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Signal Transduction and Regulation 
in Smooth Muscle: 
Problems and Progress 
Richard A. Murphy 

Department of Molecular Physiology and Biological Physics, Health Sciences Center, 
University of Virginia, Charlottesville, Virginia 22906, USA 

Inappropriate responses of smooth muscle contribute to most morbidity 
and mortality in developed countries including hypertension, 
atherosclerosis, coronary and cerebral vasospasm, asthma, and a variety of 
gastrointestinal and urogenital diseases. Thus, the medical significance of 
smooth muscle pathophysiology is unquestioned. Nevertheless, smooth 
muscle is often regarded as unsuitable for serious studies of muscle func- 
tion. The reviews that constitute this issue show this view is no longer true. 
The fact remains, however, that in many respects our understanding of 
smooth muscle is at a point attained some thirty years ago for skeletal 
muscle. It is generally accepted that the smooth muscle myosin motor iso- 
forms and chemo-mechanical transduction are described by the sliding- 
filament~cross-bridge paradigm. However, signal transduction and regula- 
tion of cross-bridge cycling in smooth muscle differ from that in striated 
muscle. This confers unique properties on smooth muscle that are not fully 
understood, such as the capacity to reduce cross-bridge cycling rates and 
ATP consumption in sustained contractions (Latch). The reviews by Gunst 
and by Pfitzer and Arner provide an extensive discussion of the unique 
mechanical and energetic properties of smooth muscle. The reasons for 
the slow progress in studies of smooth muscle function merit considera- 
tion as a background for evaluating developments in the field. Arguably 
there are three major reasons for the slow pace. One of these categories is 
well recognized, but the others remain impediments to progress. 

The recognized difficulties include the diversity of smooth muscle 
which has an important role in the function of most organ systems. The 
field is split into airway, urogenital, vascular, visceral and other specialties 
with a corresponding fragmentation of publications, meetings, and inves- 
tigator interactions. Rather than a single final extracellular input regulat- 
ing contraction (a motor nerve), there is a vast and still imperfectly identi- 
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fled array of extracellular signals. These include many different excitatory 
and inhibitory neurocrine, endocrine, paracrine and autocrine signals; as 
well as mechanical stimuli, electrical and chemical coupling of cells, and a 
notable fraction of all drugs in the pharmacopoeia. A single signal 
transduction event at the cell membrane (neuromuscular transmission at 
the motor end plate) is replaced by a profusion of receptors, channels, 
active and passive transport mechanisms and signal transduction cas- 
cades that provide great functional diversity. This complex area is re- 
viewed by Kotlikoff et al. Almost all smooth muscle is found in inconven- 
ient packages for experimental analysis: tissues typically include multiple 
layers of smooth muscle cells and connective tissue elements with varying 
orientations, and a variety of other cell types. Furthermore, two dimen- 
sional imaging techniques have failed to provide the structural insights in 
the absence of a uniform sarcomeric structure that underlie the sliding 
filament/cross-bridge paradigm for striated muscle. Finally, smooth mus- 
cle cells are not terminally differentiated, and exhibit considerable pheno- 
typic variability within a tissue; a topic reviewed by Sartore et al. This 

• variability can be extreme in vitro or pathologically. 
A second category of factors impacting progress in understanding 

smooth muscle contractile function involves assumptions on the applica- 
bility of paradigms derived from skeletal muscle. Both muscle types are 
specialized for the expression of high external forces generated by myosin 
II motors coupled through a myofilament/cytoskeletal structure. Never- 
theless, the function of the two cell types basically differs even though 
contraction can be characterized by similar mechanical (force-length and 
velocity-load) and energetic parameters. The functional unit of a skeletal 
muscle is a cell, or more properly; the group of cells comprising a motor 
unit. The cells are normally relaxed with most gravitational loads opposed 
by the skeleton. Activation is all or none, with gradation of force provided 
by recruitment and summation (tetanization). The output is typically 
characterized by a high power output matched by high ATP consumption 
rates and metabolic specialization between fiber types. Function is very 
different for smooth muscle in the walls of hotlow organs. In vivo, the ceils 
are normally active and play a skeletal role in maintaining organ dimen- 
sions against imposed loads. ATP consumption is minimized in the face of 
continuous contraction by very slow cross-bridge detachment rates as low 
power outputs are consistent with organ system function. Cells are not the 
basic contractile unit in smooth muscle and the cells are typically electri- 
cally, chemically, and mechanically coupled to form an integrated me- 
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chanical unit. Contractile output is varied by uniformly regulating activa- 
tion in the linked cells: in smooth muscle, cross-bridge recruitment and 
cycling rates are varied by regulation of the myoplasmic [Ca ++] and other 
mechanisms. These are reviewed by Somlyo et al. Regulation of cross- 
bridge kinetics (and thereby correlated parameters such as shortening 
velocities, power output, and ATP consumption) confer unique mechanical 
and energetic properties, and are attributable to covalent regulatory 
mechanisms. A corollary is that the role of smooth muscle contractile 
protein isoforms in contributing to functional diversity is minimal com- 
pared with striated muscle. 

A basic concept in striated muscle is activation: a measure of the output 
of the contractile system. Activation is simply assessed as steady state 
active stress or stiffness if a steady-state is not assured. In molecular terms 
activation estimates the number of mechanically coupled cross-bridges 
that can attach to the thin filaments and cycle as determined by the 
myoplasmic [Ca++]. Since activation is physiologically all-or-none in skele- 
tal muscle cells, activation is of little functional importance and now 
receives scant attention. By contrast, activation of smooth muscles is a 
critical functional variable. The assessment of activation is fundamental to 
interpretation of virtually all experiments directed at elucidating the signal 
transduction processes and activation-contraction coupling. Unfortunately 
there is no simple, unambiguous estimate of activation in smooth muscle. 
Stress and stiffness measurements do not discriminate between the contri- 
butions of more cycling cross-bridges and an enhanced duty cycle (slower 
detachment rates). Stress values are little changed when cross-bridge 
phosphorylation levels exceed some 25% even though shortening veloci- 
ties, power output, or ATP consumption continue to increase in proportion 
to phosphorylation. Clearly a force transducer does not allow the accurate 
assessment of activation in the sense that it cannot fully reflect the biologi- 
cal response elicited by a stimulus. Cross-bridge phosphorylation appears 
to estimate activation under many circumstances, as the dependence of 
the mechanical output is a function of steady-state phosphorylation levels. 
However, phosphorylation determinations are destructive, time consum- 
ing, and subject to a long list of artifacts. Furthermore, while phosphoryla- 
tion is generally a valid estimate of activation for intact smooth muscles 
exposed to neurotransmitters, hormones, and depolarization, there are 
situations in which the Ca+÷-dependence of phosphorylation can be modi- 
fied. Such changes in the Ca÷÷-sensitivity are reflections of changes in the 
ratio of myosin light chain kinase activity to phosphatase activity for a 
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given [Ca++], and this necessarily alters the mechanical response for a 
given level of phosphorylation. Both Pfitzer and Arner and Somlyo et al. 
address aspects of this subject in their reviews. No universally valid esti- 
mate of activation is available, and it should be recognized that force 
measurements (dose-response curves, etc.) in smooth muscles do not 
provide the same direct insights into cross-bridge function as in skeletal 
muscle. 

The third factor negatively impacting progress in smooth muscle re- 
search is the fact that cross-bridge regulation and cross-bridge cycling are 
not experimentally separate issues. This differs from striated muscle 
where troponin acts as a thin filament Ca ++ switch that enables cycling 
without affecting the kinetics of cycling. In smooth muscle, cross-bridge 
phosphorylation normally appears to be a requirement for attachment to 
thin filaments (i.e. recruitment, see Pfitzer and Arner). However, the kinet- 
ics of cross-bridge phosphorylation and dephosphorylation are compara- 
ble to the kinetics of cross-bridge cycling. Changes in the ratio of myosin 
light chain kinase activity to phosphatase activity modulate cycling rates, 
and unloaded shortening velocities are directly proportional to phospho- 
rylation. The classic reductionist techniques that were fundamental in the 
elucidation of the sliding filament/cross-bridge mechanism in striated mus- 
cle reduce or abolish regulation of cross-bridge kinetics. Yet this is the 
distinguishing characteristic of smooth muscle. The latter property (Latch) 
depends on the presence of in vivo myosin light chain kinase and phos- 
phatase activities. These enzymes are removed during purification of 
myosin and actin for biochemical studies or for use in motility assays 
including the new single myosin motor measurements. Enzyme activity 
loss also occurs in varying degrees in permeabilized tissues. The effect is to 
make phosphorylation a simple switch for cross-bridge recruitment with 
abolition of changes in cross-bridge cycling rates that depend on a dy- 
namic flux of phosphate at the myosin regulatory light chain. ATPase 
activity becomes more or less directly proportional to phosphorylation as 
does force in some permeabilized tissues. 

Another reductionist technique has undoubtedly distorted our under- 
standing of in vivo function in smooth muscle. This is the far greater 
modulation of behavior associated with the study of intact smooth muscle 
in vitro compared with striated muscle. Provided that ATP production 
rates are not limited, isolated skeletal muscle cells exhibit unaltered con- 
traction and relaxation in respons e to generation of action potentials. With 
few exceptions, isolation of smooth muscle greatly modifies the in vivo 
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level of activation associated with in vivo extracellular signals. Most in 
vitro experimental studies are of the contraction elicited by a neurotrans- 
mitter, hormone or drug and the relaxation following its removal or recep- 
tor blockade. An explosion of recent research shows the importance of the 
nitric oxide (NO)-cGMP inhibitory pathway in virtually all smooth mus- 
cles, whether NO is generated as a neurotransmitter, released from endo- 
thelial or other cells, or generated by smooth muscle in response to recep- 
tor occmpancy. The absence of this inhibitory signal in vitro would be of 
limited significance if the effects of NO on muscle activation were limited 
to the well characterized reductions in the myoplasmic [Ca++], reversing or 
limiting the normal excitatory pathways that determine cross-bridge 
phosphorylation rates. However, evidence is starting to accumulate that 
this pathway has other actions that alter the relationship between force 
and cross-bridge phosphorylation. The implication is that some in vivo 
relaxation mechanisms are not simply the reversal of excitatory pathways. 

Single isolated skeletal muscle cells are important preparations for pro- 
viding information about the basic contractile unit. Single smooth muscle 
cells are not physiological contractile units in the same sense, and isolation 
changes their properties. This includes proteolytic cleavage of the various 
junctions that serve both to couple the force-transmitting cytoskeleton 
from cell to cell or to connective tissue as well as the electrical and chemi- 
cal coupling between cells. Isolation virtually abolishes the force-length 
behavior. Cells may shorten to a length where compressive forces are 
significant and produce the relaxation after a stimulus that super-con- 
tracts isolated, unloaded cells. Variable damage to integral membrane 
proteins including receptors and channels also occurs. Attempts to find 
cell or organ culture conditions that maintain the in vivo phenotype in a 
cell type that is not terminally differentiated have had very limited success. 
While isolated or cultured cells are important for certain electrophysi- 
ological studies (see Kotlikoff et al.), as well as determination of factors 
that may play a role in differentiation or proliferation (Sartore et al.), they 
do not provide a contractile model equivalent to the isolated skeletal 
muscle cell. 

The objectives of the chapters in this issue are ( i ) to critically review 
current information on the mechanisms coupling extracellular regulatory 
signals to regulation of cross-bridge cycling and proliferation in smooth 
muscle, and ( ii ) identify significant gaps or unresolved issues that are 
important topics for future research. The experimental and analytical 
difficulties discussed above are increasingly recognized and surmounted. 
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Elucidation of the molecular and cellular events underlying the biological 
properties of smooth muscle is in the midst of a period of rapid progress. 
While the reviews reveal many gaps to be filled and illustrate areas of 
contention, they also capture the excitement of new discoveries. 
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Applicability of the Sliding Filament/Crossbridge Paradigm to Smooth Muscle 

1 
Introduction 

An evaluation of the mechanisms that regulate the mechanical behavior of 
smooth muscle necessarily must be based on interpretation of the physical 
interactions of the various structural components within the cells, and of 
their integrated role in mediating the transduction of chemical energy into 
mechanical function. The objective of this review is to describe our cur- 
rent state of knowledge with respect to the structure of the contractile 
apparatus of smooth muscle cells and the molecular and cellular basis of 
chemo-mechanical transduction. Great strides were made recently in our 
understanding of the molecular organization of the contractile filaments 
andof  the mechanism for the transduction of chemical energy into move- 
ment by the myosin molecule. There have also been fundamental advances 
in the state of our knowledge of the molecular interactions that regulate 
the organization of contractile and cytoskeletal filaments within the 
smooth muscle cell. Despite these advances, we still do not have an inte- 
grated model of the molecular interactions of contractile and structural 
proteins that can account for the distinctive functional properties of 
smooth muscle cells and tissues. 

The first section of this review will describe the general organization of 
the contractile apparatus of smooth muscle cells, and the basis for the 
transmission of force generated by the contractile apparatus across the 
smooth muscle cell membrane. In  succeeding sections, the molecular 
structure of both the thick and thin filaments and of their organizationin 
smooth muscle cells will be considered. The final section will evaluate the 
contractile behavior of smooth muscle in relation to our present knowl- 
edge of smooth muscle ultrastructure. 

2 
General organization of smooth muscle cells and tissues 

Smooth muscle tissues occur ubiquitously throughout the body and are 
present in almost every organ, where they are subjected to varied mechani- 
cal, hormonal and neural stimuli. Although generalizations can be made 
regarding many features of smooth muscle, it should be recognized that 
great diversity exists in the structure and properties of smooth muscle 
cells and tissues. This diversity enables the functional properties of 
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smooth muscle cells to be highly specialized to the physiologic needs of 
different organs and conditions. A survey of the known differences in the 
ultrastructural features of smooth muscle from different tissues is outside 
the scope of this review. However, some attempt will be made to point out 
important distinctions in the cellular structure of different smooth muscle 
tissues. This section will review the general organization of the filamen- 
tous structures that constitute the contractile apparatus of smooth muscle 
cells, as well as the structural basis for the transmission of force from the 
contractile apparatus to the exterior of the cell. 

2.1 
Structure of smooth muscle tissues 

Most individual vertebrate smooth muscle cells are very small in compari- 
son to skeletal muscle cells, approximately 100-200 pm in length by five 
~m in diameter. The volume of a smooth muscle cell is comparable to that 
of a monocyte, which is a sphere of approximately 19 ~m in diameter 
(Gabella, 1990). (An exception to this is amphibian stomach smooth mus- 
cle where the cells may be 10 times larger). In the relaxed state, smooth 
muscle cells are usually long and spindle-shaped in form, with a high 
surface to volume ratio; however, they can undergo large changes in length 
and width during contraction. 

Individual smooth muscle cells are usually densely packed within a 
tissue.The amount of extracellular space ranges from as little as 15% in 
some visceral smooth muscles to as much as 50 to 60% in some large 
arteries, such as the rat aortic media (Gabella 1990). Adjacent smooth 
muscle cells within a tissue exhibit junctions along the plasma membrane 
that enable them to be functionally coupled. Gap junctions, which are 
much more common in some muscle types than in others, provide hydro- 
philic channels that connect the cytoplasm of adjoining muscle cells, and 
allow for the exchange of ions and small molecules. Intermediate junc- 
tions, also called attachment plaques, are junctions of the plasmalemma of 
adjacent cells at the sites of attachment of the myofilaments. These junc- 
tions provide mechanical coupling between adjacent smooth muscle cells 
(see Section 2.3). 

The overall structural configuration of groups of smooth muscle cells 
varies widely among different organs. In some tissues, such as the taenia 
coli, smooth muscle cells are grouped into cords or bands that run ap- 
proximately parallel to the long axis of the tissue. The walls of many hollow 
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organs, as well as of parts of the vascular system, are made up of multiple 
sheets or layers of smooth muscle cells, with adjacent layers sometimes 
running at different angles. The three-dimensional organization of 
smooth muscle tissue may also vary significantly between different re- 
gions of the same tissue type. For example, the orientation of the smooth 
muscle cells is primarily circumferential in large bronchi; whereas muscle 
cells may be oriented obliquely or helically in small bronchi and distal 
regions of the bronchial tree (MacYdin 1929). 

2.2 
Organization of Cytoplasmic filaments in smooth muscle cells 

Smooth muscle cells contain a single centrally located nucleus with its 
associated organdies. The peripheral and distal regions of the smooth 
muscle cell are packed with filaments (Figure 1). Three species of filaments 
are observed: the thin filaments, approximately seven nm in diameter, that 
are composed primarily of actin; the relatively less abundant thick fila- 
ments, 12-15 nm in diameter, composed primarily of myosin; and the 
intermediate filaments, approximately 10 nm in diameter, composed pri- 
marily of desmin in visceral muscles (Bennett et al 1978) or vimentin in 
vascular muscles (Frank and Warren 1981, Gabella 1984, Bagby 1990, Som- 
1yo et al 1973, Somlyo 1980). The actin and myosin containing thick and 
thin filaments, the myofilaments, are generally considered to constitute the 
contractile apparatus; whereas the intermediate filaments, which are much 
less numerous than the myofilaments (Bagby 1990), are generally believed 
to play a largely structural role. Intermediate filaments are grouped into 
bundles that run the length of the cell and exhibit ramifications to the cell 
membranes (Tsukita and Ishikawa 1983, Draeger et al 1990). In transverse 
sections of vertebrate smooth muscle, actin filaments can be seen packed 
in hexagonal arrays that form cable-like bundles. The spaces around the 
actin filament bundles are occupied by myosin filaments (Figure 1) (Ga- 
bella 1984, Cooke et al 1987, Ashton et al 1975, Somlyo 1980). 

The length of myosin filaments in smooth muscle has been measured in 
the range of 1.5-3 microns (Ashton et a11975, Cooke et at 1989, Small 1977, 
Small et al 1990, Somlyo 1980). Measurements of actin filament lengths 
from different laboratories vary significantly. Small et al (1990) reported 
actin filament lengths in chicken gizzard smooth muscle cells to range 
from 3 to 6 ~tm. These thin filament lengths are significantly longer than 
those of striated muscles. In contrast, Drew and Murphy (1997) reported 



12 S.J. Gunst 

Fig. 1. Organization of filaments in smooth muscle cells. A. Vas deferens smooth muscle 
cell shown in transverse section. Thick filaments are surrounded by multiple thin 
filaments throughout the cytoplasm. Dense bodies ("db") are round or oval in shape in 
transverse section but elongated in shape in oblique sections. Arrows point to interme- 
diate filaments (10 nm) that surround the dense bodies. B. Longitudinal section of 
portal anterior mesenteric vein smooth muscle cell. Thin filaments (arrows) can be seen 
inserting on both sides of the dense bodies (db). Intermediate filaments (arrowheads) 
extend laterally from dense bodies and sometimes connect a series of dense bodies to 
form a chain. Magnification: x 70,000. Reproduced from Bond and Somlyo (1982) The 
lournal of Cell Biology 95:403-413 with permission of Rockefeller University Press 

the average length of individual actin filaments in swine stomach smooth 
muscle to be 1.35 pm, a length which is similar to that of actin filaments in 
striated muscles. The ratio of  actin to myosin filaments varies among 
different smooth muscle tissues, ranging from as low as 8:1 in chicken 
gizzard (Nonomura 1976) to approximately 15:1 in vascular muscle (Som- 
1yo et al 1973), to as high as 50:1 in isolated amphibian visceral muscle 
(Cooke et al 1987). 

There is no apparent lateral register between myofilaments in smooth 
muscle cells. No striations or regular repeats are visible by electron or light 
microscopy comparable to those observed in striated muscle tissues. In 
vertebrate visceral smooth muscles, bundles of parallel actin filaments are 
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oriented along the long axis of the cell (Gabella 1'984, Cooke et al 1987). A s 
the long bundles of actin filaments split and merge with one another, they 
do not run perfectly parallel for the entire cell length, but insert acutely 
into the plasmalemma at points all along the cell (Gabella 1984). In vascu- 
lar smooth muscle cells, which are shorter than visceral smooth muscle 
cells, bundles of myofilaments have been observed to extend obliquely 
from the luminal to the adventitial side of the cell (Gabella 1990). 

2.3 
Membrane associated dense bands 

In electron microscopic sections of mammalian vascular and visceral 
smooth muscle cells, dense areas of plasma membrane specialization are 
observed. The plasma membrane dense areas appear to be longitudinal 
bands oriented along the long axis of the cell membrane (sometimes 
described as ribs) which alternate with membrane areas containing longi- 
tudinal rows of invaginated vesicles called surface caveolae (Gabella 1984, 
Gabella 1990, Inoue 1990, Small 1985). The longitudinal densebands range 
from 30-40 nm to 1 micron wide depending on the muscle type and may 
occupy 30-50% of the cell surface in the nuclear region of the cell and as 
much as 100% of the surface toward the ends of the cell (Gabella 1984, 
Gabella 1990, Bagby 1990, Small 1985). However, this rib-like geometry of 
the plasma membrane dense areas may differ in different types of smooth 
muscle. Membrane dense areas visualized by immunofluorescence stain- 
ing of vinculin, talin or a-actinin in chicken gizzard smooth muscle ap- 
peared as regularly spaced transverse streaks, plaques or chevrons 
(Draeger et al 1989, Fay et al 1983). Because of the differences in appear- 
ance in different studies, membrane associated dense areas have been 
variously referred to as membrane-associated dense bands," dense bodies" 
or dense-plaques" (Bagby 1990). 

There is considerable evidence that the membrane-associated dense 
bands serve as the attachment points of actin filaments to the plasma 
membrane and that they mediate the transmission of force across the 
membrane. Bundles of actin filaments and intermediate filaments can be 
seen penetrating the inner surface of the membrane-associated dense 
bands in electron micrographs (Small 1985, Gabella 1984, Ashton et al 
1975, Pease and Molinari 1960). Dense bands are sometimes coupled to 
each other in adjacent cells with an intercellular gap of 40-60 nm which is 
occupied by electron dense material, forming attachment plaques. As at- 
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tachment plaques are coupled to bundles of myofilaments within each of 
the cells, they provide mechanical coupling between the cells (Gabella 
1990). Because the actin filaments of smooth muscle cells terminate at 
points along the entire length of the cell membrane, the transmission of 
force in smooth musde cells is diffused along the entire length and width 
of the cell surface, rather than being concentrated at a few loci within the 
cell. 

The plasma membrane dense areas of smooth muscle cells are similar 
in their molecular composition to the focal adhesion sites of cultured cells 
(Turner and Burridge 1991). The primary transmembrane components of 
these sites are transmembrane integrins, which attach to matrix proteins 
in the extracellular space at one end and to cytoplasmic proteins within 
the cell at the other. More than a dozen known cytoplasmic proteins 
localize to these plasma membrane sites. The most abundant are vinculin 
and talin. Although there is considerable biochemical evidence that these 
proteins function to link actin filaments to transmembrane integrins, the 
exact nature of the molecular interactions that serve to link actin filaments 
to integrins remains poorly understood (reviewed in Burridge and 
Chrzanowska-Wodnicka 1996). Recent evidence indicates that the binding 
of talin to integrins is critical for the attachment of actin to occur (Lewis 
and Schwartz 1995). 

Non-muscle cells transmit mechanical tension generated by the actin 
cytoskeleton to the extracellular matrix via focal adhesion sites (Ingber 
1991). Conversely, when external mechanical stress is applied to trans- 
membrane integrin receptors, it is transmitted to the actin cytoskeleton 
(Wang et al 1993). In non-muscle cells, the integrin receptors at focal 
adhesion cites can initiate an intracellular signaling cascade in response to 
mechanical stimulation that leads to cytoskeletal rearrangements and 
other cellular events. There is currently little information regarding the 
role of the membrane-associated dense plaque proteins in mediating 
mechanotransduction processes in smooth muscle. However, both talin 
and paxillin, which are constituents of the dense plaques in smooth muscle 
cells, undergo phosphorylation during contractile stimulation in tracheal 
muscle (Pavalko et al 1995, Wang et al 1996), and the level of paxillin 
phosphorylation is sensitive to changes in muscle length (Tang et a11998). 
The similarities in the biochemical composition of focal adhesion sites in 
non-muscle cells and smooth muscle dense plaques suggest that they are 
likely to share many functional properties. 
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Cytosolic electron dense areas are also observed in smooth muscle cells 
that are referred to as dense bodies." Dense bodies are distributed rela- 
tively uniformly throughout the cytoplasm (Tsukita and Ishikawa 1983, 
Bond and Somlyo 1982, Fay et at 1983). They are obliquely oriented elon- 
gated structures that can appear circular or oval in shape under electron 
microscopy depending on the plane of section (See Figure 1). Cytoplasmic 
dense bodies have been measured up to 1.5 pm in length (Bond and 
Somlyo 1982, Tsukita and Ishikawa 1983, Ashton et al 1975, Fay et al 1983). 

There is extensive microscopic evidence that documents the association 
of cytoplasmic dense bodies with actin filaments as well as with interme- 
diate filaments (Ashton et al 1975, Bond and Somlyo 1982, Tsukita and 
Ishikawa 1983, Bagby 1990). Bond and Somlyo (1982) describe chains of 
elongated dense bodies visible in longitudinal sections that appear to have 
actin filaments inserting at both ends as well as along the entire length of 
the dense body (Figure 1). Others have described the insertions of actin 
filaments to be mainly at the poles of the dense bodies (Tsukita and 
Ishikawa 1983). Actin filaments appear in association with virtually all of 
the cytoplasmic dense bodies. The decoration of actin filaments with 
myosin subfragments (S-1) indicates that the filaments are attached with 
the right polarity for force generation (arrowheads pointing away from the 
dense bodies)(Bond and Somlyo 1982, Tsukita and Ishikawa 1983). Oppo- 
site polarities are observed on either side of a given dense body, that has 
led to the suggestion that the cytoplasmic dense bodies are functionally 
equivalent to the Z-bands of striated muscle. 

Intermediate filaments can be seen on the lateral sides of the dense 
bodies, often forming loops at their lateral surface (Tsukita and Ishikawa 
1983, Bond and Somlyo 1982) (Figure 1). Chains of dense bodies appear to 
be connected by intermediate filaments. However, the 10 nm filaments that 
surround a given dense body do not run parallel to the contractile unit and 
associate with the next dense body in series; but are oriented obliquely 
toward another dense body of a different contractile unit. This suggests 
that the network of 10 nm filaments connects the force generating units 
though their attachment to the dense bodies (Bond and Somlyo 1982). 
Kargacin et al (1989) and Draeger et al (1990) analyzed the movement of 
dense bodies in contracting isolated smooth muscle cells, and suggested 
that dense bodies provide mechanical coupling between the contractile 
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apparatus, the cytoskeleton, and the cell surface. Kargacin et al (1989) 
found that groups of dense bodies that are laterally aligned with respect to 
the vertical axis of the cell remain at fixed distances from each other 
during contraction. This result suggests that they are linked or constrained 
by semi-rigid non-contractile elements. Laterally aligned dense bodies 
move rapidly toward one another during contraction, indicating that they 
are attached to contractile filaments. Similarly, Draeger et al (1990) ob- 
served dense bodies to be organized in a regular geometric arrangement 
that is retained during contraction, although the intermediate filaments 
that link the dense bodies become crumpled and disordered. These obser- 
vations are consistent with a structural role for the dense bodies as sites 
which anchor actin filaments and thereby serve to organize the arrange- 
ment of contractile units within the cell. 

The molecular mechanisms that couple the contractile filaments to the 
dense bodies are not established. Dense bodies contain the actin-cross- 
linking protein, ot-actinin, as do the Z-lines of skeletal muscle. Dense 
bodies also contain actin and probably calponin, although it is currently 
unclear whether the a and y ("smooth muscle") isoforms of actin (See 
Section 4.2) are both present in dense bodies or only the [3 "non-muscle" 
isoform (Small 1995, North et al 1994a, 1994b, Mabuchi et al 1996). Ultras- 
tructural and biochemical data obtained by Mabuchi et al (1997)suggests 
that one function of calponin may be to couple actin filaments and inter- 
mediate filaments at dense bodies, 

3 
Molecular structure of the thick filaments 

Smooth muscle myosin has distinctive characteristics that may form the 
basis for many of the unique functional properties exhibited by smooth 
muscle tissues. The following section will first review the molecular struc- 
ture of smooth muscle myosin and the functional implications of its dis- 
tinctive characteristics. This will be followed by a discussion of the regula- 
tion of the assembly of myosin into thick filaments, and the molecular 
organization of the thick filaments of smooth muscle tissues. 
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The thick filaments of smooth muscle are made up of monomeric myosin 
molecules that polymerize to form filaments. The smooth muscle myoSin 
molecule is grossly similar to that of skeletal muscle myosin. It is a large 
asymmetric protein (MW approximately 520 kI)a) which is made up of six 
polypeptide chains: two -205 kDa heavy chains that form a dimer, and two 
pairs of light chains, the 20 kDa "regulatory" light chains and the 17 kDa 
"essential" light chains (Reviewed by Adelstein and Sellers 1996) (Figure 
2). The myosin heavy chain dimer makes up the main body of the mole- 
cule, with each heavy chain containing a slightly elongated globular head 
at the amino terminus. The myosin globular heads are connected to a long 
a-helical coiled tail of approximately 120 kDa that aggregates to form the 
rod-like backbone of the thick filament. Each myosin globular head con- 
tains the functional motor domains of the molecule which include the 
nucleotide and actin-binding regions. A single essential and regulatory 
light chain are associated with each head. The heavy chain tails end in a 
short sequence at the carboxy terminus that is not predictive of a coiled 
structure. The entire molecule is about 165 nm long, the rod portion being 
about 150 nm in length. 

The myosin heads can be cleaved enzymaticatly from the rest of the 
heavy chain by mild proteolysis to yield "subfragment-l" (S-l), which 
contains a single globular myosin head and its associated essential and 
regulatory light chains (Ikebe and Hartshorne 1985, Adelstein and Sellers, 
1996). The S-1 fragment is very soluble, and contains all the necessary 
elements to generate movement of actin during ATP hydrolysis 
(Toyoshima et al 1987, Rayment et al 1993a and 1993b, Itakura et al 1993, 
Lowey and Trybus 1995). 

Three-dimensional structural analysis of chicken skeletal muscle 
myosin subfragment-1 has been performed by Rayment et al (1993b) (Fig- 
ure 3). As smooth and skeletal muscle myosins show considerable homol- 
ogy in the primary sequences of the head region, particularly in the re- 
gions which are thought to be involved in nucleotide or phosphate bind- 
ing, it is probable that the three-dimensional structure of the smooth 
muscle myosin S-1 subfragment is similar to that of skeletal muscle (War- 
rick and Spudich 1987, Adelstein and Sellers 1996). 

The asymmetric S-1 fragment of myosin can be divided into a globular 
component containing the motor domain that is formed exclusively from 
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Fig. 2. Structure of the myosin molecule. Schematic representation (components are 
not drawn to scale) 

the myosin heavy chain, and an extended a-helical motif that binds the 
essential and regulatory light chain subunits. The myosin motor domain 
has two proteolytically sensitive regions. Digestion at these sites gives rise 
to three fragments, referred to as the 25 kDa, the 20 kDa, and the 50 kDa 
fragments, that constitute a large six-stranded ~-sheet of unknown func- 
tion (Balint et al 1975, Mornet et al 1979, Rayment et al 1996). The nucleo- 
tide-binding pocket is located at one end of the central strand of this sheet. 
The 50 kDa fragment is split by a large cleft that separates it into an upper 
and a lower domain. Several potential actin binding regions have been 
identified, that generally lie on both sides of the large cleft on the opposite 
side of the head from the nucleotide-binding pocket. 

The essential and regulatory light chains are localized along an a-heli- 
cal segment of the heavy chain at the junction of the globular head and the 
coiled-coil rod portion of myosin subfragment-1. The regulatory light 
chain is attached to the C-terminal region of the S-1 heavy chain while the 
essential light chain is localized closer to globular head (Rayment et at 
1993b). The portion of the a-helical rod at which the light chains are 
attached is frequently referred to as the "neck" region. The a-helical heavy 
chain or "neck" has a gradual bend in the region between the two light 
chains and a sharp bend near the junction of the globular head to the rod. 
The organization of the structures suggest that the conformation of the 
a-helical rod portion of the myosin heavy chain molecule may be stabi- 
lized by the binding of the essential and regulatory light chains. 

The non-helical tailpiece present at the carboxy-terminus of smooth 
and non-muscle myosin rods is distinct from the short tailpiece present in 
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Act 

Fig. 3. Structure of myosin S-1. Ribbon representation of model of myosin S-I showing 
the active (nucleotide-binding) and the actin-binding sites. Cleft can be seen at the 
actin-binding site. Residues of the essential and regulatory light chains are distin- 
guished by the addition of 2000 and 3000 respectively. Reproduced with permission 
from Rayment et al (1993) Science 261:50-58. Copyright 1993 American Association 
for the Advancement of Science 

striated muscle myosins. In smooth and non-muscle cells, two different 
length isoforms of  the tailpiece have been identified, that result in 200 kDa 
(SM2) and 204 kDa (SM1) heavy chain isoforms (Nagai et al 1989, Babij 
and Periasamy 1989). These isoforms are expressed to the same extent at 
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the protein level in some smooth muscle cell tissues (Kelley et al 1991, 
1993), but are expressed unequally in other smooth muscle tissues (e.g., 
Morano et al 1993, Mohammad and Sparrow 1989, Cavaille et al 1986, 
Rovner et al 1986, Sparrow et al 1988). The expression of these isoforms 
may also vary during development (Eddinger and Murphy 1991, Eddinger 
and Wolf 1993, Kuro-o et al 1989). A number of studies have attempted to 
correlate functional properties of smooth muscle tissues with the differ- 
ences in the expression of these heavy chain isoforms. However, a consis- 
tent correlation between the myosin heavy chain isoform expression and 
the functional properties of intact smooth muscle tissues has not emerged 
(e.g., Sparrow et al 1988, Hewett et al 1993). Studies of functional correla- 
tions of isoform expression in tissues are complicated by the fact that the 
expression of smooth muscle heavy chain composition may vary signifi- 
cantly between individual cells within a tissue, and that heavy chain iso- 
forms can form either SM-1 or SM-2 homodimers or SM-1/SM-2 heterodi- 
mers (Tsao and Eddinger 1993, Meer and Eddinger 1996). However, no 
differences are detected in the rates at which the 200 and 204 kDa isoforms 
of myosin propel actin filaments in vitro motility assays (Kelley et a11992). 

Another set of smooth muscle heavy chain isoforms that have either the 
insertion or omission of 7 amino acids in the head domain near the 
ATP-binding region have been identified (Babij 1993, Kelly et al 1993, 
White et al 1993). The insertion appears to be present in visceral smooth 
muscle tissues but is absent in tonic vascular smooth muscle, and appears 
to confer functional differences in the kinetic properties of smooth muscle 
myosins from visceral smooth muscle. There is evidence from studies in 
the motility assay that the visceral smooth muscle isoform has higher 
ATPase activity and moves actin filaments faster than the vascular isoform 
(Kelly et al 1993, Rovner et al 1997). However, because the head domain 
isoforms may be associated with different tail domain isoforms in differ- 
ent tissues, as well as with different light chain isoforms, it has been 
difficult to establish causal relationships between myosin heavy chain 
isoforms and myosin kinetics with certainty. (Reviewed by Somlyo 1993, 
Murphy et al 1997). 

Two isoforms of the 17 kDa isoform of smooth muscle myosin light 
chains have been identified (LC17a and LC17b). These isoforms have a 
difference in five of the nine carboxy terminal amino acids (Lash et a11990, 
Nabeshima et a11987). The LC17a/LC17b ratio tends to be higher in phasic 
fast than in tonic slow muscles (Malmqvist and Arner 1991, Fuglsang et al 
1993) although high LC17a/LC17b ratios have also been reported in some 



Applicability of the Sliding Filament/Crossbridge Paradigm to Smooth Muscle 21 

tonic slow muscles (Helper et al 1988, Matmqvist and Arner 1991). There 
are no reported isoform variants of the 20 kDa smooth muscle and non- 
muscle regulator),-light chains that have functional correlations (Taubman 
et al 1987,Kumar et al 1989) 

3.2 
The myosin motor 

In smooth muscle cells, the development of force results from the MgATP- 
dependent cyclical interaction of myosin crossbridges in thick filaments 
with actin in the thin filaments. Myosin is believed to generate force 
and/or  motion by mechanical cycles during which the myosin head re- 
petitively attaches to actin, undergoes a conformational change that re- 
suits in a power stroke and then detaches (Reviewed by Warrick and 
Spudich 1987). The energy required for the mechanical power is generated 
by the enzymatic hydrolysis of ATP by the globular myosin head. The 
ATPase cycle underlying the transduction of chemical energy into me- 
chanical force by crossbridges is believed to be similar in striated and 
smooth muscles (Taylor 1987). 

Based on structural information obtained on the myosin S-1 fragment 
and on actin and the actomyosin complex (Holmes et al 1990, Kabsch et al 
1990, Rayment et al 1993), Rayment et al proposed a structural hypothesis 
to explain the conversion of chemical energy into directed movement. This 
model, sometimes referred to as the "lever-arm hypothesis," has sub- 
sequently been modified based on additional structural information 
(Fisher et at 1995a and 1995b). (A recent review of this model has been 
published by Rayment et al (1996). An important tenet of this hypothesis 
is that myosin interacts with actin in a stereospecific manner 
which requires a unique orientation of the myosin molecule for strong 
bindingto actin and for the power stroke to be initiated. The binding of 
ATP to myosin while it is bound to actin is proposed to open the cleft that 
splits the central 50-kDa region of the heavy chain and disrupts the 
orientationally-specific strong actin-myosin interaction. This results in a 
series of conformational changes in the myosin globular head that reduces 
its affinity for actin and allows it to hydrolyze ATP to ADP and Pi. As the 
myosin rebinds to actin and releases the nucleotide, the conformational 
changes are reversed causing movement of the myosin relative to actin. In 
this model, the light-chain binding domain (the "neck" region) pivots 
about a fulcrum near where the globular head and light chain binding 
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domains abut one another, resulting in the displacement of actin relative 
to myosin. Support for this hypothesis was provided by studies using 
myosin mutants that had different "neck" lengths (Uyeda et al 1996, Kur- 
zawa et al 1997). As predicted, the length of the neck region is correlated 
with filament sliding velocity in a motility assay. The lever arm hypothesis 
has been recently reviewed by Block (1996). Studies using smooth muscle 
myosin mutants in which the length of the neck region is modified have 
confirmed that this mechanism is essentially the same for smooth muscle 
and skeletal muscle myosins (Guilford et al 1997b). 

Smooth and skeletal muscle myosins have important functional differ- 
ences with respect to their motor activities and their regulation. The differ- 
ences in motor properties are evident in the behavior of smooth and 
skeletal muscle myosins in an in vitro motility assay. Purified smooth 
muscle myosin propels actin filaments at one tenth the velocity of skeletal 
muscle myosin and produces an average of 3-4 times more force per unit 
time period than skeletal muscle myosin, as measured by a micro-needle 
assay (Warshaw et al 1990, Van Buren et al 1994). These differences in the 
functional properties of smooth and skeletal muscle myosins at the mo- 
lecular level parallel differences in the functional properties of smooth 
and skeletal muscle tissues. Smooth muscle tissues produce the same 
isometric force per cross-sectional area as skeletal muscle, but contain 
only one fifth as much myosin (Murphy et al 1974). In addition, the maxi- 
mal shortening velocities of smooth muscle tissues are 1-2 orders of 
magnitude slower than those of skeletal muscles (Murphy et al 1997). 

Guilford et al (1997a) evaluated the molecular basis for the differences 
in the motor properties of smooth and skeletal muscle myosin, using a 
laser-trap to measure the force and displacement generated by individual 
smooth and skeletal muscle myosin molecules in vitro. Although individ- 
ual smooth and skeletal muscle myosin molecules produced similar levels 
of unitary force and displacement, smooth muscle myosin remained at- 
tached to actin for longer average time periods than skeletal muscle 
myosin, suggesting that it has longer "duty cycle." Thus, the greater average 
force obtained with smooth muscle myosin in the motility assay can be 
attributed to differences in the average attachment time of smooth and 
skeletal muscle myosins to actin. These differences are consistent with 
previous biochemical measurements using actomyosin solutions that 
demonstrated slower rate constants for many of the steps in the ac- 
tomyosin ATPase cycle for smooth muscle myosin relative to skeletal mus- 
cle myosin (Marston and Taylor 1980, Siemankowski et al. 1985). Sata et al 
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(1997) demonstrated that the difference in the maximum actin-activated 
ATPase activity of smooth and skeletal muscle myosin is completely deter- 
mined by the motor domain of the myosin head by using chimeric myosin 
molecules composed of combinations of skeletal and smooth muscle 
myosin. 

The difference in the regulatory properties of vertebrate smooth and 
skeletal muscle myosins lies in the role of the 20 kDa regulatory light chain. 
In smooth muscle tissues the phosphorylation of a single serine residue 
(serine-19) in the N-terminus of the regulatory light chain is the switch for 
turning on actin-activated ATPase activity and contraction. In vitro, 
smooth muscle regulatory light chain phosphorylation increases actin-ac- 
tivated ATPase activity by 50 to 100-fold. In contrast, in skeletal muscle 
phosphorylation of the 20 kDa myosin regulatory light chain is not neces- 
sary for the activation of actin-activated myosin ATPase activity, and the 
effects of regulatory light chain phosph6rylation or even the presence of 
this light chain on myosin ATPase activity are small (2-fold) (Hartshorne 
1987, Wagner and Giniger 1981, Sivaramakrishnan and Burke 1982). 

Considerable progress has been made recently in evaluating the mo- 
lecular basis for the regulation of actin-activated ATPase activity of 
smooth muscle myosin by the regulatory light chain. The COOH-terminal 
portion of the regulatory light chain appears to be essential for the full 
regulation of motor activity in smooth muscle myosin both with respect to 
the complete inhibition and the complete activation of the myosin mole- 
cule (Trybus 1994a, 1994b). Sata et al (1997) reported that the sensitivity of 
myosin to regulation by light chain phosphorylation appears to be con- 
ferred by the light chain-associated regulatory region of the myosin head 
at the C-terminal and not the N-terminal globular region, that determines 
the rate of ATP hydrolysis. The two-headed structure of myosin is critical 
for phosphorylation-mediated regulation (Matsu-ura and Ikebe, 1995, Sata 
et al 1996, Cremo et al 1995). The data of Sata et al (1996) suggests that the 
interaction between the myosin heads at the C-terminal portion of S-1 (the 
regulatory domain) is important for the regulation of myosin motor activ- 
ity. Recent work by Trybus et al (1997) suggests that the myosin rod 
mediates specific interactions with the globular head that are required to 
obtain the complete inactivation of myosin. Myosin cannot be fully inacti- 
vated unless a length of rod approximately equal to the myosin head is 
present (Trybus et al 1997). 
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3.3 
Myosin filament assembly. 

S. J. Gunst 

Smooth muscle myosin monomers assemble to form myosin filaments 
both in vitro and in vivo (For review see Trybus 1996). The region of the 
myosin molecule that regulates the assembly of monomeric myosin into 
filaments appears to be localized to a 150-residue fragment at the C-termi- 
nal of the rod (Cross and Vandekerckhove 1986). Smooth and non-muscle 
myosins share a common feature in that the phosphorylation of the 20 kDa 
regulatory light chain can regulate the assembly of monomeric myosin 
into filaments in vitro, a feature not shared by skeletal muscle myosin 
(Scholey et al 1980 and 1981, Suzuki etal 1978, Trybus et al 1982, Trybus 
and Lowey 1984, Craig et al..1983, Smith etal 1983, Kendrickqones et al 
1987, Trybus 1989, Trybus and Lowey 1987). Studies of myosin in vitro 
have demonstrated that if the regulatory light chain of myosin filaments is 
not phosphorylated, the addition of stoichiometric amounts of MgATP 
results in the disassembly of myosin filaments into a soluble monomeric 
conformation of myosin in which the heavy chain rod is bent into thirds 
(Trybus and Lowey 1984, Trybus et al 1982). Phosphorylation of the regu- 
latory light chain results in the unfolding of the rod and the reassembly of 
the monomers into myosin filaments. 

Despite several decades of investigation, the rote of phosphorylation of 
the myosin regulatory light chain in regulating the process of myosin 
filament assembly and disassembly in vivo is not completely settled. A 
number of early ultrastructural studies suggested that the myosin fila- 
ments of vertebrate smooth muscle exist in a labile state of organization in 
vivo, Myosin filaments were initiallyobserved by electron microscopy only 
in contracted smooth muscles (Kelly and Rice 1969, Shoenberg 1969). The 
discovery by Watanabe and colleagues (Suzuki et al 1978) that smooth 
muscle light chain phosphorylation promoted myosin~ filament assembly 
in vitro fueled interest in the possibility that the state of myosin light chain 
phosphorylation might regulate myosin filament assembly in vivo. How- 
ever subsequent electron micrographic studies clearly demonstrated 
myosin filaments in both relaxed and contracted smooth muscle tissues, 
and it was concluded that the earlier findings in which myosin filaments 
were not observed resulted from problems with fixation techniques (Som- 
lyo 1980, Devine and Somlyo 1971, Cooke and Fay 1972, Small 1977). 
Subsequent electron microscopic images of frozen relaxed smooth muscle 
clearly showed numerous thick filaments in muscles in which more than 
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95% of the myosin filaments were determined to be dephosphorylated 
(Somlyo et al 1981, Tsukitaet al t982, Xu et al 1996). 

Although there is now general agreement that dephosphorylated 
myosin remains in filamentous form in uncontracted smooth muscle, the 
possibility remains that there is a pool of folded monomeric myosin mole- 
cules in vivo which is recruited to myosin filaments when the muscle is 
activated and phosphorylation of the regulatory myosin light chains oc- 
curs (Xu et al 1997). T.his could regulate an activation-dependent modula- 
t ion of myosin filament number or length. There are several studies which 
provide support for this idea. Cande et al (!983)reported that the thick 
filaments of isolated glycerinated chicken gizzard smooth muscle tissues 
are labile under conditions resembling the relaxed state, mimicking the 
labile properties of myosin filaments :in vitro. These investigators sug- 
gested that in vivo dephosphorylated thick filaments may be in equilib- 
rium with a small pool of monomeric myosin that diffuses out of glyceri- 
nated tissues driving the disassembly of thick filaments. Other evidence 
comes from light and electron microscopic studies, in which higher level of 
birefringence and a greater density of thick filaments has been observed in 
contracted,than in relaxed rat anococcygeus smooth muscle (Gillis et al 
1988, Godfraind-De Becker and Gillis 1988). Recently, Xu et al (1997) 
reported a 23% increase in myosin filament density in the rat anococcy- 
geus smooth muscle using low temperature electron microscopic tech- 
niques, although they found no change in myosin filament density with 
contraction of the guinea pig taenia coli. However, using monoclonal anti- 
bodies to specifically label monomeric myosin, Horowitz et al (1994) de- 
tected only trace amounts o f  monomeric myosin in both relaxed and 
contracted gizzard smooth muscle and concluded that the assembly/dis- 
assembly of myosin is unlikely to play a significant role in the contrac- 
tiontretaxation cycle in gizzard smooth muscle. Overall, the accumulated 
evidence does not provide support for an extensive process of assembly 
and disassembly of myosin filaments during the contraction/relaxation 
cycle in smooth muscle tissues. However, it is possible that increases in the 
number or length of existing myosin filaments may play a role in regulat- 
ing the length-adaptive properties of some smooth muscle tissues (Pra- 
tusevich et al 1995) (See Section 5.2). 

The question of why dephosphorylated smooth muscle myosin fila- 
ments exhibit greater stability in vivo than in vitro remains unanswered. 
One possibility is that the intracellular concentration of myosin in vivo 
exceeds the critical concentration necessary for filament assembly even for 
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dephosphorylated myosin (Kendrick-Jones et al 1987). Alternatively, 
myosin filaments may be stabilized by caldesmon or telokin (Katayama et 
al 1995, Shirinsky et al 1993), a protein identical to the C-terminal portion 
of myosin light chain kinase which is expressed only in smooth muscle 
tissues (Ito et aI 1989). The assembly of smooth muscle myosin into thick 
filaments is promoted in the presence of F-actin, which could favor the 
formation of filamentous myosin in vivo (Applegate and Pardee 1992). The 
ability of myosin to assemble may also be regulated by the structure of the 
nonhelical tailpiece, which occurs in two isoforms (Ikebe et a11991, Hodge 
et al 1992). Thus myosin heavy chain isoforms might play a role in deter- 
mining in vivo myosin filament lability in different tissues. 

On the basis of in vitro studies with whole myosin, Wagner and Vu 
(1986,1987) hypothesized that the state of assembly of myosin might be 
more important in determining myosin ATPase activity than the state of 
phosphorylation of the regulatory light chain. They found that when un- 
phosphorylated and phosphorylated gizzard myosins were monomeric, 
their MgATPase activities were not activated by actin. In contrast, when 
myosin was in filamentous form, MgATPase activity could be stimulated 
by actin even when the filaments were not phosphorylated, although the 
MgATPase activity was lower than for phosphorylated filamentous myosin 
(Wagner and Vu 1987). However, this idea is not supported by the results of 
Trybus (1989). Using an antibody to stabilize dephosphorylated filamen- 
tous myosin, she found that regulatory light chain phosphorylation alone 
is sufficient to regulate the ATPase activity of filamentous myosin in the 
absence of changes in the state of myosin assembly. However, the effect of 
regulatory light chain phosphorylation on ATPase activity was further 
increased if myosin was allowed to disassemble to the folded monomeric 
state when it was dephosphorylated. 

3.4 
Structure of myosin filaments in vivo 

Largely because of the lability of filamentous myosin (Suzuki et al 1978), 
controversy has surrounded the question of the three-dimensional ar- 
rangement of myosin molecules within myosin filaments in vivo. Some 
early ultrastructural data suggested a bipolar symmetry and a helical 
arrangement of myosin molecules along a rod-shaped filament, similar to 
the organization of myosin filaments found in skeletal muscle (Ashton et al 
1975, Shoenberg and Stewart 1980). In a bipolar filament, the myosin heads 



Applicability of the Sliding Filament/Crossbridge Paradigm to Smooth Muscle 

G 0(2000 
Bipolar 00000 I I I ~-~ 

27 

Side-polar 

Fig. 4. Myosin filament structure. Diagrams of myosin monomer packing in non-helical 
side-polar and helical bipolar filaments. For simplicity, only one myosin head per 
monomer is shown. A bare zone is observed at the center of the bi-polar filament, and 
at each end of the side-polar filament 

must reverse polarity at the center of the filament, resulting in a central 
bare zone. In vitro, the assembly of smooth muscle myosin monomers 
results preferentially in side-polar filaments, in which all myosin heads 
have the same polarity along one edge of the filament, and the opposite 
polarity on the other edge, with bare zones at each filament end (Craig and 
Megerman 1977, Trybus and Lowey 1987, Cross et al 1991, Hinssen et al 
1978). A side-polar filament with these characteristics can be generated by 
packing unfolded myosin monomers with the head regions extending in 
opposing directions on each side of the filament (Figure 4). 

Most recent electron microscopic evidence for myosin filament struc- 
ture in vivo favors a non-helical side-polar arrangement of crossbridges 
along a rodlike myosin filament, with no central bare zone (Cooke et al 
1989, Xu et al 1996). In ultrastructural studies, bare areas have been ob- 
served at the ends of myosin filaments in vivo and little evidence for a 
central bare zone has been obtained (Somlyo 1980, Hinssen et al 1978, Xu 
et al 1996). As in skeletal muscle myosin, a continuous 14 nm axial repeat 
arising from crossbridges distributed along the myosin filament is charac- 
teristic of native as well as synthetic myosin filaments from smooth muscle 
(Small 1977, Cooke et al 1989, Hinssen et al 1978, Craig and Megerman 
1977, Xu et al 1996). However, the crossbridges in smooth muscle filaments 
are observed to project in opposite directions on opposite sides of the 
filament, and the tails form antiparallel interactions along the entire 
length of the filament (Craig and Megerman 1977, Xu et al 1996). Both of 



28 s.J. Gunst 

these features imply a side-polar arrangement of crossbridges and are 
inconsistent with a helical bipolar structure. The appearance of a helical 
structure of smooth muscle myosin filaments in some studies (Hinssen et 
al 1978) probably arose from the presence of different orientations of 
essentially side-polar filaments (Cooke et al 1989). 

4 
The thin filaments of smooth muscle cells 

The thin filaments of smooth muscle cells are extremely stable during 
most fixation protocols and are the most abundant filament in smooth 
muscle. Actin is the primary protein constituent and forms the thin fila- 
ment backbone. In addition, at least three other proteins, tropomyosin, 
caldesmon, and calponin, bind to actin and are localized to the thin fila- 
ments (Figure 5). 

Actin occurs in multiple isoforms within individual smooth muscle 
cells. All of these isoforms are capable of forming filamentous actin that 
can interact with myosin to generate force. Although the functional impor- 
tance of the different actin isoforms is presently unclear, there is evidence 
to suggest that they may serve to "customize" actin filaments to serve 
different functional roles within the cell by determining its interactions 
with different binding proteins. The first part of this section will review the 
molecular structure of the thin filament. The structure of actin and the 
relationship to the other protein constituents of the thin filament to actin 

Caldesmon Tropomyosin Calponin 
Actin 

Fig. 5. Schematic representation of components of the thin filament of smooth muscle. 
Although calponin and caldesmon are both shown as components of the same filament, 
there is evidence that they may selectively associate with different actin isoforms in 
different populations of thin fdaments 
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will be discussed. In subsequent sections possible differences in the func- 
tional role of different isoforms of actin within smooth muscle cells wilt be 
addressed. 

4.1 
Molecular organization of the thin filaments 

4.1.1 
Molecular structure of actin 

Filamentous actin (F-actin) is a polymeric protein composed of asymmet- 
ric bi-lobed 42 kDa actin monomers. Three-dimensional maps of thin 
filaments obtained by cryo-electron microscopy and X-ray crystal- 
lographic data demonstrate that each actin monomer consists of two 
major domains, "inner" and "outer", which are unequal in size (Milligan et 
al 1990, Holmes et al 1990, Kabsch et al 1990). Each domain is further 
divided into two subdomains, resulting in subdomains 1, 2, 3, and 4 
(Kabsch et al 1990). A single divalent cation binding site and an adenosine 
nucleotide binding site are located in the cleft between the inner and outer 
domains of each actin monomer (Estes et al 1992). Stoichiometric 
amounts of ADP are strongly bound to F-actin (B~ir~iny et al 1992). In 
filamentous actin, the actin monomers form a double-stranded helical 
array with a right-handed long-pitch i n which the two strands cross every 
36 nm and a left-handed genetic helix of 5.9- nm pitch (Milligan et al 1990, 
Holmes et al 1990). There are about 13 actin monomers between each 
36-nm crossover point. This essential structural organization of actin fila- 
ments was confirmed in thin filament samples from smooth muscle 
(Moody et al 1990). The binding of myosin to F-actin is currently thought 
to begin with an initial weak contact on subdomain-1 of the outer domain 
of actin followed by a strong stereo-specific interaction closer to the junc- 
tion of its inner and outer domains (Rayment et al 1993a). It is this 
strong-binding stereospecific interaction that is thought to form the basis 
of the power-stroke which generates force (See Section 3.2). 

The polymer state of actin is dynamic. In vitro, actin polymerizes at the 
filament ends until a critical concentration is reached (See Pollard and 
Cooper 1986). Even after a steady state is achieved in which net polymeri- 
zation ceases, subunit exchange continues at both ends. In many differen- 
tiated eukaryotic cells, including the sarcomeres of striated muscle, actin 
filament lengths are precisely determined and maintained by capping 
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proteins such as tropomodulin and CapZ. In addition, in skeletal muscle, 
the giant molecule nebulin may act as a molecular template for the regula- 
tion of actin filament length (See Fowler 1996). In many cell types, agonists 
can regulate the polymer state of actin through the activation and inhibi- 
tion of proteins that nucleate, cap, or sever actin filaments (See Zigmond 
1996). There is presently no direct evidence that the polymerization state 
of actin is modulated in smooth muscle cells; however smooth muscle 
contains large amounts of gelsolin and profilin, both of which are potent 
regulators of actin filament polymerization (Hinssen et al 1984, Buss and 
Jockusch 1989). The degree to which the dynamic remodeling of actin 
filaments maybe regulated in smooth muscle cells and the physiologic role 
of actin filament regulatory proteins in these cells remains to be demon- 
strated. 

4.1.2 
Role oftropomyosin in the thin filament 

Both smooth and skeletal muscle actin filaments are saturated with tro- 
pomyosin (Sobieszek and Bremel 1975). Both exhibit the same charac- 
teristic stoichiometry of binding of 1 molecule of tropomyosin interacting 
with 7 monomeric units of F-actin on each of the two strands of F-actin 
(Hartshorne 1987). The length of tropomyosin molecules (284 amino ac- 
ids) and their periodicity in smooth and striated muscles is the same 
(Matsumura and Lin 1982). In both tissues, tropomyosin exists as a di- 
meric a-helical coil (Caspar et al 1969). Individual tropomyosin molecules 
bind in an end to end fashion to form a continuous strand on the thin 
filament that lies along the long-pitch of the double helix formed by the 
actin monomers (Moore et al 1970, OBrien et al 1971, Spudich et al 1972, 
Milligan et al 1990). 

The functional role of tropomyosin has been extensively studied in 
striated muscles. According to the well-known "steric blocking" model, the 
Ca2+-sensitive troponin complex modulates the position of tropomyosin 
along the actin filament to regulate myosin binding to actin and conse- 
quently the activation and inactivation of actomyosin ATPase activity. 
Direct structural evidence in support of this model was recently obtained 
by Lehman et al (1994) using skeletal muscle thin filaments from the 
arthropod Limulus, and subsequently confirmed using actin from verte- 
brate skeletal muscle (Vibert et al 1997). In these tissues, longitudinally 
continuous strands of density were observed along the long-pitch actin 
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helices, that were presumed to be tropomyosin. In the absence of Ca 2+, the 
tropomyosin strands appeared to be in contact with the extreme inner 
edge of the outer domains of actin, coinciding with the site on actin that is 
thought to be the locus of the strong stereospecific actomyosin interaction. 
In contrast, in the presence of Ca 2+, the tropomyosin strands appeared to 
be closely associated with the inner domain of actin. These observations 
are consistent with a steric mechanism in which tropomyosin interferes 
with the transition from a weak to strong binding state between actin and 
myosin, thus inhibiting crossbridge cycling. 

Although tropomyosin is also localized along the actin filaments of 
smooth muscle, its function is less clear. Electron microscopy of smooth 
muscle thin filament preparations isolated from chicken gizzard smooth 
muscle reveal continuous narrow asymmetric strands of density running 
helically along the filament axis composed primarily oftropomyosin or an 
association of tropomyosin and caldesmon (Moody et al 1990, Vibert et al 
1993). Reconstructions made from caldesmon-deficient filaments confirm 
that a major portion of this strand density is contributed by tropomyosin. 
However, as the thin filaments of smooth muscle lack troponin, the tro- 
ponin-tropomyosin mechanism that regulates the actomyosin interaction 
in skeletal muscle cannot be operative in smooth muscle. It has been 
proposed that the thin filament protein, caldesmon, may interact with 
tropomyosin to modulate actomyosin ATPase activity in smooth muscle in 
a manner somewhat analogous to that of troponin in skeletal muscle. 
However, this is not supported by recent ultrastructural analysis of the 
effect of caldesmon on the position of tropomyosin in smooth muscle thin 
filaments (See Section 4.1.3). 

4.1.3 
Role of caldesmon in the thin filament 

Caldesmon is present ubiquitously in smooth muscle cells. It is generally 
agreed that it is localized to the thin filaments in regions that are replete 
with myosin (Sobue et al 1981, Furst et al 1986, Mabuchi et al 1996, North 
et al 1994a). Caldesmon is a tong thin flexible asymmetric molecule that is 
considerably longer than tropomyosin (approximately 75-80 nm) (Lynch 
et al 1987, Mabuchi and Wang 1991, Bretscher 1984, Graceffa et al 1988, 
Furst et al 1986). The molecular mass of chicken gizzard caldesmon is 90 
kDa as measured by analytical ultracentrifuge sedimentation (Graceffa et 
al 1988). From electron micrographic studies and nuclear magnetic reso- 
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nance spectroscopy, each molecule appears to be made up of a central rigid 
rod section of about 30 nm with a 20-nm flexible section at each end 
(Mabuchi and Wang 1991). The caldesmon molecule contains binding sites 
for myosin, tropomyosin, actin and calmodulin (Levine et al 1990, Wang et 
al 1991). 

Ultrastructural studies of isolated chicken gizzard thin filaments local- 
ized caldesmon on the thin filament beside tropomyosin, arranged con- 
tinuously along the axis of the actin double helix (Moody et al 1990, Vibert 
et al 1993, Lehman et al 1997). In smooth muscle filaments derived from 
vascular or visceral tissue, the stoichiometry of caldesmon to tropomyosin 
and actin has been determined to be 1:2:14 (Lehman et al 1989, Marston 
1990, Lehman et a11993). Marston and Redwood (1991) proposed that each 
caldesmon molecule is placed in register with tropomyosin and extends 
for 78 nm, the length of two tropomyosin molecules. Each caldesmon 
molecute interacts with 14 actin monomers. This would result in a filament 
without radial symmetry such that different parts of the caldesmon mole- 
cule would appear on the same side of the actin filament. 

In the presence of tropomyosin, caldesmon can inhibit actomyosin 
ATP-ase activity at the low ratios of caldesmon to actin likely to occur in 
vivo (1:14) (Marston and Redwood 1993). The affinity of caldesmon for 
actin is greatly attenuated by Ca2+-calmodulin (Marston and Redwood 
1993, Smith et al 1987, Ngai and Walsh 1984, Marston and Lehman 1985. 
(Reviewed by Sobue and Sellers 1991 and by Marston and Redwood 1991). 
These observations ted to the proposal that rote of caldesmon in smooth 
muscle may be analogous to that played by troponin in skeletal muscle 
(Chalovich et al 1987, Smith et al 1987, Marston and Smith 1985, Sobue et 
al 1982). Marston and colleagues have suggested that caldesmon acts as a 
Ca2+-sensitive switch to regulate the interaction of actin and myosin by a 
steric mechanism in which the actin-tropomyosin complex is regulated 
between two states that have different binding affinities for myosin (Mar- 
ston et al 1994, Marston and Redwood 1993). However, based on the analy- 
sis of three-dimensional image reconstructions of reconstituted smooth 
muscle thin filaments, Vibert et al (1993) concluded when that when cal- 
desmon is present, tropomyosin does not cover the strong-binding sites 
for myosin on actin (on the inner edge of the outer domain) when ac- 
tomyosin is in the inhibited state. Instead, tropomyosin appears in contact 
with the inner domain of each actin monomer when caldesmon is present. 
When caldesmon is dissociated from the thin filament by treatment with 
Ca2+-calmodulin, tropomyosin appears to move to a position closer to the 
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outer domain of actin, covering the myosin-binding region. This suggests 
that the steric-blocking mechanism in effect in striated muscle does not 
operate in smooth muscle, as this mechanism involves troponin frxing 
tropomyosin over the strong-binding sites on actin. However, the position 
of caldesmon on the smooth muscle thin filament may coincide with the 
proposed sites of weak myosin binding that are thought to be necessary for 
the initiation of actomyosin ATPase activity (Miller et al 1995, Rayment et 
al 1993). Alternatively, the presence of caldesmon and tropomyosin adja- 
cent to the strong binding sites for myosin may interfere with myosin 
binding, or caldesmon may affect the structure of actin in a way that 
interferes with myosin binding (Lehman et al 1997). 

Caldesmon also binds to smooth muscle myosin in vitro at a ratio of 
binding of 2-3 caldesmon molecules per myosin molecule, although a 
stoichiometry of 1:1 in the presence of ATP has been reported (Ikebe and 
Reardon 1988, Marston and Redwood 1992, Hemric and Chalovich 1990, 
Marston and Huber 1996). In vitro studies have shown that the thick and 
thin filaments can be cross-linked via caldesmon in an interaction that is 
independent of crossbridge activity (Marston and Redwood 1992). In vi- 
tro, the cross-linking interaction promotes myosin filament polymeriza- 
tion by stabilizing the myosin filaments after formation (Ikebe and Rear- 
don 1988, Heretic et al 1994). In an vitro motility assay, caldesmon also 
appears to promote the interaction and movement of actin filaments over 
myosin filaments, possibly because of its "tethering" action linking the two 
filaments together (Haeberle et al 1992). Thus, it has also been proposed 
that the caldesmon-myosin interaction may function physiologically to 
promote the organization of actin and myosin filaments in smooth muscle 
cells and to stabilize dephosphorylated myosin filaments (Katayama et al 
1995, Katayama and Ikebe 1995, Marston et al 1992, Yamashiro and Matsu- 
mura 1991, Hemric et al 1994, Ikebe and Reardon 1988). However, recent 
electron microscopic images of native thin filaments do not provide sup- 
port for a cross-linking function of caldesmon in vivo. Moody et al 1990 
examined electron microscopic images of native thin filaments from ver- 
tebrate smooth muscle, and found no evidence for lateral projections 
extending away from the shaft of the thin filaments, although they ob- 
served lateral projections on reconstituted thin filaments. They concluded 
that it was unlikely that caldesmon acts as a cross-linking protein in vivo. 
Their conclusions are supported by electron microscopic images of native 
thin filaments obtained by Mabuchi et al (1993), which demonstrated that 
both ends of the caldesmon molecule interact with the actin filament. 
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Thus, the physiologic role of caldesmon binding to myosin is presently 
uncertain. 

4.1.4 
Role of calponin in the thin filament 

Calponin is a 35-kDa Ca2+-calmodulin binding protein that was originally 
shown by Takahashi et al (1986) to bind to and sediment with F-actin. It is 
more or less exclusively expressed in smooth muscle tissues in vivo (Taka- 
hashi et al 1987, Gimona et al 1990, Takeuchi et al. 1991). The expression of 
calponin is down-regulated in smooth muscle cells cultured in vitro (Gi- 
mona et al 1990, Birukov et al 1991, Durand-Arczynska et al. 1993). In 
isolated toad stomach and chicken gizzard smooth muscle cells, calponin 
co-distributes with longitudinally oriented bundles that also contain actin 
and tropomyosin, indicating a close association of calponin with actin in 
smooth muscle cells in vivo (Walsh et al 1993, North et al 1994a). 

Calponin has a very high binding affinity for smooth muscle F-actin 
which is 78 fold greater than for skeletal muscle actin (Winder et al 1991). 
The affinity of calponin for actin is independent of the presence of tro- 
pomyosin. The maximum in vitro binding stoichiometry of catponin to 
smooth muscle actin is 1 mol calponin/3 mol actin (Winder et al 1991), 
whereas stoichiometric ratios of calponin to actin in vivo have been esti- 
mated variously to be 1:7 (Takahashi et al 1986), 1:10 (Nishida et al 1990), 
and 1:16 (Marston 1991). Differences in vivo and in vitro stoichiometry 
may reflect an uneven distribution of calponin among different compart- 
ments of actin filaments (See Section 4.2). 

The function of calponin and its structural relationship to other pro- 
teins on the actin filament is currently unclear. The calponin molecule is 
flexible and elongated with a length (16 nm) sufficient to span three actin 
subunits along an actin filament (Stafford et al 1995). It binds to the C 
terminus on actin and therefore does not block the strong-binding site for 
myosin (Mezgueldi et a11992, Bonet-Kerrache and Mornet 1995, Hodgkin- 
son et al 1997). Like caldesmon, calponin inhibits actin-activated myosin 
MgATPase activity in vitro (Winder and Walsh 1990, Gimona and Small 
1996), and also inhibits actin filament movement in vitro motility assays 
(Shirinsky et al 1992, Haeberle et al 1992). However, in contrast to caldes- 
mon, the inhibitory effect of calponin on actomyosin ATPase activity is not 
tropomyosin-dependent (Winder and Walsh 1990). Haeberle and Hemric 
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(1994) have proposed a model in which calponin interacts with caldesmon 
and tropomyosin to regulate the interaction of actin and myosin. 

Hodgkinson et al (1997) analyzed three-dimensional reconstructions of 
images of reconstituted smooth muscle actin filaments and concluded that 
calponin is lo cated peripherally along the long-pitch of the actin helix with 
the main calponin mass over subdomain 2 of actin. The positions of 
calponin binding are near the sites for weak myosin binding to actin but do 
not block the strong-binding site for myosin. When added to tropomyosin- 
containing actin filaments, calponin caused a shift in the position of tro- 
pomyosin which exposed the strong-binding sites for myosin previously 
covered by tropomyosin, indicating that the mechanism for the inhibition 
of actomyosin ATPase by calponin is not analogous to that by troponin in 
skeletal muscle. However, the binding sites for calponin on actin are near 
the binding sites for a number of actin-associated proteins, that could 
allow calponin to compete with or interact with these actin-binding pro- 
teins in vivo. 

There is considerable controversy over whether calponin and caldes- 
mon interact on the same filament in vivo. In vitro, calponin competes 
with caldesmon for closely spaced sites on the actin molecule and there is 
evidence that the two do not complex on the same filament (Makuch et al 
1991, Mezgueldi et al 1992). In addition, the inhibitory effects of calponin 
and caldesmon on actin-activated ATPase activity appear to be unaffected 
by each others presence. These observations seem to support ultrastructu- 
ral evidence that these proteins may localize to different actin filaments or 
different locations on the same filament (North et al 1994a, Makuch et al 
1991) (see Section 4.2.2). 

4.1.5 
Other thin filament proteins 

Additional proteins may also be tightly bound to actin filaments. Among 
these are filamin (also called actin binding protein (ABP)), the calponin- 
like protein SM22, and myosin light chain kinase (Lin et a11997). Very little 
is currently known about the function of SM22. Filamin is particularly 
abundant in smooth muscle tissues, estimated as 30-40% of the myosin 
content. It is not specific for smooth muscle and is also present in many 
other tissues and cell types (Wang 1977). Filamin is a large homodimer 
which belongs to a class of rod-shaped Ca2+-insensitive actin cross-linking 
proteins (Craig and Pollard I982, Geiger 1983). Under physiologic condi- 
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tions filamin exists as an elongated 500 kDa dimeric molecule formed 
from the antiparallel end-to-end attachment of its monomer chains (Wang 
1977). In vitro, molecules of filamin spontaneously connect polymerizing 
actin filaments to form an elastic gel (Stossel 1993). Although little is 
known of its function in smooth muscle cells, there is evidence that filamin 
associates selectively with the or cytoskeletal form of actin (Small et al 
1986). 

4.2 
Functional specialization of thin filaments in smooth muscle cells 

4.2.1 
Actin isoforms 

The functional role of actin in smooth muscle in active shortening and 
force development is widely accepted. However, it is also well known that 
actin filaments play multiple roles in non-muscle cells, where they are 
responsible for the maintenance of cell shape and organization as well as 
motility (Stossel 1993). There is evidence from a number of laboratories 
that actin filamants of different isoforms may be functionally specialized 
in smooth muscle cells and localized to different physical domains within 
the cell (Lehman et al 1987, North et al 1994b, Small 1995). 

At least six different isoforms of actin have been identified in vertebrate 
tissues, each encoded by a different gene (Vanderkerckhove and Weber 
1978, Reddy et al 1990). Four of these isoforms have been identified in the 
smooth muscle tissues of warm-blooded vertebrates: a and y smooth 
muscle actin, and [3 and y non-muscle actin (Kabsch and Vanderk- 
erckhove 1992). These actin variants have approximately 95% amino acid 
sequence homology, and differ primarily in their N-terminal sequence 
(Pollard and Cooper 1986). 

The expression of the different actin genes is tissue specific. For exam- 
ple, the expression ofy-actin is highest in visceral smooth muscles and the 
expression of ct-actin is highest in vascular smooth muscles (Fatigati and 
Murphy 1984, Hartshorne 1987). Some smooth muscle tissues contain a 
mixture of both ot and y isoforms; others express one or the other exclu- 
sively (Hartshorne 1987). The [3 or "cytoskeletal "isoform of actin appears 
to be a significant component of all smooth muscle tissues. No functional 
differences among these isoforms or the skeletal muscle isoform have been 
discerned with respect to the activation of myosin ATPase, actin filament 
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sliding velocity over myosin in vitro, or actin polymerization (Gordon et al 
1977, Mossakowska and Strezelecka-Golaszewska 1985 Umemoto and Sell- 
ers 1990; Harris and Warshaw 1993). However, differences in the relative 
levels of expression of "cytoskeletal" [3 actin versus cx or y "contractile" 
actin occur at different times during the smooth muscle development 
(Eddinger and Murphy 1991, Hirai and Hirabayashi 1983). Evidence that 
different actin isoforms are localized to different functional domains of 
the smooth muscle cell (See Section 4.2.2) has led to the suggestion that 
the differences in the N-terminal sequence of different actin isoforms may 
specialize subsets of actin to different functions by directing their binding 
to different actin-binding proteins. 

4.2.2 
Actin isoform specific localization of thin filament proteins 

The distribution of actin and tropomyosin are generally agreed to be 
highly correlated throughout the cytoplasm, and in native thin filaments, 
tropomyosin appears to be bound to all actin filament isoforms (Mabuchi 
et al 1996, Small et al 1986). However, there is evidence from a number of 
laboratories that different actin-binding proteins associate selectively with 
different actin isoforms and localize to different functional domains 
within smooth muscle cells. 

Using immunofluorescence microscopy, Small first distinguished two 
distinct subsets of actin filaments that were localized to different physical 
domains within the smooth muscle cell (Small et al 1986, Small 1995). 
"Cytoskeletal" actin colocalized with the actin-binding protein filamin 
and with desmin, the major constituent of intermediate filaments. "Con- 
tractile" actin was associated with myosin filaments in complementary 
positions to those occupied by "cytoskeletal" actin. The filamin-containing 
actin filaments abutted the dense bodies but the myosin-associated actin 
filaments did not. In subsequent studies of the guinea pig taenia coli and 
chicken gizzard, Small and colleagues reported that the "cyt0skeletal" 
actin was of the "[3" isoform, and that [3 actin was selectively localized to 
the dense bodies, the membrane-associated dense plaques, and to the 
longitudinal channels linking consecutive dense bodies, which are also 
occupied by filamin and desmin (North et al 1994b, Draeger et al 1990, 
Small et al 1986). However, [3 actin was excluded from contractile domain 
of the cell. In contrast, antibodies specific for the smooth muscle actin 
isoforms ( a and y ) failed to react with dense bodies, but reacted with 
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actin in the contractile or myosin containing domain (North et al 1994b). 
Small proposed that [3 cytoskeletal" actin and intermediate filaments link 
the cytoplasmic dense bodies longitudinally, whereas c¢ and y contractile" 
smooth muscle actin connect adjacent longitudinal arrays of dense bodies 
obliquely (North et al 1994b, Small 1995) (Figure 6). Data supporting the 
localization of different actin isoforms to different cellular domains has 
not gone unchallenged. Drew et al (1991) found that the distribution of 
actin isoforms within thin filaments isolated from adult swine stomach 
smooth muscle was random, and they detected no significant clustering of 
actin isoforms within or between filaments. They concluded that actin 
isoforms are not functionally specialized in this tissue. 

There is fairly consistent ultrastructural evidence from a number of 
different laboratories indicating that caldesmon distributes preferentially 
to actin in the actomyosin domain (Furst et al 1986, Lehman et al 1987, 
Mabuchi et al 1996, North et al 1994a). Ultrastructural studies by Mabuchi 
et al (1996) identified the subset of actin filaments that colocalize with 
caldesmon to be y actin; they found y actin to be preferentially localized in 
the vicinity of myosin filaments. 

The results of studies describing the cellular localization of calponin are 
less consistent. Walsh et al (1993) found calponin to be homogeneously 
distributed with actin and tropomyosin throughout toad stomach and 
chicken gizzard smooth muscle cells. North et al (1994a) reported some- 
what similar observations in chicken gizzard smooth muscle, although 
these investigators concluded that catponin was more concentrated in 
regions of cytoskeletal" [3 actin. North et al (1994a) also observed calponin 
in cytoplasmic dense bodies as well as at the adhesion plaques at the ceil 
surface. Mabuchi et al (1996) observed calponin to be distributed primar- 
ily at the periphery of cytoskeletal structures in the same general region as 
desmin, and very often adjacent to ~-actin. In these studies, the distribu- 
tion of calponin bore no similarity to that of caldesmon and myosin. 
Mabuchi et al (1996) concluded that caldesmon was associated selectively 
with contractile actin, whereas catponin associated selectively with cy- 
toskeletal actin. Biochemical data obtained by Lehman (1991) appears to 
support ultrastructural evidence that calponin is selectively bound to a 
subset of actin filaments. Using calponin and caldesmon-specific antibod- 
ies to immunoprecipitate thin filament fractions, Lehman et al obtained 
subsets of actin filaments which were selectively enriched in either 
calponin and filamin or in caldesmon. 
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Fig. 6. Organization of structural elements within the smooth muscle cell. For purposes 
of simplicit 7, the contractile filaments are illustrated on the left side of the cell, whereas 
the cytoskeletal filaments are illustrated on the right side. Thin filaments composed of 
"contractile" actin (ct or ¥ isoforms) are proposed to associate with thick filaments. 
Thin filaments composed of "cytoskeletal" actin do not associate with myosin (as 
reviewed by Small (1995)). Actin filaments anchor at dense bodies in the cytosol and 
dense plaques at the celt membrane via linker proteins. Intermediate filaments link 
chains of dense bodies. Intermediate filaments are also linked to the cell surface at dense 
plaques 

Ultrastructural evidence that calponin binds selectively to "cytoskele- 
tal" actin has led some investigators to propose that the function of 
calponin in smooth muscle may be structural rather than regulatory. 
Based on evidence that calponin binds to desmin as well as [3 actin, 
Mabuchi et al proposed that calponin may function as a bridging protein 
between actin and intermediate filament networks at dense bodies 
(Mabuchi et al t997) (See Section 2.4). Ultrastructural analysis of thin 
filaments by Hodgkinson et al (1997) indicates that the location of 
calponin on F-actin is similar to that of the actin cross-linking protein 
fimbrin, as well as to that of ot-actinin and gelsolin. They suggested that a 
possible function of calponin may be the competitive inhibition of the 
binding of these or other actin-binding proteins to the actin filament. This 
could serve to regulate the building or remodeling of the actin cytoskele- 
ton and thereby affect its mechanical properties (e.g. See section 5.2). 
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5 
Ultrastructural basis for the contractile behavior of smooth muscle 

The fundamental mechanism underlying force development in smooth 
and striated muscles is essentially the same. In both tissues, it is generally 
agreed that force production occurs as a result of a cyclical interaction of 
crossbridges that causes the sliding of adjacent actin and myosin filaments 
with respect to each other - -  the "sliding filament model" of contraction 
first proposed by Huxley and Niedergerke (1954) and Huxley and Hanson 
(:1954). There are also fundamental similaritiesin the mechanical proper- 
ties of smooth and striated muscles. A hyperbolic force-velocity relation- 
ship is characteristic of both tissues, although shortening velocities are 
lower in smooth than in striated muscles. Both smooth and striated mus- 
cles exhibit a length-dependence of isometric tension, in which greater 
isometric force is obtained as muscle length is increased until an optimal 
length is achieved at which force is maximal. Active tension then declines 
as the muscle is lengthened beyond the optimal length. 
Because of the qualitative similarities of the mechanical properties in 
smooth and striated muscles, much research over the past several decades 
has focused on determining whether the functional behavior of these 
muscles can be explained on the basis of similar mechanisms. However, the 
unique structural features of smooth muscle are likely to underly some 
aspects of its contractile properties which differ significantly from those o f  
striated muscles. In addition, smooth muscle tissues possess a number of 
distinctive functional properties that are not easily accounted for on the 
basis of models developed to account for the properties of striated mus- 
cles. 

5.1 
The sliding filament model as a basis for the length-tension properties of 
smooth muscle 

The structure of the contractile unit is fundamental to the interpretation 
of the relationship between muscle length and isometric tension in skele- 
tal muscle. Each sarcomere unit contains bipolar thick filaments with a 
central bare zone surrounded by pairs of actin filaments of opposite polar- 
ity. The actin filaments are anchored at Z-bands that are aligned in parallel. 
The length-tension behavior of skeletal muscle has been interpreted in 
terms of changes in the overlap between the thick and thin filaments as 
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proposed by Gordon, Huxley and Julian (t966). In single skeletal muscle 
fibers, maximal active isometric tension is observed when the crossbridge 
arrays of the thick filaments are fully overlapped by the thin filaments. 
When the fiber is stretched beyond its optimum length, isometric force 
declines due to a reduction in the overlap of actin and myosin filaments 
with a consequent decrease in the number of crossbridges that can interact 
with actin. At fiber lengths shorter than the optimum length, the decline in 
active force is attributed to a decline in the interaction of actin with the 
myosin heads on thick filaments as the opposing thin filaments begin to 
overlap with the central bare zone on the thick filaments and with each 
other. At extremely short lengths, tension falls dramatically due to struc- 
tural interference with contraction caused by myosin filaments abutting 
the Z lines, but these lengths are probably not reached under physiological 
conditions (Gordon et al 1966). The decline in force with decreasing mus- 
cle length in skeletal muscle has also been shown to be partly a function of 
a decrease in Ca2+-activation (Schoenberg and Podolsky 1972, Edman 
1980, Stephenson and Wen& 1984, Taylor and Rudel 1970). 

Many aspects of this model are difficult to extrapolate to the smooth 
muscle cell, which does not exhibit the regular sarcomere structures of 
skeletal muscle. The prevailing evidence suggests that the thick filaments 
of smooth muscle are side-polar with no central bare zone (Section 3,4). 
Actin filaments are not anchored at Z-lines arranged in parallel but at 
elliptical dense bodies throughout the cytoplasm and at dense bands that 
can span the entire sarcolemma (See Sections 2.3 and 2.4 and Figure 6). 
Thus, a structural mechanism that can account for the length-tension 
properties of smooth muscle on the basis of changes in filament overlap is 
not evident. This is particularly true for the ascending limb of the length- 
tension curve, which is the physiologic range of length for most smooth 
musde tissues. The structural features that have been proposed as the 
basis of the length-tension behavior of striated muscles in this range are 
specific to striated muscles. Although changes in the overlap of ,,ctin and 
myosin filaments in smooth muscle may contribute to its length-tension 
behavior, there is currently no evidence to substantiate this. 

5.2 
Mechanisms for the mechanical properties of smooth muscle. 

The available data suggest that a number of mechanisms may contribute to 
the length-dependence of tension in smooth muscle tissues. These include 
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mechanical interactions between adjacent cells, length-dependent changes 
in the activation of contractile filaments, and mechanosensitive alterations 
in the organization or length of the contractile filaments. 

As the neighboring cells of smooth muscle tissues are mechanically 
coupled, the contractile apparatus of each individual cell exerts tension on 
its neighbors. Force transmission across the sarcolemma of smooth mus- 
cle cells occurs at membrane-associated dense plaques found over the 
entire cell surface. When isolated smooth muscle cells contract, the points 
of attachment of contractile filaments are drawn into the cell, resulting in 
out-pouching of the membrane areas between the plaques (Harris and 
Warshaw 1991, Draeger et al 1990). 

The mechanical interactions between neighboring cells may be an im- 
portant factor limiting the shortening and force development of smooth 
muscle at short muscle lengths (Meiss 1992,1993,1997). This is supported 
by evidence that intact smooth muscle tissues subjected to mild digestion 
of extraceUular connective tissue with collagenase shorten more than 
untreated tissues (Meiss 1997, Bramley et al 1995). The observation that 
single smooth muscle cells, in contrast to smooth muscle tissues, develop 
similar levels of maximal isometric force when contractions are initiated 
over a wide range of cell lengths also supports the idea that a significant 
portion of the length-dependence of tension results from intercellular 
mechanical interactions (Harris and Warshaw 1991). 

Some of the length-dependence of isometric force in smooth muscle 
appears to reflect length-dependent changes in the activation of contrac- 
tile proteins (Mehta et al 1996, Hai 1991, Rembold and Murphy 1990, 
Wingard et al 1995). In both tracheal and arterial smooth muscle tissues, 
the lower levels of force associated with the stimulation of muscles under 
isometric conditions at muscle lengths below the optimal length (Lo) are 
associated with lower levels of Ca z÷ activation and myosin light chain 
phosphorylation. This suggests that mechanosensitive mechanisms may 
modulate the signaling pathways that regulate the activation of contractile 
proteins; however the cellular mechanisms which mediate this property 
have not been determined. 

Evidence from a number of laboratories suggests that there is not a 
fixed relationship between tissue length and active force in smooth muscle 
(Pratusevitch et al 1995, Meiss 1993, Gunst et al 1993 and 1995, Harris and 
Warshaw 1991). When isolated smooth muscle cells are subjected to step- 
wise shortening during contractile stimulation, the force-length curves are 
identical, but shifted along the length-axis in relation to the length at 



Applicability of the Sliding FilamenttCrossbridge Paradigm to Smooth Muscle 43 

which the contraction is initiated (Harris and Warshaw 1991)(Figure 7). 
An analogous phenomenon is observed in intact trachealis smooth muscle 
tissue. When tracheal muscle strips are contracted isometrically, then rap- 
idly shortened to a minimal length and slowly lengthened, the length-ten- 
sion curves obtained during the slow stretch of the activated muscle are 
shifted in relation to the muscle length at which the contraction is initiated 
(Gunst 1982) (Figure 7). The relationship between muscle length and both 
active isometric tension and isotonic shortening velocity can be shifted 
similarly (Gunst 1986, Gunst et al 1993, Meiss 1993). When a muscle is 
contracted isometrically at one length and then shortened and allowed to 
redevelop force isometrically, the rate and magnitude of force redevelop- 
ment at the shorter length decreases as the length at which the contraction 
is initiated is increased (Gunst 1986). Shortening velocities compared at 
same muscle length during isotonic shortening are also lower for contrac- 
tions that are initiated at longer muscle lengths (Gunst et al 1993, Meiss 
1993). These observations have led to suggestions that contractile element 
length and smooth musde cell length are not tightly coupled, and that 
smooth muscle cells may be capable of modulating the organization of the 
contractile apparatus in response to changes in their physical environment 
(Harris and Warshaw 1991, Gunst et al 1995, Gunst et al. 1993, Meiss 1993, 
Pratusevitch et al 1995). 

There is physiologic evidence to suggest that the organization of the 
contractile apparatus is relatively fluid in smooth muscle cells at rest, and 
then becomes fixed at the onset of contractile stimulation. Isolated smooth 
muscle cells at rest exhibit considerable viscoelasticity (Van Dijk et al 
1984). Little or no passive force can be sustained by single smooth muscle 
cells even when they are subjected to substantial stretch. However, this 
property disappears after contractile activation. The mechanical environ- 
ment of the smooth muscle cell or tissue at the beginning of contractile 
stimulation quite reproducibly determines its response to mechanical per- 
turbations later in the contraction, suggesting that the structural organiza- 
tion of the cell is "set" at the onset of contractile activation. This is also 
supported by observations that the shortening behavior of smooth mus- 
cles is reproducible even when significant changes in length are involved 
(Gunst et al 1993, Shen et al 1997, Gunst 1983). 

When activated smooth muscle is allowed to shorten isotonically, the 
rate of shortening decreases continuously during the period of shortening 
until an equilibrium length is reached. This phenomenon is widely ob- 
served among different smooth muscle tissues, and occurs in single 
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Fig.7. Plasticity of length-tension relationship in smooth muscle cells and tissues. Left: 
Active length-tension curves obtained in single isolated toad stomach cells. Cells were 
activated at lengths of 1.0, 1.1, 1.2, and 1.4 times the resting cell length (Lcell) after which 
theywere subjected to step reductions in length while activated. Symbols indicate forces 
generated after each step reductions in length from each starting length. Although the 
curves are similar in shape, their position on the length axis is shifted in relation to their 
starting length. Redrawn from Harris and Warshaw (!99_1) with permission of the 
American Physiological Society. Right: Length-force curves generated by a trachealis 
muscle strip that was contracted isometrically at different starting lengths (as labeled) 
in successive contractions, and then rapidly shortened to 0.2 Lo and slowly stretc~ed 
back to the starting length while still activated. The position of the force-length curves 
is displaced along the length axis in relation to the starting length (Gunst and Wu, 
unpublished data). 

smooth muscle cells, indicating that it represents a property of smooth 
muscle that is fundamental to the organizauon of the contractile appara- 
tus (Harris and Warshaw 1990, Gunst et al 1993, Meiss 1994, Meiss 1993, 
Arner and Hellstrand 1985). One explanation for the phenomenon is that 
the internal load on the contractile apparatus increases during isotonic 
shortening in a length-dependent manner. It is tempting to speculate that 
the internal load may arise from cytoskeletal connections that become 
fixed early in the activation of the muscle and subsequently provide an 
internal resistance to shortening. This explanation can account the obser- 
vation that degree of resistance t o shortening at any muscle length can be 
"reset" by the initiating the isotonic contraction at a new length (Gunst et 
al 1993). Thus, intracellular structures contributing the internal resistance 
do not appear to bear a fixed relationship to muscle length. 

The cellular mechanisms underlying these unique mechanical proper- 
ties of smooth muscle have not been determined. The spatial information 
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required for reproducible shortening and tension development is pre- 
served in glycerinated smooth muscle strips even after the dissolution of 
myosin filaments and the reintroduction of myosin, suggesting that the 
information that determines cell shape and contractile system organiza- 
tion is retained in the cytoskeleton (Cande et al 1983). It is possible that 
smooth muscle cells possess some of the mechanisms present in non-mus- 
cle cells that allow for the rapid reorganization of actin filaments. In 
non-muscle cells, mechanical signals sensed at integrin-containing focal 
adhesion sites are transmitted to the ceil cytoplasm and nucleus by the 
cytoskeleton (Maniotus et al 1997). The membrane associated dense 
plaque Sites in smooth muscle may play an analogous role in sensing and 
transmitting mechanical information from the cell surface to other cyto- 
plasmic proteins via the cytoskeletal network, and may also initiate events 
that regulate cytoskeletal structure (Tang et al 1998). Although there has 
been little investigation of these processes in smooth muscle, the contrac- 
tile activation of smooth muscle stimulates the phosphorylation of talin 
and paxillin, proteins localized to the membrane-associated dense plaque 
sites (Pavalko et al 1995, Wang et al 1996). Talin is a linker protein that 
attaches actin filaments to the membrane at dense plaque sites and that is 
also capable o f  nucleating actin filament formation (Burridge and 
Chrzanowska-Wodnicka 1996, Yamada and Geiger 1997). The phosphory- 
lation of paxillin is associated with the formation of actin stress fibers and 
the assembly of focal adhesion sites in non-muscle cells (e.g., Seufferlein 
and Rozengurt, 1994). 

Alterations in the length or number of myosin filaments have also been 
proposed to play a role in regulating the length-tension properties of 
smooth muscle. Pratusevich et al (1995) proposed that the phosphoryla- 
tion of myosin light chains caused by contractile activation may stimulate 
the polymerization of myosin filaments, lengthening myosin filaments to 
adapt to contractile activation at longer muscle lengths, and perhaps also 
inducing the formation of new myosin filaments. Although ultrastructural 
evidence indicates that the number of myosin filaments may increase 
modestly during the contraction of some smooth muscle tissues (See 
Section 3.3); potential effects of muscle length on myosin filament length 
or number have not been evaluated. 
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6 
Conclusions 

S. J. Gunst 

There have been very significant advances in the past decade in our under- 
standing of the structure of many components of the contractile apparatus 
of smooth muscle cells. We can point to major advances in determining the 
molecular basis for the motor properties of myosin and for the regulation 
of its activity by phosphorylation. There are extensive experimental obser- 
vations that define the structure and organization of myosin filaments 
within smooth muscle cells. Very detailed information regarding the mo- 
lecular structure of actin is also available, as well as the molecular basis for 
its interaction with myosin during crossbridge cycling. The basic organiza- 
tion of the smooth muscle thin filament is known, although there are still 
many open questions with regard to the localization of actin binding 
proteins on the thin filament and the function of these proteins. There has 
also been an enormous growth in our knowledge of the molecular organi- 
zation of membrane sites at which the contractile system is anchored, the 
membrane-associated dense plaques, although much work remains to be 
done in determining the function of the proteins localized to these sites. 

The advances in knowledge of the molecular structure of the individual 
components of the contractile apparatus of smooth muscle provided sup- 
port for a basic model of force generation based on the relative sliding of 
adjacent actin and myosin filaments. The tension generated by these con- 
tractile filaments appears to be transmitted throughout the cell via a 
network of actin filaments anchored at dense bodies within the cytosol 
and at dense plaques at the cell membrane. Proteins localized to the mem- 
brane-associated dense plaques mediate the transmission of force across 
the membrane. However, we are still unable to satisfactorily account for 
some of the most fundamental functional attributes of smooth muscle 
cells and tissues. The mechanisms underlying the length-tension behavior 
of smooth muscle and of its mechanosensitivity remain to be determined. 
More information regarding the function of the many protein constituents 
of the contractile filaments and cytoskeletal apparatus as well as the wayin 
which these proteins interact within the cell may help in this endeavor. The 
basis for the diversity of specialized functional attributes of different 
smooth muscle tissue types is also not understood, but may be clarified by 
molecular analysis of the functional characteristics of contractile and 
cytoskeletal protein isoforms present in smooth muscle cells. Finally, in- 
formation on the dynamic regulation of smooth muscle cell structure, an 
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area about which there is presently very little information, may also pro- 
vide some important  insights into some of the more unique functional 
properties of smooth muscle cells. 
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1 
Introduction 

The cyclic interaction of myosin cross-bridges with actin is the fundamen- 
tal mechanism of contraction in muscle. The generally accepted mecha- 
nism of skeletal muscle contraction is the sliding filament model where 
force is generated by individual myosin cross-bridges (Huxley and Nieder- 
gerke, 1954, Huxley and Hansen, 1954). Although the structural basis for 
filament sliding and the details of the mechanical cross-bridge cycle are 
still not clarified, a sliding filament model provides the general frame for 
analysis also of smooth muscle contraction. The energy for contraction is 
derived from the hydrolysis of ATE The energetic cost of contraction 
depends on the rate of ATP hydrolysis and the mechanical output of the 
cross-bridges. In striated muscle, these parameters can be regulated by 
expression of different contractile protein isoforms, i.e. long-term regula- 
tion. This property might also exist in smooth muscle, although little 
explored. However, an important aspect of smooth muscle contraction is 
that the energetic cost can decrease during tension maintenance of 
smooth muscle, a phenomenon denoted "latch" (Dillon et al. 1981). This 
shows the presence of a short-term regulation in smooth muscle, i.e. a 
modulation of cross-bridge cycling within an individual contraction/re- 
laxation cycle. 

An increase in the cytosolic Ca 2+ concentration triggers contraction 
(Riiegg 1992). However, Ca 2+ activates contraction in different types of 
muscle by fundamentally different mechanisms. In striated muscle, Ca 2+ 
acts through an allosteric mechanism by binding to the Ca2+-binding 
subunit of troponin, troponin C, located on the actin filaments. This leads 
to a conformational change in tropomyosin and allows the transition from 
weakly bound to strongly bound myosin cross-bridges (Brenner 1986, 
Brenner et al. 1982). In contrast smooth muscle is activated through cova- 
lent modification of myosin. This mechanism was recognised by Sobieszek 
(1977), who showed that the actomyosin ATPase of smooth muscle in- 
creased significantly when myosin was phosphorylated. Phosphorylation 
was then shown to be catalysedby a calmodulin dependent enzyme, the 
myosin light chain kinase (MLCK, Dabrowska et al. 1978). For review of the 
initial work on the phosphorylation mechanisms in smooth muscle we 
refer to Hartshorne and Mrwa (1982). 

Based on a number of critical and conclusive experiments it is generally 
accepted that phosphorylation is sufficient to initiate a contraction in 
smooth muscle cells (e.g. Hoar et al. 1979, Walsh et al. 1982, Itoh et al. 1989). 
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However, phosphorylation, or perhaps more precisely an increase in phos- 
phorylation, is not always necessary to induce a contraction, as revealed by 
recent experiments showing that contractions could be initiated in muscle 
preparations where the light chains were fully dephosphorylated 
(Malmqvist et al. 1997). In addition to regulation by phosphorylation, 
several other regulatory systems have been identified. Two thin filament 
associated regulatory proteins, caldesmon and calponin, have been exten- 
sively investigated and several studies have shown effects on actomyosin 
ATPase and mechanical properties of muscle fibres (Gimona and Small 
1996, Marston and Huber 1996, Chalovich and Pfitzer 1997). The precise 
interaction between regulation by phosphorylation-dependent and phos- 
phorylation-independent mechanisms is still not clearly understood. 

The integrated contractile and regulatory systems, outlined above, in 
the smooth muscle cell are targets not only for the activator Ca 2+ but for a 
number of regulatory systems and physiological alterations in the physical 
and chemical environment. These systems can modulate the contractile 
responses by altering the coupling between phosphorylation and force and 
between [Ca~+],phosphorylation and force. Force in smooth muscle is thus 
not primarily determined by the absolute calcium concentration but 
rather by a "signalling network" created by the different interacting signal- 
ling pathways in the smooth muscle cell, activated or inhibited in response 
to a wide array of extracellular messages. 

2 
Cross-bridge interaction 

The fundamental process in the generation of force and shortening of 
muscle cells is the cyclic "cross-bridge" interaction between the thick 
(myosin containing) and thin (actin containing) contractile filaments. Sev- 
eral of the general concepts in this biological energy conversion have 
developed over decades from characterisation of skeletal muscle tissues. 
Although studies of smooth muscle contraction are of considerable inter- 
est for understanding of physiological and patho-physiological processes 
the properties of the cross-bridge interaction between myosin and actin in 
smooth muscle are not fully understood. Recent work on smooth muscle 
fibre preparations have revealed unique properties and from the initial 
view of smooth muscle as a poorly organised contractile system, a picture 
of a highly specialised motor system is developing. 
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With regard to the contractile process in smooth muscle the main 
characteristics, compared to the skeletal system, are: (i) a generally slow 
cross-bridge turnover, and (ii) a regulation of the contractile kinetics. The 
shortening velocity of smooth muscle is about 10- to 50-fold slower than 
that of fast skeletal muscle and the economy of tension maintenance is 
higher (cf. review by Paul 1989, Hellstrand and Paul 1982). From studies of 
intact smooth muscle tissue it has been demonstrated that the turnover of 
actin and myosin, as reflected by shortening velocity or ATPase rate can be 
modulated during the course of a contraction (Arner and Hellstrand 1980, 
Siegman et al. 1980, Dillon et al. 1981, Klemt et al. 1981, Hellstrand and Paul 
1983). A smooth muscle can thus develop force at a comparatively high 
rate and then switch into a more economical mode of contraction. This 
behaviour, the "latch concept", as discussed elsewhere in this review, has 
been associated with several different regulatory processes. In this chapter 
the actin-myosin interaction in the organised contractile system in 
smooth muscle cells is described with focus on some of the processes at 
the cross-bridge level that might be of importance in determining the slow 
and economical mode of contraction and be involved in the regulation of 
smooth muscle contractile kinetics. 

Although it is clear that force and shortening in smooth muscle tissue 
are generated by interaction between thick and thin filaments the exact 
organisation of the contractile apparatus in smooth muscle is not resolved 
at present. In particular, the structure of the thick myosin filaments has 
been very elusive. The presence of myosin structures in intact smooth 
muscle was shown with X-ray diffraction in the 70"s (Lowy et al. 1970). The 
early studies of myosin structure however became controversial due to the 
appearance of ribbon-like structures. This controversy was resolved by a 
careful electron microscopic examination of the thick filament structure 
which revealed filaments more similar to those observed in skeletal muscle 
(Devine and Somlyo 1971, Rice et al. 1971, Somlyo 1980 for review) possi- 
bly with the appearance of tapered ends (Ashton et al. 1975), compatible 
with a mode of filament assembly similar to that in skeletal muscle. Other 
work on synthetic filaments and isolated native filaments have however 
revealed a "side-polar" or "phase-polar" myosin filament structure (Craig 
and Megerman 1977, Small 1977, Hinssen et al. 1978, Cooke et al. 1989) 
which might suggest a unique organisation of smooth muscle thick fila- 
ments. 

At physiologic ionic strength and in the presence of MgATP, dephospho- 
rylated myosin filaments are disassembled in vitro, forming monomeric 
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myosin species having a sedimentation coefficient of about 10-12S, a 
folded conformation and a low ATPase activity (Onishi et al. 1978, Suzuki 
et al. 1978, Craig et al. 1983, Cross et al. 1988). When the LC20 on these 
myosin species are phosphorylated, they unfold and are able to assemble 
into filaments (Craig et al. 1983, Smith et al. 1983, Cross et al. 1986). These 
in vitro data may suggest that a fraction of the myosin in the relaxed 
smooth muscle cells will exist in a depolymerised state. Electron micros- 
copy has however clearly shown that filaments are present in relaxed 
smooth muscle, where the myosin is dephosphorylated (Somlyo et al. 1981, 
Tsukita et al. 1982). Also, the amount of monomeric myosin is low both in 
relaxed and contracted muscles (Horowitz et al. 1994). Contrasting to this, 
some structural studies have suggested that filaments may be formed 
during contraction in some smooth muscles (Godfraind-de Becker and 
Gillis, 1988, GiUis et al. 1988, Watanabe et al. 1993, Xu et al. 1997). Further 
work is needed to clarify whether this is a general phenomenon in smooth 
muscle and, if it is present, how the assembly might be regulated. Also the 
actin filaments exhibit dynamics in their assembly. Depolymerisation of  
actin filaments with cytochalasin (Adler 1983, Obara and Yabu 1994, 
Wright and Hurn 1994, Tseng et al. 1997) and a toxin which ADP-ribosy- 
lates G-actin thereby shifting the equilibrium between F- and G- actin in 
favour of the latter (Mauss et al. 1989) inhibits force. Also, stabilisation of 
the F-actin with phalloidin interferes with force generation (Boels and 
Pfitzer 1992). These results suggest that actin filament dynamics might be 
involved in mechanical responses of smooth muscle in a manner resem- 
bling that of motile phenomena in non-muscle cells. In non-muscle cells 
the dynamics of the actin cytoskeleton associated with cell motility is 
regulated by small GTPases, Rho and Rac, belonging to the superfamily of 
ras-related low molecular mass GTPases (Downward 1992). Rho has been 
implicated in the regulation of contraction of smooth muscle (see chapter 
4, and Somlyo and Somlyo in this volume). Future work has to clarify 
whether reorganisation of the actin cytoskeleton is of any importance for 
regulation of contraction and how this is regulated. 

The organisation of thick and thin filaments in the smooth muscle cells 
differs markedly from that in the skeletal muscle. The myosin concentra- 
tion in smooth muscle is about 20% of that in skeletal muscle (Murphy et 
al. 1974) and based on electron microscopy the thick myosin filaments 
appear to be surrounded by approximately 15 actin filaments (Devine and 
Somlyo 1971, Somlyo 1980). At present no "sarcomere" equivalents have 
been identified in smooth muscle, but in order to enable shortening over 
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longer distances at sufficient velocity, the contractile system must be or- 
ganised into series coupled contractile units. It has been shown that actin 
filaments project from dense bodies with a specific polarity (Bond and 
Somlyo 1982). The dense bodies in smooth muscle might therefore be 
structures anchoring the thin filaments and act in a similar manner as 
Z-bands in the skeletal muscle. Longer actin filaments have been demon- 
strated (Small et al. 1990) which might increase the range over which the 
filaments can interact, and most likely the contractile units would exhibit 
a broad distribution in length. In spite of the lower myosin concentration 
high force per cross-sectional area can be produced by smooth muscle 
(Murphy et al. 1974). This difference might have structural explanations. 
The smooth muscle thick filaments have been found to be slightly longer 
than those in skeletal muscle (Ashton et al. 1975) which may increase the 
parallel coupling of cross-bridges by creating longer contractile units. A 
second factor that could contribute to increased force per unit myosin, is a 
parallel coupling of the contractile units, e.g. via the intermediate filament 
system. In a recent study using a desmin-knock out animal (Sjuve et al. 
1998) it was shown that removal of the intermediate filaments markedly 
reduced the active force of the smooth muscle, which is consistent with a 
role of the intermediate filaments in transmitting force within, or between, 
ceils. Finally, a difference in force generation, between smooth and skeletal 
muscle, could reside in the cross-bridge interaction itself. In principle, the 
unitary force per cross-bridge interaction and/or the time the cross-bridge 
spends in attached states (duty cycle) could be increased. Recent work 
using optical trap methods (Guilford et al. 1997) has suggested that uni- 
tary forces are similar in smooth and skeletal myosins and that the en- 
hanced force generating capacity in smooth muscle could be due to an 
increased duty cycle (i.e. the time the cross-bridges spend in force gener- 
ating state). 

In view of the complex systems that interact during contraction and 
relaxation in smooth muscle, a characterisation of the reactions involved 
in the actin-myosin interaction in the organised smooth muscle contrac- 
tile system requires that several parameters are controlled. This can be 
achieved in skinned (permeabilised) smooth muscle preparations (cf. 
Meisheri et al. 1985, Pfitzer 1996). Several protocols have been used, al- 
though for experiments on the cross-bridge interaction the detergent Tri- 
ton X-100 (e.g. Sparrow et al. 1981) which removes cell membranes and 
sarcoplasmic reticulum functions and enables exchange of larger proteins 
into the filament lattice is particularly useful. It is important to note that 
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this skinning procedure has limitations with regard to the activation sys- 
tems, since both kinase and phosphatase activity is reduced (Takai et al. 
1989, Schmidt et al. 1995). Also some contractile, structural and regulatory 
proteins might diffuse out and/or reorganise during the skinning proce- 
dure (Kossmann et al. 1987). However, the kinetics of the actin-myosin 
interaction in the Triton skinned preparation, as judged from shortening 
velocity determinations and ATPase (Arner 1982, Arner and Hellstrand 
1983), are similar to those in the intact system. Since activation of smooth 
muscle through LC20 phosphorylation is ATP dependent, a charac- 
terisation of the ATP hydrolysis of actin and myosin is difficult the per- 
form in intact tissue. One advantage of the skinned preparations is that the 
extent of Ca2+-activation can be controlled and a state of maximal activa- 
tion can be obtained by thiophosphorylation of the LC20 using ATP-T-S 
(Cassidy et al. 1979, Arheden et al. 1988). To enable studies of kinetics in a 
muscle fibrerapid changes in muscle length or force are used to determine 
stiffness and unloaded shortening velocity. Rapid changes in chemical 
reactants can be achieved by the use of so called caged compounds (cf. 
Goldman 1987, Somlyo et al. 1987, Kaptan and Somlyo 1989, Somlyo and 
Somlyo 1990 for review). In caged compounds the biologically active moi- 
ety is protected by a photolabile chemical modification that can be cleaved 
by light to release the active compound. The caged compounds can be 
diffused into muscle strips and equilibrated at its site of action. Then the 
biologically active substance (e.g. Ca 2+, ATP, ADP or phosphate) is released 
by photolysis with a light flash and becomes available for binding with its 
ligands within milliseconds. 

The general pathways of the actin (A) - myosin (M) interaction in 
smooth muscle are considered to be similar to those in skeletal muscle 
(Marston and Taylor 1980). The cross-bridge cycle can thus be described 
by a scheme derived from biochemical characterization of actin-myosin 
interaction in vitro and from concepts developed for skeletal muscle (cf. 
Goldman 1987). 
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Fig. 1. Schematic diagram for the main pathways for the interaction between actin (A), 
myosin (M), ATP, ADP and inorganic phosphate (Pi) during cross-bridge cycling in 
smooth muscle. 

In the absence of ATP, actin and myosin bind strongly to form the rigor 
(A.M) complex (Fig. 1). A rigor state, characterised by an increased me- 
chanical stiffness, has been proposed on the basis of experiments on ATP 
depleted intact smooth muscle (Lowy and Mulvany 1973, Bose and Bose, 
1975, Wuytack and Casteels 1975, Butler et al. 1976) but rigor is most 
clearly shown in skinned fibres where an increased stiffness, a rigor force 
and structural X-ray diffraction and electron microscopy data show cross- 
bridge attachment (Arner et al. 1987a, Somlyo et al. 1988b, Arner et al. 
1988). Binding of ATP rapidly dissociates the rigor state (reaction i and 2, 
Fig. 1). The second order rate constant for cross-bridge detachment by ATP 
has been determined to be in the range 0.4-2.3 104 M -1 s -I which is slightly 
slower than in skeletal muscle (Nishiye et al. 1993). The ATP binding might 
also vary between smooth muscles (Khromov et al. 1996). However, this 
reaction is fast enough not to limit the cross-bridge turnover at physi- 
ological ATP concentrations. Following detachment, ATP is hydrolysed 
(reaction 3) and if the muscle is activated cross-bridges reattach (reaction 
4) and release phosphate (Pi, reaction 5). In skeletal muscle the initial 
attachment is considered to occur in a weak binding conformation de- 
pendent on ionic strength (cf. Brenner et al. 1982, Eisenberg and Hill 1985, 
Brenner and Eisenberg 1987). Similar interactions have not been identified 
in smooth muscle fibres although lowering of the ionic strength appears to 
promote cross-bridge interaction (Gagelmann and Giith 1985, Arheden et 
al. 1988). At high phosphate concentrations active force is reduced, and the 
release of phosphate is considered to be associated with force generation 
in smooth muscle (Schneider et al. 1981, Gagelmann and Giith 1987, Oster- 
man and Arner 1995) in a similar manner as in skeletal muscle (Hibberd et 
al. 1985). In the skeletal system the force generation is considered to occur 
in two steps; an initial isomerisation followed by Pi release (Kawai and 
Halvorson 1991, Dantzig et al. 1992). This might occur also in smooth 
muscle fibres, but at present experimental data is lacking. Although the Pi 
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release is considered to be associated with force generation it is not rate- 
limiting for the rate of filament sliding, since the maximal shortening 
velocity (Vm~) of muscle fibres (Osterman and Arner 1995) and the fila- 
ment velocity in the in vitro motility assay (Warshaw et al. 1991) are not 
influenced by phosphate. Following Pi release, and force generation, an 
isomerisation (reaction 6) is considered to precede the ADP release (reac- 
tion 7) in skeletal muscle (Sleep and Hutton 1980) and possibly also in 
smooth. The ADP release reaction is considered to limit the isotonic short- 
ening velocity of muscle (Siemankowski et al. 1985). This is supported by 
the finding that ADP in a competitive manner inhibits the maximal short- 
ening velocity of smooth muscle fibres (Arner et al. 1987b). ADP competes 
with ATP and the relaxation from rigor following release of ATP from 
caged-ATP is also slower in the presence of ADP (Arner et al. 1987b). The 
binding of ADP to the smooth muscle rigor complex was analysed by 
Nishiye et al. (1993) using caged-ATP experiments and was found to be 
very strong with an apparent dissociation constant in the micromolar 
range. A similarly strong ADP binding was found in smooth muscle fibres 
using competition with pyrophosphate (Arheden and Arner 1992) and is 
also found in isolated smooth muscle actomyosin (Cremo and Geeves 
1998). It might be possible that ADP binding to the rigor complex in 
muscle fibres does not reflect processes occurring during cross-bridge 
cycling. It has however been shown that ADP binding is strong also to 
dephosphorylated cross-bridges from slow smooth muscles during relaxa- 
tion induced by photolysis of a caged calcium chelator (Khromov et al. 
1995). The binding of ADP to the A.M state thus appears to be stronger in 
smooth muscle compared to skeletal and could be a factor modulating 
cross-bridge turnover. Interestingly, electron microscopy (Whittaker et al. 
1995) and electron paramagnetic resonance spectroscopy (Gollub et al. 
1996) have recently revealed an ADP dependent structural change in the 
smooth muscle myosin molecule which could suggest that the ADP release 
reaction has a special mechanical role in the smooth muscle contractile 
system. 

The regulation of actin myosin interaction by phosphorylation has been 
characterised in vitro, and the main process that is influenced by phospho- 
rylation appears to be a step associated with the Pi release (Sellers et al. 
1982, Sellers 1985, Greene and Sellers 1987). Increased levels of Ca 2÷ and 
phosphorylation increase active force in muscle fibres which could be 
consistent with an influence of phosphorylation on the Pi release reaction. 
By analogy with an analysis proposed for the events associated with force 
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generation in skeletal muscle muscle (Brenner 1988), force generation in 
the smooth muscle can be described by a transition from weakly attached, 
non force generating, states to strongly attached, force generating cross- 
bridges. The effects of LC20 phosphorylation could be an increase in the 
apparent attachment rate, fapp (Riiegg and Pfitzer 1991). The non-linear 
relation between LCzo and force observed under many conditions (Sieg- 
man et al. 1989, Kenney et al. 1990, di Blasi et al. 1992, Schmidt et al. 1995) 
is compatible with a regulation of f~pp through LC20 phosphorylation. The 
situation in the smooth muscle fibres appears however to be more com- 
plex. In addition to force, the maximal shortening velocity (Vm~) is also 
influenced by [Ca 2+] and phosphorylation (Arner 1983, Paul et al. 1983, 
Siegman et al. 1984, Barsotti et al. 1987, Malmqvist and Arner 1996); inter- 
mediate levels of Ca2+/phosphorylation are associated with low force and 
low Vm~ compared to the situation during full activation. This could be 
due to phosphorylation effects on the ADP release reactions or possibly 
the presence of an internal load opposing shortening. The former possibil- 
ity seems less likely since the ADP reaction in smooth muscle is little 
affected by phosphorylation both in vitro and in muscle fibres (Sellers et 
al. 1982, Greene and Sellers 1987, Arheden and Arner 1992). The inhibition 
of shortening velocity at low levels of activation could thus reflect the 
presence of attached cross-bridge states, possibly similar to the "latch- 
bridges" generated during sustained contractions in intact muscle (cf. 
chapter 6) 

It has been shown that the rate of relaxation of skinned muscle is 
increased in the presence of inorganic phosphate (Pi, Schneider et al. 1981, 
Gagelmann and Gtith 1987, Arner et al. 1987a, Somlyo et al. 1988b). Since 
the binding of Pi occurs early during the force generation these data 
suggest that unphosphoryIated cross-bridges can attach into force gener- 
ating states. 

Interestingly when inorganic phosphate is introduced into partially 
activated skinned muscle fibres the force is decreased but Wmax is increased 
(Osterman and Arner 1995). This phenomenon thus suggests that at low 
levels of activation non-phosphorylated cross-bridges attach and that the 
resulting attached states are influenced by Pi and capable of opposing 
shortening. Most studies suggest that myosin has to be phosphorylated for 
interaction with actin (cf. Hartshorne and Mrwa 1982, Kamm and Stull 
1985 for review). However, under conditions where the unphosphorylated 
myosin is filamentous, Vma~ of the MgATPase activity is about one-half of 
that of phosphorylated myosin (Wagner and Vu 1986,1987). This observa- 
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tion may underly the prediction that unphosphorylated cross bridges can 
attach to actin. 

In a recent study on isolated skinned smooth muscle cells, Malmqvist et 
al. (1997) extracted the regulatory protein calponin and demonstrated 
that in this situation, the muscles with unphosphorylated myosin could 
generate force, although at a slower rate than muscles with phosphorylated 
myosin. The data from skinned muscle thus suggest that both fully phos- 
phorylated and dephosphorylated myosin cross-bridges can cycle and 
generate active force. The latter population cycle at a slower rate and could 
introduce a load opposing shortening at low levels of activation. Since the 
dephosphorylated cross-bridge states are sensitive to Pi binding, cycling of 
dephosphorylated cross-bridges appears to involve a comparatively large 
population of A.M.ADP states. 

An important question is how the attached (or cycling) dephosphory- 
lated cross-bridge states are recruited in the smooth muscle fibre. Accord- 
ing to the "latch-bridge" hypothesis (cf. Murphy 1994, Strauss and Murphy 
1996 and chapter 6) latch-bridges are formed by dephosphorylation of 
attached phosphorylated cross-bridges, although other mechanisms, e.g. 
cooperative attachment of unphosphorylated cross-bridges (Somlyo et al. 
1988b, Vyas et al. 1992) possibly in association with regulation by thin 
filament systems (chapter 5) might also apply as discussed below. 

Smooth muscles can be divided into two main groups: phasic and tonic 
muscle types. Phasic muscle, e.g. taenia coli, exhibits spontaneous action 
potentials and have faster contractile kinetics whereas tonic muscle, e.g. 
the aorta, do not have spontaneous activity and contract more slowly (cf. 
Somlyo and Somlyo 1968, Horiuti et al. 1989). Comparative studies have 
revealed that the shortening velocity of smooth muscles span of over a 
wide range (Malmqvist and Arner 1991). A fast smooth muscle, e.g. rabbit 
rectococcygeus, can have a shortening velocity that is about 7-fold faster 
than that of a slow smooth muscle, e.g. the aorta. This difference in velocity 
is similar to that between fast and slow skeletal muscle fibres. Thus smooth 
muscle is a heterogeneous group of muscles with a span of different 
kinetic properties in their contractile systems. 

In fully activated smooth muscle the maximal shortening velocity 
(Vm~) is considered to reflect the rate of cross-bridge detachment during 
filament sliding, whereas the rate of tension development reflects the rate 
at which cross-bridges enter into the force generating states. In different 
smooth muscles, the maximal shortening velocity appears to be correlated 
with the rate of tension development, although some exceptions exist 
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(Malmqvist and Arner 1991, Fuglsang et al. 1993, Somlyo 1993). Both 
parameters can be influenced by structural factors, e.g. series elasticity 
and sarcomere equivalent length. The initial rate of force generation after 
photolytic release of ATP in thiophosphorylated muscle is influenced by Pi 
whereas Vmax is not (Osterman and Arner 1995). Also in a recent report by 
He et al. (1997) it was also demonstrated, using a Pi indicator in a smooth 
muscle preparation, that the initial force generation after ATP release in an 
activated fibre preparation involved one cross-bridge turnover. These re- 
sults seems to exclude that the rate of force development is simply deter- 
mined by the force velocity relationship and the series elasticity. Thus the 
variation in contractile properties between muscles involves a regulation 
of both the force generating cross-bridge reactions and the reactions lim- 
iting the cycling during filament sliding. It has been shown that the ADP 
binding is higher in slow "tonic" smooth muscle (Fuglsang et al. 1993, 
Khromov et al. 1995, t996). The ATP binding has also been reported to be 
weaker in slow muscles (Khromov et al. 1996). These data suggest that the 
muscle specific modulation of cross-bridge cycling in smooth muscle fi- 
bres occurs in the vicinity of the ADP release and cross-bridge detachment 
reactions. This mechanism can explain the difference in Vm~ between 
muscles, although it is more difficult to envision how the reactions in- 
volved in force generation may be influenced. As discussed below (chapter 
5.1) strong ADP binding might also potentiate cooperative mechanisms 
involved in control of cross-bridge attachment. 

The properties of the contractile system in a smooth muscle tissue can 
be altered under some (patho)physiological conditions. For example, the 
maximal shortening velocity increases in uterine smooth muscle oestro- 
gen treatment or pregnancy (Hewett et al. 1993, Morano et al. 1997) and in 
airway smooth muscle from ragweed pollen-sensitised dogs (Jiang et al. 
1995). Vm~, decreases in urinary bladder smooth muscle during hypertro- 
phy (Sjuve et al. 1996). These alterations in the contractile system most 
likely have a functional role in altering e.g. the economy of force mainte- 
nance. It is possible that several changes also occur in the signalling and 
activation mechanisms in association with the alterations of smooth mus- 
cle phenotype: e.g. MLCK activity is increased in sensitised canine airway 
smooth muscle and saphenous vein (Jiang et al. 1995, Liu et al. 1996). A 
decrease in the activities of protein phosphatase type 1 and 2A was re- 
ported to occur in experimental vasospasm (Fukami et al. 1995). In this 
context it is, however, interesting to examine which contractile isoforms 
could be responsible for the variation in contractile properties between 
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different smooth muscles and for the modulation of the contractile kinet- 
ics in one smooth muscle tissue. 

Smooth muscle expresses four different isoforms of actin: ~-, [5-, and 
two forms of y- actin (Vandekerckhove and Weber 1978). The isoform 
distribution varies during development (Eddinger and Murphy 1991) and 
can also change in (patho)physiological conditions, e.g. in the uterus dur- 
ing pregnancy (Cavaitl~ and Leger 1983, Cavaill6 et al. 1986) or in vascular 
and urinary bladder smooth muscle during hypertrophy (Malmqvist and 
Arner 1990, Malmqvist et aL 1991a). The cellular distribution of the differ- 
ent actin isoforms is not clear for all muscles but it has been suggested that 
the [5-isoform predominantly is associated with the cytoskeleton in 
smooth muscle (North et al. 1994b). The cellular concentration of actin 
varies between smooth muscle tissues and has been found to be in the 
approximate range 20-50 mg/g smooth muscle cell (Murphy et al. 1974, 
Cohen and Murphy 1979, Malmqvist and Arner 1990, Malmqvist et al. 
1991a). Although the isoform distribution and content of actin appears to 
be modulated in smooth muscle cells the reasons and functional conse- 
quences are not clear at present. Actin is a highly conserved protein and a 
substantial sequence homology exists between isoforms (Pollard and Coo- 
per 1986). Different actin isoforms do not exhibit large differences in 
actomyosin ATPase (Mossakowska and Strzelecka-Golaszewska 1985), the 
motion of actin filaments in the in vitro motility assay is little affected by 
the type of actin (Harris and Warshaw 1993) and data from muscle fibres 
suggest that the actin isoforms are functionally equivalent (Drew and 
Murphy 1997). These results suggest that the actin isoform distribution is 
not a primary determinant of kinetics of actin myosin interaction in the 
smooth muscle cell. Possibly, other functions of the thin filaments, e.g. 
depolymerisation/polymerisation processes, interaction with other parts 
of the cytoskeleton or with thin filament regulatory proteins, like calponin 
or caldesmon, might be influenced by the actin isoform distribution. 

The smooth muscle myosin molecule is composed of six subunits: two 
heavy chains and two pairs of light chains. Adult smooth muscle expresses 
two main heavy chain isoforms, SM1 (molecular weight 204 kDa) and SM2 
(200 kDa), which differs in their tail (light meromyosin, LMM) regions 
(Eddinger and Murphy 1988). These variants are formed from a single 
gene by alternative splicing (Nagai et al. 1989, Babij and Periasamy 1989). 
In addition non-muscle heavy chain (NMHC-A, 196 kDa) can be found in 
low amounts in tissue extracts and is expressed under certain conditions, 
e.g. during culture of smooth muscle cells (Rovner et al. 1986a, Kawamoto 
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and Adelstein 1987). During development and in atherosclerotic transfor- 
mation an embryonic heavy chain (SMEmb, NMHC-B, 200 kDa) can be 
expressed in smooth muscle (Kuro-o et al. 1989, 1991, Aikawa et al. 1993, 
Okamoto et al. 1992). The mechanical effects of the non-muscle and em- 
bryonic heavy chains are unknown, although the concentrations appear to 
be too low to enable any direct influence on mechanical performance of 
the muscle. The ratio of SMI! SM2 varies between muscles, changes during 
development and can also be altered during hypertrophy of smooth mus- 
cle (Rovner et al. 1986b, Mohammad and Sparrow 1988, Kawamoto and 
Adelstein 1987, Borrione et al. 1989, Malmqvist et al. 1991a, 1991b, 
Malmqvist and Arner 1990, Boels et al. 1991). It has been suggested that 
alterations in the ratio between SM1 and SM2 can influence mechanical 
performance of smooth muscle in some conditions (Hewett et al. 1993). 
However, other comparative data suggest that the variation in smooth 
muscle shortening velocity, reflecting cross-bridge turnover, cannot be 
correlated with SM1 and SM2 (cf. Malmqvist et al. 1991a, Malmqvist and 
Arner 1991). The SM1 and SM2 differ in the LMM portion and these two 
isoforms move actin in the in vitro motility assay with similar velocities 
(Kelley et al. 1992) suggesting that the SM1/SM2 ratio does not have a 
primary function in determining the cross-bridge kinetics. More recently 
it has been demonstrated that an insert of 7 amino acids in the heavy 
meromyosin (HMM) region of the heavy chain can be present, thus gener- 
ating SM1 and SM2 isoforms with and without the insert (Babij et al. 1991, 
Babij 1993, Kelley et al. 1993, White et al. 1993). The change is close to the 
ATP binding region and smooth muscle myosin with insert has a higher 
actin activated ATPase activity and moves actin filaments at a higher 
velocity in the in vitro motility assay (Kelley et al. 1993, Rovner et al. 1997). 
Although data from organised muscle tissues is sparse at present, vari- 
ations in the amount of inserted myosin heavy chain is a strong candidate 
for modulating smooth muscle mechanical performance. Two types of 
light chains, the regulatory (20 kDa, LC20) and the essential (17 kDa, LC17) 
are present in smooth muscle (cf. review by B~ir~iny and B~ir~iny 1996a). 
Phosphorylation of the LC20 is the physiological activator of contraction, 
as described later (chapter 3), and removal of the LC20 results in a loss of 
the ability of myosin to move actin in the in vitro motility assay (Trybus et 
al. 1994). Isoforms of the LC20 have been demonstrated (cf. review by 
Bfir~iny and B~ir~iny 1996a) although their functional role in the smooth 
muscle contractile apparatus is not clear. The essential light chain appears 
to have a structural role in the neck region of myosin and removal of this 
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component reduces velocity in the in vitro motility assay (Trybus 1994). 
Two isoforms of the essential light chain have been demonstrated in 
smooth muscle and are separated by isoelectric focusing into a more 
acidic LC17a and a more basic LC17b isoform (Cavaill~ et al. 1986, Hasegawa 
et al. 1988, 1992, Helper et al. 1988, Lash et al. 1990). The composition of 
these isoforms has been suggested to influence the actomyosin ATPase 
(Helper et al. 1988, Hasegawa and Morita 1992). The relative composition 
of the essential light chain isoforms varies between tissues with a maxi- 
mum of about 60% LC17b in "slow" muscles like the aorta and 0% in faster 
smooth muscles, like rabbit rectococcygeus (Malmqvist and Arner 199t). 
When different muscles are compared force development and the maximal 
shortening velocity are strongly correlated with the LC17 isoform distribu- 
tion, suggesting that this myosin component may have a role in determin- 
ing smooth muscle contractile kinetics (Malmqvist and Arner 1991, Fugl- 
sang et al. 1993, Morano et al. 1993, cf. Somlyo 1993 for review). 

At present the data from in vitro motility assay and ATPase favour the 
inserted myosin as being the main factor determining the velocity of 
filament sliding (Rovner et al. 1997). The filament velocity in in vitro 
motility assays is usually considered to reflect the unloaded shortening 
velocity in muscle fibres. However the data cannot be directly transferred 
to the situation in muscle fibres where the contractile proteins are polym- 
erised into a filament lattice, have higher effective concentrations, and 
contain additional regulatory proteins. It is therefore possible that contrac- 
tile protein isoform might have different actions in muscle cells compared 
to the in vitro situation and that the different isoforms of contractile 
proteins might influence different functions, e.g. force generation, shorten- 
ing velocity, activation mechanisms or interaction with other parts of the 
cytoskeleton. In several smooth muscle tissues the LC17 isoform distribu- 
tion appears to correlate with the expression of inserted myosin (cf. 
Malmqvist and Arner 1991, White et al. 1993, Sjuve et al. 1996) which could 
suggest that the expression of these two contractile protein isoforms is 
correlated. Muscles where the distribution of LC~7 isoforms and inserted 
myosin could be dissociated would be particularly interesting to clarify 
the role of these myosin isoforms in determining smooth muscle contrac- 
tile behaviour. 
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3 
Regulation of contraction by myosin light chain phosphorylation 

It is generally believed that the reversible phosphorylation of the regula- 
tory light chains of myosin (LCzo) is the key activating mechanism for 
smooth muscle contraction. Phosphorylation is catalysed by the CaZ+/cal - 
modulin dependent myosin light chain kinase (MLCK) which is activated 
when the cytosolic concentration of Ca 2+ increases upon stimulation of 
smooth muscle. A decrease in cytosolic Ca z+ leads to a dissociation and 
inactivation of the CaE+/calmodulinll • MLCK complex and dephospho- 
rylation of LC20 by specific myosin light chain phosphatase(s) (MLCP, Fig. 
2). 

Ca ~" 

CaM - ~  Ca~" 

Ca, 2. / CaM - ~  MLCK 

Ca ~" / CaM-MLCK 

Myosin Myosin@ 

MLCP contraction 

Fig. 2. Schematic diagram for the activation of smooth muscle through phosphorylation 
of regulatory light chains of myosin. Upon activation of smooth muscle by membrane 
depolarisation or activation of a receptor (R) through an agonist (L) the cytosolic Ca 2+ 
increases due to an influx of Ca 2+ through plasmalemmal Ca 2+ channels or IP3 mediated 
release from the sarcoplasmic reticulum (SR). Ca 2+ binds to calmodulin (CAM) and 
activates the myosin light chain kinase (MLCK). Myosin is dephosphorylated by 
specific phosphatase(s) (MLCP). 
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As was initially shown by Sobieszek (Sobieszek 1977) that phosphoryla- 
tion of the LC20 increases the actomyosin ATPase. Using more defined 
systems consisting of purified proteins this was then confirmed by a 
number of authors and it was clearly shown that the actin activated myosin 
MgATPase increased when LC20 was phosphorylated (for review Hart- 
shorne and Mrwa 1982, Kamm and Stull 1985). Besides activation of the 
contractile process, phosphorylation of LC20 can also influence the assem- 
bly of smooth muscle myosin into filaments in vitro (see chapter 2). 

Still, there is some controversy as to whether unphosphorylated myosin 
can interact with actin. Most studies suggest that myosin has to be phos- 
phorylated for interaction with actin (Sobieszek and Small 1977, Sherry et 
al. 1978, Sellers et al. 1982, Chacko and Rosenfeld 1982, Sellers et al. 1985). 
However, under conditions where the unphosphorylated myosin is fila- 
mentous, Vm~, of the MgATPase activity is about one-half of that of phos- 
phorylated myosin as already mentioned (Wagner and Vu 1986,1987). This 
puzzle may be resolved on the basis of a recent study in which the minimal 
molecular requirement for myosin to be in the "off-state" was determined 
(Trybus et al. 1997). Mutants of myosin with different lengths of the rod 
showed that a length approximately equal to the myosin head was neces- 
sary to achieve a completely "off-state". It was concluded that the myosin 
rod mediates specific interactions with the head that are required to obtain 
a completely inactive state of vertebrate smooth myosins. If this interac- 
tion could be prevented, e.g. by constraints imposed by the native thick 
filament structure or accessory proteins, then partial activation of the 
actomyosin ATPase and slowly cycling of unphosphorylated cross-bridges 
could occur. 

The predominant site of the LCz0 being phosphorylated is serine-19 
(Ikebe et al. 1986). It is thought that the effect of phosphorylation is not 
simply a charge effect but rather that the phosphate group in this position 
has a specific, steric effect (Sweeney et al. 1994). Under high activating 
conditions or high concentrations of MLCK, a second site becomes phos- 
phorylated, threonine-18 (Ikebe et al. 1986). With intact myosin, phospho- 
rylation of serine-19 is biphasic with a rapid initial phase while phospho- 
rylation of threonine-18 is slower and follows a random process (Ikebe et 
al. 1986). Although phosphorylation of threonine-18 affects actomyosin 
ATPase activity in vitro (Ikebe and Hartshorne 1985) no effects on con- 
tractile properties of smooth muscle were detected (Haeberle et al. 1988). 
Since in smooth muscle, phosphorylation of threonine-18 always occurs in 
conjunction with phosphorylation of serine-19, the effect of threonine-18 
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phosphorylation alone cannot be determined in this system. Using mu- 
tants of the regulatory myosin light chains in which serine-19 and/or 
threonine-18 were replaced by alanine it was shown that phosphorylation 
of threonine-18 affected the actin-activated ATPase of myosin and translo- 
cation of actin filaments in the in vitro motility assay differently (Bresnick 
et al. 1995). While the actin-activated ATPase of myosin phosphorylated on 
threonine-18 only was approximately 15-fold lower than that of myosin 
phosphorylated on serine-19, the velocity with which actin filaments were 
moved was similar for myosins phosphorylated on threonine-18 or serine- 
19 or both threonine-18 and serine-19 (Bresnick et al. 1995). 

LC~0 is also phosphorylated by protein kinase C at serine-1 and 2 and 
threonine-9 (Bengur et al. 1987, Parente et al. 1992) which is associated 
with inhibition of ATPase (Ikebe et al. 1987a, de Lanerolle and Nishikawa 
1988). The cellular effects of protein kinase C activation are, however, very 
complex since protein kinase C may affect contractile activity via several 
targets (cf. Somlyo and Somlyo 1994, Horowitz et al. 1996b, Singer 1996 for 
reviews, see chapter 4). Phosphorylation of LC20 of myosin II is also impor- 
tant for contractile phenomena in non-muscle cells such as formation of 
the contractile ring during cytokinesis. LCz0 is phosphorylated by the cell 
cycle dependent protein kinase p34 cat2 on the protein kinase C sites (Sat- 
terwhite et al. 1992). It was suggested that this phosphorylation which 
occurs during prophase and metaphase could delay cytokinesis until chro- 
mosome segregation is initiated and thus determine the timing of cytoki- 
nesis relative to earlier events in mitosis. 

3.1 
Myosin light chain kinase 

The structure and regulation of the MLCK is extensively studied and has 
been reviewed in detail in recent reviews (Stull et al. 1996, Gallagher et al. 
1997). Therefore, only a few aspects pertinent to the topic of this review 
will be covered. Unlike other protein kinases, which have a broader sub- 
strate specificity, MLCK phosphorylates only the LC20 of myosin II (Gal- 
lagher et al. 1997). The amount of MLCK in smooth muscle cells is approxi- 
mately 3-4 pM which compares to 70-80 ~tM LC20 (Stull et al. 1996). MLCK 
has been cloned and sequenced from chicken (Olson et al. 1990), rabbit 
(Gallagher et al. 1991) and bovine smooth muscle (Kobayashi et al. 1992). 
Several domains can be identified in the molecule: a catalytic core, an actin 
binding site within the first 80 N-terminal residues, a regulatory domain 
with a calmodulin binding region and a putative autoregulatory site C-ter- 
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minal of the catalytic core. All smooth muscle MLCKs also contain multi- 
ple structural motifs (unc motif) which are also found in twitchin, the unc 
22 gene product located in muscle A bands in C. elegans (Benian et al. 
1989), and in titin, which spans from the Z line to the M line in striated 
muscle (Labeit et al. 1990). Two different unc motifs have been described, 
motif  I and II, which are members of the fibronectin and immunoglobulin 
superfamilies, respectively (Benian et al. 1989). Titin motif I and II bind to 
C protein and myosin and serve a structural role (Labeit and Kolmerer 
1995). There is the intriguing possibility that MLCK in smooth muscle also 
serves a structural role in addition to its catalytic function (de LaneroUe et 
al. 1991). It was suggested that MLCK together with actin and caldesmon 
may form a scaffold for smooth muscle development because expression 
of MLCK occurred before the expression of smooth muscle myosin in the 
developing gizzard (Paul et al. 1995). 

Interestingly one of the unc structural motifs (a motif  II structure) 
located at the COOH-terminal end of MLCK is expressed as a separate 24 
kDa acidic protein, telokin, also called kinase-related protein (Ito et al. 
1989). MLCK and telokin are independently expressed proteins because 
the mRNAs are induced by two different promoters (Gallagher and Her- 
ring 1991). The function of telokin is not dear. Telokin may affect LC20 
phosphorylation by modulation of the interaction of MLCK with myosin 
filaments (Nieznanski and Sobieszek 1997) or by enhancing MLCP activity 
(Wu et al. 1997). Telokin binds to myosin at the head-tail junction (Silver et 
al. 1997), and partially reverses the depolymerising effect of ATP on un- 
phosphorylated myosin (Shirinsky et al. 1993). In this way it may stabilise 
unphosphorylated smooth muscle myosin filaments in vitro and this 
might be one factor explaining why unphosphorylated myosin maintains a 
filament structure in the presence of ATP in smooth muscle in vivo. A 
similar stabilising activity has also been reported for caldesmon 
(Katayama and Ikebe 1995, Katayama et al. 1995). 

The catalytic core of MLCK, which is in the centre of the molecule, is 
highly homologous to other protein kinases (Stull et al. 1996) which may 
explain that there is no entirely specific MLCK inhibitor. The catalytic core 
is flanked at the C-terminal end by a regulatory segment containing a 
putative autoregulatory (inhibitory) and a calmodulin binding domain 
(Ikebe et al. 1989). Limited proteolysis at the region connecting the cata- 
lytic and regulatory domains yields a 61 kDa fragment which is constitu- 
tively active (Ikebe et al. 1987b). Within the calmodulin binding domain a 
pseudosubstrate structure with similarities to the consensus phosphoryla- 
tion sequence of LC20 was detected (Kemp et al. 1987) which is probably 
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identical to the autoregulatory domain (Olson et al. 1990, see Stull et al. 
1996 for a detailed discussion). Synthetic peptides containing this se- 
quence act as substrate antagonists (Kemp et al. 1987). Based on these 
observations it was proposed that in the absence of Ca2+/calmodulin the 
autoregulatory region folds back on the catalytic site whereby the pseudo- 
substrate region interacts with the catalytic site thereby autoinhibiting the 
enzyme (Means et al. 1991, Bagchi et al. 1992). Binding of Ca2+/calmodulin 
releases the autoinhibition and allows access of the protein substrate to the 
active site of the enzyme, resulting in phosphorylation of LC20. Mutagene- 
sis experiments confirmed that the pseudosubstrate has access to the 
catalytic site and that activation of the enzyme is accompanied from this 
position due to Ca2+/calmodulin binding. This kind of intrasteric regula- 
tion has been termed pseudosubstrate inhibition (Kemp et al. 1994). For a 
detailed discussion the reader is referred to the review of Stull et al. (1996) 
and Gallagher et al. (1997). 

It was originally recognised by Dabrowska et al. (1978) that calmodulin 
was part of the active holoenzyme MLCK complex. The association of 
calmodulin with MLCK is rapid and appears to be diffusion limited. It 
could be described by a two-step process, a bimolecular step and an 
isomerisation (T6r6k and Trentham 1994). The time required for activat- 
ing MLCK by Ca2+/calmodulin may contribute to the latency of about 
400-500 ms at 37°C which precedes increases in LC20 phosphorylation 
(Miller-Hance et al. 1988). The interaction of Ca2+/calmodulin with MLCK 
may be modulated by phosphorylation of MLCK. Purified MLCK is a 
substrate for protein kinase A (Conti and Adelstein 1981), the multifunc- 
tional Ca2+/calmodulin dependent protein kinase II (Hashimoto and 
Soderling 1990, Ikebe and Reardon 1990), protein kinase C (PKC) 
(Nishikawa et al. 1983) and mitogen activated protein kinase (MAP kinase, 
Klemke et al. 1997). Phosphorylation of MLCK by these protein kinases 
may alter the Ca2+-sensitivity of the enzyme and hence of contraction, as 
will be discussed below. 

3.2 
Myosin light chain phosphatase 

The dephosphorylation of the regulatory light chains of myosin is cata- 
lysed by myosin light chain phosphatase (MLCP). Compared to MLCK 
much tess is known about MLCP. Based on their properties the protein 
phosphatases (PP) are categorised into two groups (Cohen 1989). Protein 
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phosphatase-1 (PP1) dephosphorylates the fl-subunit of phosphorylase 
kinase specifically and is inhibited by nanomolar concentrations of two 
small heat- and acid-stable proteins, termed inhibitor-1 (I-1) and inhibi- 
tor-2 (I-2). The other group, protein phosphatase-2 (PP2) dephosphory- 
lates the ct-subunit of phosphorylase kinase preferentially and is insensi- 
tive to I-1 and I-2. Type 2 phosphatases could be classified into three 
distinct enzymes: 2A, 2B, and 2C. PP 2A is active in the absence of Ca 2+ and 
Mg 2+ while PP2B and PP2C require Ca2+/calmodulin or Mg 2+ for activity, 
respectively (Cohen 1989). Further means to differentiate between the 
phosphatases are based on the effects of polycationic macromolecules 
(reviewed in Erd6di et al. 1996). Another diagnostic aid is the marine toxin 
okadaic acid, a potent inhibitor of phosphatases with a different sensitivity 
against the different types of phosphatases (Takai et al. 1987). PP2A is 
approximately 4000 fold more sensitive than PP1 (Takai et al. 1995). The Ki 
value for PP2A is approximately 30 pM (Takai et al. 1995). PP2B is inhibited 
only in the micromolar range and PP2C is not affected (Bialojan and Takai 
1988). Isolated LC20 are an excellent substrate for various forms of PP1, 
PP2A and PP2C (Pato and Adelstein 1983). However, when myosin as the 
native substrate is studied, the number of phosphatases that dephosphory- 
late LCz0 associated with the myosin heavy chains is considerably smaller 
(see Erd6di et al. 1996 for review). Use of phosphorytated myosin as a 
substrate is difficult because of the low solubility but myosin can be substi- 
tuted for soluble heavy meromyosin (HMM), since HMM carries all the 
phosphatase binding properties associated with intact myosin (Erd6di et 
al. 1996). Using okadaic acid as probe it was suggested that the phos- 
phatase that dephosphorylates myosin in the tissue is a type PP1 phos- 
phatase and possibly also PP2A phosphatase (Takai et al. 1989, Ishihara et 
al. 1989). Type PP1 and PP2A phosphatases may also be involved in the 
dephosphorylation of MLCK (Nomura et al. 1992), caldesmon and 
calponin (Winder et al. 1992). It should be noted that in tissues often 
higher concentrations of okadaic acid are required than with isolated 
phosphatases. This difference in dose dependence could be due to prefer- 
ential localisation of the inhibitor with lipids or it could reflect the intra- 
cellular concentration of the targeted phosphatase (Gong et al. 1992). 

Recently, several groups have isolated a type PP1 phosphatase from 
chicken or turkey gizzard and pig bladder (Alessi et al. 1992, Okubo et al. 
1994, Shirazi et al. 1994) with similar properties which all dephosphorylate 
LC20 in intact myosin. The concentration of this enzyme was estimated to 
be 0.7 ~M (Alessi et al. 1992) and 1 ~tM (Shirazi et al. 1994) and sufficient to 
completely dephosphorylate myosin within seconds in vivo. The type PP1 
phosphatases isolated from chicken gizzard and pig bladder were trimeric 
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and consisted of 130 kDa, 37 kDa and 20 kDa subunits (Alessi et al. 1992, 
Shirazi et al. 1994). Purification of a myosin-bound phosphatase from 
chicken gizzard actomyosin yielded a protein which consisted of two 
subunits, 38 kDa and 58 kDa, the latter may have been a proteolytic 
product of the 130-kDa subunit (Okubo et al. 1994). The 37 kDa subunit of 
these enzymes represents the catalytic subunit the activity of which is 
higher in the presence of the 130 kDa subunit than in its absence (Alessi et 
al. 1992). The 130 kDa subunit interacts with both the 37 kDa and 20 kDa 
subunit and with myosin (Alessi et al. 1992, Shirazi et al. 1994, Shimiziu et 
al. 1994). Therefore the 130 kDa subunit could target the phosphatase to 
myosin and determine its specificity. The interaction sites between myosin, 
the large subunit and the catalytic subunit (Ichikawa et al. 1996b, Hirano et 
al. 1997) and the regions of the large subunit required for regulation 
(Gailly et al. 1996, ]ohnson et al. 1996) have been mapped. Further evidence 
in support of the hypothesis that the 130-kDa of the trimeric phosphatase 
is the targeting subunit of smooth muscle phosphatase is as follows: the 
holoenzyme more effectively promotes relaxation of skinned smooth 
muscle (Shirazi et al. 1994), it is dissociated by arachidonic acid which 
slows relaxation and dephosphorylation of LC20 (Gong et al. 1992). The 
concept of targeting subunits which convey specificity and regulation of 
the protein phosphatases has been developed by Cohen and coworkers and 
has been exemplified with the glycogen bound form of PP1 which consists 
of two subunits: the catalytic subunit (37 kDa) and a 161 kDa glycogen 
binding subunit (Hubbard and Cohen 1989). 

There are at least two possibilities to regulate the activity of PP1 in 
smooth muscle. Like the glycogen-bound phosphatase, the myosin bound 
phosphatase may be regulated by phosphorylation of the 130 kDa subunit. 
This concept suggests that phosphorylation of the targeting subunit 
causes the association or dissociation (depending on the site phosphory- 
lated) of the subunits of holoenzyme which is associated with a change in 
the activity (Hubbard and Cohen 1989). The large subunit of smooth 
muscle myosin phosphatase has been characterised from two sources, 
chicken gizzard (Shimiziu et al. 1994) and rat aorta (Chen et al. 1994). 
cDNA clones obtained from a chicken gizzard library suggested the pres- 
ence of two isoforms (Shimiziu et al. 1994) which have several potential 
phosphorylation sites for the cAMP-dependent protein kinase, protein 
kinase C, the cell cycle dependent protein kinase p34 cdc2, and glycogen 
synthase kinase 3 (Shimiziu et al. 1994). Subsequently it has been shown 
that phosphorylation of the 130 kDa subunit by a kinase which copurifies 
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with the phosphatase (Ichikawa et al. 1996a), or by Rho-associated kinase 
(Kimura et al. 1996) resulted in inhibition of phosphatase activity (see 
chapter 4.2). An alternative mechanism of regulation could involve inhibi- 
tor-1 which has also been purified from smooth muscle tissues (Eto et al. 
1995, Tokui et al. 1996). The purified inhibitor 1 was phosphorylated by 
protein kinase C (Eto et al. 1995) or cGMP-dependent protein kinase 
(Tokui et al. 1996) resulting in inhibition of MLCP. Incubation of perme- 
abilised smooth muscle cells at submaximal Ca z+ with the phosphorylated 
inhibitor I induced a slow contraction indicating that phosphorylation of 
inhibitor 1 may also be a mechanism to increase Ca~+-sensitivity of 
smooth muscle contraction (Tokui et al. 1996). As discussed in chapter 4.2, 
regulation of the activity of MLCP may be an important mechanism which 
regulates the Ca 2+ sensitivity of contraction. 

A further myofibrillar phosphatase which forms a multienzyme com- 
plex with myosin light chain kinase has been purified recently from 
chicken gizzard (Sobieszek et al. 1997b) and is composed of a 37 kDa 
catalytic subunit and a 67 kDa targeting subunit which bound to cal- 
modulin in a Ca2+-independent manner. The enzyme was closely associ- 
ated with MLCK and myosin filaments and was called kinase- and myosin- 
associated protein phosphatase (KAMPPase). The enzyme was inhibited 
by okadaic acid (Ki = 250 nM), microcystin-LR (50 nM) and calyculin A 
(1.5 pM) but not by arachidonic acid or the heat-stable inhihitor-2 which 
suggested that this phosphatase is a type PP1 or PP2A phosphatase (Sobi- 
eszek et at. 1997a). Clearly further work is needed to identify the phos- 
phatase specifically responsible for the dephosphorylation of myosin in 
vivo. 

3.3 
Regulation of contraction through LGo phosphorylation in intact and perme- 
abilised smooth muscle. 

Krebs and B eavo (1979) proposed several criteria which have to be fulfilled 
if phosphorylation-dephosphorylation of an enzyme is physiologically 
meaningful: (i) Demonstration in vitro that the enzyme can be phospho- 
rylated stoichiometrically at a significant rate in reaction(s) catalysed by 
appropriate protein kinase(s) and dephosphorylated by a phosphoprotein 
phosphatase(s). (ii) Demonstration that functional properties of the en- 
zyme undergo meaningful changes that correlate with the degree of phos- 
phorylation. It is generally accepted that these two criteria for the regula- 
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tion of smooth muscle by phosphorylation are met in vitro, as discussed 
above. 

The third criterion of Krebs and Beavo states that it has to be demon- 
strated that the enzyme can be phosphorylated and dephosphorylated in 
vivo or in an intact cell system with accompanying functional changes. 
This criterion is more difficult to meet although it is accepted that there is 
a significant body of evidence that it is also fulfilled. One important point 
to consider is what is called a functional change. At first sight this may be 
active force of the muscle. However, as pointed out by Murphy (1994), force 
in smooth muscle does not necessarily represent a quantitative measure of 
the number of cycling cross-bridges. Perhaps under non-steady state con- 
ditions, stiffness more closely parallels LC20 phosphorylation (Kamm and 
Stull 1986). Other contractile parameters are unloaded shortening velocity 
and energy consumption. There is some evidence that these parameters 
under certain circumstances correlate much better than force with LC20 
phosphorylation. 

Contraction of a tonic type of smooth muscle is characterised by a rapid 
increase in tension followed by a sustained contraction. Removal of the 
agonist induces relaxation. Numerous studies have shown that the increase 
in force is typically preceded by a rapid increase in LC20 phosphorylation 
and intracellutar Ca 2+ (see Kamm and Stull 1985, Somlyo and Somlyo, 
1994, Horowitz et al. 1996b, B~ir~iny and B~ir~iny et al. 1996b for reviews). 
This is also true for phasic smooth muscles such as chicken gizzard (Fis- 
cher and Pfitzer 1989), intestinal (Himpens et al. 1988), and uterine (Word 
et al. 1994) smooth muscle. There is also a wealth of data in support of a 
correlation between increases in LC20 phosphorylation and CaE+-induced 
force development in skinned smooth muscle from different origins (Hoar 
et al. 1979, Cassidy et al. 1979 and 1981, Chatterjee and Murphy 1983, 
B arsotti et al. 1987, Tanner et al. 1988, Kiihn et aL 1990, Kitazawa et al. 1991, 
Malmqvist and Arner 1996). 

The kinetics of contraction have been evaluated in electrically stimu- 
lated smooth muscle because under these conditions activation is not 
diffusion limited (Kamm and Stull 1985). Maximal values of unloaded 
shortening velocity and LCz0 phosphorylation were attained after 5 s of 
stimulation and preceded maximal force. In a similar manner, maximal 
phosphorylation values were obtained after 3 to 4 s of electrical field 
stimulation of chicken gizzard strips while force was maximal after 5.5 s 
(Fischer and Pfitzer 1989). There is about a 500 ms lag time following 
stimulation and onset of LC2o phosphorylation in the electrically stimu- 
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lated tracheal smooth muscle (Kamm and Stull 1986). At this time the 
fractional activation of calmodulin dependent cyclic nucleotide phos- 
phodiesterase was maximal suggesting by extrapolation that MLCK is 
maximally activated within 500 ms (Miller-Hance et al. 1988). Stiffness 
increased in parallel with LC20 phosphorylation and preceded isometric 
force (Kamm and Stull 1986). The linear relation between stiffness and 
phosphorylation suggested independent attachment of each myosin head 
upon phosphorylation. Interestingly, the rate of LC20 phosphorylation has 
been reported to be significantly greater than the rate of increase in intra- 
cellular [Ca2+]i (Word et al. 1994). It reached steady state values while 
[Ca2+]i continued to increase. The diminished rate of LCz0 phosphorylation 
coincided with an increased phosphorylation of MLCK. These experi- 
ments suggest that MLCK is very sensitive to small changes of [Ca2÷]i 
during the initiation of the contraction. Thereafter, the enzyme might be 
phosphorylated by another Ca2+-dependent protein kinase (Ca2+/cal - 
modulin-dependent protein kinase II) and desensitised to further in- 
creases in Ca2+i (Word et al. 1994). The experiments also show that LC20 
phosphorylation occurs fast enough to account for activation of cross- 
bridge cycling. 

There are several steps between the beginning of stimulation and in- 
crease in contraction which contribute to the delay between activation and 
force. Using caged phenylephrine, the lag phase between the laser pulse 
and onset of contraction was 1.8 s at 20°C (Somlyo et al. 1988a, Kaplan and 
Somlyo 1989, Somlyo and Somlyo 1990). Of this delay approximately 0.3- 
0.5 s were due to steps following the increase in intracellular [Ca2+], e.g. 
binding of Ca2+/calmodulin to MLCK, phosphorylation of LC20, initiation 
of cross-bridge cycling. Using caged ATP in skinned smooth muscle, the 
activation kinetics of contraction depending on LC20 phosphorylation was 
analysed. The delay between the laser pulse and initiation of contraction 
was smaller when the light chains were prephosphorylated by treatment 
with ATPyS. These experiments showed that LC20 phosphorylation is usu- 
ally slower than the cross-bridge turnover and limits the rate of force 
development (Somlyo and Somlyo 1990). 

It is agreed by most investigators that the Ca2+-dependent phosphoryla- 
tion of LC20 is the key regulatory event which is required for cross-bridge 
cycling and initiating contraction. However, it was also recognised very 
early that there is no simple correlation between force and LC20 phospho- 
rylation. In a paradigmatic experiment, Dillon et al. (1981) showed that in 
the tonically contracting carotid artery, phosphorylation declined together 
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with the unloaded shortening velocity (Vmax) while tension was main- 
tained. The state where phosphorylation and Vmax was low, while force was 
high was called "latch" state (cf. chapter 6) for discussion. In phasic 
smooth muscle, in which no steady state is reached, LC20 phosphorylation 
precedes relaxation and during relaxation a lower level of LC20 phosphory- 
lation is required for a given level of force. Determination of the active 
state by imposing a quick release indicated that the active state was lower 
during relaxation than during contraction for a given level of force sug- 
gesting that a latch like state may also exist in phasic smooth muscles 
(Fischer and Pfitzer 1989). 

The observation of the dissociation between steady-state force, LC20 
phosphorylation and shortening velocity was confirmed by a number of 
authors (Aksoy et al. 1982, 1983, Silver and Stull 1982, Gerthoffer and 
Murphy 1983,) and it appeared that Vm~ correlated much better with LC20 
phosphorylation than did isometric tension (Dillon et al. 198t, Aksoy et al. 
1982, Gerthoffer and Murphy 1983, Murphy et al. 1983, Hai and Murphy 
1989a for review). However, subsequent studies showed that not only force 
but also unloaded shortening velocity can be dissociated both in intact 
and permeabilised tissues (Paul et aI. 1983, Siegman et al. 1984, Haeberle et 
al. 1985b, Barsotti et al. 1987, Moreland et al. 1987, Merkel et at. 1990, Gunst 
et al. 1994). As regards isometric force, different studies showed that the 
dependence of force on LC20 iS steep and curvilinear, maximal force is 
obtained when about 20-30% of the light chains are phosphorylated (Di 
Blasi et al. 1992, Siegman et al. 1989, Kenney et al. 1990, Schmidt et al. 1995). 
This could occur either if there is a significant cooperative activation of 
unphosphorylated cross-bridges (Vyas et al. 1992) or if attached, dephos- 
phorylated cross-bridges were generated from phosphorylated cross- 
bridges as proposed by Hai and Murphy (1988a) (see chapters 5 and 6 for 
detailed discussion). Under these conditions, small changes in LC20 phos- 
phorylation may have large effects on force. Due to the limitations of 
resolution of determination of LC20 phosphorylation, it may be difficult at 
times to decide whether a change in tension is or is not associated with an 
appropriate change in phosphorylation. 

These correlative studies neither prove nor disprove a causal link be- 
tween contractile parameters and LC20 phosphorylation. Using permeabi- 
lised smooth muscle it was attempted to show that there is a causal relation 
between activation of contraction and LC20 phosphoryIation. In permeabi- 
lised smooth muscle the medium surrounding the myofilaments can be 
controlled and there is free access for inhibitors and activators to the 
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myofilaments. For functionally isolating the contractile machinery exten- 
sive permeabilisation with the detergent Triton-X-100 is generally applied 
as discussed above. The disadvantage of this procedure is that upstream 
regulatory mechanisms are attenuated and some protein components may 
leak out of the preparation (Kossmann et al. 1987,Takai et al. 1989, Schmidt 
et al. 1995). More gentle procedures use saponin, [3-escin and a-toxin from 
Staphylococcus aureus, which leave intracellular membrane systems (treat- 
ment with saponin) as well as the coupling between surface membrane 
receptors and their effectors (treatment with [3-escin or o~-toxin) function- 
ally intact (Pfitzer and Boels 1991, Pfitzer 1996 for review). With the latter 
two procedures it is possible to investigate the mechanisms that modulate 
the Ca2+-sensitivity of contraction (see chapter 4). 

Skinned fibres are relaxed when the free Ca2+-concentration is kept 
below about 10 -a M. Increasing the Ca2+-concentration in the range of 1 to 
i0 pM increases force in a graded manner (Filo et al. 1965) and as already 
mentioned, increases in LC20 phosphorylation were correlated with Ca 2÷- 
induced force development in skinned smooth muscle from different ori- 
gins (Hoar et al. 1979, Cassidy et al. 1979, Tanner et al. 1988, Chatterjee and 
Murphy 1983). However, these experiments did not establish a causal rela- 
tionship, in particular since maximal force was observed at phosphoryla- 
tion values ranging from 20 to 60% (Cassidy et al. 1981). It was therefore of 
prime importance to demonstrate that LC2o phosphorylation is sufficient 
to induce a contraction. This was achieved in two ways: (i) it was shown 
that smooth muscle strips in which LC20 were stably thiophosphorylated 
with the ATP analog, ATPyS (Sherry et al. 1978) contracted in a Ca 2÷ free 
solution (Hoar et al. 1979). (ii) Incubation of Triton-skinned smooth mus- 
cle with the constitutively active fragment of MLCK (Walsh et al. 1982) 
induced a contraction and increased LC20 in the absence of Ca 2÷ (Walsh et 
al. 1982). This contraction was inhibited by the MLCK inhibitor, ML-9 
(Ishikawa et al. 1988). Injection of the constitutively active MLCK into 
intact smooth muscle cells produced shortening without an increase in 
cytosolic Ca 2÷ (Itoh et al. 1989). These experiments unequivocally demon- 
strated that LC2o phosphorylation is sufficient to initiate a contraction. 

To further elucidate the activation mechanism, several inhibitors of 
MLCK have been applied. MLCK activity was inhibited by antagonising the 
binding of calmodulin to MLCK by calmodulin antagonists such as W-7 
(Hidaka et al. 1978, Kanamori et al. 1981) or trifluoperazine (reviewed in 
Asano and Stull 1985). The disadvantage is that these inhibitors also in- 
hibit other calmodulin-dependent enzymes in cells. ML-9 (Ishikawa et al. 
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1988) and wortmannin (Nakanishi et al. 1992) inhibit MLCK competitively 
with respect to ATP. The major disadvantage of these inhibitors is that they 
also inhibit other protein kinases. While wortmannin does not inhibit 
cAMP- and cGMP dependent protein kinases in concentrations up to 10 
~tM, it inhibits phosphatidylinositol 3 "-kinase at lower concentrations than 
MLCK (Thelen et al. 1994). In an attempt to develop more specific inhibi- 
tors, peptide inhibitors have been designed. A peptide of 20 amino acid 
residues derived from the calmodulin-binding domain of MLCK binds 
calmodulin with high affinity and is a potent inhibitor of MLCK activity in 
vitro (Lukas et al. 1986). This peptide inhibited Ca2+-induced shortening of 
single smooth muscle cells (Kargacin et al. 1990) and induced relaxation of 
Ca2+-induced contractions and dephosphorylation of LC20 in skinned 
smooth muscle (Riiegg et al. 1989). Interestingly, however, while the pep- 
tide induced complete relaxation it induced only partial dephosphoryla- 
tion of LC20 raising the question as to a second calmodulin dependent 
mechanism regulating contraction (Rfiegg et al. 1989). A second synthetic 
peptide derived from the phosphorylation site of LC20 (residues 11-19) 
inhibited the in vitro activity of MLCK (Pearson et al. 1986). It also inhib- 
ited the Ca2+-induced shortening in single smooth muscle cells (Kargacin 
et al. 1990) and unloaded shortening in skinned smooth muscle (Strauss et 
al. 1992). Interestingly, it did not inhibit isometric contraction and LC20 
phosphorylation in the skinned smooth muscle. Unexpectedly, in low 
Ca2+-solutions the peptide significantly increased LC20 phosphorylation. It 
was concluded that this peptide also acts as a phosphatase inhibitor and 
while not altering the net phosphorylation it may affect the phosphate 
turnover. This would suggest that not only the absolute levels of LC20 but 
also the rates of dephosphorylation and phosphorylation could determine 
Vma~. This was not confirmed in another study where okadaic acid was 
used to alter the phosphorylation/dephosphorylation rates (Malmqvist 
and Arner 1996). In conclusion, activation of contraction with the consti- 
tutively active fragment of MLCK has substantiated the hypothesis that 
LC20 phosphorylation is sufficient to induce a contraction. However, cor- 
relative studies in intact smooth muscle and inhibition of MLCK using 
synthetic peptides in skinned smooth muscle revealed the complex nature 
of regulation of smooth muscle contraction and call for additional regula- 
tory mechanisms which may be linked to the thin filaments (see chapter 
5). 
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The paradigm that phosphorylation of LC20 is the key event in activation 
of smooth muscle holds that dephosphorylation is a prerequisite for re- 
laxation. When the cytosolic Ca 2÷ declines the MLCK holoenzyme com- 
plex dissociates thereby inactivating the enzyme. This permits dephos- 
phorylation of LC20 by myosin light chain phosphatase, deactivating the 
actomyosin ATPase and causing relaxation (Barron et al. 1979, Gerthoffer 
and Murphy 1983, Driska et al. 1989, Tanner et al. 1988, Hai and Murphy 
1989b, Rembold 1991, Kiihn et al. 1990, Khromov et al. 1995). These cor- 
relative studies are corroborated by experiments in skinned fibres in 
which it has been shown that addition of purified phosphastases induced 
relaxation (Rtiegg et al. 1982, Haeberle et al. 1985a, Hoar et al. 1985, Shirazi 
et al. 1994, Gailly et al. 1996). In line with these experiments, a low phos- 
phatase activity in skinned chicken gizzard smooth muscle was associated 
with impaired relaxation and dephosphorylation of LC20. Relaxation and 
dephosphorylation could be rescued by incubation with a polycation 
modulable phosphatase (Bialojan et al. 1985). Relaxation and dephospho- 
rylation was also inhibited by inhibitors of phosphatases such as okadaic 
acid (Takai et al. 1987, Bialojan et al. 1988, Erd6di et al. 1996 for review). In 
addition, the phosphatase inhibitors have proved to be a valuable tool in 
testing the hypothesis that not only the extent of LC20 phosphorylation but 
also the absolute rates of the phosphorylating and dephosphorylating 
reactions are important in determining the contractile parameters, force 
and shortening velocity (Siegman et al. 1989, Malmqvist and Arner 1996, 
Schmidt et al. 1995). 

An important question is whether dephosphorylation is the rate limit- 
ing step in relaxation. This has been addressed in different studies. Under 
conditions where relaxation was not diffusion limited such as termination 
of electrical field stimulation (Hai and Murphy 1989b), relaxation of 
rhythmically contracting smooth muscle (Driska et al. 1989), or rapid 
binding of Ca 2÷ with the caged Ca 2÷ chelator, diazo-2, in permeabilised 
preparations (Khromov et al. 1995) dephosphorylation preceded relaxa- 
tion. From the rate of dephosphorylation a phosphatase rate constant of 
0.08 sec -~ was estimated (Driska et al. 1989) which would be sufficient to 
dephosphorylate cross-bridges while attached in a strongly bound state. 
Following removal of Ca 2+ with the caged chelator, diazo-2, relaxation 
occurred in two phases, a plateau phase followed by a monoexponential 
decay (Khromov et al. 1995). Thus, dephosphorylation of LC20 does not 
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appear to be rate limiting for relaxation. The kinetics of force relaxation 
may be determined, at least in tonic smooth muscle, by the dissociation of 
ADP from dephosphorylated attached cross-bridges (Khromov et al. 
1995). 

There is some evidence that relaxation may be regulated independently 
of LC20 dephosphorylation: In an early study, Gerthoffer and Murphy 
(1983) showed that in the tonically contracting carotid artery, relaxation 
following washout of high K ÷ followed a dual-exponential decay (Gerthof- 
fer and Murphy 1983). The time course of the initial rapid decay corre- 
sponded to myosin dephosphorylation which was basal after 2 min. It was 
hypothesised that the slow phase of relaxation (lasting up to 45 min) was 
due to slow inactivation of non-phosphorylated cross-bridges. The rate of 
decay of this slow phase depended on the concentration of extracellular 
Ca 2+. Furthermore, fl-adrenergic stimulation of a tonically contracting 
smooth muscle in which LC20 phosphorylation was basal induced a rapid 
relaxation (Miller et al. 1983, Gerthoffer et al. 1984).The phasic smooth 
muscle of chicken gizzard relaxes completely in the continued presence of 
stimulation which is preceded by dephosphorylation of LC20 (Fischer and 
Pfitzer 1989). Termination of stimulation at a time when phosphorylation 
was basal, accelerated the rate of relaxation. These observations suggest 
that there has to be a mechanism that regulates the net detachment rate of 
dephosphorylated cross-bridges. 

3.5 
The variable phosphorylation sensitivity of contraction 

There are a number of observations that indicate that the dependence of 
force on phosphorylation may be modulated. Stimulation of ferret aorta 
with PGFza shifts the relation between force and LCa0 phosphorylation to 
the left when compared to KCl-induced contractions (Suematsu et al. 
1991). Thus, force at any one phosphorylation level was increased in the 
PGF2~-induced contractions. Several studies even suggested that contrac- 
tion can occur without apparent increases in LC20 phosphorylation (Wag- 
ner and Riiegg 1986, Fulgitini et al. 1993, Sato et al. 1992). Whether this is 
due to disinhibiton of an inhibitory protein such as calponin (Malmqvist 
et al. 1997) which then allows the slow cycling of dephosphorylated cross- 
bridges is currently not known. 
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The phosphorylation sensitivity of contraction may also decrease, i.e. 
conditions may occur where force is low despite a high level of LC20 
phosphorylation. Pretreatment with a low concentration of the phor- 
bolester, PMA, which by itself had no effect on contraction and LC20 
phosphorylation, shifted the force LC20 phosphorylation curve during the 
steady state of contractions induced by K + in aortic smooth muscle to the 
right compared to tissues which were stimulated with K + only (Seto et al. 
1990). In tracheal smooth muscle, carbachol and serotonin induced a 
significant increase in LC20 phosphorylation in low Ca 2+ solutions without 
proportional increases in force (Gerthoffer 1987). Uncoupling of relaxa- 
tion from dephosphorylation was observed in arterial smooth muscle 
relaxed with nitrovasodilators (McDaniel et al. 1992), in intact smooth 
muscle incubated with okadaic acid (Tansey et al. 1990), in uterine smooth 
muscle (B~ir~iny and B~ iny  1993a), or in tracheal smooth muscle in which 
endothelin-induced contractions were relaxed with Ca 2+ antagonists (Ka- 
toch et al. 1997). From these data one has to conclude that dephosphoryla- 
tion is not under all conditions a prerequisite for relaxation. One or more 
additional mechanisms, possibly associated with the thin filaments, cal- 
desmon or calponin, are therefore likely to regulate the attachment and 
detachment of phosphorylated and dephosphorylated cross-bridges in the 
smooth muscle. 

4 
Modulation of the Ca2+-sensitivity of force 
and LC20 phosphorylation 

The concept that the CaE+-sensitivity of contraction could be modulated 
was developed when it was shown that cAMP relaxed skinned smooth 
muscle strips at constant submaximal [Ca 2+] and shifted the calcium force 
relation to the right towards higher values (cf. Riiegg 1992). It has also been 
shown that excitatory agonists that activate heterotrimeric G-proteins can 
increase LC20 phosphorylation and force at constant [Ca 2+] (Somlyo and 
Somlyo 1994). In this context, a decrease in Ca2+-sensitivity refers to a shift 
in the relation between [Ca 2+] and phosphorylation or force towards 
higher [Ca2+]; an increase in Ca2+-sensitivity is a shift towards lower 
[Ca2÷]. The physiological relevance of the Ca2+-sensitivity modulation be- 
came apparent when simultaneous measurements of intracellular [Ca 2+] 
and force in intact smooth muscle showed that there was no unique rela- 
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tion between force and intracellular Ca 2÷ (Morgan and Morgan 1984a, 
1984b) There are in principle two ways to modulate Ca2+-sensitivity of 
contraction: (i) by altering the balance between the phosphorylating and 
dephosphorylating reactions which would affect the Ca 2+-sensitivity of 
LC20 phosphorylation but in a first approximation not the dependence of 
force on phosphorylation, and (ii) by LC20-phosphorylation independent 
regulatory systems such as caldesmon or calponin which can influence 
force directly or alter the coupling between force and phosphorylation, i.e. 
change the phosphorylation sensitivity of force. It should be differentiated 
between non-steady state changes in CaZ+-sensitivity and changes in Ca 2+- 
sensitivity during steady state. Changes in Ca2+-sensitivity determined 
under non-steady state conditions are difficult to interpret since the ap- 
parent sensitivities of force and phosphorylation on [Ca 2+] are influenced 
by the kinetics of the activation/deactivation pathways as well as by the 
kinetics of the force generation. 

4.1 
Mechanisms for decreasing the Ca2+-sensitivity 

Based on the phosphorylation theory of smooth muscle contraction a 
decrease in the Ca2+-sensitivity of LC20 phosphorylation and hence con- 
traction could occur either through a decrease in the activity of the myosin 
light chain kinase (MLCK) or an increase in the activity of the myosin light 
chain phosphatase (MLCP) at constant [Ca 2+] (Fig. 3). Three main second 
messengers are considered to be involved in downregulation of Ca2+-sen - 
sitivity: cAMP, cGMP, and Ca 2+ itself. Incubation of purified calmodulin 
free MLCK with the catalytic subunit of the cAMP dependent protein 
kinase (Conti and Adelstein 1981), the Ca2+/calmodutin-dependent pro- 
tein kinase II (Hashimoto and Soderling 1990), and protein kinase C 
(Nishikawa et al. 1983) resulted in the phosphorylation of a serine at the 
C-terminus of the Ca2+/calmodulin-binding sequence and in a marked 
lowering of the rate of MLCK activity. This was due to a 10- to 20-fold 
increase in the amount of calmodulin necessary for 50% activation of the 
kinase activity. If calmodulin is bound to MLCK in vitro, phosphorylation 
of this site by all three protein kinases is blocked. 

In Triton skinned smooth muscle, cAMP or the catalytic subunit of 
cAMP dependent protein kinase inhibits tension development or induces 
relaxation at submaximal [Ca 2÷] thereby decreasing the Ca2+-sensitivity of 
contraction (Kerrick and Hoar 198t, Rtiegg et al. 1981, Rtiegg and Paul 
1982, Sparrow et al. 1984). Inhibition of force was associated with a de- 
crease in LC20 phosphorylation (Rtiegg and Pfitzer 1985). The inhibitory 
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Fig. 3. Schematic diagram of pathways the modulate Ca 2+ sensitivity by shifting the 
balance of the activities of myosin light chain kinase (MLCK) or myosin light chain 
phosphatase (MLCP) at constant [Ca2+]. A decrease or increase in the activities of either 
MLCK or MLC-P changes the Ca2+-sensitivity of myosin light chain phosphorylation 
(MLC--® ~) and hence of force but does not alter the relation between force and myosin 
light chain phosphorylation (MLC--@). For further details see text. 

effect of cAMP or the catalytic subunit of cAMP-dependent protein kinase 
was reversed by high concentrations of calmodulin (Meisheri and Rtiegg 
1983, Pfitzer et al. 1985). These experiments in skinned smooth muscle are 
compatible with the hypothesis that cAMP relaxes smooth muscle by 
inhibition of the activity of MLCK. Initial correlative studies were also in 
support of  this hypothesis: Relaxin, a hormone, which increases intracellu- 
lar cAMP levels and inhibits uterine contractile activity, produced relaxa- 
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tion of precontracted uterine smooth muscle. This was associated with 
both dephosphorylation of LC20 and a decrease in the MLCK activity 
(Nishikori et al. 1983). Moreover, forskolin, which stimulates adenylyl cy- 
clase, induced phosphorylation of MLCK in intact tracheal smooth muscle 
(de Lanerolle et al. 1984). In contrast to the experiments performed in 
Triton-skinned preparations, there was no decrease in the Ca2+-sensitivity 
of mesenteric arteries permeabilised with saponin after incubation with 
cAMP and cAMP-dependent protein kinase (Itoh et al. 1982). This could be 
due to the different permeabilisation protocols (Pfitzer 1996). Others have 
shown that the ratio of the activities of MLCK at high and low concentra- 
tions of Ca 2÷ in the presence of calmodulin in homogenates of smooth 
muscle was not changed by manoeuvres that lead to an increase in in- 
tracelluar cAMP (Mflter et al. 1983,van Riper et al. 1995). The activity ratio 
of MLCK allows the evaluation of a change in the calmodulin activation 
properties of MLCK in intact smooth muscle. These results have ques- 
tioned the importance of inactivation of MLCK for [3-adrenergic relaxa- 
tion. This was substantiated by determination of the sites being phospho- 
rylated after treatment with various pharmacological agents. It was re- 
ported that MLCK can be phosphorylated at multiple sites in vivo (Stult et 
al. 1990). However only phosphorylation of the regulatory site at the C-ter- 
minus, designed site A, led to a decreased affinity of MLCK for calmodulin 
(Stull et al. 1990). This site was not phosphorylated by treatment with 
isoproterenol in tracheal smooth muscle suggesting that cAMP-induced 
relaxation is not induced by desensitisation of MLCK under all conditions 
(Stull et at. 1990, Kotlikoff and Kamm 1996 for review). Moreover, fl-adren- 
ergic stimulation induced relaxation at basal levels of LC20 phosphoryla- 
tion (Miller et al. 1983). Thus, it is unlikely that inactivation of MLCK at 
constant Ca 2÷ contributes to i3-adrenergic relaxation. On the other hand, 
there is substantial experimental evidence, based on simultaneous meas- 
urements of intracellular [Ca2+], force, and LC20 phosphorylation, that 
desensitisation of the contractile machinery to Ca 2÷ contributes to cAMP- 
mediated relaxation of smooth muscle (Morgan and Morgan 1984a, 1984b, 
Ozaki et al. 1992, van Riper et al. 1995). If inactivation of MLCK is not 
responsible for the cAMP mediated decrease in force and LC20 phosphory- 
lation at a constant Ca 2÷ other systems might be involved, e.g. an increase 
in activity of myosin light chain phosphatase (MLCP) or phosphorylation 
independent mechanisms. Future studies have to show the biochemical 
mechanism of cAMP-dependent desensitisation of the contractile appara- 
tus. 
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Site A of MLCK is significantly phosphorylated under conditions where 
intracellular Ca 2+ is high, i.e. during stimulation with KC1 or carbachol 
(Stull et al. 1990, van Riper et al. 1995). The rate of Ca2+-dependent phos- 
phorylation of MLCK was slower than that of LC20 phosphorylation in 
intact smooth muscle (Tansey et al. 1994). In permeabilised smooth mus- 
cle, increasing the Ca 2+ concentration increased the extent of both LC20 
and MLCK phosphorylation. The latter was inhibited by inhibitors of the 
multifunctional Ca2+/calmodulin-dependent protein kinase II activity 
(CaM kinase II), KN-62 or a synthetic peptide derived from the autoinhibi- 
tory sequence of CaM kinase II (Tansey et al. 1992). Underthese conditions 
the Ca2+-concentration required for half-maximal LC20 phosphorylation 
decreased from 250 nM tO 170 nM. It was suggested that Ca ~+ via binding 
to calmodulin plays a dual role: (i) it positively regulates LC20 phosphory- 
lation via activation of MLCK (the Ca2+-concentration required for half- 
maximal activation being 250 nM) and (ii) it negatively regulates LC20 
phosphorylation via activation of CaM kinase II at higher Ca2+-concentra - 
tion (Ca2+-concentration for half-maximal activation was 500 nM) leading 
to phosphorylation of MLCK. 

Cyclic GMP has emerged as a potent, physiological second messenger 
involved in vasodilator activity. Nitric oxide (NO), derived from the endo- 
thelial lining of blood vessels, clinically administered nitrovasodilators, 
and the atrial natriuretic factor all function to widen the lumen of vessels 
by stimulating guanylyl cyclase in vascular smooth muscle to produce 
cGMP (Furchgott and Vanhoutte 1989). It was also shown that atrial natri- 
uretic factor and nitrovasodilators relax smooth muscle by lowering intra- 
cellular Ca 2+ and by decreasing the Ca2+-sensitivity of contraction (Karaki 
et al. 1988, Seguchi et al. 1996). A cGMP-induced decrease in Ca2+-sensitiv - 
ity of contraction (pfitzer et al. 1984, Pfitzer et al. 1986, Nishimura and van 
Breemen 1989, Lee et al. 1997) and of LC20 phosphorylation has been 
reported in skinned smooth muscle while the relation between force and 
LC20 phosphorylation was not altered (Pfitzer and Boels 1991, Lee et al. 
1997). This suggested that cGMP either decreased the activity of MLCK or 
increased that of MLCP at a given concentration of Ca 2+. Cyclic GMP exerts 
its action by stimulating a cGMP-dependent protein kinase. This enzyme 
phosphorylated purified MLCK at a site different from site A and did not 
affect the activity of MLCK (Nishikawa et al. 1984, Hathaway et al. 1985) 
suggesting that cGMP-dependent phosphorylation of MLCK is not respon- 
sible for Ca2+-desensitization. In contrast, evidence was obtained that 
cGMP may increase the activity of MLCP which could account for a de- 
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crease in the Ca2÷-sensitivity of LC20 phosphorylation and contraction. 
Under conditions where MLCK activity was blocked, the nonhydrolysable 
cGMP analog, 8-bromo-cGMP, increased the rate of dephosphorylation of 
LC20 and of relaxation (Lee et al. 1997). Moreover, the light chain phospho- 
rylation at submaximal activation exhibited kinetics in the presence of 
8-bromo-cGMP that were predictable from a mathematical model in 
which only MLCP activity is increased (Lee et al. 1997). However, cGMP-in- 
duced relaxation may be more complex. In the intact swine carotid artery, 
nitrovasodilators not only caused a decrease in the Ca z÷ sensitivity of LC20 
phosphorylation but also uncoupled force from myosin phosphorylation 
(McDaniel et al. 1992) suggesting that cGMP-induced desensitisation can 
occur by a LCa0-dependent and independent mechanism. The biochemical 
substrate of the latter mechanism has not yet been identified. 

4.2 
Mechanisms that increase Ca2+-sensitivity 

It is well established that the Ca2+-sensitivity of contraction is increased in 
a number of different intact and permeabilised smooth muscles by differ- 
ent agonists (for reviews see Somlyo and Somlyo 1994, Rembold 1996, 
Horowitz et al. 1996b). The agonist-induced increase in Ca2+-sensitivity is 
mimicked by the poorly hydrolyzable GTP analog, GTPyS, in smooth mus- 
cle permeabilised with [3-escin or cx-toxin from S. a u r e u s  in which the 
coupling between membrane bound receptors and intracellular effectors is 
functionally intact (Nishimura et al. 1988, Fujiwara et al. 1989, Kitazawa et 
al. 1989). In these experiments the lEa 2+] surrounding the myofflaments is 
kept constant by the use of high concentrations of Ca 2÷ chelators and 
functionally removing intracellular Ca2+-stores with Ca2+-ionophores 
which eliminates confounding effects due to Ca2+-sequestration or Ca 2÷ 
gradients. Under many conditions, the increase in Ca2÷-sensitivity was not 
associated with a change of the dependence of force on phosphorylation 
(e.g. Hori et al. 1992, Rembold and Murphy 1988a) indicating that it was 
due to an increase in the Ca2+-sensitivity of LC20 phosphorylation. In 
principle, this could be due to either an increase in the activity of MLCK or 
inhibition of MLCP at a given [Ca2÷]. The majority of data point to an 
inhibition of MLCP rather than to an activation of MLCK, as discussed 
below. However, it was recently shown that MLCK is phosphorylated by 
mitogen activated protein kinase (MAP-kinase) and that this phosphory- 
lation stimulates MLCK (Morrison et al. 1996, Klemke et al. 1997). Expres- 
sion of a mutationally active MAP kinase kinase causes activation of MAP 
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kinase leading to phosphorylation of MLCK and LC20 and enhanced cell 
migration (Klemke et al. 1997). It is not known at present whether MAP 
kinases phosphorylate MLCK in smooth muscle. MAP-kinases constitute a 
family of enzymes in the 40- to 45 kDa range (Pelech and Sanghera 1992). 
They are expressed and activated in smooth muscle in response to a 
number of stimuli and one of the substrates is caldesmon (Adam et al. 
1989, 1995a, Gerthoffer et al. 1996, Katoch and Moreland 1995, Gerthoffer 
et al. 1997, Adam 1996 for review). In vitro phosphorylation of caldesmon 
by p44 MAP kinase slightly decreased binding of caldesmon to actin 
(Childs et al. 1992). Phosphorylation of serine-702 of a C-terminal frag- 
ment of caldesmon by MAP kinase reversed the inhibitory effect which the 
unphosphorylated fragment had on actomyosin ATPase activity (Red- 
wood et al. 1993). This suggested that phosphorylation of caldesmon may 
alter its activity and this could affect CaZ+-sensitivity of contraction. How- 
ever, incubation of portal vein permeabilised with Triton with recombi- 
nant, activated p42 MAP kinase had no effect on Caa+-sensitivity (Nixon et 
al. 1995) while in a later study, activated MAP kinase potentiated Ca2+-ac - 
tivated force (Gerthoffer et al. 1997). The potential significance of MAP 
kinase for regulation of contraction was also supported by the finding that 
a relatively specific inhibitor of MAP kinase, PD98059, partially inhibited 
oxytocin-induced contractions of uterine smooth muscle without affect- 
ing intracellular [Ca a+] (Nohara et al. 1996). Future work will have to 
establish the role of MAP kinase in regulation of smooth muscle contrac- 
tion which may increase the CaZ+-sensitivity of contraction through two 
mechanisms (i) activation of MLCK, and/or (ii) phosphorylation of caldes- 
mon. 

Inhibition of MLCP appears to be a more general mechanism of in- 
creasing Caa+-sensitivity of contraction. The first experimental evidence 
that inhibition of MLCP can lead to an increase of CaZ+-sensitivity was 
obtained with the phosphatase inhibitor, okadaic acid (Takai et al. 1987). 
Under more physiological conditions, MLCP is inhibited indirectly by a 
GTP dependent process (Kitazawa et al. 1991, Kubota et al. 1992) which 
may involve phosphorylation of the regulatory subunit of MLCP (Trinkle- 
Mulcahy et al. 1995). 

The signalling cascade leading from the activation of a membrane 
bound receptor to the GTP-dependent inhibition of the activity of MLCP 
has not been fully elucidated. In permeabilised smooth muscle, CaZ+-sen- 
sitisation can be induced by aluminium fluoride which activates hetero- 
trimeric G protein(s) (Kawase and van Breemen 1992, Fujita et al. 1995, 
Gong et al. 1996). The agonist-, GTPyS-, and aluminium fluoride-induced 
CaZ+-sensitization is inhibited by several bacterial toxins, e.g. the epider- 
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mal differentiation inhibitor (EDIN), and exoenzyme C3 from C. bo- 
tulinum (Hirata et aL 1992, Fujita et al. 1995, Itagaki et al. 1995, Kokubu et 
al. 1995, Gong et al. 1996, Otto et al. 1996) which ADP-ribosylate and 
inactivate monomeric GTPases of the Rho subfamily of Ras related low 
molecular mass GTPases (Sugai et al. 1992, Aktories et al. 1992). These 
experiments suggest that Ca2+-sensitization of force in permeabilized 
smooth muscle requires the activation of a heterotrimeric G protein as 
well as of Rho or Rho-like proteins. A note of caution should be added. It 
was recently reported that A1F-4 may interact with elongation factor G 
(another monomeric G-protein) when it is bound to ribosomes (Mesters 
et al. 1993). Therefore the possibility cannot be excluded that A1F-4 may 
also directly interact with Rho in smooth muscle (Gong et at. 1996). The 
hypothesis that proteins of the Rho family are involved in agonist-induced 
Ca2+-sensitisation was further supported by the fact that recombinant Rho 
proteins, which were either permanently activated with GTPyS or consti- 
tutively active mutants, increased force at constant [Ca 2÷] in permeabilised 
smooth muscle (Hirata et al. 1992, Gong et aL 1996) or augment the 
agonist-indflced Ca2+-sensitisation (Otto et al. 1996). Furthermore, Ca 2+- 
sensitisation by phenylephrine, carbachol, A1F-4, and GTPyS was associ- 
ated with translocation of RhoA from the cytosolic compartment to the 
plasma membrane (Gong et al. 1997). The target of Rho is Rho associated 
protein kinase which has been shown to phosphorylate the regulatory 
subunit of MLCP in cultured cells thereby decreasing its activity (Kimura 
et al. 1996). Moreover, Rho-kinase directly phosphorylates LC20 in solution 
(Amano et al. 1996) and induces a contraction in Triton skinned smooth 
muscle (Kureishi et al. 1997), Both Rho-dependent phosphorylation reac- 
tions cauld therefore increase LC20 phosphorylation at constant [Ca2+]. 

The important question whether, and to what extent, Rho proteins par- 
ticipate in the regulation of contractions in intact smooth muscle can be 
addressed by using toxin B which unlike C3 is internalised into intact cells. 
Toxin B monoglucosylates small GTPases of the Rho family and inactivates 
them (Just et al. 1995). In intact ileum longitudinal smooth muscle, car- 
bachol induces a biphasic contraction, a fast initial increase in force, fol- 
lowed by a partial relaxation and a second delayed increase in force. Toxin 
B completely inhibited the delayed increase in force without affecting the 
intracellular CaZ÷-transient and inhibited the agonist- and GTPyS-induced 
increase in force at constant [Ca 2÷] after permeabilisation with [3-escin 
(Otto et aL 1996, Lucius et al. 1998). Most interestingly, toxin B inhibited the 
initial increase in LC20 phosphorylation despite the fact that force was not 
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significantly inhibited and despite the large increase in intracellular [Ca2+]. 
Thus toxin B uncouples force not only from phosphorylation but also 
[Ca 2÷] from phosphorylation. These data also suggest, that the activation 
of myosin light chain kinase by the increase in [Ca 2+] is not the sole factor 
causing the increase in LC20 phosphorylation in the intact smooth muscle, 
but that additional systems that both increase LC20 phosphorylation, e.g. 
through inhibition ofphosphatase, and alter the phosphorytation depend- 
ence of force are activated after receptor activation. 

At present it is not clear how activation of a membrane-bound receptor 
leads to activation of Rho. Furthermore, Rho may not under all conditions 
in every type of smooth muscle mediate the increase in Ca2+-sensitivity 
(Gong et al. 1996). This indicates that there are other signalling pathways 
that can increase Ca2+-sensitivity. For a more detailed discussion of the 
participation of Rho in regulating the Ca2+-sensitivity see the chapter of 
Somlyo et al., pp. 201 

Another pathway to inhibit myosin light chain phosphatase (MLCP) 
could involve protein kinase C and arachidonic acid. Activation of hetero- 
trimeric G proteins that are involved in Ca2+-sensitization leads to genera- 
tion of diacylglycerol (e.g. Gong et al. 1995) and through activation of 
phospholipase A2 to the formation of arachidonic acid (Gong et al. 1995, 
Parsons et al. 1996). The activation of protein kinase C and arachidonic 
acid both of which have been implicated in Ca2+-sensitization may in fact 
act in concert to inhibit MLCE There is a wealth of literature on the effects 
of phorbolesters, activators of protein kinase C, and of more or less spe- 
cific inhibitors of protein kinase C, on smooth muscle contraction, intra- 
cellular [Ca2+], and LC20 phosphorylation implicating a role of protein 
kinase C in the activation of smooth muscle. These mechanisms have 
recently been reviewed in detail (see Horowitz et al. 1996b, Singer 1996, 
Walsh et al. 1996). However, there is still some controversy over the precise 
role protein kinase C plays in smooth muscle myofilament sensitisation, 
the discussion of which is beyond the scope to this review (Jensen et al. 
1996, Gailly et al. 1997, Somlyo and Somlyo 1994 for review). In principle 
two types of responses to phorbol esters have been observed: (i) a slowly 
developing contraction at resting Ca 2+ without an increase in LC20 phos- 
phorylation (e.g. Chatterjee and Tejada 1986, Jiang and Morgan 1987), and 
(ii) a contraction which was associated with an increase in intracellular 
lEa 2÷] and an increase in LC20 phosphorylation (Rembold and Murphy, 
1988b). The latter response could be due to activation of MLCK by Ca 2+. 
However, it was also shown that phorbolesters can increase Ca2+-sensitiv - 
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ity of contraction (Collins et al. 1992, Itoh et al. 1993) and of LC20 phospho- 
rylation in Ca 2+ depleted smooth muscle (Singer 1990, B~ir~ny et al. I992) 
or at constant Ca 2+ (Masuo et al. 1994). These are situations when the 
increase in phosphorylation could not be due to activation of MLCK. 
However, protein kinase C may inhibit MLCP activity. This was suggested 
based on the observation that half-time of LC20 dephosphorylation was 
increased in cx-toxin permeabilised smooth muscle under conditions 
where MLCK activity was inhibited (Masuo et al. 1994). In principle there 
are two ways by which inhibition of MLCP could be mediated (i) indirect 
secondary to activation of a MLCP inhibitor, or (ii) direct through phos- 
phorylation of a MLCP subunit or dissociation of the subunits. CPI-17 has 
been identified as a hove1 protein in vascular smooth muscle which is a 
substrate of protein kinase C and its phosphorylation inhibits the type 1 
class of protein phosphatases (Li et al. 1998). Phosphorylated CPI-17 po- 
tentiated submaximal contractions at constant Ca 2+ in [3-escin and and 
Triton X-100 permeabilised smooth muscle, and decreased the [Ca 2+] nec- 
essary for half-maximal activation by an order of magnitude. This protein 
could link activation of protein kinase C to inhibition of MLCP. However, 
there is also evidence for a direct inhibition of MLCP. It was suggested that 
the Ca2+-sensitizing effect of excitatory agonists is mediated through acti- 
vation of phospholipase A2 and release of arachidonic acid (Gong et al. 
1995, Parsons et al. 1996, Gailly et al. 1997). Two mechanisms have been 
described how arachidonic acid may inhibit MLCP: (i) arachidonic acid 
can directly inhibit MLCP in solution by dissociating the regulatory 
subunit from the catalytic subunit (Gong et al. 1992), or (ii) it may activate 
atypical protein kinase C (Gailly et al. 1997). Future studies have to identify 
the target of atypical protein kinase C which could be CPI-17 and/or the 
regulatory subunit of type 1 MLCP. In this context it is interesting to note 
that a partially purified myosin-bound phosphatase had an associated 
protein kinase which primarily phosphorylated the regulatory subunit 
(130 kDa) of the phosphatase resulting in inhibition of phosphatase activ- 
ity (Ichikawa et al. 1996a). This kinase, which was not identified was 
activated by arachidonic acid and oleic acid and to a lesser extent by 
myristic acid suggesting that it has some characteristics of protein kinase 
C (Ichikawa et al. 1996a). 

The mechanisms by which the phosphorylation independent Ca2+-sen- 
sitization induced by protein kinase C (Jiang and Morgan 1989) occurs are 
presently not clear. A tentative scheme involves protein kinase C-induced 
activation of MAP kinase (Singer 1996, Horowitz et al. 1996b for reviews) 
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and phosphorylation of caldesmon. This could then allow the slow cycling 
of unphosphorylated cross-bridges. 

The pattern of activation and possible cross-talk between protein ki- 
nase C and Rho associated kinase dependent inhibition of the activity of 
MLCP is unknown. It appears that neither pathway can fully account for 
the GTP-dependent increase in Ca 2+ sensitivity since neither inhibitors of 
protein kinase C including peptide inhibitors of atypical protein kinase C 
(Gailly et al. 1997) nor inactivation of Rho with exoenzyme C3 (Itagaki et 
al. 1995, Otto et al. 1996) completely inhibited the GTPyS-induced increase 
in Ca2÷-sensitivity.The different signalling pathways may be differently 
expressed and/or activated in different types of smooth muscle (e.g. intes- 
tinal versus arterial smooth muscle) and may also vary from species to 
species. 

5 
Thin filament associated systems 

5.1 
Cooperativity 

Smooth muscle thin filaments contain actin and in addition tropomyosin. 
By analogy with the troponin-tropomyosin regulatory system in striated 
muscle a thin filament regulatory system might be present in smooth 
muscle, although at present no troponin equivalent has been clearly iden- 
tified. Two thin filament associated proteins, that could have a role in a 
regulatory system, caldesmon and calponin, have received much attention 
and their functions have been the focus of several recent reviews (Sobue 
and Sellers 1991,Marston and Huber 1996,Dabrowska 1994,Chalovich and 
Pfitzer 1997, Gimona and Small 1996, Winder and Walsh, 1993, 1996). 
Although they have been characterised extensively in biochemical experi- 
ments their action in the smooth muscle fibre is not clear at present. In this 
section we will discuss some actions of the thin filament systems in the 
muscle cells as revealed by experiments on muscle fibre preparations. 

Structural data have suggested that tropomyosin can alter its position 
on smooth muscle thin filaments following cross-bridge or caldesmon 
binding (Vibert et al. 1972,1993, Arner etal. 1988). The structural effects of 
caldesmon on tropomyosin are however not identical to those induced by 
troponin in striated muscle thin filaments (Hodgkinson et al. 1997, 
Lehman et al. 1997). Biochemical data show that smooth muscle thin 
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filaments exhibit a high degree of cooperativity in the presence of tro- 
pomyosin (Chacko and Eisenberg 1990). Cooperative cross-bridge binding 
has also been proposed to occur in muscle fibres (Somlyo et al. 1988b). 
When ATP is released in smooth muscle preparations in rigor, the relaxa- 
tion involves a phase of cross-bridge reattachment prior to the final relaxa- 
tion (Arner et al. 1987a, Somlyo et al. 1988b); Since the relaxation is faster 
in the presence of phosphate it involves cross-bridges detaching from 
rigor (reaction 1--2 in Fig 1 in chapter 2) and then entering the force 
generating reactions (steps 4 and 5) followed by a final detachment. These 
results are consistent with a hypothesis that rigor cross-bridges can acti- 
vate a thin filament system that promotes attachment of unphosphory- 
lated myosin. Cooperative activation has also been suggested to occur 
upon binding of phosphorylated myosin (Vyas et al. 1992) and it has been 
proposed (Somlyo et al. 1988b) that cooperative attachment could be a 
factor involved in recruitment of attached non-phosphorylated "latch" 
cross-bridges. Such a mechanism could account for the steep, curvilinear 
relation between force and LC20 phosphorylation (Di Blasi et al. 1992, 
Siegman et al. 1989, Schmidt et al. 1995) and would explain that 20% LC20 
phosphorylation is Sufficient for maximal contraction. As pointed out by 
Khromov et al. (1995) an increased ADP binding to smooth muscle would 
slow detachment and possibly also enhance a cooperative effect. It is pos- 
sible that the thin filament associated proteins influence the cooperativity 
of cross-bridge binding as discussed below. 

5.2 
Caldesmon 

Caldesmon is an actin binding molecule which is localised to the con- 
tractile apparatus of smooth muscle cells (Fiarst et al. 1986, Mabuchi et al. 
1996). Caldesmon is associated with thin filaments (Marston and Lehman 
1985, Marston et al. 1988) and interacts with tropomyosin, myosin and 
Ca2+-calmodulin (Sobue and Sellers 1991). In vitro, caldesmon inhibits 
superprecipitation of actomyosin and the actomyosin ATPase (Sobue et al. 
1985, Chalovich et al. 1987, Dabrowska et al. 1985, Nagai and Walsh 1984, 
Smith and Marston 1985, Marston 1988) and inhibits the filament sliding 
in the in vitro motility assay (Shirinsky et al. 1992, Okagaki et al. 1991, 
Fraser and Marston 1995, Horiuchi and Chacko 1995, Wang et al. 1997). 
The inhibition of ATPase by caldesmon is reversed by Ca2÷-calmodulin 
(Smith et al. 1987) and caldesmon phosphorylation (Ngai and Walsh 1987). 
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The effects of caldesmon on actomyosin ATPase is dependent on tro- 
pomyosin (Marston 1988,Horiuchi and Chacko 1989, Horiuchi et al. 1991, 
Marston and Redwood 1993) and it has been proposed that caldesmon 
could have an inhibitory function similar to that of troponin in skeletal 
muscle (Fraser and Marston 1995, Marston et al. 1994, Marston and Red- 
wood 1993). Alternatively, caldesmon might influence the binding of 
myosin to actin (Chalovich et al. 1987, Hemric and Chalovich 1988, Velaz et 
al. 1989, 1990, 1993). Using three-dimensional reconstruction of smooth 
muscle thin filaments (Vibert et al. 1993, Hodgkinson et al. 1997, Lehman 
et al. 1997) it was found that caldesmon appeared to cover weak binding 
sites on actin rather than moving the tropomyosin to the strong sites on 
actin. On the basis of these data it was suggested that a dassic steric,block- 
ing mechanism involving caldesmon and tropomyosin was not likely to 
operate in smooth muscle. 

If caldesmon is introduced into skinned skeletal muscle fibres force and 
relaxed fibre stiffness is inhibited in parallel (Brenner et al. 1991) without 
an effect on kinetics of cross-bridge turnover reflected in a lack of an effect 
on the rate constant of force redevelopment or the ratio of isometric 
ATPase to force (Kraft et al. 1995). This is different from troponin-tro- 
pomyosin and is consistent with effects on weak cross-bridge interactions 
(Brenner et al. 1991, Kraft et al. 1995). In skinned smooth muscle addition 
of caldesmon accelerates relaxation (Szpacenko et al. 1985). A synthetic 
peptide against the actin and calmodulin binding sites on caldesmon 
causes contraction (Katsuyama et al. 1992) possibly via displacement of 
caldesmon from actin, although other actions of this peptide sequence 
might be present (Marston et al. 1994). In studies on skinned chicken 
gizzard fibre bundles a C-terminal 20 kDa fragment of caldesmon was 
found to reduce force at low myosin light chain phosphorylation levels 
(Pfitzer et al. 1993). Since Ca 2+ independent myosin light chain kinase or 
okadaic acid, which inhibits phosphatase, was used the effects of caldes- 
mon on force were not due to an influence on myosin light chain phospho- 
rylation but rather to an influence on the coupling between phosphoryla- 
tion and force. In skinned fibres where caldesmon had been extracted with 
high Mg 1+ solutions, the relation between phosphorylation and force was 
almost linear with high force levels at low LC2o phosphorylation 
(Malmqvist et al. 1996). In a recent study by Albrecht et al. (1997), catdes- 
mon was found to increase the rate of relaxation from rigor suggesting 
that caldesmon might act via effects on cooperative mechanisms of thin 
filament systems. In summary, the results from skinned smooth muscle 
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fibres show that caldesmon can influence the phosphorylation-force cou- 
pling and may therefore constitute an important component of a thin 
filament regulatory system. The lowered force and right-ward shift of the 
phosphorylation-force relationship in the presence of caldesmon suggest 
that either caldesmon influences the cooperative attachment of unphos- 
phorylated cross-bridges or inhibits steps during cross-bridge binding 
and force generation. 

Caldesmon can be phosphorylated in vitro by several kinases e.g. CaM 
kinase II (Scott-Woo et al. 1990, Abougou et al. 1989), protein kinase C 
(Adam et al. 1990, Tanaka et al. 1990) and casein kinase II (Wawrzynow et 
al. 1991, Vorotnikov et al. 1993, Sutherland et al. 1994) and the ERK family 
of mitogen activated protein (MAP) kinases (Childs et al. 1992). In vivo, 
several stimuli lead to caldesmon phosphorylation (Adam et al. 1989,1990, 
B~ iny  et al. 1992, Park and Rasmussen 1986, Gerthoffer and Pohl 1994, 
Gerthoffer et al. 1996, 1997). However, the relation between caldesmon 
phosphorylation and force is not straightforward: (i) the degree of caldes- 
mon phosphorylation and force do not correlate (Adam et al. 1989), (ii) 
relaxation precedes (Adam et al. 1989) or occurs without (Abe et al. 1991, 
B~ir~iny et al. 1992) dephosphorylation of caldesmon, and (iii) phosphory- 
lation is high both in a tonic and a phasic type of contraction (Adam et al. 
1990). The phosphorylation pattern is consistent with the action of MAP 
kinase which is also present in smooth muscle (Adam et al. 1992, Adam 
and Hathaway 1993, Gerthoffer et al. 1996). It has been shown that the 
inhibitory effect of caldesmon on actomyosin ATPase is reversed when 
caldesmon is phosphorylated with CaM kinase II (Ngai and Walsh 1987, 
Sutherland and Walsh 1989). Phosphorylation of caldesmon with the pos- 
sible physiological kinase, MAP kinase reverses the caldesmon induced 
inhibition of filament sliding in the in vitro motility assay (Gerthoffer et at. 
1996) and has been shown to potentiate the Ca z+ sensitivity in perme- 
abilized airway smooth muscle (Gerthoffer et al. 1997). However, negative 
results have been reported for skinned vascular tissue preparations (Nixon 
et al. 1995) which might suggest that the effects of MAP kinase phosphory- 
lation varies between tissues. 

As discussed above one important function of caldesmon appears to be 
in a thin filament associated regulatory system. In addition, caldesmon 
binds to myosin (Ikebe and Reardon 1988) and can cross-link and tether 
actin to myosin (Haeberle et al. 1992) and may possibly also have role in 
stabilising the thick filaments (Katayama et al. i995). The regulation of 
these processes in the smooth muscle fibre is unknown. 
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5.3 
Calponin 
Calponin was first described by Takahashi et al. (1986) and is a protein 
associated with the actin filaments. Calponin binds to several contractile 
and regulatory proteins including actin, tropomyosin, myosin and cal- 
modulin (Takahashi et al. 1986,1987, 1988, Szymanski and Tao 1993,1997). 
Calponin is localised both in the contractile and cytoskeletal domains in 
smooth muscle cells (Walsh et al. 1993, North et al. 1994a). Calponin has 
been suggested to translocate to the cell membrane following agonist 
stimulation (Parker et al. 1994) and to interact with both MAP kinase and 
protein kinase C-e (Menice et al. 1997). These findings suggest that 
calponin may have a role as a signalling molecule, possibly an adapter 
protein, linking the targeting of mitogen-activated protein kinase and 
proteinkinase C-e to the surface membrane (Menice et al. 1997). In vitro, 
calponin inhibits actomyosin ATPase (Winder and Walsh 1990, Abe et al. 
1990) and inhibits the filament sliding in the in vitro motility assay (Shir- 
insky et al., 1992, Haeberle 1994, Jaworowski et al. 1995, Borovikov et al. 
1996). The inhibition by calponin is reversed by Ca2÷-calmodulin (Abe et 
al. 1990), Ca2+-caltropin (Wills et al. 1994) and calponin phosphorylation 
(Winder and Walsh 1990, Pohl et al. 1997). 

The mode of inhibition of actomyosin ATPase by calponin differs from 
that of caldesmon. The effect is mainly on the Vm~ with only minor effects 
on the Km (Nishida et al. 1990, Horiuchi and Chacko 1991). Calponin is 
shown to affect strongly bound myosin (EL-Mezgueldi and Marston 1996, 
Borovikov et al. 1996). The inhibition is not dependent on tropomyosin 
(Winder and Walsh 1990) and the effects of calponin are due to changes in 
the actin conformation (Noda et al. 1992, Borovikov et al. 1996). 

When calponin is introduced into skinned smooth muscle fibres, a 
reduction in active force has been observed (Itoh et al. 1994, Jaworowski et 
al. 1995, Uyama et al. 1996, Obara et al. 1996). Interestingly calponin influ- 
ences the maximal shortening velocity of maximally activated skinned 
smooth muscle preparations to a larger extent than force (laworowski et al. 
1995, Obara et al. 1996), which could suggest that calponin influences 
reactions associated with cross-bridge detachment or creates an internal 
load opposing shortening. Peptides containing the actin binding regions of 
calponin potentiate contraction possibly by competing with endogenous 
calponin (Itoh et al. 1995, Horowitz et al. 1996a). Malmqvist et al. (1997) 
found that extraction of calponin from skinned smooth muscle cells in- 
duces a slow contraction due to cycling of dephosphorylated myosin. It is 
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thus possible that calponin on the thin filaments in the relaxed state exerts 
a tonic inhibitory role on the interaction of dephosphorylated myosin and 
acfin and that release of this inhibitory action by regulatory mechanisms 
acting on calponin can lead to recruitment of slowly cycling dephosphory- 
lated cross-bridges. At high levels of phosphorylation calponin appears to 
inhibit cycling of the phosphorylated cross-bridges and release of this 
inhibitory action would increase cross-bridge cycling rate and the maxi- 
mal shortening velocity. 

Although calponin can be phosphorylated in vitro and calponin phos- 
phorylation influences its inhibitory effects, changes in calponin phospo- 
rylation in intact tissue have not been generally observed. Several groups 
have reported that calponin phosphorylation does not change following 
agonist activation (B~r~iny and B~ir~iny 1993b, Gimona et al. 1992, Adam et 
al. 1995b). On the other hand changes in calponin phosphoryation have 
been described (Winder et al. 1993, Gerthoffer and Pohl 1994, Mino et al. 
1995, Pohl et al. 1997), 

6 
The latch state 

Soon after the first simultaneous measurements of force and myosin light 
chain (LC20) phosphorylation were obtained in muscle fibres, it became 
obvious that there was no close correlation between force and phosphory- 
lation but rather that the two parameters frequently dissociated from each 
other. In the carotid media, the initial response to stimulation was consis- 
tent with the hypothesis that activation of the contractile apparatus in- 
volves an obligatory phosphorylation of LC20. However, phosphorylation 
started to decline during tension maintenance (Dillon et al. 1981). There 
was a striking correlation between LC20 phosphorylation and shortening 
velocity despite the fact that the load-bearing capacity did not change. 
Thus a contractile state ("latch") with high economy of force maintenance, 
characterised by high force, slow cross-bridge cycling and low phosphory- 
lation levels can be induced in smooth muscle during contraction. 

In the study by Dillon et al. (!981) it was proposed that force during 
latch was maintained by non-cycling cross-bridges (latch-bridges) formed 
by dephosphorylation of attached cross-bridges. The latch state was 
named in analogy to the catch state of molluscan smooth muscle. The 
striking feature of both the latch and the catch is the decreased rate of 
cross-bridge cycling and ATP utilisation at high levels of force mainte- 
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nance. In catch, tension recovery following a quick release is absent and 
thus catch very much resembles a rigor like state which, however, is regu- 
lated (Riiegg 1992). Elevation of intracellular cAMP by serotonin induces a 
rapid relaxation (Cole and Twarog 1972, Twarog and Cole 1972, Cornelius 
1982, Pfitzer and Riiegg 1982) which appears to be due to phosphorylation 
of a high molecular mass protein (Siegman et al. 1997,1998). Interestingly, 
agonists that increase intracellular cAMP in mammalian smooth muscle 
relax the latch state, i.e. under conditions where phosphorylation is low 
(Miller et al. 1983, Gerthoffer et al. 1984). It is however still not clear, how 
cAMP inactivates the contractile apparatus and several other mechanisms 
can be involved in the regulation of the latch state in smooth muscle as 
discussed below. 

How the latch state in smooth muscle cells is regulated, is one of the key 
questions for the understanding of smooth muscle contractile behaviour. 
It was originally suggested that there was a second mechanism, with an 
apparent high sensitivity for Ca2÷, that regulated stress maintenance by the 
latch-bridges in addition to regulation by LC20 phosphorylation (Murphy 
1982, Aksoy et al. 1983, Gerthoffer and Murphy 1983). In part, these sugges- 
tions initiated research into phosphorylation independent regulatory sys- 
tems, and biochemical work and studies on smooth muscle fibres have 
identified systems that can influence the cross-bridge turnover or cy- 
toskeletal interactions, as discussed elsewhere in this review. In a later 
modification of their initial latch hypothesis, Murphy and co-workers (Hai 
and Murphy 1988a, 1988b, 1989a, Murphy 1989) and Driska (1987) have 
proposed a more simple model where the only Ca2+-dependent regulatory 
mechanism was activation of myosin light chain kinase suggesting that 
myosin phosphorylation was both necessary and sufficient for the devel- 
opment of the latch state. The central assumption of this "four-state" 
model is that cross-bridges can exist in four states as depicted in the Figure 
below; detached-phosphorylated (My), attached-phosphorylated (AMy) 
and detached-dephosphorylated (M), attached-dephosphorylated (AM = 
latch-bridge). 
The two attached cross-bridge states (AM and AMy) were considered to 
generate force but had very different detachment rates; the detachment 
rate (kT) of the dephosphorylated latch cross-bridge was proposed to be 
about 20% of that of the phosphorylated one (k4). Hai and Murphy (1988a, 
1988b) further postulated that LC20 phosphorylation is obligatory for 
cross-bridge attachment, the latch state was only reached by dephosphory- 
lation of attached phosphorylated cross-bridges (ks = 0). In the simula- 
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Fig. 4. Schematic diagram (modified from Rembold and Murphy 1993) for the cross- 
bridge cycling in smooth muscle according to the latch bridge model (Hai and Murphy 
1988a, 1988b). Actin is indicated with A; M and Mp denotes the unphosphorylated and 
phosphorylated myosin, respectively. Note that the latch state (AM) refers to a myosin 
bound state which is not identical to the rigor A.M state shown in Figure 1, chapter 2. 

tions (Hai and Murphy 1988a, 1988b; 1989, Rembold and Murphy 1993) it 
was generally also assumed that the attached phosphorylated and dephos- 
phorylated cross-bridges produce the same amount of force and that free 
and attached cross-bridges are equal substrates for MLCK and MLCP. 

Using the four state model Hai and Murphy (1988a, 1988b, 1989b), could 
simulate much of the mechanical behaviour of the swine carotid artery 
smooth muscle including the maintenance of force at low levels of phos- 
phorylation (latch state) and the dependence of force on LQ0 phosphory- 
lation. In the intact smooth muscle force increases steeply in the supra- 
basal phosphorylation range 0--20% and increases only slightly with 
phosphorylation values over 40%. In the latch state model this non-linear 
quasi-hyperbolic relation is explained by recruitment of the non-phos- 
phorylated force generating latch-bridges at the lower phosphorylation 
range. This behaviour is dependent on the MLCP activity; at low MLCP 
less latch-bridges would be formed and the dependence of force on LC20 
phosphorylation would be less hyperbolic and approach a linear relation. 
The primary effect of physiological changes on MLCP activity would how- 
ever be on the Ca ~+ sensitivity of contraction; a reduction in MLCP activity 
would increase Ca2+-sensitivity. The MLCP activity has a very high tem- 
perature dependence (Q10 of about 5, Mitsui et al. 1994) and it has been 
pointed out (Rembold and Murphy 1993, Murphy 1994) that at lower 
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temperature latch phenomena might be less pronounced, which in part 
could explain that skinned muscle fibres, which usually are studied at 
lower temperature, do not exhibit obvious latch states. 

Hal and Murphy (1988b) combined the four state model and the Huxley 
(1957) formalism for describing the force-velocity relationship, and could 
simulate also isotonic behaviour of the smooth muscle. In these simula- 
tions the slow detachment rate of latch-bridges explained a reduced short- 
ening velocity at low levels of phosphorylation, and the linear dependence 
of the maximal shortening velocity on LC20 phosphorylation observed in 
intact tissue (Aksoy et al. 1982) could be reproduced. Mechanical data have 
suggested the presence of a cross-bridge population with slower rate of 
detachment during shortening in latch (Hellstrand and Nordstr6m 1993). 
Using mixtures and copolymers with varying ratios of phosphorylated 
and unphosphorylated myosin in in vitro motility assays, Sellers et al. 
(1985) and Warshaw et al. (1990) could show that the in vitro velocity was 
dependent on the ratio of phosphorylated/unphosphorylated myosin, sug- 
gesting that unphosphorylated cross-bridges may act as a load on rapidly 
cycling cross-bridges. Data from skeletal muscle fibres, undergoing 
changes in myosin isoforms, suggest that slowly cycling cross-bridges can 
influence the Vma~ of muscle fibres (Reiser et al. 1988, Larsson and Moss 
1993). Also in skinned fibres from smooth muscle the reduction in short- 
ening velocity at low degrees of activation appears to be due to the pres- 
ence of a population slowly cycling cross-bridges (0sterman and Arner 
1995). Although the mechanical and structural properties of attached 
dephosphorylated cross-bridges have not been clarified, it is possible that 
a slow rate of detachment creates an internal load that opposes shortening 
generated by faster phosphorylated cross-bridges. The energetic effects of 
such attached dephosphorylated cross-bridges during shortening might 
be difficult to predict, but data from muscle fibres have not found evidence 
for dissipation of work against an internal load during latch (Butler et al. 
1986). The process of filament slowing is thus most likely more complex 
than the appearance of an internal resistance to shortening and it is possi- 
ble that the attached dephosphorylated cross-bridges slow down general 
cross-bridge cycling during filament sliding. 

One consequence of the simulations using the four state model (Hai and 
Murphy 1988a, Hai and Murphy 1992) was that the dependence of ATPase 
on force was non-linear and increased steeply at higher force levels, due to 
increased rates of both cross-bridge cycling and LC20 phosphorylation 
turnover. This result was found to be at variance with earlier data on ATP 



112 A. Arner and G. Pfitzer 

utilisation in smooth muscle (Paul 1990), although more recent measure- 
ments have demonstrated a non-linear dependence (Wingard et al. 1994) 
as predicted by the model. Also in skinned muscle the ATP consumption 
increases rapidly consistent with an increased energy cost at high activa- 
tion levels (Arner and Hellstrand 1983, 1985). Another prediction of the 
Hai and Murphy (1988a) model simulations is that a large fraction of the 
ATP consumption is to be due to the phosphorylation process itself. For 
the swine carotid media the phosphorylation ATPase was almost equal to 
the ATPase of cross-bridge cycling. This muscle is a comparatively slow 
muscle, where the cross-bridge cycling ATPase is lower, but the calcula- 
tions suggest that the cost of activation can be a significant fraction of 
contraction associated ATPase in smooth muscle. Using length variations 
in swine arterial smooth muscles and measurements of oxygen consump- 
tion is has been shown that kinetics of cross-bridge phosphorylation- 
dephosphorylation can rival those of cross-bridge cycling during isomet- 
ric contractions (Wingard etal. 1997). A high activation associated ATPase 
would lower the efficiency of smooth muscle contraction (cf. Paul 1990). 
The almost equal energetic cost for cross-bridge cycling and activation is 
perhaps a necessary consequence of a regulation of cross-bridge cycling. 
Since smooth muscle has a comparatively high basal ATPase the contribu- 
tion of these contraction associated ATPases on the total energetics of 
contractions is however not very large. 

The four state model (cf. Murphy 1994, Strauss and Murphy 1996) thus 
provides a fairly simple concept, with only one regulatory system, and it 
can explain much of the mechanical data from smooth muscle tissue. The 
regulatory systems in the smooth muscle cell that influence Ca2+-sensitiv - 
ity of contraction via actions of MLCK and MLCP (cf. chapter 4) can be 
considered to operate at a higher level in the activation/deactivation cas- 
cade and their effects are usually consistent with the model predictions. 
However, other results in intact fibres cannot be easily explained by the 
model. For example the cAMP induced relaxation of latch at basal phos- 
phorylation levels (Gerthoffer et al. 1984) or the modulation of muscle 
relaxation at basal phosphorylation levels (Fischer and Pfitzer 1989) can- 
not be explained unless one introduces an additional regulatory mecha- 
nism which regulates the net detachment rate constant. Other more severe 
indications that additional mechanisms, acting in parallel with LC20 phos- 
phorylation, are the observations that relaxation may be induced at high 
levels of LC20 phosphorylation (Tansey et al. 1990, B~ir~iny and B~ir~iny 
1993a, Katoch et al. 1997) and that the tissue may remain relaxed despite 
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an increase in phosphorylation (Gerthoffer 1987). As discussed elsewhere 
(chapter 5) a large body of biochemical data and results from muscle fibres 
have shown that thin filament associated systems, e.g. caldesmon and 
calponin, can influence cross-bridge cycling. The action of these systems 
in relation to latch-bridge formation or properties is still unresolved. 

The main concept of the latch-bridge model is that the attached non- 
phosphorylated cross-bridges are formed by dephosphorylation. An alter- 
native to this view is attachment of unphosphorylated cross-bridges as a 
result of cooperative activation; in principle when a number of phospho- 
rylated cross-bridges have attached, the unphosphorylated cross-bridges 
can become activated and attach into force generating states. Biochemical 
and structural data have shown that thin filament Cooperative mecha- 
nisms can exist in smooth muscle and possibly be modulated by e.g. 
caldesmon (cf. chapter 5). It was originally proposed by Siegman et al. 
(1976a, 1976b) that attached dephosphorylated cross-bridges can exist in 
relaxed smooth muscle. Recent studies on skinned fibres have also shown 
that dephosphorylated cross-bridges can generate force and that this ac- 
tion was inhibited by calponin (Malmqvist et al. 1997). In Skinned fibres, 
rigor cross-bridges have been shown to cooperatively activate attachment 
(Arner et al. 1987a, Somlyo et al. 1988b) and cooperative activation has 
been suggested to be a regulatory mechanism (Somlyo et al. 1988b). In 
studies by Vyas et al. (1992, 1994) it was found that a small number of 
thiophosphorylated cross-bridges in smooth muscle fibres increased the 
rate of ADP turnover and a model based on cooperative activation of 
cross-bridges was proposed. It thus seems possible that unphosphorylated 
cross-bridges can attach, and possibly cycle at a slow rate, and that this 
process might be regulated by a thin filament mechanism. Theoretically, 
cooperative activation alone would make relaxation difficult and it seems 
likely that such a mechanism would be sensitive to specific cross-bridge 
states or coupled to a regulatory system, e.g. caldesmon or calponin as 
suggested by results from skinned fibres (Albrecht et al. 1997, Malmqvist et 
al. 1997). 

An important problem with any latch theory is that the "latch-bridge" in 
many ways remains descriptive and has not been coupled to specific bio- 
chemical actomyosin states or mode of actomyosi n turnover. Skinned 
fibres could provide a way to explore this problem but at present there is a 
striking lack of a latch state in skinned smooth muscle preparations with a 
few exceptions. The hyperbolic phosphorylation force relationship has 
been demonstrated in e.g. skinned smooth muscle strips from chicken 
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gizzard which contract maximally at a phosphorylation level between 20 
and 30%. Phosphorylation can be further increased up to 60 to 100% 
without a major increase in tension (Hoar et al. 1979, Pfitzer et al. 1993, 
Schmidt et al. 1995). States with high force, low phosphorylation and low 
ATPase can be generated in skinned fibres (Giith and Junge 1982, Chatter- 
jee and Murphy 1983, Gagelmann and Giith 1987, Kiihn et al. 1990, Zhang 
and Moreland 1994), a state that ressembles the latch state in intact tissue. 
Although such latch like states can be produced, some results from 
skinned fibres are inconsistent with the latch-bridge model by Hai and 
Murphy (1988a, 1988b). If latch-bridges are formed by dephosphorylation 
of attached states th e number of latch-bridges would be dependent on the 
absolute rates of the MLCP and MLCK activities. A prediction would be 
that less latch-bridges are formed when force is increased by successive 
inhibition of the MLCP at suboptimal [Ca 2+] compared to the situation 
when force is activated by successive increases in [Ca2+]. This could not be 
supported by skinned fibre data since the relation between phosphoryla- 
tion and force and between force and maximal shortening velocity were 
similar after Ca 2+ activation and after activation using the MLCP inhibitor 
okadaic acid (Siegman et al. 1989, Schmidt et al. 1995, Malmqvist and 
Arner 1996). Thus some of the important aspects of the Hai and Murphy 
model cannot be reproduced in the skinned fibre system. This can reflect 
that skinned fibres are studied at lower temperature where MLCP activity 
is lower or that MLCP and MLCK activities are lost during Triton skinning. 
These alterations would theoretically minimise latch-bridge formation 
through dephosphorylation (cf. Rembold and Murphy 1993) and perhaps 
favour other modes of regulation. However, the fundamental regulatory 
processes would still remain in the skinned fibre system and an extrapola- 
tion of skinned fibre data to the intact system could be valid for several 
regulatory mechanisms. The development of a skinned fibre latch state 
model that mimics most aspects of latch in intact tissue would be impor- 
tant in order to clarify the regulation of the latch state in smooth muscle 
and to identify the actomyosin intermediate(s) constituting the latch- 
bridge. 



Regulation of cross-bridge cycling by Ca2+in smooth muscle 115 

7 
Conclusions and perspectives 

During the last two decades significant knowledge has accumulated re- 
garding the molecular mechanism and regulation of cross-bridge cycling 
in smooth muscle. There is little doubt that the phosphorylation of the 
regulatory light chains of myosin (LC20) is the key regulatory event. It is 
also agreed upon that a sliding filament mechanism underlies contraction. 
However, the details of the cross-bridge cycle are not understood in the 
same depth as in skeletal muscle. In particular the unique feature of 
smooth muscle to regulate the cross-bridge cycling rate within an individ- 
ual contraction/relaxation cycle is still not fully understood. This is closely 
related to the question of the nature of the "latch-bridge": is it entirely 
associated with the contractile system and if so is it a particular cross- 
bridge state, e.g. a strongly bound AMADP state? There is also little doubt 
that unphosphorylated cross-bridges may attach to actin and cycle slowly. 
It is not clear how the attachment or detachment of these cross-bridges are 
regulated. Perhaps the thin filament linked proteins, caldesmon or 
calponin, are involved. Just as there is no unique relation between force 
and LC20 phosphorylation, the relation between cytosolic [Ca 2+] and force 
varies over a wide range of [CaZ+]. Some of the signalling molecules re- 
sponsible for the regulation of the Ca2+-sensitivity have been identified 
and a picture emerges where force is regulated by interacting signalling 
pathways rather than by the absolute concentration of cytosolic Ca 2÷. It is 
quite obvious that some of these signalling molecules such as the mitogen- 
activated protein kinase also regulate growth suggesting that there is a 
concerted regulation of cellular growth and mechanical performance of 
smooth muscle. The combination of the novel biophysical techniques and 
molecular biology including transgenic animals certainly will increase our 
understanding of this signalling network. This may help to design new 
therapeutic approaches as suggested by the recent finding that inhibition 
of Rho-associated kinase lowers blood pressure in several animal models 
of hypertension (Uehata et al. 1997). 
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4.1 Introduction 

The regulation of cytosolic calcium concentration in smooth muscle is 
characterized by numerous calcium permeant ion channels mediating 
calcium flux across the sarcolemma and sarcoplasmic reticulum, and by a 
substantial diversity between tissues with regard to the extent that individ- 
ual channels contribute to excitation-contraction (E-C) coupling. The rela- 
tive complexity of calcium signaling in smooth muscle is immediately 
apparent if one compares the processes underlying calcium transport 
during E-C coupling between skeletal and smooth muscle. During excita- 
tion of skeletal muscle a single neurotransmitter (acetylcholine) binds to a 
single type of receptor/ligand gated ion channel (nicotinic receptor), and 
mediates calcium flux from the sarcoplasmic reticulum to the cytosol via a 
single type of calcium channel-the ryanodine receptor. By contrast, 
smooth muscle E-C coupling is marked by redundancy at every level of 
activation. Multiple neurotransmitters and autocoids bind to cognate re- 
ceptors that include ligand-gated (ionotropic) cation channels with vari- 
able calcium permeability, and G protein coupled receptors. The former 
receptor/channels are analogous to the nicotinic receptor in skeletal mus- 
cle in that they generate a postsynaptic potential that alters the membrane 
potential, thereby regulating the activity of voltage-dependent channels, 
including voltage-dependent calcium channels. In addition to this func- 
tion, however, one now well characterized class of ionotropic receptors are 
calcium permeant, and thereby directly influence E-C coupling. G protein- 
coupled receptors also influence the behavior of calcium permeant chan- 
nels in multiple ways. First, phospholipase C linked receptors result in the 
activation of inositol trisphosphate receptors and mediate the release of 
calcium from the sarcoplasmic reticulum. Second, the release of intracel- 
lular calcium by this mechanism subsequently alters the membrane poten- 
tial by gating the opening of calcium-activated channels, thereby indirectly 
modulating the activity of voltage-dependent ion channels such as volt- 
age-dependent calcium channels. Third, second messenger pathways are 
activated that result in the modulation of voltage-dependent ion channels. 
Finally, cation channels that are activated by second messenger pathways 
(metabotropic ion channels) alter membrane potential and may have sub- 
stantial calcium permeability. These complex responses to extracellular 
signals are imposed upon a pre-existing calcium homeostasis that results 
from graded calcium influx through voltage-dependent calcium channels 
and spontaneous intracellular calcium release through ryanodine recep- 
tors. Thus the myocyte integrates numerous calcium inputs and the con- 
centration of cytosolic free calcium ([Ca2+]i) at any given time is the net 
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result of the activity of these calcium channels, as well as that of calcium 
pumps and exchangers that remove calcium ions from the cytosol. 

In smooth muscle, the relationship between a rise in [Ca2+]i and genera- 
tion of force has been extensively characterized (see reviews (Bolton et al. 
1988; Somlyo and Himpens 1989; van Breemen and Saida 1989; Missiaen et 
al. 1992b; Somlyo and Somlyo 1994; Jiang and Stephens 1994; Walsh et al. 
1995; Karaki et al. 1997)). While increases in the Ca 2+ sensitivity of myosin 
light chain phosphorylation have been demonstrated in smooth muscle 
(Kitazawa et al. 1989; Somlyo and Somlyo 1994), full activation of contrac- 
tile proteins does not occur in the absence of a rise in [Ca2+]:~ and following 
force development, decreases in [Ca2+]i result in muscle relaxation (Som- 
lyo and Himpens 1989). Moreover, whereas intracellular calcium release 
plays an important role in the initiation of contraction (Baron et al. 1984; 
Somlyo and Himpens 1989) of smooth muscle and calcium falls following 
initial peak transients (Morgan and Morgan 1982), sustained contractile 
responses require a sustained elevation of [Ca2+]i, which is dependent on 
extracellular calcium (Himpens et al. 1988). 

Despite the complexity of calcium regulatory mechanisms in smooth 
muscle the characterization of specific calcium transport proteins has 
been greatly facilitated by recent technical advances in the measurement of 
ion channel currents and the non-invasive measurement of cytosolic cal- 
cium concentration [Ca2+]i in cells. The former techniques include whole 
cell (Hamill et al. 1981) and single channel (Neher and Sakmann 1976) 
recording methods as well as the development of "permeabilized-patch" 
techniques that maintain physiologic cytosolic calcium buffering (Horn 
and Marty 1988; Korn and Horn 1989). Similarly, the development of a 
diverse array of fluorescent calcium indicators such as Fura 2, Indo, and 
Fluo-3 have enabled the relatively non-invasive measurement of [Ca2+]i 
under a variety of conditions (Tsien et al. 1985; Grynkiewicz et al. 1985). 
The simultaneous experimental use of these techniques allows the dissec- 
tion of specific transport processes that contribute to rises in cytosolic 
calcium. More recently the measurement of calcium release processes in 
muscle has been further advanced by the combination of laser scanning 
confocal microscopy (LSCM) with single-cell voltage-clamp techniques. 
The confocal elimination of Out-of-focus fluorescence combined with high 
speed laser scanning provides sufficient spatial and temporal resolution of 
calcium release events to enable the visualization of quantal calcium re- 
lease in cardiac and smooth muscle preparations (Cheng et al. 1993a; 
Cannell et al. 1995; Lopez-Lopez et al. 1995; Nelson et al. 1995). The 
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separate and combined use of these methods has greatly advanced the 
understanding of the molecular processes regulating cellular [Ca2+]i. This 
review will focus on the role of calcium permeant ion channels in the 
regulation of cytosolic calcium in smooth muscle. 

4.2 
Voltage-Dependent Calcium Channels in Smooth Muscle Cells 

Smooth muscle cells contain at least one type of Ca 2+ channel that is 
activated by membrane depolarization. Voltage-activated, dihydropyrid- 
ine-sensitive Ca 2+ channels appear to be the major calcium entry pathway 
in a wide variety of types of smooth muscle including blood vessels such 
as coronary, cerebral, renal, mesenteric, skin, and pulmonary vascular beds 
(Aaronson et al. 1988; Benham and Tsien 1988; Caffrey et al. 1986; Worley 
et al. 1986; Nelson et al. 1988; Nelson and Worley 1989; Bean et al. 1986; 
Ohya and Sperelakis 1989; Ganitkevich and Isenberg 1990). This Ca2+ 
channel has been referred to as the L-type Ca 2+ channel to indicate the fact 
that it inactivates at a relatively slow rate, resulting in a long-lasting cur- 
rent following membrane depolarization. In contrast, currents conducted 
by low voltage-activated, or T-type, Ca 2+ channels are transient in nature, 
inactivate rapidly and completely during a depolarizing stimulus, and are 
dihydropyridine-insensitive. T-type Ca 2+ channels are infrequently en- 
countered in vascular smooth muscle cells (Bean et al. 1986; Benham et al. 
1987a; Wang et al. 1989; Ganitkevich and Isenberg 1990; Smirnov and 
Aaronson 1992). The physiological role, if any, of T-type calcium channels 
in smooth musde is not clear. 

4.2.1Properties of Ca2+ channels in smooth muscle 

Ca 2+ influx through single voltage-dependent Ca 2+ channels has been 
measured using physiological levels of Ca 2+ as a charge carrier (Gollasch et 
al. 1992) (Rubart et al. 1996). These measurements reveal the extremely 
high permeation rate of Ca z÷ ions though single channels. The molecular 
mechanisms determining the Ca 2+ permeation rate are not completely 
understood, but could involve high affinity Ca 2+ binding to permeation 
sites in the channel pore or local negative surface charges near or in the 
external pore mouth (Gollasch and Nelson 1998). In any case, it is likely 
that the high Ca z+ permeation is controlled by the o[1 subunit alone since 
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recordings of CliO cells expressing smooth muscle aiCb subunits display 
this large Ca 2+ permeation rate (Gollasch et al. 1996). 

Voltage-dependent Ca 2÷ channels can exist in at least three kinetic 
states, only one of which is capable of conducting current. The resting and 
inactivated states are non-conducting conformations of the channel (Hess 
et al. 1984; Hille 1994)). The open current conducting state can be reached 
from the resting but not the inactive states. Studies using either 10 mM 
Ba 2+ (Nelson et al. 1990; Ganitkevich and Isenberg 1990; Quayle et al. 1993) 
or 10 and 2 mM Ca 2+ (Gollasch et al. 1992; Rubart et al. 1996) have 
demonstrated that there is no discrete threshold for activation of voltage- 
dependent Ca 2+ channels. Instead, single Ca 2÷ channels open with low 
probability in the voltage range of 60 to 40 mV. These openings are crucial 
in determining steady-state Ca 2+ influx that underlies smooth muscle tone, 
and underscore the importance of voltage-dependent inactivation proc- 
esses in determining the open probability of single Ca 2÷ channels in vascu- 
lar smooth muscle cells under physiological conditions (see Rubart et al. 
1996). 

Measurements at the single channel level have allowed estimation of the 
unitary Ca 2÷ current of -0.17 pA under relatively physiological conditions 
(-40mV, 2 mM Ca 2+, t mM Mg 2÷) (Gollasch et al. 1992; Rubart et al. 1996)). 
This current corresponds to a Ca 2+ influx rate of about 1 million ions per 
second. As a result of the small volume of a single smooth muscle cell (N 1 
pl), one open Ca 2+ channel would conduct a current capable of changing 
the cytosolic [Ca 2÷] by 2.3 M/s at 36°C assuming no buffering or extrusion 
of Ca 2+. Assuming a myocyte fast calcium buffering capacity (ratio of total 
to free Ca 2÷ ions see below) of 100 (Guerrero et al. 1994b; Fleischmann et 
al. 1996; Kamishima and McCarron 1996), one channel would contribute 
23 nM/s. This calculation illustrates the dramatic potential for Ca 2÷ chan- 
nels to serve as key regulators of [Ca2+]i. Such sustained increases in Ca 2+ 
influx markedly influence [Ca2+]i. Fteischmann et al have provided direct 
evidence that threshold increases in steady Ica resulting from one or two 
open Ca 2+ channels have a significant impact on cytosotic calcium, and 
that this occurs during sustained depolarizations at negative membrane 
potentials (Fleischmann et al. 1994). At more positive potentials, Ca z chan- 
nel inactivation results in only transient increases in [Ca2+]i. Thus there is 
a voltage range, which corresponds to physiological membrane potentials 
in non-spiking myocytes, over which small increases in Ca g÷ channel ac- 
tivity produces sustained increases in [Ca2+]i, which has been termed the 
"calcium window" (Fleischmann et al. 1994). The operation of voltage-de- 
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pendent Ca 2+ channels in this low activity mode, where the open-state 
probability of any single channel is quite low (on the order of 0.01), 
represents a fundamentally different way in which these channels partici- 
pate in calcium signaling in non-spiking cells. 

4.2.1.1Molecular Biology of Voltage-Dependent Calcium Channels 
Ca 2÷ channels in smooth muscle consist of a central pore-forming al- 
subunit and several auxiliary subunits. At least six different Ca 2÷ channel 
cq genes have been defined (cqs, alB, OtlC, CtlD, and OClE), and only one splice 
variant (cqc-b) is found in smooth muscle (Snutch and Reiner 1992; Hof- 
mann et al. 1994; Birnbaumer et al. 1994). The pore-forming Ctlc subunit 
confers the voltage-and dihydropyridine-sensitivity that characterize the 
Ca 2÷ channel in smooth muscle (Mikami et al. 1989; Bid et al. 1990). It is 
interesting to note that the cardiac txl subunit (cqc-a) and the smooth 
muscle oqc-b are splice variants of the same gene (oqc). However, the 
skeletal muscle cq subunit is a product of a different gene (CXls), and this is 
consistent with the fact that the primary physiological function of the Ca 2÷ 
channel in skeletal muscle is as a voltage-sensor and not as a current-con- 
ducting pore. 

The basic structure of all known CXl-subunits is well conserved. This 
subunit consists of four homologous repeating motifs (I-IV), and each 
motif consists of six membrane-embedded hydrophobic segments (SrS6). 
Both the amino- and carboxy-terminal domains are intracellular. A posi- 
tively charged amino acid occupies every third or fourth position in the $4 
domain of each motif. It is suggested that the $4 domain functions as the 
voltage sensor in voltage-gated ion channels (Catterall 1995). Ion selectiv- 
ity is believed to be controlled by a loop between $5 and $6 (SS1-SS2 region 
or P loop) (Heinemann et al. 1992). The P loop is predicted to fold into the 
membrane and form part of the pore region (Guy and Conti 1990). It is 
also believed that negatively charged glutamate residues in the SS2 region 
of each of the four motifs are responsible for the high Ca 2÷ selectivity, and 
participate in high-affinity binding with divalent cations (Yang et al. 1993; 
Mikala et al. 1993; Tang et al. 1993; Yatani et al. 1994; Bahinski et al. 1997). 
The receptor sites for various Ca 2÷ channel antagonists (dihydropyridines, 
phenylalkylamines, and benzothiazepines) that give these channels their 
distinctive pharmacological profile have been localized to various regions 
on the 1 subunit near the pore lining (Catterall and Striessnig 1992; Hof- 
mann et al. 1990; Catterall 1995; Varadi et al. 1995; Mori et al. 1996; Mitter- 
dorfer et al. 1996; Hockerman et al. 1997). All known phosphorylation 
sites for protein kinase A and many of the phosphorylation sites for pro- 
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tein kinase C have been located to intracellular positions (Varadi et al. 
1995). Carboxy-terminal residues in the CXlC subunit are responsible for 
channel inactivation induced by Ca 2+ influx (Zhou et al. 1997). 

Ca 2+ channels at presynaptic nerve terminals are inhibited by G-protein 
coupled receptors acting through a membrane delimited pathway (Dol- 
phin et al. 1986; Holz et al. 1989; Herlitze et al. 1996); the molecular basis of 
this inhibitory modulation has recently been localized to the carboxy 
terminus of the oqA and txlB subunits (De Waard et al. 1997; Zamponi et al. 
1997; Herlitze et al. 1997). G[3y binds to the consensus binding site QXXER 
(Chen et al. 1995) found in the I subunit domain I-II linker, and also found 
on the GIRK1 potassium channel (Huang et aL 1995). The binding site is 
contained within the region that binds the channel [3subunits, suggesting 
that this is a key site of channel modulation. Interestingly, Cqc subunits do 
not contain the QXXER domain (Herlitze et al. 1997), explaining the ab- 
sence of G protein mediated inhibition of Ca 2÷ currents in smooth muscle. 

Functional heterogeneity of Ca z÷ channels in different tissues may be 
explained by differential expression of auxiliary subunits [3 and a2/6 with 
the cq pore. To date, four different genes encoding [3 subunits are known 
(131, ~2,[33, ~4) and both [32 and [33 have been found in smooth muscle (Hullin 
et al. 1992; GoUasch et al. 1997). The OrE and 6 subunits are post-transla- 
tionally modified products of the same gene (Jay et al. 1991). Different 
combinations of [3 and ot2/6 splice variants can coexist in various tissues 
(Varadi et al. 1995; Ange!otti and Hofmann 1996). These accessory 
subunits may regulate pore formation and stabilization, gating, channel 
kinetics, and drug binding (Bosse et al. 1992; Itagaki et al. 1992) (Welling et 
al. 1993; Neely et al. 1993; Wei et al. 1995; Shistik et al. 1995; Chien et al. 
1996; Bangalore et al. 1996; Catterall and Striessnig 1992; Mori et al. 1996; 
De et al. t996; Suh-Kim et al. 1996; Hockerman et al. 1997). 

4.2.1.2Pharmacology of Voltage-Dependent Calcium Channels 
Three main classes of chemical compounds act as antagonists of L-type 
Ca 2+ channels. These are dihydropyridines (e.g. nifedipine), phenylalky- 
lamines (e.g. verapamil), and benzothiazepines (e.g. diltiazem) (Catterall 
and Striessnig 1992; Hofmann et al. 1990; McDonald et aL 1994; Catterall 
1995). The benzothiazepines and phenylalkylamines block L-type Ca 2+ 
channels by binding preferentially to the open state (Lee and Tsien 1983; 
Tung and Morad 1983; Hering et al. 1989; Klockner and Isenberg 1991), 
whereas dihydropyridines block Ca 2+ channels by binding to the inactive 
state (Uehara and Hume 1985; Bean 1984). In contrast to the Ca 2+ channel 
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antagonists, one dihydropyridine compound in particular has agonistic 
properties. Thus, the levorotatory enantiomer of BAY K 8644 promotes 
channel opening at less depolarized potentials by causing a leftward shift 
in the activation curve (see Worley et al. 1991; Quayle et al. 1993)). Re- 
cently, the black mamba venom toxin calciseptine has been shown to 
inhibit vascular Ca z÷ channels in a similar way to dihydropyridines (de 
Weille et al. 1991; Teramoto et al. 1996). 

4.2.2 Functional Significance of Ca2+Channels in Vascular Smooth Muscle Ceils 

The resting membrane potential of vascular smooth muscle cells in arteri- 
oles subjected to physiological transmural pressure is in the range of 40 to 
60 mV (Brayden and Nelson 1992; Harder 1984; Harder et al. 1987; Nelson 
et al. 1990). Furthermore, there is a steep dependence of arterial diameter 
on membrane potential, suggesting that some voltage-dependent proc- 
esses are fundamental regulators of arterial tone (Brayden and Nelson 
1992; Nelson et al. 1990; Knot and Nelson 1995). Membrane potential 
changes of even a few millivolts can have dramatic effects on arterial 
diameter (Knot and Nelson 1998a). Ca z+ influx via voltage-dependent 
L-type Ca 2÷ channels is also highly dependent upon membrane potential 
in the same range as arterial diameter (Rubart et al. 1996; Knot and Nelson 
1998a), suggesting the hypothesis that vascular smooth muscle membrane 
potential regulates arterial tone by altering Ca 2÷ influx through L-type 
Ca 2÷ channels (Nelson et al. 1990). Thus, any factor that changes smooth 
muscle membrane potential should have definite effects on arterial diame- 
ter. Consistent with this assumption are observations that K ÷ channel 
openers like pinacidil and cromakalim elicit hyperpolarization of smooth 
muscle and arterial dilation (Nelson and Quayle 1995). Furthermore, inhi- 
bition of K ÷ channels by drugs like charybdotoxin causes smooth muscle 
depolarization and arterial constriction (Brayden and Nelson 1992; Nelson 
and Quayle 1995; Knot et al. 1998b). 

The important contribution of Ca/+ channels to the regulation of vascu- 
lar tone becomes very obvious in hypertension, and increases in Ca 2÷ 
channel activity have been reported in various experimental models of 
hypertension (Wilde et al. 1994; Ohya et al. 1996). Furthermore, hyperten- 
sion appears to be correlated with vascular smooth muscle cell depolariza- 
tion (Hermsmeyer et al. 1982; Harder et al. 1983; Lamb and Webb 1989; 
Silva et al. 1996; Martens and Gelband 1996), and this would have a dra- 
matic effect on the influx of Ca 2+ under basal conditions. However, cal- 
cium channels may not be directly changed in hypertension. Instead, 
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factors (e.g. membrane potential) that regulate calcium channel open 
probability may be changed in hypertension. 

The signal transduction mechanisms relating to regulation of vascular 
tone at the single smooth muscle cell level are just now being charac- 
terized. It is apparent that vasoconstrictors like norepinephrine, en- 
dothelin, angiotensin II, seritonin, and histamine can augment currents 
conducted by L-type Ca 2+ channels invascular smooth muscle cells (Nel- 
son et al. 1988; Hughes et al. 1996; Worley et al. 1991; Bkaily et al. 1988; 
Inoue et al. 1990), Diacylglycerol produced in response to vasoconstrictor- 
mediated activation of the phosphoinositide cascade stimulates protein 
kinase C which may lead to activation of L-type Ca 2÷ channels (see Fish et 
al. 1988; Vivaudou et al. 1988; Clapp et al. 1987; Lepretre and Mironneau 
1994; Lepretre et al. 1994). 

Vasodilators such as nitric oxide that act through cGMP/protein kinase 
G signaling systems may actin part by inhibiting currents conducted by 
L-type Ca 2÷ channels. Whole-cell currents conducted by voltage-depend- 
ent Ca 2+ channels have been shown to be sensitive to the NO donor sodium 
nitroprusside in smooth muscle cells from pulmonary artery (Clapp and 
Gurney 1991), basilar artery (Tewari and Simard 1997), and human coro- 
nary artery (Quignard et aI. 1997). Single channel studies have revealed 
that NO reduces ca  2+ channel open probability during step depolariza- 
tions (Tewari and Simard 1997). This effect was prevented by the protein 
kinase inhibitor H-8 and mimicked by the membrane-permeable cGMP 
analogue 8-Br-cGMP, suggesting that NO inhibits L-type Ca z+ channels in 
vascular smooth muscle cells through a pathway involving cGMP and 
protein kinase G (Tewari and Simard 1997), see also (Quignard et al. 1997). 
In addition, there is some evidence Suggesting that substances acting via 
cAMP/protein kinase A signaling mechanisms may stimulate L-type Ca 2+ 
channels in smooth muscle from coronary artery (Fukumitsu et al. 1990), 
basilar artery (Tewari and Simard 1994), and portal vein (Ishikawa et al. 
1993). However, the effects of protein kinase A on voltage-dependent Ca 2+ 
channels may depend upon the specific tissue studied and the types of 
regulatory subunits expressed with the oq c pore. 

4.3 Nonselective Cation Channels 

Over the last decade work from several laboratories has demonstrated that 
acetylcholine, norepinephrine, and ATP, constrictor neurotransmitters re- 
leased at the smooth muscle neuromuscular synapse, activate nonselective 
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cation channels in smooth muscle cells (Benham et al. 1985; Benham and 
Tsien 1987; Inoue et al. 1987b; Byrne and Large 1988b; Byrne and Large 
1988a; Benham 1989; Inoue and Isenberg 1990a; Vogalis and Sanders 1990; 
Wang and Large 1991; Loirand et al. 1991; Pacaud and Bolton 1991; ]anssen 
and Sims 1992). Nonselective cation currents are also activated by other 
spasmogens such as histamine (Komori et al. 1992) neurokinin A and 
Substance P (Lee et al. 1995), and endothelin (Kume et al. 1995). The 
expression of calcium permeant ion channels other than voltage-depend- 
ent calcium channels was predicted following extensive studies suggesting 
that neurotransmitters and l~ormones activated a dihydropyridine resis- 
tant calcium influx in smooth muscle (BoRon 1979), and the subsequent 
measurement of nonselective cation currents in isolated myocytes (Ben- 
ham et al. 1985; Inoue et al. 1987b). The channels underlying these cur- 
rents can now be conveniently categorized in terms of their activation 
mechanisms: ionotropic channels are ligand-gated, whereas metabotropic 
channels are activated following the binding of a ligand to its G protein 
-coupled receptor, and the attendant stimulation of a second messenger 
cascade. While it is clear that at least some of these channels are calcium 
permeant, resulting in calcium influx under physiological conditions, the 
degree to which calcium permeates other channels is controversial. This 
section will summarize current knowledge with respect to the calcium 
permeability of Ica¢ channels. 

4.3.1 lonotropic Nonselective Cation Channels 

4.3.1.1P2X Channels 
Extracellular ATP binds to ligand-gated ion channels, termed P2X recep- 
tors (Burnstock 1990; Bean and Friel 1990; Bean 1992). Currents resulting 
from the activation of these receptors were first recorded in smooth mus- 
cle disaggregated from rabbit ear arteries (Benham and Tsien 1987b); 
application of ATP or ATPS to a vascular myocyte was shown to activate a 
nonselective cation current. Single channel recordings in 130 mM Na + 
identified a 20 pS conductance channel, and subsequent measurements by 
Benham (Benham 1989) established calcium permeation. The successful 
expression cloning of P2X receptor genes provided molecular confirma- 
tion of these early experiments(Valera et al. 1994a; Brake et al. 1994). As 
shown in Figure 1 (Surprenant et al. 1995), there is excellent agreement 
between heterotogously expressed P2X receptor currents, and currents 
activated by ATP in isolated smooth muscle cells. 

At least seven members of the P2X gene family of ATP-gated cation 
nonselective cation channels have now been cloned and re-expressed 
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Fig. 1. P2X currents in smooth muscle cells resemble heterologously expressed P2XI 
currents. A. Currents evoked by purinergic agonists in single vas deferens smooth 
muscle cells. B. Currents from HEK293 cells transfected with P2Xl cDNA. Current 
desensitization and response to the selective agonist ,-me-ATP are similar. From 
Surprenant et al, 1995 (Figure 3) 

(Buell et al. 1996; North 1996). The P2X receptor subtypes that have been 
reported in smooth muscle include P2X1, P2X2, and P2X4 (Valera et al. 
1994a; Brake et al. 1994; Garcia-Guzman et al. 1996). Whereas it has not 
been possible to unambiguously ascribe ATP activated currents in single 
smooth muscle cells to a particular P2X subtype, the agonist profile for 
ATP-activated currents and functional responses suggests that P2Xt chan- 
nels underlie a major component of these currents in some smooth mus- 
cles. Thus a,[3 methylene ATP, 2-methlythio ATP, and 13, ¥ me-L-ATP evoke 
currents in isolated myocytes (Khakh et al. 1995; Evans and Kennedy 1994) 
and contractile responses in smooth muscle (Trezise et al. 1995; Corr and 
Burnstock 1994; Ziyal et al. 1997)}(Hartley and Kozlowski 1997){Najbar, Li, 
et al. 1996 ID: 1960}. These agents are potent agonists for P2X1 channels 
{Valera S, Hussy, N. et al; Surprenant, Buell, et al. 1995 ID: 2047}, whereas 
P2X2 and P2X4 are not strongly activated by a,j3 meATP (Brake et al. 1994; 
Soto et al. 1996)}. It should also be noted, however, that some smooth 
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muscles with functional purinergic responses are poorly activated by ot,~ 
meATP, suggesting either that other P2X subtypes (such as P2X,) or G 
protein coupled P2Y receptors, underlie these functional responses (Ab- 
bracchio and Burnstock 1994) 

As described above, P2X receptors are nonselective cation channels 
with clearly demonstrated calcium permeability. Benhams original de- 
scription of P2X currents in arterial smooth muscle indicated a PCa/PNa 
ratio of approximately 3 (Benham and Tsien 1987b). Subsequent calcium 
fluorescence measurements suggested that approximately 10% of the ATP- 
gated nonselective cation current is carried by calcium ions (Benham 
1989). Quite similar properties have been reported for heterologously 
expressed P2X channels; using fluorescent measurements in HEK 293 cells, 
Garcia-Guzman et al (1996) estimated that 8.2% of the hP2X4 current was 
carried by calcium in physiological solutions. Calculations of PCJPNa from 
the Goldman-Hodgkin-Katz equation have ranged from 4 to 4.8 (Garcia- 
Guzman et al. 1996; Valera et al. 1994b; Lewis et al. 1995). Thus the expres- 
sion of ionotropic P2X channels provides a paradigm for neurotransmitter 
evoked depolarization and calcium influx. The degree to which specific 
channel subtypes contribute to physiological excitation-contraction cou- 
pling in smooth muscle remains to be determined. 

4.3.2Metabotropic Cation Channels 

4.3.2.1 Metabotropic Cation Channels 
Activated by Muscarinic Receptors 

4.3.2.1.1 Mechanism of Current Activation 
Acetylcholine activates a depolarizing, non-selective cation current ob- 
served in isolated vascular and nonvascular smooth muscle cells (Benham 
et al. 1985; Inoue et al. 1987a; Inoue and Isenberg 1990a; Vogalis and 
Sanders 1990; Loirand et al. 1991; Komori et al. 1992; ]anssen and Sims 
1992; Fleischmann et al. 1997). Muscarinic stimulation of single myocytes 
results in a characteristic, biphasic [Ca2÷]i response that is not observed 
with simple depolarizations to activate voltage-dependent ion channels, or 
when calcium release is stimulated with caffeine. Similarly, muscarinic 
stimulation activates a biphasic inward current, consisting of a brief, inac- 
tivating calcium-activated chloride current, followed by a sustained, noisy 
current of low magnitude, which has been shown to be a nonselective 
cation current. Activation of this current accounts for the slow EPSPs 
observed following parasympathetic nerve stimulation of smooth muscle 
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preparations (Byrne and Large 1987). Unlike the ligand-gated P2X recep- 
tor currents, muscarinic currents are activated following stimulation of a 
receptor that is a member of the seven transmembrane spanning, G pro- 
tein linked receptor family. The metabolic events associated with Icat 
current activation have been partially determined. The muscarinic Ic~t is 
not activated by the release of intracellular calcium, as shown by the 
differential current response to caffeine and methacholine in the same 
myocyte (Figure 2). Studies have also established that intracellular dialy- 
sis or exposure to pertussis toxin blocks acetylcholine induced Icat cur- 
rents, and that the currents are activated by GTPyS in the absence of 
acetylcholine (Inoue and Isenberg ~1990a; Komori and Bolton 1990; Ko- 
mori et al. 1992). Similarly, semi-selective M2 receptor 'antagonists and 
dialyzed antibodies directed against the ct subunit of Gi or Go proteins 
blocks current activation (Wang et al. 1997) While these studies identify 
the general upstream signaling elements associated with ICat activation, the 
studies do not indicate whether o~ or [3y proteins activate the channels or 
intermediate proteins (since antibodies directed against subunits would 
be expected to disrupt signaling by both elements) or identify subsequent 
transduction steps in channel activation. It should also be noted that 
Reports have also suggested that either protein kinase C or tyrosine kinase 
mediates muscarinic Icat channel opening (Oike et al. 1993; Minami et al. 
1994), although these findings are hampered by the specificity of the 
kinase inhibitors employed. An additional level of complexity in the 

Caffeine mACH 

lOs 

Fig. 2. The nonselective cation current (and a sustained elevation of [Ca 2+] i) is activated 
by methacholine, but not by caffeine. A nondialyzed trachealis myocyte loaded with 
fura2 was sequentially exposed to caffeine (8 mM) and then to methacholine (50 M). 
The rapidly inactivating Calcium-activated chloride current has been attenuated to 
better illustrate Icat. Figure modified from experiment shown in Wang and Kotlikoff, 
1997 (Figure 6). 
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transduction pathway leading to current activation was the finding that 
the current is strongly facilitated by an increase in intracellular calcium. 
Inoue and Isenberg (1990c) first reported that Icat was larger in guinea pig 
ileum myocytes when exposure to acetylcholine was immediately pre- 
ceded by activation of the voltage-dependent calcium current, and that in 
cells dialyzed with EGTA/Ca 2÷, the amplitude of ICat activated by acetyl- 
choline increased at higher [CaZ÷]i. These findings were extended by Pa- 
caud and Bokon who showed that elimination of calcium release in guinea 
pig jejunal myocytes by heparin dialysis markedly decreased the mus- 
carinic Icat (Pacaud and Bolton 1991). Taken together with experiments 
indicating M2/Gi or Go coupling, the finding of calcium facilitation of Icat 
suggests that physiological current activation involves the simultaneous 
activation of M2 and M3 receptors, where M2 agonism activates second 
messenger pathways responsible for channel gating, and M3 agonism re- 
suits in calcium release sufficient to achieve a substantial current. The 
level of [Ca2+]i required to facilitate cation channel opening may vary, since 
in some myocytes the current cannot be evoked in the absence of a rise in 
[Ca2+]i ab6ve basal levels (Wang et al. 1997). Further evidence of the 
requirement for dual stimulation in Icat activation is shown in Figure 3. In 
the experiments shown, Icat could not be activated by methacholine in the 
presence of the partially selective M3 antagonist hexahydro-sila-difenidol 
at a concentration predicted to block 97% of M3 receptors and 28% of M2 
receptors. However, simultaneous application of caffeine to evoke calcium 
release reconstitutes muscarinic coupling to Ic~t in the presence of the M3 
antagonist. 

The~single channel properties of nonselective cation channels underly- 
ing the muscarinic Icat have been reported. Values range from 20-25 pS in 
guinea pig ileum (Inoue et al. 1987b), 25 pS in rabbit portal vein (Inoue and 
Kuriyama 1993), and 30 pS in canine p);ioric circular myocytes (Vogalis 
and Sanders 1990). A much larger, calcium-activated conductance has 
been reported to be activated by muscarinic and adrenergic stimulation 
(Loirand et al. 1991), although the relevance of such channels is unclear 
given the results of experiments indicating that a rise in calcium alone is 
not sufficient to activate Ic~t, and given that noise analysis of the mus- 
carinic current does not indicate activation of such a large conductance 
channel. 

4.3.2.1.2 Calcium Permeability 
The association of the Icat current with InsP3-mediated release has made 
the unequivocal determination of the physiological calcium permeability 
of this current difficult, since any contribution to [Ca2÷]i made by calcium 
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Fig. 3. Activation oflcat requires M2 receptor binding and an increase in [Ca2+]i. The 
M3 receptor antagonist hexahydro-sil-difenidot (0.4 M) completely inhibits the re- 
sponse to methacholine (50 M). However, if caffeine (8 mM) is used to release 
intracellular calcium, ICat is activated and the [Ca2+]i response is sustained. Figure 
modified from experiment shown in Wang et al., 1997 (Figure 3) 

permeating the channel is obscured by the intracellular calcium release. 
Early studies indicated that the nonselective current was calcium per- 
meant, since it was observed in external solution containing isotonic cal- 
cium chloride (Bolton and Kitamura 1983). However, subsequent reports 
by Pacaud et al (Pacaud and Botton 1991) raised doubts about the degree 
of calcium permeability of the muscarinic receptor -activated Icat current 
under physiological conditions. This conclusion was based on the obser- 
vations that: 1) voltage-dependent calcium channel blockers completely 
abolish muscarinic contractions in this tissue, and 2) exposure of jejunal 
smooth muscle cells to caffeine as well as carbachol results in increased 
membrane permeability to calcium during voltage-clamp steps, suggest- 
ing that the permeability was not due to Icat since caffeine does not activate 
the current, but due to an increase in calcium permeability related to store 
depletion. 

These findings may not relate to all smooth muscle tissues. Numerous 
smooth muscle tissues demonstrate substantial dihydropyridine insensi- 
tivity, particularly with respect to muscarinic contractions. Moreover, in 
other smooth muscle cells such as tracheal myocytes, muscarinic stimula- 
tion but not caffeine exposure results in an increased membrane calcium 
permeability (Fleischmann et al. 1997). Several lines of evidence suggest 
that calcium permeates ICat currents under physiological conditions. First, 
muscarinic stimulation is associated with a sustained increase in [Ca2+]i, 
whereas exposure to caffeine or dialysis of InsP3 results in a transient rise 
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in [Ca2+]i that promptly falls to baseline (see Figure 2,3). Second, rapid 
switching to nominally calcium-free solution during (but not before) Icat 
activation immediately decreases Icat. In these experiments Icat increases 
in magnitude slightly, suggesting a degree of divalent block by calcium 
ions under physiologic conditions (Fleischmann et al. 1997). Third, a 
switch to high Ca 2+ solution increases [Ca2+]i during (but not before) Icat 
activation. Fourth, rapid application of Ni 2+ (10 mM) blocks Icat and 
reduces [Ca2+]i. Fifth, as in the experiments of Pacaud and Bolton (Pacaud 
and Bolton 1991), hyperpolarizing voltage steps increased Icat and [Ca2+]i, 
while depolarizing voltage steps evoke an outward current and a net drop 
of [Ca2+]i. Sixth, mACh activates inward currents in monovalent free ex- 
tracellular solution containing 110 mM Ca2+; the reversal potential is 
shifted to 12 mV, consistent with a relative Ca2+/Cs + permeability of 3.6 
(Fatt and Ginsborg 1958). 

To obtain a more physiological estimate of the fraction of current car- 
ried by Ca 2+ ions under physiological conditions, Icat current and [Ca2+]i 
were simultaneously measured at high bandwidth following hyperpolariz- 
ing voltage-clamp steps, similar to methods reported by Guerrero et al 
(Guerrero et al. 1994b). This method relies on the calculation of the 
calcium buffering capacity of the cell, which is the ratio of the total cal- 
cium ions added to those appearing free in the cytosol (see below). As- 
suming that instantaneous calcium buffering is not altered during mus- 
carinic stimulation, the relationship between the buffering capacity calcu- 
lated from a step depolarization to activate the voltage-dependent calcium 
current, and that observed during small hyperpolarizing voltage-clamp 
steps to enhance ICat, indicate that approximately 14% of the Icat current is 
carried by calcium ions (Fleischmann et al. 1997). To the extent that 
buffering decreases following release of SR calcium stores, this is an over- 
estimate, and probably should be considered as a maximum. However, 
since the estimate of calcium permeability is derived from the ratio of the 
calcium buffering capacities determined following rises in [Ca2+]i associ- 
ated with the voltage-dependent calcium current and the muscarinic cat- 
ion current, it is not sensitive to the accuracy of determination of the cell 
calcium buffering capacity. The latter is influenced by the degree of exoge- 
nous calcium buffer (fura 2) in the cell, the estimate of cell volume, and the 
accuracy of the determination of [Ca2+]i, whereas the fractional calcium 
permeability derives from the ratios of the integrated calcium and cation 
currents, which can be determined with substantial accuracy. 
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4.3.2.2 Metabotropic Cation Channels Activated by Adrenergic Receptors 
The activation of nonselective cation channels by norepinephrine was first 
reported by Byrne and Large (Byrne and Large 1988b), but further experi- 
ments were limited by the variable responses observed in dialyzed cells 
(Amedee et al. 1990). The cation currents were subsequently isolated in 
rabbit portal vein cells using perforated patch-clamp methods. In this 
preparation norepinephrine activates a nonselective cation current in the 
presence of caffeine, which was used to eliminate the calcium-activated 
chloride current (Wang and Large 1991). The adrenergic cation current is 
not observed in all vascular preparations; norepinephrine does not acti- 
vate the current in rabbit ear artery cells (Wang et al. 1993). Similar to the 
muscarinic Icat, the adrenergic current is permeable to divalent cations 
and may account for sustained calcium influx during adrenergic stimula- 
tion (Byrne and Large 1988b) (Wang and Large 1991; Inoue and Kuriyama 
1993). Simultaneous measurements of current and calcium in rat portal 
vein myocytes indicate a similar relationship between activation of the 
current and a sustained increase in [Ca2+]i (Pacaud et al. 1992). That is, as 
with the muscarinic current, hyperpolarization or an increase in extracel- 
lular calcium augments the sustained rise in [Ca2+]i observed during acti- 
vation of the current. 

The adrenergic current is not activated by calciu/n release, since expo- 
sure to caffeine or ionomycin do not activate the current (Wang and Large 
1991). Unlike the muscarinic current, however, release of intracellutar 
calcium does not augment the current (Wang and Large 1991). Thus the 
prominent calcium facilitation observed with the muscarinic current does 
not appear to be a feature of these channels. Rather, the current is modi- 
fied by extracellular calcium in a complex manner; Icat is augmented both 
by a decrease in extracellular calcium from physiological levels and by an 
increase in [Ca2+]o when the current is activated in solutions with less than 
50 M calcium. 

One major question relates to whether the nonselective cation channels 
activated by norepinephrine and acetylcholine are the same protein. 
Inoue and Kuriyama (Inoue and Kuriyama 1993) studied the activation of 
both currents in the rabbit portal vein, one of the few vascular prepara- 
tions in which excitatory muscarinic responses are observed. Based on 
lack of an additional current response once Icat was fully activated by one 
agonist, and similar current I-V relationships, current activation and deac- 
tivation kinetics, single channel conductance, and block by Cd 2÷, they 
concluded that adrenergic and muscarinic stimulation activates a com- 
mon nonselective cation channel. On the other hand, substantial differ- 
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ences have been reported between the portal vein adrenergic current and 
the muscarinic current recorded in other preparations. First, as discussed 
above, unlike the muscarinic current, the ad~energic current is not facili- 
tated by a rise in intracellular calcium. Second, the I-V relationships of the 
two currents are somewhat distinct. The adrenergic current has a lir/ear 
current-voltage relationship at negative potentials and is inwardly rectify- 
ing at positive potentials (Wang and Large 1991), whereas the muscarinic 
current is markedly suppressed at negative potentials (Benham et al. 1985; 
Inoue and Isenberg 1990b). Third, while both currents can be activated by 
GTPS (Inoue and Isenberg 1990a; Komori and Bolton 1990; Helliwell and 
Large 1997), the adrenergic current appears to be linked to phospholipase 
C activation (Helliwell and Large 1997), whereas the muscarinic current is 
activated by Mz receptor/Gi or Go mechanism (see above). Thus the find- 
ings of Inoue and Kuriyama (1993) may indicate that in tissues such as the 
portal vein that are under predominant adren~ergic control, the adrenergic 
nonselective cation channel is expressed and can be activated after mus- 
carinic phospholipase C stimulation, but these findings may not relate to 
the principal cation channel that is the activated following M2 receptor 
activation in non-vascular smooth muscles. In this regard, tachykinins 
have been reported to activate a nonselective cation Current with similar 
properties to the adrenergic current (Lee et  al. 1995). The current was 
activated by neurokinin A or Substance P, was not facilitated by the release 
of intracellular calcium, and had an inwardly rectifying I-V relationship. 
These findings probably suggest the expression of a cation channel acti- 
vated following phospholipase C activation in some, but not all, smooth 
muscle tissues. 

4.3.2.3 Calcium Permeant Cation Channels Activated by Other Stimuli 
In addition to those described above, cation channels that are activated by 
mechanical stretch (Kirber et al. 1988; Wellner and Isenberg 1993), by 
calcium (Loirand et al. 1991), and by caffeine (Guerrero et at. 1994a; Guer- 
rero et al. 1994b) have been reported in smooth muscle. Several of these 
reports indicate substantial calcium permeability (Kirber et al. 1988; Loi- 
rand et al. 1991; Guerrero et al. 1994a; Wellner and Isenberg 1994) to the 
underlying channels. Stretch-activated cation channels are particularly 
interesting given the high shear forces encountered by contracted smooth 
muscle and the well described phenomenon of stretch-induced contrac- 
tion (Bulbring 1997). 
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4.4 Calcium Release Channels 

Calcium flux into the cytosol from the sarcoplasmic reticulum is mediated 
by two important calcium permeant channels in myocytes: the inositol 
trisphospate (InsP3) receptor and the ryanodine receptor. These channels 
share substantial sequence homology, protein topology, and likely fourfold 
symmetry (Marks et al. 1990; Chadwick et al. 1990). They are probably best 
described as nonselective cation channels, since they have are relatively 
poorly selectivity for divalent over monovalent cations (PDiv:Mon<10) 
(Smith et al. 1988; Liu et al. 1989; Bezprozvanny and Ehrlich 1994). InsP3 
receptors and ryanodine receptors have similar selectivity properties with 
a rank order of divalent conduction of Ba>Sr>Ca>Mg (Tinker et al. 1993; 
Bezprozvanny and Ehrlich 1994). The large calcium concentration differ- 
ence between SR and cytosol (and the roughly equivalent monovalent 
concentrations) insures that the channels function principally to release 
intracellutar calcium. The activation and modulation of calcium release 
channel gating by second messengers such as InsP3 and calcium, phospho- 
rylation, and the degree of SR filling, and the functional interactions be- 
tween these channels, is currently poorly understood, but an area in which 
important advances can be anticipated. 

4.4.11nositol Trisphosphate Mediated Calcium Release 

A now well established action of neurotransmitter activated excitation- 
contraction coupling in smooth muscle is the stimulation of Gq/ll coupled 
membrane receptors, activation of phospholipase C, and an attendant 
rapid rise in InsP3 concentration within the myocyte (Baron et al. 1984; 
Somlyo et aL 1985). The role of the InsP3 receptor in mediating neuro- 
transmitter evoked calcium release has been demonstrated in numerous 
permeabilized tissue and single cell experiments, in which intracellular 
dialysis of heparin prevents calcium release following muscarinic, adren- 
ergic, or histaminergic stimulation (Iino 1987; Kobayashi et al. 1989; Iino 
1990a; Komori and Botton 1990; Pacaud and Bolton 1991; Kitamura et al. 
1992; Loirand et al. 1992; Ito et al. 1993; Janssen and Sims 1993; Wang and 
Kotlikoff 1997). Similarly, intracellular application of InsP3 prevents sub- 
sequent neurotransmitter evoked calcium release (Wang and Kotlikoff 
1997). These findings and others have clearly established that receptor 
stimulated phospholipase results in a release of calcium from intracellular 
stores through InsP3 receptors in smooth muscle. 
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4.4.1.1 Structure InsP3 Receptors 
The InsP3 receptor isolated from smooth muscle is a 224 kDa protein that 
binds InsP3 with a KD of approximately 2.4 nM (Chadwick et al. 1990). 
Based on the cloning of cDNAs isolated from various tissues at least three 
isoforms of InsP3 receptors exist (Furuichi et al. 1989; Mignery et al. 1990a; 
Parys et al. 1996). All three receptor subtypes are expressed in most 
tissues, including smooth muscle (De et al. 1994; Morgan et al. 1996). The 
functional channel is assembled either as a homotetrameric or hetero- 
tetrameric complex of the three cloned subtypes (Monkawa et al. 1995; 
Wojcikiewicz and He 1995; Joseph et al. 1995). The amino termini of the 
four InsP3 receptor subunits extend into the cytosol and contain InsP3 
binding activity (Mignery and Sudhof 1990b; Miyawaki et al. 1991), 
whereas the carboxy terminus contains six likely transmembrane seg- 
ments and a putative 5-6 linker that makes up the pore domain, a general 
structure quite similar to the voltage gated ion channels (Mikoshiba 1997; 
Joseph 1996). InsP3 receptors also have an extensive regulatory domain 
that contains binding sites for calcium, calmodulin (types I and II InsP3 
receptors), and several consensus protein kinase phosphorylation se- 
quences (Joseph 1996). 

Purified InsP3 receptors have been shown to function as InsP3 gated 
cation channels in liposomes and planar lipid bitayers (Maeda et al. 1991; 
Ferris et al. 1989), and types I and III InsP3R have been expressed in Sf9 
cells using a baculovirus expression system (Yoneshima et al. 1997). Single 
channel currents are expected to be on the order of 0.1 pA under normal 
cellular conditions. Since the unitary current and mean open time of the 
ryanodine receptor are 4 to 5 fold greater than the InsP3 receptor, the 
calcium flux associated with a single opening of the InsP3 receptor would 
be more than 20 fold less than for the opening of a ryanodine receptor (see 
Bezprozvanny 1996). Thus InsP3 calcium release is an intrinsically slower 
system than CICR, which requires no enzymatic second messenger syn- 
thesis, and releases calcium in a more explosive manner, probably indicat- 
ing the different functional requirements associated with E-C coupling in 
smooth versus cardiac muscle. The substantially larger calcium flux 
through ryanodine receptors may also be important for coupling to cal- 
cium-sensitive sarcolemmal ion channels (Nelson et al. 1995). 

4.4.1.2 Regulation of InsP3 Receptor Ion Channels 
In addition to the regulation of channel open probability by cytosolic 
InsP3, the receptor/channel is regulated by cytosolic calcium (Iino 1987). 
The relationship between [Ca2+]i and channel open state probability is 
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bellshaped in smooth muscle, resulting in a prominent increase in channel 
opening at a fixed level of InsP3 as calcium rises from resting levels to 
approximately 300 nM, followed by a reduction in channel gating at higher 
calcium concentrations (Iino 1990a; Bezprozvanny et al. 1991; Iino and 
Endo 1992). This prominent regulatory feature suggests that the initial 
release of calcium may augment InsP3 channel gating, creating a positive 
feedback loop that insures rapid and sufficient calcium release (Hirose et 
al. 1993), whereas inhibition of the channel at higher [Ca2+]i may serve as a 
classical negative feedback loop (Missiaen et al. 1992a). The biphasic 
regulation may account for the pulsatile nature of InsP3 receptor mediated 
signaling, and is also likely essential for regenerative calcium wave propa- 
gation (De and Keizer 1992; Atri et al. 1993; Clapham 1995; Parker et al. 
1996). In this model, an increase in the cellular concentration of InsP3 
results in the simultaneous activation of localized InsP3 receptors; if the 
local release of calcium is sufficiently great, nearby channels are recruited 
as calcium diffuses from the initial release site. The calcium induced 
gating of InsP3 receptors serves to reinforce the propagating calcium, 
resulting in further InsP3R recruitment. Types I and III InsP3 receptors 
expressed in Sf9 cells are differentially regulated by calcium (Yoneshima et 
al. 1997); the affinity of the type I receptor for InsP3 monotonically de- 
creases as calcium is increased, and the type III receptor affinity increases. 
The extent to which this differential calcium regulation underlies the 
functional biphasic properties observed in smooth muscle and other tis- 
sues is unknown. It has also been proposed that a rise in [Ca2+]i may 
initiate InsP3 receptor-mediated calcium release through InsP3 recep- 
tor/channels at resting levels of InsP3 (Ehrlich et al. 1994b). If so, it might 
be predicted that calcium release through ryanodine receptors would acti- 
vate release through InsP3 receptors. However, in smooth muscle cells 
dialyzed with and without heparin there is no difference in the caffeine 
-evoked peak [Ca2+]i, the kinetics of the [Ca2+]i increase, or the associated 
calcium-activated chloride current (Wang and Kotlikoff 1997). Similar 
results were obtained by Komori and Bolton (1991) in jejunal cells, using 
the maxi-K current to infer calcium release. These experiments suggest 
that a rise in [Ca2+]i is not sufficient to activate InsP3 receptors, although it 
is also possible that modest calcium flux through InsP3 receptors could be 
obscured when caffeine is used to simultaneously activate ryanodine re- 
ceptors. 

InsP3 receptors are phosphorylated in cells following activation of pro- 
tein kinase A (PKA) (Yamamoto et at. 1989; joseph and Ryan 1993),protein 
kinase G (PKG)(Komalavilas and Lincoln 1994), and tyrosine kinase 
(Harnick et al. 1995). Interestingly, splice variants of the type-I InsP3 
receptors with different phosphorylation characteristics exist; a shorter 



Calcium Permeant Ion Channels in Smooth Muscle 169 

form of the receptor is found in peripheral tissues such as smooth muscle, 
whereas the longer form is exclusively expressed in neuronal tissues (Dan- 
off et al. 1991). The short form is a splice variant with 40 amino acids 
deleted between two consensus PKA phosphorylation sites. Experiments 
with purified InsP3R from vas deferens, which expresses only the short 
form, indicated that this form is more readily phosphorylated than the 
brain form, probably due to a switch in the site at which phosphorylation 
occurs (Danoff et al. 1991). Controversy exists, however, with respect to 
the functional consequences of PKA phosphorylation; studies indicate 
that PKA phosphorylation results in a decrease (Supattapone et al. 1988; 
Volpe and Alderson-Lang 1990) or an increase (Nakade et al. 1994) in the 
potency of InsP3 receptor calcium release. Given the multiple functional 
targets reported for PKA-mediated relaxation of smooth muscle, the im- 
portance of InsP3 receptor is not possible to assess currently. 

A question of substantial functional importance in tonic smooth mus- 
cle tissues relates to the degree to which the activation of InsP3 receptors 
by phospholipase C linked agonists results in a sustained increase in 
[Ca2+]i. While it is known that PLC activation and attendant inositol 
phosphate metabolism is maintained during continued agonist/Gqm -cou- 
pled receptor interaction, the extent to which the continued generation of 
InsP3 underlies the sustained elevation of [Ca2+]i that is a prominent 
feature of agonist-evoked calcium responses (Fay et al. 1979; Morgan and 
Morgan 1982; Himpens et al. 1988), is not known. One indirect mechanism 
by which continued InsP3 receptor channel activity has been suggested to 
affect sustained agonist induced increases in [Ca2+]i, is by altering cellular 
calcium buffering (van Breemen and Saida 1989). Removal of calcium ions 
from the cytosol by the sarcoplasmic reticulum calcium ATPase (SERCA) 
occurs during activation. However, since calcium pumped back into the 
SR is continuously released through InsP3 receptors, this results in an 
apparent decrease in myocyte calcium buffering capacity. In this manner 
the continued activation of InsP3 receptors would be essential to the sus- 
tained increase in [Ca2+]i achieved by sustained calcium influx by amplify- 
ing small calcium fluxes through sarcolemmal calcium channels. 

4.4.2 Ryanodine Receptor Mediated Calcium Release 

The open probability of ryanodine-sensitive calcium release channels in 
cardiac and smooth muscle increases with cytoplasmic calcium, and this 
property of the ryanodine receptor has been referred to as calcium-in- 
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duced calcium release" or CICR" (see Meissner 1994; Striggow and Ehrlich 
1996). Calcium release through a single or small number of ryanodine 
receptor channels (unitary CICR) would have little direct effect on cyto- 
plasmic calcium (see section on calcium sparks). However, the activation 
of a large number of ryanodine receptors by the calcium current could 
cause global calcium transients, as is the case for cardiac muscle. In car- 
diac muscle, the local Ca 2+ influx through a voltage-dependent Ca 2+ chan- 
nel activates a nearby ryanodine receptor(s) located in the junctional SR to 
release Ca 2+ into the cytoplasm (Figure 4). This close association or fine- 
tuning of a voltage-dependent (L-type) Ca 2+ channel and a ryanodine 
receptor channel is essential for activation of ryanodine receptor channels, 
since ryanodine receptors have relatively low (pM) Ca 2+ sensitivity 
(Lopez-Lopez et al. 1995; Cheng et al. 1996). Any disruption of this close 
association of L-type Ca 2+ channels and ryanodine receptors could result 
in faulty E-C coupling (Gomez et al. 1997). Thus, the function of ryano- 
dine receptor Ca 2+ channels in cardiac muscle cells is to amplify the Ca 2+ 
current across the plasma membrane to induce contraction in the muscle 
cell. 

In smooth muscle, CICR could result in the activation of myosin light 
chain kinase leading to contraction, but could also be important in activat- 
ing calcium-sensitive ion channels in the sarcolemma. The local activation 
of calcium-activated potassium (Kca) channels would tend to decrease 
global [Ca2+]i through membrane potential hyperpolarization. The net 
effect on contraction would depend on the degree of direct MLCK activa- 
tion by CICR versus the reduction in global calcium due to the decrease in 
calcium entry as a result of membrane hyperpolarization. This section 
will first examine the evidence that ryanodine receptors in smooth muscle 
can be activated by calcium current to cause global changes in calcium 
through the spatially and temporally coordinated activation of a number 
of ryanodine receptors. 

4.4.2.1 Structure of Ryanodine Receptors 
The solubilized ryanodine receptor from smooth muscle is a high molecu- 
lar weight protein complex made up of four monomers of approximately 
550 kD. Reconstitution of this complex forms a calcium permeant, nonse- 
lective cation channel that is inhibited by ruthenium red (Herrmann- 
Frank et al, 1991; Xu et al. 1994). Ryanodine locks the channel in a subcon- 
ducting open state, explaining the ability of this compound to release 
intracellular calcium in many cell types (Hymel et al, 1988). The structure 
of the three cloned ryanodine receptors (RYR-1, RYR-2, and RYR-3) bears 
a strong similarity to InsP3 receptors. These two ligand-gated cation chan- 
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Fig. 4. Many Ca 2+ sparks, activated in a synchronized manner by Ca z+ influx during an 
action potential, sum to a global Ca 2+ transient to cause contraction. Ca 2+ influx 
through dihydropyridine receptors (DHPR) triggers the release of Ca 2+ from SR 
through ryanodine (RYR2) channels, which cause muscle contraction (Berridge 1997). 

nels are tetrameric structures with strong homology, particularly in the C 
terminal region. In smooth muscle ryanodine receptors type 2 and 3 
(RYR2 and RYR3), the receptors that act as calcium-activated release chan- 
nels (rather than dihydropyridine receptor activated channels), are pri- 
marily expressed (Giannini et al. 1995), although RYR1 has also been 
reported in some smooth muscle tissues (Neylon et al. 1995). The exist- 
ence of more than one isoform raises the possibility of heterotetramer 
formation. Evidence indicates the formation of heterotetramers in CHO 
cells, which express all three RYR isoforms (Monkawa et al, 1995). Inter- 
estingly, FK506-binding proteins (FKBPs) co-immunoprecipitate with ry- 
anodine receptors (Jayaraman et at, 1992), and also associate with InsP3 
receptors (Cameron et al, 1995). 

4.4.2.2 Calcium Induced Calcium Release in Smooth Muscle 
Calcium-induced calcium release was first indicated in smooth muscle by 
experiments demonstrating that caffeine, which is known to bind and 
activate ryanodine receptors, contracts smooth muscle in calcium free 
solutions (Endo 1977). Subsequently, experiments demonstrated that ry- 
anodine depletes caffeine-sensitive calcium release (Iino et al. 1988; Ito et 
al. 1991), and CICR was directly measured in permeabilized preparations 
using a calcium indicator (Iino 1989a). These experiments established 
that the CICR apparatus exists as a potential calcium release mechanism 
from smooth muscle sarcoplasmic reticulum, but did not establish evi- 
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dence of its function during physiological activation. Rather, initial meas- 
urements suggested that the calcium requirement for CICR in smooth 
muscle was too high (greater than 11a M) to participate in the initiation of 
contraction, which begins at concentrations just higher than 100 nM (Iino 
1989b). Measurements in single ceils provided strong evidence that CICR 
could be triggered in some, but not all, myocytes. If CICR participates in 
activation of smooth muscle, it could be triggered by: 1) calcium influx 
associated with the opening of plasmalemmal calcium channels such as 
voltage-dependent calcium channels or P2X receptors, or 2) the release of 
calcium from nearby IP3 receptors. We will summarize evidence for and 
against the activation of ryanodine receptors by both types of calcium 
entry into the cytosol. 

4.4.2.2.1 CICR Activated by Ica 
Experiments in single myocytes isolated from the guinea-pig urinary 
bladder (Ganitkevich and Isenberg 1992) and rat portal vein (Gregoire et 
al. 1993) indicate that activation of the voltage-dependent calcium current 
(Ica) triggers calcium release from caffeine~sensitive intraceUular stores. 
Ganitkevich and Isenberg (1992) first presented evidence that the [Ca2+]i 
transient evoked by depolarization and activation of Ica was affected by 
manipulation of SR calcium stores. As shown in Figure 5 (Ganitkevich and 
Isenberg 1992, figure 2), a prolonged voltage clamp step to 0 mV produces 
a phasic and tonic increase in [Ca2+]i, and the phasic component is mark- 
edly inhibited following exposure to caffeine. Further evidence that CICR 
was triggered by Ica included suppression of the phasic component of the 
calcium transient by ryanodine and thapsigargin, and augmentation of the 
[Ca2+]i transient by increased extracellular calcium and Bay K8644. Sub- 
sequent experiments suggested that the low-affinity fluorescent calcium 
indicator Mag-Indo-1 was a useful reporter for SR calcium release, and 
that Ica increased [Ca2+]i by 16 M, through CICR (Ganitkevich and Hirche 
1996). 

For other smooth muscle cells the data are conflicting, or suggest that 
CICR does not contribute measurably to the [Ca2+]i signal observed fol- 
lowing activation of Ica. Gregoire et al (1993) concluded that Ca z+ and Sr 2+ 
ions could release calcium from the SR in rat portal vein myocytes, based 
on the attenuation of the [CaZ+]i transient following caffeine or ryanodine 
application, or during neurotransmitter stimulation. Using 1 s depolariza- 
tion protocols, they determined that CICR resulted in a delayed increase in 
[CaZ+]i following the voltage clamp step, rather than affecting the transient 
[Ca2+]i increase as observed by Ganitkevich and Isenberg (Ganitkevich 
and Isenberg 1992). Experiments by Kamishima and McCarron (1996) 
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using the same preparation, however, failed to observe evidence for CICR. 
They found a similar relationship between Ica and [Ca2+]i in the presence 
and absence of ryanodine, and presented evidence that the continued rise 
in [Ca2+]i following termination of a voltage clamp step, observed in some 
but not all experiments, was associated with calcium influx rather than 
calcium release, since it was not observed when the cell was stepped to Eca 
(Kamishima and McCarron 1996). They concluded that a calcium-acti- 
vated cation channel, as reported by Loirand et al. (1991), rom be respon- 
sible for the delayed increase in [Ca2+]i. Kamishima and McCarron (1996) 
further found that the rise in [Ca2+]i observed in idgh bandwidth measure- 
ments closely conformed to that predicted from the integrated charge 
associated with Ica. 

Similar conclusions were reached in equine tracheal myoc~',~s 
(Fleischmann et al. 1994; Fleischmann et al. 1996); neither ryanodine 
(Fleischmann et al. 1994) nor caffeine (Fleischmann et at. 1996) alters the 
relationship between Ica and [Ca2+]i. Single wavelength measurements of 
[Ca2+]i at high bandwidth were used to examine the instantaneous rela- 
tionship between the calculated increase in [Ca2+]i due to calcium flux 
through Ica (ICa2÷/V) and the measured [Ca2+]i (Fleischmann et al. I996). 
As in rat portal vein myocytes, there was an excellent agreement between 
ion flux through Ic~ and the rise in [Ca2+]i. No discontinuity occurred over 
the full time-course of the current, as would be expected if CICR were 
triggered by an initial calcium influx, or following an increase in [Ca2+]i 
beyond a threshold level, and similar results were observed in 10 mM 
calcium to augment the calcium current. After repolarization, [Ca2+]i fell 
monotonically, without evidence of activation of a regenerative calcium 
release process. Also, the magnitude of the [Ca2+]i achieved for a given 
current integral was small, consistent with calcium entry via Ica as the only 
source of calcium ions contributing to the rise in cytosolic calcium (see 
below). Further, the relationship between Ic~ and the peak [Ca2+]i (or the 
calcium flux) was equivalent at all voltages, as would be expected if the rise 
in [Ca2+]i is due only to the influx of calcium ions through VDCC and if 
calcium efflux processes are relatively slow. Thus no prominent threshold 
in the relationship between the integral of the calcium current and the 
achieved [Ca2+]i was observed, as might be predicted for (CIER) (Iino 
1989a; Iino 1990b). 

One obvious feature of the preparation in which CICR has been most 
clearly demonstrated, guinea pig urinary bladder myocytes, is that there is 
a prominent sustained component to the biphasic [Ca2÷]i transient associ- 
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Fig. 5. Calcium-induced cfalcium release in urinary bladder myocytes. Simultaneous 
recording of current and [Ca2+]; during vokage steps to evoke Ica and exposure to 
caffeine (10 mM). Depolarization evokes a large [Ca2+]itransient and a sustained 
increase in [Ca z+];. Caffeine evokes a [Ca2+]; transient of similar magnitude; fonowing 
the release of calcium by caffeine, depolarization transients are markedly smaller, 
suggesting that CICR amplified the first depolarization calcium transient. From Ganit- 
kevich and Isenberg, 1992 

ated with sustained step depolarizations to activate the maximum Ica 
(Ganitkevich and Isenberg 199t). A similar sustained increased in [CaZ+]i 
associated with sustained depolarizations to potentials more positive than 
10 mV is not observed in myocytes from rat portal vein (Kamishima and 
McCarron 1996) or equine trachealis (Fleischmann et al. 1994; 
Fleischmann et al. 1996), where sustained increases in [CaZ+]i associated 
with sustained depolarizations are observed only at negative potentials at 
which voltage-dependent channel inactivation is minimized (Fleischmann 
et al. 1994; Kamishima and McCarron 1996). This obvious difference in 
depolarization mediated calcium transients may relate to the large calcium 
current density and incomplete inactivation of Ica in bladder myocytes 
(Klockner and Isenberg 1985). Such a non-inactivating current results in 
a very large net calcium flux (proportional to the integral of the current), 
when compared to the flux associated with the completely inactivating Ic, 
of other smooth muscle cells (see above). Bladder myocytes also display 
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much larger increments in [Ca2+]i associated with a single voltage clamp 
step (Ganitkevich and Isenberg 1991; Ganitkevich and Isenberg 1992). 
The [Ca2+]i transients often reach greater than lpM and are similar in 
magnitude to caffeine induced calcium transients, consistent with the 
increased Ica, and perhaps an additional source of calcium ions (CICR) 
contributing to the transient. However, depolarization induced increases 
in [Ca2+]i are much more typically observed between 150 and 400 nM in 
smooth muscle cells (Yagi et al. 1988; Aaronson and Benham, 1989; Becker 
et al. 1989; Vogalis et al. 1991; Gregoire et al. 1993; Guerrero et al. 1994b; 
Fleischmann et al. 1994; Fleischmann et al. 1996; Kamishima and McCar- 
ron 1996). 

A quantitative expression of the relationship between Ica and the 
achieved [Ca2÷]i is through the calculation of the cytosolic buffering ca- 
pacity. The increase in [Ca2+]i associated with the calculated flux through 
Ica provides an estimate of the buffering capacity of the cell, which is the 
ratio of the total calcium entering through Ica versus the measured in- 
crease in free calcium: 

B =Y.I cadt/(2FVA[Ca2+]i) 

where B is the dimensionless calcium buffering capacity, Z is Faradays 
constant (multiplied by 2 for the charge of the calcium ion), V is the cell 
volume, and A[Ca~+]i is the net change in free calcium measured in the cell. 
B is the instantaneous buffering capacity of the cytosol only to the extent 
that the removal of calcium occurs slowly and does not affect the peak 
[Ca2÷]i achieved. In smooth muscle the calcium efflux rate following a 
calcium transient produced by Ica is quite slow relative to cardiac muscle. 
The exponential decay time constant is on the order 6 s, indicating that 
over the first 300 ms there will be less than a 5% decline in the peak [Ca2+]i 
transient. Not surprisingly, Guerrero et al (1994b) showed that for the first 
100 ms of the calcium current, the effect of calcium removal was negligible. 
They obtained a total B (including the buffering of the exogenous calcium 
indicator) of 82 in Bufo marinus cells in the presence of ryanodine, indicat- 
ing that of 83 calcium ions entering the cytosol, 82 are bound by endo- 
genous buffer and I appears as a free ion. To the extent that CICR occurs, 
the buffering capacity will be artificially lowered, since the released cal- 
cium ions contribute to [Ca2+]i but are not part of the integrated current. 
Thus in cardiac cells, in which CICR is strongly activate by Ic~, the rise in 
calcium is substantially greater than that predicted by the integrated cur- 
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rent (Callewaert et al. 1988). However, in several smooth muscle prepara- 
tions (Heischmann et al. 1996; Kamashima and McCarron 1996), the calcu- 
lated B value is quite similar to that of non-excitable cells (Neher and 
Augustine 1992), and to smooth muscle cells dialyzed with ryanodine 
(Guerrero et al. 1994b). In other words, in these smooth muscle prepara- 
tions the increase in [Ca2+]i for a given current is of a magnitude expected 
for the flux of calcium ions associated with the calcium current alone. 

Thus it appears that in spiking bladder myocytes with large, incom- 
pletely inactivating calcium currents, the [Ca2+]i threshold required for 
CICR (Iino 1989b) is met and calcium is released from the SR through 
ryanodine receptors. In many other smooth muscle cells, however, it ap- 
pears that CICR is not sufficient to cause significant changes in global 
calcium, even under optimal conditions in which the full Ica is achieved. 
One would therefore expect that in those cells in which a slow, graded 
depolarization occurs during E-C coupling, local CICR causes activation 
of Kca channels (Nelson et al. 1995) and not does contribute directly to 
global calcium. One possible explanation for the lack of global CICR, 
even under optimal Ica conditions, is an insufficient number of voltage- 
dependent calcium channels in close proximity to ryanodine receptors to 
cause "local" activation. 

4.4.2.2.2 CICR Activated by InsP3 Receptor Calcium Release 
Fewer data are available with respect to the role of ryanodine receptor 
calcium channels during calcium release mediated by InsP3 receptors. 
Ryanodine receptors are expressed on the SR and may occur in close 
proximity to InsP3 receptors, although there is evidence of discrete local- 
ization in other tissues (Sharp et al. 1993; Martone et al. 1997). If these 
receptors are expressed in close proximity, one would expect that calcium 
release through neighboring InsP3 receptors would activate ryanodine 
receptors, thereby accelerating calcium release. Experiments utilizing ru- 
thenium red, a specific ryanodine receptor antagonist (Ehrlich et al. 
1994a), do not support a functional role of RYR receptors during InsP3 
mediated calcium release (Wang and Kotlikoff 1997). Following dialysis of 
a cell with ruthenium red, caffeine exposure fails to release calcium, indi- 
cating functional blockade of ryanodine receptors. Subsequent exposure 
to methacholine, however, results in a typical biphasic calcium release and 
activation of the calcium-activated chloride current. Conversely, dialysis 
of cells with heparin completely blocks muscarinic calcium release, 
whereas the caffeine release is unaffected. These findings suggest that 
CICR may not play an important role in calcium release triggered by 
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phospholipase C coupled receptors, although it is quite possible that at low 
agonist concentrations, CICR provides an important amplifying role in 
phospholipase C mediated calcium release. 

4.4.2.3 RYRs Mediate Elementary Ca z+ Release Events 
Elementary calcium release events (calcium sparks) have recently been 
discovered in cardiac, skeletal and smooth muscle, using a laser scanning 
confocal microscope and the fluorescent calcium indicator, fluo-3 (Cheng 
et al. 1993b; Nelson et al. 1995; Tsugorka et al. 1995). A calcium spark 
occurs when multiple; ryanodine-sensitive, calcium release channels (lo- 
cated in the sarcoplasmic reticulum membrane) open, resulting in a tran- 
sient localized increase in calcium (spark). Therefore, a calcium spark 
appears to be an elementary CICR event. In vascular smooth muscle, Ca 2+ 
sparks activate nearby plasmalemmal Kca channels (observed as a sponta- 
neous transient outward current or STOC). In cardiac myocytes, the cal- 
cium channel is positioned about 20 nm from the ryanodine receptors, and 
therefore, the opening of a single L-type calcium channels causes a high, 
local elevation of calcium onto the cytoplasmic surface of the RyR recep- 
tor, which leads to a dramatic elevation in calcium spark probability. 
Thus, this tight structural association is critical for proper E-C coupling in 
heart, and disturbances can compromise E-C coupling in cases of heart 
failure (Gomez et al. 1997). Ryanodine receptors appear to be within 20 
nm of the surface membrane in smooth muscle (Somtyo 1985). However, 
the functional coupling of local calcium entry and ryanodine receptors is 
not known in smooth muscle. 

In arterial smooth muscle, calcium sparks can signal myosin light chain 
kinase for contraction and Kca channels to drive relaxation, with the latter 
effect appearing more prominent under the steady-state conditions of 
arterial tone (Figures 6,7). As indicated above, in urinary bladder smooth 
muscle, the calcium current can activate a sufficient number of calcium 
sparks to cause a change in global calcium. Therefore, the relative contri- 
butions of the direct effect of calcium sparks to increase global calcium 
and the indirect effect through Kca channels to decrease global calcium 
through membrane hyperpolarization will depend on the spatial and tem- 
poral activation of calcium sparks by cytoplasmic calcium. 

The frequency and amplitude of Calcium sparks are modulated by SR 
calcium load, protein kinase C (PKC) and cyclic nucleotides/cyclic nucleo- 
tide-dependent protein kinases (Boney et al. 1997; Porter et al. 1997). 
Calcium spark frequency decreases following activation of PKC (Boney et 
al. 1997). This effect appears to be mediated by a direct action of PKC on 
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ryanodine receptor channels rather than a decrease in SR calcium load 
since the caffeine-induced calcium transient is unaffected by PKC activa- 
tion (Boney et al. 1997). Thus, vasoconstrictors that activate PKC may 
decrease spark frequency, leading to a decrease in Kca channel activity and 
membrane depolarization, thereby promoting Ca 2+ influx through volt- 
age-dependent Ca 2+ channels. Furthermore, vasodilators that act via 
cAMP/PKA and cGMP/PKG signaling pathways have been shown to 
stimulate calcium spark frequency in smooth muscle cells from cerebral 
and coronary arteries (Porter et al. 1997). cAMP/PKA may increase spark 
frequency by exerting a direct effect on the ryanodine receptor channel 
and by increasing SR calcium load, whereas cGMP/PKG may act primarily 
to increase SR calcium load (Porter et al. 1997; Santana et aL 1998). Stimu- 
lation of calcium sparks by vasodilators acting through cyclic nucleotide- 
dependent processes will result in activation of KCa channels, membrane 
hyperpolarization, and decreased Ca 2+ entry through voltage-dependent 
Ca 2+ channels. 

Measurements of elementary calcium release events mediated by ry- 
anodine receptors in smooth muscle emphasize the distinction between 
global and local CICR, and point to a previously unanticipated level of 
signaling complexity in this tissue. It is likely that local calcium sparks 
represent an important differential signaling mechanism, whereby low 
level, localized ryanodine receptor channel activity plays an important 
role in smooth muscle electrical behavior through coupling to sarcolem- 
mal calcium-activated ion channels. Thus, as with voltage-dependent cal- 
cium channels, ryanodine receptor channels appear to act in an efficient, 
low activity mode; although the average open-state probability of these 
channels is quite low, openings are efficiently amplified by calcium-de- 
pendent conductances. 

4.5 Conclusion 

We have reviewed the major calcium permeant ion channels in smooth 
muscle, summarized in Figure 8. The obvious complexity and redundancy 
of these channels almost certainly reflects evolutionary pressures associ- 
ated with the diversity of functions subserved by smooth muscle. Progress 
in this area has generally proceeded by the identification and biophysical 
characterization of these channels using patch-clamp or bilayer tech- 
niques, followed by the determination of their molecular structure and 
regulatory properties. With the notable exception of metabotropic, nonse- 
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Fig. 7, Line scan image from a vascular smooth muscle cell. Image shows a spark 
originating at a site towards the edge of the cell. The line scan has had the background 
subtracted and it has been colorized in order to clearlyvisualise the spark. In this image 
time is in the horizontal direction and distance across the cell is in the vertical direction. 
Beneath the line scan is the averaged fluorescence signal, measured from the section of 
the line scan indicated by the bar. The figure also shows an example of a STOC to 
demonstrate the similarity in the time course of these events. (taken from figure I, 
Nelson et a11995). 
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lective cation channels, which have not been cloned, substantial structural 
and regulatory information is now available at the molecular level for all of 
these channels. It seems likely that the challenge for the next decade will 
be to develop approaches that allow the determination of the individual 
function of these proteins in regulating cytosolic calcium, at a level of 
precision equivalent to that employed in their characterization. 
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1 
Introduction 

203 

The concept of pharmacomechanical coupling, introduced to account for 
membrane potential-independent contractile regulation of smooth mus- 
cle (Somlyo and Somlyo 1968a,b), was originally focused on agonist-in- 
duced changes in cytosolic [Ca2+]. It was also recognized, however, that 
"some stimuli may also release a potentiator which augments the contrac- 
tile force at any given free Ca 2+ level" (Somlyo and Somlyo 1968b). With 
the subsequent demonstration that Ca 2+ activates smooth muscle by pro- 
moting phosphorylation of the Ser 19 residue of the regulatory myosin 
light chain (MLC20) by Ca-calmodulin (CaM)-dependent myosin light 
chain kinase (MLCK; rev. in Hartshorne 1987; Somlyo and Somlyo 1994; 
Galtagher et al. 1997), it became apparent that pharmacomechanical cou- 
pling could operate by both modulating [Ca2+]i and regulating, indepen- 
dently of [Ca2+]i, the enzymes involved in MLCz0 phosphorylation and 
dephosphorylation. Thin filament-associated proteins (i.e., calponin, cal- 
desmon) have also been suggested to contribute to contractile regulation 
(Walsh 1991; Dabrowska 1994; Marston 1995; Malmqvist et al. 1997), and, 
at least in tonic smooth muscle containing "slow" myosin isoforms, the 
high affinity of crossbridges for MgADP may also contribute to force 
maintenance at low levels of [CaZ+]i and MLC20 phosphorylation (Nishiye 
et al. 1993; Fuglsang et al. 1993; Somlyo 1993; Murphy 1994; Khromov et al. 
1995, 1996; Murphy et al. 1997). We will limit this review to the well-estab- 
lished regulatory mechanisms of MLC20 phosphorylation/dephosphoryla- 
tion. 

Smooth muscle, like other cells, can regulate [CaZ+]i by altering Ca 2+ flux 
through two membrane systems: the plasma membrane and the mem- 
branes of intracellular organelles. The sarcoplasmic reticulum (SR),which 
forms a continuous extensive network throughout the smooth muscle cell 
(Fig. 1B; Nixon et al. 1995) is by far the most important organelle for 
regulating [Ca2+]i in muscle (smooth, cardiac and skeletal), whereas in 
non-muscle cells the related, endoplasmic reticulum (ER) plays a similar 
role (rev. A.E Somlyo 1984; A.V. Somlyo 1980; Pozzan et al. 1994; Laporte 
and Laher 1997). The presence of a functional SR in intact smooth muscle 
was first established through electron microscopy showing that Sr 2+, an 
electron-opaque "analogue" of Ca 2+, was accumulated by the SR (Somlyo 
and Somlyo 1971). Electron probe analysis further verified that the SR in 
smooth muscle was a physiological Ca 2+ store from which Ca 2+ was re- 
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Fig. IA. Confocal photomicrograph of guinea pig aorta labeled with a ryanodine 
receptor antibody and then with a TRITC-conjugated secondary antibody. Cellular 
non-homogeneous labeling of both endothelial and aortic smooth muscle cells and the 
mesh-like (arrows) staining pattern is consistent with the distribution of the sarcoplas- 
mic reticulum network (from Lesh et al. 1998). Fig. lB. Electron micrograph of a 70 nm 
thick section of guinea pig aorta treated with osmium ferrocyanide to selectively stain 
the sarcoplasmic and endoplasmic reticula showing an extensive network of reticulum 
throughout the cytoplasm. In stereoscopic views of thick sections (not shown) the 
densely stained reticulum is continuous and extends throughout the cytoplasm to the 
plasma membrane, forming surface couplings with the plasma membrane (arrows). 
Mitochondria (m) are frequently surrounded by closely apposed elements ofreticulum. 
Note that immunolabeling of ryanodine receptors associated with this dense complex 
of reticulum, such as would be found in the lpm thick cryostat sections used for 
immunolabeling (Fig. 1A) could give rise the the patchy, mesh-like staining seen in the 
confocal fluorescence images (from Lesh et al. 1998). 
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leased upon stimulation by excitatory agonists (Bond et al. 1984; Kowarski 
et al. 1985), and numerous subsequent studies of SR isolated from smooth 
muscle confirmed its CaZ+-ATPase pump activity (rev. in Raeymakers and 
Wuytack 1996; Karaki et al. 1997; Laporte and Laher 1997). 

The discovery that the water-soluble product of the phosphatidylinosi- 
tol cascade, inositol 1,4,5-trisphosphate (InsP3), released intracellular Ca 2+ 
led to the identification of the ER in non-muscle cells (rev. in Berridge 
1988) and the SR in smooth muscle (Somlyo et al. 1985, 1992; Walker et al. 
1987; Chilvers et al. 1989; LaBelle and Murray 1990; Abdel-Latif 1991; 
Pijuan et al. 1993; Somlyo and Somlyo 1994) as the source of Ca z+ released 
by InsP3. The physiological importance of this pharmacomechanical cou- 
pling pathway is now well established: InsP~-receptors are present on the 
SR of smooth muscle (Marks et al. 1990; Villa et al. 1993; Nixon et al. 1995; 
Mackrill et al. 1997), the quantity and kinetics of InsP3-induced Ca++-re - 
lease are appropriate for activating contraction, both agonist-induced and 
InsP3-induced Ca z+ -release can be inhibited by heparin, an inhibitor act- 
ing on the InsP3 receptor, and agonist-induced Ca2+-release is inhibited by 
phospholipase C (PLC) inhibitors (rev. in Somlyo et al. 1988; Somlyo and 
Somlyo 1994). 

The release of InsP3 from phosphatidylinositol 4,5 bisphosphate (PIP2) 
is initiated by the binding of excitatory agonists to heptameric serpentine 
receptors coupled to trimeric G-proteins (Gc% G~n) that activate PLC~ 
(smooth muscle, see LaBelle and Poly~ik 1996) or through (tyrosine) phos- 
phorylation of PLC v. InsP3-induced Ca2+-release requires adenosine nu- 
cleotide (Smith et al. 1985; Somtyo et al. 1992) and can be modulated by 
[Ca2+]i (Iino 1987; Iino and Endo 1992). 

In addition to InsP3 receptors, the SR of smooth muscle also contains 
ryanodine receptors (RyRs, Fig. 1; Lesh et al. 1998; Herrmann-Frank et al. 
1991). However, the role of RyRs in pharmacomechanical or, for that 
matter, electromechanical coupling, has not been firmly established. It is 
often assumed that they respond, as in cardiac muscle, to elevations in Ca 2+ 
by Ca2+-induced Ca2+-release (CICR), but in only a few instances has this 
mechanism been demonstrated in smooth muscle (Ganitkevich and Isen- 
berg 1993a, 1995; Ganitkevich and Hirche 1996; Kohda et al. 1997). It is 
possible that CICR operates predominantly in the sub-sarcolemmal, junc- 
tional SR (Fig. 1B; Somlyo et al. 1971; Devine et al. 1972; Somlyo and 
Franzini-Armstrong, 1985) where the vicinity of plasma membrane Ca 2+- 
channels (Kargacin 1994) and NaZ+/Ca z+ exchangers (Ganitkevich and 
Isenberg 1993a; ]uhaszova and Blaustein 1997) may permit large, focal 
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increases in [Ca2+]i. Given the relatively modest physiological increases in 
bulk [CaZ+]i in smooth muscle (rev. in Somlyo and Himpens 1989), such 
large, rapid transients are less likely to occur in the vicinity of the central 
SR that also contains RyRs (Lesh et al. 1993, 1998). It is also possible that, 
if the RyRs of central SR are indeed functional, then their "missing effec- 
tor" is still to be discovered. Cyclic ADP ribose does not appear to have 
such an effect in some smooth muscles (Nixon et al. 1995), although in 
other cells it releases Ca z÷ from caffeine- and ryanodine-insensitive stores 
(Kannan et al. 1996). 

As originally proposed, the concept of pharmacomechanical coupling 
implied a mechanism that was independent of the changes in membrane 
potential that mediate electromechanical coupling. More recent studies, 
however, revealed cross-talk between these two mechanisms of excitation- 
contraction coupling (EC-coupling): the plasma membrane potential can 
modulate the extent of PIP2 hydrolysis and InsP3 release by agonists (Itoh 
et al. 1992; Ganitkevich and Isenberg 1993b), whereas arachidonic acid, an 
autacoid released by agonists (Gong et al. 1995), modulates (inhibits) flux 
through voltage-gated, L-type Ca2+-channels (Shimada and Somlyo 1992; 
rev. in Somlyo and Somlyo 1994). 

2 
Ca2+-sensitization: RhoA and Rho-associated proteins 

The anticipation of mechanisms that can regulate smooth muscle contrac- 
tion by changing Ca2+-sensitivity (Somlyo and Somlyo 1968b) received 
firm experimental support with the arrival of reliable cytosolic Ca 2+ indi- 
cators and methods for controlling [Ca2+]i at fixed levels in permeabilized 
smooth muscle. Aequorin, although suitable for the detection of relatively 
large focal Ca a÷ transients (van Riper et al. 1996) was the first indicator 
used to show that a rise in [Ca2+]i preceded contraction of smooth muscle 
(Fay et al. 1979), but it is not sufficiently sensitive for the detection of small 
increases in [Ca2+]i, nor is it a reliable reporter of prolonged, global eleva-: 
tions of [Ca 2+] that consume aequorin (rev. in Somlyo and Himpens 1989; 
van Riper et al. 1996). The use of fura-2, a more reliable indicator of bulk 
cytosolic [Ca2+]i, verified that the force/[Ca2+]i ratio can vary significantly 
in intact smooth muscle depending on the agonist used for activation 
(Himpens and Somlyo, 1988; Himpens et al. 1990; Rembold 1990), and is 
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generally higher in response to agonists than to depolarization with high 
K + . 

The mechanism(s) through which agonists can increase force without 
necessarily increasing [Ca2+]i is referred to as "Ca2+-sensitization. " It is of 
interest that, in the same smooth muscle, the maximal Ca2+-sensitizing 
efficacies of different agonists are unequal (Himpens et al. 1990), suggest- 
ing that the unequal magnitude of pharmacomechanicat coupling by dif- 
ferent agonists (Somlyo and Somlyo 1968b) may be the result of both 
unequal changes in [Ca2+]i and unequal efficiencies of Ca2÷-sensitization. 
An important corollary of the additivity of maximal Ca2+-sensitization by 
different agonists is that the G-proteins (see below) that mediate it are 
either not part of a shared pool recruitable by each of the Ca~÷-sensitizing 
receptors or that the efficacy of these receptors in activating the relevant 
G-protein(s) is saturable. 

The Ca2+-sensitizing effect of activation of heptameric serpentine re- 
ceptors (e.g., muscarinic, ctl-adrenergic, endothelin, thromboxane A2, etc.) 
coupled by G-proteins to the phosphatidylinositol cascade is mimicked, in 
permeabilized smooth muscles, by GTPyS. These findings indicated the 
role of one or more G-proteins in Ca2+-sensitization (Fujiwara et al. 1989; 
Himpens et al. 1990; Kitazawa et al. 1991; Nishimura et al. 1992; Crichton et 
al. 1993; Yoshida et al. 1994; Fujihara et al. 1997; Iizuka et al. 1997; rev. in 
Somlyo and Somlyo 1994), and raised the question of the identity of the 
G-proteins involved and of the downstream Ca2+-sensitizing mechanism. 
RhoA and Rho-associated proteins 

RhoA is a member of the Rho family of Ras superfamily low molecular 
weight (-20-25 kD) monomeric GTP-binding proteins. The crystal struc- 
ture of RhoA (Fig. 2) contains the common Ras-family fold, but the posi- 
tion of the Switch I region in Rho-GDP diverges significantly from that in 
Ras-GDP (Wei et al. 1997). Furthermore, like other Rho family proteins, 
RhoA contains an insert loop (residues 124-136) that is not present in Ras 
(Wei et al. 1997). Like other G-proteins, RhoA is active when bound to GTP 
and inactive in the GDP-bound form. The C-terminus of RhoA is preny- 
lated, making the protein hydrophobic and permitting its association with 
the plasma membranes through the geranyl-geranyl anchor. However, in 
resting (relaxed) smooth muscle, as in other cells, most of RhoA is cytoso- 
lic (Figs. 2, 3); its association with the hydrophobic pocket of guanine 
nucleotide dissociation inhibitor (GDI; Keep et al. 1997; Gosser et al. 1997) 
keeps it in solution (Gong et al. 1997a; Fujihara et al. 1997). A small 
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proportion of inactive Rho (presumably RhoA'GDP) is also associated 
with the plasma membrane in resting smooth muscle (Gong et al. 1997a). 

The constitutively active mutant Va114 RhoA.GTP Ca2+-sensitizes per- 
meabilized smooth muscle (Gong et al. 1996), and the Ca2+-sensitizing 
effect of agonists and GTPyS is inhibited by bacterial exoenzymes (C3, 
EDIN) that inactivate RhoA or Va114 RhoA by ADP-ribosylating its Asn 41 
residue (Gong et al. 1996). It should be noted that inhibition of the maxi- 
mal effect of GTPyS is only partial, due to either incomplete ADP-ribosyla- 
tion of endogenous RhoA or to operation of another significant Ca2+-sen- 
sitizing pathway (Gong et al. i996, 1997a). 

The Ca2+-sensitizing action of RhoA requires a relatively intact plasma 
membrane and/or a diffusible co-factor(s). Recombinant RhoA that lacks 
the hydrophobic, prenylated C-terminus has little or no Ca2+-sensitizing 
activity and prenylated RhoA does not Ca2+-sensitize smooth muscles that 
are extensively permeabilized with Triton X-100 (Gong et al. 1996). Fur- 
thermore, in smooth muscles stimulated with agonists or GTPyS, cytosolic 
RhoA dissociates from GDI and translocates to the plasma membrane. 
This translocation of RhoA temporally and quantitatively correlates with 
Ca2+-sensitization of force (Gong et al. 1997a,b), The physiological signifi- 
cance of RhoA-mediated Ca2+-sensitization was first verified by the dem- 
onstration that inhibition of endogenous RhoA in intact (not perme- 
abilized) smooth muscle also inhibits agonist-induced Ca2÷-sensitization. 
The specific inhibitor of RhoA, C3, can be introduced into intact smooth 
muscle through a chimeric construct, DC3B, of C3 with the B-subunit of 
diphtheria toxin that mediates its penetration through the cell membrane 
(Aullo et al. 1993) and ADP-ribosylation of endogenous RhoA in intact 
vascular smooth muscle with DC3B inhibits agonist- and, following sub- 
sequent permeabilization, GTPyS-induced Ca2+-sensitization and translo- 
cation of RhoA to the membrane (Figs. 4, 5; Fujihara et al. 1997). Clostrid- 
ium difficile toxin B also enters cells and inhibits RhoA by monoglucosy- 
lating its Thr 37 residue; this toxin inhibits muscarinic Ca2+-sensitization 
in intact smooth muscle (Otto et al. 1996), but its activity is less specific, as 
it also inactivates two other Rho family proteins, Cdc 42 and Rac. 

In intact smooth muscles, both DC3B (Fig. 4; Fujihara et al. 1997) and 
the Clostridiurn difficile toxin B (Otto et al. 1996) inhibit the tonic compo- 
nent of agonist (muscarinic and ¢t-adrenergic) -induced contractions, 
without significantly affecting their initial, phasic components. This sug- 
gests that, contrary to earlier belief, the tonic components of agonist-in- 
duced contractions are the result of not only, or even largely, Ca2+-influx, 
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Fig. 2. Upper panel: the three-dimensional structure (main chain only) of human RhoA. 
Shown in various colors (and identified in the figure) are the biologically relevant 
features of the structure. Figure generated with RIBBONS (M. Carson). (From Wei et 
al. 1997.) Lower panel: scheme of suggested RhoA signaling pathways participating in 
Ca2+-sensitization of smooth muscle. Activation of receptors coupled to certain gua- 
nine-nucleotide-binding (G) proteins releases intracellutar Ca 2+ that binds to cal- 
modulin (Cam), and this complex activates myosin light chain ldnase (MLCK). By 
phosphorylating the regulatory light chain of myosin in smooth muscle, MLCK causes 
vascular smooth muscle to contract and the lumen of blood vessels to narrow. Many 
of the same receptors also activate RhoA and, with the help of guanine-nucleotide 
exchange factors (GEFs), dissociate cytosolic RhoA-GDP from guanine-nucleotide 
dissociation inhibitor (GDI); this allows the exchange of GTP for GDP on RhoA. The 
active RhoA-GTP activates Rho-associated kinase that phosphorylates - and so inhibits 
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but result from the combination of CaZ+-influx and the CaZ+-sensitizing 
effects of these agents. 

The abolition of Ca2*-sensitization in Triton-permeabilized smooth 
muscle (Gong et al. 1996) and the translocation of RhoA to the plasma 
membrane by Ca2+-sensitizing agonists (Gong et al. 1997a; Fujihara et al. 
1997) strongly suggested that Ca2+-sensitization involved activation of a 
downstream effector (presumably Rho-kinase; see below) through its as- 
sociation with RhoA at the plasma membrane. 

Several serine/threonine kinases that have Rho-binding domains and 
are activated by Rho have recently been identified (Leung et al. 1995; 
Ishizald et al. 1996; Fujisawa et al. 1996; Matsui et al. 1996; Leung et al. 
1996). Some of these Rho-kinases can mimic the Ca2+-sensitizing effects 
of agonists, GTPTS and  Rho, and are prime candidates as effectors of 
RhoA-mediated Ca2+-sensitization (Amano et al. 1996; Kimura et al. 1996; 
Kureishi et al. 1997; Uehata et al. 1997). This conclusion is very strongly 
supported by the recent demonstration that a relatively specific inhibitor 
of Rho-kinase inhibits Ca2+-sensitization (Fig. 2; Uehata et al. 1997; rev. in 
Somlyo, 1997), The most likely downstream target of these kinases is the 
heterotrimeric smooth muscle myosin phosphatase (SMPP-1M) of which 
the large subunit (Ml10) canbe phosphorylated by Rho-kinase. 

2.1 
Protein kinase C, MAP kinase and tyrosine kinases 

Prior to the discovery of the role of RhoA and Rho-associated kinases, 
several otherkinases, including protein kinase Cs (PKCs), tyrosine kinases 
and MAP kinase, have been implicated in CaZ+-sensitization, based largely 
on the effects of agents that activate or inhibit them. 

Phorbol esters that activate some PKCs can cause Ca2+-sensitization 
(Chatterjee and Tejada 1986; rev. in Walsh et al. 1994, Lee and Severson 

- myosin phosphatase. Myosin phosphatase dephosphorylates smooth-muscle 
myosin, causing the smooth muscle to relax and blood vessels to dilate. Y-27632 
inhibits Rho-associated kinases, thereby blocking the inhibition of smooth-muscle 
myosin phosphatase and Ca2+-sensitization (Uehata et al. 1997). So, although Ca 2+ is 
the main activator of smooth muscle contraction (through MLCK), the level of force 
can be modulated independently of it. (From Somtyo 1997). 



212 

Time (rain) 

p21 rhoA 

A. P. Somlyo et al. 

0 1 20 60 

C P C P C P C P 

5 

C P 

Gaq/11 

Rho.GD! 

A 

,., 100" t- 
O 

t -  • ~oo 80 i 

~'-r  60' 

~,.-~_~N:~ 40' t 
• ~ 20 

I/. 

0 
B 

/ '~s  T ,  

/ /  
. . . ,  , 

10 20 / /  60 
time (rain) 

Fig. 3. Time course oftranslocation ofp21rhoA and Gaq/ll and of Ca2+-sensitization 
of force induced by GTPyS. A~ representative Western blots shows that translocation 
of RhoA from the cytosol (C) to the particulate fraction (P) is already detectable at 1 
min, the earliest time point checked. The P fraction is the supernatant obtained from 
the Triton-treated pellet, and thus represents the extracted membrane proteins. Note 
also that the GTPyS (50 pM)-induced translocation of Gaq/11 is transient, whereas 
translocation of p21rhoA to the membrane is not reversed during the 1 hr period of 
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Fig. 4. Phenylephrine-induced contraction in intact portal vein smooth muscle showing 
the effect of 48 hr treatment with DC3B, the chimeric toxin that ADP-ribosylates and 
inhibits the activity of endogenous RhoA. Note that the contractile response of un- 
treated smooth muscle was biphasic, consisting of a phasic transient followed by a tonic 
phase. DC3B treatment inhibited the tonic phase of contraction with little effect on the 
initial, transient phase (P< 0.0001; from Fujihara et al. 1997). 

1994). This effect, reproduced in numerous laboratories, showed that the 
phorbol  ester-sensitive, conventional (c) and novel (n) PKC isoforms that 
are activated by the physiological product  of  the phosphatidylinositol 
cascade, diacylglycerol, can increase force at constant [Ca2+]i. However, 
recent studies, as well as the known propert ies of  diacylglycerol metabo-  

observation. In control strips incubated in pCa 6.5 solution, both p2 lrhoA and Gocq/11 
localization remained constant, and Rho-GDI remained in the cytosol at all time points 
checked. B: summary of results shown in A (n=3-10 for each point). Force is normal- 
ized to maximal contraction (100%) induced by GTPyS (n= 12 for each point; from Gong 
et al. 1997a). 
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Fig. 5. ADP-ribosylation of RhoA by DC3B inhibits GTPyS-induced RhoA transloca- 
tion from the cytosolic to the membrane fraction. After incubation with or without the 
chimeric toxin DC3B (48 hr), a-toxin-permeabilized tissues were stimulated with 
GTPyS (50 laM) for 20 min and homogenized, fractionated and separated into cytosolic 
(C) and Triton-extracted particulate fraction (P); translocation of RhoA to the mem- 
brane fraction was inhibited by DC3B treatment (48 hr). A: Representative Western 
blots of RhoA visualized by enhanced chemiluminescence. Arrows indicate position 
ofmol wt markers; remainder of gels did not show other bands and are not shown. B: 
Summary of the effect of DC3B on translocation of RhoA by GTPyS (50 ~tM) from the 
cytosolic to the membrane fraction. DC3B significantlyinhibited translocation of RhoA 
(from Fujihara et al. 1997). 

lism argue against a major, physiological role of cPKCs and nPKCs in 
Ca2+-sensitization. Agonist-induced production of PIPz-derived diacyl- 
glycerol is often transient and even undetectable in smooth muscle (Rem- 
bold 1990; Abdel-Latif 1991, but cf. Gong et al. 1995), and inhibition of 
agonist-induced CaZ+-sensitization by conventional and novel PKC-spe- 
cific inhibitor peptides is inconsistent or absent (Fujita et al. 1995; Gailly et 
at. 1997). The strongest evidence arguing against cPKCs and nPKCs being 
necessary effectors of physiological, G-protein-coupled Ca2+-sensitization 
is that downregulation of these PKCs does not significantly inhibit 
agonist- or GTPTS-induced CaZ+-sensitization, although it abolishes the 
effect of phorbol esters (Hori et al. 1993; Jensen et al. 1996). Conversely, 
downregulation of the G-protein-coupled response does not block phor- 
bol ester-induced Ca2+-sensitization (Gong et al. 1997b). In recent studies 
Ca2+-sensitization of force by phorbol esters was found to be associated 
with increased phosphorylation of the myosin light chain kinase sites 
(Ser19 and Thr18) of MLC20 (Roh et aL 1993; Matsuo et al. 1994; Ikebe and 
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Fig. 6. Myosin light chain kinase (MLCK) is phosphorylated during microcystin-evoked 
contraction in both control and PDBu downregulated tissues. Control and downregu- 
lated tissues were incubated in calcium-free solution containing 10 mM EGTA and then 
stimulated with 1 l.tM microcystin for 1 hr in the presence of 32p-ATP, homogenized, 
and subjected to immunoprecipitation with an antibody against MLCK. A: Autoradiog- 
raph of the immunoprecipitate of control (C) and downregulated (D) tissue. B: Western 
blot of the same membrane for MLCK. Representative of three experiments. Autophos - 
phorylated MLCK is active in solution even in the absence of calcium (Tokui et al. 1995; 
Andrea and Walsh, personal communication 1997) From Walker et al. 1998. 

Brozovich 1996; Gailly et al. 1997). The combination of these results sug- 
gests that conventional and/or novel PKCs are on a separate, albeit physi- 
ologically not very significant, pathway that converges with the major 
physiological upstream mechanism of G-protein-coupled Caa+-sensitiza - 
tion and increasesMLCa0 phosphorylation (see below). There is at present 
also only limited evidence implicating atypical PKCs that are not activated 
by phorbol esters in physiological Ca2+-sensitization (Gailly et al. 1997; see 
below). 

Protein kinase C-e, contrary to previous claims, plays no special role in 
either G-protein-coupled Ca2+-sensitization or CaZ+-independent contrac- 
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tion of smooth muscle, both of which are retained after complete down- 
regulation of PCK-e (]ensen et al. 1996; Walker et al. 1998). Furthermore, 
the presence or absence of PKC-e in no way correlated with the ability of 
smooth muscle to contract in response to phorbol esters, GTPyS and 
phosphatase inhibitors (e.g., microcystin-LR, calyculin, okadaic acid) in 
the virtual absence of Ca 2÷ by buffering with high EGTA concentrations 
(Walker et al. 1998; Gong et al. 1992a). Such contractions, elicited by 
various inhibitors of smooth muscle myosin phosphatase in the absence of 
Ca 2+, may reflect activation of MLCK through autophosphorylation or 
through phosphorylation by another kinase (Fig. 6; Tokui et al. 1995; 
Walker et al. 1998; Andrea and Walsh, personal communication). PDBu- 
activated PKCs phosphorylate MLCK (Stull et al., 1990), but such phospho- 
rylation is associated with phosphorylation of largely the PKC sites that do 
not activate the actomyosin ATPase of MLC20 (Kamm et al., 1989). 

Atypical (a) PKCs are insensitive to phorbol esters, but are activated by 
arachidonic acid that can also directly inhibit smooth muscle myosin 
phosphatase (Gong et al. 1992b). A pseudo-substrate peptide inhibitor of 
aPKCs partially inhibited phenylephrine- and arachidonic acid-induced 
Ca2+-sensitization (Gailly et al. 1997), raising the possibility that aPKCs, or 
another kinase associated with smooth muscle myosin phosphatase also 
activated by arachidonic acid (Ichikawa et al. 1996b), can contribute to 
Ca2+-sensitization.-The strong evidence supporting a major role of Rho 
kinase (see above) in Ca2+-sensitization indicates that more definitive 
studies wilt be required to determine whether aPKCs also contribute to 
contractile regulation or, alternatively, the PKC pseudopeptide inhibitor 
also inhibits Rho kinase or other kinases. 

The mechanism of Ca2+-sensitization by PKCs may be through activat- 
ing phosphorylation of a PKC inhibitor or through direct inhibitory phos- 
phorylation of SMPP-1M. Inhibitor I is activated by phosphorylation by 
cAMP- or cGMP-kinase (Tokui et al. 1996 and refs. therein), but inhibitor I 
has only modest effect on SMPP-1M holoenzyme (Gong et al. 1992a; Alessi 
et al. 1992) and, furthermore, cyclic nucleotide activated kinases desensi- 
tize, rather than sensitize, smooth muscle (Pfitzer et al. 1986; Wu et al. 
1996). The suggestion (Somlyo et al. 1989) that activation (through phos- 
phorytation) of an SMPP-1M inhibitor could be the pathway of PKC-medi- 
ated Ca2+-sensitization found experimental support with the isolation, 
from porcine aorta, of a new protein phosphatase inhibitor that is phos- 
phorylated and activated by PKC (Eto et al. 1995). We are not aware of any 
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Fig. 7. Concentration-dependent relaxation induced by the purified smooth muscle 
phosphatase holoenzyme SMPP- 1M (187 kDa) and the catalytic subunit PP 1C (37 kDa). 
Rabbit portal vein smooth muscle strips were permeabilized with 0.1% Triton X-100 
and the muscles were relaxed in the absence of calcium in the presence ofa I mM EGTA 
solution. Subsequent treatment with microcystin-LR (MC, 1 pM), to inhibit endo- 
genous SMPP-!M, induced force development even in relaxing solution (G1, pCa 8). 
MC was washed away and the purified holoenzyme SMPp-1M or PPIC were added at 
the indicated concentration and the half-time of relaxation measured. The half-time 
of relaxation (tl/2) to baseline was used for comparison of the potency of SMPP-1M 
(solid circles) with that of PP1C (open circles;n=5). (From Shirazi et al. 1994.) 

publication to date about the occurrence or effects of phosphorylation of 
SMPP-1M by cPKCs or nPKCs. 

Tyrosine kinases have been implicated in CaZ+-sensitization largely as 
the result of the inhibitory effects of tyrosine kinase inhibitors, genistein 
and vanadate, and the correlation between tyrosine phosphorylation and 
vanadate- or agonist-induced contractions (Di Salvo et al. 1993a,b, 1994, 
1997; Steusloff et al. 1995). However, the tyrosine-phosphorylated proteins 
have yet to be directlylinked to a known contractile regulatory mechanism 
(i.e., MLCK, SMPP-1M) and evaluation of the relationships between tyro- 
sine phosphorylation and modulation of Ca2+-sensitization of contraction 
in intact muscle is somewhat complicated by concurrent changes in cy- 
tosolic Ca a÷ (Di Salvo et al. 1994, 1997), possibly as the result of activation 
of PLC-y (Marrero et al. 1994) or G~q, ll (Umemori et al. 1997). 

Mitogen-activated protein kinase (MAP kinase) is another kinase that is 
activated upon stimulation with agonists or depolarization with high K ÷ 
(Adam et al. 1995; Katoch and Moreland, 1995; Gerthoffer et al. 1997). 
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Caldesmon is one of the substrates of MAP kinase, but exposure of Triton 
X-IO0 permeabilized smooth muscles to activated MAP kinase at concen- 
trations sufficient to near-stoichiometrically phosphorylate endogenous 
caldesmon (Nixon et al. 1995) did not CaZ+-sensitize vascular smooth 
muscle (Nixon et al. 1995). AccOrding to another report, MAP kinase has 
no effect on contractility of rabbit colonic smooth muscle, but enhances 
the contraction of canine trachealis (Gerthoffer et al. 1997). The mecha- 
nisms responsible for these different findings are not known and, in par- 
ticular, the effects of MAP kinase on MLC20 phosphorylation in the tra- 
chealis smooth muscle has not been determined. The very different time 
courses of, respectively, caldesmon dephosphorylation and relaxation of 
smooth muscle (Adam et al. 1989) and the failure of MAP kinase to affect 
contractility of vascular and intestinal smooth muscle argue against a 
major role of MAP kinase in contractile regulation. The fact that high K + 
and ionomycin (via Ca 2+) also activate MAP kinase (ERK1 and ERK2; 
Abraham et al. 1997; Katoch and Moreland 1995) but does not cause 
Ca2+-sensitizati0n also argues against a significant role of this kinase in the 
physiological, G-protein-coupled major mechanism, although in vitro 
MAP kinase (slowly) phosphorylates MLCK and increases its activity 
(Klemke et al. 1997). 

2.2 
Smooth muscle myosin phosphatase 

The properties of smooth muscle myosin phosPhatase (SMPP-1M) and its 
history have been recently reviewed in depth (ErdSdi and Hartshorne 
1996; Hartshorne et al. 1998), and here we will only summarize the most 
salient aspects of the subject. It is generally accepted (rev. in Hartshorne et 
al. 1998; Somlyo and Somlyo 1994) that the physiological myosin phos- 
phatas e dephosphorylates not only MLCz0, but also MLC20 present in 
whole myosin. In retrospect, it seems likely that several of the previously 
isolated enzymes (rev. in Cai et al. 1994; Hartshorne et al. 1998) that have 
this property contained the 37-38 kDa catalytic subunit, PPIC, variously 
called PPIC~ or PPIC~ isoform, with a proteolytic fragment (58-67 kD) of 
one of the other subunits of the holoenzyme. In addition to PP1C, the 
holoenzyme consists of a large, regulatory or targeting, subunit (Ml10 or 
M130) and a 20 kD subunit of unknown function. This composition is 
characteristic of the enzymes isolated from both chicken gizzard (Alessi et 
al. 1992; Shimizu et at. 1994) and pig bladder (Shirazi et al. 1994). Dissocia- 
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tion of the catalytic from the Ml10-130 subunit with arachidonic acid in- 
creases its glycogen phosphatase and decreases its myosin activity, sup- 
porting the notion that the Mu0-130 subunit targets the enzyme to myosin 
and/or enhances its activity for myosin (Fig. 7; Gong et al. 1992a,b). 

Phosphorylation of the Mn0-130 subunit (for detailed structure, see 
Hartshorne et al. 1998) is thought to be a major physiological mechanism 
of its (inhibitory) regulation. The region of Ml10-130 involved in regulation 
and contained within its N-terminus is also involved in its ATP-dependent 
binding to myosin (Haystead et al. 1995; Ichikawa et al. 1996a; Hartshorne 
et al. 1998): ATP-dependent binding may be related to regulation, because 
in the presence of ATP, SMPP-tM binds only to phosphorylated, but not to 
unphosphorylated, myosin. The Mn0q30 subunit increases the activity of 
SMPP-IM towards myosin in solution (Alessi et al. 1992; Shirazi et al. 1994) 
and accelerates dephosphorylation of myosin and relaxation of smooth 
muscle induced by PP1C in permeabilized smooth muscle (Fig. 7; Shirazi 
et al. 1994; Gailly et al. 1996). An N-terminal 58 kDa fragment, a common 
proteolytic product, and even an N-terminal 1-38 peptide can accelerate 
the relaxation induced by PP1C. The N-terminal portion of Ml10,130 alone 
can activate the catalytic activity of SMPP-1M, but there is evidence that 
both the N- and C-terminal regions can bind to myosin (Johnson et al. 
1997; Hirano et al. 1997; Hartshorne et al. 1998). Arachidonic acid inhibits 
both the holoenzyme and the potentiating effect of a 612 N-terminal 
residue peptide, but not the activity potentiated by the M58 fragment, 
suggesting that the site of inhibition is C-terminal. Phosphorytation of 
Ml10-130 by a kinase associated with SMPP-1M (Ichikawa et al. 1996b) or by 
a Rho-associated kinase (Rho-kinase; Kimura et al. 1996) inhibits the 
activity of the holoenzyme, but the sites phosphorylated by these kinases 
are different: Thr 654 (130 kD) or Thr 695 (133 kD isoform) is phosphory- 
lated by the phosphatase-associated kinase and residues within 753-1004 
by Rho kinase (for further rev., see Hartshorne et al. 1998). Thiophospho- 
rylation of Ml10q30 in permeabilized vascular smooth muscle decreases 
phosphatase activity and increases Ca2+-sensitivity (Trinkle-Mulcahy et al. 
1995), and it is likely that phosphorylation of this subunit plays a physi- 
ological role in Ca2+-sensitization by regulating (inhibiting) SMPP-1 M. 



220 A. P. Somlyo et al. 
5~M 

[ / ~ pCa6.3 wash 

/ \ o /  
/ \ i /  

Filtrate 

G11 pCa6.3 

Fig. 8. Relaxation of rabbit ileum smooth muscle by purified endogenous native 
gizzard telokin. Rabbit ileum smooth muscle strips were depleted of endogenous 
telokin by permeabilization with Triton X-100 and storage at -20°C (for up to 4 wks). 
Following incubation in 0-added Ca, 1 mM EGTA solution (G 1), the muscle strips were 
contracted by exposing them to pCa 6.3 solution with I laM calmodulin. Three addi- 
tions of native telokin of 5 PM each, concentrated by centrifuge filters (Microcon-3K 
Amicon), induced relaxation. Following 3 washes (1, 2, 3) with pCa 6.3 solution, the 
relaxant effects of telokin were removed; subsequent additions of 10 and 20 111 of the 
filtrate separated from the same telokin sample by the centrifuge filter were without 
effect and served as a control. Representative of n =3 experiments. (From Wu et al. 
1998.) 

3 
Desensitization to Ca 2+ 

Desensitization to Ca 2÷ is defined as a decline in MLC20 phosphorylat ion 
and force in the absence of proportional,  or any, decline in [Ca2+]i (Him- 
pens et al. 1988, 1989; Kitazawa and Somlyo 1990; Somlyo and Somlyo, 
1994; Wu et al. 1996, 1998). This t ime-dependent phenomenon is particu- 
larly pronounced in phasic smooth muscles in which, unless the time 
course of  phosphorylation is closely followed, the very transient nature of 
MLC20 phosphorylation (Himpens et al. 1988) can lead to the erroneous 
conclusion that contraction occurs in the absence of MLC20 phosphoryla- 
tion. Two mechanisms involving, respectively, downregulation of MLCK 
and upregulation of  SMPP-1M are known mechanisms of Ca2+-desensiti - 
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zation. In vitro phosphorylation of MLCK within the C-terminal region 
(site A) of the regulatory domain by cAMP-dependent protein kinase 
(Conti and Adelstein 1981; Nishikawa et al. 1984), protein kinase C 
(Nishikawa et al. 1983) and Cal+/calmodulin-dependent protein kinase II 
(Hashimoto and Soderling 1990; Ikebe and Reardon 1989) reduces the  
activity of MLCK by decreasing the affinity (increasing Kc~ ) for cal- 
modulin approximately tenfold (rev. in Gallagher et al. 1997). Inhibitory 
phosphorylation in vivo, is largely due to CaM-kinase II activity (Tansey 
et al. 1994; Van Riper et al. 1995; rev.in Gallagher et al. 1997), and represents 
a negative feedback whereby the rise in [Ca2+]i first activates MLCK and 
then, with a slower time course reflecting the lower affinity of CaM-kinase 
II for Ca z+, inhibits MLCK. A similar negative feedback may also be initi- 
ated by GTPyS that also enhances phosphorylation of MLCK and decreases 
its activity in situ, suggesting that SMPP-1M or a related protein phos- 
phatase that is also inhibited by a G-protein-coupled pathway is responsi- 
ble for dephosphorylation of MLCK (Tang et al. 1993; Word et al. 1994). 

The second proposed pathway of Ca2+-desensitization is through en- 
hancement of myosin phosphatase activity (Somlyo et al. 1989; Somlyo 
andSomlyo 1994). The early studies of Rfiegg and co-workers (Pfitzer et 
al. 1986) and more recent reports (Nishimura and van Breemen 1989; Wu 
et al. 1996) showed that cyclic nucleotides, through their regulated kinases, 
could relax permeabilized smooth muscles in the absence of a change in 
[Ca 2+]i. Consequently, cAMP- and cGMP-activated/dependent kinases ap- 
peared to be likely upstream activators of smooth muscle phosphatase 
activity (Somlyo et al. 1989; Somlyo and Somlyo 1994; McDaniel et al. 1994; 
Kotlikoff and Kamm 1996). Indeed, Wu et al. (1996) demonstrated that 
8-br-cGMP accelerated dephosphorylation of MLCz0 under conditions in 
which MLCK activity was inhibited, and this finding was confirmed by Lee 
et al. (1997). Identification of the specific kinase operating in intact 
smooth muscle, whether cAMP- or cGMP-kinase, is difficult in the pres- 
ence of accompanying changes in [Ca2+]i induced by agents that stimulate 
adenylate cyclase or guanylate cyclase (rev. in Lincoln et al. 1994; Francis 
and Corbin 1994; McDaniel et al. 1994), and activate the SR Ca2+-ATPase, 
perhaps by phosphorylating phospholamban (Cornwell et al. 1991). Con- 
siderable evidence also indicates cross-stimulation of the cGMP kinase by 
cAMP (Jiang et al. 1992; rev. in Francis and Corbin 1994; Komalavitas and 
Lincoln 1996). Although the use of relatively specific cGMP and cAMP 
inhibitors in permeabilized smooth muscle suggests that cGMP-kinase is 
largely responsible for Ca2+-desensitization induced by both cAMP and 
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cGMP (Kawada et al. 1997), the possibility remains that both the cAMP- 
and the cGMP-kinases can mediate this effect in vivo. 

The mechanism through which cGMP-kinase activates dephosphoryla- 
tion of smooth muscle may be indirect and involve, as its mediator, telokin. 
Telokin is a low molecular weight (-17 kD) protein first identified by 
Hartshorne and co-workers and shown to be identical to the C-terminal 
sequence of MLCK (Ito et al. 1989). Subsequent determination of the 
genomic sequence for MLCK indicated that telokin corresponded to the 
156 C-terminal segment of MLCK (Gallagher and Herring 1991; Herring 
and Smith 1996, 1997). Telokin is abundant (70-90 ~M) in phasic smooth 
muscles (Shirinsky et al. 1993), but in tonic smooth muscles only trace 
amounts are detected by Western blotting (immunoblotting; Gallagher 
and Herring 1991; Wu et al. 1998). The possibility that telokin may be a 
mediator of cAMP- and cGMP-mediated activation of smooth muscle 
dephosphorylation was suggested by our observation that telokin was the 
most abundant protein phosphorylated when intact and permeabilized 
smooth muscles were relaxed by, respectively, forskolin and 8-br-cGMP 
(Wu et al. 1998). Telokin inhibits myosin phosphorylation by MLCK in 
vitro, probably by competing for the MLCK binding site on myosin (Shir- 
insky et al. 1993; Silver et al. 1997; Sobieszek et al. 1997), but does not 
inhibit the rate of thiophosphorylation of MLC20 in situ (Wu et al. 1998). In 
view of this, and because telokin accelerates dephosphorylation of MLC20 
and relaxation (Fig. 8) of smooth muscle at constant [Ca2÷]i, we consider 
activation of SMPP-1M by phosphorylated (on cyclic nucleotide kinase 
sites) telokin to be a physiological Ca2+-desensitizing mechanism. Fur- 
thermore, the relationship between telokin and cyclic nucleotide-activated 
kinase(s) is synergistic: the combination of the two produces significantly 
greater relaxant effects when added together than the sum of independent 
additions to smooth muscle at constant [Ca2+]i (Wu et al. 1998). A pro- 
teolytically truncated form of telokin that does not contain the cGMP-ki- 
nase phosphorylation site (identical to site B in MLCK) can also relax 
permeabilized smooth muscle, although without showing synergism with 
cGMP-kinase. This and the apparent paucity of telokin in tonic smooth 
muscles indicates that additional studies will be required for a more com- 
plete understanding of the mechanism(s) through which cyclic nucleo- 
tide-activated kinases activate the SMPP-1M. 



Pharmacomechanical  coupling: the role of calcium .... 223 

4 
Summary 

The concept of pharmacomechanical coupling, introduced 30 years ago 
to account for physiological mechanisms that can regulate contraction of 
smooth muscle independently of the membrane potential, has since been 
transformed from a definition into what we now recognize as a complex of 
well-defined, molecular mechanisms. The release of Ca 2÷ from the SR by a 
chemical messenger, InsP3, is well known to be initiated not by depolariza- 
tion, but by agonist-receptor interaction. Furthermore, this G-protein- 
coupled phosphatidylinositol cascade, one of many processes covered by 
the umbrella of pharmacomechanical coupling, is part of complex and 
general signal transduction mechanisms also operating in many non-mus- 
cle cells of diverse organisms. It is also clear that, although the major 
contractile regulatory mechanism of smooth muscle, phosphoryla- 
tion/dephosphorylation of MLC20, is [Ca 2÷]-dependent, the activity of both 
the kinase and the phosphatase can also be modulated independently of 
[Ca2÷]i. Sensitization to Ca 2÷ is attributed to inhibition of SMPP-1M, a 
process most likely dominated by activation of the monomeric GTP-bind- 
ing protein RhoA that, in turn, activates Rho-kinase that phosphorylates 
the regulatory subunit of SMPP-1M and inhibits its myosin phosphatase 
activity. It is likely that the tonic phase of contraction activated by a 
variety of excitatory agonists is, at least in part, mediated by this Ca2÷-sen - 
sitizing mechanism. Desensitization to Ca a÷ can occur either through 
inhibitory phosphorylation of MLCK by other kinases or autophosphory- 
lation and by activation of SMPP-1M by cyclic nucleotide-activated ki- 
nases, probably involving phosphorylation of a phosphatase activator. 
Based on our current understanding of the complexity of the many cross- 
talking signal transduction mechanisms that operate in cells, it is likely 
that, in the future, our current concepts will be refined, additional mecha- 
nisms of pharmacomechanical coupling will be recognized, and those 
contributing to the pathologenesis diseases, such as hypertension and 
asthma, will be identified. 
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1 
Introduction 

In the last decade a huge amount of information has been accumulated 
pertaining to the structural biology and physiology of smooth muscle 
(SM) cells (SMC), particularly those of the vascular smooth muscle. This 
unquestionable success in the field may potentially have a profound im- 
pact for an understanding of the basic mechanisms that underline some 
pathological processes involving SMC. The basic features of some vascular 
diseases, such as atherosclerosis, hypertension, restenosis after 
angioplasty and vein-graft, are close to being disclosed by the extraordi- 
nary efforts of both cell and molecular biology investigations. 

Understanding of the regulatory mechanisms that control growth and 
differentiation in SMC is still unsatisfactory, especially if compared with 
the existing levels of knowledge about striated muscle biology. However, 
the recent experimental achievements obtained with vascular and non- 
vascular SMC are encouraging and the gap with the skeletal and cardiac 
muscle is closing. Interestingly, in the course of experimental and sponta- 
neous conditions of regeneration/repair of adult SM [1,2] tissue, SMC 
undergo a complex phenotypic change which is the expression of the 
(partial or complete?) recapitulation of the developmental process [1,2]. In 
this circumstance the phenotypic behavior displayed by SMC is basically 
similar to the skeletal muscle response-to-injury and cardiac muscle ab- 
normality [3-6]. Thus, all three muscle tissues retrieve an "embryonic-fe- 
tal" growth/differentiation program when alteration or loss of muscle 
tissue occurs, possibly indicating the existence of a common "default"- 
type phenotypic response expressed in all the muscle cell lineages. The 
expression of some SM-specific protein markers in skeletal and cardiac 
muscle tissues in the early stages of development, along with their tran- 
sient reiteration in some pathological conditions, might be indicative of 
similarities among the "immature" cell phenotypes of the three muscle cell 
lineages. 

Based on these data, it is reasonable to assume that the structural and 
functional delineation of the basic features of developing SM tissues is of 
paramount importance in establishing the pathogenetic mechanisms 
which govern the processes implicating cellular hyperplasia, hypertrophy 
and migration in the adult [2]. In addition, the molecular and cellular in 
vitro studies of SMC growth and differentiation have revealed important 
results about SMC phenotypic stability and heterogeneity that are of par- 
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ticular interest in the proper interpretation of  SMC proliferation and mo- 
bilization occurring in atherosclerosis and restenosis. The goal of this 
review is to discuss: (1) the biology of vascular and non-vascular SM 
tissues; (2) the phenotypic changes that characterize the SMC lineage(s); 
(3) growth and differentiation of the SMC in vitro; (4) non-muscle cells as 
an alternative source of new SMC; and (5) experimental models involving 
proliferation/migration of SMC whose characterization is certainly help- 
ful to the understanding of human vascular diseases. 

Since the vascular SM tissue/cells have been the most throughly studied 
by cell biologists in comparison with the other SMs, the discussion will be 
devoted primarily to this tissue. 

2 
The morphological organization of the adult and developing 
smooth muscle 

In the normal adult, the different histological, electrophysiological, bio- 
chemical, immunochemical and pharmacological properties displayed by 
the various SM tissues and cells might be tentatively typified in a "SM tree" 
(Fig. 1; see also text ahead). As far as the arterial SM tissue is concerned, the 
end-point of this "classification tree" is represented by the two wall layers: 
the intima and the media [7]. The intima is composed of a single layer of 
endothelial cells, the subendotheliat membrane and the internal elastic 

Fig. 1. Flow diagram showing the morphological, electrophysiological, biochemical, 
immunochemical and pharmacological differences in the levels of SM organization. 
The five SM tissues depicted (vascular, gastrointestinal, ocular, respiratory and uro- 
genital) are differently connected to the "classification tree", whose complexity pro- 
gressively diminishes from the bottom to the top where SMC subpopulations or clones 
are expressed. For sake of clarity, SM types that display "mixed" structural-functional 
properties (such as the penile corpus carvernosus, i.e., blood vessels that behave as 
sphincters) have been omitted. Pericytes, mioepitheliat cells and myofibroblasts are 
cells which share some structural and functional properties with the SM tissues/ceils. 
Ductus arteriosus has also been included in this diagram for the peculiar structural 
changes that undergoes around birth (see text), a, Artery; b, branch; Ion, longitudinal; 
circcircular. 
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membrane. According to the species, the subendothetial space may contain 
a variable number of SMC [7]. The media comprises SMC interspersed 
with elastic fibers, the outermost of which is represented by the external 
elastic lamina. Three structural-functional interfaces can be identified in 
the arterial wall: the blood-endothelium, the endothelium-SM tissue and 
the medial SM-adventitia (Fig. 2). In avian spedes, however, the organiza- 
tion is more complex inasmuch as fibroblast-like (intertamellar) ceils and 
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SMC (lamellar) cells are co-segregated in the tunica media [8,9]. The 
former cell type lacks a basement membrane, myofilaments and dense 
bodies. In addition, bovine aorta and pulmonary artery SMC can have 
distinct structural profiles as regards shape, location, cell orientation and 
pattern of elastic l a m i n a e  [10-13]. 

The epithelium and the serosal layer play an important role in maintain- 
ing the structural-functional integrity of visceral SM tissue. Erosion of 
pseudostratified epithelium of the bladder wall [14] or serosal necrosis 
[ 15] have direct consequences on the stability of the differentiation pattern 
of SMC. Two [16] or possibly three [17] interfaces can also be shown here: 
the epithelial-SM tissue and the SM tissue-serosa (the submesothelial me- 
senchymal cells; Fig. 2). 

The basic morphology of SMC in the various organs is very similar and 
related to contractile performance shared by all the SM tissues. In fact, the 
cytoplasm of fully matured SMC in the adult is abundantly filled with 
myofilaments, attachment bodies and peripheral vesicles but scarcely 
equipped with rough endoplasmic reticulum and Golgi complex [18,19]. 
Despite this common structural profile and the general dislocation of SMC 
in hollow organs, the functional behavior of SM tissues is heterogeneous, 
ranging from the phasic response of faster contracting visceral SMs to the 
tonic response of slow contracting SMs from large arteries [20]. The dis- 
tinct physiological performance of vascular and visceral SMs develops in a 
unique structural context. For example, in the media layer of large arteries 
subjected to large pulsatile pressure fibrocollagenous tissue is present, 
whereas in the bladder muscle bundles of SMC are arranged in spatially- 
oriented layers with scarce connective tissue [21]. In the arterial media, 
single SMC are covered by a basement membrane and embedded in and 
connected to the extracellular matrix (ECM) meshwork. 

Fig. 2. Parietal organization of vascular and bladder wall and the functional interfaces 
existing between blood/urine vs. endothelium/epithelium, endothelium/epithelium vs. 

SM tissue, and SM tissue vs. adventitia/serosa. Additional functional regions might be 
identified in the intestinal wall between the longitudinal and circular SM layers (pres- 
ence of a dense innervation) and around the muscularis mucosae, whose embryological 
formation and functional interaction with the epithelium during development is still 
unclear. 
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Three continous layers can be shown in the wall of embryonic human 
aorta. The innermost layer contains undifferentiated SMC, the intermedi- 
ate layer consists of differentiated cells. In the outermost layer, possibly 
destinated to become the tunica adventitia, there are fibroblasts/generic 
mesenchymal cells [22]. At the same time, SMC become linked to the 
developing elastic laminae by bundles of microfibrils [23], giving rise to 
"contractile-elastic units", i.e., a continous line of structures that link 
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internal elastic lamina 
"~1 ' "  media I / 

endothelium ~ ~ ~ " . i  

Interface 

external elastic lamina 

• i  ~l---- adventitia 

ARTERIAL WALL 

Interface 2 Interface 3 

muscularis mucosae bundles of smooth 

~ uscle cells 

L ::::::::::::::::::::: ~iiiiii?' ~i:: i~ii i ::  

BLADDER WALL 

] Interface 2 Interface 3 

epithelium 

Interface 



242 s. Sartore et al. 

thelial cells ("myoendothelial" contacts) in the form of cytoplasmic pro- 
jections can also be demonstrated in human fetal aorta [24]. Such contacts 
might permit the activation of paracrine mechanisms involved in the 
differentiation process of vascular SMC. 

The basic structure of arterial vessels is largely developed at birth [25]. 
The cytoplasm of medial SMC contains the apparently complete array of 
filaments and subcellular structures of adult-type SMC [26]. As to the 
extracellular components, elastin fiber content increases during prenatal 
and postnatal periods. In utero, this occurs particularly with the slowing 
down of proliferation rate of SMC, concomitantly with the beginning of 
the fetal phase [27] and postnatally in response to changing hemodynamic 
conditions and wall stress [28,29]. Elastic fibers continue to develop until 
complete elastic laminae are formed (about 4 weeks from birth; [30]). 

The intima layer in almost all the arterial vessels develops postnatally in 
some species, such as humans and pig, whereas in other (e.g., rabbit) it is 
lacking [7,11]. As an exception to this rule, "intimal cushions" spontane- 
ously form before birth in the ductus arteriosus, contributing to its closure 
[31-33]. As concerns the adventitial layer, it is not clear when and how the 
directional migration of mesenchymal cells from the periendothelial re- 
gion to the growing vessel wall, with the inherent morphological cell 
conversion to SMC [34,35], ceases and a definitive adventitial layer is 
formed. In particular, it should be established whether "competent" per- 
iendothelial mesenchymal cells are completely exausted after the migra- 
tion/incorporation process or, alternatively, a subpopulation remains even 
in the adult and becomes active on demand (see Section 8). 

In the intestine, at approximately mid-gestation the organogenesis is 
completed and the individual muscle layers are already detectable [36], 
though their final size is reached postnatally by a combined hyperplasia 
and hypertrohy of individual SMC [37]. Developing SMC contain numer- 
ous free ribosomes, and abundant rough endoplasmic reticulum, few 
caveolae and scarce dense bodies and myofilaments. In the developing 
chicken gizzard it has been seen by an ultrastructural analysis that assem- 
bly of contractile and cytoskeletal elements is orchestrated temporally 
according to seven consecutive stages [38]. The final differentiated SMC 
structure can be visualized one week after hatching [37]. Proliferating 
SMC can be seen up to day 20 in ovo [37,38] and mitotic cells display a high 
degree of differentiation indicating that the acquisition of a differentiated 
SMC phenotype does not imply a proliferation blockade [37]. 
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The apparent homogeneity in the morphology of adult normal SM tissue 
is not confirmed when the distribution of some differentiation markers, 
particularly those inherent to contractility, is taken into account. The 
contractile activity of adult SM tissues is accomplished by means of spe- 
cific sets of proteins whose qualitative and quantitative availability deter- 
mines the final outcome of the functional performance. To fulfill the 
criterion of the integrated action in developing this function, "social" 
interactions among SMC, on the one hand, and between SMC and ECM, on 
the other, must be established [39]. The cell phenotype that confers the 
contractile activity to SMC is denominated the "contractile phenotype" 
[18,40,41]. Changes in the composition of extracellular milieu can have 
profound consequences on the differentiation profile of SMC. The high 
responsiveness of SMC to specific environmental cues coupled with the 
inherent phenotypic instability of SMC give rise to SMC showing the 
so-called "synthetic" phenotype, i.e., SMC almost deprived of myofila- 
ments and enriched in organelles deputed to synthesis of ECM proteins 
[18,40,41]. Before discussing this point (see Sections 5 and 6), it is impor- 
tant to identify the "basic molecules" that are the hallmark of the "contrac- 
tile" phenotype in the adult SMC. 

The cytoskeletal and contractile proteins along with proteins that make 
the SMC responsive to enviromental influences (receptors, signal- 
transducing molecules, ion channels, etc.) are fully expressed in the "con- 
tractile" SMC phenotype (see Fig. 3) by a time-dependent differentiation- 
maturational processe(s) specific to SMC lineage pathways (see Section 5). 
Though the "range" of phenotypical SMC stability (see Section 7) is quite 
limited, the expression of these proteins in the "contractile" SMC pheno- 
type is strictly coordinated and regulated. In some experimental models 
and in pathological conditions, alterations of the growth pattern of adult 
SM tissues is accompanied by re-expression of embryonic/fetal-type pro- 
teins (Fig. 4). Thus, elucidation of the structural organization of genes 
encoding such proteins will be particularly useful for the understanding of 
the mechanisms responsible for induction or de-induction of gene expres- 
sion (see Sections 7.1 and 7.2). In the arterial wall, inactivation or down- 
regulation of the genes encoding these "basic molecules" might be related 
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Distribution of some SM- and NNl-type markers in 
vascular smooth muscle cells 
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Fig. 3. Key: D, desmin; CP, calponin; h-CD, h-caldesmon; FnEDA, fibronectin EIIIA; 
Lam, laminin; My, meta-vinculin; PL, phospholamban; PGM, phosphoglucomutase-re- 
lated protein; OPN, osteopontin; pro-MMP, pro-metalloproteinase; SMA, SM-type 
t~-actin; SmLIM, SM-type LIM; SM20, 20 kDa SM-type protein; TE, tropoelastin; V, 
vinculin. 

to the acquisition of specific competences for proliferation and/or migra- 
tion. 

Two general phenomena can be identified in the pattern of protein 
expression in the SMC lineage(s) from the embryonic/fetal to the adult 
phase of development: the up-regulation of SM - specific (Fig. 5) and the 
down-regulation of non-muscle (NM) - specific (Fig. 6) proteins. These 
latter molecules either belong to NM cell lineages (e.g., keratins) or are 
generically shared by many NM tissues (e.g., the NM myosins). 
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Fig. 4. SMC of immature artery, neointima and cloned SMC from adult artery share 
some common structural and functional properties. 

Only the biochemistry of  SMC lineage-specific SM proteins whose ex- 
pression is up-regulated in the course of development, and that of NM- 
specific proteins down-regulated during SM development will be dis- 
cussed here. The reader will find more information about these topics in 
the excellent review by GK Owens [2]. 
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3.1 
Up-regulated expression of smooth muscle-specific differentiation markers 

3.1.1 
Specific markers of developing-adult smooth muscle tissues 

3.1.1.1 
Smooth muscle-type myosin isoforms 
The myosin molecule consists of six subunits: two heavy (MyHC) and four 
non covalently associated light (MyLC) chains. The MyHC form a dimer 
consisting of two globular NH2-terminal heads and COOH-terminal o~- 
helical coiled-coil tails. The heads contain the actin-activated MgE+-ATPase 
activity, whereas the tails are specifically involved in assembly of myosin 
molecules (for a review see [42, 43]. It is believed that myosin plays a 
crucial role in SMC contraction and NM cell motility through activation of 
Ca2+/calmodulin-dependent MyLC kinase and phosphorytation of 20 kDa 
MyLC [43]. The two heavy chains (about 200 kDa) and the four light chains 
(17-20 kDa) are expressed as multiple isoforms in SM and NM systems and 
are differently regulated in tissue- and developmental-specific manners 
[42,44,45]. The NM-MyHC variants are also present in adult vascular and 
non-vascular SM tissues, though in very low amounts (see Section 3.2.1). 
SM-type MyHC are considered to be the only reliable marker of SMC 
lineage inasmuch as in vivo they are expressed exclusively in developing 
and adult SM tissues [46]. 

The various SM-MyHC isoforms are generated by distinct alternative 
splicing processes at 3'-COOH or 5'-NH2 terminus trascript from a single 
gene [47-52] mapped to chromosome 16, region q12 according some 
authors [53] or region p13.13-p13.12 according to Deng et al. [54]. The two 
isoforms named SM1 and SM2 (204 and 200 kDa, respectively) differ at the 
COOH-terminal: SM2 contains 9 amino acids encoded by a unique 39 
nucleotide exon, whereas SM1 contains a COOH terminal with 43 distinct 
amino acids [47,48]. 

The ratio SM1SM2 is variable from tissue to tissue and some differences 
appear to be species specific [10,11,55-60]. While SM1 is expressed early 
during development in vascular SM tissue of rat, rabbit and human, SM2 is 
detectable only postnatally (Figs. 5 and 6). In urinary bladder SM2>SM1 
before birth and SM2<SM~ after birth [61], whereas in myometrium from 
non-pregnant rabbit SM2<SM1 [60] and from non-pregnant rat only SM1 
is expressed [62]. In porcine airway SM [63], stochiometry of SM isoforms 
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during development follows the same pattern described for the vascular 
SM tissue, whereas in human there is no variation from newborn to adult 
[64]. Interestingly, a differential expression of SM1 and SM2 is exhibited 
when SM tissue from airways is compared to that from pulmonary artery 
in rat [65, 66]. 

It has been established that SM-MyHC from vascular and visceral SM 
tissues differ by an insert of 7 amino acids at the 25-/50-kDa junction of 
the S1 subfragment of the myosin head [50,51]. It is important to note that 
the two MyHC isoforms display distinct velocity of movement of actin 
filaments in vitro and actin-activated Mg2+-ATPase activity. These data 
have been confirmed by Rovner et al. [67] who found that homogeneous 
populations of heavy meromyosin from tonic or phasic SM tissues incor- 
porating or lacking the 7 amino acid insert near the active site of MyHC 
display different enzymatic and motility properties not influenced by the 
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essential MyLC. However, other investigators have found a high structural- 
functional correlation at the level of 17 kDa MyLC exclusively [62,68]. 

Some information is now available about the transcription factors in- 
volved in regulating SM-MyHC in vascular, respiratory and visceral SM 
tissues and NM cells in different species. A combination of both positive 
and negative cis-acting promoter elements, CArG box elements, multiple E 
boxes, and CCTCCC sequences are required for SM-specific gene expres- 
sion [69-73]. In addition, a differential gene regulation can be demon- 
strated in vascular and respiratory SMC [71] and a SM-specific enhancer 
exists in vascular and visceral SMC that might be activated by different 
levels of transcription factor(s) [70]. Some promoter sequences are well 
conserved in different species such as mouse, rat and rabbit [69-71], 
whereas others, such as the MEF2-1ike element is present in rabbit but not 
in the mouse [72]. Mutation of GC-rich sequences within the species-con- 
served 227-base pair domain of promoter gives rise to a marked increment 
of trascriptional activity [73]. A GC-rich sequence within CArG or CArG- 
like motifs in rat and CCTCCC squences in mouse act as negative cis-ele- 
ments for trascription by members of the Sp1 family of transcription 
factors [72,73]. 

3.1.1.2 
Smoothelin 
The van Eys's group has recently reported that a 59 kDa protein that maps 
to chromosome 22 named smoothelin is exclusively expressed in the "con- 
tractile" SMC phenotype in evolutionarily different species [74-76]. The 
"synthetic" SMC phenotype expressed at early stages of development in 
humans [75] and in chicken [74] does not contain this protein (see also Fig. 
5). Smoothelin is not expressed in striated muscles or in mixed SMC-NM 
cell phenotypes such as myofibroblasts, pericytic venules and mgoepi- 
thelial cells [74,75]. In SMC, smoothelin is not localized in the intermedi- 
ate filament network but probably with the actin cytoskeletal systems [76]. 
In the chicken gizzard, smoothdin exists as multiple isoelectric variants of 
the 59 kDa molecule, whereas in the vascular SM is present as a 95 kDa 
variant [76]. 

During development, smoothelin is detectable around day 18 in ovo, 
later than calponin which is expressed at embryonic day 5 (see Fig. 5). In 
human fetal vessels it appears at week 10-11 of gestation and the total 
number of arterial SMC declines thereafter becoming about 10 and 
30-50% in the media of adult elastic and large muscular vessels, respec- 
tively [75]. Since it is largely represented in the media of small muscular 
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arteries, van der Loop et al. [75] have hypothesized that this protein's 
function is in some way related to the pulsatile contraction of this latter 
category of blood vessels. Details of smoothelin physiology are to be 
determined, 

3.1.1.3 
SmLIM 
A member of the LIM family of zinc-finger proteins named SmLIM is 
expressed in developmentally regulated manner in aortic SM tissue of rat 
[77]. Its presence is highly represented in utero at about 7.5 days p.c., 
concomitantly with the embryonic-extraembryonic diversification of cir- 
culation and then it becomes down-regulated, keeping its mRNA level 
unchanged throughout later developmental stages (see also Fig. 5). In the 
adult, this protein is expressed to a lesser extent in other SM tissues 
(myometrium and intestine), barely detectable in the venous SM tissue 
and absent in striated muscles [77]. This 194-amino acid protein is local- 
ized in the nucleus and maps to chromosome 3 [77]. The LIM domain 
functions as a modular protein binding interface and for class 2 of this 
protein, i.e., the protein in which the homeodomain is lacking, it has been 
hypothetically assigned a regulatory role in SMC-specific gene expression 
as happens with muscle LIM-domain protein [77]. 

3.1.2. 
Specific markers of adult smooth muscle tissues 

o~Actin, SM22, calponin, and h-caldesmon are all protein markers specific 
for differentiated (adult) SM tissues (see Fig. 3) and present in sarcomeric 
and non-sarcomeric muscle early during development. This behavior 
might indicate that a distinct regulatory (negative) mechanism(s) exists 
which, though activated in a slightly different temporal manner, switches 
off the respective genes in non-SMC cells during late development. Alter- 
natively or in addition, the SMC-specific gene program is kept switched on 
in developing SM tissues by a positive regulatory mechanism which might 
counterbalance the muscle-shared negative mechanism. Recent data, re- 
viewed by Firulli and Olson [78], point out that unique combinations of 
transcription factors are likely to be responsible for the specific spatiotem- 
poral expression of lineage-related muscle genes and, hence, for the final 
differentiation pattern in the muscle system. 
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3.1.2.1 Smooth muscle-type actin isoforms 
Six isoforms of actin are expressed in mammalian SM tissues that are 
generated by distinct genes [79] and show an highly conserved amino acid 
sequences across species. The expression of actin isoforms is developmen- 
tally regulated in a temporal-spatial manner [80-83]. Fully differentiated 
SMC contain a- (mainly in vascular tissue) and y-(mainly in the enteric 
structures) actins and trace amounts of ~- and y-cytoplasmic actin iso- 
forms [79,84-87]. The SM tz-isoform is expressed also in striated muscle 
[88], and the SM y-isoform in post-meiotic sperm [89], and the increased 
SM y-actin content in hypertrophied bladder SM [86,90]. The unique intra- 
cellular distribution of actin filamentous networks [91-93] and the de- 
creased SM ¢z-actin content in proliferating vascular SMC ([94]; see Sec- 
tion 6) point to an isoform diversification based on specific functional 
requirements. 

In the adult and in developing animals, SM u-actin is not expressed in 
SMC solely. It has also been demonstrated in the cells with mixed SM and 
NM cell characteristics such as myofibroblasts and myoepithelial cells 
[95,96] as well as in cells of the eye lens, hair fc, llicles, and bone marrow 
stromal cells [97-99]. During early development, SM a-actin is transiently 
expressed in cardiac and skeletal muscle tissue and its disappearance is 
concomitant with the achievement of maturation in the respective tissue 
[88,100,101]. 

Northen blot analysis has shown that in rat SM tissues a biphasic pat- 
tern of expression occurs for SM a- and 7- actin which peaks at about day 
18 p.c. and at early postnatal time (day 4-5), respectively [82]. Interestingly, 
the developmental profile of isoactin expression is SM tissue specific and 
is basically maintained in the adult [82]. In the very early stages of devel- 
opment, the c¢-actin expression precedes that of 7-actin in the gastrointes- 
tinal, urogenital, respiratory and vascular SM tissues of the mouse [83]. In 
the chicken, SM-type a-actin has been detected as early as embryonic day 
2-3 in the presumptive SMC in close contact with the developing endothe- 
lial tube (see Fig. 5 and Section 5; [102]). Similarly, a-actin is precociously 
expressed in the thick mesenchymal coat around the primitive airways in 
developing rat lung which presumably furnish the SMC to the branching 
epithelium of the respiratory system [103]. The ¢z-actin achieves the adult 
levels in vascular SMC about one month after birth when other fetal SMC 
markers are markedly down regulated [42]. 

Work from Owens's laboratory has shed some light about the regulatory 
mechanisms of SM-type ¢z-actin expression which might be involved in 
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restricting the differentiative options in SM related cells and, perhaps, in 
the correct spatiotemporal expression of this isoactin in vascular SM 
tissue during development [104,105]. The 5'-flanking region of rat and 
chicken o~-actin contains CArG elements and E boxes analogous to the 
SM-MyHC gene [73]. Different cis segments of this region, that act as 
positive or negative elements, control the transcription level in chicken 
myoblasts and fibroblasts, putatively using distinct mechanisms [104]. 
Relatively longer constructs containing 547 bp of the promoter display 
transcription activity in non-SMC which endogeneously express tx-actin 
during some stage of their differentiation. On the contrary, in cells which 
normally do not express t~-actin the construct has no efficacy. Site-di- 
rected mutagenesis experiments applied to the CArG motifs of a-actin 
promoter have different transcriptional activity depending on the type of 
cells used (SMC vs. endothelial cells; [105]). In addition, an electrophoretic 
mobility assay shows that CArG box-binding proteins (serum response 
factor (SRF) or SRF-like factor) or a complex of such proteins is involved, 
possibly via binding to multiple DNA elements, in regulating the endo- 
geneous expression of t~-actin in different cell types [105]. These data, 
along with those reported above and those obtained with SM22a pro- 
moter by Li et al. [106], point to the existence of specific transcription 
mechanism(s) for at least some SM-specific genes based on the interaction 
of SRF or SRF-like factor with CArG sequence [73]. 
3.1.2.2 
SM22 
SM22 is a 22 kDa protein relatively abundant in adult SMs [107] and not, 
apparently, associated with the cytoskeletal apparatus. Northen blotting 
analysis has demonstrated that SM22 is welt represented in all SM tissues 
[108,109]. Isoelectric focusing has shown that SM22, which displays a 
sequence homology with the SM thin filament regulatory protein calponin 
and the Drosophila muscle protein mp20 [110] and NP 25 [111], exists as 
isoforms of distinct pI, named o~, [3, y, and 8 [107,112]. Peculiar combina- 
tions of SM22 variants, exhibited in tissue- and species-specific manner 
[107,112] are not the product of different levels of phosphorylation. The 
available monoclonal antibodies to SM22 show a uniform distribution of 
immunoreactivity in adult SM tissues [113]. SM22ct is encoded by a single 
copy gene and the primary transcript does not undergo alternative splic- 
ing [109]. Conversely, during development in the chicken gizzard the o~- 
isoform is detectable around day 10 in embryo (Fig. 5), whereas the [5-iso- 
form is up-regulated after hatching and the final combination ct, [5, 3, is 
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achieved in the adult [112]. SM22¢x is expressed by all muscle tissues early 
during development but becomes down-regulated in skeletal and cardiac 
muscle at later stages of gestation [114] and continously expressed in SM 
tissue [115]. Both in situ hybridization in the mouse [114] and immuno- 
histochemistry with E-11 monoclonal antibody to SM22 in the chicken 
[113] have revealed that the specific mRNA and the relative protein for 
SM22 are expressed precociously (Fig. 5). The protein is co-distributed 
with calponin and h-caldesmon, and appears later with respect to other 
markers such as tropomyosin, desmin, filamin, SM o~-actin and MyLC 
kinase which are SM-specific in the adult, but shared with the other muscle 
or NM cells in embryo [113]. 

The murine SM22c~ gene and the 5'-flanking region have been studied 
by three laboratories. The promoter region contains cis-acting regulatory 
sequences: two CArG/SRF boxes, a CACC box, one potential MEF-2 bind- 
ing site, and eleven E-boxes [106,109,116]. Analysis of transcriptional ac- 
tivity of SM22o~ promoter in transgenic mice provided evidence that, 
contrary to the endogeneous expression, constructs of this promoter are 
able to induce the reporter expression in arterial SM tissues but not in 
venous or visceral SM tissues [106,116]. Two-nucleotide mutations in the 
two SRF sites that eliminate SRF binding also abolish the promoter activity 
in the arterial SMC [117]. This finding is consistent with the concept that 
not all the SM tissues are created equal in the hitherto believed homogene- 
ous SM system and support the notion that the development of a SM 
tissue-specific differentiation program is achieved via selective transcrip- 
tional regulation. Such mechanism involves multiple transcriptional fac- 
tors whose SM-type specific combinatorial action would be responsible 
for the unique spatiotemporal expression of this protein [78,117,118]. 

3.1.2.3 
Calponin and h-caldesmon 
Calponin [119] and caldesmon [120] are two thin filament associated 
proteins that bind to F-actin, tropomyosin and calmodulin. Interaction of 
34 kDa calponin with F-actin and tropomyosin takes place in a Ca2+-inde - 
pendent manner, whereas that with calmodulin is regulated in a Ca2+-de - 
pendent manner. The key role of calponin and caldesmon in SM is to 
down-regulate actomyosin ATPase activity in vitro [ 120,121]. Thus, they 
may participate in regulation of contractile performance. Despite their 
apparent functional similarity, sequence analysis indicates that calponin 
and caldesmon are not related proteins. They act by different mechanisms 
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of inhibition and bind to distinct thin filament populations in SMC [120, 
122, 1231. 

Both proteins exist as structural variants: hl (equivalent to chicken 
~-isoform) and 1 calponin (homologous to chicken ~-isoform), and h- and 
l-caldesmon [124]. A new type of calponin (h2), containing 57 amino acids 
at the C00H-terminus with a strong acidic domain, is also expressed in 
adult rat SM and NM tissues/cells [125]. The hl calponin and h-caldesmon 
are mainly or exclusively found in SMC [126,127], whilst the bcaldesmon 
is widely expressed in NM tissues/cells. The molecular weight deduced 
from the respective cDNA for h-caldesmon and/-caldesmon is 87-93 kDa 
and 59-63 kDa, respectively. The two isoforms of caldesmon have identical 
sequences except for the insertion of the central repeating domain in 
h-caldesmon. 

Based on the calponin expression pattern and nucleotide sequence 
differences it has been established that three genes generate the calponin 
variants [122,125,128]. Miano and Olson [127] reported that hl calponin 
transcription begins at two closely located initiation sites in the promoter. 
This is probably due to the absence of either a TATAA box or an initiator 
consensus element, which makes this promoter quite unique compared to 
those discussed above. In addition, transient transfection assay shows that 
this promoter is active in cell lines that do not express the endogeneous hl 
calponin gene. The presence of an upstream polypurine sequence in the 
promoter might potentially attenuate the level of transcription and, thus, 
hamper or exclude hl calponin in non-SMC cells [127]. 

Genomic structure analysis has revealed that caldesmon isoforms are 
encoded by a single gene mapped to 7q33-q34 locus [129], whose primary 
transcript is alternatively spliced. Using the same procedure it has been 
established that the expression of h- or l-caldesmon depends on a unique 
selection of two 5'-splice sites with exon 3 (the so-called gizzard-type and 
brain-type promoter; [130]). The gizzard-type promoter activity in "con- 
tractile" SMC is higher than in "synthetic" SMC and this correlates with 
the amount of h-caldesmon. Cell type specificity of promoter activity is 
strictly related to CArG1 element, whereas E-boxes are not directely in- 
volved. The fact that CArG1 is an important cis-regulatory element of 
caldesmon gene structure is demonstrated by gel shift assay showing 
interaction with nuclear protein factors [ 131 ]. 

Expression of hl catponin and h-caldesmon occurs very early during 
development [112, 113, 127, 132; see Fig. 5). During mouse embryogenesis, 
hl calponin is transiently expressed in the developing heart (from 8.5 to 
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13.5 day p.c.), before its appearance in gastrointestinal, respiratory and 
vascular SM tissues (at day 13.5 p.c.; [127]). In chicken, analogously to 
SM22, only the o~-isoform of calponin is initially expressed, followed by 
multiple variants after hatching [112]. In the same species, calponin and 
SM22 are coexpressed in vascular and gastrointestinal SM tissues begin- 
ning at embryonic day 6.5. The appearance of h-caldesmon, calponin and 
SM22 is delayed compared to other SM markers [113]. In humans, 
calponin and h-caldesmon appear relatively late in aortic SM during in 
utero development and after the SM-type MyHC [132,133]; Fig. 6). Inter- 
estingly, these two proteins are already present in visceral SM tissue at the 
time (10-20 wks of gestation) when they are barely detectable in vascular 
SM [132]. 

3.2 
Down-regulated expression of non-muscle markers in smooth muscle tissues 

While the majority of markers for differentiated SMC are located in the 
cytoplasm (linked with or associated to contractile filaments), those of 
"immature" SMC" belong mainly to the ECM or, to a lesser extent, plasma 
membrane (Fig. 3) and are shared by NM tissues/cells. 

3.2.1 
Non-muscle-type myosin isoforms 

Multiple NM-MyHC isoforms are expressed in developing SM tissues of 
avian and mammalian species and become down-regulated to a various 
extent around birth [56,57,59,134-138]. These isoforms can be grouped 
into two MyHC-A and MyHC-B types, the latter being predominantly 
expressed in brain and the former essentially in muscle and in NM-non- 
brain tissues [139-141]. The entire gene sequences of the two major iso- 
forms and their respective chromosomal locations (MyHC-A: chromo- 
some 22q11.2; MyHC-B: chomosome 17p13) are now known [142-144]. 
The major difference between MyHC-A and MyHC-B relies on the final 20 
amino acids of the COOH-terminal tail region of the molecule [142-144]. 
The two isoforms, analogous to SM-type MyHC (see Section 3.1.1.1), dis- 
play markedly different actin-activated MgZ+-ATPase activity and velocity 
of movement of actin filaments [51,145]. Additional isoforms are also 
produced by alternative splicing in correspondence of the 25/50 kDa (near 
the ATP binding domain) and the 50/20 kDa (near an actin binding do- 
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main) fragment, respectively, of the the so-called proteolytically cleaved 
subfragment- 1 [ 140,146,147]. These alternatively spliced variants are con- 
fined, however, to the nervous system. The existence of MyHC-A and 
MyHC-B-related isoforms has been established on the basis of the im- 
munoreactivity distribution of peptide-specific polyclonal antibodies 
[ 137,140,148] and platelet MyHC-specific monoclonal antibo dies [42, 134, 
149, 150]. Elzinga and colleagues [141] and our own group [42,150] have 
established that a platelet-type MyHC (MyHCpl,) is also expressed in SM 
tissues of vascular and non-vascular type [61, 66, 149]. Though the mo- 
lecular physiology of these NM-MyHC isoforms in SM tissues is still un- 
known, some recent data obtained in NM cells seem to indicate that the A 
and B isoforms of NM-MyHC play a role in cell proliferation/migration of 
SMC. For example, antisense oligonucleotides to common NM-MyHC iso- 
form sequences suppress SMC proliferation in vitro [151]. Experiments 
performed in Xenopus XTC cells show that alternatively spliced MyHC-B 
isoforms are phosphorylated at a specific serine residue by cdc2 kinase, 
whereas MyHC-A remains unphosphorylated [152]. Since this enzyme, 
along with the regulatory subunit cyclin, is a part of the protein complex 
(named maturation-promoting factor) controlling the cell cycle [153], it is 
possible that such an enzymatic process is of importance in the regulation 
of the proliferative level in SMC. In addition, a Mts-1 protein positively 
associated with metastatic phenotype in neoplastic cells forms a complex 
with MyHC-B myosin isoform [154]. These facts, along with the finding 
that MyHC-A and MyHC-B are differentially localized in human [155] and 
Xenopus [145] cells grown in vitro are indicative that the two isoforms 
have different functions within the NM ceils. It must be elucidated what 
kind of interaction, if any, can be established between NM-MyHC and 
SM-MyHC isoforms in SMC thus resulting in the two "cytoplasmic do- 
mains" of cytoskeletal/cytocontractile apparatuses described by North et 
al. [93,123]. 

B- and Aph-type NM-MyHC isoforms are down-regulated in arterial SM 
tissue during development in rabbit, rat and in humans [10,11, 56, 57, 138, 
156]. In rabbit aortic media, MyHC-B disappears around birth (Fig. 6; 
[56]), whereas in the pig [157] and humans [138] it persists even in the 
adult. The human aortic vasa vasorum and intramural branches of coro- 
nary artery, however, are devoid of B-type NM-MyHC isoform [138]. 
Down-regulation of Aph-type NM-MyHC has a different time-course with 
respect to MyHC-B. In rabbit, one isoform named Aplal disappears a few 
days after birth, whilst the other isoform named Apla2 is down-regulated 
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about 30 days from birth (Fig. 6; [42, 149, 150]. Trace amounts of Apla2 
persist even in adults in some loci known to be prone to the development 
of proliferation/migration of medial SMC into the subendothelial space 
[158]. MyHC-B in human myometrium [59] and Apla-type MyHC in rab- 
bit bladder [159] and myometrium [160] also undergo a down-regulation 
of during development. Taken together these data indicate that "imma- 
ture" SMC display a "hybrid" myosin isoform content irrespective of the 
type of SM tissue. Thus, deinduction of NM myosin expression and induc- 
tion of adult specific-SM2 isoform take place during the same range of 
time and represent the "passage" from the differentiation to the matura- 
tion step in the SMC cell lineage (see Section 5). 

3.2.2 
Keratin 8and 18 

It well documented that the intermediate filament proteins of keratin-type 
are expressed in SMC of adult human normal myometrium [161], umbili- 
cal vessels [162,163] and in occasional medial SMC of muscular arteries 
[164]. Keratin 8, and the timely associated fibrinectin variants A and B, are 
expressed in the aortic SMC of 10-week-old human fetus and become 
down-regulated thereafter [133]. On the basis of the heterogeneous pres- 
ence of mesenchymal-type intermediate filament protein vimentin and of 
muscle-specific intermediate filament protein desmin in adult vascular SM 
tissues [84, 165], two categories of SMC can be identified with respect to 
keratin expression, i.e., those which coexpress the combinations of kera- 
tin-vimentin and those expressing keratin-desmin. Interestingly, the in- 
nermost layer of human umbilical arteries, where keratin 8 and 18 are 
present, does not contain desmin [162]. Though the possible developmen- 
tal regulation of desmin expression has not yet been fully ascertained [2], 
the possibility might exist that the switching off of keratin gene expression 
early in development is associated with activation of desmin expression. 
The prevalence of keratins in fetal vascular SM tissue might be related to 
the high proliferation index of "immature" SMC, though in atherosclerotic 
lesions, where a proliferation/migration of medial SMC takes place, such a 
correlation is not supported by experimental data [166]. It worth noting 
that bladder SMC also does not evidence keratin expression during devel- 
opment or in experimental conditions characterized by SMC hyperplasia 
[167]. 
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3.2.3 
Integrins and vascular adhesion molecule 

Cell-matrix interactions mediated through integrins play an essential role 
in modulating the differentiation level of SMC [39]. Though the various 
types of integrin studied so far in the vascular system display a marked 
tendency to increase their expression at late stages of development [168], 
two adherence proteins show an opposite regulation. The two adhesion 
proteins Very Late Antigen-4 (VLA-4; 1~4[~1) and Vascular Cell Adhesion 
Molecule-1 (VCAM-1), are markedly expressed in 10-week-old human 
fetal aorta, down-regulated at the 24th week of gestation and practically 
absent in the adult aortic SM tissue [169]. This finding contrasts with the 
distribution of cz4 during ontogenesis in mouse aorta, where apparently 
there is no down-regulation, and VCAM-1 expression is lacking in vascu- 
lar SMC [170]. The fact that the expression of these two proteins is coordi- 
nated and associated with a specific SMC phenotype is supported by in 
vitro data. Blocking of VCAM-1/c~4 interaction inhibits the precocious 
expression of SM-type MyHC in cultured SMC grown in serum-free me- 
dium [170]. Since the VCAM-1/ot4 combination reappears in the intimal 
thickening, the hypothesis has been put forward that these two proteins 
are important in a potential re-differentiation process which might occur 
in the atherosclerosis lesion. 

3.2.4 
Fibmnectins 

Fibronectins are high molecular weight glycoproteins involved in different 
cellular activities, such as adhesion, migration and differentiation 
[39,171]. Fibronectin variants originate from alternative splicing from the 
single gene transcript at three sites named EIIIA, EIIIB and V segments 
[172]. In particular, if the V region is totally included in the transcript the 
CS-1 variant is produced. While EIIIA variant is always expressed in vis- 
ceral SM tissues, both in early development and in the adult, EIIIB is 
almost exclusively present in the fetus, both in vascular and non-vascular 
SM tissues [ 173-175]. In aortic media, EIIIA is expressed at high levels only 
in the fetus, though it is also contained in the SMC of tunica intima of adult 
humans [174] but not in the media where low levels of IIICS fibronectin 
are expressed [176]. 
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Experiments performed with rat aortic rings support the notion that 
the selective induction of EIIIA isoform in cultured SMC, grown in serum- 
free medium, is associated with a phenotypic shift in vascular SMC to a 
"synthetic" state [177]. EIIIA and EIIIB activation is also visible in experi- 
mental conditions and in vascular disease involving proliferation/migra- 
tion and SMC hypertrophy in adult animals and humans [176, 178-181]. 
Here, it represents an early and long-lasting event and seems to be one of 
the first markers that parallels the appearance of the "synthetic" SMC 
phenotype" [181], 

3 2.5 
Tropoelastin 

Synthesis of the elastin pro-protein tropoelastin during development is 
strictly related to the structural-functional modifications of arterial SMC. 
The synthesis of tropoelastin mRNA in rat aorta peaks at late fetal and 
early postnatal life, i.e., just after the burst of initial SMC replication and 
continuing after the postpartum drop of SMC proliferation [27, 182]. Sixty 
days after birth tropoelastin expression becomes undetectable in the 
tunica media [27]. The time course for tropoelastin expression in pulmo- 
nary artery follows the same trend [182,183]. Tropoelastin mRNA distri- 
bution in aorta and pulmonary artery forms complex patterns along both 
radial and longitudinal axes of the blood vessel in the sense that the 
etastogenic activity follows an orderly, sequential, proximal-to-distal de- 
ployment from the heart towards the vascular periphery. After birth, in the 
outer medial layer of rat pulmonary artery, elastogenesis declines more 
rapidly compared to the inner layer [184]. Results of Durmowicz et al. 
[185] in developing bovine pulmonary artery confirm the regional distri- 
bution reported above and point to existence of a biphasic pattern of 
tropoelastin mRNA expression. In early gestation expression of tropoe- 
lastin is present throughout the vessel wall, whereas in midgestation ex- 
pression is decreased in the outer layer and maintained in the inner layer. 
In late gestation, expression is extended to the whole vessel wall though it 
gives a heterogeneous pattern of distribution. It has been suggested, by 
comparison with the distribution of SM-specific markers, that this pattern 
reflects the phenotypic changes of differentiating SMC and the hemody- 
namic forces which act perinatally in these vascular regions [185]. 



260 S. Sartore et al. 

4 
Gene expression and cell heterogeneity in adult and developing 
smooth muscle cells 

As discussed above, the activation of a time-dependent gene program in 
SM tissues entails the coordinating up-/down-regulation of a number of 
molecular isoforms and largely contributes to the physiological remodel- 
ing of various organs,[186]. This process is accomplished by a series of 
sequential changes of sets of molecules that identify discrete cell pheno- 
type s (cell isoforms). Such a mechanism would permit the progressive 
adaptation of the (molecular) structure to the variable physiological con- 
ditions imposed by development. It is reasonable to assume that each step 
during this adaptive process is dictated by the combined effect of an 
endogeneous SM C commitment (see Section 5) and the responsiveness of 
SMC genes to enviromental cues (see Section 7). 

The study of distribution of SM and NM proteins in SM tissues has 
allowed the identification of distinct SMC populations and their spa- 
tiotemporal dynamics during development. Though the existence of these 
SMC populations does not imply that the respective structural (molecular) 
differences are stable and heritable from generation to generation of cells, 
the information obtained is helpful to trace the differentation pathway that 
the SMC follow in some experimental models and in some pathological 
settings. 

The first evidence for vascular SMC heterogeneity was obtained study- 
ing the distribution of the intermediate filament proteins desmin vs. 
vimentin in the rat [187]. Though these two proteins are not SMC specific, 
the dat,a indicate that an extensive cellular heterogeneity exists and is 
dependent upon the vascular level considered. More recently, Johansson et 
al. [164] have shown that the desmin/vimentin distribution in human 
vessels is related to the specific anatomical location as also occurs in rabbit 
.[188]. These authors have also established that a desmin-positive SMC 
population of aorta but not of femoral artery undergoes a phenotypic 
change with development. 

Heterogeneity of SM-type ~-actin isoform distribution, as determined 
by a sequence specific monoclonal antibody [189], in vascular SM tissue is 
especially evident in newborn rats where a population of SMC is negative 
for this marker [80,190]. Apparently,~a comparison of the spatiotemporal 
distribution of vimentin/desmin/actin during development and adult is 
still lacking. 



Molecular and Cellular Phenotypes and Their Regulation in Smooth Muscle 261 

Using monoclonal antibodies to MyHCpla and to MyHC-A, we and oth- 
ers have shown that bovine aortic media is heterogeneous as regards SM- 
and NM-type MyHC isoform distribution [10,137]. In agreement with data 
from Stenmark's group [13,29], we also found that such a composition is 
development time-dependent and spatially-specific arranged with respect 
to the fibro-elastic structure of arterial wall [10]. Major details about 
time-dependent changes in SMC populations with development have been 
obtained in rabbit thoracic aorta [149] and canine carotid artery [191]. As 
also shown in Fig. 7, in the rabbit two distinct SMC populations exist in the 
medial layer of adult aorta, namely the "adult" (SM-MyHC isoform only), 
and "postnatal" (characterized by the expression of SM + NM-MyHCpla), 
SMC phenotypes [150]. During early stages of development, the aortic 
SMC are all homogeneous for SM, NM-MyHCpkl and MyHCpI~ composi- 
tion. Immediately after birth, MyHCplal becomes down-regulated, but all 
SMC continues to express SM myosin + MyHCpI~ up to about 30 days 
when the adult-type SMC population appears (Fig. 6). In the various adult 

SMC populations in rabbit aorta during development 

[ Prenatal diversification[ 

type2 ~ ~ ~ ~ ~ (Type 2) 

I Postnatal diversification t 

(Type 2) 

t y p e  / 

(VSMC) 

Stage of 
development: fetal postnatal adult 

Fig. 7. Diversification of SMC populations in rabbit aorta based on selective SM- and 
NM-MyHCpla isoform expression. In brackets is reported the nomenclature proposed 
by Holifield et al. [191] and Seidel et al. [193], possibly corresponding to the SMC 
phenotypes identified by Giuriato et al. [1491. 
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vessels, the "postnatal"-type SMC are uniquely deployed and such specific 
localization is of importance in the development of the atherosderotic 
lesion [158]. It is not clear whether these two SMC phenotypes also display 
a corresponding "fetal"- and "adult"-type SM1 to SM2 ratio [192], i.e., up- 
or down-regulation of myosin isoform expression occurrs concomitantly 
at the level of single cell. In the dog, arterial and venous SMs also contain 
two similar cell populations that are distinguishable on the basis of ab- 
sence (Type 2) or presence (VSMC) of SM-type o~-actin and MyHC ([191]; 
Fig. 7). The Type 2 SMC, similarly to the "postnatal"-type SMC [158], are 
believed to be involved in neointimal formation, possibly on the basis of a 
unique migratory ability (Fig. 8; [193]). 

Based on cell location and immunohistochemical criteria, multiple dis- 
tinct SMC populations have also appeared in bovine pulmonary artery 
[12]. Here, cytoskeletal and ECM proteins are distinctly distributed in the 
lumenal vs .  adventitial layer of the tunica media, similarly to the canine 
carotid artery [191]. Each of four identified SMC populations appears to 

Two specific SMC subpopulations exist in the tunica media but 
only one partecipates in the neointima formation 

i.e.l. - - ~ -  

~ PROLIFERATION ~ ~ '~PROLIFERATION 

~t, DIFFERENTIATION ~ ~ ~IDIFFERENTIATION 

e.e.L 

@ V S M C  @ Type 2 

VSMC and Type 2 ceils found in the canine carotid 
artery might correspond to type 1 and type 2 cells, 
respectively, identified in the rabbit arteries. 

Fig. 8. SMC subpopulations. 
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progress along distinct developmental pathways, though in the fetal period 
only one SMC type has been recognized [12,29]. It is worthy of mention 
that in the presence of a hypoxic stimulus, neonatal hypertensive calves 
increase the meta-vincutin negative SMC population without any involve- 
ment of the other cell populations [194]. This specific SMC subtype is 
observed in the proliferative response occurring in the outer media of this 
artery. Also in this model, proliferation and differentiation of vascular 
SMC appear to be strictly associated. 

While all these examples of in vivo cell heterogeneity develop in an 
apparently homogeneous SMC context, in the chicken system morphologi- 
cal and immunophenotypic diversification are doselylinked. For example, 
Yablonka-Reuveni et al. [195] have shown that neural crest-derived lamel- 
lar and interlamellar aortic SMC are distinguishable by morphological 
and immunophenotypic (desmin and SM-type t~-actin distribution) crite- 
ria. It is not known whether the chicken SMC lacking desmin and SM-type 
tx-actin correspond to the small-sized cell population of bovine aorta [10] 
and canine carotid artery [191] lacking SM-type MyHC or to the SM-type 
~-actin negative SMC population expressed in human atherosclerotic 
plaque [196]. 

While in the large conduit vessels developing SMC undergo the above- 
mentioned molecular transitions, in the periphery the arteriolar vessels 
seem less susceptible to phenotypic modifications. For example, Pauletto 
et al. [197] and Giuriato et al. [158] have shown that in different microvas- 
cular regions the majority of peripheral vessels show the "fetal"-type SMC 
composition, though a minority does not express SM-MyHC. During post- 
natal development, in agreement with data from Price et al. [198], the size 
of SM negative microvessels is reduced [158]. 

Taken together these data suggest that vascular SMC heterogeneity 
might be a more favorable and flexible condition for the development of 
an adaptive response compared to a monocellular system. 

5 
The smooth muscle cell lineage pathways 

In the previous sections we have highlighted the fundamental morpho- 
logical and molecular features of adult and developing SM tissues with the 
aim of furnishing a conceptual support for the interpretation of the behav- 
ioral characteristics of vascular and non-vascular SMC in pathology. It 
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turns out, however, that this issue when approached by a study restricted 
to the fetal stage of development is not adequate to face the challenge. For 
example, the induction, after endothelial lesion or angioplastic interven- 
tion, of an abrupt rise in proliferation of quiescent medial SMC accompa- 
nied by migration from this compartment to the subendothelial space, 
cannot be completely explained as a mere recapitulation of a "fetal behav- 
ior" by adult SMC [199]. Fetal SMC have already acquired some "basic 
muscle properties" that might differ from those expressed during neoin- 
tima formation. The temporal sequence of SM-specific gene activation at 
the early stages of development suggests that the commitment to SMC 
lineage-occurs well before the relatively late expression of SMC markers. 
Thus, to substantiate the working hypothesis proposed in this review a 
comparison with the very early stages of SMC development is needed. In 
this section, we will review briefly the molecular morphogenetic process 
of blood vessel formation, giving more emphasis to those aspects that are 
of potential interest in interpreting the mechanism of neointima forma- 
tion. 

5.1 
The initial step 

At the very early stages of development, after uncommitted cells have 
achieved a developmental imprinting through a pattern formation proc- 
ess, mesodermal cells are either recruited to the nascent endothelium 
(vascular system) or epithelium (non-vascular systems; [200]. New vessels 
are formed through two distinct morphogenetic processes: vasculogenesis 
(de novo emergence in the early embryo) and angiogenesis (new vessels 
arise from preexisting ones; [201-203]). In adult, new vessels are formed by 
sprouting from preexisting ones on tissue demand [1,204]. In embryos 
during vascuiogenesis, the endothelial cells organized as small "cell clus- 
ters" represent the primitive recruiting structure that, in association with 
differentiating SMC, will ultimately give rise to the complete and mature 
blood vessels by a multistep process. The intial step of SMC pathway is 
preceded by the angioblastic differentiation from the surrounding meso- 
derm or from angioblasts at the site of-blood vessel origin (Fig. 9; [203]. 
During ontogeny, vasculogenesis or angio~enesis seems-to occur depend- 
ing on whether the mesoderm is associated with endoderma or ectoderma 
[2051. 
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There are no specific precursors in the cellular milieu which surrounds 
the respective developing endothelial and epithelial tubes. In contrast to 
skeletal muscle [206], that are derived from unique populations of 
mesodermal precursor cells, SMC arise throughout the embryo from di- 
verse precursor cell types (Figs. 9, 10). Cells destined to become the major 
constituent of the developing blood vessels have three distinct origins: 
from lateral mesoderm-derived mesenchyme (tentatively named Mes 
SMC; [207]; see Figs. 10, 11) and from cardiac neural crest (i.e., of neuroec- 
todermic origin [208,209], tentatively named Ect SMC; [207]; see also Figs. 
10,11). As to mesodermal-derived SMC, it is important to ascertain when 
and how these cells are committed to become SMC. In addition, it is not 
known if migrating cardiac neural crest cells have completely acquired 
SMC lineage commitment at time of colonization-incorporation in devel- 
oping blood vessels ([210]; see also Fig. 9). 

A neural crest-derived population, however, contributes to the SM 
tissue formation in the vessel segments proximal to the heart [209]. Endo- 
thelial-mesenchymal [2,203] and epithelial-mesenchymal [211-214] cell 
interactions are of fundamental importance to the establishment of the 
proper environmental conditions ,that allow the incorporation and acqui- 
sition of SM-type characteristics by the mesenchymal cells during organo- 
genesis. 

The morphogenesis of coronary artery system has been elucidate by the 
use of retroviral markers [215] and chicken-quail chimeras [216]. Coro- 
nary vasculature does not stem, as previously hypothesized, from an out- 
growth process from aorta, but it seems derived from locally migrating 
subepicardial endothelial and SMC precursors [215], possibly by vasculo- 
genesis [217]. It is only after the connection with aorta and the right 
atrium that a vascular wall organization with the formation of a tunica 
media and an adventitial layer takes place [217]. Cardiac neural crest cells, 
though not present in immature coronary arteries seem, however, able to 
influence the survival, in this region, of the definitive vascular structure 
[218,219]. 

Among the factors involved in the endothelium-mesenchymal cell in- 
teraction there are: transforming growth factor-~ (TGF[3), platelet-derived 
growth factor (PDGF; [1,2]), vascular endothelial growth factor (VFGF; 
[220]) and the.recently discovered angiopoietin-t [221]. According to a 
model proposed by Folkman and D'Amore [222], the directional migra- 
tion-differentiation of mesenchymal cells that takes place around the tube 
containing proliferating endothelial cells is a two-phase process. In the 
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Fig. 10. The three major sources of arterial SMC precursors. 

first phase angiopoietin-t produced by mesenchymal cells [221] activates 
the TI2 receptors [222] on endothelial cells that in turn release the chemo- 
tactic/recruiting factors PDGF-BB or, perhaps, PDGF-BB and HB-EGF 
(heparin-binding epidermal growth factor). In the second phase, once the 
recruited mesenchymal cells have been approached and an endothelial- 
mesenchymal cell contact has been established, TGF[3 is locally activated 
and a block of proliferation and induction of differentiation takes place in 
endothelial and "activated" mesenchymal cells, respectively. It is worth 
noting that this hypothetical mechanism might explain the SM tissue 
formation from mesodermal cells but not the one from neuroectodermal 
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- Low angiotensin converting enzyme activity; 
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unaffected; c-myb not expressed. 

Fig. 11. SMC diversity in chicken embryo. 

cells. For example, TGF[31 increased DNA synthesis markedly when ap- 
plied to cultured cells from chick embryonic aortic segments enriched 
with neural crest-derived SMC but not from segments containing 
mesodermal SMC [207]. Interestingly, in avian embryos both VFGF [223] 
andf lk - t  tyrosine kinase VFGF receptor [224] are markedly expressed in 
close proximity of developing endothelium at the level of endothelial cell 
precursors. Since a diffusible form of VFGF protein induces marked altera- 
tions in the vascular organization and architecture [224], it is higly plausi- 
ble that VFGF plays an important role both in vasculogenesis and vascular 
patterning. 

Newly wall-incorporated cells undergo a differentiation process 
through which specific elements of structural organization of SMC are 
progressively acquired during in utero or in ovo development [1,2]. Some 
information is now available about the first step in the determination-dif- 
ferentiation-maturation sequence that, like the other muscle pathways 
[225], is involved in vascular myogenesis. Using monoclonal antibodies to 
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SM-type cz-/y-actin and other markers, some authors have begun to study 
the commitment of mesodermal cells to SMC [83,102,226-228]. According 
to Hungerford et al. [102], the chicken cells that express o~-actin and the 
1E12 antigen (probably an isotype of SM c~-actinin [229]) are destined to 
become SMC, whereas those containing only ~-actin are presumably pre- 
sumptive myoblasts. Only cells located adjacent to the endothelium show 
the expression of a-actin and this event seems to take place initially at the 
ventral surface in the chicken [102] and at the dorsal surface in the mouse 
[227]. On the contrary, in the gastrointestinal tract of developing mouse 
such an event does not require a direct epithelium-differentiation SMC 
contact [83]. This author has also hypothesized that myoblast and imma- 
ture SMC can be distinguished on the basis of c~-/y-actin content. This view 
has been recently challegend by DeRuiter et al. [230] who have suggested 
that embryonic endothelial cells can transdifferentiate into mesenchymal 
cells showing SM cx-actin expression. Along with the "centripetal" direc- 
tion hypothesis of migration-incorporation of presumptive SMC in blood 
vessel formation, there is an opposite proposal: migration-incorporation 
from inward to outward (see also Fig. 9). A similar event occurs associated 
with the inducible transformation of endothelium into cushion me- 
senchyma cells during valve morphogenesis [231]. In addition, though the 
SM-type a-actin expression in mesodermal cells is likely to be a marker of 
SMC precursor cells, it remains~to be determined whether this cell pheno- 
type is really unique to SMC lineage or is shared by the other developing 
muscle tissues that also express this marker. 

5.2 
Smooth muscle cell diversification in embryo 

The SMC cell lineages are differently distributed in large elastic arteries: 
Ect SMC are mainly localized in the vessels proximal to the heart (outflow 
tract and aortic arch arteries), whereas Mes SMC are found in the distal 
part of the same arteries ([207]; see also Fig. 11). One exception to this rule 
is represented by the formation of coronary arteries that a~e locally 
formed by ingrowth of epicardial layer precursors and subsequently con- 
nected to the root of the aorta [215]. This process is apparently carried out 
without the cellular contribution of cardiac neural crest, but this tissue is 
able to influence the spatial order of developing coronary arteries 
[218,219]. Future studies must address the point of comparing the process 
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of recruitment-incorporation of SMC precursors in developing coronary 
arteries vs. large conduit vessels. 

The two types of embryonic SMC have been analyzed in vitro and found 
to differ in the proliferative response to TGF[51. This cytokine, when ap- 
plied to chicken SMC cultures from the thoracic (mainly Ect SMC) aorta, 
induces DNA synthesis. When added to cultures from abdominal (mainly 
Mes SMC) aorta TGF~51 is growth inhibitory. The two types of cultures 
also differ in the extent of glycosylation of type II TGF[31 receptor [207]. 
Results from Rosenquist's laboratory substantially confirm such differ- 
ences as regards to TGF[51 effects on cultured Ect vs. Mes SMC and suggest, 
in addition, that PDGF-BB and c-rnyb are also able to produce distinct 
effects in the two cultures [232,233]. Tissue homogenates from developing 
aortic tissue containing Ect SMC and Mes SMC, respectively, are also 
different as regards the increased level of angiotensin converting enzyme, 
suggesting again the existence of intrinsically different properties in the 
two cell types ([234]; see also Fig. 11). 

5.3 
Smooth muscle cell diversification in adult and newborn 

It is generally accepted that when vascular SMC are grown in vitro they 
lose to a various extent their peculiar "contractile" features in favor of the 
"synthetic" phenotype (see Section 6.2). Recent results of cell cloning 
experiments on aortic SM tissue from adult and newborn rats point, how- 
ever, to the existence of multiple and phenotypically stable SMC pheno- 
types in vivo and could furnish a biological justification for SMC heteroge- 
neity found with the differentiation markers. Unlike some SMC lines, these 
clones are derived from plating at different densities and not via mu- 
tagenesis, transformation [235,236] or from conditionally immortalized 
cells [237]. 

Aortic SMC from adult aorta, when cultivated in the presence of whole- 
blood serum, give the so-called A (adult) - SMC phenotype, i.e., spindle- 
shaped morphology, no secretion of PDGF, expression of PDGF-A but not 
of PDGF-B ([238]; Fig. 12). By contrast, aortic SMC from newborn (P-SMC 
or "pup" SMC) display a "cobblestone" or "epithelioid" morphology, se- 
crete a PDGF-like mitogenic activity and express both PDGF-A and -B. 
Cell cloning procedures have shown that two distinct cell types can be 
obtained from 12-day-old rat aortic SM. The first proliferating in plasma- 
derived serum, showing the "cobblestone" appearance, and containing 
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PDGF-B mRNA, high levels of CYPIA1, osteopontin and elastin mRNAs 
but lacking PDGF-a receptor. The other, proliferating poorly in plasma- 
derived serum, displaying a spindle-shaped morphology, lacking PDGF-B 
mRNA, containing low levels of CYPIA1, osteopontin and elastin mRNAs 
but expressing PDGF-areceptor [238-240]. A-SMC when grown in 
plasma-derived serum resemble morphologically the P-SMC but do not 
produce PDGF though they show the presence of PDGF receptors [241]. 

Bochaton-Piallat et al. [242], have also reported on the differences be- 
tween arterial SMC from newborn and adult rats grown in presence of 
serum and the persistence, after cell cloning, of some differentiation mark- 
ers (SM myosin and o~-actin and desmin) in the former. Bochaton-Piallat et 
al. [243] subsequently confirmed the tendency for clones from newborn or 
young rats to have a higher degree of differentiation than those from aged 
rats, the latter being more proliferative than the former (see also Fig. 12). 
Based on cell morphology, serum-dependent or serum-independent 
growth, [3H]-thymidine incorporation, migratory ability and differentia- 
tion marker distribution, it was shown that the medial layer of adult rat 
aorta is comprised of four phenotypes: spindle-shaped, cobblestone, thin- 
elongated and senescent [244]. 

Taken together these data support the notion that even in adult and 
developing rat aorta, where medial SMC are apparently identical from a 
morphological point of view, at least two distinct cell types exist. Their 
respective functional features are disclosed only in coincidence with wall 
damage or when they are grown in cultures. 

6 
Differentiation vs. proliferation in smooth muscle cells in vivo and 
in vitro 

6.1 
In vivo 

SMC in the various SM tissues are remarkably quiescent [29,37,61,244- 
246]. In particular, vascular SMC from aorta and pulmonary artery show a 
replication rate of .06% per day [29,246]. Looking at the SMC lineage 
pathway during the embryonic/fetal and postnatal phases of development 
a much different pattern can be observed [27,29,228,247]. In the embry- 
onic rat aorta, the SMC display a very high replication index (75-80%/day). 
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The index declines to about 40% concomitantly with the developmental 
transition from the embryonic to fetal stage [27,247]. In newborn rats this 
index is about 2% [80] and becomes .5% and .06% by 1 and 3-4 months 
after birth, respectively [246,247]. In the pulmonary artery, however, it is 
about 30% from day 19 in utero up to day 7 after birth [29]. Though it 
seems that during development proliferation and differentiation are mutu- 
ally exclusive, recent data from Lee et al. [228] point to different picture. In 
aortic media from day 2.5-19 chick embryo, the kinetics of replication is 
temporally distributed in two waves: a rapid (15-17%; from days 4-12) and 
a slow (less'than 5 %; from day 16 to hatching) proliferation phase. Interest- 
ingly, expression of the precocious muscle lineage marker SM a-actin 
occurs independetly from the level of proliferation [228]. 

It must also be kept in mind that the various SMC proliferation steps in 
the developmental process occuring in the course of physiological vascular 
remodeling are likely to be counteracted to a various extent by apoptosis 
[248,249]. The genetic program for cell death in association with mecha- 
nisms that control proliferation and regulate differentiation of SMC might 
contribute to determining the definitive growth status of vascular SM 
tissues. For example, c-rnyc is involved in controlling proliferation in endo- 
thelial-injured neointima formation [250,251] and deregulation of this 
protooncogene induces apoptosis [252]. Similarly, PDGF, which is known 
essentially as an inducer of SMC proliferation [253], can partially reverse 
apoptosis in cultured, passaged SMC from human atherosclerotic plaque 
thus acting as a survival factor [254]. 

It is important to emphasize that the "embryonic SMC" when grown in 
vitro display growth properties, such as the ability to proliferate in serum 
free media (Fig. 12), that are quite distinctive compared to the cultured 
SMCfrom newborn rats (the so-called "pup"/neointimal SMC or 1r-SMC) 
identified by Schwartz and coworkers ([7]; see also Section 6.2). These 
"embryonic" SMC share the same growth properties with the SMC sub- 
population isolated in vitro by Schwartz et al. [241], i.e., an autonomous 
(serum-independent) growth. It is tempting to speculate that persistence 
of such "embryonic" SMC in adult may represent a type of "stem-like" 
SMC population that activates on demand (see also Fig. 12). 

Judging from the time-course of proliferation behavior during develop- 
ment, one might argue that the abrupt drop around birth is correlated with 
the phenotypic changes observed with some differentiation markers such 
as the disappearance of NM- type MyHC-B or MyHCpla (see Section 3.2.1). 
Though these two parameters are not as linked as occurs with other 
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muscle systems [5,255], it seems that a relationship between proliferation 
and differentiation also exists in vascular SMC during in vivo differentia- 
tion. To support this notion, Belknap et al. [27] found that the highest 
amount of tropoelastin mRNA was produced in rat aorta after the initial 
burst of replication, i.e., late fetal and early postnatal stage. At the ultras- 
tructural level, however, vascular and non-vascular SMC can divide with- 
out substantially losing the myofilamentous organization [256]. Owens 
and Thompson [80] also demonstrated that the proliferative event takes 
place irrespective of the SM-type o~-actin content of vascular SMC. The 
peculiar differentiative plasticity of SMC, partially dissociated from the 
proliferative behavior, might facilitate the reparative process of vascular 
wall but, at the same time, might be an obstacle in a regenerative process 
where loss of somatic cell specialization and acquisition of a specialization 
for cell division occur together [257]. 

6.2 
In vitro 

When adult vascular and non-vascular SM tissues are grown in vitro in 
primary cultures the structural and functional properties developed in 

vivo change markedly and exhibit the so-called "synthetic SMC pheno- 
type" [40,41,258]; see also Fig. I3). As mentioned above, with the exception 
of chicken aortic SMC, there is no evidence that such a "synthetic pheno- 
type" exists in vivo before SMC are grown in vitro. Thus, due to peculiar 
differentiative plasticity or more so to the instability in ex-vivo environ- 
ment, all or part of SMC show the tendency to acquire a distinct cell 
phenotype. It is also known there are a number of endogeneous and 
exogeneous factors that can dramatically influence the final differentiative 
and proliferative outcome. For example: the type of tissue (media or in- 
tima), the age of donor, the explant vs. the enzymatic technique used to 
prepare the tissue cukure, the serum concentration, cellular density, 
number of passages, duration of cultivation, etc. All of these can indeed 
affect the morphological and molecular level attained in culture. Thus, we 
are faced with two linked and, perhaps distinct, problems: (1) the extreme 
environmental-factor sensitivity of cultured SMC, and (2) the existence of 
an "intrinsic" structural-functional SMC heterogeneity as revealed, for 
example, by the unique distribution of some differentiation markers in 

vivo or by cell cloning. In other words, it is of extreme importance to 
distinguish the basic "genetic" behavior from the environmental ("epige- 
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Fig. 13. Changes of some structural and functional characteristics in cultured SMC. 
Identity between in vivo and in vitro "contractile" phenotypes is still debated. 

netic") factors that drive the growth and differentiation changes in cul- 
tured SMC. Before going into details about these two problems, we shall 
discuss some structural aspects pertaining to the two major SMC phenop- 
types in vitro. 

Numerous laboratories have observed that the cell structure as well as 
cytoskeletal and cytocontractile protein content is markedly different be- 
tween the two opposite SMC phenotypes. In the "synthetic" phenotype 
SM2, and to a lesser extent SM1, SM-type cx-actin, h-caldesmon, calponin 
and desmin content/distribution are decreased, whereas NM-type MyHC- 
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A, -B and MyHCpla, and NM-type [~-actin isoforms are increased 
[10,94,125,259-263]. The loss or diminution in the expression of SM-spe- 
cific markers is in part linked to the manipulations used to set up the 
tissue culture, while the increased expression of NM-type markers is al- 
most constant. A more direct approach to the phenotypic-related expres- 
sion of some proteins in cultured SMC was undertaken by Shanahan et al. 
[108]. Using a differential cDNA screening procedure and RNAs from 
freshly dispersed, differentiated and scarcely differentiated late-passaged 
cultured rat aortic SMC, they have been able to demonstrate that seven 
cDNAs are more strongly expressed in the former compared to the latter 
cultures'. SM22c~, CHIP28 (a putative membrane channel protein), tropoe- 
lastin, SM-type cx- and y-actin, calponin and phospholamban. It must also 
be taken into account that changes in the level of synthesis and content of 
some cytocontractile proteins are temporally dissociated [2]i Thus, some 
caution must be exerted in comparative evaluation of gene expression 
between cultured SMC. 

SMC become competent for proliferation in the presence of exogene- 
ous/endogeneous growth-stimulating factors and adequate substrate for 
cell attachement [41,264]. It has been hypothesized that the "phenotypic 
modulation" from the "contractile" to the "synthetic" state is a prereq- 
uisite, though not sufficient, for the proliferative event to take place. This 
hypothesis has been questioned by other groups [265,266] that believe the 
difficulty in growing SMC in vitro is not based on a cause-effect relation- 
ship existing between a certain phenotype and the onset of proliferation. 

A number of growth factors, cytokines and hormones can modify, to 
some extent in a reversible manner, the growth and differentiation state of 
Cultured SMC. This has been taken as evidence of "phenotypic modula- 
tion" processes [41,264]. The well-defined developmental changes of SMC 
phenotype in the SMC lineage, ranging from a poorly (fetal-type) to a fully 
(adult-type) differentiated SMC, and the existence of SMC clones place the 
problem of the phenotypic modulation in a new context. It might be that in 
medial aorta two potentially distinguishable SMC populations exist: one 
that shows a fetal/immature behavior (tendency to undergo a "phenotypic 
modulation" from an apparently "contractile" to a "synthetic" phenotype 
accompanied by the acquisition of a proliferative capacity), and the other 
one that displays an adult-type phenotype that can eventually proliferate 
without changing the cell phenotype. The first cell population goes 
through a series of transitional steps that can be identified by their de- 
pendency on exogeneous or autocrine-acting endogeneous mitogens. 
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While in this latter circumstance initiation of proliferation is related to 
changes in the differentiation pattern, in the second cell population the 
two parameters are not necessarily associated. It is also: possible the level 
of proliferation and motility is comparatively lower than the first one. 
Clearly this hypothesis awaits adequate experimental support to be fully 
accepted. 

7 
Alterations in the stability of the differentiated state and prolif- 
erative level in the smooth muscle cells 

Compared to cardiac and skeletal muscle, th e SM in the adult possesses a 
wider phenotypic diversification that stems from the lack of antagonism 
between differentiation and growth. It is likely that all muscle systems 
share a common rule regarding maintenance of the differentiative state: a 
continous and precise regulation of gene expression. In skeletal muscle, 
the expression of muscle genes is triggered by unique transcription fac- 
tors, i.e., the master regulatory genes such as the MyoD family that in- 
cludes MyoD, myogenin, myf-5 and myf-6 [78,267]. Other factors such as 
the protein Id are thought to inhibit differentiation whilst the cells are 
proliferating [268]. Unfortunately none of the regulatory genes yet found 
for SMC are able to act in the way commonly attributed to  specific cell 
factors that regulate cell differentiation: by activating coordinating cell 
type-specific genes (see Refs. in Table 1). Two homeobox genes, HoxB7 and 
HoxC9, showed a restricted mRNA expression in human fetal SM that 
might be indicative of some role in establishing the phenotypic pattern at 
this stage of SMC lineage pathway [271]. Since spatiotemporal expression 
of some fundamental SMC-linked genes is not the same in the SMC lineage 
pathway, it is highly probable that distinct regulatory factors control each 
gene, possible acting in a combinatorial way [78,117] with "default" muscle 
transcriptional factors (existence of multiple, independent cis-regulatory 
regions). The picture is even more complicated by the functional coexis- 
tence of genes involved in regulating growth and differentiation and by the 
presence of at least two SMC lineages that might have distinct growth/dif- 
ferentiation regulatory pathways. 

Though the adult vascular SM tissue exhibits a heterogeneous distribu- 
tion of some markers (elg., the NM-MyHC), it is only when vascular SMC 
are grown in vitro or when subjected to in i, ivo conditions involving 
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Table 1 
Genes involved in controlling avian and mammalian SMC differentiation 

Gene Cells/tissues expressing Refe~,ences 
the specific transcript 

MHox VSMC. SK, C, NMc [269] 
Hoxl.  11 VSMC, NMc [270] 
HoxA5, HoxAI1, VSMC, NMc [271] 
HoxB1, 
HoxB7, HoxC9 ~MC 
Gax VSMC, C [272,273] 
Pax3 VSMC, C [274] 
Thl GSMC, C, NMc [275] 
GATA-6 VSMC, BrSMC, BISMC, C [276] 
GATA-5 BrSMC, BISMC, C [277] 
MEF2s aVSMC, SK, C [278] 
NKx2-3 GSMC, NMc [279] 

Key: SMC, smooth muscle cells; VSMC, vascular SMC; aVSMC, aduh-type VSMC; ISMC, fetal 
human SMC grown in vitro; SK, skeletal muscle; C, cardiac muscle; NMe, non-muscle cells; 
GSMC, gastrointestinal SMC; BrSMC, brochial SMC; BISMC, bladder SMC, 

proliferation/migration or hypertrophy/hyperploidy that the potential 
functional heterogeneity of SMC is revealed and the specific regulatory 
influence of growth factors, cytokines and hormones are disclosed. 

7.1 
Regulatory factors of growth and differentiation 

In large arterial vessels, interactions of SMC with endothelial cells on the 
one side, and with adventitial tissue on the other (Fig. 2) are of crucial 
importance in maintaining SMC growth and differentiation in a stable 
condition. In addition, SMC may secrete factors such as PDGF, basic fi- 
broblast growth factor (bFGF) and TGF[~, which through autocrine-parac- 
rine mechanisms [253[, can contribute to the general homeostasis of arte- 
rial wall. One major drawback is that such mechanisms have been docu- 
mented in vitro. Thus, the existence of autocrine growth in vivo remains 
conjectural especially if one considers the large structural homogeneity of 
adult SMC and their unresponsiveness to growth factors. Functional or 
structural perturbation of endothelial cell integrity achieved, for example 
in atheroscterosis, hypertension or in experimentally-induced endothelial 
denudation, can alter the phenotypic stability and growth properties of 
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Fig. 14. Factors putatively involved in controlling the differentiation and growth 
properties of medial SMC in intact and injured vessels. In these vessels, growth, 
migration and differentiation of medial SMC are controlled by both positive (+) and 
negative (-) factors: platelet-derived growth factor-A and -B (PDGF-A, PDGF-B); basic 
fibroblast growth factor (bFGF); endothelin-1 (ET-1); connective tissue growth factor 
(CTGF); transforming growth factor 131 (TGF 131); low-density lipoprotein (LDL); 
angiotensin II (AnII); nitric oxide (NO); vascular endothelial growth factor (VEGF). 
Factors released from endothelial cells, SMC and adventitial cells contribute to the 
medial SMC homeostasis by autocrine and paracrine mechanims. Perturbation of 
arterial wall integrity (both in structural and functional terms) induces the release/ac- 
tivation of a number of factors, in part identical to those that control the normal wall 
homeostasis, and the expansion of medial SMC comparment accompanied by the 
formation of the neointima. Adventitial cells can variably partecipate in this process 
via  : perivascular inflammation; release of inflammatory cytokines; cellular conversion 
to myofibroblasts; and tissue hypoxia induces by vasa  v a s o r u m  alteration. The numbers 
in parantheses indicate tthe two major migratory processes occuring in the arterial wall 
after endothelial injury, namely, from the media to the subendothelial space (1), and 
from the adventitia to the media (2). Dashed arrows indicate processes mainly observed 
in vitro 
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SMC, though, as mentioned above, these two characteristics are not neces- 
sarily linked. Since endothelial cells and SMC are quiescent in the adult, it 
might be that a potential continuous, bidirectional flow of information, at 
a low level between these cells, is partecipating in the reciprocal regulation 
of growth and differentiation (see Fig. 14). 

In vitro studies have revealed that a number of mitogens are released by 
endothelial cells: PDGF-A and -B [280,281], bFGF [282,283], endothelin-1 
[284], and connective tissue growth factor [285]. On the other hand, endo- 
thelial cells can produce factors that antagonize the SMC proliferation 
such as heparin [286], and TGFI3 [287,288], the latter showing either prolif- 
erative or inhibitory properties for SMC. 

The general approach to investigating the putative effect of endothelial 
cells on SMC is the use of co-culture systems [289], or of endothelial cell 
conditioned medium [290]. Endothelial cell-released factors or identical 
factors added to the culture medium of SMC are able to down-regulate 
markedly the expression of two SM-specific proteins, such as SM-type 
a-actin and MyHC, and to increase SMC proliferation [290-293]. However, 
as mentioned above, high levels of differentiation are not incompatible 
with proliferation. In contrast with these data, other authors have found 
that endothelial cells have the ability to induce the in vitro SMC differen- 
tiation accompanied by inhibition of their growth [294]. 

Using concentrations of heparin, that are inhibitory to SMC prolifera- 
tion, causes SM-type a-actin expression to be up-regulated [295,296]. In 
plasma-derived serum however, heparin is not able to modify o~-actin 
expression, indicating that its action is related to an antiproliferative ac- 
tion [296]. Barzu et al. [297], have isolated in vitro a subpopulation of rat 
aortic SMC that is heparin-resistant in terms of growth inhibition, but 
differentiation responsive (increased SM-type ct-actin expression-) to 
heparin treatment. This finding is in line with the theory that heparin acts 
on SMC differentiation and proliferation through distinct pathways. 

TGF[31 is a bifunctional regulator as regards migration and prolifera- 
tion in vitro [298]. At relatively low concentration TGF[31 enhances the 
migration of SMC, but at higher concentration dose dependently inhibits 
the PDGF-dependent migration [299]. Similarly, in confluent cultures 
TGF[31 acts as mitogen, while in subconfluent cultures it inhibits SMC 
proliferation [300,301]. TGF[31, when applied to cultured rat aortic SMC, 
reduces the serum-dependent proliferation [296], and induces the synthe- 
sis of SM-type c~-actin in cultured human SMC [302]. An immediate but 
limited proliferative action of TGF[~I in vitro relies on the autocrine pro- 
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duction of PDGF-AA [303]. By contrast, an enhanced but delayed mito- 
genic activity is achieved when this cytokine is administered to cultured 
SMC in combination with EGF, bFGF or PDGF-BB [304]. 

No studies on cultured cells have been performed regarding the puta- 
tive effect of adventitial fibroblasts on growth and differentiation of SMC, 
though a role for angiotensin II is possible in this layer. In fact, angiotensi- 
nogen, the ultimate precursor of angiotensin II converted to the biologi- 
cally active form by angiotensin converting enzyme, can also be produced 
in the normal vessel wall where it was localized the perivascular fat 
[305,306]. The AT-1 and and AT-2 angiotensin II receptors are also present 
in the normal wall and angiotensin converting enzyme is made by medial 
SMC and endothelial cells [7]. Angiotensin II infusion induces vascular 
wall hypertrophy and proliferation [307], whereas treatment of cultured 
aortic SMC with angiotensin II causes an increase in RNA and protein 
synthesis with little or no immediate increase of DNA synthesis [308]. This 
agonist not only regulates SMC growth but also promotes SMC differentia- 
tion in as much it is able to increase the SM-type (z-actin expression [309]. 
A significant dose-dependent mitogenicity can, however, be demonstrated 
in vitro after a more chronic administration of angiotensin II [310]. Acti- 
vation of AT-1 receptor by angiotensin II in turn stimulates the production 
of PDGF-A, TGF [51 and bFGF [311]. It has been hypothesized that 
angiotensin II induces both a proliferative and anti-proliferative action 
through two distinct pathways in cultured SMC. Non-mitogenic growth 
response of SMC to angiotensin II would result from two opposite effects: 
the anti-proliferative action of autocrine TGF [51 and the proliferative 
action of autocrine bFGF but not of PDGF-A [312]. This hypothesis might 
be questioned in light of: (1) different biological assay conditions used by 
the various investigators, and (2) the existence of distinct SMC lineages in 
the aorta that might have different angiotensin II or AT receptor distribu- 
tion. It is interesting in this regards that AT-2 receptors are involved in the 
trophic effect of angiotensin II, while AT-1 receptors can be associated with 
changes in SMC phenotype, such as the increased expression of NM-type 
MyHCpla and "feta!-type" fibronectin isoform [313]. 

The mRNA induction of PDGF, bFGF and TGF 151 in vascular SMC in 
vitro and in vivo as a direct consequence of an endothelial lesion or 
atherosclerotic plaque formation is preceded by the activation of several 
immediate-early genes [314,315]. In particular, PDGF and TGF [31 expres- 
sion, unlike that of bFGF, is dependent on early protein synthesis [315]. 
There is compelling evidence that the products of these immediate-early 
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genes (c-myc, c-myb, c-fos, c-jun, etc.) have a role in controlling SMC 
growth. For example, deregulated expression of c-myc can promote SMC 
proliferation and induce partial dedifferentiation and apoptosis [I 51,250- 
252]. PDGF and bFGF contribute independently to the maintenance of 
c-myc expression and c-Myc down-regulation is a pre-requisite for growth 
arrest of vascular SMC [251]. 

7.2 
Growth and differentiation response of smooth muscle tissues to 
pathophysiological stimuli 

Figure I5 shows that mechanical, hormonal, pharmacological and neural 
factors can influence directly or indirectly the phenotypic stability of 
SM-/NM-type MyHC-based SMC populations in rabbit aorta. It is impor- 
tant to underline that the reduction in the "postnatal"-type SMC popula- 
tion achieved with various interventions is never accompanied by the 
formation of a neointima, i.e. a newly formed SMC-containing tissue with 
a variable proportion of "contaminating" inflammatory cells [7,253]. By 
contrast, expansion in size of such medial SMC population may be eventu- 
ally associated with the loss of positional control, proliferation and devel- 
opment of a directional movement from the media to the subendothelial 
space [150,199]. Ultimately, this behavior is dictated, on the one hand, by 
the local availability of mitogens and chemiotactic substances, and, on the 
other hand, by a modified responsiveness of medial SMC. This latter prop- 
erty might be the cause or the consequence of the differentiation profile of 
SMC. Since the phenotypic change, i.e., the expansion of the "postnatal"- 
SMC phenotype, is not necessarily followed by the formation of a neointi- 
mal tissue, it seems reasonable to assume that the differentiation pattern 
and proliferation/migration properties are dissociable parameters [27,42]. 
In the next two sections we shall discuss in particular those factors that 
have a major impact on growth-differentiation properties of SMC. 

7.2.1 

Mechanical stress 

Mechanical factors such as shear stress, longitudinal stretch and wall ten- 
sion in vascular SM tissue [29,39,263,316-318], and wall stretching in non- 
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Factors or conditions that 
determine the expansion of 
postnatal-type SMC (PN) in 
the arterial wall: 

hypercholesterolemia 
hyperthyroidism 
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renovascular hypertension 

- angiotensin II infusion 

Factors or conditions that 
determine the disappearance 
or decrease of postnatal-type 
SMC in favor of  adult-type 
SMC (A) in the arterial wall: 
- HMG CoA reductase inhibitors 
- calcium channel blockers 

hypothyroidism 
- n-3 polyunsaturated fatty acid 
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- chemical denervation 
- aging 
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Fig. 15. Factors and experimental conditions which can expand or reduce the size of 
postnatal-type SMC (based on SM- and NM-MyHCpla isoform expression in rabbit 
aorta/carotid artery; [42]). 

vascular SM tissues [90,319,320] can modulate growth, differentiation and 
ECM protein synthesis [321]. 

In vivo, increased intraluminal pressure can induce stretching in SMC, 
whereas shear stress affects endothelial cells which eventually can influ- 
ence the activation of adjacent vascular SMC. Though blood pressure and 
SMC growth patterns are not always correlated, SMC of large vessels 
undergo hypertrophy with or without hyperploidy [308]. Depending on 
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the type of model used to induce hypertension, aortic SMC proliferation 
with [322] or without migration [323] in the subendothelial space occurs. 
Since hyperploidy develops only in a subset of medial SMC, the question 
exists whether such an event is associated with a specific subpopulation. 
Hypertrophy and hyperplasia in SMC are not mutually exclusive as both 
occur in rabbit pulmonary artery as a direct effect of wall stretching [324]. 

In organ cultures of rabbit thoracic aorta, Bardy et al. [325] found that 
pressure and flow exert different effects on protein and DNA synthesis. In 
particular, in vessels subjected to high pressure and to a Constant flow 
there was an increased protein synthesis without an increment of DNA 
synthesis in the presence of serum. If the same experiment is performed in 
the absence of serum, DNA synthesis increases markedly. "Fetal"-type 
expression of fibronectin was enhanced with high transmural pressure, 
exactly as happens with spontaneous hypertensive rats [179]. A different 
picture was seen when cultured SMC were subjected to pressure-induced 
stretching; in this circumstance DNA synthesis was increased [326]. Re- 
cently, Reusch et aI. [293], confirming in part data from Birukov et at. [263], 
discovered that cyclic mechanical forces can up-regulate the expression of 
SM1- and SM2- MyHC and down-regulate that of MyHC-A and-B. Such 
effects are amplified if antibodies to PDGF-AB are added to the system, 
thus indicating that this growth factor, besides acting as inducer of prolif- 
eration/migration of SMC, is partially involved in the differentiation re- 
sponse of mechanically activated SMC [327], To explain the PDGF para- 
dox, Reusch et al. [293] put forward the idea that two distinct SMC popula- 
tions are selectively involved in the differentiative response: one that might 
be prone to proliferation and the other one to developing the "differenti- 
ated" myosin pattern. 

Some links between changes in the expression of SM-specific proteins 
and growth regulator levels are also evident in non-vascular SM tissues, 
though their interdependence is not clear. In the bladder, SM can develop a 
hypertrophic or hyperplastic growth response as consequence of altera- 
tions in the bladder wall tension obtained by a partial outflow obstruction 
[328]. In the rabbit and rat, where SMC hypertrophy-hyperploidy and 
ECM changes occur, growth is accompanied by: (1) marked increase of 
SM-type y-actin mRNA and protein with a decrease of NM-type [3-actin 
and substantial invariance of SM-type a-actin isoform [86], (2) decrease 
of SM2 mRNA transcript and protein [90,320], and (3) elevation of bFGF, 
c-myc, c-fos, Ha and Ki-ras protooncogenes [329,330], TGF [~2, TGF [33 and 
TGF ~ mRNAs and diminution of TGF 91 transcript [331]. 
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7.2.2 
Neointima formation 

Atherosclerosis, restenosis after angioplasty and vein-graft all share a 
common theme: the accumulation of de novo SMC, partly from locally 
resident or newly migrated SMC, and partly from the underlying media. 
The neointima tissue also contains variable amounts of inflammatory cells 
and ECM, is temporally unstable and potentially able to undergo a necrotic 
process with serious local and general consequences [7,253]. Experimental 
atherosclerosis, produced using cholesterol-enriched diet or taking advan- 
tage of endogeneously hypercholesterolemic or genetically manipulated 
animals, along with endothelial denudation are the procedures commonly 
used to study the growth pattern and differentiation profile of arterial 
SMC. From a morphological point of view, about 7 days from surgery 
ballooned rat carotid artery shows the presence of "synthetic" and prolif- 
erating SMC in the region facing the lumen. Mitoses are no longer detect- 
able after 14 days and the neointima is now composed of quiescent SMC 
showing a mixed "synthetic"-"contractile" phenotype, intermingled with 
ECM components [332]. In the next two sections, modifications of gene 
expression pertaining to structural proteins and growth-related factors 
(only protein expression and factors shared by neointimal and developing 
SMC), will be examined. 

7.2.2.1 
Down- and up-regulation of structural proteins 
As pointed out by several authors [2,7,42], neointimal SMC display pheno- 
typical aspects quite similar if not identical to developing SMC. For exam- 
ple, expression of some SM-specific markers (e.g. SM2, SM-type a-actin, 
h-caldesmon) are down-regulated whereas that of some SM-related NM 
markers (e.g., MyHC-B, MyHCApla, NM [~-aCtin, keratin 8/18, l-caldesmon) 
are up-regulated in experimental and spontaneous atherosclerosis and 
endothelial denudation or restenosis [11,56,57,138,157,166,176,181,333- 
336]. 

The level of proliferation attained by SMC as part of the wall response to 
endothelial injury has already been described by Schwartz and coworkers 
[7] as an appearance of consecutive, t ime-and space-regulated "waves". 
Each "wave" is characterized by a precise set of growth factors/hor- 
mones/cytokines whose activity imposes a specific pattern of proliferation 
and/or migration on SMC. Based on a comparative analysis performed on 
developing and endothelial damaged wall arteries, Belknap et al. [27] came 



286 S. Sartore et al. 

to the conclusion that SMC found in the neointima reverted to a pre-elas- 
togenic cell phenotype rather than to a "fetal" one. This interpretation 
resulted from the observation that elastogenesis follows SMC replication 
in the neointima, while both events take place concomitantly during early 
development. As we reported earlier [42], and confirmed more recently by 
others [27], expression of"immature"-type phenotypic properties by SMC 
is not strictly associated with migration into the neointima. 

Comparative tissue or cell clonal analysis between cell populations 
obtained from the thickened intima vs. normal adult or newborn media, 
and expression of growth-promoting genes in the intimal thickening vs. 

newborn vessel have highlighted some aspects of the mechanism of neoin- 
tima formation [240,244,337]. Neointimal SMC 15 days after endothelial 
denudation display, both in vivo and in vitro, a down-regulation of SM- 
type (~-actin and SM-MyHC, accompanied by increased proliferative activ- 
ity, when compared to the subjacent media. Sixty days after injury, prolif- 
erative and differentiative properties of neointimal SMC are almost nor- 
realized to that of the underlying media [337]. Bochaton-Piallat and 
coworkers [243,244] also compared the proliferative/differentiative fea- 
tures of cloned SMC obtained from neointima 15 days after injury with 
those of the underlying media. It turns out that the majority of neointimal 
clones were of "cobblestone"-type (showing a high [3H]-thymidine incor- 
poration when growing at low cell density and a relatively high migratory 
ability), whereas the "spindle-shaped"-type clones were more numerous 
in the media [244]. More importantly there was no phenotypic modulation 
between the two types of clones, possibly indicating the two clones derive 
from distinct precursors [244]. However, the "cobblestone"-type clones 
appeared phenotypicalty less stable, being susceptible to modulation by 
retinoic acid into the "spindle-shaped"-type [338]. Five of the six retinoid 
receptors were in fact expressed in aortic SMC and all-trans retinoic acid 
can antagonize PDGF-BB-stimulated SMC growth [339]. Interestingly, a 
retinoid signal has been localized to the neural crest-derived mesenchy- 
mal cells surrounding the ductus arteriosus [340]. This muscular artery is 
subjected to a combined contraction and intimal thickening formation 
that brings about its definitive closure in coincidence with the estab- 
lishment of normal pulmonary circulation around birth [341]. This proc- 
ess has been thought to mimic the neointimal formation in the adult. In 
addition, the two types of "intimal thickenings" appear in some aspects to 
be quite similar. In fact, in the ductus arteriosus closure, retinoic acid 
induces the precocious expression of SM2 isoform (i.e., a SM-type differ- 
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entiation; Figs. 5 and 6; [340,342]. This expression also occured with adult 
neointimal clones where retinoic acid is involved in shifting the "cobble- 
stone"-type subset to that of "spindle-shaped"-type [338]. Since the "cob- 
blestone"-type SMC subset expresses the cellular-retinol binding protein- 
1 and keratin 8 which is a marker of"immature'-type SMC, it is tempting 
to speculate that a specific SMC population, possibly of neural crest origin, 
is deeply involved in the formation of neointima at least in the arterial 
essels proximal to the heart. 

7.2.2.2 
Up-regulation of growth associated genes 
Neointimal and developing SMC also show a strong similarity when exam- 
ined for the expression profile of a number of growth-related genes. These 
growth factors are released locally from different cellular sources and can 
act as inducers of SMC proliferation and/or migration or as chemoattrac- 
tant agents both alone or in combination with other factors (see Fig. 14). 
Besides those released by non-SMC, some of the growth factors engaged in 
promoting proliferation and/or migration are secreted by SMC themselves 
and act through a paracrine/autocrine mechanism. The PDGF-B and 
PDGF- 0~ receptor mRNAs content in cultured neointimal SMC from adult 
carotid artery is quite similar to neonatal ("pup"-type) SMC grown in 
vitro [238]. Work from the same laboratory also confirms the presence of 
PDGF- [3 receptor in the neointima and the presence of a SMC subpopula- 
tion expressing PDGF-B. This raises the possibility that the difference in 
PDGF-B distribution within in vitro cloning [240] is due to the existence of 
distinct cell populations in vivo, possibly with unique migratory proper- 
ties [343]. Once available in the intimal thickening, PDGF-BB may disclose 
its powerful effect on SMC migration possibly via PDGF-dependent ex- 
pression of t~ and R2 type VIII collagen, particularly in SMC that show a 
dedifferentiated phenotype [344,345]. The presence of this collagen type 
might decrease cell adherence to the substrate and thus facilitate the mi- 
gration of SMC [345]. The PDGF-A is a weak mitogen and, contrary to 
PDGF-BB, its expression does not correlate with proliferation level at- 
tained by neointimal SMC [346]. 

Similar to PDGF, osteopontin represents another example of a growth- 
related protein that is up-regulated in rat "pup" SMC grown in vitro and in 
neointimal SMC [347]. This protein contains the arginine-glycine-aspar- 
tate (RGD) sequence that facilitates cell-matrix and cell-cell attachment by 
means of recognition of the adhesion-promoting cell surface receptors 
[348,349]. Its expression is enhanced by TGF [31, bFGF, angiotensin II and 
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PDGF-B [347,350], Osteopontin is not associated to proliferating SMC 
[351], but can affect SMC adhesion and chemiotaxis. Liaw et al. [352] 
reported that anti-osteopontin antibodies can inhibit neointima forma- 
tion essentially without interfering in SMC proliferation, but inhibit SMC 
migration from the media to the subendothelial space. This confirms the 
important role played by cell-matrix interaction in favoring neointimal 
growth as also demonstrated by the blocking of intimal formation using 
integrin antagonists [353] 

8 
Smooth muscle cells from nonc~muscle cells 

Experiments performed in NM cell systems might be of potential interest 
for understanding the "response-to-injury" proces s in the arterial wall. 
The possibility exists that NM cells or cells with a hybrid NM-SM cell 
phenotype can participate in the reparative process that follows in the 
vascular lesion by converting to SMC (see Fig. i6; [354]). It is, in fact, in this 
cell phenotypic conversion process that some aspects of the basic SMC 
biology might be disclosed in terms of gene expression and mechanisms 
of SMC differentiation [355]. 

Non-muscular segments of rat lung microvessels in hyperoxic pulmo- 
nary hypertension become muscularized using locally recruited fi- 
broblasts or cells with morphological properties between SMC and peri- 
cytes [356]. in addition, the cytocontractile apparatus of myofibroblasts 
found in hypertrophic scars and in the stromal reaction to mammary 
carcinoma express SM-MyHC [95,357]. It is also worth noting that stromal 
ceils from human long-term bone marrow cultures can differentiate in a 
time-dependent manner following a SM differentiation pathway charac- 
terized, among the other SM markers, by SM myosin expression [358]. The 
in vivo counterpart of these stromal cells, whose phenotype resembles that 
of th e immature SMC, is believed to be important in maintaining granulo- 
monopoiesis. Colony-derived stroma cell lines, established from normal 
human marrow and showing high proliferative capacity, exhibit a vascular 
SMC-like differentiation pattern and express the SM1 isoform, i.e., resem- 
ble the cell phenotype found in the atherosclerotic lesion [359]. 

In the bladder wall, which is also composed of SM-NM tissue interfaces 
similar to the vascular Wall (see Fig. 2),there is an alteration of phenotypic 
stability of submesothelial mesenchymal cells of the serosa layer. This is 
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caused either by partial outflow obstruction or by local necrotizing injury. 
As a result, it induces a three-step conversion process whereby locally 
resident fibroblasts first become myofibroblasts and subsequently SMC 
(Fig. 16; [159,167,360,361]. Myofibroblasts have been found in abnormal 
wound healing and stromal reaction to breast cancer [362,363]. In these 
human settings, it was found that myofibroblasts stem from resident fi- 
broblasts [96,364] and, to a lesser extent, from vascular SMC [96]. In the 
myofibroblast there is a coexistence of some structural and functional 
elements common to fibroblasts (abundant rough endoplasmic reticulum) 
and SMC (cytoplasm filled with myofilaments; [362,363]). In the bladder 
serosa, this cellular transition was identified essentially on the basis of 
spatiotemporal-specific expression of some cytoskeletal, cytocontractile 
and ECM proteins markers, such as vimentin, desmin, SM-type cz-actin, 
procollagen ~1(I) mRNA and MyHC, and NM-type MyHC isoforms 
([159,167,360,361]; our unpublished results; see also Fig. 17). 

There are some interesting analogies between the phenotypic modifica- 
tions of rabbit bladder serosa and those obtained in the adventitial layer of 
experimental animals after endothelial denudation by angioplasty. In both 
models, as part of the "response-to-injury" process there is: (1) a transient 
inflammation, followed by the respective tissue tickening, (2) the forma- 
tion of myofibroblasts from resident fibroblasts, and (3) the activating role 

Smooth muscle cell is part of an integrated 
mesenchymal cell network 

[Myofibroblastl 

/ \ 'x 

Fig. 16. Myofibroblast-based conversion cell network. 

[Endothelial cell I 

[Smooth muscle cell I 
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Phenotypic modulat ion o f  advent i t ia l  f ibroblasts 
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Fig. 17.Phenotypic changes of adventitial cells after experimental wall injury. 

of TGF~I as inducer of cell proliferation ([7,253,354]; our unplished re- 
sults). In the serosal thickening there is the "ectopic" formation of SMC 
that is followed by SMC bundling and the formation of SMC fascicles [15]. 
Interestingly, both the bladder and the arterial wall are subjected to me- 
chanical stress and it has been hypothesized that this influences the fi- 
broblast to myofibroblast transition [365]. One can argue that cytokines 
released from the inflammatory and resident cells combined with parietal 
stress can be responsible for such a phenomenon even in the adventitia 
[7,366,367]. 

Recent data obtained with balloon overstretching injury in porcine 
coronary arteries and vein-to-artery graft using pulse-labeling experi- 
ments with bromo-deoxyuridine, an analogue of thymine, have shed some 
light in this process [367-370]. Some neointimal cells produced after over- 
stretching injury could come from the adventitia [367,369], particularly 
when the lesion involves the adventitia [369]. A conclusive demonstration 
of the potential importance of adventitial cells in contributing to the 
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Remodeling of autologous saphenous vein graft interposed into porcine 
carotid artery involves fibroblast infiltration from the adventitia 

to the media 

~rdU pulse-labeling before vein graft interposition] 

It ~[ 
II 11 vascular interposition 
II vein graft tl artery of normal vein in injured artery II II 
tl II carotid artery 

i.. : .~ . . . .  ~, ,~:, advent i t ia 

~lr BrdU-positive nonmuscle cells 
Neointima 

I i i i I l l  
II- ~[ 
11 ~ ~ • •I1 Infiltration of adventitiat 

artery II • II artery BrdU-positive fibroblasts ~1111 • • • I]11 into the media and neointima 

~ k - - ~ 3 ~ ~  ~::~.,: - ~ ~  ~ , ~ . ~ : . "  aavenrir ia 

. . . . . .  , ~ .  ~ -  ~ , , ~ , ~ . ' . ~ :  ' .~*., . .  

Fig.18. Identification of the role played by converted adventitial cells in the neointima 
formation. Carotid artery was first pulse-labeled with bromo-deoxyufidine (BrdU) 
soon after overstretching injury (black dots), then an autologous (not treated) segment 
of saphenous vein was interposed into the injured/treated artery. Three weeks after 
surgery, BrdU-positive cells were found both in the "arterialized" venous media and in 
the neointima (see Ref. [370] for details). 

neointima formation has been achived by Shi et al using a model of 
vein-to-artery interposition ([370]; see Fig. 18). Bromo-deoxyuridine la- 
beled cells from the adventitial layer of artery segments in contact with the 
vein graft were found both in the "arterialized" media and the neointima. 

Depending on the retinoic acid concentration, a continous cellular spec- 
t rum ranging from fibroblast/myofibroblast to SMC can be obtained from 
P19 embryonal cells grown in vitro [371]. Since fibroblasts are considered 
a heterogeneous cell population, possibly with a dual differentiative capac- 
ity, it is likely that appropriate availability of specific regulating factors 
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govern can govern the fibroblast to SMC conversion. In any case, adventi- 
tial cell plasticity could contribute to the vascular wall remodeling which 
accompanies angioplasty in humans and endothelial denudation in ex- 
perimental animals [372], as well as to the narrowing of blood vessels 
consequent to atherosclerosis and hypertension [7,373,374]. 

9 
Conclusions 

In this review we have emphasized that the adult structural-functional 
alterations involving proliferation/migration of SMC generate a pre-de- 
fined molecular and cellular response based on the "immature"-type SMC 
retrieval. It is likely that the response is driven by the activation of a 
specific genetic program whose execution may be variably subjected to 
specific environmental cues (mechanical stress, hormones, growth factors, 
cytokines, pharmaceutical drugs, etc.). It is clear that deciphering SMC 
behavior in pathological conditions, such as in the course of neointima 
formation, relies on the understanding of the mechanisms that govern the 
early stages of vascular morphogenesis. Obviously, the partial or complete 
recapitulation of an ontogenetic event in the adult poses a problem for the 
interactions of newly formed SMC with the environment. Thus, the search 
for factors that may warrant the acquisition of the maturation profile by 
SMC is certainly necessary, but not sufficient. In fact, proliferation and 
differentiation in SMC are not antagonistically linked and SMC can de- 
velop a wide range of structural-functional plasticity. This particular as- 
pect of SMC biology, along with the existence of well-defined SMC popula- 
tions with distinct repertoires of proliferation, differentiation and migra- 
tion, exemplifies the enormous adaptive potential of this type of muscle 
tissue with respect to the two sarcomeric muscle tissues. It can be hypothe- 
sized that the activation and expansion of specific medial SMC popula- 
tion(s) could imply the acquisition of the competence for migration or 
migration/proliferation. This cellular response could be (partially) inde- 
pendent from the phenotypical changes that the medial SMC undergo as 
consequence of the limited environmental perturbations. 
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10 
Some open questions 

1. Obviously, the search for SM "master" gene(s), if any, and the deline- 
ation of SM gene program [78], have the top priority in SMC biology 
studies, inasmuch as the identification of endogeneous and exogeneous 
elements are of crucial importance in the early phase of SMC lineage 
pathways and in the maintenance of SMC differentiation state. The use of 
inducible differentiation procedures in vitro systems seems to be a suit- 
able approach for evaluating exogeneous factors (for example, retinoic 
acid) as effective agents able to induce SMC commitment in an undeter- 
mined cell line [375]. 

2. A more complete characterization of the two (or more) SMC lineages 
existing in the arterial wall is absolutely necessary in order to interpret 
correctly the pathophysiology of SMC. Spatial- or clonal-type structural 
and functional differences among vascular SMC have been evidenced early 
in development (chicken) and both postnatally and in adults (rat). At the 
moment, no spatiotemporal link has been established between SMC popu- 
lations that have emerged at different time periods in the course of devel- 
opment. In other words, the delineation of SMC lineage pathways shows a 
gap in both species around birth/hatching that must be filled with new 
information. Ideally, this issue could be tackled by the identification of a 
specific marker that is permanently expressed in developing and adult SM 
tissue within a given SMC lineage. The existence of SMC lineage(s) should 
also be tested in veins and in non-vascular SM tissues. 

3. If the two SMC lineages have a different tendency to be involved in 
hypertrophy/hyperploidy or proliferation/migration, as might be inferred 
from the different experimental models examined so far, it would of inter- 
est to ascertain whether, at the level of single clone, apoptosis is differently 
expressed. While we have found that a precise correlation does not exist 
between levels of differentiation and development of the apoptotic process 
in the rabbit [150], others have reported that, at least in closure of ductus 
arteriosus in human, a relationship can be established between these two 
parameters [376]. It may be that SMC from different lineages display an 
inherent and specific weakness in cell survival that make these cells more 
or less vulnerable to cell death. 

4. SMC are very plastic cells that are able to change their phenotype in 
vitro and in vivo between two SM-type cellular extremes: the "synthetic" 
and the "contractile" phenotypes. In addition, SMC are developmentally 
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and experimentally related to other cell types. For example, during devel- 
opment transdifferentiation processes can convert endothelial cells into 
SMC [230] or SMC into skeletal muscle [377], whereas in some models 
fibroblasts, myofibroblasts or pericytes can be converted into SMC (see 
Fig. 16). More recently, putative endothelial cell precursors have been 
isolated from human peripheral blood [378], raising the intriguing possi- 
bility that SMC might ultimately derive also from this source as occurs 
during vasculogenesis. On this basis, it can be postulated that SMC in the 
adult, in addition to using their own SMC lineage pathways, might eventu- 
ally use alternative strategies to afford tissue loss caused by necrosis. 

5. Molecular approaches to the inhibition of SMC proliferation are 
particularly useful developing ways to prevent the development of 
restenotic process after angioplasty. Data obtained in experimental ani- 
mals subjected to endothelial denudation are encouraging. As discussed by 
Schwartz et al. [7] and Post et al. [373], the similarity of the response to 
angioplasty in man and experimental endothelial lesion remains to be 
assessed in terms of vascular wall remodeling and/or intimal thickening 
formation. Gene therapy for vascular diseases might contribute to limiting 
or preventing restenosis and partially reducing the general impact conse- 
quent to neointimal formation [379]. In different models of vascular in- 
jury, anti-sense oligonucleotides against PDGF-[3 receptor [380], c-myc 
and c-myb protooncogenes [151,250], positive cell cycle control genes 
[381], arterial gene transfer of negative cell cycle control genes [382] and 
growth stimulatory genes [383] can variably affect SMC proliferation. In 
the light of SMC heterogeneity existing in the blood vessel wall, it would be 
of interest to evaluate the efficacy, as anti-proliferative agent and/or differ- 
entiative modulator, of these potentially useful therapeutic approaches on 
different SMC clones. 
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