [see Eqs. (11.21), (11.23)]

The out-of-balance forces are calculated by

and the exact solution of is

Assuming only two basis vectors, then from Eqs. (11.11), (11.12)

The multipliers y and the displacements are calculated by [Eqs. (11.15), (11.16)]
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Again, since the number of basis vectors is equal to the number of degrees of freedom,
the CA method provides the exact solution.

Example 11.3 – Nonlinear Analysis by the CA Method. To illustrate the solution
steps of nonlinear analysis by the CA method, consider the four-bar truss shown in
Figure 11.2, subjected to a single horizontal external force of 100 (all units are in Kilo-
Newton and meters). The modulus of elasticity is the angle of member
3 is and the cross sectional areas of the members are A1=  A2 =  A3 =  0.00128
and A4 = 0.000128. The members lengths are denoted Li (i = 1, 2, 3, 4) and the four
analysis unknowns are the horizontal and vertical displacements (u2, w2, u3, w3) at
joints 2 and 3, respectively. The member forces Ni (i = 1, 2, 3, 4) are given in terms of
the displacements by [Eq. (11.2)]

The out-of-balance forces [Eq. (11.4)] are given by
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The initial displacements are first calculated by Eq. (11.1)

Starting with we obtain the results by the Newton-Raphson iteration shown in
Table 11.3. The iterative process converges very fast for this simple example.

To illustrate solution of the first iteration cycle by the CA method, we first calculate
the basis vectors by [Eqs. (11.11), (11.12)]

The resulting matrix of basis vectors is

The multipliers y and the displacements are calculated by Eqs. (11.15), (11.16). The
results obtained for 2, 3, and 4 basis vectors, and the exact solution, are summarized in
Table 11.4. It is observed that accurate solution is achieved with only 2 basis vectors.
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Example 11.4 -Nonlinear Analysis of  A Space Frame [2]. To illustrate the results of
nonlinear analysis of a space truss, consider the shallow geodesic dome shown in
Figure 11.3. The dome consists of 156 space frame members, has a total of 61 joints
with 24 boundary joints that are simply supported, and the total number of degrees of
freedom is 24×3 + (61–24) ×6=294. The nonlinear analysis problem is solved by the
following two procedures:

a.
b.

New basis vectors are generated at each solution of the modified equations.
The original basis vectors [Eqs. (11.11)] are assumed to be constant for each
incremental load step, however the new basis vectors [Eqs. (11.17), (11.18)]
and the tangent stiffness matrix are modified for each iterative step.

In both cases, exact linear analysis is carried out only for the first iterative step of the
first load increment. Assuming that the dome is subjected to a concentrated load at the
apex, it is found that the load-displacement curves for the apex obtained by
conventional nonlinear analysis and by the CA method are practically the same. The
average number of basis vectors needed to achieve high accuracy is 5 - 6.

As to the efficiency of the CA method, it was found that solution by procedure a
required about 40% of the CPU time needed by conventional nonlinear analysis while
solution by procedure b required about 33% of the time [2]. The total number of
iterations for both solutions by the two procedures is 538.
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12 Vibration Reanalysis

Some topics related to vibration reanalysis are introduced in this chapter. Calculation of
the first-mode shape by the matrix iteration approach is demonstrated in Section 12.1,
and formulation of eigenproblem reanalysis is presented in Section 12.2. A distinction
is made between the following two types of reanalysis problems:

a.

b.

Eigenvector reanalysis, where the object is to calculate the modified eigenvectors,
or mode shapes, due to changes in the stiffness matrix and in the mass matrix. This
type of problem, which is more difficult to solve than the eigenvalue reanalysis
problem, can be solved by the CA method [1,2] as is shown in Section 12.3.
Eigenvalue reanalysis, where the object is to calculate the modified eigenvalues
due to changes in the stiffness and mass matrices. In many optimal design problems
we are interested only in the eigenvalues rather than the eigenvectors. It is often
assumed that the mode shapes change only insignificantly due to changes in the
design. The eigenvalue reanalysis problem, which can be solved by several
methods, is discussed in Section 12.4.

12.1 VIBRATION ANALYSIS
Consider the generalized eigenproblem presented in Section 2.4.1 [Eq. (2.55)]

where is the circular frequency, are the eigenvalues indicating the square of
the free-vibration frequencies, while the corresponding displacement vectors r express
the eigenvectors, or mode shapes of the vibrating system. For a system having n

degrees of freedom, the frequency vector represents the
frequencies of the n modes of vibration possible in the system.

To calculate the first-mode shape by the matrix iteration approach, Eq. (12.1) can be
rewritten in an iterative form. Defining the dynamic matrix D as [Eq. (2.65)]

221
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we obtain the iterative expression [Eq. (2.66)]

where k denotes the iteration number, is the displacement vector in the previous
iteration and is the resulting improved shape. To initiate the iteration procedure for
evaluating the first mode shape, a trial displacement vector is assumed that is a
reasonable estimate of this shape. The improved iteration vector is then obtained by
normalizing the shape by dividing it by a reference to obtain [Eq. 2.67)]

In general, the vector is normalized with respect to its largest element. By repeating the
process sufficiently, we can improve the mode-shape approximation to any desired
level of accuracy. After s iteration cycles, the frequency can be obtained by [Eq. (2,69)]
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Example 12.1 - Calculating Mode Shapes by Matrix Iteration. Consider the eight-
story frame shown in Figure 12.1 (all units are in kips, inches and seconds). The mass
of the frame is lumped in the girders, with M values as shown. The girders are assumed
to be non-deformable and the initial lateral stiffness of each of the eight stories is given
by Using the iterative procedure of Eqs. (12.3), (12.4) and assuming the
initial displacement vector

we found that the solution process converges in four iteration cycles, as shown in Table
12.1. The resulting frequency, calculated by Eq. (12.5), is

12.2 FORMULATION OF EIGENPROBLEM REANALYSIS

Consider an initial design with stiffness matrix and mass matrix The
corresponding displacement vector (the eigenvector) is calculated by solving the set
of initial analysis equations (3.16)

where is the initial eigenvalue and is the initial circular free-vibration
frequency. Assume a change in the design and a corresponding change in the stiffness
and mass matrices such that the modified matrices are expressed as [see Eq. (3.17)]

where and are the changes in the stiffness and mass matrices, respectively.
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The reanalysis problem can be stated as follows. Given the initial values and
the initial eigenvector and eigenvalue are first calculated [Eq. (12.6)]. The object
is to evaluate the modified eigenvector r and eigenvalue due to various changes in
the design, such that the modified analysis equations are satisfied [see Eq. (3.18)]

Denoting the right-hand-side vectors of Eqs. (12.6) and (12.8) as [see Eq. (3.19)]

we find [see Eqs. (3.20), (3.21)]

In this formulation, the elements of K and M are explicit functions of the design
variables, and the elements of the right-hand-side vector R are functions of M, r and
It is noted that the modified analysis equations (12.11) can be expressed as in Eq. (3.5)

where and are defined as [see Eqs. (12.7) and (12.9)]

Since the modified analysis equations (3.5) and (12.12) are of similar form, the CA
method can readily be used to solve the latter equations efficiently.

12.3 REANALYSIS BY THE CA METHOD

In the CA method presented in Section 7.1.2, the displacements are approximated by
[see Eq. (7.16)]

where is the matrix of basis vectors
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and y is a vector of coefficients to be determined

Substituting Eq. (12.14) into the modified analysis equations (12.8) and premultiplying
by yields

Introducing the notation

and substituting into Eq. (12.17) gives

To evaluate the approximate displacements, the reduced eigenvalue problem of Eq.
(12.19) is first solved for y. The displacement elements of the eigenvector r are then
evaluated for the calculated y by Eq. (12.14).

Given the initial values and from eigenvalue analysis of the initial
structure, the reanalysis procedure to evaluate the modified displacements r and
eigenvalue due to various changes in the design involves the following steps.

a. Select the basis vectors. This could be done as in linear reanalysis [Eq. (7.12)]

where

Since R is not known [see Eq. (12.9)], it is convenient to consider instead of R
in the calculation of This selection greatly simplifies the calculation of the basis
vectors, since the elements of are constant. Thus, the first basis vector is already
known from the initial analysis
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That is, the stiffness matrix is increased non-uniformly by an order of magnitude.
Specifically, the elements of the modified stiffness matrix are about 1 0 - 1 2 times
larger then the elements of the initial matrix. The initial mode shape is given in the
last column of Table 12.1 and the resulting frequency, calculated by Eq. (12.5), is

To carry out reanalysis for the modified design by the CA method, the basis

Stories 7 - 8

Stories 3 - 6

Stories 1 - 2

Example 12.2 - Reanalysis by the CA Method. To illustrate eigenvector reanalysis by
the CA method, consider again the eight-story frame of example 12.1 shown in Figure
12.1 (all units are in kips, inches and seconds). The mass of the frame is lumped in the
girders, with M values as shown. The girders are assumed to be nondeformable and the
initial lateral stiffness of each of the eight stories is Results are
demonstrated for the first mode shape and the following modified design [1]

This solution process involves less computational effort than that of the initial
eigenvalue problem, since the matrix is already given in a decomposed form and a
reduced eigenvalue problem is solved instead of the larger original problem.

b.

c.

The additional vectors are calculated by Eq. (12.21). It is found that for this
selection of accurate results are achieved with a small number of basis vectors.
Calculate the reduced matrices and by Eqs. (12.18)

Solve the reduced eigenproblem of Eq. (12.19)

where is the eigenvalue, and the coefficient vector y is the eigenvector. The
iterative solution process at this step is similar to that of determining r, except that
a reduced system is considered.
Evaluate the final displacement elements of the eigenvector by Eq. (12.14)d.
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vectors are first determined. The first basis vector is already known from the
initial analysis

The second basis vector, calculated by Eq. (12.21), is

With only two basis vectors, the assumed initial coefficients vector and
using the iterative procedure of Eqs. (12.3) and (12.4) to solve the reduced system of
Eq. (12.25), the solution process converges in three iteration cycles to
The resulting first mode-shape displacements calculated by Eq. (12.26) are, in
normalized form,

An accurate solution is achieved with only three basis vectors

If higher accuracy is needed, we can take more basis vectors.

Example 12.3 - Reanalysis of A Damaged Frame [2]. To evaluate the quality of the
results by the CA1 procedure (only two basis vectors) for frames, the four-story two-
bay steel frame shown in Figure 12.2 is solved. The 36 degrees of freedom (DOF) are
the vertical displacement, the horizontal displacement, and the rotation at the 12 joints.
The modulus of elasticity is 29 000 ksi, the columns are W14 × 109, and the beams are
W24 × 84.
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Three cases of damage at the connections are considered, as represented by the
possible beam-to-column hinge formation at locations A, B, and C shown in Figure
12.2; i.e., it is assumed that a hinge is formed at the location of damage (loss of
rigidity). The connection damages are assumed to be such that the connection may
continue to transmit shear forces but not bending moments from beam to column.

The results achieved by the CA1 procedure and exact reanalysis for the first two
vibration modes for damage cases A, B, and C described above are summarized in
Tables 12.2 and 12.3. It is observed that good accuracy is achieved for mode 1 and
reasonable accuracy is obtained for mode 2.

12.4 EVALUATION OF MODIFIED EIGENVALUES

In many structural optimization problems it is necessary to consider dynamic frequency
constraints. Optimal design of structures with frequency constraints is most useful in
evaluating the dynamic characteristics [3], In most low-frequency vibration problems,
the response of the structure to dynamic excitation is primarily a function of its
fundamental frequency and mode shape. In such cases, the ability to manipulate the
selected frequency can significantly improve the performance of the structure.

One of the most common problems in frequency optimization is the switching of
vibration modes due modifications in the design of the structure. Mode switching causes
convergence difficulties in structural optimization. In addition, structural optimization
often results in very closely spaced natural frequencies. At the optimum, some
structures exhibit repeated eigenvalues even though the initial design did not have any.
Many of the generally available approximation methods are applicable to frequency
functions, but several studies are devoted to approximations just for frequency problems
[3]. It is found that the eigenvalues are highly nonlinear functions of the design
variables.

Consider again the initial eigenproblem of Eq. (12.6)]

where is the eigenvalue of the initial structure. Assume a change in the design
and a corresponding change in the stiffness and mass matrices such that the modified
matrices are [Eq (12.7)]

The modified analysis equations are given by
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where and are the resulting changes in r and respectively.

Several methods have been proposed to evaluate the modified eigenvalue
[3, 4]. Neglecting the quadratic and the cubic terms in Eq. (12.29) to arrive at a first-
order approximation gives

Premultiplying Eq. (12.30) by and using Eq. (12.27) and the symmetry of matrices
and the following first-order approximation is obtained

Alternatively, premultiplying Eq. (12.29) by and neglecting high-order
terms gives the following first-order approximation

Equation (12.32) is the Rayleigh-quotient approximation to the perturbed eigenvalue,
based on the original displacements A better approximation can be obtained if it
were possible to replace by some approximate r. In particular, the CA procedure
described in Section 12.3 is most suitable for this purpose. With the approximate
displacements r of Eq. (12.26), the modified eigenvalue is calculated by the Rayleigh-
quotient

Several eigenvalue reanalysis methods for modified structures are compared elsewhere
[5], in terms of their computational accuracy and efficiency. It is shown that the CA
method is the most suitable for large changes in the structure.
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Finite elements method, 4, 12, 17, 23-
30

First-order approximations, 50, 65, 66,
69,74,80,89, 111, 139, 143, 177,
179, 183

Forward and backward substitutions,
61,67,112,113

Frame examples, 148,219, 223, 227
Frequency, 35, 44, 221

Generalized strain, 25
Generalized stress, 25
Geometric nonlinear analysis, 207-208

Geometric non-linearity, 5, 12, 17, 31-
32, 38, 42

Geometric stiffness matrix, 31,42
Geometrical changes, 81, 176-186, 182
Geometrical optimization, 161
Global approximations, 13,48, 85-106
Global approximation vectors, 94
Grahm-Schmidt orthonormalization,

50,97,98,110,115,
Grahm-Schmidt orthogonalization (see

Grahm-Schmidt
orthonormalization,

Grillage, 145

Homogeneous functions, 68-70
Hooke law, 4, 18
Hybrid approximations, 48

Identity matrix, 117, 125
Intermediate response surface, 73
Intermediate variables, 13, 65, 70-71,

74
Internal force vector, 31, 43, 207, 208
Inverse iteration, 37

Jacobi iteration, 37

Kronecker delta, 36, 116
Krylov sequence, 98
Krylov subspace, 96, 102, 121, 122

Lanczos method, 37, 98
Layout optimization, 161
Least-square solutions, 13, 90-91
Limitations on design changes, 150-

151
Linear elastic analysis, 4, 12, 17, 49
Linearly dependent vectors, 119-120,

128, 152
Load vector, 21,26, 29

changes in, 41
modified, 41, 173

Local approximations, 13, 48, 65-84,
110
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Low-order approximations, 14, 113,
137-151, 139, 144, 193

Mass matrix, 34, 44
Material non-linearity, 5, 12, 17, 33, 38
Matrix factorization, 111, 174
Matrix iteration, 37, 221, 223
Member forces, 21,32
Method of moving asymptotes, 72
Mode-acceleration method, 96
Mode-displacement method, 96
Mode shapes, 35, 36, 38, 44, 223

free-vibration, 96, 230
Mode superposition, 34
Modified initial analysis, 173
Move limits, 150
Multipoint approximations (see global

approximations)

Newton-Raphson
method, 5, 30, 32,43
modified method, 32, 33, 213, 214,
218, 219

Nonlinear analysis, 5, 11, 12, 15, 17,
30-33, 38, 49, 51

Nonlinear reanalysis, 207-220
Norm, 128, 130, 131

energy, 122
Euclidean, 79, 124

Normal vectors, 118
Normalization, 38, 222

One-dimensional minimization, 102
Orthogonal vectors, 116
Out-of-balance forces, 31, 43, 208

Poisson ratio, 28
Polynomial fitting, 13, 85, 86-89
Polynomial iteration, 37
Positive definite, 61, 62, 103, 112
Potential energy, 25, 94
Pre-assigned parameters, 6

Preconditioned conjugate gradient
method, 14, 51, 85, 103-105, 110,
120-122

Preconditioned matrix, 103, 170
Preconditioner, 103, 105

Quadratic fitting, 13, 86-88, 89
Quadratic function, 101, 102, 122

Rank of a matrix, 55
multiple rank-one changes, 152-
153, 154-155, 163
rank m, 57
rank one, 55
rank-one changes, 152

Rayleigh quotient, 37, 231
Rayleigh-Ritz analysis, 95, 97
Reanalysis of structures, 11, 41-54

approximate methods, 46,47-51
direct methods, 46, 47
formulation, 41-46
linear, 41-42
methods, 46-51
nonlinear, 42-44
vibration, 44-46

Reciprocal approximations, 13, 48, 70-
71

Reduced basis methods, 13, 18, 85, 92-
100
dynamic analysis, 95-100
static analysis, 93-95

Reduced incremental matrix, 60
Reduced matrix and vector, 113
Residual forces (see out-of-balance

forces)
Residual vector, 91, 101
Response surface, 13, 48, 85, 86
Ritz vectors, 97, 98-100
Runge-Kutta subspace, 96

Scaled approximations, 13, 81, 83, 137,
138

Scaling, 38, 76, 124
Scaling multiplier, 76, 124, 138
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geometrical criterion, 78, 138
mathematical criterion, 79, 139

Scaling procedures, 13, 49, 65, 124-125
Second-order approximations, 80, 89,

139, 143, 146, 164, 168, 177, 183,
193

Sensitivity analysis, 14, 50, 51, 187-
205
adjoint-variable approximations,
192
adjoint-variable method, 14, 188,
189-190
direct method, 14, 188, 189
finite-difference approximations,
193
finite-difference methods, 187

Sherman-Morrison formula, 13, 14, 47,
50, 55, 153-154
Simplified procedures, 137-159
Single-point approximations (see local

approximations)
Spectral radius, 123
Stable structures, 7-10
Steepest descent, 101
Stiffness matrix, 19, 21, 26, 29, 34, 39

augmented, 172
changes in, 41, 173
elastic, 31,42, 207
modified, 41, 173

Stiffness method (see displacement
method)

Stodola method, 37
Stress matrix, 21, 25, 28
Structural analysis, 3, 17-40

Structural optimization, 11, 14, 139-
143, 230

Tangent stiffness matrix, 31, 42, 208
Taylor series, 13, 65-66, 69, 89, 111
Theorems of structural variation, 47
Topological changes, 7, 162-176, 182
Topological optimization, 161
Triangular matrix, 31, 41, 111, 112,
Truss examples

2-bar truss, 211
3-bar truss, 894-bar truss, 19, 217
6-bar truss, 175
10-bar truss, 58, 80-81, 91, 114,
126, 133, 140, 155, 164, 177, 182,
193, 199
19-bar truss, 165
50-bar truss, 132, 165, 179
130-bar truss, 180
204-bar truss, 132
2050-bar truss, 170
Space trusses, 132

Trust region, 150

Uncoupled system, 117
Uncoupled vectors, 115-119
Unstable structures, 7-10

Vector iteration, 37
Vibration analysis, 13, 15, 33, 35, 49
Vibration reanalysis, 221-231
Virtual distortion method, 47

Woodbury formula, 13, 14, 47, 50, 55,
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