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Foreword 

For several years now my book Analysing Qualitative Data 
has been in need of revision. Since it was first published in 1961, 
and in part perhaps because of it, a great deal of new and interesting 
work on the analysis of contingency tables has been published. 
Mr. Brian Everitt kindly undertook to do the revision but, when 
he came to review recent literature, it became apparent that a mere 
renovation of the original text would not be enough; the amount 
of new work was not only extensive but also made obsolete many 
of the older methods. In consequence, and with the agreement of 
the publishers, it was decided that the revised version should in 
effect be a new book. 

That it is so is not strikingly evident in the first two chapters of 
the present text which, by way of introduction, cover old ground. 
Thereafter, the increased scope of new methods becomes abundantly 
apparent. This can be illustrated by a single example. When the 
Iiterature up to 1961 was reviewed the big disappointment was the 
paucity and inadequacy of methods then available for the analysis 
of multidimensional tables, and they are the rule rather than the 
exception in research work in the social sciences. This serious 
deficiency has since been met to a truly gratifying extent, not only 
by the extension of methods for testing more searching hypotheses, 
but also by the development of methods for fittinglog-linear models 
to multidimensional frequency data and the description of these 
data in parametric terms. The latter topic is very lucidly described 
by Everitt in Chapter 5 of this text. Indeed this chapter presents 
the main challenge to the reader. 

Analysing Qualitative Data has been a very popular book amongst 
research workers for over a decade but the time has come to supple
ment it by a more modern text. This book by Everitt fills that role 
and I am confident that it will prove to be as popular as its 
predecessor. A.E. Maxwell 

January, 1976 
Institute of Psychiatry 
University of London 



Preface 

The present text arises from a plan to revise Professor A.E. 
Maxwell's weil known book Analysing Qualitative Data. After a 
review of the current Iiterature it was obvious that major changes 
would need to be made to that work to bring it up to date, and 
so, with Professor Maxwell's approval and encouragement, it 
was decided that I should attempt to produce almost a new book, 
with the present title. Readers familiar with the original text will 
see that the first three chapters of The Analysis of Contingency 
Tabfes are very similar in content to parts of the first six chapters 
ofthat work. However, the last three chapters of the current work 
deal with topics not covered in the original, namely the analysis 
of multidimensional contingency tables. 

It was intended that the present text should be suitable for a 
similar group of people as the original, namely research workers 
in psychiatry, the social sciences, psychology, etc., and for students 
undergoing courses in medical and applied statistics. This has 
meant that the mathematical Ievel of the book has been kept 
deliberately low. 

While in preparation the manuscript was read by Professor 
Maxwell whose help and encouragement were greatly appreciated. 
Thanks are also due to the Biometrika trustees for permission to 
reproduce the table of chi-squared values given in Appendix A, 
and to Mrs. B. Lakey for typing the manuscript. 

May, 1976 

B.S. Everitt 
Institute of Psychiatry 
University of London 



CHAPTER ONE 

Contingency tables and 
the chi-square test 

1.1. Introduction 

This book is primarily concerned with methods of analysis for 
frequency data occurring in the form of cross-classification or 
contingency tables. In this chapter we shall commence by defining 
various terms, introducing some nomenclature, and describing 
how such data may arise. Later sections describe the chi-square 
distribution, and give a numerical example of testing for inde
pendence in a contingency table by means of the chi-square test. 

1.2. Classification 

lt is possible to classify the members of a population - a generic 
terms denoting any weil defined class of people or things - in many 
different ways. People, for instance, may be classified into male and 
female, married and single, those who are eligible to vote and those 
who are not, and so on. These are examples of dichotomaus classi
fications. Multiple classifications also are common, as when people 
are classified into left-handed, ambidextrous, and right-handed, 
or, for the purpose of say a gallup poll, into those who intend 
to vote (a) Conservative, (b) Labour, (c) Liberal, (d) those who have 
not yet made up their minds, and (e) others. Weshall be primarily 
interested in classifications whose categories are exhaustive and 
mutually exclusive. A classification is exhaustive when it provides 
sufficient categories to accommodate all members of the population. 
The categories are mutually exclusive when they are so defined that 
each member of the population can be correctly allocated to one, and 
only one, category. At first sight it might appear that the require
ment that a classification be exhaustive is very restrictive. We might, 
for example, be interested in carrying out a gallup poll, not on 
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the voting intentions of the electorate as a whole, but only on those 
of university students. The difficulty is resolved if the defmition of a 
population is recalled. The statistical defmition of the word is more 
fluid than its defmition in ordinary usage, so it is quite in order 
to defme the population in question as 'all university students 
eligible to vote'. Categories too are adjustable and may often be 
altered or combined; for instance, in the voting example it is unlikely 
that much information would be lost by amalgamating categories (d) 
and (e). 

When the population is classified into several categories we may 
then 'count' the nurober of individuals in each category. These 
'counts' or frequencies are the type of data with which this book will 
be primarily concemed. That is, we shall be dealing with qualitative 
data rather than with quantitative data obtained from measurement 
of continuous variables such as height, temperature, and so on. 

In general, of course, information from the whole population is 
not available and we must deal with only a sample from the 
population. Indeed, one main function of statistical science is to 
demoostrate how valid inferences about some population may be 
made from an examination of the information supplied by a sample. 
An essential step in this process is to ensure that the sample taken 
is a representative (unbiased) one. This can be achieved by drawing 
what is called a random sample, that is one in which each member 
of the population in question has an equal chance of being included. 
The concept of random sampling is discussed in more detail in 
Chapter 2. 

1.3. Contingency tables 

The main concem of this book will be the analysis of data which 
arise when a sample from some population is classified with respect 
to two or more qualitative variables. For example, Table 1.1 shows 
a sample of 5375 tuberculosis deaths classified with respect to two 
qualitative variables, namely sex and type of tuberculosis causing 
death. (Note that the categories of these variables as given in the 
table are both exhaustive and mutually exclusive.) 

A table such as Table 1.1 is known as a contingency table, and this 
2 x 2 example (the members of the sample having been dichotomized 
in two different ways) is its simplest form. Had the two variables 
possessed multiple rather than dichotomous categories the table 
would have had more cells than the four shown. The entries in the 
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TABLE 1.1. Deaths from tuberculosis. 

Males Fernales Total 

Tuberculosis of respiratory system 3534 1319 4853 
Other forms of tuberculosis 270 252 522 

Tuberculosis (all forms) 3804 1571 5375 

cells for these data are frequencies. These may be transformed into 
proportians or percentages but it is important to note that, in 
whatever form they are presented, the data were originally frequen
cies or counts rather than continuous measurements. Of course, 
continuous data can often be put into discrete form by the use of 
intervals on a continuous scale. Age, for instance, is a continuous 
variable, but if people are classified into different age groups the 
intervals corresponding to these groups can be treated as ifthey were 
discrete units. 

Since Table 1.1 involves only two variables it may be referred to 
as a two-dimensional contingency table; in later chapters we shall 
be concerned with three-dimensional and higher contingency 
tables which arise when a sample is classified with respect to more 
than two qualitative variables. 

1.4. Nomenclature 

At this point we shall introduce some general notation for two
dimensional tables. Later, when dealing with higher dimensional 
tables, this notation will be extended. 

The general form of a two-dimensional contingency table is 
given in Table 1.2, in which a sample of N observations is clas:::ified 
with respect to two qualitative variables, one having r categories 
and the other having c categories. lt is known as an r x c contingency 
table. 

The observed frequency or count in the ith category of the row 
variable and the jth category of the column variable, that is the 
frequency in the ijth cell of the table, is represented by nij' The 
total number of observations in the ith category of the row variable 
is denoted by ni· and the total number of observations in the jth 
category ofthe column variable by n.j· Theseare known as marginal 
totals, andin terms ofthe cell frequencies, nij• are given by: 
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T ABLE 1.2. General form of a !wo-dimensional contingency table. 

Columns (Variable 2) 
2 c Total 

1 nu n12 nlc nl· 
Rows (Variable 1) 2 n21 n2· 

r nrl n,c n,. 

Total n.l n.2 n.c n .. =N 

c 

=I nij (1.1) 
j= 1 

r 

= I nu (1.2) 
i= 1 

Similarly 
r c 

n .. = I I nij 
i= 1 j= 1 

r c 

= I ni· = I n.j 
i= 1 j= 1 

(1.3) 

(1.4) 

n .. represents the total number of observations in the sample and 
is usually denoted by N. 

This notation is generally known as dot notation, the dots indicat-
ing summation over particular subscripts. 

In the case ofthe data shown in Table 1.1 we have: 
(I) r = c = 2, that is both variables have two categories; 
(II) n11 = 3534, n12 = 1319, n21 = 270, and n22 = 252 are the 

cell frequencies; 
(III) n1 . = 4853 and n2 . = 522 are the row marginal totals, that 

is the total number of deaths from the two types of tuberculosis; 
(IV) n. 1 = 3804 and n. 2 = 1571 are the column marginal totals, 

that is the total number of males and females in the sample; 
(V) N = 5375 is the total number of observations in the sample. 
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1.5. Independent classifications-association 

Having examined the type of data with which we are concemed, we 
now need to consider the questions of interest about such data. 
In general the most important question is whether the qualitative 
variables forming the contingency table are independent or not. 
To answer this question, it is necessary to get clear just what indepen
dence between the classifications would entail. In the case of a 
2 x 2 table this is relatively easy to see. For example, retuming to 
the data of Table 1.1, it is clear that, if the form of tuberculosis from 
which people die is independent of their sex, we would expect the 
proportion of males that died from tuberculosis of the respiratory 
system to be equal to the proportion of females that died from the 
same cause. If these proportions differ, death from tuberculosis 
of the respiratory system tends to be associated more with one of 
the sexes than with the other. (Of course, the two proportions might 
be expected to differ in some measure due solely to chance factors 
of sampling, and for other reasons which might be attributed to 
random causes; what weshall need to ascertain is whether or not 
the observed difference between the proportions is too large to 
be attributed to such causes, and for this we will require the test 
that is discussed in the following section.) 

Having seen, intuitively, that independence in a 2 x 2 table implies 
the equality of two proportions, let us now examine slightly more 
formally what the concept implies for the general r x c contingency 
table. First suppose that, in the population from which the sample 
is to be taken, the probability of an observation belonging to the 
ith category of the row variable and the jth category of the column 
variable is represented by pii; consequently the frequency, Fii' to 
be expected in the ijth cell of the table resulting from sampling N 
individuals, is given by: 

Fii = N pii (1.5) 

[Readers familiar with mathematical expectation and probability 
distributionswill recognize that Fii = E(nii), under the assumption 
that the observed frequencies follow a multinomial distribution with 
probability values pii; see, for example, Mood and Graybill, 1963, 
Ch. 3.] 

Now, Iet P;. represent the probability, in the population, of an 
observation belonging to the ith category of the row variable (in 
this case with no reference to the column variable), and Iet P-i 
represent the corresponding probability for the jth category of 
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the column variable. Then, from the multiplication law of 
probability, independence between the two variables, in the popula
tion, implies that: 

P;i = P;.P-i (1.6) 

In terms of the frequencies to be expected in the contingency table, 
independence is therefore seen to imply that: 

Fii =Np;. P-i (1.7) 

However, the reader might ask in what way this helps since the 
independence of the two variables has only been defined in terms 
of unknown population probability values. The answer is that these 
probabilities may in fact be estimated very simply from the observed 
frequencies, and it is easy to show that the 'best' estimates ß;. and 
ß.i ofthe probabilities P;. and p.i are based upon the relevant marginal 
totals of observed values; that is: 

A _ n;. d A _ n.i 
P;. - N an P-i - N (1.8) 

(These are maximum likelihood estimates; see Mood and Graybill, 
Ch. 12.) The use of the estimates of P;. and p.i given in equation (1.8) 
allows us now to estimate the frequency to be expected in the ij-cell 
of the table if the two variables were independent. Inspection of 
equation (1.7) shows that this estimate, which we shall represent 
as Eii• is given by: 

= N n;. n.i = n;. n-i 
NN N 

(1.9) 

When the two variables are independent the frequencies esti
mated using formula (1.9) and the observed frequencies should differ 
by amounts attributable to chance factors only. If however the two 
variables are not independent we would expect larger differences 
to arise. Consequently it would seem sensible to base any test 
of the independence of the two variables forming a two-dimensional 
contingency table on the size of the differences between the two sets 
of frequencies, nii and E;r Such a test is discussed in the following 
section. (In latter parts ofthis text the estimated expected frequencies, 
Eii• will, when there is no danger of confusing them with the fre
quencies, Fii• often be referred to simply as 'expected values'.) 
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1.6. Chi-squaretest 

In the preceding section the concept of the independence of two 
variables was discussed. To test for independence it was indicated 
that we need to investigate the truth ofthe hypothesis: 

(1.10) 

In general this hypothesis will be referred to as the null hypothesis 
and denoted by the symbol H 0 . 

lt was also pointed out that the test should be based upon 
the differences between the estimated values of the frequencies 
to be expected when H 0 is true (that is the E;) and the observed 
frequencies (that is the n;). Such a test, first suggested by Pearson 
(1904), uses the statistic x2 given by: 

xz = ± f (n;i-E;/ 
i=li=l Eii 

(1.11) 

It is seen that the magnitude of this statistic depends on the values 
of the differences (n;i - E;)· If the two variables are independent 
these differences will be less than otherw1se would be the case; 
consequently x2 will be smaller when H 0 is true than when it is false. 
Hence what is needed is a method for deciding on values of x2 

which should Iead to acceptance of H 0 and those which should 
Iead to its rejection. Such a method is based upon deriving a proba
bility distribution for x2 under the assumption that the hypothesis 
of independence is true. Acceptance or rejection of the hypothesis 
is then based upon the probability of the obtained x2 value; values 
with 'low' probability Iead to rejection of the hypothesis, others to 
its acceptance. This is the normal procedure for deriving signi
ficance tests in statistics. In general a 'low' probability is taken to 
be a value of 0.05 or 0.01, and is referred to as the significance Ievel 
of the test. (Fora more detailed discussion of significance Ievel and 
related topics, see Mood and Graybill, Ch. 12.) 

By assuming that the observed frequencies have a particular 
distribution, namely a multinomial distribution, and by further 
assuming that the expected frequencies are not too small (see 
page 45), the statistic x2 may be shown to have approximately a 
chi-square distribution. The test of the hypothesis of independence 
may now be performed by comparing the obtained value of x2 

with the tabulated values of this distribution. 
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1. 7. Chi-square distribution 

W e shall assume that readers are familiar with the normal distribu
tion, accounts of which are given in most statistical text books 
(see again Mood and Graybill, Ch. 6). The chi-square distribution 
arises from it as the probability distribution of the sums of squares 
of a number of independent variables, zi, each of which has a 
standard normal distribution, that is one with mean zero and 
standard deviation unity. The form of the distribution depends 
upon the number of independent variates involved. For example, 
a chi-square variable (x2) formed by the sum of squares of v indepen
dent standard normal variables, namely: 

(1.12) 

has a distribution depending only on v. Diagrams showing the 
different shapes the distribution takes, for varying values of v, 
are given in many text-books (for example, Hays, 1973, Ch. 11). 
In general the number of independent variates forming the chi
square variable is known as the degrees offreedom; in the above case 
we would speak of a chi-square with v degrees of freedom (d.f.). 

The mathematical expression for the chi-square distribution 
need not be discussed here since tabulated values (Appendix A) 
are available. They give all the information necessary for deciding 
whether the value of x2 obtained for some contingency table should 
Iead us to accept or reject the hypothesis of independence. Firstly, 
however, we need to know the degrees of freedom of x2 ; this depends 
on the number of categories of each variable forming the table, and 
its value is derived in the following section. Knowing v, we examine 
the tables of the chi-square distribution with v degrees of freedom, 
for some a priori determined significance level, say a (usually 0.05 
or 0.01), and fmd the requisite value of chi-square. If x2 is greater 
than the tabulated value, denoted by Xv 2, at the a level, it indicates 
that the result obtained would be expected to occur by chance 
very rarely (less than 100 a% ofthe time); consequently it is indicative 
of a real departure from independence, and hence we are led to 
reject our null hypothesis, H 0 • 

1.8. Degrees of freedom for a two-dimensional contingency table 

The statistic for testing the independence of the two variables form
ing a contingency table has already been seen to be: 
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X2 __ ~ ~ (n;j - E;i 
L, L, (1.13) 

i=1j=1 Eij 

The degrees of freedom of the chi-square distribution which approxi
mates the distribution of x2 when the hypothesis of independence 
is true, is simply the number of independent terms in (1.13), given 
that the row and column marginal totals of the table are fixed. 
The total number of terms in (1.13) is r x c, that is the number of 
cells in the table. Some of these terms are however determined by 
knowledge ofthe row and column totals. For example, knowing the 
r row totalsfixes r ofthe frequencies nij' one in each row, and hence 
determines r ofthe terms in (1.13). The number ofindependent terms 
in (1.13) is thus reduced to (rc- r). If we assume that the frequency 
fixed by each row total is that in the last column, we see that, of 
the c column totals, only the first (c- 1) remain to be considered. 
Each of these fixes one frequency in the body of the table and 
consequently reduces the number of independent terms by one. 
Hence we are left with rc- r- (c- 1) independent terms in (1.13). 
This gives the degrees of freedom of x2 : 

d.f. = rc- r- (c- 1) 

= (r- 1)(c- 1) (1.14) 

(The degrees of freedom of a contingency table may also be regarded 
as the number of cells of the table which may be filled arbitrarily 
when the marginal totals are fixed.) 

1.9. Numerical example 

To aid the reader in understanding the discussion so far, Iet us 
examine again the data shown in Table 1.1. The hypothesis we 
wish to test is that the form of tuberculosis from which people die 
is independent of sex - which is another way of saying that the two 
classifications are independent. 

The first step in the calculation of x2 is to compute the expected 
values using formula (1.9). For example, E11 is given by: 

E - 4853 X 3804 (1.15) 
11 - 5375 

= 3434.6 

We may now arrange the rest of the calculations as in Table 1.3. 
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T ABLE 1.3. Calculating x2 for the data of Table 1.1 

(1) (2) (3) (4) (5) 

nii Eii (nii -Ei) (nii-Ei/ (nii- Ei//Eii 

3534 3434.6 99.4 9880.36 2.88 
1319 1418.4 -99.4 9880.36 6.97 
270 369.4 -99.4 9880.36 26.75 
252 152.6 99.4 9880.36 64.75 

5375 5375.0 0.0 x2 = 101.35 

The differences (nii - Eii) are obtained, a check being that they add 
to zero. Next the differences aresquared and each squared difference 
is divided by the expected frequency in its own row. These values 
appear in column (5) of the table and their sum gives the required 
value of x2 • 

To assess whether a value of x2 = 101.35 leads us to accept or 
reject our hypothesis of independence, we refer to the appropriate 
chi-square distribution, that is the distribution with the degrees 
of freedom of Table 1.1. For our data r = c = 2, and therefore 
using formula ( 1.14) gives unity as the number of degrees of freedom. 
This shows that only one cell in the table may be fixed arbitrarily, 
given the row and column totals. If we perform our test at the 0.05 
or 5% significance level, the requisite value of chi-square with 
1 d.f., obtained from Appendix A, is 3.84. Since our value of x2 is 
far greater than this we conclude that the variables are not indepen
dent but are 'associated'. Since we are dealing with a 2 x 2 table this 
may be interpreted as meaning that the proportion of males who 
died from tuberculosis of the respiratory system, namely 3534/ 
3804 = 0.929, is significantly different from the proportion of 
females, namely 1319/1571 = 0.840, who died from the same cause. 

It is weil to note that the finding of a significant association by 
means of the chi-square test does not necessarily imply any causal 
relationship between the variables involved, although it does 
indicate that the reason for this association is worth investigating. 

1.10. Summary 

In this chapter the type of data with which this book is primarily 
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concerned has been described. Testing for the independence of two 
qualitative variables by means of a chi-square test was introduced. 

The chi-square test is central to this text, and in subsequent 
chapters many examples of its use in investigations in psychology, 
psychiatry, and social medicine will be given. These sciences are 
as yet in the early stages of development, and studies in them are 
still characterized by a search for the variables basic to them. 
This search is often one for general relationships and associations
however amorphaus they may appear at first-between the pheno
mena being studied, and here the chi-square test is often helpful. 



CHAPTER TWO 

2 x 2 Contingency tables 

2.1. lntroduction 

The simplest form of contingency table, namely that arising from 
two dichotomous variables and known as a 2 x 2 table, has been 
introduced in the preceding chapter. In this chapter we shall deal 
with such tables in greater detail. 

Data which form 2 x 2 tables occur very frequently in social 
science and educational and psychiatric research. Such data may 
arise in several ways. For instance, they can occur when a total 
of say N subjects is sampled from some population and each 
individual is classified according to two dichotomous variables. 
For example, in an investigation of the relationship between age 
and smoking in males, one hundred males might be sampled, and 
dichotomized with respect to age, say above or below forty, and 
with respect to amount of smoking, say above and below twenty 
cigarettes a day. A (hypothetical) set of data is shown in Table 2.1. 

Again such data may arise in an investigation where we sample 
a predetermined number of individuals in each of the categories 
of one of the variables, and for each sample assess the number of 
individuals in each of the categories of the second variable. For 
example, in an investigation into the frequency of side-effects, say 

TABLE 2.1. Smoking and age example. 

Age 
Under40 Over40 

Less than 20/day 50 15 65 
Amount of smoking 

More than 20/day 10 25 35 

60 40 100 
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T ABLE 2.2. Side-effects and drug example. 

Side-effect (Nausea) 
Present Absent 

Drug given 15 35 50 
Treatment 

Placebo given 4 46 50 

19 81 100 

nausea, with a particular drug, fifty subjects may be given the drug, 
fifty subjects given a placebo, and the number of subjects suffering 
from nausea assessed in each sample. Table 2.2 shows a possible 
outcome. 

The analysis of such tables is by means of the chi-square test 
described in Chapter 1, a simplified form of which is available 
for 2 x 2 tables as indicated in the following section. 

2.2. Chi-square test for a 2 x 2 table 

The general 2 x 2 table may be written in the form shown in 
Table 2.3. 
The usual expression for computing the statistic x2 , that is: 

"(Observed frequency- Expected frequency) 2 

L. (2.1) 
Expected frequency 

reduces, for the generat 2 x 2 table, to the following simplified form: 

2 N(ad- bc)2 
X = -,--------:-,--------"-----,---,-,-----,--

(a + b)(c + d)(a + c)(b + d) 

T ABLE 2.3. General 2 x 2 contingency table. 

Category 1 
Variable B 

Category 2 

Variable A 
Category 1 Category 2 

a b 

c d 

a+c b+d 

(2.2) 

a+b 

c+d 

N=a+b+c+d 
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As was seen in Chapter 1, the significance of this statistic is judged 
by referring it to the tabulated x2 values with one degree of freedom. 
For example, applying formula (2.2) to the data ofTable 2.2 gives: 

2 1()() X (15 X 46 - 35 X 4)2 

X = 50 X 50 X 19 X 81 7·86 

At the 5% level the tabulated x2 value for 1 d.f. is 3.84. Our computed 
value of x2 is greater than this value and we are led to suspect the 
truth of our hypothesis that the occurrence of side-effects is indepen
dent of the treatments (drug and placebo) involved. The result 
may be interpreted as indicating that the proportion of people 
who suffer from nausea when treated with the drug is different from 
the proportion of people who suffer from nausea when given a 
placebo. These proportions, estimated from Table 2.2, are 0.30 
and 0.08. 

2.3. Yates's continuity correction 

In deriving the distribution of the statistic x2 essentially we are 
employing a eontinuous probability distribution, namely the chi
square distribution, as an approximation to the diserete probability 
distribution of observed frequencies, namely the multinomial 
distribution. To improve the approximation, Yates (1934) suggested 
a correction which involves subtracting 0.5 from the positive 
discrepancies (Observed - Expected), and adding 0.5 to the negative 
discrepancies, before these values are squared. This correction may 
be incorporated directly into formula (2.2), which then becomes: 

2 N(iad- bei- 0.5N)2 

X = (a + b)(e + d)(a + e)(b + d) 
(2.3) 

1t is known as a chi-square value corrected for continuity. In formula 
(2.3) the term lad- bei means 'the absolute value of (ad- be)', 
that is the numerical value of the expression irrespective of its 
sign. 

Recently there has been some discussion of the merits of applying 
Yates's correction. Conover (1968, 1974) questions its routine 
use in all cases, but Mantel and Greenhouse (1968), Fleiss (1973), 
and Mantel (1974) reject Conover's arguments. In general the 
evidence for applying the correction seems convincing, and hence 
its use is recommended. If the sample size is reasonably large the 
correction, of course, will have little effect on the value of x2 • 
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2.4. Small expected frequencies - Fisher's exact test for 2 x 2 tables 

As mentioned briefly in Chapter 1, one of the assumptions made 
when deriving the chi-square distribution, as an approximation to 
the distribution of the statistic x2, is that the expected frequencies 
should not be too small since otherwise the approximation may 
not be good. We return to the problern in the following chapter, 
but in the case of 2 x 2 tables with 'small' expected frequencies, 
say 5 or less, we may employ Fisher's exact test as an alternative 
to the chi-square test. 

2.4.1. Fisher's testfor 2 x 2 tables 

Fisher's exact test for a 2 x 2 contingency table does not use the 
chi-square approximation at all. lnstead the exact probability 
distribution of the observed frequencies is used. For fixed marginal 
totals the required distribution is easily shown tobethat associated 
with sampling without replacement from a finite population, 
namely a hypergeometric distribution (see Mood and Graybill, 
Ch. 3). Assuming that the two variables are independent, the 
probability (P) of obtaining any particular arrangement of the 
frequencies a, b, c, and d (Table 2.3), when the marginal totals are 
as given, is: 

P = (a + b)!(c + d)!(a + c)!(b + d)! 
a!b!c!d!N! 

(2.4) 

where a! - read 'a factorial'- is the shorthand method of writing 
the product of a and all the whole numbers less than it, down to 
unity; for example: 

5! = 5 X 4 X 3 X 2 X 1 = 120 

(By definition the value of 0! is unity.) Fisher's test now employs 
formula (2.4) to find the probability ofthe arrangement offrequencies 
actually obtained, and that of every other arrangement giving as 
much or more evidence for association, always keeping in mind 
that the marginal totals are to be regarded as fixed. The sum of 
these probabilities is then compared with the chosen significance 
level a; if it is greater than a we have no evidence of any association 
between the variables; if it is less than a we conclude that the hypo
thesis of independence should be rejected and therefore that there 
is a significant association between them. A numerical example 
will help to clarify the procedure. 
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T ABLE 2.4. The incidence of 'suicidal feelings' in samples 
of psychotic and neurotic patients. 

Suicidal feelings 
No suicidal feelings 

Type of patient 
Psychotics N eurotics 

2 (4) 
18 (16) 

20 

6 (4) 
14 (16) 

20 

8 
32 

40 

2.4.2. Numerical example of Fisher's exact testfor 2 x 2 tables 

In a broad general sense psychiatric patients can be classified as 
psychotics or neurotics. A psychiatrist, whilst studying the symptoms 
of a random sample of twenty from each of these populations, 
found that, whereas six patients in the neurotic group had suicidal 
feelings, only two in the psychotic group suffered in this way, and 
he wished to test if there is an association between the two psychiatric 
groups and the presence or absence of suicidal feelings. The data 
are shown in Table 2.4. Our hypothesis in this case is that the 
presence or absence of suicidal feelings is independent of the type 
of patient involved, or, equivalently, that the proportion of psycho
tics with suicidal feelings is equal to the proportion of neurotics 
with this symptom. 

The expected frequencies on the hypothesis of independence 
are shown in parentheses in Table 2.4; we see that two of them are 
below 5 and consequently we shall test our hypothesis by means 
of Fisher's exact test rather than by the chi-square statistic. Using 
formula (2.4) we first find the probability of the observed table; 
it is: 

8 ! X 32 ! X 20 ! X 20! 
P2=2, 6' 18' 14' 40'=0.095760 • X • X • X • X • 

(The subscript toP refers to the smallest ofthe frequencies a, b, c, d; 
in this case it is 2.) 

Returning to Table 2.4, and keeping in mind that the marginal 
frequencies are to be taken as fixed, the frequencies in the body of 
the table can be arranged in two ways both of which would represent, 
had they been observed, more extreme discrepancies between the 
groups with respect to the symptom. These arrangements are shown 
in Table 2.5. 
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T ABLE 2.5. More extreme cell frequencies 
than those observed. 

(a) (b) 

1 7 8 0 8 8 
19 13 32 20 12 32 

20 20 40 20 20 40 

Substitutingin turn the values in Table 2.5(a) and 2.5(b) in formula 
(2.4) we obtain: 

P 1 = 0.020160, for Table 2.5(a) 

P0 = 0.001638, for Table 2.5(b) 

Therefore the probability of obtaining the observed result (that 
is Table 2.4), or one more suggestive of a departure from indepen
dence, is given by: 

P=P2 +P1 +P0 

= 0.095760 + 0.020160 + 0.001638 

= 0.117558 

This is the probability of observing, amongst the eight patients 
suiTering from suicidal feelings, that two or fewer are psychotics, 
when the hypothesis ofthe equality ofthe proportians ofpsychotics 
and neurotics having the symptom, in the populations from which 
the samples were taken, is true; it shows that a discrepancy between 
the groups as large as that obtained might be expected to occur by 
chance about one in ten times even with methods of classification 
that were independent. Since its value is larger than the commonly 
used significance Ievels (0.05 or 0.01), the data give no evidence 
that psychotics and neurotics differ with respect to the symptom. 
lndeed, in this case, since P 2 is itself greater than 0.05, the computa
tion could have ended before evaluating P 1 and P 0 . 

A significant result from Fisher's test indicates departure from 
the null hypothesis in a specific direction, in cantrast to the chi
square test which tests departure from the hypothesis in either 
direction. In the psychiatric groups example, the former is used to 
decide whether the proportians of patients in the two groups 
having suicidal feelings are equal or whether the proportion of 
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psychotics with the symptom is less than the proportion of neurotics. 
The normal chi-square statistic, however, tests whether these 
proportions are equal or unequal without regard to the direction 
of the inequality. In other words, Fisher's test is one-tailed whereas 
the chi-square test is two-tailed. (For a detailed discussion of one
tailed and two-tailed tests, see Mood and Graybill, Ch. 12.) In the 
case where the sample sizes in each group are the same (as they 
are in the above example) the probability obtained from Fisher's 
test may be doubled to give the equivalent of a two-tailed test. 
This gives P = 0.23512. lt is of interest to compare this value with 
the probability that would be obtained using the chi-square test. 
First we compute the chi-square statistic for Table 2.4, using formula 
(2.2) to give: 

2 = 40(2 X 14- 18 X 16)2 = 2.SÜ 
X 20 X 20 X 8 X 32 

Using the tables given by Kendall (1952, Appendix, Table 6), 
the exact value of the probability of obtaining a value of chi-square 
with 1 d.f. as large as or larger than 2.50 may be found; it is 0.11385. 
Now, we calculate the chi-square statistic with Yates's continuity 
correction applied, using formula (2.3): 

2 = 40(128- 1081- 20f = 1.41 
X 20 X 20 X 8 X 32 

In this case the corresponding probability is 0.23572. Since the 
comparable probability obtained from Fisher's test is 0.23512, 
the efficacy of Yates's correction is clearly demonstrated. 

2.4.3. Calculating the probabilities for Fisher's exact test 

There are various ways in which the calculations involved in 
applying Fisher's test may be made easier. Perhaps the most conve
nient method is by use of the tables given in Biometrika Tables 
for Statisticians (1967), and in Finney et al. (1963), which enable 
the 2 x 2 table to be examined for significance directly. These 
tables may be used for values of N up to the order of 50. 

If evaluation of the probabilities is necessary, the values of 
factorials are given in Barlow's (1952) and in Fisher and Yates's 
tables (1957). More convenient to use in most cases are tables of 
the logarithms of factorials (see, for example, Lindley and Miller, 
1953). If these tables arenot available, a short-cut method of evaluat-
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ing the probabilities is described by Feldman and Klinger (1963), 
which involves the application of the following recursive formula: 

a.d. 
pi-1 = b ' ' Pi 

i-1 ci-1 
(2.5) 

In formula (2.5), Pi is the probability of the observed table of fre
quencies, the subscript i referring to the smallest frequency in 
the table. Similarly Pi_ 1 , Pi- 2 , etc. are the probabilities of the 
arrangements obtained when this frequency is reduced to give 
tables more suggestive of a departure from independence. The 
terms ai, di, bi_ 1 , and ci_ 1 refer to frequencies in the ith and (i- 1)th 
tables. To clarify the use of this technique we shall employ it to 
re-compute the probabilities required for Table 2.4. First we need 
to calculate P 2 , the probability of the observed table. As before, 
we do this by using formula (2.4) to give P 2 = 0.09576. Now using 
formula (2.5) the other probabilities, namely P 1 and P 0 , may be 
obtained very simply as follows: 

2 X 14 
P 1 = 7 x 19 P 2 = 0.020160 (as before) 

[2 and 14 are the 'a' and 't:f frequencies in Table 2.4; 7 and 19 are 
the 'c' and 'b' frequencies in Table 2.5(a).] 

1 X 13 
P 0 = 20 x 8P 1 = 0.001638 (as before) 

2.4.4. The power of Fisher' s exact test for 2 x 2 tables 

The power of a statistical test (see, for example, Mood and Graybill, 
Ch. 12) is equal to the probability of rejecting the null hypothesis 
when it is untrue, or in other words the probability of making a 
correct decision when applying the test. Obviously we would like 
the power of any test we use to be as high as possible. Several 
workers have investigated the power of Fisher's test and have shown 
that large sample sizes are needed to detect even moderately large 
differences between the two proportions. For example, Bennett 
and Hsu (1960), for the data of Table 2.4, where sample sizes of 20 
from each group (that is 20 neurotics and 20 psychotics) are involved, 
show that if we are testing at the 5% Ievel, and the population 
values of the proportians of people with suicidal feelings in each 
group are 0.5 and 0.2, then the power takes a value of0.53. Therefore 
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in almost half the cases of performing the test with these sample 
sizes we shall conclude that there is no difference between the 
incidence of the symptom amongst psychotic and neurotic patients. 
The results of Gail and Gart (1973) show further that, in this parti
cular example, a sample of 42 patients from each group would be 
necessary to attain a power of 0.9 of detecting a difference in the 
population proportions. To detect small differences between the 
proportions, the latter authors show that relatively large sample 
sizes may be needed. For example, if the values of the proportions 
in the population were 0.8 and 0.6, a sample of 88 individuals from 
each group would be needed to achieve a power of 0.9, that is to 
have a 90% chance of detecting the difference. 

2.5. McNemar's test for correlated proportions in a 2 x 2 table 

One-to-one matehing is frequently used by research workers to 
increase the precision of a comparison. The matehing is usually 
done on variables such as age, sex, weight, I.Q., and the like, informa
tion about which can be obtained relatively easily. Two samples 
matched in a one-to-one way must be thought of as correlated 
rather than independent; consequently the usual chi-square test 
is not strictly applicable for assessing the difference between fre
quencies obtained with reference to such samples. 

The appropriate test for comparing frequencies in matched 
samples is one due to McNemar (1955). As an introduction to it, let 
us look at Table 2.6 in which the presence or absence of some charac
teristic or attribute A for two matched samples I and II is shown. 
As we are concerned with the differences between the two samples, 
the entries in the N-E and S-W cells of the table do not interest us, 
since the frequency b refers to matched pairs both of which possess 
the attribute, while the frequency c refers to pairs both of which do 
not possess the attribute. The comparison is thus confined to the 

TABLE 2.6. Frequencies in matched samples. 

Sampie I 
A absent A present 

A present a b 
Sampie II 

A absent c d 
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frequencies a and d, the former representing the nurober of matched 
pairs that possess the attribute if they come from sample I and do 
not possess it if they come from sample II, while the latter represents 
pairs for which the converse is the case. Under the hypothesis that 
the two samples do not differ as regards the attribute, we would 
expect a and d to be equal, or, to put it another way, the expected 
values for the two cells each to be (a + d)/2. Now if the observed 
frequencies a and d and their expected frequencies (a + d)/2 are 
substituted in the usual formula for x2, that is formula (2.1), we 
obtain: 

2 (a- df 
X = a+d (2.6) 

If a correction for continuity is applied, this expression becomes: 

2 _ (Ja-dJ-1f 
X - a+d (2.7) 

This is McNemar's formula for testing for an association in a 2 x 2 
table when the samples are matched; under the hypothesis of no 
difference between the matched samples with respect to the attribute 
A, x2 has a chi-square distribution with 1 d.f. To illustrate 
McNemar's test Iet us now consider an example. 

2.5.1. Numerical example of McNemar's test 

A psychiatrist wished to assess the effect of the symptom 
'depersonalization' on the prognosis of depressed patients. For 
this purpose 23 endogenous depressed patients, who were diagnosed 
as being 'depersonalized', were matched one-to-one for age, sex, 

T ABLE 2. 7. Recovery of 23 pairs of depressed patients. 

Patients not 
depersonalized 

Recovered 

Depersonalized patients 
Not recovered Recovered 

5 14 

Not recovered 2 2 

7 16 

19 

4 

23 
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duration of illness, and certain personality variables, with 23 
endogenous depressed patients who were diagnosed as not being 
'depersonalized'. The numbers of pairs of patients from the two 
samples who, on discharge after a course of E.C.T., were diagnosed 
as 'recovered' or 'not recovered' are given in Table 2.7. From 
this table we see that a is 5 and d is 2. Substituting these values in 
formula (2. 7) gives: 

2 - ( 15 - 21 - 1 )2 
X - (5 + 2) 

= 0.57 

With one degree of freedom the value does not reach an acceptable 
level of significance, so we conclude that 'depersonalization' is 
not associated with prognosis where endogenous depressed patients 
are concemed. 

2.6. Gart's test for order effects 

Let us now consider a further commonly occurring situation in 
which McNemar's test would be relevant, namely that where two 
drugs A and B are given to patients on two different occasions and 
some response of interest is noted. Again we are dealing with 
correlated rather than independent observations (since the same 
subject receives both A and B) but in this case a complicating 
factor would be the order of the drug administration since this 
might have an appreciable effect on a subject's response. The 
McNemar test may ignore pertinent and important information 
on order within pairs. For example, suppose the two drugs are used 
in the treatment of depression and that they are to be investigated 

TABLE 2.8. Number of subjects showing nausea with drugs A and B. 

DrugA 
Nonausea Nausea 

Nausea 3 9 12 
DrugB 

No nausea 75 13 88 

78 22 100 
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for possible side-effects, say nausea. The drugs are given to 100 
patients and the response 'nausea' or 'no nausea' is recorded, 
giving the results shown in Table 2.8. Therefore, of these subjects, 
75 never bad nausea, 13 subjects bad nausea with A but not with B, 
3 had nausea with B but not with A, and 9 had nausea with both 
drugs. A McNemar test ofthese data gives, using formula (2.7): 

2 (l3-13l-1f 
X = 16 

= 5.06 

Referring this to a chi-square with 1 d.f. at the 5% level, namely 3.84, 
we see that our value of x2 is significant, and we would conclude 
that the incidence of nausea is different for the two drugs. 

Now, in this experiment each subject must have received the 
drugs in a certain order, either A first (A, B) or B first (B, A). In 
most cases in such an experiment an equal number would be given 
the drugs in order (A, B) as in order (B, A). However, this balance 
may not survive in the unlike pairs on which the test is based. 
For example, two possible outcomes for the data of Table 2.8 are 
shown below: 

Outcome 1 

Order of drug 
(A,B) (B, A) 

Nausea with A 7 6 13 
Nausea with B 1 2 3 

8 8 16 

Outcome 2 

Order of drug 
(A, B) (B, A) 

Nausea with A 2 11 13 
Nausea with B 3 0 3 

5 11 16 
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In Outcome 1 the first administered drug produces nausea in 9 cases 
and the second in 7 cases. In Outcome 2 these values are 2 and 14. 
In both instances nausea occurs with drug A in 13 cases and with 
drug B in 3 cases. The first outcome suggests that the drugs differ 
and that A causes more subjects to suffer from nausea. However, 
the order of administration appears unimportant. For Outcome 2 
the issue of drug differences is not so clear since there appears to 
be a possible order effect with the second administered drug causing 
more subjects to suffer from the side-effect. Gart (1969) derives a 
test for an order effect and a test for a treatment or drug effect. 
The tests use the pairs of observations giving unlike responses, 
first arranged as in Table 2.9 and then as in Table 2.10. 

The terms Ya' Ya', yb, yb', n, and n' are used to represent the follow
ing frequencies: 

Ya: the number of observations for which drug A produces a 
positive result (in this case causes nausea) in pairs for which A 
is given first; 

Ya': the number of observations for which drug A produces 
a positive result in pairs for which Bis given first; 

TABLE 2.9. Data arranged so as to test for a treatment effect. 

Nausea with first drug 
Nausea with second drug 

Drug order 
(A, B) (B, A) 

n n' n+n' 

TABLE 2.10. Data arranged so as to test for an order effect. 

Nausea with A 
Nausea with B 

Drug order 
(A, B) (B, A) 

n n' n+n' 
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yb : the number of observations for which drug B produces a 
positive result in pairs for which Ais given first; 

yb' : the number of observations for which drug B produces a 
positive result in pairs for which B is given first; 

n : the number of unlike pairs with A first; 
n' : the number of unlike pairs with B first. 
Gart shows that Fisher's exact test applied to Table 2.9 gives a 

test of the hypothesis that there is no difference between the drugs 
with respect to incidence of nausea. The same test applied to 
Table 2.10 is a test of the hypothesis that there is no order effect. 
To illustrate the use of Gart's test it is now applied to Outcomes 1 
and 2 for the sixteen unlike pairs ofthe drug example. 

2.6.1. Numerical example of the application ofGart's test 

Outcome 1. Tables 2.11 (a) and (b) show the arrangements of 
the unlike pairs of observations needed -ror the application of 
Gart's procedure. Performing Fisher's test on Table 2.11 (a) gives 
a test of the treatment effect, and on Table 2.11(b) a test of the 
order effect; the results are as follows: 

Treatment effect : P = 0.02 
Order effect : P = 0.50 

These results indicate that the incidence of nausea is higher for 
drug A than for drug B, and that the order of drug administration 
has no effect on the response. 

Outcome 2. For this outcome the application of Fisher's test to 

TABLE 2.11. 

(a) (b) 
Drug order Drug order 

(A,B) (B, A) (A,B) (B,A) 

Nausea with Nausea 
1st drug 7 {y.) 2 {yb') 9 withA 7 6 13 
Nausea with Nausea 
2nddrug 1 (yb) 6 {y.') 7 with B 1 2 3 

8 8 16 8 8 16 
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Nausea with 
1st drug 
Nausea with 
2nddrug 
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TABLE 2.12. 

(a) (b) 

Drug order Drug order 
(A,B) (B,A) (A,B) (B,A) 

Nausea 
2 0 2 withA 2 11 13 

Nausea 
3 11 14 withB 3 0 3 

5 11 16 5 11 16 

Tables 2.12 (a) and (b) gives the following results: 

Treatment effect : P = 0.080 

Order effect : P=0.018 

Therefore in this case we conclude that, whereas the drugs do not 
differ, there is a greater incidence of nausea on the second occasion 
of drug administration than on the first. 

2. 7. Combining infonnation from several 2 x 2 tables 

In many studies a nurober of 2 x 2 tables, all bearing on the same 
question, may be available, and we may wish to combine these in 
some way to mak:e an overall test of the association between the 
row and column factors. For example, in an investigation into the 
occurrence of lung cancer among smokers and non-smokers, data 
may be obtained from several different locations or areas, and for 
each area the data might be arranged in a 2 x 2 table. Again, in 
an investigation of the occurrence of a particular type of psycho
logical problern in boys and girls, data may be obtained from each 
of several different age groups, or from each of several different 
schools. The question is how may the information from separate 
tables be pooled? 

One obvious method which springs to mind is to combine all the 
data into a single 2 x 2 table for which a chi-square statistic is 
computed in the usual way. This procedure is legitimate only if 
corresponding proportions in the various tables are alike. Conse
quently, if the proportions vary from table to table, or we suspect 
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that they vary, this procedure should not be used, since the combined 
data will not accurately reflect the information contained in the 
original tables. For example, in the lung cancer and smoking example 
mentioned previously, where data are collected from several different 
areas, it may weil be the case that the occurrence of lung cancer is 
morefrequent in some areas than in others. Armitage (1971) gives 
an extreme example of the tendency of this procedure to create 
significant results. 

Another technique which is often used is to compute the usual 
chi-square value separately for each table, and then to add them; 
the resulting statistic may then be compared with the value of 
chi-square from tables with g degrees of freedom where g is the 
number of separate tables. (This is based on the fact that the sum 
of g chi-square variables each with one degree of freedom is itself 
distributed as chi-square with g degrees of freedom.) This is also 
a poor method since it takes no account of the direction of the 
differences between the proportians in the various tables, and conse
quently Iacks power in detecting a difference that shows up consis
tently in the same direction in all or most of the individual tables. 

Techniques that are more suitable for combining the information 
from several 2 x 2 tables are the .J (x2) method and Cochran's 
method, both of which will now be described. 

2.7.1. The ,.j(x2) Method 

If the sample sizes of the individual tables do not differ greatly 
(say by more than a ratio of 2 to 1), and the values taken by the 
proportians lie between approximately 0.2 and 0.8, then a method 
based on the sum of the square roots of the x2 statistics, taking 
account of the signs of the differences in the proportions, may be 
used. 1t is easy to show that, under the hypothesis that the propor
tians are equal, the x value for any of the 2 x 2 tables is approxi
mately normally distributed with mean zero and unit standard 
deviation, and therefore the sum of the X values for the complete 
set of g tables is approximately normally distributed with mean 
zero and standard deviation .J g. Therefore, as a test statistic for the 
hypothesis of no difference in the proportians for all the g tables, 
we may use the statistic Z given by: 

g 

Z= L xJ.Jg (2.8) 
i=l 
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where Xi is the value of the square root of the x2 statistic for the 
ith table, with appropriate sign atta.ched. 

To illustrate the method Iet us consider the data shown in 
Table 2.13 in which the incidence of malignant and benignant 
tumours in the left and right hemispheres in the cortex is given. 
The problern is to test whether there is an association between 
hemisphere and type of tumour. Data for three sites in each hemis
phere were available, but an earlier investigation had shown that 
there was no reason to suspect that any relationship between 
hemisphere and type of tumour would differ from one site to 
another, so an overall assessment of the hemisphere-tumour 
relationship was indicated. Foreach of the three sites the numbers 
of patients (33, 27, and 34 respectively) are roughly equal, so we 
shall apply the J (x2) method to these data. The value of x2 is 
first computed for each separate table. (Note that none of these is 
significant.) The square roots of these values are then obtained and 
the sign of the difference between the proportians is assigned to 
each value of X· For these data the difference between the propor
tians is in the same direction for each of the three tables, namely 
the proportion of malignant tumours in the right hemisphere is 
always higher than in the left. Consequently the same sign is attached 
to each x value. (Whether this is positive or negative is, of course, 

TABLE 2.13. Incidence of tumours in the two hemispheres for different sites 
in the cortex. 

Site of tumour Benignant Malignant Proportion X~ X 
tumours tumours of malignant 

tumours 

1. Left hemisphere 17 5 0.2273 1.7935 1.3392 
Right hemisphere 6 5 0.4545 

23 10 
2. Left hemisphere 12 3 0.2000 1.5010 1.2288 

Right hemisphere 7 5 0.4167 

19 8 
3. Left hemisphere 11 3 0.2143 2.003 1.4155 

Right hemisphere 11 9 0.4500 

22 12 
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immaterial.) The test statistic for the combined results is given by 

1.339 + 1.2288 + 1.4155 
Z= )3 

= 2.300 

This value is referred to the tables of the standard normal distribu
tion and is found to be significant at the 5% Ievel. Therefore, taking 
all three sites together suggests that there is an association between 
type of tumour and hemisphere. 

If for these data we were to add the separate chi-square statistics, 
namely 1.7935, 1.5010, and 2.003, we obtain a value of 5.2975. 
This would be tested against a chi-square with three degrees of 
freedom, and is not significant at the 5% Ievel. Since in this case 
the differences are all in the same direction, the ) (x2) method is 
more powerful than one based on summing individual x2 values. 

2.7.2. Cochran's Method 

If the sample sizes and the proportions do not satisfy the conditions 
mentioned in Section 2.7.1, then addition of the x values tends to 
lose power. Tables that have very small N values cannot be expected 
to be of as much use as those with large N for detecting a difference 
in the proportions, yet in the ) (x2) method all tables receive the 
same weight. Where differences in the sample sizes are extreme we 
need some method of weighting the results from individual tables. 
Cochran (1954) suggested an alternative test based on a weighted 
mean of the differences between proportions. The test statistic he 
suggests is Y given by: 

where g is the number of2 x 2 tables and for the ith ofthese: 
n; 1 and n;2 are the sample sizes in the two groups; 
pil and P;2 are the observed proportions in the two samples; 
P; = (nilpil + n;2P;2)/(nil + n;2) and Q; = (1 - P;); 
d; = (P;l - P;2) and W; = n;l n;2/(nil + n;2). 

(2.9) 

lt is seen that Y is a weighted mean of the d; values, in which the 
weights used give greater importance to differences based on large 
than on small samples. Under the hypothesis that the d; terms 
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T ABLE 2.14. The Inci4!ence of tics in three samples of maladjusted children. 

Age Tics No Total Proportion 
range tics with tics 

5-9 Boys 13 57 70 0.1857 
Girls 3 23 26 0.1154 

Total 16 80 96 0.1667 

10-12 Boys 26 56 82 0.3171 
Girls 11 29 40 0.2750 

Total 37 85 122 0.3033 

13-15 Boys 15 56 71 0.2113 
Girls 2 27 29 0.0690 

Total 17 83 100 0.1700 

are zero for i = 1, ... , g, that is for all tables, then the statistic Y is 
distributed normally with zero mean and unit variance. 

To illustrate Cochran's procedure we shall apply it to the data 
shown in Table 2.14 where the incidence of tics in three age groups 
ofboys and girl5 is given. For these data we have three 2 x 2 tables; 
hence g = 3 and the various quantities needed to perform Cochran's 
test are as follows: 

(a) Age range 5-9 n11 = 70 
p11 = 0.1857 
pl =0.1667 
dl = 0.0703 

(b) Age range 10-12 n21 = 82 
p21 = 0.3171 
p2 = 0.3033 
d2 = 0.0421 

(c) Age rattge 13-15 n31 = 71 
p31 = 0.2113 
p3 = 0.1700 
d3 = 0.1423 

Application of formula (2.9) gives: 

n12 = 26 
p12 = 0.1154 
Ql =0.8333 
w1 = 18.96 
n22 =40 
p22 = 0.2750 
Q2 = 0.6967 
w2 = 26.89 
n32 = 29 
p32 = 0.0690 
Q3 = 0.8300 
w3 = 20.59 

18.96 X 0.0703 + 26.89 X 0.0421 + 20.59 X 0.1423 
Y=----------------------------------------

(18.96 X 0.1667 X 0.8333 + 26.89 X 0.3033 X 0.6967 + 20.59 
X 0.1700 X 0.8300)112 

= 1.61 
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Referring this value to a normal curve it is found to correspond to 
a probability of 0.1074. Had the three age groups been combined 
and an overall chi-square test been performed, a value of 2.110 
would have been obtained. This corresponds to a probability of 
0.2838 which is more than twice that given by Cochran's criterion. 
This fact illustrates the greater sensitivity ofCochran's test. 

2.7.3. Further discussion ofthe J(x2 ) and Cochran's method of 
combining 2 x 2 tab/es 

In cases where the relationship between the two variables in the 
separate 2 x 2 tables is obviously very different, neither the J (x2 ) 

nor Cochran's method is likely tobe very informative. For example, 
suppose we had just two 2 x 2 tables with almost the same sample 
size, which we wished to combine. If the differences in the propor
tians of interest in the two tables were large, approximately equal 
in magnitude, but opposite in sign, then both the J (x2) and Cochran's 
statistic would be approximately zero and therefore yield a non
significant result. Investigators should therefore keep in mind that 
both methods are really for use when we are trying to detect small 
systematic differences in proportions. Application of these tests 
to sets of tables in which these differences vary greatly in magnitude 
and in direction should be avoided. In such cases combination of 
the tables in any way is not to be recommended, and they are 
perhaps best dealt with by the methods to be described in Chapters 4 
and 5. 

An excellent extended account of the problems of combining 
evidence from fourfold tables is given in Fleiss (1973), Ch. 10. 

2.8. Relative risks 

So far in this chapter we have confined our attention to tests of 
the significance of the hypothesis of no association in 2 x 2 tables. 
However, important questions of estimation may also arise where 
the null hypothesis is discarded. This is particularly true of certain 
types of study; for example, in studying the aetiology of a disease 
it is often useful to measure the increased risk (if any) of incurring 
a particular disease if a certain factor is present. Let us suppose that 
for such examples the population may be enumerated in terms of 
the entries in Table 2.15. 

The entries in Table 2.15 are proportians of the total population. 
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TABLE 2.15. 

Disease 
Present ( + ) Absent ( - ) 

Present ( +) 
Factor 

Absent (-) 

1 

If the values of these proportians were known, the risk of having 
the disease present for those individuals having the factor present 
would be: 

(2.10) 

and for those individuals not having the factor present it would be: 

(2.11) 

In many situations involving this type of example, the proportion 
of subjects having the disease will be small; consequently P 1 will 
be small compared with P 3 , and P 2 will be small compared with 
P 4 ; the ratio of the risks given by (2.1 0) and (2.11) then becomes 
very nearly: 

plp4 

p2p3 
(2.12) 

This is properly known as the approximate relative risk, but it is 
often referred to simply as relative risk and denoted by t/J. If we 

TABLE 2.16. 

Disease 
+ 

+ a b a+b 
Factor 

c d c+d 

a+c b+d N 
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have the sample frequencies shown in Table 2.16 then 1/1 may be 
estimated simply by: 

(2.13) 

In general we would require not merely a point estimate of 1/1 as 
given by (2.13) but a confidence interval also. (See Mood and Greybill, 
Ch. 11.) This is most easily achieved by consideration initially of 
log. 1/J since its variance may be estimated very simply as follows: 

' 1 1 1 1 
var(log 1/1) =- +-+-+-

e a b c d 
(2.14) 

By assuming normality we can then obtain a confidence interval 
for log. (/1, namely: 

log. tJ/ ± 1.96 x y' [ var(log. ~)] (2.15) 

(This would give a 95% confidence interval.) Taking exponentials 
of the quantities in (2.15) we would arrive finally at the required 
confidence interval for 1/f. An example will help to clarify this 
procedure. 

2.8.1. Calculating a confidence interval for relative risk 

Suppose that, of the members of a given population equally exposed 
to a virus infection, a percentage (which we shall assume contains 
a fair cross-section ofthe population as a whole) has been inoculated. 
After the epidemic has passed, a random sample of people from 
the population is drawn; the numbers ofinoculated and uninoculat
ed that have escaped infection are recorded and the figures in 
Table 2.17 obtained. 

lt is clear from the data in Table 2.17 that the proportion of 
uninoculated people that was infected by the virus is considerably 

T ABLE 2.17. Incidence of virus infection. 

Not infected lnfected 

Not inoculated 130 (d) 20 (c) 150 
Inoculated 97 (b) 3 (a) 100 

227 23 250 
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larger than the proportion of inoculated infected. In other words 
the risk of being infected had you been inoculated is less than the 
risk had you not been inoculated. To quantify this difference we 
will find a confidence interval for 1/1 the relative risk. 

From (2.13) we first calculate t[, the estimate of 1/1; this gives, for 
these data, t[, = 0.201. Therefore loge ~ is- 1.60. From (2.14) 
we may now estimate the variance of lo~ tf,, and obtain a value of 
0.401. A 95% confidence interval for lo~ 1/1 is now obtained using 
(2.15); substituting the values already calculated for loge ~ and 
its variance, we arrive at the interval: 

- 1.60 ± 1.96 X 0.63 
that is 

- 2.83 to - 0.37 

We may now take exponentials of these two limits to give the 
required 95% confidence interval for 1/1; this leads to the values 0.06 
and 0.69. We are now in a position to say that at the 95% confidence 
limits, that is with a chance of being wrong on the average once in 
twenty times, the risk that an inoculated person will be affected 
by the virus is at most 69% of that of an uninoculated person, 
and it may be as low as 6%. 

Frequently an estimate of relative risk is made from each of a 
number of sub-sets of the data, and we may be interested in combin
ing these various estimates. One approach is to take separate 
estimates of loge 1/1 and weight them by the reciprocal of their 
variance [formula (2.14)]. The estimates may then be combined 
by taking a weighted mean. A rather simpler pooled estimate of 
relative risk is that due to Mantel and Haenszel (1959). This, using 
an obvious nomenclature for the various 2 x 2 tables involved, 
is given by: 

• 'i:.(aA/Ni) 
1/Jpooled = 'i:.(bicdNi) 

(2.16) 

In practice this gives very similar results to those obtained by the 
more complicated procedure outlined involving a weighted mean. 
Examples are given by Armitage (1971), Ch. 16. 

2.9. Guarding against biased comparisons 

In Chapter 1 the need to use random or representative samples as 
a safeguard against obtaining biased results in an investigation was 
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stressed. Now that we have a few examples to which to refer, some 
further discussion of the matter will be helpful. 

An important advance in the development of statistical science 
was achieved when the advantages of design in experimentation were 
realized (Fisher, 1950). These advantages result from conducting 
an investigation in such a way that environmental effects and other 
possible disruptive factors, which might make interpretation of the 
results ambiguous, are kept under control. But in many investiga
tions in social medicine and in survey work in general, where the 
data are often of a qualitative kind (and chi-square tests are com
monly required), planned experiments are difficult to arrange 
(Taylor and Knowelden, 1957, Ch. 4). One of the problems is that 
the occurrence ofthe phenomenon being studied may be infrequent, 
so the time available for the investigation permits a retrospective 
study only to be undertaken. With such studies it is generally 
difficult to get suitable control data, and serious objections often 
arise to the samples one might draw, because of limitations in the 
population being sampled. Berkson (1946) has drawn attention to 
this point where hospital populations are concerned, and he has 
demonstrated that the subtle differential selection factors which 
operate in the referral of people to hospital are likely. to bias the 
results of investigations based on samples from these populations. 
His main point can be illustrated best by an example. 

Suppose an investigator wished to compare the incidence of 
tuberculosis of the lung in postmen and bus drivers. He might 
proceed by drawing two samples from the entrants to these occupa
tions in a given month or year and do a follow-up study, with 
regular X-ray examinations, over a period of years to obtain the 
information he required. He would, of course, be aware of the 
possibility that people, by reason of their family histories or sus
pected predispositions to special ailments, might tend to choose 
one occupation rather than the other, and he might take steps to 
control for such possibilities and to eliminate other possible sources 
of bias. But suppose that, since time and the facilities at his disposal 
did not permit a prospective study to be carried out, he 
decided to obtain his samples by consulting the files of a large 
hospital and extracting for comparison all the postmen and bus 
drivers found there, the data obtained might not give a true picture. 
For instance, it might be the case that bus drivers, by virtue of the 
special responsibility attached to their jobs, were more likely than 
postmen to be referred to hospital should tuberculosis be suspected. 
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lf this were so, a biased comparison would clearly result. 
A biased comparison would also result were it the case that bus 

drivers, say, were prone to be affected by multiple ailments such as 
bronchitis and tuberculosis, or carcinoma ofthe lung and bronchitis, 
or all three, since these ailments would be likely to aggravate each 
other so that a bus driver might be referred to hospital for bronchial 
treatment and then be found to have tuberculosis. W ere this a 
common occurrence then a comparison of postmen and bus drivers 
as regards the incidence of tuberculosis, based on such hospital 
samples, would not give true reflection of the incidence of the disease 
in these occupations in the community. 

The relevance of the above discussion to the interpretation of 
results from investigations such as those reported in this chapter can 
now be examined. For instance, if we return to Table 2.4 it is clear 
that the chi-square test applied to the data in it yields an unbiased 
result only in so far as we can be sure that the hospital populations 
of psychotics and neurotics from which the samples are drawn are 
not affected by differential selection. In particular we would want to 
satisfy ourselves that 'suicidal feelings' did not play a primary part 
in the referral of neurotics to hospital in the first place. lf it did 
the results given by the chi-square test would be biased. 

But it is weil to add that Berkson (1946) notes certain conditions 
under which unbiased comparisons can be made between samples 
drawn from sources in which selective factors are known to operate. 
For instance, ifthe samples ofpostmen and bus drivers drawn from 
the hospital files are selected according to some other disease or 
characteristic unrelated to tuberculosis, say those who on entry 
to hospital were found to require dental treatment, then a compari
son of the incidence of tuberculosis in these men would yield an 
unbiased result. 

As a means of avoiding a biased comparison between samples 
from a biased source it might too be thought that a one-to-one 
matehing of subjects from the populations to be compared would 
overcome the difficulty. But clearly this could not act as a safeguard. 
In the example discussed earlier in the chapter, in which the effect 
of the symptom 'depersonalization' on the prognosis of endogenous 
depressed patients was assessed, were it the case- which is unlikely
that 'depersonalization' itself was a primary factor in causing 
depressed patients to come to hospital, then the result of the com
parison made in that investigation would be open to doubt. 
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2.10. Summary 

In this chapter the analysis of 2 x 2 contingency tables has been 
considered in some detail. However, some warning should be 
given against rushing to compute a chi-square for every 2 x 2 table 
which the reader may meet. He should first have some grounds for 
thinking that the hypothesis of independence is of interest before 
he proceeds to test it. Secondly, calculation of the chi-square 
statistic is often just a time-filler and a ritual and may prevent him 
from thinking of the sort of analysis most needed. For example, 
in many cases of 2 x 2 tables arising from survey data, the need is 
for a measure of the degree of association rather than a statistical 
test for association per se. Such measures are discussed in the follow
ing chapter. In other cases estimation of the relative risk may be 
what is required. 

A detailed mathematical account of some other approaches to 
the analysis of 2 x 2 tables is available in Cox (1970). 



CHAPTER THREE 

r x c Contingency tables 

3.1. Introduction 

The analysis of r x c contingency tables, when either r or c or both 
are greater than 2, presents specialproblemsnot met in the preceding 
chapter. For example, the interpretation of the outcome of a chi
square test for independence in the case of a 2 x 2 table is clear, 
namely the equality or otherwise of two proportions. In the case 
of contingency tables having more than one degree of freedom such 
interpretation is not so clear, and more detailed analyses may be 
necessary to decide just where in the table any departures from 
independence arise. Such methods are discussed in this chapter. 
Again, a problern not encountered with 2 x 2 tables is variables 
having ordered categories, for example severity of disease, say 'low', 
'medium', or 'high', or amount of smoking, 'none', 'less than 10 
a day', 'from 11 to 20 a day' or 'more than 20 a day'. The analysis 
of tables containing such variables presents further special problems, 
and these are also considered here. We begin, however, with a 
numerical example of the usual chi-square test of independence 
applied to a 3 x 3 table. 

TABLE 3.1. Incidence of cerebral tumours. 

Type 
A B c 

I 23 9 6 38 
Site II 21 4 3 28 

III 34 24 17 75 

78 37 26 141 
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3.2. Numerical example of chi-square test 

Table 3.1 shows a set of data in which 141 individuals with brain 
tumours have been doubly classified with respect to type and site of 
tumour. The three types were as follows: A, benignant tumours; 
B, malignant tumours; C, other cerebral tumours. The sites concern
ed were: I, frontal Iobes; II, temporal Iobes; III, other cerebral 
areas. 

In this example r = c = 3, and our null hypothesis, H 0 , is that 
site and type of tumour are independent. We first compute the 
expected frequencies assuming H0 , using formula (1.9). These are 
shown in Table 3.2. 

For example, the entry in the first cell of Table 3.2, namely E ll' 
is obtained as: 

38 X 78 
Eu = 141 = 21.02 

Similarly 
38 X 37 

E 12 = 141 9.97, etc. 

Although frequencies such as 21.02 are obviously not possible, the 
terms after the decimal point are kept to increase the accuracy in 
computing x2• [Note that the marginal totals ofthe expected values 
are equal to the corresponding marginal totals of observed values, 
that is E;. = n;. for i = 1, ... , r, and E.i = n.i for j = 1, ... , c. That 
this must always be true is easily seen by summing equation (1.9) 
over either i or j.J 

Using formula (1.13) we obtain: 

2 (23.0- 21.02)2 (9.0- 9.97f (17.0- 13.83f 
X = 21.02 + 9.97 + ... + 13.83 

= 0.19 + 0.09 + ... + 0.72 

= 7.84 

T ABLE 3.2. Expected frequencies for the data of 
Table 3.1. 

Type 
A B c 

I 21.02 9.97 7.01 38 
Site II 15.49 7.35 5.16 28 

III 41.49 19.68 13.83 75 
78 37 26 141 
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Table 3.1 has 4 d.f. Examining Appendix A at the 5% level gives 
the value of chi-square as 9.49. Since x2 is less than the tabulated 
value, we accept the null hypothesis that the two classifications are 
independent; consequently no association between site and type 
of tumour can be claimed on the evidence obtained from these 
data. 

3.3. Small expected frequencies 
The derivation of the chi-square distribution as an approximation 
for the distribution of the statistic x2 is made under the assumption 
that the expected values arenot 'too small'. This vague term has 
generally been interpreted as meaning that all expected values in 
the table should be greater than 5 for the chi-square test to be valid. 
Cochran (1954) has pointed out that this 'rule' is too stringent, and 
suggests that if relatively few expectations are less than 5 (say, one 
cell out of five) a minimum expectation of unity is allowable. Even 
this rule may be too restrictive, since recent work by Lewontin 
and Felsenstein (1965), Slakter (1966), and others shows that many 
of the expected values may be as low as unity without affecting the 
test greatly. Lewontin and Felsenstein give the following conser
vative rule for tables in which r = 2: 'The 2 x c table can be tested 
by the conventional chi-square criterion if all the expectations are 
1 or greater'. These authors pointout that even this rule is extremely 
conservative and in the majority of cases the chi-square criterion 
may be used for tables with expectations in excess of 0.5 in the 
smallest cell. 

A procedure that has been used almost routinely for many years 
to overcome the problern of small expected frequencies is the pooling 
of categories. However, such a procedure may be criticized for 
several reasons. Firstly, a considerable amount of information may 
be lost by the combination of categories, and this may detract 
greatly from the interest and usefulness of the study. Secondly, 
the randomness of the sample may be affected. The whole rationale 
for the chi-square test rests on the randomness of the sample, and 
that the categories into which the observations may fall are chosen 
in advance. Pooling categories after the data are seen may affect 
the random nature of the sample, with unknown consequences. 
Lastly, the manner in which categories are pooled can have an 
important effect on the inferences one draws. The practice of 
combining classification categories should therefore be avoided if 
at all possible. 
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3.4. Isolating sources of association in r x c tables 

A significant overall chi-square test for an r x c contingency table 
indicates non-independence of the two variables, but provides no 
information as to whether non-independence occurs throughout 
or in a specific part of the table. Therefore one would like to mak:e 
additional camparisans of cells within the whole table. Various 
methods have been suggested for this purpose and some of these 
are discussed in this section. (The situation may be thought of as 
analogaus tothat arising when using analysis ofvariance techniques, 
where, having found that a set of means differ, one wants to identify 
just which means differ from which others.) 

3.4.1. The Lancaster and Irwin method for partitioning r x c tables 

Lancaster (1949) and Irwin (1949) have shown that the overall 
chi-square statistic for a contingency table can always be partitioned 
into as many components as the table has degree of freedom. 
Bach component chi-square value corresponds to a particular 
2 x 2 table arising from the original table, and each component is 
independent of the others. Consequently a detailed examination 
for departures from independence can be made, enabling those 
categories responsible for a significant overall chi-square value to 
be identified. To illustrate the metbad Iet us examine the following 
results regarding the incidence of 'retarded activity' in three samples 
of patients. The data are shown in Table 3.3 

An overall test for association on these data gives a value of 5. 70 
for x2 , which with two degrees of freedom just falls short of the 5% 
Ievel of significance. An examination of the data, however, suggests 
that though the incidence of the symptom for the first two groups 
is very alike it occurs more frequently amongst these groups than 

TABLE 3.3. Retarded activity amongst psychiatric patients. 

Affective Schizo- Neurotics Total 
disorders phrenics 

Retarded activity 12 13 5 30 
No retarded activity 18 17 25 60 

30 30 30 90 
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in the neurotic group. One might be tempted to combine the affective 
disorders and the schizophrenics and do a chi-square test on the 
resulting 2 x 2 table. Indeed, if this is done a value of x2 equal to 
5.625 is obtained, which with one degree of freedom is significant 
just beyond the 2.5% Ievel. But such a procedure, carried out purely 
in the hope of achieving a significant result, after the overall chi
square test has failed to yield one, would be quite unjustified and 
contrary to good statistical practice. In Table 3.3 the expected 
frequencies are all10 or more, so there is no justification for combin
ing groups on this pretext. Of course, had we decided to combine 
the first two groups before examining the data, everything would 
have been in order, though we would by this process have lost one 
degree offreedom unnecessarily. Methods of partitioning the overall 
chi-square value provide us with means of examining our data 
in greater detail and of obtaining more sensitive tests of association 
than we could have obtained otherwise. Kimball (1954) has supplied 
convenient formulae for obtaining the chi-square values corres
ponding to the partitioning method given by Lancaster and Irwin. 
To introduce them Iet us consider Table 3.4, a contingency table 
having r rows and c columns. (This nomenclature is used so that 
Kimball's formulae may be illustrated more clearly.) 

The value of x2 computed in the ordinary way from this table 
has (r- 1)(c- 1) degrees of freedom, and the first step in partition
ing is to construct the (r- l)(c- 1) four-fold tables from which 
the components of chi-square are calculated. In the case of a 2 x 3 
table, for example, the two four-fold tables may be constructed 
as follows: 

~ 
bl [ bz 

For instance, using the data in Table 3.3, the corresponding four-

TABLE 3.4. 

A 
B 

N 
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fold tables are: 

12113 

~ 
25 1 5 

~ 
At this stage the reader may ask why we combine the first two 
columns in preference to any other combination. The answer to 
this question must be supplied by the investigator; he is free to 
combine the two columns which are likely to be most meaningful 
in the light ofhis prior knowledge about the classification categories 
concemed, but the decision about the columns that are to be 
combined should always be made before examining the data to be 
analysed. 

Kimball's formulae for partitioning the overall chi-square value 
in the case of a 2 x c table are obtained by giving t the values 1, 2, ... , 
( c - 1) in turn in the general formula: 

2 N2 [b,+ 1 s,<a>- a,+ 1 s,<b>J2 
x, = ABn s<n>s <n> 

t+1 t t+1 
(3.1) 

where 
t t t 

s,<a> = .L ai, s,<b> = .L bi' s,<n> = .L ni 
i=1 i=1 i=1 

and the other symbols are as defmed in Table 3.4. Bach x/ value 
is a one degree of freedom component of the overall x2 value, and 
so: 

2 2 2 2 
X = X1 + X2 + · · · + Xc-1 (3.2) 

We shall illustrate the use of formula (3.1) by applying it to the 
data of Table 3.3. For these data c = 3 and the overall chi-square 
statistic, x2, is partitioned into two components x/ and x/ each 
having one degree of freedom. Substituting the values t = 1 and 
t = 2 into formula (3.1) we obtain the following simplified formulae 
for x/ and x/: 

2 N2(a1 b2- a2b1)2 
X1 = (3.3) 

ABn1 n2 (n1 + n2) 

2 N2[b3(a1 + a2)- a3(b1 + b2)]2 
X2 = (3.4) 

ABn3 (n1 + n2)(n1 + n2 + n3) 

On substituting the values in Table 3.3 in these formulae we obtain: 
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2 902 (12 X 17- 13 X 18)2 

Xt = 30 X 60 X 30 X 30 X 60 = 0·075 

2 902 (25 X 25- 5 X 35f 
X2 = 30 X 60 X 30 X 60 X 90 = 5·625 

Since we have already mentioned that x2 for these data is 5.700, 
we see that x 12 + X2 2 = X2 • Each component has a single degree 
of freedom, and whereas the first is not significant the second is 
significant beyond the 2.5% level. Partitioning of the overall chi
square value, which itself was not significant, has given us a more 
sensitive test and we are now in a position to say that, whereas 
the first two groups of patients do not differ where the symptom 
'retarded activity' is concerned, the two groups combined differ 
significantly from the third group. 

It is well to note that formula (3.1) differs slightly from the ordinary 
formula (Chapter 2) for x2 for a 2 x 2 contingency table, in so far 
as it has an additional term in the denominator while instead 
on N in the numerator it has N2• The formula, as it stands, contains 
no correction for · continuity but in cases where such a correction 
is desirable it can be applied in the usual way. When this is done, 
additivity [that is formula (3.2)] is no Ionger exact, but the dis
crepancy between x2 and the sum of its component parts in general 
is negligible. 

The general formula for finding the components of the overall 
chi-square in the case of an (r x c) table where r > 2 is also given 
by Kimball but since it is very cumbersome the reader is referred 
to the original article should he require it. 

3.4.2. Partitioning 2 x c tables into non-independent 2 x 2 tables 

The Lancaster and Irwin method described in the preceding section 
sub-divides the overall chi-square value into independent compo
nent parts suchthat formula (3.2) holds. Many researchers, however, 
wish to test specific hypotheses about particular sections of a 
contingency table, which may result in non-independent partitions 
from it. This is especially true in the case of a 2 x c table in which the 
c column categories consist of placebo and various treatment 
groups and the observed responses are dichotomies. Of prime 
interest are the 2 x 2 tables used to test for independence between 
the placebo and each of the treatment groups in turn. Since the 
chi-square values arising from each table are not now independent 
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of each other, it would be unsatisfactory to test them as chi-square 
variables with one degree of freedom. Such a procedure would 
have a serious affect on the value of the significance Ievel and could 
Iead to more differences between placebo and treatments being 
found than the data actually merit. Brunden (1972) shows that a 
reasonable method is to choose the significance Ievel at which we 
wish to perform the test, say tX, and to compare the chi-square 
values obtained from each ofthe (c- 1) 2 x 2 tables against the one 
degree of freedom value from tables at the tX' Ievel, where: 

I (X 
(X=---

2(c- 1) 
(3.5) 

For example, if we were performing tests at the 5% Ievel, that is 
tX = 0.05 and c = 6, we would compare each x2 value with the one 
degree of freedom value from tables at the 0.005level. Let us illustrate 
the procedure with an example in which five drugs for treating 
depression are to be compared. Six samples of thirty depressed 
patients are taken and each patient is given one of the five drugs 
or a placebo; at the end of two weeks each patient is rated as being 
'less depressed' or 'same or worse' than before receiving the drugs. 
The results are shown in Table 3.5. 

TABLE 3.5. Treatment of depression 

Placebo Drug 1 Drug2 Drug 3 Drug4 Drug5 

Improved 8 12 21 15 14 19 89 
Same or 
worse 22 18 9 15 16 11 91 

30 30 30 30 30 30 180 

The overall chi-square test for Table 3.5 gives a value of 14.78, 
which is significant at the 5% Ievel. We now wish to see which drugs 
differ from the placebo. We do this by forming five separate 2 x 2 
tables and computing x2 for each as follows: 

(I) 

Improved 
Same or worse 

Placebo Drug 1 

8 
22 

30 

12 
18 

30 

20 
40 

60 
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(II) 

(III) 

(IV) 

(V) 
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Placebo Drug 2 

Improved 
Same or worse 

lmproved 
Same or worse 

Improved 
Same or worse 

Improved 
Same or worse 

8 
22 

30 

21 
9 

30 

Placebo Drug 3 

8 
22 

30 

15 
15 

30 

Placebo Drug 4 

8 
22 

30 

14 
16 

30 

Placebo Drug 5 

8 
22 

30 

19 
11 

30 

29 
31 

60 

23 
37 

60 

22 
38 

60 

27 
33 

60 

x2 = 3.45 

x2 = 2.58 

We wish to test at the 5% Ievel, that is at 0( = 0.05. Since, in this 
case, c = 6, then from formula (3.5) 0(' = 0.005, and the corresponding 
value of chi-square from tables with 1 d.f. is 7.88. Comparing each 
of the five x2 values with the tabulated value we find that only 
drugs 2 and 5 differ from the placebo, with respect to the change in 
the symptom depression. Note that here the component chi-square 
values do not sum to the overall chi-square value, namely 14.78. 

Rodger (1969) describes other methods whereby specific hypo
theses of interest may be tested in 2 x c tables. 

3.4.3. The analysis of residuals 

A further procedure which may be used for identifying the categories 
responsible for a significant chi-square value is suggested by 
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Haberman (1973). This involves examination of the standardized 
residuals, eii' given by: 

(3.6) 

where Eii is obtained from formula (1.9) as ni.n}N. An estimate of 
the variance of eii is given by: 

vii = (1- ni./N)(1- n}N) (3.7) 

Thus for each cell in the contingency table we may compute an 
adjusted residual, dii' where: 

(3.8) 

When the variables forming the contingency table are independent 
the terms dii are approximately normally distributed with mean 0 
and standard deviation 1. We shall illustrate how the adjusted 
residuals may be useful by considering the data in Table 3.6, which 
concern depression and suicidal tendencies in a sample of 500 
psychiatric patients. 

The expected values are shown in parentheses in Table 3.6. The 
value of x2 for these data is 71.45 which with four degrees offreedom 
is highly significant. Let us now examine the adjusted residuals 
given by formula (3.8). We first compute the terms eii and vii; these 
are shown in Tables 3.7 (a) and (b) respectively. We may now obtain 
the terms dii and these are shown in Table 3.8. Comparing the 
absolute values of the entries in Table 3.8 with the 5% standard 
normal deviate, namely 1.96, we see that many of the adjusted 
residuals are significant. The pattern is as might be expected; 
considerably more of the severely depressed patients either attempt 

T ABLE 3.6. Severity of depression and suicidal intent in a sample of 500 
psychiatric patients. 

Not Moderately Severely Total 
depressed depressed depressed 

Attempted suicide 26 (50.13) 39 (33.07) 39 (20.80) 104 
Contemplated or 
threatened suicide 20 (35.67) 27 (23.53) 27 (14.80) 74 
Neither 195 (155.20) 93 (102.40) 34 (64.40) 322 

Total 241 159 100 500 
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TABLE3.7. 

(a) Standardized residuals (b) V ariance of standardized residuals 

-3.41 
-2.62 

3.19 

1.03 
0.72 

-0.93 

3.99 
3.17 

-3.79 

0.41 
0.44 
0.18 

T ABLE 3.8. Adjusted residuals 

-5.33 
-3.97 

7.42 

1.41 
0.95 

-1.90 

5.05 
3.87 

-7.02 

0.53 
0.58 
0.24 

0.62 
0.67 
0.29 

or contemplate suicide than those patients who do not suffer from 
the symptom. 

3.5. Combining r x c tables 

A problern considered in the preceding chapter, namely the combina
tion of a number of 2 x 2 tables, may also arise for larger contingency 
tables. The investigator may be interested in the association of two 
qualitative factors with r and c categories respectively, and data 
may be available for k sub-groups or strata thus forming k separate 
tables. These strata may simply be different samples, or they may 
be different age groups, different countries, etc., and again we would 
like to combine the tables so as to obtain a more sensitive test of 
the association between the two variables than is given by each 
table separately. Various methods are available for combining 
r x c tables but, as mentioned in the preceding chapter, the combina
of data from different investigations or samples should be considered 
only when differential effects from one investigation to another can 
be ruled out. 

In some cases it is legitimate to combine the raw data themselves. 
For example, in an investigation of the symptom 'retarded activity' 
in psychiatric patients from the diagnostic categories 'affective 
disorders', 'schizophrenics', and 'neurotics', data may be available 
from several different age groups of patients. Such a set of data is 
shown in Table 3.9. 

In this example the age groups might be 'young' and 'old' defined 
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T ABLE 3.9. Retarded activity amongst psychiatric patients. 

Affective disorders Schizophrenics N eurotics 

Age group 1 
Retarded activity 12 (0.400) 13 (0.433) 
No retarded activity 18 17 

30 30 
Age group 2 
Retarded activity 17 (0.425) 15 (0.375) 
No retarded activity 23 25 

40 40 

TABLE 3.1 0. Retarded activity amongst psychiatric patients 
age groups). 

Ajfective disorders Schizophrenics 

Retarded activity 29 28 
No retarded activity 41 42 

70 70 

5 (0.167) 
25 

30 

5 (0.125) 
35 

40 

(combined 

Neurolies 

10 
60 

70 

by some suitable cut-off point. In Table 3.9 the proportion of 
patients showing the symptom in each diagnostic group for each 
age-group is given. Since corresponding proportians are very alike, 
the samples may safely be combined and on overall analysis per
formed on the combined data shown in Table 3.10. 

The corresponding chi-square values are as follows: 
Age group 1 x2 = 5. 700 
Age group 2 X2 = 9.690 
Combined data x2 = 15.036 

Comparing these with the value of chi-square from tables with 2 d.f., 
at the 5% significance level, namely 5.99, we see that the analysis 
of the combined data Ieads to a more significant result than the 
analysis of either table separately. 

A further method of combining several r x c tables, which is 
preferable in many cases to simply combining raw data, is to 



50 THE ANALYSIS OF CONTINGENCY T ABLES 

calculate expected values for each table separately and then to 
compare the total observed with the total expected frequencies. 
The usual x2 statistic is used but a complication arises since, in this 
case, it does not follow the chi-square distribution with (r- l)(c- 1) 
d.f. The correct number of degrees of freedom should be somewhat 
lower, but a convenient correction is not known. Since the effect 

T ABLE 3.11. Psychiatrists' views on their training; the values in parentheses 
are expected values. 

(I) Psychopharmacology 

Psychiatrie Teaching Bethlem-Maudsley 
hospital hospital hospital 

Very good 18 (21.50) 12 (14.33) 13(7.17) 43 
Adequate 10 (13.00) 12 (8.67) 4 (4.33) 26 
Inadequate 32 (25.50) 16 (17.00) 3 (8.50) 51 

60 40 20 120 

(II) Psychology 

Psychiatrie Teaching Bethlem-M audsley 
hospital hospital hospital 

Very good 28 (31.00) 18 (20.67) 16 (10.33) 62 
Adequate 12 (11.50) 8 (7.67) 3 (3.83) 23 
Inadequate 20 (17.50) 14 (11.67) 1 (5.83) 35 

60 40 20 120 

(III) Epidemiology 

Psychiatrie Teaching Bethlem-M audsley 
hospital hospital hospital 

Very good 10 (17.84) 16 (12.00) 10 (6.16) 36 
Adequate 5 (5.45) 3 (3.67) 3 (1.88) 11 
Inadequate 40 (31.71) 18 (21.33) 6 (10.95) 64 

55 37 19 111 
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TABLE 3.12. Combined Data from Table 3.11 (expected values shown in 
parentheses are obtained from adding those within sciences) 

Psychiatrie Teaching Bethlem-Maudsley 
hospital hospital hospital 

Very good 56 (70.34) 46 (47.00) 39 (23.66) 141 
Adequate 27 (29.95) 23 (20.01) 10(10.04) 60 
Inadequate 92 (74.71) 48 (50.00) 10 (25.28) 150 

175 117 59 351 

is likely to be quite small, the usual test may be used, although this 
will be rather conservative. 

To illustrate this method Iet us examine the data shown in Table 
3.11, which arise from questioning a number of psychiatrists on 
their views of training they received in three different areas of the 
basic sciences. (Any psychiatrist who had not received training in a 
particular area is not included.) 

Bach table indicates that psychiatrists trained at the Bethlem
Maudsley hospital are more satisfied with their training than those 
trained elsewhere. However, in this case an overall test of the 
satisfaction with teaching in the basic sciences may be of interest, 
and for this purpose Table 3.12 shows the total observed and total 
expected frequencies, obtained from summing the values in 
Table 3.11. 

From Table 3.12 we obtain x2 = 26.95. As a conservative test this 
may be compared with the tabulated value of chi-square with 
4 d.f. At the 1% Ievel this is 13.28, and therefore we can conclude 
that there is a very significant association between a psychiatrist's 
satisfaction with bis training in the basic sciences and the hospital 
from which he obtained that training. 

Although the methods discussed here can be useful for the 
combined analysis of a set of r x c contingency tables in specific 
cases, it is important to note that such data are, in general, far 
better dealt with by using the methods to be described in the follow
ing chapter and in Chapter 5. 

3.6. Ordered tables 

Contingency tables formed by variables having classification 
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categories which fall into a natural order, for example, severity of 
disease, age group, amount of smoking, etc., may be regarded as 
frequency tables for a sample from a bivariate population, where the 
scales for the two underlying continuous variables have been divided 
into r and c categories respectively. Undersuch an assumption it is 
possible to quantify the variables by alloting numerical values to 
the categories and subsequently to use regression techniques to 
detect linear and higher order trends in the table. In this way specific 
types of departure from independence may be considered, and 
consequently more sensitive tests may be obtained than by the use 
of the usual chi-square statistic. 

The simplest method for dealing with such data is by assigning 
arbitrary scores to the categories of each variable, and then using 
normal regression techniques on these values. In this way the 
overall chi-square statistic may be partitioned into component 
parts due to linear, quadratic, and, if required, higher order trends. 
To illustrate this technique weshall consider the data in Table 3.13, 
which consists of a sample of 223 boys classified according to age 
and to whether they were or were not inveterate liars. 

An overall chi-square test on the frequencies in Table 3.13 gave 
a value of 6.691 which with four degrees of freedom is not significant; 
hence we might conclude that there was no association between age 
and lying. However, this is an overall test which covers all forms of 
departure from independence and is consequently insensitive to 
departures of a specified type. In this case examination of the 
proportion of inveterate liars in each age group, namely: 

0.286 0.367 0.380 0.458 0.568 

indicates that the proportions increase steadily with age, and 

TABLE 3.13. Boys' ratings on a lie scale. 

Age group 
5-7 8-9 10-11 12-13 14-15 

Score: -2 -1 0 2 

Inveterate liars 1 6 18 19 27 25 95 
Non-liars 0 15 31 31 32 19 128 

21 49 50 59 44 223 
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consequently a test specifically designed to detect a trend in these 
proportians is likely to be more sensitive. 

To arrive at such a test we first need to assign numerical values to 
the classification categories. This has been done in Table 3.13 
where the age groups 5-7 to 14-15 have been alloted scores running 
from - 2 to + 2, and the lie scale has been quantified by alloting 
the value + 1 to the category 'investerate liar' and the value zero 
to 'non-liars'. These quantitative values are chosen quite arbitrarily. 
They are evenly spaced in the present example but they need not 
be so. For instance, if it were thought that lying was especially 
associated with puberty and the immediate post-pubertal period, 
the scores for age might be taken as - 2, - 1, 0, 3, 6, or some other 
values which gave greater weight to the age-groups in which we 
were especially interested. The reason for choosing - 2 as the first 
score has no significance than that it helps to keep the arithmetic 
simple since the five scores - 2 to + 2 add to zero. 

Having quantified our data we may now proceed to treat them 
as we would data for a bivariate frequency table and calculate the 
correlation between the two variates 'age' and 'lying', or the regres
sion of one of the variates on the other. For example, suppose, for 
the data of Table 3.13, we wished to find the linear regression 
coefficient of lying (y) and age (x). The formula for estimating the 
coefficient is: 

This has variance given by: 

where 

1 c 
V (b ) =- X ____121_ 

yx N Cxx 

(3.9) 

(3.10) 

To evaluate the expressions (3.9) and (3.10) it is convenient to 
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draw up the frequency tables shown for the lie scores (y;), the age 
scores (x), and the products (y;x). 

Frequency table for age scores Frequency table for lie scores 

xi x.2 
J n.i n.ixi n.ixi 2 Y; Y/ n;. n;.Y; 

-2 4 21 -42 84 1 95 95 
-1 49 -49 49 0 0 128 0 

0 0 50 0 0 
1 1 59 59 59 
2 4 44 88 176 

223 56 368 223 95 

Frequency table for joint lie, Age Scores 

Y;Xj nii niiyixi 

-2 6 -12 
-1 18 -18 

0 (15 + 31 + 31 + 32 + 19 + 19) = 147 0 
1 27 27 
2 25 50 

223 47 

From these tables we may now calculate Cyx' Cxx• and CYY: 

Cyx = 47- 95 X 56/223 
= 23.14 

cxx = 368- 562/223 
= 353.94 

cyy = 95- 952/223 
= 54.53 

Substituting these values in (3.9) and (3.10) we obtain: 

byx = 23.14/353.94 
= 0.06538 

n;.Y/ 

95 
0 

95 
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V (byx) = 54.53/(223 X 353.94) 
= 0.0006909 

55 

The component of chi-square due to linear trend is given by 
bY//V(byJ, that is 6.188713. This has a single degree of freedom; 
recalling that the overall chi-square value for these data is 6.691 
based on four degrees of freedom, the following table may now be 
drawn up. 

Source of Variation df x2 

Due to linear regression 
of lying on age 6.189 p < 0.025 
Departure from regression 
(obtained by subtraction) 3 0.502 Non-significant 

6.691 

lt is seen then that, though the overall x2 statistic with four degrees 
of freedom is not significant, the x2 value due to regression, based 
on only one degree of freedom, is significant beyond the 2.5% level. 
Partitioning the overall value has greatly increased the sensitivity 
of the test and, returning to the data in Table 3.13, we conclude 
that there is a significant increase in lying with increase in age for 
the age range in question. We can further say that the increase is 
linear rather than curvilinear since departure from linear regression 
is represented by a chi-square value of only 0.502, based on three 
degrees of freedom, which is a long way from being significant. 
(An interesting fact, pointed out by Yates, is that the partition of 
chi-square obtained above is the same whether the regression 
coefficient of y on x orthat of x on y is used.) 

The above discussion has been in terms of testing for trend in a 
2 x c table. However, the method mentioned is also applicable to 
the general contingency table with more than two rows, when 
both classifications are ordered. Bhapkar (1968) gives alternative 
methods for testing for trends in contingency tables, which in most 
cases will differ little from the method discussed above. An investi
gation of the power of chi-square tests for linear trends has been 
made by Chapman and Nam (1968). 

An alternative to assigning arbitrary scores to the classification 
categories is suggested by Williams (1952), and discussed further by 
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Maxwell (1974). This involves assigning scores in such a way as to 
maximize the correlation between the two variates. The details of 
the technique are outside the scope of this text, but in many cases 
the scores found are more useful and more informative than those 
fixed arbitrarily by the investigator. 

Ordered contingency tables are discussed further in Chapter 5. 

3.7. Measures of association for contingency tables 

In many cases when dealing with contingency tables a researcher 
may be interested in indexing the strength ofthe association between 
the two qualitative variables involved, rather than in simply 
questioning its significance by means of the chi-square test. His 
purpose may be to compare the degree of association in different 
tables or to compare the results with others previously obtained. 

Many measures of association for contingency tables have been 
suggested, none of which appears to be completely satisfactory. 
Several of these measures are based upon the x2 statistic, which 
cannot itself be used since its value depends on N, the sample size; 
consequently it may not be comparable for different tables. A 
further series of measures, suggested by Goodman and Kruskal 
(1954), arise from considering the predictive ability of one of the 
variables for the other. Other measures of association have been 
specifically designed for tables having variables with ordered 
categories. In this section a brief description only is given of some 
of the suggested measures, beginning with those based on the x2 

statistic. A detailed account of measures of association and their 
properties such as sampling variance etc. is available in Kendall 
and Stuart (Vol. 2) and in the series of papers by Goodman and 
Kruskal (1954, 1959, 1963, 1972). 

3.7.1. Measures of association based on the x2 statistic 

Several traditional measures of association are based upon the 
standard chi-square statistic, which itself is not a convenient 
measure since its magnitude depends on N, and increases with 
increasing N. The simplest way to overcome this is to divide the 
value of x2 by N to give what is generally known as the mean square 
contingency coefficient, denoted by </J 2 : 

(3.11) 
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However, most researchers are generally happier with measures of 
association that range between - 1 and + 1 (analogous to the 
correlation coefficient) or between 0 and 1, with zero indicating 
independence and unity 'complete association'; consequently </J 2 

is not very satisfactory since it does not necessarily have an upper 
limit of 1. 

A variation of this measure, suggested by Pearson (1904) and 
called the coefficient of contingency, is given by: 

J( x2 /N ) 
P= 1 + xz/N (3.12) 

This coefficient clearly lies between 0 and 1 as required, and attairis 
its lower limit in the case of complete independence, that is when 
x2 = 0. In general, however, P cannot attain its upper limit, and 
Kendall and Stuart (Vol. 2, Ch. 33) show that, even in the case of 
complete association, the value of P depends on the number of 
rows and columns in the table. To remedy this the following function 
of x2 has been suggested: 

xz/N 
T = ---;-:::------'--------=-

J[(r- 1)(c- 1)] 
(3.13) 

This again takes the value 0 in the case of complete independence, 
and, as shown by Kendall and Stuart, may attain a value of + 1 in 
the case of complete association when r = c but cannot do so if 
r =I= c. A further modification suggested by Cramer (1946), which 
may attain the value + 1 for all values of r and c in the case of 
complete association, is as follows: 

xz/N C=--_:_:__:_ __ _ 
min(r- 1,c- 1) 

(3.14) 

When the table is square, that is when r = c, then C = T, but other
wise C > T although the difference between them will not be large 
unless r and c are very different. 

The standard errors of all these coefficients can be deduced from 
the standard error of the x2 statistic, and are given in Kendall 
and Stuart (Vol. 2, Ch. 33). 

The major problern with all the above measures of association 
is that they have no obvious probabilistic interpretation in the same 
way as has, for example, the correlation coefficient. Interpretation 
of obtained values is therefore difficult. This has led Goodman and 
Kruskal (op. cit.) to suggest a number of coefficients that are readily 
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interpretable in a predictive sense, and these are now briefly 
described. 

3.7.2. Goodman and Kruskars Iambda measures 

Goodman and Kruskal in their 1954 paper describe several measures 
of association that are useful in the situation where the two variables 
involved cannot be assumed to have any relevant underlying 
continua, and where there is no natural ordering of interest. The 
rationale behind these measures is the question: "How much does a 
knowledge of the dassification of one of the variables improve one's 
ability to predict the dassification on the other variable?". Now an 
investigator might daim that he was interested simply in the 
'relationship' between the variables and not in predicting one from 
another. However, it is difficult to discuss the meaning of an associa
tion between the two variables without discussing the degree to 
which one is predictable from the other and the accuracy of the 
prediction. It seems reasonable therefore to incorporate this notion 
of predictability into the formal requirements of any index that 
purports to measure the degree of association between two variables. 

To introduce the measures suggested by Goodman and Kruskal 
weshall examine the data in Table 3.14 which shows the frequencies 
obtained when 284 consecutive admissions to a psychiatric hospital 
are dassified with respect to social dass and diagnosis. Let us 
suppose that for these data we are interested in the extent to which 
knowledge of a patient's social dass is useful in predicting his 
diagnostic category. 

First, suppose that a patient is selected at random and you are 

TABLE 3.14. Social dass and diagnostic category for a sample ofpsychiatric 
patients. 

Diagnosis (Variable B) 
Neurotic Depressed Personality Schizo 

disorder phrenic 

Social dass 1 45 25 21 18 109 
(Variable A) 2 10 45 24 22 101 

3 17 21 18 18 74 

72 91 63 58 284 
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asked to guess his diagnosis knowing nothing about his social 
class. On the basis of the marginal totals for diagnosis in Table 3.14, 
the best guess would be 'depressed' since this is the diagnosis with 
the largest marginal total; consequently the probability ofthe guess 
being in error would be given by: 

P 1 = P(error in guessing diagnosis when social class is unknown) 
= P(patient is neurotic) + P(patient has personality disorder) + 

P(patient is Schizophrenie) 
= 1 - P(patient is depressed) 

and therefore 

pl = 1-91/284 = 0.68 

Now suppose that a patient is again selected at random and again 
you are asked to guess his diagnosis, but in this case you are told his 
social class. Here the best guess would be the diagnostic category 
with the largest frequency in the particular social class involved, 
that is for social class 1 neurotic, and for social classes 2 and 3 
depressed. The probability of the guess being in error for each of 
the three social classes may be obtained as follows: 

p1 = P(error in guessing diagnosis when told patient is social class 1) 
= 1 - P(neurotic in social class 1) 
= 1 - 45/109 = 0.59 

p2 = P(error in guessing diagnosis when told patient is social class 2) 
= 1 - P(depressed in social class 2) 
= 1 - 45/101 = 0.55 

p3 = P(error in guessing diagnosis when told patient is social class 3) 
= 1 - P(depressed in social class 2) 
= 1-21/74 = 0.72 

The overall probability of an error in guessing the diagnosis of a 
patient when told his social class may now be obtained as follows: 

P 2 = P(error in guessing diagnosis when told social class) 
= p1 P(patient is from social class 1) + p2 P(patient is from social 

class 2) + p3 P(patient is from social class 3) 

109 101 74 
= 0.59 X 284 + 0.55 X 284 + 0.72 X 284 = 0.61 

We see therefore that the knowledge of a patient's social dass reduces 
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to some degree the probability of an error in predicting his diagnostic 
category. Goodman and Kruskal's index of predictive ability, AB, is 
computed from these probabilities as follows: 

1 _Pl -Pz 
AB-

pl 

= 0.680~~.61 = 0.103 

(3.15) 

AB is the relative decrease in the probability of an error in guessing 
diagnosis as between social dass unknown and known. As such it is 
really interpretable. In this example, for instance, we can say that, 
in prediction of diagnosis from social dass, information about social 
dass reduces the probability of error by some 10% on average, 
an amount that would be unlikely to have any practical significance. 

In general AB may be calculated as follows: 

r 

L max(n;)- max(n) 
A _ i= 1 i i 
B- N -max(n) 

(3.16) 

j 

lt is, of course, entirely possible to reverse the roles of variables 
A and Band obtain the index AA, which is suitable for predictions 
of A from B. AA would be calculated as follows: 

c 

L max (nii)- max (n;.) 
1 - j=l i i 
/\.A-

N- max(n.;) 

(3.17) 

i 

In general the two indices AB and AA will be different since situations 
may arise where B is quite predictable from A, but not A from B. 

The value of AB (and, of course, AA) ranges between 0 and 1. Ifthe 
information about the predictor variable does not reduce the 
probability of making an error in guessing the category of the other 
variable, the index is zero, and we may condude that there is no 
predictive association between the two variables. On the other hand, 
ifthe index is unity no error is made, given knowledge ofthe predictor 
variable, and consequently there is complete predictive association. 

The coefficients AB and AA are specifically designed for the asym

metric situation in which explanatory and dependent variables are 
dearly defined. The same 'reduction in error' approach can be used 
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to produce a coefficient for the symmetric situation where neither 
variable is specially designated as that to be predicted. Instead 
we suppose that sometimes one and sometimes the other variable 
is given beforehand and we must predict the one not given. This 
coefficient, ),, is given by: 

r c 

L max(nii) + L max(nii)- max(n)- max(ni.) 
), = i=l j j=l i . i (3.18) 

2N - max (n) - max (ni.) 
j i 

For the data ofTable 3.14 we obtain: 

), = (45 + 45 + 21) + (45 + 45 + 24 + 22)- 91 - 109 
2.284- 91 - 109 

= 0.128 

This coefficient shows the relative reduction in the probability of 
an error in guessing the category of either variable as between know
ing and not knowing the category of the other. ), will always take a 
value between that of A8 and ),A. 

A problern arises in the use of the Iambda measures of association 
when the marginal distributions are far from being uniform. In such 
cases the values of the indices may be misleadingly low, and with 
extremely skewed marginal distributions it would appear that any 
lambda-type measure applied to the raw data may be inappropriate. 
Other problems associated with these measures are discussed in the 
papers of Goodman and Kruskal previously referenced. 

3.7.3. Association measuresfor tables with ordered categories 

In this section we shall discuss measures of association that are 
specifically designed for the situation where the variables forming 
the contingency table have ordered categories. Such measures will 
take positive values when 'high' values of one variable tend to occur 
with 'high' values of the other variable, and 'low' with 'low'. In the 
reverse situation the coefficients will be negative. One obvious 
method for obtaining a measure of association for ordered tables 
would be to assign scores to the categories and then compute the 
product-moment correlation coefficient between the two variables. 
A difficulty arises, however, in deciding on the appropriate scoring 
system to use. Many investigators would be unhappy about imposing 
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a metric on the categories in their table, and consequently require a 
measure of association which does not depend on imposing a set 
of arbitrary scores. Here three such measures will be discussed, 
namely the tau statistics of Kendall, Goodman and Kruskal's 
gamma, and Somers's d. 

Kendall's tau statistics Kendall's tau (r) is weil known as a measure 
of correlation between two sets of rankings. It may be adapted for 
the general r x c contingency table having ordered categories by 
regarding the table as a way of displaying the ranking of the N 
individuals according to two variables, for one of which only r 
separate ranks are distinguished and for the other of which only c 
separate ranks are distinguished. From this point ofview the margi
nal frequencies in the table are the number of observations 'tied' 
at the different rank values distinguished. Kendall's tau measures 
are all based on S which is given by: 

S=P-Q (3.19) 

where P is the number of concordant pairs of observations, that is 
pairs of observations such that their rankings on the two variables 
are in the same direction, and Q is the number of discordant pairs 
for which rankings on the two variables are in the reverse direction. 
(For computation of S see later). To obtain a measure of association 
from S it must be standardized to lie in the range from - 1 to + 1. 
Different methods of standardization give rise to three different 
tau statistics: 

tau-(a) 
2S 

(3.20) ra = N(N- 1) 

tau-(b) 
2S 

(3.21) 
rb = vf[(P + Q + Xo)(P + Q + Yo)J 

where X 0 represents the number of observations tied on the first 
variable only, and Y0 the number of observations tied on the second 
variable only. (Again for computation see later.) 

tau-(c) 
2mS 

(3.22) 

where m = min(r, c). 
Tau-(a) is the commonly used measure of rank correlation. It is 

not applicable to contingency table data since it assumes that there 
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are not tied observations. The other two coefficients may, however, 
be used to measure association in ordered tables. Kendall and Stuart 
(Vol. 2, Ch. 33) show that tau-(b) may only attain the values ± 1 
for a square table, but that tau-(c) can reach these extreme values 
apart from a small effect produced when N is not a multiple of m. 
The main problern with these two measures is that they have no 
obvious probabilistic interpretation, and consequently the meaning 
of a value of-rb of 0.7 or 'c of 0.6, say, cannot be expressed in words 
in terms of probabilities or errors in prediction. 

Goodman and Kruskal's gamma Goodman and Kruskal (op. cit.) 
suggest a measure of association for ordered tables also based on S, 
and given by: 

s 
y=P+Q (3.23) 

This coefficient has the considerable advantage of having a direct 
probabilistic interpretation, namely as the difference in probability 
of like rather than unlike orders for the two variables when two 
individuals are chosen at random. y takes the value + 1 when 
the data are concentrated in the upper-left to lower-right diagonal 
(assuming that both variables are ordered in the same direction 
either both 'low' to 'high' or both 'high' to 'low'). lt takes the value 
zero in the case of independence, but the converse need not hold. 

Somers's d Somers (1962) gives a measure of association for 
contingency tables with ordered categories which is suitable for 
the asymmetric case in which we have an explanatory and a depen
dent variable. This coefficient, dyx' is given by: 

d = s 
yx p + Q + Yo 

(3.24) 

where x indicates the explanatory and y the dependent variable. 
In this case Y0 represents the number of observations tied on the 
dependent variable. This coefficient has a similar interpretation 
to that of y. By noting the relationship: 

(3.25) 

we see that the d's bear the samerelationship to Kendall's correlation 
analogue as the classical regression coefficients bear to the product 
moment correlation coefficient, namely r 2 = byxbxy· Somers's d 
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coefficients may therefore be thought of as analogaus to the ordinary 
regression coefficients. 

Numerical example illustrating the computation of the tau-statistics, 
y, and d. The data in Table 3.15 were collected during an investiga
tion into attempted suicides, and show suicidal intent and a 
depression rating score for a sample of 91 cases. The data are taken 
from Birtchnell and Alarcon (1971). 

W e begin by computing P and Q as follows: 
P : Each cell in the table is taken in turn and the number of 

observations in the cell is multiplied by the number of observations 
in each cell to its south-east and the terms are summed. Cells in the 
same row and column are ignored. For the data of Table 3.15 then 
we have: 

p = 10(4 + 7 + 2 + 9 + 11 + 17) + 14(7 + 2 + 11 + 17) 
+ 8 (2 + 17) + 2(9 + 11 + 17) + 4(11 + 17) + 7 (17) 

= 1475 
Q : Each cell is taken in turn and the number of observations in the 

cell is multiplied by the number of observations in each cell to its 
south-west. Again cells in the same row and column are ignored. 
Therefore for Table 3.15 we have: 

Q = 14(2 + 5) + 8(2 + 4 + 5 + 9) + 2(2 + 4 + 7 + 5 + 9 + 11) 
+ 4(5) + 7(5 + 9) + 2(5 + 9 + 11) 

= 502 

We now need to obtain X 0 and Y0 , the number of observations 
tied on depression rating (the 'x' variable) only, and the number tied 

TABLE 3.15. Suicidal intent and depression rating score. 

Did not want 
Suicidal to die 
intent (y) Unsure 

Wanted to die 

Depressionrating (x) 
19 21-29 30-39 39 

10 14 8 2 
2 4 7 2-
5 9 11 17 

17 27 26 21 

34 
15 
42 

91 
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only on suicidal intent (the 'y' variable). These may be computed 
as follows: 

X 0 (Y0): Each cell is taken in turn and the number of observations 
in the cell is multiplied by the number of observations following it 
in the particular column (row) involved, and the results are summed. 
For Table 3.15 we have: 

X 0 = 10(2 + 5) + 2(5) + 14(4 + 9) + 4(9) + 8(7 + 11) 
+ 7(11) + 2(2 + 17) + 2(17) 

= 591 

Similarly 

Y0 = 10(14 + 8 + 2) + 14(8 + 2) + 8(2) + 2(4 + 7 + 2) 
+ 4(7 + 2) + 7(2) + 5(9 + 11 + 17) + 9(11 + 17) + 11(17) 

= 1096 

Having obtained P, Q, X 0 , and Y0 , we may now find the tau 
statistics, y and d; they are as follows: 

2(1475- 502) 
rb = J[(1475 + 502 + 591)(1475 + 502 + 1096)] 

=0.69 

2.3(1475- 502) 
r =--~--

c 91 2 X 2 

=0.35 

1475-502 
y = 1475 + 502 

=0.49 

d = 1475-502 
yx 1475 + 502 + 1096 

=0.32 

We see that the values of the coefficients differ considerably, but 
all indicate considerable positive association between depression 
rating score and suicidal intent. In other words, patients having high 
depression scores tended to be those who expressed the view that 
they 'wished to die' in their suicide attempt. 

Because of its clear probabilistic interpretation the coefficient y 
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is perhaps the most useful for measuring association in ordered 
tables. 

In general all measures of association are used as descriptive 
statistics and, consequently, questions as to their 'significance' 
are relatively unimportant. However, significance tests for many of 
them are available and are described in the previously referenced 
works of Kendall and Stuart, and Goodman and Kruskal. Potential 
users of these measures should remernher that most are specifically 
designed for particular types of situation and that the choice of the 
appropriate measure depends on consideration of the type of data 
involved. Computing any measure without regard to its suitability 
for the particular data set under investigation would obviously not 
be very sensible. 

3.8. Summary 

In this chapter the analysis of the general r x c contingency table 
has been considered. Many investigators having arrived at a 
significant overall chi-square value for such a table would proceed 
no further. In general, however, more detailed investigation of the 
reasons for the significant association is needed, using the methods 
described in the previous sections, such as the analysis of residuals. 
Also tables formed by variables with ordered categories should be 
investigated for possible trends. 



CHAPTER FOUR 

Multidimensional tables 

4.1. Introduction 

Methods for the analysis of contingency tables arising from two 
categorical variables are generaily weil known even amongst investi
gators who arenot primarily statisticians. However, methods for the 
analysis of tables arising from three or more such variables are 
less weil known, and this chapter seeks to serve as an introduction to 
the topic. Such tables may arise in many areas. For example, Table 
4.1 shows some data concerning classroom behaviour of school
children. Three variables are involved; the first is a teacher's rating 
of classroom behaviour into deviant or non-deviant; the second is a 
risk index based on several items ofhome condition thought tobe re
lated to deviance, for example, overcrowding, !arge family size, etc.; 
the categories of this variable are considered not at risk for deviant 
behaviour and considered at risk for deviant behaviour. The third 
variable is an index of the adversity of school conditions based on 
items such as pupil turnover, number of free school meals, etc.; 
this is categorized as low, medium, or high. 

T ABLE 4.1. Data on classroom behaviour of ten-year-old schoolchildren. 

Risk index U) 

Non
deviant 

Classroom 
behaviour (i) 

deviant 

Adversity of schoo/ condition (k) 
Low Medium High 

NotatAt risk NotatAt risk NotatAt risk 
risk risk risk 

16 7 15 34 5 3 

3 8 3 

17 8 18 42 6 6 

80 

17 

97 
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The analysis of three-dimensional tables poses entirely new 
conceptual problems as compared with the analysis of two-dimen
sional tables. However, the extension from tables ofthree dimensions 
to those of four or more, whilst increasing the complexity of the 
analysis, presents no further new problems; consequently the 
discussion in this chapter will be in terms of the former. Much work 
has been done on the analysis of multidimensional contingency 
tables, especially during the past decade. Lewis (1962) gives an 
excellent review, and a selection ofthelarge number of other relevant 
references are those of Darroch (1962), Birch (1963), Bisbop (1969), 
Fienberg (1970), and Goodman (1968, 1970, 1971). This chapter 
serves as an introduction to this work, and will form the basis of 
the more detailed coverage of the topic given in the following 
chapter when the fitting of models to contingency tables is 
introduced. 

4.2. Nomenclature for three-dimensional tables 

The nomenclature used previously for dealing with an r x c table 
is easily extended to deal with a three-dimensional r x c x l contin
gency table having r row, c column, and l 'layer' categories. The 
observed frequency in the ijkth cell of the table is represented by 
niik for i = 1,2, ... ,r, j = 1,2, ... , c, and k = 1,2, ... ,1. By summing 
the niik over different subscripts various marginal totals may be 
obtained. For example, summing over all values of both i and j 
will yield the total for the kth layer category. Similarly we may 
obtain the totals for the ith row category, and the jth column 
category, by summing the niik over j and k, and over i and k res
pectively. These totals will be known as single variable marginals, 
and we have: 

c I 

n; .. = L L niik 
j= 1 k= 1 

r I 

n.i' = L L niik 
i= 1 k= 1 

r c 

n .. k = L L niik 
i= 1 j= 1 

For example, for the data shown in Table 4.1 we have: 

(4.1) 

Number of non-deviant children = n1 .. = (16 + 7) + (15 + 34) 
+ (5 + 3) = 80. 
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Number of deviant children = n2 .. = (1 + 1) + (3 + 8) + (1 + 3) 
= 17. 

Number of children not at risk = n. 1. = (16 + 1) + (15 + 3) 
+ (5 + 1) = 41. 

Number of children at risk = n. 2 . = (7 + 1) + (34 + 8) + (3 + 3) 
=56. 

Number of children at low adversity schools = n .. 1 = (16 + 7) 
+ (1 + 1) = 25. 

Number of children at medium adversity schools = n .. 2 = 
(15 + 34) + (3 + 8) = 60. 

Number of children at high adversity schools = n .. 3 = (5 + 3) 
+ (1 + 3) = 12. 
Summing the niik over any single subscript gives what we shall call 
the two variable marginal tatals: 

c 

ni·k = L niik 
j= 1 

r 

n·ik = L niik 
i= 1 

(4.2) 

For example, Table 4.2 shows the two-variable marginals for the 
data of Table 4.1, obtained by summing over the third variable, 
namely adversity of school condition. 

Similar tables could be obtained by summing over either of the 
other two variables. The grand total of the frequencies, namely n ... 
given by: 

r c I 

n ... =I I I nijk 
i=1j=1k=1 

T ABLE 4.2. Some two variable marginal totals from 
Table 4.1. 

Classroom 
behaviour 

Non-deviant 

deviant 

Risk index 
Not at risk At risk 

36 44 

5 12 

(4.3) 
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is generally denoted by N. This system of nomenclature is easily 
generalized to contingency tables involving more than three ways 
of classification. (A similar nomenclature is used for the population 
probabilities, piik• and the estimated expected values, Eiik.) 

4.3. An introduction to the analysis of multidimensional tables 

Researchers with data in the form of a multidimensional contingency 
table may ask why they should not simply attempt its analysis by 
examining all the two-dimensional tables arrived at by summing 
over the other variables. Reasons why this would not, in most cases, 
be an appropriate procedure are not difficult to find. The most 
compelling is that it can Iead to very misleading conclusions being 
drawn about the data; why this should be so will become clear 
after we have discussed concepts such as partial and conditional 
independence in later sections. Here it will suffice to illustrate the 
problern by means of an example; the data for this are in Table 4.3 
(taken from Bishop, op. cit.). 

Analysing firstly only the data for clinic A we find that the x2 

statistic is almost zero. Similarly for the data from clinic B, x2 

is approximately zero. If we were now to collapse Table 4.3 over 
clinics and compute the x2 statistic for the combined data, we arrive 
at a value of x2 = 5.26 which with 1 d.f. is significant beyond the 
5% Ievel; consideration only of this table would therefore Iead us 
to conclude erroneously that survival was related to amount of 
care received. The reasons for spurious results such as this arising 
will become apparent later. However, this example should make it 
clear why consideration of all two-dimensional tables is not a 
sufficient procedure for the analysis of multidimensional tables. 
(This example should also serve to illustrate our previous warnings 
with regard to the combination of contingency table data; see 
Chapters 2 and 3.) 

T ABLE 4.3. Three-dimensional contingency table relating survival of infants 
to amount of pre-natal care received in two clinics. 

Amount of pre-natal care 

Place where 
care received 

Clinic A 
Clinic B 

Less 

3 
17 

I nfants' survival 
Died Survived 

More 

4 
2 

Less 

176 
197 

More 

293 
23 



MULTIDIMENSIONAL TABLES 71 

The analysis of multidimensional tables presents problems not 
met for two-dimensional tables, where a single hypothesis, namely 
that of the independence of the two variables involved, is of interest. 
In the case of multidimensional tables, more than one hypothesis 
may be of concern. For example, the investigator may wish to test 
that some variables are independent of some others, or that a 
particular variable is independent of the remainder. The simplest 
hypothesis of interest for a multidimensional table is that of the 
mutual independence of the variables; in the following section testing 
such a hypothesis for a three-dimensional table is considered. 

4.4. Testing the mutual independence of the variables 
in a three-way table 

The hypothesis of the mutual independence of the variables in a 
three-dimensional contingency table may be formulated as follows: 

Ho: Piik = P; .. P.i.P··k (4.4) 

where Piik represents the probability of an observation occurring 
in the ijkth cell, and P; .. , p.i", and P--k are the marginal probabilities 
of the row, column, and layer variables respectively. This is the 
three-dimensional equivalent of the hypothesis of independence 
in a two-way table [ see equation (1.6) ]. To test this hypothesis 
we proceed in an exactly analogous manner to that previously 
described for the two variable case (again see Section 1.5). Firstly 
we need to calculate estimates of the frequencies to be expected 
when H 0 is true. Secondly we need to compare these values with 
the observed frequencies by means of the usual x2 statistic. Lastly 
we compare x2 with the tabulated chi-square value having the 
relevant number of degrees offreedom. In the case ofthe hypothesis 
of the mutual independence of the three variables, the expected 
values may be obtained in a similar way to that used for two-way 
tables as follows: 

Eiik = Npi··P-i-P··k (4.5) 

[ cf. equation (1.9)] where ß; .. , ß.j., and ß .. k are estimates of the 
probabilities P; .. , p"i", and P--k. lt is easy to show that the best esti
mates are based upon the relevant single variable marginal totals, 
namely: 

(4.6) 
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(Again, as in Chapter 1, these are maximum likelihood estimates.) 
Substituting these values in (4.5) gives: 

E = N ni·· n.i. n .. k 
iik NNN 

_ ni .. n·i· n .. k 

- Nz (4.7) 

Having obtained the expected values using (4.7), we compute: 

r c I ( E )2 
xz = I I I nijk - ijk 

i=1i=1k=1 Eiik 
(4.8) 

To complete the test we now need to know the degrees of freedom 
of x2• In this case, where the hypothesis isthat of the mutual indepen
dence of the three variables, 'degrees of freedom' takes the value: 

d.f. = rcl - r - c - l + 2 (4.9) 

In the case of other hypotheses which might be of interest (see follow
ing section) the value for the degrees of freedom will depend upon 
the particular hypothesis under test. A general procedure for 
determining degrees of freedom for chi-square tests on multidimen
sional tables is discussed in Section 4.7. 

4.4.1. Numerical example 

To illustrate the test of mutual independence we shall apply it to 
the data of Table 4.1. First we compute the expected values using 
formula (4.7). For example, the expected value for the non-deviant, 
not at risk, low adversity cell, namely E 111 , is given by: 

80 X 41 X 25 
E111 = 97 X 97 = 8.72 

and the full set of expected values is given in Table 4.4 
Application of formula (4.8) gives x2 = 17.30, with degrees of 

freedom, from formula (4.9), given by: 

d.f. = 3 X 2 X 2 - 3 - 2 - 2 + 2 
=7 

At the 5% Ievel the tabulated value of chi-square with 7 d.f. is 
14.07, and consequently we are led to reject the hypothesis ofmutual 
independence. More detailed examination of the data is now needed 
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T ABLE 4.4. Expected values for the data of Table 4.1 undt:r the hypothesis 
that the three variables are mutually independent. 

Adversity of school condition 
Low Medium High 

Risk index Not at At Not at At Not at At 
risk risk risk risk risk risk 

Non-
deviant 8.72 11.90 20.92 28.57 4.18 5.71 80 

Classroom 
behaviour 

Deviant 1.85 2.53 4.44 6.07 0.89 1.21 17 

10.57 14.43 25.36 34.64 5.07 6.92 97 

to assess which variables cause this hypothesis to be rejected; this 
is discussed in the next section. 

Examining Table 4.4 we see that summing the expected values 
over any two of the variables gives a total equal to the relevant 
singlevariable marginal total of observed values. For example: 

E 1 .. = 8.72 + 11.90 + 20.92 + 28.57 + 4.18 + 5.71 
= 80 = n1 .. 

However, summing these values over any single variable does not 
give totals equal to the two-variable marginals of the observed 
values. For example: 

E11 . = 8.72 + 20.92 + 4.18 
= 33.82 =I= n11 . (n11 . = 36) 

The constraints on the marginal totals of expected values in the 
case of the hypothesis of mutual independence are such that only 
their single variable marginals, namely Ei··• E.i·• and E .. k, are 
required to equal the corresponding marginals of observed values, 
namely ni··, n.i", and n .. k. In the case of other hypotheses various 
other marginal totals of expected values may be so constrained, 
as we shall see in the following section. Such constraints arise from 
the form of the maximum likelihood equations from which the 
expected values (remember, of course, that we are talking of esti
mated expected values; see Chapter 1) are derived; for details see 
Birch (op. cit.). 
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4.5. Further hypotheses of interest in three-way tables 

If the test of mutual independence described in the preceding section 
gives a non-significant result, then one concludes that further 
analysis of the table is unnecessary. However, when the test gives 
a significant result it should not be assumed that there are significant 
associations between all variables. It might be the case, for example, 
that an association exists between two of the variables whilst the 
third is completely independent. In this case hypotheses of partial 
independence would be of interest. Again, situations arise where two 
of the variables are independent in each level of the third, but each 
may be associated with this third variable. In other words, the first 
two variables are conditionally independent given the level of the 
third. Such hypotheses may again be formulated in terms of proba
bilities, as we shall illustrate by considering the three hypotheses 
of partial independence that are possible for a three-dimensional 
table. These are as follows: 

H 0 ( l) : Piik = P; .. p·ik (row classification independent of column and 
layer classification) 

H 0 (Z) : piik = p·i· Pi·k ( column classification independent of row and 
layer classification) 

H 0 (3): piik = p .. kPii· (layer classification independent of row and 
column classification) 

Let us consider the first of these in more detail. This hypothesis 
states that the probability of an observation occurring in the ijkth 
cell, that is Piik, is given by the product of the probability of it falling 
in the ith category of the row variable, P; .. , and the probability of 
its being in the jkth cell of the column x layer classification, p"ik" 

If the hypothesis is true it implies that the row classification is 
independent of both the column and the layer classification; that is 
it implies the truth of the following composite hypothesis: 

Pii· = P; .. P·i· and Pi·k = P; .. P .. k 

To test the hypothesis we proceed in exactly the samemanneras 
previously, beginning with the computation of expected values which 
in this case are given by: 

(4.10) 

with the estimators ß;.. and ß.ik of the probabilities P;.. and p·ik 

being obtained from the relevant marginal totals as follows: 
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, - n; .. ( b " ) , - n·ik P; .. - N as e1ore , P-ik - N 

75 

(4.11) 

In this case the two variable marginal totals, namely n·ik' found by 
summing the observed frequencies over the first variable are needed. 
[ Again the estimates given by (4.11) are maximum likelihood 
estimates.] U sing these probability estimates in (4.10) we obtain: 

E .. = N !i:._ n·ik 
'1k N N 

= n; .. n.ik 

N 
(4.12) 

The statistic x2 is now calculated using (4.8) and for this hypothesis 
has degrees of freedom given by: 

d.f. = clr - cl - r + 1 (4.13) 

4.5.1. Numerical example 

Let us now test hypothesis H 0 <1> for the data of Table 4.1. For 
these data this hypothesis states that classroom behaviour is 
independent of the school condition as indicated by the adversity 
index and the home condition as indicated by the risk index. First 
we calculate the expected values using formula (4.12). For example, 

T ABLE 4.5. Expected values for the data of Table 4.1. under the hypothesis 
that classroom behaviour is independent of the other two variables. 

Adversity of school condition 
Low Medium High 

Risk index Not at At Not at At Not at At 
risk risk risk risk risk risk 

Non-
deviant 14.02 6.60 14.85 34.64 4.95 4.85 80 

Classroom 
behaviour 

Deviant 2.98 1.40 3.15 7.36 1.05 1.05 17 

17 8 18 42 6 6 97 
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that for the first cell, namely E 111 , is given by: 

80 X 17 
E111 = 97 = 14.02 

and the full set of expected values are shown in Table 4.5. 
Using these expected values we obtain x2 = 6.19, with degrees of 

freedom from formula (4.13) of 5. At the 5% significance Ievel the 
tabulated value of chi-square with 5 d.f. is 11.07, and hence we are 
led to accept our hypothesis that classroom behaviour is indepen
dent of the other two variables. Since we have already shown that 
the three variables are not mutually independent, this result Ieads 
us to conclude that there is a significant association between the 
school and the harne condition as indicated by the indices for these 
two factors. Ifwe collapse Table 4.1 into the 2 x 3 two-dimensional 
contingency table shown in Table 4.6 by summing over the class
room behaviour variable, and perform the usual chi-square calcula
tion, we can see that this is so. (As we shall see in the following 
chapter, collapsing the table in this way, after showing that the 
hypothesis of partial independence is acceptable, is a legitimate 
procedure.) 

For Table 4.6, x2 = 10.78 with 2 d.f., which is significant beyond 
the 1% Ievel. As might be predicted, fewer children from schools 
in the low adversity category have harne conditions that put them 
at risk for deviant behaviour than would be expected if the two 
variables were independent. 

Returning to Table 4.5 we see that in this case, in addition to the 
single variable marginal tatals for expected and observed values 
being equal, the two-variable marginals obtained by summing over 

TABLE 4.6. Data of Table 4.1 summed over classroom behaviour; the 

expected values under the hypothesis of independence are given in parentheses. 

Adversity of school condition 
Low Medium High 

Not at risk 17 (10.57) 18 (25.36) 6 (5.2) 41 

Risk index 
At risk 8 (14.43) 42 (34.64) 6 (6.93) 56 

25 60 12 97 
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classroom behaviour arealso equal, that is E·ik = n·ik' For example: 

E. 11 = 14.02 + 2.98 = 17 = n. 11 

Hypotheses of partial independence fix the single variable and one 
setoftwo-variable marginal totals ofthe expected values tobe equal 

· to the corresponding totals of the observed values. 
The concept of conditional independence, mentioned briefly 

earlier, will be considered in more detail in Chapter 5, but it is not 
difficult to see that the data in Table 4.3 illustrate this type of 
independence, since amount of care and survival are obviously 
independent in each Ievel of the third variable (place where care 
received), that is they are independent in clinic A and in clinic B. 

4.6. Second-order relationships in three-way tables 

For multidimensional tables the possibility exists of the presence 
of a more complex relationship between variables than those consi
dered up to this point. For example, in a three-way table an 
association between two of the variables may differ in degree or 
in direction in different categories of the third; consequently a 
conjoint three-variable relationship would have to be assumed. 
Such a relationship would be termed second order as opposed to the 
first order associations between pairs of variables considered up to 
this point. Second and higher order associations are best understood 
in terms of the models to be considered in the following chapter. 
However, Roy et al. (1956) have considered specifically the formula
tion of the hypothesis of no second-order association between the 
variables in a three-way table, in terms of the probabilities piik. 
The formulation these workers give is as follows: 

(4.14) 

i=1, ... ,r-1; j=1, ... ,c-1; k=1, ... ,!-1 

Although it is not difficult to show how (4.14) relates to the hypo
thesis of no first-order association in a two-dimensional table, 
details will not be given here. Interested readers should consult 
Bhapkar and Koch (1968) who show that (4.14) arises naturally 
when extending the hypothesis of independence between pairs of 
variables to that of no three-variable association for higher order 
tables. Essentially the quantity on the left-hand side of (4.14) 
represents a measure of the association of the first two variables 
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within the lth category of the third, and that on the right-hand side 
the same measure of association between the first two variables 
within the kth category of the third. The hypothesis states then that 
this measure of association is the same for all categories of the third 
variable, or, in other words, that the association between variables 
1 and 2 does not differ with the Ievel of variable 3. (Of course, since 
the order ofvariables is arbitrary, the hypothesis ofno second-order 
association between the three variables implies that the association 
between any pair of variables is the same at alllevels of the remaining 
variable.) 

A complication arises when we consider how to test the hypo
thesis given in (4.14), since estimates of the cell frequencies to be 
expected when H 0 is true are not as easily obtainable as for the 
other hypotheses considered up to this point. In fact such estimates 
cannot be found directly as products of various marginal totals 
but instead must be obtained interatively by a procedure to be 
described in the following chapter. Having obtained the estimates, 
however, the test proceeds in the usual fashion with the computation 
of the statistic x2 • Detailed discussion of testing for second and high er 
order relationships in multidimensional tables will be left until 
the following chapter. 

4. 7. Degrees of freedom 

A convenient method for determining the degrees of freedom of 
the x2 statistic for multidimensional tables is by use of the following 
general formula: 

d.f. = (Number of cells in table - 1)- (Number of 
probabilities estimated from the data for the (4.15) 
particular hypothesis being tested.) 

For example, Iet us consider the hypothesis ofmutual independence 
in a three-way table. First, the nurober of cells in an r x c x l table 
is clearly the product rcl. For this hypothesis we need to estimate 
the probabilities P; .. , p.i-, and p .. k for all values of i, j, and k, using 
equation (4.6). Since probabilities must sum to unity there are 
(r- 1) row, (c- 1) column, and (l- 1) layer probabilities to esti
mate, and hence the degrees of freedom in this case will be: 

d.f. = rcl- (r- 1)- (c- 1)- (l- 1)- 1 
= rcl - r - c - l + 2 
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Now consider the hypothesis of partial independence discussed in 
Section 4.5. In this case we again need to estimate the probabilities 
P; .. , but in addition we use equation (4.11) to estimate the proba
bilities P-jk for all values of j and k. As before there are (r- 1) row 
probabilities, and the number of column x layer probabilities 
is simply (cl- 1). Therefore we arrive at the following value for 
the degrees of freedom: 

d.f. = rcl- (r- 1)- (cl- 1)- 1 
= rc- r- cl + 1 

4.8. Likelihood ratio criterion 

An alternative criterion to the usual x2 statistic for comparing 
observed frequencies with those expected under a particular 
hypothesis is the likelihood ratio criterion, XL 2 , given by: 

XL 2 = 2L0bserved x log. (Observed/Expected) (4.16) 

which like x2 has a chi-square distribution when the hypothesis is 
true. (The degrees of freedom of XL 2 are, of course, the same as for 
x2 .) Since x2 is easily shown to be an approximation to XL 2 for large 
samples, the two statistics will take similar values for many tables. 
However, Ku and Kuliback (1974), Williams (1976), and others 
show that, in general, XL 2 is preferable to x2 , and consequently it 
will be the criterion used in the remainder of this text. 

4.9. Summary 

In this chapter contingency tables arising from more than two 
categorical variables have been introduced. Some of the new 
problems arising from this extension have been considered, in 
particular the increased number of hypotheses that may be of 
interest, and the existence of second and higher order relationships. 
Moredetailsare given in the references previously cited, particularly 
those of Lewis, Birch, and Bishop. 

The present chapter serves as an introduction to Chapter 5, 
in which estimation techniques are discussed, and where the fitting 
of models to contingency table data is introduced. 



CHAPTER FIVE 

Log-linear models for 
contingency tables 

5.1. Introduction 

The previous chapters have dealt almost exclusively with hypothesis 
testing techniques for the analysis of contingency tables. In this 
chapter a different approach will be considered, namely that of 
fitting models and of estimating the parameters in the models. 
The term model here refers to some 'theory' or conceptual framework 
about the observations, and the parameters in the model represent 
the 'effects' that particular variables or combinations of variables 
have in determining the values taken by the observations. Such 
an approach is common in many branches of statistics such as 
regression analysis and the analysis of variance. Most common 
are linear models which postulate that the expected values of the 
Observations are given by a linear combination of a number of 
parameters. Techniques such as maximum likelihood and least 
squares may be used to estimate the parameters, and estimated 
parameter values may then be used in identifying which variables 
are of greatest importance in determining the values taken by the 
o bservations. 

The models for contingency table data to be discussed in the 
following section are very similar to those used for quantitative 
data in, for example, the analysis of variance, and readersnot familiar 
with such models are referred to Hays (1973), Ch. 12. A consequence 
of this similarity is that many authors have adopted an analysis of 
variance term, namely interaction, as an alternative to the term 
association, for describing a relationship between the qualitative 
variables forming a contingency table. Such a terminology will be 
used throughout the remainder of this text, and we shall therefore 
speak of first-order interactions between pairs of variables, second
order interactions between triplets of variables, and so on. 
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Models for contingency tables are weil described in the articles 
referred to in the preceding chapter by Birch, Bishop, Fienberg, 
and Goodman. The most comprehensive account is, however, 
given in Bishop, Fienberg, and Holland (1975), which should be 
regarded as the standard reference for the analysis of complex 
contingency table data. The description in this chapter follows 
essentially that given by these authors, but in somewhat simplified 
form. The major advantages obtained from the use of these techni
ques are, first that they provide a systematic approach to the analysis 
of complex multidimensional tables, and second that they provide 
estimates of the magnitude of effects of interest; consequently they 
allow the relative importance of different effects to be judged. 

5.2. Log-linear models 

Let us now consider how the type of model used in the analysis 
of variance of quantitative data can arise for contingency table 
data. Returning for the moment to two-dimensional tables, the 
hypothesis of independence, that is of no first-order interaction 
between the two variables, specifies, as we have seen previously, 
that: 

Pii = P;.P-i (5.1) 

This relationship specifies a particular structure or model for the 
data, namely that in the population the probability of an observation 
falling in the ijth cell of the table is simply the product of the marginal 
probabilities. We now wish to ask how this model could be re
arranged so that pii or some function of it can be expressed as the 
sum of the marginal probabilities or some function of them? The 
model would then begin to correspond to those found in the analysis 
ofvariance. By taking the naturallogarithms of(5.1) such a relation
ship is easily found, namely: 

(5.2) 

This may be rewritten in terms of the theoretical frequencies, 
Fii(Fii = Npii etc.; see Chapter 1), as: 

logJii = logJ;. + logJ.i -log.N (5.3) 

Summing (5.3) over i we have: 
r r 

I log.Fii = I logJ;. + rlog.F.i- rlog.N (5.4) 
i= 1 i= 1 
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and over j: 
c c 

L logJij = clogJi· + L logJ.j- clog.N (5.5) 
j= 1 j= 1 

and finally over i and j we have: 
r c r c 

L L logJij = c L logJi· + r L logJ.j - rclog. N 
i=1j=1 i=1 j=1 

It is now a matter of simple algebra to show that equation (5.3) 
may be rewritten in a form reminiscent of the models used in the 
analysis of variance, namely: 

where r c 

L L log.Fij 
u = i=1j=1 

rc 

c 

L log.Fij 
j= 1 u1(il = "-=----

c 

r 

L logJij 
i= 1 u2U> = "--=----

r 

r c 

I I logJij 
i=1j=1 

rc 

r c 

I I IogJij 
i= 1 j= 1 

rc 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

We see that (5.7) specifies a linear model for the logarithms of the 
frequencies or, in other words, what is generally known as a log

linear model. Its similarity to the models used in the analysis of 
variance is clear; consequently analysis of variance terms are used 
for the parameters and u is said to represent an 'overall mean effect', 
u1(il represents the 'main effect' of the ith category of variable 1, 

and u2 u> the 'main effect' of the jth category of variable 2. Examining 
equations (5.9) and (5.10) we see that the main effect parameters 
are measured· as deviations of row or column means of log-fre
quencies from the overall mean; consequently: 

r 

L u1(i) = 0, 
i= 1 

or using an obvious dot notation: 

c 

L u2(j) = 0 
j= 1 

u 1<·> = 0, u2<·> = 0 

The above derivation ofthe model specified in (5.7) has been in terms 
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of the theoretical frequencies, Fw In practice, of course, we shall 
need to estimate these and the parameters in the model, and sub
sequently test the adequacy ofthe suggested model for the observed 
data. Details of fitting log-linear models to contingency table data 
are given in Section 5.3. 

Weshall also see in Section 5.3 that the values taken by the 'main 
effect' parameters simply reflect differences between the row or 
the column marginal totals, and so, in the context of contingency 
table analysis, are of little concern (in contrast to the analysis of 
variance situation where main effects are usually of major im
portance). What is of interest is to extend the model specified in 
(5.7) to the situation in which the variables are not independent. 
To do this we need to introduce an extra term to represent the 
interaction between the two variables, giving: 

log"Fii = u + u1<i> + u2w + u12<iil (5.11) 

The reason for the nomenclature used for the parameters now 
becomes clear. The numerical subscripts of the parameters denote 
the particular variables involved, and the alphabetic subscripts 
the categories of these variables in the same order. Thus u12(iil 
represents the interaction effect between levels i and j of variables 
1 and 2 respectively. As we shall see in the following section, interac
tion effects are again measured as deviations and we have: 

that is 

c 

L u12(iil = 0, 
j= 1 

r 

L u12(iil = 0 
i=l 

Estimation of the interaction effects would now be useful in 
identifying those categories responsible for any departure from 
independence. In terms of the interaction parameters the hypothesis 
of independence specifies that u12(iil = 0 for all values of i and j. 
Testing for independence is therefore seen to be equivalent to testing 
whether all the interaction terms in (5.11) are zero, or, in other words, 
that the model specified in (5.7) provides an adequate fit to the data. 
It should be noted that the model in (5.11) will fit the data perfectly 
since the expected values under this model are simply the observed 
frequencies. This arises because the number of parameters in the 
model is equal to the number of cell frequencies, and for this reason 
(5.11) is known as the saturated model for a two-dimensional 
table. The use of saturated models when analysing complex 
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multidimensional contingency tables is considered in Section 5.7. 
Let us now examine the log-linear models available for a three

dimensional table. The saturated model in this case is: 

log.Fijk = u + ul(il + Uz(j) + u3(k) + ul2(i1) + u13(ik) 
+ u23Ukl + u123(ijk) (5.12) 

We see that this model includes main effect parameters for each 
variable, first-order interaction effect parameters for each pair of 
variables, and also parameters representing possible second-order 
effects between the three variables. The models corresponding to 
the various hypotheses connected with such a table discussed 
previously in Chapter 4 are obtained by equating certain ofthe terms 
in (5.12) to zero, but before considering this mention must be made 
that in this text we shall be restricting our attention to what Bisbop 
terms hierarchical models. These are such that, whenever a higher 
order effect is included in the model, the lower order effects composed 
from variables in the higher effect are also included. Thus, for 
example, if a term u123 is included in a model, terms u12 , u13 , u23 , 
u1, u2 , and u3 must also be included. Consequently we shall regard 
a model such as: 

log.Fijk = u + ul(il + Uz(J) + u3(kl + u123(ijk) (5.13) 

as not permissible. 
The restriction to hierarchical models arises from the constraints 

imposed by the maximum likelihood estimation procedures, details 
of which are outside the scope of this text. In practice the restriction 
is of little consequence since most tables can be described by a series 
of hierarchical models, although in some cases this may require the 
table tobe partitioned in some way (see Section 5.7). 

Returning now to the model specified in (5.12), let us see how the 
hypothesis of no second-order interaction, previously expressed in 
terms ofthe probabilities Pilk [see equation (4.14)], may be expressed 
in terms ofthe u-parameters. It is easy to show that the equivalent of 
(4.14) is: 

H 0 : u123(ijkJ = 0 for all i,j, and k 

or, more simply (taking the alphabetic subscripts as understood): 

(5.14) 

Other hypotheses may also be expressed in terms of the para
meters in (5.12). For example, the hypothesis ofmutual independence 
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[see equation (4.4)], which specifies that there are no associations 
of any kind between the three variables, or, in other words, that there 
are no frrst-order interactions between any pair of variables, and 
no conjoint three-variable interaction, may now be written as 
follows: 

H 0 : u12 = 0, u13 = 0, u23 = 0, u123 = 0 (5.15) 

In this case our model for log-frequencies is simply: 

log.Fiik = u + u1<i> + u2u> + u3<k> (5.16) 

which involves only an overall mean effect and main effect para
meters for each of the three variables. If such a model provided an 
adequate fit to the data it would imply that differences between cell 
frequencies simply reflected differences between single variable 
marginal totals. 

Now consider a model which specifies that u12 = 0 and therefore 
necessarily for hierarchical models also specifies that u123 = 0. 
The log-linear model would now be ofthe form: 

log.Fiik = u + ul(il + u2Ul + u3(kl + u13(ikl + u23Ukl (5.17) 

Setting u123 = 0 is, as we have mentioned previously, equivalent to 
postulating that the interaction between variables 1 and 2 is the 
same at all Ievels of variable 3; setting u12 = 0 is equivalent to 
postulating that this interaction is zero. Consequently the model 
in (5.17) is seentobe specifying that there is no interaction between 
variables 1 and 2 at each Ievel of variable 3 or, in other words, 
that variables 1 and 2 are conditionally independent given variable 3. 
In such a model variables 1 and 2 are each assumed to be associated 
with variable 3 since we have not specified that either u13 or u23 
is zero. 

Similarly the hypotheses of partial independence discussed in the 
preceding chapter can be considered in terms of (5.12) with some 
parameters set equal to zero. In this case we would specify u123 and 
one pair of u12 , u13 , and u23 tobe zero. For example, hypothesis 
H 0 <ll (see Section 4.5) is equivalent to the following log-linear 
model: 

log.Fiik = u + u1(i) + u2u1 + u3<kl + u23Ukl (5.18) 

If we were to continue to delete u-terms from (5.12) so that there 
were fewer terms than in the complete independence model, that 
is (5.16), we would arrive at a model which did not include all 
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variables. These are termed non-cornprehensive models by Bishop, 
Feinberg, and Holland; if such a model were tenable for a set of 
data it would simply indicate that one (or more) of the variables 
were redundant and that the dimensionality of the table could be 
reduced accordingly. In practice, of course, only cornprehensive 
models, that is those containing at least a main effect parameter 
for each variable, would be of concern. 

Bishop, Feinberg, and Holland prove that a three-dimensional 
contingency table may be collapsed over any variable that is 
independent of at least one of the remaining pair, and the reduced 
table examined without the danger of misleading conclusions 
previously alluded to (see Section 4.3). Such a result shows that 
acceptance of one of the hypotheses of partial independence, that 
is showing that a model such as (5.18) provides an adequate fit to 
the data, would allow the table to be collapsed over any of the three 
variables with, consequently, a simplification of subsequent analyses. 
This procedure has been illustrated in the preceding chapter (see 
Section 4.5). The result also shows that, in the case where only 
conditional independence holds [that is, the model specified in 
( 5.17)], care must be taken in deciding which variables are collaps
ible. For example, the spurious result found in collapsing Table 4.3 
over the clinic variable is now explained, since each of the remaining 
two variables, amount of prenatal care and survival, is associated 
with this variable. 

5.3. Fitting log-linear models and estimating parameters 

In the preceding section we have seen that fitting particular log
linear models to the frequencies in a contingency table is equivalent 
to testing particular hypotheses about the table. Consequently, 
assessing the adequacy of a suggested model for the data follows 
exactly the same lines as that used in hypothesis testing, namely 
obtaining estimates of the theoretical frequencies to be expected 
assuming the model is correct, that is the values Eiik, and comparing 
these with the observed values by means of either the XL 2 or the x2 

statistic. The estimated expected values are obtained as for the 
equivalent hypothesis, and, as mentioned in Chapter 4, may in 
some cases be calculated explicitly from the relevant marginals of 
the observed values, but in other cases must be obtained using the 
type of iterative procedure to be discussed in Section 5.6. 

A major advantage obtained from fittinglog-linear models isthat 
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TABLE 5.1. Two-dimensional data. 

Variable 2 
2 3 

1 20 56 24 100 
Variable 1 2 8 28 14 50 

3 2 16 2 20 

30 100 40 170 

we may obtain estimates ofthe parameters in the model. This allows 
us to quantify the effects of various variables and of interactions 
between variables. Estimates of the parameters in the fitted model 
are obtained as functions ofthe logarithms ofthe Eiik' and the form 
of such estimates is very similar to those used for the parameters 
in analysis of variance models, as we shall see in the following 
example. Examining first the two-dimensional table shown in 
Table 5.1, Iet us compute the main effect parameters in the model: 

(5.19) 

postulated for these data. 
We firstfind the expected values under the model in (5.19). Since 

this model is equivalent to the hypothesis that the two variables 
are independent, these will be calculated using formula (1.9), and 
are given in Table 5.2. Estimates of the main effect parameters 
are now found by simply substituting the values in Table 5.2 for 
the Fii in formulae (5.9) and (5.10). For example: 

u10l = (f)(Ioge 17.65 + Ioge 58.82 + loge23.53)- (~)(Ioge 17.65 
+ ... + loge4.71) 

=0.77 

TABLE 5.2. Expected values for data ofTable 5.1. 

Variable 2 
2 3 

1 17.65 58.82 23.53 100 
Variable 1 2 8.82 29.41 11.76 50 

3 3.53 11.76 4.71 20 

30 100 40 170 
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TABLE 5.3. Estimated main effects for data in Table 5.1. 

Category 
1 
2 
3 

Variable 1 

u1<1> = o.n 
u1<2> = o.o7 
u1<3> = - o.s4 

Variable 2 

u2<1> = - o.5o 
u2<2> = 0.11 
u2c31 = - 0.21 

The estimated main effects are shown in Table 5.3. 
W e see first that the estimates for each variable sum to zero; 

consequently the last effect may always be found by subtraction of 
the preceding ones from zero. Secondly we see that the size of the 
effects simply reflects the size of the marginal totals; that is, of the 
parameters ul(i)' ul(l) is the largest since the first category ofvariable 
1 has the largest marginal total amongst those of this variable. 
Similarly, of the parameters u2u>• u2<2> is largest. lf we Iet zii =log. 
Eii and adopt a 'bar' notation for means, that is 

1 c 
z;. = - L log. Eii etc., 

c j= 1 

the main effect estimates may be written in the form taken by para
meter estimates in the analysis ofvariance, that is: 

u1<i> = z;.- z .. 
u2u> = =·j - z .. 

(5.20) 

(5.21) 

Let us now return to the three-dimensional data in Table 4.1. 
In Section 4.5 the hypothesis that school behaviour (variable 1) 
is independent of school adversity (variable 2) and home condition 
variable 3) jointly was considered for these data. This hypothesis 
corresponds to the model: 

log.Fiik = u + u1(i) + u2u> + u3<k> + u23Uk> (5.22) 

The expected values under the model are shown in Table 4.5, and 
from these we may now obtain estimates of the parameters in the 
model. Adopting again the nomenclature introduced above, that 
is letting ziik = log. Eiik etc., the estimates are given by: 

u = z ... 

u1<i> = z; .. - z .. . 
u2u> = z·j· - z .. . 

(5.23) 

(5.24) 

(5.25) 
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T ABLE 5.4. Estimated interaction effects be
tween school adversity and home condition 
for the data ofTable 4.1. 

ü23(11) = 0.392, 
ü23(21) = - 0.408, 
ü23(31) = 0.016, 

u3<k> = z .. k - z ... 

ü23(12) = - 0.392 
ü23(22) = 0.408 
ü23(32) = - 0.016 

u23Uk> = z·jk - z·i· - z .. k + z ... 

(5.26) 

(5.27) 

The interaction parameters are shown in Table 5.4. Note that, 
since u23(j·) = 0 and u23(·k) = 0, only two of the six interaction para
meters have to be estimated, the remaining four being determined 
by these relationships. The positive value of u2301> indicates a 
positive association between the low adversity school category and 
the not-at-risk for deviant behaviour category. Consequently 
more children will be found in this category than would be expected 
if the variables were independent. Of course, whether the difference 
is significant or simply attributable to random fluctuations will 
depend on whether or not u 23111 > is significantly different from zero; 
the question of the significance of parameter estimates will be 
discussed in Section 5.6. The pattern of values in Table 5.4 reflects 
the differences, already seen in Chapter 4 (Table 4.6), between the 
observed frequencies and the expected values calculated under the 
hypothesis of the independence of the two variables. 

A difficulty which may arise when fitting log-linear models to 
contingency table data is the occurrence of zero cell entries. Such 
entries may arise in two ways; the first is when it is impossible to 
observe values for certain combinations of variables, in which case 
they are known as a priori zeroes and are discussed in the following 
chapter. Secondly, they may arise owing to sampling variation 
when a relatively small sample is collected for a table having a 
large number of cells; in this case zero cell entries are known as 
sampling zeroes. An obvious way to eliminate these is to increase 
the sample size. However, when this is not possible, it may be 
necessary, in some cases, to increase all cell frequencies by addition 
of a small constant, generally 0.5 before proceeding with the analysis. 
[Feinberg (1969) discusses more formal methods for determining 
the size of the constant to be added to each cell frequency to remove 
sampling zeroes.] The issues surrounding how to deal with sampling 
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zeroes in general are discussed in detail in Bishop, Feinberg and 
Holland. 

The analysis ofmultidimensional tables by the fitting oflog-linear 
models requires, in general, a computer program to take the burden 
of the large amount of computation that may be involved especially 
when expected values have to be obtained iteratively. Some pro
grams available for this purpose are described in Appendix B. 
For the analyses presented in later numerical examples Goodman's 
ECT A program was used. 

5.4. Fixed marginal totals 

In the preceding chapter it was mentioned that, corresponding to 
particular hypotheses, particular sets of expected value marginal 
tatals are constrained to be equal to the corresponding marginal 
tatals of observed values. In terms of the parameters in log-linear 
models this means that the u-terms included in the model determine 
the marginal constraints imposed on the expected values. For 
example, in a three-variable table, fitting a model including only 
main effects, that is: 

logeFijk = u + ul(i) + u2Ul + u3(k) 

fixes the following: 

E; .. = n; .. , E·i· = n·i·, E .. k = n .. k 

(5.28) 

but no two-variable marginals are so constrained. In the case of 
the partial independence model, namely: 

logeFiik = u + u1(i) + u2Ul + u3(kJ + u23Ukl (5.29) 

the following equalities hold: 

E; .. = n; .. , E·i· = n·i·• E .. k = n .. k, and E'ik = n·ik 

Now, for some sets of data certain marginal tatals of observed 
frequencies are fixed by the sampling design, so the corresponding 
u-term must be included in the model so that the corresponding 
marginals of expected values are similarly fixed. For example, 
Table 5.5 shows some data previously considered by Bartlett (1935) 
and others, which gives the results of an experiment designed to 
investigate the propagation of plum root stocks from root cuttings. 
In this experiment the marginal tatals n·ik are fixed a priori by the 
investigator at 240, and consequently, in any analysis of the data, 
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T ABLE 5.5 Data on propogation of plum root stocks. 

Time afplanting (Variable 2) 
At ance In Spring 

Length af cutting (Variable 3) Lang Shart Lang Shart 

Alive 156 107 84 31 
Condition of plant after 
experiment (Variable 1) 

Dead 84 133 156 209 

240 240 240 240 

these marginals must be maintained at this value. Therefore, when 
fitting log-linear models to these data, only models including the 
term u23 would be considered. [For more details see Bisbop (op. 
cit.). J 

5.5. Obtaining expected values iteratively 

As mentioned previously, expected values corresponding to some 
models cannot be obtained directly from particularly marginal totals 
of observed values. (This arises because, in these cases, the maximum 
likelihood equations have no explicit solution.) Consequently the 
expected values must be obtained in some other way. Bartlett 
(op. cit.) was the first to describe a method for obtaining expected 
values for a model that did not allow these to be obtained directly. 
More recently several authors, for example Bock (1972) and 
Haberman (1974), have suggested Newton-Raphson methods in 
this area. However, in this section weshall consider only the method 
of iterative proportional fitting originally given by Deming and 
Stephan (1940), and described later by Bisbop (1969). To illustrate 
this procedure we shall apply it to the data in Table 4.1, obtaining 
expected values under the model which specifies only that there is 
no second-order interaction, namely: 

log.Fiik = u + ul(i) + Uz(j) + u3(k) + u12(iil + u13(ik) + Uz3(jk) (5.30) 

Fora three-dimensional table the model in (5.30) is the only one for 
which expected values are not directly obtainable. [We know, of 
course, from the results discussed in Chapter 4, that such a model 
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is acceptable for these data; it is used here simply as an illustration of 
obtaining expected values iteratively.] 

Examining the terms in (5.30) we see that the totals Eii·' Ei-k, 
and E.ik are constrained tobe equal to the corresponding observed 
marginals. The iterative procedure begins by assuming a starting 
value, ElJ~, for each Eiik, of unity and proceeds by adjusting these 
proportionally to satisfy the first marginal constraint, namely 
that Eii. = nii', by calculating: 

E(O) 
Eo) _ iik x nii· 

ijk- (0) 
Eii· 

(5.31) 

[Note that Elf.>= nii· .] 
The revised expected values ElN are now adjusted to satisfy 

the second marginal constraint, that is EH = ni·k, as follows: 

[Note that El~~ = ni-k.] 

E<1) 
E(2) _ iik x ni·k 

ijk- (1) 
EH 

(5.32) 

The cycle is completed when the values 
adjusted to satisfy E·ik = n.ik' using: 

given by (5.32) are 

E(2) 
(3) _ iik x n·ik 

Eiik- (2) 
E.ik 

(5:33) 

[Note that E~J~ = n·ik'] 
A new cycle now begins by using the values obtained from (5.33) 

in equation (5.31). The process is continued until differences between 
succeeding expected values differ by less than some small amount, 
say 0.01. Using this procedure on the data of Table 4.1, and 
remembering that we begin with initial values of unity in each cell, 
we have the following sequence of computations. 

Cycle 1 
Step 1. Using formula (5.31) we first obtain: 

Similarly 

Similarly 

(l) _ 1 X (16 + 15 + 5) _ 12 OO 
Eu1- (1+1+1) -. 

EW2 = 12.00 and EW3 = 12.00; 

(1) _ 1 X (7 + 34 + 3) _ 14 67 
E121 - (1 + 1 + 1) - . 
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Similarly 

Similarly 

EW2 = 14.67 and EW3 = 14.67; 

(l) = 1 X (1 + 3 + 1) = 1 67 
E2u (1 + 1 + 1) . 

EW2 = 1.67 and EW3 = 1.67; 

(1) = 1 X (1 + 8 + 3) = 4 OO 
E22t (1 + 1 + 1) . 

E~1d2 = 4.00 and E~1d 3 = 4.00. 

Step 2. Using formula (5.32) we now obtain: 

(2) = 12.00(16 + 7) = 10 35 
E 111 (12.00 + 14.67) . 

(2) = 12.00(15 + 34) = 21 05 
E 112 (12.00 + 14.67) . 

(2) - 12.00(5 + 3) -
E 113 - (12.00 + 14.67)- 3·60 

T ABLE 5.6. Expected values under the hypothesis of no second-order 
interaction for the data ofTable 4.1. 

Adversity of school condition 
Low Medium High 

Risk Index N.A.R. A.R. N.A.R. A.R. N.A.R. A.R. 

1. 12.00 1. 14.67 1. 12.00 1. 14.67 1. 12.00 1. 14.67 
2. 10.35 2. 12.65 2. 21.05 2. 26.95 2. 3.60 2. 4.40 

N.D. 3. 16.13 3. 7.20 3. 15.60 3. 32.61 3. 4.52 3. 3.66 
F. 15.89 F. 7.11 F. 15.57 F. 33.28 F. 4.39 F. 3.61 

Classroom 
behaviour 

1. 1.67 1. 4.00 1. 1.67 1. 4.00 1. 1.67 1. 4.00 
2. 0.56 2. 1.41 2. 3.24 2. 7.76 2. 1.18 2. 2.82 

D. 3. 0.87 3. 0.80 3. 2.40 3. 9.39 3. 2.48 3. 2.34 
F. 1.11 F. 0.89 F. 2.28 F. 8.72 F. 1.61 F. 2.39 

1. Expected value at end of step 1. 
2. Expected value at end of step 2. 
3. Expected value at end of step 3. 
F. Expected value at convergence on cycle four. 
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and so on. We would now proceed to step 3 by using formula (5.33) 
and then begin a new cycle. Table 5.6 shows the expected values 
obtained at the end of steps 1, 2, and 3 of cycle 1, and those at the 
completion of the process which in this case occurred on cycle 4. 

In general this algorithm would operate by proportionally fitting 
the marginal totals fixed by the model. When expected values can 
be obtained explicitly from various marginal totals this algorithm 
is obviously not necessary, although it is easy to show that, for such 
cases, both methods will produce the same results. Bishop, Fienberg, 
and Holland (Ch. 3) discuss some rules for detecting when direct 
estimates are available; these may be especially useful to investi
gators without access to one of the computer programs previously 
mentioned. 

5.6. Numerical example 

Before proceeding with other topics connected with log-linear 
models, weshall examine in some detail the data in Table 5.7, with 
a view to illustrating some ofthe points covered in previous sections. 
These data concern coronary heart disease and were analysed by 
Ku and KuHback (1974). A total of 1330 patients have been cate
gorized with respect to the following three variables: 

Variable Level 
1. Blood pressure 1. Less than 127 mm Hg 

2. 127-146 
3. 147-166 
4. 167 + 

2. Serum cholesterol 1. Less than 200 mg/100 cc 
2. 200-219 
3. 220-259 
4. 260 + 

3. Coronary heart disease 1. Yes 
2. No 

Let us first examine whether a model containing only main effects 
provides an adequate fit to these data. Such a model is equivalent to 
the hypothesis that the three variables are mutually independent, 
so the expected values may be calculated using formula (4.7); these 
are then compared with the observed frequencies by either the 
likelihood ratio criterion, XL 2, or the more usual x2 statistic. This 
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TABLE 5.7. Coronary heart disease data 

Serum cholesterol Blood Pressure 
2 3 4 Total 

1 2 3 3 4 12 
Coronary heard 2 3 2 1 3 9 
disease 3 8 11 6 6 31 

4 7 12 11 11 41 

Total 20 28 21 24 93 

1 117 121 47 22 307 
No coronary 2 85 98 43 20 246 
heart disease 3 119 209 68 43 439 

4 67 99 46 33 245 

Total 388 527 204 118 1237 

Overall total 408 555 225 142 1330 

results in XL 2 = 78.96 and x2 = 99.54. (In the rest of this chapter we 
shall give only the values of XL 2 when testing the fit of models.) 
To fmd the degrees of freedom associated with a particular model, 
we use: 

d.f. = Number of cells in table- Number of parameters 
in fitted modelthat require estimating (5.34) 

In the case of a main effects model [ see ( 5.28) J we have the following: 

Parameters in model 

Overall mean effect, u 
Main effect ofvariable 1, u1(il 

Main effect of variable 2, u2<11 

Main effect of variable 3, u3(k) 

Number of such parameters 
that require estimating 

1 
(r -1) 
(c- 1) 
(/-1) 

r+c+l-2 

[since u1<·J = 0] 
[ since u2<·J = 0] 
[ since u3<·J = 0] 
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Consequently from (5.34) we have: 

d.f. = rcl - r - c - l + 2 

This formula has been derived in Chapter 4 (see Section 4.7). For 
the data of Table 5.7, r = 4, c = 4, and l = 2, so the main effects 
model in this case has 24 d.f. The value of XL 2 obtained, namely 
78.96, is therefore highly significant, and a log-linear model including 
only main effect parameters does not provide an adequate fit for 
these data. 

The next model considered was that given in (5.30), which specifies 
that there is no second-order interaction between the three variables. 
In this case expected values have to be obtained iteratively using the 
procedure described in the preceding section. When this is done we 
may obtain XL 2 in the usual way to give XL 2 = 4. 77. In this case 
we have: 

Parameters in model 

Overall mean effect, u 
Main effect of variable 1, u1<il 

Main effect of variable 2, u2U> 

Main effect of variable 3, u3<k> 
Interaction effect, variables 

1 and 2, u12(ii> 
Interaction effect, variables 
1 and 3, u13(ik) 

Interaction effect, variables 

2 and 3, u23<ik> 

1 

Number of such parameters that 
require estimating 

(r- 1) 
(c- 1) 
(I- 1) 

(r- 1)(c- 1) [since u12(i·) = u12<·i> = 0] 

(r- 1)(1- 1) [since u13(i·J = u13<·kl = 0] 

(c- 1)(1- 1) [ since u23u-> = u23<·k> = 0] 

rc + rl + cl - r - c - I + 1 

and therefore the degrees of freedom of this model in this case is 
given by 

d.f. = 32- 4·4- 4·2- 4·2 + 4 + 4 + 2-1 
=9 

Consequently XL 2 is non-significant and there is no need to postulate 
any second-order interaction for these data. Table 5.8 shows the 
first-order interaction parameter estimates obtained for this model. 
In most cases when fitting models we shall be interested in the 
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simplest, that is the one with fewest parameters that provides an 
adequate fit to the data. From the results above we can see that, 
for these data, we shall need a model somewhere between one 
involving only main effects and one involving all first-order inter
action terms. An indication of which model might be appropriate 
may be obtained by examining the standardized values in Table 5.8. 
These values are obtained by dividing a parameter estimate by its 
standard error. Details of how to compute the later are given by 
Goodman (1971), who also shows that the standardized values have, 

TABLE 5.8. Some parameter estimates for the 'no second-order interaction' 
model fitted to the data of Table 5.7. [Effects such as u 13<12> are obtained 
by using the fact that u13(1·) = 0] 

Variables Magnitude of Standard Standardized 
effect error Value 

1 and 3 u13(11) -0.219 0.111 -1.967* 
u13(21) -0.238 0.106 - 2.248* 
u13(31) 0.075 0.117 0.637 
u13(41) 0.383 0.120 3.186* 

2 and 3 u23(11) -0.227 0.125 -1.810 
u23(21> -0.272 0.138 -1.970* 
u23(31) 0.054 0.095 0.576 
a23(41) 0.445 0.090 4.949* 

1 and 2 ul2(11) 0.222 0.205 1.083 
ul2(12) 0.111 0.233 0.474 
u12(13) -0.114 0.165 -0.687 
ul2(14> -0.219 0.159 - 1.381 

1 and 2 ul2(21> -0.018 0.202 -0.091 
u12(22> -0.044 0.225 -0.193 
u12(23> 0.155 0.148 1.045 
ul2(24) -0.093 0.146 -0.638 

1 and 2 u12(31) -0.037 0.225 -0.163 
u12(32> 0.027 0.245 0.112 
u12(33> -0.062 0.170 -0.364 
ul2(34) 0.071 0.159 0.448 

1 and 2 a12(41) -0.167 0.234 -0.716 
a12(42) -0.094 0.254 -0.372 
u12(43) 0.020 0.170 0.120 
ul2(44) 0.241 0.159 1.518 

*lndicates a 'significant' effect 
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asymptotically, a standard normal distribution, and may therefore 
be compared with the normal deviate for any particular probability 
Ievel, to obtain some idea as to the 'significance' of a particular 
effect; for example, they might be compared with the 5% normal 
deviate, namely ± 1.96. 

Examination of Table 5.8 suggests that a model including only 
interaction terms u 13 and u 23 might provide an adequate fit for 
these data; consequently such a model, that is: 

IogeFijk = u + ul(i) + u2Ul + u3(k) + ul3(ik) + u23Ukl (5.35) 

was tried. We see that it is the conditional independence model 
previously discussed and it implies, for these data, that there is no 
interaction between blood pressure and serum cholesterol Ievel 
for both 'coronary heart disease' and 'no coronary heart disease' 
patients. 

The expected frequencies for this model may be obtained explicitly 
from: 

E _ ni·kn)k 
iik- n 

··k 

(5.36) 

[see Lewis (op. cit.)]. Thevalue ofXL 2 was 24.40with 18 d.f. compared 
with a value of chi-square from tables at the 5% Ievel of 28.87. 
Therefore we may conclude that the model in (5.35) provides an 
adequate fit for the data of Table 5.7. Some of the estimated para
meter values for this model are shown in Table 5.9. In generat terms 

T ABLE 5.9. Some parameter estimates for the model specified in (5.35) 
fitted to the data ofTable 5.7. 

Variables Magnitude Standard Standardized 
error value 

1 and 3 u13(11) -0.262 0.117 -2.233 

u13(11) -0.247 0.105 -2.346 

u13(31) 0.084 0.117 0.720 

u13(41) 0.424 0.114 3.722 

2and 3 u13(11) -0.247 0.124 - 1.991 

u13(11) -0.281 0.138 -2.029 

u23(31) 0.048 0.094 0.515 

u13(41) 0.480 0.090 5.333 
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the results indicate that there is a positive association between 
high blood pressure (that is Ievel 4) and the presence of coronary 
heart disease [ u13(41) = 0.424, p < 0.05], and similarly a positive 
association between high serum cholesterollevel (that is category 4) 
and the presence of coronary heart disease [u23<41> = 0.480, 
p < 0.05]. In addition, the Iack of a second-order interaction implies 
that (a) the interaction between blood pressure and coronary heart 
disease is the same at alllevels of serum cholesterol, and (b) the 
interaction between serum cholesterol and heart disease is the 
same for all blood pressure Ievels. 

5. 7. Choosing a particular model 

As the number of dimensions of a multidimensional table increases 
so does the number of possible models, and some procedures 
are obviously needed to indicate which models may prove reasonable 
to fit to the data and which are likely to be inadequate. One such 
procedure is to examine the standardized values in the saturated 
model for the data. These values may serve to indicate which 
parameters can be excluded and therefore which unsaturated models 
may be worth considering. In many cases, however, it will be found 
that several models provide an adequate fit to the data as indicated 
by the non-significance of the likelihood ratio criterion. In general 
the preferred model will be that with fewer parameters. In some 
cases, however, a test between rival models may be required to see 
which gives the most parsimonious summary of the data. Goodman 
(1971) and Fienberg (1970) show that for the hierarchical models 
considered in this chapter such a test may be obtained by sub
tracting the XL 2 values for the two models to assess the 'change' 
in goodness of fit which results from adding further parameters. 
For example, for the data in Table 5.7 we have seen that the model 
specified in (5.35) and that specified in (5.30) yield non-significant 
XL 2 values. The two models differ by the presence of the parameter 
u12 in the latter. The model including the extra parameter would 
only be preferred if it provided a significantly improved fit over the 
simpler model. The difference in the XL 2 values of the two models 
is 19.63. This may be compared with a chi-square with 9 d.f. (that 
is the difference in the degrees of freedom of the two models). 
Since this is significant we may conclude that addition of the para
meter u12 to the model specified in (5.35) causes a significant 
improvement in fit, and consequently a model which includes 
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first-order interactions between all pairs of variables is needed for 
these data. 

It should be noted that in an s-dimensional table for which the 
s-factor effect is large, we cannot of course fit any unsaturated 
hierarchical model. In this case it may be informative to partition 
the table according to the levels of one of the variables and examine 
each of the resulting (s- !)-dimensional tables separately. Details 
are given in Bishop, Fienberg, and Holland, Ch. 4; these authors also 
describe other useful methods for choosing a particular log-linear 
model for a set of data. 

5.8. Log-linear models for tables with ordered categories 

The log-linear model is easily adapted to deal with contingency 
tables in which one or more of the variables have categories that 
fall into a natural order. The u-parameters used previously, which 
measured effects as deviations from an overall mean (and conse
quently summed to zero ), are now replaced, for the ordered variables, 
by parameters representing linear, quadratic, and, if appropriate, 
higher order effects. The process is greatly simplified if the levels of 
the ordered variables can be assumed to be equally spaced, in which 
case orthogonal polynomials may be used. For example, for an 
ordered variable having three equally spaced categories, the linear 
and quadratic effects are obtained from the usual u-parameters by 
applying the orthogonal polynomial coefficients to be found, for 
example, in Kirk (1968), Table D.12, to give the following; 

Linear main effect, u1<L>· 

u1<L> = (t) [ (l)u1<1> + (O)u1<2> + (- l)u1<3>] 

= (f)[ul(lJ- ul(3J] 

assuming that the first level of the variable is the 'high' level. 
Quadratic main effect, u1 <QJ. 

ul(QJ = (i) [(l)ul(ll- (2)u1<2> + (l)u1(3J] 

= (i) [ ul(lJ + ul(3J - 2ul(2J] 

(5.37) 

(5.38) 

These effects will represent trends in the single variable marginal 
tatals of the ordered variable. Similarly linear and quadratic effects 
may found for the interaction between the ordered and the other 
unordered variables; the size of such effects will indicate the 
similarity or otherwise of the trend of the ordered variable in 
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TABLE 5.10. Social dass and number of years in present occupation at first 
attendance as out-patients for a sample of patients diagnosed as either 
neurotics or schizophrenics. 

Diagnosis (Variable 2) 
Neurotic Schizophrenie 

Duration of 
present occupation - 1 yr 2-5 yr 5 + yr -1yr2-5yr5+yr 
(Variable 1) 
Social dass I+ II 4 6 18 5 10 8 
(Variable 3) III 12 17 37 13 18 23 

IV+V 8 5 3 12 7 5 

24 28 58 30 35 36 211 

T ABLE 5.11. Parameter estimates obtained from fitting a log-linear model 
specifying zero second-order interaction to the data in Table 5.10. 

Variable Magnitude Standard Standardized 
ofeffect error value 

ul<L> 0.164 0.104 1.582 
ul(QJ 0.012 0.059 0.201 

2 u2(1J -0.022 0.084 -0.262 

3 u3(1J -0.215 0.123 -1.754 
u3(2J 0.665 0.101 6.569 
u3<3> -0.450 0.130 -3.452 

1 and 2 u12(L1J 0.145 0.104 1.394 
u12(Qtl 0.061 0.059 1.044 

2and 3 u23(11J 0.071 0.123 0.578 
u23(12J 0.075 0.101 0.739 
u23(13J -0.146 0.130 -1.117 

1 and 3 u13(L1J 0.350 0.153 2.286 
u13(L2J 0.257 0.125 2.057 
u13(L3J -0.607 0.160 -3.791 
u13(QIJ -0.031 0.085 -0.370 
u13(Q2J 0.017 0.071 0.241 
ut3(Q3J 0.014 0.092 0.155 
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different categories of the unordered variable. To darify these 
ideas let us examine the data in Table 5.10. These data, collected 
in an investigation into the environmental causes of mental disorder, 
show the social dass and number of years in present occupation 
for a sample of patients diagnosed either as neurotic or 
schizophrenic. 

Variable 1 (duration of present occupation) falls into a natural 
order, and we wish to investigate the possible trends in this variable 
using log-linear models with linear and quadratic effect parameters. 
Fitting a model specifying zero second-order interaction results in 
the parameter estimates shown in Table 5.11 and a value of XL 2 of 
2.00, which with 4 d.f. is non-significant. Examining first the main 
effects for variable 1, we see that only that representing linear trend 
approaches being significant; the quadratic effect is very small. 
These two effects reflect any trend in the overall number of patients 
in the three categories of the ordered variable, that is: 

Duration of present occupation 
Number of patients 

-1 yr 
54 

2-5 yr 
63 

5 + yr 
94 

The more interesting effects are those representing interactions 
between duration of present occupation and diagnosis or social 
dass. Examining Table 5.11 we see that interactions between 
duration and diagnosis are not significant. This indicates that 
trends across duration are the same for both diagnoses. Interaction 
effects between duration and social dass are however significant; 
the magnitude and sign of these effects show that there are linear 
increases in the number of people with increase in duration for 
social dass categories 1 and 2, and a linear decrease for social dass 
category 3. This is dearly seen in Table 5.12. The absence of any 
second-order relationship shows that the interaction effects between 

TABLE 5.12. Number of people in the three categories 
of the duration variable, for the three Ievels of 
social dass. 

I+ II 
Social dass III 

IV+V 

Duration of present occupation 
- 1 yr 2-5 yr 5 + yr 

9 
25 
20 

16 
35 
12 

26 
60 
8 
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social class and duration of present occupation are the same for 
both neurotics and schizophrenics. 

5.9. Models for data for wbich one of the variables is 
A response variable 

Several authors, for example Bhapkar and Koch (1968), have 
emphasized the difference between factor or explanatory variables 
which classify the unit of observation according to a description 
of the sub-population of the units to which he belongs (or to the 
experimental conditions which he undergoes), and responsevariables 
which classify according to a description of what happens to the 
unit during and/or after the experiment. For example, in the data 
of Table 5.5 we have a 'one res12onse, two factor experiment', the 
response variable being the state of the plant after the experiment, 
that is alive or dead, and time of planting and length of cutting 
being factor variables. In any analysis of such data the primary 
interest will be in the 'effect' ofthe factor variables and combinations 
of these variables on the response variable. 

To illustrate the models applicable in this case we shall use the 
data in Table 5.13, which results from a psychiatrist's interest in 
the extent to which patients' recovery is predictable from the 
symptoms they show when ill. Forthis purpose 819 male patients 
are assessed for the presence ( + ) or absence ( - ) of the three 
symptoms depression, anxiety, and delusions of guilt, and then at 
the end of a suitable time period each patient is rated as 'recovered' 
or 'not-recovered'. 

T ABLE 5.13. Incidence of symptoms amongst psychiatric patients. 

Depression (Variable 4) 
+ 

Anxiety + + 
(Variable 3) 
Delusions + + + + 
(Variable 2) Condit1 R=vered 68 3 58 3 70 23 129 59 
of Not re-
patient covered 137 3 70 3 69 10 87 27 
(Variable 1) 
Proportion 
recovered 0.3317 0.5000 0.4531 0.5000 0.5036 0.6970 0.5972 0.6860 
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For these data the first variable, namely condition of patient, 
is a response variable, and to investigate the effects of the explanatory 
variables on the recovery of patients one possibility would be to 
investigate differences in the rates of recovery for different symptoms 
and symptom combinations. (W e shall assume during the rest of 
the discussion that response variables are, as in this example, 
dichotomous.) A simple method of making such an investigation 
would be to postulate models for the probability of recovery. For 
example, if we suspected that none of the symptoms had any effect 
on recovery, a possible model for the probabilities would be: 

PJk~4 = e (5.39) 

where PJk~ 4 is the probability of recovery for the cell arising from the 
jth category of variable 2 U = 1, 2), the kth category of variable 
3 (k = 1, 2), and the lth category ofvariable 4 (l = 1, 2). The observed 
proportians of patients recovering, pJk~4 , given in Table 5.13 
represent estimates of the probabilities. [in fact E(pJk~4) = PJk~4]. 
The model in (5.39) specifies that the probability of recovery is the 
same for all cells, that is for all combinations of symptoms. A more 
complicated model arises if we now introduce a parameter to 
represent the possible effect of the symptom depression on recovery, 
namely: 

PJk~4 = () + ()t (5.40) 

Estimates ofthe parameters 8 and 81(1 = 1, 2) might now be obtained, 
and the model tested for goodness of fit. A problern arises, however, 
from the necessity that the probabilities satisfy the condition: 

0 ~ p234 ~ 1 
-...;:: jkl -...;:: (5.41) 

since parameter estimates could be obtained which Iead to fitted 
probability values not satisfying (5.41). Because of this, and other 
problems (see Cox, 1970), models for probabilities arenot generally 
considered. However, a convenient method does exist for represent
ing the dependence of a probability on explanatory variables so 
that constraint (5.41) is inevitably satisfied, namely that ofpostulat
ing models on the logistic transformation of the probability. This 
transformation is given by: 

.A.Jk~ 4 =log. { PJk~4 /(1 - PJk~4)} (5.42) 

and since the probability varies from 0 to 1, the logistic varies 
from - oo to + oo. Methods for fitting models to logistic functions 
are described by Dyke and Patterson (1952), Cox (1970), and 
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Maxwell and Everitt (1970). However, details of the methods given 
by these authors will not be considered here, since Bisbop (1969) 
and Goodman (1971) show how the log-linear models for fre
quencies, discussed previously in this chapter, may be adapted to 
produce equivalent results. For example, Iet us suppose that we 
wish to postulate a model for the logistic function which involves 
only a single 'overall mean parameter', that is: 

1234 () 1\.jkl = (5.43) 

Such a model is obviously equivalent to that specified in (5.39), 
although the parameters will not have the same values. In terms of 
the theoretical frequencies, Fiikl• for Table 5.13: 

Pfk~4 = F likd(F likl + F 2ikl) 

(5.44) 

(The observed proportians of recovery are, of course, given by an 
equivalent relationship on the observed frequencies, niikl• namely: 

pfk~4 = nlikdn·ikl) 

Substituting (5.44) in (5.42) we obtain: 

.1cfk~4 = log.(FlikdF2ikl) (5.45) 

Suppose we now postulate a log-linear model for the frequencies, 
involving only an overall mean effect, and a main effect parameter 
for variable 1, namely: 

log.Fiikl = u + ul(i) (5.46) 

Ifwe now substitute (5.46) in (5.45) we obtain: 
1234 

11.ikl = ul(l) - u1<2> (5.47) 

which, since u 1<1> + u 1<2> = 0, becomes: 

.lcJk~4 = 2ul(l) (5.48) 

and this is equivalent to (5.43) with () = 2u1<1>. Thus, fitting the log
linear model specified in (5.46) is equivalent to fitting the model for 
the logistic function given in (5.43). Let us now examine a more 
complicated example, namely that where we suppose that the 
symptom depression has an effect on recovery. The model for the 
logistic would be: 

(5.49) 
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An equivalent log-linear model is: 

loge Fijkl = u + ul(il + u4(Z) + ul4(iZ) 

since substituting this in (5.45) gives: 

(5.50) 

A.Jk~4 = [ul(ll- ul(2l] + [ul4(1ll- u14(2Zl] (5.51) 

which is seentobe ofthe sameform as (5.49) with () = [ u1<1>- u1<2J 
and ()1 = [ u140n- u14<2nJ. The parameter u14 should now be 
thought of as the 'effect' of the symptom depression on recovery. 
In a similar way other log-linear models can be shown to be equi
valent to particular models for the logistic function. However, a 
complication arises when we consider parameter estimates. To 
illustrate this let us add a further parameter to the model in (5.50) 
namely any parameternot involving variable 1, say u2 , to give: 

logeFiikl = u + ul(il + Uz(j) + u4(Zl + u14(iZl (5.52) 

Substituting this in (5.45) again gives (5.51), so (5.52) is also equi
valent to the logistic model specified in (5.49). Inclusion of any 
other u-term, not involving variable 1, in the model for log-fre
quencies will also lead to (5.51); however, the inclusion ofsuch terms 
willlead to different estimates of u1 and u14 , and consequently of 
() and ()1; what is desirable is to choose that log-linear model that 
is equivalent to the particular logistic model under consideration 
and gives identical parameter estimates to those that would be 
obtained from fitting such models directly. Bisbop (op. cit.) shows 
that the required log-linear model is that which includes the term 
uiJKL'"(iikl"'l where I, J, K, L, etc. represent factor variables. 
Therefore the log-linear model needed to produce the same result 
as fitting the logistic model of ( 5.49) is: 

logeFiikZ = u + u1<il + u14<ill + u 234Ukl) + all other implied 
lower order terms (5.53) 

In this way the fitting of logistic models, as described by the 
authors previously mentioned, is included in the fitting oflog-linear 
models. 

5.9.1. Numerical example 

Let us now examine the results of using these methods on the data 
of Table 5.13. First we shall fit the logistic model specified in (5.43) 
to these data; such a model implies that the incidence of recovery is 
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the same for all symptom combinations. The required log-linear 
model is: 

Ioge Fiikl = u + u1(i) + u234Ukl) + all other implied lower 
order terms (5.54) 

Fitting this model by the methods outlined previously Ieads to a value 
of XL 2 of 50.44 with 7 d.f.; this is significant beyond the 1% Ievel, 
and consequently we are led to its rejection. 

Suppose now that we wish to test whether only the symptom 
depression has any effect on recovery. The model for the logistic 
function isthat given in (5.49) and the required equivalent log-linear 
modelisthat in (5.53), which gives XL2 = 14.87 with 6 d.f. This is 
significant at the 5% Ievel but not at the 1% Ievel. For some purposes 
this would be an adequate fit; the estimate of the parameter u14<11> 

is - 0.214 with standard error 0.081. This implies that incidence of 
recovery is significantly less amongst those patients without depres
sion (that is category 1 of variable 4). In other words, prognosis 
is good for patients who areratedas having the symptom depression. 
If an improved fit was required we could go on to fit other effects 
in exactly similar fashion. Terms such as u123 , if needed in the model 
to provide an adequate fit, would now be indicative that variables 
2 and 3 were not acting independently on the response variable, 
that is variable 1. 

5.10. Summary 

In this chapter we have discussed at some length the analysis of 
contingency tables by the fitting of log-linear models. Nevertheless 
we have covered only part of the area and the chapter should be 
regarded as an introduction to more complete work such as that 
of Bishop, Fienberg, and Holland. The techniques described allow 
a systematic approach to be taken to discovering the relationships 
that may be present in complex multidimensional tables, and 
provide a powerful addition to methods available for the analysis 
of contingency table data. In particular the estimates of first, second, 
and higher order interaction effects given by these methods are in 
general extremely useful, as we have seen, for assessing in advance 
how well a particular unsaturated model will fit the data and for 
indicating the relative importance of different interaction effects. 
They are also useful for detecting when the number of categories 
for a variable may be reduced; for details see Bishop, Fienberg, 
and Holland, Ch. 4. 



CHAPTER SIX 

Some special types of 
contingency table 

6.1. Introduction 

There are certain types of contingency table met with in practice 
that require special consideration. In this chapter we shall discuss 
some of the methods of analysis that have been suggested for such 
tables, beginning with a description of the analysis of those tables 
for which some cells have a priori zero entries. 

6.2. Tables with a priori zeros 

In the preceding chapter the problern of contingency tables having 
empty cells was mentioned. It was indicated that, at least in principle, 
'sampling zeros' could be made to disappear by simply increasing 
the sample size; failing this they could easily be dealt with by the 
addition of a small positive constant to each cell frequency. In many 
situations, however, tables arise in which cells are empty a priori 
owing to certain combinations of the variables being impossible, 
that is having zero probability. Many authors call this type of 
empty cell a 'structural zero'. Tables with structural zeros are 
generally known as incomplete contingency tables, and their analysis 
presents special problems, which have been considered by several 
authors, including Goodman (1968), Mantel (1970), Fienberg (1972), 
and Bishop, Fienberg, and Holland (1975), Ch. 5. Since much oftbis 
work is outside the scope of the present text, we shall merely 
illustrate, by means of an example, how such tables may be handled 
by relatively Straightforward extensions of the methods described 
in the preceding chapter. For this purpose we shall use the data 
in Table 6.1 given originally by Brunswick (1971) and also considered 
by Grizzle and Williams (1972). These data arose from an investiga
tion into health problems causing concern amongst teenagers. 
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TABLE 6.1. Data on teenagers' concem with health problems. 

Age (Variable 1) 

S. 
Health problern M 
causing concem H. 
(Variable 3) N. 

S : Sex reproduction. 
M : Menstrual problems. 

Sex (Variable 2) 
Males Fernales 

12-15 

4 

42 
57 

16-17 12-15 

2 9 
4 

7 19 
20 71 

H : How healthy I am. 
N: Nothing. 

16-17 

7 
8 

10 
31 
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Since males were naturally not affected by menstrual problems, 
certain cells are a priori zero. 

The analysis of such a table may proceed by fitting log-linear 
models from which parameters referring to cells containing 
structural zeros are excluded since they are known a priori to be zero. 
Expected values for such models must be obtained by using a 
simple modification of the algorithm described in Section 5.5; 
starting values for this algorithm are now taken as unity for non
empty cells, and zero for a priori empty cells; previously a starting 
value of unity was used for each cell. Use of these starting values 
ensures that the table of expected values found under a particular 
model will have zeros in the cells required. The observed and 
expected frequencies may now be compared by means ofthe familiar 
XL 2 statistic. The calculation of the correct nurober for the degrees 
of freedom is, however, complicated by the presence of the a priori 
empty cells. Previously, degrees of freedom were found from the 
equation [ see equation (5.34)]: 

d.f. = N 1 - N 2 ( 6.1) 

where N 1 = nurober of cells in the table, and N 2 = nurober of 
parameters in the model that required estimating. In the case of 
incomplete tables the formula for degrees of freedom becomes: 

(6.2) 

where N 3 = nurober of a priori empty cells. Care is needed here, 
however, in determining th~ nurober of parameters that need to 
be estimated, since those referring to the empty cells are known a 
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T ABLE 6.2. Expected values under the complete independence model 
for the data shown in Table 6.1. 

Sex 
Males Fernales 

Age 12-15 16-17 12-15 16-17 

Health problern s. 7.37 3.04 8.21 3.39 
causing concern M. 8.49 3.51 

H. 26.12 10.78 29.09 12.00 
N. 59.95 24.74 66.76 27.55 

priori to be zero and must therefore be excluded. Returning to the 
data in Table 6.1, let us firstfit the complete independence model; the 
expected values for this model are shown in Table 6.2, and the 
statistic XL 2 takes the value 28.24. The degrees of freedom in this 
case are: 

16- 2- (1 + 1 + 1 + 3) = 8 

since there are a total of two empty cells and the parameters that 
have to be estimated are u (grand mean effect), u1<1J (age effect), 
u 211J (sex effect), and u 3<1J, u 3<2J, u 3<3J (health concern effects). The 
obtained value of XL 2 is significant beyond the 1% level. 

If we now fit a model specifying only that there is no second-order 
interaction, we obtain XL 2 = 2.03. To determine the degrees of 
freedom let us consider the parameters in the model that need to 
be estimated, remembering that we are considering deviation 
parameters for which u 1<·J = 0, u 2<·J = 0, u 12(·l) = 0 etc. 

Grand mean effect u 
Main effect, age 
Main effect, sex 
Main effect, health concern 
Interaction effect, age x sex 
Interaction effect, age x concern 
Interaction effect, sex x concern 

u1(1J 

u2(1J 

u3<1J, u3(2J' u3(3J 

u12(11J 

u13(11J' u13(12J' u13(13J 

u23(11J, , u23(13J 

The interaction effect u 23<12l is missing since it is a priori zero 
because of the empty cells. The number of parameters to be esti
mated is therefore 12, and the degrees of freedom is given by: 

16-2-12 = 2 
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Consequently, our value of XL 2 is non-significant, and we may 
conclude that no second-order interaction need be postulated for 
these data. 

6.3. Quasi-independence 

The fitting of models with a priori zeros is closely allied to the 
problern of examining contingency tables for what Goodman 
(1968) has termed quasi-independence and which Fienberg (1972) 
has described as a form of independence conditional on the restriction 
of our attention to part of the table only. Testing tables for quasi
independence is often a useful way of identifying the sources of 
significance in an overall significant XL 2 or x2 value. To illustrate 
the concept we shall examine the data in Table 6.3 collected by 
Glass (1954) in a study of social mobility in Britain. (The expected 
values under the hypothesis that a subject's status is independent 
ofhis father's status are shown in parentheses alongside the observed 
values.) 

The usual chi-square test of independence, that is of the 
hypothesis: 

Ho: Pii = Pi-P·i 

gives x2 = 505.5 which with 4 d.f. is highly significant; consequently 
the two classifications arenot independent. In this example, however, 
there are various portions of the table that might be of interest for 
further investigation. For example, suppose that we were interested 
in investigating whether the data are compatible with the theory that, 
whilst there may be some 'status inheritance' from father to son in 

T ABLE 6.3. Cross-classification of a sample of British males according to 
each subject's status category and his father's status category. 

Subject's status 
Upper Middle Lower 

Upper 588 (343.2) 395 (466.7) 159 (322.1) 
Father's status Middle 349 (453.8) 714 (617.0) 447 (439.1) 

Lower 114(254.0) 320 (345.3) 411 (245.7) 

(The expected values under the hypothesis that a subject's status is indepen
dent of his father's status are shown in parentheses alongside the observed 
values.) 
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T ABLE 6.4. Data of Table 6.3 with diagonal elements excluded. 

Subject's status 
Upper Middle La wer 

Upper 395 159 
Father's status Middle 349 447 

Lower 114 320 

every social stratum, once a son has moved out ofhis father's stratum 
his own status is independent ofthat of his father. This would entail 
testing for independence in that portion of the table given by 
excluding subjects having the same status as their fathers. Table 6.4, 
which is simply Table 6.3 with the diagonal entries excluded, shows 
the data that would now be of concern. Such a table may be thought 
of as arising from sampling from a form of truncated population 
from which sons having the same status as their father are excluded. 
The usual form of the hypothesis of independence given above 
must now be modified to reflect the fact that the diagonal elements 
ofTable 6.4 are blank, by setting pii = 0 and adjusting the remaining 
probabilities so that they continue to sum to 1; our hypothesis now 
takes the following form: 

H 0 : pii = 0 if i = j 
= Spi· P.i if i =f- j 

where S is chosen so that: 
3 3 

I I vij = 1, 
i=1j=1 

that is 

( 
3 )-1 

S= 1- .I Pi.P·i 
•= 1 

This would now be termed a hypothesis of quasi-independence. 
In this case the maximum likelihood estimators of Pi· and p·i' and 
consequently of the expected frequencies, cannot be found directly. 
However, the latter can be found by using the iterative algorithm 
for finding expected values in a manner similar to that described 
in the preceding section, using starting values of unity for the cells 
in which we are interested, and zeros for those we wish to exclude. 
In this example we would therefore have: 
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EjJ> = 1 if i =I= j 
=Oifi=j 

113 

where the ElJ>'s are the starting values for the algorithm. Once the 
expected values under the hypothesis of quasi-independence have 
been found they may be compared with the observed frequencies 
by means of the usual x2 or h 2 statistic. Using such a procedure 
on these data gives the expected values shown in Table 6.5. 
Comparing the observed off-diagonal cells with the expected values 
Ieads to x2 = 0.61 which has a single degree of freedom (due to 
subtraction of 3 d.f. for the diagonal cells ). This is not now significant 
and we may therefore condude that the data are compatible with 
our previously expressed theory of social mobility. 

The significance of the x2 value for the complete table is therefore 
due to discrepancies between the observed and expected values in 
those cells for which fathers and sons have the same dass status. 
In each of these the observed frequency is greater than would be 
expected if the two dassifications were independent. The greatest 
discrepancy is for the cell involving upper dass sons with upper 
dass fathers, and it might be of interest to test for independence 
when only this diagonal cell is exduded. Again we need to find 
expected values under this further hypothesis of quasi-independence 
using the fitting algorithm, with, in this case, the following starting 
values: 

E\?> = 0 if i = 1· = 1 
'1 

= 1 otherwise 

Such a procedure results in a value of x2 = 143.42. This has 3 d.f. 
and is highly significant; consequently 'status inheritance' does 
not occur only in the upper dass stratum. If we now proceed one 
stage further and exdude also lower dass sons having a lower dass 
father, we find x2 = 20.20 which with 2 d.f. is also significant. 

T ABLE 6.5. Estimated expected values under the hypothesis of quasi
independence, excluding subjects who have the same status as their fathers. 

Subject' s status 
Upper Middle Lower 

Upper 390.2 163.8 
Father's status Middle 353.8 442.2 

Lower 109.2 324.8 
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From these results it would appear that 'status inheritance' occurs 
in all three social strata. 

6.4. Square contingency tables 

Two-dimensional contingency tables in which the row and column 
variables have the same number of categories (say r) occur fairly 
frequently in practice and are known, in general, as square tables. 
They may arise in a number of different ways: 

(I) When a sample of individuals is cross-classified according 
to two essentially similar categorical variables; for example, grade 
of vision of right and left eye. 

(II) When samples of pairs of matched individuals, such as 
husbands and wives or fathers and sons, are each classified according 
to some categorical variable of interest. 

(III) When two raters independently assign a sample of subjects 
to a set of categories. 

For such tables hypotheses relating simply to independence are 
not of major importance. Instead we will be interested in testing for 
symmetry and marginal homogeneity. By symmetry in a square table 
we mean that: 

Pii = Pi; (i =/=j) (6.3) 

and by marginal homogeneity that: 

P;. = P.; (for i = 1, 2, ... , r) (6.4) 

In a 2 x 2 table these are obviously equivalent; in larger tables 
symmetry as defined by (6.3) clearly implies marginal homogeneity 
as defined by (6.4). Chi-squaretests for both symmetry and marginal 
homogeneity are available; we begin here with a description of the 
test for symmetry. 

6.4.1. Testfor symmetry 

Examining again the data of Table 6.3 we see that it might be of 
interest to determine whether observations in cells situated sym
metrically about the main diagonal have the same probability of 
occurrence, that is to test the symmetry hypothesis namely: 

Ho: Pii =Pi; (i =/= j) 

In terms of these data such a hypothesis implies that changes in dass 
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between fathers and sons occur in both directions with the same 
probability. The hypothesis of symmetry has been considered by 
several authors, for example Grizzle et al. (1969), Maxwell (1970), 
and Bishop, Fienberg, and Holland, Ch. 8. Under this hypothesis 
we would expect the frequencies in the ijth and jith cells to be 
equal. The maximum likelihood estimate of the expected value in 
the ijth cell, Eii' is given by: 

eij = !<nij + nji) (i =/= j) 
= n;; (i = j) (6.5) 

Substituting these values in the usual form of the X2 statistic gives: 

x2 = 2: <nij - nji>2 l<nij + nji> 
i<j 

(6.6) 

which under the hypothesis of symmetry has a chi-square distribu
tion with 1r(r- 1) d.f. In the case of the data of Table 6.3 we have 
therefore: 

2 (349- 395)2 (159- 114)2 (447- 320)2 

X = (349 + 395) + (159 + 114) + (447 + 320) 

= 2.84 + 7.42 + 21.03 

= 31.39 

This has three degrees of freedom and is highly significant; conse
quently the hypothesis of symmetry is rejected. The largest deviation 
occurs between frequencies n32 and n23 , and it appears that a larger 
number of sons of middle class fathers become lower class than the 
number of sons oflowerclass fathers who achieve middle class status; 
to a lesser extent the same is true for the number of sons of upper class 
fathers who become lower class, which is greater than the number of 
sons who go in the opposite direction. 

6.4.2. Test for marginal homogeneity 

In the case where the hypothesis of symmetry is rejected, the weaker 
hypothesis of marginal homogeneity may be of interest. This 
hypothesis postulates that the row marginal probabilities are equal 
to the corresponding column marginal probabilities. This may be 
formulated as follows: 

H 0 : Pi·= P.; (for i = 1, 2, ... , r) 

A test of this hypothesis has been given by Stuart (1955) and by 
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Maxwell (1970). For the general r x r table the test statistic is 
given by: 

(6.7) 

where dis a column vector of any(r- 1) ofthe differences d1, d2, ••• , d,, 
and d; = n;.- n.; and V is an (r- 1) x (r- 1) matrix of the corres
ponding variances and covariances of the d;' s and has elements: 

(6.8) 

vii = - (n;i + ni;) (6.9) 

(Stuart and Maxwellshow that the same value of x2 results whichever 
value of d; is omitted from the vector d.) 

If H 0 is true then x2 has a chi-square distribution with (r- 1) 
d.f. In the case of r = 3 Fleiss and Everitt (1971) show that the test 
statistic may be written as follows: 

2 ii23d/ + iil3d/ + iil2d/ 
X = 2(fi12 ii23 + ii12 ii13 + ii13 ii23) 

(6.10) 

where 
iiii = f(n;i + nJ;) 

Applyingformula(6.10)to the data ofTable 6.3 forwhichd1 = -91, 
d2 = - 81, d3 = 173, and ii12 = 372.0, ii13 = 136.5, ii23 = 383.5 gives: 

x2 = 30.67 

which with 2 d.f. is highly significant and we conclude that the 
marginal distribution of fathers' status differs from that of sons' 
status. The relevant marginal probabilities estimated from Table 6.3 
are as follows: 

Fathers 
Sons 

Upper 
0.33 
0.30 

Class status 
Middle 

0.43 
0.41 

Lower 
0.24 
0.29 

The result indicates a general lowering in the class status of sons 
compared with that of their fathers. 

Other tests of marginal homogeneity are given in Bishop, 
Fienberg, and Holland, Ch. 8; these authors also consider the 
concepts of symmetry and marginal homogeneity in the case of 
tables of more than two dimensions. 
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6.5. Summary 
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Methods for analysing special types of contingency table have 
been briefly described. Much fuller details are available in the 
papers cited. The reader should remernher that techniques for 
dealing with incomplete tables and for testing for quasi-indepen
dence are subject to many technical problems not discussed here 
but which may cause difficulties in practice. The main purpose of 
this chapter has been to make readers aware of the existence of such 
methods, rather than to give a detailed account oftheir use. 
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Percentage points of the l distribution 

D.F. Probability (P) 
0.050 0.025 0.010 0.001 

1 3.841 5.024 6.635 10.828 
2 5.991 7.378 9.210 13.816 
3 7.815 9.348 11.345 16.266 
4 9.488 11.143 13.277 18.467 
5 11.071 12.833 15.086 20.515 

6 12.592 14.449 16.812 22.458 
7 14.067 16.013 18.475 24.322 
8 15.507 17.535 20.090 26.125 
9 16.919 19.023 21.666 27.877 

10 18.307 20.483 23.209 29.588 

11 19.675 21.920 24.725 31.264 
12 21.026 23.337 26.217 32.909 
13 22.362 24.736 27.688 34.528 
14 23.685 26.119 29.141 36.123 
15 24.996 27.488 30.578 37.697 

16 26.296 28.845 32.000 39.252 
17 27.587 30.191 33.409 40.790 
18 28.869 31.526 34.805 42.312 
19 30.144 32.852 36.191 43.820 
20 31.410 34.170 37.566 45.315 

21 32.671 35.479 38.932 46.797 
22 33.924 36.781 40.289 48.268 
23 35.173 38.076 41.638 49.728 
24 36.415 39.364 42.980 51.179 
25 37.653 40.647 44.314 52.620 

26 38.885 41.923 45.642 54.052 
27 40.113 43.194 46.963 55.476 
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D.F. Probability (P) 
0.050 0.025 0.010 0.001 

28 41.337 44.461 48.278 56.892 
29 42.557 45.722 49.588 58.302 
30 43.773 46.979 50.892 59.703 

40 55.759 59.342 63.691 73.402 
50 67.505 71.420 76.154 86.661 
60 79.082 83.298 88.379 99.607 
80 101.879 106.629 112.329 124.839 

100 124.342 129.561 135.807 149.449 



Appendix B 

The fitting of log-linear models to complex multidimensional 
contingency tables may involve a considerable degree of computa
tion since expected values may need to be estimated using the 
iterative algorithm described in Chapter 5. Consequently computer 
programs are generally necessary for the analysis of such tables. 
Briefdetails of some such programs are given here. 
(1) ECTA: Everymans Contingency Table Analysis. 

This program was written by Professor Leo Goodman and is 
available by writting to him at: Department of Statistics, University 
of Chicago, 5734 University Avenue, Chicago, Illinois 60637. 

The program fits log-linear models to contingency tables and 
gives estimates of effects and their standard errors. Both the x2 and 
X~ statistics are given as criteria for judging the fit of a model. 
Tables with a priori zeros and tests of quasi-independence can 
also be dealt with. The program is simple to use and is reasonably 
weil documented. 
(2) MULTIQUAL: log-linear analysis of nominal or ordinal 
qualitative data by the method of maximum likelihood. 

This program was written by R. Darrell Bock and George Yates 
and is available from: National Educational Resources Inc., 
215 Kenwood Avenue, Ann Arbor, Michigan 48103. 

Again this program fits log-linear models to contingency tables 
and gives parameter estimates etc. It is, however, rather more 
powerful than ECT A and contains several more options. In many 
respects it is the qualitative data analogue of the program MULTI
V ARIANCE produced by Jeremy Finn for the analysis of variance 
of quantitative data. It is more difficult to use than ECT A but is 
very well documented. 
(3) GLIM: a FORTRAN program for fitting a dass of generalized 
linear models. 

This program was originally developed by J.A. Neider and 
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details are available from: N.A.G., Central Office, Oxford University, 
Computer Laboratory, Banbury Road, Oxford. 

This is a very comprehensive program for the analysis of contin
gency tables. It has a simple interpretive free-format language which 
allows data specification, data input, maximal model specification, 
and a directive which causes a declared model to be fitted. An 
interactive version of the program is available which is easy to use 
and enables the exploration of complex tables to be undertaken in 
an extremely flexible manner. 
(4) CATLIN: a FORTRAN program for the analysis of contin
gency tables. 

This program has been developed at the University of North 
Carolina and implements the methods for the analysis of categorical 
data described by Grizzle, Starmer, and Koch (1969). It can be 
an extremely useful program for the analysis of contingency tables 
of all types including those with missing cells etc. It does, however, 
suffer from the disadvantage of requiring the user to supply a design 
matrix. This makes the use of this program rather more difficult 
than the others mentioned. 
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