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Chapter 1
Introduction

Abstract This introduction suggests that a widely accepted objective Bayes theory
is by no means a speculative viewpoint, but on the contrary a desirable and perfectly
feasible project. The name fiducial Bayesian methods, which is proposed, indicates
the aim to let the statistical analysis express what the data have to say independently
of any outside information. These methods are offered as an appropriate alternative
in order to bypass the common misuses of significance tests.

Keywords Experimental data analysis · Fiducial Bayesian inference · Objective
Bayesian analysis · Statistical methodology · The significance test controversy

We have the duty of formulating, of summarizing, and of communicating our
conclusions, in intelligible form, in recognition of the right of other free minds to utilize
them in making their own decisions (Fisher 1955, p. 77).

A critical aspect of experimental data analysis is that results must be accepted by the
scientific community. This can be the reason why Bayesian methods of analyzing
experimental data are, at best constantly ignored, at worst explicitly discarded. Most
potential users feel that they are too complicated to use and too subjective to be
scientifically acceptable. It must be stressed that these a priori reasons are completely
unjustified:

A common misconception is that Bayesian analysis is a subjective theory; this is neither true
historically nor in practice. The first Bayesians, Bayes (see Bayes 1763) and Laplace (see
Laplace 1840) performed Bayesian analysis using a constant prior distribution for unknown
parameters, although the motivations of each in doing so were considerably more sophis-
ticated than simply stating that each possible value of the parameter should receive equal
prior weight. Indeed, this approach to statistics, then called “inverse probability” [see Dale
(1991)] was central to statistics for most of the nineteenth century, and was highly influential
in the early part of the twentieth century (Berger 2004, p. 3).

Following the lead of Bayes and Laplace, Jeffreys (1931) aimed at proposing a
general methodology for “learning from data and experience”. The key feature of
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his approach is to assign prior probabilities when we have no information initially
about the value of the parameter. In practice, these “noninformative” probabilities
are vague prior distributions, which do not favor any particular value: they let the
data “speak for themselves”.

In this form, the Bayesian paradigm provides reference methods appropriate to
report experimental results. However, the potential contribution of Bayesian infer-
ence to experimental data analysis and scientific reporting is obscured by the fact that
many of today’s Bayesian proponents focus on individual decision-making. Indeed,
it should be acknowledged with Rozeboom that

the primary aim of a scientific experiment is not to precipitate decisions (Rozeboom 1960,
p. 420).

So Jeffreys’ approach has been embedded into a Bayesian decision-theoretic frame-
work, without concern for the roles he assigned to significance tests and estimation
in experimental data analysis. Moreover, within this context, many Bayesians place
emphasis on a subjective perspective.

1.1 The Fiducial Bayesian Inference

Our motivation may be found in Efron’s assertion:

A widely accepted objective Bayes theory, which fiducial inference was intended to be,
would be of immense theoretical and practical importance. […] A successful objective Bayes
theory would have to provide good frequentist properties in familiar situations, for instance,
reasonable coverage probabilities for whatever replaces confidence intervals (Efron 1998,
pp. 106 and 112).

We suggest that such a theory is by no means a speculative viewpoint, but on the
contrary a desirable and perfectly feasible project. For many years we have worked
with colleagues in France in order to develop routine Bayesian methods for the most
familiar situations encountered in experimental data analysis. These methods can be
taught and used easily and offer promising new ways in statistical methodology. In
order to promote them, it is important to give these methods an explicit name. Berger
(2004) proposed the name objective Bayesian analysis. With the same incentive, we
argued for the name fiducial Bayesian methods (Lecoutre, in Lecoutre et al. 2001;
Rouanet et al. 2000). This deliberately provocative, politically incorrect, name pays
tribute to Fisher’s work on scientific inference for research workers (Fisher 1990a),
which was highly influential on Jeffreys’ works.

It must be stressed that, if Fisher and Jeffreys have first contested the validity of
each other’s approach (see Jeffreys 1933, p. 535), Jeffreys’s position considerably
evolved and, in the first edition of Theory of Probability, he came to emphasize his
practical agreement with Fisher (see Aldrich 2005):

I have in fact been struck repeatedly in my own work, after being led on general principles
to a solution of a problem, to find that Fisher has already grasped the essentials by some
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brilliant piece of common sense, and that his results would be either identical with mine or
would differ only in cases where we should both be very doubtful (Jeffreys 1939, p. 324).

In actual fact, “fiducial Bayesian” indicates the aim to let the statistical analysis
express what the data have to say independently of any outside information.

In short, fiducial Bayesian inference uses Bayesian approach with a fiducial
motivation. Nowadays, thanks to the computer age, fiducial Bayesian routine
methods for the familiar situations of experimental data analysis are easy to
implement and use. They fulfill the requirements of experimental data reporting
and they fit in better with scientists’ spontaneous interpretations of data than
frequentist significance tests and confidence intervals.

1.2 The Stranglehold of Significance Tests

In spite of some recent changes, “Null hypothesis significance testing [NHST]” is
again conventionally used in experimental literature. In practice, each experimental
result is dichotomized: significant (the null hypothesis is rejected) versus nonsignif-
icant (the null hypothesis is not rejected). This appears as a hybrid theory, an amal-
gam of two different views, the Fisher test of significance and the Neyman-Pearson
hypothesis test, the latter being the “official” theory of testing.

This hybrid is essentially Fisherian in its logic, but it pays lip service to the Neyman-Pearson
theory of testing (Spielman 1974, p. 211).

This ignores the fact that sharp controversies have constantly opposed Fisher and
Neyman (and Pearson to a lesser extent) on the very foundations of statistical infer-
ence. A detailed account is given in Lehmann (2011).

Several empirical studies emphasized the widespread existence of common
misuses of significance tests among students and scientists (for a review, see Lecoutre
et al. 2001). Many methodology instructors who teach statistics, including professors
who work in the area of statistics, appear to share their students’ misconceptions.
Moreover, even professional applied statisticians are not immune to misinterpreta-
tions, especially if the test is nonsignificant. It is hard to interpret these finding as an
individual’s lack of mastery: they reveal that scientists cannot find in null hypothesis
significance testing appropriate answers to their precise questions. In order to inter-
pret their data in a reasonable way, they must resort to a more or less naive mixture
of significance tests outcomes and other information. But this is not an easy task!

It is not surprising that, from the outset (e.g., Boring 1919), significance tests have
been subject to intense criticism. Their use has been explicitly denounced by the most
eminent and most experienced scientists. In the 1960s, more and more publications
have stressed their shortcomings, especially in the behavioral and social sciences:

The significance test controversy (Morrison and Henkel 1970).
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Nowadays, almost all papers that examine the current practice in experimental pub-
lications, or discuss alternative solutions, begin with a more or less detailed section
on the significance test shortcomings. Moreover, many papers are replete with ill-
informed, secondary, and even tertiary sources, or ill-considered claims, and first and
foremost concerning Fisherian and Bayesian inferences.

Criticisms about significance tests are endlessly repeated and extended to virtu-
ally all fields, not to mention the controversies on the foundations of statistical
inference that continue to divide frequentists and Bayesians. This gives a dis-
couraging feeling of déjà-vu and is without doubt detrimental to the impact of
new proposals, if not to the image of statistical inference.

1.3 Beyond the Significance Test Controversy

Changes in reporting experimental results are more and more enforced within guide-
lines and editorial policies.

Most of these changes are explicitly intended to deal with the essential question
of effect sizes. The term “effect size” has become increasingly popular in recent
years. For instance, this term did not appear in the subject index of the book The
significance test controversy (Morrison and Henkel 1970). By contrast, 18 lines are
devoted to it in the index of the book What if there were no significance tests (Harlow
et al. 1997).

Reporting an effect size estimate is one of the first necessary steps in overcoming
the abuses of significance tests. It can effectively prevent users from unjustified
conclusions in the conflicting cases where a nonsignificant result is associated with
a large observed effect size. However, small observed effect sizes are often illusorily
perceived by researchers as being favorable to a conclusion of no effect, when they
cannot in themselves be considered as sufficient proof.

Consequently, the majority trend is to advocate the use of confidence intervals, in
addition to or instead of significance tests. In practice, two probabilities can be rou-
tinely associated with a specific interval estimate computed from a particular sample.
The first, frequentist, probability is “the proportion of repeated intervals that contain
the parameter”. It is usually termed the coverage probability. The second, Bayesian,
probability is the “posterior probability that this interval contains the parameter”. In
the frequentist conception it is forbidden to use the second probability, while in the
Bayesian conception, the two probabilities are valid.

In actual practice, reporting effect sizes and confidence intervals appear to
have very little impact on the way the authors interpret their data. Most of
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them continue to focus on the statistical significance of the results. They only
wonder whether the interval includes the null hypothesis value, rather than on
the full implications of confidence intervals: the steamroller of significance
tests cannot be escaped.

1.4 The Feasibility of Fiducial Bayesian Methods

Fiducial Bayesian methods are concrete proposals in order to bypass the inadequacy
of NHST. For more than thirty years now, with other colleagues in France we have
worked in order to develop routine procedures for the most familiar situations encoun-
tered in experimental data analysis (see e.g., Lecoutre 1996; Lecoutre et al. 1995;
Lecoutre and Charron 2000; Lecoutre and Derzko 2001; Lecoutre and Poitevineau
2000; Rouanet and Lecoutre 1983). These procedures can be learned and used as
easily, if not more, as the t , F or χ2 tests. We argued that they offer promising new
ways in statistical methodology (Lecoutre 2006, 2008; Rouanet et al. 2000).

We especially developed Bayesian methods in the analysis of variance framework,
which is an issue of particular importance for experimental data analysis. Experimen-
tal investigations frequently involve complex designs, especially repeated-measures
designs. Bayesian procedures have been developed on the subject, but they are gen-
erally thought difficult to implement and not included in the commonly available
computer packages. As a consequence the possibility of using them is still largely
questionable for many investigators.

We have developed the statistical software LePAC (Lecoutre and Poitevineau
1992; Lecoutre 1996). It incorporates both traditional frequentist practices (signifi-
cance tests, confidence intervals) and routine Bayesian methods (including the use
of conjugate priors) for univariate and multivariate analysis of variance. LePAC also
includes Bayesian methods for inference about proportions. Extensive applications
to real data have been done. From the outset, they have been accepted well in exper-
imental publications (e.g. Ciancia et al. 1988).

1.5 Plan of the Book

We are conscious that warnings about common misconceptions and unsound statisti-
cal practices have been given many times before, apparently without much effect. Our
ambition is not only to revisit the “significance test controversy”, but also to provide
a conceptually sounder alternative. Thus, the presentation will be methodologically
oriented. The book is organized as follows.
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Chapter 2 serves as an overall introduction to statistical inference concepts. The
basic notions about the frequentist and Bayesian approaches to inference are pre-
sented and the corresponding terminology is introduced. Chapter 3 presents norma-
tive aspects: the three main views of statistical tests—Fisherian, Neyman-Pearsonian,
and Jeffreys’ Bayesian—are discussed.

Chapters 4 and 5 are devoted to descriptive aspects: what is the current practice in
experimental research? The misuses of null hypothesis significance tests are recon-
sidered in the light of Jeffreys’ Bayesian conceptions about the role of statistical
inference in experimental investigations.

Chapters 6 and 7 examine prescriptive aspects: what are the recommended “good
statistical procedures?” The effect size and confidence interval reporting practices
are discussed. The risks of misuses and misinterpretations of the usual ANOVA ES
indicators (Cohen’s d, eta-squared, etc.) are stressed. Frequentist confidence intervals
commonly proposed for these indicators are also seriously questioned.

Chapter 8 introduces basic routine procedures for inference about means and
demonstrates that the fiducial Bayesian paradigm is appropriate to report experi-
mental results: don’t worry, be Bayesian. Of course, this does not mean that by
adopting the Bayesian approach one could actually “stop thinking about data”. This
is not our message: the opposite is actually true!

Chapter 9 generalizes the basic procedures to the usual unstandardized and stan-
dardized ANOVA effect sizes indicators. Then methodological aspects are discussed
and appropriate alternatives to these indicators are developed.

This book should not be read from the perspective of providing an introduc-
tion to Bayesian statistics as such. It aims at discussing the uses of statistical
procedures, conceptually appropriate to report experimental results, especially
in the familiar ANOVA framework. The objective is to equip the reader with
appropriate procedures in order to bypass the common misuses of significance
tests.
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Chapter 2
Preamble—Frequentist and Bayesian
Inference

Abstract This chapter serves as an overall introduction to statistical inference con-
cepts. The basic notions about the frequentist and Bayesian approaches to inference
are presented and the corresponding terminology is introduced.

Keywords Bayes formula · Confidence interval · Frequentist and Bayesian proce-
dures · Likelihood function · P-value · Posterior and predictive distributions

2.1 Two Different Approaches to Statistical Inference

Statistical inference is typically concerned with both known quantities—the observed
data—and unknown quantities—the parameters. How to assign a probability to them?
Two main broad approaches are available (Jaynes 2003).

1. In the frequentist conception probability is the long-run frequency of occur-
rence of an event, either in a sequence of repeated trials or in an ensemble of
“identically” prepared systems.

2. In the Bayesian conception probability is a measure of the degree of confidence
(or belief) in the occurrence of an event or in a proposition.

The common statistical inference procedures in scientific publications—null
hypothesis significance tests and confidence intervals—are based on the frequentist
conception. Owing to this domination that goes back to the first part of the twentieth
century, the frequentist inference has been inappropriately called “classical”:

A great deal of the basis of classical inference was forged in this period [1920–1935] (Barnett
1999, p. 124).

To debate which of the two approaches, frequentist or Bayesian, is the more classi-
cal would be futile. From the outset, the concept of probability was considered as
essentially dualistic, for being related either to degrees of confidence, or to systems
leading to produce frequencies in the long run.
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2.1.1 A Simple Illustrative Example

It is well-known that most statistical users confuse frequentist and Bayesian
probabilities when interpreting the results of statistical inference procedures:

Inevitably, students (and everyone else except for statisticians) give an inverse or Bayesian
twist to frequentist measures such as confidence intervals and p-values (Berry 1997, p. 242).

All the attempts made by frequentists to rectify these misinterpretations have been a
loosing battle. Nevertheless, imagine the following situation. Two colleagues of us,
Reynald and Jerry, statistical instructors in psychology, claimed to have developed
a prospective individual teaching method that yields promising results. We are very
skeptical, and we suggest to them to apply their method in a classroom of N = 16
students. We agree with them that a success rate greater than 50 %—at least M = 9
successes out of 16—would be very encouraging. Even a rate greater than 25 %—at
least M = 5 successes out of 16—could still be a reasonable initial step for trying
to improve the method.

Consider the following simple conceptual context: assume that n = 4 individuals
in the classroom have received the new teaching method. Three successes and one
failure have been observed, hence the observed success rate f = 3/4 . This is an
encouraging result: can it be generalized to the entire classroom? This is the familiar
problem of trying to predict the actual number of white balls in an urn containing
N = 16 balls in total, each either black or white, based on an observed sample of
size n = 4.

For this purpose, the data are considered as a random sample from the entire
classroom, that is a finite population of N = 16 individuals, where each individual
falls into one of the two types: 1 (success) or 0 (failure). Let ϕ be the success rate in
this population.

The statistical reasoning is fundamentally a generalization from a known
quantity—here the data f = 3/4—to an unknown quantity—here the parameter ϕ.

2.2 The Frequentist Approach: From Unknown
to Known

In the frequentist approach, we have no probabilities and consequently no possible
inference … unless we fix a parameter value and imagine repetitions of the obser-
vations. This requires reversing the reasoning, from the unknown parameter ϕ to the
known data. But it is very different to learn something about data when the parameter
is assumed to be known, and to learn something about the unknown parameter when
all that is known is a data sample.
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Table 2.1 Sampling
probabilities for
H0: ϕ = 0.25

Successes Samples Sampling probabilities

0 495 Pr( f = 0/4 |ϕ = 0.25) = 0.2720

1 880 Pr( f = 1/4 |ϕ = 0.25) = 0.4835

2 396 Pr( f = 2/4 |ϕ = 0.25) = 0.2176

3 48 Pr( f = 3/4 |ϕ = 0.25) = 0.0264

4 1 Pr( f = 4/4 |ϕ = 0.25) = 0.0005

1,820 1

2.2.1 Sampling Probabilities

So, if we assume for instance ϕ = 0.25 (four successes in the population), we
get sampling probabilities: Pr( f |ϕ = 0.25). These sampling probabilities can be
empirically generated by repeated random sampling without replacement from a
dichotomous population containing M = 4 successes out of N = 16 individuals.
Alternatively, we can consider all 1,820 possible samples of size n = 4: 495 of
them contain zero success, 880 contain one success, etc. Hence, we get the sampling
distribution (Table 2.1).

Formally, the probability of observing a successes is given by a Hypergeometric
distribution HG(N , n,M), with N = 16, n = 4 and M = 4, so that

Pr(a | M) = M !(N − M)!n!(N − n)!
a!(M − a)!(n − a)!(N − M − n + a)!N ! [0 ≤ a ≤ n].

In the frequentist inference all probabilities are conditional on parameters that
are assumed known. This leads in particular to Null Hypothesis Significance Tests,
where the value of the parameter of interest is fixed by hypothesis, and confidence
intervals.

2.2.2 Null Hypothesis Significance Testing in Practice

The sampling probabilities can serve to define a significance test of the null
hypothesis H0: ϕ = 0.25. Assuming that this hypothesis is true, the expected value
of f is 0.25 (1/4). The more distant from 1 is the observed number of successes,
the less plausible is the null hypothesis. Plausible must be understood as “occurring
by random sampling—i.e., by chance—from the population if the null hypothesis is
true.” If ϕ = 0.25, the sampling probability of getting a value f ≥ 3/4 as least as
extreme as the observed success rate is 0.0264 + 0.0005 = 0.0269. Consequently,
the test is said to be significant: p = 0.0269 (p-value). In other words the null
hypothesis H0: ϕ = 0.25 is rejected.
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Table 2.2 Sampling
probabilities for
H0: ϕ = 0.50

Pr( f = 0/4 |ϕ = 0.50) = 0.0385

Pr( f = 1/4 |ϕ = 0.50) = 0.2462

Pr( f = 2/4 |ϕ = 0.50) = 0.4308

Pr( f = 3/4 |ϕ = 0.50) = 0.2462

Pr( f = 4/4 |ϕ = 0.50) = 0.0385

Note that we do not enter here in the one-sided (more extreme in a direction) versus
two-sided (more extreme in the two directions) test distinction, which is irrelevant
for the moment.

Consider another example of null hypothesis, H0: ϕ = 0.50. The corresponding
sampling distribution is (Table 2.2).
In this case, if the null hypothesis is true, the sampling probability of getting a
value f ≥ 3/4 is 0.2462 + 0.0385 = 0.2847. The test is said to be nonsignificant:
p = 0.2847. In other words the null hypothesis H0: ϕ = 0.50 is not rejected (is
“accepted”).

The dichotomy between significant and nonsignificant is more often based on
the conventional level α = 0.05. Our two colleagues agree on this conven-
tion, but are divided about the words to use: significant versus nonsignificant for
Reynald and rejected versus accepted for Jerry. Moreover, Reynald claims that report-
ing the p-value gives more information. Jerry considers this practice to be superfluous
and prefers to take into account the power of the test. He assumes the alternative
hypothesis Ha : ϕ = 0.75 and computes the probability of rejecting the null hypoth-
esis H0: ϕ = 0.50 if Ha is true. This probability is 0.272, and he states that the
nonsignificant result is due to the “lack of power” of the test.

2.2.3 Confidence Interval

The null hypothesis H0: ϕ = 0.50 is not rejected. Has it been proved that ϕ = 0.50?
Certainly not: many other null hypotheses are not rejected! So, the set of all possible
parameter values that are not rejected at (one-sided) level α = 0.05 is { 5

16 ,
6
16 . . .

15
16 }.

This set constitutes a 100(1−α)% = 95 % confidence interval forϕ. How to interpret
the confidence level 95 %? The frequentist interpretation is based on the universal
statement:

Given a fixed value of the parameter, whatever this value is, 95 % (at least) of the intervals
computed for all possible samples include this value.

In the frequentist interpretation, the confidence level 95 % is based on all pos-
sible samples, and does not depend on the data in hand.
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Table 2.3 Likelihood function

Pr( f = 3/4 |ϕ = 0/16) = 0 Pr( f = 3/4 |ϕ = 9/16) = 0.3231

Pr( f = 3/4 |ϕ = 1/16) = 0 Pr( f = 3/4 |ϕ = 10/16) = 0.3956

Pr( f = 3/4 |ϕ = 2/16) = 0 Pr( f = 3/4 |ϕ = 11/16) = 0.4533

Pr( f = 3/4 |ϕ = 3/16) = 0.0071 Pr( f = 3/4 |ϕ = 12/16) = 0.4835

Pr( f = 3/4 |ϕ = 4/16) = 0.0264 Pr( f = 3/4 |ϕ = 13/16) = 0.4714

Pr( f = 3/4 |ϕ = 5/16) = 0.0604 Pr( f = 3/4 |ϕ = 14/16) = 0.4000

Pr( f = 3/4 |ϕ = 6/16) = 0.1099 Pr( f = 3/4 |ϕ = 15/16) = 0.2500

Pr( f = 3/4 |ϕ = 7/16) = 0.1731 Pr( f = 3/4 |ϕ = 16/16) = 0

Pr( f = 3/4 |ϕ = 8/16) = 0.2462

2.3 The Bayesian Approach: From Known
to Unknown

Assigning a frequentist probability to a single case event requires imagining a
reference set of events or a series of repeated experiments. This can easily be
done for obtaining the sampling probabilities of f . However, during this repeatable
process the underlying parameter ϕ remains fixed. In consequence, the assignment of
probabilities to a parameter is simply rejected by frequentists. By contrast, it is not
conceptually problematic to assign a Bayesian probability to a parameter.

2.3.1 The Likelihood Function and the Bayesian
Probabilities

So, let us return to the natural order of statistical reasoning, from the known data
to the unknown parameter ϕ. Adopting a Bayesian viewpoint, we first reconsider
the sampling probabilities. Instead of the probabilities of imaginary samples given a
fixed parameter value, Bayesian inference involves the probabilities of the observed
data ( f = 3/4) for each possible value of the parameter ϕ: Pr( f = 3/4 |ϕ). This is
the likelihood function that is denoted by �(ϕ | data) (Table 2.3).
In the Bayesian inference parameters can also be probabilized. This results in distri-
butions of probabilities that express our uncertainty:

1. about the parameter before observation (they do not depend on data): prior
probabilities;

2. about the parameter after observation (conditional on data): posterior (or
revised) probabilities;

3. about future data: predictive probabilities.

The choice of the prior distribution is fundamental. The flexibility of the Bayesian
paradigm allows for different approaches. In the personalistic view (de Finetti 1937;
Savage 1954), the prior is based mainly on personal opinion. For experimental
data analysis, such prior can be derived by elicitation from “experts”, but this is
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Fig. 2.1 Opinion-based analysis: prior probabilities Pr(M = 0, 1 . . . 16) [ϕ = M/16]

obviously controversial. The US Food and Drug Administration guidelines for the
use of Bayesian statistics in medical device clinical trials recently recommended to
use “good prior information” (Food and Drug Administration 2010). These guide-
lines mentioned the following possible sources of prior information:

• clinical trials conducted overseas,

• patient registries,

• clinical data on very similar products,

• pilot studies.

However, they admitted that

the evaluation of “goodness” of the prior information is subjective (Food and Drug Admin-
istration 2010, p. 22).

So, it is tempting to consider a completely different approach and to use the prior to
express the fact that we have no information initially (Jeffreys 1967).

2.3.2 An Opinion-Based Analysis

2.3.2.1 From Prior to Posterior Probabilities

For illustration purposes, let us assume that our colleagues’ a priori opinion about the
number of successes M in the population, or equivalently the unknown rate ϕ = M/16

can be expressed by the probabilities given in Fig. 2.1.
They have a prior probability 0.915 that ϕ exceeds 0.50 (at least M = 9 successes

out of 16 in the population). Then, by a simple product, we get the joint probabilities
of the parameter values and the data (Table 2.4).

The sum of the joint probabilities gives the marginal predictive probability of the
data, before observation:

Pr( f = 3/4) =
∑

ϕ

Pr(ϕ and f = 3/4) = 0.3756.
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Table 2.4 Joint probabilities of the parameter values and the data

Pr(ϕ and f = 3/4) = Pr( f = 3/4 |ϕ)× Pr(ϕ) = �(ϕ | data)× Pr(ϕ)

Pr(ϕ = 0/16 and f = 3/4) = 0 Pr(ϕ = 9/16 and f = 3/4) = 0.0217

Pr(ϕ = 1/16 and f = 3/4) = 0 Pr(ϕ = 10/16 and f = 3/4) = 0.0390

Pr(ϕ = 2/16 and f = 3/4) = 0 Pr(ϕ = 11/16 and f = 3/4) = 0.0596

Pr(ϕ = 3/16 and f = 3/4) = 0.000005 Pr(ϕ = 12/16 and f = 3/4) = 0.0761

Pr(ϕ = 4/16 and f = 3/4) = 0.00005 Pr(ϕ = 13/16 and f = 3/4) = 0.0783

Pr(ϕ = 5/16 and f = 3/4) = 0.0003 Pr(ϕ = 14/16 and f = 3/4) = 0.0593

Pr(ϕ = 6/16 and f = 3/4) = 0.0013 Pr(ϕ = 15/16 and f = 3/4) = 0.0257

Pr(ϕ = 7/16 and f = 3/4) = 0.0040 Pr(ϕ = 16/16 and f = 3/4) = 0

Pr(ϕ = 8/16 and f = 3/4) = 0.0102

Fig. 2.2 Opinion-based analysis: posterior probabilities Pr(M = 0, 1 . . . 16 | f =3/4) [ϕ = M/16]

This predictive probability is very intuitive: it is a weighted average of the likelihood
function, the weights being the prior probabilities.

Finally, we compute the posterior probabilities after observation, by application
of the definition of conditional probabilities. They are simply the normalized product
of the prior and the likelihood, which is a form of the “principle of inverse probability”
(Jeffreys 1967, p. 29), or equivalently of the Bayes’ formula:

Pr(ϕ | f = 3/4) ∝ �(ϕ | data)× Pr(ϕ) = Pr(ϕ and f = 3/4)

Pr( f = 3/4)
.

These posterior probabilities are given in Fig. 2.2. The posterior probability that
ϕ exceeds 0.50 (at least M = 9 successes) is updated to 0.958.

2.3.2.2 A Few Technical Considerations

It is convenient here to choose for the number of successes M a Beta-Binomial
prior distribution. A Beta-Binomial [BBin] distribution is a discrete probability dis-
tribution. Formally, X has the BBin(u, v, K ) distribution if
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Pr(X = x) = 1

B(u, v)

Γ (K + 1)Γ (x + u)Γ (K + v − x)

Γ (x + 1)Γ (K − x + 1)Γ (K + u + v)
[0 ≤ x ≤ K ]

where Γ (z) is the gamma function and B(u, v) = Γ (u)Γ (v)
Γ (u+v) is the beta function.

Its mean is

u

u + v
K .

The advantage is that it is a conjugate distribution of the Hypergeometric distribution:
after having observed a successes out of n (which implies a ≤ M ≤ N − n + a),
the number of successes M ′ = M − a [a ≤ M ′ ≤ N − M] in the unknown part
of the population is also a Beta-Binomial distribution. So, assuming the prior

M ∼ BBin(a0, b0, N ),

the posterior distribution is given by

M ′ | a ∼ BBin(a + a0, n − a + b0, N − n) [M = a + M ′].

The prior weights a0 and b0 are simply added to the observed counts a and n − a.
The above example of an opinion-based prior (see Fig. 2.1) corresponds to the case
a0 = 12 and b0 = 4. This BBin(12,4,16) distribution has mean 12, hence an expected
prior rate ϕ̄ = 12/16 = 0.75. The posterior distribution for ϕ in Fig. 2.2 follows from
the posterior for M ′ = M−3 (0 ≤ M ′ ≤ 12), which is the BBin(15,5,12) distribution,
with mean 9. Consequently, the expected posterior rate is ϕ̄ = (3+9)/16 = 0.75
(unchanged).

2.3.3 A “No Information Initially” Analysis

Even if it is in accordance with their opinion, our colleagues doubt that the above
analysis can convince the scientific community. We suggest them to act as if they
have no information initially (in Jeffreys’s terms), and to consider a vague prior
distribution.

2.3.3.1 The Uniform Prior

Typically, within the Beta-Binomial family, such a distribution is defined by small
weights a0 and b0, included between 0 and 1. In particular, the uniform prior for ϕ,
which assigns probabilities 1/17 on all possible values 0/16 , 1/16 , 2/16 , …, 16/16 , is
the BBin(1,1,16) distribution for M . For this prior, the posterior distribution for M ′
is BBin(4,2,12), with mean 8. The corresponding posterior probabilities for M , or
equivalently for ϕ = M/16, are given in Fig. 2.3. They follows from the posterior
distribution BBin(4,2,12) for M ′ = M − 3 The posterior mean is ϕ̄ = (3+8)/16 =
0.6875.
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Fig. 2.3 Uniform prior analysis: posterior probabilities Pr(M = 0, 1 . . . 16 | f =3/4) [ϕ = M/16]

Clearly, we are not interested in the probabilities of the particular values 0.25,
0.50, 0.75 that have been used for defining the statistical hypotheses about ϕ. What
is needed is to evaluate the plausibility of specified regions of interest for ϕ bracketed
by these values. For instance, we have the posterior probabilities:

Pr(ϕ ≤ 4/16 | f =3/4) = 0.100 Pr(ϕ > 8/16 | f =3/4) = 0.817

Pr(ϕ > 12/16 | f =3/4) = 0.330

2.3.3.2 Bayesian Procedures Are No More Arbitrary
than Frequentist Ones

Frequentist methods are full of more or less ad hoc conventions. Thus, in our example,
the p-value has been computed as the sampling probability of getting a value as least
as extreme as the observed success rate (under the null hypothesis). The convention to
include the observed success rate results in a conservative test: if the null hypothesis
is true, this test is significant (rejects the null hypothesis) for less than 5 % of the
samples. On the contrary, if the observed rate would be excluded, the test would be
significant for more than 5 % of the samples, else anti-conservative.

This choice has an exact counterpart in the Bayesian approach. For the prior
weights a0 = 0 and b0 = 1, we have the posterior distribution for M ′ = M − 3,
BB(3,2,12), and the posterior probabilities:

Pr(ϕ ≤ 4/16 | f =3/4) = 0.027 Pr(ϕ > 8/16 | f =3/4) = 0.715

Pr(ϕ > 12/16 | f =3/4) = 0.245

so that the posterior probability Pr(ϕ ≤ 0.25 | f = 3/4) = 0.0269 is exactly
equal to the p-value of the significance test of the null hypothesis H0: ϕ = 0.25.
The numerical results coincide, but the Bayesian interpretation clearly shows that
a nonsignificant outcome cannot be interpreted as “proof of no effect.” Our two
colleagues are very intrigued by this result.
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Many potential users of Bayesian methods continue to think that they are too
subjective to be scientifically acceptable. The Bayesian interpretation of the
p-value, and consequently of the frequentist confidence level, in terms of data
dependent probabilities, clearly show that it is not the case: the “no information
initially” analysis is no less objective than frequentist inference.

2.3.3.3 Some Remarks About Exchangeability
and Hierarchical Models

Many Bayesians place emphasis on the notion of exchangeability, introduced by
de Finetti (1937), which can be viewed as a counterpart to the frequentist notion of
repeated trials. According to de Finetti,

if we assume the [random elements] Xh to be exchangeable, this means that we attribute
the same probability to an assertion about any given number of them, no matter how their
indices are chosen or in what order (de Finetti 1972, p. 213).

The practical implications of exchangeability for designing experiments and ana-
lyzing data were examined in the abovementioned Food and Drug Administration
guidelines.

In a clinical trial, patients within the trial are usually assumed to be exchangeable. […] If
patients in the trial are exchangeable with patients in the population from which they were
sampled (e.g., the intended use population), then inferences can be made about the population
on the basis of data observed on the trial patients. Thus, the concept of a representative sample
can be expressed in terms of exchangeability (Food and Drug Administration 2010, p. 17).

So, in our illustrative example, the probability of getting any sequence of successes
and failures, given by the hypergeometric distribution, depends only on the number
of successes and failures. It does not depend on the order in which the outcomes were
observed. Future students must be assumed to be exchangeable with the students who
have already been observed in order to make predictive probabilities reasonable. In
the same way, similar experiments must be assumed to be exchangeable for a coherent
integration of the information.

The assumption of trial exchangeability enables the current trial to “borrow strength” from
the previous trials, while acknowledging that the trials are not identical in all respects. (Food
and Drug Administration 2010, p. 17).

Exchangeability is a key concept in the Bayesian framework. Using multilevel
prior specifications, it allows a flexible modeling of related experimental devices by
means of hierarchical models.

When incorporating prior information from a previous study, the patients in the previous
study are rarely considered exchangeable with the patients in the current study. Instead, a
hierarchical model is often used to “borrow strength” from the previous studies. At the first
level of the hierarchy, these models assume that patients are exchangeable within a study,
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but not across studies. At a second level of the hierarchy, the previous studies are assumed
to be exchangeable with the current study, which acknowledges variation between studies
(Food and Drug Administration 2010, p. 23).

Hierarchical models are useful for analyzing the data from a multicenter experiment.
They are also particularly suitable for meta-analysis in which we have data from
a number of relevant studies that may be exchangeable on some levels but not on
others.

2.3.3.4 Epilogue

We have an interpretation for the fact that the teaching method has been effective
for three of the four individuals. Indeed, these students had been exposed to an
introduction to Bayesian inference before they received the new teaching method. We
completely agree with Berry (1997), who ironically concludes that students exposed
to a Bayesian approach come to understand p-values and confidence intervals better
than do students exposed only to a frequentist approach.

Since the frequentist definition seems to make probability an objective prop-
erty, existing in the nature independently of us, frequentists are self-proclaimed
to be objective. Most of them firmly reject the Bayesian inference as being nec-
essarily subjective. However, the Bayesian definition can also serve to describe
“objective knowledge”, in particular based on symmetry arguments or on fre-
quency data.

Using the quite natural Bayesian interpretations of significance tests and
confidence intervals, you will more clearly understand the common misuses
and abuses of NHST, and you will be able to overcome the usual difficulties
encountered with the frequentist approach.
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Chapter 3
The Fisher, Neyman–Pearson and Jeffreys
Views of Statistical Tests

Abstract This chapter briefly reviews the rationale of the three main views of
statistical tests. Current practice is based on the Fisher “test of significance” and
the Neyman–Pearson “hypothesis test”. Jeffreys’ approach is a Bayesian alterna-
tive based on the use of “objective” prior probabilities of hypotheses. The main
similarities and dissimilarities of these three approaches will be considered from a
methodological point of view: what is the aim of statistical inference, what is the
relevance of significance tests in experimental research? The dangers inherent in
uncritical application of the Neyman–Pearson approach will also be stressed.

Keywords Automatic decision vs estimation · Deductive vs inductive reasoning ·
Fisher’s test of significance · Jeffreys’ Bayesian significance test · Learning from
data and experience · Neyman-Pearson’s hypothesis test

3.1 The Fisher Test of Significance

Sir Ronald Fisher’s primary field was genetics, but he also made decisive con-
tributions to statistics. His three books Statistical Methods for Research Workers
(Fisher 1990a), The Design of Experiments (Fisher 1990b) and Statistical Methods,
Experimental Design, and Scientific Inference (Fisher 1990c) were first published
in 1925, 1935, and 1956 respectively. They were primarily intended for scientific
workers and they received considerable success and positive feedbacks.

3.1.1 An Objective Method for Reporting Experimental Results

Fisher expanded the practices already in use: the celebrated Karl Pearson’s chi-square
and Student’s t papers were, respectively, published in 1900 and 1908. He structured
them into a new paradigm, the test of significance, presented as an objective method
for reporting experimental results:
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Though recognizable as a psychological condition of reluctance, or resistance to the accep-
tance of a proposition, the feeling induced by a test of significance has an objective basis in
that the probability statement on which it is based is a fact communicable to, and verifiable
by, other rational minds (Fisher 1990c, p. 46, italics added).

3.1.2 The Null Hypothesis

A single hypothesis, called the “null hypothesis”, is challenged:

the hypothesis that the phenomenon to be demonstrated is in fact absent (Fisher 1990b,
p. 13).

It is a hypothesis to be disproved, to be nullified, and not necessarily the hypothesis
that the parameter has a null value, even if this is the most usual case.

3.1.3 The Outcome of the Test of Significance

The experimental result is judged to be

1. either significant, the null hypothesis is disproved;

2. or nonsignificant, the null hypothesis is not disproved.

3.1.4 The Test Statistic and the Level of Significance p

An appropriate test statistic, whose sampling distribution when the null hypothesis is
true is exactly known, is considered. Once the data have been collected, its observed
value is calculated. The sampling distribution gives the probability that this observed
value “is exceeded by chance” (Fisher 1990b, p. 38), if the null hypothesis is true.
It is the level of significance, nowadays called the p-value. The experimental result
is judged to be significant when p is considered to be small enough. This is a
consequence of the logical disjunction:

Either the hypothesis is untrue, or the value of χ2 has attained by chance an exceptionally
high value (Fisher 1990a, p. 80).

3.1.5 How to Evaluate the Smallness of p?

Fisher often used 5 % as a reasonable, convenient, threshold for evaluating p,

…it is convenient to take this point as a limit in judging whether a deviation ought to be
considered significant or not (Fisher 1990a, p. 44).



3.1 The Fisher Test of Significance 23

However, he came to firmly reject the conception of an absolute, fixed level and he
even stated the possibility of using different levels for the same data:

The value for Q is therefore significant on the higher standard (1 %) and that for N2 at the
lower standard (5 %) (Fisher 1990b, pp. 152–153).

For Fisher, the level of significance (the p-value) is a fundamental characteristic
and its actual value for the particular data under consideration

indicates the strength of the evidence against the [null] hypothesis (Fisher 1990a,
p. 80, italics added).

3.2 The Neyman–Pearson Hypothesis Test

Since it does not provide precise guidelines to decide about research hypotheses,
Fisher’s test of significance can seem frustrating.

3.2.1 Rational Decision Rules

Jerzy Neyman, a Polish mathematician, and Egon Pearson (Karl Pearson’s son), a
British statistician, collaborated with the aim to give rules of rational behavior for
taking statistical decisions about hypotheses. Their basic articles were published in
1928 and 1933. This collaboration on hypothesis tests led Neyman later to formulate
his method of confidence intervals within the same perspective.

3.2.2 The Hypothesis to be Tested and Alternative Hypotheses

Neyman and Pearson rejected Fisher’s conception of a single hypothesis and empha-
sized the necessity of alternative hypotheses:

It is indeed obvious, upon a little consideration, that the mere fact that a particular sample
may be expected to occur very rarely in sampling from [the population] would not in itself
justify the rejection of the hypothesis that it has been so drawn, if there were no other more
probable hypotheses conceivable (Neyman and Pearson 1928, p. 178, italics added).

They considered mutually exclusive hypotheses and introduced for them explicit
notations, H0, H1, … Hm , H0 being called the hypothesis to be tested (Neyman and
Pearson 1933b, p. 495).
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3.2.3 The Outcome of the Hypothesis Test

Given the sample space W and the sample point (the observed event)�, a hypothesis
test is a decision rule, based on the division of the sample space into two regions
(Neyman and Pearson 1933b, p. 493):

(a) Reject H0 if � falls into the critical region w;

(b) Accept H0 if � falls into the region of acceptance w′ = W − w.

The no-decision case—remain in doubt—was envisaged as a further subdivision of
the region of acceptance w′, but not really treated.

3.2.4 A Long-Run Control

The problem to be solved by a hypothesis test is to control the errors in the following
sense.

If he [the practical statistician] makes repeated use of the same statistical tools when faced
with a similar set of admissible hypotheses, in what sense can he be sure of certain long-run
results? A certain proportion of correct decisions, A certain proportion of errors, and if he so
formulates the tests a certain proportion of cases left in doubt? (Neyman and Pearson 1933b,
p. 494, italics added).

So, when repeated under identical circumstances, the test is viewed as a rule of
rational behavior . It is intended to minimize the long-run proportion of erroneous
decisions regarding the hypotheses considered.

3.2.5 Two Types of Errors and Their Long-Run Frequencies

There are two types of errors (Neyman and Pearson 1933b, p. 493):

Type I we reject H0 when it is true;

Type II we accept H0 when some alternative Hi , is true.

In most applications, there exists an essential difference in nature between the two
types of errors, the Type I being the most important to avoid. Neyman and Pearson
suggested that all errors of Type I may be regarded as equivalent, because if H0 is
wrongly rejected the consequences are generally the same whatever the sample size.
On the contrary, if H0 is wrongly accepted the consequences depend on the true
alternative Hi:

Generally, it will not be of serious consequence if we accept H0 falsely when the true
hypothesis Hi only differs only very slightly, but the danger will steadily increase as this
difference increases (Neyman and Pearson 1933b, p. 497).
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3.2.6 Power of the Test and Best Critical Region

The power of a critical region w of size α with regard to an alternative simple
hypothesis Hi is the probability p(w|Hi ) of rejecting the hypothesis tested H0 when
the true hypothesis is Hi . The “best critical region” w0 maximizes the power P(w|Hi )

under the condition that P(w0|H0) is fixed. If w0 possesses this property for a certain
class of alternatives, it is called “a best critical region for the whole class”. The now-
famous Neyman–Pearson lemma (1933a, 1936b) provides, at least under certain
conditions (testing point hypotheses), a way of finding a best critical region, which
defines a “uniformly most powerful” test.

Neyman and Pearson (1933a, b) called P(w|H0) the “size of the critical region”
and denoted it by ε. The notation α, now used for the Type I error rate, was introduced
later in Neyman and Pearson (1936a). Neyman (1938, p. 79) introduced the symbol
β(θ |wn) to designate the “power function of the critical region wn”, a function of the
parameter value θ . β is now used for the Type II error rate (and 1−β for the power).

In practice, a conventional rule is that α is generally set at 0.05. The problem of
computing the power of a test is much more complicated, since there is not a single
β (see Neyman 1977, p. 107). One reason is that the alternative hypothesis is usually
composite. Furthermore, the power function depends on the choice of α.

In the Neyman–Pearson approach, the hypotheses, the α-level and the critical
region are fixed before observations. The data serve only to determine whether
or not they fall in the critical region. To be coherent with this conception, the
p-value should even not be considered:

…a p-value from a Fisherian significance test has no place in the Neyman–Pearson
hypothesis-testing framework (Hubbard 2004, p. 320).

3.3 The Jeffreys Bayesian Approach to Testing

Sir Harold Jeffreys was a world authority in mathematical physics and theoretical
geophysics. His two statistical books, Scientific Inference (Jeffreys 1973) and Theory
of Probability (Jeffreys 1967), were first published in 1931 and 1939, respectively.
The latter can be viewed as the first attempt to develop a fundamental theory of
statistical inference based on the Bayesian approach. Two extended editions appeared
in 1948 and 1961 (reprinted in 1967 with some corrections and in 1998).

Following the lead of Bayes (1763) and Laplace (1840), Jeffreys worked at
developing objective Bayesian methods, applicable when nothing is known about
the value of the parameter (no information initially):

we are aiming chiefly at a theory that can be used in the early stage of a subject (Jeffreys
1967, p. 252).
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Bayesian prior probabilities are used for this purpose:

The answer is really clear enough when it is recognized that a probability is merely a number
associated with a degree of reasonable confidence and has no purpose except to give it a
formal expression. If we have no information relevant to the actual value of a parameter,
the probability must be chosen so as to express the fact that we have none (Jeffreys 1967,
p. 118).

3.3.1 The Jeffreys Rule

…how can we assign the prior probability when we know nothing about the value of the
parameter, except the very vague knowledge just indicated? (Jeffreys 1967, p. 118).

The so-called Jeffreys’ rule, based on the Fisher information, is used to obtain a
prior that is appropriate to answer this question. This prior has the essential prop-
erty to be invariant under one-to-one reparameterization. For instance, for a Normal
sampling distribution N (μ, σ 2), the Jeffreys prior is uniform for (μ, log(σ 2)). It is
noteworthy to mention the work of Ernest Lhoste, a captain in the French army, who
developed a similar approach concerning Bayesian inference and the choice of the
prior. Several years before, he derived results identical to those of Jeffreys for the
Normal distribution (Lhoste 1923; see Broemeling and Broemeling 2003).

The Jeffreys prior, usually called noninformative, objective or default, is a reason-
able choice in most usual situations of experimental data analysis. In more complex
situations, its use is more controversial and alternative approaches have been devel-
oped (for a recent review, see Ghosh 2011).

3.3.2 The Function of Significance Tests

For Jeffreys the function of significance tests was

to compare a suggested value of a new parameter, often 0, with the aggregate of other possible
values (Jeffreys 1967, p. 245).

Consequently, he considered two complementary hypotheses, denoted by q and q ′:

q, that the parameter has the suggested value, and q ′, that it has some other value to be
determined from the observations (Jeffreys 1967, p. 246).

As Fisher, he used the term null hypothesis:

We shall call q the null hypothesis, following Fisher, and q ′ the alternative hypothesis
(Jeffreys 1967, p. 246).

It is worthwhile to note that this sentence has replaced the original one: “q would
always be what Fisher calls the null hypothesis”, which appeared in the first edition
(1939, p. 194).
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3.3.3 A Specific Prior for Testing Precise Hypothesis

A uniform (and more generally a continuous) prior distribution is inappropriate for
testing of a precise (point null) hypothesis, since it gives it a zero probability:

The fatal objection to the universal application of the uniform distribution is that it would
make any significance test impossible. If a new parameter is being considered, the uniform
distribution of prior probability for it would practically always lead to the result that the most
probable value is different from zero (Jeffreys 1967, p. 117).

In order “to say that we have no information initially”, it seemed an evidence to
Jeffreys that the two hypotheses are initially equally probable:

The essential feature is that we express ignorance of whether the new parameter is needed
by taking half the prior probability for it as concentrated in the value indicated by the null
hypothesis and distributing the other half over the range possible (Jeffreys 1967, p. 246).

Consequently, if H is “the set of propositions accepted throughout an investigation”,

we must take P(q|H) = P(q ′|H) = 1
2 (Jeffreys 1967, p. 246).

A prior that does not favor any particular parameter value is used on the comple-
mentary alternative hypothesis. For usual sample sizes, it follows that when the null
hypothesis is rejected by a frequentist test (small p-value), the Bayesian posterior
probability of the null hypothesis is generally dramatically higher than the p-value.
For Berger (2003, p. 3), this demonstrates that “the too-common misinterpretation
of p-values as error probabilities very often results in considerable overstatement of
the evidence against H0”.

3.3.4 A Measure of Evidence Against the Null Hypothesis

Jeffreys suggested to measure evidence against the null hypothesis with the ratio of
posterior to prior odds, in his notations:

K = P(q|θH)

P(q ′|θH)

/ P(q|H)
P(q ′|H)

where θ is the “observational evidence”. K is nowadays called the Bayes factor and
reduces to the likelihood ratio if P(q|H) = P(q ′|H) = 1

2 .
For practical purposes, Jeffreys (1967, p. 432) proposed to “grade the decisiveness

of the evidence” as follows:
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Grade 0 K > 1 Null hypothesis supported
Grade 1 1 > K > 0.3162 (10−1/2) Evidence against q, but not worth

more than a bare mention
Grade 2 0.3162 > K > 0.1 Evidence against q substantial
Grade 3 0.1 > K > 0.0316 (10−3/2) Evidence against q strong
Grade 4 0.0316 > K > 0.01 Evidence against q very strong
Grade 5 0.01 > K Evidence against q decisive

3.3.5 An Averaged Risk of Error

Jeffreys criticized the Neyman–Pearson approach:

I do not think that they have stated the question correctly (Jeffreys 1967, p. 395).

He advocated the use of an averaged risk of errors, where the averaging is performed
over the possible values of the parameter, according to their Bayesian probability:

But if the actual value is unknown the value of the power function is also unknown; the
total risk of errors of the second kind must be compounded of the power functions over the
possible values with regard to their risk of occurrence (Jeffreys 1967, p. 396).

Neyman and Pearson also considered this notion, under the name of resultant power ,
but they discarded it because it is dependent of the probabilities a priori and cannot
often be known:

It is seen that while the power of a test with regard to a given alternative Hi is independent of
the probabilities a priori, and is therefore known precisely as soon as Hi and w [the critical
region of the test] are specified, this is not the case with the resultant power (Neyman and
Pearson 1933b, p. 499).

However, this objection is essentially theoretical, and Jeffreys’ criticism appears to
be relevant, since the specified Hi is hypothetical.

Nowadays, many authors dogmatically oppose the Jeffreys and Fisher
approaches to testing, claiming that they can lead to quite different conclu-
sions in actual practice:

The discrepancy between the numbers reported by Fisher [the p-value] and Jeffreys
[the Bayes factor] are dramatic (Berger 2003, p. 1).

However, in so far as experimental data analysis is concerned, this was not the
Jeffreys viewpoint!

In spite of the difference in principle between my tests and those based on the P
integrals [Fisher’s tests]…it appears that there is not much difference in the practical
recommendations (Jeffreys 1967, p. 435).
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3.4 Different Views of Statistical Inference

3.4.1 Different Scopes of Applications: The Aim of Statistical
Inference

3.4.1.1 To Avoid Wrong Decisions

Although they discussed the case of “scientific investigation”, the typical example
of application that Neyman and Pearson (1933b) considered in detail for illustration
concerned the process of quality control:

H0 is the hypothesis that the consignment which is sampled is of quality above a certain
standard. From the producer’s point of view it is important that the sample should not be
rejected when H0 is true; he wishes PI [the Type I error rate] to be reduced to a minimum.
To the consumer on the other hand, it is important that the sample should not pass the test
when H0 is false, the quality of the consignment being below standard; his object will be to
reduce PI I [the Type II error rate] (Neyman and Pearson 1933b, p. 498).

Consequently, when answering questions raised by hypothesis testing, their main
concern was to avoid errors in decisions:

Any attempts to answer will be associated with a wish to avoid being wrong (Neyman, in
Fisher 1935, pp. 75–76).

3.4.1.2 Learning From Data and Experience

Fisher did not dispute this and acknowledged the usefulness of “acceptance” tests
for decision-making in some fields:

In various ways what are known as acceptance procedures are of great importance in the
modern world. When a large concern such as the Royal Navy receives material from its
makers, it is, I suppose, subjected to sufficiently careful inspection and testing to reduce the
frequency of the acceptance of faulty or defective consignments (Fisher 1990c, p. 80, italics
added).

However, “I suppose” clearly reveals that Fisher felt himself to be not concerned with
such kinds of applications. For him, the attempt to reinterpret the test of significance
as a means of making decisions was not suitable for experimental research:

It is not, therefore, at all in disdain of an artifice of proved value, in commerce and technology,
that I shall emphasize some of the various ways in which this operation differs from that
by which improved theoretical knowledge is sought in experimental research (Fisher 1990c,
pp. 79–80).

Even if Fisher gave examples of observational data, his main concern was the
“experimental sciences”, and especially “the natural sciences”:

It is noteworthy, too, that the men who felt the need for these tests [of significance] who
first conceived them, or later made them mathematically precise, were all actively concerned
with researches in the natural sciences (Fisher 1990c, pp. 79–80).



30 3 The Fisher, Neyman–Pearson and Jeffreys Views of Statistical Tests

Consequently, he considered that the aim of tests of significance was not to take
decisions, but to learn from experimental data:

The conclusions drawn from such tests constitute the steps by which the research worker
gains a better understanding of his experimental material, and of the problems which it
presents (Fisher 1990c, p. 79).

Jeffreys went further and aimed at proposing a general methodology for learning
from data and experience, applicable to research in all fields of science. Bayesian
probabilities are successively updated when new data become available:

Starting with any distribution of prior probability and taking account of successive batches
of data by the principle of inverse probability, we shall in any case be able to develop an
account of the corresponding probability at any assigned state of knowledge (Jeffreys 1967,
p. 118).

Jeffreys distinguished estimation problems,

concerned with the estimation of the parameters in a law, the form of the law itself being given
(Jeffreys 1967, p. 245), [in which] we want the probability distribution of these parameters,
given the observations (Jeffreys 1967, p. 117),

from significance tests, which involve

a specially suggested value of a new parameter (Jeffreys 1967, p. 246).

So, he had a conception of significance tests, related to what is commonly referred
to as “model selection”:

The function of significance tests is to provide a way of arriving, in suitable cases, at a
decision that at least one new parameter is needed to give an adequate representation of the
data and valid inferences to future ones (Jeffreys 1967, p. 245).

However, for Jeffreys, the question asked in a significance test,

Is the new parameter supported by the observations, or is any variation expressible by it
better interpreted as random? (Jeffreys 1967, p. 245).

was not relevant in “agricultural experiments”, which he regarded to be very largely
problems of pure estimation. We will consider his views further in Chap. 5.

It should be recognized that, according to his approach to statistical inference
for experimental data, Fisher

seems to have assigned the tests a rule-of-thumb status as largely preparatory to
estimation (Rosenkrantz 1973, p. 304),

a status which was unfortunately ignored in practice. Indeed, the hypothesis
test method has attracted the interest of experimental scientists, because they
have been unduly

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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encouraged to expect final and definite answers from their experiments in situations
in which only slow and careful accumulation of information could be hoped for. And
some of them, indeed, came to regard the achievement of a significant result as an
end in itself (Yates 1964, p. 320).

3.4.2 The Role of Bayesian Probabilities

As a Bayesian, Jeffreys considered probability as the degree of confidence that we
may reasonably have in a proposition. Moreover, because our degrees of confidence
in a proposition change when new observations or new evidence become available,
he stated that probability is always conditional and “must be of [a proposition] p on
data q”:

It is no more valid to speak of the probability of a proposition without stating the data than it
would be to speak of the value of x + y for a given x , irrespective of the value of y (Jeffreys
1967, p. 15).

He used the formal notation P(p|q) to mark the fundamental role of this conditional
probability.

3.4.2.1 Fisher and Bayes

Fisher has always acknowledged that the Bayesian argument should be used “when
knowledge a priori in the form of mathematically exact probability statements is
available” (Fisher 1990b/1935 p. 198). What he contested was the relevance of this
case in scientific research:

A more important question, however, is whether in scientific research, and especially in the
interpretation of experiments, there is cogent reason for inserting a corresponding expression
representing probabilities a priori (Fisher 1990c, p. 17).

His aim was to avoid the use of prior probabilities about hypotheses:

Familiarity with the actual use made of statistical inference in the experimental sciences
shows that in the vast majority of cases the work is completed without any statement of math-
ematical probability being made about the hypothesis under consideration (Fisher 1990c,
p. 40).

Nevertheless, Fisher considered the probability level (the p-value) as charac-
terizing a “unique sample.” Actually, he defined the p-value of the t test (Fisher
1990a, p. 118) as a predictive probability, and not as a frequentist probability: see
(Lecoutre et al. 2010, pp. 161–162). Furthermore, Fisher (1959) came later to write
very explicitly that he used probability as a measure of degree of uncertainty:
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The subject of a probability statement if we know what we are talking about, is singular
and unique; we have some degree of uncertainty about its value, and it so happens that
we can specify the exact nature and extent of our uncertainty by means of the concept
of Mathematical Probability as developed by the great mathematicians of the seventeenth
century Fermat, Pascal, Leibnitz, Bernoulli, and their immediate followers (Fisher 1959,
p. 22).

3.4.2.2 Neyman and Pearson, and Bayes

Neyman and Pearson’s general principles underlying their “most efficient tests of
statistical hypotheses” pertain to the same preoccupation to avoid the use of prior
probabilities. Their aim was to find

what statements of value to the statistician in reaching his final judgment can be made from
an analysis of observed data, which would not be modified by any change in the probabilities
a priori (Neyman and Pearson 1933b, p. 492).

However, it must be emphasized that, in their early writings, Neyman and Pearson
acknowledged the dualistic view on probability:

In the long run of statistical experience the frequency of the first source of error (or in
a single instance its probability) can be controlled... (Neyman and Pearson 1928, p. 177,
italics added).

Even if Neyman explicitly aired his opposition to Fisher, and clearly advocated a
frequentist conception of probability,

For Fisher, probability appears as a measure of uncertainty applicable in certain cases but,
regretfully, not in all cases. For me, it is solely the answer to the question “How frequently
this or that happens" (Neyman 1952, p. 187),

he also emphasized later that it was not a systematic opposition to the use of Bayesian
inference:

Perhaps because of lack of clarity in some of my papers, certain authors appear to be under
the impression that, for some reason, I condemn the use of Bayes’ formula and that I am
opposed to any consideration of probabilities a priori. This is a misunderstanding. What I
am opposed to is the dogmatism, which is occasionally apparent in the application of Bayes’
formula when the probabilities a priori are not implied by the problem treated, and an author
attempts to impose on the consumer of statistical methods the particular a priori probabilities
invented by himself for this particular purpose (Neyman 1957, p. 19).

It should at the least be agreed that Fisher’s conception of probability

was in fact much closer to the ’objective Bayesian’ position than that of the frequentist
Neyman (Zabell 1992, p. 381).
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3.4.3 Statistical Tests: Judgment, Action or Decision?

3.4.3.1 Fisher: An Aid to Judgment

For Fisher, statistical inference involved both deductive and inductive reasoning:

The statistical examination of a body of data is thus logically similar to the general alternation
of inductive and deductive method throughout the sciences. A hypothesis is conceived and
defined with all necessary exactitude; its logical consequences are ascertained by a deductive
argument; these consequences are compared with the available observations; if these are
completely in accord with the deductions, the hypothesis is justified at least until fresh and
more stringent observations are available (Fisher 1990a, p. 8, italics added).

Within this perspective, the tests of significance constitute an “aid to judgment”:

for the tests of significance are used as an aid to judgment, and should not be confused with
automatic acceptance tests, or ‘decision functions’ (Fisher 1990a, p. 128).

3.4.3.2 Neyman–Pearson: Automatic Decisions Viewed
as Inductive Behavior

Neyman and Pearson emphasized the fact that a hypothesis test is not intended to
make a judgment about the truth or falsity of a hypothesis:

We are inclined to think that as far as a particular hypothesis is concerned, no test based
upon the theory of probability can by itself provide any valuable evidence of the truth or
falsehood of that hypothesis (Neyman and Pearson 1933a, pp. 290–291).

Contrary to Fisher’s view of statistical reasoning, their approach is only deductive.
When he developed later the notion of confidence interval, Neyman came to reject
the phrase “inductive reasoning”:

the term inductive reasoning does not seem appropriate to describe the new method of
estimation because all the reasoning behind this method is clearly deductive (Neyman 1951,
p. 85).

He introduced (Neyman 1938) the term “comportement inductif” (inductive
behavior), by opposition to Fisher’s inductive reasoning:

…the term ‘inductive reasoning’ is out of place and, if one wants to keep the adjective
‘inductive’, it seems most appropriate to attach to it the noun ‘behavior’ (Neyman 1951,
p. 85).

Fisher has always expressed his opposition to an approach that leads to automatic
decisions in scientific research:

The idea that this responsibility [the detailed interpretation of verifiable observations] can be
delegated to a giant computer programmed with Decision Functions belongs to a phantasy
of circles rather remote from scientific research (Fisher 1990c, p. 105).
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3.4.3.3 Jeffreys: A Decision Based on a Measure of Evidence

As Fisher, Jeffreys was convinced that deductive logic is insufficient for the scientific
method:

I reject the attempt to reduce induction to deduction (Jeffreys 1967, p. B).

Although the role of the test is to decide if a new parameter is needed, this is not an
automatic decision-making procedure. Rather the decision is based on a measure of
evidence against the null hypothesis that leads to a graduate judgment.

In regard to the effective use of the statistical test method in experimental
research, we can agree with Rozeboom that

its most basic error lies in mistaking the aim of a scientific investigation to be a
decision, rather than a cognitive evaluation of propositions (Rozeboom 1960, p. 428).

However, it should be recognized that this use is not in agreement with the
Fisher and Jeffreys views. Actually, significance tests, as commonly used, are
uninformative because

In many experiments it seems obvious that the different treatments must have pro-
duced some difference, however small, in effect. Thus the hypothesis that there is no
difference is unrealistic: the real problem is to obtain estimates of the sizes of the
differences (Cochran and Cox 1957, p. 5).

3.5 Is It Possible to Unify the Fisher and Neyman–Pearson
Approaches?

Lehmann argued that a unified approach is possible:

despite basic philosophical differences, in their main practical aspects the two theories are
complementary rather than contradictory and that a unified approach is possible that com-
bines the best features of both (Lehmann 1993, p. 1242).

This was seriously questioned by Perlman and Wu (1999), who showed that, in several
composite null hypothesis testing problems, optimal tests in the Neyman–Pearson
sense are flawed.

3.5.1 Demonstrating Equivalence

This issue has been specifically investigated in the framework of clinical equivalence
trials. In order to evaluate equivalence between two experimental treatments, a small,
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positive valueΔ is used to define an “equivalence region” [−Δ,Δ] for the difference
μ1 − μ2 between the two treatment means. An appropriate hypothesis test proce-
dure for demonstrating equivalence is to consider the composite null hypothesis H0:
|μ1 − μ2| ≥ Δ (which is to be rejected). and the alternative Ha : |μ1 − μ2| < Δ

(equivalence).
The seemingly natural solution consists in using the absolute value of the usual

t-test statistic (or, equivalently its square, the F-ratio). Then the test is to reject H0
(to demonstrate equivalence) if |t | is small enough, formally if |t | is smaller than the
(1 − α)% lower point of its sampling distribution given |μ1 − μ2| = Δ, that is the
absolute value of a noncentral t-distribution (or equivalently, if F is used, a noncentral
F-distribution). When the error variance is known, this test is the uniformly most
powerful test for testing H0 against the alternative Ha .

3.5.2 Neyman–Pearson’s Criterion Leads to Incoherent
and Inadmissible Procedures

As a matter of fact this test, and many other closely related tests, have always been
considered unacceptable and rejected by applied statisticians (e.g., Selwyn et al.
1985; Schuirmann 1987; Food and Drug Administration 2001; Lecoutre and Derzko
2001, 2014).

• When the observed difference is null, the observed significance level is always
null, whatever Δ, the sample size and σ , leading to the automatic conclusion of
equivalence (rejection of H0).

• For a given observed difference, the critical rejection region varies in a non-
monotonic way as a function of the sampling error variance. Moreover, it may
include values of the observed difference that lie outside the equivalence region.

• Schervish (1995, Problem 42, p. 291) demonstrated that they are incoherent and
inadmissible in the sense of the decision theory.

3.5.3 Theoretical Debates: Counterintuition or Good Sense?

The defenders of the Neyman–Pearson “optimal tests” dismissed the warnings made
by applied statisticians who have rejected their use in clinical equivalence trials. They
argued that their undesirable properties are only “counterintuitions”:

we believe that notions of size, power, and unbiasedness are more fundamental than
‘intuition’ (Berger and Hsu 1996, p. 192).

This was seriously challenged by Perlman and Wu (1999), who demonstrated that
such tests are scientifically inappropriate.
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Perlman and Wu advocated the pragmatism and good sense of Fisher, Cox,
and many others (among which we include Jeffreys):

we hope that we have alerted statisticians to the dangers inherent in uncritical applica-
tion of the NP [Neyman and Pearson] criterion, and, more generally, convinced them
to join Fisher, Cox and many others in carefully weighing the scientific relevance
and logical consistency of any mathematical criterion proposed for statistical theory
(Perlman and Wu 1999, p. 381).

3.6 Concluding Remarks

Fisher’s genius is recognized:

R.A. Fisher was certainly the hero of 20th century statistics (Efron 1998, p. 95).

However and unsurprisingly, it was the so-called “sound mathematical foundation”
of the Neyman–Pearson theory that attracted the interest of most frequentist statisti-
cians.

Criteria such as most (or more) powerful test, unbiasedness or alpha-
admissibility have hardened into dogma, often without concern for the needs
of scientists. Is it more important to know that the two-sided t-test is uniformly
most powerful among all unbiased tests or is it more important to ask if it is
relevant?

In a similar way, Jeffreys’ approach has been embedded into a Bayesian
decision-theoretic framework, which perpetuates the “reject/accept” dicho-
tomy of significance tests, without concern for the role Jeffreys assigned to
estimation in experimental data analysis.
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Chapter 4
GHOST: An Officially Recommended Practice

Abstract This chapter gives a brief account of the misuses and abuses of Null
Hypothesis Significance Testing (NHST). It also examines the most often recom-
mended “good statistical practice,” called here Guidelined Hypotheses Official Sig-
nificance Testing (GHOST). GHOST is a hybrid practice that appears as an amalgam
of Fisherian and Neyman–Pearsonian views. It does not ban the use of significance
testing, but the choice of the sample size should be justified, and estimates of the size
of effects and confidence intervals should also be reported.

Keywords Clinical trials · Guidelined hypotheses official significance testing ·
Hybrid logic of statistical inference · Misuses of significance tests · Null hypothesis
significance testing · Recommended statistical practices

4.1 Null Hypothesis Significance Testing

4.1.1 An Amalgam

Most statisticians and scientific workers do not clearly distinguish the Fisher and
Neyman–Pearson views. Furthermore, in statistics textbooks, significance tests are
often anonymously presented as a mixture of the two approaches, and controversies
are ignored.

4.1.1.1 NHST: A Hybrid Logic

Following Cohen, this mixture is designated by the acronym NHST, for Null Hypoth-
esis Significance Testing:

NHST; I resisted the temptation to call it statistical hypothesis inference testing (Cohen 1994,
p. 997).
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It has no real, theoretical, or methodological, justification and results in many prob-
lems. It has been denounced by Gigerenzer as the “hybrid logic” of statistical infer-
ence that Fisher, Neyman, and Pearson would all have rejected:

It is an incoherent mishmash of some of Fisher’s ideas on one hand, and some of the ideas
of Neyman and E.S. Pearson on the other (Gigerenzer 1993, p. 314).

4.1.1.2 A Mixture of Terms and Notations

The terminology and notations reveal this amalgam. For instance, to speak of the
“the null hypothesis H0” is so common that it is surprising to learn that Fisher never
used the notation H0 and Neyman and Pearson never used “null hypothesis.” This
reveals that these authors had very different views on its role.

The α-level level is supposed to have been selected a priori (Neyman and Pear-
son), but several levels are implicitly used to qualify the outcome of the test, accord-
ing to different reference values (Fisher). So it is a common practice to report the
results as significant (p ≤ 0.05), highly significant (p ≤ 0.01), extremely significant
(p ≤ 0.001), and even sometimes quasi-significant, marginally significant or near
significance (0.05 < p ≤ 0.10). In many publications, tables are labeled with stars
to indicate degrees of significance.

Null Hypothesis Significance Testing is a unjustified amalgam of the Fisher
and Neyman–Pearson views of statistical tests, which is nowadays the most
frequently used statistical procedure in many, if not in most, scientific journals.

4.1.2 Misuses and Abuses

4.1.2.1 The Dictatorship of Significance

Experimental research can be compared to a game or a fight (Freeman 1993, used
the adjective “gladiatorial”): only the significant results win. Nonsignificant ones
are theoretically only statements of ignorance, and thus perceived as failures, as
illustrated by the common expression “we fail to reject the null hypothesis.” It must
be recognized that Fisher has paved the way by writing:

Personally, the writer prefers to …ignore entirely all results which fail to reach that [signif-
icance] level (Fisher 1926, p. 504, italics added)
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4.1.2.2 A Typical Game

Here is an example of a typical game between an author and a referee.

1. The author (first version of the article): A t-test comparing the scores between
the control condition and the three other ones showed each time a significant
difference.

2. The referee: Has a correction (e.g., Bonferroni) been made for multiple compar-
isons?

3. The author (added in the final version): Dunnett’s correction was applied to
account for the use of multiple comparisons.

The referee expressed doubts: have the game rules been correctly applied? If the
author had used the Bonferroni correction, one of the three t-tests had turned to be
nonsignificant at 0.05 level (he had lost the game!). Fortunately, he was an experi-
enced gamer and knew that Dunnett’s correction was appropriate in this case (multiple
comparisons to a same control group), leading to the magic significant at 0.05 level
for the three tests.

The difference between “significant” and “not significant” is not itself statistically significant
(Gelman and Stern 2006).

4.1.2.3 Interpreting Significance as Proof of No Effect

Inappropriate null conclusions (there is no effect) based on nonsignificant tests are
not uncommon, even in prestigious journals (e.g., Harcum 1990). It is extremely
surprising that some experimental publications, such as the International Journal of
Psychology, explicitly instruct authors to adopt this improper practice:

Results of statistical tests should be given in the following form: “…results showed an
effect of group, F(2, 21) = 13.74, MSE = 451.98, p < 0.001, but there was no effect of
repeated trials, F(5, 105) = 1.44, MSE= 17.70, and no interaction, F(10, 105) = 1.34,
MSE= 17.70” (International Journal of Psychology, 2014, italics added).

4.1.2.4 The Sizeless Scientists and the Star System

Many publications seem to have been written by sizeless scientists:

Sizeless scientists act as if they believe the size of an effect does not matter. In their hearts
they do care about size, magnitude, oomph. But strangely they do not measure it (Ziliak and
McCloskey 2008, p. x).

The p-value, magnified by the ritual symbols *, **, and *** (Meehl 1978), is used
as an implicit substitute for judgment about the meaningfulness of research results:

Furthermore, even when an author makes no claim as to an effect size underlying a significant
statistic, the reader can hardly avoid making an implicit judgment as to that effect size (Oakes
1986, p. 86).
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We face a paradoxical situation. On the one hand, NHST is often regarded as
an objective criterion of scientificness. On the other hand, it leads to innumer-
able misuses—the misinterpretations of results being the most visible—and
entails publication bias (e.g., Sterling 1959) and considerable distortions in
the designing and monitoring of experiments.

4.2 What About the Researcher’s Point of View?

4.2.1 A Cognitive Filing Cabinet

NHST reporting practices (and their misuses) are undoubtedly reinforced by a natural
cognitive tendency—and also a necessity—to take a position when being published.
It follows that experimental results are in some way arranged in a cognitive filing
cabinet, where significance goes under “there is an effect” and nonsignificance is
improperly filed under “there is no effect” [see the significance hypothesis of Oakes
(1986)]. It is not really a rule of behavior in the sense of Neyman and Pearson or a
decision in the sense of the Bayesian decision-theoretic approach.

4.2.2 It Is the Norm

However, the users’ attitudes are far from being as homogeneous as might be inferred
from the reporting practices. This was revealed by our empirical studies about
the way accustomed users—psychological researchers and professional applied
statisticians—interpret NHST outcomes (Lecoutre et al. 2001, 2003; Poitevineau
and Lecoutre 2001). Most users appear to have a real consciousness of the strangle-
hold of NHST: they use them because “it is the norm.”

When faced to experimental results, only a minority of accustomed users has
a systematically clear-cut attitude. Actually, most NHST users try to qualify
their interpretation in relation to other information.
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4.3 An Official Good Statistical Practice

Changes in reporting experimental results are more and more enforced within guide-
lines and editorial policies. So the International Conference on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for Human Use [ICH],
which brings together the regulatory authorities and pharmaceutical industry of
Europe, Japan, and the USA, has developed guidelines for clinical trials (ICH E9
Expert Working Group 1998).

A Clinical Trial Example
The following example of application will serve as a typical illustration of the

recommended practice. It concerns the inference about a proportion in a prospective
clinical trial (see Lecoutre et al. 1995) and is a direct extension of the example treated
in Chap. 1. The patients under study were post-myocardial infarction subjects treated
with a new drug, a low molecular weight heparin. The trial aimed at assessing the
potential efficacy of this drug as a prophylaxis of an intracardiac left ventricular
thrombosis.

The drug was expected to reduce thrombosis rate. It was considered that 0.70
was the success rate (no thrombosis) below, which the drug would be of no interest
and further development would be abandoned. Consequently, investigators planned
a one-sided binomial test of H0 : ϕ = 0.70 versus H1 : ϕ > 0.70 at the prespecified
significance level α = 0.05 (Type I error probability). H0 is the tested hypothesis and
H1 is the alternative hypothesis, the set of all admissible hypotheses for the one-sided
test.

4.3.1 Guidelined Hypotheses Official Significance Testing

4.3.1.1 Sample Size Determination

The ICH E9 guidelines prescribe to determine an appropriate sample size n:

The number of subjects in a clinical trial should always be large enough to provide a reliable
answer to the questions addressed (ICH E9 Expert Working Group 1998, p. 19).

In our example, the power-based Neyman–Pearson approach is recommended. This
needs to specify a particular value ϕ̃, reflecting a “working” (alternative) hypothesis
Ha. Due to its focus on two particular hypotheses, a tested hypothesis and a working
one, we suggest to call this procedure “Guidelined Hypotheses Official Significance
Testing”.

The investigators retained ϕ̃ = 0.85: the success rate above which the drug would
be really attractive. This was in accordance with the often recommended practice
to base the choice on “a judgment concerning the minimal effect which has clinical
relevance” (ICH E9 Expert Working Group 1998, p. 19). A target value 0.80 of the

http://dx.doi.org/10.1007/978-3-662-44046-9_1
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power of the test when ϕ = 0.85 was specified, that is, a maximum Type II error
probability β = 0.20.

Here, there is no additional (“nuisance”) parameters and the power of the test is
only a function π(ϕ, n, α). The required sample size n = 59 is the smallest integer
n such that π(0.85, n, 0.05) ≥ 0.80. It can be obtained by successive iterations. The
probability of observing a successes is given by the Binomial distribution:

Pr(a |ϕ) = (n
a

)
ϕa(1 − ϕ)n−a .

For n = 59, the binomial test rejects H0 at level 0.05 if the observed number of
success a is greater or equal to 48:

Pr(a ≥ 48 | H0 : ϕ = 0.70) = 0.035 < 0.05 (= α)

while the probability of rejecting H0 if Ha : ϕ = .85 is true is

Pr(a ≥ 48 | Ha : ϕ = 0.85) = 0.834 > 0.80 (= 1 − β)

This determines the critical region of the test: if at least 48 successes are observed,
H0 is rejected, otherwise it is accepted. Note that, due to the discreteness of the
distribution, the actual Type I error rate is only 0.035. Similarly, the actual Type II
error rate is smaller than 0.20 (the actual power is larger than 0.80).

4.3.1.2 Reporting and Interpreting p-values

The Neyman–Pearson-based justification of GHOST should make the use of p-
values irrelevant. So, it should not matter that a = 48 or a = 51 successes would be
observed: in each case, H0 is rejected at 0.05 level and the alternative is accepted.
Nevertheless, the Fisherian practice to report p-values is strongly recommended: for
instance, if a = 48, p = 0.035 and if a = 51, p = 0.003.

When reporting the results of significance tests, precise p-values (e.g., ‘p = 0.034’) should
be reported rather than making exclusive reference to critical values (ICH E9 Expert Working
Group 1998, p. 32).

Moreover, it is suggested that they can be used to make judgments about differences.

The calculation of p-values is sometimes useful either as an aid to evaluating a specific
difference of interest, or as a ‘flagging’ device applied to a large number of safety and
tolerability variables to highlight differences worth further attention (ICH E9 Expert Working
Group 1998, p. 31).

This may be much more problematic, even if it is not stupid to consider that, for a
fixed n, a smaller p-value is more in favor of further development of the drug.
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4.3.1.3 Reporting Effect Size Estimates and Confidence Intervals

In addition to the p-values, estimates of the size of effects and confidence intervals
should also be reported:

it is important to bear in mind the need to provide statistical estimates of the size of treatment
effects together with confidence intervals (in addition to significance tests) (ICH E9 Expert
Working Group 1998, p. 28).

Since it does not depend of n, the observed proportion— f = 0.814 if a = 48 and
f = 0.864 if a = 51—gives another piece of information than the p-value. To be
coherent with the use of the binomial test, we consider the 95 % Clopper–Pearson
interval: [0.691, 0.903] if f = 0.814 and [0.750, 0.940] if f = 0.864. Reporting this
interval should remove the temptation to conclude that the drug is really attractive
(ϕ ≥ 0.85) when f = 0.864 and p < 0.003.

4.3.2 A Hybrid Practice

GHOST is obviously a hybrid practice. Actually, it appears to justify an amalgam
of Fisherian and Neyman–Pearsonian views, in spite of the criticisms against this
hybrid logic. A major objection is that it involves using point null H0 and working Ha
hypotheses: in our example, the investigators are clearly not interested in the precise
values ϕ = 0.70 (H0) and ϕ = 0.85 (Ha). They are concerned with the pre-specified
regions: ϕ ≤ 0.70, 0.70 < ϕ < 0.85, ϕ ≥ 0.85. Nevertheless, GHOST is considered
as “good statistical practice” in many fields.

4.3.2.1 The American Psychological Association Task Force

So the following extracts of the recommendations made by the American Psycho-
logical Association [APA] Task Force on Statistical Inference (Wilkinson 1999) are
in accordance with the ICH guidelines.

Hypothesis tests. It is hard to imagine a situation in which a dichotomous accept–reject
decision is better than reporting an actual p value or, better still, a confidence interval.
Power and sample size. Provide information on sample size and the process that led to
sample size decisions.
Effect sizes. Always provide some effect-size estimate when reporting a p value.
Interval estimates. Interval estimates should be given for any effect sizes involving principal
outcomes.

Similar recommendations have been reiterated in the the 6th edition of the publication
manual of the APA (American Psychological Association 2010, pp. 33–35).
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4.3.2.2 A Notable Exception

The above ICHE9 recommendations concern superiority trials, designed to demon-
strate that one treatment is more effective than another. Were also considered equiv-
alence and noninferiority trials, designed to demonstrate, respectively, that two or
more treatments differ by an amount which is clinically unimportant, and that a
treatment is not clinically inferior to a comparative treatment. In these (less fre-
quent) cases, it was recommended to “normally” base the statistical analysis on the
use of confidence intervals.

The sample size of an equivalence trial or a noninferiority trial […] should normally be based
on the objective of obtaining a confidence interval for the treatment difference that shows
mthat the treatments differ at most by a clinically acceptable difference (ICH E9 Expert
Working Group 1998, p. 20).

This notable exception to the GHOST procedure is valuable, but adds again its
hybridism.

Guidelined Hypotheses Official Significance Testing, recommended by the
ICH E9 guidelines and the APA Task Force report, is both partially techni-
cally redundant and conceptually incoherent. It completes the ritual of Null
Hypothesis Significance Testing by another set of rituals, without supplying
a real statistical thinking. The consequence is that NHST continues to resist
all warnings.
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Chapter 5
The Significance Test Controversy Revisited

Abstract This chapter revisits the significance test controversy in the light of
Jeffreys’ views about the role of statistical inference in experimental investigations.
These views have been clearly expressed in the third edition of his Theory of Probabil-
ity. The relevant passage is quoted and commented. The elementary inference about
the difference between two means is considered, but the conclusions are applicable
to most of the usual situations encountered in experimental data analysis.

Keywords Bayesian interpretation of p-values · Experimental investigations ·
Jeffreys’s views of statistical inference · Killeen’s prep · Pure estimation · Role
of significance tests

5.1 Significance Tests Versus Pure Estimation

Jeffreys (1967, Chap. VII, p. 389)

But what are called significance tests in agricultural experiments seem to me to be very largely
problems of pure estimation. When a set of varieties of a plant are tested for productiveness
or when various treatments are tested, it does not appear to me that the question of presence
or absence of difference comes into consideration at all (italics added).

The relation between estimation and significance tests is at the heart of Jeffreys’
methodology. Implications for experimental data analysis can be stated. So, if we
are interested in comparing two treatment means, a significance test—in Jeffreys’
sense—should not be used “if there is no question whether the difference is zero”
(more generally whether a parameter has a specific value).

5.1.1 The Meehl Paradox

Meehl contrasted the uses of NHST in social sciences and physics and found an
apparent paradox, which he summarized as follows.

In physics, one typically compares the observed numerical value with the theoretically pre-
dicted one, so a significant difference refutes the theory. In social science, the theory being
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too weak to predict a numerical value, the difference examined is that between the observed
value and a null (“chance”) value, so statistical significance speaks for the theory ( Meehl
1990, p. 108).

Due to the logic of NHST, the null hypothesis may virtually always be rejected
with a sufficiently large sample. Consequently, Meehl argued that increasing the
experimental precision leads to a weaker corroboration of a theory in social science
and to a stronger corroboration in physics.

Jeffreys objected in advance that if we are not interested in a particular numerical
value of the parameter—or in other terms “if there is no doubt initially about the
relevance of the parameter”—it is a problem of pure estimation. Consequently, the
following question is asked, of course in Bayesian terms:

If there is nothing to require consideration of some special values of the parameter, what is
the probability distribution of that parameter given the observations? (Jeffreys 1967, p. 388).

Moreover, even when the theory predicts a precise value, as in the laws of physics,
Jeffreys emphasized the need for clearly stated alternative hypotheses, a further
restriction to adopt a rejection rule.

Is it of the slightest use to reject a hypothesis until we have some idea of what to put in its
place? If there is no clearly stated alternative, and the null hypothesis is rejected, we are
simply left without any rule at all, whereas the null hypothesis, though not satisfactory, may
at any rate show some sort of correspondence with the facts (Jeffreys 1967, p. 390).

The Meehl paradox results only from the use of NHST as a decision rule
to reject the null hypothesis in a situation that is in fact a problem of pure
estimation.

5.2 The Null Hypothesis: A Straw Man

Jeffreys (1967, Chap. VII, p. 389)

It is already known that varieties habitually differ and that treatments have different.
effects…(italics added).

It is almost universally recognized that, in experimental research, the usual point null
hypothesis of no effect is known to be false before the data are collected.

• In many experiments, it seems obvious that the different treatments must produce some
difference, however small, in effect. Thus the hypothesis that there is no difference is
unrealistic: The real problem is to obtain estimates of the sizes of the differences (Cochran
and Cox 1957, p. 5).

• …in typical applications, one of the hypotheses—the null hypothesis—is known by all
concerned to be false from the outset (Edwards et al. 1963, p. 214).
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• In many experiments […] it is known that the null hypothesis customarily tested, i.e., that
the treatments produce no effects, is certainly untrue (Yates 1964, p. 320).

• All we know about the world teaches us that the effects of A and B are always different—in
some decimal place—for any A and B. Thus asking ‘Are the effects different?’ is foolish
(Tukey 1991, p. 100).

It follows that the null hypothesis is unrealistic: it is a straw man that NHST
tries to knock down (Carver 1978, p. 380).

5.3 Usual Two-Sided Tests Do Not Tell the Direction

Jeffreys (1967, Chap. VII, p. 389)

. . . and the problem is to decide which [treatment] is the best; that is to put the various
members, as far as possible, in their correct order (italics added).

Most experiments are designed to demonstrate that one treatment is more effective
than another. Let’s call this issue a superiority question, by analogy with the terms
superiority trials used in clinical research.

5.3.1 Two-Sided Verus One-Sided Tests and Their Shortcomings

When comparing two treatment meansμA andμB, the only allowable conclusions of
the conventional two-sided test are either to reject the null hypothesis H0 : μA = μB

or to fail to reject it. Two-sided tests do not tell the direction and consequently cannot
lead to the desired conclusions.

Few experimenters, of whom we are aware, want to conclude “there is a difference” Rather,
they are looking to conclude “the new treatment is better.” Thus, for the most part, there
is a direction of interest in almost any experiment, and saddling an experimenter with a
two-sided test will not lead to the desired conclusions (Casella and Berger 1987, p. 106).

On the other hand, a one-sided test does not allow to conclude that the result is
statistically significant if the sign of the observed effect is opposite to that expected.
Furthermore, it is often suspected that a one-sided test has been used in order to get
significant results more easily.

5.3.2 Jones and Tukey’s Three-Alternative Conclusion Procedure

While recognizing that it should be better to formulate experimental problems in
terms of estimation, with the establishment of confidence intervals (Jones 1955,
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p. 407), Jones and Tukey considered another view to NHST as a three-alternative
conclusion procedure:

(a) act as if μA − μB > 0;

(b) act as if μA − μB < 0;

(c) act as if the sign of μA − μB is indefinite, i.e., is not (yet) determined
(Jones and Tukey 2000, p. 412).

Consequently, they proposed to report the p-value as “the area of the t-distribution
more positive or more negative (but not both)” than the observed value of the t-test
statistic. This procedure avoids the unrealistic formulation of a point null hypothesis.
Consequently, there is no Type I error: the only possibility of error is to conclude in
a direction when the truth is the other direction. To conclude that the direction is not
determined is not an error .

This procedure has not received much attention. A simple reason is that it is usual
to conclude about the direction, even when a two-sided test is performed, typically:

group A is superior to group B, F(1,14) = 5.87, p < .03.

For a superiority question—to demonstrate that one treatment is more effec-
tive than another—the first requirement of an appropriate statistical inference
procedure should be to allow a conclusion about the direction of the effect.

5.4 Determining Sample Size

Jeffreys (1967, Chap. VII, pp. 389–390)

The design of the experiment is such that the order of magnitude of the uncertainty of the
result can be predicted from similar experiments in the past, and especially from uniformity
trials, and has been chosen so that any differences large enough to be interesting would be
expected to be revealed on analysis. The experimenter has already a very good idea of how
large a difference needs to be before it can be considered to be of practical importance; the
design is made so that the uncertainty will not mask such differences.

In the Bayesian framework, questions about sample size can be stated in a natural
way: how big should be the experiment to have a reasonable chance of demonstrat-
ing a given conclusion? This question may be viewed, either as unconditional in that
it requires consideration of all possible values of parameters, and predictive prob-
abilities give a direct answer, or conditional to some particular values of interest,
and power calculations for sample size determination can be reconsidered from a
Bayesian point of view.

Jeffreys was optimistic about the “very good idea” that the experimenter has
about the practical importance of a difference. However, specifying an effect size of
scientific interest is an essential requirement:
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The treatment difference to be detected may be based on a judgment concerning the minimal
effect which has clinical relevance in the management of patients or on a judgment concerning
the anticipated effect of the new treatment, where this is larger (ICH E9 Expert Working
Group 1998, p. 19).

Other approaches, which failed to recognize this requirement, such as the methods
that control the length of the interval estimates of the difference, are not recommend-
able (see Grouin et al. 2007).

In his description of the design of an experiment, Jeffreys gave some legitimacy
to the official GHOST practice for determining sample size described in 4.3.

5.5 Critique of P-values: A Need to Rethink

Jeffreys (1967, Chap. VII, p. 390)
the P integral found from the difference between the mean yields of two varieties gives
correctly the probability on the data that the estimates are in the wrong order, which is what
is required.

There are repeated warnings about the misinterpretations of p-values that can result
from the relation between significance and sample size. Typical examples are the
following.

• A given degree of significance—say p = 0.01—is not the same evidence whether
the sample size is small or large.

• In some situations, the sample size is so large that even a trivial difference can turn
to be statistically significant.

• A large p-value is not an evidence in support of the absence of difference, since it
may result from inadequate sample size.

5.5.1 Jeffreys’ Answer to the Problem of Pure Estimation

For the Jeffreys prior, the posterior—fiducial Bayesian— distribution (see Sect. 8.1.2)
of the difference δ = μA − μB, given the data, is a generalized, or scaled,
t-distribution. It is centered on the mean observed difference and has a scale fac-
tor equal to the denominator of the usual t-test statistic.

This demonstrates the technical link with the NHST procedure and with the usual
confidence interval, and this is Jeffreys’ answer to the problem of pure estimation:

the t rule gives the complete posterior probability distribution of a quantity to be estimated
from the data, provided again that there is no doubt initially about its relevance; and the
integral gives the probability that it is more or less than some assigned value (Jeffreys
1967, p. 387).

http://dx.doi.org/10.1007/978-3-662-44046-9_4
http://dx.doi.org/10.1007/978-3-662-44046-9_8
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5.5.2 The Bayesian Interpretation of the P-value

As a particular case, we get the posterior probability that δ is more or less than zero.
The probability that δ has the opposite sign of the observed difference is exactly
the halved p-value of the usual two-sided t-test. This is in close agreement with the
above Jones and Tukey procedure. The advantages are that the Jeffreys solution does
not resort to statistical hypotheses and can be expressed in the natural language of
Bayesian probability: if, say, the observed difference is positive, there is a p/2 poste-
rior probability of a negative difference and a (1 − p/2) complementary probability
of a positive difference.

5.5.3 Student’s Conception

“Student” is the pseudonym used by William S. Gosset, a chemist at Guinness
brewery. It must be emphasized that, in his original article on what was called “the
Student’s t-test” (the notation t was introduced by Fisher), he had the same con-
ception as Jeffreys. He considered a pharmaceutical example designed to compare
the “additional hour’s sleep” gained by the use of two soporifics [1 and 2]. Clearly,
the procedure aimed at obtaining a judgment about the sign of the effect (the word
hypothesis did not appear in the paper), and this judgment was expressed in terms
of Bayesian probabilities.

First let us see what is the probability that 1 will on the average give increase of sleep; i.e.,
what is the chance that the mean of the population of which these experiments are a sample
is positive. …we find ….8873 [in our notations 1− p/2] or the odds are 0.887 to 0.113 [p/2]
that the mean is positive (italics added). …the probability is .9985 or the odds are about 666
to 1 that 2 is the better soporific (Student 1908, pp. 20–21).

At least, it must be acknowledged that “a somewhat loosely defined conception of
inverse probability seems to underlie the argument” (Pearson 1939, p. 223). Student,
as Jeffreys, was primarily interested in an inference conditional on the data (see
Zabell 2008, p. 2). This is also revealed by the words “unique sample” in the title of
his later paper:

Tables for estimating the probability that the mean of a unique sample of observations lies
between −∞ and any given distance of the mean of the population from which the sample
is drawn (Student 1917, italics added).

5.5.4 Jaynes’ Bayesian Test

Jaynes, another physicist, argued on behalf of using Bayesian inference in a per-
spective close to that adopted by Jeffreys. For him the Bayesian test for comparing
the means b and a (in his notations) of two normal distributions was based on the
Jeffreys prior and consisted in computing the posterior probability that b > a:
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If the question at issue is whether b > a [b and a being the two means], the way to answer
it is to calculate the probability that b > a, conditional on the available data (Jaynes 1976,
p. 182).

Moreover, he firmly argued against the use of a preassigned significance level and
he considered that the difference between this Bayesian test and the Fisher test of
significance using the p-value was in this case

only a verbal disagreement as to whether we should use the word “probability” or “signifi-
cance” (Jaynes 1976, p. 185).

Jaynes also advocated that “the best confidence interval for any location or scale
parameter” was the Bayesian posterior probability interval.

5.5.5 The Methodological Shortcomings of NHST Clearly Pointed
Out

It must be stressed that the Bayesian interpretation does not depend on sample size. It
becomes apparent that, in itself , the p-value says nothing about the magnitude of δ.
A given p-value gives the same evidence in favor of a positive difference (nothing
else), whatever the sample size is.

• A small p-value (even “highly significant”) only establishes that δ has the same sign as
the observed difference.

• A “nonsignificant” outcome is hardly worth anything, as exemplified by the Bayesian
interpretation Pr(δ < 0) = Pr(δ > 0) = 1/2 of the perfectly nonsignificant test obtained
in the case of a null observed difference.

5.5.6 The Bayesian Interpretation of the Two-Sided P-value

The “counternull value” (Rosenthal and Rubin 1994) is the alternative effect size
that results in the observed p-value when it is taken as the null hypothesis. It follows
that the posterior probability that the difference δ exceeds this counternull value
is also equal to p/2. Consequently, the posterior probability that δ lies outside the
interval bounded by 0 (the null hypothesis value) and twice the observed difference
(the counternull value) is exactly equal to the two-sided p-value.

This alternative interpretation is more informative, since it gives also an upper
bound for δ. With a very high experimental precision (large sample size and/or small
variance), a significant outcome can lead to the conclusion of a difference of small
magnitude in the direction of the observed difference.
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5.5.7 Killeen’s Prep

Killeen recommended to report the probability of replication prep of an experimental
result, which he defined as the probability of finding in a replication (same sample
size) of an experiment

an effect of the same sign as that found in the original experiment (Killeen 2005, p. 346).

The probability prep is conditional on the data in hand (and not on unknown quantities)
and goes to the unknown future observations (the replication). Its justification is
exactly the same as the Jeffreys justification of the one-sided p-value, but instead of
the posterior distribution about the parameter δ, the posterior predictive distribution
about the statistic is considered (Lecoutre et al. 2010). Consequently, prep points out
the methodological shortcomings of NHST in exactly the same way as the Jeffreys
Bayesian interpretation of the one-sided p-value. The analog of the two-sided p-
value is the probability of finding in a replication a difference lying inside the interval
bounded by 0 and the counternull value.

Following Killeen’s paper, the Association for Psychological Science recom-
mended that articles submitted to Psychological Science and their other journals
report prep. It was also included in the list of statistical abbreviations and sym-
bols of the sixth edition of the publication manuel of the American Psychological
Association (2010, p. 120). It follows that for the first time a Bayesian probability
was routinely reported in some psychological journals. Unfortunately, prep was not
really taken into consideration: it was simply used in place of or in addition to the
p-value, with very little impact on the way the authors interpreted their data.

Killeen’s prep was the object of criticism and the Association for Psycho-
logical Science abandoned its recommendation. However, most critics misunder-
stood its meanings (and its limitations) and the attempts to reinterpret prep as
a frequentist probability revealed misconceptions about predictive probabilities.
So, Iverson et al. (2009) confused the conditional Bayesian predictive probability
of replication of an observed direction of effect with the frequentist joint probabil-
ity that two future experiments will return the same sign (see Lecoutre and Killeen
2010).

A further discussion about predictive inference and its advantages over parametric
inference can be found in Geisser (1993).

Most of those, frequentists as well as Bayesians, who discuss the misuses and
misinterpretations of p-values seem to ignore Jeffreys’ lesson that

several of the P integrals have a definite place in the present theory, in problems of
pure estimation (Jeffreys 1967, p. 387, italics added: not in significance tests!).

The consequence is the existence of technical and conceptual links between
fiducial Bayesian and frequentist procedures: the Bayesian interpretation of
p-values and confidence levels.
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5.6 Decision and Estimation

Jeffreys (1967, Chap. VII, p. 390)

If the probability that they are misplaced is under 0.05 we may fairly trust the decision.

The significant/nonsignificant dichotomy inevitably suggests using NHST as the
binary decision rule: “there is an effect/there is no effect.”

5.6.1 The Decision-Making Viewpoint: A Very Controversial Issue

This common use is undoubtedly encouraged by the decision-making viewpoint
often advocated in statistical literature. This is explicit within the Neyman-Pearson
approach, but one could also consider that

the methods associated with [Fisher’s] test of significance constitute […] a decision- or
risk-evaluation calculus (Bakan 1966, pp. 435–436).

There was a change of emphasis toward decision making in the middle of the twenti-
eth century. Today, many Bayesians concentrate on the decision-theoretic principles.
So, in his book The Bayesian Choice, Robert argued that

the overall purpose of most inferential studies is to provide the statistician (or a client) with
a decision (Robert 2007, p. 51).

Without dismissing the merits of this approach in some problems, it must be recog-
nized that this is a very controversial issue.

• I have been concerned for a number of years with the tendency of decision theory to
attempt the conquest of all statistics. This concern has been founded, in large part, upon
my belief that science does not live by decisions alone—that its main support is a different
sort of inference. […] I believe that conclusions are even more important to science than
decisions (Tukey 1960, p. 423).

• [NHST] most basic error lies in mistaking the aim of a scientific investigation to be a
decision, rather than a cognitive evaluation of propositions (Rozeboom 1960, p. 428).

• Scientific investigation uses statistical methods in an iteration in which controlled data
gathering and data analysis alternate. […] In problems of scientific inference we would
usually, were it possible, like the data “to speak for themselves” (Box and Tiao 1973, p. 2).

• [in many epidemiological studies and randomized controlled trials] the issue tends more
to be whether the direction of an effect has been reasonably firmly established and whether
the magnitude of any effect is such as to make it of public health or clinical importance
(Cox 2001, p. 1469).

• In many cases published medical research requires no firm decision: it contributes incre-
mentally to an existing body of knowledge (Sterne and Smith 2001, p. 229).
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5.6.2 Jeffreys’ Bayesian Methodology

Scientists cannot find in the binary decision rule—“there is an effect/there is no
effect”—all the answers to the questions of primary interest in experimental investi-
gations:

this decision-making process is antithetical to the information accumulation process of sci-
entific inference (Morrison and Henkel 1970, p. 309).

Jeffreys’ Bayesian methodology recognizes the primacy of estimation problems in
experimental data analysis and lets the data to speak for themselves. This does not
preclude to express clear-cut conclusions in a publication, given that they are never
definitely accepted and that they can always be challenged in the light of new results.

It is a reasonable strategy to “decide” first about the direction of the difference
and then to estimate the magnitude of this difference. This is again in accor-
dance with the recommended GHOST practice of reporting a p-value, an effect
size estimate and a confidence interval. The basic difference is that the frequen-
tist inference involves three distinct procedures, while in the Bayesian approach
there is just one coherent procedure—computing the posterior distribution—
which answers the different questions.

5.7 The Role of Previous Information and the Sample Size

Jeffreys (1967, Chap. VII, p. 390)

It is hardly correct in such a case to say that previous information is not used; on the contrary,
previous information relevant to the orders of magnitude to be compared has determined
the whole design of the experiment. What is not used is previous information about the
differences between the actual effects sought, usually for the very adequate reason that there
is none; …

Jeffreys argued that the information used for designing the experiment should not
be used twice. One reason is that previous information pertains only to the orders of
magnitude and not to the actual difference. This seems to be a reasonable position.

In experimental investigations, previous information is generally used more or less
explicitly for selecting the sample size with the aim to find an acceptable compromise
between the chance of finding “a significant difference” and the cost resulting from
a large sample size. With regard to this practice, Meehl’s affirmation concerning
superiority questions,

In most psychological research, improved power of a statistical design leads to a prior
probability approaching 1/2 of finding a significant difference in the theoretically predicted
direction (Meehl 1967, p. 103),

is not paradoxical, but merely contingent.
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The Bayesian interpretation of p-values makes clear that a sample may be
“too big” for economic or ethical reasons but cannot be too big for statistical
analysis.

5.8 The Limited Role of Significance Problems

It is noteworthy that Jeffreys’ views about the role of statistical tests in experimen-
tal research has never been seriously considered. For instance, in the very detailed
review of Jeffreys’ book, published by Robert et al. (2009), the concerned section
is acknowledged as “the most famous part of the chapter.” However, the authors
only quoted Jeffreys’ criticism about the frequentist interpretation of the p-value.
They insisted on his emphasis on the need for alternative hypotheses, in relation to
their own conviction that testing hypotheses is the central issue, but they omitted to
mention Jeffreys’ conception that this issue is only relevant when the theory predicts
a precise value. There was no more mention of Jeffreys’ views about experimental
research in the comments made by eminent statisticians that followed this review.

Jeffreys (1967, Chap. VII, p. 390)

If they are genuine questions of significance in agricultural experiments it seems to me that
they must concern only the higher interactions.

It could be of interest to use a Bayesian test (see Sect. 3.3) for higher interactions. In
particular, when the null hypothesis of no interaction would be retained, this could be
used to estimate the error term. This practice is sometimes recommended. However,
to be really justifiable, it should imply that, when the null hypothesis is rejected, the
alternative hypothesis of interaction would be considered as meaningful. But this is
rarely the case. Higher interactions are usually very difficult to interpret and actually
are rarely interpreted in experimental publications, even when they are significant.

Actually, Jeffreys’ views applied to any situation where the objective is to learn
from experimental or observational data without precise predictions associated
with a sharp model.

5.9 Other Issues

5.9.1 Noninferiority and Equivalence Questions

We have focused on superiority questions, but Jeffreys’ Bayesian methodology is ap-
propriate for answering other typical questions raised by experimental data analysis.

http://dx.doi.org/10.1007/978-3-662-44046-9_3
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• Noninferiority questions: to demonstrate that one treatment is not substantially
worse than another;

• Equivalence questions: to demonstrate that the difference between two treatments
is not large in either positive or negative direction.

These questions are also problems of pure estimation: we are not interested in a
particular numerical value of the parameter. It should also be acknowledged that
demonstrating a good fit for a theoretical model should generally be treated as an
equivalence problem:

With regard to a goodness-of-fit test to answer whether certain ratios have given exact values,
‘we know a priori this is not true; no model can completely capture all possible genetical
mechanisms’ (Matloff 1991, p. 1247).

5.9.2 Stopping Rules and the Likelihood Principle

A recurrent criticism made by Bayesian against p-values, and more generally fre-
quentist procedures, is that they do not conform to the likelihood principle. So,
suppose that in the clinical trial example of inference about a proportion (Sect. 4.3)
two successes and eight failures have been observed. This can correspond to different
sampling models, for instance:

• the sample size, fixed in advance, was n = 10;

• the investigators had planned to stop the trial after eight failures were observed;

• the sample size was n = 59, as in the real trial, but the investigators had planned an interim
analysis to stop the trial if more than seven failures were observed after the inclusion of
10 patients (and to continue elsewhere).

In the three cases, the likelihood is proportional to

ϕ2(1 − ϕ)8

The strong likelihood principle implies that the inference should be based only on
the information “two successes and eight failures have been observed” and should
be identical for the three models (e.g., Robert 2007, p. 16). An extremist Bayesian
position is that stopping rules are irrelevant. For instance, Kruschke (2011) rejected
the use of p-values because different values are obtained in each of the above cases:

It is wrong to speak of “the” p-value for a set of data, because any set of data has many
different p-values depending on the intent of the experimenter (Kruschke 2011, p. 305).

However, this can be seriously questioned:

Information without knowledge concerning its production does not support probabilities
(Fraser 1980, p. 58).

http://dx.doi.org/10.1007/978-3-662-44046-9_4
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Actually, many investigators feel that the design possibility of early stopping cannot
be ignored, since it may induce a bias on the inference that must be explicitly cor-
rected. A reasonable point of view is that the experimental design, incorporating the
stopping rule, is prior to the sampling information and that the information on the
design is one part of the evidence.

A comprehensive discussion can be found in Box and Tiao (1973), pp. 45–46.
de Cristofaro (2004, 2006) persuasively argued that the Bayes’ formula must inte-
grate the design information, in particular the sampling rule, as well as the initial
evidence prior to designing (see also Bunouf and Lecoutre 2006, 2010). This is in
accordance with the Jeffreys conception of the prior, which is explicitly conditional
to “the set of propositions accepted throughout an investigation” (see Sect. 3.3).

Of course, it would be illusory to claim that Jeffreys’ methodology for learning
from experience and data is a completely objective and coherent methodology, a
not attainable goal (Berger 2004). Any widely accepted inferential method can-
not avoid more or less arbitrary conventions; in this sense, Jeffreys’ Bayesian
approach provides, if not objective methods, at least reference methods appro-
priate for situations involving scientific reporting.
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Chapter 6
Reporting Effect Sizes: The New Star System

Abstract This chapter demonstrates the shortcomings of the widespread practice
that consists of simply reporting effect size [ES] indicators in addition to NSHT
(without interval estimates). It also questions the consequences of restricting the use
of ES to standardized measures, as commonly done in psychology and related fields.

Keywords Effect sizes indicators · Phi coefficient · Sample and population effect
sizes · Shortcomings of standardized effect sizes · Simple effect sizes · The new star
system

6.1 What Is an Effect Size?

Consider the following basic situation. A study is designed to evaluate the effect of
a treatment by comparing the mean of a treated group of individuals to the mean of
a control group. A natural measure of the treatment effect is the simple difference
μt −μc between the two population means. However, it is frequently claimed that the
“natural effect size” parameter is the standardized difference (μt −μc)/σ , where the
parameter σ is the within group standard deviation. It is common to call it Cohen’s d,
following Cohen’s book on Statistical Power Analysis for the Behavioral Sciences.
In this book, ES is used to mean

the degree to which the phenomenon is present in the population,
or
the degree to which the null hypothesis is false (Cohen 1977, pp. 9–10).

In the current context, the first definition is undoubtedly preferable to the second one,
which focuses on NHST.
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6.1.1 A Definition Restricted to Standardized Measures

Cohen restricted the use of ES to metric-free, and hence standardized, indicators, in
part for the (bad) reason that they facilitate power computations:

a necessity demanded by the practical requirements of table making (Cohen 1977, p. 20).

Nowadays, many methodologists considered “effect size” as a statistical term
whose definition and usage is restricted to standardized measures, either of
population or sample effects, for instance:

• An effect-size measure is a standardized index (Olejnik and Algina 2003, p. 434).

• Most effect sizes are standardized values. That is, similar to a z-score or a stanine,
standardized effect sizes are scale-free (Robey 2004, p. 311).

• An effect size is simply an objective and (usually) standardized measure of the
magnitude of observed effect (Field and Miles 2010, p. 56).

6.2 Abuses and Misuses Continue

Simply reporting a standardized effect-size indicator, in addition to significance
tests, is often considered good statistical practice, even when no interval estimate is
reported.

6.2.1 A Psychological Example

The following extract from an article published in a major psychology journal will
serve us to illustrate the fact that this practice does not actually overcome the abuses
of null hypothesis significance tests.

Subjects in the two conditions performed significantly better than expected by chance:
respectively t (9) = 2.56, p = 0.031, d = 0.81 and t (9) = 2.66, p = 0.026, d = 0.84. Fur-
thermore, there was no significant difference between the two conditions: t (9) = −0.237,
p = 0.82, d = 0.075 [to preserve anonymity, the phrasing and the numerical results have
been slightly modified].

The design is comparable to the Student pharmaceutical example considered in
Sect. 5.5. n = 10 subjects were submitted to each of the two conditions. Each sub-
ject’s performance was measured by the number of correct responses out of 50.
The (exact) observed mean percentages of correct responses in the two conditions
were 59.8 % (29.9) and 60.6 % (30.3), respectively. The standard deviations were not

http://dx.doi.org/10.1007/978-3-662-44046-9_5


6.2 Abuses and Misuses Continue 65

reported. For inferential purposes were reported the t-test statistic, with its two-tailed
p-value, and an ES indicator, ‘Cohen’s d’, but no interval estimate. The sample size
was not justified. For subsequent computations, the t values will be used as exact
numbers.

Within each condition, the mean percentage is compared to 50 % (“chance”).
In this case, ‘Cohen’s d’ is the ratio of the observed differences from chance,
59.8 − 50 = +9.8 % and 60.6 − 50 = +10.6 %, to the standard deviation of
the ten individual respective percentages of correct responses. For the comparison
of the two conditions, ‘Cohen’s d’ is the ratio of the mean difference, 59.8 − 60.6 =
−0.8 %, to the standard deviation of the ten individual differences between per-
centages. In the three cases, ‘Cohen’s d’ is related to the t-test statistic by the for-
mula

‘Cohen’s d’ = t

√
1

n
, for instance − 0.075 = −0.237

√
1

10
.

6.2.2 An ES Indicator that Does Not Tell the Direction

The absolute value of the standardized difference was reported. This is the most
usual practice, in accordance with Cohen’s recommendation to interpret the differ-
ence “without sign…for the nondirectional (two-tailed) test” (Cohen 1977, p. 67).
However, this does not convey the information given by the negative t value.

6.2.3 Disregarding the Robust Beauty of Simple Effect Sizes

The use of a standardized ES indicator appears to disregard what (Baguley 2009,
p. 610) called “the robust beauty of simple effect sizes.” This is revealed by the fact
that most authors who advocate this use frequently refer to the APA task force (see
Sect. 4.3.2), “always present effect sizes for primary outcomes,” but fail to mention
the sentence that followed this recommendation:

If the units of measurement are meaningful on a practical level (e.g., number of cigarettes
smoked per day), then we usually prefer an unstandardized measure (regression coefficient
or mean difference) to a standardized measure (r or d) (Wilkinson & APA Task Force on
Statistical Inference 1999, p. 599, italics added).

So, the simple differences are here the meaningful, easily interpretable, effect size.
Dividing a difference by a standard deviation cannot magically reveal its real-world
implications (Jaccard and Guilamo-Ramos 2002), and

being so disinterested in our variables that we do not care about their units can hardly be
desirable (Tukey 1969, p. 89)

http://dx.doi.org/10.1007/978-3-662-44046-9_4
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Standardization would be a miraculous panacea to compare and combine (meta
analysis) the results of multiple studies.

The fact that the measure is standardized just means that we can compare effect sizes
across different studies that have measured different variables, or have used different
scales of measurement (Field and Miles 2010, p. 56).

However, this is highly questionable and it can be argued that

we will generally be better of using simple, unstandardised effect size metrics (Bag-
uley 2010, p. 122)

6.2.4 Heuristic Benchmarks: A New Star System

Cohen (1977) suggested a “common conventional frame of reference” for judging
the magnitude of a standardized difference: the difference is small, medium, or large
if it is 0.20, 0.50, or 0.80 respectively. He cautiously warned that it was

an operation fraught with many dangers …recommended for use only when no better basis
for estimating the ES index is available (Cohen 1977, pp. 12 and 25).

Nevertheless, these heuristic benchmarks are more and more often used without
consideration of the context. The star system is improved: so, our illustrative article
included a table labeled with symbols, added to the significance stars, to indicate the
range of values:

1d > 0.20 2d > 0.50 3d > 0.80.

However, the reference to small, medium, and large differences was only implicit.

6.2.5 Observed ES Indicators Can Be Misleading

The significant “large” observed values d = 0.81 and d = 0.84 suggest that the study
demonstrated a large departure from chance in each condition. This is contradicted
by the 95 % interval estimates for the corresponding population standardized signed
differences (see Sect. 8.2): [+0.07,+1.51] and [+0.10,+1.55].

On the other hand, the “small” observed value d = 0.075, added to the ritual
rhetoric of NHST—“there was no significant difference”—strongly suggests that the
results demonstrated a small difference, if not no difference, between conditions.
Moreover, the conclusion retained in the final discussion section was: “performance
was identical for the two conditions.” This conclusion is not justified, as clearly shown

http://dx.doi.org/10.1007/978-3-662-44046-9_8
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by the 95 % interval estimates: respectively [−0.69,+0.55] and [−8.4 %,+6.8 %]
for the population standardized and unstandardized signed differences.

6.2.6 A Good Adaptive Practice Is Not a Good Statistical Practice

Reporting ES indicators could prevent researchers from unjustified conclusions in the
conflicting cases where a significant result is associated with a small observed value
or a nonsignificant result is associated with a large observed value. It is revealing that
the present experiment was designed to avoid such conflict. Indeed, n = 10 appears
to be about the smallest integer such that an observed standardized difference of 0.80
is significant at 0.05 level. It can be verified that d = 0.80 is significant for n ≥ 9: for
n = 9, t (8) = 2.400, p = 0.043 (this does not depend on the standard deviation).

Hence, for n = 10, it is known in advance that all d larger than 0.80 will be
significant, and moreover that all d smaller than 0.50 will be nonsignificant. Choosing
a too small, ad hoc sample size, is a typical illustration of a good adaptive practice
that protects the authors from the risk of conflicting cases, while taking into account
conventionally accepted target ES. It is certainly not a good statistical practice.

6.2.7 The Need for a More Appropriate Sample Size

This could explain the small, inadequate, sample sizes used in most studies published
by psychology journals, constantly denounced, following Cohen (1962). Consider
here the power-based Neyman-Pearson approach (see Sect. 4.3.1) with α = 0.05
and β = 0.20 (power = 0.80). If it had been applied with the respective target ES,
0.20, 0.50, and 0.80, the following sample sizes had been used: n = 199, n = 34
and n = 15. Sample size determination with “canned” (Lenth 2001) effect sizes has
evident shortcomings:

Thus, asking for a small, medium, or large standardized effect size is just a fancy way of
asking for a large, medium, or small sample size, respectively. If only a standardized effect
is sought without regard for how this relates to an absolute effect, the sample size calculation
is just a pretense (Lenth 2001, p. 191).

However, it must be recognized that a sample size of about 200 subjects would
have been a more appropriate choice for demonstrating a small difference between
the two conditions. So, with n = 200, for the same observed means and standard
deviations, the 95 % interval estimates would be, respectively [−0.21,+0.06] and
[−2.3 %,+0.7 %] for the population standardized and unstandardized differences.

The use of canned—small, medium, large—effect sizes can be seriously mis-
leading. It causes important distortions in the designing of experiments and in
the interpretations of statistical findings.

http://dx.doi.org/10.1007/978-3-662-44046-9_4
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6.2.8 The Shortcomings of the Phi Coefficient

As another example, consider an epidemiological study designed to determine
whether women who had been examined using X-ray fluoroscopy during treatment
for tuberculosis had a higher rate of breast cancer than those who had not been
examined using X-ray fluoroscopy (Rothman and Greenland 1998). There were
respectively 28,010 and 19,017 person-years at risk in the treatment and placebo
groups. The corresponding observed cases of breast cancer were 41 and 15, hence
the two rates f1 = 41/28, 010 = 0.00146 and f2 = 15/19, 017 = 0.00079. The
observed difference f1 − f2 = 0.00067 can only be interpreted by reference to
the placebo rate 0.00079, hence the relative difference (or relative risk increase)
( f1 − f2)/ f 2 = ( f1/ f2) − 1 = 0.856: the observed rate of breast cancer is
85.6 % higher in the treatment group. Equivalently, the ratio (or relative risk) is
f1/ f2 = 1.818.

It is often recommended to use a standardized ES such as phi for assessing the
relationship between two dichotomous variables. The φ coefficient is related to the
χ2 test statistic by the formula (note the analogy with the relation between ‘Cohen’s
d’ and t):

φ =
√
χ2

n
,where n is the total sample size.

We have hereφ = 0.0096, or a proportion of variance explained r2 = φ2 = 0.00009,
which does not reflect the real effect of the treatment.

Moreover, as for the psychological example, it is not sufficient to only report an
observed ES indicator, and an interval estimate is needed. So, assuming a Poisson
model, the 95 % interval estimate for the population relative risk τ (Lecoutre and
Derzko 2009), based on the Jeffreys Bayesian approach (see Sect. 7.2) is [1.05, 3.42].
It can be concluded that women examined using X-ray fluoroscopyin have a higher
rate of breast cancer (τ > 1), which is not surprising, due to the large sample size.
Nevertheless, for rare events, the interval estimate shows that this sample size is not
sufficient for assessing the magnitude of the effect.

The shortcomings of the phi coefficient reinforces the contention that standard-
ized ES should be used with the utmost caution for interpreting the magnitude
of effects.

http://dx.doi.org/10.1007/978-3-662-44046-9_7
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6.3 When Things Get Worse

6.3.1 A Lot of Choices for a Standardized Difference

6.3.1.1 What Denominator for ‘Cohen’s d’?

In our illustrative example, the denominator of the reported ‘Cohen’s d’ was the
usual sample standard deviation, corrected for degrees of freedom. This definition
seems to be the more frequently used one (e.g., Smithson 2003; Kirk 2007; Howell
2010). It is an accordance with Cohen’s definition (Cohen 1977, pp. 66–67) of the
standardized sample mean difference for two independent groups. Expressed as a
function of the t statistic, it is

t

√
1

n1
+ 1

n2
and for the one sample case t

√
1

n
.

However, some authors considered an uncorrected standard deviation (for instance,
Rosnow and Rosenthal 2009, p. 8), which gives the alternative formulae

t
n1 + n2√

n1n2(n1 + n2 − 2)
and t

√
1

n − 1
.

6.3.1.2 Descriptive Statistic or Point Estimate?

Another practice could be to report a “good estimate” of the population parameter.
It is often argued that this should be an unbiased estimate. While the unstandardized
difference meets this requirement, it is not the case of the standardized difference.
Furthermore, at least two formulae are available, the exact one, given by the mean
of the noncentral t-distribution and involving the Gamma function, and a frequently
used very accurate approximation. For instance, in the one sample case, they are
respectively

√
2

df

Γ (df/2)

Γ ((df − 1)/2)
t

√
1

n
and

(
1 − 3

4df − 1

)
t

√
1

n
.

In our example, the reported value for the first condition would be 0.74—a two-star
value—instead of the three-star value 0.81.
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6.3.1.3 What Standardizer for a Difference Between Means?

Consider, for instance, the observed difference between two means in a
between-subject design (independent groups). Several alternatives have been pro-
posed for the standardizer , in particular:

• the pooled standard deviation of the two compared groups: ‘Cohen’s d’;
• the standard deviation of one of the compared groups, especially if it is a control

group: ‘Glass’s 	’ (Glass 1976);
• the pooled standard deviation of all the groups in the design: ‘Hedges’s g’ (Hedges

1981).

They correspond to two different assumptions about the equality of the population
standard deviations. Note that several generalizations of Cohen’s d have been devel-
oped in the case of unequal standard deviations (heteroscedasticity).

Moreover, in our example of a within-subject design (two repeated measures),
two kinds of standardizers have been proposed:

• the standard deviation of the individual differences (e.g., Gibbons et al. 1993);
• a standard deviation obtained by treating the design as a between-subject one (e.g.,

Bird 2004).

6.3.2 A Plethora of ES Indicators

6.3.2.1 Expressing the Standardized Difference as a Correlation or as a
Proportion of Variance

In the case of two independent groups, one can compute the Pearson product moment
coefficient correlation r between the dependent variable and the predictor variable
with, for instance, the value 0 for one group and 1 for the other. The observed r can
be expressed as a function of the t statistic:

r = t√
t2 + df

.

A similar approach is to consider ES indicators intended to estimate the propor-
tion of variance in the dependent variable that can be explained by the independent
variable. They appear in the context of analysis of variance (ANOVA). The partial
eta-squared, calculated by common statistical software such as SPSS, is a popular
indicator, frequently reported, for instance:

There was a statistically significant main effect for time, F(1, 83) = 14.83, p < 0.001,
partial eta squared = 0.15.

The observed value 0.15 is the ratio of the between sum of squares to the total sum
of squares. Consequently, it is related to the F-test (with df1 and df2 degrees of
freedom) by the formula
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observed partial eta-squared = F

F + df2/df1 .

In this case (df1 = 1), it is equal to r2, since F = t2.
It is often argued that these correlational and proportion of variance accounted

for approaches are easy to interpret. Again, it can be questioned whether a further,
somewhat artificial, transformation of the mean difference would reveal its real-world
implications.

6.3.2.2 Plenty of ES Indicators and Further Difficulties

While our review is not exhaustive, plenty of standardized ES indicators can be
associated with a simple difference between means by combining the different alter-
natives. For more complex effects in general ANOVA designs (without speaking of
multivariate analyses), the number of indicators explodes exponentially.

Further issues arise. So, it is well known that standardized ES estimates are
affected by the research design and by methodological artifacts, such as the dif-
ference of reliability and the range of sampled values, which requires appropriate
corrections (e.g., Hunter and Schmidt 2004):

Anything that influences a sample SD but not the population SD has the potential to distort
standardized effect size as measure of the population effect (Baguley 2010, p. 123).

It would be unrealistic to expect that statistical users could understand the
subtleties of all ES indicators. The plethora of definitions has entailed endless
debates about “what is the best ES indicator to use” that obscure the real
problems. This is a considerable source of misuses and misinterpretations.

6.3.3 Don’t Confuse a Statistic with a Parameter

6.3.3.1 The Need for Appropriate Definitions and Notations

Many recent methodological papers fail to explicitly distinguish between statistics
(sample ES) and parameters (population ES), by lack of appropriate definitions and
notations. For instance, Rosnow and Rosenthal (2009, p. 8) wrote “the null hypothesis
is M1 − M2 = 0”, after having defined M1 and M2 as statistics. Furthermore, in the
same sentence, “Cohen’s d” referred both to the parameter—“a 95 % CI for Cohen’s
d”—and to the statistic—“the variance of Cohen’s d” (Rosnow and Rosenthal 2009,
p. 10). This is at least misleading, if not incomprehensible.
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Note that Cohen (1977) explicitly distinguished between the population
standardized mean difference denoted by d (p. 20), and the “standardized mean dif-
ference for the sample” denoted by ds (p. 66).

6.3.3.2 One or Two Parameters?

Many of the recent discussions about the proportion of variance accounted for in
ANOVA are also very confusing. It is usual to distinguish between two main “ES
estimates”, eta-squared and omega-squared, commonly denoted by η2 and ω2. So,
for a one-way ANOVA, Howell (2010) defined them as two statistics (pp. 345–347):

η2 = SStreatment

SStotal
= 0.447 and ω2 = SStreatment − (k − 1)M Serror

SStotal − M Serror
= 0.393.

He interpreted them as the estimates of two (not defined) parameters, also denoted
by the letters η2 and ω2:

The estimate of ω2 in this case (0.393) is noticeably less than the estimate of η2 = 0.447.

So, he suggested the existence of two distinct parameters. However, the sequel of the
sentence—“reflecting the fact that the latter is more biased”—may alert the reader
that the two statistics are in reality two different estimates of the same parameter.

The “old” papers about the magnitude of effects were much more explicit. For
instance, Fleiss (1969) clearly distinguished between:

• the parameter ω2 = θ2/(σ 2 + θ2), the proportion of the total variance σ 2 + θ2

attributable to experimental effect;
• its two estimates ω̂2 and η̂2.

He justified his preference for ω̂2 (recommended by Hays 1963) by the fact that it is
obtained as the ratio of unbiased estimates of the numerator and of the denominator
(however, this is not an unbiased estimate, and even not a good estimate since it takes
negative values when F < 1). This does not erase the confusion, since Fleiss used
the notation ω2 for the parameter when the more usual notation, following Pearson,
is η2. Moreover, while Steiger and Fouladi (1997) used η2, Steiger (2004) used ω2.

6.3.3.3 A Crazy Parameter

Fidler (2001, pp. 592–593) added to the confusion by computing, not only a
confidence interval for the parameter η2, but also a distinct confidence interval forω2.
These two 95 % confidence intervals are respectively [0, 0.5346] and [−0.14, 0.4543]
(note the curious lower limit −0.14 for a positive parameter). Their parameter ω2 is
not defined, but it can be deduced that it is linked to η2 by the same relation as the
one that links the two estimates ω̂2 and η̂2. So this “new” parameter has no rational
basis and cannot be interpreted.
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6.3.3.4 When the Proponents Disagree

Smithson (2001, p. 619 and 2003, p. 44) and Steiger (2004, p. 171) analyzed the same
illustrative data from a two-way 2 × 7 ANOVA, with 4 observations per cell. They
considered the partial eta-squared, but they gave it

• two different notations, η2 and ω2 respectively,
• two different names, “a squared partial correlation” and “the proportion of the

variance remaining that is explained by the effect,”
• two different 90 % confidence intervals [0.0093, 0.3455] and [0.0082, 0.3160] for

the interaction effect.

There is no doubt that they considered the same parameter. The different confidence
intervals resulted from the fact that Smithson used a formula that is inappropriate
in the case of a fixed effects ANOVA. We have found mention of this unfortunate
disagreement only in the SAS/STAT user’s guide (SAS Institute Inc., SAS (2010),
p. 3059).

Many users tend to confuse the sample ES indicator with the population ES.
This is obviously another source of misuses, probably encouraged by the com-
mon expression “effect size estimate” and by the lack of appropriate definitions
and notations.

6.4 Two Lessons

6.4.1 The New Star System

The current focus on the magnitude of effects is without doubt welcome. However,
recent reviews of ES reporting practices in educational and psychological journals
have emphasized the lack of substantive discussions and interpretations of effect size
(e.g., McMillan and Foley 2011). This can be viewed as a consequence of the undue
emphasis on standardized ES and heuristic benchmarks. A new star system has been
created that jeopardizes the results and conclusions of experimental research:

if people interpreted effect sizes with the same rigidity that 0.05 has been used in statistical
testing, we would merely be being stupid in another metric (Thompson 2001, pp. 82–83).
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6.4.2 Should Standardized Effect Sizes Ever be Used?

In a lucid paper, (Baguley 2009, p. 612) bluntly asked this question. It is beyond the
scope of this book to discuss the pro and con arguments, but we fully agree that

careless and routine application of standardization in psychology (without any awareness of
the potential pitfalls) is dangerous (Baguley 2010, p. 123)

It is not sufficient to only report an observed (standardized or unstandardized)
ES indicator, ignoring the variability of this indicator. This does not answer
questions about the magnitude of the population effect, and consequently does
not avoid erroneous inferences. In particular, in the case of a nonsignificant
result, this practice seems to support the conclusion of no effect, while there is
even no evidence of a small effect. It is indispensable to include a real estimation
of the magnitude of the population effect, taking explicitly into account the
sampling variability, in particular, but not only an interval estimate.
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Chapter 7
Reporting Confidence Intervals: A Paradoxical
Situation

Abstract This chapter reviews the different views and interpretations of interval
estimates. It discusses their methodological implications—what is the right use of
interval estimates? The usual confidence intervals are compared with the so-called
“exact” or “correct” confidence intervals for ANOVA effect sizes. While the former
can receive both frequentist and Bayesian justifications and interpretations, the latter
have logical and methodological inconsistencies that demonstrate the shortcomings
of the uncritical use of the Neyman-Pearson approach. In conclusion, we have to ask:
Why isn’t everyone a Bayesian?

Keywords Bayesian credible interval · Equivalence trials · Fisher’s fiducial
inference · Frequentist confidence interval · The inconsistencies of confidence
intervals for effect sizes · The naive Bayesian interpretation of confidence intervals

7.1 Three Views of Interval Estimates

The frequentist theory of statistical estimation was essentially developed by Neyman.
So, usual confidence intervals pertain to the Neyman and Pearson conception, and
their interpretation is at odds with the alternative Jeffreys Bayesian and Fisher fiducial
approaches.

7.1.1 The Bayesian Approach (Laplace, Jeffreys)

Historically, one of the first interval estimates was proposed by Laplace in 1812. He
estimated the mass of Saturn, compared to the mass of the sun taken as unity, given
(imperfect) astronomical data. In modern terms, he derived the Bayesian posterior
distribution for the mass, using a uniform prior. He presented the results as follows:

il y a onze mille à parier contre un, que l’erreur de ce résultat [la masse de Saturne est égale
à la 3512e partie de celle du soleil] n’est pas à un centième de sa valeur (it is a bet of 11 000
against 1 that the error of this result [the mass of Saturn is equal to 1/3512 of the mass of
the sun] is not 1/100 of its value) (Laplace 1840, p. 99).
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In other terms, there is a posterior probability 0.99991 (1-1/11,000) that the unknown
mass of Saturn, estimated to be 1/3512 of the mass of the sun, is within 1 % of this
point estimate.

For Jeffreys the estimate of a parameter is the “complete posterior probability
distribution” of this parameter, given the data (see Chap. 5). It may be inferred that
he was opposed to the use of a point estimate. However, he did not really develop
the use of interval estimates.

7.1.1.1 Evaluating the Probability of Specified Regions

Rather, Jeffreys proposed to use the posterior distribution to obtain the probability
that the parameter is more or less than some assigned value. Consider, for instance
our clinical trial example (Sect. 4.3) involving the inference about a proportion. Using
the Jeffreys prior for the Binomial sampling model (see Lecoutre 2008), if 51 out 59
successes have been observed, it could be stated that there are respective posterior
probabilities:

• 0.002 that the drug would be of no interest (ϕ < 0.70)

• 0.606 that the drug would be would be really attractive (ϕ > 0.85)

• 0.392 that ϕ would be in the intermediate region (0.70 < ϕ < 0.85).

If we want a term to qualify these probabilities and distinct them from frequentist
probabilities, we can use words such as chance or guarantee.

These results can be interpreted as probabilities of (composite) hypotheses, given
data, which can satisfy the researcher’s Ego (Gigerenzer 1993). However, following
Jeffreys, it is unnecessary to regard the statistical analysis of these data as a problem
of hypotheses testing.

7.1.1.2 Bayesian Credible Intervals

It may also be of interest to summarize the posterior distribution by reporting an
interval estimate, associated with a given probability, denoted by γ (or by 1−α as is
customary for frequentist confidence intervals). In the Bayesian framework, such an
interval is usually termed a credible (or credibility) interval. For instance, here the
Jeffreys 95 % credible intervals for ϕ is [0.760, 0.934]. It is an equal-tailed interval:
the posterior probabilities that ϕ < 0.760 and ϕ > 0.934 are both equal to 0.025. Of
course, a one-tailed interval could be preferred.

Its flexibility makes the Bayesian approach particularly suitable for estimation
purpose. We can get an estimate (credible) interval associated with a given
probability. We can as well compute the probabilities of specified regions of
interest.

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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7.1.2 Fisher’ Fiducial Inference

Fishers’s fiducial inference is an attempt to conciliate his reluctance to use prior
probabilities with his motivation “for making correct statements of probability about
the real world” in “the absence of knowledge a priori.”

7.1.2.1 An Attempt to Make the Bayesian Omelet Without Breaking
the Bayesian Eggs

The fiducial argument gives a posterior distribution about the parameter, without
having to specify a priori:

the fiducial argument uses the observations only to change the logical status of the parameter
from one in which nothing is known of it, and no probability statement about it can be made,
to the status of a random variable having a well-defined distribution (Fisher 1990a, p. 54).

The interpretation is explicitly in terms of Bayesian probabilities:

The concept of probability involved is entirely identical with the classical probability of the
early writers, such as Bayes (Fisher 1990a, p. 54).

7.1.2.2 Fiducial Interval and Null Hypotheses

For Fisher, the 95 % (for instance) fiducial interval was linked with the test of sig-
nificance. Indeed, he alternatively viewed it as a simultaneous statement about all
null hypotheses concerning the parameter. So, in the case of the inference about a
mean μ,

variation of the unknown parameter, μ, generates a continuum of hypotheses each of which
might be regarded as a null hypothesis (Fisher 1990b, p. 192).

The continuum of hypotheses is divided into two portions by the data. The values of
the parameter that “are not contradicted by the data”, at the 5 % (two-sided) level of
significance, constitutes the 95 % fiducial interval for μ. Inverting a statistical test
to construct a frequentist confidence interval is a very common technique. However,
Fisher did not give the resulting interval a frequentist interpretation, but a Bayesian
one:

the probability of μ actually lying in the outer zone is only 5 %; any other probability could
equally have been chosen (Fisher 1990b, p. 192).

7.1.2.3 Fisher’s Biggest Blunder or a Big Hit?

Fiducial inference is admittedly considered by most modern statisticians to be
“Fisher’s one great failure” (Zabell 1992).
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The expressions “fiducial probability” and “fiducial argument” are Fisher’s. Nobody knows
just what they mean, because Fisher repudiated his most explicit, but definitely faulty, defi-
nition and ultimately replaced it with only a few examples (Savage 1976, p. 466).

However the story is not ended, as exemplified by the attempts to generalize the
fiducial argument (e.g., Hannig 2009).

Maybe Fisher’s biggest blunder will become a big hit in the 21st century (Efron
1998, p. 107).

7.1.3 Neyman’s Frequentist Confidence Interval

The term confidence was introduced by Neyman, who developed “a theory of statis-
tical estimation based on the classical [frequentist] theory of probability” (Neyman
1937). Reviewing the previous attempts to solve the problem of estimation, he pre-
sented the Bayesian approach as a “theoretically perfect solution”, but that “may
be applied in practice only in quite exceptional cases.” His main argument was that
prior probabilities are usually unknown.

Even if the parameters to be estimated, […] could be considered as random variables, the
elementary probability law a priori […] is usually unknown, and hence the [Bayes] formula
cannot be used because of the lack of the necessary data (Neyman 1937, p. 344).

Neyman (1937) also explicitly rejected the Jeffreys approach as being “not justifiable
on the ground of the theory of probability adopted in this paper.”

7.1.3.1 The Meaning of the Confidence Interval Needs to be Clarified

Later, Neyman (1977, pp. 116–119) took great pains to clarify the meaning of the
confidence intervals. He defined the lower and upper confidence limits (or bounds)
for an unknown parameter ϑ as two functions of the observables, denoted by Y1(X)
and Y2(X), hence the confidence interval [CI]: I (X) = [Y1(X),Y2(X)]. All these
quantities are random variables and are considered as tools of inductive behavior .

Being functions of the random variable X , the two confidence bounds and the confidence
interval I (X) will be random variables also (Neyman 1977, p. 116).

As for the Neyman–Pearson hypothesis test, the frequentist justification of a CI
involves long run frequency properties. The assertions about the unknown number
ϑ must be
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FREQUENTLY correct, and this irrespective of the value that ϑ may possess (Neyman 1977,
p. 117).

Given the “confidence coefficient” α, “acceptably close to unity,” this requirement
can be formalized as

P{Y1(X) ≤ ϑ ≤ Y2(X) |ϑ} ≡ α,

where the conditioning on ϑ , unfortunately dropped in most of the recent presenta-
tions, is made explicit. Note that the confidence coefficient was denoted by α, and
not 1 − α.

7.1.3.2 The Difficulties of the Frequentist Interpretation

Neyman was clearly aware of the difficulties of the frequentist interpretation and of
the need to“anticipate certain misunderstandings.” So, he carefully explained this
interpretation. He made explicit that, in the above formula, “the probability of the
two confidence bounds ‘bracketing’ the true value of ϑ ,” which is today named the
coverage probability,

• is written not in terms of the observed x but in terms of the observable X (italics added),

• is true whatever may be the value of the unknown ϑ (Neyman 1977, pp. 117–118).

Moreover, he stressed the fact that there was no frequentist probability assigned to a
single CI computed from a particular sample.

However, if one substitutes […] the observed x in the place of the observable X , the result
would be absurd. In fact, the numerical results of the substitution may well be

(4) P{Y1(x) ≤ ϑ ≤ Y2(x) |ϑ} = P{1 ≤ 5 ≤ 3 | 5}) = 0.95

or alternatively,

(5) P{1 ≤ 2 ≤ 3 | 2}) = 0.95

It is essential to be clear that both (4) and (5) are wrong. The probability in the left hand
side of (4) has the value zero (and thus not 0.95), and that in the left hand side of (5) is unity,
neither of any interest (Neyman 1977, pp. 118–119, italics added).

It would be optimistic to think that Neyman’s efforts to explain their correct
interpretation could reduce the misunderstandings about frequentist confidence
intervals. The reason is that most users think they understand them, albeit they
interpret them in Bayesian terms.
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7.2 What Is a Good Interval Estimate?

7.2.1 Conventional Frequentist Properties

The most common approach to the evaluation of an interval estimate for a parameter
ϑ is to see whether it yields confidence (or credible) limits that have good frequentist
coverage properties. However, the basic identity

P{Y1(X) ≤ ϑ ≤ Y2(X) |ϑ} ≡ α

cannot be always satisfied, i.e., “without introducing certain artificialities” (Neyman
1977, pp. 118). This occurs in particular when the observable variables X are so-
called discrete.

In cases of this kind, rather than require the exact equality to α …one can require ‘at least
equal’ or ‘approximately equal’ (Neyman 1977, pp. 118).

For discrete data, it results that there are a plethora of solutions. Some of them,
ambiguously called “exact”, require a coverage probability ‘at least equal’ to the
nominal level, hence too large (conservative). The others are approximate and are
generally preferred for experimental data analysis reporting (e.g., Agresti and Coull
1998). Of course, the coverage probability should be close to the nominal level, even
for small sample size or for extreme parameter values.

7.2.2 The Fatal Disadvantage of “Shortest Intervals”

The length of the interval must be “in a sense, just as small as possible” (Neyman
1977, pp. 117). However, this requirement can result in intervals that are not invariant
under transformation. So many Bayesians recommend to consider the highest pos-
terior density (HPD) credible interval. For such an interval, which can be in fact an
union of disjoint intervals (if the distribution is not unimodal), every point included
has higher posterior probability density than every point excluded. The aim is to get
the shortest possible interval. However, except for a symmetric distribution, each of
the two one-sided probabilities of a 100 (1 − α) % HPD interval is different from
α/2, a property generally not desirable in experimental data analysis. Moreover, such
an interval is not invariant under transformation (except for a linear transformation),
which can be considered with Agresti and Min (2005, p. 3) as “a fatal disadvantage.”
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7.2.3 One-Sided Probabilities Are Needed

Actually, Neyman acknowledged the fact that, in practical cases, questions of interest
are frequently one-sided.

The application of the regions of acceptance having the above properties is found useful in
problems, which may be called those of one-sided estimation. In frequent practical cases,
we are interested only in one limit which the value of the estimated parameter cannot exceed
in one or in the other direction (Neyman 1937, pp. 374).

It follows that, even if a two-tailed interval is retained, it is essential to consider, not
only the coverage probability, but also the frequentist probabilities that both the lower
and upper limit exceed the parameter value. In the Bayesian approach, one-tailed or
equal two-tailed credible intervals should be privileged.

7.2.4 The Jeffreys Credible Interval is a Great Frequentist
Procedure

The Jeffreys credible intervals for the Binomial proportionϕ (Sect. 7.1.1) has remark-
able frequentist properties. Its coverage probability is very close to the nominal level,
even for small-size samples. Moreover, it can be favorably compared to most fre-
quentist confidence intervals (Brown et al. 2001). Similar results have been obtained
for other discrete sampling models (e.g., Lecoutre and Charron 2000; Berger 2004;
Agresti and Min 2005; Cai 2005; Lecoutre and ElQasyr 2008; Lecoutre and Derzko
2009; Lecoutre et al. 2010).

This demonstrates that the Jeffreys credible interval

is actually a great frequentist confidence procedure (Berger 2004, p. 6).

7.3 Neyman-Pearson’s Criterion Questioned

Some criterion of optimality is required to get the best interval estimate. Neyman
(1977) acknowledged the existence of “delicate conceptual points” in the definition
of optimality. Many frequentist CIs are constructed by inverting a statistical test. We
have questioned in Sect. 3.5 the Neyman-Pearson “optimal” tests of composite null
hypothesis. The CIs based on these tests are also scientifically inappropriate. This is
the case of CIs for ANOVA effect sizes that have been extensively developed in the
recent years.

http://dx.doi.org/10.1007/978-3-662-44046-9_3
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7.3.1 The Inconsistencies of Noncentral F Based Confidence
Intervals for ANOVA Effect Sizes

It will be sufficient, with no loss of generality, to consider the basic case of the
inference about a difference between two means. All results also apply to a contrast
between means. A common procedure for constructing a CI for an ANOVA effect
size parameter consists in defining this interval as the set of values for the parameter
of interest that cannot be rejected by the data, using the ANOVA F-test (Venables
1975). The precise technical developments are not necessary. It will be sufficient
to know that in the standardized case—generally the only one considered by the
proponents of this procedure—the derivation involves the noncentrality parameter
of a noncentral F-distribution. Hence this test and its associated CI will be called
hereafter “noncentral F based”: in short NCF-test and NCF-CI.

7.3.1.1 A Scientifically Inappropriate Procedure

As a matter of fact the NCF-test, as well as many other closely related tests (includ-
ing the case of unstandardized ES), has always been considered as a scientifically
inappropriate procedure and rejected by applied statisticians: see Sect. 3.5. Neverthe-
less, in spite of repeated warnings, it has been recurrently “rediscovered” in various
contexts. So-called “exact confidence” (e.g., Steiger 2004) or “correct confidence”
(e.g., Smithson 2001) intervals, derived from the NCF-test, can be theoretically eas-
ily computed for a variety of ANOVA ES parameters, mathematically equivalent.
This includes, in particular, the partial eta-squared (see Sect. 6.3.2), but also the
Cohen f (or its square, the “signal-to-noise ratio”, f 2) and its variants such as the
“root-mean-square standardized effect” (see Steiger and Fouladi 1997).

These NCF-CIs are offered by their proponents as “good statistical practice.”
Moreover, they are generally presented as a seemingly natural generalization of the
usual confidence interval [U-CI] for a standardized difference between two means
(involving the noncentral t-distribution). This is not the case, and NCF-CIs have
logical and methodological inconsistencies that support the contention that their use
should be discouraged.

7.3.1.2 An Enlightening Comparison of the U-CI and NCF-CI

For a comparison between two means (and more generally for a contrast between
means), the above-mentioned ANOVA ES parameters are all equivalent to the
absolute value of the standardized difference (contrast). Consider again the basic
situation of our psychological example (Sect. 6.2), which corresponds also to the
Student pharmaceutical example (Sect. 5.5). In such case, the U-CI, either for the
unstandardized (preferably) or standardized signed difference (see Sects. 8.1.2 and
8.2 respectively), seems to be the solution of choice. Nevertheless, NCF-CIs have

http://dx.doi.org/10.1007/978-3-662-44046-9_3
http://dx.doi.org/10.1007/978-3-662-44046-9_6
http://dx.doi.org/10.1007/978-3-662-44046-9_6
http://dx.doi.org/10.1007/978-3-662-44046-9_5
http://dx.doi.org/10.1007/978-3-662-44046-9_8
http://dx.doi.org/10.1007/978-3-662-44046-9_8
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Table 7.1 95 % U-CI for the signed standardized difference and 95 % NCF-CI for its absolute
value, associated with different t values

Data 95 % confidence interval

t ‘Cohen’s d’ U-CI NCF-CI

−0.010 −0.0032 [−0.623,+0.617] [0, 0]
+0.033 +0.0104 [−0.610,+0.630] [0, 0.069]
−0.237 −0.0750 [−0.694,+0.548] [0, 0.637]
−2.500 −0.791 [−1.491,−0.058] [0, 1.491]
+4.062 +1.285 [+0.415,+2.118] [0.414, 2.118]

been proposed as a suitable alternative routine procedure, even in the case of one
degree of freedom effects (e.g., Fidler and Thompson 2001; Smithson 2003; Steiger
2004). Consider the 95 % U-CI for the signed standardized difference and the 95 %
NCF-CI for its absolute value, associated with different t values and their corre-
sponding observed ‘Cohen’s d’ (Table 7.1).

7.3.1.3 Troublesome Properties

Fidler and Thompson (2001) gave the following characterization of interval con-
struction

CIs are typically computed by adding and subtracting from a given parameter estimate the
standard error (SE) of that estimate times some α or α/2 centile of a relevant test distribution
(Fidler and Thompson 2001, p. 579).

So, the U-CI for Cohen’s d is approximately centered around the observed difference
and its width, which reflects the precision of estimate, is approximately constant. This
looks reasonable. On the contrary, the width of the NCF-CI dramatically decreases
for small observed value, as if the precision of estimate was superior in this case.
This does not look justified.

7.3.1.4 The Shortcomings of NCF-CI Lower Limits

Clearly, a lower limit for an unsigned ANOVA ES is not suitable for demonstrating
“largeness.” When t = +4.062, as in the Student example, significant at two-sided
level 0.05, the 95 % NCF-CI rightly excludes zero, but gives in itself very poor
information: it means that the population difference can be larger than 0.414 in
either a positive or negative direction. Moreover, when t = −2.50, also significant
at two-sided level 0.05, the 95 % NCF-CI surprisingly includes zero. Of course, the
95 % U-CI [−1.491,−0.058] rightly takes into account the significant outcome.
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7.3.1.5 NCF-CIs Lead to Unacceptable Inferences

Demonstrating the “smallness” of an ANOVA effect is an important methodological
issue, as illustrated by our psychological example. Typical relevant situations are to
demonstrate the equivalence of drugs, to show that an interaction effect is negligible,
or again to demonstrate a “good-enough” fit for a theoretical model. An upper limit
for an unsigned ANOVA ES is suitable for these purposes. Unfortunately, it is well
known that it can lead to unacceptable inferences.

So, in our example, when t = +0.033 the 95 % NCF-CI [0,+0.069] corresponds
to the interval [−0.069,+0.069] for the signed difference, which is considerably
shorter than the U-CI [−0.610,+0.630]. The NCF-CI is even empty for smaller
observed standardized differences In particular, it is empty for a null difference
whatever the sample size is.

Another undesirable property is that the NCF-CI upper limit may vary in a non-
monotonous way when the sample size increases. So, when the observed standardized
difference is 0.10, the upper limit of the 95 % NCF-CI is for instance 0 (n ≤ 10),
0.0759 (n = 11), 0.1915 (n = 30), 0.1502 (n = 105). So, for the same observed
means, it can be concluded, for example, that the population difference is smaller
than 0.15 in absolute value with n ≤ 13 or n ≥ 106, but not with 14 ≤ n ≤ 105.

The defenders of NCF-CIs argue that, with a suitable minimum sample size, the
practical risk of unacceptable inferences can be reduced. However, it is unfortunate
that a “bad planned” experiment could result in a seemingly well-supported con-
clusion and that the procedure may always be under suspicion. Most experimental
investigations involve a complex design in which a NCF-CI could be used for instance
to demonstrate the negligibility of an interaction effect. Unfortunately, the design is
generally planned for other purposes, e.g., demonstrating large main effects, and
consequently has not the required sample size for demonstrating a small effect.

7.3.2 The Official Procedure for Demonstrating Equivalence

In the context of equivalence clinical trials, the need to specify a smallness margin
of scientific relevance, not a conventional benchmark, is stressed. This margin must
be defined according to the relative magnitude of the differences.

An equivalence margin should be specified in the protocol; this margin is the largest difference
that can be judged as being clinically acceptable and should be smaller than differences
observed in superiority trials of the active comparator.…The choice of equivalence margins
should be justified clinically (ICH E9 Expert Working Group 1998, p. 18).

The officially recommended procedure is to use the U-CI, or equivalently two simul-
taneous one-sided tests—the so-called Two One-Sided Tests (TOST) procedure (e.g.,
Schuirmann 1987):

For equivalence trials, two-sided confidence intervals should be used. Equivalence is inferred
when the entire confidence interval falls within the equivalence margins. Operationally, this



7.3 Neyman-Pearson’s Criterion Questioned 87

is equivalent to the method of using two simultaneous one-sided tests to test the composite
null hypothesis that the treatment difference is outside the equivalence margins versus the
alternative hypothesis that the treatment difference is within the margins (ICH E9 Expert
Working Group 1998, p. 18).

7.3.2.1 How to Get 100 (1 − α) % Confidence from a 100 (1 − 2α) % U-CI

Following Westlake (1981), many authors (e.g., Deheuvels 1984; Schuirmann 1987;
Rogers et al. 1993; Steiger 2004) have argued that the appropriate CI for demon-
strating equivalence is the 100 (1 − 2α) %, not 100 (1 − α) %, U-CI. So with the
traditional 0.05 criterion, the recommended procedure is to compute the 90 % U-CI.
The rationale is as follows: if the 100 (1 − 2α) % interval is symmetrized (hence
enlarged) around zero by considering only the largest in absolute value of the two
limits, the resulting interval is a (conservative) 100 (1 − α) % CI.

Of course, the frequentist interpretation of the confidence level requires that the
procedure be decided independently of the data. If this has not been explicitly done
before experiment, it will be suspected that the above procedure has been used in
order to get a shorter interval. This looks like the endless one-sided vs two-sided tests
debates.

The “optimal” noncentral F (NCF)-based test and confidence interval proce-
dures have always been discarded by biostatisticans. By definition, the p-value
of the recommended procedure (the TOST) is the larger of the two p-values
associated with each of the two one-sided tests, while the p-value of the NCF-
test is the absolute value of their difference: a strange definition that explains
its undesirable properties.

7.4 Isn’t Everyone a Bayesian?

7.4.1 The Ambivalence of Statistical Instructors

Treating the data as random even after observation is so strange that the “correct”
frequentist interpretation does not make sense for most users, who spontaneously
use the Bayesian interpretation of CIs. This heretic interpretation is encouraged by
the ambivalence of most frequentist statistical instructors. So, in his book Statistics
with Confidence, Smithson (2005, pp. 160–161) characterized a 95 % interval for a
population mean as follows:

…so our interval is …Pr(101.4 < μ < 104.6) = 0.95.
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This is obviously wrong, unless we abandon the frequentist requirement that μ is a
fixed quantity.

In another popular textbook that claims the goal of “understanding statistics,” we
find the ambiguous definition:

A confidence interval is a range of values that probably contains the population value (Pagano
1997, p. 309).

It is hard to imagine that the reader can understand that “a range of values” is a
random variable and does not refer to the particular limits computed from the data
in hand.

7.4.1.1 A Frequentist Should Avoid Colloquialisms

Moreover, many authors claim that a CI can be characterized by a statement such as:

• she or he is 95 % confident that the true percentage vote for a political candidate lies
somewhere between 38 % and 48 % (Smithson 2003, p. 1);

• the confidence interval has determined with 90 % confidence that the main effect accounts
for between 26.1 and 56.5 % of the variance in the dependent variable (Steiger 2004,
pp. 169–170);

• the researchers […] can be 90 % confident that the true population mean is in an interval
from 1.17 to 3.23 (Gravetter and Wallnau 2009, p. 341).

The frequentist interpretation advocated by these authors assumes that these collo-
quialisms are true whatever the value of the parameter may be. Consequently, the
conditioning on the parameter cannot be dropped, which leads to the absurd (in
Neyman’s words) statements (see Sect. 7.1.3):

• if μ = 2, we can be 90 % confident that μ is in an interval from 1.17 to 3.23;

• if μ = 4, we can be 90 % confident that μ is in an interval from 1.17 to 3.23;

Actually, these colloquialisms give to understand that the confidence level may be a
measure of uncertainty after the data have been seen, which it may not be.

7.4.1.2 A Typical Confusion Between Frequentist and Bayesian Probabilities

In a methodological paper, Rosnow and Rosenthal (1996) considered the example of
an observed difference between two means +0.266, associated with a p-value 0.23.
They defined the counternull value as twice the observed difference (see Sect. 5.5)
and they interpreted the specific null-counternull interval [0,+0.532] as “a 77 %
confidence interval”, that is as a 100 (1 − p)% CI. This cannot be a frequentist
procedure, because the confidence level 77 % has been determined by the data in
hand. Clearly, 0.77 is here a data dependent probability, which needs a Bayesian
approach to be correctly interpreted.

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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Virtually all users interpret frequentist confidence intervals in a Bayesian fash-
ion. What a paradoxical situation: Isn’t Everyone a Bayesian?
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Chapter 8
Basic Fiducial Bayesian Procedures
for Inference About Means

Abstract This chapter presents the basic fiducial Bayesian procedures for a contrast
between means, which is an issue of particular importance for experimental data
analysis. The presentation is essentially non-technical. Focus is on the computational
and methodological aspects.

Keywords A Bayesian alternative to frequentist procedures ·Basic fiducial Bayesian
procedures · Bayesian interpretation of p-values and confidence levels · Inference
about a difference between means · LePAC statistical inference package · Specific
inference

We have extensively developed routine Bayesian procedures for inference about
means. They are included in the LePAC package and are applicable to general exper-
imental designs (in particular, repeated measures), with equal or unequal cell sizes,
with univariate (ANOVA) or multivariate (MANOVA) data, and covariables. Some
relevant references are: Lecoutre (1981, 1984, 2006), Rouanet and Lecoutre (1983).
Rouanet (1996) and Roux and Rouanet (2004) also contain useful information, but
in our opinion with too much emphasis on standardized ES.

In this chapter we consider the basic fiducial Bayesian procedures for a contrast
between means, which is an issue of particular importance for experimental data
analysis. The presentation is essentially non-technical. Within this perspective, we
give only intuitive justifications and we focus on the computational and methodolog-
ical aspects. Formal justifications can be found in Lecoutre (1996, 1984). A similar
presentation for inferences about proportions is available elsewhere (Lecoutre 2008).

We consider here only the simplest and fastest ways to use the LePAC package.
Actually, all fB procedures can be performed with very little effort. In most cases it
is sufficient to know the values of an appropriate descriptive statistic (a contrast or an
ANOVA ES) and of a valid test statistic (Student’s t or F ratio). These values can be
computed from usual statistical packages, or again obtained from a publication,which
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92 8 Basic Fiducial Bayesian Procedures for Inference About Means

allows to reanalyze data with fB procedures. Of course, in order to get accurate results,
it is important to enter “exact”, or at least sufficiently accurate, numerical values.

8.1 Fiducial Bayesian Methods for an Unstandardized Contrast

8.1.1 The Student Pharmaceutical Example

Consider again the Student pharmaceutical example mentioned in Sect. 5.5. Given,
for each of the n = 10 patients the two “additional hour’s sleep” gained by the use of
two soporifics [1, 2], Student illustrated his method for comparing the two treatment
means.

8.1.1.1 A Bayesian Answer

The terms in which the analysis was reported demonstrate the similarity between the
Student and Jeffreys Bayesian conceptions, pointed out in Sect. 5.5:

But I take it the real point of the authors that 2 is better than 1. This we must test by making
a new series, substracting 1 from 2. The mean value of this series is +1.58 while the S.D. is
1.17 [the uncorrected standard deviation], the mean value being +1.35 times the S.D. From
the table the probability is 0.9985 or the odds are about 666 to 1 that 2 is the better soporific.
The low value of the S.D. is probably due to the different drugs reacting similarly on the
same patient, so that there is correlation between the results (Student 1908, p. 21, italics
added).

The artifice of the null hypothesis was completely avoided in this presentation, which
involved only the hypothesis of interest, “the real point of the authors that 2 is better
than 1.” Student’s table provided a direct answer—the Bayesian probability 0.9985—
to the right question: “What is the probability that 2 is better than 1?” Note that the
value 0.9985, obtained by interpolation, was remarkably accurate, the exact value
being 0.99858…

Student introduced the standardized mean, +1.58/1.17 = +1.35 (he used the
uncorrected S.D. 1.17) as an intermediate value for his table. However, it must be
emphasized that he did not comment about it; rather he interpreted the standard
deviation as reflecting a high correlation between the two measures. Actually, the
Pearson correlation coefficient was r = +0.795.

8.1.2 Specific Inference

Student’s analysis is a typical example of specific inference about a contrast between
means (see Lecoutre 2006; Rouanet and Lecoutre 1983). The basic data is for each of
the n = 10 patients the difference between the two “additional hour’s sleep gained by

http://dx.doi.org/10.1007/978-3-662-44046-9_5
http://dx.doi.org/10.1007/978-3-662-44046-9_5
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Table 8.1 Basic and relevant data for the Student pharmaceutical example

Patient 1 2 3 4 5 6 7 8 9 10 Mean S.D.

1 +0.7 −1.6 −0.2 −1.2 −0.1 +3.4 +3.7 +0.8 0 +2.0 +0.75 1.70

2 +1.9 +0.8 +1.1 +0.1 −0.1 +4.4 +5.5 +1.6 +4.6 +3.4 +2.33 1.90

Individual
difference
(2–1)

+1.2 +2.4 +1.3 +1.3 0 +1.0 +1.8 +0.8 +4.6 +1.4 +1.58 1.17

the use of hyoscyamine hydobromide [an hypnotic],” the hour’s sleep being measured
without drug and after treatment with either [1] “dextro hyoscyamine hydobromide”
or [2] “laevo hyoscyamine hydobromide” (note that they already are derived data).

8.1.2.1 The Relevant Data

The derived relevant data is obtained “by making a new series, substracting 1 from 2.”
They consist of the following ten individual differences of differences (in hours)
(Table 8.1).

We can apply to the relevant data the elementary Bayesian inference about a
Normal mean, with only two parameters, the population mean difference δ and the
standard deviation σ . These data are summarized by the observed (unstandardized)
difference dobs = +1.58 (do not confuse dobs with Cohen’s d) and the (corrected)
standard deviation sobs = 1.23. Of course, the difference +1.58 must be reported
to the gains of each soporific, respectively, +0.75 and +2.33, and these gains can
only be interpreted by reference to the baseline sleep duration without soporific. The
observed value of the usual t test statistic for the inference about a Normal mean
is tobs = +1.58/(1.23/

√
10 = +4.06 (9 df). For further generalization, this can be

written as

tobs = dobs

bsobs
with here b = 1/

√
10.

8.1.2.2 The Fiducial Bayesian Distribution

Assuming the Jeffreys prior (see Sect. 3.3), we get the posterior—or fiducial Bayesian
[fB] distribution of δ. This is a generalized (or scaled) t-distribution (which must
not be confused with the noncentral t-distribution, familiar to power analysts). It
is centered on dobs = +1.58 and has a scale factor e = sobs/

√
n = 0.39. The

distribution has the same degrees of freedom q = 9 as the t-test. This is written as
δ | data ∼ dobs +e tq , or again δ | data ∼ tq (dobs, e2) by analogy with the Normal distribution.

This distribution can be easily obtained in LePAC: see Fig. 8.1.

http://dx.doi.org/10.1007/978-3-662-44046-9_3
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Run LePAC, click on the icon and enter the appropriate values for dobs, n,
sobs and q, as in Fig. 8.1. Then click on the distribution to get new windows
in which probability statements about this distribution can be interactively
computed. Either the limits associated with a fixed probability (or guarantee)
or the probability associated with one or two fixed limits can be obtained.

Remarks

• The fB distributions of the standard deviation σ and of the standardized difference
δ/σ are also obtained.

• The notation d for the raw difference can be changed in the Option menu.

The scale factor e is the denominator of t-test statistic, that is,

e = dobs

tobs
(assuming dobs �= 0).

The fiducial Bayesian distribution for a difference, and more generally for
a contrast, between means can be directly derived from tobs:

δ | data ∼ tq(dobs, e2),where e = bsobs = dobs

tobs
(dobs �= 0).

This result brings to the fore the fundamental property of the t-test statistic of

being an estimate of the experimental accuracy, conditionally on the observed
value dobs. More precisely, (dobs/tobs)

2 estimates the sampling error variance
of the difference.

8.2 Fiducial Bayesian Methods for a Standardized Contrast

In Chap. 6 we argued against routine application of standardization (Sect. 6.4), How-
ever, an inference about a standardized contrast may be of interest in some cases.

8.2.1 A Conceptually Straightforward Generalization

For deriving and computing an interval estimate for a standardized difference (or
contrast) δ/σ (‘Cohen’s d’), the traditional frequentist procedure involves the non-

http://dx.doi.org/10.1007/978-3-662-44046-9_6
http://dx.doi.org/10.1007/978-3-662-44046-9_6
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Fig. 8.1 Fiducial Bayesian distribution of δ for the student example computed by LePAC
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central t-distribution familiar to power analysts. One of its preeminent conceptual
difficulties is the lack of explicit formula. Although the considerable advances in
computing techniques are supposed to render the task easy, they do not solve the
conceptual difficulties.

This is all the more deceptive in that, when the number of degrees of freedom
is large enough, the confidence limits are given by the percent points of a Normal
distribution, as for the simple difference. The fB distribution is (approximately) a
Normal distribution, centered on dobs/sobs, with scale factor b = (dobs/sobs)/tobs.
The exact solution is again a conceptually straightforward, only technically more
complex, generalization. The distribution, which was considered (with no name) by
Fisher (1990c, pp. 126–127) in the fiducial framework, was called Lambda-prime
in Lecoutre (1999). It is an asymmetric distribution, the asymmetry being more
pronounced when tobs increases. The distribution has the same degrees of freedom
df = 9 as the t-test.

The fiducial Bayesian distribution for a standardized difference, and more
generally for a standardized contrast, between means can be directly derived
from tobs. This is written by analogy with the Normal distribution as

δ
σ

| data ∼ Λ’
q (

dobs
sobs
, b2), or in the standard form δ

σ
| data ∼ bΛ’

q (tobs),

where b =
dobs
sobs
tobs

(dobs �= 0).

Here again, the Jeffreys’ Bayesian credible, fiducial, and usual frequentist confi-
dence intervals all coincide, and the distribution has no probability interpretation in
the frequentist conception. The link between the frequentist and fB approaches is
demonstrated in Lecoutre (2007), and a very accurate approximation is given.

8.2.1.1 Numerical Illustration

For the Student example (dobs/sobs = +1.285), the fB distribution of δ/σ (see
Fig. 8.1) is slightly asymmetric, with mean +1.249 and median +1.243. We have
for instance the 90 % interval estimate [+0.545,+1.975]. The two limits are respec-
tively the 5 and 95 % points of the Λ′

9(+1.28, 0.322) distribution. This explicit and
conceptually simple result can be contrasted with the process involved in the fre-
quentist approach, which is described by Thompson (2002, p. 27) as “extremely
technical…because a formula cannot be used for this process.”
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8.2.2 Inference About the Proportion of Population Differences

It can be observed that nine of the ten individual differences are positive and are
at least 0.8 h, which explains the large value of the standardized difference. Actu-
ally, assuming a Normal population distribution of differences N (δ, σ 2), there is a
one-to-one transformation between δ/σ and π[0], the proportion of positive differ-
ences in the population. This determines the fB distribution of π[0]. An interesting
property is that the mean of this distribution is the predictive probability 0.874 (see
Sect. 8.4.4) to find a positive difference in an additional experimental unit (Gertsbakh
and Winterbottom 1991). The interval bounds are easily deduced from those of δ/σ .
So, for a Normal distribution with a positive mean equal to 0.545 times of its standard
deviation, 70.7 % of the values are positive, and consequently:

Pr(π[0] > 0.707 | data) = 0.95

Note that 0.707 is again an exact frequentist confidence limit.
In the same way, we can get the fB distribution ofπ[x], the proportion of population

differences larger than x (and more generally included in a given range). It is deduced
from the distribution of (δ − x)/σ , which is obtained by simply replacing dobs with
dobs − x . For instance π[+0.5], the proportion of differences larger than half an hour
has a distribution with mean 0.788, the predictive probability to find a difference
larger than 0.5 in an additional experimental unit. Instead of computing a confidence
bound, we can select a minimum value of interest forπ[+0.5], say 2/3, and compute the
posterior probability thatπ[+0.5] exceeds this value. We find here a 0.87 % probability
that the proportion of population differences larger than half an hour exceeds 2/3.

8.3 Inference About Pearson’s Correlation Coefficient

The fB inference about the Pearson correlation coefficient is also a conceptually
straightforward generalization (Poitevineau and Lecoutre 2010). For instance, for
the Student data, consider the correlation coefficient ρ between the two series. The
fB distribution of ρ can be obtained in LePAC: see Fig. 8.2.

Run LePAC, click on the icon , click on the button ‘correlation’, and enter
the appropriate values for n and r , as in Fig. 8.2. Probability statements about
this distribution can be interactively computed as for δ.

It can be stated that

there is a 99.7 % probability of a positive correlation and a 95 % probability of a correlation
larger than +0.417.
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Fig. 8.2 fB distribution of ρ for the Student example: ρ | data ∼ r − K ′
8,9(+0.795), median

= 0.776, Pr(ρ > 0 = 0.997), Pr(ρ > +0.417) = 0.95

The probability that ρ has the opposite sign of the observed coefficient (0.003) is
exactly the one-sided p-value of the usual test of a null correlation (given by a
t-distribution). And the 95 % equal two-tailed credible interval [+0.312,+0.940] is
the (exact) frequentist 95 % usual CI.

8.4 A Coherent Bayesian Alternative to GHOST

8.4.1 NHST: The Fiducial Bayesian Interpretation of the p-Value

The fB probability that the population difference δ has the opposite sign of the
observed difference is exactly the one-sided p-value of the t-test. The Bayesian inter-
pretation clearly points out the methodological shortcomings of NHST. It becomes
apparent that the p-value in itself says nothing about the magnitude of δ. On
the one hand, even a very small p (“highly significant”) only establishes that δ
has the same sign as the observed difference dobs. On the other hand, a large p
(nonsignificant) is hardly worth anything, as exemplified by the fB interpretation
Pr(δ < 0) = Pr(δ > 0) = 1/2 of a “perfectly nonsignificant” test (i.e. dobs = 0).
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8.4.2 Interval Estimates: The Fiducial Bayesian Interpretation
of the Usual CI

When the number of degrees of freedom is large enough, so that the Normal approx-
imation holds, the 100(1 − α)% usual confidence interval is given by the formula:

dobs ± zα/2
dobs
tobs

, where zα/2 is the 100α/2 % upper point of the Normal distribution.

Otherwise, zα/2 is replaced with the upper point of the t-distribution with df degrees
of freedom. It results that, for a contrast between means, the Jeffreys credible, Fisher
fiducial, and Neyman confidence intervals all coincide, but in the fB framework, it
is correct to say that

there is a 95 % probability (or guarantee) of δ being included between the fixed bounds of
the interval (given data), i.e. for the Student example between +0.70 and +2.46 h.

8.4.3 Effect Sizes: Straight Bayesian Answers

8.4.3.1 Asserting Largeness

We can compute the probability that δ exceeds a fixed, easier to interpret, extra time
of sleep. For instance, there is a 0.915 probability of δ exceeding one hour. Since the
units of measurement are meaningful, the practical significance of the magnitude of
δ can be assessed. To summarize the results, it can be reported that

there is a 0.915 posterior probability of a large positive difference (δ > +1), a 0.084 proba-
bility of a positive but limited difference (0 < δ < +1), and a 0.001 probability of a negative
difference.

Such a statement has no frequentist counterpart and should have a real impact on the
way the authors and their readers interpret experimental results. This should escape
the shortcomings of frequentist CIs, which are only used by most users “to do a
significance test,” only wondering whether the CI includes zero.

8.4.3.2 Asserting Smallness

Given smallness (or equivalence) margins, we can compute the probability that δ
lies within these margins. So, in the psychological example (Sect. 6.2). assume that
a difference δ of 5 % between the two conditions, either in the positive or nega-
tive direction, could be considered as relatively small. From dobs = −0.80 % and
tobs = − 0.237 (p = 0.818, two-sided), we get, in the same way as for the Student
example, the fB distribution in Fig. 8.3.

There is a 0.409 (p/2) probability of a positive difference and a 0.591 probability
of a negative difference.

http://dx.doi.org/10.1007/978-3-662-44046-9_6
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Fig. 8.3 fB distribution of δ for the psychological example: δ | data ∼ t9(−0.80, 3.382),
Pr(δ < − 5 %) = 0.122, Pr(δ > +5 %) = 0.060, Pr(−7.78 % < δ < +7.78 %) = 0.95

There is a 0.122 probability of a negative difference smaller than −5 %, a 0.060 probability
of a positive difference larger than 5 %, and a 0.818 probability of a difference lying within
the smallness range [−5 %,+5 %].

Alternatively, we can compute a 95 % credible interval centered on zero (and not
on the observed difference): [−7.78 %,+7.78 %], which includes differences larger
than 5 % in absolute value. Given the very small sample size, this can be viewed as
an encouragement to perform a more decisive experiment, with a higher sample size
and, likely, a more stringent smallness criterion. Of course, the decision should take
into consideration the scientific interest of the study.

We get again a clear understanding of the frequentist procedures. The prob-
abilities 0.122 and 0.060 are the significance levels of the two one-sided tests
involved in the “official” TOST procedure (see Sect. 7.3.2). This procedure gives
for δ a 95 % CI centered on zero [−6.99 %,+6.99 %], deduced from the 90 % U-CI
[−6.99 %,+5.39 %]. The 95 % fB credible interval [−7.78 %,+7.78 %] appears as
an acceptable compromise with the 95 % U-CI, [−8.44 %,+6.84 %], avoiding the
debates about the choice of the confidence level (see Sect. 7.3.2).

8.4.4 Making Predictions

An important aspect of statistical inference is making predictions. For instance, what
can be said about the difference d ′

obs that would be observed for additional data? The
fB posterior predictive distribution for this difference in a future sample of size n′ is
again a generalized t-distribution, naturally centered on dobs,

d ′ | data ∼ tq(dobs, e2 + e′2),where e′ = sobs/
√

n′

http://dx.doi.org/10.1007/978-3-662-44046-9_7
http://dx.doi.org/10.1007/978-3-662-44046-9_7
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Fig. 8.4 fB predictive distributions for a replication of Student experiment (n′ = 10)

Of course, this predictive distribution is more scattered than the fB distribution of the
population difference δ. The uncertainty about δ given the available data, reflected
by e2), is added to the uncertainty about the additional data, reflected by e′2. This
is all the more true since the size n′ of the future sample is smaller. For instance, in
Student’s example, we get the predictive distributions.

• For an additional experimental unit (n′ = 1), d ′ ∼ t9(+1.58, 1.292). There is a 0.874
predictive probability of a positive difference and a 0.788 probability of a difference
exceeding half one hour.

• For ten additional experimental units (n′ = 10, e′ = e), d ′ ∼ t9(+1.58, 0.552). There is a
0.991 predictive probability of a positive difference (Killeen’s probability of replication:
see Sect. 5.5) and a 0.959 probability of a difference exceeding half an hour.

The fB posterior predictive distribution is obtained in the same way as the
distribution of δ. Activate the checkbox ‘Predictive inference’ and enter the
future n or, if appropriate, activate the checkbox ‘Replication’: see Fig. 8.4.

Remark

• The predictive distributions of the standard deviation, and of the t test statistic or
of the confidence (or fB credible) limits are also obtained.

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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The predictive fiducial Bayesian distribution for a difference, and more
generally for a contrast, between means in an exact replication of an experiment
(same sample size) can be directly derived from tobs:

d ′ | data ∼ tq
(

dobs, 2
( dobs

tobs

)2
)

(dobs �= 0).

8.4.5 Power and Sample Size: Bayesian Data Planning
and Monitoring

Bayesian predictive procedures give users a very appealing method to answer essen-
tial questions such as:

• How big should be the experiment to have a reasonable chance of demonstrating a given
conclusion?

• Given the current data at an interim analysis, what is the chance that the final result will
be in some sense conclusive, or on the contrary inconclusive?

Predictive probabilities give them direct answers. In particular, from a pilot study,
the predictive probabilities on credibility limits are a useful summary to help in the
choice of the sample size of an experiment. Predictive procedures can also be used to
aid the decision to abandon an experiment if the predictive probability appears poor
(see Lecoutre 2001; Lecoutre et al. 1995, 2002).

8.5 Our Guidelines

• Consider experimental data analysis as a problem of pure estimation in
Jeffreys’ sense (null hypothesis is not needed).

• Don’t use noncentral F based tests and confidence intervals.
• Don’t Worry, Be Bayesian: Think about p-values and usual confidence

intervals in Bayesian terms and use their fiducial Bayesian interpretation.
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Chapter 9
Generalizations and Methodological
Considerations for ANOVA

Abstract This chapter generalizes the basic fiducial Bayesian procedures to the
usual unstandardized and standardized ANOVA effect sizes indicators. Methodolog-
ical aspects are discussed and appropriate alternatives to these indicators are intro-
duced and illustrated.

Keywords ANOVA table · Contrast analysis · Fiducial Bayesian procedures ·
Inference about a contrast between means · Inference about ANOVA effect sizes

The elementary fB procedures for a difference between means only involve the
observed effect and the t-test statistic. Consequently, they are directly applicable to
a contrast in ANOVA design for which a valid t or F-test is available—recall that in
this case F = t2.

For a contrast in ANOVA design, replace dobs
tobs

with |dobs|√
Fobs

.

In this chapter, we will present straightforward generalizations of the fB proce-
dures for a contrast between means easily applicable to the usual unstandardized
and standardized ANOVA ES indicators. First, we will put aside methodological
considerations about the risks of misuses and misinterpretations of these indicators
(see Chap. 6). Then we will discuss methodological aspects and consider appropriate
alternatives.

© The Author(s) 2014
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9.1 From F Tests to Fiducial Bayesian Methods for ANOVA
Effect Sizes

Frequentist procedures for constructing confidence intervals for the conventional
ANOVA ES indicators have received considerable attention in the last years. How-
ever, in spite of several recent presentations claiming that these intervals “can be
easily formed” (e.g., Kelley 2007), many potential users continue to think that deriv-
ing and computing them is a very complex task. The traditional frequentist intervals
involve the noncentral F distributions, familiar to power analysts. Again, the lack of
explicit formula (without speaking here of the inconsistencies of noncentral F based
CIs discussed in Sect. 7.3.1) renders the task conceptually difficult.

9.1.1 The Traditional Approach

9.1.1.1 The Reaction Time Example

Consider the following example, derived from Holender and Bertelson Holender and
Bertelson (1975). In a psychological experiment, the subject must react to a signal.
The experimental design involves two crossed repeated factors: Factor A (signal
frequency) with two levels (a1: frequent and a2: rare), and Factor B (foreperiod
duration), with two levels (b1: short and b2: long). The main research hypothesis is
a null (or about null) interaction effect between factors A and B (additive model).
There is also a between subject Factor G, classifying the 12 subjects into three groups
of four subjects each.

9.1.1.2 The ANOVA Table

Here, the basic data consists of three “groups” and four “occasions” of measure.
The dependent variable is the reaction times in ms (averaged over trials). These
data have been previously analyzed in detail with Bayesian methods in Rouanet
and Lecoutre Rouanet and Lecoutre (1983), Rouanet Rouanet (1996), Lecoutre and
Derzko Lecoutre and Derzko (2001)) and Lecoutre Lecoutre (2006). Consider here
the main effect of factor G (with 2 df).

Frequentist CIs for ANOVA ES are derived from the sampling distribution of the
F ratio, which can be deduced from the traditional ANOVA table for the between
subjects source of variation (see Table 9.1).

9.1.1.3 ANOVA ES Indicators

In this table, the effect varianceσ 2
G is an unstandardized ES indicator. It is the variance

(corrected for df) of the population group means μg . An indicator expressed in the

http://dx.doi.org/10.1007/978-3-662-44046-9_7
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Table 9.1 Traditional ANOVA table for the reaction time example

Source SS df MS E(MS) Fobs p-value

G 7 960.17 2 3 980.08 16σ 2
G + 4σ 2

error 0.5643 0.588

Error 63 480.56 9 7 053.40 4σ 2
error

unit of measurement is usually preferred. Let k be the number of groups (here k = 3).
Three possible alternatives, which are of the general form c σG , are

• the corrected standard deviation
√
(μ1 − μ̄)2 + (μ2 − μ̄)2 . . .+ (μk − μ̄)2

k − 1
= σG,

• the uncorrected standard deviation
√
(μ1 − μ̄)2 + (μ2 − μ̄)2 . . .+ (μk − μ̄)2

k
=

√
k − 1

k
σG,

• the quadratic mean of all the partial differences between the population means
√
(μ1 − μ2)2 + (μ2 − μ3)2 . . .+ (μk − μ1)2

k(k−1)
2

= √
2 σG,

which is a direct generalization of the case of two means: when k = 2 it reduces
to the absolute value of the difference |μ1 − μ2|. For this reason it is our favorite
indicator, implemented in the LePAC software.

In the ANOVA table, σ 2
error is the error variance. The usual standardized ES indi-

cators are functions of σ 2
G/σ

2
error. Corresponding to the three above alternatives we

have, respectively,

• the root-mean-square standardized effect (Steiger 2004, p .169) σG
σerror

,

• the Cohen’s f (Cohen 1977, p. 275)
√

k−1
k

σG
σerror

,

• the standardized quadratic mean
√

2 σG
σerror

.

There are simple relationships between these indicators and the partial eta-squared,
in particular

η2
p = f 2

f 2 + 1
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9.1.1.4 Sampling Distributions

In the ANOVA table, the coefficients 16 and 4 are, respectively, the number of obser-
vations for every level of G and the number of occasions. The sampling distribution
of the effect mean-square MSG , with m = 2 df, is a noncentral chi-square distribu-
tion with noncentrality parameter 8σ 2

G/σ
2
error and scale factor σ 2

error/2. The sampling
distribution of the error mean-square MSerror, with q = 9 df, is a central chi-square
distribution with scale factor σ 2

error/9.
We get the sampling distribution of the F ratio, a noncentral F distribution

F = MSG

MSerror
| σ 2

G , σ
2
error ∼ F

′
2,9(8

σ 2
G

σ 2
error

).

from which frequentist (noncentral F based) CIs for standardized ES indicators are
derived. Due to the nuisance parameter σ 2

error, no exact solution is available for the
unstandardized case. This could partly explain why this case is rarely considered.

9.1.2 Fiducial Bayesian Procedures

9.1.2.1 The Relevant Statistics

Here the relevant data, given in Table 9.2, consist of the 12 individual means, averaged
on the four occasions (in ms).

Let us denote by the general notation λ any population parameter proportional to
σG :

λ = c σG .

For a given unstandardized ES indicator λ, let � be the corresponding observed
indicator, obtained by replacing the population means μg by the observed means.
For instance, the observed value of the quadratic mean of all the partial differences
(c = √

2) is

�obs =
√
(377.5625 − 405.1875)2 + (405.1875 − 404.5625)2 + (404.5625 − 377.5625)2

3

= √
497.5104 = 22.3049 ms.

For simplicity, let us write again σ 2 in place of σ 2
error. Let s2 denote its usual estimate,

i.e., the within-group variance of the individual data. The observed value is
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s2
obs = 36.83712 + 40.07512 + 48.23962

2
= 1763.3490 (sobs = 41.9922 ms).

The statistics �2 and s2 are proportional to the mean-squares. With general nota-
tions, this can be written

�2 = a2b2 MSeffect and s2 = a2 MSerror,

where a2 and b2 are appropriate constants. In the above example, it can easily be
verified that

a2 = 1

4
and b2 = 1

2
.

Their means (or expectations) are

E(�2) = λ2 + b2σ 2 and E(s2) = σ 2,

and he sampling distribution of the ratio �2/s2 is the noncentral F distribution

�2

s2 = b2 F | λ2, σ 2 ∼ b2 F ,m,q
(
m

λ2

b2σ 2

)
.

It follows that the observed value of the F ratio can be written

Fobs = ( �obs

bsobs

)2
, here Fobs = ( 22.3049

(1/
√

2) 41.9922

)2 = 0.5643.

9.1.2.2 Remarks

The notations ensure a direct generalization of the inference about a contrat between
means.

• The constant a2 plays no role in the inference. It simply ensures the link with the
ANOVA mean-squares.

• When m = 1, �obs is proportional to the absolute value of a contrast, so that
b is precisely the constant considered in this case. For instance, in the above
example, if we compare groups g1 and g2, using the above estimate of σ , we have
dobs = 377.5625 − 405.1875 = −27.6250 and �obs = |dobs| = 27.6250. The F
statistic is the square of the usual t test statistic. So here

tobs = 377.5625 − 405.1875

41.9922
√

1/4 + 1/4
= −0.9304 and Fobs = ( 27.5250

(1/
√

2) 41.9922

)2

= 0.8656 = t2
obs
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• The above relationship demonstrates that, in the balanced case with equal group
sizes n̄, the constant b2 for the quadratic mean of the differences is

b2 = 2

n̄
.

9.1.2.3 fB Distributions of λ2 and (λ/σ)2

The fiducial Bayesian solution is a straightforward generalization, which introduces
no additional conceptual difficulty, but only involves two new distributions.

For any population parameter λ2 proportional to the ANOVA effect variance
σ 2

G , The fB distributions of λ2 and (λ/σ)2 can be directly derived from Fobs.
They are respectively a Psi-square and a Lambda-square distribution.

• λ2 | data ∼ e2ψ2
m,q(m Fobs), where e = bsobs = �obs√

Fobs
(Fobs �= 0).

• (
λ
σ

)2 | data ∼ b2�2
m,q(m Fobs), where b =

�obs
sobs√
Fobs

(Fobs �= 0).

In particular, for the standardized ES we have a simple and intuitive result: the F
ratio and the noncentrality parameter are permuted and the noncentral F distribution
is replaced with the Lambda-square distribution.

The Lambda-square distribution has been used by Geisser (1965), with no name. It
has been considered by Schervish (1992, 1995) under the name of alternate chi-square
distribution, with a different scale factor (see also Lecoutre and Rouanet 1981). The
Psi-square distribution has been introduced in Lecoutre (1981). It has been considered
by Schervish (1992, 1995) under the name of alternate F distribution. Note that in
central case, the Lambda-square and Psi-square distributions are respectively the
chi-square (up to a constant of proportionality) and F distributions, which justify
Schervish’s names.

These two distributions have been characterized as particular cases of the
K -square distribution in Lecoutre (1999) and algorithms (see Lecoutre et al. 1992;
Poitevineau and Lecoutre 2010) have been implemented in the LePAC package.

The fB distribution of the partial eta-squared is derived from the lambda-square
distribution by a one-to-one transformation of the form η2

p = λ2/(λ2 + 1). Note that
this relation is analogous to the relation between Beta and F distributions, so that
the fB distribution of η2

p is a kind of alternate Beta distribution.
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9.1.2.4 Numerical Application

The above results apply to any ES of the form λ = c σG and λ/σ . The appropriate
constant b is determined from the observed corresponding values. For instance, for
the quadratic mean of all the partial differences (c = √

2), we have

�obs = 22.3049
�obs

sobs
= 0.5312 Fobs = 0.5643,

hence the fB distributions

λ = √
2σG | data ∼ 29.69ψ2,9(1.129) (e = 22.3049√

0.5643
= 29.69),

λ

σ
| data ∼ 0.707�2,9(1.129) (b = 0.5312√

0.5643
= 0.707).

These distributions reflect a great uncertainty about the ES. For instance, there is a
90 % fB probability that λ is smaller than 60.6 ms. Clearly, in spite of the nonsigni-
ficant test, it cannot be concluded to a small effect

The simplest and fastest way to get these distributions with LePAC is to simply
enter the observed ES and the F ratio. For obtaining the fB distribution of λ,
Run LePAC, click on the icon , click on the button ‘effect+scale’, and enter
the appropriate values for �obs, Fobs and q, as in Fig. 9.1. Probability statements
about this distribution can be interactively computed as in the above cases.

For obtaining the fB distribution of λ/σ , proceed in the same way, but use
the button ‘standardized+scale’.

Remark

• The fB distributions of the parameter ζ (deviation from observed effect) is also
obtained: see Sect. 9.2.1.

9.1.3 Some Conceptual and Methodological Considerations

Interval estimates for standardized ANOVA ES are often offered as a natural gen-
eralization of the usual confidence interval for a single contrast (e.g., Steiger and
Fouladi 1997, p. 244). However this claim is not justified. Certainly, such interval
estimates, as well as those for unstandardized ES, are simultaneous estimates for all
contrasts, but they are a generalization of the confidence interval for the absolute
value of a contrast, that is of an interval centered on zero and not on the observed
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Fig. 9.1 Fiducial Bayesian distribution of λ for the reaction time example
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signed contrast. So they give no indication about the direction of each contrast. This
is the reason why they are appropriate for asserting smallness, but not really for
asserting largeness.

9.1.3.1 Asserting Smallness

For asserting smallness, it must be demonstrated that all contrasts are in a sense
simultaneously close to zero. Consequently, an upper limit for an ANOVA ES is
clearly appropriate.

9.1.3.2 Asserting Largeness

In the one df case (m = 1), a lower limit for an ANOVA ES does not provide any
indication about the direction. It is unquestionable that an inference about the signed
contrast should be preferred. In the several df case, it cannot be expected that the
generalization of an inappropriate procedure could be a “good statistical practice”.
At the best it could provide a rough indication, but it should always be followed by
a more detailed investigation.

9.1.3.3 The Right Use of Simultaneous Interval Estimates

Actually, there is a well-known straightforward generalization of the U-CI, available
both for the unstandardized and standardized cases, namely the Scheffé simultaneous
interval estimate (Scheffé 1953). If we are really interested in a simultaneous infer-
ence about all contrasts, except for the purpose of asserting overall smallness, this is
obviously the appropriate procedure. Moreover, it can receive both a frequentist and
a fB interpretation.

9.2 Alternatives to the Inference About ANOVA ES

9.2.1 The Scheffé Simultaneous Interval Estimate
and Its Bayesian Justification

It is worthwile to note that the Scheffé marginal interval estimate for a particular
contrast can be viewed (and computed) as a 100(1 − α̃)% U-CI. Of course, 1 − α̃ is
sharply larger than 1 − α in order to ensure for the set of all contrasts:

• the frequentist interpretation of a simultaneous confidence level 100(1 − α)%,
• the fB interpretation of a joint posterior probability 1−α, the marginal probability

for each contrast being 1 − α̃.
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An interval estimate for an ANOVA ES is a simultaneous interval estimate for
the absolute value of all contrasts. So it is only appropriate for asserting overall
smallness. The generalization of the usual 100(1 − α)% confidence interval
for a signed contrast is the Scheffé interval. In practice, it can be computed as
the 1 − α̃ U-CI, where the appropriate value α̃ is given by the relationship

F1,q;α̃ = m Fm,q;α.

For instance, when 1−α = 0.90, 1−α̃ = 0.9634 (q = 9), 1−α̃ = 0.9660 (q = 20),
1 − α̃ = 0.9677 (q = 100) and 1 − α̃ = 0.9681 (q = ∞).

9.2.1.1 Numerical Application

For illustration, assume that the above reaction time statistics—means and stan-
dard deviations—have been obtained from an experiment with 100 subjects in
each group. In this case, we have here Fobs = 14.1070 (p = 0.000001), hence
e = 22.3049/

√
14.1070 = 5.94. For 1 −α = 0.90 we get in particular the marginal

interval estimates for the three raw differences between groups, which are the 0.9680
(q = 297) U-CI:

g2, g1 [+14.8,+40.4]
g2, g3 [−12.2,+13.4]
g3, g1 [+14.2,+39.8].

These estimates are not very precise, due to the large error variance. Nevertheless,
it can be concluded that the average reaction time is lower in group g1 and that the
two other groups are relatively equivalent. Note that the original experiment was
designed to study the within-group factors for which the variability is weak. This
justify the small sample size.

9.2.1.2 The fB Justification

Here again the fB justification is straightforward. Consider the (infinite) set of con-
trasts c1μ1 + c2μ2 + c3μ3 such that c2

1 + c2
2 + c2

3 = 2, which includes the partial
differences between two means. The Scheffé simultaneous interval estimate implies
that all these contrasts lie within a circle (an hypersphere for higher m) centered
on the observed contrasts. Consequently, the procedure is equivalent to an inference
about the radius (or a proportional quantity) of this circle.

While λ is an average deviation of the m-dimensional population effect from zero,
it is relevant for the generalization of the U-CI to consider the average deviation ζ
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from the observed effect. In particular, let us define ζ as the quadratic mean of the
deviations between the partial population and observed differences, hence here

ζ =
√ (

(μ1 − μ2)− (377.5625 − 405.1875)
)2 + (

(μ2 − μ3)− (405.1875 − 395.7708)
)2 + (

(μ3 − μ1)− (395.7708 − 377.5625)
)2

3
.

The relevant parameter for a simultaneous inference about all signed contrasts
is the quadratic mean ζ of the deviations between the partial population and
observed differences (or a proportional parameter). The fB distributions of ζ 2

and (ζ/σ )2 are respectively a central Psi-square, hence a usual F distribution,
and a central Lambda-square, hence a usual chi-square distribution.

• ζ 2 | data ∼ e2ψ2
m,q(0) [or e2 Fm,q ].

• (
ζ
σ

)2 | data ∼ b2λ2
m,q(0) [or b2 χ

2
m

m ].

9.2.1.3 Numerical Application

For the modified reaction time example, the fB distribution ζ , shown in Fig. 9.2 is
obtained as for the original data (Fig. 9.1), with F = 14.1070 and q = 297.

ζ | data ∼ 5.94ψ2,297(0),

hence Pr(ζ < 9.05) = 0.90.

Fig. 9.2 fB distribution of ζ
for the modified reaction time
example
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We can conclude with a 0.90 fB guarantee that the average deviation between the
partial population and observed differences is <9.05 ms. This limit 9.05 is equal to
the common half-width of the marginal Scheffé interval estimates, divided by

√
m,

wich takes into account the dimensionality of the effect, for instance:

9.05 =
1
2 (40.4 − 14.8)√

2
= 12.8√

2
.

9.2.1.4 The Fiducial Bayesian Interpretation of the p-value

The fB probability that ζ exceeds �obs is exactly the p-value of the F-test, so here

Pr(ζ > 22.3049) = 0.000001.

This generalizes the Bayesian interpretation of the two-sided p-value for a differ-
ence between means, given in Sect. 5.5, which is the posterior probability that δ lies
outside the interval bounded by 0 (the null hypothesis value) and twice the observed
difference (the counternull value). For instance, if dobs > 0

Pr(δ < 0)+ Pr(δ > dobs) = Pr(|δ − dobs| > |dobs| = p.

9.2.2 Contrast Analysis

We have progressively realized that the conceptual difficulties raised by the interpre-
tation of multidimensional effects are considerable and generally underestimated.
This is in accordance with the APA guidelines:

Multiple degree-of-freedom effect-size indicators are often less useful than effect-size
indicators that decompose multiple degree-of-freedom tests into meaningful one degree-
of-freedom effects—particularly when the latter are the results that inform the discussion
(American Psychological Association 2010, p. 34).

However, in the frequentist paradigm a contrast analysis involves subtle methodolog-
ical considerations (planned or unplanned comparisons, orthogonal or non orthogo-
nal contrasts, etc.), which engenders endless debates. On the contrary the Bayesian
approach is particularly straightforward. The marginal posterior distribution of a par-
ticular contrast always give valid probability statements. So, for the modified reaction
time example, instead of the Scheffé intervals, we can compute for instance the two
marginal probabilities

g2, g1 Pr(δg2,g1 > 15 ms) = 0.983
g3, g1 Pr(δg3,g1 > 15 ms) = 0.978.

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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If we are interested in a simultaneous inference for these two differences, we compute
the joint probability. Of course, this may involve more sophisticated computational
procedures, but for practical purpose, it is often sufficient to use the Bonferroni
inequality. So, we know that the joint probability that each of the two differences
exceeds 15 ms is at least 1 − (1 − 0.983)− (1 − 0.978) = 0.961.

9.3 An Illustrative Example: Evaluation
of the “0.05 Cliff Effect”

In one of the first experiments on the use of significance tests (Rosenthal and Gaito
1963, 1964), researchers in psychology were asked to state their degree of belief
in the hypothesis of an effect as a function of the associated p-values and sample
sizes. The degree of belief decreased when the p-value increased, and was on average
approximately an exponential function. However the authors emphasized a cliff effect
for the 0.05 level, i.e., “an abrupt drop” in confidence just beyond this level. This cliff
effect was invoked by Oakes (1986, p. 83) in support of his significance hypothesis
according to which the outcome of the significance test is interpreted in terms of a
dichotomy: An effect either “exists” when it is significant, or “does not exist” when
it is nonsignificant. Similar results were obtained in subsequent studies (Beauchamp
and May 1964; Minturn et al. 1972; Nelson et al. 1986).

Poitevineau and Lecoutre (2001) replicated this experiment, with the aim of iden-
tifying distinct categories of subjects, possibly corresponding to different views of
statistical inference, referring in particular to Neyman-Pearson, Fisher and Bayes.
12 p-values (0.001, 0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.30, 0.50, 0.70, 0.90)
combined with two sample sizes (n = 10 and n = 100 as in the original experi-
ment) were presented at random, on separate pages of a notebook. It was specified
that the test was a Student’s t for paired groups. The subjects were asked to state
their degree of belief in the hypothesis that “experimental treatment really had an
effect”. They were asked to tick off a point on a non-graduated segment line of 10
centimeters, from null confidence (left extremity) to full confidence (right extremity
of the scale). The participants’ responses were measured in the [0, 1] interval. 18
psychology researchers carried out this experiment.

9.3.1 Numerical Results

Although, the experiment was conducted about 35 years after the original one and
in another country, the average curves appeared to be similar. As in Rosenthal and
Gaito’s (1963) study, a 0.05 cliff effect was apparent for the two sample sizes. How-
ever the average curves were fairly well fitted by an exponential function, and fur-
thermore the study of individual curves revealed that participants could actually be
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Fig. 9.3 Confidence in the hypothesis that experimental treatment really had an effect, as a function
of the p-value and the sample size n

classified into three clearly distinct categories, the classification being identical for
the two curves (n = 10 and n = 100) of each individual (see Fig. 9.3).

1. 10 out of 18 participants presented a decreasing exponential curve, as if these
subjects considered the p-values as a physical measure of weight of evidence.

2. Four participants presented a negative linear curve, which is compatible with
the common misinterpretation of a p-value as the complement of the probability
that the alternate hypothesis is true.

3. Four participants presented an all-or-none curve with a very high degree of belief
when p ≤ 0.05 and with nearly a null degree of belief otherwise. Only these
stepwise curves clearly referred to a decision making attitude.

The larger sample size gave more confidence to the participants in the first category,
whereas all the other participants had almost the same degree of belief for a given
p, whatever the sample size.

9.3.2 A Cliff Effect Indicator

The cliff effect was measured in the same line as Nelson, Rosenthal, and Rosnow
(1986). According to these authors, a test for the 0.05 cliff effect “controlling for the
ordinary decline in confidence as p increases” can be based on the cubic contrast
assigned to the four consecutive p-values 0.03, 0.05, 0.07, and 0.10. The reason for
this procedure is that it is equivalent to test whether the patterns of the population
means associated with these p-values and the predicted means based on a second-
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degree polynomial equation are the same, in which case there is a null 0.05 cliff
effect.

Consequently, a natural measure of effect size is given by an index of departure
(goodness of fit). Given the second-degree polynomial equation that best fits the data
for the p-values 0.03, 0.05, 0.07, and 0.10, the unstandardized cliff effect can be
estimated by the quadratic mean of the residuals between the observed and predicted
means.

For instance, for the all-or-none group, we have the respective observed means
0.724, 0.776, 0.107, 0.025 and the corresponding predicted means 0.808, 0.543,
0.301, −0.019. The quadratic mean of the residuals

√
(−0.083)2 + (+0.233)2 + (−0.194)2 + (+0.044)2

4
= 0.159

is equal to the (absolute) numerical value of the usual cubic contrast, up to a constant
of proportionality. Taking into account the unequal spacing of the four p-values and
introducing the appropriate constant of proportionality, a cliff effect indicator is the
cubic contrast with coefficients +0.1310, −0.3668, +0.3057, and −0.0699, that is

dobs = +0.1310 × 0.724 − 0.3668 × 0.776 + 0.3057 × 0.107 − 0.0699 × 0.025 = −0.159.

The sign of this contrast is obviously relevant: since the cliff effect is a drop in
confidence, it is natural to represent it by a negative value. Note that the maximum cliff
effect is +0.1310 − 0.3668 = −0.2358, corresponding to the pattern of responses
1, 1, 0, 0.

The hypothesis of an exact model is of little practical interest. For instance, a
single observation different from zero or one is sufficient to falsify the strict all-
or-none model. The issue is not to accept or reject a given exact model, but rather
to evaluate the departure from the model. This is a problem of pure estimation, in
Jeffreys’ terms (see Sect. 5.1).

9.3.2.1 The Relevant Data

The derived relevant data consist of the individual cliff effects, reported in Table 9.3.
For simplicity, we have ignored here the “sample size” factor and the data are averaged
on the two modalities (n = 10 and n = 100).

9.3.2.2 Descriptive Summary

The adequate descriptive statistics, given in Table 9.4, are the means and standard
deviations of the relevant data.

http://dx.doi.org/10.1007/978-3-662-44046-9_5
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Table 9.4 Means and
standard deviations of the
relevant data

Mean Standard deviation

Exponential group −0.0163 0.0234

Linear group +0.0072 0.0315

All or none group −0.1589 0.0713

Weighted mean
Within-group SD

−0.0428 0.0393

If we examine the individual patterns of responses in Table 9.3, it seems reasonable
to consider that a cliff effect less than 0.04 in absolute value is small and that a cliff
effect more than 0.06 in the negative direction is large. Consequently, the observed
cliff effect is small for the exponential and linear groups, showing a large departure
from the all-or-none model, and very large for the all-or-none group.

9.3.3 An Overall Analysis Is Not Sufficient

9.3.3.1 The Average Cliff Effect

For the inference about the average cliff effect, we can apply the same procedures
as for the Student example. Simply, we use the weighted mean and the within-group
standard deviation, hence

dobs = − 0.0428 sobs = 0.0393(15d f ) e = sobs/
√

18 = 0.0093

tobs = dobs/e = −4.615.

We obtain the 90 % interval estimate [−0.059,−0.027] for the overall (unstandard-
ized) cliff effect that appears to be rather moderate.

9.3.3.2 An ES Indicator for Comparing the Three Groups

Then we could be tempted to compare the cliff effects of the three groups.
This in an interaction effect with 2 df, for which we can apply the results of Sect. 9.1.2.
For instance, an indicator of the observed effect size is the weighted quadratic
mean of all the partial differences. The weights are the product of the group sizes,
which generalizes the balanced case, so that

�obs =
√

10 × 4(−0.0163 − 0.0072)2 + 4 × 4(0.0072 + 0.1589)2 + 4 × 10(−0.1589 + 0.0163)2

10 × 4 + 4 × 4 + 4 × 10

= √
0.0133

= 0.1153.
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This in undoubtedly a large observed effect. On the one hand, this is not surprising
since the participants have been classified in view of the data in order to maximize the
differences between the groups. On the other hand, an inference about the population
ES is not suitable for generalizing the descriptive conclusions about the respective
magnitudes of the group cliff effects.

9.3.3.3 Remarks

• If a specific ANOVA is performed on the relevant derived data, we find the mean-
squares M SG = 0.0355 (�2

obs = 0.3750M SG = 0.1153) and M Serror = 0.0015
(s2

obs = M SG). They are proportional to the mean-squares that would be obtained
from the analysis of the complete data, using a mixed-model, so that the F ratio
is the same: Fobs = 22.94 (p = 0.00003, 2 and 15 df). The two analyses are
equivalent, but the former is more easily understandable. The design structure
of the relevant data is much simpler that the original design structure, and the
number of nuisance parameters is drastically reduced. Consequently, necessary
and minimal assumptions specific to each particular inference are made explicit.
Here, they are simply the usual assumptions of a one-way ANOVA design. When
these assumptions are under suspicion, alternative procedures can be envisaged
(see Sect. 9.3.5).

• For the specific analysis we have a2 = 1. The constant b2 = 0.0133/0.0355 =
0.3750 is given by

b2 = 2

n̄ − n̆
n

.

where n̄ is the mean of the group sizes—here n̄ = 6—and n̆ is their variance,
corrected for df—here n̆ = 12.

9.3.4 A Simultaneous Inference About All Contrasts

Clearly, an inference about ζ (see Sect. 9.2), the (weighted) quadratic mean of the
deviations between the partial population and observed differences is more suitable.
The fB distribution is

ζ | data ∼ 0.0241ψ2,15(0) [e = 0.1153√
22.94

= 0.0241].

We can conclude with a 0.90 fB guarantee that the average deviation between the
partial population and observed differences is less than 0.040: Pr(ζ < 0.040) = 0.90.
So the descriptive conclusions of a very large difference between the all-or-none
group and each of the two other groups and a relatively moderate difference between
the exponential and linear groups can be generalized. Marginal probability statements
about the partial differences could be obtained in the same way as for the reaction time
data. Note the interpretation of the p-value, Pr(ζ < 0.1153) = 1 − p = 0.99997:
not really informative.
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9.3.5 An Adequate Analysis

A simultaneous inference about all contrasts is undoubtedly preferable to the in-
ference about an ANOVA ES. However, it is not the best alternative, since it does
not directly answers the relevant question: to evaluate the departure from the model.
For this purpose, we have to consider the inference about the cliff effect (the cubic
contrast) separately for each group.

Since, it is likely that the all-or-none model results in larger individual variability,
the assumption of equal group variances made in the previous analyses is not realistic.
It can be easily relaxed here by considering separate variance estimates for each
group. Then the relevant statistics are

Exponential group

dobs = −0.0163 sobs = 0.0234 e = 0.0234√
10

= 0.0074 tobs = −0.0163

0.0074
= −2.202

Linear group

dobs = +0.0072 sobs = 0.0315 e = 0.0315√
4

= 0.0158 tobs = +0.0072

0.0158
= +0.457

All or none group

dobs = −0.1589 sobs = 0.0713 e = 0.0713√
4

= 0.0357 tobs = −0.1589

0.0357
= −4.455

9.3.5.1 Relevant Inferences

The fB distribution for the respective population contrasts and the corresponding
statements for asserting the relative magnitudes of effects are

Exponential group t9(−0.0163, 0.00742) Pr(|δ| < 0.027) = 0.90
Linear group t3(+0.0072, 0.01582) Pr(|δ| < 0.039) = 0.90

All-or-none group t3(−0.1589, 0.03572) Pr(δ < −0.100) = 0.90

These statements clearly demonstrate the major finding of this experiment: the cliff
effect has been overstated, it is only large for a minority of “all-or-none” respondents.
On the contrary, it is of limited magnitude for the other participants who expressed
graduated confidence judgments about p-values.

Note that, since they are based on different variance estimates, the three marginal
distributions are independent. So their joint probability is simply 0.903 = 0.729.

9.3.6 What About Standardized Effects?

Nelson, Rosenthal and Rosnow (1986) only reported an averaged standardized effect,
the product moment coefficient correlation r = 0.34. In Poitevineau &Lecoutre
(2001), we were asked by the editor to also report this indicator. It is only function of
the t statistic and the number of df (r = t/

√
t2 + df) and its square is the observed

partial eta-squared. We have here for the whole set of participants r = −0.77, far
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larger than that obtained in the previous study. From the above specific analyses for
each group, we get r = −0.59 (exponential), r = +0.26 (linear), and r = −0.93
(all-or-none). According to Cohen’s conventions, the observed cliff effect should be
considered as large (more than 0.50), not only for the all-or-none group, but also for
the whole set of participants and for the exponential group. It could not be considered
to be small (less than 0.10) for the linear group. Note that the respective observed
Cohen’s d are −2.93 (whole set), −0.696 (exponential), +0.228 (linear), and −2.23
(all-or-none), The conclusion would be slightly different: a medium effect (less than
0.80) for the exponential group.

This again reinforces our contention against the use of standardized ES and heuris-
tics benchmarks. The usual claims that standardization is useful (and even needed)
for comparing effect sizes across different conditions or different studies are highly
questionable.

9.4 Our Guidelines for ANOVA

The guidelines of the previous chapter can be completed, following Baguley’s (2009)
guidelines.

• Consider experimental data analysis as a problem of pure estimation in
Jeffreys’ sense (null hypothesis is not needed).

• Prefer simple [signed] effect size to standardized effect size.
• Avoid reporting effect sizes for multiple effects [except for asserting smal-

ness, otherwise prefer contrast analysis].
• Don’t use noncentral F based tests and confidence intervals.
• Don’t Worry, Be Bayesian: Think about p-values and usual confidence in-

tervals in Bayesian terms and use their fiducial Bayesian interpretation.
• Always include adequate descriptive statistics (e.g., sufficient statistics).
• Comment on the relative rather than the absolute magnitude of effects.
• Avoid using ‘canned’ effect sizes [heuristic benchmarks] to interpret an

effect.

(adapted from Baguley 2009, p. 615, italicized terms are ours)
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Chapter 10
Conclusion

Abstract Routine fiducial Bayesian methods for the familiar situations of experi-
mental data analysis are easy to implement and use. They fit in better with scientists’
spontaneous interpretations of data than frequentist significance tests and confidence
intervals. In conclusion, these Bayesian methods have a privileged status in order
to gain “public use” statements, fulfilling the requirements for experimental data
reporting and acceptable by the scientific community.

Keywords Bayesian routine methods for experimental data · The sizeless scien-
tists · The star worshippers

Despite all criticisms, Null Hypothesis Significance Testing (NHST) continues to
be required in most experimental publications as an unavoidable norm. This is an
amalgam of the Fisher and Neyman–Pearson views of statistical tests. It is used to
strengthen data and convince the community of the value of the results. NHST can
be seen with Salsburg (1985) as the “religion of statistics” with rites such as the
use of the “profoundly mysterious symbols of the religion NS, *, **, and mirabile
dictu ***” (the star system). The degree of statistical significance—the p-value—is
for most users a substitute for judgment about the meaningfulness of experimental
results: they behave like “star worshippers” (Guttman 1983) and “sizeless scientists”
(Ziliak and McCloskey 2008).

NHST is such an integral part of scientists’ behavior that its misuses and abuses
should not be discontinued by flinging it out of the window. Actually, the official
guidelines for experimental data analysis do not ban its use. Rather, they appear to
reinforce its legitimacy by placing it at the center of a hybrid reporting strategy. This
strategy includes other practices, especially effect sizes and their confidence inter-
vals. We name it Guidelined Hypotheses Official Significance Testing (GHOST),
because it focuses on the Neyman–Pearson (power based) justification of sample
size, involving two precise (point null) hypotheses.
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GHOST is only a set of recipes and rituals and does not supply a real statistical
thinking. As a consequence, it has created a new star system, based on the use of pre-
established heuristic benchmarks for standardized effect sizes. The experimental
literature reveals that most scientists continue to behave like star worshipers and
sizeless scientists.

Due to his great influence on experimental research, Fisher’s responsibility in
today’s practices cannot be discarded. One of the most virulent attacks came from
Ziliak and McCloskey (see also Meehl 1978, p. 817):

After Fisher, then, the sizeless sciences neither test nor estimate (Ziliak and McCloskey
2008, p. 17).

However, Fisher’s conception of probability and his works on the fiducial theory are
a fundamental counterpart to his emphasis on significance tests, and he should not be
treated as guilty (Lecoutre et al. 2004). This was clearly acknowledged by Jeffreys:

But it seems to me that the cases that chiefly concern Fisher are problems of estimation, and
for these the fiducial and inverse probability approaches are completely equivalent (Jeffreys
1940, p. 51).

The gentlemen’s agreement between him and Fisher was made explicit:

The general agreement between Professor R.A. Fisher and myself has been indicated in many
places. The apparent differences have been much exaggerated…(Jeffreys 1967, p. 393).

Following Jeffreys, experimental data analysis must be regarded as a problem of
“pure estimation”, and significance tests of precise hypotheses should have a very
limited role. Within this perspective, there is no sense to search for an interpretation
of the p-value as the probability of the null hypothesis. Rather, for the usual test of no
difference between means (for instance), the halved p-value of the usual two-sided
t-test is the posterior probability that the population difference has the opposite sign
of the observed difference. This was also Student’s conception.

Nowadays, Bayesian routine methods for the familiar situations of experimental
data analysis are easy to implement and use. Based on more useful working definitions
than frequentist procedures, the Bayesian approach makes all choices explicit and
offers considerable flexibility. This gives statistics users a real possibility of thinking
sensibly about statistical inference problems, so that they behave in a more reasonable
manner.

In particular, Fiducial Bayesian methods emphasize the need to think hard about
the information provided by the data in hand (“what the data have to say?”),
instead of applying ritual, readymade procedures. This does not preclude using other
Bayesian techniques when appropriate. In some situations, it may be essential to
use objective prior information external to the data. An opinion-based analysis can
serve for individual decision making, such as to publish a result or to replicate an
experiment.
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In all cases, fiducial Bayesian methods have a privileged status in order to
gain “public use” statements, acceptable by the scientific community. Our
consulting and teaching practices, especially in psychology, have shown us
that they are much closer to scientists’ spontaneous interpretations of data
than frequentist procedures. Using the fiducial Bayesian interpretation of the
p-value in the natural language of probability about unknown effects comes
quite naturally, and the common misuses and abuses of NHST can be clearly
understood. The need for estimation becomes evident, and users’ attention can
be focused to more appropriate strategies, such as consideration of the practical
significance of results and replication of experiments. Fiducial Bayesian users
are also well equipped for a critical reading of experimental publications.

References

Guttman, L.: What is not what in statistics? The Statistician 26, 81–107 (1983)
Jeffreys, H.: Note on the Behrens-Fisher formula. Ann. Eugen. 10, 48–51 (1940)
Jeffreys, H.: Theory of Probability 3rd edn. Clarendon, Oxford (1967). (1st edn. 1939)
Lecoutre, B., Poitevineau, J., Lecoutre, M.-P.: Fisher: The modern hypothesis testing hybrid: R. A.

Fisher’s fading influence. J. SFdS 145, 55–62 (2004)
Meehl, P.E.: Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of

soft psychology. J. Couns. Clin. Psychol. 46, 806–834 (1978)
Salsburg, D.S.: The religion of statistics as practiced in medical journals. Amer. Statist. 39, 220–223

(1985)
Ziliak, S.T., McCloskey, D.: The Cult of Statistical Significance: How the Standard Error Costs Us

Jobs, Justice, and Lives. University of Michigan Press, Ann Arbor (2008)



Index

A
Alternative, see Hypothesis
Amalgam, see Statistical tests
ANOVA, see Confidence intervals, Effect

size
APA, see Guidelines

APA task force, 45, 65

B
Bayes, see Credible intervals

Bayes factor, 27
Bayes’ formula, 15, 61
degree of confidence, 9, 26, 31
Fiducial Bayesian, see Fiducial Bayesian
objective Bayesian analysis, 2

Behavior
inductive behavior, 33, 80
rules of behavior, 23, 24

C
Clinical trials, 43–45

equivalence trials, 34, 46, 60, 86–87
non inferiority trials, 46, 60
superiority trials, 46, 51

Cohen’s d, 63, 65–70, 85, 94
and t-test statistic, 65, 70
confidence interval, 94
denominator, 69
heuristic benchmarks, 66
population and sample, 72
standardizer, 70
unsigned, 65

Confidence interval [CI], 4, 12, 45, 46, 80
Bayesian misinterpretation, 10, 87–89
CI for demonstrating equivalence, 87

Clopper-Pearson CI for a proportion, 45
conservative/anti-conservative CI, 82, 87
exact CI for discrete data, 82
frequentist definition, 80–81
frequentist interpretation, 12, 87
NCF-CI for ANOVA effect sizes,

72, 84–87
usual CI, 84, 98, 99

Conservative, see Confidence interval, sta-
tistical tests

Correlation coefficient, 92, 97–98
Counternull value, 55–56, 88
Coverage

coverage probability, 2, 4, 81–83
coverage properties, 82

Credible interval, see Interval estimate
definition, 78
highest posterior density, 82

D
Decision, 23–24, 33

decision making, 29, 34, 57
reject/accept rule, 24, 45–50

Distribution, see Posterior, Predictive, prior
beta-binomial, 15
binomial, 44
generalized t , 53, 93, 100
hypergeometric, 11
lambda-prime, 96
noncentral F , 35, 84, 106
noncentral t , 35, 69, 84, 93, 96
normal, 26, 96, 97, 99
r-K-prime, 98
uniform, 26–27

© The Author(s) 2014
B. Lecoutre and J. Poitevineau, The Significance Test Controversy Revisited,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-44046-9

131



132 Index

E
Effect size [ES], 4, 41, 45

ANOVA ES indicators, 70–73
eta-squared, 70, 72, 73, 84
omega-squared, 72
proportion of variance explained, 68,

70
canned ES, 67
Cohen’s d, see Cohen’s d
definition, 63
ES estimate, 4, 45, 73
glass’s �, 70
Hedge’s g, 70
heuristic benchmarks, 66, 73
phi coefficient, 68
relative risk, 68
sample/population ES indicator, 71, 73
simple ES, 65
standardized ES, 64–65, 68
unstandardized ES, 65

Equivalence, see Clinical trials
Errors, 24

risk of errors, 28
type I and type II, 24–25, 43–44, 52

Estimate, see Interval estimate
point estimate

unbiased estimate, 72
unbiased point estimate, 69

Estimation, 30
estimation/significance tests problems,

30
pure estimation, 30, 49–50, 53, 56, 60,

102
Examples

a clinical trial example, 43, 60, 78
a psychological example, 64–65, 84–99
a simple illustrative example, 10
an epidemiological study, 68
student’s example, 54, 85, 92–98, 101

F
Fiducial Bayesian

Fiducial Bayesian inference, 2–3
Fiducial Bayesian methods, 2–3, 53, 93

Fiducial inference, 2–3, 79–80
Fiducial argument, 79
Fiducial interval, 79

Frequentist, see Confidence interval, Proba-
bility

good frequentist properties, 2, 82, 83

G
Guidelined hypotheses official significance

testing, 43–46
Bayesian alternative, 98

Guidelines, 4, 46
APA publication manuel, 45
ICH guidelines for clinical trials, 43–45

H
Heuristic benchmarks, see Effect size
Hybrid

hybrid logic of statistical inference, 40
hybrid practice, 45–46
hybrid theory of testing, 3

Hypothesis, see Null hypothesis
alternative hypothesis, 12, 23, 26
Neyman-Pearson’s tested hypothesis, 23
working hypothesis, 43

I
Interval estimate, 4, 45, 74, 77–78, 82, 83

Confidence, see Confidence intervals
equal-tailed interval, 78
for a contrast between means, 99

centered on zero, 100
for a correlation coefficient, 98
for a proportion of population differ-

ences, 97
for a relative risk, 68
for a standardized contrast, 94–96
one-tailed interval, 78, 83
shortest intervals, 82

Inverse, see probability

J
Jeffreys, see Prior, Statistical tests

Jeffreys’ rule, 26
Judgment, 33

K
Killeen’s probability of replication, 56

L
Learning from data, 29, 59
Likelihood

likelihood function, 13
likelihood principle, 60–61



Index 133

M
Meehl’s paradox, 49, 58
Misinterpretations, see Confidence intervals,

p-values

N
Neyman-Pearson lemma, 25
Noncentral F based [NCF], see Confidence

intervals
Noninformative, see Prior
Null hypothesis, 11

a straw man, 51
composite, 34, 35
Fisher’s null hypothesis, 22
Jeffrey’s null hypothesis, 26
notation H0, 40

Null hypothesis significance testing
misinterpretations, 3

Null hypothesis Significance Testing
[NHST], see Statistical tests

O
Objective, see Prior

objective Bayesian analysis, 2
objective Bayesian position, 32
objective methods, 19, 21, 25, 61

Odds
prior and posterior odds, 27

One-tailed, see Interval estimate

P
p-value, 11, 22

Bayesian interpretation, 17, 54, 55, 98
Jones and Tukey’s procedure, 52
misinterpretation, 10, 53–56
reporting, 44

Population, see Effect size
finite population, 10

Posterior, see Fiducial BayesianMethods
posterior distribution

for δ, 93
posterior probability, 4, 13, 15
posterior probability of specified regions,

17, 78
Predictive posterior, see Predictive

Power, see Sample size
power function, 25
power of a test, 12, 25, 44, 58, 67
resultant power, 28

Predictive, see Distribution
posterior predictive distribution, 56

posterior predictive distribution for d ′
obs,

100
predictive probability, 13

Prior
default prior, 26
Jeffreys’ prior, 26, 53, 78, 93
noninformative prior, 26

noninformative prior probabilities, 2
objective prior, 26
opinion-based prior, 14
prior probability, 13
uniform prior, 16, 77
vague prior distribution, 2, 16

Probability, see Posterior, Predictive, prior
Bayesian conception, 9
frequentist conception, 9, 32
inverse probability, 1, 54

principle of inverse probability, 15,
30

probability of hypotheses, 27, 31, 78
probability of replication, see Killeen

Q
Quality control, 29

R
Reasoning

deductive/inductive reasoning, 33
from data to parameter, 13
from parameter to data, 10

Risk, see Errors

S
Sample size, 45, 58, 86

ad hoc sample size, 67
for equivalence/noninferiority trials, 46
sample size and significance, 53, 55
sample size determination, 43, 52, 67,

102
Sampling

sampling distribution, 11
sampling probabilities, 11

Significance, see Sample size, Statistical
tests

level of significance, 22
reference levels of significance, 23,

40
nonsignificance as proof of no effect, 41,

42
significant/nonsignificant, 3, 11–12, 22,

41, 57



134 Index

the dictatorship of significance, 40
Smallness, see Clinical equivalence trials

demonstrating smallness, 86–87, 99–100
Statistical tests

Amalgam, 3, 39–40, 45
conservative/anti-conservative, 17
frequentist conception, 11
goodness-of-fit test, 60, 86
Jaynes’ Bayesian test, 54
NHST, 3, 11, 39
one-sided tests, 12, 43, 51
student’s [W.S. Gosset] conception, 54
test of composite hypotheses, 34–35, 83,

87
the Fisher test of significance, 3, 21
the Jeffreys Bayesian approach, 25
the Neyman-Pearson hypothesis test, 3,

23

two one-sided tests procedure, 86, 100
two-sided tests, 12, 51

Subjective
Bayesian subjective perspective, 1–2, 18,

19

T
The significance test controversy, 4, 49–61
The sizeless scientists, 41
The star system, 40, 41

the new star system, 66, 73

U
Uniformly most powerful test, 25, 35, 36


	Contents
	Acronyms
	1 Introduction
	1.1 The Fiducial Bayesian Inference
	1.2 The Stranglehold of Significance Tests
	1.3 Beyond the Significance Test Controversy
	1.4 The Feasibility of Fiducial Bayesian Methods
	1.5 Plan of the Book
	References

	2 Preamble---Frequentist and Bayesian  Inference
	2.1 Two Different Approaches to Statistical Inference
	2.1.1 A Simple Illustrative Example

	2.2 The Frequentist Approach: From Unknown  to Known
	2.2.1 Sampling Probabilities
	2.2.2 Null Hypothesis Significance Testing in Practice
	2.2.3 Confidence Interval

	2.3 The Bayesian Approach: From Known  to Unknown
	2.3.1 The Likelihood Function and the Bayesian  Probabilities
	2.3.2 An Opinion-Based Analysis
	2.3.3 A ``No Information Initially'' Analysis

	References

	3 The Fisher, Neyman--Pearson and Jeffreys  Views of Statistical Tests
	3.1 The Fisher Test of Significance
	3.1.1 An Objective Method for Reporting Experimental Results
	3.1.2 The Null Hypothesis
	3.1.3 The Outcome of the Test of Significance
	3.1.4 The Test Statistic and the Level of Significance p
	3.1.5 How to Evaluate the Smallness of p?

	3.2 The Neyman--Pearson Hypothesis Test
	3.2.1 Rational Decision Rules
	3.2.2 The Hypothesis to be Tested and Alternative Hypotheses
	3.2.3 The Outcome of the Hypothesis Test
	3.2.4 A Long-Run Control
	3.2.5 Two Types of Errors and Their Long-Run Frequencies
	3.2.6 Power of the Test and Best Critical Region

	3.3 The Jeffreys Bayesian Approach to Testing
	3.3.1 The Jeffreys Rule
	3.3.2 The Function of Significance Tests
	3.3.3 A Specific Prior for Testing Precise Hypothesis
	3.3.4 A Measure of Evidence Against the Null Hypothesis
	3.3.5 An Averaged Risk of Error

	3.4 Different Views of Statistical Inference
	3.4.1 Different Scopes of Applications: The Aim of Statistical Inference
	3.4.2 The Role of Bayesian Probabilities
	3.4.3 Statistical Tests: Judgment, Action or Decision? 

	3.5 Is It Possible to Unify the Fisher and Neyman--Pearson Approaches?
	3.5.1 Demonstrating Equivalence
	3.5.2 Neyman--Pearson's Criterion Leads to Incoherent  and Inadmissible Procedures
	3.5.3 Theoretical Debates: Counterintuition or Good Sense?

	3.6 Concluding Remarks
	References

	4 GHOST: An Officially Recommended Practice
	4.1 Null Hypothesis Significance Testing
	4.1.1 An Amalgam
	4.1.2 Misuses and Abuses

	4.2 What About the Researcher's Point of View?
	4.2.1 A Cognitive Filing Cabinet
	4.2.2 It Is the Norm

	4.3 An Official Good Statistical Practice
	4.3.1 Guidelined Hypotheses Official Significance Testing
	4.3.2 A Hybrid Practice

	References

	5 The Significance Test Controversy Revisited
	5.1 Significance Tests Versus Pure Estimation
	5.1.1 The Meehl Paradox

	5.2 The Null Hypothesis: A Straw Man
	5.3 Usual Two-Sided Tests Do Not Tell the Direction
	5.3.1 Two-Sided Verus One-Sided Tests and Their Shortcomings
	5.3.2 Jones and Tukey's Three-Alternative Conclusion Procedure

	5.4 Determining Sample Size
	5.5 Critique of P-values: A Need to Rethink
	5.5.1 Jeffreys' Answer to the Problem of Pure Estimation
	5.5.2 The Bayesian Interpretation of the P-value
	5.5.3 Student's Conception
	5.5.4 Jaynes' Bayesian Test
	5.5.5 The Methodological Shortcomings of NHST Clearly Pointed Out
	5.5.6 The Bayesian Interpretation of the Two-Sided P-value
	5.5.7 Killeen's Prep

	5.6 Decision and Estimation
	5.6.1 The Decision-Making Viewpoint: A Very Controversial Issue
	5.6.2 Jeffreys' Bayesian Methodology

	5.7 The Role of Previous Information and the Sample Size
	5.8 The Limited Role of Significance Problems
	5.9 Other Issues
	5.9.1 Noninferiority and Equivalence Questions
	5.9.2 Stopping Rules and the Likelihood Principle

	References

	6 Reporting Effect Sizes: The New Star System
	6.1 What Is an Effect Size?
	6.1.1 A Definition Restricted to Standardized Measures

	6.2 Abuses and Misuses Continue
	6.2.1 A Psychological Example
	6.2.2 An ES Indicator that Does Not Tell the Direction
	6.2.3 Disregarding the Robust Beauty of Simple Effect Sizes
	6.2.4 Heuristic Benchmarks: A New Star System
	6.2.5 Observed ES Indicators Can Be Misleading
	6.2.6 A Good Adaptive Practice Is Not a Good Statistical Practice
	6.2.7 The Need for a More Appropriate Sample Size
	6.2.8 The Shortcomings of the Phi Coefficient

	6.3 When Things Get Worse
	6.3.1 A Lot of Choices for a Standardized Difference
	6.3.2 A Plethora of ES Indicators
	6.3.3 Don't Confuse a Statistic with a Parameter

	6.4 Two Lessons
	6.4.1 The New Star System
	6.4.2 Should Standardized Effect Sizes Ever be Used?

	References

	7 Reporting Confidence Intervals: A Paradoxical Situation
	7.1 Three Views of Interval Estimates
	7.1.1 The Bayesian Approach (Laplace, Jeffreys)
	7.1.2 Fisher' Fiducial Inference
	7.1.3 Neyman's Frequentist Confidence Interval

	7.2 What Is a Good Interval Estimate?
	7.2.1 Conventional Frequentist Properties
	7.2.2 The Fatal Disadvantage of ``Shortest Intervals''
	7.2.3 One-Sided Probabilities Are Needed
	7.2.4 The Jeffreys Credible Interval is a Great Frequentist Procedure

	7.3 Neyman-Pearson's Criterion Questioned
	7.3.1 The Inconsistencies of Noncentral F Based Confidence Intervals for ANOVA Effect Sizes
	7.3.2 The Official Procedure for Demonstrating Equivalence

	7.4 Isn't Everyone a Bayesian?
	7.4.1 The Ambivalence of Statistical Instructors

	References

	8 Basic Fiducial Bayesian Procedures  for Inference About Means
	8.1 Fiducial Bayesian Methods for an Unstandardized Contrast
	8.1.1 The Student Pharmaceutical Example
	8.1.2 Specific Inference

	8.2 Fiducial Bayesian Methods for a Standardized Contrast
	8.2.1 A Conceptually Straightforward Generalization
	8.2.2 Inference About the Proportion of Population Differences

	8.3 Inference About Pearson's Correlation Coefficient
	8.4 A Coherent Bayesian Alternative to GHOST
	8.4.1 NHST: The Fiducial Bayesian Interpretation of the p-Value
	8.4.2 Interval Estimates: The Fiducial Bayesian Interpretation  of the Usual CI
	8.4.3 Effect Sizes: Straight Bayesian Answers
	8.4.4 Making Predictions
	8.4.5 Power and Sample Size: Bayesian Data Planning  and Monitoring

	8.5 Our Guidelines
	References

	9 Generalizations and Methodological Considerations for ANOVA
	9.1 From F Tests to Fiducial Bayesian Methods for ANOVA Effect Sizes
	9.1.1 The Traditional Approach
	9.1.2 Fiducial Bayesian Procedures
	9.1.3 Some Conceptual and Methodological Considerations

	9.2 Alternatives to the Inference About ANOVA ES
	9.2.1 The Scheffé Simultaneous Interval Estimate  and Its Bayesian Justification
	9.2.2 Contrast Analysis

	9.3 An Illustrative Example: Evaluation  of the ``0.05 Cliff Effect''
	9.3.1 Numerical Results
	9.3.2 A Cliff Effect Indicator
	9.3.3 An Overall Analysis Is Not Sufficient
	9.3.4 A Simultaneous Inference About All Contrasts
	9.3.5 An Adequate Analysis
	9.3.6 What About Standardized Effects?

	9.4 Our Guidelines for ANOVA
	References

	10 Conclusion
	References

	Index



