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Preface

Linear mixed-effects models (LMMs) are powerful modeling tools that allow for
the analysis of datasets with complex, hierarchical structures. Intensive research
during the past decade has led to a better understanding of their properties.
The growing body of literature, including recent monographs, has considerably
increased their popularity among applied researchers. There are several statistical
software packages containing routines for LMMs. These include, for instance, SAS,
SPSS, STATA, S+, and R. The major advantage of R is that it is a freely available,
dynamically developing, open-source environment for statistical computing and
graphics.

The goal of our book is to provide a description of tools available for fitting
LMMs in R. The description is accompanied by a presentation of the most important
theoretical concepts of LMMs. Additionally, examples of applications from various
research areas illustrate the main features of both theory and software. The presented
material should allow readers to obtain a basic understanding of LMMs and to apply
them in practice. In particular, we elected to present several theoretical concepts
and their practical implementation in R in the context of simpler, more familiar
classes of models such as e.g., the classical linear regression model. Based on
these concepts, more advanced classes of models, such as models with heterogenous
variance and correlated residual errors, along with related concepts are introduced.
In this way, we incrementally set the stage for LMMs, so that the exposition of the
theory and R tools for these models becomes simpler and clearer. This structure
naturally corresponds to the object-oriented programming concept, according to
which R functions/methods for simpler models are also applicable to the more
complex ones.

We assume that readers are familiar with intermediate linear algebra, calculus,
and the basic theory of statistical inference and linear modeling. Thus, the intended
audience for this book is graduate students of statistics and applied researchers in
other fields.

Our exposition of the theory of various classes of models presented in the book
focuses on concepts, which are implemented in the functions available in R. Readers
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interested in a more detailed description of the theory are referred to appropriate
theoretical monograph books, which we indicate in the text.

There are a large number of R packages that can be used to fit LMMs. Rather
than attempting to describe all of these packages, we focus mainly on two of them,
namely, nlme and lme4.0. In this way, we can provide a more detailed account of
the tools offered by the two packages, which include a wide variety of functions for
model fitting, diagnostics, inference, etc.

The package nlme includes functions, which allow fitting of a wide range of
linear models and LMMs. Moreover, it has been available for many years and its
code has been stable for some time now. Thus, it is a well-established R tool.

In turn, lme4.0 is a developmental branch version of the lme4 package. The
latter has been under development for several years. Both packages offer an efficient
computational implementation and an enhanced syntax, though at the cost of a
more restricted choice of LMMs, as compared to the nlme package. At the time
of writing of our book, the implementation of LMMs in lme4 has undergone major
changes in terms of internal representation of the objects representing fitted models.
Consequently, at the beginning of 2012, a snapshot version of lme4 has been made
available to the R users under the name of lme4.0. As we anticipate that lme4.0 will
not undergo any major changes, we decided to present it in more detail in our book.
We would like to underscore, however, that the major part of the syntax, presented
in the book, will be applicable both to lme4 and lme4.0.

All classes of linear models presented in the book are illustrated using data from a
particular dataset. In this way, the differences between the various classes of models,
as well as differences in the R software, can be clearly delineated. LMMs, which are
the main focus of the book, are also illustrated using three additional datasets, which
extend the presentation of various aspects of the models and R functions. We have
decided to include the direct output of R commands in the text. In this way, readers
who would like to repeat the analyses conducted in the book can directly check their
own output. However, in order to avoid the risk of incompatibility with updated
versions of the software, the results of the analyses have also been summarized in
the form of edited tables.

To further support those readers who are interested in actively using the material
presented in the book, we have developed the package nlmeU. It contains all the
datasets and R code used in the book. The package is downloadable at http://
www-personal.umich.edu/~agalecki/.

We hope that our book, which aims to provide a state-of-the-art description of
the details of implementing of LMMs in R, will support a widespread use of the
models by applied researchers in a variety of fields including biostatistics, public
health, psychometrics, educational measurement, and sociology.

When working on the text, we received considerable assistance and valuable
comments from many people. We would like to acknowledge Geert Molenberghs
(Hasselt University and the Catholic University of Leuven), Geert Verbeke (Catholic
University of Leuven), José Pinheiro (Novartis AG), Paul Murrell (Auckland
University), Przemysław Biecek (Warsaw University), Fabian Scheipl (Ludwig
Maximilian University of Munich), Joshua Wiley (University of California, Los
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Angeles), Tim Harrold (NSW Ministry of Health), Jeffrey Halter (University of
Michigan), Shu Chen (University of Michigan), Marta Gałecka (Weill Cornell
Medical College), anonymous reviewers and members of the R-sig-ME discussion
group led by Douglas Bates (University of Wisconsin-Madison), and Ben Bolker
(McMaster University) for their comments and discussions at various stages during
the preparation of the book. We also acknowledge a formidable effort on the part of
the developers of the nlme and lme4 packages. Without them this book would not
have been written. In particular, Ben Bolker’s contribution was invaluable to ensure
that the majority of the lme4.0 syntax used in the text can also be used with the lme4
package. We are grateful to John Kimmel for encouraging us to consider writing the
book and to Marc Strauss, Hannah Bracken, and Brian Halm from Springer for
their editorial assistance and patience. Finally, we gratefully acknowledge financial
support from the Claude Pepper Center grants AG08808 and AG024824 from the
National Institute of Aging and from the IAP Research Network P7/06 of the
Belgian Government (Belgian Science Policy).
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Chapter 1
Introduction

1.1 The Aim of the Book

Linear mixed-effects models (LMMs) are an important class of statistical mod-
els that can be used to analyze correlated data. Such data include clustered
observations, repeated measurements, longitudinal measurements, multivariate
observations, etc.

The aim of our book is to help readers in fitting LMMs using R software. R
(www.r-project.org) is a language and an environment aimed at facilitating
implementation of statistical methodology and graphics. It is an open-source
software, which can be freely downloaded and used under the GNU General
Public License. In particular, users can define and share their own functions, which
implement various methods and extend the functionality of R. This feature makes R
a very useful platform for propagating the knowledge and use of statistical methods.

We believe that, by describing selected tools available in R for fitting LMMs,
we can promote the broader application of the models. To help readers less familiar
with this class of linear models (LMs), we include in our book a description of the
most important theoretical concepts and features of LMMs. Moreover, we present
examples of applications of the models to real-life datasets from various areas to
illustrate the main features of both theory and software.

1.2 Implementation of Linear Mixed-Effects Models in R

There are many packages in R, which contain functions that allow fitting var-
ious forms of LMMs. The list includes, but is not limited to, packages amer,
arm, gamm, gamm4, GLMMarp, glmmAK, glmmBUGS, heavy, HGLMMM,
lme4.0, lmec, lmm, longRPart, MASS, MCMCglmm, nlme, PSM, and pedi-
greemm. On the one hand, it would seem that the list is rich enough to allow for
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4 1 Introduction

a widespread use of LMMs. On the other hand, the number of available packages
leads to difficulty in evaluating their relative merits and making the most suitable
choice.

It is virtually impossible to describe the contents of all of the packages mentioned
above. To facilitate and promote the use of LMMs in practice, it might be more
useful to provide details for a few of them, so that they could be used as a starting
point. Therefore, we decided to focus on the packages nlme and lme4.0, for several
reasons. First, they contain the functions lme() and lmer(), respectively, which
are specifically designed for fitting a broad range of LMMs. Second, they include
many tools useful for applications such as model diagnostics. Finally, many other
packages, which add new LMM classes or functionalities, depend on and are built
around nlme and/or lme4.0. Examples include, but are not limited to, packages
amer, gamm, gamm4, or RLRsim.

The reader may note that we focus more on the package nlme than on lme4.0.
The main reason is that the former has already been around for some time. Thus, its
code is stable. On the other hand, the package lme4.0 is a development version of
lme4 made available at the beginning of 2012. At that time lme4’s code underwent
major changes in terms of internal representation of the objects representing fitted
models. Hence, the developers of lme4 decided to make available the snapshot
version of lme4, under the name of lme4.0, containing the functionalities preceding
the changes. It is these dynamics of the development of the code of lme4 and lme4.0
which prompted us to focus more on nlme. However, it is expected that lme4.0
will not undergo any major modifications, either. Given that it offers interesting
tools for fitting LMMs, we decided to include a presentation of it in our book. The
presentation should also be of help for lme4 users. In particular, the major part of
the lme4.0 syntax used in the book should also be applicable to lme4.

An important feature that distinguishes R from many other existing statistical
software packages implementing LMMs is that it incorporates several concepts of
an object-oriented (O-O) programming, such as classes of objects and methods
operating on those classes. There are two O-O systems that have been implemented
in R, namely, S3 and S4. They incorporate the O-O concepts to a different degree,
with S3 being a less formal and S4 being a more stringent implementation. In both
systems, the O-O concepts are implemented by defining special type of functions
called generic functions. When such a function is applied to an object, it dispatches
an appropriate method based on object’s class. The system S3 has been used in the
package nlme, while S4 has been used in the package lme4.0.

The O-O programming approach is very attractive in the context of statistical
modeling because models can often be broken down into separable (autonomous)
components such as data, mean structure, variance function, etc. Moreover, com-
ponents defined for one type of model can also be used as building blocks for a
different type of model.
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1.3 The Structure of the Book

As it was mentioned in the previous section, an inherent feature of the O-O
programming approach is that concepts and methods used for simpler objects or
models are applicable to the more complex ones. For this reason, in our book
we opted for an incremental build-up of the knowledge about the implementation
of LMMs in the functions from packages nlme and lme4.0. In particular, in
the first step, we decided to introduce theoretical concepts and their practical
implementation in the R code in the context of simpler classes of LMs, like
the classical linear regression model. The concepts are then carried over to more
advanced classes of models, including LMMs. This step-by-step approach offers a
couple of advantages. First, we believe that it makes the exposition of the theory
and R tools for LMMs simpler and clearer. In particular, the presentation of the
key concepts in the context of a simpler model makes them easier to explain and
become familiar with. Second, the step-by-step approach is helpful in the use of
other R packages, which rely on classes of objects defined in the nlme and/or lme4.0
packages.

As a result of this conceptual approach, we divided our book into four parts.
Part I contains the introduction to the datasets used in the book. Parts II, III, and IV
focus on different classes of LMs of increasing complexity. The structure of the
three parts is, to a large extent, similar. First, a review of the main concepts and
theory of a particular class of models is presented. Special attention is paid to the
presentation of the link between similar concepts used for different classes. Then,
the details of how to implement the particular class of models in the packages nlme
and/or lme4.0 are described. The idea is to present the key concepts in the context
of simpler models, in order to enhance the understanding of them and facilitate their
use for the more complex models. Finally, in each part, the particular class of LMs
and the corresponding R tools are illustrated by analyzing real-life datasets.

In a bit more detail, the contents of the four parts are as follows:
Chapter 2 of Part I contains a description of four case studies, which are used

to illustrate various classes of LMs and of the corresponding R tools. Chapter 3
contains results of exploratory analyses of the datasets. The results are used in later
chapters to support model-based analyses. Note that one of the case studies, the
Age-Related Macular Degeneration (ARMD) clinical trial, is used repeatedly for
the illustration of all classes of LMs. We believe that in this way the differences
between the models concerning, e.g., the underlying assumptions, may become
easier to appreciate.

Part II focuses on LMs for independent observations. In Chap. 4, we recall the
main concepts of the theory of the classical LMs with homoscedastic residual errors.
Then, in Chap. 5, we present the tools available in R to fit such models. This allows
us to present the fundamental concepts used in R for statistical model building,
like model formula, model frame, etc. The concepts are briefly illustrated in Chap. 6
using the data from the ARMD trial.
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Subsequently, we turn our attention to models with heteroscedastic residual
errors. In Chap. 7, we review the basic elements of the theory. Chapter 8 presents
the function gls() from the package nlme, which can be used to fit the models.
In particular, the important concept of the variance function is introduced in the
chapter. The use of the function gls() is illustrated using data from the ARMD
trial in Chap. 9.

In Part III, we consider general LMs, i.e., LMs for correlated observations. In
Chap. 10, we recall the basic elements of the theory of the models. In particular, we
explain how the concepts used in the theory of the LMs with heteroscedastic residual
errors for independent observations, presented in Chap. 7, are extended to the case
of models for correlated observations. In Chap. 11, we describe additional features
of the function gls(), which allow its use for fitting general LMs. In particular,
we introduce the key concept of the correlation structure. The use of the function
gls() is illustrated in Chap. 12 using the data from the ARMD trial.

Finally, Part IV is devoted to LMMs. Chapter 13 reviews the fundamental
elements of the theory of LMMs. In the presentation, we demonstrate the links
between the concepts used in the theory of LMMs with those developed in the
theory of general LMs (Chap. 10). We believe that, by pointing to the links, the
exposition of the fundamentals of the LMM theory becomes more transparent and
easier to follow.

In Chap. 14, we describe the features of the function lme() from the package
nlme. This function is the primary tool in the package used to fit LMMs. In
particular, we describe in detail the representation of positive-definite matrices,
which are instrumental in the implementation of the routines that allow fitting
LMMs. Note that the concepts of the variance function and correlation structure,
introduced in Chaps. 8 and 11, respectively, are also important for the understanding
of the use of the function lme().

In Chap. 15, we present the capabilities of the function lmer() from the
package lme4.0. In many aspects, the function is used similarly to lme(), but
there are important differences, which we discuss. The basic capabilities of both
of the functions are illustrated by application of LMMs to the analysis of the
ARMD trial data in Chap. 16. More details on the use of the function lme() are
provided in Chaps. 17, 18, and 19, in which we apply LMMs to analyze the data
from the progressive resistance training (PRT) study, the study of instructional
improvement (SII), and the Flemish Community Attainment-Targets (FCAT) study,
respectively. Finally, in Chap. 20, we present somewhat more advanced material
on the additional R tools for LMMs, including the methods for power calculations,
influence diagnostics, and a new class of positive-definite matrices. The latter can be
used to construct LMMs with random effects having a variance–covariance matrix
defined as a Kronecker product of two or more matrices. Note that the newly defined
class is used in the analysis presented in Chap. 17.

Table 1.1 summarizes the successive classes of LMs, described in our book,
together with the concepts introduced in the context of the particular class. The
classes are identified by the assumptions made about the random part of the model.

Our book contains 67 figures, 46 tables, and 187 panels with R code.
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Table 1.1 Classes of linear models with the corresponding components (building
blocks) presented in the book. The R classes refer to the package nlme

Linear model Model component

Class (residual errors) Theory Syntax Name R class

Homoscedastic, indep. Ch. 4 Ch. 5 Data data.frame
Mean structure formula

Heteroscedastic, indep. Ch. 7 Ch. 8 Variance structure varFunc
Correlated Ch. 10 Ch. 11 Correlation structure corStruct
Mixed effects (LMM) Ch. 13 Ch. 14 Random-effects structure reStruct

Finally, we would like to outline the scope of the contents of the book:

• The book is aimed primarily at providing explanations and help with respect
to the tools available in R for fitting LMMs. Thus, we do not provide a
comprehensive account of the methodology of LMMs. Instead, we limit our-
selves to the main concepts and techniques, which have been implemented
in the functions lme() and lmer() from the packages nlme and lme4.0,
respectively, and which are important to the understanding of the use of the
functions. A detailed exposition of the methodology of LMMs can be found
in books by, e.g., Searle et al. (1992), Davidian and Giltinan (1995), Vonesh
and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and Molenberghs
(2000), Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).

• In our exposition of methodology, we focus on the likelihood-based estimation
methods, as they are primarily used in lme() and lmer(). Thus, we do not
discuss, e.g., Bayesian approaches to the estimation of LMMs.

• We describe the use of various functions, which are available in the packages
nlme and lme4.0, in sufficient detail. In our presentation, we focus on the main,
or most often used, arguments of the functions. For a detailed description of all
of the arguments, we refer the readers to R’s help system.

• It is worth keeping in mind that, in many instances, the same task can be
performed in R in several different ways. To some extent, the choice between
the different methods is a matter of individual preference. In our description
of the R code, we present methods, which we find to be the most useful. If
alternative solutions are possible, we may mention them, but we are not aiming
to be exhaustive.

• The analyses of the case studies aim principally at illustrating various linear
models and the possibility of fitting the models in R. While we try to conduct as
meaningful analyses as possible, they are not necessarily performed in the most
optimal way with respect to, e.g., the model-building strategy. Thus, their results
should not be treated as our contribution to the subject-matter discussion related
to the examples. However, whenever possible or useful, we make an attempt to
provide quantitative and/or qualitative interpretation of the results. We also try
to formulate practical recommendations or guidance regarding model-building
strategies, model diagnostics, etc. As mentioned earlier, however, the book is not
meant to serve as a complete monograph on statistical modeling. Thus, we limit
ourselves to providing recommendations or guidance for the topics which appear
to be of interest in the context of the analyzed case studies.
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1.4 Technical Notes

The book is aimed at helping readers in fitting LMMs in R. We do assume that
the reader has a basic knowledge of R. An introduction to R can be found in the
book by Dalgaard (2008). A more advanced exposition is presented by Venables
and Ripley (2010).

To allow readers to apply the R code presented in the book, we have created the
R package nlmeU. The package contains all the datasets and the code that we used
in the text. It also includes additional R functions, which we have developed.

We tried to use short lines of the R code to keep matters simple, transparent,
and easy to generalize. To facilitate locating the code, we placed it in panels. The
panels are numbered consecutively in each chapter and referred to, e.g., as R2.3,
where “2” gives the number of the chapter and “3” is the consecutive number of the
panel within the chapter. Each panel was given a caption explaining the contents.
In some cases, the contents of a panel were logically split into different subpanels.
The subpanels are then marked by consecutive letters and referred to by adding the
appropriate letter to panel’s number, e.g., R2.3a or R2.3b. Tables and figures are
numbered in a similar fashion.

Only in rare instances were a few lines of R code introduced directly into the
text. In all these cases (as in the examples given later in this section), the code was
written using the true type font and placed in separate lines marked with “>”,
mimicking R’s command-window style.

To limit the volume of the output presented in the panels, in some cases we
skipped a part of it. These interventions are indicated by the “. . . [snip]” string.
Also, long lines in the output were truncated and extra characters were replaced
with the “. . .” string.

The R functions are referred to in the text as function(), e.g., lme().
Functions’ arguments and objects are marked using the same font, e.g., argument
and object. For the R classes, we use italic, e.g., the lme class.

For the proper execution of the R code used in the book, the following packages
are required: lattice, lme4.0, nlme, Matrix, plyr, reshape, RLRsim, splines, and
WWGbook. Additionally, nlmeU is needed. Packages lattice, nlme, Matrix, and
splines come with basic distribution of R and do not need to be installed. The
remaining packages can be installed using the following code:

> pckgs <-

+ c("lme4.0", "nlmeU", "plyr", "reshape", "RLRsim", "WWGbook",

+ "ellipse")

> install.packages(pckgs)
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There are additional utility functions, namely, Sweave() (Leisch, 2002) and
xtable() in utils and xtable (Dahl, 2009) packages, respectively, which are not
needed to execute the code presented in the book, but which were extensively used
by us when preparing this manuscript.

It is worth noting that there are functions that bear the same name in the packages
nlme and lme4.0, but which have different definitions. To avoid unintentional
masking of the functions, the packages should not be attached simultaneously.
Instead, it is recommended to switch between the packages. For example, when
using nlme in a hypothetical R session, we attach the package by using the
library() or require() functions and execute statements as needed. Then,
before switching to lme4.0, it is mandatory to detach the nlme package by using
the detach() function. We also note that the conflicts() function, included for
illustration below, is very useful to identify names’ conflicts:

> library(nlme) # Attach package

> conflicts(detail = TRUE) # Identifies names' conflicts

... statements omitted

> detach(package:nlme) # Detach package

A similar approach should be applied when using the package lme4.0:

> library(lme4.0)

... statements omitted

> detach(package:lme4.0)

> detach(package:Matrix) # Recommended

Note that detaching Matrix is less critical, but recommended.
In the examples presented above, we refer to the packages nlme and lme4.0.

However, to avoid unintentional masking of objects, the same strategy may also be
necessary for other packages, which may cause function names’ conflicts.

When creating figures, we used "CMRoman" and "CMSans" Computer Modern
font families available in cmrutils package. These fonts are based on the CM-Super
and CMSYASE fonts (Murrell and Ripley, 2006). The full syntax needed to create
figures presented in the book is often extensive. In many cases, we decided to present
a shortened version of the code. A full version is available in the nlmeU package.

Finally, the R scripts in our book were executed by using R version 2.15.0

(2012-03-30) under the Windows 7 operating system. We used the following
global options:

> options(width = 65, digits = 5, show.signif.stars = FALSE)



Chapter 2
Case Studies

2.1 Introduction

In this chapter, we introduce the case studies that will be used to illustrate the models
and R code described in the book.

The case studies come from different application domains; however, they share a
few features. For instance, in all of them the study and/or sampling design generates
the observations that are grouped according to the levels of one or more grouping
factors. More specifically, the levels of grouping factors, i.e., subjects, schools,
etc., are assumed to be randomly selected from a population being studied. This
means that observations within a particular group are likely to be correlated. The
correlation should be taken into account in the analysis. Also, in each case there is
one (or more) continuous measurement, which is treated as the dependent variable
in the models considered in this book.

In particular, we consider the following datasets:

• Age-Related Macular Degeneration (ARMD) Trial: A clinical trial comparing
several doses of interferon-a and placebo in patients with ARMD. Visual acuity
of patients participating in the trial was measured at baseline and at four post-
randomization timepoints. The resulting data are an example of longitudinal data
with observations grouped by subjects. We describe the related datasets in more
detail in Sect. 2.2.

• Progressive Resistance Training (PRT) Trial: A clinical trial comparing low- and
high-intensity training for improving the muscle power in elderly people. For
each participant, characteristics of two types of muscle fibers were measured
at two occasions, pre- and post-training. The resulting data are an example of
clustered data, with observations grouped by subjects. We present more detailed
information about the dataset in Sect. 2.3.

• Study of Instructional Improvement (SII): An educational study aimed at as-
sessing improvement in mathematics grades of first-grade pupils, as compared
to their kindergarten achievements. It included pupils from randomly selected

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__2,
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classes in randomly selected elementary schools. The dataset is an example
of hierarchical data, with observations (pupils’ scores) grouped within classes,
which are themselves grouped in schools. We refer to Sect. 2.4 for more details
about the data.

• Flemish Community Attainment-Targets (FCAT) Study: An educational study,
in which elementary school graduates were evaluated with respect to reading
comprehension in Dutch. Pupils from randomly selected schools were assessed
for a set of nine attainment targets. The dataset is an example of grouped data,
for which the grouping factors are crossed. We describe the dataset in more detail
in Sect. 2.5.

The data from the ARMD study will be used throughout the book to illustrate
various classes of LMs and corresponding R tools. The remaining case studies will
be used in Part IV only, to illustrate R functions for fitting LMMs.

For each of the aforementioned case studies there is one or more datasets
included into the package nlmeU, which accompanies this book. In the next sections
of this chapter, we use the R syntax to describe the contents of these datasets. Results
of exploratory analyses of the case studies are presented in Chap. 3. Note that, unlike
in the other parts of the book, we are not discussing the code in much detail, as
the data-processing functionalities are not the main focus of our book. The readers
interested in the functionalities are referred to the monograph by Dalgaard (2008).

The R language is not particularly suited for data entry. Typically, researchers use
raw data created using other software. Data are then stored in external files, e.g., in
the .csv format, read into R, and prepared for the analysis. To emulate this situation,
we assume, for the purpose of this chapter, that the data are stored in a .csv-format
file in the “C:\temp” directory.

2.2 Age-Related Macular Degeneration Trial

The ARMD data arise from a randomized multi-center clinical trial comparing an
experimental treatment (interferon-a) versus placebo for patients diagnosed with
ARMD. The full results of this trial have been reported by Pharmacological Therapy
for Macular Degeneration Study Group (1997). We focus on the comparison
between placebo and the highest dose (6 million units daily) of interferon-a.

Patients with macular degeneration progressively lose vision. In the trial, vi-
sual acuity of each of 240 patients was assessed at baseline and at four post-
randomization timepoints, i.e., at 4, 12, 24, and 52 weeks. Visual acuity was
evaluated based on patient’s ability to read lines of letters on standardized vision
charts. The charts display lines of five letters of decreasing size, which the patient
must read from top (largest letters) to bottom (smallest letters). Each line with at
least four letters correctly read is called one “line of vision.” In our analyses, we
will focus on the visual acuity defined as the total number of letters correctly read.
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Another possible approach would be to consider visual acuity measured by the
number of lines correctly read. Note that the two approaches are closely linked,
as each line of vision contains five letters.

It follows that, for each of 240 patients, we have longitudinal data in the form
of up to five visual acuity measurements collected at different, but common to all
patients, timepoints. These data will be useful to illustrate the use of LMMs for
continuous, longitudinal data. We will also use them to present other classes of LMs
considered in our book.

2.2.1 Raw Data

We assume that the raw ARMD data are stored in the “C:\temp” directory in a .csv-
format file named armd240.data.csv. In what follows, we also assume that our
goal is to verify the contents of the data and prepare them for analysis in R.

In Panel R2.1, the data are loaded into R using the read.csv() function and
are stored in the data frame object armd240.data. Note that this data frame is not
included in the nlmeU package.

The number of rows (records) and columns (variables) in the object
armd240.data is obtained using the function dim(). The data frame contains 240
observations and 9 variables. The names of the variables are displayed using the
names() function. All the variables are of class integer. By applying the function
str(), we get a summary description of variables in the armd240.data data. In
particular, for each variable, we get its class and a listing of the first few values.

The variable subject contains patients’ identifiers. Treatment identifiers are
contained in the variable treat. Variables visual0, visual4, visual12, vi-
sual24, and visual52 store visual acuity measurements obtained at baseline and
week 4, 12, 24, and 52, respectively. Variables lesion and line0 contain additional
information, which will not be used for analysis in our book.

Finally, at the bottom of Panel R2.1, we list the first three rows of the data frame
armd240.data with the help of the head() function. To avoid splitting lines of
the output and to make the latter more transparent, we shorten variables’ names
using the abbreviate() function. After printing the contents of the first three rows
and before proceeding further, we reinstate the original names. Note that we apply a
similar sequence of R commands in many other R panels across the book to simplify
the displayed output.

Based on the output, we note that the data frame contains one record for each
patient. The record includes all information obtained for the patient. In particular,
each record contains five variables with visual acuity measurements, which are,
essentially, of the same format. This type of data storage, with one record per
subject, is called the “wide” format. An alternative is the “long” format with
multiple records per subject. We will discuss the formats in the next section.
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R2.1 ARMD Trial: Loading raw data from a .csv-format file into the armd240.data
object and checking their contents

> dataDir <- file.path("C:", "temp") # Data directory

> fp <- # File path

+ file.path(dataDir, "armd240.data.csv")

> armd240.data <- # Read data

+ read.csv(fp, header = TRUE)

> dim(armd240.data) # No. of rows and cols

[1] 240 9

> (nms <- names(armd240.data)) # Variables' names

[1] "subject" "treat" "lesion" "line0" "visual0"

[6] "visual4" "visual12" "visual24" "visual52"

> unique(sapply(armd240.data, class)) # Variables' classes

[1] "integer"

> str(armd240.data) # Data structure

'data.frame': 240 obs. of 9 variables:

$ subject : int 1 2 3 4 5 6 7 8 9 10 ...

$ treat : int 2 2 1 1 2 2 1 1 2 1 ...

$ lesion : int 3 1 4 2 1 3 1 3 2 1 ...

$ line0 : int 12 13 8 13 14 12 13 8 12 10 ...

$ visual0 : int 59 65 40 67 70 59 64 39 59 49 ...

$ visual4 : int 55 70 40 64 NA 53 68 37 58 51 ...

$ visual12: int 45 65 37 64 NA 52 74 43 49 71 ...

$ visual24: int NA 65 17 64 NA 53 72 37 54 71 ...

$ visual52: int NA 55 NA 68 NA 42 65 37 58 NA ...

> names(armd240.data) <- abbreviate(nms) # Variables' names shortened

> head(armd240.data, 3) # First 3 records

sbjc tret lesn lin0 vsl0 vsl4 vs12 vs24 vs52

1 1 2 3 12 59 55 45 NA NA

2 2 2 1 13 65 70 65 65 55

3 3 1 4 8 40 40 37 17 NA

> names(armd240.data) <- nms # Variables' names reinstated

2.2.2 Data for Analysis

In this section, we describe auxiliary data frames, namely, armd.wide, armd0, and
armd, which were derived from armd240.data for the purpose of analyses of the
ARMD data that will be presented later in the book. The data frames are included
in the package nlmeU. In what follows, we present the structure, contents, and for
illustration purposes, how the data were created.
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2.2.2.1 Data in the “Wide” Format: The Data Frame armd.wide

Panel R2.2 presents the structure and the contents of the armd.wide data frame.
Note that the data are loaded into R using the data() function, without the

need for attaching the package nlmeU. The data frame contains 10 variables.
In particular, it includes variables visual0, visual4, visual12, visual24,
visual52, lesion, and line0, which are exactly the same as those in the
armd240.data. In contrast to the armd240.data data frame, it contains three
factors: subject, treat.f, and miss.pat. The first two contain patient’s identifier
and treatment. They are constructed from the corresponding numeric variables
available in armd240.data. The factor miss.pat is a new variable and contains
a missing-pattern identifier, i.e., a character string that indicates which of the four
post-randomization measurements of visual acuity are missing for a particular
patient. The missing values are marked by X. Thus, for instance, for the patient
with the subject identifier equal to 1, the pattern is equal to --XX, because there
is no information about visual acuity at weeks 24 and 52. On the other hand, for the
patient with the subject identifier equal to 6, there are no missing visual acuity

R2.2 ARMD Trial: The structure and contents of data frame armd.wide stored in
the “wide” format

> data(armd.wide, package = "nlmeU") # armd.wide loaded

> str(armd.wide) # Structure of data

'data.frame': 240 obs. of 10 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

. . . [snip]
$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...

> head(armd.wide) # First few records

subject lesion line0 visual0 visual4 visual12 visual24

1 1 3 12 59 55 45 NA

. . . [snip]
6 6 3 12 59 53 52 53

visual52 treat.f miss.pat

1 NA Active --XX

. . . [snip]
6 42 Active ----

> (facs <- sapply(armd.wide, is.factor)) # Factors indicated

subject lesion line0 visual0 visual4 visual12 visual24

TRUE FALSE FALSE FALSE FALSE FALSE FALSE

visual52 treat.f miss.pat

FALSE TRUE TRUE

> names(facs[facs == TRUE]) # Factor names displayed

[1] "subject" "treat.f" "miss.pat"
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measurements, and hence the value of the miss.pat factor is equal to ----. At the
bottom of Panel R2.2, we demonstrate how to extract the names of the factors from
a data frame.

Panel R2.3 presents the syntax used to create factors treat.f and miss.pat

in the armd.wide data frame. The former is constructed in Panel R2.3a from the
variable treat from the data frame armd240.data using the function factor().
The factor treat.f has two levels, Placebo and Active, which correspond to the
values of 1 and 2, respectively, of treat.

The factor miss.pat is constructed in Panel R2.3b with the help of the function
missPat() included in the nlmeU package. The function returns a character vector
of length equal to the number of rows of the matrix created by column-wise
concatenation of the vectors given as arguments to the function. The elements of the
resulting vector indicate the occurrence of missing values in the rows of the matrix.
In particular, the elements are character strings of the length equal to the number
of the columns (vectors). As shown in Panel R2.2, the strings contain characters
“-” and “X”, where the former indicates a nonmissing value in the corresponding
column of the matrix, while the latter indicates a missing value. Thus, application

R2.3 ARMD Trial: Construction of factors treat.f and miss.pat in the data frame
armd.wide. The data frame armd240.datawas created in Panel R2.1
(a) Factor treat.f

> attach(armd240.data) # Attach data

> treat.f <- # Factor created

+ factor(treat, labels = c("Placebo", "Active"))

> levels(treat.f) # (1) Placebo, (2) Active

[1] "Placebo" "Active"

> str(treat.f)

Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 1 2 1 ...

(b) Factor misspat

> miss.pat <- # Missing patterns

+ nlmeU:::missPat(visual4, visual12, visual24, visual52)

> length(miss.pat) # Vector length

[1] 240

> mode(miss.pat) # Vector mode

[1] "character"

> miss.pat # Vector contents

[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "----"

. . . [snip]
[233] "----" "----" "----" "----" "----" "----" "----" "----"

> detach(armd240.data) # Detach armd240.data
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of the function to variables visual4, visual12, visual24, and visual52 from
the data frame armd240.data results in a character vector of length 240 with
strings containing four characters as the elements. The elements of the resulting
miss.pat vector indicate that, for instance, for the first patient in the data frame
armd240.data visual acuity measurements at week 24 and 52 were missing, while
for the fifth patient, no visual acuity measurements were obtained at any post-
randomization visit.

Note that we used the nlmeU:::missPat() syntax, which allowed us to invoke
the missPat() function without attaching the nlmeU package.

2.2.2.2 Data in the “Long” Format: The Data Frame armd0

In addition to the armd.wide data stored in the “wide” format, we will need data
in the “longitudinal” (or “long”) format. In the latter format, for each patient, there
are multiple records containing visual acuity measurements for separate visits. An
example of data in “long” format is stored in the data frame armd0. It was obtained
from the armd.wide data using functions melt() and cast() from the package
reshape (Wickham, 2007).

Panel R2.4 presents the contents and structure of the data frame armd0. The
data frame includes eight variables and 1,107 records. The contents of variables
subject, treat.f, and miss.pat are the same as in armd.wide, while visual0
contains the value of the visual acuity measurement at baseline. Note that the values
of these four variables are repeated across the multiple records corresponding to a
particular patient. On the other hand, the records differ with respect to the values of
variables time.f, time, tp, and visual. The first three of those four variables are
different forms of an indicator of the visit time, while visual contains the value
of the visual acuity measurement at the particular visit. We note that having three
variables representing time visits is not mandatory, but we created them to simplify
the syntax used for analyses in later chapters.

The numerical variable time provides the actual week, at which a particular
visual acuity measurement was taken. The variable time.f is a corresponding
ordered factor, with levels Baseline, 4wks, 12wks, 24wks, and 52wks. Finally, tp
is a numerical variable, which indicates the position of the particular measurement
visit in the sequence of the five possible measurements. Thus, for instance, tp=0 for
the baseline measurement and tp=4 for the fourth post-randomization measurement
at week 52.

Interestingly enough, visual acuity measures taken at baseline are stored both in
visual0 and in selected rows of the visual variables. This structure will prove
useful when creating the armd data frame containing rows with post-randomization
visual acuity measures, while keeping baseline values.

The “long” format is preferable for storing longitudinal data over the “wide”
format. We note that storing of the visual acuity measurements in the data frame
armd.wide requires the use of six variables, i.e., subject and the five variables
containing the values of the measurements. On the other hand, storing the same
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R2.4 ARMD Trial: The structure and contents of the data frame armd0 stored in the
“long” format

> data(armd0, package = "nlmeU") # From nlmeU package

> dim(armd0) # No. of rows and cols

[1] 1107 8

> head(armd0) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

1 1 Active 59 --XX Baseline 0 59 0

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

4 2 Active 65 ---- Baseline 0 65 0

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

> names(armd0) # Variables' names

[1] "subject" "treat.f" "visual0" "miss.pat" "time.f"

[6] "time" "visual" "tp"

> str(armd0) # Data structure

'data.frame': 1107 obs. of 8 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 1 1 2 2 2 ...

$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 2 2 2 2 2 ...

$ visual0 : int 59 59 59 65 65 65 65 65 40 40 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 4 4 1 1 1 1 1 ...

$ time.f : Ord.factor w/ 5 levels "Baseline"<"4wks"<..: 1 2 3 1 ...

$ time : num 0 4 12 0 4 12 24 52 0 4 ...

$ visual : int 59 55 45 65 70 65 65 55 40 40 ...

$ tp : num 0 1 2 0 1 2 3 4 0 1 ...

information in the data frame armd0 requires only three variables, i.e., subject,
time, and visual. Of course, this is achieved at the cost of including more rows in
the armd0 data frame, i.e., 1,107, as compared to 240 records in armd.wide.

We also note that variables, with values invariant within subjects, such as
treat.f, visual0, are referred to as time-fixed. In contrast, time, tp, and visual

are called time-varying. This distinction will have important implications for the
specification of the models and interpretation of the results.

2.2.2.3 Subsetting Data in the “Long” Format: The Data Frame armd

Data frame armd was also stored in a “long” format and was created from the
armd0 data frame by omitting records corresponding to the baseline visual acuity
measurements.

Panel R2.5 presents the syntax used to create the data frame armd. In particular,
the function subset() is used to remove the baseline measurements, by selecting
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R2.5 ARMD Trial: Creation of the data frame armd from armd0

> auxDt <- subset(armd0, time > 0) # Post-baseline measures

> dim(auxDt) # No. of rows & cols

[1] 867 8

> levels(auxDt$time.f) # Levels of treat.f

[1] "Baseline" "4wks" "12wks" "24wks" "52wks"

> armd <- droplevels(auxDt) # Drop unused levels

> levels(armd$time.f) # Baseline level dropped

[1] "4wks" "12wks" "24wks" "52wks"

> armd <- # Data modified

+ within(armd,

+ {

+ contrasts(time.f) <- # Contrasts assigned

+ contr.poly(4, scores = c(4, 12, 24, 52))

+ })

> head(armd) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

7 2 Active 65 ---- 24wks 24 65 3

8 2 Active 65 ---- 52wks 52 55 4

only the records, for which time>0, from the object armd0. By removing the base-
line measurements, we reduce the number of records from 1,107 (see Panel R2.4)
to 867.

While subsetting the data, care needs to be taken regarding the levels of the
time.f and, potentially, other factors. In the data frame armd0, the factor had
five levels. In Panel R2.5, we extract the factor time.f from the auxiliary data
frame auxDt. Note that, in the data frame, the level Baseline is not used in any
of the rows. For many functions in R it would not be a problem, but sometimes
the presence of an unused level in the definition of a factor may lead to unexpected
results. Therefore, it is prudent to drop the unused level from the definition of the
time.f factor, by applying the function droplevels(). It is worth noting that,
using the droplevels() function, the number of levels of the factors subject and
miss.pat is also affected (not shown).

After modifying the aforementioned factors, we store the resulting data in the
data frame armd. We also assign orthogonal polynomial contrasts to the factor
time.f using syntax of the form “contrasts(factor)<-contr.function”. We will
revisit the issue of assigning contrasts to a factor in Panel R5.9 (Sect. 5.3.2).

The display of the first six records of armd in Panel R2.5 confirms that the data do
not include the records corresponding to the baseline measurements of visual acuity.
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Of course, the information about the values of the measurements is still available in
the variable visual0.

Both data frames armd0 and armd, introduced in this section, are stored in “long”
format. The armd0 will be primarily used for exploratory data analyses (Sect. 3.2).
On the other hand, armd will be the primary data frame used for the analyses
throughout the entire book.

2.3 Progressive Resistance Training Study

The PRT data originate from a randomized trial aimed for devising evidence-based
methods for improving and measuring the mobility and muscle power of elderly
men and women in the 70+ age category (Claflin et al., 2011). The working
hypothesis was that a 12-week program of PRT would increase: (a) the power output
of the overall musculature associated with movements of the ankles, knees, and
hips; (b) the cross-sectional area and the force and power of permeabilized single
fibers obtained from the vastus lateralis muscle; and (c) the ability of young and
elderly men and women to safely arrest standardized falls. The training consisted
of repeated leg extensions by shortening contractions of the leg extensor muscles
against a resistance that was increased as the subject trained using a specially
designed apparatus.

In the trial, healthy young (21–30 years) and older (65–80 years) male and female
subjects were randomized between a “high” and “low” intensity of a 12-week PRT
intervention. Randomization was stratified by age group (young or old) and sex. In
total, the dataset used in our book includes 63 subjects.

For each subject, multiple measurements characterizing two types of muscle
fibers were obtained before and after the 12-week PRT. The resulting data are thus an
example of clustered data. In particular, the measurements for a given characteristic
of muscle fibers for each subject correspond to a 2× 2 factorial design, with fiber
type (1, 2) and occasion (pre-training, post-training) as the two design factors, which
has important implications for the data analysis (Chap. 17).

2.3.1 Raw Data

We assume that subjects’ characteristics and experimental measurements
are contained in external files named prt.subjects.data.csv and
prt.fiber.data.csv, respectively.

In Panel R2.6, we present the syntax for loading and inspecting the two
datasets. As can be seen from the output presented in Panel R2.6a, the file
prt.subjects.data.csv contains information about 63 subjects, with one record
per subject. It includes one character variable and five numeric variables, three of
which are integer-valued. The variable id contains subjects’ identifiers, gender
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R2.6 PRT Trial: Loading raw data from .csv files into objects prt.subjects.data
and prt.fiber.data. The object dataDir was created in Panel R2.1
(a) Loading and inspecting data from the prt.subjects.data.csv file

> fp <- file.path(dataDir, "prt.subjects.data.csv")

> prt.subjects.data <- read.csv(fp, header = TRUE, as.is = TRUE)

> dim(prt.subjects.data)

[1] 63 6

> names(prt.subjects.data)

[1] "id" "gender" "ageGrp" "trainGrp" "height"

[6] "weight"

> str(prt.subjects.data)

'data.frame': 63 obs. of 6 variables:

$ id : int 5 10 15 20 25 35 45 50 60 70 ...

$ gender : chr "F" "F" "F" "F" ...

$ ageGrp : int 0 0 1 1 1 0 0 1 0 0 ...

$ trainGrp: int 0 1 1 1 1 0 0 0 0 1 ...

$ height : num 1.56 1.71 1.67 1.55 1.69 1.69 1.72 1.61 1.71 ...

$ weight : num 61.9 66 70.9 62 79.1 74.5 89 68.9 62.9 68.1 ...

> head(prt.subjects.data, 4)

id gender ageGrp trainGrp height weight

1 5 F 0 0 1.56 61.9

2 10 F 0 1 1.71 66.0

3 15 F 1 1 1.67 70.9

4 20 F 1 1 1.55 62.0

(b) Loading and inspecting data from the prt.fiber.data.csv file

> fp <- file.path(dataDir, "prt.fiber.data.csv")

> prt.fiber.data <- read.csv(fp, header = TRUE)

> str(prt.fiber.data)

'data.frame': 2471 obs. of 5 variables:

$ id : int 5 5 5 5 5 5 5 5 5 5 ...

$ fiber.type : int 1 1 2 1 2 1 1 1 2 1 ...

$ train.pre.pos: int 0 0 0 0 0 0 0 0 0 0 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 ...

$ spec.fo : num 83.5 132.8 161.1 158.8 117.9 ...

> head(prt.fiber.data, 4)

id fiber.type train.pre.pos iso.fo spec.fo

1 5 1 0 0.265 83.5

2 5 1 0 0.518 132.8

3 5 2 0 0.491 161.1

4 5 1 0 0.718 158.8
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identifies sex, ageGrp indicates the age group, and trainGrp identifies the study
group. Finally, height and weight contain the information of subjects’ height and
weight at baseline.

Note that the as.is argument used in the read.csv() function is set to TRUE.
Consequently, it prevents the creation of a factor from a character variable. This
applies to the gender variable, which is coded using the “F” and “M” characters.

The output in Panel R2.6b presents the contents of the file
prt.fiber.data.csv. The file contains 2,471 records corresponding to individual
muscle fibers. It includes five numeric variables, three of which are integer-valued.
The variable id contains subjects’ identifiers, fiber.type identifies the type of
fiber, while train.pre.pos indicates whether the measurement was taken pre- or
post-training. Finally, iso.fo and spec.fo contain the measured values of two
characteristics of muscle fibers. These two variables will be treated as outcomes of
interest in the analyses presented in Part IV of the book.

2.3.2 Data for Analysis

In Panels R2.7 and R2.8, we present the syntax used to create the prt dataset that
will be used for analysis.

First, in Panel R2.7, we prepare data for merging. Specifically, in Panel R2.7a,
we create the data frame prt.subjects, corresponding to prt.subjects.data,
with several variables added and modified. Toward this end, we use the
function within(), which applies all the modifications to the data frame
prt.subjects.data. In particular, we replace the variable id by a corresponding
factor. We also define the numeric variable bmi, which contains subject’s body mass
index (BMI), expressed in units of kg/m2. Moreover, we create the factors sex.f,
age.f, and prt.f, which correspond to the variables gender, ageGrp, and train-
Grp, respectively. Finally, we remove the variables weight, height, trainGrp,
ageGrp, and gender, and store the result as the data frame prt.subjects. The
contents of the data frame is summarized using the str() function.

In Panel R2.7b, we create the data frame prt.fiber. It corresponds to
prt.fiber.data, but instead of the variables fiber.type and train.pre.pos,
it includes the factors fiber.f and occ.f. Also, a subject’s identifier id is stored
as a factor.

In Panel R2.8, we construct the data frame prt by merging the data frames
prt.subjects and prt.fiber created in Panel R2.7. As a result, we obtain data
stored in the “long” format with 2,471 records and nine variables. The contents of
the first six rows of the data frame prt are displayed with the help of the head()

function.
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R2.7 PRT Trial: Construction of the data frame prt. Creating data frames
prt.subjects and prt.fiber containing subjects’ and fiber measurements. Data
frames prt.subjects.data and prt.fiber.datawere created in Panel R2.6
(a) Subjects’ characteristics

> prt.subjects <-

+ within(prt.subjects.data,

+ {

+ id <- factor(id)

+ bmi <- weight/(height^2)

+ sex.f <- factor(gender, labels = c("Female", "Male"))

+ age.f <- factor(ageGrp, labels = c("Young", "Old"))

+ prt.f <-

+ factor(trainGrp, levels = c("1", "0"),

+ labels = c("High", "Low"))

+ gender <- ageGrp <- trainGrp <- height <- weight <- NULL

+ })

> str(prt.subjects)

'data.frame': 63 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 2 3 4 5 6 7 8 9 ...

$ prt.f: Factor w/ 2 levels "High","Low": 2 1 1 1 1 2 2 2 2 1 ...

$ age.f: Factor w/ 2 levels "Young","Old": 1 1 2 2 2 1 1 2 1 1 ...

$ sex.f: Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 2 1 2 2 ...

$ bmi : num 25.4 22.6 25.4 25.8 27.7 ...

(b) Fiber measurements

> prt.fiber <-

+ within(prt.fiber.data,

+ {

+ id <- factor(id)

+ fiber.f <-

+ factor(fiber.type, labels = c("Type 1", "Type 2"))

+ occ.f <-

+ factor(train.pre.pos, labels = c("Pre", "Pos"))

+ fiber.type <- train.pre.pos <- NULL

+ })

> str(prt.fiber)

'data.frame': 2471 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 1 1 1 1 1 1 1 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 0.792 ...

$ spec.fo: num 83.5 132.8 161.1 158.8 117.9 ...

$ occ.f : Factor w/ 2 levels "Pre","Pos": 1 1 1 1 1 1 1 1 1 1 ...

$ fiber.f: Factor w/ 2 levels "Type 1","Type 2": 1 1 2 1 2 1 1 1 ...
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R2.8 PRT Trial: Construction of the data frame prt by merging prt.subjects

with prt.fiber containing subjects’ and fiber data. Data prt.subjects and
prt.fiber were created in Panel R2.7

> prt <- merge(prt.subjects, prt.fiber, sort = FALSE)

> dim(prt)

[1] 2471 9

> names(prt)

[1] "id" "prt.f" "age.f" "sex.f" "bmi" "iso.fo"

[7] "spec.fo" "occ.f" "fiber.f"

> head(prt)

id prt.f age.f sex.f bmi iso.fo spec.fo occ.f fiber.f

1 5 Low Young Female 25.436 0.265 83.5 Pre Type 1

2 5 Low Young Female 25.436 0.518 132.8 Pre Type 1

3 5 Low Young Female 25.436 0.491 161.1 Pre Type 2

4 5 Low Young Female 25.436 0.718 158.8 Pre Type 1

5 5 Low Young Female 25.436 0.160 117.9 Pre Type 2

6 5 Low Young Female 25.436 0.410 87.8 Pre Type 1

2.4 The Study of Instructional Improvement Project

The SII was carried out to assess the math achievement scores of first- and
third-grade pupils in randomly selected classrooms from a national US sample of
elementary schools (Hill et al., 2005). The dataset includes results for 1,190 first-
grade pupils sampled from 312 classrooms in 107 schools.

The SII data exhibit a hierarchical structure. That is, pupils are grouped in
classes, which, in turn, are grouped within schools. This structure implies that, e.g.,
scores for pupils from the same class are likely correlated. The correlation should
be taken into account in the analysis.

2.4.1 Raw Data

As a starting point, we use the data frame classroom, which can be found in the
WWGbook package.

In Panel R2.9, we investigate the structure and contents of the data frame. As it
can be seen from the results of application of the dim() function, the data frame
contains 1,190 records and 12 variables.

The names of the variables are listed with the help of the names() function. The
contents of the variables, described on p. 118 of the book by West et al. (2007), are
as follows:
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R2.9 SII Project: The structure and contents of the data frame classroom from the
WWGbook package

> data(classroom, package = "WWGbook")

> dim(classroom) # Number of rows & variables

[1] 1190 12

> names(classroom) # Variable names

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "yearstea" "mathknow" "housepov" "mathprep" "classid"

[11] "schoolid" "childid"

> classroom # Raw data

sex minority mathkind mathgain ses yearstea mathknow

1 1 1 448 32 0.46 1 NA

2 0 1 460 109 -0.27 1 NA

3 1 1 511 56 -0.03 1 NA

. . . [snip]
1189 0 0 473 44 -0.03 25 0.50

1190 1 0 453 69 -0.37 25 0.50

housepov mathprep classid schoolid childid

1 0.082 2.00 160 1 1

2 0.082 2.00 160 1 2

3 0.082 2.00 160 1 3

. . . [snip]
1189 0.177 2.00 239 107 1189

1190 0.177 2.00 239 107 1190

> str(classroom)

'data.frame': 1190 obs. of 12 variables:

$ sex : int 1 0 1 0 0 1 0 0 1 0 ...

$ minority: int 1 1 1 1 1 1 1 1 1 1 ...

$ mathkind: int 448 460 511 449 425 450 452 443 422 480 ...

$ mathgain: int 32 109 56 83 53 65 51 66 88 -7 ...

$ ses : num 0.46 -0.27 -0.03 -0.38 -0.03 0.76 -0.03 0.2 0.64 ...

$ yearstea: num 1 1 1 2 2 2 2 2 2 2 ...

$ mathknow: num NA NA NA -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 ...

$ housepov: num 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 ...

$ mathprep: num 2 2 2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 ...

$ classid : int 160 160 160 217 217 217 217 217 217 217 ...

$ schoolid: int 1 1 1 1 1 1 1 1 1 1 ...

$ childid : int 1 2 3 4 5 6 7 8 9 10 ...

• School-level variables:

– schoolid: school’s ID number
– housepov: % of households in the neighborhood of the school below the

poverty level
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• Classroom-level variables:

– classid: classroom’s ID number
– yearstea: years of teacher’s experience in teaching in the first grade
– mathprep: the number of preparatory courses on the first-grade math contents

and methods followed by the teacher
– mathknow: teacher’s knowledge of the first-grade math contents (higher

values indicate a higher knowledge of the contents)

• Pupil-level variables:

– childid: pupil’s ID number
– mathgain: pupil’s gain in the math achievement score from the spring of

kindergarten to the spring of first grade
– mathkind: pupil’s math score in the spring of the kindergarten year
– sex: an indicator variable for sex
– minority: an indicator variable for the minority status
– ses: pupil’s socioeconomic status

The outcome of interest is contained in the variable mathgain.
The abbreviated display of the contents of the classroom data frame shows that

the data are stored with one record for each pupil. The output of the str() function
indicates that the variables, contained in the data frame, are all either numeric or
integer-valued. Note, however, that we do not have information about, e.g., the
number of distinct levels of the integer-valued variables.

2.4.2 Data for Analysis

In the analyses presented later in the book, we will be using the data frame SIIdata,
which is included in the nlmeU package. It was constructed from the data frame
classroom using the syntax shown in Panel R2.10.

Essentially, the data frame SIIdata contains all the variables from
classroom. However, variables sex, minority, schoolid, classid, and chil-

did are replaced by corresponding factors. Note that, in Panel R2.10, we illustrate
various forms of the syntax for the function factor(), which can be used to create
a factor. In this way, we can explain the process of construction of a factor in more
detail.

For the variable sex, we explicitly use both the levels and labels arguments
of the function factor(). In this way, we fully control the mapping of the values
of the original variable to the factor levels and to their labels. In the syntax shown in
Panel R2.10, the value 0 of the variable sex from the classroom data is considered
the first level and is assigned the label M. On the other hand, the value 1 is considered
the second level and is labeled F.
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R2.10 SII Project: Creation of the data frame SIIdata from the classroom data

> SIIdata <-

+ within(classroom,

+ {

+ sex <- # 0 -> 1(M), 1 -> 2(F)

+ factor(sex, levels = c(0, 1), labels = c("M", "F"))

+ minority <- # 0 -> 1(No), 1 -> 2(Yes)

+ factor(minority, labels = c("Mnrt:No", "Mnrt:Yes"))

+ schoolid <- factor(schoolid)

+ classid <- factor(classid)

+ childid <- factor(childid)

+ })

> str(SIIdata)

'data.frame': 1190 obs. of 12 variables:

$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 2 1 1 2 1 ...

$ minority: Factor w/ 2 levels "Mnrt:No","Mnrt:Yes": 2 2 2 2 2 2 ...

. . . [snip]
$ classid : Factor w/ 312 levels "1","2","3","4",..: 160 160 160 ...

$ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 1 1 1 1 1 ...

$ childid : Factor w/ 1190 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

It is worth noting that, in the printout of the structure of SIIdata, the variable
sex is defined as a factor with two levels: M (first) and F (second). In the listing of
the first values of the variable, obtained using the str() function, we only see the
numerical representation (the ranks) of the levels, i.e., 1 or 2. Thus, the information
about the coding, 0 and 1, of the original variable sex from the classroom data
frame is lost. Of course, if needed, we could recover it based on the specified value
of the levels argument.

For the variable minority, we only use the labels argument of the function
factor(). Thus, by default, the levels argument is obtained by taking the unique
values of the variable, i.e., 0 and 1; representing them as characters “0” and “1”,
respectively; and then sorting them according to an increasing order of the numeric
values of the variable. Thus, the assumed (ordered) levels are “0” (first) and “1”
(second). Subsequently, the labels argument assigns the label "Mnrt:No" to the
first level (“0”) and "Mnrt:Yes" to the second level (“1”). In the printout of the
structure of SIIdata, the listing of the first values of minority includes only the
value 2, i.e., the second level. Hence, we could conclude that, in the classroom

data frame, the numeric value of minority for the first observations was equal to
1, which is in agreement with the printout shown in Panel R2.9.

When converting variables schoolid, childid, and classid into factors, we
use neither the levels nor labels argument. Thus, by default, the levels of the
constructed factors are defined by taking the unique numeric values of each of the
variables, representing the values as character strings, and sorting the strings in an
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R2.11 SII Project: Saving the SIIdata data in an external file

> rdaDir <- file.path("C:", "temp") # Dir path

> fp <- file.path(rdaDir, "SIIdata.Rdata") # External file path

> save(SIIdata, file = fp) # Save data

> file.exists(fp)

[1] TRUE

> (load(fp)) # Load data

[1] "SIIdata"

increasing order according to the numeric values. On the other hand, the labels
are defined, by default, as equal to the (character) levels of the factor. Hence, for
instance, for the variable schoolid, the ordered (character) levels are “1”, “2”, . . .,
“107”, with the same sequence used to create the corresponding set of labels (see
Panel R2.10).

For illustration purposes, in Panel R2.11, we present a syntax that allows saving
data in an external file for later use and then loading them back from that file. It is
recommended to perform these steps at the end of an R session. In our book, we do
not have to do it, because the data are already saved in the nlmeU package.

2.4.3 Data Hierarchy

In practice, we often want to verify whether identifying variables, contained in
a dataset, were properly coded, so that they correctly reflect the intended data
hierarchy. In this section, we present the R tools that can be used for this purpose.
As an example, we use the data stored in the data frame SIIdata. In this way, we
provide additional information about the structure of the data frame.

Toward this end, we create, in Panel R2.12, an auxiliary data frame dtId,
which contains the school, class, and pupil identifiers from SIIdata. We then
apply the function duplicated() to the auxiliary data frame. The function looks
for duplicated rows in the data frame and returns a logical vector that indicates
which rows are duplicates. By applying the function any() to the resulting logical
vector, we check if any of the elements of the vector contains the logical value of
TRUE. It turns out that there are no such elements, i.e., that there are no duplicated
combinations of the three identifiers in the SIIdata data frame. This indicates that
individual pupils in the data are uniquely identified by these variables, as intended.

Next, we apply the function gsummary() from the package nlme. The function
provides a summary of variables, contained in a data frame, by groups of rows. In
particular, the function can be used to determine whether there are variables that
are invariant within the groups. Note that the groups are defined by the factors
specified on the right-hand side of the formula specified in the argument form (more
information on the use of formulae in R will be provided in Chap. 5).
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R2.12 SII Project: Investigation of the data hierarchy in the data frame SIIdata

> data(SIIdata, package = "nlmeU") # Load data

> dtId <- subset(SIIdata, select = c(schoolid, classid, childid))

> names(dtId) # id names

[1] "schoolid" "classid" "childid"

> any(duplicated(dtId)) # Any duplicate ids?

[1] FALSE

> require(nlme)

> names(gsummary(dtId, form = ~childid, inv = TRUE))

[1] "schoolid" "classid" "childid"

> names(gsummary(dtId, form = ~classid, inv = TRUE))

[1] "schoolid" "classid"

> names(gsummary(dtId, form = ~schoolid, inv = TRUE))

[1] "schoolid"

We first apply the function gsummary() to the data frame dtId, with groups
defined by childid. We also use the argument inv = TRUE. This means that
only those variables, which are invariant within each group, are to be summarized.
By applying the function names() to the data frame returned by the function
gsummary(), we learn that, within the rows sharing the same value of childid,
the values of variables schoolid and classid are also constant. In other words,
variable childid is inner to both classid and schoolid. In particular, this
implies that no pupil is present in more than one class or school. Hence, we can say
that pupils are nested within both schools and classes. If some pupils were enrolled
in, e.g., more than one class, then we could say that pupils were crossed with classes.
In such case, the values of the classid identifier would not be constant within the
groups defined by the levels of the childid variable.

Application of the function gsummary() to the data frame dtId with groups
defined by classid allows us to conclude that, within the rows sharing the same
value of classid, the values of schoolid are also constant. This confirms that, in
the data, classes are coded as nested within schools. Equivalently, we can say that
the variable classid is inner to schoolid.

Finally, there are no invariant identifiers within the groups of rows defined by the
same value of schoolid, apart from schoolid itself.

In a similar fashion, in Panel R2.13, we use the function gsummary() to
investigate, which covariates are defined at the school, class, or pupil level. In
Panel R2.13a, we apply the function to the data frame SIIdata, with groups defined
by schoolid. The displayed result of the function names() implies that the values
of the variable housepov are constant (invariant) within the groups of rows with the
same value of schoolid. Hence, housepov is the only school-level covariate, in
accordance with the information given in Sect. 2.4.1.

In Panel R2.13b, we apply the function gsummary() with groups defined by
classid. We store the names of invariant variables in the character vector nms2a.
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R2.13 SII Project: Identification of school-, class-, and pupil-level variables in the
data frame SIIdata
(a) School-level variables

> (nms1 <-

+ names(gsummary(SIIdata,

+ form = ~schoolid, # schoolid-specific

+ inv = TRUE)))

[1] "housepov" "schoolid"

(b) Class-level variables

> nms2a <-

+ names(gsummary(SIIdata,

+ form = ~classid, # classid- and schoolid-specific

+ inv = TRUE))

> idx1 <- match(nms1, nms2a)

> (nms2 <- nms2a[-idx1]) # classid-specific

[1] "yearstea" "mathknow" "mathprep" "classid"

(c) Pupil-level variables

> nms3a <-

+ names(gsummary(SIIdata,

+ form = ~childid, # All

+ inv = TRUE))

> idx12 <- match(c(nms1, nms2), nms3a)

> nms3a[-idx12] # childid-specific

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "childid"

We identify the names of variables, which are constant both at the school and class
level, by matching the elements of vectors nms1 and nms2a. After removing the
matching elements from the vector nms2a, we store the result in the vector nms2.
The latter vector contains the names of variables, which are invariant at the class
level, namely, yearstea, mathknow, and mathprep.

Finally, in Panel R2.13c, we look for pupil-level variables. The syntax is similar
to the one used in R2.13b. As a result, we identify variables sex, minority,
mathkind, mathgain, and ses, again consistent with variables listed in Sect. 2.4.1.

Considerations, presented in Panel R2.13, aimed at identifying grouping factor(s)
for which a given covariate is invariant. The resulting conclusions have important
implications for computations of the number of denominator degrees of freedom
for the conditional F-tests applied to fixed effects in LMMs (see Sect. 14.7 and
Panel R18.5 in Sect. 18.2.2).
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2.4.3.1 Explicit and Implicit Nesting

The SIIdata data frame is an example of data having nested structure. This
structure, with classes being nested within schools, can be represented in the data in
two different ways, depending on how the two relevant factors, namely, schoolid
and classid, are coded.

First, we consider the case when the levels of classid are explicitly coded
as nested within the levels of the schoolid grouping factor. This way of coding
is referred to as explicit nesting and is consistent with that used in SIIdata, as
shown in Panel R2.12. More specifically, the nesting was accomplished by using
different levels of the classid factor for different levels of the schoolid factor.
Consequently, the intended nested structure of data is explicitly reflected by the
levels of the factors. This is the preferred and natural approach.

The nested structure could also be represented by using crossed grouping factors.
Taking the SIIdata data as an example, we might consider the case when, by
mistake or for any other reason, two different classrooms from two different schools
would have the same code. In such a situation, and without any additional informa-
tion about the study design, the factors would be incorrectly interpreted as (partially)
crossed. To specify the intended nested structure, we would need to cross schoolid
and classid factors using, e.g., the command factor(schoolid:classid).
The so-obtained grouping factor, together with schoolid, would specify the
desired nested structure. Such an approach to data coding is referred to as implicit
nesting.

Although the first way of representing the nested structure is simpler and more
natural, it requires caution when coding the levels of grouping factors. The second
approach is more inclusive, in the sense that it can be used both for crossed and
nested factors.

We raise the issue of the different representations of nested data because it has
important implications for a specification of an LMM. We will revisit this issue in
Chap. 15.

2.5 The Flemish Community Attainment-Targets Study

The FCAT data results from an educational study, in which elementary-school
graduates were evaluated with respect to reading comprehension in Dutch. The
evaluation was based on a set of attainment targets, which were issued by the
Flemish Community in Belgium. These attainment targets can be characterized
by the text type and by the level of processing. We use data which consist of the
responses of a group of 539 pupils from 15 schools who answered 57 items assumed
to measure nine attainment targets. In Table 2.1, the nine attainment targets are
described by the type of text and by the level of processing. In addition, we indicate
the number of items that were used to measure each one of the targets.
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Table 2.1 FCAT Study: FCAT Study: Attainment targets for reading
comprehension in Dutch. Based on Janssen et al. (2000). Reproduced with
permission from the copyright owner

Target Text type
Level of
processing

No. of
items

1 Instructions Retrieving 4
2 Articles in magazine Retrieving 6
3 Study material Structuring 8
4 Tasks in textbook Structuring 5
5 Comics Structuring 9
6 Stories, novels Structuring 6
7 Poems Structuring 8
8 Newspapers for children, textbooks,

encyclopedias
Evaluating 6

9 Advertising material Evaluating 5

These data were analyzed previously by, e.g., Janssen et al. (2000) and Tibaldi
et al. (2007). In our analyses we will use two types of outcomes. First, we will
consider total target scores, i.e., the sum of all positive answers for a target. Second,
we will consider average target scores, i.e., the sum of all positive answers for a
category divided by the number of items within the target. In both cases, we will
treat the outcome as a continuous variable.

2.5.1 Raw Data

We assume that the raw data for the FCAT study are stored in an external file named
crossreg.data.csv.

In Panel R2.14, we present the syntax for loading and inspecting the data. As seen
from the output presented in the panel, the file crossreg.data.csv contains 4,851
records and three variables. The variable id contains pupils’ identifiers, target
identifies the attainment targets (see Table 2.1), and scorec provides the total target
score for a particular pupil. Note that the data are stored using the “long” format,
with multiple records per pupil.

In Panel R2.15, we investigate the contents of the crossreg.datadata frame in
more detail. In particular, by applying the function unique() to each of the three
variables contained in the data frame, we conclude that there are 539 unique values
for id, nine unique values for target, and 10 unique values for scorec. Thus,
the data frame includes scores for nine targets for each of 539 pupils. Note that
9× 539 =4,851, i.e., the total number of records (rows). Because the maximum
number of items for a target is nine (see Table 2.1), the variable scorec contains
integer values between 0 and 9.



2.5 The Flemish Community Attainment-Targets Study 33

R2.14 FCAT Study: Loading raw data from the .csv file into the object cross-
reg.data. The object dataDir was created in Panel R2.1

> fp <- file.path(dataDir, "crossreg.data.csv")

> crossreg.data <- read.csv(fp, header = TRUE)

> dim(crossreg.data) # No. of rows and columns

[1] 4851 3

> names(crossreg.data) # Variable names

[1] "target" "id" "scorec"

> head(crossreg.data) # First six records

target id scorec

1 1 1 4

2 2 1 6

3 3 1 4

4 4 1 1

5 5 1 7

6 6 1 6

> str(crossreg.data) # Data structure

'data.frame': 4851 obs. of 3 variables:

$ target: int 1 2 3 4 5 6 7 8 9 1 ...

$ id : int 1 1 1 1 1 1 1 1 1 2 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

R2.15 FCAT Study: Inspection of the contents of the raw data. The data frame
cressreg.datawas created in Panel R2.14

> unique(crossreg.data$target) # Unique values for target

[1] 1 2 3 4 5 6 7 8 9

> (unique(crossreg.data$id)) # Unique values for id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . [snip]
[526] 526 527 528 529 530 531 532 533 534 535 536 537 538 539

> unique(crossreg.data$scorec) # Unique values for scorec

[1] 4 6 1 7 5 3 2 8 0 9

> summary(crossreg.data$scorec) # Summary statistics for scorec

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 3.0 4.0 3.9 5.0 9.0
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2.5.2 Data for Analysis

In the analyses presented later in the book, we will be using the data frame fcat,
which is constructed based on the data frame crossreg.data. In Panel R2.16, we
present the syntax used to create the fcat data and to investigate data grouping
structure. First, in Panel R2.16a, we replace the variables id and target by
corresponding factors. For the factor target, the labels given in parentheses
indicate the number of items for a particular target.

In Panel R2.16b, we cross-tabulate the factors id and target and store the
resulting table in the object tab1. Given the large number of levels of the factor id,
it is difficult to verify the values of the counts for all cells of the table. By applying
the function all() to the result of the evaluation of expression tab1>0, we check
that all counts of the table are nonzero. On the other hand, with the help of the
range() function, we verify that all the counts are equal to 1. This indicates that,
in the data frame fcat, the levels of the factor target are crossed with the levels
of the factor id. Moreover, the data are balanced, in the sense that there is the same
number of observations, namely, one observation for each combination of the levels
of the two factors. Because all counts in the table are greater than zero, we can say
that the factors are fully crossed.

2.6 Chapter Summary

In this chapter, we introduced four case studies, which will be used for illustration
of LMs described in our book.

We started the presentation of each case study by describing study design and
considering that raw data are stored in a .csv file. We chose this approach in an
attempt to emulate a common situation of using external data files when analyzing
data using R. In the next step, we prepared the data for analysis by creating the
necessary variables and, in particular, factors. Including factors as part of data is a
feature fairly unique to R. It affects how a given variable is treated by graphical
and modeling functions. This approach is recommended, but not obligatory. In
particular, creating factors can be deferred to a later time, when, e.g., model formula
is specified. We will revisit this issue in Chap. 5.

The data frames, corresponding to the four case studies, are included in the
package nlmeU. As with other packages, the list of datasets available in the package
can be obtained by using the data(package = "nlmeU") command. For the
reader’s convenience, the datasets are summarized in Table 2.2. The table includes
the information about the R-session panels, which present the syntax used to create
the data frames, grouping factors, and number of rows and variables.

The four case studies introduced in this chapter are conducted by employing
different study designs. All of them lead to grouped data defined by one or more
nested or crossed grouping factors. The preferable way of storing this type of data
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R2.16 FCAT Study: Construction and inspection of the contents of the data frame
fcat. The data frame crossreg.datawas created in Panel R2.14
(a) Construction of the data frame fcat

> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # See Table 2.1

> (lbls <- paste("T", 1:9, "(", nItms, ")", sep = ""))

[1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"

[8] "T8(6)" "T9(5)"

> fcat <-

+ within(crossreg.data,

+ {

+ id <- factor(id)

+ target <- factor(target, labels = lbls)

+ })

> str(fcat)

'data.frame': 4851 obs. of 3 variables:

$ target: Factor w/ 9 levels "T1(4)","T2(6)",..: 1 2 3 4 5 6 7 8 ...

$ id : Factor w/ 539 levels "1","2","3","4",..: 1 1 1 1 1 1 1 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

(b) Investigation of the data grouping structure

> (tab1 <- xtabs(~ id + target, data = fcat)) # id by target table

target

id T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

. . . [snip]
539 1 1 1 1 1 1 1 1 1

> all(tab1 > 0) # All counts > 0?

[1] TRUE

> range(tab1) # Range of counts

[1] 1 1

is to use the “long” format with multiple records per subject. Although this term is
borrowed from the literature pertaining to longitudinal data, it is also used in the
context of other grouped data. Below, we describe the key features of the data in
each study.

In the ARMD trial, the armd.wide data frame stores data in the “wide” format.
Data frames armd and armd0 store data in the “long” format and reflect the
hierarchical data structure defined by a single grouping factor, namely, subject.
For this reason, and following the naming convention used in the nlme package, we
will refer to the data structure in our book as data with a single level of grouping.
Note that, more traditionally, these data are referred to as two-level data (West et al.,
2007).
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Table 2.2 Data frames available in the nlmeU package

Study Data frame R-panel Grouping factors Rows × vars

ARMD Trial armd.wide R2.2 None 240×10
armd0 R2.4 subject 1,107 ×8
armd R2.5 subject 867×8

PRT Trial prt.subjects R2.7a None 63×5
prt.fiber R2.7b id 2,471 ×5
prt R2.8 id 2,471 ×9

SII Project SIIdata R2.10 classid nested ... 1,190 ×12
... in schoolid

FCAT Study fcat R2.16 id crossed ... 4,851 ×3
... with target

The hierarchical structure of data contained in the data frame SIIdata is defined
by two (nested) grouping factors, namely, schoolid and classid. Thus, in our
book, this data structure will be referred to as data with two levels of grouping.

This naming convention works well for hierarchical data, i.e., for data with nested
grouping factors. It is more problematic for structures with crossed factors. This is
the case for the FCAT study, in which the data structure is defined by two crossed
grouping factors, thus without a particular hierarchy.

As a result of data grouping, variables can be roughly divided into group-
and measurement-specific categories. In the context of longitudinal data they are
referred to as time-fixed and time-varying variables. The classification of the
variables has important implications for the model specification.

To our knowledge, the groupedData class, defined in the nlme package, appears
to be the only attempt to directly associate a hierarchical structure of the data
with objects of the data.frame class. We do not describe this class in more detail,
however, because it has some limitations. Also, its initial importance has diminished
substantially over time. In fact, the data hierarchy is most often reflected indirectly
by specifying the structure of the model fitted to the data. We will revisit this issue
in Parts III and IV of our book.

When introducing the SII case study, we noted that the nested data structure
can be specified by using two different approaches, namely, explicit and implicit
nesting, depending on the coding of the levels of grouping factors. The choice of the
approach is left to the researcher’s discretion. The issue has important implications
for the specification of LMMs, though, and it will be discussed in Chap. 15.

The different data structures of the cases studies presented in this chapter will
allow us to present various aspects of LMMs in Part IV of the book. Additionally,
the ARMD dataset will be used in the other parts to illustrate other classes of LMs
and related R tools.

The main focus of this chapter was on the presentation of the data frames related
to the case studies. In the presentation, we also introduced selected concepts related
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to grouped data and R functions, which are useful for data transformation and
inspection of the contents of datasets. By necessity, our introduction was very
brief and fragmentary; a more in-depth discussion of those and other functions is
beyond the scope of our book. The interested readers are referred to, e.g., the book
by Dalgaard (2008) for a more thorough explanation of the subject.



Chapter 3
Data Exploration

3.1 Introduction

In this chapter, we present the results of exploratory analyses of the case studies
introduced in Chap. 2. The results will serve as a basis for building LMs for the data
in the following parts of the book.

While exploring the case-study data, we also illustrate the use of selected
functions and graphical tools which are commonly used to perform these tasks.
Note, however, that, unlike in the other parts of the book, we are not discussing the
functions and tools in much detail. The readers interested in the functionalities are
referred to the monograph by Venables and Ripley (2010).

3.2 ARMD Trial: Visual Acuity

In the ARMD data, we are mainly interested in the effect of treatment on the visual
acuity measurements. Thus, in Fig. 3.1, we first take a look at the measurements by
plotting them against time for several selected patients from both treatment groups.
More specifically, we selected every 10th patient from each group.

Based on the plots shown in Fig. 3.1, several observations can be made:

• In general, visual acuity tends to decrease in time. This is in agreement with the
remark made in Sect. 2.2 that patients with ARMD progressively lose vision.

• For some patients, a linear decrease of visual acuity over time can be observed,
but there are also patients for whom individual profiles strongly deviate from a
linear trend.

• Visual acuity measurements adjacent in time are fairly well correlated, with the
correlation decreasing with an increasing distance in time.

• Visual acuity at baseline seems to, at least partially, determine the overall level
of the post-randomization measurements.

• There are patients for whom several measurements are missing.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__3,
© Springer Science+Business Media New York 2013
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Fig. 3.1 ARMD Trial: Visual-acuity profiles for selected patients (“spaghetti plot”)

These observations will be taken into account when constructing models for
the data.

R3.1 ARMD Trial: Syntax for the plot of visual acuity profiles for selected patients
in Fig. 3.1

> data(armd.wide, armd0, package = "nlmeU") # Data loaded

> library(lattice)

> armd0.subset <- # Subset

+ subset(armd0, as.numeric(subject) %in% seq(1, 240, 10))

> xy1 <- # Draft plot

+ xyplot(visual ~ jitter(time) | treat.f,

+ groups = subject,

+ data = armd0.subset,

+ type = "l", lty = 1)

> update(xy1, # Fig. 3.1

+ xlab = "Time (in weeks)",

+ ylab = "Visual acuity",

+ grid = "h")

> detach(package:lattice)

The syntax used to create Fig. 3.1 is shown in Panel R3.1. First, we load data to
be used for exploration from the nlmeU package. Note that the code used to create
figure employs the function xyplot() from the package lattice (Sarkar, 2008). The
function is applied to the subset of the data frame armd0 (Sect. 2.2.2). The formula
used in the syntax indicates that the variables visual and time are to be used on the
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y- and x-axis, respectively. These variables are plotted against each other in separate
panels for different values of the treat.f factor. Within each panel, data points are
grouped for each subject and connected using solid lines. The function jitter()

is used to add a small amount of noise to the variable time, thereby reducing the
number of overlapping points.

In the next sections, we explore particular features of the ARMD data in more
detail.

3.2.1 Patterns of Missing Data

First, we check the number and patterns of missing visual acuity measurements.
Toward this end, we use the data frame armd.wide. As mentioned in Sect. 2.2.2,
the data frame contains the factor miss.pat that indicates which of the four
post-randomization measurements are missing for a particular patient. For example,
the pattern --X- indicates that the only missing measurement was at the third
post-randomization timepoint, i.e., at 24 weeks.

In Panel R3.2, we use three different methods to tabulate the number of patients
with different levels of the factor miss.pat. From the displayed results, we
can conclude that, for instance, there were 188 patients for whom all four post-
randomization visual acuity measurements were obtained. On the other hand, there
were six patients for whom the four measurements were missing.

R3.2 ARMD Trial: Inspecting missing-data patterns in the armd.wide data for the
post-randomization visual acuity measurements using three different methods

> table(armd.wide$miss.pat)

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> with(armd.wide, table(miss.pat))

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> xtabs(~miss.pat, armd.wide)

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

It is also worth noting that there are eight (= 4+ 1+ 2+ 1) patients with four
different nonmonotone missing-data patterns, i.e., with intermittent missing visual
acuity measurements. When modeling data with such patterns, extra care is needed
when specifying variance–covariance structures. We will come back to this issue in
Sect. 11.4.2.
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3.2.2 Mean-Value Profiles

In this section, we investigate the number of missing values and calculate the sample
means of visual acuity measurements for different visits and treatment groups.
Toward this end, in Panel R3.3, we use the “long”-format data frame armd0, which
was described in Sect. 2.2.2.

R3.3 ARMD Trial: Sample means and medians for visual acuity by time and
treatment
(a) Counts of nonmissing visual acuity measurements

> attach(armd0)

> flst <- list(time.f, treat.f) # "By" factors

> (tN <- # Counts

+ tapply(visual, flst,

+ FUN = function(x) length(x[!is.na(x)])))

Placebo Active

Baseline 119 121

4wks 117 114

12wks 117 110

24wks 112 102

52wks 105 90

(b) Sample means and medians of visual acuity measurements

> tMn <- tapply(visual, flst, FUN = mean) # Sample means

> tMd <- tapply(visual, flst, FUN = median) # Sample medians

> colnames(res <- cbind(tN, tMn, tMd)) # Column names

[1] "Placebo" "Active" "Placebo" "Active" "Placebo" "Active"

> nms1 <- rep(c("P", "A"), 3)

> nms2 <- rep(c("n", "Mean", "Mdn"), rep(2, 3))

> colnames(res) <- paste(nms1, nms2, sep = ":") # New column names

> res

P:n A:n P:Mean A:Mean P:Mdn A:Mdn

Baseline 119 121 55.336 54.579 56.0 57.0

4wks 117 114 53.966 50.912 54.0 52.0

12wks 117 110 52.872 48.673 53.0 49.5

24wks 112 102 49.330 45.461 50.5 45.0

52wks 105 90 44.438 39.100 44.0 37.0

> detach(armd0)

To calculate counts of missing values in Panel R3.3a, we use the function
tapply(). In general, this function is used to apply a selected function to each
(nonempty) group of values defined by a unique combination of the levels of one
or more factors. In our case, the selected function, specified in the FUN argument,
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checks the length of the vector created by selecting nonmissing values from the
vector passed as an argument to the function. Using the tapply() function, we
apply it to the variable visual within the groups defined by combinations of the
levels of factors time.f and treat.f. As a result, we obtain a matrix with the
number of nonmissing visual acuity measurements for each visit and each treatment
group. We store the matrix in the object tN for further use. The display of the matrix
indicates that there were no missing measurements at baseline. On the other hand,
at week 4, for instance, there were two and seven missing measurements in the
placebo and active-treatment arms, respectively. In general, there are more missing
measurements in the active-treatment group.

In Panel R3.3b, we use the function tapply() twice to compute the sample
means and sample medians of visual acuity measurements for each combination of
the levels of factors time.f and treat.f. We store the results in matrices tMn and
tMd, respectively. We then create the matrix res by combining matrices tN, tMn,
and tMn by columns. Finally, to improve the legibility of displays, we modify the
names of the columns of res.

From the display of the matrix res, we conclude that, on average, there was very
little difference in visual acuity between the two treatment groups at baseline. This
is expected in a randomized study. During the course of the study, the mean visual
acuity decreased with time in both arms, which confirms the observation made based
on the individual profiles presented in Fig. 3.1. It is worth noting that the mean
value is consistently higher in the placebo group, which suggests lack of effect of
interferon-a.

Figure 3.2 presents box-and-whiskers plots of visual acuity for the five timepoints
and the two treatment arms. The syntax to create the figure is shown in Panel R3.4.
It uses the function bwplot() from the package lattice. Note that we first create
a draft of the plot, which we subsequently enhance by providing labels for the
horizontal axis. In contrast to Fig. 3.1, measurements for all subjects at all timepoints
are plotted. A disadvantage of the plot is that it does not reflect the longitudinal
structure of the data.

R3.4 ARMD Trial: Syntax for the box-and-whiskers plots in Fig. 3.2

> library(lattice)

> bw1 <- # Draft plot

+ bwplot(visual ~ time.f | treat.f,

+ data = armd0)

> xlims <- c("Base", "4\nwks", "12\nwks", "24\nwks", "52\nwks")

> update(bw1, xlim = xlims, pch = "|") # Final plot

> detach(package:lattice)

The box-and-whiskers plots illustrate the patterns implied by the sample means
and medians, presented in Panel R3.3b. The decrease of the mean values in time
is clearly seen for both treatment groups. It is more pronounced for the active-
treatment arm. As there was a slightly higher dropout in that arm, a possible
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Fig. 3.2 ARMD Trial: Box-and-whiskers plots for visual acuity by treatment and time

explanation could be that patients whose visual acuity improved dropped out of the
study. In such case, a faster progression of the disease in that treatment arm would
be observed.

To check this possibility, we take a look at Fig. 3.3. It shows the mean values of
visual acuity for patients with different monotone missing-data patterns. In addition,
the number of subjects for each pattern is also given. We note that the number of
subjects for the patterns with a larger number of missing values tends to be smaller.
Note that, to save space, we do not present the syntax used to create the figure, as it
is fairly complex.

The mean profiles, shown in Fig. 3.3, consistently decrease for the majority of
the patterns. In general, they do not suggest an improvement in visual acuity before
the drop off. Thus, they do not support the aforementioned explanation of a faster
decrease of the mean visual acuity in the active-treatment arm.

In Panel R3.5, we present the syntax to investigate the number and form of
monotone missing-data patterns for visual acuity. In particular, in Panel R3.5a,
we create the data frame armd.wide.mnt, which contains data only for patients
with monotone patterns. There are 232 such patients in total. Note that, despite
the fact that some patterns are not present in the data frame armd.wide.mnt,
they are still recognized as valid levels of the factor miss.pat. This might cause
problems when using some R functions. Similarly to Panel R2.5, we could use the
droplevels() function to remove the unused levels of the miss.pat variable.
Instead, in Panel R3.5b, we modify the levels of the factor miss.pat in the
armd.wide.mnt data with the help of the function factor(). Note that, instead
of using the levels argument of the function, we could have used the argument
exclude while indicating the levels to be excluded from the definition of the
miss.pat factor.

Finally, in Panel R3.5c, we use the function tapply() to obtain a matrix
containing the number of patients for each monotone missing-data pattern and for
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Fig. 3.3 ARMD Trial: Mean visual acuity profiles by missing pattern and treatment (monotone
missing-data patterns only)

each treatment arm. The displayed results indicate that the mean-value profiles for
missing-data patterns with a larger number of missing values, shown in Fig. 3.3,
are based on measurements for a small number of patients. Thus, the variability of
these profiles is larger than for the patterns with a smaller number of missing values.
Therefore, Fig. 3.3 should be interpreted with caution.

3.2.3 Sample Variances and Correlations of Visual Acuity
Measurements

Figure 3.4 shows a scatterplot matrix for the visual acuity measurements for those
patients, for whom all post-randomization measurements are available. Scatterplots
for corresponding pairs of variables are given below the diagonal. The size of
the font for correlation coefficients reported above the diagonal is proportional
to its value. We do not present the syntax for constructing the figure, as it is
fairly complex. It can be observed that the measurements adjacent in time are
strongly correlated. The correlation decreases with an increasing time gap. Worth
noting is the fact that there is a substantial positive correlation between visual
acuity at baseline and at the other post-randomization measurements. Thus, baseline
values might be used to explain the overall variability of the post-randomization
observations. This agrees with the observation made based on Fig. 3.1. It is worth
noting that a scatterplot matrix of the type shown in Fig. 3.4 may not work well for
longitudinal data with irregular time intervals.
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R3.5 ARMD Trial: The number of patients by treatment and missing-data pattern
(monotone patterns only)
(a) Subset of the data with monotone missing-data patterns

> mnt.pat<- # Monotone patterns

+ c("----", "---X", "--XX", "-XXX", "XXXX")

> armd.wide.mnt <- # Data subset

+ subset(armd.wide, miss.pat %in% mnt.pat)

> dim(armd.wide.mnt) # Number of rows and cols

[1] 232 10

> levels(armd.wide.mnt$miss.pat) # Some levels not needed

[1] "----" "---X" "--X-" "--XX" "-XX-" "-XXX" "X---" "X-XX"

[9] "XXXX"

(b) Removing unused levels from the miss.pat factor

> armd.wide.mnt1 <-

+ within(armd.wide.mnt,

+ {

+ miss.pat <- factor(miss.pat, levels=mnt.pat)

+ })

> levels(armd.wide.mnt1$miss.pat)

[1] "----" "---X" "--XX" "-XXX" "XXXX"

(c) The number of patients with different monotone missing-data patterns

> with(armd.wide.mnt1,

+ {

+ fl <- list(treat.f, miss.pat) # List of "by" factors

+ tapply(subject, fl, FUN=function(x) length(x[!is.na(x)]))

+ })

---- ---X --XX -XXX XXXX

Placebo 102 9 3 1 1

Active 86 15 5 5 5

In Panel R3.6, we provide the estimates of the variance–covariance and cor-
relation matrices for visual acuity measurements. Toward this end, we create
the data frame visual.x from armd.wide by selecting only the five variables
containing the measurements. We then apply functions var() and cor() to
estimate the variance–covariance matrix and the correlation matrix, respectively.
Note that, for both functions, we specify the argument use = "complete.obs",
which selects only those rows of the data frame visual.x that do not con-
tain any missing values. In this way, the estimated matrices are assured to be
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Fig. 3.4 ARMD Trial: Scatterplot matrix for visual acuity measurements. Scatterplots (below
diagonal) and correlation coefficients (above diagonal) for complete cases only (n = 188)

positive semidefinite. An alternative (not shown) would be to specify use =

"pairwise.complete.obs". In that case, the elements of the matrices would be
estimated using data for all patients with complete observations for the particular
pair of visual acuity measurements. This could result in estimates of variance–
covariance or correlation matrices, which might not be positive semidefinite.

The variance–covariance matrix for visual acuity measurements is stored in the
varx matrix. It indicates an increase of the variance of visual acuity measurements
obtained at later timepoints. The estimated correlation matrix suggests a moderate to
strong correlation of the measurements. We also observe that the correlation clearly
decreases with the time gap, as already concluded from Fig. 3.4.

At the bottom of Panel R3.6, we demonstrate how to extract the diagonal
elements of the matrix varx using the diag() function. We also present the use
of the function cov2cor() to compute a correlation matrix corresponding to the
variance–covariance. Note that we do not display the result of the use of the
function, as it is exactly the same as the one obtained for the function cor(), already
shown in Panel R3.6.
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R3.6 ARMD Trial: Variance–covariance and correlation matrices for visual acuity
measurements for complete cases only (n = 188)

> visual.x <- subset(armd.wide, select = c(visual0:visual52))

> (varx <- var(visual.x, use = "complete.obs")) # Var-cov mtx

visual0 visual4 visual12 visual24 visual52

visual0 220.31 206.71 196.24 193.31 152.71

visual4 206.71 246.22 224.79 221.27 179.23

visual12 196.24 224.79 286.21 257.77 222.68

visual24 193.31 221.27 257.77 334.45 285.23

visual52 152.71 179.23 222.68 285.23 347.43

> print(cor(visual.x, use = "complete.obs"), # Corr mtx

+ digits = 2)

visual0 visual4 visual12 visual24 visual52

visual0 1.00 0.89 0.78 0.71 0.55

visual4 0.89 1.00 0.85 0.77 0.61

visual12 0.78 0.85 1.00 0.83 0.71

visual24 0.71 0.77 0.83 1.00 0.84

visual52 0.55 0.61 0.71 0.84 1.00

> diag(varx) # Var-cov diagonal elements

visual0 visual4 visual12 visual24 visual52

220.31 246.22 286.21 334.45 347.43

> cov2cor(varx) # Corr mtx (alternative way)

. . . [snip]

3.3 PRT Study: Muscle Fiber Specific Force

In the PRT study, we are primarily interested in the effect of the intensity of the
training on the muscle fiber specific force, measurements of which are contained in
the variable spec.fo of the prt data frame (Sect. 2.3.2). In some analyses, we will
also investigate the effect on the measurements of the isometric force, which are
stored in the variable iso.fo.

First, however, we take a look at the information about subjects’ characteristics,
stored in the data frame prt.subjects (see Sect. 2.3.2). In Panel R3.7, we use
the function tapply() to obtain summary statistics for the variable bmi for
separate levels of the prt.f factor. The statistics are computed with the help of
the summary() function. The displayed values of the statistics do not indicate any
substantial differences in the distribution of BMI between subjects assigned to the
low- or high-intensity training. Given that the assignment was randomized, this
result is anticipated.

For illustration purposes, we also obtain summary statistics for all variables in
the prt.subjects data frame, except for id, with the help of the function by().
The function splits the data frame according to the levels of the factor prt.f and
applies the function summary() to the two data frames resulting from the split. As
a result, we obtain summary statistics for variables prt.f, age.f, sex.f, and bmi
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R3.7 PRT Trial: Summary statistics for subjects’ characteristics

> data(prt.subjects, prt, package = "nlmeU") # Data loaded

> with(prt.subjects, tapply(bmi, prt.f, summary))

$High

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.4 22.9 24.8 25.1 28.2 31.0

$Low

Min. 1st Qu. Median Mean 3rd Qu. Max.

19.0 23.1 24.8 24.7 26.3 32.3

> by(subset(prt.subjects, select = -id), prt.subjects$prt.f, summary)

prt.subjects$prt.f: High

prt.f age.f sex.f bmi

High:31 Young:15 Female:17 Min. :18.4

Low : 0 Old :16 Male :14 1st Qu.:22.9

Median :24.8

Mean :25.1

3rd Qu.:28.2

Max. :31.0

------------------------------------------------

prt.subjects$prt.f: Low

prt.f age.f sex.f bmi

High: 0 Young:15 Female:17 Min. :19.0

Low :32 Old :17 Male :15 1st Qu.:23.1

Median :24.8

Mean :24.7

3rd Qu.:26.3

Max. :32.3

for the two training-intensity groups. From the displayed values of the statistics,
we conclude that there are no important differences in the distribution of sex and
age groups between the two intervention groups. This is expected, given that the
randomization was stratified by the two factors (see Sect. 2.3). Note that we should
ignore the display for the factor prt.f, because it has been used for splitting the
data.

In Panel R3.8, we take a look at fiber measurements stored in the data frame prt.
In particular, in Panel R3.8a, we check the number of nonmissing measurements of
the specific force per fiber type and occasion for selected subjects. Toward this aim,
with the help of the function tapply(), we apply the function length() to the
variable spec.fo for separate levels of the id, fiber.f, and occ.f factors. Note
that, in the call to the function tapply(), we use a named list of the factors. The
names of the components of the list are shortened versions of the factor names. In
this way, we obtain a more legible display of the resulting array. In Panel R3.8a,
we show the display for two subjects, "5" and "335". For the latter, we see that no
measurements of the specific force were taken for type-1 fibers before the training.
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R3.8 PRT Trial: Extracting and summarizing the fiber-level information
(a) Number of fibers per type and occasion for the subjects "5" and "335"

> fibL <-

+ with(prt,

+ tapply(spec.fo,

+ list(id = id, fiberF = fiber.f, occF = occ.f),

+ length))

> dimnms <- dimnames(fibL)

> names(dimnms) # Shortened names displayed

[1] "id" "fiberF" "occF"

> fibL["5", , ] # Number of fiber measurements for subject 5

occF

fiberF Pre Pos

Type 1 12 18

Type 2 7 4

> fibL["335", , ] # Number of fiber measurements for subject 335

occF

fiberF Pre Pos

Type 1 NA 8

Type 2 14 11

(b) Mean value of spec.fo by fiber type and occasion for subject "5"

> fibM <-

+ with(prt,

+ tapply(spec.fo,

+ list(id = id, fiberF = fiber.f, occF = occ.f),

+ mean))

> fibM["5", , ]

occF

fiberF Pre Pos

Type 1 132.59 129.96

Type 2 145.74 147.95

In Panel R3.8b, we take a look at the mean value of the specific force per
fiber type and occasion for selected subjects. Toward this end, we use the function
tapply() in a similar way as in Panel R3.8a, but in combination with the function
mean(). In the panel, we display the mean values for the subject "5".

In Panel R3.9, we illustrate how to summarize the fiber-level information using
functions from the package reshape. First, in Panel R3.9a, we use the generic
function melt() to prepare the data for further processing. More specifically,
we apply the function to the data frame prt, and we specify factors id, prt.f,
fiber.f, and occ.f as “identifying variables.” On the other hand, we indicate
variables spec.fo and iso.f as “measured variables.” In the resulting data frame,
prtM, the values of the measured variables are “stacked” within the groups defined
by the combinations of the levels of the identifying variables. The stacked values
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R3.9 PRT Trial: Summarizing the fiber-level information with the help of functions
melt() and cast() from the reshape package
(a) Preprocessing of the data (melting)

> library(reshape)

> idvar <- c("id", "prt.f", "fiber.f", "occ.f")

> meas.var <- c("spec.fo", "iso.fo")

> prtM <- # Melting data

+ melt(prt, id.var = idvar, measure.var = meas.var)

> dim(prtM)

[1] 4942 6

> head(prtM, n = 4) # First four rows

id prt.f fiber.f occ.f variable value

1 5 Low Type 1 Pre spec.fo 83.5

2 5 Low Type 1 Pre spec.fo 132.8

3 5 Low Type 2 Pre spec.fo 161.1

4 5 Low Type 1 Pre spec.fo 158.8

> tail(prtM, n = 4) # Last four rows

id prt.f fiber.f occ.f variable value

4939 520 High Type 2 Pos iso.fo 0.527

4940 520 High Type 1 Pos iso.fo 0.615

4941 520 High Type 2 Pos iso.fo 0.896

4942 520 High Type 2 Pos iso.fo 0.830

(b) Aggregating data (casting)

> prtC <- cast(prtM, fun.aggregate = mean) # Casting data

> names(prtC)

[1] "id" "prt.f" "fiber.f" "occ.f" "spec.fo" "iso.fo"

> names(prtC)[5:6] <- c("spec.foMn", "iso.foMn") # Names modified

> head(prtC, n = 4)

id prt.f fiber.f occ.f spec.foMn iso.foMn

1 5 Low Type 1 Pre 132.59 0.51500

2 5 Low Type 1 Pos 129.96 0.72289

3 5 Low Type 2 Pre 145.74 0.47057

4 5 Low Type 2 Pos 147.95 0.71175

are stored in a single variable named, by default, value. They are identified by
the levels of factor named, by default, variable, which contain the names of the
measured variables.

The display, shown in Panel R3.9a, indicates that the number of records in
the data frame prtM increases to 4,942, as compared to 2,471 records in the data
frame prt (see Panel R2.7). The increase results from the stacking of the values of
spec.fo and iso.fo in the variable value. The outcome of the process is further
illustrated by the display of the first and last four rows of the data frame prtM.
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Fig. 3.5 Individual means for specific force by occasion, fiber type, and training intensity

In Panel R3.9b, we apply the function cast() to the data frame prtM to
compute the mean values of the measured variables, i.e., spec.fo and iso.fo,
within the groups defined by the combinations of the levels of the identifying
variables. To indicate that we want to compute the mean values, we use the argument
fun.aggregate=mean. The resulting data frame is stored in the object prtC.
Before displaying the contents of the object, we modify the names of the two last
variables, which contain the mean values of spec.fo and iso.fo. The display
of the first four records of prtC shows the means per fiber type and occasion for
the subject "5". Note that, for spec.fo, the mean values correspond to the values
reported at the end of Panel R3.8.

Figure 3.5 shows the pre- and post-training mean values of the specific force for
all subjects separately for the two fiber types and training intensities. The figure
was created using the function dotplot() from the package lattice. To increase
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interpretability of this figure, we ordered the subjects on the y-axis within each study
group by mean values of the pre-training spec.fo for type-1 fibers. If for a given
subject like, e.g., "335", the pre-training measures were not available, the post-
training measures were used instead. For brevity, we do not show the syntax used to
create the figure.

Several observations can be made based on the figure:

• There is no clear effect of the training intensity
• In general, measurements of the specific force are higher for type-2 than for

type-1 fibers
• On average, post-training values are larger than pre-training measurements
• For both types of fibers, there is a considerable variability between subjects with

respect to the overall level of measurements and with respect to the magnitude of
the post-pre differences

• There is a correlation between the mean measurements observed for the same
individual, as seen, e.g., from the similar pattern of measurements for both types.

These observations will be taken into account when modeling the data in Part IV of
the book.

Note that the plot in the lower-left panel of Fig. 3.5 confirms the missing pre-
training measurements for type-1 fibers for the subject "335".

Figure 3.6 presents information for the specific force for the type-1 fibers. More
specifically, it shows box-and-whiskers plots for the individual measurements of
the specific force for the two measurement occasions and training intensities. All
63 subjects on the y-axis are ordered in the same way as in Fig. 3.5. Figure 3.6 was
created using the function bw() from the package lattice. Note, however, that we do
not present the detailed code. The plots suggest that the subject-specific variances
of the pre-training measurements are somewhat smaller than the post-training ones.
There is also a considerable variability between the subjects with respect to the
variance of the measurements.

Figure 3.7 presents the individual pre-post differences of the mean values for
the specific force for the type-1 fibers for the two training-intensity groups. The
differences were ordered according to increasing values within each training group.
To conserve space, we do not show the syntax used to create the figure. The plots
indicate an outlying value of the difference for the subject "275" in the low-intensity
training group.

3.4 SII Project: Gain in the Math Achievement Score

In this section, we conduct an exploratory analysis of the SII data that were
described in Sect. 2.4. We focus on the measurements of the gain in the math
achievement score, stored in the variable mathgain (see Sect. 2.4.1). Given the
hierarchical structure of the data, we divide the analysis into three parts, in which
we look separately at the school-, class-, and child-level data.
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Fig. 3.6 PRT Trial: Subject-specific box-and-whiskers plots for the specific force by training
intensity and measurement occasion (type-1 fibers only)

First, however, we check whether the data frame SIIdata contains complete
information for all variables for all pupils. Toward this end, in Panel R3.10, we
use the function sapply(). It applies the function, specified in the FUN argument,
to each column (variable) of the data frame SIIdata. The latter function checks
whether any value in a particular column is missing. The displayed results indicate
that only the variable mathknow contains missing values. By applying the function
sum() to the vector resulting from the transformation of a logical vector indicating
the location of missing values in the variable mathknow to a numeric vector, we
check that the variable contains 109 missing values. The nonmissing values range
from −2.50 to 2.61.
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Fig. 3.7 PRT Trial: Individual post-pre differences of the mean values for the specific force,
ordered by an increasing value, for the two training intensity groups (type-1 fibers only)

R3.10 SII Project: The number of missing values for variables included in the
SIIdata data frame

> data(SIIdata, package = "nlmeU")

> sapply(SIIdata, FUN = function(x) any(is.na(x)))

sex minority mathkind mathgain ses yearstea mathknow

FALSE FALSE FALSE FALSE FALSE FALSE TRUE

housepov mathprep classid schoolid childid

FALSE FALSE FALSE FALSE FALSE

> sum(as.numeric(is.na(SIIdata$mathknow)))

[1] 109

> range(SIIdata$mathknow, na.rm = TRUE)

[1] -2.50 2.61

3.4.1 School-Level Data

In this section, we investigate the school-level data.
First, in Panel R3.11, we use the function xtabs() to tabulate the number of

pupils per school. The result is stored in the array schlN. The display of the array is
difficult to interpret. By applying the function range(), we check that the number
of pupils per school varied between 2 and 31. By applying the function xtabs()

to the array schlN, we obtain the information about the number of schools with a
particular number of pupils. For instance, there were two schools for which data for
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only two pupils are included in the data frame SIIdata. On the other hand, there
was only one school for which data for 31 pupils were collected.

R3.11 SII Project: Extracting the information about the number of pupils per school

> (schlN <- xtabs(~schoolid, SIIdata)) # Number of pupils per school

schoolid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11 10 14 6 6 12 14 16 6 18 31 27 9 15 13 6

. . . [snip]
97 98 99 100 101 102 103 104 105 106 107

6 2 19 13 16 11 8 6 10 2 10

> range(schlN)

[1] 2 31

> xtabs(~schlN) # Distribution of the number of pupils over schools

schlN

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 27 31

2 4 6 5 8 5 9 9 10 7 7 6 3 5 4 2 2 3 1 2 2 1 3 1

In Panel R3.12, we obtain the information about the mean value of variables
mathkind and mathgain for each school (see Sect. 2.4.1). Toward this end, with the
help of the function by(), we apply the function colMeans() to the values of the
two variables within the groups defined by the same level of the factor schoolid,
i.e., within each school. Note that the resulting output has been abbreviated.

R3.12 SII Project: Computation of the mean value of pupils’ math scores for each
school

> attach(SIIdata)

> (mthgM <- by(cbind(mathgain, mathkind), schoolid, colMeans))

INDICES: 1

mathgain mathkind

59.636 458.364

------------------------------------------------

. . . [snip]
------------------------------------------------

INDICES: 107

mathgain mathkind

48.2 464.2

> detach(SIIdata)
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Panel R3.13 shows the syntax for constructing the data frame schlDt, which
contains the school-specific means of variables mathgain, mathkind, and house-

pov. In particular, in Panel R3.13a, we use the functions melt() and cast() (for an
explanation of the use of the functions, see the description of Panel R3.9) to create
the data frame cst1, which contains the number of classes and children for each
school. On the other hand, in Panel R3.13b, we use the functions to create the data
frame cst2with the mean values of variables mathgain,mathkind, and housepov
for each school. Finally, in Panel R3.13c, we merge the two data frames to create
schlDt. Note that, after merging, we remove the two auxiliary data frames.

R3.13 SII Project: Constructing a data frame with summary data for schools
(a) Creating a data frame with the number of classes and children for each school

> library(reshape)

> idvars <- c("schoolid")

> mvars <- c("classid", "childid")

> dtm1 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)

> names(cst1 <-

+ cast(dtm1,

+ fun.aggregate = function(el) length(unique(el))))

[1] "schoolid" "classid" "childid"

> names(cst1) <- c("schoolid", "clssn", "schlN")

(b) Creating a data frame with the school-specific means of selected variables

> mvars <- c("mathgain", "mathkind", "housepov")

> dtm2 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)

> names(cst2 <- cast(dtm2, fun.aggregate = mean))

[1] "schoolid" "mathgain" "mathkind" "housepov"

> names(cst2) <- c("schoolid", "mthgMn", "mthkMn", "housepov")

(c) Merging the data frames created in parts (a) and (b) above

> (schlDt <- merge(cst1, cst2, sort = FALSE))

schoolid clssn schlN mthgMn mthkMn housepov

1 1 2 11 59.636 458.36 0.082

2 2 3 10 65.000 487.90 0.082

3 3 4 14 88.857 469.14 0.086

4 4 2 6 35.167 462.67 0.365

. . . [snip]
107 107 2 10 48.200 464.20 0.177

> rm(cst1, cst2)
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The data frame schlDt is used in Panel R3.14 to explore the school-specific
mean values of variables housepov and mathgain. In particular, in Panel R3.14a,
we use the function summary() to display the summary statistics for the mean
values. On the other hand, in Panel R3.14b, we use the function xyplot() from
the package lattice to construct scatterplots of the mean values of the variable
mathgain versus variables housepov and mthkMn.

R3.14 SII Project: Exploring the school-level data. The data frame schlDt was
created in Panel R3.13
(a) Summary statistics for the school-specific mean values of housepov

> summary(schlDt$housepov)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0120 0.0855 0.1480 0.1940 0.2640 0.5640

(b) Scatterplots of the school-specific mean values for housepov and mathkind

> library(lattice)

> xyplot(mthgMn ~ housepov, # Fig. 3.8a

+ schlDt, type = c("p", "smooth"), grid = TRUE)

> xyplot(mthgMn ~ mthkMn, # Fig. 3.8b

+ schlDt, type = c("p", "smooth"), grid = TRUE)

The scatterplots are shown in Fig. 3.8. The plot in Fig. 3.8a does not suggest
a strong relationship between the school-specific mean values of mathgain and
housepov. On the other hand, in Fig. 3.8b there is a strong negative relationship
between the mean values of mathgain and mathkind: the larger the mean for the
latter, the lower the mean for the former. The relationship suggests that the higher
the mean grade of pupils in the kindergarden, the lower the mean gain in the math
achievement score of pupils. Note that the plots in Fig. 3.8 should be interpreted
with caution, as they show school-specific means, which were estimated based on
different numbers of observations.

3.4.2 Class-Level Data

In this section, we investigate the class-level data.
First, in Panel R3.15, we use the function xtabs() to tabulate the number of

pupils per class. The result is stored in the array clssN. By applying the function
sum() to the array, we check that the total number of pupils is 1,190, in agreement
with the information obtained, e.g., in Panel R2.10. With the help of the function
range(), we find that the number of pupils per class varies between 1 and 10. By
applying the function xtabs() to the array clssN, we obtain information about the
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a b

Fig. 3.8 SII Project: Scatterplots of the school-specific mean values of the variable mathgain

versus variables (a) housepov and (b) mthkMn

number of classes with a particular number of pupils. The information is stored in
the array clssCnt. The display of the array indicates that, for instance, there were
42 classes with only one pupil included in the data frame SIIdata. On the other
hand, there were two classes for which data for 10 pupils were collected. Finally,
by applying the function sum() to the array clssCnt, we verify that the data frame
SIIdata contains information about 312 classes.

R3.15 SII Project: Extracting the information about the number of pupils per class

> (clssN <- xtabs(~ classid, SIIdata))

classid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5 3 3 6 1 5 1 4 3 2 4 5 9 4 1 6

. . . [snip]
305 306 307 308 309 310 311 312

4 4 4 3 3 3 2 4

> sum(clssN) # Total number of pupils

[1] 1190

> range(clssN)

[1] 1 10

> (clssCnt <- xtabs(~clssN)) # Distribution of no. of pupils/classes

clssN

1 2 3 4 5 6 7 8 9 10

42 53 53 61 39 31 14 13 4 2

> sum(clssCnt) # Total number of classes

[1] 312
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In Panel R3.16, we present an abbreviated printout of the contents of the data
frame clssDt. The data frame contains the mean values of variables mathgain and
mathkind for each class, together with the count of pupils, clssN. It also includes
the values of the class-level variables mathknow and mathprep and the school-level
variable housepov. The data frame was created using a syntax (not shown) similar
to the one presented in Panel R3.13.

R3.16 SII Project: Contents of the class-level data. The auxiliary data frame clssDt
was created using a syntax similar to the one shown in Panel R3.13

> clssDt

classid housepov mathknow mathprep clssN mthgMn mthkMn

1 1 0.335 -0.72 2.50 5 47.8000 459.00

2 2 0.303 0.58 3.00 3 65.6667 454.00

3 3 0.040 0.85 2.75 3 15.6667 492.67

4 4 0.339 1.08 5.33 6 91.5000 437.00

. . . [snip]
312 312 0.546 -1.37 2.00 4 47.5000 418.50

Figure 3.9 presents scatterplots of the class-specific means of the variable
mathgain versus the values of the variable housepov and versus the class-specific
means of the variable mathkind. The figure was created using a syntax similar
to the one presented in Panel R3.14b based on the data from the data frame
clssDt. Figure 3.9a does not suggest a strong relationship between the mean values
of mathgain and housepov. On the other hand, as seen in Fig. 3.9b, there is a
strong negative relationship between the mean values of mathgain and mathkind.
These conclusions are similar to the ones drawn based on Fig. 3.8. As was the
case for the latter figure, the plots in Fig. 3.9 should be interpreted with caution,
as they show class-specific mean values estimated based on different numbers of
observations.

3.4.3 Pupil-Level Data

In this section, specifically in Panel R3.17, we explore the pupil-level data.
First, in Panel R3.17a, we construct an auxiliary data frame auxDt by merging

data frames SIIdata and clssDt. Note that the latter contains the class-level
data, including the means of variables mathgain and mathkind and the number
of pupils (see Panel R3.16). Next, with the help of the function within(), we
add a new factor, clssF, to auxDt and store the resulting data frame in the
object auxDt2. The factor clssF combines the information about the class and
the school for each pupil. The information is stored in a character string of the form:
classid\n:schoolid\n(clssN). The particular format of the string will prove
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a b

Fig. 3.9 SII Project: Scatterplots of the class-specific mean values of the variable mathgain

versus variables (a) housepov and (b) mthkMn

a b

Fig. 3.10 SII Project: Scatterplots of the observed values of mathgain for individual pupils versus
the (a) school/class indicator and (b) the variable housepov

useful in the construction of plots of the pupil-specific data. The format is illustrated
in the display of the first and last four records of the data frame auxDt2. Note that
we limit the display to variables classid, schoolid, clssN, and clssF.

In Panel R3.17b, we construct two plots of the pupil-level data. First, by applying
the function dotplot() from the package lattice to the data frame auxDt2, we
plot the values of the variable mathgain versus the levels of the factor clssF for
the schools with schoolid between 1 and 4. Then, using the function xyplot(),
we plot the values of the variable mathgain versus the values of the variable
houspov for all pupils from the data frame SIIdata. The resulting plots are shown
in Fig. 3.10.

The plot shown in Fig. 3.10a indicates considerable variability of the observed
values of the gain in the math achievement score even between the classes belonging
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R3.17 SII Project: Exploring the pupil-level data. The data frame clssDt was
created in Panel R3.16
(a) Adding the class-level data to the data frame SIIdata

> auxDt <- merge(SIIdata, clssDt, sort = FALSE)

> auxDt2 <-

+ within(auxDt,

+ {

+ auxL <- paste(classid, schoolid, sep = "\n:")

+ auxL1 <- paste(auxL, clssN, sep = "\n(")

+ auxL2 <- paste(auxL1, ")", sep = "")

+ clssF <- # Factor clssF created

+ factor(schoolid:classid, labels = unique(auxL2))

+ })

> tmpDt <- subset(auxDt2, select = c(classid, schoolid, clssN, clssF))

> head(tmpDt, 4) # First four records

classid schoolid clssN clssF

1 160 1 3 160\n:1\n(3)

2 160 1 3 160\n:1\n(3)

3 160 1 3 160\n:1\n(3)

4 217 1 8 217\n:1\n(8)

> tail(tmpDt, 4) # Last four records

classid schoolid clssN clssF

1187 96 107 8 96\n:107\n(8)

1188 96 107 8 96\n:107\n(8)

1189 239 107 2 239\n:107\n(2)

1190 239 107 2 239\n:107\n(2)

(b) Scatterplots of the pupil-level data

> library(lattice)

> dotplot(mathgain ~ clssF, # Fig. 3.10a

+ subset(auxDt2, schoolid %in% 1:4))

> xyplot(mathgain ~ housepov, SIIdata, # Fig. 3.10b

+ type = c("p", "smooth"))

> detach(package:lattice)

to the same school. Note that the interpretation of the plot is much enhanced by the
labels provided on the horizontal axis. The construction of the labels is facilitated
by the chosen format of the levels of the factor clssF.

The plot shown in Fig. 3.10b indicates the lack of a relationship between the
observed values of the gain in the math achievement score for individual pupils
and the values of the variable housepov. Note that a similar conclusion was drawn
for the school- and class-specific mean values of mathgain based on Figs. 3.8a
and 3.9a, respectively.
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3.5 FCAT Study: Target Score

The FCAT dataset have a rather simple structure and contents (see Sect. 2.5). The
main interest pertains to the distribution of the scores for the nine attainment targets,
which are stored in the variable scorec of the data frame fcat (Sect. 2.5.2). In
Panel R3.18, we present syntax addressing this issue.

R3.18 FCAT Study: Summarizing the information about the total scores for
attainment targets
(a) Summarizing scores for each child and attainment target

> data(fcat, package = "nlmeU")

> (scM <- with(fcat, tapply(scorec, list(id, target), mean)))

T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 4 6 4 1 7 6 6 5 5

2 3 4 6 2 7 4 6 3 3

. . . [snip]
539 0 3 5 1 6 3 5 2 4

(b) Histograms of scores for different attainment targets

> library(lattice)

> histogram(~scorec | target, data = fcat, # Fig. 3.11

+ breaks = NULL)

> detach(package:lattice)

In Panel R3.18a, we show how to obtain the mean value of the dependent variable
for each combination of levels of the crossed factors, i.e., id and target in the
fcat data frame. In particular, we use the function tapply() to apply the function
mean() to the variable scorec for each combination of levels of the crossed factors.
As a result, we obtain the matrix scM, which contains the mean value of the total
score for each child and each attainment target. Obviously, in our case, there is
only one observation for each child and target. Thus, by displaying a (abbreviated)
summary of the matrix scM, we obtain, in fact, a tabulation of individual scores for
all children.

In Panel R3.18b, we use the function histogram() from the package lattice
to construct a histogram of the observed values of total scores for each attainment
target. The resulting histograms are shown in Fig. 3.11. They clearly illustrate the
differences in the measurement scale for different targets, which result from the
varying number of items per target (Sect. 2.5). Some asymmetry of the distribution
of the scores can also be observed.



64 3 Data Exploration

Fig. 3.11 Histograms of individual total scores for different attainment targets

3.6 Chapter Summary

In this chapter, we presented exploratory analyses of the four case studies introduced
in Chap. 2. The results of the analyses will be used in the next parts of our book to
build models for the case studies.

In parallel to the presentation of the results of the exploratory analyses, we intro-
duced a range of R tools, which are useful for such analyses. For instance, functions
cast() and melt() from the package reshape are very useful in transforming data
involving aggregated summaries. The importance of using graphical displays is also
worth highlighting. Toward this aim, the tools available in packages graphics (R
Development Core Team, 2010) and lattice (Sarkar, 2008) are very helpful. The
former package implements traditional graphical displays, whereas the latter offers
displays based on a grid-graphics system (Murrell, 2005).
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Due to space limitations, our presentation of the tools was neither exhaustive
nor detailed. However, we hope that the syntax and its short description, which
were provided in the chapter, can help the reader in finding appropriate methods
applicable to the particular problem at hand.
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Chapter 4
Linear Models with Homogeneous Variance

4.1 Introduction

In Part II of this book, we consider the application of LMs to data originating from
research studies, in which observations are independent.

In a broad sense, LMs are used to quantify the relationship between a dependent
variable and a set of covariates with the use of a linear function depending on a
small number of regression parameters.

In this chapter, we focus on the classical LM, suitable for analyzing data
involving independent observations with a homogenous variance. The class of linear
models outlined in this chapter includes standard linear regression, analysis of
variance (ANOVA), and analysis of covariance (ANCOVA) models. In Chap. 7,
we will relax the assumption of variance homogeneity and consider LMs that
are appropriate for analyzing independent observations with nonconstant variance.
Besides linear models, there are other parametric models that can be used for the
analysis of data with independent observations. They include, e.g., generalized
linear models (GLIMs) and nonlinear regression models, but they are beyond the
scope of this book.

By outlining the basic concepts of LMs in Chaps. 4 and 7, we set the stage for
fixed-effects LMs for correlated data (Part III) and LMMs (Part IV). In particular,
we introduce several key concepts needed later in the context of LMMs, such as
design matrix or likelihood estimation. We hope that, by introducing the concepts
in a simpler and more familiar framework, their use in the context of more complex
models may become easier to encompass.

In the current chapter, we provide theoretical concepts underlying the classical
LM. Note that, in our presentation, we pay special attention to those concepts that
are implemented in R. A more detailed treatment of the concepts can be found in,
for instance, the monograph by Neter et al. (1990).

The chapter is structured as follows. In Sect. 4.2, we specify the classical LM in
various ways. Section 4.3 introduces the concept of an offset. Section 4.4 contains a
review of the estimation methods. In Sect. 4.5, we briefly discuss the diagnostic

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__4,
© Springer Science+Business Media New York 2013
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tools, while in Sect. 4.6, inferential methods are presented. Model selection and
reduction methods are outlined in Sect. 4.7. A summary of the chapter is provided
in Sect. 4.8.

The implementation of the theoretical concepts and methods for the classical
LMs in R will be discussed in Chap. 5.

4.2 Model Specification

In this section, we present the formulation of the classical LM. In particular, we
look at the specification of the model both at the level of the observation and for all
observations.

4.2.1 Model Equation at the Level of the Observation

The classical LM for independent, normally distributed observations yi (i =
1, . . . , n) with a constant variance can be specified in a variety of ways.

A commonly used specification assumes the following representation for the
observation yi:

yi = x(1)i b1 + . . .+ x(p)i bp + ei, (4.1)

where
ei ∼N (0,s 2), (4.2)

x(1)i , . . . , x(p)i (p < n) are values of known covariates for the i-th observation,
b1, . . . , bp are the corresponding (unknown) regression parameters, and where we
assume that the residual random errors e1, . . . , en are independent.

Upon defining the column vectors xi ≡ (x(1)i , . . . ,x(p)i )′, and b ≡ (b1, . . . ,bp)
′,

which contain the covariates’ values for the i-th subject and fixed effects, respec-
tively, (4.1) can be written as:

yi = x′ib+ ei. (4.3)

From (4.1)–(4.3), it follows that the expected value and variance of yi are,
respectively,

E(yi) ≡ mi = x′ib, (4.4)

Var(yi) = s 2. (4.5)
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4.2.2 Model Equation for All Data

The model specified in (4.1) and (4.2) can be expressed in a more compact way
upon defining

y≡

⎛

⎜

⎝

y1
...

yn

⎞

⎟

⎠
, e≡

⎛

⎜

⎝

e1
...

en

⎞

⎟

⎠
,

and

X ≡

⎛

⎜

⎝

x′1
...

x′n

⎞

⎟

⎠=

⎛

⎜

⎜

⎝

x(1)1 x(2)1 . . . x(p)1
...

...
. . .

...

x(1)n x(2)n . . . x(p)n

⎞

⎟

⎟

⎠

≡
(

x(1) x(2) . . . x(p)
)

. (4.6)

Then, (4.1) and (4.2) can be written as

y = Xb+ e, (4.7)

where
e∼Nn(0,R), (4.8)

with the variance–covariance matrix R=s 2In, where In is the n×n identity matrix.
For the sake of simplicity, we assume that the design matrix X, defined in (4.6), is

of full rank p or, equivalently, we assume that its columns x(1), . . . , x(p) are linearly
independent. Note that the i-th row in the matrix X corresponds to the vector xi,
used in (4.3) and (4.4).

4.3 Offset

Models (4.1) and (4.2) can be modified by introducing into (4.1) a known additional
term x0

i for all i. This leads to

yi = x(0)i + x(1)i b1 + . . .+ x(p)i bp + ei, (4.9)

where the distribution of the residual error ei is the same as that in (4.2).
Model equation (4.9) can be represented for all data as

y = x(0) +Xb+ e, (4.10)

where x(0) ≡ (x(0)1 , . . . ,x(0)n )′ and the distribution of the residual error vector e is
given by (4.8).
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The term x(0)i in (4.9) or, equivalently, the column vector x(0) in (4.10), is referred
to as an offset.

An LM with an offset can be represented as a classical LM specified by (4.7).
Toward this end, the offset can be absorbed into the design matrix X. That is, the
offset is included as an additional (the first) column of the design matrix, and the
corresponding parameter b0 is assumed to be known and equal to 1.

It should be noted that an offset can easily be accommodated in the classical LM
without the need for an explicit modification of the design matrix. By removing

the term x(0)i from the mean structure on the right-hand side of (4.9) and defining

ỹi ≡ yi− x(0)i , we obtain the classical LM, given by (4.1) and (4.2), with ỹi as the
dependent variable. For this reason, LMs with offsets are rarely used in practice.
The concept is more commonly used in GLIMs, which will not be addressed in
this book. However, the concept is important to illustrate various computational
approaches used, for example, in the context of the generalized least squares
algorithm (Sect. 7.8.1.1). Moreover, offsets are also used in R in the context of LMs
as an argument of functions like, e.g., lm(), which are used to fit the models. For
these reasons, it is convenient to introduce the concept now.

4.4 Estimation

Researchers are often interested in finding estimates of a set of parameters b
and s 2. In the context of the classical LM, specified in Sect. 4.2, the most common
estimation technique is the method of ordinary least squares (OLS). We describe
it in Sect. 4.4.1. However, OLS is less suitable for more complex LMs, including
LMMs. Therefore, although it is not typically done in the context of the classical
LM, in Sects. 4.4.2 and 4.4.3, we also introduce the maximum likelihood (ML) and
the restricted maximum-likelihood (REML) estimation. These methods, in contrast
to OLS, are more broadly applicable. Another reason for introducing the likelihood-
based approaches this early is that they are implemented in the nlme package,
namely, by the gls() function, which can be used to fit the classical LM as well.

4.4.1 Ordinary Least Squares

In OLS, the estimates of b are obtained by minimization, with respect to b, of the
residual sum of squares:

n

∑
i=1

(yi− x′ib)
2. (4.11)
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The resulting estimator of b is expressed in a closed form as follows:

̂bOLS ≡
(

n

∑
i=1

xix
′
i

)−1 n

∑
i=1

xiyi = (X′X)−1X′y. (4.12)

It is worth noting that the derivation of the OLS estimate does not require the
normality assumption, specified by (4.2). Moreover, it is valid under the assumption
of uncorrelated residual errors, which is a weaker assumption than the assumption
of independence. This is in contrast to the ML and REML estimation, which are
presented in the next two sections.

Although estimation of s 2 is not part of OLS calculations, the following
unbiased estimator of s 2

ŝ 2
OLS ≡

1
n− p

n

∑
i=1

(

yi− x′îbOLS

)2

=
1

n− p

(

y−X̂bOLS

)′(
y−X̂bOLS

)

, (4.13)

is typically used.

4.4.2 Maximum-Likelihood Estimation

The classical LM defined in (4.1) and (4.2) implies that observations, yi, are
independent and normally distributed. Consequently, the likelihood function for this
model given observed data is defined as follows:

LFull(b,s
2;y)≡ (2ps 2)−n/2

n

∏
i=1

exp

[

− (yi− x′ib)
2

2s 2

]

. (4.14)

Its maximization over b and s 2 is equivalent to maximization of the corresponding
log-likelihood function:

�Full(b,s
2;y)≡−n

2
log(s 2)− 1

2s 2

n

∑
i=1

(yi− x′ib)
2. (4.15)

Note that the contribution of data for observation i to the log-likelihood function,
specified in (4.15), is equal to

�Full(i)(b,s
2;yi)≡−

1
2

log(s 2)− (yi− x′ib)
2

2s 2 . (4.16)
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Maximization of (4.14) provides an ML estimator of b,

̂bML ≡
(

n

∑
i=1

xix
′
i

)−1 n

∑
i=1

xiyi, (4.17)

exactly the same as ̂bOLS, displayed in (4.12). The ML estimator of s 2 can be written
explicitly as follows:

ŝ 2
ML ≡

1
n

n

∑
i=1

(

yi− x′îbML

)2
. (4.18)

Note that (4.18) differs from (4.13). Indeed, ŝ 2
ML is biased downwards by a factor

(n− p)/n. This is because the uncertainty in the estimation of b is not accounted
for in (4.18). The bias is removed from (4.18) if the restricted maximum-likelihood
(REML) estimation is used, as discussed in the next section.

4.4.3 Restricted Maximum-Likelihood Estimation

To obtain an unbiased estimate for s 2, we will use an estimation approach
that is orthogonal to the estimation of b. This can be done by considering the
likelihood function based on a set of n− p independent contrasts of y (Verbeke
and Molenberghs 2000, p. 43–46). The resulting log-restricted-likelihood function
is given by

�REML(s
2;y)≡−n− p

2
log(s 2)− 1

2s 2

n

∑
i=1

r2
i , (4.19)

where

ri ≡ yi− x′i

(

n

∑
i=1

xix
′
i

)−1 n

∑
i=1

xiyi.

Maximization of (4.19) with respect to s 2 leads to the following REML estimator:

ŝ 2
REML ≡

1
n− p

n

∑
i=1

r2
i . (4.20)

Note that ∑n
i=1 r2

i , used in ŝ 2
REML, is the same as in ŝ 2

ML, defined in (4.18). However,
n− p is used in the denominator in lieu of n. As a result, ŝ 2

REML is an unbiased
estimator of s 2.
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The REML objective function does not allow one to directly estimate the fixed-
effects coefficients in b. For this reason, we employ the formula for ̂bML, given

in (4.17). The estimate ̂bREML of b obtained using this method is equal to ̂bML.
This equality is true for the classical LM, given by (4.1) and (4.2), which assumes
independent observations with homogeneous variance. However, it does not hold
for models with less restrictive assumptions about the residual variance, discussed
in subsequent chapters.

Finally, it is worth noting that the OLS estimators of b and s 2, given in (4.12)
and (4.13), respectively, are equivalent to the REML estimates. This OLS–REML
equivalence for the classical LM with independent, homoscedastic (constant vari-
ance) residuals will not hold in general for more complex models considered later
in the book.

4.4.4 Uncertainty in Parameter Estimates

The variance–covariance matrix of ̂b equals

Var(̂b) = s 2

(

n

∑
i=1

xix
′
i

)−1

= s 2 (X′X
)−1

(4.21)

and is estimated by

̂Var(̂b) ≡ ŝ 2

(

n

∑
i=1

xix
′
i

)−1

= ŝ 2 (X′X
)−1

, (4.22)

where ŝ 2 is equal to ŝ 2
OLS, ŝ 2

ML, or ŝ 2
REML, depending on the estimation method used.

It is worth noting that OLS- and REML-based estimates together with their
estimated variance–covariance matrices, computed by using (4.22), are identical.

On the other hand, even though the ML- and REML-based estimates of b are
equal to each other, their estimated variance–covariance matrices are different. This
is because the ML- and REML-based estimators of s 2, defined in (4.18) and (4.20),
respectively, differ. In fact, given the bias of ŝ 2

ML, one should consider the variance–
covariance matrix of ̂b based on ŝ 2

REML, especially in small sample size studies.

4.5 Model Diagnostics

After fitting an LM, and before making any inferences based upon it, it is
important to check whether the model assumptions are met. The key assumptions for
model (4.1) and (4.2) are that the residual errors, ei, are independent, homoscedastic,
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and that the effect of covariates can be written as a linear function of their values
and the corresponding parameters. Note that the normality assumption is important
in the context of the ML estimation, but not for OLS, as the latter does not require it.
The main tools for checking the assumptions are based on the estimated residual
errors or, simply, residuals.

Additionally, it might be of interest to check whether the fit of the model is
sensitive to the inclusion or exclusion of certain observations. This process is called
influence diagnostics and is described in Sect. 4.5.3.

4.5.1 Residuals

Commonly used devices in residual diagnostics are plots, which are informally
evaluated with respect to the presence or absence of specific patterns and/or outlying
data points. Such plots can be based on several types of residuals, which are
presented in this section.

4.5.1.1 Raw Residuals

Various types of residuals can be considered. Here, we consider simple versions.
These will later be generalized in Chaps. 7, 10, and 13, in the context of more
advanced models, including LMMs.

The most basic residuals are the raw residuals, defined for the i-th observation as
êi ≡ yi− m̂i, where m̂i ≡ x′îb is referred to as the fitted value.

4.5.1.2 Scaled Residuals

The raw residuals are often scaled, i.e., divided by their true or estimated standard
deviations, so that their interpretation does not depend on the measurement units
of the dependent variable. It would be preferable to scale the residuals by their
true standard deviations, i.e., by s , to obtain standardized residuals. In practice,
however, the true standard deviation is rarely known. Thus, scaling is done by using
the estimated standard deviation, ŝ , instead. Residuals obtained in this manner are
called studentized residuals. This category can be further subdivided into internally
studentized residuals and externally studentized residuals. The former are obtained
when the observation corresponding to the residual in question is included in
the estimation of the standard deviation, while the latter are obtained when the
observation is excluded from the estimation. Table 4.1 summarizes the basic forms
of scaled residuals, along with the naming conventions used in the R syntax. Note
that ŝ denotes an estimate of s based on all observations, while ŝ (-i) is an estimate
obtained after excluding the i-th observation from the calculations.
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Table 4.1 The basic forms of scaled residuals for linear models

R naming Mathematical
Residual type convention formula

Standardized by s êi/s
Internally studentizeda Standardized êi/ŝ
Externally studentizedb Studentized êi/ŝ (-i)
aŝ is an estimate of s based on all observations,
bŝ (-i) is an estimate of s obtained after excluding the i-th observation.

We note that by replacing ŝ with ŝ (-i) the external studentization technique
allows for outliers to stand out in a more prominent fashion compared to the
internal one.

The scaling of raw residuals presented in Table 4.1 does not address an important
issue, however, which is the fact that the variances of the residuals, êi, differ, even
though the variances of the true errors, ei, are all equal.

To address the issue, a more advanced way of scaling of residuals is necessary. It
is based on the n× n matrix H, defined as

H ≡ X(X′X)−1X′. (4.23)

The matrix H represents a projection that maps the vector y on the subspace spanned
by the columns of the design matrix X. The matrix is referred to as the leverage
matrix or the hat matrix.

Note that the vector of the predicted values of y, m̂ = X̂b, can be expressed as
m̂ = Hy.

In what follows, we present a rationale for using the hat matrix to scale residuals.
The vector of raw residuals ê = y−X̂b for all data can be expressed with the use of
the matrix H as follows:

ê = y−X̂b = (In−H)y, (4.24)

where In denotes the n × n identity matrix. By simple algebra we obtain the
following formula for the variance–covariance matrix of ê:

Var(̂e) = s 2(In−H). (4.25)

In case the matrix H in (4.25) is not proportional to In, the raw residuals are
potentially heteroscedastic and/or correlated. Thus, direct interpretation of the raw
residuals may not be straightforward. Moreover, as already mentioned, the scaled
residuals, presented in Table 4.1, do not address the issue of heteroscedasticity
and/or correlation.

To tackle the problem of unequal variances of the residuals from Table 4.1, a
scaling that involves the H matrix can be used. Table 4.2 presents the residuals,
corresponding to those shown in Table 4.1, which are scaled by standard error
estimates involving diagonal elements hi,i of the H matrix. Note that the scaling



78 4 Linear Models with Homogeneous Variance

addresses the problem of heteroscedasticity of the raw residuals, but does not
remove the correlation between the scaled residuals. To address this, error recovery
methods are used. They are briefly discussed next.

Error Recovery

Methods which aim at removing both the heteroscedasticity and correlation of
the raw residuals êi are referred to as error recovery methods (Schabenberger and
Gotway 2005).

The general idea in these approaches is to transform the residuals in such a way
that the transformed residuals have a zero mean, a constant variance, and become
uncorrelated. The n× n matrix P ≡ In−H, used in (4.24) and (4.25), plays a key
role in this endeavor. Note that the matrix P is not of full rank. More specifically,
assuming that n > p, the rank of P is equal to or less than n− p. Consequently,
we may have at most n− p transformed, uncorrelated residuals. In contrast to the
raw and scaled residuals, residuals obtained by using error recovery methods may
represent more than one observation, which makes their interpretation difficult.
These types of residuals have been developed for the classical LM, described in
Sect. 4.2, but do not generalize easily to more complex LMs. Therefore, we do not
describe these residuals in more detail.

4.5.2 Residual Diagnostics

In the context of the LM, defined by (4.1) and (4.2), the most frequently used
example of a diagnostic plot is the plot of raw residuals êi against fitted values
m̂i (see, e.g., Fig. 6.1a). The plot is assessed with respect to whether it displays a
random pattern and constant variability along the x-axis. It is also used to detect
outliers, i.e., observations with atypical values for the dependent variable and/or for
covariates. For continuous covariates, a scatterplot of the residuals against the values
of the covariate can also be used. A nonrandom pattern in the plot is interpreted as
an indication of a misspecification of the functional form of the covariate.

Another useful plot is the normal quantile–quantile (Q–Q) plot of the residuals
(see, e.g., Fig. 6.1b). In this plot, the quantiles of ordered residuals are plotted
against the corresponding values for the standard normal distribution. If the residuals
are (at least approximately) normally distributed, the shape of the plot should not
deviate from a straight line. On the other hand, if the distribution of the residuals
is, e.g., symmetric, but with “thicker” tails than the normal, the plot will look like a
stretched S. A skewed distribution will result in a plot in the form of an arch.

However, from the discussion on different types of residuals presented earlier in
this section, it follows that the raw residuals are intrinsically heteroscedastic and
correlated. For this reason, the scatterplots and the Q–Q plot are preferably based
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Table 4.2 Scaled residuals that involve hi,i, the diagonal elements of
the hat matrix

Residual type Adjusted by hi,i

Standardized (̂ei/s )/
√

1−hi,i

Internally studentizeda (̂ei/ŝ )/
√

1−hi,i

Externally studentizedb (̂ei/ŝ (-i))/
√

1−hi,i
aŝ is an estimate of s based on all observations
bŝ (-i) is an estimate of s obtained after excluding the i-th observation

on the scaled residuals, shown in Table 4.2, as they tend to remove not-desired
heteroscedasticity carried by raw residuals.

If the plot of raw residuals reveals a nonlinear relationship between the dependent
variable and a covariate, a suitable transformation of the dependent variable or
the covariate may be considered to obtain a linear relationship (Neter et al. 1990,
Sect. 4.6). Examples of transformations include a logarithmic transformation,
square root, inverse, etc.

Instead of using a simple function, e.g., a logarithm, to transform a covariate,
a more flexible transformation can be used. For instance, the use of a spline can
be considered. In general, a spline is a sufficiently smooth piecewise-polynomial
function. It allows for modeling a complex nonlinear relationship between the
dependent variable and a covariate. More details on splines can be found in the
monograph by, e.g., Hastie et al. (2009).

If a transformation is applied to the covariate, it should be noted that the
interpretation of the estimated parameter b may become more difficult. This is due
to the fact that it may be performed on a nontypical measurement scale, e.g., the
square-root scale. In this context the advantage of using a logarithmic transformation
is that the parameter estimates obtained on a logarithmic scale can be exponentiated
and directly interpreted as multiplicative effects on the original scale.

A special class of transformations of the dependent variable are variance-
stabilizing transformations. They can be used when the assumption of homogeneous
variance of the observations seem to be violated. In particular, suppose that the
variance can be expressed, at least approximately, as a function of the expected value
g(m). In that case, applying the transformation h(y) =

∫

[g(y)]−1/2dy to the observed
values of the dependent variable should result in values with approximately
homogeneous variance. For example, for g(m) = am we get h(y) = 2

√
y/a, i.e., a

square-root transformation.
Note that it may be difficult to find a variance-stabilizing transformation that

would alleviate the problem of the non-homogeneous-variance assumption. In this
case, the use of an LM allowing for heterogeneous variance can be considered. Such
models are presented in Chap. 7.

It should be kept in mind that if a transformation is applied to the dependent
variable, the distribution of the transformed variable may change. Thus, after
applying the transformation, the normal Q–Q plot of the scaled residuals should
be checked for symptoms of the possible violation of the assumption of normality
of the residual errors.
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4.5.3 Influence Diagnostics

Influence diagnostics are formal techniques allowing for the identification of obser-
vations that influence estimates of b or s 2. The idea of influence diagnostics for a
given observation is to quantify the effect of omission of this observation from the
data on the results of the analysis of the entire dataset. Although influence diagnostic
methods are presented here for individual observations, they can be extended easily
to a more general case in which the influence of multiple observations, e.g., pairs,
triplets, etc., is investigated.

Influence diagnostics uses a variety of tools (Schabenberger 2004). In the context
of the classical LM, a rather popular measure is Cook’s distance, Di. The measure
is the scaled change, induced by the exclusion of a particular observation, in
the estimated parameter vector. For fixed effects, the general formula for Di for
observation i is

Di ≡
(

̂b−̂b(-i)

)[

̂Var(̂b)
]−1(

̂b−̂b(-i)

)

rank(X)
, (4.26)

where ̂b(-i) is the estimate of the parameter vector b obtained by fitting an LM to the
data with the i-th observation excluded. For the classical LM, defined in (4.1) and
(4.2), Di can be expressed as

Di =
ê2

i hi,i

ŝ 2
(1− hi,i)

2
,

where hi,i is the i-th diagonal element of the matrix H, defined in (4.23). The larger
the value of Di, the larger the influence of the i-th observation on the estimate of b.

Note that Cook’s distance is used to assess the influence of a given observation
on ̂b and does not take into account changes of ŝ . A basic tool to investigate the
influence of a given observation on estimates of both b and s 2 is the likelihood
displacement. The likelihood displacement, LDi, is defined as twice the difference
between the log-likelihood computed at a maximum and displaced values of
estimated parameters:

LDi ≡ 2×
[

�Full(̂Θ;y)− �Full(̂Θ(-i);y)
]

, (4.27)

where ̂Θ ≡ (̂b ′, ŝ 2
)′ is the ML estimate of Θ obtained by fitting the classical LM,

defined in Sect. 4.2, to all data, while ̂Θ(-i) ≡ (̂b ′(-i), ŝ
2
(-i))

′ is the ML estimate
obtained by fitting the model to the data with the i-th observation excluded. Note that
the value of the function �Full(̂Θ(-i);y), used in (4.27), is computed as in (4.15), i.e.,
with respect to all data, including the i-th observation. Verbeke and Molenberghs
(2000, Sect. 11.2), following the work of Cook (1986), present more formal and
general definitions of the likelihood displacement.
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Formulae (4.26) and (4.27) for Cook’s distance and the likelihood displacement,
respectively, can be adapted for use in more advanced LMs, which will be
considered in Parts II–IV of this book. More details about the measures can be
found in, e.g., Chatterjee et al. (2000).

4.6 Inference

The main focus of inference in the classical LM, defined in (4.1) and (4.2), is the
fixed parameters b. To test hypotheses about the values of the parameters, three
general testing paradigms are commonly used: the Wald, likelihood ratio, and score
tests. In Sect. 4.6.1, we briefly outline the general principles of the construction of
the tests, followed by considerations related to a linear case. We will refer to them
in subsequent chapters of the book. In Sect. 4.6.2, we focus on the construction of
confidence intervals for linear models.

4.6.1 The Wald, Likelihood Ratio, and Score Tests

4.6.1.1 Nonlinear Case

Assume that we have a sample of n independent, identically distributed observations
from a distribution with density f (y;J), where J is a p-dimensional vector of
parameters. Let y ≡ (y1, . . . ,yn). Denote the log-likelihood function of the sample
as �(J;y). The score function S(J;y) is defined as the vector of partial derivatives
of �(J;y) with respect to J:

S(J;y)≡ ∂�(J;y)
∂J

.

At the ML estimate (MLE) ̂J of J, we have S(̂J;y) = 0.
The observed Fisher information matrix, I(J;y), is defined as the negative second

derivative, i.e., the negative Hessian matrix of �(J;y) with respect to J:

I(J;y)≡−∂ 2�(J;y)

∂J∂J′
.

The observed Fisher information matrix evaluated at the MLE is I(̂J) ≡ I(̂J;y).
Note that the variance of the ML estimator ̂J of J can be estimated by the inverse
of I(̂J).

The expected Fisher information matrix, I(J), is defined as

I(J)≡ E[I(J;y)],

where the expectation is taken over the distribution of y.



82 4 Linear Models with Homogeneous Variance

Assume that we want to test the hypothesis

H0 : G(J) = 0 versus HA : G(J) �= 0, (4.28)

where G(J)≡ [g1(J), . . . ,gq(J)] is a function with continuous first-order derivatives

for all of its components. Let us denote by ̂J0 and ̂JA the ML estimators of J under
H0 and HA, respectively.

The statistic of the likelihood-ratio (LR) test is defined as

TL ≡−2[�(̂J0;y)− �(̂JA;y)] (4.29)

and is calculated based on the maximum value of the log-likelihood function
obtained under the null and alternative hypotheses.

The Wald-test statistic is defined as

TW =
[

G(̂JA)
]′
{[

∂G(̂JA)

∂J

]

I(̂JA)
−1

[

∂G(̂JA)

∂J

]′}−1

G(̂JA),

where ∂G(̂JA)
∂J is a q×p Jacobian matrix for the function G evaluated at J = ̂JA. The

statistic value is calculated based on the magnitude of the difference between the
MLE of G(J) and the value corresponding to H0, i.e., 0, relative to the variability of
the MLE.

Finally, the score-test statistic is defined as

TS ≡
[

S(̂J0)
]′ I(̂J0)

−1S(̂J0).

The test statistic assesses the magnitude of the slope of the log-likelihood function
relative to the curvature of the function at the restricted MLE.

Asymptotically, all three test statistics are distributed according to the c2

distribution with p− q degrees of freedom. The asymptotic result also holds if in
the definition of the score- and Wald-test statistics, the expected Fisher information
matrices I(̂J0) and I(̂J) are replaced by the observed information matrices, I(̂J0)

and I(̂J), respectively.

4.6.1.2 Linear Case

In the classical LM, defined by (4.1) and (4.2), linear hypotheses about fixed
parameters b are often of interest. The hypotheses are of the form

H0 : Lb = c0 versus HA : Lb �= c0, (4.30)
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where L is a known matrix of rank q (q≤ p) and c0 is a known vector. Note that the
hypotheses can be expressed as in (4.28) upon defining G(b)≡ Lb− c0.

It follows that, when s 2 is known, the statistics for the LR, Wald, and score test
are exactly the same and are equal to

T ≡ (L̂b− c0)
′[L(X′X)−1L′]−1(L̂b− c0)

s 2 . (4.31)

In practice, we do not know s 2. We can estimate it by using, e.g., the ML estimator,
given in (4.18). However, in that case, the exact equivalence of the LR-, Wald-,
and score-test statistic no longer holds. In particular, the LR-test statistic becomes
equal to

TL = n log

[

1+
rank(L)

n− p
F

]

, (4.32)

the Wald-test statistic is equal to

TW = F
n

n− p
rank(L), (4.33)

and the score-test statistic takes the form

TS =
nF

n−p
rank(L) +F

, (4.34)

where

F ≡ (L̂b− c0)
′[L(X′X)−1L′]−1(L̂b− c0)

ŝ 2
REMLrank(L)

, (4.35)

with ŝ 2
REML given by (4.20).

Formulae (4.32)–(4.34) show that the three test statistics, although different
numerically, are monotonic functions of F, defined in (4.35), which is the well-
known F-test statistic. Thus, exact tests for the test statistics would produce the
same p-values. However, if the asymptotic c2 distribution is used, the p-values may
differ. In this respect, it is worth noting that, under the null hypothesis H0 : Lb = c0,
the statistic F, defined in (4.35), is distributed according to the central F-distribution
with the numerator and denominator degrees of freedom equal to rank(L) and n−p,
respectively. Note that the distribution holds exactly for all sample sizes n. Thus, the
use of the F-test statistic is preferred over the use of the asymptotic c2 distribution
for the statistics, defined in (4.32)–(4.34), in the LM setting.

For future reference, it is worth noting that the statistic F, defined in (4.35), can
be expressed as

F =
(L̂b− c0)

′[L̂Var(̂b)L′]−1(L̂b− c0)

rank(L)
. (4.36)
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For the particular case of testing the null hypothesis about a single fixed effect
parameter b, e.g., H0 : b= c0 versus HA : b �= c0, the test based on the F-test statistic,
given in (4.35), is equivalent to the test based on the following t-test statistic:

t ≡
̂b− c0
√

̂Var(̂b)
, (4.37)

where ̂Var(̂b) is the estimated variance of ̂b, which can be obtained from (4.22).
This is because, for the single parameter case,

√
F =| t |, and the two-sided

p-values for the tests are identical. The null distribution of the t-test statistic is the
t-distribution with n− p degrees of freedom.

4.6.2 Confidence Intervals for Parameters

Confidence intervals for individual components of the parameter vector b can
be constructed based on the fact that the test statistic, given in (4.37), has the
t-distribution with n− p degrees of freedom. It follows that the (1− a)100%
confidence interval for a single parameter b is given by

[

̂b− t1−a/2,n−p

√

̂Var(̂b), ̂b+ t1−a/2,n−p

√

̂Var(̂b)
]

, (4.38)

where t1−a/2,n−p is the (1−a/2)100-th percentile of the t-distribution with n− p
degrees of freedom.

In some circumstances, a confidence interval for s might be of interest. It can be
constructed based on a c2-distribution. More specifically, a (1−a)100% confidence
interval for s , estimated by using the REML estimator (4.20), is

⎡

⎣ŝ REML

√

n− p

c2
1−a/2,n−p

, ŝ REML

√

n− p

c2
a/2,n−p

⎤

⎦ , (4.39)

where c2
a/2,n−p is the (a/2)100-th percentile of the c2-distribution with n− p

degrees of freedom. If the confidence interval is based on the ML estimator (4.18),
n− p in formula (4.39) should be replaced with n.

4.7 Model Reduction and Selection

In this section, we briefly discuss issues related to the choice of the most parsimo-
nious form of a model, i.e., the form which contains the smallest possible number of
parameters while enjoying an acceptable fit. In particular, in Sect. 4.7.1, we consider
strategies to reduce the form of a particular model. Section 4.7.2 briefly summarizes
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Table 4.3 The null and alternative models underlying the sequential (Type I) and
marginal (Type III) approaches for tests of fixed-effects for a hypothetical model Y =
1+X1 +X2 +X3

Sequential (Type I) tests Marginal (Type III) tests

Tested term Null Alternative Null Alternative

X1 1 1+X1 1+X2 +X3 1+X1 +X2 +X3

X2 1+X1 1+X1 +X2 1+X1 +X3 1+X1 +X2 +X3

X3 1+X1 +X2 1+X1 +X2 +X3 1+X1 +X2 1+X1 +X2 +X3

approaches to the choice of a “best” model from a set of models. The methods
described are fairly general and are of interest also in the context of more complex
models, which will be described in subsequent chapters.

4.7.1 Model Reduction

In practice, researchers are often interested in reducing the number of parameters
in a fitted model without substantially affecting the goodness of fit of the model.
This can be done by testing hypotheses about the parameters and by modifying the
structure of the particular model depending on the outcome of the tests.

When testing a hypothesis that a given (set of) fixed-effect(s) coefficient(s) in
an LM is equal to zero, we often consider two models: one without and with
the coefficient(s) of interest. We refer to these models as the null model and the
alternative model, respectively. The models are nested, in the sense that the model
under the null hypothesis (the null model) could be viewed as a special case of the
model under the alternative hypothesis (the alternative model).

The process of testing hypotheses about several terms in the model by comparing
just two nested models at a time may be tedious and time consuming, especially for a
large number of covariates. Therefore, to simplify this process, when fitting a given
model, many software programs, including R, provide results of a series of tests for
every coefficient/term separately. These tests are helpful in making a decision about
whether a given coefficient/term should be kept in the model or not.

For the sake of simplicity, let us consider models (4.1) and (4.2) with, e.g., three
terms/covariates: X1, X2, and X3. One could consider testing of the null hypothesis
for each of the terms that the effects of a given term are equal to 0. In Table 4.3,
we demonstrate that the series of tests can be performed in at least two different
ways. For both approaches, the null and alternative models involved in testing a
corresponding term are included for reference.

In the first approach, we test the effects by “sequentially” adding tested terms
to the null and alternative models involved. In particular, we test the effect of X1
by comparing the alternative model, containing the intercept and X1, with the null
model that contains only the intercept. On the other hand, the effect of X2 is tested
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by comparing a different alternative model, which contains the intercept, X1, and
X2, with a null model that contains only the intercept and X1. Finally, the effect
of X3 is tested by comparing the alternative model with the intercept and all three
terms with the model that contains the intercept, X1, and X2. This strategy is called
a “sequential” approach. In the literature, the resulting tests are often referred to as
Type I tests.

In the second approach, the alternative model involved in testing any of the terms
in a fitted model is the same and contains all the terms. The null hypothesis about
the effect of X1 can be tested by comparing the maximum log-likelihood of the
(alternative) model containing all three terms and an intercept with that of a (null)
model with X1 omitted. The same strategy can evidently be followed for other terms
as well. This strategy is called a “marginal” approach. In the literature, the resulting
tests are often referred to as Type III tests.

Note that, in contrast to the marginal tests, the results of the tests in the sequential
approach depend on the order of terms in the model. This is clearly seen from
Table 4.3. In statistical software, in the case of tests about the mean structure
parameters, the order is most often determined by the order of the terms that appear
in the syntax defining the mean structure of the model. In R, the functions available
for fitting linear (mixed-effects) models provide, by default, the sequential-approach
tests.

From Table 4.3 it can be noted that, in contrast to the sequential approach, the
results of the tests in the marginal one are not affected by the order of terms in
the full model specification. It is also worth noting that, in both approaches, the
results are equivalent for the last term listed, i.e., X3, in the model. An important
disadvantage of the marginal approach is that it includes tests that are not valid
in some cases, e.g., when testing the main effect of a factor in the presence of
interaction terms involving this factor.

4.7.2 Model Selection Criteria

Model reduction approaches, discussed in the previous section, considered the
comparison of nested models. In the classical LM case, this is the most common
situation. However, in the context of more complex models that will be discussed
later in the book, a need may arise to discriminate between nonnested models. In
such a situation, the use of information criteria is a possible solution.

The use of the criteria can be motivated by considering the procedure of the
LR test (4.29). Denoted by �A and �0, the values of a log-likelihood function
are computed by using the estimates obtained under the alternative and the null
hypothesis, respectively. In the LR test, the null hypothesis is rejected if

�A− �0 > f (pA)− f (p0), (4.40)
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where pA and p0 are the number of unrestricted parameters in the models defined by
the alternative and null hypotheses, respectively, and f (·) is a suitable function. For
instance, for a test at the 5% significance level, the function may be chosen so that
f (pA)− f (p0) = 0.5c2

0.95,(pA−p0)
, where c2

0.95,(pA−p0)
is the 95th percentile of the c2

distribution with pA− p0 degrees of freedom.
Note that (4.40) can be expressed as

�A− f (pA)> �0− f (p0). (4.41)

Thus, the LR test can be viewed as a comparison of a suitably “corrected” log-
likelihood function for two nested models.

The idea, expressed in (4.41), can be extended to the comparison of nonnested
models. The question is, what “correction”, in the form of function f (·), should be
applied in such a case? Several choices have been proposed, leading to different
information criteria. The main idea behind the criteria is to compare models
based on their maximized log-likelihood value, while penalizing for the number
of parameters.

The two most popular proposals are defined by using

f (p) = p

or

f (p) = 0.5 p logN∗,

where N∗ is the effective sample size, defined as N∗ ≡ N for ML and N∗ ≡ N− p
for REML. The first form of f (·) leads to the so-called Akaike’s information
criterion (AIC), while the second form defines the so-called Schwartz or Bayesian
information criterion (BIC). The model with the largest AIC or BIC is deemed best.
Note that sometimes the criteria are defined by using the negative of the differences,
presented in (4.41). In this case, the model with the smallest criterion value is
deemed best, and this convention is adopted in R.

Though the two criteria are developed based on the same underlying principle,
they are based on different model-selection approaches. AIC aims to find the best
approximating model to the true one. On the other hand, BIC aims to identify the
true model. For logN∗ > 2, the penalty for the number of parameters used in BIC is
larger than for AIC. Thus, the former criterion tends to select simpler models than
the latter.

In view of the effective sample size, according to these criteria, differences in the
likelihood need to be considered not only relative to the differences in numbers of
parameters, but also relative to the number of observations included in the analysis.
This feature is shared by several other information criteria that have been proposed
in the literature (Verbeke and Molenberghs 2000, Sect. 6.4).

Finally, it should also be stressed that, in general, log-restricted-likelihoods are
only fully comparable for LMs with the same mean structure. Hence, for comparing
model fits with different mean structures, one should consider information criteria
based on the ML estimation.
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4.8 Chapter Summary

In this chapter, we briefly reviewed the theory of the classical LM, suitable for
analyzing data involving independent observations with homogeneous variance. In
Sects. 4.2 and 4.3, we introduced the specification of the model. Estimation methods
were discussed in Sect. 4.4. Section 4.5 offered a review of the diagnostic methods,
while in Sect. 4.6, we described the inferential tools available for the model. Finally,
in Sect. 4.7, we summarized strategies that can be followed in order to reduce a
model or to select one model from a set of several competing ones.

We did not aim to provide a detailed account of the theory. Such an account can
be found, for instance, in the monograph by Neter et al. (1990). The purpose of our
review was to introduce several key concepts, like model formulation, maximum-
likelihood estimation, or model reduction/selection criteria, which will also be
needed in the context of LMMs. We believe that introduction of the concepts in
a simpler and more familiar framework should make their use in the context of the
more complex models easier to present and to explain.



Chapter 5
Fitting Linear Models with Homogeneous
Variance: The lm() and gls() Functions

5.1 Introduction

In Chap. 4, we outlined several concepts related to the classical LM. In the current
chapter, we review the tools available in R for fitting the model.

More specifically, in Sects. 5.2–5.5, we present the details of the implementation
of LMs in the function lm() from the base R distribution and in the function
gls() from the nlme package. In particular, in Sect. 5.2, we describe the R syntax
for the model structure. Section 5.3 explains the link between the syntax and the
specification of the model. Section 5.4 describes the R functions available for fitting
the LMs, while Sect. 5.5 explains how the details of the estimated form of the model
can be accessed. Implementation of the tests of linear hypotheses about the mean-
structure parameters is presented in Sect. 5.6. A summary of the chapter is provided
in Sect. 5.7.

5.2 Specifying the Mean Structure Using a Model Formula

A model formula, or simply a formula, is an integral part of the R language. It is
employed to symbolically and compactly represent various components of a wide
range of models. In this section, we describe the use of a formula in the context of
LMs, but the considerations are also useful in the context of other models, including
the LMMs.

A linear structure, introduced in Sect. 4.2, is specified in R using a two-sided
formula. The primary goal of the formula is to indicate the dependent variable y
and to provide the information needed to create the design matrix X, as specified in
(4.6). Toward this end, we use an expression of the form

R expression ~ term.1 + term.2 + · · · + term.k.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__5,
© Springer Science+Business Media New York 2013
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Table 5.1 R syntax: Operators used when specifying an R formula

Operator Is essential? Role in the formula

+ Yes Separates terms in the formula
: Yes Separates predictors in interaction terms
*, /, %in%, -, ^ No Used to keep the formula short

The operator ~ (tilde) is an integral part of every formula, and separates its two
sides. The R expression at the left-hand side of the formula defines the dependent
variable. The right-hand side of the formula is used to specify the mean structure
of the model. It contains terms, separated by the operator + (plus). Table 5.1
summarizes all operators used in R formulae. Their use will be explained in more
detail later in this section.

It may be helpful to keep in mind that each term on the right-hand side of a
model formula contributes one or more columns to the design matrix. The process
of creating a design matrix from a formula is described in Sect. 5.3. The syntax
for the formula follows the work presented in Wilkinson and Rogers (1973) and is
explained in detail in Chap. 2 of Chambers and Hastie (1992).

5.2.1 The Formula Syntax

In this section, instead of formally presenting the syntax used to specify formulae,
we present examples illustrating how a formula is constructed. In general, to
construct terms in a formula, several operators from those listed in Table 5.1 can
be used. Note that the operators + and : are essential for writing formulae; the
remaining operators are primarily used to abbreviate the syntax.

To simplify presentation, we will focus on a hypothetical study with a dependent
variable named y. Explanatory covariates include three continuous variables, named
x1, x2, and x3, and three factors, named f1, f2, and f3. Note that formula
considerations presented in this section refer to symbolic operations. Therefore,
none of the objects f1, f2, f3, x1, x2, x3, nor any of the functions used in the
formulae, need to be available for computations.

5.2.1.1 Operators Used in Formulae

As already mentioned, the operators used in formulae can be grouped into essential
and nonessential operators. The two groups are described below.
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Essential Operators

Panel R5.1 presents the syntax for several simple two-sided formulae, which involve
just two operators, namely, the operator + to separate different terms and the operator
: to separate predictors/factors within interaction terms. These two operators are
essential operators.

R5.1 R syntax: Examples of basic formulae involving essential operators + and :

> y ~ x1 # Univariate linear regression

> formula(y ~ x1) # ... equivalent specification

> y ~ 1 + x1 # Explicit indication for intercept

> y ~ 0 + x1 # No intercept using term 0

> y ~ f1 + x1 # ANCOVA with main effects only

> y ~ f1 + x1 + f1:x1 # Main effects and ...

> # ... factor by numeric interaction

> y ~ f1 + f2 + f1:f2 # Main effects and ...

> # ... f1 by f2 two way interaction

> y ~ f1 + f1:f3 # f3 nested within f1

> y ~ x1 + f1 + f2 + # Main effects and ...

+ x1:f1+ x1:f2 + f1:f2 # ... two-way interactions

The reader may note that the function formula() does not have to be used
explicitly in the formula specification. For example, the two following statements,
y ~ x1 and formula(y ~ x1), are equivalent. Also, when a formula is created,
an intercept is implicitly included by default. To explicitly specify the inclusion of
an intercept in the model, we use 1 as a separate term, as in y ~ 1 + x1. On the
other hand, to indicate that there is no intercept in the model, we can use 0 or -1 as
a separate term, as in y ~ 0 + x1 or y ~ -1 + x1 , respectively.

Nonessential Operators

The syntax of the formulae, displayed in Panel R5.1, can be extended by using
additional operators, namely, *, /, %in%, -, and ^. They are primarily used to
abbreviate the syntax and hence are referred to as nonessential operators. Examples
of formulae involving those additional operators are given in Panel R5.2.

The * operator, used in the first formula in Panel R5.2, denotes factor crossing, so
that f1*f2 is interpreted as f1 + f2 + f1:f2. The %in% operator denotes factor
nesting. Thus, term f3 %in% f1 implies that f3 is nested in f1 and it is inter-
preted as f3:f1. On the other hand, term f1/f3 is interpreted as f1 + f1:f3.
The ^ operator indicates crossing terms up to a specified degree. For example,
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R5.2 R syntax: Examples of formulae employing nonessential operators, i.e., *, /,
%in%,-, and ^

> y ~ f1*f2 # ANOVA with two-way interaction

> y ~ f1 + f3 %in% f1 # f3 nested within f1

> y ~ f1/f3 # ... equivalent specification

> y ~ (x1 + f1 + f2)^2 # Up to 2nd order interactions

> y ~ -1 + x1 # Intercept removed

Table 5.2 R syntax: Examples of expanding elementary formulae

Formula Expanded formula

y ~ f1*f2 y ~ f1 + f2 + f1:f2

y ~ f1 + f3 %in%f1 y ~ f1 + f1:f3

y ~ f1/f3 y ~ f1 + f1:f3

y ~ (f1 + f2 + f3)^2 y ~ f1 + f2 + f3 + f1:f2 + f1:f3 + f2:f3

Table 5.3 R syntax: Interpretation of various nonessential formula-operators used in
Panel R5.2

Operator Exemplary term Interpretation

* f1*f2 f1 + f2 + f1:f2

%in% f3 %in% f1 f1:f3

/ f1/f3 f1 + f1:f3

^ (x1+f2+f3)^2 x1 + f2 + f3+ x1:f2 + x1:f3 + f2:f3

- f1*f2-f1:f2 f1 + f2

(x1 + f1 + f2)^2 is equivalent to (x1 + f1 + f2)*(x1 + f1 + f2), which,
in turn, is equivalent to a formula containing the intercept, the main effects of x1,
f1, and f2, together with their second-order interactions (but not the squares of the
individual covariates/factors; see also the last formula in Table 5.2). The - operator
removes the specified term, so that formula f1*f2-f1:f2 is equivalent to f1 +

f2. In the last formula in Panel R5.2, the operator - is used to remove the intercept
term. Thus, y~-1+x1 simply specifies a regression line through the origin.

Table 5.3 presents several terms containing nonessential operators, shown in
Panel R5.2, along with their interpretation in terms of essential operators + and :.

5.2.1.2 Composite Terms

While the formulae, defined in Panels R5.1 and R5.2, employ just variable and
factor names, they can also involve functions and arithmetic expressions, which
offer another possibility of extending the formulae syntax. Several examples are
shown in Panel R5.3.
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R5.3 R syntax: Formulae with a more advanced syntax
(a) Composite terms

> y ~ sqrt(x1) + x2 # Square root transformation of x1

> y ~ ordered(x1, breaks)+ # Ordered factor created and ...

+ poly(x1, 2) # ... second degree polynomial added

> y ~ poly(x1, x2, 2) # Bivariate quadratic surface ...

> # ... for x1 and x2

> log(y) ~ bs(x1, df = 3) # log transform for y modeled ...

> # ... by using B-spline for x1

> y ~ f1*bs(x1, df = 3) - 1 # Factor by spline

# interaction ...

> # ... with intercept omitted

(b) Use of the I() and update() functions

> form2 <- y ~ I(x1 + 100/x2) # I() function

> update(form2, . ~ . + x3) # x3 predictor added to form2

> update(form2, . ~ . -1) # Intercept omitted from form2

In the first set of formulae, presented in Panel R5.3a, we introduce composite
terms created by applying various mathematical functions like, e.g., square-root
sqrt() or logarithm log() to the dependent and/or explanatory variables. The
second set of formulae, shown in Panel R5.3b, illustrates the use of functions I()
and update(). The use of the function I() is described on page 94, where we
explain potentially different meanings of operators used in a formula. The function
update(), applied in the last two formulae of Panel R5.3b, is used to modify a
formula, which was previously defined and stored in an R object. The use of the
function makes the changes to formulae more explicit and allows constructing a
more transparent and efficient R code.

5.2.1.3 Different Meanings of Operators and the Use of the I() Function

Note that all operators, i.e., +, -, *, /, :, %in%, and ^, which were used in
the formulae presented in Panels R5.1–R5.3, can have potentially two different
meanings. We will refer to them as the default and the arithmetic meaning. The most
common is the default meaning, related to the manipulation of terms in a formula.
Thus, for instance, the default meaning of the operator + is the separation of terms, as
in formula y ~ x1 + x2, while the default meaning of the operator * is the creation
of an interaction, as in term f1*f2. On the other hand, the arithmetic meaning
of these operators corresponds to their use as symbols of arithmetic operations.
This was, e.g., the meaning of the operators + and / used in the formula form2 in
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Panel R5.3b. In particular, in the formula, the two operators were used as arithmetic
operators to calculate the numerical value of the expression x1 + 100/x2.

Given the two possible meanings of the formula operators, it is prudent to
indicate the intended meaning in the defined formula. Toward this end, the use of the
function I() is recommended. The operators used within the scope of the function
are given the arithmetic (nondefault) meaning.

5.2.1.4 Expansion of a Formula

In Panels R5.1–R5.3, we presented several formulae, in which we used various
operators. In Table 5.2, we demonstrate how several of these formulae can be
equivalently expanded using only the essential operators + and :. The table
illustrates that, in general, these two operators, in combination with mathematical
functions and the I() function, are sufficient to specify any formula. The other,
nonessential operators are mainly used to abbreviate the formula syntax. The reader
may note that, in the expanded formulae from Table 5.2, the terms representing
lower-order interactions are listed before the terms for higher-order interactions.
In the context of ordering terms in the expanded formula it is helpful to define the
interaction order, or simply order, for each term as the number of variables/factors
separated by the operator :. Following this definition, main effects like, e.g., f1 or
f2 are of order 1, and they are listed in the expanded formula before the interaction
term f1:f2, which is of order 2. Note that the interaction order of the intercept term
is considered to be equal to zero.

5.2.2 Representation of R Formula: The terms Class

Creating an object of class terms is an important step in building the design matrix,
i.e., matrix X, of an LM. In this section, we introduce such objects, which constitute
a different, more technical way of specifying a model formula. Objects of this class
contain all information essential to create a model frame and a design matrix in the
context of a given dataset, as will be described later in Sects. 5.3.1 and 5.3.2. Objects
of class terms are typically created within other R functions like model.frame(),
model.matrix(), or lm(), by applying the generic function terms() to a formula.

In Panel R5.4, the function terms() is applied to two formulae. As a result, two
objects of class terms, termsA and termsB, are created.

First, in Panel R5.4a, we use the function terms() to create the object termsA.
The object has several attributes, which contain the information about all terms used
to build the formula formA. The names of the attributes are obtained by applying a
superposition of two functions, namely, names() and attributes(), to the object
termsA.

We will now describe the attributes of the object termA, which are most relevant
in the context of creating the model frame and the design matrix.
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R5.4 R syntax: Attributes of objects of class terms created from a formula using the
terms() function
(a) A formula with an intercept and interaction term

> formA <- y ~ f1*f2 # Formula A

> termsA <- terms(formA) # Object of class terms

> names(attributes(termsA)) # Names of attributes

[1] "variables" "factors" "term.labels" "order"

[5] "intercept" "response" "class" ".Environment"

> labels(termsA) # Terms; interaction after main effects

[1] "f1" "f2" "f1:f2"

> attr(termsA, "order") # Interaction order for each term

[1] 1 1 2

> attr(termsA, "intercept") # Intercept present?

[1] 1

> attr(termsA, "variables") # Variable names

list(y, f1, f2)

(b) A formula without the intercept and interaction term

> formB <- update(formA, . ~ . - f1:f2 -1) # Formula B

> termsB <- terms(formB)

> labels(termsB) # Terms of formula B

[1] "f1" "f2"

> attr(termsB, "intercept") # Intercept omitted

[1] 0

The attribute term.labels is a character vector representing a given formula in
an expanded form. For example, in the expanded form, the formula formA includes
three terms, namely, f1, f2, and f1:f2. They are given by the elements "f1",
"f2", and "f1:f2", respectively, of the character vector obtained by using the
labels() function. The attribute order gives the interaction order for each term in
the formula. For example, we easily find that the order of the term f1:f2 in form1 is
equal to 2. The value of the intercept attribute provides the information whether
an intercept is included into the model or not. In our case, its value is 1, indicating
that an intercept is present. Another attribute, variables, indicates which variables
are used in creating the model frame. More details on the model frame are provided
in Sect. 5.3.1.

Description of the remaining attributes of objects of class terms can be obtained
from R’s help system by issuing the command ?terms.object.

In Panel R5.4b, we use the update() function to create the formula formB

from the formula formA by removing the intercept and interaction f1:f2. By
checking the value of the labels attribute of the terms-class object termsB,
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corresponding to formB, we verify that the intercept and interaction were indeed
removed from the formula. The removal of the intercept is also confirmed by the
fact that the value of the attribute intercept of the formula changed to 0, as
compared to the corresponding value of the attribute of the formula formA (see
Panel R5.4a).

To conclude, we note that the specialized objects of class terms are rarely created
by the data analyst. However, they may be useful to get additional insight into
several features of a given formula, like, e.g., the names of variables involved in
the formula specification, the expanded form of a formula, the interaction order of a
particular term of a formula, etc.

5.3 From a Formula to the Design Matrix

In Sect. 5.2, we introduced the syntax of an R formula. We also described the
concepts of an expanded formula and of an object of class terms, which represents
a given formula in a more technical format.

In this section, we illustrate how a design matrix, X, based on a given formula
and available data, is created. This, rather technical, process consists of two steps.
First, a model frame is created based on available data. Then, the design matrix
is itself constructed. Note that these steps are rarely performed in practice by the
data analyst. Instead, they are carefully implemented inside many model-fitting
functions, such as lm(), gls(), lme(), and others. We introduce the process of
creating a design matrix for illustration purposes and to avoid the “black box”
impression for the model fitting functions. Note that, in contrast to Sect. 5.2, where
we dealt with symbolic operations, in the current and subsequent sections, all objects
specified in the formula, including functions’ definitions, need to be available for
computations.

Figure 5.1 summarizes the steps necessary to obtain a design matrix from a
model formula and data stored in a data.frame. By combining, with the use of the
model.frame() function, the information stored in the object terms.object of
class terms with the contents of the data.frame, a model frame is created. From it,
with the help of the model.matrix() function, the design matrix is obtained. Note
that creation of an object of class terms was already presented in Sect. 5.2.2. The
construction of the model frame and of the design matrix is described in Sects. 5.3.1
and 5.3.2, respectively.

5.3.1 Creating a Model Frame

In the first step of the process aimed at the creation of the design matrix, a given
formula is interpreted/evaluated in the context of specific data. As a result, a
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formula
terms()

Sec.5.2.2
terms.object

data.frame

model.frame()

Sec.5.3.1
model.frame

model.matrix()

Sec.5.3.2
design.matrix

Fig. 5.1 R syntax: The steps leading from a model formula to the design matrix

specialized, working data frame, called a model frame, is created. The main function
employed to perform this step is model.frame().

5.3.1.1 Arguments of the model.frame()Function

The function model.frame() is an example of a function that interprets a formula
in the context of arbitrary data. This type of functions typically uses at least four
arguments: formula, data, subset, and na.action. The first argument specifies
the model formula. The other three arguments, described briefly below, specify the
data that are to be used for evaluation.

Arguments data and subset are used to tentatively define the subset of the data
that are used to create the model frame. The function indicated in the argument
na.action allows further modification of the data defined by the data and subset

arguments. More specifically, the na.action argument points to a function, which
indicates what should be done with a data record with missing values. The default
value for the na.action argument is na.omit, which points to the generic function
na.omit(). The function removes the records with missing values from the data.
Another possible function is the na.exclude() function. Similarly to na.omit(),
it removes the records with missing values, but its result differs when it comes to the
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computation of residuals or predicted values. A full list of available functions, and
their properties, to be used as a value of the na.action argument can be obtained
by issuing the ?na.action command.

The object generated by the model.frame() function is a model frame, an R
object resembling a classical data frame. An example of how a model frame is
created for a classical LM is presented in the next subsection.

5.3.1.2 Creating a Model Frame: An Illustration

In Panel R5.5, we illustrate how a model frame is created by evaluating a formula in
the context of the armd.wide data (see Sect. 2.2.2) loaded from the nlmeU package.

First, in Panel R5.5a, we define the formula form1 with composite terms in-
volving explanatory variables treat.f, visual0, visual24, line0, and lesion,
stored in the armd.wide data frame. Note that the formula form1 is used only for
illustration purposes and is not used anywhere else in the book.

The model frame armd.mf1 is created in Panel R5.5b by employing the
model.frame() function. The argument data indicates that we evaluate the
formula form1 with respect to the data contained in the armd.wide data frame.
The argument subset indicates that we omit from the data two subjects with the
subject identifiers equal to "1" and "2". Using the function dim() we check that
the armd.wide data contains 240 records and 10 variables. However, owing to the
use of the na.action and subset arguments, several rows are omitted from the
data. As a consequence, the number of rows in the resulting model frame armd.mf1
is equal to 189, as shown in the result of the application of the function dim() to
the model frame object. The model frame includes seven components; their names
are listed using the names() function.

At the end of Panel R5.5b, we use the function head() to display the first four
rows of the model frame. Note that the output of the head() function contains eight
columns, not seven. This stems from the fact that the poly(visual0,2) term in
form1 contributes two columns to the model frame, instead of one.

It is also worth noting that the output of the head() function indicates that the
model frame contains a column labeled (SubjectId), which does not correspond
to any of the variables involved in the specification of the model formula form1.
This additional column was included in the model frame by setting the argument
SubjectId = subject in the call of the model.frame() function. Thus, the
column contains the values taken from the subject variable. In our example, it
allows, for instance, direct verification of which subjects were omitted from the
armd.wide data when creating the armd.mf1 model frame.

The specification of the argument SubjectId = subject in the call of the
model.frame() function is an example of the argument assignment of the form
model.frame.var = data.var. In the assignment, data.var is a variable that should
be additionally included in the model frame. In the model frame, the additional
variable is named (model.frame.var), i.e., its name is enclosed in parentheses. This
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R5.5 R syntax: Model frame created by evaluating a formula in the context of the
armd.wide data
(a) Formula

> form1 <- formula(

+ visual52 ~ # Dependent variable

+ sqrt(line0) + # Continuous explanatory variable

+ factor(lesion) + # Factor with 4 levels

+ treat.f*log(visual24) + # Crossing of two variables

+ poly(visual0, 2)) # Polynomial of 2nd degree

(b) Model frame

> data(armd.wide, package = "nlmeU")# Data loaded

> armd.mf1 <-

+ model.frame(

+ form1, # Formula

+ data = armd.wide, # Data frame

+ subset = # Exclude two subjects

+ !(subject %in% c("1", "2")),

+ na.action = na.exclude, # Dealing with missing data

+ SubjectId = subject) # Identifier of data records

> class(armd.mf1)

[1] "data.frame"

> dim(armd.wide) # Data frame dimensions

[1] 240 10

> dim(armd.mf1) # Model frame dimensions

[1] 189 7

> names(armd.mf1) # Components of the model frame

[1] "visual52" "sqrt(line0)" "factor(lesion)"

[4] "treat.f" "log(visual24)" "poly(visual0, 2)"

[7] "(SubjectId)"

> head(armd.mf1, n = 4) # First four records

visual52 sqrt(line0) factor(lesion) treat.f log(visual24)

4 68 3.6056 2 Placebo 4.1589

6 42 3.4641 3 Active 3.9703

7 65 3.6056 1 Placebo 4.2767

8 37 2.8284 3 Placebo 3.6109

poly(visual0, 2).1 poly(visual0, 2).2 (SubjectId)

4 0.0523462 -0.0054435 4

6 0.0175815 -0.0460843 6

7 0.0393095 -0.0243944 7

8 -0.0693302 -0.0091566 8
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syntax plays an important role in the model-fitting functions, such as lm() or lme().
Specifically, it allows including into the model frame additional variables, which
specify components of an LM other than design matrix, such as weights, offset, etc.

Although the model frame is an object of class data.frame, there are some
differences between model frames and data frames. An important difference is that
there are no restrictions for variable names included in a model frame. For example,
poly(time,2) and log(visual0) are valid variable names in a model frame.
However, such names are not valid in a data frame. Another difference, which we
address next, is the presence of the terms attribute in the model frame.

5.3.1.3 Features of the terms Attribute

An important difference between the model frame and the data frame is the
presence of the terms attribute. To demonstrate various features of the attribute, in
Panel R5.6, we extract it from the model frame armd.mf1 and explore its contents.

R5.6 R syntax: The attribute terms of the armd.mf1model frame. The model frame
was created in Panel R5.5

> terms.mf1 <- attr(armd.mf1, "terms") # terms attribute

> class(terms.mf1)

[1] "terms" "formula"

> names(attributes(terms.mf1)) # Names of attributes

[1] "variables" "factors" "term.labels" "order"

[5] "intercept" "response" "class" ".Environment"

[9] "predvars" "dataClasses"

> attr(terms.mf1, "dataClasses") # dataClasses attribute

visual52 sqrt(line0) factor(lesion)

"numeric" "numeric" "factor"

treat.f log(visual24) poly(visual0, 2)

"factor" "numeric" "nmatrix.2"

(SubjectId)

"factor"

> attr(terms.mf1, "predvars") # predvars attribute

list(visual52, sqrt(line0), factor(lesion), treat.f, ...

poly(visual0, 2, coefs = list(alpha = c(54.9541666666667,

50.5097520799239), norm2 = c(1, 240, 52954.4958333333, ...

))))

> labels(terms.mf1) # Component names

[1] "sqrt(line0)" "factor(lesion)"

[3] "treat.f" "log(visual24)"

[5] "poly(visual0, 2)" "treat.f:log(visual24)"
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First, using the attr() function, we obtain the terms attribute and store it in
the object named terms.mf1. Note that terms.mf1 is an object of class terms
(Sect. 5.2.2), which inherits from the class formula.

We note that names of attributes, such as variables, order, and term.

labels, are consistent with the attributes’ names of objects of class terms,
introduced in Panel R5.4 (Sect. 5.2.2). The difference lies in the presence of
two additional attributes, namely, dataClasses and predvars. The attribute
dataClasses contains the information about how each component of the model
frame is interpreted in the design matrix, e.g., whether it is a numeric variable, a
factor, or a matrix. The attribute predvars contains a list of expressions that are
used to evaluate the components of the model frame when applied to a data frame.

5.3.1.4 Note on Data-Dependent Functions: poly(), bs(), ns()

In Panel R5.5, we defined the formula form1 with the help of several observation-
by-observation functions, such as log() and sqrt(). On the other hand, the
function poly(), used in the same panel, is an example of a data-dependent
function. Examples of other data-dependent functions include, but are not limited
to, functions bs() and ns() from the splines package.

A working definition of a data-dependent function is that its returned value
depends on all elements of the vector used as an argument. Thus, the function
requires a pass over all rows of the data. To avoid ambiguity in what is meant
by “all” values, it should be mentioned that it is neither advisable nor possible to
apply these functions to vector(s) containing missing values. Moreover, the use of
the argument subset in a call to the function model.frame() does not affect the
argument used by the data-dependent functions. For instance, in Panel R5.5, the
data-dependent function poly() is applied to the entire vector visual0 stored
in the armd.wide data frame. Note that the vector does not contain any missing
values, and therefore, all 240 observations are used in deriving the coefficients of the
polynomial specified by the poly() function, regardless of the values of the subset
and na.action arguments used in the model.frame() function. As previously
mentioned, the polynomial coefficients are stored in the predvars attribute of the
terms.mf1object and can be reused by other functions. Examples of such functions
include the predict() function, which may evaluate a model frame in the context
of a dataset different from the one used to build the model frame. For this type of
functions, it is essential to have the coefficients available through the predvars

attribute. Otherwise, the functions would attempt to reevaluate the coefficients of
the specified polynomial (or of another data-dependent function) using the new
dataset. This could result in different numerical values of the coefficients. The issue
of evaluating/reusing a given polynomial (or a spline) for a dataset different from
the one used to define the model frame is discussed in more detail in the book
by Venables and Ripley (2010) in the context of so-called “safe prediction.”
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5.3.2 Creating a Design Matrix

In Sect. 5.3.1, we presented the first step needed for the creation of the design matrix.
The step involved the construction of a model frame for given data. In the current
section, we explain how the design matrix is created based on a model formula
and a model frame. As indicated in Fig. 5.1, the key function used in this step is
model.matrix().

5.3.2.1 Illustration: Design Matrix

In Panel R5.7, we illustrate how to create the design matrix based on the model
frame armd.mf1, which corresponds to the formula form1, defined in Panel R5.5,
and to the data frame armd.wide. The design matrix is stored in the object Xmtx.

Recall that (see Panels R5.5 and R5.6) the formula form1, in the expanded
form, contains six terms (excluding intercept) and that the model frame armd.mf1
contains 189 records. The resulting design matrix, named Xmtx, has the same
number of rows, i.e., 189, and 10 columns. The column names are displayed in
Panel R5.7 by applying the colnames() function. For reference, the first four rows
of the Xmtx matrix are also displayed using the head() function.

The presence of the intercept in the first column, named (Intercept), of
the design matrix is worth noting. Factors factor(lesion) and treat.f are
represented by three columns and one column, respectively. More details on how the
columns representing factors are constructed will be provided later in Panel R5.8.

Note that the resulting matrix Xmtx has two additional attributes: assign and
contrasts. The attribute assign provides a link between each column of the
design matrix and a corresponding term in the expanded form of the model formula
form1. For instance, based on the value of the attribute, we can confirm that columns
3, 4, and 5 of the design matrix correspond to the second term of the formula,
i.e., factor(lesion). Thus, the factor contributes three columns to the design
matrix. Similarly, the fifth term, i.e., poly(visual0,2), contributes two columns
(the eighth and the ninth) to the design matrix.

The value of the attribute contrasts indicates that the function
contr.treatment() was used to decode factors factor(lesion) and treat.f

into corresponding columns of the design matrix Xmtx. We will discuss the issue of
decoding factors next.

Note that, in the call of the model.matrix() function, we used the formula
form1 as the first argument. In general, objects of other classes can also be used in
the argument as long as the function terms() returns for them an object of class
terms. More information on the arguments of the model.matrix() function can be
obtained by issuing the R help command help(model.matrix).
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R5.7 R syntax: Creating a design matrix based on a formula evaluated in a model
frame. The model frame armd.mf1 was created in Panel R5.5

> Xmtx <- model.matrix(form1, armd.mf1) # Design matrix

> dim(Xmtx) # No rows and cols

[1] 189 10

> (nms <- colnames(Xmtx)) # Col names ...

[1] "(Intercept)" "sqrt(line0)"

[3] "factor(lesion)2" "factor(lesion)3"

[5] "factor(lesion)4" "treat.fActive"

[7] "log(visual24)" "poly(visual0, 2)1"

[9] "poly(visual0, 2)2" "treat.fActive:log(visual24)"

> colnames(Xmtx) <- abbreviate(nms) # ... abbreviated

> print(head(Xmtx, n = 6), digits = 4) # First 6 rows

(In) s(0) f()2 f()3 f()4 tr.A l(24 p(0,2)1 p(0,2)2 t.A:

4 1 3.606 1 0 0 0 4.159 0.05235 -0.005443 0.000

6 1 3.464 0 1 0 1 3.970 0.01758 -0.046084 3.970

7 1 3.606 0 0 0 0 4.277 0.03931 -0.024394 0.000

8 1 2.828 0 1 0 0 3.611 -0.06933 -0.009157 0.000

9 1 3.464 1 0 0 1 3.989 0.01758 -0.046084 3.989

12 1 3.000 0 0 0 1 3.296 -0.03891 -0.044592 3.296

> names(attributes(Xmtx)) # Attribute names

[1] "dim" "dimnames" "assign" "contrasts"

> attr(Xmtx, "assign") # Cols to terms map

[1] 0 1 2 2 2 3 4 5 5 6

> attr(Xmtx, "contrasts") # Contrasts attribute

$`factor(lesion)`
[1] "contr.treatment"

$treat.f

[1] "contr.treatment"

5.3.2.2 Decoding Factors

In R, we typically use the factor() or ordered() functions to create unordered
and ordered factors, respectively. To decode a given factor into the columns of a
design matrix, it is necessary to associate the factor with an appropriate matrix of
contrasts. In Panel R5.8, several examples of predefined contrast functions and of the
corresponding contrast matrices are given for reference. The contrast functions in-
clude contr.treatment(), contr.sum(), contr.helmert(), contr.poly(),
and contr.SAS().
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The first argument of all of the contrast functions indicates the number of the
levels of the decoded factor. The contrast matrices, created during the session shown
in Panel R5.8, are presented for the case of an artificial factor with three levels.

R5.8 R syntax: Predefined contrast functions and the corresponding contrast
matrices for a hypothetical factor with three levels

> contr.treatment(3) # Default base level = 1

2 3

1 0 0

2 1 0

3 0 1

> contr.treatment(3, base = 3) # Base level = 3. Same as contr.SAS(3).

1 2

1 1 0

2 0 1

3 0 0

> contr.sum(3) # Sum to zero

[,1] [,2]

1 1 0

2 0 1

3 -1 -1

> contr.helmert(3) # Helmert contrasts

[,1] [,2]

1 -1 -1

2 1 -1

3 0 2

> contr.poly(3, scores=c(1, 5, 7)) # Polynomial contrasts

.L .Q

[1,] -0.77152 0.26726

[2,] 0.15430 -0.80178

[3,] 0.61721 0.53452

The choice of the type of contrasts has implications for the interpretation of
the parameters b of an LM. For instance, the contrasts defined by the function
contr.treatment() imply that the elements of the vector b can be treated as
differences of the expected values of the dependent variable between a reference
level and every other level of the factor. On the other hand, the use of the
contr.sum() contrasts implies that the elements can be interpreted as deviations
between the expected values corresponding to the different levels of the factor and
the overall mean of the dependent variable. Note that the statement contr.SAS(3)
returns the same contrast matrix as the statement contr.treatment(3, base=3).
Thus, the contr.SAS(3) contrasts use the last level of the factor as the reference
level, while contr.treatment(), by default, uses the first level as the reference.
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R5.9 R syntax: Assigning and extracting a set of contrasts for a factor
(a) Extracting default contrasts

> options()$contrasts # Default contrasts

unordered ordered

"contr.treatment" "contr.poly"

> lesion.f <- factor(armd.wide$lesion) # Factor created

> str(lesion.f) # Structure

Factor w/ 4 levels "1","2","3","4": 3 1 4 2 1 3 1 3 2 1 ...

> names(attributes(lesion.f)) # Names of factor attributes

[1] "levels" "class"

> levels(lesion.f) # Levels extracted

[1] "1" "2" "3" "4"

> contrasts(lesion.f) # Contrasts extracted

2 3 4

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

(b) Assigning a new set of contrasts using the C() function

> lesion2.f <- C(lesion.f, contr.sum(4)) # New contrasts using C()

> names(attributes(lesion2.f)) # Names of factor attributes

[1] "levels" "class" "contrasts"

> contrasts(lesion2.f) # Contrasts extracted

[,1] [,2] [,3]

1 1 0 0

2 0 1 0

3 0 0 1

4 -1 -1 -1

(c) Assigning contrasts using the “contrasts() <- contrast function” syntax

> lesion2a.f <- factor(lesion.f) # Factor copied

> contrasts(lesion2a.f) <- contr.sum(4)

In Panel R5.9, it is shown how to assign or extract a matrix of contrasts for a
given factor.

In particular, in Panel R5.9a, we invoke the function options() to obtain a list of
the current values of the global options. By displaying the component contrasts
of the list, we verify the names of the default functions, which are used to create
matrices of contrasts for ordered and unordered factors. Note that a similar result
could be obtained using the command getOption("contrasts").
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The advantage of using the default choice of contrast matrices, i.e.,
contr.treatment() for unordered and contr.poly() for ordered factors, is
that, in studies with a balanced design, columns of the design matrix X become
orthogonal. Consequently, the matrix X′X, used in the estimation of the parameters
b (see Sect. 4.4), becomes diagonal and the corresponding estimates of the elements
of b are uncorrelated. Other choices of contrasts in LMs may introduce artificial
correlations between the estimates, even for balanced designs. Thus, the choice of
the contrasts involves a trade-off between the simplicity of the default choice and
the interpretability of the estimates of the fixed effects, as discussed in the context
of Panel R5.8.

To illustrate how to assign a new set of contrasts to a given factor, in Panel R5.9a,
we create an unordered factor lesion.f with four levels based on the lesion

variable extracted from the armd.wide data. Note that the factor has only two
attributes: levels and class. As a result, when the function contrasts() is
applied to the factor, it displays the contrast matrix defined by the default contrast
function, i.e., contr.treatment().

A different matrix of contrasts can be assigned to a factor in at least two ways.
In Panel R5.9b, we illustrate the first method, which uses the C() function.

The two main arguments of the function are object and contr. The first one
gives the name of the factor for which the attribute is to be set. The second one
indicates which contrasts to use. In the example shown in Panel R5.9b, the contrasts
created by the function contr.sum() are used. Note that the newly created factor
lesion2.f has an additional attribute, i.e., contrasts. As a result, when the
function contrasts() is applied to the factor, it displays the contrast matrix
created by the function contr.sum(). Thus, factors lesion.f and lesion2.f are
essentially the same, except for the fact that they are associated with two different
contrast matrices. Consequently, the factors are represented in two different ways in
the design matrix X.

In Panel R5.9c, we demonstrate the second method of assigning contrasts to a
factor. Toward this aim, we create the factor lesion2a.f, which is fully equivalent
to the factor lesion.f. Then, we use the function contrasts() to assign the
contrasts, constructed by the function contr.sum(), to the newly created factor. As
a result, we obtain a factor, which is fully equivalent to lesion2.f, with the same
set of contrasts. Note that the method was already used in Panel R2.5 (Sect. 2.2.2)
when creating the data frame armd.

It is worth noting that all the contrast matrices considered in Panels R5.8 and R5.9
have k rows and k−1 columns, where k is the number of levels of the corresponding
factor. By choosing such a contrast matrix, we avoid collinearity in the design
matrices containing an intercept. More generally, by assigning a contrast matrix
with at most k− 1 linearly independent columns, we avoid collinearity in a design
matrix for any model containing all terms of lower order than a given factor or, more
broadly, a term involving factor(s). However, in some cases like, e.g., of a model
without an intercept, it is more appropriate to use a k× k identity matrix instead
of a k× (k− 1) contrast. Such a choice is possible using the contrasts=FALSE

argument of the contrasts() function.
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5.4 Using the lm() and gls() Functions to Fit
a Linear Model

The primary function used to fit LMs in R is lm(). It comes with the basic
distribution of R. It implements the OLS estimation method (Sect. 4.4.1). An
alternative is to use the function gls() from the nlme package, which uses the
ML and REML estimation (Sects. 4.4.2 and 4.4.3, respectively). For ANOVA and
ANCOVA models, the aov() function may be preferable.

The use of the lm() function usually involves a call like lm(formula, data),
where formula specifies the model to be fitted and data indicates the data
frame containing the variables used to build the design matrix corresponding to
the formula . A similar call is used for the gls() function, except that the formula
is specified with the use of the argument model. Other often-used arguments of the
lm() and gls() functions are displayed in Table 5.4.

The mean structure of the model is defined by the argument formula for lm()
and model for gls(). The arguments specify a two-sided model formula that
defines the dependent variable and the design matrix (see Sect. 5.2).

The definitions of the arguments data, subset, and na.action are
consistent with the definitions of the similar arguments used by the model.

frame() function, which were described in Sect. 5.3.1. These arguments, along
with the formula or model arguments, are used to create the model frame necessary
for fitting the model. An offset (Sect. 4.3) can be specified by the argument offset
of the lm() function; there is no corresponding argument for the gls() function. In
both functions, the estimation method is indicated using the method argument. By
default, lm() uses the OLS estimation (Sect. 4.4.1), implemented with the help of
the QR decomposition of the design matrix. The default estimation method of the
gls() function is REML (Sect. 4.4.3).

It is a common practice to use update(), a generic function to modify and
refit a given model, instead of specifying the model from scratch. The simplest
use of the update() function, especially relevant in this chapter, is to modify a
formula. Examples of updating formula and of modifying the mean structure of an

Table 5.4 R syntax: Selected arguments of the lm() and gls()

functions used to fit a linear model with homogeneous variance. Default
values are given for the na.action and method arguments

Function arguments

Component lm() gls()

Formula formula model

Offset offset –
Data data data

Subset subset subset

Missing values na.action na.action=na.fail

Estimation method method="qr"
a

method= "REML"
aOLS using the QR decomposition (Golub and Van Loan 1989)
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LM are presented in Panel R5.3. Other functions, which can be considered in this
context, are add1() and drop1(). They are used less often and we do not describe
them here.

5.5 Extracting Information from a Model-Fit Object

Results of an LM, fitted using the lm() or gls() functions, are stored in an object
of class lm or gls, respectively.

In general terms, there are at least two ways to extract the results from the objects
representing model fits. An elegant and recommended way is using generic extractor
functions such as print(), summary(), fitted(), coef(), vcov(), confint(),
etc. However, if a method for extracting an interesting result of the model fit is not
available, then it may need to be extracted directly from the appropriate component
of the object (typically, a list), which represents the model fit.

In Table 5.5, we present the syntax that can be used to extract various components
of an LM fitted using the lm() or gls() functions. Whenever possible, we show the
use of an appropriate extractor function. Given that our focus is on LMMs, which
cannot be fitted using the lm() nor gls() function, we do not describe the use of
the extractor functions in detail; the necessary information can be found by calling
R’s help system. Note, however, that there are striking similarities of the syntax for
extracting information from objects of class lm and gls. In fact, a syntax similar to
that presented in Table 5.5 can be used in the case of other models, including LMMs.
This is simply due to object-oriented approach, implemented using the appropriate
generic functions mentioned earlier in this section.

It should be mentioned that the information provided in Table 5.5 implicitly
assumes that all variables, used for fitting a model, were stored in a data frame.
This approach follows a general recommendation to use data frames, not vectors
nor matrices, for model fitting. If this is not the case, then the cl$data command
will not extract the data name and the data frame will not be properly evaluated.

Sometimes we are interested in extracting a particular component of the fitted
model, saving it in an intermediate object, and immediate printing of the object.
Toward this end, we can enclose the syntax creating the intermediate object in
parentheses, as it is shown, e.g., for the function summary() in Table 5.5. The use
of the parentheses allows immediate printing of the contents of the newly created
object.

Influence diagnostic measures for an LM with independent, homoscedastic
residual errors (Sect. 4.5.3), fitted with the use of the lm() function, can be obtained
by using the influence() generic function. Given that we are mainly interested in
more complex LMs, we do not describe the use of the function. It should also be
noted that the method is not developed for more complex models, which might
be fitted using, e.g., the gls() or the lme()functions. In Chap. 20, however, we
demonstrate how to overcome this shortcoming.
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Table 5.5 R syntax: Extracting results from the lm.fit and gls.fit model-fit objects obtained
using the lm() and gls() functions, respectively

Function: lm() Function: gls()

Model fit Package: stats Package: nlme
component to Object: lm.fit Object: gls.fit

be extracted Class: lm Class: gls

Summary (summ <- summary(lm.fit)) (summ <- summary(gls.fit))

Est. method gls.fit$method
̂b coef(lm.fit) coef(gls.fit)
̂b, se(̂b), t-test coef(summ) coef(summ)

̂Var(̂b) vcov(lm.fit) vcov(gls.fit)

95% CI for b confint(lm.fit) confint(gls.fit)

intervals(gls.fit,

which="coef")

ŝ summ$sigma summ$sigma

95% CI for s intervals(gls.fit,

which="var-cov")

ML value logLik(lm.fit) logLik(gls.fit, REML = FALSE)

REML value logLik(lm.fit, REML=TRUE) logLik(gls.fit, REML=TRUE)

AIC AIC(lm.fit) AIC(gls.fit)

BIC BIC(lm.fit) BIC(gls.fit)

Fitted values fitted(lm.fit) fitted(gls.fit)

Raw residuals residuals(lm.fit, residuals(gls.fit,

type="response") type="response")

Predicted predict(lm.fit, newdata) predict(gls.fit, newdata)

R-call (cl <- getCall(lm.fit)) (cl <- getCall(gls.fit))

Formula for mean (form <- formula(lm.fit)) (form <- formula(gls.fit))

Data name (df.name <- cl$data) (df.name <- cl$data)

Data frame eval(df.name) eval(df.name)

Model frame (mf <- model.frame(lm.fit)) mfDt <- getData(gls.fit)

(mf <- model.frame(form, mfDt))

Design matrix model.matrix(lm.fit)

model.matrix(form, mf) model.matrix(form, mf)

5.6 Tests of Linear Hypotheses for Fixed Effects

Results of the hypothesis tests based on a fitted LM (Sect. 4.6) can be accessed in
several ways. For each single estimated parameter of the model, the t-test, defined
in (4.37), is provided by default if the result of the generic function summary() is
displayed. Note that the provided results are for marginal tests (Sect. 4.7.1). Results
of the t-tests can also be obtained using the coef() extractor function applied to
object created by summary() function (Table 5.5).

Results of the F-tests (4.35) for continuous covariates and groups of contrasts
corresponding to factors included in the model are obtained with the use of the
generic anova() function. Note that, by default, results of the sequential testing
approach (Sect. 4.7.1) are provided. The order of the tests is based on the order of
terms in the expanded formula (Sect. 5.2.1). In the case of model-fit objects of class
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gls, the marginal F-tests can be obtained using the type="marginal" argument of
the anova() function.

To conduct tests for user-defined linear hypotheses of the type defined in (4.30),
the arguments Terms or L can be used when calling the anova() function. The
former is applied to specify an integer or a character vector, which indicates the
terms of the model, effects of which should be jointly tested to be equal to zero.
Alternatively, the argument L can be used to specify a numeric vector or an array,
which indicates the linear combinations of the coefficients of the model that should
be tested to be equal to zero. Note that arguments type, Terms, and L are available
only when the anova() function is applied to a model-fit object of class gls.

The anova() function can also be applied to more than one model-fit object. In
that case, when applied to model-fit object of class gls it provides the LR tests for
nested models (Sect. 4.6.1), as well as the values of AIC and BIC for each of the
models (Sect. 4.7.2). The latter criteria can be used to choose the model with the
best fit from a set of nonnested models.

5.7 Chapter Summary

The review of the theory of the classical LMs, presented in Chap. 4, allowed us
introducing the basic ideas and tools available in R to fit the LMs in the current
chapter. Many of these ideas and tools, like model formula, model frame, or
model-fit extraction methods, are also utilized when fitting more complex models,
including LMMs.

In Sect. 5.2, we introduced a two-sided R formula, typically used to specify
the mean structure of the model. Numerous examples of two-sided R formulae
were given in Sect. 5.2.1. Also, an important concept of the expanded formula
was introduced (Table 5.2). We observed remarkable flexibility in defining different
terms in a formula. In Sect. 5.2.2, we presented a more technical representation of
the model formula using an object of the terms class.

It should be noted that, although all the formulae, defined in Panels R5.1–R5.3,
are correct from a syntax point of view, not all of them may be useful in the context
of a particular study. Ultimately, the responsibility to specify a meaningful, valid
model, which correctly reflects the study design and allows answering specific
research questions, lies with the researcher. Examples of study design considerations
to be taken into account include, but are not limited to, proper crossing and/or
nesting of factors.

It is also worth noting that the code used in Sect. 5.2 requires neither the variables
nor functions used in formulae to be available for computations. Consequently, in
the context of Sect. 5.2, it is not relevant, for instance, which of the x1, x2, x3,

f1, f2, and f3 covariates are continuous or factors. Generally speaking, we can
say that the specification of formulae and creation of objects of the terms class are
about symbolic operations, and not about numeric calculations.
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The process of building the design matrix from a formula and data, common
to many modeling functions in R, was described in Sect. 5.3 and summarized in
Fig. 5.1. Broadly speaking, the process involves the following steps: expansion of
a formula; creation of an object of class model.frame; and creation of the design
matrix itself. In contrast to the syntax shown in Sect. 5.2, the code presented in
Sect. 5.3 requires that the variables and functions are available for evaluation, so
that the design matrix can be created.

In Sect. 5.4, we discussed the arguments of functions lm() and gls() that are
available for fitting classical LMs in R. Finally, Sect. 5.5 introduced methods that
are used for extracting results of a fitted model, while in Sect. 5.6 we described the
tools that are available for inference.

We would like to stress that, ultimately, the detailed information about all of the
aspects of the R syntax can be obtained from R’s help system. In our description
of the syntax, we focused on the most important and/or most often used features,
functions, and arguments. Our goal was to provide extra insight that might increase
the understanding of these tools and facilitate their use. This, in turn, should help in
using the syntax necessary for fitting more complex models, including LMMs.



Chapter 6
ARMD Trial: Linear Model with Homogeneous
Variance

6.1 Introduction

In this chapter, we illustrate the use of the R tools, described in Sects. 5.2–5.5.
We apply them to fit an LM with independent, homoscedastic residual errors to
the visual acuity measurements from the ARMD dataset. Note that the model is
considered for software illustration purposes only. In view of the structure of the data
and of the results of the exploratory analysis presented in Sect. 3.2, the assumptions
of the independence and homoscedasticity of the visual acuity measurements are not
correct. More advanced LMs, which properly take into account the structure of the
data and do not require these assumptions, will be presented in Chaps. 12 and 16.

The chapter is structured as follows. In Sect. 6.2, we specify an LM with
independent, homoscedastic residual errors. The model is fitted to the data using
the function lm() in Sect. 6.3. Section 6.4 presents an alternative way of fitting the
model with the use of the function gls().

6.2 A Linear Model with Independent Residual Errors
with Homogeneous Variance

We consider the following model for the visual acuity data:

VISUALit = b0t +b1×VISUAL0i +b2t×TREATi + eit. (6.1)

In the model specified in (6.1), VISUALit is the value of visual acuity measured for
patient i (i = 1, . . . ,234) at time t (t = 1,2,3,4, corresponding to values of 4, 12, 24,
and 52 weeks, respectively). In the explanatory (fixed) part of the model, VISUAL0i
is the baseline value of visual acuity, and TREATi is the treatment indicator (equal
1 for the active group and 0 otherwise), with b0t, b1, and b2t denoting the timepoint-
specific intercept, baseline visual acuity effect, and timepoint-specific treatment

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__6,
© Springer Science+Business Media New York 2013
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effect, respectively. Thus, the model assumes a time-dependent treatment effect,
with the time variable being treated as a factor. In what follows, we will be referring
to the model, specified in (6.1), as model M6.1. The design matrix for the model is
presented later in Panel R6.1.

Finally, the random part of the model includes a residual random error eit.
Following the specification of the classical LM, defined in (4.1) and (4.2), we
assume that eit is normally distributed with mean 0 and constant variance s 2.
Moreover, we assume that the errors at different timepoints are also independent.
Obviously, these assumptions are not correct, as mentioned in Sect. 6.1 and implied
by the matrix in Fig. 3.4. Thus, the analysis should be viewed only as an illustration
of the use of the R functions.

6.3 Fitting a Linear Model Using the lm() Function

As mentioned in Sect. 5.4, the main function used to fit linear regression models with
independent, homoscedastic errors in R is lm(). The use of the function typically
involves a call like lm(formula,data), where formula specifies the model we
want to fit, and the data argument indicates the data frame containing the variables
needed to fit the model.

In Panel R6.1, we demonstrate how to construct the design matrix for
model M6.1 based on a formula and the data used to fit the model.

The object lm1.form specifies the R formula (Sect. 5.2.1) corresponding to the
mean structure, defined in (6.1). The formula defines visual as the dependent
variable. The variables, used in the formula()-function call, were described in
Sect. 2.2.2. In model M6.1, a separate treatment effect for each measurement
occasion is specified. This is reflected in the formula lm1.form by including in its
explanatory part, to the right of the ~ sign, time as a factor time.f and by adding an
interaction of the time factor with treatment, time.f:time.f. To obtain timepoint-
specific intercepts, the overall intercept is removed from the model by specifying
the -1 term (see Panel R5.2). Using this parameterization, the intercepts will be
provided by the coefficients corresponding to the levels of time.f.

In the remainder of Panel R6.1, we present selected features of the design
matrix corresponding to the formula lm1.form evaluated in the context of the
armd data. The matrix contains nine columns: one for visual0, four (because
the model does not include an intercept) for the four levels of time.f,
and four for the four levels of the time.f:treat.f interaction. To simplify the
display of the matrix, we abbreviate the names of the columns with the help of
the abbreviate() function. Using the attr() function, we check the value of
the contrasts attribute (Sect. 5.3.2) of the matrix. We find that, for the ordered
factor time.f, the polynomial contrasts were used (see Panel R5.8). As mentioned
in Sect. 5.3.2, these are the default contrasts for ordered factors. On the other
hand, for the treat.f factor, the contrast matrix, defined by the (default) function
contr.treatment(), was used (Sect. 5.3.2). The reference level for treat.f is
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R6.1 ARMD Trial: The design matrix for the linear model M6.1

> lm1.form <- # Fixed effects formula:(6.1)

+ formula(visual ~ -1 + visual0 + time.f + treat.f:time.f )

> vis.lm1.mf <- model.frame(lm1.form, armd) # Model frame

> vis.lm1.dm <- model.matrix(lm1.form, vis.lm1.mf) # Design matrix X
> dim(vis.lm1.dm) # Dimensions

[1] 867 9

> (nms <- colnames(vis.lm1.dm)) # Long column names ...

[1] "visual0" "time.f4wks"

[3] "time.f12wks" "time.f24wks"

[5] "time.f52wks" "time.f4wks:treat.fActive"

[7] "time.f12wks:treat.fActive" "time.f24wks:treat.fActive"

[9] "time.f52wks:treat.fActive"

> nms <- abbreviate(nms) # ... abbreviated

> colnames(vis.lm1.dm) <- nms # ... assigned.

> head(vis.lm1.dm, n = 6) # X matrix. Six rows.

vsl0 tm.4 tm.12 tm.24 tm.52 t.4: t.12: t.24: t.52:

2 59 1 0 0 0 1 0 0 0

3 59 0 1 0 0 0 1 0 0

5 65 1 0 0 0 1 0 0 0

6 65 0 1 0 0 0 1 0 0

7 65 0 0 1 0 0 0 1 0

8 65 0 0 0 1 0 0 0 1

> attr(vis.lm1.dm, "contrasts") # Contrasts attribute.

$time.f

.L .Q .C

4wks -0.522167 0.56505 -0.397573

12wks -0.302307 -0.16233 0.795147

24wks 0.027482 -0.73674 -0.454369

52wks 0.796992 0.33403 0.056796

$treat.f

[1] "contr.treatment"

> contrasts(armd$treat.f) # Contrasts for treat.f

Active

Placebo 0

Active 1

“Placebo” (Sect 2.2.2); thus, the interaction terms indicate the effect of the “Active”
treatment, as compared to “Placebo”, at different timepoints. Note that, because the
intercept is removed from the formula, the values of the coefficients for polynomial
contrasts are not used in the design matrix.

Panel R6.2 illustrates how to fit model M6.1 using the lm() function. In Panel
R6.2a, the formula lm1.form is used as an argument in the lm()-function call.
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Table 6.1 ARMD Trial: The lm() and gls() estimates (with standard
errors in parentheses) for model M6.1. For s , the 95% confidence interval is
provided

Parameter lm6.1 fm6.1

Panel with syntax R6.2 R6.3
Object’s class lm gls
Est. method OLSa REML
Log-REML value −3400.81

Fixed effects:
Visual acuity at t = 0 b1 0.83(0.03) 0.83(0.03)
Time (4wks) b01 8.08(1.94) 8.08(1.94)
Time (12wks) b02 7.08(1.94) 7.08(1.94)
Time (24wks) b03 3.63(1.95) 3.63(1.95)
Time (52wks) b04 −1.75(1.99) −1.75(1.99)
Tm(4wks):Trt(Actv) b21 −2.35(1.63) −2.35(1.63)
Tm(12wks):Trt(Actv) b22 −3.71(1.64) −3.71(1.64)
Tm(24wks):Trt(Actv) b23 −3.45(1.69) −3.45(1.69)
Tm(52wks):Trt(Actv) b24 −4.47(1.78) −4.47(1.78)

Scale s 12.38 12.38(11.82,12.99)
aOLS using the QR decomposition (Golub and Van Loan, 1989)

The resulting model fit is stored in the list-object lm6.1. The contents of the object
are accessed with the help of the generic function summary(). The function returns
a list with components containing the information about the model fit. In our case,
the output produced by the function is stored in the object named summ. The default
display of the contents of the object is too long, and therefore it is not printed to
save space. Instead, we show selected components of the object summ. The names
of all the components of the summ object (not shown) can be obtained by issuing the
command names(summ). Additional results can be found in Table 6.1.

In particular, by applying the coef() function (Sect. 5.5), we extract the
estimated coefficients, their standard errors, values of the t-test statistics, and p
values, and store them in the matrix-object tT. To obtain a more compact printout,
we abbreviate the names of the rows of object tT, and then print the object using
the printCoefmat() function. The use of the argument P.values=TRUE formats
the values from the last column of the matrix as p values. From the printout we can
conclude that the estimated coefficients for the time.f:time.f interaction indicate
a negative effect of the “Active” treatment.

By issuing the command summ$sigma, we display the estimate of the residual
standard deviation stored in the sigma component of the summ object.

In Panel R6.2b, we test the hypothesis of whether there is an overall treatment
effect using the anova() function. As mentioned in Sect. 5.6, when the function is
applied to a single model-fit object created by the lm() function, it provides results
of the sequential-approach F-tests (Sect. 4.7.1) for the continuous covariates and
groups of contrasts corresponding to the factors included in the model. Thus, the
printout in Panel R6.2b shows the results of three F-tests: for the baseline visual
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R6.2 ARMD Trial: The linear model M6.1, fitted using the lm() function. The
formula-object lm1.form was defined in Panel R6.1
(a) Model fit and parameter estimates

> lm6.1 <- lm(lm1.form, data = armd) # M6.1:(6.1)
> summ <- summary(lm6.1) # Summary

> tT <- coef(summ) # ̂b, se(̂b), t-test
> rownames(tT) # Fixed effects (b) names

[1] "visual0" "time.f4wks"

[3] "time.f12wks" "time.f24wks"

[5] "time.f52wks" "time.f4wks:treat.fActive"

[7] "time.f12wks:treat.fActive" "time.f24wks:treat.fActive"

[9] "time.f52wks:treat.fActive"

> rownames(tT) <- abbreviate(rownames(tT)) # Abbreviated b names

> printCoefmat(tT, P.values = TRUE)

Estimate Std. Error t value Pr(>|t|)

vsl0 0.8304 0.0284 29.21 < 2e-16

tm.4 8.0753 1.9434 4.16 3.6e-05

tm.12 7.0807 1.9407 3.65 0.00028

tm.24 3.6302 1.9532 1.86 0.06342

tm.52 -1.7464 1.9895 -0.88 0.38029

t.4: -2.3528 1.6289 -1.44 0.14900

t.12: -3.7085 1.6438 -2.26 0.02432

t.24: -3.4492 1.6940 -2.04 0.04205

t.52: -4.4735 1.7781 -2.52 0.01206

> summ$sigma # ̂s
[1] 12.376

(b) Sequential-approach F-tests

> anova(lm6.1) # ANOVA table

Analysis of Variance Table

Response: visual

Df Sum Sq Mean Sq F value Pr(>F)

visual0 1 2165776 2165776 14138.99 <2e-16

time.f 4 14434 3608 23.56 <2e-16

time.f:treat.f 4 2703 676 4.41 0.0016

Residuals 858 131426 153

acuity visual0, for time factor time.f, and for the interaction time.f:treat.f.
Note that the square of the value of the t-test statistic for visual0, 29.2132 =
853.43, does not equal the value of the F-test statistic, 14,138.99. This is because,
as mentioned in Sect. 5.6, the results of the t-tests provided by the summary()

function, pertain to the marginal tests. Meanwhile, the results of F-tests, produced
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a b

Fig. 6.1 ARMD Trial: Raw residuals for model M6.1 (a) Residuals versus fitted values (b) Normal
Q-Q plot

by the anova() function, are by default for the sequential approach (Sect. 4.7.1).
Thus, for example, the t-test for visual0 assumes that visual0, time.f and
time.f:treat.f, are included in the alternative model, while the F-test assumes
that no other terms besides visual0 are present.

Note that the p value for the F-test for time.f:treat.f indicates a
statistically significant result of the test at the 5% significance level. This suggests
the presence of a time-varying treatment effect. As mentioned earlier, the negative
point estimates for the interaction coefficients indicate a favorable placebo effect
that increases over time. However, as we already mentioned, the model does not take
into account the correlation between the visual acuity observations obtained from
the same subject. It also does not take into account the heterogeneous variability
present at different timepoints. Thus, it should not be used as a basis for inference.

The misspecification of model M6.1 is reflected in Fig. 6.1 containing residual
plots (Sect. 4.5.2). The scatterplot of raw residuals versus fitted values, presented in
Fig. 6.1a, is obtained using the following traditional graphics commands:

> plot(fitted(lm6.1), resid(lm6.1)) # Fig. 6.1a

> abline(h = seq(-40, 40, by = 20), col = "grey")

> abline(v = seq( 10, 80, by = 10), col = "grey")

The generic functions fitted() and resid() (alias for residuals()) (Sect. 5.5)
extract raw residuals (default) and fitted values, respectively, from the model-fit
object lm6.1. The generic function plot() plots the residuals against the fitted
values, i.e., against the estimated values of the linear predictor specified on the
right-hand side of the model equation (6.1). The (vertical) width of the scatterplot
clearly increases with increasing fitted values, which implies a nonconstant residual
variance.
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A normal Q–Q plot of the raw residuals in Fig. 6.1b is obtained by issuing the
following commands:

> qqnorm(resid(lm6.1)); qqline(resid(lm6.1)) # Fig. 6.1b

The function qqnorm() creates the normal Q–Q plot, while the function
qqline() adds a line passing through the first and third quantiles of the coordinates.
The shape of the plot clearly deviates from a straight line. This may be an indication
of a problem with the normality of the residuals. However, it may also be the effect
of ignored heteroscedasticity and/or correlation of the visual acuity measurements.
In any case, both the scatterplot in Fig. 6.1a and the Q–Q plot in Fig. 6.1b indicate
problems with the fit of model M6.1.

6.4 Fitting a Linear Model Using the gls() Function

The lm() function fits LMs assuming independence between the observations. More
flexible LMs, which allow for dependence between the observations, can be fitted
using the gls() function. Of course, the function can also be used to fit the classical
LM with independent observations, as described in Sect. 5.4. In Panel R6.3, we
illustrate its use for this purpose by fitting model M6.1.

Toward this end, we first need to attach the nlme package. Model M6.1 can then
be fitted using the gls() function. The syntax is similar to that used for the lm()

function. By default, gls() provides the REML estimates, discussed in Sect. 4.4.3.
To obtain the ML estimates, the argument method="ML" should be used instead (see
Sect. 5.4).

The results of the model fitted using the function gls() can be accessed in a
variety of ways, as was explained in Sect. 5.5. The simplest way is to print the object
itself or to use the summary(fm6.1) command (printouts not shown). By applying
the function intervals(), as shown in Panel R6.3, confidence intervals can be
constructed for all fixed-effects, b, and parameter s . Confidence intervals for the
fixed-effects coefficients are obtained using the t-distribution with n− p = 867−
9 = 858 degrees of freedom, while the interval for s is constructed using the c2

distribution with 858 degrees of freedom, as discussed in Sect. 4.6.2.
The scatterplot and normal Q–Q plot of residuals can be obtained using the

following traditional graphics commands:

> plot(predict(fm6.1), residuals(fm6.1)) # Same as Fig.6.1a

> qqnorm(residuals(fm6.1)) # Same as Fig.6.1b

> qqline(residuals(fm6.1))

The resulting plots are not displayed; they are obviously identical to those presented
in Figs. 6.1a and 6.1b.

The most interesting feature of the function gls() is its capability of fitting
models with structured variance–covariance matrices for correlated observations.
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R6.3 ARMD Trial: The 95% confidence intervals for fixed effects and residual
standard deviation for the linear model M6.1, fitted using the gls() function. The
formula-object lm1.form was defined in Panel R6.1

> require(nlme) # Attach nlme package

> fm6.1 <- gls(lm1.form, # M6.1:(6.1)
+ data = armd)

> intervals(fm6.1) # 95% CI for b, s
Approximate 95% confidence intervals

Coefficients:

lower est. upper

visual0 0.77458 0.83037 0.88616

time.f4wks 4.26092 8.07531 11.88970

time.f12wks 3.27166 7.08066 10.88965

time.f24wks -0.20332 3.63022 7.46376

time.f52wks -5.65132 -1.74643 2.15846

time.f4wks:treat.fActive -5.54995 -2.35278 0.84440

time.f12wks:treat.fActive -6.93482 -3.70852 -0.48222

time.f24wks:treat.fActive -6.77400 -3.44915 -0.12430

time.f52wks:treat.fActive -7.96341 -4.47345 -0.98349

attr(,"label")

[1] "Coefficients:"

Residual standard error:

lower est. upper

11.818 12.376 12.991

We will explore this feature in a more appropriate analysis of the armd data in
Chaps. 9 and 12.

To conclude, we note that the results extracted from the model fits provided by
objects lm6.1 and fm6.1 are identical, as observed in Table 6.1. This is due to
the fact that for LMs with independent, homoscedastic errors, the REML estimates
produced by gls() are exactly the same as the estimates obtained by OLS, which
is used in lm() (see Sects. 4.4.1 and 4.4.3).

6.5 Chapter Summary

In this chapter, we illustrated the use of functions lm() and gls() to fit LMs with
independent residual errors with homogeneous variance to data from the ARMD
trial. In particular, we presented the main steps and tools related to the model-
formula specification, creation and checking of the design matrix, extraction of
results from the model-fit object, and investigation of the model fit. Similar steps and
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tools are used for more complex LMs that will be the focus of subsequent chapters.
For fitting these models, the function gls() will be the primary instrument; its use
for this purpose will be explored in more detail in the next chapters.

When presenting the diagnostic plots, we used traditional graphics tools. As
an alternative, we could have used the tools from the lattice package. In fact, in
subsequent chapters we will be using lattice more often.



Chapter 7
Linear Models with Heterogeneous Variance

7.1 Introduction

In Chap. 4, we formulated the classical LM for independent observations. The key
assumptions underlying the model are that the observations are independent and
normally distributed with a constant, i.e., homogeneous variance, and that the
expected value of the observations can be expressed as a linear function of
covariates.

We now relax the homoscedasticity assumption and allow for the observations to
be heteroscedastic, i.e., to have different variances, while retaining the assumption
that the observations are independent and normally distributed. We refer to this new
class of models as LMs with heterogeneous variance.

In the presentation of the LMs with heterogeneous variance, we introduce
important concepts of variance function, WLS estimation, GLS estimation, and
IRLS estimation. These are general concepts, that are also important for more
complex LMs, like those that will be described in Chaps. 10 and 13. The concepts
in this chapter are introduced in a relatively simple framework, allowing for
straightforward presentation.

The chapter is structured as follows. In Sects. 7.2 and 7.3, we describe the
specification of the LMs with heterogeneous variance and, in particular, the use of
variance functions. Sections 7.4–7.7 present estimation methods, model diagnostics,
inferential tools, and model reduction and selection methods, respectively. Sec-
tion 7.8 is devoted to a special class of models in which residual variance depends
on the mean value. In Sect. 7.9, a summary of the chapter is offered.

In our presentation of the theoretical concepts underlying the LMs with
heterogeneous variance, we focus on these that are implemented in R. The details
of the implementation are discussed in Chap. 8.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__7,
© Springer Science+Business Media New York 2013
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7.2 Model Specification

Recall that in the classical LM with homogeneous variance, defined by (4.1)–(4.2) in
Sect. 4.2, the variance Var(yi) of observation yi of the dependent variable, displayed
in (4.5), is equal to s 2. We now relax the constant variance assumption and
assume that

Var(yi) = s 2
i . (7.1)

Therefore, we formulate an LM with heterogeneous variance by assuming that

yi = x(1)i b1 + · · ·+ x(p)i bp + ei ≡ x′ib+ ei (7.2)

and

ei ∼N (0,s 2
i ), (7.3)

where ei are independent, i.e., ei is independent of ei′ for i �= i′. Note that the fixed
part of the LM, specified in (7.2), is exactly the same as that of the classical LM
with homogeneous variance defined in Sect. 4.2. The only differences between the
two models are different assumptions about residuals and their variance in (7.3), as
compared to (4.2).

Similarly to (4.4), the model with heterogeneous variance, defined in (7.2)–(7.3),
implies that

E(yi) ≡ mi = x′ib. (7.4)

It is important to note that the model contains in total n+ p parameters, including n
parameters s i and p parameters b. This is more than n, the number of observations.
Therefore, the model is not identifiable. It may become identifiable, however, if we
impose additional constraints on the residual variances s 2

1, . . . ,s
2
n.

One simple way to impose such constraints is to assume known variance weights.
This case is described in Sect. 7.2.1. Another more general way is to represent
variances more parsimoniously as a function of a small set of parameters. This can
be accomplished by employing a variance function. The concept is introduced in
Sect. 7.2.2.

7.2.1 Known Variance Weights

The simplest way to introduce heteroscedasticity and, at the same time, to reduce the
number of variance parameters in model (7.2)–(7.3), is to assume that the variance of
ei is equal to a known proportion of one (unknown) parameter s 2. More specifically,
we may associate with every observation i a known constant wi > 0 and assume that
Var(ei) = Var(yi) = s 2/wi.
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An LM with known weights is then specified as (7.2) with

ei ∼N (0,s 2/wi). (7.5)

Constants wi are called “true” weights. The higher the weight for a given obser-
vation, the lower the variance, i.e., the more precisely recorded the value of yi.
However, in real-life applications, weights wi are rarely known. Typically, given
lack of knowledge about “true” weights, we assume that wi = 1 for all observations,
which means that, in fact, we assume the classical LM with homogeneous variance,
defined by (4.1) and (4.2). In Sect. 7.4.1, we demonstrate that the model with known
variance weights can be transformed back to an LM with homogeneous variance,
defined by (4.1) and (4.2).

7.2.2 Variance Function

A more general and flexible way to introduce variance heterogeneity is by means
of a variance function (Carroll and Ruppert 1988). More specifically, consider a
function

l(d,m,v),

which assumes positive values and is continuous and differentiable with respect to
d for all legitimate values of d. Note that m is a scalar and d and v can be vectors.

We can then assume that the variance of the residual errors, i.e., Var(ei), is
expressed as follows:

Var(ei) = s 2l2(d,mi;vi), (7.6)

where mi is defined in (7.4), s is a scale parameter, vi is a vector of (known)
covariates defining the variance function for observation i, while the vector d
contains a small set of variance parameters, common to all observations. Note that,
because the function l(·) on the right-hand side of (7.6) involves mi, it in fact
depends on b, too. However, we prefer to reflect this dependence in the notation
indirectly by using mi, i.e., by pointing to the dependence of the variance of residual
error on the mean value.

It is worth underscoring here that the parameter s , used in (7.6), in general
should be interpreted as a scale parameter. This is in contrast to the classical LM
with homogeneous variance, defined in Sect. 4.2, in which s can be interpreted as
residual error standard deviation.

Note that, according to (7.6), l(·) should, strictly speaking, be referred to as
a function modeling standard deviation, not variance. However, the term variance
function is commonly used when referring to l(·), and we will follow this
convention.
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7.2.2.1 Specification at the Level of a Unit of Observation

For the ith observation, an LM with variance function l(·), defined in (7.6), is
specified by combining the mean structure, implied by (7.2), with the assump-
tion that

ei ∼N (0,s 2l2
i ), (7.7)

where

li ≡ l(d,mi;vi). (7.8)

By using the variance function l(·), we parsimoniously represent the variance s 2
i

of ei, used in (7.3), as

s 2
i = s 2l2

i , (7.9)

where s 2 is an unknown scalar parameter and li, as defined in (7.8), depends
directly on the unknown variance parameters d and indirectly on b through mi.

For example, if we assume that l(mi) = mi, from (7.8) it follows that s i/mi = s .
Hence, in the context of this model, s can be interpreted as a coefficient of variation.

Note that, upon taking li = l(wi) = 1/
√

wi, where wi is an appropriately con-
structed variance covariate, the model specified by (7.2), (7.7), and (7.8) becomes
equivalent to the model with known variance weights wi, defined in Sect. 7.2.1.

7.2.2.2 Specification for All Data

Model equations (7.2), (7.7), and (7.8) apply to individual observations. They can
be replaced by an equation accommodating all observations. Toward this end, we
define a diagonal matrix R:

R ≡ LL, (7.10)

where L = diag(l1, . . . ,ln) is a diagonal matrix, with elements defined by (7.8). By
using (7.10), we can specify the model, defined by (7.2) and (7.7)–(7.8), as follows:

y = Xb+ e, (7.11)

where

e∼N (0,R), R= s 2R, (7.12)

and y, X, b, and e are defined as in Sect. 4.2.2. Note that (7.10)–(7.12) apply to all
n observations simultaneously. This specification will become especially useful for
models with correlated residual errors that will be introduced in Chap. 10.
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7.3 Details of the Model Specification

In this section, we provide more details about the specification of the LMs with
heterogeneous variance defined in Sect. 7.2. In particular, in Sect. 7.3.1, we provide
examples of variance functions, while in Sect. 7.3.2, we discuss the issue of the
unique parameterization of the functions.

7.3.1 Groups of Variance Functions

In this section, we present selected examples of the variance function l(·), defined
in (7.6). When referring to variance functions, we use names, such as varFixed(·) or
varIdent(·), borrowed from the R syntax, which will be explained in Chap. 8.

For the sake of simplicity, variance functions l(·) can be classified into the
following four groups:

1. Known weights, l(·) = l(v)
2. Variance functions depending on d but not on m, i.e., l(·) = l(d;v)
3. Variance functions depending on d and m, i.e., l(·) = l(d,m;v)
4. Variance functions depending on m but not on d, i.e., l(·) = l(m;v)

In what follows, we will symbolically refer to groups 2–4 as <δ>-, <δ,μ>-, and
<μ>-group, respectively.

Specification of an LM with heterogeneous variance, presented in Sect. 7.2, is
very general and encompasses all four groups of variance functions. In other words,
the use of a variance function from any of the aforementioned groups does not
pose difficulties in terms of the model specification. However, in models involving
variance functions from groups <δ,μ> or <μ>, the parameters b are shared by the
mean and variance structures. For this reason, these models, referred to as mean-
variance models, require different estimation approaches and inference techniques,
as compared to the models involving known weights or variance functions from
the <δ>-group. Consequently, the mean-variance models are discussed separately in
Sect. 7.8.

Table 7.1 shows the information about the tables and sections, in which the reader
can find examples of a particular group of variance functions and the description of
the corresponding estimation method.

The simplest example of a variance function is varFixed(vi) =
√
vi. It belongs

to the first group of variance functions, as it assigns fixed weights wi = 1/vi,
determined by the values vi (vi > 0) of a known variance covariate. Note that the
function varFixed(·) depends on neither d nor mi. It simply implies an LM with
known weights, described in Sect. 7.2.1.

Before discussing variance functions from groups <δ>, <δ,μ>, and <μ>, we
note that they allow for multiple strata. To reflect this in the notation, we assume
that the observations yi are split into several strata, indexed by s (s = 1, . . . ,S),
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Table 7.1 A summary of the parts of Chap. 7 that contain the information about
particular groups of variance functions and the corresponding estimation methods

Arguments

Group d mi Examples Estimation algorithm Section

Known weights − − varFixed(·) WLS 7.4.1
<δ> + − Table 7.2 ML/REML 7.4.2
<δ,μ> + + Table 7.3 ML/REML-based GLS 7.8.1.1
<μ> − + Table 7.4 IRLS 7.8.1.2

Table 7.2 Examples of variance functions from the <δ>-groupa

Function l(·) li Description

varPower(d;vi, si) |vi|dsi Power of a variance covariate vi

varExp(d;vi, si) exp(vidsi
) Exponent of a variance covariate

varConstPower(d;vi, si) d1,si
+ |vi|d2,si Constant plus power variance

function d1,si
> 0

varIdent(d; si) dsi
Different variances per stratum

d1 ≡ 1, ds > 0 for s �= 1
aFunction names used in the first column correspond to the names used in the package
nlme

Table 7.3 Examples of variance functions from the <δ,μ>-groupa

Function l(·) li Description

varPower(d,mi; si) |mi|dsi Power of |mi|
varExp(d,mi; si) exp(midsi

) Exponent of mi

varConstPower(d,mi; si) d1,si
+ |mi|d2,si Constant plus power variance

function d1,si
> 0

aFunction names used in the first column correspond to the names used in the package
nlme

with stratum-specific (not observation-specific) variance parameters ds. Further, we
denote by si the stratum to which the ith observation belongs. Similarly to s, the
index variable si assumes values 1, . . . ,S.

The variance functions, presented in Table 7.2, belong to the <δ>-group. That is,
they depend on a variance covariate, i.e., vi, and on parameters d = (d1, . . . ,dS), but
not on mi. Thus, we can refer to them as the mean-independent variance functions.
Note that the function varIdent(·) is defined only for multiple strata.

In Table 7.3, we present selected examples of variance functions from the <δ,μ>-
group. These functions are mean-dependent, as they depend on mi and on d =
(d1, . . . ,dS).

Note that, by assuming a particular form of some of the variance functions
shown in Table 7.3, we can obtain a function from the <μ>-group. This happens,
for instance, for the varPower(d,mi) or varExp(d,mi), if we assume dsi

≡ 1 (or any
other constant). Examples of functions from the <μ>-group are given in Table 7.4.
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Table 7.4 Examples of variance functions from the <μ>-groupa

Function l(·) li Description

varPower(mi; si,d) |mi|dsi Power of |mi|, dsi
known

varExp(mi; si,d) exp(midsi
) Exponent of mi, dsi

known

varConstPower(mi; si,d) d1,si
+ |mi|d2,si Constant plus power variance function,

d1,si
> 0, d1,si

and d2,si
known

aFunction names used in the first column correspond to the names used in the package
nlme

Variance functions allow for the modeling of many patterns of heteroscedasticity.
For example, by using varPower(mi;si,d) from the <μ>-group with dsi

≡ 1, we
obtain l(mi) = mi or, equivalently, s i = s mi. Thus, we get a model with a constant
coefficient of variation s .

In Sect. 8.2, we will demonstrate how the various variance functions are repre-
sented in the nlme package.

7.3.2 Aliasing in Variance Parameters

Note that, in the definition of the varIdent(·) variance function in Table 7.2, the con-
straint d1 ≡ 1 was introduced. Without the constraint, the LM with heterogeneous
variance, specified by (7.2), (7.7), and (7.8), and the varIdent(·) variance function
with more than one stratum, would not be identifiable. This is because a fixed set of
variances (s 2

1, . . . ,s
2
S) can be represented as

(s 2
1, . . . ,s

2
S) = s 2(d2

1, . . . ,d
2
S) (7.13)

upon defining

(d1, . . . ,dS)≡
{s 1

s
, . . . ,

s S

s

}

.

However, (7.13) can be equivalently represented, for s ′ �= s , as

(s 2
1, . . . ,s

2
S) = (s ′)2

{

(d′1)
2, . . . ,(d′S)

2
}

,

where

(d′1, . . . ,d
′
S)≡

{

s 1

s ′
, . . . ,

s S

s ′

}

.

It follows that the representation (7.13) is not unique. To make it unique, constraints
need to be imposed. A possible constraint is to assume, as it was done in Table 7.2
and as it is done by default in R, that d1≡ 1. Under this constraint, the representation
(7.13) holds uniquely with s 2 ≡ s 2

1 and

d = (d1, . . . ,dS)≡
{

1,
s 2

s 1
, . . . ,

s S

s 1

}

. (7.14)
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In this way, the varIdent(·) variance function can be parameterized to define an LM
with different residual variances for different strata:

Var(esi
) = s 2

si
= s 2d2

si
. (7.15)

Note that, in this case, s can be interpreted as residual standard deviation in the
stratum s = 1.

7.4 Estimation

The parameters of the models specified in Sects. 7.2.1 and 7.2.2 can be estimated by
using various approaches. Those depend, for example, on the form of the variance
function, given in (7.6). More specifically, and as alluded to when presenting
Table 7.1, different estimation methods are used for models specified by using
variance functions from different groups.

In Sect. 7.4.1, we present the methods used to estimate the parameters of
the model with known weights, which was specified in Sect. 7.2.1. Section 7.4.2
presents estimation methods for models defined by using a variance function from
the <δ>-group. Discussion of the estimation approaches for the mean-variance
models, i.e., models employing variance functions from the <δ,μ>- or <μ>-groups,
is deferred until Sect. 7.8.1.2. Section 7.4.3 discusses an alternative parameterization
of the variance function in LMs with heterogeneous variance, which is more
suitable for numerical optimization. Finally, the uncertainty in parameter estimates
is addressed in Sect. 7.4.4.

It is worth noting that (7.9) and (7.12), used in the specification of the LM with
heterogeneous variance, imply a somewhat special role for s 2, as compared to the
d parameters. Namely, s can be thought of as a scale parameter. On the other hand,
the parameters d provide information about the relative magnitude of variation for
different observations. Consequently, in some estimation approaches, more focus is
given to the estimation of b and d. Such approaches are actually used in R, and we
will therefore primarily focus on these. More details about alternative approaches
are available, for instance, in Verbeke and Molenberghs (2000).

7.4.1 Weighted Least Squares

From an estimation point of view, models with known variance weights (Sect. 7.2.1),
which involve a variance function from the first group, do not impose any additional
computational difficulties, as compared to the classical LM, described in Sect. 4.2.
This is because, by multiplying both sides of (7.1) by wi

1/2, we transform the
known-weights LM back to the framework of the LM with homogeneous error
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variance, introduced in Sect. 4.2. More specifically, the transformed model can be
written as

wi
1/2yi = wi

1/2x(1)i b1 + . . .+wi
1/2x(p)bp +wi

1/2ei. (7.16)

Note that, in the transformed model, the linearity with respect to b and independence
of residual errors are maintained. Moreover, the variance of the transformed residual
error is constant, i.e., Var(w1/2

i ei) = s 2.
Consequently, the estimates of b are obtained by minimization, with respect to

b, of a weighted residual sum of squares:

n

∑
i=1

wi(yi− x′ib)
2. (7.17)

Explicit formulae for estimators of b and s 2, built upon (4.12) and (4.13), are as
follows:

̂bWLS ≡
(

n

∑
i=1

wixix
′
i

)−1 n

∑
i=1

wixiyi, (7.18)

ŝ 2
WLS ≡

n

∑
i=1

wi(yi− x′îbWLS )
2/(n− p). (7.19)

These are called WLS estimators.

7.4.2 Likelihood Optimization

In this section, we consider the model, defined by (7.2), (7.7), and (7.8), with the
variance function l(·) belonging to the <δ>-group, i.e.,

li = l(d;vi). (7.20)

Note that, compared to the general definition of l(·), given by (7.6), we consider
variance functions that depend on the vector of variance parameters d and on the
vector of (known) covariates vi, but not on the expected value mi. Examples of such
functions were given in Table 7.2.

7.4.2.1 Maximum-Likelihood Estimation

In this section, we first introduce the full log-likelihood function. We then consider
the log-likelihood obtained by profiling out the b parameters, followed by profiling
out s 2.
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Log-Likelihood for b, s 2, and d

The log-likelihood function for the model, specified in (7.2), (7.7), and (7.8), is
given by:

�Full(b,s
2,d) =−n

2
log(s 2)− 1

2

n

∑
i=1

log(l2
i )−

1

2s 2

n

∑
i=1

l−2
i (yi− x′ib)

2.

(7.21)

Note that �Full(b,s
2,d) depends on d through li, defined in (7.20). In the special case

of li ≡ 1, the log-likelihood (7.21) becomes equivalent to the log-likelihood (4.15)
for the classical LM.

Estimates of parameters b, s 2, and d can be obtained by simultaneously
maximizing the log-likelihood function with respect to these parameters. In general,
however, this is a numerically complex task, which requires finding an optimum in
a multidimensional parameter space. This task can be simplified by employing the
so-called profile likelihood technique.

Profiling Likelihood

Profiling of a likelihood function can be done in a variety of ways. Here, we
will follow the profiling approach implemented in the gls() function of the nlme
package. That is, we first profile out the b parameters, and then, we profile out s 2.

More specifically, assume that d in (7.20) is known. Then, maximizing (7.21)
with respect to b for every value of d leads to the following functional relationship
between the optimum value ̂b and d:

̂b(d) ≡
(

n

∑
i=1

l−2
i xix

′
i

)−1 n

∑
i=1

l−2
i xiyi. (7.22)

By plugging (7.22) into (7.21), we obtain the following log-profile-likelihood
function:

�∗ML(s
2,d) ≡ �Full(

̂b(d),s 2,d)

= −n
2

log(s 2)− 1
2

n

∑
i=1

log(l2
i )−

1

2s 2

n

∑
i=1

l−2
i r2

i , (7.23)
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where

ri ≡ ri(d) = yi− x′îb(d)

= yi− x′i

(

n

∑
i=1

l−2
i xix

′
i

)−1 n

∑
i=1

xil
−2
i yi, (7.24)

and li, defined by (7.20), depends on d. Note that we use “∗” in (7.23) to indicate that
�∗ML(s

2,d) is a log-profile-likelihood function. The advantage of using the function
is that it does not depend on b. Thus, optimization of the function is performed in a
parameter space of a lower dimension.

Maximization of �∗ML(s
2,d) with respect to s 2 for every known value of d leads

to the following functional relationship between the optimum value ŝ 2 and d:

ŝ 2
ML(d) ≡

n

∑
i=1

l−2
i r2

i /n, (7.25)

where ri ≡ ri(d) are defined in (7.24).
Replacing s 2 in (7.23) with the expression on the right-hand side of (7.25) yields

a log-profile-likelihood function for d:

�∗ML(d) ≡ �∗ML(ŝ
2
ML(d),d)

= −n
2

log(ŝ 2
ML)−

1
2

n

∑
i=1

log(l2
i )−

n
2
, (7.26)

where ŝ 2
ML ≡ ŝ 2

ML(d).
The log-profile-likelihood function �∗ML(d), defined in (7.26), depends on d, but

does not depend on b nor on s 2. Therefore, maximization of the function is much
easier than the maximization of (7.21) over potentially many more parameters.
Compared to �∗ML(s

2,d) in (7.23), the function �∗ML(d) in (7.26) depends on one
parameter less.

By maximizing �∗ML(d) with respect to d, we obtain an estimator ̂dML of d. Whether
or not the estimate can be presented in a closed-form expression depends on the
chosen variance function l(·), which defines li. Plugging ̂dML into (7.22) and (7.25)

yields estimators ̂bML and ŝ 2
ML of b and s 2, respectively:

̂bML ≡ ̂b(̂dML ) =

(

n

∑
i=1

̂l−2
i xix

′
i

)−1 n

∑
i=1

̂l−2
i xiyi, (7.27)

ŝ 2
ML ≡ ŝ 2

ML(
̂dML ) =

n

∑
i=1

̂l−2
i r̂2

i /n, (7.28)

where ̂li ≡ l(̂dML ;vi) and r̂i ≡ ri(
̂dML ) is defined in (7.24).
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Similarly to the observation made in Sect. 4.4.2, the maximum-likelihood esti-
mator ŝ 2

ML of s 2, obtained from the maximization of (7.26), is biased. In fact, the
same comment applies to ̂dML. This is because neither of the two estimators adjusts
for the uncertainty in the estimation of b. For this reason, and similar to the case
of the classical LM described in Sect. 4.4.2, s 2 and d are preferably estimated by
using the REML method. This is especially important for a small sample size. We
will now describe this estimation approach.

7.4.2.2 Restricted Maximum-Likelihood Estimation

The idea of the REML estimation for the models, defined by (7.2), (7.7), and (7.8),
and a variance function belonging to the <δ>-group, is similar to the one used in
the case of the classical LM for independent observations (Sect. 4.4.3). That is, to
obtain unbiased estimates of s 2 and d, we should use an estimation approach that
is orthogonal to the estimation of b. This can be done by considering the likelihood
function of a set of n− p independent contrasts of y (Verbeke and Molenberghs
2000, p. 43–46). The resulting log-restricted-likelihood function is given by

�REML(s
2,d) ≡ −n− p

2
log(s 2)− 1

2

n

∑
i=1

log(l2
i )−

1

2s 2

n

∑
i=1

l−2
i r2

i

−1
2

log

[

det

(

n

∑
i=1

l−2
i xix

′
i

)]

, (7.29)

with det(A) denoting the determinant of matrix A and ri defined in (7.24).
We may profile out s 2 from �REML(·) by observing that, for a known value of d,

the function is maximized by

ŝ 2
REML(d) ≡

n

∑
i=1

l−2
i r2

i /(n− p). (7.30)

By plugging (7.30) into (7.29), we obtain a log-profile-restricted-likelihood function
that depends only on d:

�∗REML(d) ≡ �REML(ŝ
2
REML(d),d). (7.31)

By maximization of (7.31) with respect to d, we obtain an estimator ̂dREML of d. Note
that the resulting ̂dREML is also used in (7.22) to yield an estimator ̂bREML of b.

It is worth noting that the log-restricted-likelihood function �REML(·) is not
designed to obtain estimates of b. Toward this end, the formula (7.22), obtained
for the ML estimation, is used instead. It is important to stress that, although the
same formula, (7.22), is used to obtain the estimator ̂bREML of b, the estimator is
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different from ̂bML. This is because the ML estimator ̂bML results from the use of

the ML estimator ̂dML of d, which is obtained from the maximization of (7.26), and
which differs from the REML estimator ̂dREML, obtained from maximizing (7.31).

7.4.3 Constrained Versus Unconstrained Parameterization
of the Variance Parameters

For some variance functions like, e.g., varIdent(·) (Sect. 7.3.1), the parameters d are
constrained to be positive. This complicates the issue of finding their estimates, as
it leads to a constrained optimization problem for log-likelihood functions like, e.g.,
(7.31).

To overcome the problem, the optimization is performed by using an alternative,
unconstrained parameterization (Pinheiro and Bates 1996). More specifically, the

components ds of d are expressed as ds≡ ed∗s . Subsequently, d∗s = log(ds) are used as
the parameters of the variance function and of the optimized log-likelihood function.
Note that d∗s are no longer bound to be positive, which simplifies the optimization
task.

Similarly, if optimization over s 2 > 0 is required, e.g., in (7.23) and (7.29), the
parameter can be replaced by its logarithm.

7.4.4 Uncertainty in Parameter Estimation

The variance-covariance matrix of ̂b is estimated by

̂Var(̂b) ≡ ŝ 2

(

n

∑
i=1

̂l−2
i xix

′
i

)−1

= ŝ 2
(

X′̂L
−2

X
)−1

, (7.32)

where ̂li ≡ l(̂d;vi) and ̂L is a diagonal matrix with ̂li on the diagonal. Formula

(7.32) is similar to (4.22), obtained for the classical LM. Note that ŝ 2, ̂d, and,
consequently, ̂li depend on the estimation method, i.e., whether WLS, ML, or
REML is used.

It is worth noting that Rothenberg (1984) showed that, for models defined by
(7.2), (7.7), and (7.8), with the variance function l(·) belonging to the <δ>-group,

the variance-covariance matrix of ̂b depends, up to the second-order approximation,
on the precision of the estimation of d. Thus, especially for small sample sizes, the
standard errors, obtained from (7.32), may be too small. It also follows that correct
specification of the variance function may improve the precision of estimation of b
(Sect. 7.8.2).
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To assess the uncertainty in the estimates of parameters s 2 and d, one could adopt
several approaches related to the estimation techniques described in Sect. 7.4. We
focus on those that are implemented in R. Consider the two log-restricted-likelihood
functions �REML(·) and �∗REML(·), defined by (7.29) and (7.31), respectively. The latter
includes one parameter less, namely, s , and can be used to obtain an estimator of
d. This is actually the solution used for this purpose in the gls() function of the
nlme package. The variance-covariance matrix of ̂d could also be obtained from the
inverse of the observed Fisher information matrix (Sect. 4.6.1) of the log-profile-
likelihood function �∗REML(·). However, the drawback of using this approach is that it
does not allow for the estimation of the variance of ŝ 2 nor the covariances between
the estimates of s 2 and of d. To overcome this shortcoming, the variance-covariance
matrix of ŝ 2 and ̂d can be estimated by using the inverse of the observed Fisher
information matrix of the log-likelihood �REML(·), which depends on d and s 2. This
is also the approach adopted by the gls() function from the nlme package.

It should be stressed that, because the methods of the assessment of the
uncertainty in the estimates of the parameters s 2 and d described above are
likelihood-based, they require a correct specification of the model, including the
specification of the mean and variance structures and the normality assumption
(Sect. 7.8.2).

7.5 Model Diagnostics

In the case of the heterogeneous variance model, defined by (7.2) and (7.7)–(7.8),
with a variance function belonging to the <δ>-group, the diagnostic tools, described
in Sect. 4.5, need to be modified. In particular, because of heteroscedasticity, neither
the raw nor scaled residuals, presented in Tables 4.1 and 4.2, can be expected
to exhibit a constant-variability scatter when plotted against predicted values.
Nevertheless, with some care, the plots can be used to search for systematic patterns
that might suggest problems with the linearity of effects of covariates, with outlying
observations or may allow to detect patterns in residual variance heterogeneity.

To check for constant-variability and outlying observations, Pearson residuals
are more useful. They are obtained by appropriately scaling of the raw residuals, as
described in Sect. 7.5.1.

7.5.1 Pearson Residuals

In Chap. 4, we considered scaling residuals by dividing raw residuals by estimates
of s (Table 4.1). Another set of scaled residuals, displayed in Table 4.2, involved an
additional adjustment based on the hat matrix (Sect. 4.5.1). As already mentioned,
the use of these residuals for LMs with heterogeneous variance is somewhat limited.
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Table 7.5 Examples of Pearson residuals for linear models with heterogeneous variance

Pearson residual R naming convention Mathematical formulac

Standardized by
√

Var(yi) êi/
√

Var(yi)

Internally studentizeda Standardized êi/

√

̂Var(yi)

Externally studentizedb Studentized êi/
√

̂Var(y(−i))

a
̂Var(yi) is an estimate of Var(yi) based on all observations

b
̂Var(y(-i)) is an estimate of Var(yi) after excluding the ith observation

cêi = yi−x′îb

A different set of scaled residuals, also helpful in the context of LMs with
heterogeneous variance, is obtained by dividing the raw residuals by the estimated
standard deviation of the dependent variable, [̂Var(yi)]

1/2. The resulting residuals
are called internally studentized or, using the R convention, standardized Pearson
residuals and are presented in Table 7.5. We will simply refer to them as Pearson
residuals. Their main advantage is that they are less heteroscedastic, as compared
to the raw residuals. However, the heteroscedasticity, related to the heterogeneity
of Var(yi), is not completely removed. Moreover, the correlation between Pearson
residuals, similar to that induced by the hat matrix (4.23) for the raw residuals in the
classical LM (Sect. 4.5.1), is not removed either.

It appears sensible to generalize the hat matrix to LMs with heterogeneous
variance. Consequently, we could try to adjust Pearson residuals in a similar way
to that used for raw residuals (Table 4.2). However, this approach is not supported
by the gls() function from the nlme package used to fit models with heterogenous
variance and therefore we do not consider it further.

7.5.2 Influence Diagnostics

Influence diagnostics for LMs with heterogeneous variance resemble, to a large
extent, those presented in Sect. 4.5.3 for LMs with homogeneous variance. The pri-
mary difference is that models with heterogeneous variance have an additional set
of variance function parameters, namely, the parameters stored in vector d. Thus, we
should try to first investigate the combined influence of a given observation on the
estimates of all parameters, including b, d, and s . As a consequence, the diagnostics
based on the likelihood displacement should be performed first. Toward this end, the
generic likelihood-displacement definition (4.27) is used, with ̂Θ≡ (̂b ′,̂d ′, ŝ 2

)′ and
the log-likelihood given in (7.21).

After identifying influential observations by using the likelihood displacement,
we may try to narrow down their impact. For example, we may use Cook’s distance,
similar to that given in (4.26), to determine whether a particular observation affects
estimation of b. In addition, it may also be useful to apply Cook’s distance to d
as well.
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7.6 Inference

In this section, we discuss the issue of testing hypotheses about parameters of the
model, specified by (7.2), (7.7) and (7.8). Again, we focus our discussion on models
which involve a variance function from the <δ>-group.

In particular, in Sect. 7.6.1, we briefly discuss the use of tests of statistical
significance, while in Sect. 7.6.2, we consider the construction of confidence
intervals.

7.6.1 Tests of Statistical Significance

Inference for the LM with heterogeneous variances typically focuses on the
fixed-effects parameters b. In particular, linear hypotheses of the form defined by
(4.30) in Sect. 4.6 are of primary interest, so we describe them first. Afterward we
consider testing hypotheses about the variance parameters.

7.6.1.1 Tests for Fixed Effects

The LM with known weights, presented in Sect. 7.2.1, does not assume
homogeneous variance, so, strictly speaking, it does not meet the assumptions of the
classical LM, specified in Sect. 4.2. However, following the representation (7.16) as
a weighted LM, statistical inference for LMs with known weights can be performed
within the classical LM framework, described in Sect. 4.6.

For the LM, defined by (7.2), (7.7), and (7.8), with the variance function l(·)
from the <δ>-group, linear hypotheses about b can be tested by using the F-
test given by (4.36) in Sect. 4.6.1. The employed variance-covariance matrix of
̂b is computed from (7.32). Note, however, that the distribution of the test under
the null hypothesis is no longer a central F-distribution with rank(L) numerator
and n− p denominator degrees of freedom. This is because the test ignores the
uncertainty related to the estimation of the d parameters. It appears, though, that
the true distribution of the test statistic can still be approximated by a central F-
distribution with the numerator degrees of freedom equal to rank(L). The number
of denominator degrees of freedom needs to be determined from the data. For this
purpose, several methods are available. These include, for example, a so-called
Satterthwaite-type approximation (Satterthwaite 1941; Fai and Cornelius 1996) and
the method suggested by Kenward and Roger (1997). However, the function gls(),
available in R for fitting LMs with heterogeneous variance, ignores uncertainty
related to estimation of d parameters and simply uses the central F-distribution with
rank(L) numerator and n− p denominator degrees of freedom. Thus, we will not
discuss the issue of the approximation of the degrees of freedom, in spite of its
importance. For further details, we refer to Verbeke and Molenberghs (2000). The
issue of the choice of the degrees of freedom for the approximate F-test carries
forward and applies to the models considered in Chaps. 10 and 13.
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Alternatively, the LR test (Sect. 4.6.1), based on the ML estimation, can be used
to test linear hypotheses pertaining to the b parameters. Typically, a c2-distribution
with rank(L) degrees of freedom is used as the null distribution for the evaluation
of the results of the test. It has to be stressed that, in contrast to the ML-based LR
test, the REML-based LR test cannot be used to test linear hypotheses about b.
This is due to the fact that the last term in (7.29), which defined the log-restricted-
likelihood, potentially depends on the parameterization of the fixed effects. Thus,
calculating the test statistics based on models with different mean structures may
imply using design matrices employing different parameterizations for the nested
models and, consequently, comparing different log-restricted-likelihood functions.

7.6.1.2 Tests for Variance Parameters

Sometimes it is of interest to test a hypothesis about the variance parameters d.
In particular, the hypothesis implying equality of variances for some groups of
observations is of interest. Such a hypothesis can be formulated by specifying
equality constraints on the elements of d.

Toward this end, the LR test, mentioned in Sect. 4.6.1, is used. More precisely,
the test statistic is constructed based on the two nested models estimated with and
without taking into account the constraints. Asymptotically, the null distribution of
the test is approximately a c2 distribution with the number of degrees of freedom
equal to the difference in the number of variance parameters between the null and
alternative models. Three important comments are in order, though. First, the test
should be based on the REML, because the ML estimates of d are biased, especially
for small sample size. Second, the models involved should have exactly the same
mean structure. This is because log-restricted-likelihoods are only fully comparable
for LMs with the same mean structure. Third, it is required that under the null
hypothesis the variance function parameters do not lie on the boundary of the
parameter space.

As an example of testing a hypothesis about variance parameters, consider a
model with Var(yi) varying across S strata, i.e., with the residual variance defined
with the use of the varIdent(·) variance function (Sect. 7.3.1). Thus, d is given
by (7.14). One might be interested in testing whether a homoscedastic variance
structure might be appropriate. The corresponding null hypothesis would specify
that d = (1, . . . ,1)′. The LR test would be calculated based on a homoscedastic null
model with Var(yi)≡ s 2 and d= (1, . . . ,1)′ and a heteroscedastic alternative model
with d given by (7.14). The resulting test statistic would have asymptotically a c2

distribution with S− 1 degrees of freedom.
We may also think of the second situation, in which under the null hypothesis

the parameter d indeed lies on the boundary space. This may occur, for example, if
we test whether the parameter d1 in the varConstPower(·) function is equal to zero.
In this case, the LR test statistic under null does not have a c2 distribution (Shapiro
1985).
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It is worth noting that, in practice, both for testing fixed effects and variance
parameters, the null distribution of the test statistics is merely approximated by a
theoretical distribution. Thus, an important alternative approach to evaluation of the
test results is to simulate the null distribution of the test statistic.

7.6.2 Confidence Intervals for Parameters

Confidence intervals for individual components of the parameter vector b can be
constructed based on a t-distribution used as an approximate distribution for the
t-test statistic (Sect. 4.6). The comments related the choice of the number of degrees
of freedom for the F-test (see Sect. 7.6.1) apply to the t-test statistic, too.

Confidence intervals for the variance parameters d are somewhat more difficult
to obtain. The main issue is that, for some variance functions like, for example,
varIdent(·) (Sect. 7.3.1), the elements of d are constrained to being positive.
A solution to this problem implemented in R is similar to the one used to overcome
the constrained optimization problem, i.e., by considering the logarithmic transfor-
mation of the parameters (Sect. 7.4.3). The construction of confidence intervals is
then based on using a normal-distribution approximation to the distribution of the
ML or REML estimators of the transformed/unconstrained parameters.

For instance, consider the model defined by (7.2), (7.7), and (7.8), with the
residual variance specified by the varIdent(·) variance function (Sect. 7.3.1). In this
case, the variance parameters are s and d, where the latter is given in (7.14). Note
that s and the components of d are constrained to be positive. By assuming a
normal-distribution approximation to the distribution of the ML- or REML-based
estimator of the logarithm of ds, the (1−a/2)100% confidence interval for ds is
given by

exp

[

̂logds± z1−a/2

√

{I−1}dsds

]

, (7.33)

where {I−1}dsds
is the diagonal element, corresponding to logds, of the inverse of

the observed Fisher information matrix (Sect. 4.6.1) of the log-likelihood (7.21) or
log-restricted-likelihood (7.29), while z1−a/2 is the (1−a/2)100-th percentile of
the standard normal distribution (Pinheiro and Bates 2000, Sect. 2.4.3). In a similar
way, by assuming a normal-distribution approximation to the distribution of the ML-
or REML-based estimator of the logarithm of ŝ 2, a confidence interval for s 2 can
be obtained.

7.7 Model Reduction and Selection

In Sect. 7.6.1, we described statistical tests for fixed effects and variance parameters.
In addition to testing research hypotheses, they are also the most commonly used
tool for model reduction. Similarly to the classical LM, in the context of the LM
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with heterogeneous variance defined by a variance function from the <δ>-group
(Sect. 7.2), the need to discriminate between nonnested models may arise. This can
happen, for example, when two models with different mean structures and variance
functions are considered as suitable candidates to be fitted to the same dataset. In
such a case, the use of the LR test is not valid. A solution is the use of information
criteria, described in Sect. 4.7.2.

When dealing with selection of the best LM with heterogeneous variance, we
need to keep in mind that, in contrast to the classical LM, there are two sets of
parameters, namely, b and d. Consequently, we use the same model reduction and
selection tools, but in the process we often alternate between reducing the set of
the fixed effects and finding the optimal variance structure. The idea of alternating
between two sets of parameters carries over to more complex models, including
LMMs. An explanation of this issue in the context of LMMs can be found in Verbeke
and Molenberghs (2000, Fig. 9.1).

7.8 Mean-Variance Models

In this section, we present the estimation approaches and other theoretical issues
related to the mean-variance models. Recall that, by mean-variance models, we
consider LMs with heterogeneous residual variance, which is specified by a variance
function depending on mean value mi, i.e., by a variance function from the <δ,μ>-
or <μ>-group (see Tables 7.3 and 7.4, respectively). It is worth mentioning that
the concept of mean-variance models carries over to other LMs, including LMs
for correlated data and LMMs, which will be discussed in Chaps. 10 and 13,
respectively.

7.8.1 Estimation

In this section, we consider estimation of the parameters of the model, defined
by (7.2), (7.7), and (7.8), with the variance function l(·) depending on mi. First,
we present estimation using GLS for models involving variance functions from
the <δ,μ>-group. Next, we discuss estimation using IRLS, which is applicable to
models involving variance functions from the <μ>-group.

7.8.1.1 Estimation Using Generalized Least Squares

First, we consider a model with the residual variance defined by a variance function
belonging to the <δ,μ>-group:

li = l(d,mi;vi). (7.34)
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Thus, we consider variance functions that, for any value of the vector of (known)
covariates vi, depend on the vector of variance parameters d and on the expected
value mi ≡ x′ib. Examples of such functions were given in Table 7.3.

Estimation of such models could, in principle, be based on the maximization of
log-likelihood (7.21) over s , b, and d. However, besides the numerical complexity,
the joint maximization of the log-likelihood encounters an additional problem,
because the parameters b are shared by the mean and variance structures, through mi.
This is the rationale for using GLS instead of ML. In the remainder of this section,
we briefly summarize the GLS estimation. A more detailed exposition can be found,
for instance, in Davidian and Giltinan (1995).

Maximum-Likelihood-Based Generalized Least Squares

As an introduction to the GLS estimation, we consider the following objective
function:

�∗PL(s
2,d;b)≡ �Full(b,s

2,d), (7.35)

derived from the full log-likelihood (7.21). Note that we essentially assume b to be
known. Consequently, for every value of b, the function �∗PL(·) has two arguments,

i.e., s 2 and d. Note that, for b = ̂b(d), given in (7.22), �∗PL(·) is equivalent to �∗ML(·),
defined by (7.23).

By investigating (7.21), we note that optimization of �∗PL(s
2,d;b) with respect to

s and d is equivalent to the optimization of the full log-likelihood for a sensibly
defined working LM with heterogeneous variance. More specifically, the working
model is defined by (7.2), (7.7), and (7.8), with all terms used in the mean structure
absorbed into an offset (Sect. 4.3). For this reason, �∗PL(·) is referred to as the pseudo-
likelihood function (Carroll and Ruppert 1988), hence the subscript “PL” in the
notation.

In the next step, we profile out s from �∗PL(·) in a similar way as we did it for
�∗ML(·), defined by (7.23). To this end, we note that maximization of �∗PL(s

2,d;b)
with respect to s 2 for every known value of d leads to the following functional
relationship between ŝ 2 and d:

ŝ 2
PL(d;b) ≡

n

∑
i=1

l−2
i r2

i /n, (7.36)

where ri ≡ yi−x′ib. Note that, in contrast to ri(·) defined in (7.24), this time ri does
not depend on d because b is considered to be known. Replacing s 2 in (7.35) with
the expression on the right-hand side of (7.36) yields a pseudo-log-profile-likelihood
function for d:

�∗PL(d;b)≡ �∗PL(ŝ
2
PL(d),d;b). (7.37)
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It is important to point out that, given that b is fixed, the corresponding variance
function, derived from (7.34), no longer depends on mi. Consequently, the variance
function belongs to the <δ>-group and, therefore, the likelihood-based estimation
methods, presented in Sect. 7.4.2, can be used.

Based on the considerations related to (7.35), the GLS algorithm proceeds as
follows:

1. Assume initial values ̂b
(0)

of b and ̂d
(0)

of d and set the iteration counter k = 0.
2. Increase k by 1.

3. Use ̂b(k−1)
i to (re)define the variance function l(k)(·) .

Calculate m̂(k)
i ≡ x′îb

(k−1)
. (Re)define the variance function l(k)(·) as

l(k)(d; m̂(k)
i ,vi) ≡ l(d, m̂(k)

i ;vi), where l(·) is defined by (7.34). Note that l(k)(·)
is from the <δ>-group of variance functions.

4. Keep ̂b
(k−1)

fixed and optimize �∗PL(d) to find ̂d
(k)

.
Use the function l(k)(·) in defining the pseudo-likelihood function,

�∗PL(d;̂b
(k−1)

), specified by (7.37). Optimize this function with respect to d to

obtain the new estimate ̂d
(k)

of d. Values of ̂d
(k−1)

can be used as the initial
values for the optimization.

5. Fix ̂d
(k)

and use WLS to find ̂b
(k)

.

Use ̂d
(k)

to compute the values ̂l(k)
i ≡ l(̂d

(k)
, m̂(k)

i ;vi). Using wi ≡
[

̂l(k)
i

]−2
as

weights, compute the WLS estimate ̂b
(k)

of b by using (7.18).
6. Iterate between steps 2–5 until convergence or until a pre-determined number of

iterations k.
7. Compute the final estimate of s 2 by plugging the obtained estimates of d and b

into (7.36).

The algorithm described above is called the generalized least squares pseudo-
likelihood (GLS-PL) estimation. Note that it involves two iterative loops: an external
and an internal one. The internal loop is related to the optimization of the function
(7.37) in the step 4. The external loop is related to the repeated execution of the
steps 2–5.

In general, the ML-based GLS-PL algorithm does not have to produce an ML
estimator. Similarly to the observation made for the estimator ŝ 2

ML, given by (7.28),
the estimator of s 2, obtained from the GLS-PL algorithm, is likely to be biased. In
fact, the same comment applies to the estimator of d. For this reason, s 2 and d are
preferably estimated by using the GLS estimation based on REML. We will now
briefly describe this estimation approach.
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Restricted-Maximum-Likelihood-Based Generalized Least Squares

This estimation approach is based on a doubly iterative algorithm similar to the ML-
based GLS-PL algorithm, described in the previous section. Compared to the latter,
the algorithm is modified as follows:

• In step 4, instead of maximizing (7.37), a corresponding REML-based log-
likelihood function (not shown) is maximized with respect to d.

• In step 7, to obtain the final estimate of s 2, we use a modified version of (7.36),
with the denominator n replaced by n− p.

It is expected that, by using the REML-based estimators of d and s 2 in both
modifications described above, the resulting final estimators of the parameters are
less biased, as compared to the estimators obtained by the ML-based GLS-PL
algorithm.

7.8.1.2 Estimation Using Iteratively Re-weighted Least Squares

In this section, we consider the model, defined by (7.2), (7.7), and (7.8), with the
variance function l(·) belonging to the <μ>-group:

li = l(mi;vi). (7.38)

Thus, we consider variance functions that depend on the vector of the expected
values mi = x′ib and on (known) covariates stored in vi. Examples of such functions
were given in Table 7.4.

Note that, because the variance functions from the <μ>-group do not depend on
d, the estimation problem simplifies, because we only need to estimate b and s 2.
However, the dependence of l(·) on b implies the need for an iterative procedure to
find an estimator for the latter parameters. More specifically, b can be estimated by
the following IRLS algorithm:

1. Assume initial values ̂b
(0)

of b and set the iteration counter k = 0.
2. Increase k by 1.

3. Calculate m̂(k)
i ≡ x′îb

(k−1)
and ̂l(k)

i ≡ l(m̂(k)
i ;vi), where l(·) is defined by (7.38).

4. No optimization needed.

5. Compute the WLS estimate ̂b
(k)

of b by using (7.18) and wi ≡
[

̂l(k)
i

]−2
.

6. Iterate between steps 2 and 5 until convergence or until a pre-determined number
of iterations k.

7. Compute the final estimate of s 2 by plugging the obtained estimate of b in (7.36).
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The algorithm can be viewed as a simplified version of the ML-based GLS-PL
algorithm outlined in Sect. 7.8.1.1. The main simplification occurs in step 4, in
which the internal loop, necessary in the GLS-PL algorithm to update the current
values of d estimates, has been dropped.

Note that in the last step of the IRLS algorithm, the REML-based GLS estimator
of s 2 can be used.

7.8.2 Model Diagnostics and Inference

Carroll and Ruppert (1988) and Davidian and Giltinan (1995) show that the
estimators of b, obtained by any of the algorithms described in Sect. 7.8.1.1, are
asymptotically normally distributed with a variance-covariance matrix, which can
be estimated as in (7.32), but with ̂li ≡ l(m̂i,

̂d;vi) or ̂li ≡ l(m̂i). However, standard
errors, based on the estimated matrix, may need to be treated with caution. This is
because the estimate does not take into account the uncertainty related to the use of
estimates of b and d to compute the weights wi ≡ (̂li)

−2 in the step 5 of the GLS-
PL and IRLS algorithms. In fact, by using the second-order approximation, it can be
shown (Rothenberg 1984; Carroll and Ruppert 1988) that the variance-covariance
matrix of ̂b depends on the precision of the estimation of d. Thus, especially for
small sample sizes, the standard errors, obtained from (7.32), may be too small.

Keeping this issue in mind, linear hypotheses about b can be tested by using the
F-test (4.36), along the lines discussed in Sect. 7.6 for the case of LMs specified
with the use of variance functions from the <δ>-group. Confidence intervals for the
elements of b can be constructed by the method mentioned in Sect. 7.6.2.

The use of LR tests for testing hypotheses about b is complicated by the fact
that b is not estimated based on a likelihood neither in the GLS-PL nor in the IRLS
algorithm. For instance, the ML-version of the GLS-PL estimate of b is obtained by
using the log-profile-pseudo-likelihood (7.37). Nevertheless, an LR test for b can be
constructed by considering the core part of log-likelihood (7.21) with the estimated
weights li and s 2:

− 1

2ŝ 2

n

∑
i=1

(̂li)
−2(yi− x′ib)

2, (7.39)

with ̂li ≡ l(m̂i,
̂d;vi) or ̂li ≡ l(m̂i), and estimates ̂b, ̂d, and ŝ 2 obtained under the

alternative model. Comparison of the values of (7.39) for the null and alternative
models, along the lines described in Sect. 4.6.1, yields an LR test for b.

As mentioned at the beginning of this section, the precision of estimates of
b, obtained by the algorithms presented in Sect. 7.8.1, depends on the precision
of estimation of d. From this point of view, correct specification of the residual
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variance structure is desirable, as it would increase the efficiency of the estimation
of b and yield valid estimates of d and s 2. However, the PL-GLS and IRLS
algorithms provide valid estimates of b, as long as the mean structure of the model is
correctly chosen. Thus, the algorithms can be also be applied even with a working,
misspecified variance structure.

Inference on d and s 2, based on the estimates produced by the PL-GLS and
IRLS procedures, is complicated by several factors. First, any misspecification of
the variance structure of the data may lead to biased estimates of d and s 2. However,
correct specification of the structure is often difficult. Second, the variability of the
estimates depends, in a complicated form, on the variability of the estimate of b and
on the true (unknown) third- and higher-order moments of the data. Consequently,
the estimation of the variance-covariance matrix of the estimates of d and s 2 is
difficult. For all these reasons, inference on d and s 2, in the context of the mean-
variance models, should be treated with caution and we will not discuss it further.
Interested readers are referred to, e.g., the monograph by Carroll and Ruppert (1988,
Chap. 3) for more details.

Model diagnostics for mean-variance models can be based on the Pearson
residuals (Table 7.5). The comments related to the incomplete removal of the het-
eroscedasticity and correlation between the Pearson residuals, given in Sect. 7.5.1,
apply here as well.

7.9 Chapter Summary

In this chapter, we briefly reviewed the formulation of an LM for independent
observations with heterogeneous variance. For brevity, in the presentation, we tried
to use as much as possible the theory introduced in Chap. 4 and to focus mainly on
the concepts essential for addressing the variance heterogeneity. Thus, particularly
when describing the specification of the model in Sects. 7.2 and 7.3, we focused on
the concept of variance function.

The classification of variance functions into four groups (Sect. 7.3.1) has impor-
tant implications in terms of the choice of estimation methods and properties of
the resulting estimates. In Sect. 7.4, we described the estimation methods for the
models involving known weights or variance functions from the <δ>-group, which
do not depend on the mean value. An important point was the modification of the
estimation methods, presented in Sect. 4.4 for the classical LM, to allow for the
estimation of the variance function parameters. To a large extent, similar estimation
methods will be used for more complex models in the later chapters. In Sect. 7.5, we
offered a review of the diagnostic methods, while in Sects. 7.6 and 7.7, we described
the inferential tools available for models involving variance functions that do not
depend on the mean value. As in Sect. 7.4, we focused on the adaptation of the
methods developed for the classical LM to the case of independent observations
with heterogeneous variance. In this respect, it is worth noting that, as compared
to the classical LM, the F-distribution of the F-test statistic for the LMs with
heterogeneous variance is only approximate, not exact.
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In Sect. 7.8, we discussed the mean-variance models, i.e., the models involving
variance functions from the <δ,μ>- and <μ>-groups, which do depend on the mean
value. In particular, in Sect. 7.8.1, we briefly summarized the estimation approaches
for such models, which typically involve iterative algorithms. On the other hand,
in Sect. 7.8.2, we reviewed the issues related to the inference based on the mean-
variance models.

The use of variance function will be instrumental in formulating other models,
including LMMs in Chap. 13. In this respect, it is worth noting that the <δ>-group of
variance functions is the most common choice for LMs, especially for LMMs. The
<δ,μ>- and <μ>-groups of variance functions are less frequently applied, because
their use implies that the variance of the dependent variable is related to fixed effects
b, which complicates both the model estimation and inference.



Chapter 8
Fitting Linear Models with Heterogeneous
Variance: The gls() Function

8.1 Introduction

In Chap. 7, we introduced several concepts related to the LM for independent,
normally distributed observations with heterogeneous variance. Compared to the
classical LM (Chap. 4), the formulation of the model included a new component,
namely, the variance function, which is used to take into account heteroscedasticity
of the dependent variable.

In the current chapter, we review the tools available in R for fitting LMs
for independent, normally distributed observations with heterogeneous variance.
Sections 8.2 and 8.3 present the details of the implementation of variance functions
in R. In Sect. 8.4, we briefly discuss the use of the gls() function from the nlme
package, which is the primary tool to fit LMs for independent observations with
heterogeneous variance. Finally, Sect. 8.5 explains how the details of the estimated
form of the model can be accessed.

8.2 Variance-Function Representation: The varFunc Class

An important component needed in the context of an LM with heterogeneous
variance, is the variance function, defined in Sect. 7.2.2. Several examples of
variance functions were given in Tables 7.1–7.4. In this section, we provide the
details of the implementation of the functions in the nlme package and illustrate
them with examples.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__8,
© Springer Science+Business Media New York 2013

149



150 8 Fitting Linear Models with Heterogeneous Variance: The gls() Function

8.2.1 Variance-Function Constructors

The nlme package provides constructor functions designed to create specialized
objects, representing different variance functions. Examples of the constructor
functions and the class of the returned object are presented in Table 8.1.

Each created object belongs to the corresponding class, named after the construc-
tor function. For example, the varIdent() constructor function is used to create
objects of class varIdent, representing the variance function defined in (7.15), which
assigns different variances to different strata. Note that the objects inherit from
the varFunc class. A list of variance functions available in nlme can be obtained
from the R help system by issuing the ?varClasses command (after loading the
package).

The constructor functions allow exploring the features of the corresponding
variance functions. They also allow the choosing of user-defined initial values for
the function parameters. The constructors are primarily used to specify variance
functions, with the help of the weight argument, for the model-fitting functions
gls(), lme(), and nlme().

8.2.1.1 Arguments of the Variance-Function Constructors

For the varIdent(), varExp(), and varPower() constructor functions, there
are three (optional) arguments available: value, form, and fixed. The argument
value is a numeric vector or a list of numeric values, which specifies the values
of the variance parameter vector d, as defined in (7.6). The default value is 0,
implying a constant variance. The argument form provides a one-sided formula,
which indicates the vector of variance covariates vi and, if required, a stratification
variable that defines the strata s = 1, . . . ,S for d (Sect. 7.3.1). The default value of the
argument is ~1, implying a constant variance with no strata. Finally, fixed can be
used to fix the values of chosen (possibly, all) variance parameters in the numerical
optimization in the modeling functions. Toward this end, we should provide a named
numeric vector with the values, or a named list indicating the strata, for which the
parameters are to be kept constant. The argument defaults to NULL, corresponding
to no fixed coefficients.

For the constructor-functionvarConstPower(), the argument value is replaced
by arguments const and power. The arguments are numeric vectors or lists of
numeric values, which specify the coefficients for the constant and the power terms,
respectively (Sect. 7.3.1).

The constructor-function varFixed() uses only one argument, value, which
is a one-sided formula of the form ~v. It specifies the variance covariate v, which
induces a fixed (known) variance structure.

More information on the arguments of the variance-function constructors can be
obtained by issuing command ?varClasses.
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Table 8.1 R syntax: Examples of constructor functions and classes representing variance func-
tions in the package nlme. Created objects inherit from the varFunc class

Constructor function
Class of the returned
object Description

varFixed() varFixed Fixed weights, determined by a
variance covariate

varIdent() varIdent Different variances per stratum
varExp() varExp Exponential of a variance covariate
varPower() varPower Power of a variance covariate
varConstPower() varConstPower Constant plus power of a variance

covariate
varComb() varComb Combination of variance functions

8.2.2 Initialization of Objects of Class varFunc

Typically, the next step, after defining an object representing a variance function, is
to evaluate the variance structure in the context of a given dataset. The process
is referred to as initialization. It is conducted using the generic Initialize()

function. The function accepts two arguments: object and data. Based on the class
of the object specified in the first argument, the function dispatches an appropriate
method, which initializes the object using the data provided in the second argument.
More information on the process of initialization of a varFunc-class object can be
obtained by issuing the command ?Initialize.varFunc. In what follows, we
illustrate the initialization of an object of class varIdent.

8.2.2.1 Illustration: Using the varIdent() Variance Function

We continue with the varIdent(·) variance function, given in (7.15), as an example.
Panel R8.1 shows the construction and initialization of an object of class varIdent.
Objects val, fix, and frm are used to specify the values of the arguments value,
fixed, and form, respectively, in the definition of the object vf0. The formula
form specifies that variance depends on the value of the variance covariate, i.e., the
factor time.f. Vectors val and fix, taken together, define the initial values of the
variance-function coefficients, i.e., the three ratios of standard deviation (SD) of the
residual error for weeks 12, 24, and 52, relative to the reference value at week 4.
More specifically, the initial value of SD at 12 weeks is specified as a half of that
at 4 weeks. On the other hand, the value of SD at 24 weeks and 52 weeks is taken
as twice and three times as high, respectively, as the value at 4 weeks. The use of
the argument fixed=fix implies that the value of the coefficient corresponding to
the variance for week 52 will not change during any optimization steps in modeling
routines. Finally, the Initialize() command initializes the object vf0 and stores
the result in vf0i. Initialization is performed by evaluating the vf0 object for the
variance covariate, i.e., the factor time.f from the armd dataset.
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R8.1 R syntax: Definition and initialization of an object of class varIdent

> (val <- c("12wks" = 0.5, "24wks" = 2)) # d1≡1, d2= 0.5, d3= 2

12wks 24wks

0.5 2.0

> (fix <- c("52wks" = 3)) # d4= 3 (fixed)

52wks

3

> frm <- formula(~1|time.f) # time.f is a stratifying factor

> (vf0 <-

+ varIdent(value = val, # Var. function object defined...

+ fixed = fix,

+ form = frm))

Variance function structure of class varIdent with no parameters, ...

> (vf0i <- Initialize(vf0, armd)) # ... and initialized

Variance function structure of class varIdent representing

4wks 12wks 24wks 52wks

1.0 0.5 2.0 3.0

8.3 Inspecting and Modifying Objects of Class varFunc

In Sect. 7.4.3, we mentioned that, for numerical optimization purposes, the use
of an alternative, unconstrained parameterization of the variance function may
be advantageous. The information about the values of the coefficients, which
correspond to the different possible parameterizations, can be extracted from an
appropriate, initialized varFunc-class object.

The primary tool to extract or modify coefficients from any object is the generic
coef() function. It has specific methods for different classes. For
example, to extract coefficients from an object of class varIdent, we use the method
coef.varIdent(), dispatched by invoking the function coef().

The primary arguments of the coef.varIdent() method are object, un-
constrained, and allCoef. The argument object indicates an object of class
varIdent. The value of the logical argument unconstrained specifies the type
of the parameterization applied to the coefficients of the variance function. More
specifically, the coefficients (parameters) can be presented on a constrained or
unconstrained scale (Sect. 7.4.3). The value of the logical argument allCoef

indicates whether all coefficients or only those, which were not designated to
be fixed in numerical optimization routines, are to be returned. Note that similar
methods and arguments apply to other classes of variance functions, such as
varPower, varExp, etc.

Panel R8.2 demonstrates how to extract and to modify coefficients of a variance
function. For illustration purposes, we continue with the object vf0i, which
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represents the initialized variance-function varIdent, defined in Panel R8.1.
In Panels R8.2a and R8.2b, we illustrate the results of the use of all four
combinations of the possible values of arguments unconstrained and allCoef

of the coef() function.
The syntax displayed in Panel R8.2a returns the coefficients expressed on the

natural/constrained scale. The code shown in Panel R8.2b displays the coefficients
on the unconstrained scale. Note that the coef() function, when applied to
the object vf0i with the arguments unconstrained=FALSE and allCoef=TRUE

returns all four coefficients, including the one corresponding to 4 weeks, on the
original, constrained scale. In Sect. 7.3.2, it was explained that the parameter
corresponding to 4 weeks was set to 1 to avoid aliasing with the scale parameter
s . By default, the function coef() uses the arguments unconstrained = TRUE

and allCoef = FALSE and returns on the unconstrained scale only those variance-
function parameters, which are allowed to vary in optimization routines.

R8.2 R syntax: Extracting and assigning coefficients to an initialized object of class
varIdent. The object vf0i was created in Panel R8.1
(a) Coefficients on the natural/constrained scale (d1 ≡ 1, d2, d3, d4)

> coef(vf0i, unconstrained = FALSE, allCoef = TRUE) # All d coefs

4wks 12wks 24wks 52wks

1.0 0.5 2.0 3.0

> coef(vf0i, unconstrained = FALSE, allCoef = FALSE)# Varying only

12wks 24wks

0.5 2.0

(b) Coefficients on the unconstrained scale (d∗2,d
∗
3,d
∗
4)

> coef(vf0i, unconstrained = TRUE, allCoef = TRUE) # All d∗ coefs

[1] -0.69315 0.69315 1.09861

> coef(vf0i, unconstrained = TRUE, allCoef = FALSE) # Varying (default)

[1] -0.69315 0.69315

> coef(vf0i) <- c(-0.6, 0.7) # New coefs assigned

> coef(vf0i, allCoef = TRUE) # All coefs printed

[1] -0.6000 0.7000 1.0986

At the bottom of Panel R8.2b, we illustrate how to assign new values of
the variance-function coefficients for gls() function in Sect. 8.4. This might be
useful if we want, for example, to use different initial values of the coefficients.
In Panel R8.2b, we assign new values to the two coefficients, which are not fixed
and which correspond to the levels of the factor time.f corresponding to 12 and
24 weeks. Toward this end, we apply the replacement function coef()<-. The used
syntax is of the form coef(object) <- value . Note that value is a numeric
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vector with the replacement values for the coefficients associated with the variance-
function object. The vector has to have the same length as coef(object), and its
elements have to be given in the unconstrained form. For objects of class varIdent,
coefficients on the unconstrained scale are obtained by taking the natural logarithm
of the corresponding constrained parameters (Sect. 7.4.3). Moreover, the object has
to be initialized before any new values can be assigned to its coefficients. See
Panel R8.1 to confirm that the object vf0i is indeed initialized.

In Panel R8.3, we illustrate how to extract information about an initialized
varFunc object. Toward this end, we use the object vf0i, with coefficients modified
in Panel R8.2b, as an example. Using the generic function summary(), we obtain
a description of the variance-function structure, stored in the object. The use of
the functions formula() and getCovariate() allows extracting, respectively, the
formula and the name of the variance covariate, which were used to define the
structure. By applying the function getGroupsFomula(), we obtain the formula
used to define the strata. In our case, the strata were defined by the levels of the factor
time.f. Using the generic function getGroups(), we extract the information
about the groups attribute of the object vf0i and store it in the object stratum.
By applying the functions length() and unique(), we obtain the information
about the number of observations and the unique values of the stratifying factor,
respectively. With the help of the varWeights()[3:6] command, we obtain
reciprocals of the weights for observations 3 to 6 in the armd data frame. In our case,
these are the observations for subject #2, for whom visual acuity measurements at
all four timepoints are available. Finally, by applying the function logLik(), we
obtain the sum of the logarithms of the weights, which is the contribution of the
variance-function structure, represented by the object vf0i, to the log-likelihood
(7.21).

Note that syntax similar to that used in Panels R8.1–R8.3 can be applied to
objects inheriting from any other varFunc class. It should also be mentioned that
the generic update() function can also be used to modify objects of class varFunc.
Finally, in Table 8.2, we present additional ways to extract elements of an initialized
object of this class.

8.4 Using the gls() Function to Fit Linear Models
with Heterogeneous Variance

LMs for independent observations with heterogeneous variance can be fitted in R
using the function gls() from the nlme package. The function allows for the use
of both known weights and variance functions. It implements the ML and REML
estimation methods (Sect. 7.4.2), as well as GLS (Sect. 7.8.1.1).

The basic use and arguments of the gls() were briefly described in Sect. 5.4.
The mean structure of the model is defined by the argument model. It specifies
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R8.3 R syntax: Extracting information from a varIdent-class object. The object
vf0i was created in Panel R8.1

> summary(vf0i) # Summary

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | time.f
Parameter estimates:
4wks 12wks 24wks 52wks

1.00000 0.54881 2.01375 3.00000

> formula(vf0i) # Variance function formula

~1 | time.f

> getCovariate(vf0i) # Variance covariate

NULL

> getGroupsFormula(vf0i) # Formula for variance strata

~time.f
<environment: 0x00000000086a3500>

> length(stratum <- # Length of stratum indicator
+ getGroups(vf0i))

[1] 867

> unique(stratum) # Unique strata

[1] "4wks" "12wks" "24wks" "52wks"

> stratum[1:6] # First six observations

[1] "4wks" "12wks" "4wks" "12wks" "24wks" "52wks"

> varWeights(vf0i)[3:6] # Variance weights 1/li:(7.8)
4wks 12wks 24wks 52wks

1.00000 1.82212 0.49659 0.33333

> logLik(vf0i) # Contribution to the log-likelihood

'log Lik.' -227.83 (df=2)

a two-sided model formula, which defines the dependent variable and the design
matrix (Sects. 5.2 and 5.3). Arguments data, subset, and na.action are used
to create the model frame necessary to evaluate the model formula. The default
estimation method of the gls() function is REML, defined by (7.31) in Sect. 7.4.2.

The argument which allows one to specify the variance function is weights.
When specifying it, we generally use an object of class varFunc, which defines
the variance function and, at the same time, provides the initial values for the
likelihood-optimization routine. Thus, a typical use of the argument is of the form
weights=varFunc(form=formula), where varFunc is a variance-function con-
structor (Table 8.1), while formula is a one-sided-formula object, necessary to
define the variance covariate(s) and strata (Sect. 8.2).

Alternatively, weights can be given directly as a one-sided formula.
In this case, the formula is used as the argument of the varFixed() function,
corresponding to fixed variance weights. The default value of the weights argument
is NULL, which implies an LM with homoscedastic residual errors. Note that the
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use of the argument weights also adds variance covariates to the model frame.
Argument weights can prove useful to specify user-defined values of the variance
parameters.

An important optional argument of the gls() function is control. It contains
a list of components used to define various options controlling the execution of
the estimation algorithm. The auxiliary function glsControl() returns the default
list of options and can be used to efficiently modify them. The arguments of the
glsControl() function include maxIter and msMaxIter, which are used to limit
the number of external and internal iterations in the GLS algorithm (Sect. 7.8.1.1).
To obtain the full list of arguments, the args(glsControl) or ?glsControl

commands can be used.
As a result of fitting a model with the use of the gls() function, an object of class

gls, representing the fit of the model, is created. A description of the components of
the object can be obtained by issuing the ?glsObject command.

8.5 Extracting Information From a Model-fit Object
of Class gls

To extract the results from an object of class gls, typically created by the gls()

function, generic functions such as print(), summary(), predict(), etc., can
be used. Additional functions and syntax useful to extract information about mean
structure and scale parameter s are presented in Sect. 5.5 and Table 5.5.

In Table 8.2, we present selected functions and methods to extract the results
pertaining to the variance structure of a fitted model. We assume that the model-fit
results are stored in a hypothetical object gls.fit. In Table 8.2a, we demonstrate
how to extract selected results directly from gls.fit. First, we obtain the applied
form of the gls()-function call and store it in the object cl. Subsequently, the form
of the weights argument is obtained by extracting the cl$weights component
of the cl object. Confidence intervals (CIs) for the constrained variance-function
coefficients are obtained by applying the intervals() function, with the argument
which="var-cov", to the model-fit object. The intervals are constructed by
transforming the CIs for the corresponding unconstrained coefficients (Sect. 7.6.2).
Pearson residuals (Sect. 7.5.1) are obtained by applying the resid() function, with
the argument type="pearson", to the model-fit object.

By extracting and storing the modelStruct component of the model-fit object
in the object mSt, we get access to the estimated variance structure of the model.
Details of the estimated form of the variance function can be obtained by extracting
the varStruct component of the mSt object and saving it in the object vF of the
varFunc class.

In Table 8.2b, we illustrate how to extract various components of the
variance-function structure stored in object vF. For instance, the application of the
summary() function provides a description of the variance function, together with
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Table 8.2 R syntax: Extracting components of the variance structure contained in a hypothetical
object gls.fit of gls class, representing a fit of a linear model with heterogeneous variance
obtained using the gls() function. To find out how to extract other results from the gls.fit

object, refer to Table 5.5

(a) Extracting results directly from the object gls.fit of class gls
Model-fit component to be extracted Syntax

gls()-call (cl <- getCall(gls.fit))

weights argument cl$weights

95% CI for d intervals(gls.fit,

which="var-cov")$varStruct

Pearson residuals resid(gls.fit, type="pearson")

Var-cov structure mSt <- gls.fit$modelStruct

Variance function vF <- mSt$varStruct

(b) Extracting results from an auxiliary object vF of class varFunc
Variance structure component to be extracted Syntax
Summary summary(vF)

Variance-function formula formula(vF)

Variance-function covariate getCovariate(vF)

Formula for stratification getGroupsFormula(vF)

Stratification variable getGroups(vF)
̂d∗ (unconstrained) coef(vF)
̂d (constrained) coef(vF, unconstrained=FALSE)

Contribution to LogLik logLik(vF)

Variance weights (1/̂li) varWeights(vF)

the variance function coefficients on the original, constrained scale. On the other
hand, the formula and the covariate, used in the specification of the variance-
function, are obtained using the formula() and getCovariate() functions,
respectively.

Results of hypothesis tests of the fixed effects and variance parameters
(Sect. 7.6.1) for the fitted LM for independent, heteroscedastic observations can
be accessed by the methods mentioned in Sect. 5.6. In particular, the anova()

function uses likelihoods for nested models to provide the LR tests. Note that, when
testing hypotheses about variance parameters is of interest, the REML-based LR
test should be used, especially in the smaller datasets, and the null and alternative
models should have the same mean structure (Sect. 7.6.1). It follows that the model-
fit objects, used in the anova()-function call, should be obtained by applying the
default method=REML argument of the gls() function.

Alternatively, anova() provides the ML-based Akaike’s and Bayesian infor-
mation criteria (Sect. 4.7.2) for all of the models for which model-fit objects are
specified in the function call. The criteria can be used to choose the best-fitting
models from a set of nonnested models having the same fixed part, but with different
variance structures.
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8.6 Chapter Summary

In this chapter, we presented the tools available in R to fit LMs for independent,
heteroscedastic observations. From this point of view, the important issue was
the implementation of the concept of the variance function. We described the
tools available for this purpose in Sect. 8.2. In particular, the variance-function
constructors and the initialization of the variance-function structure in the context
of given data were presented. In Sect. 8.3, we reviewed different ways to extract
information from an initialized object of class varFunc. In Sect. 8.4, we discussed
the use of the gls() function to fit these models. The way, in which the variance
functions are implemented in the gls() function, is similar to their implementation
in the lme() function, which is used to fit LMMs. Thus, the presentation of this
particular aspect of the gls() function will be useful also for the latter models.

Finally, we note that, occasionally, it may be of interest to define a new class
representing a user-defined variance function. In this case, it is recommended to
explore, in the first instance, the information related to an already defined standard
class like, e.g., varPower. The source code of the varPower() constructor function
is obtained by simply typing varPower at the command prompt of the command
window in R. The methods for the class varPower are identified by issuing the
command methods(class=varPower). Users may define their own variance
functions by writing appropriate constructor functions, similar to varPower().
Such functions should return objects of a class with the same name and with
attributes similar to those of already defined classes, such as the varPower class.
In addition, at least three methods, i.e., coef, coef<-, and Initialize have to be
written for the newly defined class.



Chapter 9
ARMD Trial: Linear Model with Heterogeneous
Variance

9.1 Introduction

In this chapter, we continue with the analysis of the visual acuity measurements
collected in the ARMD trial. For illustrative purposes, in Chap. 6 we considered
LMs with independent, homoscedastic residual errors. In the current chapter, we
allow for heterogeneous variance, but we keep the assumption of independence.
Note that the results of the exploratory analysis indicate that the assumption is
most likely incorrect. Thus, the models constructed in the present chapter are
considered mainly for purposes of illustration of the concept of the variance function
(Sect. 7.2.2) and of the R tools that implement the concept (Sect. 8.2). Models that
accommodate correlated observations will be considered in Chaps. 12 and 16.

The chapter is structured as follows. In Sect. 9.2, we specify an LM with
independent, heteroscedastic residual errors for the visual acuity measurements
from the ARMD dataset, and we fit the model to the data with the help of the
gls() function. In Sect. 9.3, we consider an alternative set of models, which use
the power variance function for a more parsimonious representation of the variance
structure of the data. The results of fitting of the models are presented in Sect. 9.3.1.
Section 9.3.2 briefly discusses goodness-of-fit issues. A summary of chapter’s
contents is provided in Sect. 9.4.

9.2 A Linear Model with Independent Residual Errors
and Heterogeneous Variance

In Sect. 6.2, we specified model M6.1 with independent residual errors and homoge-
neous variance. For the reader’s convenience, we display the model equation below:

VISUALit = b0t +b1×VISUAL0i +b2t×TREATi + eit. (9.1)

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__9,
© Springer Science+Business Media New York 2013
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Note that i indexes patients and t indexes measurement times: t = 1, 2, 3, and 4 for
4, 12, 24, and 52 weeks, respectively. Additionally, it was assumed that the residuals
eit were normally distributed with a constant variance:

eit ∼ N(0,s 2).

Note, however, that the exploratory analysis of the ARMD data (Sect. 3.2.2)
indicated that the variances of the visual acuity measurements, obtained at different
timepoints, differed. Thus, in this section, we relax the assumption about the
homogeneity of residual variance. More specifically, we consider a model having the
same mean structure as the one defined in (9.1), but we allow for heteroscedasticity:

eit ∼ N(0,s 2
t ). (9.2)

Thus, variances s 2
t ≥ 0 (t = 1,2,3,4) are allowed to be different for each timepoint.

We refer to this new model, defined by (9.1) and (9.2), as model M9.1.
Following (7.15), we can re-parameterize the variances as follows:

Var(VISUALit)≡ s 2
t =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s 2 for t = 1 ( 4 weeks),
s 2d2

2 for t = 2 (12 weeks),
s 2d2

3 for t = 3 (24 weeks),
s 2d2

4 for t = 4 (52 weeks),

(9.3)

where d2 ≡ s 2/s 1, d3 ≡ s 3/s 1, and d4 ≡ s 4/s 1. Thus, parameters d2, d3, and d4,
are the ratios of standard deviations (SDs) of visual acuity measurements for weeks
12, 24, and 52, relative to SD at week 4 (the reference level). Note that, according
to (9.3), the scale parameter s can be interpreted as SD at 4 weeks.

9.2.1 Fitting the Model Using the gls() Function

As shown in Panel R9.1 to fit model M9.1, we use the gls() function from the nlme
package. Panel R9.1a includes the details of the function call. To define the mean
structure of the model, we use the formula lm1.form, the same as the one specified
in Panel R6.1 for model M6.1. To allow for heterogeneous variance, we set the
weights argument to an object of the varIdent class, created with the help of
the varIdent() constructor function. The varIdent class represents a variance
structure with different variances for different strata (Table 7.2). In our case, the
strata are defined by the levels of the factor time.f, which is indicated using the
formula ˜1|time.f in the form argument of the varIdent() constructor function.
That is, we allow for different variances of visual acuity measurements at different
timepoints. Note that, by default, the gls() function uses the REML estimation
(Sects. 7.4.2 and 8.4).
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R9.1 ARMD Trial: Estimates and confidence intervals for timepoint-specific
variance for model M9.1
(a) Selected results for the model with timepoint-specific variances

> lm1.form <- # See also R6.1

+ formula(visual ~ -1 + visual0 + time.f + treat.f:time.f)

> fm9.1 <- # M9.1
+ gls(lm1.form,

+ weights = varIdent(form = ~1|time.f), # Var. function; <δ>-group
+ data = armd)

> summary(fm9.1)

Generalized least squares fit by REML

Model: visual ~ visual0 + time.f + time.f:treat.f - 1

Data: armd

AIC BIC logLik

6740.3 6802.1 -3357.1

. . . [snip]

> fm9.1$modelStruct$varStruct # (9.3): ̂d1≡1, ̂d2,
̂d3,

̂d4

Variance function structure of class varIdent representing

4wks 12wks 24wks 52wks

1.0000 1.3976 1.6643 1.8809

> (intervals(fm9.1, which = "var-cov")) # 95% CI for d2,d3,d4, & s
Approximate 95% confidence intervals

Variance function:

lower est. upper

12wks 1.2269 1.3976 1.5921

24wks 1.4576 1.6643 1.9004

52wks 1.6409 1.8809 2.1559

attr(,"label")

[1] "Variance function:"

Residual standard error:

lower est. upper

7.5190 8.2441 9.0391

(b) REML-based LR test of homoscedasticity. The object fm6.1 was created in Panel R6.3

> anova(fm6.1, fm9.1) # M6.1⊂M9.1
Model df AIC BIC logLik Test L.Ratio p-value

fm6.1 1 10 6821.6 6869.2 -3400.8

fm9.1 2 13 6740.3 6802.1 -3357.1 1 vs 2 87.326 <.0001

We store the resulting model fit in the object fm9.1. The results of the fitted
model can be printed out using the summary() function (Sect. 8.5). The printout is
long and we only present a short part of it in Panel R9.1a; more details are presented
in Table 9.1 later in this chapter. By referring to the varStruct component of
the modelStruct component of the model-fit object (Table 8.2a), we display the
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estimated values of the d variance-function coefficients. The estimates indicate an
increasing variability of visual acuity measurements in time. This is consistent with
the results of exploratory analysis shown, e.g., in Panel R3.6.

By using the intervals() function (Table 8.2a), we obtain the estimates and
95% confidence intervals for the parameters d and s . The confidence intervals are
computed using the methods described in Sect. 7.6.2. The standard deviation at week
4 is estimated to be equal to 8.24. The 95% confidence intervals for the variance-
function coefficients slightly overlap, but suggest timepoint-specific variances.

To formally test the hypothesis that the variances are timepoint specific, we
apply, in Panel R9.1b, the anova() function. The LR-test statistic is calculated
based on the likelihood for model M6.1, which assumed homoscedasticity, and
that for model M9.1, which assumes heteroscedasticity. The results of the fit of the
former model were stored in the object fm6.1 (Panel R6.3). Note that both models
differ only by their variance structure and were fitted using the gls() function
with the default estimation method, i.e., REML. Moreover, model M6.1 is nested
within M9.1, because the former can be obtained from the latter by specifying s 2

1 =

s 2
2 = s 2

3 = s 2
4. Thus, we can use the LR test (Sect. 4.6.1) to test the null hypothesis

of homoscedasticity. The result of the test, based on the restricted-likelihood
function (Sect. 7.4.2), is statistically significant (p < 0.0001). Consequently, we
conclude that the data provide evidence for heterogeneous variances of visual acuity
measurements at different measurement occasions. In further modeling, we will
therefore assume heteroscedasticity.

9.3 Linear Models with the varPower(·) Variance-Function

In this section, for illustration purposes, we consider models with more parsimo-
nious parameterizations of the variance structure. Toward this end, we use the
varPower(·) variance function (Sect. 7.3.1).

The mean structure for all models introduced in this section is the same as the
one specified in (9.1). The models differ with respect to the assumed form of the
variances s 2

t of the residual errors eit.
Model M9.2 specifies that

s it = s lit = s l(d;TIMEit) = s (TIMEit)
d, (9.4)

where TIMEit = 4, 12, 24, and 52 weeks for t = 1, 2, 3, and 4, respectively. The
function l(·), used in (9.4), is an example of the varPower(·) variance function from
the <δ>-group (Table 7.2), with d ≡ d, variance covariate TIMEit, and no strata. It
specifies that the variance is a power function of the time (in weeks), at which the
visual acuity measurement was taken.

Model M9.3 assumes that the power coefficient depends on treatment:

s it = s lit = s l{(d1,d2);TIMEit}=
{

s (TIMEit)
d1 for Active,

s (TIMEit)
d2 for Placebo.

(9.5)
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Similarly to (9.4), the function l(·) is the varPower(·) variance function from the
<δ>-group (Table 7.2), with variance covariate TIMEit and d = (d1,d2)

′ for the two
strata that correspond to the treatment groups.

Model M9.4 specifies that the variances are a power function of the mean value:

s it = s lit = s l(mit,d) = s (mit)
d, (9.6)

where mit ≡ b0t +b1×VISUAL0i +b2t×TREATi is the predicted (mean) value of
VISUALit, as implied by (9.1). The function l(·), used in (9.6), is an example of the
varPower(·) variance function from the <δ,μ>-group (Table 7.3), with d≡ d and no
strata.

Finally, model M9.5 assumes a constant coefficient of variation, i.e., it assumes
that SDs of the visual acuity measurements are proportional to the mean values:

s it = s lit = s l(mit) = s mit. (9.7)

The function l(·), used in (9.7), is similar to the one used in (9.6), but with d ≡ 1.
Thus, it is an example of the varPower(·) variance function from the <μ>-group
(Table 7.4). Note that, according to (9.7), s it/mit = s , i.e., the scale parameter can
be interpreted as a coefficient of variation, constant for all timepoints.

9.3.1 Fitting the Models Using the gls() Function

In Panel R9.2, we fit the models, M9.2–M9.5, which have the same mean structure
as model M9.1, but employ the variance functions from different groups. In
addition, we illustrate model selection using the REML-based LR tests and AIC.

The syntax for fitting the models is given in Panel R9.2a. All models are
fitted using the generic function update() to modify the weights argument,
as compared to the function call used for model M9.1 in Panel R9.1. In the
argument, an appropriate form of the varPower() constructor-function is used.
Note that, for models M9.2 and M9.3, the formula specified in the form argu-
ment of the varPower() function refers to the continuous-time variable time

rather than to the factor time.f. For model M9.4, the varPower()-function
call does not use any arguments. This default syntax is equivalent to specifying
varPower(form=~fitted(.)), which means that the fitted values m̂i are used as
the variance covariate. Finally, the use of the argument fixed=1 for model M9.5
implies that, in the absence of any stratifying variable, the power coefficient d is
fixed at 1.

Models M9.2 and M9.3 are fitted using the REML estimation, suitable for
variance functions belonging to the <δ>-group (Sect. 7.4.2). Model M9.4 employing
variance function from the <δ,μ>-group is fitted using the REML-based GLS
(Sect. 7.8.1.1). The model M9.5 involving variance function from <μ>-group is
fitted using the REML-based IRLS (Sect. 7.8.1.2).
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R9.2 ARMD Trial: Model selection using the REML-based LRT and AIC for
models M9.1–M9.5. The model-fit object fm9.1 was created in Panel R9.1a
(a) Models with various variance functions

> fm9.2 <- # M9.2 ← M9.1
+ update(fm9.1,

+ weights = varPower(form = ~time)) # (9.4), <δ>-group
> fm9.3 <- # M9.3 ← M9.1
+ update(fm9.1, # (9.5), strata=treat.f

+ weights = varPower(form = ~time|treat.f))

> fm9.4 <- # M9.4 ← M9.1
+ update(fm9.1, weights = varPower()) # (9.6), <δ,μ>-group
> fm9.5 <- # M9.5 ← M9.1
+ update(fm9.1,

+ weights = varPower(fixed = 1)) # (9.7), <μ>-group

(b) Test of the variance structure: equal power of time for the two treatments

> anova(fm9.2, fm9.3) # M9.2 ⊂ M9.3

Model df AIC BIC logLik Test L.Ratio p-value

fm9.2 1 11 6738.1 6790.4 -3358.1

fm9.3 2 12 6740.1 6797.2 -3358.1 1 vs 2 0.015529 0.9008

(c) Test of the variance structure: power of time vs. timepoint-specific variances

> anova(fm9.2, fm9.1) # M9.2 ⊂ M9.1

Model df AIC BIC logLik Test L.Ratio p-value

fm9.2 1 11 6738.1 6790.4 -3358.1

fm9.1 2 13 6740.3 6802.1 -3357.1 1 vs 2 1.832 0.4001

(d) Test of the variance structure: power of the mean value equal to 1

> anova(fm9.5, fm9.4) # M9.5 ⊂ M9.4

Model df AIC BIC logLik Test L.Ratio p-value

fm9.5 1 10 6965.9 7013.5 -3473.0

fm9.4 2 11 6823.1 6875.4 -3400.6 1 vs 2 144.84 <.0001

(e) AIC for models M9.1– M9.5

> AIC(fm9.1, fm9.2, fm9.3, # Nonnested models

+ fm9.4, fm9.5) # Smaller AIC ≈ better fit

df AIC

fm9.1 13 6740.3

fm9.2 11 6738.1

fm9.3 12 6740.1

fm9.4 11 6823.1

fm9.5 10 6965.9
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Note that, in Panel R9.2, we do not present parameter estimates of models
M9.2–M9.5. Instead, we summarize the results later in this chapter in Tables 9.1
and 9.2.

9.3.1.1 Inference and Model Selection

First, we note that model M9.2 is nested both in M9.1 and in M9.3. Using the LR
test based on models M9.2 and M9.3 allows testing the hypothesis that the power
variance function for the two treatment groups is actually the same. More formally,
we test the null hypothesis d1 = d2, against the alternative d1 �= d2, with d1 and
d2 defined in (9.5). The LR test is conducted in Panel R9.2b with the help of the
anova() function. Note that the models have the same mean structure and that the
test is based on the restricted likelihood, as required when the LR test is applied
to verify hypotheses about variance-function parameters (Sects. 4.7.2 and 7.6.1).
The result of the test is statistically not significant (p = 0.9). It indicates that
a common-power variance function of the TIME covariate can be used for both
treatment groups.

We may now ask the question whether the common-power variance function
can be used as a more parsimonious representation of the variance structure of the
data. To answer the question, we use the LR test based on the nested models M9.1
and M9.2. Thus, we test the null hypothesis

s 2
1 = 4ds 2, s 2

2 = 12ds 2, s 2
3 = 24ds 2, and s 2

4 = s 252d

against the alternative

s 2
1 �= 4ds 2 or s 2

2 �= 12ds 2 or s 2
3 �= 24ds 2 or s 2

4 �= s 252d,

with the parameters defined in (9.4). Again, the test is based on the restricted
likelihood. The result of the test displayed in Panel R9.2c is statistically not
significant (p = 0.4). It suggests that the fit of model M9.2, measured by the value
of the restricted log-likelihood, is not statistically significantly worse than the fit
of model M9.1. Hence, model M9.2, which specifies that the variance is a power
function of the time (in weeks), offers an adequate description of the variance
structure of the data.

In Panel R9.2d, we use the REML-based LR test carried out using the likelihoods
for models M9.4 and M9.5. The test verifies the null hypothesis, implied by
model M9.5, that, if we assume a variance function in the form of a power function
of the mean value, the power coefficient is equal to 1. The result of the test is
statistically significant (p < 0.0001). Thus, it allows rejecting the null hypothesis.
Note that, given that models M9.4 and M9.5 are both mean-variance models, the
inference on the implied variance structure, based on the result of the LR test, may
need to be treated with caution (Sect. 7.8.2).
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The results presented in Panel R9.2a–d indicate that, among models M9.1–M9.3,
model M9.2 seems to offer an adequate description of variance structure of the
data. On the other hand, of models M9.4 and M9.5, the former is more appropriate.
Thus, it would be of interest to decide which of the models M9.2 or M9.4 fits the
data better. However, the models are not nested, so we cannot compare them with
the use of the LR test. Toward this aim, we need to apply the information criteria
(Sect. 4.7.2).

In Panel R9.2e, we provide the values of AIC (Sect. 4.7.2) for models M9.1–
M9.5. The results suggest that model M9.2 offers a better fit to the data than
model M9.4. In fact, AIC for the former is the smallest, as compared to the other
four models. Thus, based on the information criterion, model M9.2 offers the most
adequate description of the data.

In Panel R9.3, we show how to extract the information about the estimated form
of the variance function from the two objects representing model fits. Specifically,
we extract corresponding information for objects fm9.2 and fm9.3 representing
fitted models M9.2 and M9.3, respectively. The applied extractor functions were
discussed in Sect. 8.5. Note that model M9.3, as it has just been mentioned, is not
the best model in a statistical sense, but it nicely illustrates several features related to
the use of variance functions like, e.g., the use of a strata for the variance parameters,
which are not present in the other considered models.

The estimated value of the power coefficient for model M9.2 is very close to the
estimated treatment-specific coefficients for model M9.3. This is in agreement with
the result of the LR test, which was presented in Panel R9.2b. The estimated power
coefficient for the variance function and s of model M9.2 indicate that the variance
of visual acuity measurements increases according to the following relationship:

Var(VISUALit) = s 2
t ≈ (6×TIME0.25

it )2 = 36×√TIMEit,

where TIMEit is the week at which the t-th measurement was taken.
Tables 9.1 and 9.2 display the REML-based estimates, obtained using the gls()

function to fit models M9.1– M9.5. There are virtually no differences in the
estimates of the fixed-effects coefficients for models M9.1–M9.3. In this respect,
model M9.5 is the most distinct one. The estimates of the timepoint-specific
treatment effects are remarkably consistent among the five models, though. All the
models suggest an increasing, negative effect of the “active” treatment compared to
placebo.

The estimated standard errors of the fixed-effects coefficients vary more no-
ticeably between all the models. This is related to the differences in the assumed
residual-variance structure; as it was noted in Sect. 7.8.2, the precision of estimates
of b depends on the (correct) specification of the structure.
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Table 9.1 ARMD Trial: The REML parameter estimatesa, obtained using the gls() function, for
models with different variance functions from the <δ>-group

Parameter fm9.1 fm9.2 fm9.3

Model label M9.1 M9.2 M9.3
Log-REML value −3357.15 −3358.06 −3358.06
AIC 6740.29 6738.13 6740.11

Fixed effects:
Visual acuity at t = 0 b1 0.86(0.03) 0.86(0.03) 0.86(0.03)
Time (4wks) b01 6.27(1.60) 6.28(1.62) 6.28(1.61)
Time (12wks) b02 5.28(1.76) 5.29(1.75) 5.29(1.75)
Time (24wks) b03 1.84(1.91) 1.84(1.89) 1.84(1.88)
Time (52wks) b04 −3.56(2.07) −3.56(2.12) −3.55(2.12)
Tm(4wks):Trt(Actv) b21 −2.33(1.09) −2.33(1.12) −2.33(1.11)
Tm(12wks):Trt(Actv) b22 −3.69(1.53) −3.69(1.48) −3.69(1.48)
Tm(24wks):Trt(Actv) b23 −3.43(1.88) −3.43(1.82) −3.43(1.82)
Tm(52wks):Trt(Actv) b24 −4.44(2.23) −4.44(2.32) −4.44(2.32)

Variance functions:
a. varIdent(TIME): (9.3)

12 vs. 4 wks d2 1.40(1.23,1.59)
24 vs. 4 wks d3 1.66(1.46,1.90)
52 vs. 4 wks d4 1.88(1.64,2.16)

b. Power of time: (9.4) d 0.25(0.20,0.30)
c. Power of time: (9.5)

Active d1 0.25(0.20,0.31)
Placebo d2 0.25(0.20,0.30)

Scale s 8.24(7.52,9.04) 5.97(5.15,6.93) 5.97(5.15,6.93)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

Table 9.2 ARMD Trial: The REML parameter estimatesa, obtained using the gls() function, for
the mean-variance models

Parameter fm9.4 fm9.5

Model label M9.4 M9.5
Log-REML value −3400.55 −3472.97
AIC 6823.10 6965.94

Fixed effects:
Visual acuity at t = 0 b1 0.83(0.03) 0.76(0.03)
Time (4wks) b01 7.87(1.96) 10.79(1.81)
Time (12wks) b02 6.84(1.96) 10.62(1.80)
Time (24wks) b03 3.38(1.97) 7.00(1.72)
Time (52wks) b04 −2.11(2.02) 3.92(1.67)
Tm(4wks):Trt(Actv) b21 −2.36(1.62) −2.44(1.78)
Tm(12wks):Trt(Actv) b22 −3.69(1.64) −4.35(1.74)
Tm(24wks):Trt(Actv) b23 −3.46(1.70) −3.11(1.67)
Tm(52wks):Trt(Actv) b24 −4.43(1.79) −5.53(1.54)

Variance function:
power (md) : (9.6) d −0.06(−0.21,0.09) 1

Scale s 15.51(8.74,27.50) 0.29(0.28,0.30)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses
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R9.3 ARMD Trial: Extracting information about the variance functions for mod-
els M9.2 and M9.3
(a) Model M9.2: Power-of-time variance function

> mSt2 <- fm9.2$modelStruct # Model structure

> vF2 <- mSt2$varStruct # Variance function:(9.4)

> summary(vF2) # Summary: ̂d.
Variance function:

Structure: Power of variance covariate

Formula: ~time

Parameter estimates:

power

0.25193

> summary(fm9.2)$sigma # ̂s
[1] 5.9749

(b) Model M9.3: Power-of-time with treatment-specific coefficients

> mSt3 <- fm9.3$modelStruct # Model structure

> vF3 <- mSt3$varStruct # Variance function:(9.5)

> summary(vF3) # Summary: ̂d1,
̂d2

Variance function:

Structure: Power of variance covariate, different strata

Formula: ~time | treat.f

Parameter estimates:

Active Placebo

0.25325 0.25113

> coef(vF3) # ̂d1,
̂d2

Active Placebo

0.25325 0.25113

> formula(vF3) # Variance function formula

~time | treat.f

> varWeights(vF3)[3:10] # Weights for two subjects

Active Active Active Active Placebo Placebo Placebo Placebo

0.70393 0.53297 0.44716 0.36764 0.70600 0.53578 0.45019 0.70600

9.3.2 Model-Fit Evaluation

Although the AIC values, presented in Panel R9.2e, suggest that model M9.2 with
the varPower(·) variance function is the best-fitting one, we know that the model
does not offer a proper description of the data, because it ignores the within-subject
correlation between the visual acuity measurements. For illustrative purposes, we
will assess the fit of the model using residual plots.
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R9.4 ARMD Trial: Residual plots for model M9.2. The model-fit object fm9.2 was
created in Panel R9.2a
(a) Raw residuals

> library(lattice)

> plot(fm9.2, # Fig. 9.1a

+ resid(., type = "response") ~ fitted(.)) # Raw vs. fitted

> plot(fm9.2, # Raw vs. time (not shown)

+ resid(., type = "response") ~ time) # (See Fig. 9.1a)

> bwplot(resid(fm9.2) ~ time.f, # Fig. 9.1b

+ pch = "|", data = armd) # Raw vs. time.f.

(b) Pearson residuals

> plot(fm9.2, # Fig. 9.1c

+ resid(., type = "pearson" ) ~ fitted(.)) # Pearson vs. fitted

> plot(fm9.2, # vs. time (not shown)

+ resid(., type = "pearson") ~ time) # (See Fig. 9.1c)

> bwplot( # Fig. 9.1d

+ resid(fm9.2, type = "pearson") ~ time.f, # Pearson vs. time.f

+ pch = "|", data = armd)

(c) Scale-location plots

> plot(fm9.2, # Fig. 9.2a

+ sqrt(abs(resid(., type = "response"))) ~ fitted(.),

+ type = c("p", "smooth"))

> plot(fm9.2, # Fig. 9.2b

+ sqrt(abs(resid(., type = "pearson"))) ~ fitted(.),

+ type = c("p", "smooth"))

The R code in Panel R9.4 constructs several plots of raw residuals (Sect. 7.5)
for model M9.2. In particular, in Panel R9.4a scatterplots of the residuals versus
fitted values and versus the time covariate are created with the help of the plot()

function. The first of the plots is shown in Fig. 9.1a. It displays an asymmetric
pattern, with large positive (negative) residuals present mainly for small (large) fitted
values.

To evaluate the distribution of the raw residuals, we use the function bwplot()

from the package lattice (Sect. 3.2.2) to create a box-and-whiskers plot of the
residuals for each timepoint. The resulting graph is shown in Fig. 9.1b. The box-
and-whiskers plots clearly show an increasing variance of the residuals.

Note that, in Panel R9.4a, we create a draft of the graph presented in Fig. 9.1b. We
do not show the details on how to enhance it by providing labels for the horizontal
axis, because a suitable syntax can be inferred from Panel R3.4.
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a b

c d

Fig. 9.1 ARMD Trial: Residual plots for model M9.2 (a) Raw versus fitted (b) Raw versus time
(c) Pearson versus fitted (d) Pearson versus time

In Panel R9.4b, we create corresponding plots of Pearson residuals (Sect. 7.5.1).
The scatterplot of the residuals versus fitted values is shown in Fig. 9.1c. Similarly
to the plot of the raw residuals, it displays an asymmetric pattern. The box-and-
whiskers plots of the Pearson residuals for each timepoint are shown in Fig. 9.1d.
The plots illustrate the effect of scaling: the variance of the residuals is virtually
constant.

In Panel R9.4c, we construct the scale-location plots for the raw and Pearson
residuals. These are the scatterplots of the square-root transformation of the absolute
value of the residuals versus fitted values. The plots allow for detection of patterns
in the residual variance. The plots, constructed in Panel R9.4c, include a smooth
curve, which facilitates a visual assessment of a trend.
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a b

Fig. 9.2 ARMD Trial: Scale-location plots for model M9.2 based on (a) Raw and (b) Pearson
residuals

The plot for the raw residuals, shown in Fig. 9.2a, suggests a dependence between
the residual variance and the mean value. However, this may be an artifact of the
heteroscedasticity of the raw residuals, which was observed in Fig. 9.1b. Thus, it
might be better to look at the scale-location plot for the Pearson residuals. The plot
is shown in Fig. 9.2b; it does not indicate any clear trend in the residual variance.

Figure 9.3 presents a scatterplot matrix of the Pearson residuals for all four
measurement occasions. The figure was constructed using the splom() func-
tion for the data for 188 subjects with all four postrandomization visual acuity
measurements. The 95% confidence ellipses were added using the ellipse()

function from the ellipse package. For brevity, we do not show the R code for
creating the figure. The scatterplots clearly show a violation of the assumption of
the independence of observations: residuals for different measurement occasions
are correlated. The correlation coefficient decreases with the increasing distance
between the timepoints. Of course, some caution is needed in interpreting the
strength of correlation, because the estimated residuals are correlated even if the
independence assumption holds (Sect. 4.5.1).

9.4 Chapter Summary

In this chapter, we considered an LM for independent observations with hetero-
geneous variance. We illustrated its application using the ARMD dataset. Strictly
speaking, the model is not suitable for the analysis of this dataset, as it ignores the
dependence of visual acuity measurements obtained for the same individual. Thus,
the presented results should mainly be treated as an illustration of the important
theoretical concepts and R software tools available for this type of models.
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Fig. 9.3 ARMD Trial: Scatterplot matrix of the Pearson residuals for model M9.2 (complete cases
only, n = 188; correlation coefficients above the diagonal)

In particular, we focused on the concept of the variance function, which allows
addressing heteroscedasticity. Variance functions are also useful in formulation of
LMMs, which are discussed in later chapters. Thus, from this point of view, a good
understanding of the concept and its implementation in R is important.

We considered several models, constructed with the help of the varIdent(·)
(Sect. 9.2) and varPower(·) (Sect. 9.3) variance functions. Table 9.3 summarizes the
models. The mean structure of all of the models was defined in (9.1). Model M9.1
assumed different variances of visual acuity measurements taken at different
timepoints. Model M9.2 specified that the variances changed proportionally to the
power of the number of weeks at which the measurements were taken. Model M9.3
postulated that the power coefficient was different for different treatment groups.
Models M9.4 and M9.5 assumed that the variances depended on a power function
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Table 9.3 ARMD Trial: Summary of the models defined in Chap. 9. The mean structure for all
models was defined in (9.1) and can be expressed using formula: visual ~ -1 + time.f +

treat.f:time.f

Model Section R-syntax R-object Variance function (eq.)/group

M9.1 9.2 R9.1 fm9.1 Time-specific variance (9.2, 9.3)/<δ>-group
M9.2 9.3 R9.2 fm9.2 varPower(·) for TIME (9.4)/<δ>-group
M9.3 9.3 R9.2 fm9.3 varPower(·) for TIME (9.5)/<δ>-group;

stratified by treat.f

M9.4 9.3 R9.2 fm9.4 varPower(·) for m (9.6)/<δ,μ>-group
M9.5 9.3 R9.2 fm9.5 varPower(·) for m (9.6)/<μ>-group, d = 1

of the mean value of the measurements: the former model assumed the power
coefficient was unknown, while the latter assumed that the power coefficient was
equal to 1.

All the models were fitted to the data by applying the gls() function with an
appropriate value of the weights argument. In Sects. 9.2 and 9.3.1, we illustrated
how the information on the fitted model can be extracted from the model-fit object of
class gls and how to select the best model. Additionally, in Sect. 9.3.2, we reviewed
the goodness-of-fit model M9.2 the best fitting, according to AIC. As expected,
symptoms of violation of the independence assumption were detected. In the next
chapter, we will discuss a class of models that takes correlation of observations into
account.
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Chapter 10
Linear Model with Fixed Effects and Correlated
Errors

10.1 Introduction

The essential assumption for the LMs considered in Part II of the book was
that the observations collected during the study were independent of each other.
This assumption is restrictive in studies which use sampling designs that lead to
correlated data. Such data result, for example, from studies collecting measures over
time, i.e., in a longitudinal fashion; in designs which involve clustering or grouping,
e.g., cluster-randomization clinical trials; in studies collecting spatially correlated
data, etc. Note that, in contrast to Part II, for such designs, the distinction between
sampling units (e.g., subjects in a longitudinal study) and analysis units (e.g., time-
specific measurements) is important.

In Part III of the book, we consider a class of more general LMs that allow
relaxing the assumptions of independence and variance homogeneity. We will refer
to these models as LMs with fixed effects and correlated residual errors for grouped
data, or simply as LMs for correlated data. The models can be viewed as an example
of population-averaged models, i.e., models in which the parameters are interpreted
as quantifying effects of covariates on the marginal mean value of the dependent
variable for the entire population.

The goal of the current chapter is to describe the fundamental concepts of the
theory of LMs for correlated data. In particular, we introduce the important notion
of a correlation structure. It is a general concept, which is also applicable to
LMMs that will be described in Chap. 13. The concept is introduced in this chapter
in a relatively simple framework, allowing for a better exposition. By combining
correlation structures with variance functions (Sect. 7.3), flexible forms of variance-
covariance matrices can be specified for an LM for correlated data.

This chapter is structured as follows. In Sects. 10.2–10.6, we review the theory
underlying the LMs for correlated data. In particular, in Sects. 10.2 and 10.3
we describe the specification of the models the use of correlation structures.
Sections 10.4–10.6 present estimation methods, model diagnostics, and model

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__10,
© Springer Science+Business Media New York 2013
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reduction and selection methods, respectively. Section 10.7 is devoted to the models
in which variance depends on the mean value. In Sect. 10.8, a summary of the
chapter is offered.

In our explanations, we refer to the material presented in Chaps. 4 and 7,
indicating the necessary modifications. We focus on the concepts and methods that
are implemented in R. The details of the corresponding R syntax will be discussed
in Chap. 11.

10.2 Model Specification

In this section, we specify an LM with fixed effects and correlated residual errors
for grouped data with hierarchical structure introduced in Chap. 2. For ease of
exposition, we focus initially on data with a single-level of grouping, with N groups
(levels of a grouping factor) indexed by i (i= 1, . . . ,N) and ni observations per group
indexed by j (j = 1, . . . ,ni).

We build on (7.10)–(7.12) for the LM for independent observations with
heterogeneous variance, presented in Chap. 7. More concretely, we assume that, for
group i, the model for a continuous dependent variable yi is expressed as

yi = Xib+ ei, (10.1)

where

yi ≡

⎛
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, (10.2)

Xi ≡

⎛
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⎝
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...

...
. . .

...
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. . . x(p)ini

⎞

⎟

⎟

⎠

≡
(

x(1)i x(2)i . . . x(p)i

)

, (10.3)

b is defined in (4.3), Xi is a design matrix for the i-th group, and the vector
of the within-group residual errors, ei, is assumed to have a multivariate normal
distribution. More specifically,

ei ∼Nni
(0,Ri), (10.4)
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where, for the variance-covariance matrix Ri, a representation similar to (7.12) is
assumed, that is,

Ri = s 2Ri, (10.5)

with s 2 denoting an unknown scalar parameter. Finally, we assume that vectors of
residual errors for different groups are independent, i.e., ei is independent of ei′ for
i �= i′.

It is straightforward to note that the mean and variance of yi are given as follows:

E(yij) ≡ mij = x′ijb, (10.6)

Var(yi) = s 2Ri. (10.7)

The formulation of models described above allows for data with more than one
level of grouping. Multiple levels of grouping would be reflected by introducing
factors, related to the different group levels, into the design matrix Xi, and by
assuming a particular form of the variance-covariance matrix Ri. However, to deal
with multiple levels of grouping, only a small modification of the R syntax, used for
a setting with a single level of grouping, is required. Thus, the latter setting is the
most important one from an R-syntax point of view. Hence, in the remainder of this
chapter, we will focus on models for the data with a single level of grouping.

10.3 Details of Model Specification

It is important to note that the LM with correlated errors, specified by (10.1)–(10.5),
is not identifiable in its most general form. This is because of nonuniqueness of the
representation (10.5) and because the model potentially involves too many unknown
parameters related to the variance-covariance matrix of the residual errors ei. The
issue is similar to the one described in Sect. 7.2 for the LM with heterogeneous
variance.

The model (10.1)–(10.5) may become identifiable, however, if we impose
additional constraints on the residual variance-covariance matrices Ri. A solution is
to represent the matrices as functions of a small number of parameters. An approach,
implemented, e.g., in the function gls() of the nlme package, is based on the fact
that Ri, defined in (10.5), can be decomposed as

Ri = LiCiLi, (10.8)

where Li is a diagonal matrix with nonnegative diagonal elements, and Ci is a
correlation matrix. Note the similarity of the decomposition, described in (10.8), to
that specified in (7.10) for the LM with independent, heteroscedastic observations.
By using Li in (10.8), we allow for heteroscedasticity of observations within group
i, while by employing the correlation matrix Ci, we allow for correlation between
the observations within the group.
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By employing disjoint sets of parameters for Ci and Li, we use the decomposition
(10.8) to model Ri. More concretely, we assume that the diagonal elements of the
diagonal matrix Li are, in general, expressed as

{Li}j,j ≡ lij,j
= l(mij,d;vij), (10.9)

where l(·) is a variance function (Sects. 7.2.2 and 7.3.1).
Similarly to (7.6), d is a vector of variance parameters, and vij is a vector of

(known) variance covariates. Moreover, we assume that the matrix Ci is specified
using a set of parameters %, which will be defined in Sect. 10.3.2. Thus, formally
speaking, (10.8) should be written as

Ri(mij,qR;vij) = Li(mij,d;vij)Ci(%)Li(mij,d;vij) (10.10)

where qR ≡ (d ′,%′)′. However, to simplify notation, we will often suppress the use
of qR, mij, and vij in formulae, unless specified otherwise.

The classical LM, specified in Sect. 4.2, is obtained as a special case of model
(10.1)–(10.5), with Ri given by (10.10), upon assuming that ni = 1 and that
Ri = 1 for all i. Independence and homoscedasticity of the residual errors, ej, then
follows from the normality assumption (10.4). Also, the LMs for independent,
heteroscedastic observations, specified in Sect. 7.2, can be seen as a special case
of model (10.1)–(10.5), with Ri given by (10.10), if we assume that ni = 1 and that
Ri = l2

i , where li is defined in (7.8).
It should be noted that, by employing separate sets of parameters in (10.10),

namely, d for Li and % for Ci, additional constraints are imposed on the structure
of the matrix Ri, as defined in (10.5). For example, variance-covariance matrices
composed by a variance function and correlation matrix sharing some of the
parameters are not allowed under this framework.

In what follows, in Sects. 10.3.1 and 10.3.2, we review the use of the variance
and correlation functions used in the decomposition (10.10).

10.3.1 Variance Structure

Similarly to the case of the LM for independent observations with heterogeneous
variance, specified in Sect. 7.2, the elements of the matrix Li, given in (10.10), are
defined using the variance function (Sects. 7.2.2 and 7.3.1). For data with a single
level of grouping, the variance function definition, presented in (7.6), is modified
by the use of double indices i and j, so that the variance of the residual errors is
written as

Var(eij) = s 2l2(mij,d;vij), (10.11)

where mij is the mean value, given in (10.6), vij is a vector of (known) variance
covariates, d is a vector of covariance parameters, and l(·) is a continuous function
with respect to d.
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The decomposition (10.10) allows for the use of both mean-independent and
mean-dependent variance functions (Table 7.1). However, as mentioned in, e.g.,
Sects. 7.4 and 7.8, the application of variance functions that depend on the mean
value requires the use of more advanced estimation and inferential approaches.
For this reason, in the next sections, we will mainly concentrate on the use of
variance functions from the <δ>-group, which do not depend on the mean value
(Table 7.2). The use of mean-dependent functions from the <δ, μ>- and <δ>-
groups (Tables 7.3 and 7.4, respectively) will be discussed in Sect. 10.7.

Note that, for variance functions that do not depend on the mean value, (10.11)
simplifies to

Var(eij) = s 2l2(d;vij). (10.12)

10.3.2 Correlation Structure

In this section, we present selected examples of structures for the correlation matrix
Ci, defined in (10.10). Following the convention used in R, the matrix Ci is specified
by assuming that the correlation coefficient between two residual errors, eij and eij′ ,
corresponding to two observations from the same group i, is given by

Corr(eij,eij′) = h[d(tij, tij′),%], (10.13)

where % is a vector of correlation parameters, d(tij, tij′) is a distance function of
vectors of position variables tij and tij′ corresponding to, respectively, eij and eij′ , and
h(·, ·) is a continuous function with respect to %, such that it takes values between
−1 and 1, and h(0,%)≡ 1.

By assuming various distances and correlation functions, a variety of correlation
structures can be obtained. In what follows, we limit our discussion to the structures,
which are implemented in R. When referring to them, we will use names borrowed
from the nlme package. The correlation structures include:

corCompSymm a compound-symmetry structure corresponding to uniform
correlation.

corAR1 corresponding to an autoregressive process of order 1.
corARMA corresponding to an autoregressive moving average (ARMA)

process.
corCAR1 corresponding to a continuous-time autoregressive process.
corSymm a general correlation matrix.
corExp exponential spatial correlation.
corGaus Gaussian spatial correlation.
corLin linear spatial correlation.
corRatio rational quadratic spatial correlation.
corSpher spherical spatial correlation.
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Table 10.1 Examples of serial and spatial correlation structures

Correlation structure Function h(., .) Comment

Serial (Auto)correlation function
corCompSymma h(k,%)≡ % k = 1,2, . . .; |%|< 1
corAR1 h(k,%)≡ %k k = 0,1, . . .; |%|< 1
corCAR1 h(s,%)≡ %s s≥ 0; %≥ 0
corSymm h(d(j, j′),%)≡ %j,j′ j < j′; |%jj′ |< 1

Spatial Correlation function

corExp h(s,%)≡ e−s/% s≥ 0; % > 0

corGaus h(s,%)≡ e−(s/%)2
s≥ 0; % > 0

corLin h(s,%)≡ (1− s/%)I(s < %) s≥ 0; % > 0
corRatio h(s,%)≡ 1− (s/%)2/{1+(s/%)2} s≥ 0; % > 0
corSpher h(s,%)≡ [1−1.5(s/%)+0.5(s/%)3]I(s < %) s≥ 0; % > 0
aThe names of the structures follow the convention used in the nlme package

The correlation functions h(·, ·), corresponding to the structures listed above
(except for an ARMA process, which is excluded for brevity, but explained in a
more detail later in this section), are described in Table 10.1.

The correlation structures can be classified into two main groups:

1. “Serial” structures (corCompSymm, corAR1, corARMA, corCAR1, corSymm).
2. “Spatial” structures (corExp, corGaus, corLin, corRatio, corSpher).

The reason for using quotation marks in the names of the groups of correlations
structures is that, in principle, the split follows the convention used in R and does
not necessarily reflect the properties of these structures in their most general form.
In what follows, however, we will use the naming convention proposed above.

The first group, listed above, corresponds to the correlation structures which
are defined in the context of time-series or longitudinal data. The second group
corresponds to correlation structures which are defined in the context of spatial data.
We will now review the properties of the two groups of correlation structures, with
a focus on the aspects relevant for their implementation in R.

10.3.3 Serial Correlation Structures

For the corCompSymm, corAR1, corARMA, and corSymm correlation structures, it
is assumed that tij are simply positive integer scalars, i.e., tij ≡ j, describing the
position of observation in a time-series/longitudinal sequence. For corCAR1, the
actual value of measurement time is actually used. For corCompSymm, corAR1,
and corARMA, the distance function is simplified even further by assuming that
the function depends on the time lag, i.e., the absolute difference, k, of the two
position indices: k = |j− j′|. For these correlation structures, the function h(·, ·)
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simply depends on k and %. Note that, for time-series data, the function is often
called an autocorrelation function.

For instance, the simplest serial correlation structure, compound-symmetry (cor-
CompSymm), assumes a constant correlation between all within-group residual
errors. This means that

Corr(eij,eij′) = %, (10.14)

which corresponds to (10.13) upon defining, for j �= j′ and k = 1,2, . . . ,

h(k,%)≡ %. (10.15)

A more advanced example of a serial correlation structure, corARMA, is obtained
from an ARMA process. The process corresponds to longitudinal observations, for
which a current observation can be expressed as a sum of (1) a linear combination
of, say p, previous observations; (2) a linear combination of, say q, mean-
zero, independent and identically distributed residual random errors from previous
observations; and (3) a mean-zero, independent residual random error for the current
measurement. The structure is described by p+q parameters. Unlike the correlation
structures shown in Table 10.1, the (auto)correlation function of an ARMA process
cannot be expressed by a simple, closed-form expression, but it is defined by a
recursive relation (Box et al. 1994). More details about the ARMA structure can be
found in, e.g., Jones (1993) and Pinheiro and Bates (2000, Sect. 5.3.1).

10.3.4 Spatial Correlation Structures

The second group of correlation structures, which includes corExp, corGaus,
corLin, corRatio, and corSpher, corresponds to structures that are defined in the
context of spatial data. For these structures, it is allowed that tij are genuine two-
or more dimensional real-number vectors. Note, however, that a unidimensional
vector can also be used, which allows the application of the structures to time-
series/longitudinal data.

For instance, the exponential correlation structure, corExp, is given by

Corr(eij,eij′) = e
−s

ij,ij′/%, (10.16)

where sij,ij′ = d(tij, tij′) is a real number equal to the distance between the two

position vectors tij and tij′ corresponding to observations j and j′, respectively, from
the same group i. The corresponding function h is defined as

h(s,%)≡ e−s/%. (10.17)

Note that, to explicitly define the spatial correlation structures, in addition
to defining correlation functions, given in Table 10.1, we should also provide a
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distance function. There are several possibilities here. The most natural choice is
the Euclidean distance, i.e., the square root of the sum, over all dimensions, of
the squares of distances. Other possible distance functions include the “maximum”
(or Tchebyshev) metric, i.e., the maximum, over all dimensions, of the absolute
differences; and Manhattan (or “city block”, “taxicab”) distance, i.e., the sum, over
all dimensions, of the absolute differences. Note that these three choices correspond
to the L2, L∞ (Cantrell 2000), and L1 metrics, respectively. In Sect. 11.4.2, we
demonstrate examples of using these distance functions.

It is worth noting that in the spatial correlation literature, the parameter %, used
in Table 10.1 for the spatial structures, is referred to as range. The reader may
want to verify that all spatial correlation functions h(s,%), presented in Table 10.1,
are continuous and monotonically nonincreasing with respect to s at s = 0. This
characteristic reflects a commonly observed feature of the data that observations
being further apart are correlated to a lesser degree.

As already mentioned, the value of h(0,%) is equal to 1. This requirement can
be relaxed by including the so-called nugget effect, an abrupt change in correlation
at small distances (discontinuity at zero), which can be defined by the condition
that h(s,%) tends to 1− %0, with %0 ∈ (0,1), when s tends to 0. In other words,
a discontinuity at s = 0 can be allowed for. Consequently, a correlation function
h%0

(·, ·) containing a nugget effect can be obtained from any continuous spatial
correlation function h(·, ·) by defining

h%0
(s,%)≡

{

(1−%0)h(s,%) if s > 0,
1 if s = 0.

(10.18)

Instead of the correlation function, spatial correlation structures are often repre-
sented by the semivariogram function or simply semivariogram (Cressie 1991). For
the cases considered in this book, the semivariogram function can be defined as the
complement of the correlation function, that is,

g(s,%)≡ 1− h(s,%). (10.19)

Similarly to (10.18), the nugget effect can be included in the semivariogram by
defining

g%0
(s,%)≡

{

%0 +(1−%0)g(s,%) if s > 0,
0 if s = 0.

(10.20)

Consequently, g(s,%) tends to %0, with %0 ∈ (0,1), when s tends to 0.
Figure 10.1 presents an example of semivariogram and correlation functions for

the exponential correlation structure with the range % = 1 and nugget %0 = 0.2.
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a b

Fig. 10.1 Semivariogram (a) and correlation (b) functions for corExp structure with the range
% = 1 and nugget %0 = 0.2

10.4 Estimation

The main goal of fitting model (10.1)–(10.5) to the data is to obtain estimates of
parameters b, s 2, and qR. In Sects. 10.4.1 and 10.4.2, we present the methods to
estimate the parameters. As in the case of the LM for independent observations with
heterogeneous variance, the choice of the estimation method depends on the form of
the variance function. Thus, in this section, we focus on the estimation approaches
for simpler models defined with the use of variance functions from the <δ>-group,
which do not depend on the mean value (see Table 7.2). The use of mean-dependent
functions will be discussed in Sect. 10.7.

In our presentation, we will refer to the description of the methods presented in
Sect. 7.4 and shortly describe their modifications necessary for the application to the
model (10.1)–(10.5).

Additionally, in Sect. 10.4.3, we address the issue of the most suitable, from a
numerical optimization point of view, parameterization of the model (10.1)–(10.5),
while in Sect. 10.4.4, we discuss the assessment of the uncertainty of the estimators
of the parameters.

10.4.1 Weighted Least Squares

In this section, we consider the simple case of the model (10.1)–(10.5), with
matrices Ri known for all groups. Similarly to models with known variance weights,
presented in Sect. 7.2.1, the model with known matrices Ri does not pose any
additional computational difficulties, as compared to the classical LM introduced
in Sect. 4.2. This is because, by multiplying Xi and yi in (10.1) on the left-hand side
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by W1/2
i ≡ R−1/2

i , where R−1/2
i is the upper-triangular Cholesky decomposition of

R−1
i , i.e., R−1

i = (R−1/2
i )′R−1/2

i , we transform the model with correlated residual
errors back to an LM with independent, homoscedastic errors. More specifically,
the transformed model can be written as:

W1/2
i yi = W1/2

i Xib+W1/2
i ei. (10.21)

Note that, in the transformed model, the linearity with respect to b is maintained.
Moreover, the variance-covariance matrix of the transformed residual error vector is

Var(W1/2
i ei) = W1/2

i Var(ei)
(

W1/2
i

)′
= R−1/2

i (s 2Ri)
(

R−1/2
i

)′
= s 2Ini

.

The estimates of b are obtained by the minimization, with respect to b, of a
weighted residual sum of squares

n

∑
i=1

(yi−Xib)
′W i(yi−Xib), (10.22)

which is an extension of (7.17). Explicit formulae for WLS estimators for b and s 2,
built upon (7.18) and (7.19), are as follows:

̂bWLS ≡
(

N

∑
i=1

X′iWiXi

)−1 N

∑
i=1

X′iWiyi, (10.23)

ŝ 2
WLS ≡

1
n− p

N

∑
i=1

(

yi−Xi
̂bWLS

)′
Wi

(

yi−Xi
̂bWLS

)

, (10.24)

where Wi ≡ R−1
i and n = ∑N

i=1 ni.

10.4.2 Likelihood-Based Estimation

When the variance function does not depend on mij, i.e., if it belongs to the <δ>-
group of variance functions (Sect. 7.3.1 and Table 7.2), the ML or REML estimation
are used, along the lines described in Sect. 7.4.2. In particular, the full log-likelihood
function for the model (10.1)–(10.5) is given by

�Full(b,s
2,qR) ≡ −

n
2

log(s 2)− 1
2

N

∑
i=1

log[det(Ri)]

− 1

2s 2

N

∑
i=1

(yi−Xib)
′R−1

i (yi−Xib). (10.25)
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Note that �Full(.) depends on qR through Ri ≡ Ri(qR). Estimates of the parameters b,
s 2, and qR can be obtained by a simultaneous maximization of the log-likelihood
function with respect to these parameters. However, this is a numerically complex
task. An alternative is to consider profiling out b from (10.25). Toward this aim,
assuming that qR is known, (10.25) is maximized with respect to b and s 2

(see Sect. 7.4.2). This leads to the following expressions for estimators of these
parameters, expressed as functions of qR:

̂b(qR) ≡
(

N

∑
i=1

X′iR
−1
i Xi

)−1 N

∑
i=1

X′iR
−1
i yi, (10.26)

ŝ 2
(qR) ≡

N

∑
i=1

r′iR
−1
i ri/n, (10.27)

where ri ≡ ri(qR) = yi−Xi
̂b(qR) and Ri ≡ Ri(qR). The expressions correspond to

(7.22) and (7.25), presented for the LM with heterogeneous variance in Sect. 7.4.2.
Plugging (10.26) back into (10.25) yields a log-profile-likelihood function, which

depends on s 2 and qR:

�∗ML(s
2,qR) ≡ �Full(

̂b(qR),s
2,qR). (10.28)

Maximization of (10.28) over s 2 yields the estimator given in (10.27). Plugging the
estimator into (10.28) yields a log-profile-likelihood function, which depends only
on qR:

�∗ML(qR) ≡ �Full(
̂b(qR), ŝ

2
(qR),qR). (10.29)

By maximizing the function, we obtain the ML estimator ̂qR of qR. Note that, in
general, the estimator cannot be presented in a closed form. PlugginĝqR into (10.26)
and (10.27) yields the ML estimators of b and s 2, respectively.

For reasons similar to those mentioned in Sects. 4.4.2 and 7.4.2, the ML estimator
of s 2, obtained from (10.27) with ̂qR replacing qR, is biased. In fact, the same
comment applies to ̂qR. Therefore, s 2 and qR are often estimated by maximizing
the following log-restricted-likelihood function (see Sect. 7.4.2):

�∗REML(s
2,qR) ≡ �Full(

̂b(qR),s
2,qR)+

p
2

log(s 2)

−1
2

log

[

det

(

N

∑
i=1

X′iR
−1
i Xi

)]

, (10.30)

where ̂b(qR) is specified in (10.26).
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The parameter s 2 can also be profiled out from the log-likelihood function
(10.30). That is, s 2 is expressed using the following formula:

ŝ 2
(qR)≡

N

∑
i=1

r′iR
−1
i ri/(n− p), (10.31)

which results from the maximization of (10.30) over s 2. The ri is specified in
(10.27). The expression on the right-hand side of (10.31) is then plugged into
(10.30), what results in an objective function that depends only on qR:

�∗REML(qR) ≡ �∗REML(ŝ
2
(qR),qR). (10.32)

The estimator of qR, obtained as a result of maximization of the log-profile-
likelihood function (10.32), is then plugged into (10.26) and (10.31) to provide the
REML estimates of b and s 2.

10.4.3 Constrained Versus Unconstrained Parameterization
of the Variance-Covariance Matrix

One of the important issues related to finding the maximum of functions like, e.g.,
(10.32), is the fact that the solution should lead to a symmetric and positive-definite
matrix Ri. From a numerical point of view, such a constrained optimization problem
is difficult to solve. Note that a similar issue applies to the LM for independent
observations with heterogeneous variance and it was addressed in Sect. 7.4.3. A
possible solution is to parameterize Ri in such a way that the optimization problem
becomes unconstrained.

Toward this end, we consider the decomposition given by (10.10). In the decom-
position, Li is a diagonal matrix with diagonal elements expressed using a variance
function, which depends on parameters d. The parameters are unconstrained or
constrained to be positive (see Sect. 7.3.1). In the latter case, the solution is to
express the components ds of d as ds = elog(ds) and use d∗s ≡ log(ds) as the parameters
for the variance function.

The second component of the decomposition, given by (10.10), is the correlation
matrix Ci. Thus, it is constrained to be symmetric and positive-definite.

To deal with this constraint in the optimization algorithm, a transformation of
the elements of the matrix Ci can be sought, such that the transformed elements
are unconstrained and that they ensure the positive-definiteness of the matrix. The
transformation may depend on the form of the correlation matrix.

For instance, for an ni× ni matrix Ci, corresponding to the autoregressive-of-
order-1 correlation structure (see Table 10.1), application of Fisher’s z-transform
to %,
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%
∗ ≡ log

1+%

1−%
, (10.33)

allows expressing the elements of the matrix Ci in terms of an unconstrained
parameter %

∗. Note that, sometimes, a factor 0.5 is used in front of the transform, but
this factor is immaterial for our purposes. At the same time, the back-transformation

% =
e%∗ − 1

e%∗ + 1
(10.34)

guarantees that % ∈ (−1,1) and that the matrix Ci is positive-definite.
On the other hand, to guarantee the positive-definiteness of an ni× ni correla-

tion matrix, corresponding to the compound-symmetry correlation structure (see
Table 10.1), its eigenvalues, equal to 1+(ni−1)% and 1−%, need to be positive. By
transforming the parameter % by the following, modified Fisher’s z-transform:

%
∗ ≡ log

1
n∗−1

+%

1−%
, (10.35)

where n∗ ≡maxi(ni) (to allow for varying ni), we express the elements of the matrix
Ci in terms of an unconstrained parameter %

∗. Again, the back-transformation of %
∗

to % guarantees that matrix Ci is positive-definite.
A solution for a general correlation matrix Ci is to consider its Cholesky

decomposition Ci = U′iUi, while representing the upper-triangular matrix Ui in
terms of spherical coordinates (Pinheiro and Bates 1996). Toward this end, the
diagonal and above-diagonal elements of Ui are represented as follows:

ukl ≡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, for k = l = 1,

cos(u∗l−1,1), for 1 = k < l,
{

∏k−1
j=1 sin (u∗l−1,j)

}

cos(u∗l−1,k), for 1 < k < l,

∏l−1
j=1 sin(u∗l−1,j), for 1 < k = l,

where u∗kl (k = 1, . . . ,ni− 1, l = 1, . . . ,k) are the spherical coordinates. To ensure
uniqueness of the parameterization, we need to assume that u∗kl ∈ (0,p). An
unconstrained set of parameters %

∗
kl is obtained by transforming the coordinates as

follows:

%
∗
kl ≡ log

u∗kl

p− u∗kl
. (10.36)

This allows expressing the parameters %, defining Ci, as a function of the parameters
%
∗
kl. The latter form a set of unconstrained parameters that can be used for numerical

optimization purposes.
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An additional advantage of the use of the spherical coordinates is that cos(u∗k−1,1)
= %1k. Thus, by permuting rows and columns of Ci, confidence intervals for the
parameters % can be easily obtained from the intervals for u∗k−1,1 or, equivalently,
for %

∗
k−1,1.

For the spatial correlation structures, displayed in Table 10.1, a common
constraint for the parameter % is % > 0. If present, the nugget, %0, is restricted to lie
within the unit interval, i.e., %0 ∈ (0,1). Consequently, for numerical optimization
purposes, % is replaced by its logarithm, while %0 is transformed using the logit
transformation:

%
∗
0 ≡ log

%0

1−%0
. (10.37)

Note that we presented unconstrained parameterizations for selected correlation
structures. The transformations, which preserve the positive-definiteness of the
matrix Ci are relatively simple for the compound-symmetry and the autoregressive-
of-order-1 structures, while it is more complex for a general structure. We need to
keep in mind that for some correlation structures, especially for those described by
multiple parameters, there is no guarantee that such transformations exist. Finally, to
assure unconstrained optimization for s 2, the parameter is replaced by its logarithm.

10.4.4 Uncertainty in Parameter Estimation

The variance-covariance matrix of ̂b is estimated by

̂Var(̂b) ≡ ŝ 2

(

N

∑
i=1

X′îR
−1
i Xi

)−1

, (10.38)

where ŝ 2 and ̂Ri are estimated by one of the methods described in Sects. 10.4.1
and 10.4.2.

The variance-covariance matrix of ŝ 2 and ̂qR can be estimated in various ways.
As indicated in Sect. 7.4.4, a possible solution, which is implemented in the gls()
function from the nlme package in R, is to use the inverse of the negative Hessian
of the log-likelihood (10.28) or (10.30), evaluated at the estimated values of s 2 and
qR, i.e., the inverse of the observed Fisher information matrix (Sect. 4.6.1).

10.5 Model Diagnostics

As it was the case for the LMs for independent observations (see Sects. 4.5 and 7.5),
after fitting an LM for correlated data, and before making any inferences based on
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it, it is important to check whether the model assumptions are fulfilled. Toward this
end, tools similar to those described in Sects. 4.5 and 7.5 are used. In this section,
we review the tools and their modifications required for the LMs for correlated data.

10.5.1 Residual Diagnostics

For checking the fit of an LM for correlated data, residual plots are used. The
raw residuals are defined as êi ≡ yi − Xi

̂b. The use of these residuals requires
caution, because the model (10.1)–(10.5) allows for heteroscedasticity. Thus, the
comments regarding residual diagnostics for the LM for independent observation
with heterogeneous variance, provided in Sect. 7.5, apply here as well. Conse-
quently, Pearson residuals (see Sect. 7.5.1) are more useful for checking for, e.g.,
outlying observations.

Pearson residuals have variance approximately equal to 1. Their within-group
correlations approximate the elements of the correlation matrix Ci. Therefore, the
residuals are well suited to investigate whether an appropriate correlation structure
was used in the model. Toward this end, we estimate the semivariogram function,
defined in (10.19), using the squared differences between pairs of residuals (Cressie
1991; Pinheiro and Bates 2000, Sect. 5.3.2):

1
2N(s)

N

∑
i=1

∑
d(tij,tij′ )=s

(rij− rij′)
2, (10.39)

where N(s) is the number of pairs of observations separated by a distance of s units.
An estimator, which is more robust with respect to the presence of outliers, is given
in Cressie and Hawkins (1980) by

1
0.457+ 0.494/N(s)

⎛

⎝

1
2N(s)

N

∑
i=1

∑
d(tij,tij′ )=s

|rij− rij′ |1/2

⎞

⎠

4

. (10.40)

Note that, as compared to (10.39), it uses the square-root differences between pairs
of residuals.

A potential complication, when interpreting Pearson residuals, is the fact that
the model (10.1)–(10.5) also allows for correlation between residual errors. Thus,
for example, even if we studentize the residuals (Sect. 4.6.1), the overall Q-Q plots,
based on all estimated residuals, are not appropriate for checking the normality of
the residual random error.

A possible solution is to obtain approximately independent residuals using the
transformation of the residuals based on the Cholesky decomposition of the matrix

Ri (see Sect. 4.5.2). That is, to use the transformed residuals
(

s U′i
)−1 êi, where

the upper-triangular matrix Ui is obtained from the Cholesky decomposition of the
matrix Ri, i.e., Ri = U′iUi (Schabenberger 2004). The vector of the transformed
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residuals should be approximately normally distributed with mean 0 and variance-
covariance matrix equal to an identity matrix. That is, the elements of the vector
should be uncorrelated and follow the standard normal distribution. Note that, in the
nlme package, these transformed residuals are referred to as normalized residuals.
We will use this term in the remainder of our book.

10.5.2 Influence Diagnostics

Influence diagnostics for LMs for correlated data uses similar tools that were
presented in Sect. 4.5.3 for LMs with homogeneous variance. To investigate the
combined influence of a given observation on the estimates of all model parameters,
the likelihood displacement is used. Toward this end, the defining equation (4.27)
is modified by specifying ̂Θ ≡ (̂b ′,̂q ′R, ŝ

2
)′ and using the log-likelihood function

given in (10.25).
After identifying influential observations using likelihood displacement, Cook’s

distance, similar to that given in (4.26), may be used to determine whether a
particular observation affects estimation of b.

10.6 Inference and Model Selection

Inference for the LMs with correlated errors, specified in (10.1)–(10.5), focuses
on the fixed-effect parameters b and/or the variance-covariance parameters qR. In
this section, we focus on the inference for models defined with the use of variance
functions from the <δ>-group, which do not depend on the mean value (see
Table 7.2). Inference for the mean-variance models will be discussed in Sect. 10.7.

When testing hypotheses about the parameters b, the methods and issues
described in Sect. 7.6.1 for the case of the LM for independent observations with
heterogeneous variance, apply as well. In particular, linear hypotheses of the form
defined by (4.30) may be tested using the F-test, given by (4.36). The variance-
covariance matrix of ̂b is computed using (10.38). In general, similarly to the case
discussed in Sect. 7.6.1, the null distribution of the test statistics is not a central F
distribution with p and n− p degrees of freedom. Instead, the approximate test is
performed using the central F-distribution with sensibly approximated numerator
and denominator degrees of freedom. In R, the lme() function uses a crude
approximation with rank(L) numerator and n− p denominator degrees of freedom.
An alternative approach is to use an approximate LR test (Sect. 7.6.1) or a simulation
technique.

Inference about qR is based, in general, on two approaches. One is based on the
use of the LR test and the other is based on the use of information criteria.

The first approach is applied along the lines similar to those described in
Sect. 7.6.1 for the case of the LM for independent observations with heterogeneous
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variance. The comments about the use of the REML in the construction of the LR
test apply here as well.

The second approach, based on the information criteria, is used when the
hypothesis about qR cannot be expressed in the way that it would lead to two nested
models. In this case, we can use the information criteria like AIC or BIC (Sect. 4.7.2)
to select the model that seems to better fit the data.

The information criteria can be also used for the more general problem of model
selection, i.e., for discrimination between nonnested models, which differ both in
the variance-covariance and the mean structures. In this case, the criteria are applied
in a way similar to the one described in Sect. 7.7.

Obviously, irrespectively of the approach chosen for the model reduction or
selection, the fit of the final model should be formally checked using the residual
diagnostic methods, described in Sect. 10.5.

Confidence intervals for individual components of the parameter vector b can be
constructed based on the t-test statistic (Sect. 4.6.2).

Confidence intervals for the variance-covariance parameters s and d can be
obtained by considering a normal-distribution approximation to the distribution
of the ML- or REML-based estimator of a transformation of the parameters
(Sect. 7.6.2).

A similar idea can be applied to construct confidence intervals for the correlation
parameters %. More specifically, for the component %s of %, we can consider the
unconstrained parameter %

∗
s , obtained using Fisher’s z-transform, given in (10.33),

and apply the normal-distribution approximation to the distribution of the ML or
REML estimate of %

∗
s . The resulting (1−a/2)100% confidence interval for %s is

given by
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⎤

⎦ , (10.41)

with

V%∗s
(a) ≡ z1−a/2

√

{I−1}%∗s %∗s ,

where {I−1}%∗s %∗s is the diagonal element of the inverse of the observed Fisher
information matrix based on the log-(profile)-likelihood or log-(profile)-restricted-
likelihood corresponding to %

∗
s , and z1−a/2 is the (1−a/2)100-th percentile of the

standard normal distribution (Pinheiro and Bates 2000, Sect. 2.4.3).
Note that the use of Fisher’s z-transform, given in (10.33), does not guarantee,

in general, that the matrix, constructed from the back-transformed parameters %,
will be positive-definite. Thus, while the application of Fisher’s z-transform for the
purpose of construction of confidence intervals for the parameters % is justified, for
the optimization purposes the use of the transformations, described in Sect. 10.4.3,
is required.
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10.7 Mean-Variance Models

The concept of mean-variance models was introduced in Sect. 7.8 in the context
of the LMs for independent observations with heterogeneous variance. It carries
naturally over to LMs with fixed effects for correlated data.

For the mean-variance models, the decomposition (10.10) involves mean-
dependent variance functions from <δ, μ> and <μ>-groups (see Tables 7.3
and 7.4, respectively). Thus, in particular, the residual error variance is given
by (10.11) and it depends on the fixed-effects parameters b. This dependence
complicates the estimation not only of b, but also of s 2 and qR.

First, let us consider the case when the variance function depends on mij and
qR, i.e., if it belongs to the <δ, μ>-group of variance functions (see Sect. 7.3.1 and
Table 7.3). Then, the estimates of the parameters b, s 2, and qR can be obtained
using the GLS approaches similar to those described in Sect. 7.8.1.

In particular, we start with the following pseudo-likelihood objective function:

�∗PL(s
2,qR;b)≡ �Full(b,s

2,qR), (10.42)

derived from the full log-likelihood (10.25) by assuming b to be known. Conse-
quently, for every value of b, the function �∗PL(·) has two arguments, i.e., s 2 and
qR. Next, we profile out s from �∗PL(·) in a similar way as we did it in Sect. 7.8.1.
Toward this end, we use the following functional relationship between ŝ 2, which
maximizes (10.42) for a fixed qR, and qR:

ŝ 2
PL(qR) ≡

N

∑
i=1

r′iR
−1
i ri/n, (10.43)

where ri ≡ yi−Xib and Ri ≡ Ri(qR). Replacing s 2 in (10.42) with the expression
on the right-hand side of (10.43) yields a log-pseudo-profile-likelihood function for
qR:

�∗PL(qR;b)≡ �∗PL(ŝ
2
PL(qR),qR;b) (10.44)

Then, the following algorithm, similar to the one described in Sect. 7.8.1, is used to
estimate b and qR:

1. Assume initial values ̂b
(0)

of b, ̂q
(0)
R of qR, and set the iteration counter k = 0.

2. Increase k by 1.

3. Use ̂b
(k−1)

i to (re)define variance function l(k)(d).

Calculate m̂(k)
i ≡ Xi

̂b
(k−1)

. (Re)define variance function l(k)(d; m̂(k)
ij ,vij) ≡

l(m̂(k)
ij ,d;vij) from the <δ>-group, where l(·) is defined by (10.12).

4. Keep ̂b
(k−1)

fixed and optimize �∗PL(qR;̂b
(k−1)

) to find ̂q
(k)
R .

Use the function l(k)(·) in defining the log-pseudo-likelihood function,

�∗PL(qR;̂b
(k−1)

), specified by (10.44). Optimize this function with respect to qR
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to obtain the new estimate ̂q
(k)
R . Values of ̂q

(k−1)
R can be used as initial values for

the optimization.

5. Fix ̂q
(k)
R and use WLS to find b(k).

Use ̂q
(k)
R to derive R(k)

i and to compute the WLS estimate ̂b
(k)

of b using
(10.26).

6. Iterate between steps 2 and 5 until convergence or until a predetermined number
of iterations k.

7. Compute the final, ML-based estimate of s 2, by plugging the obtained estimates
of qR and b into (10.43).

Note that the aforementioned construction can also be applied while starting
from the log-restricted-likelihood, given in (10.30). With modifications similar to
those described in Sect. 7.8.1, it will result in an algorithm leading to REML-based
estimates of the parameters.

If the variance function depends on mij, i.e., if it belongs to the <μ>-group of
variance functions (see Sect. 7.3.1 and Table 7.4), estimates of the parameters b,
s 2, and qR can be obtained using an IRLS procedure similar to the one described in
Sect. 7.8.1.

The issues related to the inference for the mean-variance models, defined in the
context of the model (10.1)–(10.5), are similar to those mentioned in Sect. 7.8.2.
In particular, provided that the mean structure of the model is correctly specified,
misspecification of the variance-covariance structure does not bias the point estimate
of b, but decreases its efficiency. More specifically, if we denote by Ri the model-
based variance-covariance matrix of yi, then it can be shown (see, e.g., Davidian and
Giltinan 1995 or Verbeke and Molenberghs 2000) that

Var(̂b) =

(

N

∑
i=1

X′iR−1
i Xi

)−1 N

∑
i=1

X′iAiXi

(

N

∑
i=1

X′iR−1
i Xi

)−1

, (10.45)

where

Ai ≡R−1
i Var(yi)R−1

i . (10.46)

If Ri = Var(yi), i.e., if the variance-covariance structure is correctly specified, then
Ai =R−1

i and (10.45) reduces to

Var(̂b) =

(

N

∑
i=1

X′iR−1
i Xi

)−1

, (10.47)

and can be estimated as in (10.38). However, if Ri �= Var(yi), then (10.45)

implies a loss of efficiency of ̂b. Moreover, it indicates that the estimator (10.38)
underestimates the true variance-covariance matrix of ̂b. A corrected estimator,
based on formula (10.45), can be constructed. We do not discuss the construction
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here; interested readers can find more information on this topic in the monographs
by, e.g., Davidian and Giltinan (1995) or Verbeke and Molenberghs (2000).

Inference on parameters qR and s 2, similarly to the case mentioned in Sect. 7.8.2,
is difficult due to the need for correct specification of the form of the variance-
covariance structure and due to a complex dependence of the parameters of the
asymptotic distribution of the estimates of qR and s 2 on, e.g., true third- and higher-
order moments of data. For this reason, we do not discuss it further.

10.8 Chapter Summary

In this chapter, we reviewed the formulation of an LM with fixed effects and
correlated residual errors, applicable to grouped data. This class of models is an
example of population-average models. To the extent possible, we used the concepts
and theory introduced in Chaps. 4 and 7 in the context of LMs for independent
observations with homogeneous and heterogeneous variance, respectively. Com-
pared to those models, the new component, used in the model formulation, was
the correlation structure, described in Sect. 10.3.2. It is an important component
of the model, as it allows taking into account in the analysis the dependence of
observations made within the same group. This concept will also be used in the
formulation of LMMs in Chap. 13.

Estimation methods for LMs for correlated data, which used mean-independent
variance functions, were discussed in Sect. 10.4. From the discussion, it should
be clear that they are based on the similar approaches that are used for LMs
for independent observations. It is also worth mentioning that the log-likelihood
functions, described in Sect. 10.4.2, play an important role in the construction of the
estimation approaches for LMMs.

In Sects. 10.5 and 10.6, we offered a review of the diagnostic and model reduc-
tion/selection methods, respectively, which are available for LMs for correlated data
and mean-independent variance. Essentially, the methods are based on the concepts
similar to those used in the case of the LM for independent observations with
heterogeneous variance.

In Sect. 10.7, we discussed the mean-variance models, i.e., models involving
variance functions from the <δ, μ>- and <μ>-groups (see Tables 7.3 and 7.4,
respectively), which do depend on the mean value. The estimation methods and
the inferential issues are very similar to those presented in Sect. 7.8. They will also
appear when discussing the formulation of LMMs.

Note that, in the context of LMs for correlated data, the grouping and, conse-
quently, correlation of the data was primarily reflected in the correlation structure
used in the modeling. It is possible to imagine a situation, where the levels of data
hierarchy can be used in defining various sources of variability of the data, e.g.,
between- and within-groups. Such an approach is used in LMMs, which will be
discussed in Chap. 13.



Chapter 11
Fitting Linear Models with Fixed Effects
and Correlated Errors: The gls() Function

11.1 Introduction

In Chap. 10, we summarized the main concepts underlying the construction of
the LM with fixed effects and correlated residual errors for normally distributed,
grouped data. An important component of the model is the correlation function,
which is used to take into account the correlation between the observations
belonging to the same group.

In this chapter, we review the tools available in R for fitting LMs for correlated
data. The primary tool to fit the models is the gls() function from the nlme
package. In Sects. 11.2 and 11.3, we present the details of the representation of
correlation functions and how to extract related information. Section 11.4 contains
a few examples of the correlation functions that are available in R. In Sect. 11.5,
we explain how the details of the estimated correlation structure of an LM for
correlated data can be extracted from a model-fit object created with the use of the
gls() function. Note that additional information about the syntax and the use of the
function gls() has already been provided in Sects. 5.4, 5.5, 8.4, and 8.5. Finally,
Sect. 11.7 includes a summary of the contents of the chapter.

11.2 Correlation-Structure Representation: The corStruct
Class

An important component, needed in the context of the LM model for correlated data,
is the correlation structure for residual errors, defined in Sect. 10.3.2. In this section,
we provide details about the implementation of correlation structures in the form of
objects inheriting from the corStruct class implemented in the nlme package.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__11,
© Springer Science+Business Media New York 2013
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11.2.1 Correlation-Structure Constructor Functions

Correlation structure was defined in (10.13); several examples were given in
Table 10.1. The package nlme provides several constructor functions designed to
create specialized objects representing different correlation structures. Each created
object belongs to the class named after the constructor function. For example, the
constructor function corCompSymm() creates objects of class corCompSymm. The
objects represent the compound-symmetry correlation structure, defined in (10.15).
Note that all of these objects also inherit from the corStruct class. Of course, this
applies to objects created by other constructor functions as well. A list of correlation
structures available in the package nlme can be obtained from R’s help system by
issuing the ?corClasses command.

Correlation-structure constructors are primarily used to specify correlation struc-
tures, with the help of the correlation argument, for the model-fitting functions
gls(), and lme(). They also allow exploring the details of correlation structures,
to choose user-defined initial values, or to fix values of correlation parameters in the
numerical optimization procedures.

11.2.1.1 Arguments of the Correlation-Structure Constructor Functions

For the serial correlation functions (see Table 10.1), similar to the case of variance
functions (see Sect. 8.2), three arguments are available in R: value, form, and
fixed. The first one specifies the values of the correlation-parameter vector %.
The second one provides a one-sided formula that defines the indices j (10.13)
by specifying a position variable, and, optionally, a grouping factor. Note that
observations in different groups are assumed to be uncorrelated. The default value
of the form argument is ~1, which amounts to using the order of the observations in
the data as a position variable, without any grouping. Finally, fixed=TRUE can be
used to fix all values of the correlation parameters in the numerical optimization in
the modeling functions. Note that the default value is fixed=FALSE.

For the spatial correlation structures (see Table 10.1), apart from the value,
form, and fixed arguments, two additional arguments are available: nugget and
metric.

Note that, for these correlation structures, the argument form is a one-sided
formula of the form ~S1+ · · ·+Sp|g, where S1 through Sp are spatial position
variables and g, optionally, is a grouping factor. When a grouping factor is present,
the correlation structure is assumed to apply only to the observations sharing the
same level of a grouping factor; in contrast, observations with different levels are
assumed to be uncorrelated. It is worth mentioning that the spatial position variables
can be unidimensional, what allows to apply the “spatial” structures also to, e.g.,
longitudinal data.

If nugget=FALSE, which is the default, no nugget effect is assumed (see (10.18)
and (10.20)). In that case, value should have only one element, indicating the
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(positive) value of the “range” parameter %. If nugget=TRUE, the argument value
can contain one or two elements, with the first indicating the range (constrained to
be a positive value) and the second providing the nugget effect (a value between
zero and one). The default is value=numeric(0), a numeric vector of length 0,
which results in the assignment, upon the initialization of a corStruct object, of the
range equal to the 90% of the minimum between-pairs distance and of the nugget
effect equal to 0.1.

The argument metric is an optional character string. It can be used to specify
the distance metric, i.e., the function d(s,%), defined in (10.13). Three options
are currently available: metric="euclidean" for the Euclidean metric, met-

ric="maximum" for the maximum metric, and metric="manhattan" for the Man-
hattan metric. The definitions of these metrics have been provided in Sect. 10.3.2.

Initialization of Objects of Class corStruct

After an object, which inherited from the corStruct class, has been defined using
an appropriate constructor function, it is then typically evaluated in the context of
a given data set. This process, called initialization, was already shortly described in
Sect. 8.2 for the varFunc-class objects. The main tool is the generic Initialize()
function. We show examples of initialization of objects of class corStruct in
Panels R11.1 and R11.3–R11.5 later in this chapter.

11.3 Inspecting and Modifying Objects of Class corStruct

In this section, we describe the functions and methods that allow extracting
information about initialized objects of corStruct class. In particular, in Sect. 11.3.1,
we discuss the use of the coef() generic function to extract and modify the
coefficients of such objects. In Sect. 11.3.2, we present the application of the
Variogram() function to obtain the semivariogram. Section 11.3.3 describes the
use of the corMatrix() function to display the form of the correlation matrix
corresponding to the object.

11.3.1 Coefficients of Correlation Structures

In Sect. 10.4.3, we mentioned that, e.g., for numerical optimization purposes, the
use of an alternative, unconstrained parameterization of the correlation structure
may be of interest. The information about values of the correlation coefficients,
which correspond to the different possible parameterizations, can be extracted from
an appropriate, initialized corStruct object.
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Similar to the case of variance functions (Sect. 8.3), the primary tool to extract or
modify coefficients of a correlation-structure object is the generic coef() function.
For instance, to obtain coefficients from an object of class corAR1, the method
coef.corAR1() is dispatched.

The primary arguments of the coef.corStruct method are object and
unconstrained. The argument object indicates an object inheriting from the
particular corStruct class. The value of the logical argument unconstrained spec-
ifies the type of the parameterization applied to the coefficients of the correlation
structure. More specifically, the coefficients (parameters) can be presented on a
constrained or unconstrained scale (Sect. 7.4.3). In the first case, the elements of the
vector % are provided. For instance, for the corAR1 class, it is the value of the scalar
parameter % (see Table 10.1). In the second case, the values of the unconstrained
transformations of parameters %, are returned. For instance, for the corAR1 class,
it is the value of the parameter %

∗ corresponding to Fisher’s z-transform of %, as
defined in (10.33). On the other hand, for the general corSymm class, the values
of the transformed spherical coordinates of the Cholesky decomposition of the
correlation matrix are returned, as defined in (10.36).

Coefficients of an initialized corStruct object can be modified with the use of
the “coef<-” function. Toward this end, the syntax coef(object)<-value is
used, where object is the initialized corStruct object and value is a vector of
values to be assigned to the coefficients of the object. Note that the vector has
to have the appropriate length, corresponding to the length of the coef(object)

vector. Moreover, the values have to be given in the unconstrained form. Thus, for
instance, to replace coefficients of an initialized corAR1 object, we use the syntax
coef(object)<-value , where value is a scalar resulting from applying Fisher’s
z-transform (10.33) to the correlation coefficient %, which we want to use as the
argument for the new form of the corAR1 structure object.

11.3.2 Semivariogram

The semivariogram and correlation function were introduced in Sect. 10.3.2. The
values of these functions can be computed with the use of the generic function
Variogram() that can be applied to objects inheriting from the corSpatial class.
Note that the function can be also applied to objects of other classes, including,
for instance, gls and lme. Its arguments depend on the class of the object. The
information about the arguments used for the corSpatial class is obtained by issuing
the command ?Variogram.corSpatial.

The Variogram() function is available for several corSpatial classes, including
corExp, corGaus, corLin, corRatio, and corSpher. For objects of these classes,
the main arguments of the function are object, distance, sig2, and length.

out. The argument object specifies an initialized object of the specific corStruct
class. The distances, at which the semivariogram is to be computed, are specified
optionally by providing a numeric vector to the distance argument. The optional
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sig2 argument is used to provide a numeric value for the process variance, which,
by default, is equal to 1. Finally, length.out is an optional integer that defines
the length of the sequence of distances, when distance = NULL. By default,
length.out = 50.

R11.1 R syntax: Semivariogram and correlation function plots for corExp

> tx <- c(0, 10^-2, 0.8) # Auxilary vector

> cX <- # corExp object defined

+ corExp(value = c(1, 0.2), # range %:(10.16), nugget %0:(10.18)

+ form = ~tx,

+ nugget = TRUE) # Nugget defined

> Dtx <- data.frame(tx)

> (cXi <- # corExp object initialized

+ Initialize(cX, data = Dtx))

Correlation structure of class corExp representing

range nugget

1.0 0.2

> (getCovariate(cXi)) # tx diffs: 2-1, 3-1, 3-2

[1] 0.01 0.80 0.79

> Vrg <- Variogram(cXi) # Semi-variogram created ...

> plot(Vrg, smooth = FALSE, # ... and plotted. Fig. 10.1a

+ type = "l")

> corFunDt <- # Data for correlation function

+ data.frame(dist = Vrg$dist,

+ corF = 1 - Vrg$variog)

> plot(corFunDt, # Corr function plotted with ...

+ type = "l", ylim = c(0,1)) # ... traditional graphics ...

> xyplot(corF ~ dist, # ... and xyplot(). Fig. 10.1b

+ data = corFunDt, type = "l")

Panel R11.1 presents the use of the Variogram() function to obtain a semi-
variogram for the corExp correlation structure (Table 10.1). The object cX of
class corExp is defined with the range % = 1 and the nugget effect %0 = 0.2
(see (10.18)). The values of the parameters are specified using the value argument
of the corExp() constructor function. Additionally, a one-dimensional position
variable tx, indicated in the argument form, is used. The elements of the vector
tx are chosen in such a way that their differences cover the desired range of
values from values very close to zero up to 0.8. The correlation structure is
initialized using the actual numeric values of the variable tx and stored in the object
cXi. The resulting correlation matrix can be printed with the use of the function
corMatrix(); for brevity, we do not include the result in Panel R11.1. Using the
function Variogram(), the semivariogram is calculated and stored in the object
Vrg. The object is subsequently used to plot the (theoretical) semivariogram.
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Panel R11.1 presents also two methods to plot the correlation function. Both
methods use a data frame, created from the dist and variog components of the
Vrg object. We do not show the resulting plots. However, a similar syntax was used
to obtain plots of the semivariogram and correlation function shown in panels (a)
and (b) of Fig. 10.1, respectively.

11.3.3 The corMatrix() Function

To obtain the correlation matrix represented by an initialized object of corStruct
class, the generic function corMatrix() is used. The arguments of the function
are object, covariate, and corr. The argument object is an object of class
corStruct, for which we want to obtain information about. If the object is initialized,
corMatrix() returns, by default, the correlation matrix or a list of correlation
matrices, depending on whether the correlation structure was initialized for a
single or multiple covariate vectors. If the object is not initialized, the argument
covariate is used to provide a covariate vector (matrix), or a list of covariate
vectors (matrices), at which the values of the correlation matrix are to be evaluated.
The argument corr is a logical value. By default, corr=TRUE and indicates that
the function should return the correlation matrix or a list of correlation matrices,
represented by the corStruct-class object. If corr=FALSE, the function returns a
transpose of the inverse of the square root of the correlation matrix (or a list of such
matrices). That is, if C = U′U is a correlation matrix, the use of corr=FALSE yields
(U−1)′. The examples of using corMatrix() function are given in the next chapter
in Panels R11.3–R11.5.

11.4 Illustration of Correlation Structures

In the next three sections, we illustrate the use of constructor functions, initial-
ization, and extracting information for various correlation structures. The first two
structures, represented by the corCompSymm and corAR1 classes, are examples of
serial correlation structures. The last structure, corExp, is an example of a spatial
correlation structure.

For illustration purposes, in Panel R11.2, we generate a hypothetical data frame
df containing two subjects. The first subject has four consecutive observations,
indicated by the values of the variable occ. The observations are made at different
locations in a two-dimensional space, with the coordinates given by the loc1 and
loc2 position variables. The second subject has only three observations, with the
observation for the third occasion missing. Note that, for the two subjects, the
coordinates of the observations made at the same occasion differ.
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R11.2 R syntax: Hypothetical data to illustrate various correlation structures

> subj <- rep(1:2, each = 4) # Two subjects

> occ <- rep(1:4, 2) # Four observations each

> loc1 <- rep(c(0, 0.2, 0.4, 0.8), 2) # First coordinate

> loc2 <- # Second coordinate

+ c(0, 0.2, 0.4, 0.8, 0, 0.1, 0.2, 0.4)

> df0 <- # Hypothetical data frame

+ data.frame(subj, occ, loc1, loc2)

> (df <- # Occ = 3 for subj.2 deleted

+ subset(df0, subj != 2 | occ != 3))

subj occ loc1 loc2

1 1 1 0.0 0.0

2 1 2 0.2 0.2

3 1 3 0.4 0.4

4 1 4 0.8 0.8

5 2 1 0.0 0.0

6 2 2 0.2 0.1

8 2 4 0.8 0.4

11.4.1 Compound Symmetry: The corCompSymm Class

We continue with the compound-symmetry correlation structure, defined in (10.15),
as an example. Panel R11.3 shows the use and initialization of an object of class
corCompSymm.

The corCompSymm(value=0.3, form=~1|subj) command specifies the
compound-symmetry function with a constant correlation of 0.3. It is worth
mentioning that the syntax could have been abbreviated to corCompSymm(0.3,

~1|subj).
The Initialize() function initializes the corCompSymm object for the

hypothetical data set. As a result, the same correlation structure, though with
different dimensions, is obtained for both subjects. Note that, had we provided
the position variable by specifying corCompSymm(0.3, ~occ|subj)), the result
would not have changed, because, by default, corCompSymm() ignores any position
variable. This is understandable, because the compound-symmetry correlation
structure assumes a constant correlation coefficient between any two observations.

The command coef(cs) provides the coefficients of the initialized object cs
in the unconstrained form. Note that the obtained value of the coefficients is
equal to log(1/3+ 0.3)− log(1− 0.3), corresponding to the modified Fisher’s z-
transform (10.35) of % = 0.3. The use of the getCovariate(cs) command allows
to obtain the position vectors for both subjects included in our hypothetical data set.
By applying the corMatrix() function to the object cs, we obtain the correlation
matrices, defined for the subjects. Note that, by default, the function prints out the
correlation matrices, which is equivalent to the use of the corr=TRUE argument.
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R11.3 R syntax: Defining and initializing an object of class corCompSymm. The
data frame df was defined in Panel R11.2

> cs <- # Object defined...

+ corCompSymm(value = 0.3, form = ~1|subj)

> cs <- Initialize(cs, df) # ... initialized

> coef(cs, unconstrained = FALSE) # Constrained coefficient

Rho

0.3

> coef(cs) # Unconstrained = log((1/3+.3)/(1-.3))

[1] -0.10008

> getCovariate(cs) # Positions in series

$`1`
[1] 1 2 3 4

$`2`
[1] 1 2 3

> corMatrix(cs) # Corr. matrix displayed

$`1`
[,1] [,2] [,3] [,4]

[1,] 1.0 0.3 0.3 0.3

[2,] 0.3 1.0 0.3 0.3

[3,] 0.3 0.3 1.0 0.3

[4,] 0.3 0.3 0.3 1.0

$`2`
[,1] [,2] [,3]

[1,] 1.0 0.3 0.3

[2,] 0.3 1.0 0.3

[3,] 0.3 0.3 1.0

11.4.2 Autoregressive Structure of Order 1: The corAR1 Class

The object cs1 in Panel R11.4 represents an uninitialized corAR1 correlation
structure. By applying to the object the function coef(), with the unconstrained=
FALSE argument, we obtain the value of the defining correlation coefficient % =
0.3 (see Table 10.1). Using the argument unconstrained=TRUE, we obtain the
coefficient on the unconstrained scale, i.e., the value of log(1.3/0.7), resulting from
Fisher’s z-transform (10.33) of % = 0.3. The object cs1i represents a corAR1

structure, which has been initialized for the data frame df2 that contains the
covariate vector tx. The application of the function corMatrix() to the initialized
object prints out the corresponding correlation matrix. The same result is obtained,
as shown in Panel R11.4, by applying the function corMatrix(),with the argument
covariate = tx, to the uninitialized object cs1. In this case, the correlation
structure, defined in cs1, is evaluated at the covariate vector tx.
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In Panel R11.4, the object chL contains the coefficients of the transpose of the
inverse of the square root of the correlation matrix (Sect. 10.4.3), corresponding to
cs1i. The last command in Panel R11.4 illustrates the back-transformation leading
to the correlation matrix (Sect. 11.3.3).

R11.4 Extracting and assigning coefficients to an object of class corAR1

> cs1 <- corAR1(0.3, form = ~tx) # Uninitialized corAR1 struct

> coef(cs1, unconstrained = FALSE) # Constrained coefficient

Phi

0.3

> coef(cs1) # Unconstrained = log((1+.3)/(1-.3))

[1] 0.61904

> tx <- 1:4 # A covariate with values 1, 2, 3, 4

> corMatrix(cs1, covariate = tx) # Corr(Ri) of uninitialized object

[,1] [,2] [,3] [,4]

[1,] 1.000 0.30 0.09 0.027

[2,] 0.300 1.00 0.30 0.090

[3,] 0.090 0.30 1.00 0.300

[4,] 0.027 0.09 0.30 1.000

> df2 <- data.frame(tx) # An auxiliary data frame

> cs1i <- # Initialized corAR1 object

+ Initialize(cs1, data = df2)

> corMatrix(cs1i) # corAR1 matrix displayed

[,1] [,2] [,3] [,4]

[1,] 1.000 0.30 0.09 0.027

[2,] 0.300 1.00 0.30 0.090

[3,] 0.090 0.30 1.00 0.300

[4,] 0.027 0.09 0.30 1.000

> (chL <- # Cholesky factor L =(U′)−1

+ corMatrix(cs1i, corr = FALSE))

[,1] [,2] [,3] [,4]

[1,] 1.00000 0.00000 0.00000 0.0000

[2,] -0.31449 1.04828 0.00000 0.0000

[3,] 0.00000 -0.31449 1.04828 0.0000

[4,] 0.00000 0.00000 -0.31449 1.0483

attr(,"logDet")

[1] 0.14147

> solve(t(chL) %*% chL) # Back to Corr(Ri) = U′U =(L′L)−1

[,1] [,2] [,3] [,4]

[1,] 1.000 0.30 0.09 0.027

[2,] 0.300 1.00 0.30 0.090

[3,] 0.090 0.30 1.00 0.300

[4,] 0.027 0.09 0.30 1.000



206 11 Models with Fixed Effects and Correlated Errors: The gls() Function

A word of caution is worth issuing with regard to the use of serial correlation
classes other than corCompSymm. For these classes, specifying the form=~1|g

argument for the appropriate constructor function indicates the use of the order
of the observations in the group as the position index. When data are balanced,
i.e., when all subjects have got all measurements, or when they reveal monotone
missingness patterns (Sect. 3.2.1), this will work fine. However, if, for some
subjects, intermittent measurements are missing, the use of the observation order
can result in the wrong correlation structure. Such a case is illustrated in Panel R11.5
for the corAR1 correlation structure. In the part (a) of the panel, the first corAR1()
statement defines the object car of class corAR1, with the parameter % = 0.3,
and with the order of observations within a subject used as the position variable.
Consequently, after initializing the object car using the data from the df data
frame, the correlation matrix for the second subject contains the value %

2 = 0.09
as the correlation coefficient between the first and third observation. However, these
observations were actually made at the first and fourth occasion, respectively, so the
correct value is %

3 = 0.027. To correctly specify this value, the occ variable should
be used as the position variable using the form= occ | subj argument, as shown
in the first corAR1() statement of the part (b) of Panel R11.5.

Note that, for data with measurement timepoints common to all subjects, this
caution is required only for nonmonotone missing data patterns. Nevertheless, in
case of the constructor functions for serial correlation classes other than corComp-
Symm, it is prudent to always use a position variable, which reflects the proper
positions of the observations in a sequence for each group (subject), in the form

argument.

11.4.3 Exponential Structure: The corExp Class

In Panel R11.6, we illustrate the definition and initialization of an object of class
corExp.

The hypothetical data frame df, specified in Panel R11.2, is used for illustration.
The first corExp() statement, in Panel R11.6a, defines the corExp-class object ceE,
which represents the exponential correlation structure, given by (10.16). By default,
the Euclidean distance between the position vectors, specified by the position
variables loc1 and loc2, is used. The Initialize() statement initializes the
object and computes the correlation structure coefficients using the data from the
data frame df. The resulting correlation matrices for both subjects are displayed
with the use of the corMatrix() statement. Note that the matrices differ, because
the spatial coordinates of the measurements differ for the subjects.

In Panel R11.6b, the distance function is changed to the Manhattan metric
(Sect. 10.3.2). Toward this end, the metric="man" argument is used in the call to
the corExp() constructor function. The resulting correlation matrix, displayed only
for the first subject, is different from the one obtained using the Euclidean distance.
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R11.5 R syntax: Defining and initializing an object of class corAR1. The data frame
df was defined in Panel R11.2
(a) Not a recommended syntax

> car <- # Not-recommended syntax ...

+ corAR1(value = 0.3, form = ~1|subj)

> carI <- Initialize(car, df) # corAR1 class object initialized

> getCovariate(carI) # Position=order of observations for a subject

$`1`
[1] 1 2 3 4

$`2`
[1] 1 2 3

> corMatrix(carI)[[1]] # Correct matrix for the 1st subject

[,1] [,2] [,3] [,4]

[1,] 1.000 0.30 0.09 0.027

[2,] 0.300 1.00 0.30 0.090

[3,] 0.090 0.30 1.00 0.300

[4,] 0.027 0.09 0.30 1.000

> corMatrix(carI)[[2]] # Incorrect matrix for the 2nd subject

[,1] [,2] [,3]

[1,] 1.00 0.3 0.09

[2,] 0.30 1.0 0.30

[3,] 0.09 0.3 1.00

(b) Recommended syntax

> car1 <- corAR1(value = 0.3, form = ~occ|subj) # Recommended syntax

> car1 <- Initialize(car1, df) # corAR1 classs object initialized

> getCovariate(car1) # Correct positions based on the occ variable

$`1`
[1] 1 2 3 4

$`2`
[1] 1 2 4

> corMatrix(car1)[[2]] # Correct matrix for the 2nd subject

[,1] [,2] [,3]

[1,] 1.000 0.30 0.027

[2,] 0.300 1.00 0.090

[3,] 0.027 0.09 1.000
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R11.6 R syntax: Defining and initializing an object of class corExp. The data frame
df was defined in Panel R11.2
(a) Euclidean metric

> ceE <- corExp(value=1, form= ~loc1 + loc2 | subj)# Euclidean metric

> ceE <- Initialize(ceE, df)

> corMatrix(ceE) # List with corr matrices for both subjects

$`1`
[,1] [,2] [,3] [,4]

[1,] 1.00000 0.75364 0.56797 0.32259

[2,] 0.75364 1.00000 0.75364 0.42804

[3,] 0.56797 0.75364 1.00000 0.56797

[4,] 0.32259 0.42804 0.56797 1.00000

$`2`
[,1] [,2] [,3]

[1,] 1.00000 0.79963 0.40884

[2,] 0.79963 1.00000 0.51129

[3,] 0.40884 0.51129 1.00000

(b) Manhattan metric

> ceM <- # Manhattan metric

+ corExp(1, ~ loc1 + loc2 | subj, metric = "man")

> ceM <- Initialize(ceM, df)

> corMatrix(ceM)[[1]] # Corr matrix for the 1st subject

[,1] [,2] [,3] [,4]

[1,] 1.00000 0.67032 0.44933 0.20190

[2,] 0.67032 1.00000 0.67032 0.30119

[3,] 0.44933 0.67032 1.00000 0.44933

[4,] 0.20190 0.30119 0.44933 1.00000

(c) Nugget effect

> ceEn <- # nugget = 0.2

+ corExp(c(1, 0.2), ~ loc1 + loc2 | subj, nugget = TRUE)

> ceEn <- Initialize(ceEn, df)

> coef(ceEn, unconstrained=FALSE) # Constrained %, %0

range nugget

1.0 0.2

> corMatrix(ceEn)[[1]] # Corr matrix for the 1st subject

[,1] [,2] [,3] [,4]

[1,] 1.00000 0.60291 0.45438 0.25807

[2,] 0.60291 1.00000 0.60291 0.34244

[3,] 0.45438 0.60291 1.00000 0.45438

[4,] 0.25807 0.34244 0.45438 1.00000
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Finally, in Panel R11.6c, a nugget effect is used (Sect. 10.3.2). Toward this end,
the nugget=TRUE argument is specified in the corExp() constructor-function call,
together with the value of the effect equal to 0.2, given as the second element of the
value argument.

11.5 Using the gls() Function

The function most frequently used in R to fit LMs for correlated data is the gls()
function from the nlme package. It allows fitting models, defined by (10.1)–(10.5),
with various forms for the variance-covariance matrix, Ri, of the within-group
residual errors.

The main arguments of the function gls(), i.e., model, data, subset,
na.action, and method were introduced in Sect. 5.4 in the context of LMs for
independent observations with homogeneous variance. In Sect. 8.4, we described
an additional argument, namely, weights, which allows specifying the variance
function for LMs for independent observations with heterogeneous variances, which
were introduced in Chap. 7. We illustrated the use of these arguments in Chaps. 6
and 9. Note that all these arguments play essentially the same role and have the
same syntax for the models introduced in this chapter.

In the context of LMs for correlated data, the additional important argument of
the gls() function is correlation. The argument specifies an object that inherits
from the corStruct class, which defines the correlation structure. Thus, a typical use
of the argument is of the form correlation= corStruct(form=formula),

where corStruct is a correlation-structure constructor function (Table 10.1),
while formula is a one-sided formula (Sect. 11.2), which indicates the position
and grouping variables used in defining the correlation structure. The default value
of the argument is correlation=NULL, which implies uncorrelated residual errors.
This argument can prove useful when user defined initial values need to be assigned
to a vector of qR parameters.

Note that the information about the grouping of the data, relevant in the context of
the models considered in this chapter, can be introduced into a gls()-function call
in two ways. The preferred, transparent way is by specifying a formula (Sect. 11.2),
indicating the grouping factors, in the correlation-structure constructor function
used in the correlation argument. In this way, the grouping of the data can
be directly inferred from the definition of the model. An alternative is to use an
object of groupedData class in the data argument. As mentioned in Sect. 2.6, the
groupedData class has some limitations. Also, in this way, the assumed grouping of
the data is not reflected by any means in the definition of the model. Therefore, the
use of the groupedData objects is not recommended.
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11.6 Extracting Information from a Model-Fit Object
of Class gls

To extract the results from a gls model-fit object, generic functions such as print(),
summary()and predict(), can be used (Sect. 5.5 and Table 5.5). The methods to
extract the results pertaining to the variance structure were described in Sect. 8.5
and Table 8.2.

In Table 11.1, we present selected functions and methods to extract the results
pertaining to the correlation structure of a fitted LM for correlated data. They are
very similar to the methods used to obtain the details of the fitted variance structure
(Table 8.2); the difference lies mainly in the use of different components of the
model-fit object. As in Sect. 8.5, we assume that the model fit results are stored
in a hypothetical object gls.fit. In Table 11.1a, we demonstrate how to extract
selected results directly from gls.fit. First, we obtain the applied form of the
gls()-function call and store it in the object cl. Subsequently, the applied form of
the correlation argument is obtained by extracting the cl$correlation com-
ponent of the cl object. Confidence intervals (CIs) for the constrained correlation-
function coefficients are obtained by extracting the corStruct component of
the object resulting from the application of the intervals() function, with the
argument which="var-cov", to the model-fit object. The intervals are constructed
by transforming CIs for the corresponding unconstrained coefficients (Sect. 10.6).

Table 11.1 R syntax: extracting results pertaining to the correlation structure from a hypothetical
object gls.fit of class gls, representing a fit of a linear model for correlated data

(a) Extracting results directly from the gls.fit model-fit object
Model fit component to be extracted Syntax

gls()-call (cl <- getCall(gls.fit))

correlation= argument cl$correlation

95% CI for % intervals(gls.fit, which =

"var-cov")$corStruct
̂Ri matrices getVarCov(gls.fit)

Normalized residuals resid(gls.fit, type = "normalized")
Var-cov structure mSt <- gls.fit$modelStruct

Correlation structure (CorSt) cSt <- mSt$corStruct

(b) Extracting results from an auxiliary object cSt of corStruct class
Correlation structure component to be
extracted Syntax
Summary summary(cSt)

CorSt formula formula(cSt)

CorSt covariate getCovariate(cSt)

̂%
∗ (unconstrained) coef(cSt)

̂% (constrained) coef(cSt, unconstrained = FALSE)

Contribution to log-likelihood logLik(cSt)
̂Ci matrices corMatrix(cSt)

Log-determinant logDet(cSt)
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The estimated form of the Ri matrices (Sect. 10.2) is obtained by applying the
getVarCov() function. The normalized residuals (Sect. 10.5) are extracted by
applying the resid() function, with the argument type="normalized", to the
model-fit object.

By extracting and storing, in the object mSt, the modelStruct component of
the model-fit object, we get access to the estimated variance-covariance structure of
the model. In particular, details on the estimated form of the correlation structure
are contained in the corStruct component of the modelStruct object. We extract
and store the component in the object cSt. In Table 11.1b, we illustrate how to
extract various elements of the fitted form of the correlation structure. For instance,
the application of the summary() function to the object cSt provides a description
of the correlation function, together with the estimates of the coefficients on the
original, constrained scale. On the other hand, the formula and the covariate, used
in the specification of the correlation function, are obtained using the formula()

and getCovariate() functions, respectively. The correlation-function coefficients
on the unconstrained and constrained scale are obtained by applying the generic
coef() function with the argument unconstrained set to TRUE (default) and
FALSE, respectively (Sect. 11.3.1).

Compared to Table 8.2, Table 11.1 includes two additional functions. The
function corMatrix() gives, by default, the estimated correlation matrices for all
groups in the analyzed data (Sect. 11.3.3). The function logDet(), on the other
hand, extracts the sum of the logarithms of the determinants of the square roots of
the correlation matrices.

As it was the case for the LM for independent, heteroscedastic observations
(Sect. 8.5), results of the hypothesis tests based on the fitted LM for correlated
data (Sect. 10.6) are accessed by the anova() generic function. Note that, as it was
mentioned in Sect. 10.6, the results of the tests are assessed using the central F-
distribution with the number of the denominator degrees of freedom equal to n− p.
The function anova() also provides the information criteria which can be used
to choose the best-fitting models from a set of nonnested models with different
variance-covariance structures.

11.7 Chapter Summary

In this chapter, we presented the tools available in R to fit LMs for correlated
data. The important issue was the implementation of the concept of the corre-
lation structure. In Sect. 11.2, we described the relevant R tools. In particular,
the correlation-structure constructor functions and their arguments were presented
in Sects. 11.2.1 and 11.2.1.1, respectively. In Sect. 11.3, we described the tools
available for inspection and modification of objects of class corStruct. Several
examples of correlation structures were presented in Sect. 11.4.

The main tool to fit LMs for correlated data in R is the gls() function. Its
main arguments were already described in Sects. 5.4 and 8.4. In Sect. 11.5, we
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introduced another argument, correlation. It allows modeling of the within-
group correlation between residual errors. In the argument, the correlation-structure
constructor functions, described in Sect. 11.2, are used. Note that a similar argument
is used in the lme() function, which is applied to fit LMMs. Thus, the presentation
of this particular feature of the gls() function will be relevant also for the latter
models.

Finally, in Sect. 11.6, we discussed the tools used to extract the information about
the estimated form of the within-group correlation structure from a gls model-fit
object. The tools used for extracting information about other aspects of the fitted
model were already presented in Sects. 5.5 (Table 5.5) and 8.5 (Table 8.2).

We note that, occasionally, it may be of interest to define a new correlation
structure. In such a situation, as was mentioned for the case of variance functions
(Sect. 8.6), it is recommended to explore, in the first instance, the information related
to an already defined standard class, e.g., corCompSymm. Users may define their
own correlation structures by writing appropriate constructor functions, similar to
corCompSymm(). Such functions should return objects of a class with the same
name as the constructor function and with attributes similar to those of already
defined classes, like corCompSymm. In addition, at least three methods, namely,
coef(), coef<-, and corMatrix(), have to be written for a newly created
constructor function.

In the next chapter, we illustrate the use of the models and R syntax, introduced
in this chapter, by applying them to the ARMD case study.



Chapter 12
ARMD Trial: Modeling Correlated Errors
for Visual Acuity

12.1 Introduction

In Chap. 9, we analyzed the ARMD data using a model that assumed independence
between repeated measurements of visual acuity for an individual patient. Given
the longitudinal study design, in which sampling units, i.e., subjects, are different
from the units of analysis, i.e., visual acuity measurements, the assumption of
independence typically does not hold. This consideration is confirmed by the results
of the exploratory analysis presented in Sect. 3.2, which indicate that the assumption
is clearly not fulfilled. Thus, in the current chapter, we further modify our analysis
to account for the correlation between the repeated measurements. In particular, we
use LMs with fixed effects and correlated residual errors, defined in Sect. 10.2.

We begin by an analysis of a model that assumes a constant correlation between
the visual acuity measurements (Sect. 12.3). In Sect. 12.4, we extend the analysis
by allowing the correlation to differ depending on the timepoints, at which the
measurements were taken. Finally, in Sect. 12.5, we allow for models with an
unconstrained, general variance-covariance structure. Model-fit diagnostics are
presented in Sect. 12.6. Model reduction and inference are discussed in Sect. 12.7.
Section 12.8 offers a summary of the analyses conducted in the chapter.

12.2 The Model with Heteroscedastic, Independent Residual
Errors Revisited

In Chap. 9, we analyzed the ARMD data using several LMs of the following form:

VISUALit = b0t +b1×VISUAL0i +b2t×TREATi + eit, (12.1)

where residual errors eit were assumed to be normally distributed with mean 0 but
where different variance functions were used to model the variance heterogeneity.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__12,
© Springer Science+Business Media New York 2013
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Model M9.3, introduced in Sect. 9.3, with a variance function in the form of a
power function of time, showed the best fit among the models considered in Chap. 9.
Note that, by using the notation introduced in Sect. 10.2, the 4×4 diagonal variance-
covariance matrix Ri for a subject with all four post-randomization visual acuity
observations can be represented as

Ri = s 2LiCiLi, (12.2)

with Ci ≡ I4, a 4× 4 identity matrix, and Λi defined as

Li ≡

⎛

⎜

⎜

⎜

⎝

(TIMEi1)
d 0 0 0

0 (TIMEi2)
d 0 0

0 0 (TIMEi3)
d 0

0 0 0 (TIMEi1)
d

⎞

⎟

⎟

⎟

⎠

, (12.3)

where TIMEit is the week at which the t-th measurement was taken. Diagonal
elements of Li were defined by the varPower(·) variance function, specified in (9.4).

According to model M9.3, specified by (12.1)–(12.3), the variances of the
visual acuity measurements at different timepoints are allowed to be different, but
the measurements are assumed to be independent. In view of the results of the
exploratory analysis, presented in Sect. 3.2, the latter assumption is not correct.

In this chapter, we modify the model, so that the visual acuity measurements,
obtained for the same individual, are allowed to be correlated. We consider initially
models with the same mean structure as the one defined in (12.1), but with different
variance-covariance (correlation) structures.

12.2.1 Empirical Semivariogram

In choosing an appropriate correlation structure, the empirical semivariogram,
defined in Sect. 10.5 and employed in Panel R12.1, can be helpful.

It is worth noting that, in the ARMD trial, time differences for all possible six
pairs of timepoints are different. Therefore, as shown in Panel R12.1a, we can
estimate the semivariogram to calculate correlation coefficients between Pearson
residuals for every pair of timepoints, separately. The residuals are computed based
on the estimated form of model M9.3, stored in the object fm9.2. For example, the
correlation between the residuals at 4 and 12 weeks is equal to 0.59 = 1− 0.41.
A graphical representation of the estimated semivariogram plotted versus the time
distance is presented in Fig. 12.1a. The semivariogram was obtained using the
Variogram() function with the numeric time variable used in the form argument
(Sect. 11.3.2).

Note that, when applying the function to a model-fit object of class gls, many
additional arguments, above those mentioned in Sect. 11.3.2, are available. In
particular, the argument robust can be used. If robust=TRUE, the semivariogram is
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R12.1 ARMD Trial: Empirical semivariograms for Pearson residuals for
model M9.3. The model-fit object fm9.2 was created in Panel R9.2
(a) Per time difference

> (Vg1 <- Variogram(fm9.2, form = ~ time | subject))

variog dist n.pairs

1 0.41144 8 224

2 0.35739 12 214

3 0.54202 20 212

4 0.23819 28 190

5 0.46203 40 194

6 0.61401 48 193

> plot(Vg1, smooth = FALSE, xlab = "Time difference") # Fig. 12.1a

(b) Per time lag

> (Vg2 <- Variogram(fm9.2, form = ~tp | subject))

variog dist n.pairs

1 0.34060 1 628

2 0.50380 2 406

3 0.61401 3 193

> plot(Vg2, smooth = FALSE, xlab = "Time Lag") # Fig. 12.1b

a b

Fig. 12.1 ARMD Trial: Empirical semivariograms for model M9.2 (a) Per time-difference (b) Per
time-lag

estimated using the robust estimator, given in (10.40). By default, robust=FALSE,
and the semivariogram function is estimated using the estimator defined in (10.39).
This is the case for the Variogram()-function call used in Panel R12.1a.
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An alternative form of the variogram is obtained in Panel R12.1b using the
time lag, i.e., the absolute difference between two position indices. This variant
was estimated using the Variogram() function with the position variable tp used
in the form argument. The variable indicates the position of a measurement in
the sequence of planned measurements and is equal to 1 for week 4, 2 for week
12, 3 for week 24, and 4 for week 52 measurements (see Sect. 2.2.2). As there
are at most four post-randomization observations per subject, there are only three
possible time-lag values. The corresponding plot is shown in Fig. 12.1b. Note that,
because there are only a few time-difference and time-lag values, smoothing of
the plots will not help in their interpretation. For this reason, we set the smooth

argument in the plot()-function calls, shown in Panel R12.1, to FALSE. The plots
of the semivariograms, presented in Fig. 12.1, suggest that the correlation decreases
with the time difference/lag. Thus, a correlation structure like, e.g., a compound
symmetry, will most likely not fit the data well. A more appropriate structure might
be, e.g., an autoregressive process of order 1 (see Table 10.1). Nevertheless, in
the next section, for illustrative purposes, we consider a model with a compound-
symmetry correlation structure.

12.3 A Linear Model with a Compound-Symmetry
Correlation Structure

With the use of the function gls(), we can fit a modified variant of model M9.3,
which takes into account the correlation between the repeated measurements of
visual acuity measurements. In a first attempt, for illustrative purposes, we allow
for a constant correlation between the measurements.

12.3.1 Model Specification

We assume that the mean structure of the model, specified in this section and labeled
as M12.1, is the same as the one implied by (12.1). On the other hand, we assume
that the marginal variance-covariance matrix is of the form defined in (12.2), with
Li given in (12.3) and

Ci ≡

⎛

⎜

⎜

⎝

1 % % %

% 1 % %

% % 1 %

% % % 1

⎞

⎟

⎟

⎠

. (12.4)

As a result, we obtain a compound-symmetry correlation structure and a heteroge-
neous compound-symmetry variance-covariance structure.
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R12.2 ARMD Trial: Model M12.1 with a compound-symmetry correlation structure
(a) Fitting model M12.1

> lm1.form <- # (12.1)

+ formula(visual ~ -1 + visual0 + time.f + treat.f:time.f )

> fm12.1 <- # M12.1
+ gls(lm1.form, weights = varPower(form = ~time),

+ correlation = corCompSymm(form = ~1|subject),

+ data = armd)

(b) 95% CIs for the variance-covariance parameters

> intervals(fm12.1, which = "var-cov") # CIs for %:(12.4), d:(12.3), s
Approximate 95% confidence intervals

Correlation structure:

lower est. upper

Rho 0.50447 0.57326 0.63664

attr(,"label")

[1] "Correlation structure:"

Variance function:

lower est. upper

power 0.21581 0.25982 0.30382

attr(,"label")

[1] "Variance function:"

Residual standard error:

lower est. upper

5.2357 5.9815 6.8336

12.3.2 Syntax and Results

The decomposition (12.2) allows us to model the variance-covariance matrix Ri us-
ing the varPower class of variance functions and corCompSymm class of correlation
functions, described in Sects. 8.2 and 11.4.1, respectively. In Panel R12.2, we apply
the gls() function to fit model M12.1.

More specifically, in Panel R12.2a, we use the weights argument combined with
the varPower() constructor function and the correlation argument combined
with the corCompSymm() constructor function. The correlation = corComp-

Symm(form = ~1|subject) argument indicates that we use the same correlation
coefficient for different observations for each level of the subject factor. That is,
we allow for a constant correlation of visual acuity measurements made at different
timepoints for the same patient. Note that we do not explicitly specify the method

argument. Thus, the default value, i.e., method="REML", is used (Sect. 5.4). This
is because, at this point, we focus on the estimation of the variance-covariance
structure of the data.
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Table 12.1 ARMD Trial: The REML-based parameter estimatesa for models with various corre-
lation structures fitted using the gls() function

Parameter fm12.1 fm12.2 fm12.3

Model label M12.1 M12.2 M12.3
Log-REML value −3216.46 −3186.46 −3176.60

Fixed effects
Visual acuity at t = 0 b1 0.92(0.04) 0.88(0.04) 0.89(0.04)
Time (4wks) b01 2.98(2.18) 5.23(2.22) 4.73(2.14)
Time (12wks) b02 1.94(2.29) 4.17(2.31) 3.67(2.25)
Time (24wks) b03 −1.78(2.40) 0.51(2.41) 0.00(2.37)
Time (52wks) b04 −6.98(2.58) −4.85(2.56) −5.33(2.56)
Tm(4wks):Trt(Actv) b21 −2.26(1.13) −2.28(1.15) −2.29(1.10)
Tm(12wks):Trt(Actv) b22 −3.59(1.51) −3.60(1.49) −3.60(1.49)
Tm(24wks):Trt(Actv) b23 −2.90(1.84) −3.13(1.78) −3.13(1.82)
Tm(52wks):Trt(Actv) b24 −5.33(2.31) −4.74(2.21) −4.95(2.31)

Variance function

power (TIMEd) d 0.26(0.22,0.30) 0.23(0.18,0.28) 0.27(0.22,0.32)

Correlation structure
C-S (12.4) %CS 0.57(0.50,0.64)
AR1 (12.5) %AR1 0.66(0.60,0.70)

General (12.6)
cor(1,2) %12 0.58(0.49,0.66)
cor(1,3) %13 0.45(0.33,0.55)
cor(1,4) %14 0.30(0.15,0.44)
cor(2,3) %23 0.65(0.57,0.72)
cor(2,4) %24 0.53(0.42,0.63)
cor(3,4) %34 0.77(0.70,0.82)

Scale s 5.98(5.24,6.83) 6.36(5.50,7.34) 5.74(4.95,6.65)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in paratheses

Results of the fit of the model, stored in the object fm12.1, can be accessed
using the summary() command. The output is extensive and we do not display it
here; the detailed results are shown in Table 12.1. Instead, in Panel R12.2b, we
present the approximate 95% confidence intervals (CIs) for the variance-covariance
parameters of the model using the intervals() function. The output includes the
point estimates and lower and upper limits of the CIs for %, for the power coefficient
d of the power variance function, and for s . Underlying computations employ the
formulae introduced in Sects. 7.6.2 and 10.6.

The results indicate that, according to the assumed compound-symmetry corre-
lation structure, the correlation coefficient of any two visual acuity measurements
obtained for the same patient % is equal to 0.573. The 95% CI for the correlation
coefficient confirms that there is a nonnegligible correlation between the visual
acuity measurements, as noted earlier. The scale parameter s is estimated to be
equal to 5.98. The estimated power coefficient of the variance function, 0.260, is
very close to the value of 0.252 obtained for model M9.3 fitted in Panel R9.3. It
indicates an increasing variability of the measurements over time.
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R12.3 ARMD Trial: Estimated variance-covariance structure of the fitted
model M12.1. The model-fit objects fm9.2 and fm12.1 were created in Panels 9.2
and R12.2, respectively
(a) The marginal variance-covariance structure

> fm12.1vcov <- # ̂Ri
+ getVarCov(fm12.1, individual = "2")

> nms <- c("4wks", "12wks", "24wks", "52wks")

> dnms <- list(nms, nms) # Dimnames created

> dimnames(fm12.1vcov) <- dnms # Dimnames assigned

> print(fm12.1vcov)

Marginal variance covariance matrix

4wks 12wks 24wks 52wks

4wks 73.531 56.077 67.143 82.081

12wks 56.077 130.140 89.323 109.200

24wks 67.143 89.323 186.560 130.740

52wks 82.081 109.200 130.740 278.810

Standard Deviations: 8.575 11.408 13.659 16.698

> print(cov2cor(fm12.1vcov), # ̂Ci:(12.4)

+ corr = TRUE, stdevs = FALSE)

Marginal correlation matrix

4wks 12wks 24wks 52wks

4wks 1.00000 0.57326 0.57326 0.57326

12wks 0.57326 1.00000 0.57326 0.57326

24wks 0.57326 0.57326 1.00000 0.57326

52wks 0.57326 0.57326 0.57326 1.00000

(b) Test of independence vs. compound-symmetry correlation structure

> anova(fm9.2, fm12.1) # M9.2 ⊂ M12.1
Model df AIC BIC logLik Test L.Ratio p value

fm9.2 1 11 6738.1 6790.4 -3358.1

fm12.1 2 12 6456.9 6514.0 -3216.5 1 vs 2 283.21 <.0001

In Panel R12.3, we display the estimated variance-covariance and correlation
matrices. In addition, we test the hypothesis about the need of compound-symmetry
correlation in the model. Specifically, in Panel R12.3a, we use the getVarCov()

function (Sect. 11.6) to obtain an estimate of the variance-covariance matrix.
The argument individual="2" indicates that we request the matrix for sub-
ject “2”, for whom all four post-randomization measurements are available. To
simplify the printout, we modify the default names of the rows and columns of
the matrix. The resulting correlation structure is obtained by transforming the
variance-covariance matrix into a correlation matrix with the use of the cov2cor()
function (Sect. 3.2.3). Note that, when printing the latter matrix, we use arguments
corr=TRUE and stdevs=FALSE. The first argument chooses the format of the
printout suitable for a correlation matrix, while the second one suppresses the
display of the standard deviations, which are irrelevant for a correlation matrix.
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At this point, we might want to test whether allowing for the correlation of
the dependent variable in the model is indeed important. Toward this end, in
Panel R12.3b, we use the LR test employing the restricted likelihoods for models
stored in objects fm9.2 and fm12.1 using the anova() function. The test is based
on the restricted likelihoods, because we use it for a comparison of models with the
same mean structures (see Sects. 4.7.2 and 7.6.1).

In this case, the anova() command subtracts the value of −2×(restricted log-
likelihood) of the more general model M12.1, the fit of which is stored in the
object fm12.1, from the corresponding value of the nested model M9.3, the fit of
which is stored in the object fm9.2. The difference is referred to the appropriate c2

distribution. The result of the LR test is clearly statistically significant, indicating
the importance of the adjustment for the correlation in modeling the data.

Given the results of the exploratory analysis (Sect. 3.2) and the shape of the
semivariograms, presented in Fig. 12.1, a compound-symmetry correlation structure
is most likely not suitable to describe the ARMD data. Therefore, in the next section,
we consider an autoregressive process of order 1 (see Table 10.1), which might be
more appropriate.

12.4 Heteroscedastic Autoregressive Residual Errors

In this section, we consider the use of an autoregressive process of order 1 (see
Table 10.1) that allows for an unequal correlation of the visual acuity measurements
taken at different occasions. Note that the mean structure of the newly defined model
is the same as the one implied by (12.1).

12.4.1 Model Specification

Instead of assuming a constant correlation, we might assume that the correlation
decreases for measurements obtained at more distant timepoints. Although visual
acuity was not measured at equally spaced intervals, it does make sense, pragmat-
ically speaking, to consider the use of the autoregressive correlation structure with
lag 1 (see Sect. 10.3.2). The structure implies that two observations separated by t
time units are correlated with a correlation coefficient equal to %

t, where % is the lag–
1 correlation. Thus, we assume that the variance-covariance matrix is represented by
(12.2), with Li given by (12.3) and

Ci ≡

⎛

⎜

⎜

⎜

⎝

1 % %
2

%
3

% 1 % %
2

%
2

% 1 %

%
3

%
2

% 1

⎞

⎟

⎟

⎟

⎠

. (12.5)

We label the newly defined model as M12.2.
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R12.4 ARMD Trial: Model M12.2 with an AR(1) correlation structure. The model-
fit object fm9.2 was created in Panel R9.2
(a) Fitting model M12.2

> fm12.2 <- # M12.2 ← M9.2
+ update(fm9.2, # (12.5)

+ correlation = corAR1(form = ~tp|subject),

+ data = armd)

(b) 95% CIs for variance-covariance parameters

> intervals(fm12.2, which = "var-cov") # CIs for %:(12.5), d:(12.3), s
Approximate 95% confidence intervals

Correlation structure:

lower est. upper

Phi1 0.60398 0.65731 0.70478

attr(,"label")

[1] "Correlation structure:"

Variance function:

lower est. upper

power 0.1832 0.23119 0.27918

attr(,"label")

[1] "Variance function:"

Residual standard error:

lower est. upper

5.5036 6.3563 7.3411

12.4.2 Syntax and Results

In Panel R12.4, we fit model M12.2 and display 95% CIs for variance-covariance
parameters. Note that, in Panel R12.4a, rather than using a new call to the gls()

function, we use the update() function to modify only the aspect of interest,
i.e., the correlation structure, of the model represented by the object fm9.2. In
particular, we apply the autoregressive correlation structure, defined in (12.5),
using the corAR1() constructor function to modify the value of the correlation
argument.

For the visual acuity data, we might simply assume that two adjacent measure-
ments (e.g., those at weeks 4 and 12, or at weeks 12 and 24, etc.) are correlated
with a correlation coefficient equal to %, say, while measurements separated by one
intermittent observation (e.g., those at weeks 4 and 24, or at weeks 12 and 52),
are correlated with a correlation coefficient of %

2 and so on. This would suggest
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the use of the call corAR1(form = ~1 | subject), i.e., the use of the order of
the observations in the data as a covariate. However, as was noted in Sect. 3.2.1,
in the dataset there are 8 patients with a nonmonotone missing data pattern. For
these patients, the use of the ~1 | subject formula is not correct, as the order
of visual acuity measurements does not lead to a proper correlation assignment.
This issue was explained in Sect. 11.4.2. To avoid the problem, we need to use a
position variable that indicates, for each visual acuity measurement, the proper rank
(position) of the particular measurement in the planned sequence of measurements.
The data frame armd contains such a variable, named tp (Sect. 2.2.2). The variable
takes values equal to 1 for week 4, 2 for week 12, 3 for week 24, and 4 for week
52 measurements. We should use the variable in the formula of the corAR1()

function. That is, we should apply the syntax corAR1(~tp | subject), as shown
in Panel R12.4a.

The results of the fit of the model can be accessed using the summary(fm12.2)
call. The output is extensive and we do not present it here. Instead, in Panel R12.4b,
we show the approximate 95% CIs for the REML-based estimates of the parameters
of the Ri and Ci matrices. The estimates of all parameters of model M12.2 are
displayed in Table 12.1.

In Panel R12.5, we continue with the presentation of the results for Model M12.2.
The estimated correlation matrix, shown in Panel R12.5a, suggests that the corre-
lation coefficient for the visual acuity measurements adjacent in time (e.g., those
at weeks 4 and 12, or at weeks 12 and 24, etc.) is equal to % = 0.66. This value is
higher than 0.57 obtained for the compound-symmetry structure (see Panel R12.2a).
On the other hand, the measurements separated by, e.g., one intermittent observation
(e.g., those at weeks 4 and 24), are correlated with the correlation coefficient equal
to %

2 = 0.43, which is lower than 0.57.
Model M12.1, defined by (12.1) and (12.3)–(12.4), and represented by the

object fm12.1, is not nested within model M12.2, represented by the object
fm12.2. Therefore, we cannot compare them directly using the LR test. We
can nevertheless use the anova() function to compare their information criteria
(Sect. 4.7.2). Note that, alternatively, the AIC() function could be used. Results are
shown in Panel R12.5b. The smaller the value of AIC, the better is the fit of a model.
For the compound-symmetry model M12.1, AIC is equal to 6456.9, while for the
autoregressive model M12.2, it is equal to 6396.9. Thus, we conclude that the model
with the autoregressive correlation structure provides a better description of the data,
in line with the results of the exploratory analysis and of the considerations based
on the empirical semivariogram (Sect. 12.2).

Although the autoregressive correlation structure allows for differences in the
values of correlation coefficients, it assumes a particular form of these differences,
specified in (12.5). Of course, this assumption can be incorrect. Therefore, in the
next section, we consider a fully general correlation structure, which does not
impose any constraints on the possible differences.
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R12.5 ARMD Trial: Estimated variance-covariance structure of the fitted
model M12.2 with an AR(1) correlation structure. Objects fm12.1, dnms, and
fm12.2 were created in Panels R12.2, R12.3, and R12.4, respectively
(a) The marginal variance-covariance structure

> fm12.2vcov <-

+ getVarCov(fm12.2, individual = "2")

> dimnames(fm12.2vcov) <- dnms

> fm12.2vcov # ̂Ri matrix

Marginal variance covariance matrix

4wks 12wks 24wks 52wks

4wks 76.698 64.992 50.144 39.411

12wks 64.992 127.470 98.346 77.296

24wks 50.144 98.346 175.620 138.030

52wks 39.411 77.296 138.030 251.100

Standard Deviations: 8.7578 11.29 13.252 15.846

> fm12.2cor <- cov2cor(fm12.2vcov)

> print(fm12.2cor, digits = 2, # ̂Ci:(12.5)

+ corr = TRUE, stdevs = FALSE)

Marginal correlation matrix

4wks 12wks 24wks 52wks

4wks 1.00 0.66 0.43 0.28

12wks 0.66 1.00 0.66 0.43

24wks 0.43 0.66 1.00 0.66

52wks 0.28 0.43 0.66 1.00

(b) Compound-symmetry vs. autoregressive correlation (nonnested models)

> anova(fm12.1, fm12.2) # M12.1 vs. M12.2
Model df AIC BIC logLik

fm12.1 1 12 6456.9 6514 -3216.5

fm12.2 2 12 6396.9 6454 -3186.5

12.5 General Correlation Matrix for Residual Errors

In this section, we present a model that allows for a fully general correlation
structure. The mean structure of the model is defined by (12.1).

12.5.1 Model Specification

The model is obtained by assuming that the variance-covariance matrix Ri is
defined by (12.2), with Li given by (12.3) and
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Ci ≡

⎛

⎜

⎜

⎝

1 %12 %13 %14

%12 1 %23 %24

%13 %23 1 %34

%14 %24 %34 1

⎞

⎟

⎟

⎠

. (12.6)

Note that the matrix Ci specifies a completely general correlation structure, with
(potentially) different correlation coefficients for different pairs of measurements.
We will refer to the model, defined in this section, as M12.3.

12.5.2 Syntax and Results

In Panel R12.6, we fit model M12.3 and extract approximate 95% CIs for the
variance-covariance parameters. First, in Panel R12.6a, we update the model-fit ob-
ject fm12.2 by changing the value of the correlation argument to corAR1(form

= ~1 | subject). The corSymm() constructor function (Sect. 11.2.1) specifies
general (unconstrained) correlations (Sect. 10.3.2) between the visual acuity mea-
surements for a subject.

In Panel R12.6b, we present the approximate 95% CIs for the variance-
covariance parameters of the model. Panel R12.7 displays the variance-covariance
and correlation matrices. We observe that, according to model M12.3, the correla-
tion decreases for visual acuity measurements more distant in time, as it was seen for
the autoregressive correlation model M12.2. The last column of Table 12.1 displays
the REML-based estimates of all of the model parameters.

In Panel R12.8, we test hypotheses about the variance-covariance structure
pertaining to model M12.3. Because model M12.2 is nested within model M12.3,
we use the LR test based on the two models. Toward this end, we apply the anova()
function. The result is shown in Panel R12.8a. Note that both models have the same
mean structure and that the test is based on REML, because the objects fm12.2 and
fm12.3 were obtained using the default estimation method (REML) of the gls()

function. Thus, the test is constructed in the form suitable for comparison of models
with different variance-covariance structures (Sects. 4.7.2 and 7.6.1).

The result of the test is significant at the 5% significance level. It indicates that
model M12.3 provides a better fit than model M12.2.

It might be of interest to check whether a model with the general correlation
structure, defined by (12.6), and with the most general variance function, which
allows arbitrary (positive) variances of the visual acuity measurements made at
different timepoints, could offer a better fit than model M12.3, which uses the
variance function equal to the power function of the time covariate. Such a model
can be obtained using the varIdent(·) variance function with timepoint-specific
variance parameters (see Table 7.2 in Sect. 7.3.1). In Panel R12.8b, we fit the model
to the ARMD data using the REML estimation method. Toward this end, we apply
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R12.6 ARMD Trial: Model M12.3 with a general correlation structure. The model-
fit object fm12.2 was created in Panel R12.4
(a) Fitting model M12.3

> fm12.3 <- # M12.3 ← M12.2
+ update(fm12.2, correlation = corSymm(form = ~tp|subject),

+ data = armd)

(b) 95% CIs for variance-covariance parameters

> intervals(fm12.3, # 95% CIs for %:(12.6), d:(12.3), s
+ which = "var-cov")

Approximate 95% confidence intervals

Correlation structure:

lower est. upper

cor(1,2) 0.48963 0.58206 0.66155

cor(1,3) 0.33240 0.44820 0.55068

cor(1,4) 0.15182 0.30062 0.43610

cor(2,3) 0.57117 0.65122 0.71900

cor(2,4) 0.41930 0.53096 0.62680

cor(3,4) 0.69847 0.76578 0.81966

attr(,"label")

[1] "Correlation structure:"

Variance function:

lower est. upper

power 0.21908 0.27126 0.32345

attr(,"label")

[1] "Variance function:"

Residual standard error:

lower est. upper

4.9539 5.7379 6.6460

the update() function to the object fm12.3 with the weights argument set to
weights = varIdent(form=~1|time.f). The results are stored in the model-
fit object fmA.vc. We then apply the anova() function to that object and the
object fm12.3. From the output we observe that the AIC value for the model,
corresponding to fmA.vc, is equal to 6389.4. The value is larger then the value
of 6387.2, obtained for the object fm12.3, which corresponds to model M12.3.
Moreover, the result of the REML-based LR test, which is based on the two models,
is not statistically significant (p = 0.40). These results indicate that, as compared
to the model with the general variance and correlation structures, the simpler
model M12.3 provides an adequate summary of the data.
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R12.7 ARMD Trial: Estimated variance-covariance structure of the fitted
model M12.3 with a general variance-covariance structure. The model-fit object
fm12.3 was created in Panel R12.6

> fm12.3vcov <- # ̂Ri
+ getVarCov(fm12.3, individual = "2")

> dimnames(fm12.3vcov) <- dnms

> fm12.3vcov

Marginal variance covariance matrix

4wks 12wks 24wks 52wks

4wks 69.846 54.769 50.897 42.105

12wks 54.769 126.760 99.627 100.190

24wks 50.897 99.627 184.630 174.380

52wks 42.105 100.190 174.380 280.860

Standard Deviations: 8.3574 11.259 13.588 16.759

> fm12.3cor <- cov2cor(fm12.3vcov) # ̂Ci:(12.6)

> print(fm12.3cor, corr = TRUE, stdevs = FALSE)

Marginal correlation matrix

4wks 12wks 24wks 52wks

4wks 1.00000 0.58206 0.44820 0.30062

12wks 0.58206 1.00000 0.65122 0.53096

24wks 0.44820 0.65122 1.00000 0.76578

52wks 0.30062 0.53096 0.76578 1.00000

R12.8 ARMD Trial: Tests of hypotheses about the variance-covariance parameters
of model M12.3. Model-fit objects fm12.2 and fm12.3 were created in Pan-
els R12.4 and R12.6, respectively
(a) Autoregressive of order 1 vs. a general correlation structure

> anova(fm12.2, fm12.3) # M12.2 ⊂ M12.3

Model df AIC BIC logLik Test L.Ratio p-value

fm12.2 1 12 6396.9 6454 -3186.5

fm12.3 2 17 6387.2 6468 -3176.6 1 vs 2 19.711 0.0014

(b) Power-of-time variance function vs. timepoint-specific variances

> fmA.vc <- # Alternative model

+ update(fm12.3, weights = varIdent(form = ~1|time.f))

> anova(fm12.3, fmA.vc) # M12.3 ⊂ alternative

Model df AIC BIC logLik Test L.Ratio p-value

fm12.3 1 17 6387.2 6468.0 -3176.6

fmA.vc 2 19 6389.4 6479.7 -3175.7 1 vs 2 1.8432 0.3979
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In Sect. 12.6, we evaluate the goodness of fit of model M12.3 in more detail.
At this point it might be worthwhile to compare the results, presented in Table 9.1

for model M9.3, with the results for models M12.1–M12.3, which are shown in
Table 12.1. The mean structure of all of the models is exactly the same; they differ
with respect to the variance-covariance structure. When comparing the estimates
of the fixed-effects coefficients from Tables 9.1 and 12.1, two observations can
be made. First, there are some differences in the values of the point estimates
between the two tables. They are most pronounced for the estimates of the main
effects of time. However, given the precision of the estimates, the differences are
not dramatic. The second observation is related to the precision of the estimates.
The estimated standard errors, presented in Table 12.1, are, in general, larger than
the corresponding values for model M9.3, displayed in Table 9.1. This implies that
accounting for the correlation between the visual acuity measurements led to a loss
in the precision of estimation of the mean structure parameters. The loss can be
explained by the fact that a set of, n say, correlated observations contains less
information than a corresponding set of n independent observations. Thus, when
the correlation is taken into account in a model, larger standard errors of the mean
structure parameters can be expected. Note, however, that these estimates of the
true standard deviations are better, i.e., less biased than the estimates obtained for a
model, which assumes independence of observations. Consequently, by basing the
inference on the former estimates, a better control of the Type I error probability
should be obtained.

12.6 Model-Fit Diagnostics

In this section, we evaluate the goodness of fit of model M12.3. In particu-
lar, in Panel R12.9, we consider syntax for plots of raw (Sect. 12.6.1), Pearson
(Sect. 12.6.2), and normalized (Sect. 12.6.3) residuals to investigate various aspects
of the fit of the model to the ARMD data.

12.6.1 Scatterplots of Raw Residuals

To assess the goodness of fit of model M12.3, we first look at the scatterplot of the
raw residuals (Sect. 4.5.1) for each timepoint and each treatment group. To enhance
the interpretation of the graph, we superimpose a box-and-whiskers plot over each
scatterplot. Toward this end, in Panel R12.9a, we use the function bwplot() from
the package lattice (Sect. 3.2.2). Note that we precede the use of the bwplot()

function with a definition of an auxiliary panel function. The latter combines a
one-dimensional scatterplot (stripplot) with a box-and-whiskers plot and adds a
grid of horizontal lines aligned with the axis labels. The function is then used in
the panel argument of the bwplot() function. Note that, in the first argument of
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R12.9 ARMD Trial: Residual plots for model M12.3. The model-fit object fm12.3
was created in Panel R12.6
(a) Plots (and boxplots) of raw residuals

> panel.bwxplot0 <-

+ function(x,y, subscripts, ...)

+ {

+ panel.grid(h = -1)

+ panel.stripplot(x, y, col = "grey", ...)

+ panel.bwplot(x, y, pch = "|", ...)

+ }

> bwplot(resid(fm12.3) ~ time.f | treat.f, # Fig. 12.2

+ panel = panel.bwxplot0,

+ ylab = "Residuals", data = armd)

(b) Plots of Pearson residuals vs. fitted values

> plot(fm12.3) # Fig. 12.3a

> plot(fm12.3, # Fig. 12.3b

+ resid(., type = "p") ~ fitted(.) | time.f)

> stdres.plot <-

+ plot(fm12.3, resid(., type = "p") ~ jitter(time) | treat.f,

+ id = 0.01, adj = c(-0.3, 0.5 ), grid = FALSE)

> plot(update(stdres.plot, # Fig. 12.4

+ xlim = c(-5,59), ylim = c(-4.9, 4.9), grid = "h"))

(c) Plots (and boxplots) of normalized residuals

> bwplot( # Fig. 12.7

+ resid(fm12.3, type = "n") ~ time.f | treat.f,

+ panel = panel.bwxplot, # User defined panel

(not shown)

+ data = armd)

> qqnorm(fm12.3, ~resid(., type = "n") | time.f) # Fig. 12.8

bwplot(), we use a formula requesting a plot of raw residuals versus the levels
of the time.f factor, separately for the levels of the treat.f factor. The residuals
are extracted from the model-fit object fm12.3 by applying the resid() function
(Sect. 5.5).

The resulting graph is shown in Fig. 12.2. The box-and-whiskers plots clearly
show an increasing variance of the residuals with timepoint. This reflects the
heteroscedasticity, already noted in, e.g., Sect. 6.3 or 9.3.2.
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Fig. 12.2 ARMD Trial: Stripplots (and box-and-whiskers plots) of raw residuals for each time-
point and treatment group for model M12.3

a b

Fig. 12.3 ARMD Trial: Scatterplots of Pearson residuals versus fitted values for model M12.3
(a) default plot (b) by time.f

12.6.2 Scatterplots of Pearson Residuals

In this section, we turn our attention to Pearson residuals. As described in
Sect. 7.5.1, they are obtained from the raw residuals by dividing the latter by an
estimate of the appropriate residual standard deviation. Hence, they should be more
homoscedastic, and their scatterplots should be easier to interpret. However, because
the residuals are correlated within groups, some degree of caution is required when
interpreting the plots.

In Panel R12.9b, we first apply the generic plot() function to the model-fit
object fm12.3, which represents the estimated form of model M12.3. We use the
default setting of the function arguments. As a result, we obtain a default scatterplot
of Pearson residuals versus the fitted values, shown in Fig. 12.3a. Unfortunately, in
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the scatterplot, the residuals for different timepoints are plotted together. As a result,
due to the correlation of the residuals corresponding to the measurements obtained
for the same patient at different timepoints, the plot reveals a pattern, with a few
large, positive residuals in the upper-left part and a few negative ones in the lower-
right part.

A more informative plot can be constructed by noting that the residuals for each
timepoint should be (approximately) uncorrelated. Therefore, it is more appropriate
to present them separately for each timepoint. Toward this end, we use the second
plot()-function call, shown in Panel R12.9b. In the call, we use a formula
indicating explicitly that we require a separate plot of the standardized residuals
versus fitted values for each level of the time.f factor. Note that, in the formula, the
type="p" argument is specified in the resid() function. The argument indicates
the use of Pearson residuals (Sect. 5.5). Moreover, on the right-hand side of the
formula, we use the function fitted() (Sect. 5.5) to extract the fitted values from
the model-fit object. Note that, instead of indicating the name of the object, we
use . (dot). This shortened syntax implies that the fitted values are to be extracted
from the object fm12.3, the name of which is provided in the first argument of the
plot()-function call.

The resulting graph is shown in Fig. 12.3b. The four scatterplots show a
somewhat more balanced pattern.

If we assume that the residuals should approximately follow a standard normal
distribution, we might consider absolute values greater than, e.g., the 95th percentile
as outlying. It might be of interest to identify the corresponding observations in a
plot. Toward this end, the id argument can be used in the appropriate plot()-
function statement. This is done in the third plot()-function call, shown in
Panel R12.9b. In the call, we apply the argument id=0.01. This indicates that
the residuals larger, in absolute value, than the 99th percentile of the standard
normal distribution should be labeled in the plot by the number of the corresponding
observation from the ARMD data frame. To avoid cluttering of the labels, on the
left-hand side of the formula specified in the plot()-function call, we apply the
function jitter() to the variable time. The function adds a small amount of noise
to the variable. As a result, the overlap of the labels should be reduced. We also use
the argument adj=c(-0.3,0.5) to move the labels to the right (horizontally) and
the center (vertically) of the plotted symbol. The resulting plot is stored in the object
stdres.plot. Subsequently, we update the object by adding suitable limits for the
two axes and a grid of horizontal lines.

The resulting graph is shown in Fig. 12.4. It presents the scatterplots of Pearson
residuals grouped by timepoint and treatment. The number of residuals larger, in
absolute value, than the 99th percentile of the standard normal distribution, is not
excessive, given the total number of observations.

As mentioned at the beginning of this section, the main issue in the interpretation
of Pearson residuals is the fact that they are correlated. Figure 12.5 presents the
scatterplot of the residuals against time for model M12.3 separately for each
treatment group. In the plot, residuals for a few randomly selected individuals have
been connected by lines. The plot illustrates the correlation between the residuals
obtained for the same individual. For instance, in the panel for the Active treatment
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Fig. 12.4 ARMD Trial: Scatterplots of Pearson residuals versus time per treatment group for
model M12.3. Points are jittered along time axis

Fig. 12.5 ARMD Trial: Scatterplots of Pearson residuals versus time per treatment group for
model M12.3. Residuals for selected subjects are connected with lines

group, the residuals obtained for each of the selected individuals tend to have
negative values. Note that, for brevity’s sake, we do not show the R syntax necessary
to create the graph.

To remove the correlation between Pearson residuals, we may use the normalized
residuals (Sect. 10.5). Their application is considered in the next section.
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Fig. 12.6 ARMD Trial: Scatterplot matrix of Pearson (below the diagonal) and normalized (above
the diagonal) residuals for model M12.3

12.6.3 Normalized Residuals

Normalized residuals are obtained from a transformation of the raw residuals
based on the Cholesky decomposition of the residual variance-covariance matrix
(Sect. 10.5). Ideally, the residuals should become uncorrelated.

Figure 12.6 shows the scatterplots of Pearson residuals (below the diagonal)
and the normalized residuals (above the diagonal) for all pairs of timepoints for
model M12.3. To conserve space, we do not show the R syntax used to create
the figure. The scatterplots of Pearson residuals show a correlation between the
residuals corresponding to different timepoints. On the other hand, the plots for
the normalized residuals clearly illustrate that the residuals are (approximately)
uncorrelated.
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Fig. 12.7 ARMD Trial: Stripplots (and box-and-whiskers plots) of normalized residuals for each
timepoint and treatment group for model M12.3. Points between whiskers are jittered along time
axis to reduce an overlap

Figure 12.7 presents stripplots of the normalized residuals grouped by time-
point and treatment. To enhance the interpretation, box-and-whiskers plots were
superimposed on the stripplots. In Panel R12.9c, we present the basic form of the
bwplot()-function call that could be used to create a graph similar to the one
shown in Fig. 12.7. The call is very similar to the one used in Panel R12.9a. The
main difference is the use of the type="n" argument in the resid() function,
which extracts the normalized residuals (Sect. 5.5). Note that the graph, presented
in Fig. 12.7, was created by a modified version of the syntax from Panel R12.9c.
To conserve space, we do not show the modification.

As compared to Fig. 12.4, the plot in Fig. 12.7 shows a few more extreme
residuals with negative values, smaller than −4. Nevertheless, the number of
residuals with an absolute value larger than, e.g., 2 is about the same.

To check the normality assumption, we may want to inspect the normal Q-Q plot
of the normalized residuals. In Panel R12.9c, we present a suitable qqnorm()-
function call. When applied to model-fit objects of gls class, the function is typically
called by using a syntax of the form qqnorm(gls.fit, form ), where gls.fit

is a model-fit object for class gls and form is a one-sided formula, which specifies
the desired type of plot. In the formula, any variable from the data frame used to
produce the model-fit object can be referred to. Separate graphs for the levels of a
grouping factor g are obtained by specifying |g in the formula (as it is done for
time.f in the syntax presented in Panel R12.9c). The expression to the left of the
| operator must be equal to a vector of residuals. The default formula is ~resid

(., type = "p"), which corresponds to a normal Q-Q plot of Pearson residuals.
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Fig. 12.8 ARMD Trial: Normal Q-Q plots of normalized residuals for the fitted model M12.3

In the formula used in the qqnorm()-function call in Panel R12.9c, we require a plot
of the normalized residuals by applying the argument type="n" of the resid()

function (Sect. 11.6).
The Q-Q plot, corresponding to the qqnorm()-function call from Panel R12.9c,

is presented in Fig. 12.8. Although normalized residuals should be approximately
uncorrelated, we graph separate Q-Q plots per timepoint to remove the influence of
any residual correlation. The patterns shown in Fig. 12.8 appear to be reasonably
close to straight lines. Thus, the normality assumption seems to be plausible for the
ARMD data.

12.7 Inference About the Mean Structure

In Sects. 12.3–12.5, we focused on modeling the variance-covariance structure of
the visual acuity data. In particular, we kept the same mean structure, defined in
(12.1), for all models considered in those sections, while changing the form of the
variance-covariance structure. In Sect. 12.6, we presented results that suggested that
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model M12.3, defined by (12.1)–(12.3) and (12.6), provided a reasonable fit to the
visual acuity data. Thus, we use it as a basis for inference about the mean structure
parameters. In particular, we perform tests of hypotheses about the fixed effects
(Sect. 10.6). Toward this end, in Panel R12.10, we use the anova() function. Note
the use of the update() function to refit model M12.3 using the ML estimation.

R12.10 ARMD Trial: Sequential F-tests for fixed effects of model M12.3. The
model-fit object fm12.3 was created in Panel R12.6

> anova(update(fm12.3, method = "ML")) # M12.3

Denom. DF: 858

numDF F-value p-value

visual0 1 9867.8 <.0001

time.f 4 26.6 <.0001

time.f:treat.f 4 2.0 0.0869

The results, displayed in Panel R12.10, correspond to the F-tests (4.36) of the
linear hypotheses (4.30) for parameters b0t, b1, and b2t of (12.1). In particular, the
linear hypotheses specify that the parameters are equal to zero. For instance, the test
for the time.f:treat.f interaction pertains to the null hypothesis

H0 : b21 = b22 = b23 = b24 = 0,

which can be expressed in the form Lb = 0 by specifying

b = (b01,b02,b03,b04,b1,b11,b12,b13,b14)
′

and
L = (04×5 I4) ,

where 04×5 is a 4× 5 matrix of zeroes and I4 is the 4× 4 identity matrix. As it
was mentioned in Sect. 5.6, by default, the anova() function provides results of the
sequential tests. Thus, for instance, the test for time.f, presented in Panel R12.10,
is obtained by comparing the alternative model, which contains the intercept,
visual0, and time.f as covariates, with the null model, which contains only the
intercept and visual0.

The nonsignificant, at the 5% significance level, result of the test for the
time.f:treat.f interaction suggests that a simpler, constant treatment effect
might be plausible. We might also want to consider a mean linear trend of visual
acuity measurements. To check these hypotheses, in the next section, we consider a
series of alternative models with appropriate mean structures. In all these models, we
modify (simplify) the mean structure, while fixing the variance-covariance structure
at the one defined by the power variance-function (12.3) and the general correlation
matrix (12.6).
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12.7.1 Models with the General Correlation Structure
and Power Variance Function

In the process of simplifying the mean structure of model M12.3, we consider
models labeled as M12.3a, M12.4, and M12.5. All these models have the same
variance-covariance structure, defined by (12.2), (12.3) and (12.6). They differ with
respect to mean structures, as described below.

Model M12.3a is given by

VISUALit = b0 +b0t +b1×VISUAL0i +b2×TREATi

+b2t×TREATi + eit. (12.7)

Compared to (12.1), the mean structure, implied by (12.7), contains two additional
terms, which involve parameters b0 and b2. The parameters can be thought of as the
“overall” mean and treatment effects, respectively. Note that they are aliased with
b0t for t = 1, . . . ,4, and with b2t for t = 1, . . . ,4, respectively. To account for the
aliasing, we constrain b01 and b21 to zero. Although models M12.3 and M12.3a
are equivalent, we use different labels to indicate the different parameterizations.
The parameterization, introduced in (12.7), is applied to allow for a comparison of
the parameter estimates of model M12.3 with those of models M12.4 and M12.5,
which will be defined next.

Model M12.4 is defined as

VISUALit = b0 +b1×VISUAL0i +b2×TIMEt

+b3×TREATi +b4×TIMEt×TREATi + eit. (12.8)

In contrast to (12.1) and (12.7), the mean structure, specified in (12.8), assumes a
linear effect of the continuous TIME variable.

Finally, model M12.5 is obtained by removing the interaction between time and
treatment from (12.8):

VISUALit = b0 +b1×VISUAL0i +b2×TIMEt

+b3×TREATi + eit. (12.9)

In the next section, the models are fitted to the ARMD data and compared against
each other to assess which of them provides the most parsimonious representation
of the mean structure of the data.

12.7.2 Syntax and Results

In Panel R12.11, we fit models M12.3a, M12.4, and M12.5 to the ARMD dataset
using the gls() function. We compare the model fits using the LR tests. As we
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focus on testing hypotheses about fixed effects, for reasons explained at the end of
Sect. 4.7.2, we use the ML estimation (Sect. 10.4.2).

R12.11 ARMD Trial: Likelihood ratio and sequential F-tests of hypotheses about the
fixed effects for models M12.3a, M12.4, and M12.5. The model-fit object fm12.3
was created in Panel R12.6
(a) Models needed for LR test

> lm1a.form <- formula (visual ~ visual0 + time.f # (12.7)

+ + treat.f + time.f:treat.f)

> fm12.3a <- update(fm12.3, lm1a.form, # M12.3a ← M12.3
+ method="ML", data=armd)

> lm2.form <- formula(visual ~ visual0 + time # (12.8)

+ + treat.f + treat.f:time)

> fm12.4 <- update(fm12.3, lm2.form, # M12.4 ← M12.3
+ method="ML", data=armd)

> lm3.form <- update(lm2.form, . ~ . - treat.f:time) # (12.9)

> fm12.5 <- update(fm12.3, lm3.form, # M12.5 ← M12.3
+ method="ML", data=armd)

(b) LR test for the mean linear time trend and interaction term

> anova(fm12.3a, fm12.4, fm12.5) # M12.3a⊃M12.4⊃M12.5

Model df AIC BIC logLik Test L.Ratio p-value

fm12.3a 1 17 6395.7 6476.7 -3180.9

fm12.4 2 13 6389.6 6451.5 -3181.8 1 vs 2 1.8367 0.7658

fm12.5 3 12 6389.0 6446.2 -3182.5 2 vs 3 1.4129 0.2346

(c) Sequential-approach F-tests for terms in model M12.5

> anova(fm12.5)

Denom. DF: 863

numDF F-value p-value

(Intercept) 1 9374.1 <.0001

visual0 1 613.0 <.0001

time 1 104.3 <.0001

treat.f 1 6.0 0.0146

More specifically, in Panel R12.11a, we first fit model M12.3a by modifying
the formula lm1.form (see Sect. 12.3.2) to allow for an overall intercept. We then
update the object fm12.3 with the modified formula lm1a.form and with the
method="ML" argument.

Then, to fit model M12.4, we modify the LM formula using the continuous time
variable. Subsequently, we update the object fm12.3 with the modified formula
lm2.form and with the method="ML" argument.
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Finally, to fit model M12.5, we remove the interaction between the linear effect
of time and treatment from the LM formula, and we update fm12.3 with the
modified formula lm3.form and with the method="ML" argument. Note that we
use the abbreviated syntax .~.-treat.f:time to remove the treat.f:time

interaction from formula lm2.form (Sect. 5.2.1).
In Panel R12.11b, we use the anova() function to compare the models. As a

result, we obtain two LR tests. One compares the likelihood of model M12.3a with
that of M12.4 and tests the hypothesis that a mean linear time trend of the visual
acuity measurements can be assumed. The other test compares the likelihood of
model M12.4 with that of model M12.5 and tests the hypothesis that a constant
treatment effect, in a model with a linear time trend, can be assumed.

The results of both tests are statistically not significant at the 5% significance
level. Thus, they indicate that model M12.3a, which is equivalent to M12.3, can
be simplified by assuming a mean linear trend of visual acuity measurements in
time and a constant treatment effect. That is, model M12.3 can be simplified to
model M12.5.

The fit of model M12.5, defined by (12.3), (12.6), and (12.9), does not change
much, as compared to model M12.3: the scatterplot and the normal Q-Q plot
of residuals (not shown) are comparable to those obtained for model M12.3
(Sect. 12.6). The result of the F-test for the effect of treatment, b2, in the simplified
model M12.5 is shown in Panel R12.11c. The test is obtained by applying
the anova() function to the model-fit object fm12.5. The result of the test is
statistically significant at the 5% significance level (p = 0.015).

Table 12.2 shows the details of the models fitted in Panel R12.11. The results of
model M12.5, stored in the object fm12.5, are displayed in the last column of the
table. The parameter estimates suggest a statistically significant negative treatment
effect, as noted earlier. The effects of the baseline visual acuity measurement
and of the measurement time are also statistically significant. They suggest that
post-randomization visual acuity measurements are higher by 0.89 for each unit
increase in the baseline measurement, and that they decrease linearly by 0.23 with
each week. The estimated variance-covariance and correlation matrices, displayed
in Panel R12.12, imply that the residual variance increases with time, while the
correlation between the measurements decreases when the observations are made at
more distant timepoints (in terms of the order, not time distance).

12.8 Chapter Summary

In this chapter, we considered the LM with fixed effects for correlated data that was
defined, in general terms, in Sect. 10.2. The model allows taking into account the
correlation between the observations belonging to the same group.
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R12.12 ARMD Trial: The estimated variance-covariance and correlation matrices
for the model M12.5. The model-fit object fm12.5 was created in Panel R12.11

> fm12.5vcov <- getVarCov(fm12.5, # ̂Ri
+ individual="2")

> dimnames(fm12.5vcov) <- dnms # Dimnames assigned

> fm12.5vcov

Marginal variance covariance matrix

4wks 12wks 24wks 52wks

4wks 68.990 53.905 50.102 41.127

12wks 53.905 125.520 98.433 98.942

24wks 50.102 98.433 183.100 172.940

52wks 41.127 98.942 172.940 279.010

Standard Deviations: 8.306 11.203 13.532 16.704

> fm12.5cor <- cov2cor(fm12.5vcov) # ̂Ci:(12.6)

> print(fm12.5cor, corr=TRUE, stdevs=FALSE)

Marginal correlation matrix

4wks 12wks 24wks 52wks

4wks 1.00000 0.57928 0.44578 0.29643

12wks 0.57928 1.00000 0.64930 0.52872

24wks 0.44578 0.64930 1.00000 0.76514

52wks 0.29643 0.52872 0.76514 1.00000

We illustrated the features of the model by applying it to the ARMD dataset.
We considered several models, constructed with the help of the varPower(·)
(Sects. 7.3.1 and 9.3) variance function and various correlation structures. Table 12.3
provides information about the models defined in this chapter. The final model
was model M12.5. Its mean structure was defined by (12.9), while the variance-
covariance structure was defined by the power variance function (12.3) and the
general correlation structure (12.6). The model accounted for the correlation
between the visual acuity measurements obtained for the same individual. Given
that it provided an acceptable fit to the data, it could be used for inference about the
mean and variance-covariance structure.

In the process of arriving at the form of the final model, we used the results pre-
sented in Chap. 9. We assumed that the variances of the visual acuity measurements
were adequately described by the variance function defined as a power function of
the measurement time. We then fixed the mean structure at (12.1) and built a series
of models (see Table 12.1) with increasingly more complex correlation structures: a
compound symmetry (Sect. 12.3), an autoregressive process of order 1 (Sect. 12.4),
and a general correlation structure (Sect. 12.5). The latter gave the best fit to the data,
according to the results of the LR test and AIC (Sect. 12.5.2). Given the adequate
fit of the corresponding model M12.3 (Sect. 12.6), we fixed the resulting variance-
covariance function and considered a series of models (see Table 12.2) with more
parsimonious mean structures than the one given by (12.1). With the help of the LR
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Table 12.2 ARMD Trial: The ML-based parameter estimatesa for models with various mean
structures and the general correlation matrix fitted using the gls() function

Parameter fm12.3a fm12.4 fm12.5

Model label M12.3a M12.4 M12.5
Log-ML value −3180.87 −3181.78 −3182.49

Fixed effects
Intercept b0 0.77(2.22) 5.61(2.14) 5.84(2.13)
Visual acuity at t=0 b1 0.89(0.04) 0.89(0.04) 0.89(0.04)
Time (in weeks) b2 −0.21(0.03) −0.23(0.02)
Trt(Actv vs. Plcb) b3 −3.49(1.38) −2.17(1.12) −2.61(1.06)
Tm × Treat(Actv) b4 −0.05(0.05)
Time poly(3)

Linear b02 −7.83(1.16)
Quadratic b03 0.29(0.66)
Cubic b04 0.74(0.59)

Time poly(3) × Treat(Actv)
Linear:Trt(Actv) b22 −1.74(1.69)
Quadratic × Treat(Actv) b23 −0.06(0.96)
Cubic × Treat(Actv) b24 −0.81(0.85)

Variance function

Power (TIMEd) d 0.27(0.22,0.32) 0.27(0.22,0.32) 0.27(0.22,0.32)

Correlation structure
General (12.6)

cor(1,2) %12 0.58(0.49,0.66) 0.58(0.49,0.66) 0.58(0.49,0.66)
cor(1,3) %13 0.45(0.33,0.55) 0.45(0.33,0.55) 0.45(0.33,0.55)
cor(1,4) %14 0.30(0.15,0.43) 0.30(0.15,0.43) 0.30(0.15,0.43)
cor(2,3) %23 0.65(0.57,0.72) 0.65(0.57,0.72) 0.65(0.57,0.72)
cor(2,4) %24 0.53(0.42,0.63) 0.53(0.42,0.63) 0.53(0.42,0.62)
cor(3,4) %34 0.77(0.70,0.82) 0.77(0.70,0.82) 0.77(0.70,0.82)

Scale s 5.70(4.92,6.60) 5.70(4.92,6.60) 5.69(4.92,6.59)
a Approximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

Table 12.3 ARMD Trial: Summary of the models defined in Chap. 12. Variance function defined
as a power function of time specified using syntax varPower(form ~ time) is assumed for all
models

Model Section Syntax R Object Mean (eq.) CorStruct (eq.)

REML estimation
M12.1 12.3 R12.2 fm12.1 (12.1) corCompSymm (12.4)
M12.2 12.4 R12.4 fm12.2 (12.1) corAR1 (12.5)
M12.3a 12.5 R12.6 fm12.3 (12.1) corSymm (12.6)

ML estimation
M12.3aa 12.7.1 R12.11 fm12.3a (12.7) corSymm (12.6)
M12.4 12.7.1 R12.11 fm12.4 (12.8) corSymm (12.6)
M12.5 12.7.1 R12.11 fm12.5 (12.9) corSymm (12.6)
a Models M12.3 and M12.3a are equivalent but expressed using different parameterizations.
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test we found that the mean structure, defined by (12.9), provided an adequate
description of the data (Sect. 12.7.2). This led us to the adoption of model M12.5 as
the final model.

It should be stressed that the strategy described above was adopted for illustrative
purposes only. In practice, we should start building the model using the most general
mean and variance-covariance structures. Then, while keeping the mean structure
fixed, we might consider simplifying the variance-covariance structure. If a more
parsimonious structure with a satisfactory fit to the data has been found, we could
consider simplifying the mean structure. After arriving at the final model, we should
check whether its fit is satisfactory. If it is the case, the model could serve as a basis
for inference.

The models considered in this chapter used the four post-randomization visual
acuity measurements as the correlated observations of the dependent variable. This
approach offers some advantages like, e.g., the possibility of an explicit adjustment
for the baseline visual acuity value through the inclusion of an appropriate covariate
in the mean structure. On the other hand, within this approach, the adjustment for the
possible imbalance in visual acuity at baseline between the two treatment groups is
more difficult. An alternative could be to consider modeling of all the measurements,
including those obtained at baseline. In this approach, adjusting for an imbalance at
baseline could be accomplished by, e.g., the inclusion, in the mean structure of the
model, of an interaction term between the treatment indicator and the time factor
variable. On the other hand, the adjustment for the effect of the baseline visual
acuity on the post-randomization measurements would be only implicit through the
variance-covariance structure of the measurements. Also, the interpretation of the
treatment effects would require a bit more caution, because the effects of interest
would be those at the post-randomization occasions and not the one at baseline.
Given these considerations, we decided to focus in the chapter on the models for the
post-randomization measurements.

Yet another approach to the analysis of the visual acuity measurements from the
ARMD dataset can be proposed by recognizing that the data have a hierarchical
structure. That is, the measurements (analysis units) are grouped within the individ-
uals (sampling units). The variance-covariance structure of the measurements can
then be seen as resulting from the variability arising at the two levels of hierarchy.
A modeling approach that looks at the data from such a hierarchical point of view
uses LMMs. In the next part of the book we focus on these models.
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Chapter 13
Linear Mixed-Effects Model

13.1 Introduction

In Chap. 10, we presented models with fixed effects for correlated data. They are
examples of population-averaged models, because their mean-structure parameters
can be interpreted as effects of covariates on the mean value of the dependent
variable in the entire population. The association between the observations in a
dataset was a result of a grouping of the observations sharing the same level of a
grouping factor(s). An example of grouped data is longitudinal data, with multiple
measurements collected over time for an individual. This is an example of data with
a single level of grouping (Sect. 10.2): measurements are grouped at the level of an
individual. Such a hierarchy is present in the ARMD data (Sect. 2.2 and Chaps. 6, 9,
and 12), with multiple visual acuity measurements available for individual patients.
Another example of data with a single level of grouping is meta-analysis data, with
patients grouped within clinical trials.

An example of data with a multilevel hierarchy is student’s scores. Scores,
e.g., for the same course across several years, are grouped for a student, students
are grouped into classes, classes into schools, schools within districts, etc. Con-
sequently, the total variability of the scores can be seen as resulting from their
variability within students, between students, between classes within the same
school, between schools in the same district, etc. Such a structure is present in the
data for the Instructional Improvement Study, presented in Sect. 2.4.

Note that, because of grouping, a complex association structure of the observed
data can be anticipated. For instance, we can expect correlation not only between
the scores for an individual student, but also between scores from different students
from the same class or between scores for different students from the same school.
As argued in Part III of the book, the correlations should be taken into account in
the analysis of the data.

In this chapter, we consider the analysis of continuous, hierarchical data using
a different class of models, namely, LMMs. They allow taking into account the
correlation of observations contained in a dataset. Moreover, they allow us to

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__13,
© Springer Science+Business Media New York 2013
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effectively partition overall variation of the dependent variable into components
corresponding to different levels of data hierarchy. The models are examples of
subject-specific models, because they include subject-specific coefficients.

In this chapter, we describe the specification of LMMs for hierarchical data.
We build upon the concepts introduced in Parts II and III of the book. We provide
only essential theoretical information, linked to the concepts and methods used in
R. For a more detailed exposition of the theory of LMMs, the reader is referred to
the monographs by, e.g., Searle et al. (1992), Davidian and Giltinan (1995), Vonesh
and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and Molenberghs (2000),
Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).

This chapter is structured as follows. In Sects. 13.2–13.4, we describe the formu-
lation of the model. Sections 13.5–13.7 are devoted to, respectively, the estimation
approaches, diagnostic tools, and inferential methods used for the LMMs, in which
the (conditional) residual variance-covariance matrix is independent of the mean
value. This is the most common type of LMMs used in practice. In Sect. 13.8, we
focus on the LMMs, in which the (conditional) residual variance-covariance matrix
depends of the mean value. Section 13.9 summarizes the contents of this chapter
and offers some general concluding comments.

In our presentation, we focus on the formulation and methods for LMMs
applicable to data with a single level of grouping, with N groups indexed by
i = 1, . . . , N, each containing ni observations. The extension of the formulation
to multilevel grouped data is presented at the end of Sect. 13.2 and in Sect. 13.8.

13.2 The Classical Linear Mixed-Effects Model

In this section, we describe specification of the classical LMMs in their general
form. Essentially, the formulation corresponds to the one proposed in the classical
paper by Laird and Ware (1982).

In particular, in Sect. 13.2.1, we provide model specification at a particular level
of grouping factor, while in Sect. 13.2.2 we describe a specification for all data.
Extension of the classical LMM is presented in Sect. 13.3. More detailed aspects of
the classical and extended model specification are discussed in Sect. 13.4.

13.2.1 Specification at a Level of a Grouping Factor

For hierarchical data with a single level of grouping, we can formulate the classical
LMM at a given level of a grouping factor as follows:

yi = Xib+Zibi + ei, (13.1)
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where yi, Xi, b, and ei are the vector of continuous responses, the design matrix, and
the vector of residual errors for group i, specified in (10.2) and (10.3), respectively,
while Zi and bi are the matrix of covariates and the corresponding vector of random
effects:

Zi ≡

⎛

⎜

⎜

⎝

z(1)i1 z(2)i1 . . . z(q)i1
...

...
. . .

...

z(1)ini
z(2)ini

. . . z(q)ini

⎞

⎟

⎟

⎠

=
(

z(1)i z(2)i . . . z(q)i

)

, bi ≡

⎛

⎜

⎝

bi1
...

biq

⎞

⎟

⎠ . (13.2)

Similar to the design matrix Xi, the matrix Zi contains known values of q covariates,
with corresponding unobservable effects bi. Moreover,

bi ∼Nq(0,D), ei ∼Nni
(0,Ri), with bi ⊥ ei, (13.3)

i.e., the residual errors ei for the same group are independent of the random effects
bi. This particular assumption plays the key role in distinguishing a classical LMM
from an extended LMM. In addition, we assume that vectors of random effects
and residual errors for different groups are independent of each other, i.e., bi is
independent of ei′ for i �= i′.

We also specify that

D = s 2D and Ri = s 2Ri, (13.4)

where s 2 is an unknown scale parameter. In general, we will assume that D and Ri
are positive-definite, unless stated otherwise.

The representation (13.4), in its general form, is not unique. To make it
identifiable, similar to the case of the LM for correlated data (Sect. 10.3), we
will specify the structure of the matrix Ri in terms of a set of parameters for
a variance function and a correlation matrix (Sect. 13.4.2). The specification will
imply constraints on Ri making (13.4) identifiable.

In addition to the fixed-effects parameters b for the covariates used in con-
structing the design matrix Xi, model (13.1) includes two random components: the
within-group residual errors ei and the random effects bi for the covariates included
in the matrix Zi. The presence of fixed and random effects of known variables gives
rise to the name of the model.

In many cases, the (random) effects included in bi have corresponding (fixed)
effects, contained in b. Consequently, the matrix Zi is often created by selecting a
subset of appropriate columns of the matrix Xi. In such a situation, it is said that the
corresponding fixed and random effects are “coupled.”

Model (13.1)–(13.4) is commonly referred to as a two-stage model (Davidian
and Giltinan 1995) or two-level model (West et al. 2007). However, some authors,
e.g., Pinheiro and Bates (2000), call it a single-level LMM, because it applies to a
data hierarchy defined by a single level of grouping. In what follows, we will use
the latter terminology, as it is reflected in the nomenclature used in R.
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The classical LMM, defined in (13.1)–(13.4), can be adapted to multilevel
grouped data. For instance, a model for data with two levels of grouping, with
observations grouped into N first-level groups (indexed by i = 1, . . . ,N), each with
ni second-level (sub-)groups (indexed by j = 1, . . . ,ni) containing nij observations,
can be written as

yij = Xijb+Z1,ijbi +Z2,ijbij + eij, (13.5)

with
bi ∼Nq1

(0,D1), bij ∼Nq2
(0,D2), and eij ∼Nnij

(0,Rij),

where the random vectors bi, bij, and eij are independent of each other. In
model (13.5), bi are the random effects associated with the first-level groups, while
bij are the random effects, independent of the first-level random effects, associated
with the second-level groups. Design matrices Z1,ij and Z2,ij can, but do not have to
be, identical. Following Pinheiro and Bates (2000), this model can be referred to as
a two-level LMM.

13.2.2 Specification for All Data

In this section, we briefly describe the specification of the single-level LMM, given
by (13.1)–(13.4), for all data. Generalization to multilevel LMMs is obvious, though
notationally more complex.

Let y≡ (y′1,y
′
2, . . . ,y

′
N)
′ be the vector containing all n = ∑N

i=1 ni observed values
of the dependent variable. Similarly, let b≡ (b′1,b

′
2, . . . ,b

′
N)
′ and e≡ (e′1,e

′
2, . . . ,e

′
N)
′

be the vectors containing all Nq random effects and n residual errors, respectively.
Define matrices

X ≡

⎡

⎢

⎢

⎢

⎣

X1

X2
...

XN

⎤

⎥

⎥

⎥

⎦

and Z≡

⎡

⎢

⎢

⎢

⎣

Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . ZN

⎤

⎥

⎥

⎥

⎦

, (13.6)

where 0 denotes a matrix with all elements equal to 0. Note that, to simplify notation,
we do not indicate the dimensions of the matrices, as they can be deduced from
(13.2). Overall, X is of dimension n× p, while Z is of dimension n×Nq.

Models (13.1)–(13.4) can then be written for all data as follows:

y = Xb+Zb+ e, (13.7)

with

b∼NNq(0,s
2D) and e∼Nn(0,s

2R), (13.8)
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where

D≡ IN ⊗D =

⎡

⎢

⎢

⎢

⎣

D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

⎤

⎥

⎥

⎥

⎦

, R≡

⎡

⎢

⎢

⎢

⎣

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RN

⎤

⎥

⎥

⎥

⎦

, (13.9)

with ⊗ denoting the (right) Kronecker product.
It is worth noting that the particular, block-diagonal form of matrices Z, D, and

R, given in (13.6), (13.8), and (13.9), respectively, results from the fact that the
single-level LMM, defined by (13.1)–(13.4), assumes a particular hierarchy of data
and random effects, as explicitly shown in (13.3). In particular, the model assumes
that random effects for different groups, defined by levels of a particular factor, are
independent. Informally, we can describe the hierarchy as generated by grouping
factors, with one being nested within the other.

It is possible, however, to formulate random-effects models by using
the representation (13.7) with non-block-diagonal matrices Z, D, and R. This is
the case, for instance, of models with crossed random effects. We will describe this
type of models in Chap. 15.

13.3 The Extended Linear Mixed-Effects Model

In some cases, the assumption that the residual errors ei are independent of the
random effects bi, as specified in (13.3), may be too restrictive. For instance,
as is done in the mean-variance models, we might postulate that the variance
of the residual errors depends on the subject-specific mean value. If we relax
the assumption, we obtain an extended LMM. The model is specified by using
(13.1)–(13.2) and replacing (13.3) by

bi ∼Nq(0,D), and ei | bi ∼Nni
(0,Ri), (13.10)

with D and Ri decomposed further as in (13.4). We will refer to the above
specification as a hierarchical specification.

Note that, if we assume that ei in (13.10) is independent of the random effects
bi, then we obtain the classical LMM, specified by (13.1)–(13.4). Thus, the
extended LMM allows for a more general modeling approach, as compared to the
classical LMM.

A hierarchical specification of a two-level, extended LMM, corresponding
to (13.5), would amount to assuming that

bi ∼Nq1
(0,D1), bij | bi ∼Nq2

(0,D2), and eij | bi,bij ∼Nnij
(0,Rij).
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13.4 Distributions Defined by the y and b Random Variables

Both the classical (Sect. 13.2) and extended (Sect. 13.3) LMMs introduce two
continuous random variables b and y. They are described by two probability
density functions, which play essential role in defining LMMs. The first one is
an unconditional distribution of (unobserved) random effects b, defined by (13.8).
The second one is a conditional distribution of the (random) dependent variable
y, assuming that random effects are known. In the next two sections, we provide
a more detailed description of the two distributions, which completes the model
specification for the classical and extended LMMs. In Sect. 13.4.3, we will introduce
additional auxiliary distributions related to y and b random variables.

13.4.1 Unconditional Distribution of Random Effects

The unconditional distribution fb(bi) of the random effects bi, defined by (13.3), is
a multivariate normal distribution with zero mean and variance-covariance matrix
D. Taking into account (13.4), we write

D(s 2,qD) = s 2D(qD), (13.11)

where qD is a vector of parameters, which represent the (scaled by s 2) variances
and covariances of the elements of bi.

Note that, according to (13.11), the matrix D, used to define the variance-
covariance matrix of random effects bi, is parameterized using a vector of parameters
qD. In many cases, it is assumed that any two elements of the vector bi can be
correlated and there are no restrictions imposed on the matrix D, except that it is
positive-definite and symmetric. In this case, D has a general structure of a positive-
definite matrix, with q(q+ 1)/2 distinct elements corresponding to q variances and
q(q− 1)/2 covariances of the random effects included in bi. Consequently, qD
contains q(q+ 1)/2 distinct parameters. Although q is typically small, estimating
all of the parameters may be difficult if, e.g., the sample size n is limited. In such
a situation, a simplified structure of the matrix D can be chosen. For instance, a
diagonal form can be assumed, which is equivalent to assuming that all elements of
the vector bi are independent. Plausibility of the assumption will depend on the data
at hand. In this case, qD contains only q distinct parameters.

13.4.2 Conditional Distribution of y Given the Random Effects

Note that, from (13.1) to (13.4), it follows that, for the classical LMMs, the
conditional distribution, fy|b(yi|bi), of yi given bi is multivariate normal, with the
mean and variance defined as:
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E(yi|bi) ≡ mi = Xib+Zibi (13.12)

Var(yi|bi) = s 2Ri, (13.13)

with mi ≡ (mi1, . . . ,mi,ni
)′ and

E(yij|bi)≡ mij = x′ijb+ z′ijbi, (13.14)

where xij ≡ (x(1)ij , . . . ,x(p)ij )′ and zij ≡ (z(1)ij , . . . ,z(q)ij )′ are column vectors, which
contain the values of predictors X and Z for the j-th observation from the i-th
group. Thus, conditionally on the (unknown) values of the random effects bi, the
mean value of the dependent-variable vector yi is defined by a linear combination
of the vectors of the X- and Z-covariates included, as columns, in the group-specific
design matrices Xi and Zi, corresponding to the fixed effects b and random effects
bi, respectively. Moreover, the conditional variance-covariance matrix of yi is equal
to the variance-covariance matrix of the residual errors ei.

In their most general form, LMMs are not identifiable, because of the nonunique-
ness of the representation (13.4) and because they potentially contain too many
unknown parameters (see similar comments in Sects. 7.2 and 10.3). To make them
identifiable, similarly to the matrix D, we can consider representing elements of Ri
as functions of a limited set of parameters qR, distinct from qD.

For the matrix Ri, similarly to the approach described in Sect. 10.3 and
implemented in R, we could consider the decomposition, given by (10.10), and
combine it with the use of variance functions (Sects. 7.2.2 and 7.3.1) and correlation
structures (Sect. 10.3.2). Thus, Ri would become parsimoniously parameterized in
terms of a set of parameters of a variance function and a correlation structure. In
this way not only the number of parameters of the model would be reduced, but the
representation (13.4) would become identifiable.

To allow for the use of variance functions from the <δ, μ>- and <μ>-
groups (Sect. 7.3.1), we follow the hierarchical specification (13.10) and apply the
decomposition (10.11) to the conditional distribution of ei given bi. Consequently,
we can postulate that

Var(eij | bi) = s 2l2(mij,d;vij), (13.15)

with mij defined in (13.14). It follows that, upon combining the use of the variance
function with a correlation structure (Sect. 10.3), we can write that

Var(ei | bi) = s 2Ri(mi,qR;vi), (13.16)

with qR ≡ (d,%), where d is a vector of variance parameters employed by the
variance function l(·), % is a vector of parameters related to the chosen correlation
structure for the matrix Ri, and vi ≡ (v′i1, . . . ,v

′
i,ni

)′ is a vector of variance covariates
for the observations from the ith group.
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Equations (13.15) and (13.16) imply that, for models with mean-dependent
variance functions from the <δ, μ>- and <μ>-groups (Sect. 7.3.1), ei depend on
bi through mi. This violates the assumption of the classical LMM and leads to the
extended LMM.

Extended LMMs, defined with the use of variance functions from the <δ, μ>-
and <μ>-groups, pose theoretical and computational difficulties. For this reason,
in the current chapter we will mainly focus on the classical LMMs, defined by
(13.1)–(13.4), i.e., for which the matrix Ri is specified with the use of a mean-
independent variance function. Models defined with the use of mean-dependent
variance functions, which we term mean-variance models (see also Sects. 7.8
and 10.7), will be treated separately in Sect. 13.8.

For the mean-independent functions, such as those from the <δ>-group (see
Table 7.2), the definition (13.16) can be simplified as follows:

Var(ei | bi) = Var(ei) = s 2Ri(qR;vi). (13.17)

Note that (13.17) is concordant with the assumption that the residual errors ei
are independent of the random effects bi. Consequently, the hierarchical model
specification with mean-independent variance functions leads to the classical LMM,
with Ri = s 2Ri(qR;vi). Essentially, this is the LMM formulation developed by
Laird and Ware (1982).

It is worth noting that the choice of the structure of matrices D and Ri or,
equivalently, D and Ri has consequences for the form of the marginal variance-
covariance matrix of vector yi, implied by model (13.1)–(13.4). This form will be
discussed in Sect. 13.5.1.

13.4.3 Additional Distributions Defined by y and b

In this section, we introduce additional auxiliary distributions related to LMMs.
They build on distributions defined in Sects. 13.4.1 and 13.4.2 and play important
role in the various aspects of model fitting and checking model assumptions.

13.4.3.1 Joint Distribution of y and b

The joint distribution fy,b(yi,bi) of y and b for the classical LMMs can be specified
by taking the product of the unconditional distribution of the random effects b and
the conditional distribution of y defined in Sects. 13.4.1 and 13.4.2:

fy,b(yi,bi) = fy|b(yi | bi)fb(bi).

Given that the component distributions, fb(b) and fy|b(y | b)fb(b), are multivariate
normal, the joint distribution is also normal. We refer to the joint distribution in
Sect. 13.5.3.
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13.4.3.2 Marginal Distribution of y

The marginal distribution fy(yi) of yi is obtained by “integrating out” the random
effects bi from the joint distribution of yi and bi. More specifically, we calculate the
density of the marginal distribution of yi as

fy(yi) =

∫

fy,b(yi,bi) dbi =

∫

fy|b(yi | bi)fb(bi) db, (13.18)

where fy,b is the density of the joint distribution of yi and bi, fy|b is the conditional
distribution of yi given bi, and fb is the density of the unconditional distribution of bi.
Given that fy,b and fb are densities of multivariate normal distributions, the marginal
distribution of y is also multivariate normal and it can be derived analytically. In
fact, it is given in (13.26).

13.4.3.3 Posterior Distribution of b Given y Is Known

The distribution fb(bi) of random effects bi defined in (13.3) does not depend on the
observed values of yi. Therefore, in the Bayesian setting, it is referred to as prior

distribution of bi. Assuming that the observed values of yi are equal to y(obs)
i , the

so-called posterior distribution of bi conditional on y(obs)
i can be calculated using

the following general formula:

fb|y(bi|yi)≡ fb|y(bi|yi = y(obs)
i ) =

fy|b(yi | bi)fb(bi)
∫

fy|b(yi | bi)fb(bi) db
. (13.19)

Assuming that the parameters b,q are known, the posterior distribution fb|y(bi|yi)
for the classical LMMs is multivariate normal. Based on the observed data, we often
estimate this distribution using its (posterior) mean:

̂bi(b,q)≡ ̂bi = DZ′iV
−1
i (y(obs)

i −Xib). (13.20)

Since the posterior mean is a linear function of yi, the variance-covariance matrix
of the ̂bi estimator is equal to

Var(̂bi) = s 2DZ′i

⎧

⎨

⎩

V−1
i −V−1

i Xi

(

N

∑
i=1

X′iV
−1
i Xi

)−1

X′iV
−1
i

⎫

⎬

⎭

ZiD. (13.21)

To make inference about random effects, we are often interested in assessing the
variability of the ̂bi−bi difference. The following formula can be used:

Var(̂bi−bi) =D−Var(̂bi). (13.22)
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It follows from the formula that, for any linear combination of random effects
represented by the column vector l, the following inequality (see (7.7) in Verbeke
and Molenberghs 2000) holds:

Var(l′̂bi)≤ Var(l′bi) = l′Dl. (13.23)

This inequality is one of many ways which illustrate “shrinkage” of the random
effects toward the prior mean of bi, i.e., toward zero. We revisit this issue in
Sect. 13.6.1. On a side, we note that, for the LMM defined by (13.1)–(13.4), the
posterior mean (13.20) is also the mode of the density of the posterior distribution of
bi, given yi. In fact, the use of the mode to predict the random effects can be applied
to mixed-effects models in general, including GLMMs and NLMMs. However, for
mixed-effects models other than the LMMs (13.1)–(13.4), the mode does not have,
in general, to be equal to the posterior mean.

13.5 Estimation

In this section, we present methods to obtain a set of estimates of parameters b,
s 2, qD, and qR for the classical LMM, defined by (13.1)–(13.4). The case of the
extended, mean-variance model will be discussed separately in Sect. 13.8.

In Sect. 13.5.1, we present the marginal model, implied by the classical LMM.
The marginal model allows estimating the LMM using the methods presented
in Sect. 10.4 for the LM with fixed effects and correlated residual errors. In
Sect. 13.5.2, we briefly describe the necessary modifications of the methods. In
particular, we focus on the approaches that are implemented in R. Section 13.5.4
briefly discusses the issue of the parameterization of the classical LMM, while
in Sect. 13.5.5 we describe the methods to assess the uncertainty of the parameter
estimates. To complete the description of the estimation approaches, in Sect. 13.5.6,
we briefly discuss approaches alternative to those presented in Sect. 13.5.2.

13.5.1 The Marginal Model Implied by the Classical Linear
Mixed-Effects Model

For the classical LMM, Equations (13.12)–(13.13) and (13.17) imply that the
marginal mean and variance-covariance matrix of yi are given as follows:

E(yi) = Xib, (13.24)

Var(yi) ≡ Vi(s
2,q;vi)

= s 2Vi(q;vi) = s 2[ZiD(qD)Z
′
i +Ri(qR;vi)], (13.25)
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where q ′ ≡ (q ′D,q
′
R)
′. Note that, to simplify the notation, from now on, we will, in

general, suppress the use of q and vi in the formulae, in line with conventions used
in Parts II and III of the book.

From (13.24) and (13.25), it follows that, marginally,

yi ∼Nni
(Xib,s

2ZiDZ′i +s 2Ri). (13.26)

The marginal mean value of the dependent variable vector yi, similarly to the linear
model (10.1)–(10.5), is defined by a linear combination of the vectors of covariates
included, as columns, in the group-specific design matrix Xi, with parameters b.
Moreover, the variance-covariance matrix of yi consists of two components. The
first one, s 2ZiDZ′i, is contributed by the random effects bi. The second one, s 2Ri,
is related to the residual errors ei. Hence, strictly speaking, the model employing
random effects, specified in (13.1)–(13.4), implies a marginal normal distribution,
defined by (13.26), which is similar to distributions considered in Chap. 10 in the
context of LMs for correlated data, but with the variance-covariance matrix of yi of
a very specific parametric form, given by (13.25).

It is worth observing that the marginal model, defined by (13.24)–(13.26), does
not involve the random effects bi. Thus, the matrixD does not have to be treated as a
variance-covariance matrix. Consequently, it does not have to be positive-definite, as
long as the matrix Vi is positive-definite. The matrix D does need to be symmetric,
though, to assure that the matrix Vi is symmetric. It follows that, while every LMM
of the form, specified in (13.1)–(13.4), implies a marginal model, defined by (13.26),
not every model of the form (13.26) can be interpreted as resulting from an LMM.
Thus, the two models are not equivalent.

From the above it follows that LMs with fixed effects and correlated residual
errors, presented in Chap. 10, are less restrictive than LMMs. Thus, in this respect,
the former are more flexible than the latter. On the other hand, in general, LMs with
fixed effects and correlated residual errors do not allow making inference about the
variability that may be related to different levels of the data hierarchy.

It is worth noting that the effects of the covariates, included in the design
matrix Xi, are quantified by the same parameters b in both the conditional (13.12)
and unconditional (13.24) mean. Thus, although the parameters are defined in
the context of the subject-specific model (13.1), they can also be interpreted as
quantifying effects at the population level. This possibility of a dual interpretation
of fixed-effects b is a unique feature of the classical LMM, given by (13.1)–(13.4).
It does not hold, for instance, for GLMMs, not described in this book.

The fact that the classical LMM implies the marginal model (13.26) is also
important from a practical point of view. This is because it allows the construction
of effective estimation approaches for the LMM. This topic is discussed in the
next section.
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13.5.2 Maximum-Likelihood Estimation

In general, the ML estimation involves constructing the likelihood function based
on appropriate probability distribution function for the observed data. The uncondi-
tional distribution of bi and the conditional distribution of yi given bi, which were
defined in Sect. 13.4 for the classical LMM, are not suitable for constructing the
likelihood function, because the random effects bi are not observed. For a similar
reason, the joint distribution of yi and bi cannot be used.

Instead, estimation of LMMs is based on the marginal distribution of yi.
In fact, it coincides with the distribution given in (13.26). For this reason, the

estimation of parameters of the classical LMM can be accomplished by using the
ML or REML estimation for the implied marginal model, along the lines similar to
those described in Sect. 10.4.2.

In particular, the ML estimation is based on the marginal log-likelihood resulting
from (13.26). Following (10.25), the log-likelihood can be expressed as follows:

�Full(b,s
2,q) ≡ −N

2
log(s 2)− 1

2

N

∑
i=1

log[det(Vi)]

− 1

2s 2

N

∑
i=1

(yi−Xib)
′V−1

i (yi−Xib), (13.27)

where Vi, defined in (13.25), depends on q.
Estimates of b, s 2, and q are usually obtained using a log-profile-likelihood for q

(see Sect. 10.4.2). The log-profile-likelihood results from plugging into (13.27) the
estimators of b and s 2, given by

̂b(q) ≡
(

N

∑
i=1

X′iV
−1
i Xi

)−1 N

∑
i=1

X′iV
−1
i yi, (13.28)

ŝ 2
ML(q) ≡

N

∑
i=1

r′iV
−1
i ri/n, (13.29)

where ri ≡ ri(q) = yi−Xi
̂b(q). Note that the expressions correspond to (10.26) and

(10.27), presented in Sect. 10.4.2. By maximizing the log-profile-likelihood function
over q, we obtain estimators of these parameters. Plugginĝq into (13.28) and (13.29)
yields the corresponding estimators of b and s 2, respectively.

As has been mentioned in Sects. 4.4.2, 7.4.2, and 10.4.2, the ML estimates of the
variance-covariance parameters are biased. For this reason, the parameters are better
estimated using the REML estimation. Toward this end, the log-restricted-likelihood
function, corresponding to (10.30), is considered. From this function, the parameter
s 2 is profiled out by replacing it by the following estimator, corresponding to
(10.31):
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ŝ 2
REML(q) ≡

N

∑
i=1

r′iV
−1
i ri/(n− p), (13.30)

with ri defined as in (13.29). This leads to a log-profile-restricted-likelihood
function, which only depends on q:

�∗REML(q) ≡ −
n− p

2
log

(

N

∑
i=1

r′iri

)

− 1
2

N

∑
i=1

log[det(Vi)]

−1
2

log

[

det

(

N

∑
i=1

X′iV
−1
i Xi

)]

. (13.31)

Maximization of (13.31) yields an estimator of q, which is then plugged into (13.28)
and (13.30) to provide estimators of b and s 2, respectively.

For the mean-variance model, i.e., when the conditional variance of random
errors is defined with the use of a variance function (13.15) that does depend on
mij (Sect. 7.3.1), the estimates of the parameters b, s 2, and q can be obtained using
GLS approaches similar to those described in Sects. 7.8.1.1 and 10.4.2. We discuss
these approaches in Sect. 13.8.

13.5.3 Penalized Least Squares

In this section, we outline a slightly different approach to the estimation of
parameters b, s 2, q for the classical LMM, defined by (13.1)–(13.4). Essentially,
the approach is based on the log-profile-restricted-likelihood for q, as defined in
Sect. 13.5.2. However, the numerical algorithm based on sparse matrices allows
for a numerically efficient implementation of this penalized least squares (PnLS)
approach. In our presentation we follow Bates (2012) who describes in detail a more
general version of this algorithm, namely, penalized weighted least squares (PWLS)
used in the context of GLMMs and NLMMs and implemented in the package
lme4.0. For the sake of future reference and simplicity, we briefly summarize the
methodology. We consider a single-level LMM, specified for all data (Sect. 13.2.2).
Moreover, we assume the conditional independence model and homogeneous
residual-error variance, i.e., R≡ In.

In the PnLS estimation approach, the starting point is the density of the joint
distribution of y and random effects b introduced in general terms in Sect. 13.4.3.
The logarithm of the density of the joint distribution of y and random effects b is
given by

hJoint(y,b;b,s 2,q) ≡ −n+Nq
2

log(s 2)− 1
2

log[det(D)]

− (y−Xb−Zb)′(y−Xb−Zb)+b′D−1b

2s 2 , (13.32)
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where X and Z were defined in (13.7), while D was specified in (13.9). Note that,
given the assumption that R ≡ In, in (13.32) for the remainder of the section, we
have q≡ qD.

Upon applying the following form of the Cholesky representation:

D = TSST′, (13.33)

where T is a lower-triangular matrix with all diagonal elements equal to 1 and S is a
diagonal matrix with nonnegative diagonal elements, we can express b as follows:

b = TSu, with u∼NNq(0,s
2INq).

By allowing for zero elements on the diagonal matrix S used in (13.33), we consider
a general case with a potentially singular (positive semi-definite) matrix D.

It follows that, conditionally on u, y is normally distributed with

E(y | u) = Xb+ZTSu≡ Xb+A′u,

Var(y | u) = s 2In, (13.34)

while the marginal mean and variance of y can be expressed as

E(y) = Xb,

Var(y) = s 2(A′A+ In). (13.35)

Using the representation introduced above, (13.32) can be written as follows:

hPnLS(y,b;b,s 2,q) ≡ −n+Nq
2

log(s 2)

− (y−Xb−A′u)′(y−Xb−A′u)+u′u
2s 2

≡ −n+Nq
2

log(s 2)− d(b,q)
2s 2 . (13.36)

Note that term d(b,q) in (13.36) resembles a penalized sum of squares. In fact, it
can be seen as a residual sum of squares in a linear regression model

E

(

y
0

)

=

[

A′ X
INq 0

](

u
b

)

≡ X∗
(

u
b

)

.

The solution (ũ′,˜b
′
)′ for the linear regression problem satisfies

(X∗)′X∗
(

ũ
˜b

)

= (X∗)′
(

y
0

)

,
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which can be explicitly written as

[

AA′+ INq AX
X′A′ X′X

]

(

ũ
˜b

)

=

(

Ay
X′y

)

. (13.37)

It is worth noting that (13.37) corresponds to a general form of the LMM equations
considered by Henderson (1984), which allow for a singular estimate of D.

To reduce the storage space requirements and numerical complexity, it is
advantageous to introduce a sparse lower-triangular Cholesky decomposition matrix

L =

[

LZ 0
LZX LX

]

,

which satisfies

LL′ = P(X∗)′X∗P′, (13.38)

where the orthogonal matrix P is a “fill-reducing” permutation matrix, determined
from the pattern of nonzero elements in Z. The matrix reduces the number of
nonzero elements in L and hence has a large impact on the storage space required
for L. It is important to stress that, although this has not been explicitly indicated in
(13.38), L depends on q.

If we assume that the matrix P is of a block-diagonal form

P =

[

PZ 0
0 PX

]

,

then we get

[

P′ZLZ 0
P′XLZX P′XLX

][

L′ZPZ L′ZXPX

0 L′XPX

]

=

[

AA′+ INq AX
X′A′ X′X

]

. (13.39)

Consequently, we can rewrite (13.36) as follows:

hPnLS(y,b;b,s 2,q) = −n+Nq
2

log(s 2)−
˜d(q)
2s 2

− 1

2s 2

(

PZ(u− ũ)
PX(b−˜b)

)′
LL′

(

PZ(u− ũ)
PX(b−˜b)

)

, (13.40)

where ˜d(q) is the value of penalized sum of squares d(b,q), defined in (13.36),

computed at solution (ũ′,˜b
′
)′ of system of (13.37). Thus, ˜d(q) is the minimum value

of penalized sum of squares, assuming q is known.
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The marginal log-likelihood, corresponding to (13.40), is given by

�ML(b,s
2,q) ≡ −n

2
log(s 2)− 1

2
log{[det(LZ)]

2]}−
˜d(q)
2s 2

− 1

2s 2

[

L′XPX(b−˜b)
]′

L′XPX(b−˜b). (13.41)

Essentially, it is a re-parameterized form of (13.27).
Given q, the resulting estimator of b is ˜b, defined in (13.37), while for s 2 the

estimator is given by

s̃ 2
ML ≡

˜d(q)
n

. (13.42)

By plugging ˜b and s̃ 2 into (13.41), we obtain the log-profile-likelihood for q:

�∗ML(q) ≡ −
1
2

log{[det(LZ)]
2}− n

2
log[˜d(q)]. (13.43)

The log-profile-likelihood is a re-parameterized version of the function obtained
from plugging the estimators (13.28) and (13.29) into (13.27) (see Sect. 13.5.2).

Maximization of (13.43) over q yields the ML estimator of the parameter vector.
The estimator is then used to obtain the ML estimators of s 2 and b from (13.42)
and (13.37), respectively. The estimators correspond to those given in (13.28) and
(13.29).

The REML estimator of q is obtained by maximizing the log-profile-restricted-
likelihood:

�∗REML(q) ≡ −
1
2

log{[det(LZ)det(LX)]
2}− n− p

2
log[˜d(q)]. (13.44)

The function is, essentially, a re-parameterized form of (13.31). The resulting
estimator is then used to obtain the estimator of s 2, which corresponds to the one
given in (13.30):

s̃ 2
REML ≡

˜d(q)
n− p

. (13.45)

An estimate of b is computed from (13.37).
As mentioned at the beginning of this section, the PnLS approach, described

above, has been implemented in the package lme4.0, a developmental branch
version of lme4. In the latter package, the implementation has been modified in
several ways (Bates et al. 2012). First, the decomposition (13.33) of the matrix D
has been replaced by the classical Cholesky decomposition D = QQ′. Additionally,
the lower-triangular matrix on the right-hand side of (13.39) has been assumed to
take the following form:
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[

P′ZTZ 0
T′ZX T′X

]

,

where matrices TZ (lower-triangular), PZ (permutation), TX , and TZX (upper-
triangular) are defined by the following relationships:

TZT′Z ≡ PZ(AA′+ INq)P
′
Z ,

TZTZX ≡ PZAX,

T′ZXTZX ≡ X′X−T′XTX ,

with A ≡ Q′Z′. By using the resulting decomposition, we obtain formulae for
the log-profile-likelihood and log-profile-restricted-likelihood similar to (13.43)
and (13.44), respectively, but with det(LZ) and det(LX) replaced, respectively, by
det(TZ) and det(TX). Moreover, Equation (13.37), defining the PnLS estimates ũ
and ˜b, can now be equivalently expressed as

TX
˜b = cb,

T′ZPZũ = cu−TZX
˜b,

where the vectors cb and cu are defined by

TZcu = PZAy,

T′Xcb = X′y−TZXcu.

13.5.4 Constrained Versus Unconstrained Parameterization
of the Variance-Covariance Matrix

Solving of maximization problems, necessary to obtain the estimators described
in Sects. 13.5.2 and 13.5.3, is difficult from a numerical point of view. This
is because the solution should lead to symmetric and positive-definite variance-
covariance matrices D and Ri, defined in (13.3). A possible solution is to
parameterize the matrices in such a way that the optimization problem becomes
unconstrained.

Toward this end, for matrix Ri, one can use representation (13.4) and
parameterize Ri by the parameterizations described in Sect. 10.4.3. For matrix D,
several solutions are possible (Pinheiro and Bates 1996).

For instance, we could consider parameterizing D in terms of variances and
correlations. By using the log-transformation for the variances and Fisher’s z-
transform, defined in (10.33), for correlations, we would obtain a set of uncon-
strained parameters. This parameterization would reflect the individual constraints,
i.e., that variances need to be positive and correlation coefficients are constrained
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to lie within the [0,1] interval. However, in general, it would not reflect the joint
restriction, i.e., that the set of back-transformed parameters has to define a positive-
definite matrix. Thus, while this parameterization could be used for positive-definite
matrices of some particular structure like, e.g., the compound-symmetry structure,
i.e., with equal diagonal elements and equal off-diagonal elements (see Sect. 11.4.1),
it is not suitable for the numerical optimization purposes in general. However, it is
useful for the construction of confidence intervals for the elements of matrix D, as
it will be explained in Sect. 13.7.3.

An alternative, which addresses the issue, uses (13.4) and considers the
representation of D in terms of the elements of its Cholesky decomposition, i.e., in
terms of the elements of the upper-triangular matrix U, where D = U′U. The main
advantage of this approach is that it is computationally simple and stable. However,
one of its disadvantages is that the resulting parameterization is not unique. This
problem is removed by requiring that the diagonal elements of U are positive. In that
case, an unconstrained parameterization of D is obtained using the logarithms of
the diagonal elements of U together with the off-diagonal elements of U. Pinheiro
and Bates (1996) call this parameterization a “log-Cholesky parameterization”.
Another disadvantage of this approach, however, is that there is no straightforward
relationship between the elements of D and U, except for the fact that | U1,1 |=
√

D1,1. This latter relationship does allow deriving confidence intervals for the
diagonal elements of D, i.e., variances, but not for the off-diagonal elements, i.e.,
covariances.

Another approach to obtaining an unconstrained parameterization of D is to use
the matrix logarithm (Pinheiro and Bates (1996, 2000), pp. 78–79). In particular, D
is expressed using its singular value decomposition (SVD):

D = QTQ′, (13.46)

where T is a diagonal matrix with all diagonal elements positive, and Q is an
orthogonal matrix. Let us denote by log(T) a diagonal matrix with the diagonal
elements equal to the logarithms of diagonal elements of T. Next, define

D∗ ≡ Q log(T)Q′. (13.47)

The D∗ matrix is logarithm of D, i.e., D = exp(D∗), where

exp(D∗)≡
∞

∑
k=0

(D∗)k

k!
. (13.48)

The relationship D = exp(D∗) allows expressing the parameters qD (Sect. 13.4),
which define the matrix, as a function of the elements of the upper triangle of the
matrix D∗. The latter elements form a set of unconstrained parameters that can be
used for numerical optimization purposes. However, there is no straightforward rela-
tion between the elements of D and D∗. Thus, the matrix-logarithm parameterization
is not suitable for the construction of confidence intervals for the elements of D.
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In some situations, it may not be possible to find a solution of the optimization
problem that would lead to a positive-definite D. This may happen if, e.g., the
assumed form of the LMM, defined by (13.1)–(13.4), is not correct. In this case,
a possible alternative is to consider the implied marginal model (13.26). As was
mentioned in Sect. 13.5.1, in the marginal model, the important constraint is that the
marginal variance-covariance matrix Vi, given in (13.25), is positive-definite; the
positive-definiteness of D is not a necessary condition. Thus, in principle, one could
consider fitting the LMM with the only constraint that Vi is positive-definite. The re-
sulting solution, if feasible, may lead, however, to a non-positive-definite D, which
would violate the interpretation of the model as a hierarchical one (Sect. 13.5.1), but
would lead to a valid marginal model nevertheless. Such an option is not routinely
available in functions used for fitting LMMs in R.

13.5.5 Uncertainty in Parameter Estimation

Similar to the case of the LM for correlated data (Sect. 10.4.4), the variance-
covariance matrix of ̂b is estimated by

̂Var(̂b) ≡ ŝ 2

(

N

∑
i=1

X′îV
−1
i Xi

)−1

, (13.49)

where ŝ 2 and ̂Vi are estimated by one of the methods described in Sect. 13.5.2. Note

that, in the computation of ̂Var(̂b), given in (13.49), the extra variability resulting
from the use of the estimate ̂Vi is not accounted for. For this reason, the computed

variance underestimates the true variability of ̂b.
The variance-covariance matrix of ŝ 2 and ̂q can be estimated in various ways.

A possible solution, implemented in the lme() function of the nlme package in
R, is to use the inverse of the negative Hessian of the log-restricted-likelihood
(see (10.30) and Sect. 13.5.2), evaluated at the estimated values of s 2 and q.
An alternative is to consider the inverse of the negative Hessian of the log-profile-
likelihood, which results from replacing b in (13.27) with the estimator given by
(13.28). Obviously, the validity of these computations depends on the validity of the
likelihood functions, i.e., on the correct specification of the model.

It is worth mentioning that the variance-covariance matrix of ̂b can be expressed
in a form similar to (10.45), with Ri replaced by the model-based marginal
variance-covariance Vi, given in (13.25) (see, e.g., Equation (6.2) in Verbeke and
Molenberghs (2000)). Consequently, similarly to the situation described Sect. 10.7
for LMs for correlated data, if Vi �≡ Var(yi), i.e., if the LMM is not correctly spec-
ified, (13.49) will result in a biased (underestimated) assessment of the variability
of ̂b.
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13.5.6 Alternative Estimation Approaches

Although the ML- and REML-based approaches, described in Sect. 13.5.2, are the
most popular estimation methods for LMMs, other approaches are also possible.
Among them one discerns, for instance, a Bayesian approach, a noniterative min-
imum variance quadratic unbiased estimation (MIVQUE), and the EM-algorithm.
Neither the Bayesian approach nor MIVQUE is implemented in the most popular
packages used to fit LMMs in R. The EM-algorithm is used in the function lme()

from the package nlme only to refine the initial values of the parameters qD in the
first iterations of the optimization routine. For these reasons, we will not provide a
more detailed description of these approaches here. The interested reader is referred
to the monographs by Davidian and Giltinan (1995), Gelman et al. (1995), or
Verbeke and Molenberghs (2000).

13.6 Model Diagnostics

In analogy with other types of LMs (see Sects. 4.5, 7.5, and 10.5), after fitting
an LMM, and before making any inferences based on it, it is important to
check whether the model assumptions are fulfilled. The two main distributional
assumptions pertain to the normality of the random effects bi and of the residual
errors ei. Evaluation of the influence of individual observations on the model fit
(Sect. 4.5.3) may also be of importance. These topics are discussed in this section.
Note that, as in Sect. 13.5, we focus on the classical LMM, defined by (13.1)–(13.4),
in which the matrix Ri is specified with the use of a variance function, which does
not depend on the mean values mij (Table 7.2).

13.6.1 Normality of Random Effects

In the LMM defined by (13.1)–(13.4), it is assumed that the random effects bi are
normally distributed with the mean zero and the variance-covariance matrix s 2D.
To check the assumption, some “estimates” of the random effects bi are needed.
Toward this end, usually the conditional expectations of the random effects, given
the observed responses of yi, are used:

̂bi ≡ ̂DZ′îV
−1
i (y(obs)

i −Xi
̂b). (13.50)

The conditional expectations are often called empirical Bayes (EB) estimates,
because they are obtained by using the estimated values of the fixed parameters b
and variance-covariance parameters q in (13.20). Note that, strictly speaking, the
random effects bi are not parameters, so that rather than estimating their values,
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we are predicting them. Following this convention, the conditional expectations
(13.50) might be called “predictors.” In fact, they are often referred to as best linear
unbiased predictors (BLUPs) or empirical BLUPs (EBLUPs). This term follows
from the fact that it can be shown that the conditional expectations are BLUPs of bi
in the sense that they are unbiased and have minimum variance among all unbiased
estimators, which are linear combinations of yi (see, e.g., Verbeke and Molenberghs
(2000, Sect. 7.4)). In what follows, we will be referring to the random-effects
predictors, given by (13.50), as EBLUPs.

Similarly to (13.23), shrinkage of EBLUPs can be illustrated by noting that the
following inequality,

var(l′̂bi)≤ l′ ̂Dl, (13.51)

is true for any linear transformation l. We refer to this inequality in Fig. 17.1 and
Panel R19.7.

It appears that using histograms or Q-Q plots of the predicted random errors
for the purpose of checking their normality is of limited value. That is because the
observed distribution of ̂bi does not necessarily reflect the true distribution of bi
(Verbeke and Molenberghs 2000, Sec.7.8.1). However, the plots of the conditional
modes can be used to detect, e.g., outlying values that might warrant further
inspection. Also, if the histogram is, e.g., bimodal, it may indicate that a covariate
has been omitted from the Zi matrix.

In practice, checking the normality assumption for bi should be based on the
comparison of the results obtained for a LMM with and without assuming the
normality (Verbeke and Molenberghs 2000, Sec.7.8.4). This requires software for
fitting LMMs with relaxed distributional assumptions about the random effects.
Such an approach will not be presented in our book.

It is worth noting, however, that if the inferential goal focuses on the marginal
model (13.26), and especially on the fixed effects b, valid inference can be obtained
even if the random effects do not follow a normal distribution (Verbeke and
Molenberghs 2000, Sec.7.8.4).

13.6.2 Residual Diagnostics

The main tools for checking the assumption of the normality of residual errors ei
are based on residuals. Note that, given the structure of the classical LMM, defined
in (13.1)–(13.4), various types of raw residuals can be defined.

One set is the conditional residuals, which follow from the conditional mean
representation (13.12), and are defined as

ê(c)i ≡ yi−Xi
̂b−Zi

̂bi, (13.52)

where the formula for ̂bi is given in (13.50).
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Another set is the marginal residuals, resulting from the marginal mean repre-
sentation, given by (13.24). The marginal residuals are defined as

ê(m)i ≡ yi−Xi
̂b. (13.53)

The raw residuals are useful to check heterogeneity of the conditional or marginal
variance. They are less recommended, however, for checking normality assumptions
and/or detecting outlying observations. This is because, usually, raw residuals will
be correlated and their variances will differ. Therefore, studentized and Pearson
residuals are more often used (see Sects. 4.5.1 and 7.5). However, as in the case
of the LM for correlated data (see Sect. 10.5), even the scaled residuals are
not appropriate for, e.g., checking the normality of the residual errors. This is
because the model (13.1)–(13.4) allows for a correlation between the errors. An
approximate solution is to consider the transformation of the raw conditional or
marginal residuals, which were defined in (13.52) and (13.53), respectively, based
on the Cholesky decomposition of the (estimate of) residual variance-covariance
matrix s 2Ri or the marginal variance-covariance matrix s 2Vi, respectively (see
Sects. 4.5.1 and 10.5). That is, to define

ê∗(c)i ≡ (ŝ ̂U
′
(c)i)

−1ê(c)i, (13.54)

or

ê∗(m)i ≡ (ŝ ̂U
′
(m)i)

−1ê(m)i, (13.55)

where the upper-triangular matrices ̂U(c)i and ̂U(m)i are defined by ̂U
′
(c)i
̂U(c)i = ̂Ri

and ̂U
′
(m)i

̂U(m)i = ̂Vi, respectively. Then, ê∗(c)i (Pinheiro and Bates 2000, pp. 239)
and ê∗(m)i (Schabenberger 2004) should be approximately normally distributed with
mean zero and variance-covariance matrix equal to an identity matrix. Thus, e.g.,
the normal Q-Q plot of the residuals should show approximately a straight line.
Also, the scatterplot of the residuals against the estimated marginal mean values
can be used to detect patterns suggesting a possible problem in the specification of
the mean structure of the data or to check for outliers. Note that in R, in the nlme
package, the transformed conditional residuals (13.54) are available.

Santos Nobre and da Motta Singer (2007) argue that the marginal residuals are
pure, in the sense that the residuals are a function of only the marginal errors
e(m)i ≡ yi − Xib, which they are supposed to estimate. On the other hand, the
conditional residuals, which estimate the residual errors ei, are confounded with the
random effects bi, because the residuals are a function of bi and ei. For this reason,
they suggest that the conditional residuals may not be suitable for checking, e.g., the
normality of ei. In particular, Santos Nobre and da Motta Singer (2007) recommend
to use the plots of marginal residuals against covariates to check the linearity
assumption for the covariates. On the other hand, the plots of the conditional
residuals against the estimated conditional means m̂i can be used to detect outlying
observations or heteroscedasticity of the residual errors.
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13.6.3 Influence Diagnostics

The basic tool to investigate the influence of a given observation on the estimates
of b, q, and s 2 is the likelihood displacement. It was introduced in the context of
the classical LM in Sect. 4.5.3. Recall that the likelihood displacement, LDi, as in
(4.27), is defined as the change between the maximum log-likelihood computed
when using all data and when excluding the i-th observation. For the LMM,
given by (13.1)–(13.4), the likelihood-displacement definition (4.27) is modified by
specifying ̂Θ≡ (̂b ′,̂q ′, ŝ 2

)′ and using the log-likelihood (13.27).

13.7 Inference and Model Selection

The inference for the classical LMM, specified by (13.1)–(13.4), focuses on
the fixed-effect parameters b and/or the variance-covariance parameters q. For these
models, as described in Sect. 13.5.2, the estimation of the parameters uses the
methods based on the marginal log-likelihood (13.27). Consequently, the inferential
tools are very similar to those used for the LMs for correlated data. Thus, in what
follows, we will frequently refer to the material contained in Sect. 10.6.

In Sect. 13.7.1, we describe statistical significance tests for the fixed effects,
while in Sect. 13.7.2 we discuss the tests for variance-covariance parameters.
Section 13.7.3 briefly discusses the construction of confidence intervals for the
parameters of the model (13.1)–(13.4).

13.7.1 Testing Hypotheses About the Fixed Effects

Hypotheses about the parameters b are tested using the same methods that are
applied for LMs for correlated data (see Sect. 10.6). In particular, linear hypotheses
may be tested using the F-test, given by (4.36). The issue related to the computation
of the degrees of freedom for the approximation of the distribution of the F-statistic
by a central F distribution applies here as well. In the package nlme, this issue is
ignored and the functions, available for fitting LMMs, and the null distribution of the
F-statistic is crudely approximated with rank(L) numerator and n− p denominator
degrees of freedom. In the package lme4.0, the issue is addressed using a Bayesian
approach (see, e.g., Davidian and Giltinan (1995), Sect. 3.2.3) and by applying
the Markov chain Monte Carlo (MCMC) technique to sample from the posterior
distribution of the parameters (Baayen et al. 2008).

An alternative is to use ML-based LR tests (Sect. 7.6.1). Pinheiro and Bates
(2000, Sect. 2.4.2) argue that the LR tests for hypotheses about b can be “anti-
conservative”, i.e., yield p-values smaller than those resulting from the postulated c2

distribution. For this reason they suggest to condition on the estimates of variance-
covariance parameters q and use the F-tests. Based on the example they provided,
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it appears, though, that the problem is more pronounced in the case when several
fixed effects are tested at once and sample size is relatively small. Therefore, for
some models considered in Chap. 18, fitted to a large sample size data, we in fact
used the LR test to test the selected hypotheses about fixed effects.

Note that, instead of using a c2 distribution for an LR test, one could use an
empirical distribution of the test statistic, obtained by fitting the alternative and null
models to multiple datasets simulated under the null model (Pinheiro and Bates
2000, Sect. 2.4.1).

Finally, if the hypothesis about the parameters b cannot be expressed in a way
that it would lead to alternative and null models, we can apply information criteria,
like AIC or BIC (Sect. 4.7.2), to select the model that seems to best fit the data.
Of course, strictly speaking, this is not a formal statistical testing approach. In this
respect, it is also worth mentioning that the use of the log-restricted-likelihood-
based criteria for LMMs with different mean structures is generally not advocated
(see, e.g., Verbeke and Molenberghs (2000, Sect. 6.4)). For such cases, the use of
the ML-based criteria is recommended. However, Gurka (2006) provides empirical
arguments that this may not be necessarily a general recommendation. Thus, the
issue is still debatable.

13.7.2 Testing Hypotheses About the Variance-Covariance
Parameters

Similarly to the case of testing hypotheses about the parameters b (Sect. 13.7.1),
inference about q uses the methods, which are applied for LMs for correlated data
(Sect. 10.6). In particular, LR tests (Sect. 4.6.1) and information criteria (Sect. 4.7.2)
are used for this purpose. The comments related to the need of the use of the REML-
based tests apply to the LMMs as well. However, for the latter models, several
additional issues need to be mentioned.

One issue concerns the distribution of the LR tests for testing null hypotheses
about parameters qD, related to the matrix D. The distribution depends on the type
of the null hypothesis. In this respect, two cases can be considered. The first one
pertains to the situation when the values of the variance-covariance parameters,
compatible with the null hypothesis, do not lie on the boundary of the parameter
space. This is, e.g., the case when we test a hypothesis that a correlation coefficient
is equal to 0. In this case, the null distribution of the LR test is a c2 distribution
with the number of degrees of freedom equal to the difference in the number of
variance-covariance parameters between the null and alternative models.

The second case pertains to the situation when the values of the variance-
covariance parameters, compatible with the null hypothesis, do lie on the boundary
of the parameter space. In such situations, the null distribution of the LR test is
not a c2 distribution. In certain cases (see, e.g., Verbeke and Molenberghs 2000,
Sect. 6.3.4), it is possible to show that the null distribution is a mixture of several
c2 distributions. As an example, consider the case of the model (13.1)–(13.4) with
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only the group-level random effects, i.e., random intercepts. In this case, the vectors
bi ≡ bi and qD ≡ qD are unidimensional (scalars), and D≡ qD. Now, let us consider
the null hypothesis, which specifies that no group-level random effects are needed.
We can express the null hypothesis as H0 : qD = 0. The alternative is that a random
effect is required, expressed as HA : qD > 0. Clearly, H0 specifies a value of the
variance parameter qD on the boundary of the parameter space, as variance cannot
be negative. In this case, the results developed by Self and Liang (1987), Stram and
Lee (1994), and Liang and Self (1996), suggested that the null distribution of the
LR test statistic is a 50:50 mixture of c2

0 and c2
1 distributions. However, Crainiceanu

and Ruppert (2004) show that the mixture is actually a conservative approximation
to the finite-sample distribution of the LR test, which they derive.

It is important to note that the issue of testing a hypothesis on the boundary of the
parameter space applies only when a fully hierarchical view of the classical LMM,
specified by (13.1), (13.2), (13.10), and (13.4), is taken. When a purely marginal
view, corresponding to (13.26), is adopted, the issue does not apply. Indeed, in the
latter case, as it was argued in Sect. 13.5.4, D does not have to be positive-definite,
as long as Vi, given in (13.25), is positive definite. This means that, in our example,
values of qd ≤ 0 are possible for the alternative hypothesis as well. More details on
this issue can be found in, e.g., Verbeke and Molenberghs (2003) and Molenberghs
and Verbeke (2007).

If the null distribution of the LR test cannot be derived analytically, a potential
solution is to use an empirical distribution obtained by fitting the alternative and
null model to multiple datasets, with the dependent variable simulated under the
null model.

Another issue is related to the approach based on the information criteria.
The approach is used when the hypothesis about q cannot be expressed in the
way that it would lead to alternative and null models. In this case, we can apply
information criteria, like AIC or BIC (Sect. 4.7.2), to select the model that seems to
best fit the data. Strictly speaking, this is not a formal statistical testing approach.
Also, recent work (Gurka 2006) suggests that none of the information criteria is
optimal to select LMMs, and that more work is still needed to understand the role
that information criteria play in the selection of LMMs.

Obviously, irrespectively of the approach selected, before conducting any
statistical significance tests, the fit of the chosen final model should be formally
checked using the residual diagnostic methods described in Sect. 13.6.

13.7.3 Confidence Intervals for Parameters

Confidence intervals for the individual components of the parameter vector b can
be constructed based on the t-distribution, used as an approximate distribution for
the t-test statistic (see Sects. 4.6.2, 10.6, and 13.7.1). On the other hand, confidence
intervals for the parameters qR, related to the matrix Ri, and for s can be obtained in
the same way as it was described for the case of LMs for correlated data (Sect. 10.6).
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Confidence intervals for parameters describing the structure of the matrix D can
be obtained by considering a representation of the matrix in terms of variances
(or standard deviations) and correlations. As explained in Sect. 13.5.4, application
of the logarithmic transformation to the variances and Fisher’s z-transform to
the correlations yields a set of unconstrained parameters. After fitting an LMM,
confidence intervals for the transformed parameters can be constructed using
the normal approximation to the distribution of the ML or REML estimators
(Sect. 10.6). The confidence intervals can then be back-transformed (see (7.33)
in Sect. 7.6.2 and (10.41) in Sect. 10.6) to yield the corresponding intervals for
variances (or standard deviations) and correlations.

13.8 Mean-Variance Models

In this section, we discuss the estimation approaches and inferential issues related
to the use of the extended, mean-variance LMM.

As mentioned in Sect. 13.2, to define the model, we specify the conditional
variance of residual errors with the help of a mean-dependent variance function,
defined in (13.15), i.e., a function from the <δ, μ>- or <μ>-group of variance
functions (Sect. 7.3.1). The use of a mean-dependent variance function implies that,
in the hierarchical model, defined by (13.1), (13.2), (13.10), and (13.4), residual
errors and random effects for the same group are no longer independent. This
violates the assumption of the classical LMM (13.1)–(13.4) and raises theoretical
and computational issues. In this section, we describe the issues and possible
solutions.

In particular, in Sect. 13.8.1, we focus on the single-level mean-variance LMM.
Section 13.8.2 briefly describes the formulation of multilevel mean-variance LMMs.
In Sect. 13.8.3, issues related to the inference, model diagnostics, and other aspects
of the use of the mean-variance LMMs are summarized.

13.8.1 Single-Level Mean-Variance Linear Mixed-Effects
Models

In Sect. 13.4, we pointed out that the marginal distribution for the classical LMM
was a normal distribution of the form given in (13.26). Thus, the estimation of the
model could be based on the use of the likelihood functions derived from the normal
distribution (Sect. 13.5.2).

However, for the mean-variance LMM, defined by (13.1), (13.2), (13.10), (13.4),
and (13.15), the marginal distribution does not have a closed form expression. In
fact, it is not obvious that it is a normal distribution. Thus, the estimation approaches,
described in Sect. 13.5.2, cannot be applied.
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To estimate mean-variance LMMs, we might use the fact that, following (13.10)
and (13.16),

Var(ei) = E
[

s 2Ri(mi,qR;vi)
]

, (13.56)

where the expected value is taken with respect to the distribution of the random
effects bi, indicated in (13.10). Thus, the unconditional variance (13.56) does not
depend on the random effects, which could, in principle, simplify the estimation
of the model. However, analytical computation of the unconditional variance is,
generally, not feasible, because the variance function (13.15) is usually nonlinear
in bi.

A computationally feasible alternative is to estimate (13.56) by plugging-
in suitable predictors of bi. Then, mean-variance LMMs can be estimated by
algorithms similar to those presented in Sects. 7.8.1 and 10.7.

In particular, consider an LMM, defined by (13.1), (13.2), (13.10), (13.4), and
(13.15), with a variance function from the <δ, μ>-group (see Table 7.3). Then,
the following algorithm, similar to the one described in Sects. 7.8.1 and 10.7, can
be used:

1. Assume an initial value ̂b
(0)

of b, ̂q
(0)

of q, ̂b
(0)
i of bi, and set the iteration counter

k = 0.
2. Increase k by 1.

3. Use ̂b
(k−1)

to compute m̂(k)
i and (re)define the matrix function V(k)

i (q).

Calculate m̂(k)
i ≡ xi

̂b
(k−1)

+ zi
̂b
(k−1)
i (see Sect. 13.6.1).

(Re)define the variance function l(k)(d; m̂(k)
ij )≡ l(m̂(k)

ij ,d).
(Re)define diagonal elements of matrix function L(k)(d; m̂(k)

i ).

(Re)define the matrix function R(k)
i (qR) ≡ L(k)(d; m̂(k)

i )C(%)L(k)(d; m̂(k)
i ), and

V(k)
i (q)≡ ZiD(qD)Z

′
i +R(k)

i (qR).

4. Keep ̂b
(k−1)

fixed and compute ̂q
(k)

.

While keeping the value ̂b
(k−1)

of b fixed and using the matrix functions

V(k)
i (q), compute an estimate ̂q

(k)
of q by maximizing an appropriate log-profile-

likelihood.
5. Keep ̂q

(k)
fixed. Compute b(k) and ̂b

(k)
i .

Based on the formula in step 3, compute the matrices V(k)
i (̂q

(k)
) and use them to

obtain estimates ̂b
(k)

of b from (13.28) and ̂b
(k)
i of bi from (13.50).

6. Iterate between steps 2 and 5 until convergence or until a predetermined number
of iterations k.

7. Compute the estimate of s 2 from (13.29) using the estimates of q and b.

An ML-based version of the algorithm is obtained by using, in step 4, the fixed

value ̂b
(k−1)

of b and the redefined form of the matrices V(k)
i (q) to express s 2 as in

(13.29). The resulting expression for s 2 is then plugged in (13.27), and the estimate
̂q
(k)

of q is computed by maximizing the so-obtained log-profile-likelihood.
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A REML-based version of the algorithm results from using, in step 4, the log-

profile-restricted-likelihood (13.31) to compute the estimate ̂q
(k)

of q (Sects. 7.8.1
and 10.7). Then, in step 7, s 2 is computed from (13.30).

Note that the algorithm involves two iterative loops: the “external” one, related to

the computation of the values ̂b
(k)

of b and m̂(k)
i of m̂i, and the “internal” one, related

to the computation (in step 4) of the value ̂q
(k)

of q. It is also worth noting that, in
step 3, the redefined variance function l(k)(·) does not depend on mij, and therefore
it belongs to the <δ>-group. This allows for the use of the marginal-model-based
log-(profile)-likelihood functions, like (13.31), in step 4.

LMMs, defined by (13.1), (13.2), (13.4)–(13.10), and (13.15), with a variance
function that depends only on mij, i.e., which belongs to the <μ>-group (see
Table 7.4), can be estimated by using an IRLS procedure similar to the one described
in Sect. 7.8.1, with obvious modifications.

Algorithms equivalent to the PL-GLS and IRLS procedures, described above,
can be formulated for the PnLS estimation technique (Sect. 13.5.3), resulting in a
penalized, iteratively re-weighted, least squares (PnIRLS) approach (Bates 2012).

13.8.2 Multilevel Hierarchies

To extend the mean-variance formulation to, e.g., two-level LMMs, which were
defined in (13.5), the definition of the variance function, given in (13.15), needs to
be modified. In particular, we can assume that

Var(eijk | bi,bij) = s 2l2(mijk,d;vijk), (13.57)

where
E(yijk | bi,bij)≡ mijk = x′ijkb+ z′1,ijkbi + z′2,ijkbij, (13.58)

where xijk, z1,ijk, and z2,ijk are column vectors containing the values of the x-, z1-,
and z2-covariates for the k-th observation from the j-th subgroup of the i-th group.

The estimation algorithms, described in Sect. 13.8.1 for a single-level LMM, can
be adapted to the two-level model case. Needless to say, they become more involved
numerically.

13.8.3 Inference

For the mean-variance LMMs, estimates of b are asymptotically approximately
normally distributed with a variance-covariance matrix, which can be estimated
as in (13.49). Consequently, tests for linear hypotheses and CIs for the elements
of b can be obtained along the lines described in Sect. 13.7.1. Note, however, that
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the use of LR tests is problematic given the fact that the algorithms described in
Sect. 13.8.1 are not likelihood-based. It should also be born in mind that, especially
for small sample sizes, standard errors computed from (13.49) may be too small, as
the precision of estimation of b is influenced by the precision of the estimation of q
(see Sects. 7.8.2 and 10.7).

Inference on the parameters q and s 2 is complicated by problems similar to those
described in Sects. 7.8.2 and 10.7. Thus, we do not discuss it further here.

13.9 Chapter Summary

In this chapter, we reviewed the essential concepts and methods underlying the
formulation of an LMM for hierarchical data. In our presentation, we were focusing
on the theoretical constructions, which are linked to the implementation of LMMs in
R. Readers interested in a more detailed account of the theory of LMMs are referred
to the monographs mentioned in the introduction to this chapter.

In Sect. 13.2, we described the formulation of the classical LMM, while in
Sect. 13.3 we discussed the formulation of the extended model. Details of the
formulation of both types of LMMs were discussed in Sect. 13.4. In the formulation,
the concepts of variance function and correlation structure, developed in Chaps. 7
and 10, respectively, were used. An additional, novel element was the introduction
of the random effects in the mean structure of the model. The use of the random
effects allows to directly address the hierarchical structure of the data.

Sections 13.5, 13.6, and 13.7 were devoted to, respectively, the estimation
approaches, diagnostic tools, and inferential methods used for the classical LMM.
This type of LMMs is most commonly used in practice. In Sect. 13.8, we described
the estimation and inferential techniques used for the extended LMM defined using
a mean-dependent variance function.

To the extent possible, we used in our presentation the concepts and theory
introduced in Chaps. 4, 7, and 10. Especially relevant was the material from
Chap. 10, because, as mentioned in Sect. 13.5, the estimation of classical LMM
is based primarily on the marginal likelihood or restricted likelihood functions,
which are special cases of the likelihood functions presented in Sect. 10.4.2. We note
that, if the missing at random (MAR) assumption about missing data mechanism is
tenable, the ML estimation for the classical linear mixed-effect models yields valid
estimates. Thorough discussion of this important topic can be found in Verbeke and
Molenberghs (2000).

As compared to LMs for correlated data, described in Part III of the book,
LMMs address directly the hierarchy present in grouped data. They allow drawing
conclusions about the partition of the total variability of observations between the
different levels of the hierarchy. This additional insight can be considered as an
advantage of LMMs. On the other hand, as mentioned in Sect. 13.5.1, LMs for
correlated errors are more flexible than LMMs. Thus, the choice between them
depends on the goals of a particular analysis.

In the next two chapters, we describe the tools available for fitting LMMs in R.



Chapter 14
Fitting Linear Mixed-Effects Models:
The lme() Function

14.1 Introduction

In Chap. 13, we summarized the main theoretical concepts underlying the construc-
tion of LMMs. Compared to the LMs introduced in Chaps. 4, 7, and 10, LMMs
allow taking the hierarchical structure of data into account in the analysis. This is
achieved by introducing, in addition to the mean (fixed-effects) structure, a random-
effects structure.

There are several packages in R, which contain tools for fitting LMMs, like, e.g.,
nlme, lme4.0, or MCMCglmm. In the current chapter, we describe the use of the
popular and well-established package nlme. The primary tool to fit LMMs in this
package is the function lme(). In the next chapter, we will describe the use of the
package lme4.0. Note that both packages allow to fit GLMMs and NLMMs, but
these models are outside of the scope of this book.

The chapter is organized as follows. In Sect. 14.2, we describe objects of class
pdMat, which represent positive-definite matrices. In particular, the class is used to
represent variance–covariance matrices of random effects. In Sect. 14.3, we describe
the class reStruct, used to represent the random-effects structure of an LMM. The
random part of an LMM is represented using the lmeStruct class described in
Sect. 14.4. All the aforementioned classes are related to the function lme(), which
is the key function in the nlme package to fit LMMs. The use of the function is
reviewed in Sect. 14.5. On the other hand, in Sect. 14.6, we summarize the methods,
which allow extracting information from model-fit objects of class lme. Section 14.7
is devoted to the implementation of inferential tools for LMMs. A summary of the
chapter is provided in Sect. 14.8.

As the basic example, we use the classical, single-level LMM, defined by
(13.1)–(13.4). However, to illustrate the features of the syntax, we refer, in a few
instances, to the two-level LMM, specified in (13.5).

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__14,
© Springer Science+Business Media New York 2013
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14.2 Representation of a Positive-Definite Matrix:
The pdMat Class

As compared to the LMs, introduced in Chaps. 4, 7, and 10, an important, new com-
ponent of LMMs is the random-effects structure. By the random-effects structure,
we mean the levels of the model hierarchy, the Zi design matrices for the random
effects bi, and the parameterized form of the matrix D, as defined in Equations
(13.1)–(13.4) for the classical, single-level LMM. In this section, we provide details
of the implementation of various forms of positive-definite matrices available in the
package nlme. The forms are used for specifying the matrix D.

In particular, in Sect. 14.2.1, we describe the classes of such matrices and the
corresponding constructor functions, while in Sect. 14.2.2, we discuss the methods
to extract information from the objects constructed with the help of the functions.

14.2.1 Constructor Functions for the pdMat Class

Positive-definite matrices are represented in the package nlme by objects inheriting
from the pdMat class. By issuing the ?pdClasses command at the command
prompt we obtain a list of standard classes of pdMat structures. We itemize them
below for the reader’s reference:

pdIdent a multiple of identity
pdDiag a diagonal matrix
pdCompSymm compound symmetry
pdLogChol a general positive-definite matrix using the log-Cholesky param-

eterization
pdSymm a general positive-definite matrix with a parameterization based

on SVD
pdNatural a general-positive-definite matrix with the “natural” parameteri-

zation, i.e., in terms of standard deviations and correlations
pdBlocked a blocked-diagonal matrix, with blocks defined by structures/

classes defined above

The classes listed above are ordered roughly according to the increasing order
of complexity of the represented matrix structures. The main difference between
the pdLogChol, pdSymm, and pdNatural classes, which all represent a general
variance–covariance matrix, lies in the used parameterization (Sect. 13.5.4) and will
be illustrated in Sect. 14.2.2.

The constructor function, used to create or to modify objects that inherit from a
particular class, is named after the corresponding class. For example, the pdDiag()
function creates/modifies an object of class pdDiag. Note that the created object
inherits also from the pdMat class. The pdMat constructors are primarily used in
the specification of the random-effects structure of an LMM, with the help of the
random argument of the model-fitting function lme().

In the next section, we describe the arguments of the constructor functions.
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14.2.1.1 Arguments of the Constructor Functions

The arguments of the pdMat constructor functions are value, form, nam, and data.
We will focus on the value and form arguments. Arguments data and nam are
merely used to assign names to the rows and columns of a positive-definite matrix.
As such, they are less important, so we do not describe them. A description of all the
arguments for a specific pdMat class is obtained by issuing a command like, e.g.,
?pdSymm.

The argument form is simply an optional one-sided formula. When used together
with the data argument, the formula is evaluated and, subsequently, the appropriate
names are assigned to the rows/columns of the matrix represented by the object. By
default, the value of the form argument is NULL. If the value argument contains a
one-sided formula, the argument form is ignored.

Although value is the main argument of a pdMat constructor function, we
describe it as the last, because it can be used to specify the components of pdMat
objects, defined by the arguments described above. The main role of this argument
is to assign coefficients to pdMat objects by supplying a positive-definite matrix or
a numeric vector. Other possible values of the value argument include: a pdMat-
class object, a one-sided linear formula, or a vector of character strings. By default,
its value is numeric(0), which results in an uninitialized object.

The code in Panel R14.1 presents examples of application of constructor func-
tions pdCompSymm() and pdSymm() to create objects of class pdCompSymm and
pdSymm, respectively, which inherit from the pdMat class.

In Panel R14.1a, the pdCompSymm() function applies the argument value in the
form of a one-sided formula ~agex. Thus, it does not assign any numeric values.
Consequently, the resulting object pdCS0 of class pdCompSymm, representing a
compound-symmetry matrix with constant diagonal and off-diagonal elements, is
uninitialized.

In Panel R14.1b, the object mtxUN is a positive-definite, 2×2 matrix, while dt1 is
an auxiliary data frame with a single numeric variable agex with four observations.
The pdSymm() function uses the matrix mtxUN as the value argument. Additionally,
it specifies the one-sided formula ~agex as the form argument and uses the data
frame dt1 to evaluate the variable agex. The resulting object pdSm of class pdSymm,
which represents a general positive-definite matrix, is initialized.

To explain the names of the rows and columns of the matrix, contained in the
object pdSm, we note that the formula ~agex, used in Panel R14.1b, assumes the
presence of an intercept and is equivalent to the formula ~1 + agex. It follows
that object pdSm can be interpreted as the variance–covariance matrix of a vector of
random effects generated by the formula. Given that the variable agex is numeric
(continuous), the formula implies the use of random intercepts and of random slopes
(for agex). Hence, the use of the names (Intercept) and agex for the rows and
columns of the matrix, contained in the object pdSm.

In Panel R14.1c, we illustrate how to construct an initialized object of class
pdCompSymm. The object mtxCS is a positive-definite, 3× 3 compound-symmetry
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R14.1 R syntax: Creating objects inheriting from the pdMat class
(a) Uninitialized object of class pdCompSymm

> library(nlme)

> (pdCS0 <- pdCompSymm(~agex))

Uninitialized positive definite matrix structure of class pdCompSymm

> isInitialized(pdCS0) # Not initialized

[1] FALSE

(b) Initialized object of class pdSymm

> mtxUN <- matrix(c(4, 1, 1, 9), nrow = 2) # pdSymm matrix

> dt1 <- data.frame(agex = c(15, 45, 71, 82)) # Numeric age

> (pdSm <- pdSymm(mtxUN, ~agex, data = dt1))

Positive definite matrix structure of class pdSymm representing

(Intercept) agex

(Intercept) 4 1

agex 1 9

> isInitialized(pdSm) # Initialized

[1] TRUE

(c) Initialized object of class pdCompSymm

> mtxCS <- matrix(4 * diag(3) + 1, nrow = 3) # CompSymm matrix

> dt2 <- data.frame(agef=c("Y", "M", "O", "O")) # Factor age

> (pdCSf <- pdCompSymm(mtxCS, ~-1 + agef, data = dt2))

Positive definite matrix structure of class pdCompSymm representing

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

matrix, with all diagonal elements equal to 5 and all off-diagonal elements equal
to 1. The auxiliary object dt2 is a data frame with a single-variable agef, which
is a factor with three levels and four observations. The pdCompSymm() constructor
function uses the object mtxCS as the value argument. Additionally, it specifies the
one-sided formula ~-1+agef in the argument form and uses the data frame dt2

to evaluate the variable agef. The resulting object pdCsf of class pdCompSymm,
which represents a compound-symmetry matrix, is initialized. Note that its row and
column names are defined by the levels of the factor agef. This is because the
formula, used in the form argument, does not use an intercept and includes the
factor agef (Sect. 5.2.1). Thus, the formula implies the use of three random effects,
associated with the levels of the factor. Hence, the use of the factor-level names for



14.2 Representation of a Positive-Definite Matrix: The pdMat Class 279

the rows and columns of pdCSf. Note that the names are obtained by referring to
the data frame dt2, which was provided in the argument data. Had the formula
been changed to, e.g., ~agef, it would have implied the use of an intercept, and the
name of the first row and column of the object pdSm would have been changed to
(Intercept). The names of the remaining two rows and columns would remain
unchanged.

In many cases, e.g., when specifying an LMM, it is sufficient to work with
uninitialized pdMat objects, such as the one defined in Panel R14.1a. Initialized
objects, i.e., objects with defined, known numerical values, such as those shown
in Panels R14.1b and R14.1c, can be useful if initial values for coefficients of a
positive-definite matrix need to be specified for a model-fitting routine.

14.2.2 Inspecting and Modifying Objects of Class pdMat

A list of methods available for probing and modifying objects of class pdMat is
obtained by issuing the command methods(class="pdMat"). In Panel R14.2, we
present examples of the use of selected methods, which can be applied to extract
information from such objects.

More specifically, in Panel R14.2a, we present methods for an object of class
pdSymm. As an example, we use the object pdSm defined in Panel R14.1. The
summary() function displays the standard deviations and correlations associated
with the positive-definite matrix represented by the object. Specific attributes of the
object can be displayed using appropriate functions like, e.g., formula(),Names(),
or Dim(). The function logDet() prints out the value of the logarithm of the
determinant of the Cholesky factor of the positive-definite matrix represented by
the pdSymm-class object.

In Panel R14.2b, we show the results of the application of selected methods
to the object pdCSf of class pdCompSymm. Essentially, all the methods used in
Panel R14.2a could be applied to the object as well.

Panel R14.3 is devoted entirely to the use of the coef() method for extracting
coefficients of an initialized pdMat-class object. The method returns a vector with
coefficients associated with the object. It allows for an optional logical argument
unconstrained. If unconstrained=FALSE, a vector of constrained coefficients
is returned (Sect. 13.5.4). Depending on the class of the object, the vector may
contain upper-triangular elements of the positive-definite matrix represented by a
pdSymm-class object or the standard deviation and correlation coefficient corre-
sponding to a compound-symmetry matrix from a pdCompSymm-class object. If
unconstrained=TRUE, the coefficients are returned in unconstrained form, suitable
for the optimization purposes. By default, unconstrained=TRUE.

In Panel R14.3a, we extract coefficients from the object pdSm. This is an
object of class pdSymm, i.e., it represents a positive-definite matrix of a general
form. First, by specifying the argument unconstrained=FALSE, we obtain the
upper-triangular elements of the matrix. Subsequently, using the default value of
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R14.2 R syntax: Probing objects inheriting from the pdMat class. Objects pdSm and
pdCSf were created in Panel R14.1
(a) Extracting information from the object pdSm of class pdSymm

> summary(pdSm) # Summary

Formula: ~agex

Structure: General positive-definite

StdDev Corr

(Intercept) 2 (Intr)

agex 3 0.167

> formula(pdSm) # Formula

~agex

> Names(pdSm) # Row/col names

[1] "(Intercept)" "agex"

> (Dmtx <- as.matrix(pdSm)) # D matrix

(Intercept) agex

(Intercept) 4 1

agex 1 9

> Dim(pdSm) # Dimensions of D

[1] 2 2

> logDet(pdSm) # log |D1/2|
[1] 1.7777

> # VarCorr(pdSm) # Variances, correlation coefficients

> # corMatrix(pdSm) # Corr(D)

(b) Extracting information from the object pdCSf of class pdCompSymm

> Names(pdCSf) # Row/col names

[1] "agefM" "agefO" "agefY"

> as.matrix(pdCSf) # D matrix

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

the argument, we obtain the unconstrained coefficients, which result from applying
the matrix-logarithm transformation (Sect. 13.5.4). We will explain the computation
of the unconstrained coefficients in Panel R14.4.

Panel R14.3b illustrates the method of obtaining coefficients from the object
pdCSf. The object is of class pdCompSymm and represents a compound-symmetry
matrix. First, by setting the argument unconstrained=FALSE, we obtain the stan-
dard deviation and the correlation coefficient, which define the compound-symmetry
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R14.3 R syntax: Extracting coefficients from an object inheriting from a pdMat
class. Objects pdSm and pdCSf were created in Panel R14.1
(a) Extracting coefficients from the object pdSm of class pdSymm

> coef(pdSm, unconstrained = FALSE) # Constrained coefficients

var((Intercept)) cov(agex,(Intercept))

4 1

var(agex)

9

> coef(pdSm) # Unconstrained coefficients

[1] 0.68424 0.08184 1.09344

(b) Extracting coefficients from the object pdCSf of class pdCompSymm

> coef(pdCSf, unconstrained = FALSE) # Constrained coefficients

std. dev corr.

2.2361 0.2000

> coef(pdCSf) # Unconstrained coefficients

[1] 0.80472 -0.13353

> log(5)/2 # First coefficient verified

[1] 0.80472

> rho <- 0.2 # %
> nc <- 3 # No. of columns

> aux <- (rho + 1/(nc - 1))/(1 - rho) # Modified Fisher's z: (10.35)

> log(aux) # Second coefficient verified

[1] -0.13353

structure. The use of the default value of the argument, TRUE, results in two
coefficients. The first one is the logarithm of the standard deviation. The second
one is the modified Fisher’s z-transform (10.35) of the correlation coefficient.
The computations of the values of the two unconstrained coefficients are verified
at the end of Panel R14.3b.

In Panel R14.4, we illustrate different parameterizations of a general
positive-definite matrix, represented by different pdMat classes. The parameteri-
zations were described in Sect. 13.5.4.

First, in Panel R14.4a, we show explicitly the link between the unconstrained
coefficients of an object of class pdSymm and the logarithm of a positive-definite
matrix (Sect. 13.5.4). Toward this end, we create the object pdSm0 of class pdSymm
from the matrix mtxUN and we list the unconstrained coefficients by applying
the coef() method to the object. Next, by applying the function pdMatrix(),
we obtain the positive-definite matrix, represented by the object, and store it in
the object Dmtx. With the help of the chol() function, we compute the Cholesky
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R14.4 R syntax: Various unconstrained parameterizations of a general positive-
definite (variance–covariance) matrix. The matrix mtxUNwas created in Panel R14.1
(a) The matrix-logarithm parameterization – pdSymm class

> pdSm0 <- pdSymm(mtxUN)

> coef(pdSm0) # Unconstrained qD

[1] 0.68424 0.08184 1.09344

> Dmtx <- pdMatrix(pdSm0) # Matrix D
> CholD <- chol(Dmtx) # Cholesky factor U of D: D= U′U
> vd <- svd(CholD, nu=0) # SVD of U: (13.46)

> vd$v %*% (log(vd$d) * t(vd$v)) # (13.47)

[,1] [,2]

[1,] 0.68424 0.08184

[2,] 0.08184 1.09344

(b) The log-Cholesky parameterization – pdLogChol class

> pdLCh <- pdLogChol(mtxUN)

> coef(pdLCh) # Unconstrained coefficients qD

[1] 0.69315 1.08453 0.50000

> LChD <- CholD # U
> diag(LChD) <- log(diag(LChD)) # diag(U) log-transformed

> LChD

[,1] [,2]

[1,] 0.69315 0.5000

[2,] 0.00000 1.0845

(c) The “natural” parameterization – pdNatural class

> pdNat <- pdNatural(mtxUN)

> coef(pdNat) # Unconstrained qD

[1] 0.69315 1.09861 0.33647

> log(sqrt(diag(Dmtx))) # log(SDs)

[1] 0.69315 1.09861

> corD <- cov2cor(Dmtx) # Corr(D)
> rho <- corD[upper.tri(corD)] # %ij (for i < j)
> log((1+rho)/(1-rho)) # Fisher's z: (10.33)

[1] 0.33647

decomposition of the matrix Dmtx and store the resulting Cholesky factor in the
object CholD. Then, we apply the function svd() to compute SVD of CholD.
The components of the decomposition are stored in the object vd. By extracting
the components vd$v and vd$d, we compute the logarithm of the matrix CholD.
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The upper-triangular elements of the resulting matrix-logarithm correspond to the
unconstrained coefficients obtained by applying the coef() method to the object
pdSm0. It is worth mentioning that the matrix logarithm of the matrix Dmtx can
be obtained by simply doubling the elements of the matrix logarithm of the matrix
CholD.

In Panel R14.4b, we show the pdLogChol representation of the matrix mtxUN.
Toward this end, we apply the pdLogChol() constructor function to mtxUN and
display the resulting unconstrained coefficients using the coef() method. The
representation is based on the Cholesky decomposition of the matrix, obtained
with the requirement that the diagonal elements of the resulting Cholesky factor
are positive (Sect. 13.5.4). The coefficients are obtained from the elements of the
Cholesky factor matrix, but with the diagonal elements replaced by their logarithms.
To illustrate the computation of the coefficients explicitly, we reuse the matrix
CholD, created in Panel R14.4a. Then, we replace the diagonal elements of the
resulting matrix, LChD, by their logarithms. The upper-triangular elements of the
so-obtained matrix correspond to the unconstrained coefficients of the pdLogChol
representation.

Finally, in Panel R14.4c, we present the pdNatural representation of the ma-
trix mtxUN. Toward this end, we apply the pdNatural() constructor function.
The representation is based on the use of standard deviations and correlation
coefficients, which correspond to mtxUN. The coefficients are obtained by log-
transforming the standard deviations and by applying Fisher’s z-transform to the
correlation coefficients (Sect. 13.5.4). The transformations are shown explicitly
in this subpanel. In the process, the function cov2cor() is used to compute
the correlation matrix, corresponding to mtxUN (Sect. 12.3.2), while the function
upper.tri() is applied to define the correlation coefficients as the upper-triangular
elements of the computed correlation matrix.

Following the discussion, presented in Sect. 13.5.4, and the description given
above, it is clear that the pdLogChol- and pdSymm-class representations are suitable
for the numerical optimization purposes. On the other hand, the representation used
in the pdNatural class does not guarantee that the represented matrix is positive
definite. Thus, it should not be used in numerical optimization. However, it is
suitable for the construction of the confidence intervals for the elements of the
matrix, as explained in Sect. 13.7.3.

14.3 Random-Effects Structure Representation:
The reStruct class

As mentioned in Sect. 14.2, the random-effects structure of an LMM includes the
information about the levels of the model hierarchy, the Zi design matrices, and the
parameterized form of the matrix (or matrices) D.



284 14 Fitting Linear Mixed-Effects Models: The lme() Function

In the package nlme, the structure is represented by specialized list-objects of
class reStruct. Every component of the list is in itself an object of class pdMat,
corresponding to an appropriate level of model hierarchy.

14.3.1 Constructor Function for the reStruct Class

The function reStruct() is a constructor function for an object of class reStruct.
The arguments of the function include object, pdClass, REML, data, x, sigma,
reEstimates, and verbose. Description of these arguments can be obtained by
issuing the command ?reStruct.

The argument object is the most important one. We will describe its use in
more detail, because the syntax is very similar to that of the random argument of
the lme() function, which is the key function to fit LMMs in the package nlme.
The syntax of the lme() function will be described in Sect. 14.5.

The essential role of the object argument is to pass the information necessary
for the specification of the random-effects structure. In particular, the argument is
used to provide the information about the model hierarchy and about the formulae
associated with the pdMat objects, which are later used to create the design matrices
Zi. In addition, the argument can be used to specify the information about the
structure of the matrix (or matrices) D, including the values of their elements.

In Table 14.1, we provide examples of four forms of the syntax that can be used
for the argument object of the reStruct() constructor function. To maintain
generality of the presentation, the examples are given for a hypothetical, two-level
LMM, as defined in (13.5). We assume that the two levels of grouping are defined
by grouping factors g1 and g2. The variables z1 and z2, together with random
intercepts, are used as random-effects covariates at the grouping levels defined by
g1 and g2, respectively.

All forms of the syntax, shown in Table 14.1, allow a direct specification of the
hierarchical structure of the model using grouping factors, such as g1 and g2 in our
example. However, they differ in the flexibility of specifying other components of
the random-effects structure. To illustrate the differences, we consider the use of the
variables z1 and z2 to introduce random effects associated with covariates.

In Table 14.2, we point to the limitations of the different forms of the syntax,
which were presented in Table 14.1. In part (a) of the table, we present an example
of syntax for a single-level LMM, with grouping defined by the factor g1 and a
single random-effects covariate z1. In part (b) of the table, we show the four forms
of the syntax for the same setting as in Table 14.1, i.e., for a two-level LMM.

The syntax (a) is the most flexible. It essentially allows incorporating the infor-
mation about all components of the random-effects structure, which are supported
by the lme() function. In particular, for a two-level LMM (see (13.5)), it allows
specifying different structures of the D matrices at different levels of the model
hierarchy. In the example presented in Table 14.1, the different matrix structures are
represented by objects of classes pdSymm and pdDiag. That is, the matrix D1 is
assumed to have a general form, while the matrix D2 is assumed to be diagonal.
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Table 14.1 R syntax: Syntaxa for the argument object of the reStruct() constructor
function

Syntax form Description

(a) List with named components of class pdMat and with
grouping factorsb,c used as names of the components,
e.g., list(g1 = pdSymm(~z1), g2 = pdDiag(~z2))

(b) Unnamed list of one-sided formulae with | operator, e.g.,
list(~z1 | g1, ~z2 | g2)

(c) Named list of one-sided formulae without | operator, with
grouping factors used as names of the components, e.g.,
list(g1 = ~z1, g2 = ~z2)

(d) One-sided formula with | operator, e.g., ~z1 | g1/g2
aThe examples of the syntax are given for a hypothetical two-level model (13.5)
bVariables z1 and z2 are used as the random-effects covariates.
cVariables g1 and g2 are considered grouping factors

Table 14.2 R syntax: Limitations of the different forms of the syntax for the object argument of
the reStruct() function

(a) A single-level LMM. Grouping factor: g1. Z-covariate: z1
Form Syntax of the argument Limitation

(a) list(g1 = pdSymm(~z1)) Most flexible
(b) list(~z1 | g1) No structure for D; pdLogChol class by defaulta

(c) list(g1 = ~z1) Same as above
(d) ~z1 | g1 Same as above
(b) A two-level LMM. Grouping factors: g1, g2. Z-covariates: z1, z2
Form Syntax of the argument Limitation
(a) list(g1 = pdSymm(~z1), g2 =

pdDiag(~z2))

Most flexible

(b) list(~z1 | g1, ~z2 | g2) The same D structure (pdLogChol class) used
for both grouping factorsa

(c) list(g1 = ~z1, g2 = ~z2) Same as above
(d) ~z1 | g1/g2 Same as above Additionally, the same

Z-covariate(s) for both levels.
a The default value of the second argument, pdClass = "pdLogChol", is assumed

The remaining forms of the syntax, (b)–(d), are notationally simpler, but also
less flexible, as compared to (a). One complication is that the structure of the matrix
(matrices) D has to be determined from the value of another argument of the function
reStruct(), namely, pdClass. By default, the argument specifies the pdLogChol
class, which results in a general positive-definite matrix. To change this default
choice, the argument pdClass needs to be specified explicitly, and the call to the
reStruct() function has to assume the form reStruct(object,pdClass).

For LMMs for data with two or more levels of grouping, an additional limitation
of the forms (b)–(d) of the syntax is that the structures of matrices D at different
levels of grouping are forced to be the same.
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A specific limitation of the syntax (d) for multilevel LMMs is that it also requires
that the random-effects covariates are assumed to be the same at different grouping
levels. For some models, this limitation is irrelevant; however, this is the case for,
e.g., LMMs with random intercepts only.

It is worth mentioning that, regardless of the form of the syntax used, the order of
specifying the grouping factors is important. More specifically, even if the grouping
factors are coded as crossed with each other, they are effectively treated as nested,
with the nesting order corresponding to the order, in which the factors are specified
in the syntax. In particular, the grouping factors specified later in the syntax are
nested within the factors specified earlier. For example, according to the syntax (a)
in Table 14.1, the factor g2 would be treated as nested within the factor g1.

14.3.2 Inspecting and Modifying Objects of Class reStruct

In Panel R14.5, we demonstrate how to create and extract information from objects
of class reStruct. We use the syntax form (a) (Table 14.1) to create the reStruct-
class object reSt. The object is constructed for a hypothetical two-level LMM, as
defined in (13.5). We assume that the two levels of grouping are defined by the
grouping factors g1 and g2. The structures of the variance–covariance matrices D1
and D2 of random effects at the two levels of grouping are defined by the objects
pdSm of class pdSymm and pdCSf of class pdCompSymm, respectively.

Using the function isInitialized(), we verify whether the object reSt is
initialized. Given that both pdSm and pdCSf were initialized objects that inherited
from the pdMat class (see Panel R14.1), the resulting reStruct-class object is also
initialized. By applying the function names(), we get the names of the components
of the list, contained in reSt, i.e., the names of factors g1 and g2. The function
formula() extracts the formula from each of the components. The displayed
formulae correspond to those used in the definition of the objects pdSymm and pdDCf
in Panel R14.1.

The function getGroupsFormula() provides information about the grouping
of the data, used in the definition of the reStruct-class object. It refers to the
conditioning expression, i.e., the expression used after the | operator in the
formula(e) defining the object (see the syntax forms shown in Table 14.2). In our
example, the structure is defined by the factors g1 and g2, with levels of g2 nested
within the levels of g1. Note that the function getGroupsFormula() allows two
optional arguments, asList and sep. Information about the use of these arguments
can be obtained by issuing the command ?getGroupsFormula.

In Panel R14.5, we also apply the function Names() to the object reSt.
The function returns the names of rows/columns for the matrices, represented by the
pdMat-class objects, which define the reStruct-class object (see also Panel R14.2).
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R14.5 R syntax: Creating an object of class reStruct, representing a two-level LMM
for data with two levels of grouping, and extracting information from the object.
Auxiliary objects pdSm and pdCSf, which inherit from the pdMat class, were created
in Panel R14.1

> reSt <- reStruct(list(g1=pdSm, # D1
+ g2=pdCSf)) # D2
> isInitialized(reSt)

[1] TRUE

> names(reSt) # Note: order g1, g2 reversed

[1] "g2" "g1"

> formula(reSt) # Formulae for pdMat components

$g2

~-1 + agef

$g1

~agex

> getGroupsFormula(reSt) # Model hierarchy

~g1/g2

<environment: 0x0000000003d6efd8>

> Names(reSt) # Row/col names for pdMat components

$g2

[1] "agefM" "agefO" "agefY"

$g1

[1] "(Intercept)" "agex"

In Panel R14.6, we show the methods of extracting information about the
matrices corresponding to the pdMat-class objects, which define a reStruct-class
object. As an example, we use the object reSt, which was created in Panel R14.5.
The function as.matrix() used in Panel R14.6a displays the positive-definite
matrices, corresponding to the two variance–covariance matrices of random effects
at the two levels of grouping. The displayed matrices are, obviously, equivalent to
those stored in the objects pdSm and pdCSf, which were used to define the object
reSt (see Panel R14.1). By applying the function coef(), we list the unconstrained
coefficients corresponding to the matrices. They correspond to the values displayed
in Panel R14.3.

The individual pdMat-class objects, defining the reStruct-class object, can be
obtained by extracting the appropriate components of the list, which is contained in
the latter object. One possible way to achieve that goal is illustrated in Panel R14.6b.
Additionally, using the all.equal() function, we confirm that the object, extracted
as the g2 component of reSt, is equivalent to the pdMat-class object pdCsf.
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R14.6 R syntax: Extracting information about pdMat-class objects directly from an
object of class reStruct, representing a two-level LMM for data with two-levels of
grouping. The object reSt, which inherits from the reStruct class, was created in
Panel R14.5
(a) Listing information about positive-definite matrices from a reStruct object

> as.matrix(reSt) # D1, D2

$g1

(Intercept) agex

(Intercept) 4 1

agex 1 9

$g2

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

> coef(reSt) # Unconstrained coeff. for D2, D1

g21 g22 g11 g12 g13

0.80472 -0.13353 0.68424 0.08184 1.09344

(b) Extracting individual pdMat-class components from a reStruct object

> reSt[["g1"]] # See pdSm in Panel R14.1b

Positive definite matrix structure of class pdSymm representing

(Intercept) agex

(Intercept) 4 1

agex 1 9

> g2.pdMat <- reSt[["g2"]] # See pdCSf in Panel R14.1c

> all.equal(pdCSf, g2.pdMat) # g2.pdMat and pdCSf are equal

[1] TRUE

Panel R14.7 demonstrates how to evaluate an object of class reStruct in the context
of a dataset. Toward this end, we use data frames dt1 and dt2, which were created
in Panel R14.1, together with the object reSt, which was created in Panel R14.5.

In Panel R14.7, we first apply the default method of the generic
model.matrix() function (Sect. 5.3.2) to formulae extracted from the pdMat-class
objects pdSm and pdCSf. The formulae are evaluated using the data stored in data
frames dt1 and dt2, respectively. The created random-effects design matrices, Z1
and Z2, are stored in the objects Zmtx1 and Zmtx2, respectively, and displayed with
the help of the matrix-printing function prmatrix().

Next, we create the random-effects design matrix Z corresponding to the
object reSt. Toward this end, we first create the data frame dtz by merging the
data frames dt1 and dt2. Then, we apply the function model.matrix() with
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R14.7 R syntax: Creation of the design matrix Z by evaluating an object of class
reStruct for (hypothetical) data containing random-effects covariates. Objects dt1,
dt2, pdSm, and pdCSf were created in Panel R14.1. The object reSt was created in
Panel R14.5

> Zmtx1 <- model.matrix(formula(pdSm), dt1)

> prmatrix(Zmtx1) # Design matrix Z1 for pdSm

(Intercept) agex

1 1 15

2 1 45

3 1 71

4 1 82

> Zmtx2 <- model.matrix(formula(pdCSf),dt2)

> prmatrix(Zmtx2) # Design matrix Z2 for pdCSf

agefM agefO agefY

1 0 0 1

2 1 0 0

3 0 1 0

4 0 1 0

> dtz <- data.frame(dt1,dt2) # Data frame to evaluate reSt

> Zmtx <- model.matrix(reSt, dtz) # Design matrix Z for reSt

> prmatrix(Zmtx) # Matrix Z w/out attributes

g2.agefM g2.agefO g2.agefY g1.(Intercept) g1.agex

1 0 0 1 1 15

2 1 0 0 1 45

3 0 1 0 1 71

4 0 1 0 1 82

arguments object=reSt and data=dtz. Note that, because the object reSt is of
class reStruct, the generic function model.matrix() does not dispatch its default
method, but the model.matrix.reStruct() method from the nlme package. As
a result, the random-effects design matrices for the objects pdSm and pdCSf, which
define the object reSt, are created and merged. The outcome is stored in the matrix-
object Zmtx, which is displayed with the use of the function prmatrix(). Note
that, in Zmtx, the three first columns come from the design matrix corresponding
to the object pdSm, which was used to define the variance–covariance matrix of
random effects present at the level of grouping corresponding to the factor g2. When
defining the object reSt, the factor was specified as the second one, after the factor
g1 (see Panel R14.5).

It is worth noting that, as compared to the default method of the function
model.matrix(), the model.matrix.reStruct() method also allows for an
optional argument contrast. The argument can be used to provide a named list of
the contrasts, which should be used to decode the factors present in the definition of
the reStruct-class object. Unless the argument is explicitly used, the default contrast
specification is applied (see Sect. 5.3.2).
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Table 14.3 R syntax: Extracting results from a hypothetical object reSt of class
reStruct

Random- effects structure component
to be extracted Syntax

Summary summary(reSt)

The reStruct formula formula(reSt)

Groups formula getGroupsFormula(reSt)

Constrained coefficients coef(reSt, unconstrained=FALSE)

Unconstrained coefficients coef(reSt)

List of D matrices as.matrix(reSt)

pdMatrix(reSt)

Log-determinants of D1/2 matrices logDet(reSt)

For the reader’s convenience, in Table 14.3, we summarize the methods used to
extract the information about the components of an reStruct-class object.

14.4 The Random Part of the Model Representation:
The lmeStruct Class

The lmeStruct class is an auxiliary class, which allows us to compactly store the
information about the random part of an LMM, including the random effects struc-
ture, correlation structure, and variance function. Objects of this class are created
using the lmeStruct() function with three arguments: reStruct, corStruct,
and varStruct. The arguments are given as objects of class reStruct, corStruct,
and varFunc, respectively. The classes were described in Sects. 14.3, 11.2, and 8.2,
respectively.

The argument reStruct is mandatory, while corStruct and varStruct are
optional, with the default value equal to NULL.

The function lmeStruct() returns a list determining the model components.
The list contains at least one component, namely, reStruct.

When specifying an LMM with the help of the lme() function, the use of
an lmeStruct-class object is not needed. Such an object is nevertheless created
very early during the execution of the lme()-function call. The importance of the
lmeStruct class will become more apparent in Sect. 14.6, where we demonstrate how
to extract results from an object containing a fit of an LMM.

In Panel R14.8, we demonstrate how to create and extract information from an
object of class lmeStruct.

First, we create an object of class reStruct. Toward this end, we use the
reStruct() constructor function (Sect. 14.3.1). The created object, reSt, is the
same as the one constructed in Panel R14.5. It defines the random-effects structure
of a two-level LMM, with grouping specified by factors g1 and g2 (Sect. 14.3.2).
The variance–covariance matrices of random effects at the two levels of grouping
are defined by the objects pdSm of class pdSymm (a general positive-definite matrix)
and pdCSf of class pdCompSymm (a compound-symmetry matrix), respectively.
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R14.8 R syntax: Creating and probing objects of class lmeStruct. Objects pdSm and
pdCSf, which inherit from the pdMat class, were created in Panel R14.1

> reSt <- reStruct(list(g1=pdSm, g2=pdCSf)) # reStruct class

> corSt <- corExp(c(0.3,0.1), form=~tx, nugget=TRUE) # corStruct class

> vF <- varExp(0.8, form=~agex) # varFunc class

> (lmeSt<- lmeStruct(reStruct=reSt, corStruct=corSt, # lmeStruct class

+ varStruct = vF)) # ... created.

reStruct parameters:

g21 g22 g11 g12 g13

0.80472 -0.13353 0.68424 0.08184 1.09344

corStruct parameters:

range nugget

0.3 0.1

varStruct parameters:

expon

0.8

> coefs <- coef(lmeSt,unconstrained=FALSE)# Constrained coefficients...

> (as.matrix(coefs)) # ... printed more compactly

[,1]

reStruct.g2.std. dev 2.23607

reStruct.g2.corr. 0.20000

reStruct.g1.var((Intercept)) 4.00000

reStruct.g1.cov(agex,(Intercept)) 1.00000

reStruct.g1.var(agex) 9.00000

corStruct.range 1.34986

corStruct.nugget 0.52498

varStruct.expon 0.80000

In the next step, we create an object of class corStruct (Sect. 11.2). As an
example, we consider the corExp class, which represents the exponential correlation
structure (Sect. 11.4.3). The object corSt corresponds to an exponential structure
with the range parameter % = 0.3 and the nugget equal to 0.1 (see Sects. 10.3.2
and 11.2.1 and Panel R11.1).

Finally, we specify the object vF of class varFunc (Sect. 8.2). As an example,
we consider the varExp class, which represents a variance structure defined by an
exponential function of the covariate agex (see Table 7.2 in Sect. 7.3.1).

Using the objects reSt, corSt, and vF as the arguments reStruct, corStruct,
and varStruct, respectively, of the lmeStruct() function, we create the object
lmeSt of class lmeStruct. With the help of the coef() function, combined with the
use of the unconstrained=FALSE argument, we display the coefficients, defining
the various components of the lmeStruct-class object, in the constrained form (see
Sects. 8.3, 11.3.1, and 14.2.2).
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14.5 Using the Function lme() to Specify and Fit Linear
Mixed-Effects Models

The generic lme() function is the most frequently used function to fit LMMs in R. It
allows to specify and fit models described in Sect. 13.2 with nested random effects
and correlated and/or heteroscedastic within-group residual errors. In general, to
define the LMM in full, we need at least to specify the mean structure and the
random-effects structure, including the grouping factors defining model hierarchy.
In addition, the correlation structure, variance function, and model frame need to be
defined.

In Table 14.4, we summarize selected arguments used by the function lme(),
together with a reference to the section describing the appropriate syntax and an
indication of the implied LMM components. In what follows, we briefly summarize
the use of the arguments.

The principal argument fixed is primarily used to define the mean structure
of an LMM. The argument can accept objects of classes formula, groupedData, or
lmList. Depending on the class of the object, the corresponding method of the lme()
function, i.e., lme.formula(), lme.groupedData(), or lme.lmList(), is used.

The most common choice for the fixed argument is a two-sided formula
(Sect. 5.2).

The argument can be specified using an object of class groupedData. This way
allows providing the information about the mean structure and about the model
hierarchy defined by (nested) grouping factors. An important limitation of this form
of specification of the fixed argument is that it allows only for mean structures
with one (primary) covariate.

The argument can also be specified by providing an lmList-class object, i.e., a
list of lm-class linear-model-fit objects (Sect. 5.5) for all levels of a grouping factor.
This method is rarely used and we do not present it here.

Table 14.4 R syntax: Selected arguments of the function lme() used to specify a linear
mixed-effects model defined in Sect. 13.2

Argument

Name Class Syntax Component(s) created/defined

fixed formula Sect. 5.2 Mean structure
groupedData Sect. 2.6 Mean structure; grouping factors
lmList – –

random reStructa Sect. 14.3 Random-effects structure;
grouping factors (optionally)

correlation corStructa Sect. 11.2 Correlation structure
weights varFunca Sect. 8.2 Variance function
data data.frame Sect. 5.4 Data

groupedData Sect. 2.6 Data; grouping factors
method Sect. 5.4 Estimation method
aOther choices of the class for the corresponding argument are possible but not listed.
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The random argument is the primary argument used to define the random-effects
structure. In the argument, the syntax forms (a)–(d), shown in Table 14.1, can be
used. They allow specifying all aspects of the random-effects structure, including
the model hierarchy defined by grouping factors.

The specification of the random argument can be simplified by omitting the
reference to grouping factors in the forms (a)–(c) of syntax from Table 14.1. For
example, in the syntax (a), the names of the list components g1 and g2 can
be omitted. That is, a list with unnamed components, i.e., list(pdSymm(~z1),
pdDiag(~z2)), can be used. The simplified syntax has disadvantages. For instance,
it does not include the information about the grouping factors defining the model
hierarchy. The information needs to be supplemented using a groupedData-class
object in the fixed or data argument.

If the random argument is not specified, then, by default, it is assumed that the
design matrices for the fixed and random effects are equal (Xi ≡ Zi) and that the
variance–covariance matrix for the random effects is defined by an object of class
pdSymm. That is, a general variance–covariance matrix is assumed. Also in this
case, the information about the model hierarchy needs to be supplemented using a
groupedData-class object in the fixed or data argument.

The syntax of the arguments weights and correlation is the same as for
the corresponding arguments of the gls() function (Sects. 8.4 and 11.5). The two
arguments allow to specify the residual variance–covariance matrix Ri, as defined in
(13.4), using the decomposition given by (10.8). The default values for the weights
and correlation arguments imply independent and homoscedastic conditional
residual errors.

The data argument is used to provide the raw data and, optionally, the
information about the data hierarchy. Similarly to other model-fitting functions,
additional arguments subset and na.action can be used together with data to
define the model frame (Sect. 5.3.1). For the definition of these arguments, we refer
to Sect. 5.3.1.

The default value of the method argument is method="REML". That is, the model
parameters are estimated using the restricted likelihood (Sect. 13.5.2). An alternative
is method="ML". It is worth mentioning that the initial values for the qD parameters
are refined using an EM-based algorithm (Sect. 13.5.6).

14.6 Extracting Information from a Model-Fit Object
of Class lme

In Table 14.5, we present several methods to extract information from a model-fit
object of class lme. We assume that an object lme.fit is available, which contains
the results of fitting a single-level LMM, defined in (13.1)–(13.4).
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Table 14.5 R syntax: Extracting results from a hypothetical object lme.fit of class lme,
which represents a single-level linear mixed-effects model fitted using the lme() function

Model-fit Function: lme()
component to Package: nlme
be extracted Object: lme.fit

Class: lme
Summary (summ <- summary(lme.fit))

Estimation method lme.fit$method
̂b fixef(lme.fit)
̂b, se(̂b), t-test summ$tTable
̂Var(̂b) vcov(lme.fit)

95% CI for b intervals(lme.fit, which="fixed")

ŝ summ$sigma

95% CI for q,s intervals(lme.fit, which="var-cov")

95% CI for qD intervals(lme.fit,

which="var-cov")$reStruct

̂bi ranef(lme.fit)
̂b + “coupled” ̂bi coef(lme.fit)

coef(summ)

̂D getVarCov(lme.fit)
̂D and ŝ VarCorr(lme.fit)
̂Ri getVarCov(lme.fit, type="conditional")
̂Vi getVarCov(lme.fit, type="marginal")

ML value logLik(lme.fit, REML = FALSE)

REML value logLik(lme.fit, REML = TRUE)

AIC AIC(lme.fit)

BIC BIC(lme.fit)

Fitted values:
- conditional, (13.12) fitted(lme.fit)

- marginal, (13.24) fitted(lme.fit, level=0)

Raw residuals:
- conditional, (13.52) resid(lme.fit, type="response")

- marginal, (13.53) resid(lme.fit, type="response", level=0)

Normalized residuals:
- conditional, (13.54) resid(lme.fit, type="normalized")

- marginal, (13.55) –
Pearson residuals, Sect. 7.5.1 resid(lme.fit, type="pearson")

Predicted values:
- conditional predict(lme.fit, newdata )

- marginal predict(lme.fit, newdata, level= 0)

Using the generic function summary() allows us to obtain general information
about the fitted form of the model, including the information about the estimated
values of the fixed effects, the fitted random-effects structure, and the estimated
residual variance–covariance matrix.

If information about only a specific aspect of the fitted model is needed, it can be
obtained by extracting a specific component of the model-fit object or by applying
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a special function to the object. For instance, the estimation method, used to fit the
model, is displayed by extracting the lme.fit$method component. Estimates of
the fixed effects b are displayed using the function fixef(), while the estimated
variance–covariance of the estimates (Sect. 13.5.5) is obtained using the function
vcov().

Confidence intervals for the model parameters (see Sect. 13.7.3) are obtained by
applying the generic function intervals(). Intervals for a specific subgroup of the
parameters are selected using the argument which. For instance, which="fixed"
provides CIs for the fixed effects, while which="var-cov" yields the intervals
for all variance–covariance parameters. By default, which="all", i.e., CIs for all
model parameters are provided. The confidence level can be chosen with the help
of the level argument. By default, level=0.95. The result of the application of
the function intervals() to a model-fit object of class lme is a list with named
components. Each of the components is a data frame, with rows corresponding to
the parameters of the model, and columns representing the estimated values and the
confidence limits for the parameters. The possible components are the following:
fixed (fixed effects), reStruct (parameters of the variance-covariance matrices
of the random effects), corStruct (residual correlation-structure parameters),
varFunc (residual variance-function parameters), and sigma (scale parameter). In
Table 14.5, we present how to display CIs only for the parameters of the variance–
covariance matrices of the random effects by extracting the reStruct component
of the object resulting from the intervals() function call.

By applying the function ranef() to a model-fit object of class lme, the
estimated random effects are displayed. By default, the effects at all levels of
grouping are displayed. The levels can be selected with the help of the level

argument. Information about other arguments, available for the function ranef(),
can be obtained by issuing the command ?ranef.

The function coef(), applied to an lme-class model-fit object, displays the
estimated coefficients for a particular (or all) levels of grouping. The coefficients
are obtained by summing the fixed effects and, if appropriate, the “coupled”
random effects (Sect. 13.2.1). The levels can be selected with the help of the
level argument. Information about other arguments of the function coef() can
be obtained by issuing command ?coef.lme.

Estimates of the variance–covariance matrices of the random effects and
residual errors, as well as the marginal variance–covariance matrix, are ob-
tained using the function getVarCov(). The argument type allows choosing
the matrix to be displayed. In particular, type="random.effects" (the default)
prints out the estimates of the variance–covariance matrices of random effects,
type="conditional" prints out the estimate of the residual variance–covariance
matrix, and type="marginal" provides the estimate of the marginal variance-
covariance matrix. With the help of the individuals argument, it is possible to
select the group(s) of observations, for which the function getVarCov() should
display the (residual or marginal) variance–covariance matrices.

An alternative method to extract the variance–covariance matrix of the random
effects is to use the function VarCorr(). When applied to an lme-class model-
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fit object, the function extracts the estimated variances, standard deviations, and
correlations of the random effects. Additionally, it provides the estimates of s 2

and s . The function uses three arguments: x, sigma, and rdig. The first one
specifies the model-fit object; the second one is an optional numeric value that
indicates a multiplier for the standard deviations and assumes the value of 1 as
default; and the last one is an optional integer value, which indicates the number of
digits (by default, 3) that are to be used to represent the correlation estimates.

Fitted values, residuals, and predicted values are obtained by applying the
functions fitted(), resid(), and predict(), respectively. All the functions
allow for an optional argument level, in the form of a vector of integers, which
indicates the level(s) of grouping, for which the values are to be extracted. The
levels increase from 0, i.e., the population level, to the highest level of grouping,
i.e., the level corresponding to the grouping factor, which is nested within all the
other factors. Thus, level=0 yields the estimates of the marginal mean values
or marginal residuals, while for nonzero levels, the conditional mean values or
conditional residuals are provided. In particular, the conditional mean values at a
particular level, k say, are obtained by adding the marginal mean values and the
predictors of the random effects at the grouping levels lower or equal to k. The
conditional residuals at level k are obtained by subtracting the conditional mean
values at that level from the dependent-variable vector. By default, level specifies
the highest level of grouping.

An important argument of the function resid() is type. It indicates the
type of residuals to be computed (Sect. 13.6.2). The possible choices are
type="response" (raw residuals), type="pearson" (Pearson residuals), and
type="normalized" (normalized residuals). It is worth mentioning that the
Pearson/normalized residuals are standardized/transformed based on the ele-
ments of the residual variance–covariance matrix ̂Ri, and not on the marginal
variance–covariance matrix ̂Vi. Hence, the use of arguments type="pearson" or
type="normalized" in combination with a nondefault value of level argument
is not meaningful. This remark applies, for example, to marginal residuals obtained
using level=0.

The function predict() allows for an optional argument newdata. It indicates
a data frame for which the predictions are to be calculated. The data frame should
contain all variables that were used to specify the fixed effects and the random
effects of the fitted LMM, as well as the grouping factors. If the argument is missing,
the function will employ data used to fit the model. Consequently, it returns the fitted
values corresponding to the level specified in the level argument.

In Table 14.6, we present methods of extracting the details about the lme()-
function call which was used to create a model-fit object of class lme. The methods
are similar to those presented in Tables 5.5, 8.2, and 11.1 for a gls-class model-fit
object. Note that the function model.matrix() (Sect. 5.3.2) provides the design
matrix for the mean structure, i.e., the matrix Xi. Extracting the design matrix for
the random effects, Zi, from an lme-class model-fit object is difficult. As it requires
extra programming, we do not present the required code.
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Table 14.6 R syntax: Extracting components of the lme()-function call from
a hypothetical object lme.fit, which represents a fitted single-level linear
mixed-effect model

R call component Syntax

R call (cl <- getCall(lme.fit))

Formula for the mean structure (form <- formula(lme.fit))

Argument random cl$random

Argument correlation cl$correlation

Argument weights cl$weights

Data name (df.name <- cl$data)

Data frame (df <- eval(df.name))

Model frame (mf <- model.frame(form, df))

Design matrix model.matrix(form, mf)

Table 14.7 R syntax: Extracting information about the random components from a hypothetical
object lme.fit, which represents a fitted single-level linear mixed-effect model

Auxiliary objects to be extracted (R class) Syntax

Random part of the model (lmeStruct) see Section 14.4 lmeSt <- lme.fit$modelStruct

Random-effects structure (reStruct) see Section 14.3.2 reSt <- lmeSt$reStruct

Variance-function structure (varFunc) see Table 8.2b vF <- lmeSt$varStruct

Correlation structure (corStruct) see Table 11.1b cSt <- lmeSt$corStruct

In Table 14.7, we summarize methods to extract information about the random
components of a fitted LMM. As mentioned in Sect. 14.4, the random part of
the model, which includes the random effects structure, the residual correlation
structure, and the residual variance function, is represented by an object of class
lmeStruct. The object can be accessed by referring to the modelStruct component
of the lme-class model-fit object. The random effects structure, as described in
Sect. 14.3, is represented by an object of class reStruct, which is stored as the
reStruct component of the lmeStruct-class object. If a correlation structure
and/or a variance function were used in defining the residual variance–covariance
matrix of the LMM, they are represented by objects of classes corStruct and
varFunc, respectively, which are stored as components corStruct and varStruct,
respectively, of the lmeStruct-class object.

14.7 Tests of Hypotheses About the Model Parameters

As was the case for LMs for independent, heteroscedastic observations (Sect. 8.5)
or fixed-effects LMs for correlated data (Sect. 11.6), results of the F-tests for
linear hypotheses about the fixed effects (Sect. 13.7.1), based on a fitted LMM,
are accessed by applying the anova() method to the model-fit object of class lme.
By default, the sequential-approach tests are obtained (Sect. 4.7.1). To obtain the
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marginal-approach tests, the argument type="marginal" should be used. F-tests
for individual/multiple terms can be obtained by applying the argumentTerms in the
form of an integer vector or a character vector that specifies the terms in the model
that should be jointly tested. If a character vector is used, it should contain the names
of the terms used in the model formula. If an integer vector is used, its elements
should correspond to the order in which terms are included in the model formula.
Additional arguments that can be used in the anova() method for lme-class model-
fit objects include test, adjustSigma, L, and verbose. The information about the
use of these arguments can be obtained by issuing the command ?anova.lme.

The t-tests for individual coefficients are provided by applying, e.g., the sum-

mary() method to the model-fit object. Note that, in this case, the marginal-
approach tests are obtained.

As was discussed in Sect. 13.7.1, neither the p values for the F-tests, nor the ones
for the t-tests, adjust for the fact that the null distribution of the test statistics is only
approximated by F- or t-distributions, respectively. Thus, the degrees of freedom
for the tests are computed as in a balanced, multilevel ANOVA design (Schluchter
and Elashoff 1990; Pinheiro and Bates 2000). In particular, assuming G levels of
grouping, the number of denominator degrees of freedom ddfg for the tests of fixed
effects at level g (g = 1, . . . ,G+ 1) is equal to

ddfg = Ng− (Ng−1 + pg), (14.1)

where Ng is the number of groups at the g-th grouping level and pg is the number
of fixed-effects coefficients estimated at that level. The latter is the number of
coefficients related to the variables whose values change across the values of the
grouping factor(s) at the grouping level g, but do not change across the values of
the grouping factor(s) at the level g− 1. Note that the intercept, if present in the
model, is treated as being estimated at the level g = 0, but its denominator degrees
of freedom are calculated from the level G+ 1, i.e., at the level of observations. An
example of the calculation of the denominator degrees of freedom is presented in
Sect. 16.7.1.

When the function anova() is applied to two or more objects of class lme, it
provides LR-test statistics, calculated based on pairs of the LMMs represented by
the consecutive objects. If the models are nested, have the same structure of random
effects and of residual variance–covariance matrix, and are fitted using ML, the
results of the LR tests, reported by the function, provide valid tests for hypotheses
about the fixed effects (Sect. 7.6.1). On the other hand, if the nested models are fitted
using REML and have the same mean structure, but different random structures,
the reported LR tests are valid tests of hypotheses about the parameters defining
random-effects structure.

In Sect. 13.7.1 it was mentioned that, instead of using a c2 distribution for an LR
test of a hypothesis about fixed effects, one could use an empirical distribution of the
test statistic, obtained by fitting the alternative and null models to multiple datasets
simulated under the null model. A similar comment was made in Sect. 13.7.2 for
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the LR test of hypotheses about random effects, when the values of the variance–
covariance parameters, compatible with the null hypothesis, lie on the boundary
of the parameter space. To address this issue, the function simulate() from the
package nlme can be used. It computes the ML- and/or REML-based log-likelihood
values for multiple datasets simulated from the null and alternative LMMs. This
allows the calculation of the empirical distribution of the LR-test statistic.

The function admits the following arguments: object, m2, nsim, method, seed,
niterEM, and useGen. The first four are the most important ones and we describe
them in more detail below. A description of all of the arguments can be obtained by
issuing the command ?simulate.

The argument object defines the null model. The argument can be provided
either as an object of class lme, which represents a fitted LMM, or as a named list
with components fixed, data, and random, which should define a valid call of the
function lme() to fit the LMM (Sect. 14.5). The argument m2 defines the alternative
model and can be specified in a similar way as the object argument. If it is specified
as a list, only those components that change between the null and alternative models
need to be specified. The argument nsim is a positive integer which indicates the
number of simulations to be performed. By default, nsim=1. Thus, although the
arguments is optional, in practice, it should be always specified.

Finally, the argument method, which is an optional character array, allows
choosing the form of the likelihood on which the LR-test statistic is to be based.
By default, method=c("REML", "ML"), i.e., both ML- and REML-based LR-test
statistics are used.

The function returns an object of class simulate.lme, which is a named list
with two components: null and alt. Each of them has components ML and/or
REML, which are matrices. The matrices contain, in particular, the column logLik

which provides the ML- or REML-based log-likelihood value for each of the nsim
simulations. Additional attributes of the simulate.lme-class object include, among
others, seed and df. The former gives the random seed used in the random number
generator, while the latter gives the difference in the number of parameters between
the null and alternative models.

One way to present the result of the simulate()-function call is to plot the
empirical and nominal p values. The former are obtained from the empirical
distribution of the LR-test statistic values corresponding to the simulated values
of the ML- or REML-based log-likelihood, while the latter are computed from
applying a c2 distribution or a mixture of c2 distributions to the simulated values
of the LR-test statistic. The plot can be obtained by a call like plot(object,df),
where object is a simulate.lme-class object, while df is a vector of integers, which
defines the degrees of freedom of a c2 distribution to be used to compute the nominal
p values. If the vector contains more than one integer, multiple plots of nominal
versus empirical p values are created by computing the nominal p values from the
c2 distribution with the number of degrees of freedom equal to each of the integers.
Additionally, a plot for an equal-weight mixture of the c2 distributions is created.

An example of the use of the function simulate() is provided in Sect. 16.6.2.
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For the case of using the REML-based LR test for testing a hypothesis about
the random-effects structure, a possible alternative is the function exactRLRT()

from the package RLRsim. The function simulates values of the REML-based LR-
test statistic for testing the null hypothesis that the variance of a random effect is
0 in an LMM with a known correlation structure of the tested random effect and
independent and identically distributed random errors. The simulations are based
on the finite-sample distribution of the test statistic (Sect. 13.7.2) which was derived
by Crainiceanu and Ruppert (2004). The performance of the simulations was studied
by Scheipl (2010).

The main arguments of the function exactRLRT() are m, m0, and mA. The first
one is a model-fit object of class lme or lmer. For LMMs with a single variance
component (random effect), it provides the fitted model under the alternative
hypothesis. For models with multiple variance components, it should provide
the model containing only the random effect to be tested. Arguments mA and m0

apply only to models with multiple variance components. The former specifies
the model fitted under the alternative hypothesis, while the latter gives the model
fitted under the null hypothesis. Additional arguments include nsim, which is
used to specify the number of values of the test statistic to be simulated. By
default, nsim=10000. The list of all arguments of the function exactRLRT() can
be obtained by issuing the command ?exactRLRT (after attaching the package
RLRsim). An example of the use of the function exactRLRT() is provided in
Sect. 16.6.1.

It is worth noting that the functions simulate() and exactRLRT() have
important limitations. For instance, they both only apply to conditional indepen-
dence LMMs (Sect. 13.4). Additionally, the function exactRLRT() allows only
for independent random effects; simulate() can accommodate correlated random
effects, i.e., LMMs with nondiagonal variance–covariance matrices of random
effects D.

Finally, it is worth mentioning that the function anova(), when applied to two
or more objects of class lme, also provides the information criteria (Sect. 4.7.2) that
can be used to choose the best-fitting models from a set of nonnested models with
different mean and/or variance–covariance structures. The AIC and BIC can also be
obtained using the functions AIC() and BIC(), respectively (see Table 14.5).

14.8 Chapter Summary

In this chapter, we presented the tools available for fitting LMMs in the R package
nlme. In particular, we focused on the function lme().

The use of the function involves the concepts of model formula, grouped data,
variance function, and correlation structure. The concepts were introduced in the
previous chapters in the context of simpler LMs to facilitate their description
and explanation. A new, important component was the random-effects structure.
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We described several tools related to it, including the pdMat class for representing
positive-definite matrices (Sect. 14.2) and the reStruct class for representing the
random-effects structure (Sect. 14.3). In Sect. 14.4, we explained the representation
of the random part of an LMM in the form of objects of class lmeStruct. The
objects are created when the function lme() is used to fit an LMM (Sect. 14.5).
In Sect. 14.6, we described how to extract information about the estimated model
from an lme-class model-fit object. Finally, in Sect. 14.7, we briefly reviewed the
tools available for inference based on a fitted LMM.

The use of the R tools presented in this chapter will be illustrated in Chap. 16,
where the application of LMMs to the analysis of the ARMD case study will be
described.

It is worth noting that, as was mentioned in Sect. 14.3.1, when a reStruct-class
object is created, the grouping factors are effectively treated as nested. This means
that the function lme() is not particularly suitable to fit LMMs with, e.g., crossed
random effects. Such models can be easily fitted by applying the function lmer()

from the package lme4.0, which we present in the next chapter.



Chapter 15
Fitting Linear Mixed-Effects Models:
The lmer() Function

15.1 Introduction

In Chap. 14, we introduced the lme() function from the nlme package.
The function is a popular and well-established tool to fit LMMs. It is especially
suitable for fitting LMMs to data with hierarchies defined by nested grouping
factors.

In the current chapter, we present the function lmer() from the package lme4.0.
The function is especially suitable to fit LMMs with crossed random effects. It can
fit LMMs to data with hierarchies defined by nested grouping factors, too.

There are several important differences between the two functions. An important,
technical difference is that lme() has been programmed in the S3 system
(Sect. 1.2), while lmer() has been implemented in the S4 system. As a conse-
quence, the methods of extracting results for an LMM fitted by applying the lmer()
function are different than the methods used for the lme-class model-fit objects.
Another important difference is that lmer() employs computations based on sparse
matrices implemented in Matrix package. Consequently, it can be used for large-
scale computational problems, requiring high speed of calculations and efficient
storage of the data.

In what follows, we describe in more detail the use of the function lmer() to fit
LMMs. Note that, because of space restrictions, we cannot extensively discuss all
the technical issues related to the use of the S4 system features in the implementation
of lmer(). Thus, we limit ourselves to providing only the necessary information,
which can be used by the reader as a guideline for further reading and study.

The chapter is organized as follows. In Sect. 15.2, we briefly introduce LMMs
with crossed random effects. Section 15.3 presents the syntax used by lmer() to
specify LMMs. The structure of the model-fit objects and the methods of extracting
results from the objects are described in Sect. 15.4. Inferential tools available for
the LMMs that were fitted with the use of the lmer() function are discussed in

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__15,
© Springer Science+Business Media New York 2013
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Sect. 15.5. In Sect. 15.6, we describe some details related to the implementation of
the computational algorithms used by lmer() in the lme4.0 package. A summary
of the chapter is provided in Sect. 15.7.

15.2 Specification of Models with Crossed and Nested
Random Effects

In this section, we describe the specification of LMMs with crossed random
effects and compare it to the specification of LMMs with nested random effects.
The material presented in this section will help us to understand the syntax used by
the lmer() function.

It is worth noting that, strictly speaking, we should use the terms “LMMs with
random effects associated with levels of crossed/nested grouping factors” rather
than “LMMs with crossed/nested random effects.” However, the latter terms are
commonly used in the LMM literature. For this reason, we will adopt them.

To explain the difference between the nested and crossed random effects, it is
worthwhile to introduce a concrete example. Thus, we will consider hypothetical
experiments aimed at assessing the precision of machines which cut shapes from
steel plates. In the experiments, each machine, from a randomly selected group of
N machines, cuts n > 1 times the same shape out from each of P steel plates. Let us
denote by yijs the precision measurement obtained for the s-th shape (s = 1, . . . ,n)
from the j-th plate (j = 1, . . . ,P) for the i-th machine (i = 1, . . . ,N). Thus, for each
machine, we obtain in total P ·n measurements.

We may be interested in assessing the influence of the effect of machine and plate
on the measurements. Given that the machines and plates are selected at random,
we should treat their effects as random. In what follows, we will first consider
a hypothetical experiment involving the effects of plates that are nested within
machines. Then we will consider an experiment, in which the effects of plates and
machines are crossed.

15.2.1 A Hypothetical Experiment with the Effects of Plates
Nested Within Machines

Let us imagine that the experiment is run so that each of the P series of n shapes for
each machine is obtained from a different plate. We can then propose the following
model for the measurements generated in the experiment:

yijs = m+ b1,i+ b2,ij+ eijs, (15.1)

where b1,i ∼ N (0,dM) is the random effect corresponding to machine i, b2,ij ∼
N (0,dP) is the random effect corresponding to plate j specific to machine i
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and independent of b1,i, and eijs ∼ N (0,s 2) is the residual (measurement) error,
independent of both b1,i and b2,ij. Note that the plate effects are specific to, i.e.,
nested within, each machine. As a result, the model (15.1) includes N · P plate
effects. To indicate the nesting, we use the index ij in the symbolic representation of
the random plate effect b2,ij in (15.1).

The resulting marginal variances and covariances are as follows:

Var(yijs) = dM + dP+s 2,

Cov(yijs,yijs′) = dM + dP,

Cov(yijs,yij′s) = Cov(yijs,yij′s′) = dM,

Cov(yijs,yi′js) = Cov(yijs,yi′js′) = 0, (15.2)

Cov(yijs,yi′j′s) = Cov(yijs,yi′j′s′) = 0. (15.3)

Note that from (15.2) and (15.3) it follows that the measurements for different
machines, indexed by i, are independent. Thus, model (15.1) can be written in the
form, presented in (13.5), upon putting b = m, Xij = Z1,ij ≡ Z1,∗ = 1n (a column
vector of n 1s), Z2,ij ≡ Z2,∗ = In (n× n identity matrix), and assuming that bi ∼
N1(0,dM), bij ∼Nm(0,dPIn), and eij ∼Nn(0,s

2In).
Moreover, model (15.1) can also be expressed in the form specified in

(13.6)–(13.9) with block-diagonal matrices Z, D, and R, where the blocks of the
matrices are defined, respectively, by Zi = (1m⊗Z1,∗,Im⊗Z2,∗) = (1n·m,Im⊗ 1n),

D = diag(dM/s 2,{dP/s 2}Im), and Ri = In·m/s 2. Note that the resulting matrix
D = s 2IN⊗D is of dimension {N · (m+ 1)}×{N · (m+ 1)}.

15.2.2 A Hypothetical Experiment with the Effects of Plates
Crossed with the Effects of Machines

Let us now assume that the experiment is run with only P steel plates, so that the
first n shapes for each machine are obtained from (the same) plate 1, the second n
shapes from (the same) plate 2, and so on. We can then propose the following model
for the measurements generated in the experiment:

yijs = m+ b1,i+ b2,j+ eijs, (15.4)

where b1,i ∼ N(0,dM) is the random effect corresponding to machine i, b2,j ∼
N (0,dP) is the random effect corresponding to plate j and independent of b1,i, and

eijs ∼ N (0,s 2) is the residual (measurement) error independent of both b1,i and
b2,j. Note that, as compared to (15.1), the plate effects are no longer specific to
machines, but each plate effect bj remains the same for all machine effects bi. We
can say that the effects are crossed. As a result, model (15.4) includes only m plate
effects. To indicate the crossing of the random effects, we use the index j in the
symbolic representation of the random plate effect b2,j in (15.4).
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The marginal variances and covariances, corresponding to the model (15.4), are
as follows:

Var(yijs) = dM + dP+s 2,

Cov(yijs,yijs′) = dM + dP,

Cov(yijs,yij′s) = Cov(yijs,yij′s′) = dM,

Cov(yijs,yi′js) = Cov(yijs,yi′js′) = dP, (15.5)

Cov(yijs,yi′j′s) = Cov(yijs,yi′j′s′) = 0. (15.6)

In contrast to (15.2) and (15.3), the equation (15.5) implies that the measurements
for different machines are correlated. Hence, the model (15.4) cannot be written in
the form, presented in (13.5). It can be expressed in the form specified in (13.6)–
(13.9), but with a non-block-diagonal matrix Z, given by Z = (IN⊗1n·m,1N⊗{Im⊗
1n}). Note that the resulting matrix D = diag(dMIN ,dPIm) is block diagonal, but of
dimension (N +m)× (N +m) rather than {N · (m+ 1)}×{N · (m+ 1)}, as was the
case for the model (15.1).

The hypothetical examples presented above illustrate that the group-level
formulation of an LMM, as described in Sect. 13.2.1, can only be used in the
case of LMMs with nested random effects. It is generally not appropriate when
crossed random effects are included in the model. On the other hand, the whole-data
formulation, presented in Sect. 13.2.2, can be used for LMMs with nested and/or
crossed random effects. From the example it is clear, however, that we need to pay
attention to the notation, as it should allow indicating which effects are nested and
which are crossed.

15.2.3 General Case

We continue with the notational considerations in a more general case.
Toward this end, we will follow the observation that, for the identification of

nested random effects, the use of compound indices is needed, as was the case for the
model (15.1). More specifically, for that model, we may use the following notation
for the model formulation for all data:

y = Xb+Z1b1 +Z12b12 + e, (15.7)

where b1 and b12 are vectors of random machine effects and plate effects,
respectively. By using the single subscript in b1, we indicate that the random effects
contained in the vector b1 are related to the levels of the first grouping factor, while
by using the double subscript in b12, we indicate that the random effects contained
in the vector b12 are related to the levels of the second grouping factor and are
nested within the levels of the first factor. Note that b1 and b12 are constructed
by “stacking”, for all machines, the vectors of random machine and plate effects,
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respectively, in a way similar to how the vector b was constructed in Sect. 13.2.2.
Also, the block-diagonal matrices Z1 and Z12 are constructed in a way similar to the
matrix Z in (13.6).

On the other hand, for the model (15.4), we use the following notation for the
formulation of the model for all data:

y = Xb+Z1b1 +Z2b2 + e, (15.8)

where we indicate that the random machine effects, contained in the vector b1, are
related to the levels of the first grouping factor, while the random plate effects,
contained in the vector b2, are related to the levels of the second grouping factor
and are crossed with the random effects b1.

Following this convention, the following hypothetical model equation:

y = Xb+Z1b1 +Z12b12 +Z13b13 + e, (15.9)

would be interpreted as implying an LMM with three sets of random effects: the first
set, represented by the vector b1, related to the levels of the grouping factor indexed
by the first index; the second set, represented by the vector b12, related to the levels
of the grouping factor indexed by the second index, with the effects nested within
the levels of the first factor; and the third set, represented by the vector b13, related to
the levels of the grouping factor indexed by the third index, with the effects nested
within the levels of the first factor. Note that the random effects contained in the
vectors b12 and b13 are crossed within the levels of the first grouping factor.

Common assumptions for the random-effects structure for models of the types
presented in (15.7)–(15.9) are:

• Random effects associated with different grouping factors are independent
• Random effects associated with different levels of a grouping factor are

independent
• The vector of random effects associated with a given level of a grouping factor

has (typically) a general positive semidefinite variance-covariance matrix, which
is common to all the levels of the grouping factor.

Obviously, each of the model specifications, defined in (15.7)–(15.9), can be
expressed in the general form, given in (13.7), upon appropriate concatenation
of the Z matrices and stacking of the random-effects vectors. Note that the Z
matrix in (13.7) would no longer be block diagonal for models (15.8) and (15.9).
However, the disadvantage of the general form is that the information about crossing
and/or nesting of random effects, readily accessible from the notation used in the
specifications (15.7)–(15.9), is hidden inside the structure of the Z matrix.

As we have already mentioned, LMMs with crossed random effects are an
important class of LMMs, which can be fitted with the help of the function lmer()

from the package lme4.0. In the next sections, we describe the specific features of
the function.
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15.3 Using the Function lmer() to Specify and Fit Linear
Mixed-Effects Models

The use of the lmer() function to fit an LMM usually involves a call like
lmer(formula, data), where formula specifies the model we want to fit, and
data indicates the data frame containing the data. In this respect, the use of the
function lmer() is more similar to the use of the function lm() (Sect. 5.4) than
lme() (Sect. 14.5). However, as it will be explained later, the syntax of the formula
argument used in the lmer() function is very much different from the one used in
the lm() function.

In lmer(), the model is specified by the formula argument. As is the case for
most model-fitting functions in R, this is the first argument. The second argument
is data. It is advisable that the data frame, indicated in the argument, is not a
groupedData-class object. This is in contrast to the function lme() (Sect. 14.5).

Another important argument, relevant for the estimation of LMMs, is REML. It
is logical and is used to specify whether the ML- or REML-based estimation is to
be applied (Sect. 13.5.3). The default value is REML=TRUE, indicating the use of the
REML estimation.

Additional useful arguments are subset, na.action, weight, offset, and
contrasts. Their meaning and use is the same as for the lm() function (Sect. 5.4).
In particular, subset and na.action are used to specify rows of the data
that are used to build the model frame, while weight is used to assign known
weights to observations. The meaning of the offset argument was explained in
Sect. 5.4.

A full list of the arguments of the lmer() function is obtained by issuing, after
attaching the package lme4.0, the command ?lmer from R’s command prompt.

The form of the formula, used in the lmer() function, differs from the one used
to specify LMMs in the lme() function and from the one described in Sect. 5.2.
Thus, we will discuss it now.

15.3.1 The lmer() Formula

The primary goal of an lmer() formula is to express both the fixed- and random-
effects structures of an LMM using one expression. The syntax is of the form:

R expression ~ termX.1 +· · ·+ termX.k + (termZ.1) +· · ·+.(termZ.l)
Similar to the classical two-sided formula, described in Sect. 5.2, the lmer()

formula consists of two expressions separated by the ~ (tilde) symbol. As in the
classical formula, the expression on the left, which is typically the name of a
variable, is evaluated as the continuous response.
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Similar to the classical formula, the right-hand side of the formula consists of
one or more terms, separated by the + symbols. The main difference is that there
are two types of terms, namely, X- and Z-terms. The X-terms, termX.i , are used
to specify the fixed-effects part of the model. They have the same syntax as in the
classical formula (Sect. 5.2).

In contrast, the Z-terms, (termZ.j) , are enclosed in parentheses and are used to
specify the part of the model involving random effects. Every Z-term is associated
with a grouping factor. The term’s syntax is of the form (Zf|gf) , where Zf and gf

are two expressions enclosed in parentheses and separated by the vertical bar |

symbol, which can be read as “given” or “by”. The expression Zf on the left of
the | symbol is a linear-model expression used to specify the model matrices for
random effects. The expression’s syntax is essentially the same as for right-hand
side of the classical formula. The expression gf , to the right of the | symbol, is
evaluated to a (grouping) factor.

The structure of the lmer() formula clearly corresponds to the notation intro-
duced in Sect. 15.2. Every Z-term in the formula corresponds to a Zb term used in a
specification similar to the one used in (15.7)–(15.9). It generates the Z matrices for
a model specified as in (15.7)–(15.9) or contributes a set of columns to the Z matrix
in the general formulation (13.7).

In Table 15.1, we present examples of syntax of the Z-terms, (termZ.j) , used
in the lmer() formulae to specify random-effects structures in a single-level LMM.
For the reader’s reference, we also provide the corresponding syntax for the random
argument of the lme() function (Sect. 14.5).

The first example of syntax in Table 15.1, labeled as (1a), shows the lmer()

formula for a simple single-level LMM with random intercepts. The Z-term (1|g1)

indicates the use of random intercepts by specifying 1 to the left of the | symbol. The
random intercepts correspond to the levels of the grouping factor g1, as indicated
by specifying g1 to the right of the | symbol. In this respect, the syntax is similar
to the one used for specifying random effects in the random argument of the lme()
function (Sect. 14.3.1).

The syntax (1b) illustrates a specification of a single-level LMM with random
intercepts and slopes. Note that the formula of the Z-term (z1|g1) implicitly
assumes an inclusion of an intercept. Thus, the Z-term defines, in fact, two random
effects. As mentioned earlier (Sect. 14.2), it is also implicitly assumed that the
2× 2 variance-covariance matrix of the two random effects is of a general form,
i.e., allowing random intercepts and slopes to have different variances and to be
correlated.

The syntax (1c), on the other hand, illustrates how to obtain a diagonal variance-
covariance matrix for random intercepts and slopes in a single-level LMM. This
is achieved by specifying separate Z-terms for the intercepts and the slopes, but
using the same grouping factor. Moreover, in the Z-term (0+z1|g1), we indicate
that we do not want to include an intercept. As a result, the Z-term includes in the
model equation only the random slopes, which are assumed to be independent of
the random intercepts, specified in the other Z-term.
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Table 15.1 Basic examples of the Z-terms syntax used in the lmer() formulae for single-level
linear mixed-effects models and the corresponding syntax for the random argument of the lme()
function

Syntax Z-term(s) in the
lmer() formula

a
The random argument
of the lme() function Comment

(1a) (1|g1) ~1|g1 Random intercepts only 1×1
D matrix

(1b) (z1|g1) ~z1|g1 Random intercepts and slopes
General 2×2 D matrix

(1c) (1|g1) + (0 + z1|g1) pdDiag(~z1|g1) Random intercepts and slopes
Diagonal 2×2 D matrix

aThe variable z1 is a random-effects covariate and g1 is a grouping factor

The syntax shown in Table 15.1 can be easily modified to accommodate more
than two random effects. Note that in the table we demonstrate how to specify
a general and diagonal variance-covariance matrix of random effects. The current
version of the lme4.0 package does not allow for other structures. In particular, it
does not allow for a compound-symmetry structure of the matrix D.

In Table 15.2, we present additional examples of Z-terms used in the lmer()

formula for models with nested and/or crossed random effects.
For the sake of simplicity of presentation, we illustrate the syntax for models

with random intercepts only. Needless to say, the presented examples, combined
with the syntax given in Table 15.1, can be generalized for other models, including
those containing different sets of random effects.

First, in examples (2a)–(2c), we present the syntax for specifying a two-level
LMM with nested random intercepts. The implied random-effects structure corre-
sponds to the one specified in the models defined by (15.1) or (15.7). As mentioned
in Sect. 2.6, factors representing nested design can be coded in two different ways.
Consequently, the model in question can be specified using different syntax.

The simpler syntax (2a) can be used only if the grouping factors involved in
defining nested hierarchy, say g1 and g12, are explicitly coded as nested. In contrast,
the syntaxes (2b) and (2c) do not impose any requirements regarding the coding of
the factors. Instead, in (2b), the expression g1:g2 in the second Z-term is evaluated
to an auxiliary factor factor(g1:g2), which, by definition, is nested within g1.
The version (2c) simply expands to (2b).

Note that the form of the random argument of the lme() function,
corresponding to (2a)–(2c), is relatively simple and uniform.

To specify an LMM with two crossed random effects, syntax (3) is used.
The random-effects structure of the model corresponds to the one implied by (15.4)
or, more generally, by (15.8). Obviously, this syntax requires that the factors g1

and g2 are coded as crossed. Although there is no direct way to specify this model
in the syntax of an lme()-function call, in Sect. 19.4 we will demonstrate how to
overcome this limitation.

Examples (4a) and (4b) in Table 15.2 present the syntax for a two-level LMM
including both nested and crossed random effects. The random-effects structure
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Table 15.2 Additional examples of the Z-terms syntax for linear mixed-effects
models with nested and/or crossed effects. The corresponding syntax for the random
argument of the lme() function is also given. We also assume that grouping factors
g1 and g2 are coded as crossed

Random effects Syntax Z-terms in the The random argument
in the model label lmer() formula of the lme() function

Nested (15.7) (2a) (1|g1) + (1|g12)
a

~1|g1/g12

(2b) (1|g1) + (1|g1:g2) ~1|g1/g2

(2c) (1|g1/g2) ~1|g1/g2

Crossed (15.8) (3) (1|g1) + (1|g2) Not definableb

Crossed/ (4a) (1|g1) + list(g1 =

nested (15.9) pdBlocked(list(

pdIdent(~1),

(1|g12) + pdIdent(~1|g12),
(1|g13)

a
pdIdent(~1|g13)

)))

(4b) (1|g1) + list(g1 =

pdBlocked(list(

pdIdent(~1),

(1|g1:g2) + pdIdent(~1|g2),
(1|g1:g3) pdIdent(~1|g3)

)))
aFactors g12 and g13 are explicitly coded as nested within g1
bIn Sect. 19.4, we demonstrate how to circumvent this limitation

corresponds to the one implied by (15.9). Similar to the syntax (2a) for the two-level
LMM with nested random effects, (4a) requires that the factors g12 and g13 are
coded as nested within g1. On the other hand, the syntax (4b) does not impose any
requirements regarding the coding of the factors. Instead, using the Z-term (1|g1)

together with (1|g1:g2) and (1|g1:g3), allows us to explicitly specify that the
random effects for the grouping factors defined in the second and third Z-term are
nested in the factor g1. Note that the random-effects structure of the model can,
actually, be specified using the random argument of the lme() function, but with a
rather complex syntax.

As illustrated in Table 15.2, for LMMs involving nested random effects, different
syntax of the Z-terms in the lmer()-function model formula can be used. In general,
it is recommended to choose the simpler syntax when writing the R code. This
would imply choosing the syntax (2a) or (4a). However, if, for any reason, the
factor g12, used in (2a) and (4a), is not coded as nested, the model formula will be
mistakenly interpreted by the function lmer() as specifying an LMM with crossed
effects. Hence, for reasons of transparency and unambiguity, one might actually
prefer the syntax (2b) or (4b) because, in that case, the nesting is explicit in the
formula, and not hidden in the structure of the data.
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Finally, it is worth reiterating that all LMMs, which can be specified using the
lmer()-model formula, are conditional independence models with homoscedastic
residual errors (Sect. 13.4). This is an important limitation, as compared to the set
of LMMs available for fitting with the use of the function lme(). It is possible that
in the future versions of the package lme4 this limitation may be removed.

15.4 Extracting Information from a Model-Fit Object
of Class mer

Results of fitting an LMM using the lmer() function from the lme4.0 package are
stored in an object of class mer. The class represents fits of mixed-effects models,
including linear, generalized linear, or nonlinear mixed-effects models. Information
about the structure of the objects of class mer can be obtained by issuing the
command help("mer-class"). An important part of the structure is the slots,
which contain results for the specific components of the fitted model. The list of
names of the slots for mer-class objects can be obtained by applying the command
slotNames("mer"). Note that this structure results from the fact that the mer-class
objects are part of the S4 system (Sect 1.2).

In Table 15.3, we present several methods to extract information from a
hypothetical model-fit object mer.fit of class mer.

It can be observed that many methods, listed in Table 15.3, correspond to those
used for extracting information from a model-fit object of class lme (see Table 14.5).
Thus, a description of their use can be found in Sect. 14.6.

Several differences between Tables 14.5 and 15.3 can be noted, though. For
instance, a method for the intervals() generic function is not available for the
mer-class objects. Thus, to obtain confidence intervals for the parameters of interest,
additional programming is necessary. In contrast, a sigma() extractor function is
available for mer-class objects with no corresponding method for lme-class objects.
Other method functions available for both classes of objects, e.g., fitted() and
residuals(), do not necessarily use the same set of arguments. Several other
components of the mer-class objects that are not accessible by using the standard
method functions can be extracted by applying the getME() function. The function
uses two arguments. The first is the name of the mer-class model-fit object, while
the second one is a character string specifying the name of the component to be
extracted. For example, the estimates of the qD parameters are obtained by applying
the command getME(mer.fit,"theta").

In Table 15.3, we also list the methods that can be used to extract the details
of the model formulation. For instance, to obtain the lmer()-function call, used to
fit an LMM, we can use the getCall() function to extract the "call" slot of the
mer-class object. The formula used to specify the design matrices for mean- and
random-effects structures of the model is obtained by applying the generic function
formula() to the mer-class object.

There are several useful plot functions, applicable to mer-class objects. For
instance, the function plot(), applied to the result of the application of the function
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Table 15.3 Extracting results from a hypothetical object mer.fit
of class mer, which represents a linear mixed-effects model, fitted
using the lmer() function

Model fit Function: lmer()
component to Package: lme4.0
be extracted Object: mer.fit

Class: mer

Summary (summ <- summary(mer.fit))
Print show(mer.fit)

Estimation method isREML(mer.fit)
̂b fixef(mer.fit)
̂b, se(̂b), t-test coef(summ)

̂Var(̂b) vcov(mer.fit)
̂qD getME(mer.fit, "theta")

ŝ sigma(mer.fit)

̂bi ranef(mer.fit)
̂b + coupled ̂bi coef(mer.fit)

̂D and ŝ VarCorr(mer.fit)

ML value logLik(mer.fit, REML = FALSE)

REML value logLik(mer.fit, REML = TRUE)

Deviance deviance(mer.fit)

Fitted values:
- subject-specific fitted(mer.fit)

Raw residuals:
- subject-specific residuals(mer.fit)

Predicted values: Not implemented

R call (cl <- getCall(mer.fit))
lmer() formula formula(mer.fit)

Data name (df.name <- cl$data)

Data frame eval(df.name)

Design matrix model.matrix(mer.fit)

of ranef() to a mer-class object produces a normal Q-Q plot (or scatterplot) of the
predicted random effects for the grouping factors. Similarly, the use of plot() for
the result of the application of coef() to a mer-class object produces a normal
Q-Q plot (or scatterplot) of the predicted random coefficients, i.e., of the sums of
the estimated random effects and “coupled” random-effects predictors. Examples of
these plots are given in Figs. 18.9, 19.1, and 19.2.

Another useful graphical function is dotplot(). When used in combination
with, e.g., the function ranef(), it produces a dotplot, i.e., the plot of the (ordered)
predicted random effects (EBLUPs) for each level of a grouping factor. The
EBLUPs are used as x-coordinates, while the corresponding levels of the grouping
factor are shown on the y-axis. The plot allows checking whether there are levels of
a grouping factor with extremely large or small predicted random effects. Examples
of these plots are given in Fig. 19.3.
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15.5 Tests of Hypotheses About the Model Parameters

One of the important differences in using functions lme() and lmer() for fitting
LMMs is that the latter does not automatically provide any p values for the
statistical-significance tests based on the fitted model.

Thus, to compute the asymptotic p values for the F- or LR tests for the fixed
effects (Sect. 13.7.1), manipulation of the results, extracted from a mer-class model-
fit object, is needed. This applies also to the LR tests for the variance-covariance
parameters (Sect. 13.7.2).

As an alternative, empirical p values, based on simulations, may be used. In fact,
one can argue that, given the problems with the approximation of the asymptotic
null distribution of the tests statistics for the fixed effects (Sects. 7.6.1 and 13.7.1)
and for the variance-covariance parameters (Sect. 13.7.2), the use of the simulation-
based estimates of p values might actually be more appropriate. A disadvantage is
that the approach is numerically more involved.

To compute the empirical p values, the simulate() function (Sect. 14.7)
can be applied to a mer-class model-fit object. Note that the simulate.mer()

method, suitable for mer class objects, is different, in many respects, from the
simulate.lme() method, available for the lme-class objects. Most importantly,
simulate.mer() simulates values of the dependent variable for a fitted model.
In contrast, simulate.lme() simulates log-likelihood values for the null and
alternative models (Sect. 14.7).

Efficient use of the simulate.mer()method is enhanced by combining it with
the application of the function refit(). The latter is a generic function which fits
a model to a new response vector. For a model fitted using the lmer() function,
it is much faster to refit the model with the help of the function refit() than to
do it using the model formula. Application of refit() usually involves a call of
the form refit(object, newresp). The first argument, object , is a model-
fit object returned by the function lmer(). The second argument, newresp , is,
typically, a numerical vector containing new values of the dependent variable to
which the model is to be refitted. Note that the model specification, including the
formula, covariates, and their values, etc., stays the same as in the object . Only
the values of the dependent variable change.

The use of simulate.mer() typically involves the following syntax/sequence
of commands:
> simY <- simulate(mer.fit, nsim)

> simInfo <- apply(simY, 2,

+ function(y){

+ simFit <- refit(mer.fit, y)

+ summ <- summary(simFit)

... extract and return info from summ object

+ })

First, the object simY is created by applying the function simulate() to the
mer-class model-fit object mer.fit. The object simY is a matrix with rows
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corresponding to the rows of the data frame used to fit the model and nsim columns,
which contain the simulated values of the dependent variable. In other words, the
number of rows in simY is determined by the number of rows in the model frame,
and the number of columns corresponds to the number of simulations nsim.

Second, the object simInfo is created using the apply() function to refit the
model, represented by the mer-class object, to each of the columns of the simY

matrix. This is achieved by applying repeatedly the function refit() and storing
the results. Note that refitting of the model is time-consuming. Therefore, it is
recommended that all the required information about the refitted models is extracted
for further processing and stored in the auxiliary object simInfo. For instance, the
values of the fixed-effects test statistics should be stored. Based on these values, the
null distribution of the test statistics can be approximated.

An illustration of the application of the simulate() function is given, e.g., in
Sect. 16.7.1.

Empirical p values for tests of hypotheses about variance-covariance parameters
can also be obtained using the function exactRLRT() from the package RLRsim
(Sect. 14.7).

15.6 Illustration of Computations

In this section, we illustrate several aspects of the implementation of the PnLS
estimation approach (Sect. 13.5.3) in the function lmer(). In Panel R15.1, we
simulate data for an LMM with crossed random effects. Toward this end, we first
use the function gl() to create two factors, i and j, each of length 6. The former
has n1=2 levels, and the latter has n2=3 levels. The factors play the role of indices of
the levels of two grouping factors with crossed random effects. The random effects
are stored in the numerical vectors b1x and b2x. The former contains n1=2 values,
generated according to the standard normal distribution. The latter contains n2=3
values, generated according to the mean-zero normal distribution with standard
deviation 2.

Next, we create the data frame dt0, with factors i and j as the only variables.
Then, we construct the data frame dtc by adding the following variables to the data
frame dt0: eps, b1, b2, y, g2, and g1. The variable eps contains six random values
generated from the normal distribution with mean zero and standard deviation 0.2.
The variables b1 and b2 are created from the random-effects variables b1x and b2x,
respectively, by replicating the appropriate random values according to the levels of
the factors i and j, respectively. The variable y is a dependent variable, resulting
from the following LMM with crossed random effects:

y = 10+ b1+ b2 + e.

Finally, the variables g1 and g2 are factors corresponding to i and j, respectively,
with the levels labeled by letters.
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R15.1 R syntax: Simulating data for a linear mixed-effects model with two crossed
random effects

> n1 <- 2 # Number of levels for the factor g1

> n2 <- 3 # Number of levels for the factor g2

> i <- gl(n1, n2) # i
> j <- gl(n2, 1, n1*n2) # j
> b1x <- rnorm(n1, 0, 1) # bi
> b2x <- rnorm(n2, 0, 2) # bj
> dt0 <- data.frame(i, j)

> (dtc <-

+ within(dt0,

+ { # g1 and g2 are crossed

+ eps <- rnorm(nrow(dt0), 0, 0.2)

+ b1 <- b1x[i]

+ b2 <- b2x[j]

+ y <- 10 + b1 + b2 + eps

+ g2 <- factor(j, labels = letters[1:n2])

+ g1 <- factor(LETTERS[i])

+ }))

i j g1 g2 y b2 b1 eps

1 1 1 A a 10.1444 -0.055214 0.13972 0.059933

2 1 2 A b 12.2306 2.012640 0.13972 0.078235

3 1 3 A c 9.3669 -0.601585 0.13972 -0.171216

4 2 1 B a 11.2304 -0.055214 1.25311 0.032463

5 2 2 B b 13.1089 2.012640 1.25311 -0.156847

6 2 3 B c 10.8498 -0.601585 1.25311 0.198232

R15.2 R syntax: Constructing the random-effects design matrices and the matrix
AA′+ I for further processing

> Zg1 <- model.matrix(~ 0 + g1, data = dtc) # Z1 for g1

> Zg2 <- model.matrix(~ 0 + g2, data = dtc) # Z2 for g2

> Z0 <- cbind(Zg1, Zg2) # Z for g1 and g2

> A0 <- t(Z0) # A = Z′

> A0c <- tcrossprod(A0) # AA′

> Dg <- diag(nrow(A0))

> (A0q <- A0c + Dg) # AA′ + I

g1A g1B g2a g2b g2c

g1A 4 0 1 1 1

g1B 0 4 1 1 1

g2a 1 1 3 0 0

g2b 1 1 0 3 0

g2c 1 1 0 0 3
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R15.3 R syntax: The number of nonzero elements in the Cholesky factor without
and with permutation (S3 system). Objects (matrices) A0 and A0q were created in
Panel R15.2
(a) Cholesky factor without permutation

> L0 <- t(chol(A0q)) # L such that LL′ = AA′ + I
> sum(L0 != 0.0) # Count of nonzero elements

[1] 14

> max(abs(L0 %*% t(L0)- A0q)) # Verify LL′ = AA′ + I

[1] 4.4409e-16

(b) Permutation achieved in two different ways

> pvec <- c(3, 4, 5, 1, 2) # Permutation vector

> A1 <- A0[pvec, ] # Rows permuted in A
> A1c <- tcrossprod(A1)

> (A1q <- A1c + Dg) # AA′ + I (permuted)

g2a g2b g2c g1A g1B

g2a 3 0 0 1 1

g2b 0 3 0 1 1

g2c 0 0 3 1 1

g1A 1 1 1 4 0

g1B 1 1 1 0 4

> A1q. <- A0q[pvec, pvec] # Cols and rows permuted in AA′

> identical(A1q, A1q.)

[1] TRUE

> L1 <- t(chol(A1q.)) # LL′= AA′ + I (permuted)

> sum(L1 != 0.0) # Count of nonzero elements

[1] 12

In Panel R15.2, we illustrate the creation of the random-effects design matrices
corresponding to the factors g1 and g2. Toward this end, we use the data frame
dtc, created in Panel R15.1, and the function model.matrix() (Sect. 5.3.2). The
matrices Zg1 and Zg2 are then combined column-wise to obtain the matrix Z0,
which becomes the random-effects design matrix corresponding to the formulation
of the LMM for all data, as in (13.7). Using the matrix Z0 allows us to create
the matrix A0q, which, upon scaling by the scale parameter, provides the marginal
variance-covariance matrix for all data, as defined in (13.35).

In Panel R15.3, we present in more detail the use of the sparse Cholesky
decomposition to reduce storage requirements and numerical complexity related to
fitting LMMs (Sect. 13.5.3). In particular, we use S3-system functions to illustrate
the issue.

First, in Panel R15.3a, we compute an ordinary Cholesky decomposition of the
matrix A0q using the function chol(). The number of nonzero elements in the
resulting lower-triangular Cholesky-factor matrix is equal to 14.
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Then, in Panel R15.3b, we illustrate how the number of nonzero elements in the
Cholesky-factor matrix can be reduced using a permutation. In fact, we present two
methods to use the permutation toward this end.

To present the first method, we create the matrix A1 by permuting the rows of the
matrix A0. Then, we compute the permuted counterpart of the matrix A0q.

To present the second method, we create the matrix A1q. by directly permuting
the rows and columns of the matrix A0q.

Note that resulting matrices A1q and A1q. are identical. Thus, their lower-
triangular Cholesky-factor matrices are identical, too. As can be seen from the last
two lines of the code, presented in Panel R15.3b, the Cholesky-factor matrices
contain only 12 nonzero elements, as compared to 14 nonzero elements for the
Cholesky-factor matrix of A0q.

In Panel R15.4, we present the use of the sparse Cholesky decomposition by
applying S4 functions and classes defined in the package Matrix.

First, in Panel R15.4a, we investigate the number of nonzero elements in the
“ordinary” Cholesky-factor matrix. Toward this end, we coerce the matrix A0 to
become an object of class dgCMatrix. This is a class of sparse numeric matrices
for which nonzero elements in the columns are sorted into increasing row order.
The dgCMatrix class is the “standard” class for sparse numeric matrices in the
Matrix package (Bates and Maechler 2012). More information about the class can
be obtained by issuing the command help("dgCMatrix-class").

By using the sparse-matrix representation of A0, we compute, with the help of the
function tcrossprod(), the matrix A0c, which is the cross product of A0 and its
transpose. Then, we apply the function Cholesky() to compute L0, the Cholesky-
factor matrix of A0c. By default, the function uses a fill-reducing permutation
and applies it to the rows and columns of the sparse matrix, specified as the first
argument of the function. To prevent the use of the permutation, we change the value
of the perm argument to FALSE. Note that we specify Imult=1. This means that we
want a decomposition for the sum of the matrix A0c and of an identity matrix. By
default, the numerical argument Imult is equal to 0, implying the decomposition
of only the sparse matrix, specified as the first argument of the function. Finally,
by putting LDL=FALSE, we use the LL′ form of the Cholesky decomposition. By
default, LDL=TRUE and the decomposition of the form LDL′ is used, where L is
a unit lower-triangular matrix, as in (13.33). More information about the function
Cholesky() can be obtained by issuing the command ?Cholesky.

With the help of the function nnzero(), we verify that the number of nonzero
elements in the Cholesky-factor matrix L0 is equal to 14, as it was the case shown in
Panel R15.3a. Note that we apply the function to the object L0. which is a sparse-
matrix representation of the matrix L0. The function nnzero() returns the number
of nonzero values of a numeric-like R object. More information about the function
can be obtained by issuing the command ?nnzero.

Note that the matrix A0q, equal to the sum of the cross-product matrix A0c and
an identity matrix, shown in Panel R15.4a, is a permuted version of the matrix A1q,
shown in Panel R15.3b. In the last line of the code of Panel R15.4a, we show that
the matrix L0 is indeed the Cholesky-factor matrix of A0q.
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R15.4 R syntax: The number of nonzero elements in a Cholesky factor without and
with permutation (using the Matrix package in the S4 system). The object (matrix)
A0 was created in Panel R15.2
(a) Cholesky factor without permutation

> library(Matrix)

> A0 <- as(A0, "dgCMatrix") # A0 matrix coerced to sparse

> A0c <- tcrossprod(A0) # AA′

> L0 <- Cholesky(A0c, perm = FALSE, Imult = 1, LDL = FALSE)

> nnzero(L0. <- as(L0, "sparseMatrix")) # Coerced to verify

[1] 14

> Dg <- Diagonal(nrow(A0))

> (A0q <- A0c + Dg)

5 x 5 sparse matrix of class "dsCMatrix"

g1A g1B g2a g2b g2c

g1A 4 . 1 1 1

g1B . 4 1 1 1

g2a 1 1 3 . .

g2b 1 1 . 3 .

g2c 1 1 . . 3

> max(abs(L0. %*% t(L0.) - A0q)) # LL′ = AA′ + I

[1] 4.4409e-16

(b) Permutation of rows and columns of the matrix AA′. The same as in R15.3b

> pvec <- c(3, 4, 5, 1, 2) # Permutation vector

> P1 <- as(pvec, "pMatrix") # Permutation matrix

> A1c <- P1 %*% A0c %*% t(P1)

> L1 <- Cholesky(A1c, perm = FALSE, Imult = 1, LDL = FALSE)

> nnzero(as(L1, "sparseMatrix"))

[1] 12

(c) Suboptimal permutation obtained using the Cholesky() function

> L2 <- Cholesky(A0c, perm=TRUE, Imult =1, LDL = FALSE)

> nnzero(as(L2, "sparseMatrix"))

[1] 13

> slot(L2,"perm") + 1L # Permutation

[1] 5 1 3 4 2

> detach(package:Matrix)

In Panel R15.4b, we illustrate how the number of nonzero elements in the
Cholesky-factor matrix can be reduced using a permutation of the rows and columns
of the cross-product matrix. Toward this end, we first create a permutation matrix
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a b c

Fig. 15.1 Illustration of the number of nonzero elements in a Cholesky factor for three different
permutations of the rows and columns of the matrix AA′+ I. (a) No permutation (b) (34512) (c)
(51342)

P1, corresponding to the required permutation. The matrix is obtained by coercing
a permutation vector pvec into an object of class pMatrix. The class represents
permutation matrices, stored as one-dimensional permutation vectors. We then
permute the rows and columns of the matrix A0c using the matrix P1 and store
the resulting matrix as the object A1c. Finally, we compute L1, the Cholesky-factor
matrix of A1c, and check that it contains only 12 nonzero elements.

In Panel R15.4c, we illustrate an alternative way of using permutations to reduce
the number of nonzero elements in a Cholesky-factor matrix. Toward this end,
when applying the function Cholesky() to the matrix A0c, we set the argument
perm equal to TRUE. This implies that a fill-reducing permutation is computed and
applied to the rows and columns of A0c. Note that the resulting Cholesky-factor
matrix L2 contains 13 nonzero elements. This indicates that the permutation, chosen
automatically by the function, is not optimal. We extract the permutation vector from
the slot perm of the object L2. The resulting vector is different from the vector pvec,
which was defined in Panel R15.4b.

In Fig. 15.1, we present the structures of the Cholesky-factor matrices, which
were computed in Panels R15.3 and R15.4. Figure 15.1a shows the structure of
the Cholesky-factor matrix obtained for the matrix A0q, defined in Panel R15.2,
without applying any permutation. Thus, the structure corresponds to the matrix
L0, computed in Panels R15.3a and R15.4a. It contains 14 nonzero elements,
with their magnitude indicated by different shades of gray. Figure 15.1b shows
the structure of the Cholesky-factor matrix, obtained by applying the permutation
34512. It corresponds to the matrix L1, computed in Panels R15.3b and R15.4b. The
structure contains 12 nonzero elements. Finally, Fig. 15.1c shows the structure of the
Cholesky-factor matrix, obtained by applying the permutation 51342. It corresponds
to the matrix L2, computed in Panel R15.4c, and contains 13 nonzero elements.

As it can be seen from Panels R15.3 and R15.4 and Fig. 15.1, identification of the
optimal “fill-reducing” permutation matrix that can be used to reduce the required
storage volume and numerical complexity is not that obvious. In our example,
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involving a small amount of data, the gain in storage obtained by using the “fill-
reducing” permutation matrix appears to be fairly modest. However, the gain is
much more apparent for large data.

R15.5 A linear mixed-effects model with crossed random intercepts, fitted to the
simulated data. The data frame dtc was created in Panel R15.1

> require(lme4.0)

> fmc <- lmer(y ~ 1 + (1|g1) + (1|g2), data = dtc)

> summary(fmc)

Linear mixed model fit by REML

Formula: y ~ 1 + (1 | g1) + (1 | g2)

Data: dtc

AIC BIC logLik deviance REMLdev

21.1 20.3 -6.56 14.8 13.1

Random effects:

Groups Name Variance Std.Dev.

g2 (Intercept) 1.7807 1.334

g1 (Intercept) 0.6444 0.803

Residual 0.0472 0.217

Number of obs: 6, groups: g2, 3; g1, 2

Fixed effects:

Estimate Std. Error t value

(Intercept) 11.155 0.961 11.6

> gf <- getME(fmc, "flist") # Grouping factors

> xtabs(~g1 + g2, gf) # g1 and g2 fully crossed

g2

g1 a b c

A 1 1 1

B 1 1 1

> (Zt <- getME(fmc, "Zt")) # Z′

5 x 6 sparse matrix of class "dgCMatrix"

a 1 . . 1 . .

b . 1 . . 1 .

c . . 1 . . 1

A 1 1 1 . . .

B . . . 1 1 1

In Panel R15.5, we fit an LMM with a fixed overall intercept and crossed random
intercepts for the grouping factors g1 and g2 (see Panel R15.1) to the simulated
data from the data frame dtc. We store the results in the model-fit object fmc of
class mer. A summary of the results is displayed by applying the generic function
summary() to the model-fit object (Sect. 15.4).
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By extracting the flist slot of the object fmc with the help of the getME()

function (Sect. 15.4), we obtain a list of values of the grouping factors and store it
in the data frame gf. The latter object is, in turn, used in the function xtabs() to
obtain a contingency table for the factors g1 and g2. The displayed table contains
one observation in each cell, indicating that the levels of the two factors (and the
corresponding random intercepts) are completely crossed.

By referring, with the help of the getME() function, to the Zt slot of the object
fmc, we extract and display the transpose of the random-effects design matrix. Note
that the matrix is stored as an object of class dgCMatrix (see the explanation of the
code in Panel R15.4). The sparse structure of the matrix is clearly seen.

Note that, although the syntax included in Panel R15.5 can also be executed in
the lme4 package, we require the use of lme4.0. In this way, the model-fit object
fmc of class mer is created, as required by the code used in in the next two panels,
i.e., R15.6 and R15.7.

Panel R15.6 presents an approach to extract matrices involved in the decomposi-
tions (13.33) and (13.38) from an object of class mer. A list of the S and T factors
involved in the decomposition (13.33) of the variance-covariance matrix for each
random-effects term in the model formula is stored in the ST slot of the mer-class
object. The unit lower-triangular matrix, T, and the diagonal matrix, S, for each
term are stored as a single matrix with diagonal elements from S and off-diagonal
elements from T.

In Panel R15.6, we first use the function expand() to obtain the list of terms in
the expansion of the ST slot of the object fmc. We store the expansion in the object
STs. Note that, apart from the mer-class object to expand, the function expand()

admits one extra argument, sparse. By default, sparse=TRUE, in which case the
elements of the list are the numeric scalar sigma, which contains the REML or
ML estimate of the scale parameter, and three sparse matrices: P, the permutation
matrix involved in the decomposition (13.38); S, the diagonal scale matrix involved
in (13.33); and T, the unit lower-triangular matrix involved in (13.33). These
components are listed in Panel R15.6 by applying the generic function summary()

to the object STs. When sparse=FALSE, each element of the list, produced by
the expand() function, is the expansion of the corresponding element of the ST

slot into a list of S, the diagonal matrix, and T, the (dense) unit lower-triangular
matrix.

After displaying the contents of the object STs, in Panel R15.6, we display the
components P, S, and T of STs. Note that the permutation matrix P implies the
permutation 31245.

In Panel R15.7, we further illustrate the details of the implementation of the PnLS
estimation approach, described in Sect. 13.5.3.

Toward this end, we first create the product of the matrices S and T. Then, by
referring to the component sigma of the object STs, i.e., of the expanded ST slot
of the model-fit object fmc, we extract the estimate of the scale parameter s . The
extracted value corresponds to the one displayed in Panel R15.5. With the help of
the function tcrossprod(), we compute the cross-product TSST′ and multiply it
by s 2. As a result, and in accordance with the equations (13.9) and (13.33), we
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R15.6 R syntax: Extracting information about the matrices involved in decomposi-
tions (13.33) and (13.38) from a model-fit object of class mer. The model-fit object
fmc was created in Panel R15.5

> STs <- expand(fmc) # Expand the ST slot

> summary(STs)

Length Class Mode

sigma 1 -none- numeric

P 25 pMatrix S4

T 25 dtCMatrix S4

S 25 ddiMatrix S4

> (P <- STs$P) # Permutation matrix P

5 x 5 sparse matrix of class "pMatrix"

[1,] . . | . .

[2,] | . . . .

[3,] . | . . .

[4,] . . . | .

[5,] . . . . |

> S <- STs$S # Diagonal scale-matrix S
> summary(S)

5 x 5 sparse matrix of class "ddiMatrix", with 5 entries

i j x

1 1 1 6.1439

2 2 2 6.1439

3 3 3 6.1439

4 4 4 3.6959

5 5 5 3.6959

> T <- STs$T # Unit lower-triangular matrix T
> summary(T) # All off-diagonal elements equal to 0

5 x 5 sparse matrix of class "dtCMatrix", with 0 entries

[1] i j x

<0 rows> (or 0-length row.names)

obtain the variance-covariance matrix D of the random intercepts included in the
LMM fitted in Panel R15.5. Note that the resulting matrix is of dimension 5× 5, as
the model included five intercepts: three corresponding to the levels of the grouping
factor g1 and two for the levels of the grouping factor g2. The diagonal elements
of the matrix correspond to the estimates of variances of the random intercepts,
displayed in Panel R15.5.

By using the function getME(), we extract from the slot A of the model-fit object
fmc the information about the estimated form of the matrix A, defined in (13.34).
As shown in Panel R15.7, the transpose of the matrix is, indeed, equal to ZTS.
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R15.7 R syntax: Extracting information about matrices and transformations in-
volved in the implementation of the PnLS approach from a model-fit object of class
mer. The model-fit object fmc was created in Panel R15.5, while the objects P, S, T,
and STs were created in Panel R15.6

> TS <- T %*% S

> (sig <- STs$sigma) # s
[1] 0.2172

> sig * sig * tcrossprod(TS) # D= s 2TSST′: (13.9), (13.33)

5 x 5 sparse matrix of class "dsCMatrix"

[1,] 1.7807 . . . .

[2,] . 1.7807 . . .

[3,] . . 1.7807 . .

[4,] . . . 0.6444 .

[5,] . . . . 0.6444

> A <- getME(fmc, "A")

> ZTS <- t(Zt) %*% TS # ZTS
> max(abs(t(A) - ZTS )) # A′= ZTS: (13.34)

[1] 0

> Ac <- tcrossprod(A) # AA′

> AcI <- Ac + diag(nrow(A)) # AA′+I
> Ls <- slot(fmc, "L") # LZ: (13.38)

> PP <- P %*% AcI %*% t(P) # P(AA′+I)P′

> L <- as(Ls, "sparseMatrix")

> max(abs(tcrossprod(L) - PP)) # LZL′Z= P(AA′+I)P′: (13.38)

[1] 0.0024641

> detach(package:lme4.0)

a b c

Fig. 15.2 Patterns of nonzero elements in various matrices involved in the PnLS estimation and
extracted from a model-fit object of class mer. (a) Z′ (b) AA′ (c) LZ
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Finally, by applying the function getME(), we refer to the slot L of the model-
fit object fmc and extract the information about the estimated form of the matrix
LZ , defined in (13.38). By using the permutation matrix P, we compute the matrix
P(AA′+ I)P′ and show that it is equal to the product LZL′Z , as follows from (13.38).

In Figure 15.2, we present the structures of the matrices Z′, AA′, and LZ ,
represented, respectively, by the object Zt in Panel R15.5 and Ac and L in
Panel R15.7. The figure clearly shows the sparse nature of the matrices.

15.7 Chapter Summary

In this chapter, we reviewed the main features of the function lmer() from the
package lme4.0. The function allows fitting LMMs. It can be seen as an alternative
to the function lme() from the package nlme.

As compared to lme(), the function lmer() differs in several important aspects.
First of all, it is especially suitable for fitting LMMs with crossed random effects
(Sect. 15.2). It can also fit LMMs with nested random effects. However, in the latter
case, the range of the available variance-covariance matrices for the random effects
is restricted to diagonal or general matrices. Hence, the range is more limited than it
is the case of the lme() function. Also, lmer() can only fit LMMs with independent
residual errors.

The ability to deal with LMMs with crossed random effects is reflected in the
syntax used by lmer() for model specification (Sect. 15.3). Namely, the mean-
and random-effects structures are defined in a single formula; the interpretation of
random-structure terms depends on whether involved grouping factors are coded as
crossed or nested (Sect. 15.3.1).

An important feature of the function lmer() is that it has been programmed in
the S4 system. This implies differences, as compared to the function lme(), in the
structure of the model-fit objects and in the methods of extracting results from the
objects (Sect. 15.4). It is worth noting here that the p-values for tests, based on an
LMM fitted using the function lmer(), are not provided by default and need to be
evaluated empirically (Sect. 15.5).

It is also worth mentioning that lmer() uses efficient computational algorithms
which are based on sparse-matrix representations, as described in Sect. 13.5.3. Some
details on the implementation of the elements of the algorithm were presented in
Sect. 15.6.

The use of the function lmer() will be illustrated in the next chapters, where the
application of LMMs to the analysis of the case studies will be described.

Finally, it is worth mentioning that, as was indicated in Sect. 1.2, the package
lme4.0 is an early version of the package lme4. It is our understanding that
the former will not undergo any major changes and the latter will continue to
be developed. The current version of the lme4 package uses a slightly different
implementation of the PnLS estimation (see Sect. 13.5.3). Consequently, fitted
models are represented by objects of the lmerMod class with a different internal
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structure as compared to the mer class used in lme4.0 (Sect. 15.4). As a result, e.g.,
some slots, available in the mer-class objects created by the function lmer() from
the lme4.0 package, are not available in the objects created by the function from
the lme4 package. To alleviate this problem, an auxiliary function getME() has
been developed in both lme4 and lme4.0 packages. The function allows extracting
selected components from a model-fit object using a unified syntax across the two
packages. Hence, the syntax pertaining to the lmer() function, presented in this
chapter, to a large extent can be used both in lme4.0 and lme4.



Chapter 16
ARMD Trial: Modeling Visual Acuity

16.1 Introduction

In Chap. 12, we presented an analysis of the age-related macular degeneration
(ARMD) data using LM with fixed effects for correlated data. The analysis took
into account the correlation between visual acuity measurements obtained for the
same patient. To apply the models, we used the function gls() from the R package
nlme. Note that the models can be seen as population-averaged (marginal) models.

An alternative approach to the analysis of the ARMD data, which allows
taking into account the correlation between the measurements, is to use linear
mixed-effects models (LMMs). In this approach, the hierarchical structure of the
data is directly addressed, with random effects that describe the contribution of
the variability at different levels of the hierarchy to the total variability of the
observations.

In this chapter, we fit several LMMs to the ARMD data. We primarily use the
function lme() from the package nlme. For illustration purposes, several models
are refitted by applying the function lmer() from the package lme4.0.

In particular, in Sect. 16.2, we consider a random-intercept model with ho-
moscedastic residual errors, while in Sect. 16.3, we present a random-intercept
model with heteroscedastic errors, with residual variance specified as a power
function of time. A series of models with random intercepts and random slopes for
time and with heteroscedastic residual errors is described in Sects. 16.4 and 16.5.
In Sect. 16.6, we look at the issue of testing hypotheses about the random effects.
In Sect. 16.7, we repeat the analysis for selected models using the function lmer()

from the package lme4.0. A summary of the analyses is provided in Sect. 16.8.

16.2 A Model with Random Intercepts and Homogeneous
Residual Variance

We start with a simple model, which we label M16.1. It contains subject-specific
random intercepts and homoscedastic residual errors. Consequently, observations
for the same individual, which share the random intercept, are correlated with

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__16,
© Springer Science+Business Media New York 2013
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a constant (positive) correlation coefficient. Marginally, this corresponds to a
compound-symmetry correlation structure with a correlation parameter greater than
zero. A compound-symmetry marginal model was fitted to the ARMD data as
model M12.1 in Sect. 12.3. As was mentioned in that section, the compound-
symmetry structure is too simple to describe the variance-covariance structure of
the visual acuity measurements. Thus, we present model M16.1 mainly to illustrate
the fundamental steps in specifying and fitting an LMM.

16.2.1 Model Specification

Model M16.1 is specified as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+b4×TREATi×TIMEit

+ b0i + eit. (16.1)

The term VISUALit in (16.1) denotes the value of visual acuity measured for
patient i (i = 1, . . . ,240) at time t (t = 1,2,3,4, corresponding to values of 4, 12, 24,
and 52 weeks, respectively). In the fixed-effects part of the model, given by the first
two lines of (16.1), VISUAL0i is the value of visual acuity measured at baseline;
TIMEit is the time of the measurement, corresponding to t; TREATi is the treatment
indicator, equal 1 for the active group and 0 otherwise; and TREATi×TIMEit is their
interaction. The parameter b0 is an overall intercept, b1 describes the change in the
mean visual acuity due to a unit increase in visual acuity at baseline, b2 describes the
change due to a one week change in time, b3 gives an overall treatment effect, and b4
describes the additional change due to a one week change in time for patients treated
with the active treatment. Note that we use a linear time effect, following the findings
based on the final marginal model M12.3. However, contrary to these findings, we
include the interaction between time and treatment in (16.1), to “enrich” the fixed
part of the mean structure. Also, as it will become clear shortly, we simplify the
variance-covariance structure.

In the random-effects part of the model, given by the last line of (16.1), b0i
is a patient-specific random intercept, assumed to be normally distributed with
mean 0 and variance d11, while eit is a residual random error assumed to be
normally distributed with mean 0 and variance s 2. Note that, formally speaking,
the random intercept b0i is a subject-specific deviation from the fixed intercept b0.
It is, however, customary to call b0i a subject-specific random intercept, despite the
fact that, actually, b0 and b0i are “coupled” (Sect. 13.2.1) and they both contribute
to the subject-specific intercept. Typically, this convention does not lead to any
misunderstanding.
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The fixed part of model M16.1 assumes that the average profile is linear in time,
with different intercepts and slopes for the placebo and active treatment groups. The
subject-specific profiles are assumed to also be linear in time, with subject-specific
(random) intercepts that shift the individual profiles from the average linear trend.

In matrix notation, the model for the subject i with a complete set of four visual
acuity measurements is expressed as follows:
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⎜
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. (16.2)

Solid vertical lines in (16.2) are used to separate the columns in the subject-specific
design matrix Xi for the subject i.

Note that (16.2) can easily be written in the form of (13.1)–(13.3), upon defining
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ei ≡

⎛

⎜

⎜

⎝

ei1

ei2

ei3

ei4

⎞

⎟

⎟

⎠

, b≡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b0

b1

b2

b3

b4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and bi ≡ b0i, (16.5)

with

D ≡ d11, and Ri ≡ s 2I4, (16.6)

where I4 is the 4× 4 identity matrix.
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The random part of model M16.1, specified by (16.6), leads, according to
(13.25), to the following marginal variance-covariance matrix for the subject i with
four observations:

Vi ≡ ZiDZ′i +s 2I4 =
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. (16.7)

Consequently, the implied marginal variance-covariance structure is that of com-
pound symmetry with a common correlation equal to % = d11/(s

2 + d11). Note
that, because the variance component d11 is constrained to be nonnegative, % is also
forced to be nonnegative.

16.2.2 R Syntax and Results

In Panel R16.1, we use the function lme() to fit model M16.1, specified by
(16.1)–(16.6).

The formula lm2.form, used in Panel R16.1, defines the fixed part of the
model, as specified in (16.1), including an interaction between time and treatment.
The factor treat.f is parameterized with “Placebo” as the reference level. The
argument random=~1|subject specifies random subject-specific intercepts. By
default, lme() assumes independent residual errors with a constant variance, s 2.
Also, because there is no method argument in the lme() function call, the default
REML estimation is used. To change it to the ML estimation, we should add the
method="ML" argument to the function call.

In addition to the model specification, in Panel R16.1, we also display the results
of the fit of model M16.1. Note that the model formula is explicitly displayed in
the printout. This was achieved by applying, before printing the results, the function
update() to the object fm16.1 to evaluate the formula lm2.form with the help of
the function eval(). To simplify the code, this step is not shown in Panel R16.1.

Additionally, we print out the estimated fixed-effects table using the
printCoefmat() function. The argument has.Pvalue=TRUE specifies that the
last column of the table contains p-values which should be printed (P.values=
TRUE). A description of all of the arguments of the function printCoefmat() can
be obtained by issuing the command ?printCoefmat.



16.2 A Model with Random Intercepts and Homogeneous Residual Variance 331

R16.1 ARMD Trial: Model M16.1 fitted using the function lme()

> lm2.form <- # (16.1)

+ formula(visual ~ visual0 + time + treat.f + treat.f:time)

> (fm16.1 <- # M16.1
+ lme(lm2.form,

+ random = ~1|subject, data = armd)) # b0i:(16.5)

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3289

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

9.288078 0.826440 -0.212216

treat.fActive time:treat.fActive

-2.422000 -0.049591

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 8.9782 8.6275

Number of Observations: 867

Number of Groups: 234

> printCoefmat(summary(fm16.1)$tTable, # Print fixed-effects, etc.

+ has.Pvalue = TRUE, P.values = TRUE) # ... with p-values

Value Std.Error DF t-value p-value

(Intercept) 9.2881 2.6819 631.0000 3.46 0.00057

visual0 0.8264 0.0447 231.0000 18.50 < 2e-16

time -0.2122 0.0229 631.0000 -9.26 < 2e-16

treat.fActive -2.4220 1.5000 231.0000 -1.61 0.10774

time:treat.fActive -0.0496 0.0336 631.0000 -1.48 0.14002

Results presented in Panel R16.1 indicate that the standard deviation
√

d11 of
the random intercepts, as specified in (16.6), is estimated to be equal to 8.98, while
the residual standard deviation, s , is estimated to be equal to 8.63. Note that, as
was mentioned in Sect. 14.7, the p-values, corresponding to the t-test statistics for
the fixed-effects coefficients, are for the marginal-approach tests. A summary of the
REML-based estimates for model M16.1 is also given in Table 16.1.

In Panel R16.2, we demonstrate how to extract information about the grouping of
data or, equivalently, about the data hierarchy implied by the fitted model. By using
the function getGroupsFormula() (see Panel R14.5), we obtain the conditioning
expression used in the specification of the random argument. It indicates a single
level of grouping, defined by the levels of the factor subject. By applying the
function getGroups() to the model-fit object, we extract the grouping factor
and store it in the object grpF. With the help of the function str(), we display
the structure of the object. The printout implies that the grouping factor had 234
levels (subjects). Moreover, we can conclude that, e.g., for the first subject we had
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Table 16.1 ARMD Trial: REML-based parameter estimatesa for models M16.1 and M16.2 with
subject-specific random intercepts

Parameter fm16.1 fm16.2

Model label M16.1 M16.2
Log-REML value −3288.99 −3260.56

Fixed effects
Intercept b0 9.29(2.68) 7.07(2.30)
Visual acuity at t=0 b1 0.83(0.04) 0.87(0.04)
Time (in weeks) b2 −0.21(0.02) −0.21(0.03)
Trt(Actv vs. Plcb) b3 −2.42(1.50) −2.31(1.24)
Tm × Treat(Actv) b4 −0.05(0.03) −0.05(0.04)

reStruct(subject)
SD(bi0)

√
d11 8.98(7.99,10.09) 7.71(6.83,8.69)

Variance function

Power (TIMEd) d 0.31(0.23,0.39)
Scale s 8.63(8.16,9.12) 3.61(2.87,4.54)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

R16.2 ARMD Trial: Data grouping/hierarchy implied by model M16.1. The model-
fit object fm16.1 was created in Panel R16.1

> getGroupsFormula(fm16.1) # Grouping formula

~subject

<environment: 0x000000001a310670>

> str(grpF <- getGroups(fm16.1)) # Grouping factor

Factor w/ 234 levels "1","2","3","4",..: 1 1 2 2 2 2 3 3 3 4...

- attr(*, "label")= chr "subject"

> grpF[1:17]

[1] 1 1 2 2 2 2 3 3 3 4 4 4 4 6 6 6 6

234 Levels: 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19... 240

> levels(grpF)[1:5]

[1] "1" "2" "3" "4" "6"

> range(xtabs(~grpF)) # Min, Max no. of observations

[1] 1 4

two observations, for the second subject we had four observations, etc. Similar
information is obtained by listing a subset of elements of the grouping factor. The
minimum and maximum number of observations across all subjects are obtained by
applying the function range() to the result of a cross tabulation of the levels of the
factor grpF, provided by the function xtabs().

To get more insight into the estimated variance-covariance structure of model
M16.1, we use the getVarCov() and VarCorr() functions, as shown
in Panel R16.3.
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R16.3 ARMD Trial: The estimated variance-covariance matrices for random effects
(D) and residual errors (Ri) for model M16.1. The model-fit object fm16.1 was
created in Panel R16.1
(a) The D-matrix estimate

> getVarCov(fm16.1, individual = "2") # ̂d11:(16.6)

Random effects variance covariance matrix

(Intercept)

(Intercept) 80.608

Standard Deviations: 8.9782

> VarCorr(fm16.1) # ̂d11, ̂s 2

subject = pdLogChol(1)

Variance StdDev

(Intercept) 80.608 8.9782

Residual 74.434 8.6275

(b) The Ri-matrix estimate

> getVarCov(fm16.1,

+ type = "conditional", # ̂Ri:(16.6)
+ individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 74.434 0.000 0.000 0.000

2 0.000 74.434 0.000 0.000

3 0.000 0.000 74.434 0.000

4 0.000 0.000 0.000 74.434

Standard Deviations: 8.6275 8.6275 8.6275 8.6275

The getVarCov()-function call, used in Panel R16.3a, does not include the
type argument (see Sect. 14.6 and Table 14.5). This means that the default value of
the argument, i.e., type="random.effect", is employed. As a result, the function
provides the estimated variance-covariance matrix D of the random effects. In the
case of model M16.1, it gives the estimated variance and standard deviation of the
subject-specific random intercepts. The argument individual="2", used in the
getVarCov()-function call, requests the random effects variance-covariance matrix
for the second individual, i.e., subject==2, in the analyzed dataset. In fact, in our
case, the subject number is not of importance, as the variance-covariance structure
of random effects is assumed to be the same for all individuals.

In Panel R16.3a, we also illustrate how to extract estimates of the D matrix
elements using the function VarCorr() (see Sect. 14.6 and Table 14.5).

In Panel R16.3b, we specify the type="conditional" and individual="2"

arguments in a call to the getVarCov() function. As a result, we obtain the
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estimated variance-covariance matrix Ri of the residual random errors for the
second subject. As noted previously, this subject has all four post-randomization
visual acuity measurements, so a 4× 4 matrix is reported. Because model M16.1
assumes independent residual errors with the same variance at all measurement
times, a diagonal matrix ̂Ri = ŝ 2I4 = 74.434× I4 is displayed, as specified
in (16.6).

Finally, in Panel R16.4, we obtain the estimated marginal variance-covariance
matrix, defined in (16.7), by applying the function getVarCov() with the
type="marginal" argument. The result, for individual="2", is stored in the
object fm16.1cov and displayed. The marginal variance is estimated by the sum
of the estimated residual variance ŝ 2

= 74.434 and the variance of the random
intercepts ̂d11 = 80.608. The latter variance component becomes the covariance, as
seen from (16.7).

The resulting marginal correlation matrix is obtained by applying the cov2cor()
function (see Panel R14.4) to the first component of the list-object fm16.1cov,
which contains the estimated marginal variance-covariance matrix. As noted earlier,
the estimated marginal correlation matrix implies a constant, positive correlation
coefficient equal to 0.52 for any two visual acuity measurements obtained for the
same patient at different timepoints.

16.3 A Model with Random Intercepts and the varPower(·)
Residual Variance-Function

As noted in the exploratory analysis (Sect. 3.2) and, e.g., in Chap. 12, the variability
of visual acuity measurements increases in time. Therefore, we consider a model
with variance of random errors expressed as a power function of the TIME covariate.

16.3.1 Model Specification

To specify the new model, labeled M16.2, we use the same fixed-effects part as in
model M16.1. However, we modify the variance-covariance structure of residual
random errors, specified in (16.6). More specifically, following the results obtained
in Chaps. 9 and 12, we consider the use of the varPower(·) variance function,
introduced in Sect. 7.3.1. Thus, we assume that

Ri = s 2
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R16.4 ARMD Trial: The estimated marginal variance-covariance matrix and the
corresponding correlation matrix for model M16.1. The model-fit object fm16.1
was created in Panel R16.1

> (fm16.1cov <-

+ getVarCov(fm16.1,

+ type = "marginal", # ̂Vi:(16.7)
+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 155.040 80.608 80.608 80.608

2 80.608 155.040 80.608 80.608

3 80.608 80.608 155.040 80.608

4 80.608 80.608 80.608 155.040

Standard Deviations: 12.452 12.452 12.452 12.452

> (cov2cor(fm16.1cov[[1]])) # Corr( ̂Vi)

1 2 3 4

1 1.00000 0.51991 0.51991 0.51991

2 0.51991 1.00000 0.51991 0.51991

3 0.51991 0.51991 1.00000 0.51991

4 0.51991 0.51991 0.51991 1.00000

Note that Ri, defined in (16.8), can be decomposed as Ri = s 2LiCiLi using Li,
given in (12.3), and by setting Ci = I4. It should be stressed here that the parameter
s 2, used in (16.8), can only be interpreted as a (unknown) scale parameter. This is
in contrast to (16.6), where it could be interpreted as the variance of residual errors.

The matrix Ri, given in (16.8), is diagonal with unequal elements defined by
the varPower(·) function. Consequently, as compared to model M16.1, the marginal
variance-covariance and correlation matrices of model M16.2 have different struc-
tures. In particular, the marginal variance-covariance matrix becomes equal to

Vi =

⎛

⎜

⎜

⎜

⎝

s 2
1 + d11 d11 d11 d11

d11 s 2
2 + d11 d11 d11

d11 d11 s 2
3 + d11 d11

d11 d11 d11 s 2
4 + d11

⎞

⎟

⎟

⎟

⎠

, (16.9)

where
s 2

t = s 2(TIMEit)
2d.

It is worth observing that, because the variance changes with time, the marginal
correlation coefficients between observations made at different times are no longer
equal.
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R16.5 ARMD Trial: Model M16.2 fitted using the function lme(). The model-fit
object fm16.1 was created in Panel R16.1

> (fm16.2 <- # M16.2 ← M16.1
+ update(fm16.1,

+ weights = varPower(form = ~ time), # (9.4)

+ data = armd))

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3260.6

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

7.066881 0.866544 -0.212627

treat.fActive time:treat.fActive

-2.305034 -0.050888

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 7.7056 3.6067

Variance function:

Structure: Power of variance covariate

Formula: ~time

Parameter estimates:

power

0.31441

Number of Observations: 867

Number of Groups: 234

16.3.2 R Syntax and Results

In Panel R16.5, we fit model M16.2. More specifically, we update the ob-
ject fm16.1, representing the fitted model M16.1, using the weights = var-

Power(form = ~time) argument in a call to the update() function. Note the use
of the varPower() variance-function constructor (see Sect. 8.2) in the weights

argument (see Sect. 14.5). Results of fitting model M16.2 using REML are stored in
the object fm16.2. Panel R16.5 presents a summary of the estimates of the model
parameters. More detailed results are shown in Table 16.1.

The results, presented in Panel R16.5, indicate that the scale parameter s is
estimated to be equal to 3.607. The power coefficient d of the varPower() variance
function, as specified in (9.4), is estimated to be equal to 0.314. The estimate of the
standard deviation of the random intercepts equals 7.706.

Panel R16.6 presents the estimates of the variance-covariance matrices associ-
ated with model M16.2. To obtain the estimate of the D matrix, we apply the
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R16.6 ARMD Trial: The estimated D, Ri, and Vi matrices for model M16.2. The
model-fit object fm16.2 was created in Panel R16.5

> VarCorr(fm16.2) # ̂d11: (16.6), ̂s 2

subject = pdLogChol(1)

Variance StdDev

(Intercept) 59.376 7.7056

Residual 13.008 3.6067

> getVarCov(fm16.2, # ̂Ri: (16.8)

+ type = "conditional",

+ individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 31.103 0.000 0.000 0.00

2 0.000 62.062 0.000 0.00

3 0.000 0.000 95.966 0.00

4 0.000 0.000 0.000 156.05

Standard Deviations: 5.577 7.8779 9.7962 12.492

> (fm16.2cov <- # ̂Vi: (16.9)

+ getVarCov(fm16.2,

+ type = "marginal",

+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 90.479 59.376 59.376 59.376

2 59.376 121.440 59.376 59.376

3 59.376 59.376 155.340 59.376

4 59.376 59.376 59.376 215.430

Standard Deviations: 9.512 11.02 12.464 14.677

> cov2cor(fm16.2cov[[1]]) # Corr( ̂Vi)

1 2 3 4

1 1.00000 0.56645 0.50083 0.42529

2 0.56645 1.00000 0.43230 0.36710

3 0.50083 0.43230 1.00000 0.32457

4 0.42529 0.36710 0.32457 1.00000

VarCorr() function. The estimated variance of random intercepts is equal to
59.376. Note that it is smaller than the value of 80.608, obtained for model M16.1
(see Panel R16.3). This is expected, because, by allowing for heteroscedastic
residual random errors, a larger part of the total variability is explained by the
residual variances. The estimated variance-covariance matrix of the residual errors
Ri is obtained using the getVarCov() function with the type="conditional"
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Table 16.2 ARMD Trial: REML-based estimatesa for linear mixed-effects modelsb with random
intercepts and time slopes

Parameter fm16.3 fm16.4 fm16.5

Model label M16.3 M16.4 M16.5
Log-REML value −3215.30 −3215.90 −3214.47

Fixed effects
Intercept b0 4.74(2.26) 5.26(2.27) 5.44(2.26)
Visual acuity at t=0 b1 0.91(0.04) 0.90(0.04) 0.90(0.04)
Time (in weeks) b2 −0.22(0.03) −0.22(0.03) −0.24(0.02)
Trt(Actv vs. Plcb) b3 −2.26(1.15) −2.28(1.17) −2.66(1.13)
Tm × Treat(Actv) b4 −0.06(0.05) −0.06(0.05)

reStruct(subject)
SD(bi0)

√
d11 6.98( 5.99,8.13) 7.23(6.33,8.26) 7.24(6.33,8.27)

SD(bi1)
√

d22 0.27( 0.23,0.32) 0.28(0.24,0.33) 0.28(0.24,0.33)
cor((Intercept),time) %12 0.14(−0.13,0.38)

Variance function
Power (TIMEd) d 0.11(0.02,0.20) 0.11(0.01,0.21) 0.11(0.02,0.21)

Scale s 1 5.12(4.00,6.56) 5.03(3.90,6.49) 5.04(3.92,6.48)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses
bThe variance function varPower() of the time covariate was used in all three models

argument. It corresponds to the matrix specified in (16.8). Thus, for instance, the first

diagonal element of the ̂Ri matrix is equal to ŝ 2 ·42d̂ = 3.60672 ·42·0.3144 = 31.103.
The estimated marginal variance-covariance matrix, shown in Panel R16.6,

corresponds to the matrix Vi, given in (16.9). It is obtained by applying the getVar-
Cov() function with the type="marginal" argument to the fm16.2 model-fit ob-
ject. The corresponding estimated marginal correlation matrix indicates a decreasing
correlation between visual acuity measurements made at more distant timepoints.
This agrees with the conclusion drawn for the final marginal model M12.3, defined
by (12.3), (12.6), and (12.9), for which results are displayed in Table 12.2 and
Panel R12.12. Note, however, that the direct comparison of the marginal variance-
covariance matrices for models M12.3 and M16.2 is not appropriate. This is because
the marginal variance-covariance matrix of model M16.2, displayed in Panel R16.6,
is much more structured than that of model M12.3, printed in Panel R12.12. On the
other hand, they both allow for marginal correlation coefficients, which depend on
the time “distances”, or “positions”, of visual-acuity measurements.

To summarize the results of analyses presented in the current and the previous
section, Table 16.1 displays REML-based parameter estimates for models M16.1
and M16.2.



16.3 A Model with Random Intercepts and varPower(·) Residual Variance 339

R16.7 ARMD Trial: Residual plots for model M16.2. The model-fit object fm16.2
was created in Panel R16.5
(a) Default residual plot of conditional Pearson residuals

> plot(fm16.2) # Fig. 16.1

(b) Plots (and boxplots) of Pearson residuals per time and treatment

> plot(fm16.2, # Figure not shown

+ resid(., type = "pearson") ~ time | treat.f,

+ id = 0.05)

> bwplot(resid(fm16.2, type = "p") ~ time.f | treat.f, # Fig. 16.2

+ panel = panel.bwxplot2, # User-defined panel (not shown)

+ data = armd)

(c) Normal Q-Q plots of Pearson residuals and predicted random effects

> qqnorm(fm16.2, ~resid(.) | time.f) # Fig. 16.3

> qqnorm(fm16.2, ~ranef(.)) # Fig. 16.4

16.3.3 Diagnostic Plots

At this point, we might want to take a look at the goodness of fit of model M16.2.
The fitted model is represented by the object fm16.2. The syntax for several residual
plots is given in Panel R16.7.

The default residual plot for the object is obtained using the plot() command in
Panel R16.7a and presented in Fig. 16.1. The plot displays the conditional Pearson
residuals (Sect. 13.6.2) versus fitted values. As such, the plot is not very informative,
because it pools all the residuals together, despite the fact that residuals obtained
from the same individual are potentially correlated. However, it can serve for
detecting, e.g., outliers. In Fig. 16.1, a group of such residuals can be seen in at
the bottom and the top of the central part of the scatterplot.

A modified plot of the residuals for each timepoint and treatment group might be
more helpful. Toward this end, we use the form of the plot()-function call shown
in Panel R16.7b. Note that, in the plot formula, we apply the type="pearson"

argument in the resid() function, which indicates the use of the Pearson residuals.
Moreover, in the formula, we use the term ~time|treat to obtain plots per treat-
ment group over time in separate panels. Additionally, by applying the argument
id=0.05 to the plot() statement, we label the residuals larger, in absolute value,
than the 97.5th percentile of the standard normal distribution by the number of the
corresponding observation from the armd data frame.

Note that we do not present the resulting plot. Instead, in Fig. 16.2, we present its
enhanced version, with box-and-whiskers plots superimposed over a stripplot of the
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Fig. 16.1 ARMD Trial: Scatterplot of the conditional Pearson residuals for model M16.2

residuals for each timepoint and treatment group. Toward this end, in Panel R16.7b,
we use the function bwplot() from the package lattice (Sect. 3.2.2). In the first
argument of bwplot(), we use a formula requesting a plot of the Pearson residuals
versus the levels of the time.f factor, separately for the levels of the treat.f

factor. The residuals are extracted from the model-fit object fm16.2 by applying
the resid() function (Sect. 5.5). The key component of the bwplot()-function
call is an auxiliary panel-function panel.bwxplot2. Due to the complexity of
the R code used to create the panel function, we do not present it; however, the
code is available in the package nlmeU containing the supplementary materials for
the book.

Figure 16.2 allows for an evaluation of the distribution of the conditional
Pearson residuals for each timepoint and treatment group. Despite standardization,
the variability of the residuals seems to vary. The plot reveals also a number of
outliers, i.e., residuals larger, in absolute value, than the 97.5th percentile of the
standard normal distribution (they have been labeled in the plot by the corresponding
observation number). However, given the large number of observations, one might
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Fig. 16.2 ARMD Trial: Stripplots (and box-and-whiskers plots) of the conditional Pearson
residuals for each timepoint and treatment group for model M16.2

expect a group of outlying values. It is worth noting that the outliers are present in
all treatment groups and at all timepoints.

Panel R16.8 lists the subjects for whom outlying residuals were labeled in
Fig. 16.2. Toward this end, the conditional Pearson residuals are extracted from
the model-fit object fm16.2 and stored in the vector resid.p. Indices for the
residuals larger, in absolute value, than the 97.5th percentile of the standard normal
distribution are stored in the logical vector idx. The data frame outliers.idx

contains selected variables from the armd dataset together with the residuals and the
logical index vector. The data frame outliers is a subset of outliers.idx and
contains observations for which the value of the variable idx, given as the second
argument of the function subset(), is equal to 1. There are 38 such observations,
for which the value of the subject number is printed out. Note that, for several
subjects, there is more than one outlying residual, because there is more than one
visual acuity measurement possible per subject.
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R16.8 ARMD Trial: The list of outlying conditional Pearson residuals for
model M16.2. The model-fit object fm16.2 was created in Panel R16.5

> id <- 0.05 # Argument for qnorm()

> outliers.idx <-

+ within(armd,

+ {

+ resid.p <- resid(fm16.2, type = "pearson") # Pearson resids.

+ idx <- abs(resid.p) > -qnorm(id/2) # Indicator vector

+ })

> outliers <- subset(outliers.idx, idx) # Data with outliers

> nrow(outliers) # Number of outliers

[1] 38

> outliers$subject # IDs of outliers

[1] 40 46 51 56 56 68 68 70 73 73 73 75 77 87 90

[16] 91 93 104 104 107 112 112 120 121 121 135 137 137 143 151

[31] 162 165 178 191 200 209 227 227

234 Levels: 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19... 240

Figure 16.3 shows the normal Q-Q plot of the conditional Pearson residuals per
timepoint. The plot was obtained using the first qqnorm()-function call shown in
Panel R16.7c. The patterns do show some deviations from a linear trend.

We can also look at the normal Q-Q plot of the predicted random effects
(random intercepts). The effects are estimated by EBLUPs (Sect. 13.6.1). They
can be extracted from the fm16.2 model-fit object using the function ranef()

(see Sect. 14.6 and Table 14.5), as shown in the second qqnorm()-function call
shown in Panel R16.7c. The resulting Q-Q plot is shown in Fig. 16.4 and is slightly
curvilinear. This could be taken as an indication of nonnormality of the random
effects. However, as mentioned in Sect. 13.6.1, such a plot may not necessarily
reflect the true distribution of the random effects. Hence, it should be interpreted
with caution.

An important diagnostic plot is presented in Fig. 16.5. It shows the observed
and predicted values of the visual acuity measurements for selected patients.
Panel R16.9 demonstrates how to generate the object containing the data necessary
for constructing the figure using the augPred() function.

The function augPred() allows obtaining predicted values for the object
specified as the first argument. The object can be of class lmList (14.5), gls (11.6),
and lme (14.6). If the object has a grouping structure, the predicted values are
obtained for each group. Conveniently, the function adds the original observations to
the returned object, which is a data frame with four columns containing the values of
the primary covariate, the groups, the predicted or observed values, and the indicator
of the type of the value from the third column.

The optional arguments of the function augPred() include: primary, level,
length.out, minimum, and maximum. The argument primary is a one-sided
formula indicating the covariate at which values the predicted values should be
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Fig. 16.3 ARMD Trial: Normal Q-Q plots of the conditional Pearson residuals for each timepoint
for model M16.2

computed. In the call presented in Panel R16.9, we indicate that the predicted values
should be computed at the values of the variable time.

The arguments minimum and maximum allow for providing the lower and upper
limit, respectively, for the values of the primary covariate at which the predicted
values are to be computed. By default, the arguments become equal to, respectively,
the minimum and maximum of the values of the covariate. In the call presented
in Panel R16.9, we use the default values of the arguments, i.e., the minimum and
maximum values of the time variable, which are equal to, respectively, 4 and 52
weeks.

The argument level of the function augPred() is an integer vector specifying
the grouping levels for which the predicted values are to be computed. Its interpreta-
tion is the same as for the function predict() (Sect. 14.6). In the augPred-function
call shown in Panel R16.9, we use level=0:1, which amounts to specifying that
the predicted values should be computed at the level 0, i.e., the population level, and
at the level 1, i.e., the subject level.

Finally, the length.out argument is an integer indicating the number of values
of the primary covariate at which the predictions should be evaluated. By default,
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Fig. 16.4 ARMD Trial: The normal Q-Q plot of the predicted random intercepts for model M16.2

R16.9 ARMD Trial: Predicted visual acuity values for model M16.2. The model-fit
object fm16.2 was created in Panel R16.5

> aug.Pred <- # augPred for M16.2
+ augPred(fm16.2,

+ primary = ~time, # Primary covariate

+ level = 0:1, # Marginal(0) and subj.-spec.(1)

+ length.out = 2)

> plot(aug.Pred, layout = c(4, 4, 1), # Fig. 16.5

+ key = list(lines = list(lty = c(1,2)),

+ text = list(c("Marginal", "Subject-specific")),

+ columns = 2))
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Fig. 16.5 ARMD Trial: Observed and predicted values of visual acuity for selected patients for
model M16.2

it assumes the value 51. In Panel R16.9, we set length.out=2, i.e., the predicted
values are obtained at two values time, i.e., at the minimum (4 weeks) and the
maximum (52 weeks). The two predicted values are sufficient to describe the
(population- and subject-specific) linear trend in (continuous) time, implied by the
fitted form of model M16.2.

By applying, in Panel R16.9, the plot() function to the object aug.Pred

with the level=0:1 argument, a plot of the population-level and within-subject
predicted values is obtained. The argument layout=c(4,4,1) requests one page
of plots, arranged in four rows with four plots each. Each plot corresponds to a
single subject; thus, the predictions for the first 16 subjects are plotted. Finally, the
key argument allows specifying the legend, which is placed at the top of the graph.
We refer the reader to the R help system for the xyplot() function from the lattice
package for a detailed description of other available arguments.

The resulting plot is shown in Fig. 16.5. The predicted population means, shown
in the plot, decrease linearly in time. This is consistent with the trend observed
in Fig. 3.2. According to the assumed structure of the model, the population
means are shifted for individual patients by subject-specific random intercepts.
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Note that, as a result, the slopes of the individual profiles are the same for all
subjects. Consequently, all subject-specific lines are parallel to lines representing the
population means. For some patients, the so-obtained predicted individual profiles
strongly deviate from the observed ones. For instance, for the subjects 4 and 15, the
predicted individual patterns suggest a decrease of visual acuity over time, while the
observed values actually increase over time.

A possible way to improve the individual predictions is to allow not only for
patient-specific random intercepts, but also for patient-specific random slopes. We
focus on this issue in the next section.

16.4 Models with Random Intercepts and Slopes
and the varPower(·) Residual Variance-Function

In this section, we consider a model with two subject-specific random effects: a
random intercept and a random slope for time. We use two variance-covariance
structures D for the random effects, namely, a general one and a diagonal one. By
using the varPower(·) variance function, the residual variances are allowed to differ
between different timepoints.

16.4.1 Model with a General Matrix D

To specify model M16.3 with a general variance-covariance matrix D, we modify
the model equation (16.1) as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+b4×TREATi×TIMEit

+ b0i + b2i×TIMEit + eit. (16.10)

The equation (16.10) can be written in the form of (13.1)–(13.3), upon defining yi,
Xi, ei, and b as in (16.3)–(16.5), but with

Zi =

⎛

⎜

⎜

⎝

1 4
1 12
1 24
1 52

⎞

⎟

⎟

⎠

, bi =

(

b0i

b2i

)

, (16.11)

and with the variance-covariance structure of the random effects given by

bi ∼N (0,D) and ei ∼N (0,Ri), (16.12)
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where

D =

(

d11 d12

d21 d22

)

(16.13)

and Ri is given by (16.8).
Note that the assumed form of D implies that the random intercepts and slopes

are correlated. For instance, a positive correlation between b0i and b2i means that,
for individuals with a higher initial value of visual acuity, the post-randomization
measurements will increase more rapidly or decrease more slowly than for patients
with a lower initial value.

It is worth reflecting on the marginal variance-covariance structure implied by
model M16.3. According to this model, the marginal covariance between visual
acuity measurements for the subject i at times t1 and t2 (t1, t2 = 1,2,3,4) can be
written as follows:

Cov(yit1
,yit2

) =
(

1 TIMEit1

)

D
(

1
TIMEit2

)

+ I(t1 = t2)s
2(TIMEit1

)2d

= d11 + d12(TIMEit1
+TIMEit2

)+ d22TIMEit1
TIMEit2

+ I(t1 = t2)s
2(TIMEit)

2d, (16.14)

where I(A) is the indicator function for condition A. Hence, the marginal variance
of visual acuity measurements for the subject i at the time t can be expressed as

Var(yit) = d11 + 2d12TIMEit + d22TIME2
it +s 2(TIMEit)

2d. (16.15)

Thus, the variance becomes a power function, including a quadratic component, of
the measurement time.

In Panel R16.10, we fit model M16.3, defined by (16.10)–(16.13), by updating
the object fm16.2. Specifically, we use the syntax random = ~ 1 + time |

subject to specify the random-effects structure (Sect. 14.3.1). By applying this
particular formula in the random argument, we imply that, for each level of the
subject grouping variable, a random intercept and a random slope for time are to
be considered, with a (default) general variance-covariance matrix D represented
by an object of class pdLogChol.

The basic results of fitting model M16.3 are displayed in Panel R16.10. More
details are shown in Table 16.2. In Panel R16.10, we also present the 95% CIs
for the variance-function and correlation-structure parameters. They are computed
using the methods described in Sect. 13.7.3. The results show a low estimated value
of the correlation coefficient for the random effects b0i and b2i, equal to 0.138.
The confidence interval for the correlation coefficient suggests that, in fact, the two
random effects can be uncorrelated. Therefore, in the next section, we consider a
simplified form of the D matrix.
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R16.10 ARMD Trial: The estimated ̂D matrix and confidence intervals for the
qD parameters for model M16.3. The model-fit object fm16.2 was created in
Panel R16.5

> fm16.3 <- # M16.3 ← M16.2
+ update(fm16.2,

+ random = ~1 + time | subject,

+ data = armd)

> getVarCov(fm16.3, individual = "2") # ̂D: (16.16)

Random effects variance covariance matrix

(Intercept) time

(Intercept) 48.70500 0.26266

time 0.26266 0.07412

Standard Deviations: 6.9789 0.27225

> intervals(fm16.3, which = "var-cov") # 95% CI for qD, d: (16.8), s
Approximate 95% confidence intervals

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 5.99019 6.97891 8.13082

sd(time) 0.23009 0.27225 0.32213

cor((Intercept),time) -0.12564 0.13824 0.38386

Variance function:

lower est. upper

power 0.015191 0.10744 0.1997

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.9993 5.1222 6.5604

16.4.2 Model with a Diagonal Matrix D

In this section, we consider model M16.4, which, similarly to model M16.3, is
defined by (16.10), but for which we specify that

D =

(

d11 0
0 d22

)

. (16.16)

Thus, we assume that random intercepts b0i and random slopes b1i have different
variances and are uncorrelated.
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R16.11 ARMD Trial: Confidence intervals for the parameters of model M16.4. The
model-fit object fm16.3 was created in Panel R16.10

> fm16.4 <- # M16.4 ← M16.3
+ update(fm16.3,

+ random = list(subject = pdDiag(~time)), # Diagonal D
+ data = armd)

> intervals(fm16.4) # 95% CI for b, qD, d, s
Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 0.81277 5.262213 9.711655

visual0 0.82464 0.899900 0.975157

time -0.27954 -0.215031 -0.150524

treat.fActive -4.58882 -2.278756 0.031308

time:treat.fActive -0.15055 -0.056451 0.037646

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 6.33067 7.23195 8.26153

sd(time) 0.24108 0.28096 0.32744

Variance function:

lower est. upper

power 0.014823 0.11108 0.20733

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.8979 5.0312 6.4939

To fit model M16.4, we use the constructor-function pdDiag(). The function
creates an object of class pdDiag, representing a diagonal positive-definite matrix
(Sect. 14.2.1). Thus, in Panel R16.11, we update the object fm16.3, which repre-
sents model M16.3, using the argument random=pdDiag(~time). By specifying
the argument, we imply a diagonal form of the variance-covariance matrix D of the
random intercepts and slopes (Sect. 14.3.1).

Panel R16.11 presents the 95% CIs for all the parameters of model M16.4. They
suggest that the mean structure could be simplified by removing the time:treat.f
interaction. More detailed results for the model are provided in Table 16.2.
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R16.12 ARMD Trial: Testing a null hypothesis about the qD parameters for
model M16.4. The model-fit object fm16.3 was created in Panel R16.10

> anova(fm16.4, fm16.3) # H0: d12=0 (M16.4 ⊂ M16.3)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.4 1 9 6449.8 6492.6 -3215.9

fm16.3 2 10 6450.6 6498.2 -3215.3 1 vs 2 1.194 0.2745

In Panel R16.12, we use the REML-based LR test (Sect. 13.7.2) to verify the null
hypothesis that in the matrix D, defined in (16.13), the element d12 = 0. Toward
this end, we apply the anova() function to the objects fm16.4 and fm16.3, which
represent the fitted models M16.4 (null) and M16.3 (alternative), respectively. We
note that both models have the same mean structure so that the use of the REML-
based LR test is justified. In addition to information criteria and REML values
for both models, the results of the LR test, which is based on models M16.3
and M16.4, are displayed. Given that the null hypothesis specifies a value inside
the parameter space, the asymptotic c2 distribution with one degree of freedom can
be used to assess the outcome of the test (Sect. 13.7.2). The result is not statistically
significant at the 5% significance level. It indicates that, by assuming a simpler,
diagonal structure of the matrix D, we do not worsen the fit of the model. This
conclusion is in agreement with the computed values of AIC: the value of 6,450.6
for model M16.3 is slightly larger than the value of 6,449.8 for model M16.4, which
indicates a slightly better fit of the latter model.

Note that, according to model M16.4 and (16.15), the marginal variance of visual
acuity for the subject i at time t can be written as

Var(yit) = d11 + d22TIME2
it +s 2(TIMEit)

2d.

Consequently, given that d̂ = 0.11, the implied marginal variance function is
predominantly a quadratic function over time. As d11, d22, and s 2 are necessarily
positive, the function increases with time, which is in agreement with the observa-
tion made in the exploratory analysis (see, e.g., Panel R3.6 in Sect. 3.2).

Figure 16.6 presents the conditional Pearson residuals for model M16.4. As
compared to the similar plot for model M16.2 (see Fig. 16.1), it shows fewer
residuals with an absolute value larger than the 97.5th percentile of the standard
normal distribution.

Figure 16.7 presents the normal Q-Q plot of the conditional Pearson residuals
per timepoint for model M16.4. The plot looks comparable to the corresponding
plot for model M16.2 shown in Fig. 16.3.

Note that Figs. 16.6 and 16.7 were constructed using the syntax similar to the one
presented in Panels R16.7b and R16.7c, respectively. Thus, we do not present the
details of the syntax for the two figures.
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Fig. 16.6 ARMD Trial: Stripplots (and box-and-whiskers plots) of the conditional Pearson
residuals for each timepoint and treatment group for model M16.4

Fig. 16.7 ARMD Trial: Normal Q-Q plots of the conditional Pearson residuals for each timepoint
for model M16.4
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Fig. 16.8 ARMD Trial: Normal Q-Q plots of the predicted random effects for model M16.4

Figure 16.8 presents the normal Q-Q plots of the predicted random effects
for model M16.4. The plots were obtained by using the following form of the
qqnorm()-function call:

> qqnorm(fm16.4, ~ranef(.)) # Fig. 16.8

As a result, two plots are produced: one for the random intercepts and one for
the random slopes. The latter is slightly closer to a straight line than the former. It is
worth noting that the plot for the random intercepts resembles the one obtained for
model M16.2 (see Fig. 16.4). Recall that, as mentioned in Sect. 13.6.1, we should
interpret the graphs with caution, because they may not necessarily reflect the
correct distribution of the random effects.

Finally, Fig. 16.9 presents the predicted marginal and subject-specific values
for model M16.4. Recall that, for model M16.2, a similar plot (see Fig. 16.5)
showed a decreasing slope of the individual profiles, the same for all subjects.
As a consequence, for some patients, e.g., no. 4 and 15, the so-obtained predicted
individual profiles strongly deviated from the observed ones. This is not the case
of the profiles shown in Fig. 16.9, for which the slopes vary. As a result, the
predicted individual profiles follow more closely the observed values and capture,
e.g., increasing trends in time. This illustrates that model M16.4 offers a better fit to
the data than model M16.2.

Given the satisfactory fit of model M16.4, in the next section, we focus on the
inference about the mean structure of the model.
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Fig. 16.9 ARMD Trial: Observed and predicted values of visual acuity for selected patients for
model M16.4

16.4.3 Model with a Diagonal Matrix D and a Constant
Treatment Effect

As mentioned in Sect. 16.4.2, the mean structure of model M16.4 could be simpli-
fied by removing the TREATi×TIMEit interaction (see Panel R16.11). Toward this
end, we specify model M16.5 by modifying (16.10) as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+ b0i + b2i×TIMEit + eit. (16.17)

As compared to (16.10), (16.17) does not contain the b4 × TREATi × TIMEit
interaction term in the fixed-effects part. Note that we keep all other elements of
the model specification as for model M16.4. In particular, the variance-covariance
matrix D is given by (16.16).

To fit model M16.5, we modify the LM formula and update the object fm16.4
using the new formula object. The syntax is presented in Panel R16.13. The panel
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R16.13 ARMD Trial: Fixed-effects estimates, their approximate standard errors, and
95% confidence intervals for the variance-covariance parameters of model M16.5.
The model-fit object fm16.4 was created in Panel R16.11

> lm3.form <- formula(visual ~ visual0 + time + treat.f) # (12.9)

> fm16.5 <- # M16.5 ← M16.4
+ update(fm16.4,

+ lm3.form, data = armd)

> summary(fm16.5)$tTable # ̂b, se(̂b), t-test

Value Std.Error DF t-value p-value

(Intercept) 5.44156 2.261866 632 2.4058 1.6424e-02

visual0 0.89983 0.038215 231 23.5464 2.5503e-63

time -0.24156 0.023917 632 -10.0997 2.4641e-22

treat.fActive -2.65528 1.128683 231 -2.3525 1.9485e-02

> intervals(fm16.5, which = "var-cov") # 95% CI for qD, d, s
Approximate 95% confidence intervals

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 6.33448 7.23570 8.2651

sd(time) 0.24121 0.28102 0.3274

Variance function:

lower est. upper

power 0.015687 0.11052 0.20535

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.9177 5.0391 6.4815

also shows the results of the t-tests for the fixed effects (Sect. 13.7.1). Note that
these are the marginal-approach tests (Sect. 5.6). Thus, the effect of each covariate
is tested under the assumption that all other covariates are included in the model as
well. The result of the test for the treat.f factor is statistically significant at the
5% significance level. It suggests a time-independent, negative average effect of the
active treatment. This finding is in agreement with the results of the exploratory
analysis (Sect. 3.2) and of the previous analysis using an LM with fixed effects
for correlated data (Chap. 12). Note that the point estimates of the fixed effects,
shown in Panel R16.13, are close to the corresponding estimates obtained for the
final model M12.3 for correlated data (see Table 12.2).

Panel R16.13 also presents the 95% CIs for all the variance-covariance
parameters of model M16.5. The point estimates and intervals are very close to
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R16.14 ARMD Trial: The estimates of matrices D, Ri, and Vi for model M16.5.
The model-fit object fm16.5 was created in Panel R16.13

> VarCorr(fm16.5) # ̂D: (16.16), ̂s
subject = pdDiag(time)

Variance StdDev

(Intercept) 52.355293 7.23570

time 0.078974 0.28102

Residual 25.392868 5.03913

> getVarCov(fm16.5, # ̂Ri: (16.8)

+ type = "conditional", individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 34.498 0.00 0.000 0.000

2 0.000 43.98 0.000 0.000

3 0.000 0.00 51.262 0.000

4 0.000 0.00 0.000 60.816

Standard Deviations: 5.8735 6.6317 7.1597 7.7984

> (fm16.5cov <- # ̂Vi: (16.9)

+ getVarCov(fm16.5,

+ type = "marginal",

+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 88.117 56.146 59.937 68.782

2 56.146 107.710 75.100 101.640

3 59.937 75.100 149.110 150.920

4 68.782 101.640 150.920 326.720

Standard Deviations: 9.387 10.378 12.211 18.075

> cov2cor(fm16.5cov[[1]]) # Corr( ̂Vi)

1 2 3 4

1 1.00000 0.57633 0.52290 0.40538

2 0.57633 1.00000 0.59261 0.54180

3 0.52290 0.59261 1.00000 0.68375

4 0.40538 0.54180 0.68375 1.00000

those displayed in Panel R16.11 for model M16.4. This is not surprising, given that
the two models differ only slightly with respect to their mean structure.

Another summary of estimates of the parameters of model M16.5 is given in
Table 16.2, which also contains estimated parameters of models M16.3 and M16.4.

Panel R16.14 displays the estimated forms of matrices D, Ri, and Vi for
model M16.5. The estimated marginal variance-covariance matrix ̂Vi indicates an
increasing trend of variances of visual acuity measurements over time, while the
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corresponding correlation matrix suggests a decreasing correlation between the
measurements obtained at more distant timepoints. These findings are in agreement
with the results of the exploratory analysis (Sect. 3.2) and with the results obtained
for model M12.3 for correlated data (Table 12.2). Note, however, that a direct
comparison of the estimated marginal matrices to their counterparts obtained for
model M12.3 is not appropriate, because the matrices for model M16.5 are much
more structured than those of model M12.3 (see a similar comment in Sect. 16.3.2).

16.5 An Alternative Residual Variance Function: varIdent(·)

The LMMs, presented in Sects. 16.3 and 16.4, were specified with the use of the
varPower(·) variance function (see the definition of the matrix Li in (16.8)). This
may be an overly constrained function, because it assumes that the variances of
the visual acuity measurements change as a power function of the measurement
time. The choice was motivated by the results obtained in Chaps. 9 and 12, where
models, defined with the use of the varPower(·) variance function, fitted the ARMD
data better than models with unconstrained variances, specified with the use of
the varIdent(·) function (see, e.g., Sect. 12.5.2). However, it is possible that, in the
framework of LMMs, a more general variance function might allow obtaining a
better fit than the power function.

To verify this hypothesis, we will use the LR test constructed based on mod-
els M16.3 and M16.6. Both of the models have the same fixed- and random effects
structure, given by (16.10). They differ with respect to Ri matrix specification.
Specifically, in the former model, the matrix Ri is defined using power function.
In contrast, in the latter model the matrix Ri is defined as follows:

Ri = s 2
1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 s 2
2

s 2
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0 0

0 0 s 2
3

s 2
1

0

0 0 0 s 2
4

s 2
1

⎞

⎟
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⎟

⎠

≡ s 2

⎛

⎜
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⎝
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1 0 0 0

0 d2
2 0 0

0 0 d2
3 0

0 0 0 d2
4

⎞

⎟

⎟

⎟

⎠

, (16.18)

where dt ≡ s t/s 1 (t = 1, . . . ,4) is the ratio of SD of the visual acuity measurements
at occasion t relative to SD of the measurements at the first occasion, and where
s 2 ≡ s 2

1. This parameterization corresponds to a varIdent-class variance function
(Sect. 7.3.1) and is specified in such a way that it allows identifying the variance-
function parameters dt (Sect. 7.3.2).

To fit model M16.6, we update the object fm16.3 using an appropriate form
of the varIdent() constructor function in the weights argument of the lme()

function. The suitable syntax and results of fitting of the model are displayed in
Panel R16.15a. Additional results are provided in Table 16.3. Panel R16.15b also
includes the result of the LR test obtained with the use of the anova() function,
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Table 16.3 ARMD Trial: REML-based estimatesa for linear mixed-effects models with random
intercepts and slopes

Parameter fm16.6 fm16.7

Model label M16.6 M16.7
Log-REML value −3204.05b −3218.57

Fixed effects
Intercept b0 5.10(2.18) 5.35(2.33)
Visual acuity at t=0 b1 0.90(0.04) 0.90(0.04)
Time (in weeks) b2 −0.21(0.03) −0.22(0.03)
Trt(Actv vs. Plcb) b3 −2.18(1.12) −2.31(1.21)
Tm × Treat(Actv) b4 −0.06(0.05) −0.06(0.05)

reStruct(subject)
SD(bi0)

√
d11 7.35(6.41,8.43)

SD(bi1)
√

d22 0.28(0.24,0.33)
Scale s 1 6.68(6.25,7.14)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses
bLikelihood optimization did not converge

which is based on the likelihoods of models M16.6 and M16.3. Note that the
latter (null) model is nested in the former. The outcome of the test is statistically
significant at the 5% significance level and suggests that the use of the more general
varIdent(·) variance function to define matrix Ri, as in (16.18), gives a better fit
than the use of the varPower(·) function.

We need to be careful before accepting this conclusion, though. A closer
inspection of the results displayed in Panel R16.15 reveals that the estimated value
of parameter d4 is extremely small and substantially differs from the estimated
values of d2 and d3. This is surprising, because all previous analyses indicated that
the variance of the last visual acuity measurement (at week 52) was the largest.

A signal of the problems with the estimation of model M16.6 can be also
obtained by, e.g., attempting to compute confidence intervals for the variance-
covariance parameters. In particular, issuing the command

> intervals(fm16.6, which = "var-cov")

results in an error message indicating problems with estimating the variance-
covariance matrix for the estimates of the parameters.

Finally, the problem with convergence of the estimation algorithm for model
M16.6 is also clearly reflected in the normal Q-Q plot of the conditional Pearson
residuals, shown in Fig. 16.10 and obtained by issuing the command

> qqnorm(fm16.6, ~resid(.)|time.f) # Fig. 16.10

Note that the residuals for week 52 are all equal to 0.
To investigate the source of the problem, we present, in Fig. 16.11, plots of the

cross-sections of the restricted-likelihood surface for d2, d3, d4, and s . For brevity,
we do not show the R code used to create the figure. Each plot is obtained by
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R16.15 ARMD Trial: Fitting model M16.6 and testing its variance function using
a REML-based likelihood-ratio test. The model-fit object fm16.3 was created in
Panel R16.10
(a) Fitting of model M16.6

> (fm16.6 <- # M16.6 ← M16.3
+ update(fm16.3, weights = varIdent(form = ~1 | time.f)))

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3204

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

5.10354 0.90120 -0.21041

treat.fActive time:treat.fActive

-2.18434 -0.05931

Random effects:

Formula: ~1 + time | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 7.34621 (Intr)

time 0.31104 -0.132

Residual 4.62311

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | time.f

Parameter estimates:

4wks 12wks 24wks 52wks

1.00000000 1.62525293 1.74357631 0.00051508

Number of Observations: 867

Number of Groups: 234

(b) REML-based LR test for the variance function

> anova(fm16.3, fm16.6) # varPower (M16.3) ⊂ varIdent (M16.6)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.3 1 10 6450.6 6498.2 -3215.3

fm16.6 2 12 6432.1 6489.2 -3204.0 1 vs 2 22.499 <.0001

fixing the other parameters at the reported REML estimates. The panel for d4, the
ratio of the residual SD of the visual acuity measurements at 52 weeks relative to
week 4, shows an approximately flat horizontal line close to zero. More precisely,
the line shows that the difference between the log-restricted-likelihood for the values
of d4 within the interval presented in the plot and the reported log-REML value



16.5 An Alternative Residual Variance Function: varIdent(·) 359

Fig. 16.10 ARMD Trial: The normal Q-Q plot of the conditional Pearson residuals for
model M16.6. Panel for 52 weeks indicates the problem with model fit

of−3204.05 ranges between 2.4×10−7 and−4.0×10−7. This indicates that, if we
assume model M16.6, the data contain very little information about this particular
parameter, because the log-restricted-likelihood function surface is virtually flat in
the corresponding direction of the parameter space. Moreover, the plot for d4, unlike
the other plots shown in Fig. 16.11, does not suggest any maximum of the likelihood
function within the presented interval of d4 values. This means that the REML
estimate, reported by the lme() function in Panel R16.14a, is not an optimum
value.

Given the close similarity of the structure of models M16.6 and M16.3, a
question is: Why were there no apparent problems with fitting of the latter model?
Although the models are similar, they differ with respect to the form of the
marginal variance-covariance structure of visual acuity measurements. The form
of the covariance of the measurements obtained for the subject i at different times,
implied by model M16.6, is the same as the one resulting from model M16.3 and is
given by (16.14). However, the variance for a measurement obtained at the time t,
implied by model M16.6, is



360 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.11 ARMD Trial: Differences (DREML) between the values of the log-restricted-likelihood
for model M16.6 at the reported REML estimate and at different values of parameters d2, d3, d4,
and s . The value of 0 at the vertical axis corresponds to the reported log-REML value of−3204.05.
Flat line in panel for d4 indicates problem with model fit

Var(yit) = d11 + 2d12TIMEit + d22TIME2
it +s 2d2

t . (16.19)

Equations (16.14) and (16.19) define the ten unique elements of the marginal
variance-covariance matrix Vi for model M16.6 as linear functions of seven
parameters: d11, d12, d22, s 2, d2, d3, and d4. Given that the number of parameters is
close to the number of equations, collinearity among the parameters may result, with
consequences in the form of convergence problems of the estimation algorithm.

On the other hand, the right-hand side of (16.15) for model M16.3 has fewer
parameters and involves a power function of time, which is nonlinear in terms of the
parameter d. Hence, in this case, the collinearity is less likely to appear.
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Thus, as compared to model M16.6, model M16.3 imposes an additional
restriction on the form of the marginal variance-covariance structure. The restriction
limits the parameter space, in which it is possible to find an optimum solution,
because the data become more informative.

It follows that, to use the Ident(·) function, some additional restrictions on the
form of model M16.6 would need to be introduced. However, we will not pursue
this direction further but rather leave it as an exercise to the reader.

16.6 Testing Hypotheses About Random Effects

As mentioned in Sect. 13.7.2, formal tests of hypotheses about the variance-
covariance structure can be performed using the LR test based on the restricted
likelihood function. An important issue is the null distribution of the test statistics. In
particular, when the values of the variance-covariance parameters, compatible with
the null hypothesis, lie in the interior of the parameter space, the null distribution is
a c2 distribution with the number of degrees of freedom equal to the difference in
the number of (independent) variance-covariance parameters between the null and
alternative models (Sect. 13.7.2). Examples of such tests were shown in Sects. 16.4.2
(Panel R16.11) and 16.5 (Panel R16.15).

However, when the values of the variance-covariance parameters, compatible
with the null hypothesis, lie on the boundary of the parameter space, the exact form
of the null distribution is difficult to obtain. As it was mentioned in Sect. 13.7.2, in
certain cases (see, e.g., Verbeke and Molenberghs 2000, Sect. 6.3.4), the distribution
is given by a mixture of several c2 distributions. Note that this result has been
obtained by assuming that the residual errors are independent and homoscedastic.
In other cases, the only practical alternative is to simulate the null distribution. In R
this can be done using the simulate() function from the nlme package or using
the function exactRLRT() from the package RLRsim.

The use of the functions was briefly reviewed in Sect. 14.7. It was noted there that
both functions only allow for independent, homoscedastic residual errors. Moreover,
the function exactRLRT() accommodates only independent random effects, while
the function simulate() is not defined for model-fit objects of class gls.

These limitations preclude us from testing, e.g., whether inclusion of random
intercepts is improving the fit of model M16.2, as compared to a model without
random effects, but with residual variances expressed with the help of the Power(·)
variance function. For the same reason, we cannot test the statistical significance
of extending model M16.2 by the inclusion of random slopes, which leads to
model M16.3.

In these cases, the plausibility of the modifications of the random effects structure
needs to be assessed using, e.g., residual diagnostics and/or by applying the
information criteria (Sect. 13.7.2). Panel R16.16 presents the values of the AIC
for models M16.1–M16.5. It can be seen that, e.g., the AIC for model M16.2,
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R16.16 ARMD Trial: The values of Akaike’s Information Criterion for mod-
els M16.1–M16.5

> AIC(fm16.1, fm16.2, # M16.1, M16.2
+ fm16.3, fm16.4) # M16.3, M16.4

df AIC

fm16.1 7 6592.0

fm16.2 8 6537.1

fm16.3 10 6450.6

fm16.4 9 6449.8

> fm16.4ml <- update(fm16.4, method = "ML")

> fm16.5ml <- update(fm16.5, method = "ML")

> anova(fm16.4ml, fm16.5ml) # M16.4 ⊂ M16.5

Model df AIC BIC logLik Test L.Ratio p-value

fm16.4ml 1 9 6438.0 6480.9 -3210.0

fm16.5ml 2 8 6437.4 6475.5 -3210.7 1 vs 2 1.3972 0.2372

i.e., 6,537.1, is much larger than the value of 6,450.6 for model M16.3. This
points to a better fit of the latter model. Also, as suggested by, e.g., Fig. 16.9, the
predicted values obtained for model M16.3 follow more closely the observed ones,
as compared to model M16.2 (see Fig. 16.5).

Note that the lowest value of the AIC is obtained for model M16.5, suggesting
that the model provides the best overall fit to the data. This reflects the choices we
made with respect to the random-effects structure in the process of arriving at the
model.

In the remainder of this section, we illustrate the use of the analytic results and of
the R simulation functions for testing hypotheses about the random effects structure
with parameter values at the boundary of the parameter space. Toward this end, we
consider several models for the ARMD data which assume homoscedasticity of the
residual errors.

16.6.1 Test for Random Intercepts

Let us first consider model M16.1 containing random intercept. To test whether
subject-specific random intercepts are needed, we might use a REML-based LR test
based on the alternative model M16.1 and a null model that assumes homoscedastic
residual errors and no random effects.

In Panel R16.17, we conduct the REML-based LRT by referring the LR-test
statistic to a null distribution obtained using a mixture of c2 distributions or a
simulation technique.

In particular, for the first approach, presented in Panel R16.17a, we create the
object vis.gls1a, which represents the fit of the null model. The model does not
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R16.17 ARMD Trial: The REML-based likelihood-ratio test for no random in-
tercepts in model M16.1. The formula-object lm2.form and the model-fit object
fm16.1 were created in Panel R16.1
(a) Using 0.5c2

0 +0.5c2
1 as the null distribution

> vis.gls1a <- # Null model

+ gls(lm2.form, data = armd)

> (anova.res <- anova(vis.gls1a, fm16.1)) # Null vs. M16.1

Model df AIC BIC logLik Test L.Ratio p-value

vis.gls1a 1 6 6839.9 6868.5 -3414

fm16.1 2 7 6592.0 6625.3 -3289 1 vs 2 249.97 <.0001

> (anova.res[["p-value"]][2])/2 # 0.5c2
0 + 0.5c2

1

[1] 0

(b) Using the function exactRLRT() to simulate the null distribution

> library(RLRsim)

> exactRLRT(fm16.1) # M16.1 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 249.97, p-value < 2.2e-16

include any random intercepts and is defined by the formula lm2.form. Thus, it has
the same mean structure as the alternative model M16.1, which is represented by the
object fm16.1. Then, we apply the anova() to calculate value of the REML-based
LR test statistics.

Note that we are testing the null hypothesis that the variance of the random
intercept is zero, which is on the boundary of the parameter space. Thus, the
p-value reported by anova() is computed by referring the value of the LR-test
statistic to the incorrect c2

1 null distribution. In this case, the appropriate asymptotic
distribution is a 50%–50% mixture of the c2

0 and c2
1 distributions (Sect. 13.7.2).

To obtain the correct p-value, we divided the c2
1-based p-value, extracted from

the object anova.res containing the results of the anova()-function call, by 2.
Clearly, in the current case, the adjusted p-value indicates that the result of the test
is statistically significant. It allows us to reject the null hypothesis that the variance
of the distribution of random intercepts is equal to 0.

An alternative, shown in Panel R16.17b, is to use the empirical null distribution
of the LR test, obtained with the help of the function exactRLRT() from the
package RLRsim (Sect. 14.7). In the panel, we show the result of application of the
function to the object fm16.1. Because we test a random effect in model M16.1,
which contains only a single random effect, we use the abbreviated form of the
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function call, with m as the only argument. The p-value of the REML-based LR test,
estimated from 10,000 simulations (the default), clearly indicates that the result of
the test is statistically significant. In this case, given the importance of including
the random intercepts into the model, which are needed to adjust for the correlation
between visual acuity measurements, there is not much difference with the p-value
obtained using the asymptotic 50%–50% mixture of the c2

0 and c2
1 distributions.

To simulate the null distribution of the LRT, we could consider applying
the simulate() function to objects vis.gls1 (see Panel R6.3) and fm16.1.
Unfortunately, the necessary simulate.gls()method is not developed for model-
fit objects of class gls. In the next section, we will illustrate how to use the
simulate() function to test for the need of random slope.

16.6.2 Test for Random Slopes

For illustrative purposes, we consider a model with uncorrelated subject-specific
random intercepts and slopes and independent, homoscedastic residual errors. That
is, we consider a model specified by (16.10)–(16.12), with D given by (16.16), and
Ri = s 2× I4. We will refer to this newly defined model as M16.7. In this section,
we will use the REML-based LR test to test whether random slopes are needed in
model M16.7. The test involves comparison of two models, namely, M16.1 (null)
and M16.7 (alternative).

In Panel R16.18, we introduce three approaches to perform the LR test for
random slopes.

To begin, in Panel R16.18a, we fit model M16.7, which contains random slopes,
by modifying model M16.4. More specifically, we assume a constant residual
variance. The resulting model is stored in the model-fit object fm16.7. The results
of fitting of the model are provided in Table 16.3.

In the first approach, shown in Panel R16.18b, we perform the REML-based LR
test and explore the use of a 50%–50% mixture of the c2

1 and c2
2 distributions as

the null distribution (see Verbeke and Molenberghs 2000, Sect. 6.3.4). To compute
the corresponding p-value, we extract the LR-test statistic value from the object
an.res, which contains the results of the anova()-function call, and we use it as
an argument of the pchisq() function, which computes the upper tail probabilities
of the c2 distributions with 1 and 2 degrees of freedom. Clearly, the adjusted p-value
indicates that the result of the test is statistically significant. Thus, the test allows us
to reject the null hypothesis that the variance of random slopes is equal to 0.

In Panels R16.18c and R16.18d, we consider simulating the null distribution of
the REML-based LR-test statistic.

Toward this end, in Panel R16.18c, we use the exactRLRT() function. Note that,
as it was mentioned earlier, the function allows only for independent random effects.
This is the reason why we illustrate the use of the function for model M16.7 with
a diagonal matrix D. Because we consider a model with two variance components,
i.e., random intercepts and random slopes, we need to specify all three arguments



16.6 Testing Hypotheses About Random Effects 365

R16.18 ARMD Trial: The REML-based likelihood-ratio test for random slopes
for model M16.7. The model-fit objects fm16.1 and fm16.4 were created in
Panels R16.1 and R16.10, respectively
(a) Fitting model M16.7

> fm16.7 <- # M16.7 ← M16.4
+ update(fm16.4, weights = NULL, # Constant resid. variance

+ data = armd)

(b) Using 0.5c2
1 +0.5c2

2 as the null distribution

> (an.res <- # M16.1 (null)

+ anova(fm16.1, fm16.7)) # M16.7 (alternative)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.1 1 7 6592.0 6625.3 -3289.0

fm16.7 2 8 6453.1 6491.2 -3218.6 1 vs 2 140.83 <.0001

> (RLRT <- an.res[["L.Ratio"]][2]) # LR-test statistic

[1] 140.83

> .5 * pchisq(RLRT, 1, lower.tail = FALSE) + # 0.5c2
1+ 0.5c2

2
+ .5 * pchisq(RLRT, 2, lower.tail = FALSE)

[1] 1.3971e-31

(c) Using the function exactRLRT() to simulate the null distribution

> mAux <- # Auxiliary model with ...

+ update(fm16.1, random = ~0 + time|subject, # ... random slopes only.

+ data = armd)

> exactRLRT(m = mAux, # Auxiliary model

+ m0 = fm16.1, # M16.1 (null)

+ mA = fm16.7) # M16.7 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 140.83, p-value < 2.2e-16

(d) Using the function simulate() to simulate the null distribution

> vis.lme2.sim <- # M16.1 (null)

+ simulate(fm16.1, m2 = fm16.7, nsim = 10000) # M16.7 (alternative)

> plot(vis.lme2.sim, df = c(1, 2), # Fig. 16.12

+ abline = c(0,1, lty=2))
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Fig. 16.12 ARMD Trial: Empirical and nominal p-values for testing the need of random slopes in
model M16.7

m, m0, and mA of the function exactRLRT() (Sect. 14.7). The required form of the
function call is shown in Panel R16.18b. The simulated p-value is essentially equal
to 0, indicating that null hypothesis can be rejected.

Finally, in Panel R16.18d, the function simulate() is applied to obtain a
plot of empirical and nominal p-values (Sect. 14.7). The former are generated by
simulating the values of the REML-based LR-test statistic. The plot, in turn, can be
used to choose the appropriate null distribution for the calculation of the p-value
corresponding to the observed value of the test statistic.

More specifically, the function simulate() is applied to the objects fm16.1 and
fm16.7, with the former specified as the null model and the latter indicated, with
the help of the argument m2, as the alternative model. The number of the simulated
test-statistic values is set, with the help of the nsim argument, at 10,000.

The plot() statement creates a plot of the empirical and nominal p-values of
the LR-test statistic. The nominal p-values are computed using three distributions:
c2

1, c2
2, and a 50%–50% mixture of c2

1 and c2
2. The required degrees of freedom

are passed to the plot() function using the argument df in the form of a numeric
vector (Sect. 14.7). To include in the plot, e.g., a 65–35% mixture, the argument
weights=c(0.65,0.35) should explicitly be used.
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The resulting plot is shown in Fig. 16.12. Note that two rows of three panels are
displayed: one row for the REML and one for the ML estimation. As was mentioned
in Sect. 14.7, by default, the function simulate.lme() uses both forms of the LR
test.

The plot shows that the nominal p-values, obtained using c2
1, c2

2, or a 50%–50%
mixture of c2

1 and c2
2 distributions, are larger than the corresponding simulated

values. This implies that the use of any of those distributions would result in a
conservative test.

16.7 Analysis Using the Function lmer()

In this section, we refit models M16.1 and M16.7, presented in Sects. 16.2.1
and 16.6.2, respectively, using the function lmer() from the package lme4.0. The
choice of the models is dictated by the fact that, at the time of writing of this book,
the function allows only for independent, homoscedastic residual errors. Note that
the two models do not adequately describe the ARMD data, as can be concluded
from the results of the analyses obtained with the help of the lme() function.
Thus, the results presented in the current section should be treated mainly as the
illustration of the use of the lmer() function.

16.7.1 Basic Results

In Panel R16.19, we demonstrate how to fit model M16.1 with the help of the
function lmer(). The model included random intercepts and assumed that residual
variance was constant. It was fitted using the lme() function in Panel R16.1, with
the fit stored in the object fm16.1.

In Panel R16.19a, we present the lmer()-function syntax for fitting model
M16.1. Note the direct specification of the random-effects structure in the formula
argument (Sect. 15.3.1). Also, it is worth noting that the argument data is provided
with a data frame, and not with a grouped data object. In fact, in contrast to the
lme() function, the use of grouped data objects is neither needed nor recommended
(Sect. 15.3). The model is fitted using REML, which is the default estimation
method.

The results of the fitted model are printed using the generic print() function. It
is worth noting that the values of the t-test statistics for the fixed effects are provided
without any p-values (Sect. 15.5). Methods to calculate p-values will be presented
later in this section.

The corr=FALSE argument, used in the print()-function call, excludes the
estimated correlation matrix of the fixed effects from the printout. This is because
the names of the fixed effects are long and the printout of the matrix would not
be legible. Instead, in Panel R16.19b, the variance-covariance matrix of the fixed
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R16.19 ARMD Trial: Model M16.1 fitted using the function lmer()

(a) Model fit and results

> require(lme4.0)

> fm16.1mer <- # M16.1
+ lmer(visual ~ visual0 + time * treat.f + (1|subject),

+ data = armd)

> print(fm16.1mer, corr = FALSE) # ̂Corr(̂b) not printed

Linear mixed model fit by REML

Formula: visual ~ visual0 + time * treat.f + (1 | subject)

Data: armd

AIC BIC logLik deviance REMLdev

6592 6625 -3289 6566 6578

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 80.6 8.98

Residual 74.4 8.63

Number of obs: 867, groups: subject, 234

Fixed effects:

Estimate Std. Error t value

(Intercept) 9.2881 2.6817 3.46

visual0 0.8264 0.0447 18.50

time -0.2122 0.0229 -9.26

treat.fActive -2.4220 1.4999 -1.61

time:treat.fActive -0.0496 0.0336 -1.48

(b) Correlation matrix for ̂b

> vcovb <- vcov(fm16.1mer) # ̂Var(̂b)
> corb <- cov2cor(vcovb) # ̂Corr(̂b)
> nms <- abbreviate(names(fixef(fm16.1mer)), 5)

> rownames(corb) <- nms

> corb

5 x 5 Matrix of class "dpoMatrix"

[,1] [,2] [,3] [,4] [,5]

(Int) 1.00000 -0.9200264 -0.1847104 -0.294970 0.1263825

visl0 -0.92003 1.0000000 -0.0028807 0.022204 0.0017642

time -0.18471 -0.0028807 1.0000000 0.334926 -0.6832037

trt.A -0.29497 0.0222042 0.3349262 1.000000 -0.4757390

tm:.A 0.12638 0.0017642 -0.6832037 -0.475739 1.0000000

effects is extracted directly from the model-fit object using the function vcov().
Then the corresponding correlation matrix is obtained by applying the function
cov2cor(). Before printing out the resulting object, corb, we abbreviate the
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names of the fixed effects with the use of the abbreviate() function. Note
the use of the function fixef() for extracting the fixed effects from the model-
fit object (Table 15.3). The abbreviated names are then used to label the rows
of the correlation matrix corb. In this way, the printout of the matrix gains in
transparency.

The results shown in Panel R16.19 correspond to those presented in Panel R16.1
and Table 16.1.

In Panel R16.20, we present the methods to compute various variance compo-
nents, implied by model M16.1. In particular, in Panel R16.20a, we use the function
VarCorr() (Table 15.3) to extract the estimated variance and standard deviation
of random intercepts. Additionally, the estimate of the scale parameter s is also
displayed. Note that, given the fact that model M16.1 is a conditional independence
LMM with homoscedastic residual errors, s can be interpreted as the residual
standard deviation. All the estimates are similar to those reported in Panel R16.3.

Note that we also show how to extract and store the estimated value of the scale
parameter from the model-fit object fm16.1mer, which is an object of class mer.
Toward this end, we use the sigma() extractor function (Table 15.3) and store the
result in the object sgma.

Computation of the marginal variance-covariance matrix is more complicated,
because the function getVarCov(), which was used for this purpose for lme-
class model-fit objects (see Table 14.5), does not work for mer-class objects.
Consequently, we have to use a direct manipulation of the components of the
model-fit object fm16.1mer. The calculations are presented in Panel R16.20b.
In particular, we first extract the matrix A, as defined in (13.34), by using the
getME() function (Sect. 15.4). Then, we create a matrix identity of an appropriate
dimension and compute the marginal variance-covariance matrix as in (13.35). The
outcome is stored in the object V. Note that, as a result, we obtain a matrix for all
observations, which is difficult to display. To obtain a legible printout, we have to
select a few rows and columns of the matrix, corresponding to a particular level
of the grouping factor (subject). Toward this end, with the help of the getME()

function, we extract the flist slot, containing the grouping factor, of the model-fit
object, and we display its structure with the help of the str()function. From the
list of the levels of the grouping factor, i.e., subjects, we select the second subject,
for which four post-randomization visual acuity measurements are available. The
observations correspond to rows/columns 3–6 of the marginal variance-covariance
matrix. The printout of these rows and columns of V corresponds to the printout
shown in Panel R16.4; thus, we do not repeat it in Panel R16.20.

As was mentioned earlier (see Panel R16.19), the standard summary of the
results, which are contained in an mer-class model-fit object, does not include p-
values for the tests of individual fixed effects. Thus, in Panel R16.21, we present a
method for the direct calculation of the p-values.

In Panel R16.21a, we begin with the computation of p-values of the t-test
statistics, defined in (4.37) (see also Sect. 13.7.1). In particular, we calculate p-
values corresponding to the marginal-approach tests (Sect. 4.7.1). Toward this end,
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R16.20 ARMD Trial: Estimated variance components and the marginal varianc-
covariance matrix for model M16.1. The model-fit object fm16.1mer was created
in Panel R16.19
(a) Variance-components estimates

> VarCorr(fm16.1mer) # ̂D, Corr( ̂D), ŝ
$subject

(Intercept)

(Intercept) 80.608

attr(,"stddev")

(Intercept)

8.9782

attr(,"correlation")

(Intercept)

(Intercept) 1

attr(,"sc")

[1] 8.6275

> (sgma <- sigma(fm16.1mer)) # ŝ
[1] 8.6275

(b) The marginal variance-covariance matrix V

> A <- getME(fm16.1mer, "A") # A
> I.n <- Diagonal(ncol(A)) # IN

> V <- sgma^2 * (I.n + crossprod(A)) # V = s 2(IN+A′A)
> str(getME(fm16.1mer, "flist")) # Grouping factor

'data.frame': 867 obs. of 1 variable:

$ subject: Factor w/ 234 levels "1","2","3","4",..: 1 1 2 2 2 2 3 ...

- attr(*, "assign")= int 1

> # V[3:6, 3:6] # Vi not displayed (see R16.4)

we first extract the slot coefs from the object, which results from the application
of the summary() function to the model-fit object fm16.1mer. The slot contains
the matrix of estimates, standard errors, and t-test statistics for the fixed-effects
coefficients. We store the content of the slot in the object coefs.

Then, we establish the number of degrees of freedom for the test statistics.
Toward this end, we note that model M16.1 is a single-level LMM. Thus, we have
G = 1 grouping levels (Sect. 14.7).

First, we consider variables visual0 and treat.f. Because their values change
across subjects, but are constant for visual acuity measurements of the same subject,
the fixed effects of these two variables are estimated at the subject level, i.e., at the
grouping level g = G = 1, according to the notation used in (14.1). The effects of
the two variables are described by p1 = 2 coefficients. In total, there are N1 = 234
subjects in the analyzed data frame (see Panel R16.20b). Thus, according to (14.1),
the number of degrees of freedom for the t-tests for visual0 and treat.f equals
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R16.21 ARMD Trial: Calculation of “naïve” p-values for the tests for fixed effects
for model M16.1. The model-fit object fm16.1mer was created in Panel R16.19
(a) P-values for the marginal-approach t-tests

> coefs <- coef(summary(fm16.1mer)) # ̂b, se(̂b), t-stat
> ddf <- c(631, 231, 631, 231, 631) # Denominator df

> pT <- 2 * (1 - pt(abs(coefs[, "t value"]), ddf)) # p-value
> tTable <- cbind(coefs, ddf, pT)

> printCoefmat(tTable, P.values = TRUE, has.Pvalue = TRUE)

Estimate Std. Error t value ddf pT

(Intercept) 9.2881 2.6817 3.4635 631 0.00057

visual0 0.8264 0.0447 18.5035 231 < 2e-16

time -0.2122 0.0229 -9.2551 631 < 2e-16

treat.fActive -2.4220 1.4999 -1.6148 231 0.10772

time:treat.fActive -0.0496 0.0336 -1.4776 631 0.14002

(b) P-values for the sequential-approach F-tests

> (dtaov <- anova(fm16.1mer))

Analysis of Variance Table

Df Sum Sq Mean Sq F value

visual0 1 25578 25578 343.64

time 1 14627 14627 196.51

treat.f 1 516 516 6.94

time:treat.f 1 163 163 2.18

> ddf1 <- ddf[-1] # ddf for intercept omitted

> within(dtaov,

+ {

+ `Pr(>F)` <- pf(`F value`, Df, ddf1, lower.tail = FALSE)

+ denDf <- ddf1

+ })

Analysis of Variance Table

Df Sum Sq Mean Sq F value denDf Pr(>F)

visual0 1 25578 25578 343.64 231 <2e-16

time 1 14627 14627 196.51 631 <2e-16

treat.f 1 516 516 6.94 231 0.009

time:treat.f 1 163 163 2.18 631 0.140

ddf1 = N1− (N0− p1) = 234− (1+ 2) = 231, where N0 = 1, because the model
includes an intercept.

On the other hand, the values of variables time and time:treat.f change
across visual acuity measurements for each subject. Thus, the fixed effects of these
variables are estimated at the observation (visual acuity measurement) level, i.e.,
at the level G + 1 = 2 (Sect. 14.7). The effects are expressed with the help of
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p2 = 2 coefficients. There are N2 = 867 measurements in the analyzed dataset (see
Panel R16.20b). Hence, following (14.1), the number of degrees of freedom for the
t-tests for time and time:treat.f equals ddf2 = N2− (N1− p2) = 867− (234+
2) = 631. Note that the same number of degrees of freedom is used for the test for
the intercept.

Based on the results of the computations, described above, we construct the
numeric vector ddf with the number of degrees of freedom for the test statistics.

Finally, the p-values are obtained using a t-distribution with the number of
degrees of freedom provided by the vector ddf. To enhance the legibility of display,
we merge the objects coefs, ddf, and pT, and we print the resulting matrix with
the use of the printCoefmat() utility function (see Panel R16.1). The p-values,
presented in Panel R16.21a, correspond to those shown in Panel R16.1 for the lme()
function.

In Panel R16.21b, we compute the p-values for the F-test statistics (4.36) (see
also Sect. 13.7.1). Toward this end, we first apply the anova() function to the
model-fit object fm16.1mer and store the result in the object dtaov. Note that,
as seen from the printout of the contents of the object, dtaov does not include
the p-values corresponding to the calculated values of the F-test statistics. It is
also worth mentioning that the statistics correspond to the sequential-approach tests
(Sect. 4.7.1). To compute the p-values, we need to establish the number of the
denominator degrees of freedom for each of the test statistics. They were defined
and stored in the vector ddf in Panel R16.21a. Note that we remove from the
vector its first element, because the anova() table does not include the F-test for
the intercept. Then, with the help of the within() generic function, we add two
components to the dtaov object: Pr(>F), with the p-values corresponding to the
F-test statistics, and denDf, with the denominator degrees of freedom, as defined in
the object ddf1.

It is worth mentioning that, as discussed in Sects. 13.7.1 and 14.7, the calcula-
tions, presented in Panel R16.21, ignore the fact that the null distribution of the
t- and F-test statistics are, in fact, only approximated by the t- or F-distributions.
Thus, the resulting p-values may be incorrect. An alternative is to estimate the
p-values based on simulations. This is the approach which we discuss next.

16.7.2 Simulation-Based p-Values: The simulate.mer()
Method

In Panel R16.22, we demonstrate how to simulate values of the dependent variable
based on a fitted model M16.1.

Toward this end, in Panel R16.22a, we use the generic simulate() function.
The function is applied to the model-fit object fm16.1mer of class mer. Conse-
quently, the simulate.mer() method of the function is invoked. By specifying
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R16.22 ARMD Trial: Simulations of the dependent variable based on the fitted
form of model M16.1 using the simulate.mer() method. The model-fit object
fm16.1mer was created in Panel R16.19
(a) Refitting the model to the simulated data

> merObject <- fm16.1mer # M16.1 fit

> simD1 <- simulate(merObject, nsim = 1000) # Simulated y from M16.1
> SimD1summ <- apply(simD1,

+ 2, # Over columns

+ function(y){

+ auxFit <- refit(merObject, y) # Refit M16.1 with new y

+ summ <- summary(auxFit) # Summary

+ beta <- fixef(summ) # ̂b
+ Sx <- getME(auxFit, "theta") # S element

+ sgma <- sigma(auxFit) # ̂s
+ list(beta = beta, ST = Sx, sigma = sgma)

+ })

(b) Matrices/vectors with estimates of b,
√

d11/s 2, and s for all simulations

> betaE <- # Matrix with ̂b
+ sapply(SimD1summ, FUN = function(x) x$beta)

> STe <- sapply(SimD1summ, FUN = function(x) x$ST)

> sigmaE <- sapply(SimD1summ, FUN = function(x) x$sigma)

the argument nsim=1000, we request 1,000 simulations. The result is stored in the
matrix simD1. Next, we use the function apply() to iterate through the columns
of the matrix simD1 and to use them as vectors of values of the dependent variable
to refit the model. This step is time-consuming, as we are refitting the model a
large number of times. Thus, in Panel R16.22a, we also demonstrate how to extract
and store for further processing as much relevant information as possible with the
help of the summary() function. Because objects of class summary.mer may use
a lot of memory, we also show how to extract specific components of interest,
like the estimates of b, D, s . The selected estimates are stored in the list-object
SimD1summ. The components of the list are named sim_1, sim_2, . . ., sim_1000.
Each of them is itself a named list with three components: beta, ST, and sigma.

The components are vectors containing the estimates of, respectively, b,
√

d11/s 2,
and s for model M16.1 for a particular simulation.

It is worth noting that the code, presented in Panel R16.22a, uses specific features
of model M16.1. In particular, the model contains only random intercepts. In this
case, all the elements of the diagonal S matrix (see (13.33)) are exactly the same and

are interpretable as
√

d11/s 2. Hence, extracting only the first element of the matrix
is sufficient to obtain the information about the estimate of matrix D (see (13.9) in
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Sect. 13.2.2). In Panel R16.22a, this is achieved by applying the function getME()

to the "theta" component of the model-fit object auxFit.
The syntax, presented in Panel R16.22b, stores the simulation-based estimates

of b,
√

d11/s 2, and s for further processing. To extract the estimates, we use the
function sapply(), which applies the function, specified in the FUN argument, to
each column of the matrix SimD1summ (see, e.g., Panel R3.10). The object betaE is
a matrix with 1,000 columns containing the estimates of b for the simulations. The
objects STe and sigmaE are numeric vectors with 1,000 elements each, containing

the estimates of
√

d11/s 2 and s , respectively, for the simulations.
In Panel R16.23, we compute the mean value, median, and 2.5th and 97.5th

percentile of the estimates of the fixed-effects coefficients and ST variance-
covariance parameters obtained from refitting model M16.1 to the simulated data.
Toward this end, to address fixed-effects coefficients, in Panel R16.23a we use
the function apply(), which allows computation of the statistics for each row of
the matrix betaE. We also use the function to calculate the empirical p-values
for the coefficients. Toward this goal, for each coefficient, i.e., each row of the
betaE matrix, we compute the proportion of estimated values larger than 0 and
the corresponding two-sided p-value. Note that the so-obtained empirical p-value is
restricted not to be smaller than 1/nsim.

The printout of the summary statistics, presented in Panel R16.23a, provides
information about the empirical distribution of the estimates for each fixed-effect
coefficient. In particular, the last column displays the estimates of p-values. The
empirical p-values are slightly larger (more conservative) than the values computed
in Panel R16.21a.

Panel R16.23b presents the syntax to compute the mean value, median, and
2.5th and 97.5th percentiles of the simulation-based estimates of

√
d11, the SD of

random intercepts, and of s , the SD of residual errors. The syntax is essentially
similar to the one used in Panel R16.23a. Note that

√
d11 is computed according to

the representation (13.33). The means for
√

d11 and s are very close to the point
estimates reported in Panel R16.19. The 2.5th and 97.5th percentiles can be used
to assess the precision of the estimation of

√
d11 and s , in a similar way as the

CIs provided by the function intervals() in the nlme package (Sect. 14.6). Note,
however, that there is no counterpart of the intervals() function in the lme4.0
package.

It might be of interest to present the distribution of the simulation-based estimates
of the parameters of model M16.1. In Panel R16.24, we demonstrate the syntax
that can be used to create plots of density functions corresponding to the empirical

distribution functions for the fixed-effects coefficients and ST =

√

d11/s 2. Toward
this end, we begin with creating the matrix parSimD1, which contains, as columns,
the simulation-based estimates of the parameters of interest. Next, we transpose
it and save it in the data frame parSimD1t. Subsequently, we use the function
densityplot() from the package lattice to create the plots. The package is
automatically attached together with the lme4.0, so we do not need to load it
separately. Note, however, that in the call to the function densityplot() we



16.7 Analysis Using the Function lmer() 375

R16.23 ARMD Trial: Simulation-based summary statistics of the distribution of the
fixed effects and variance components for model M16.1. Objects betaE, STe, and
sgmaE were created in Panel R16.22
(a) Empirical means, quantiles, and p-values for fixed-effects coefficients

> betaEm <- apply(betaE, 1, mean) # Means (for each row)

> betaEq <- # Quantiles

+ apply(betaE, 1, +

FUN = function(x) quantile(x, c(0.5, 0.025, 0.975)))

> ptE <- # p-values
+ apply(betaE, 1,

+ FUN = function(x){

+ prb <- mean(x > 0)

+ 2 * pmax(0.5/ncol(betaE), pmin(prb, 1 - prb))

+ })

> cbind(betaEm, t(betaEq), ptE) # Bind results columnwise

betaEm 50% 2.5% 97.5% ptE

(Intercept) 9.394788 9.492017 4.08912 14.660523 0.001

visual0 0.825508 0.827323 0.74051 0.912949 0.001

time -0.213524 -0.213382 -0.26105 -0.168694 0.001

treat.fActive -2.452846 -2.424268 -5.26639 0.501710 0.110

time:treat.fActive -0.048591 -0.049308 -0.11922 0.022705 0.144

(b) Empirical means and quantiles for
√

d11 and s

> d11E <- STe * sigmaE # d11=(d11/s 2)1/2s
> rndE <- rbind(d11E, sigmaE) # Matrix with two rows

> rndEm <- rowMeans(rndE) # Means (for each row)

> rndEq <- apply(rndE, 1, # Quantiles

+ FUN = function(x) quantile(x, c(0.5, 0.025, 0.975)))

> cbind(rndEm, t(rndEq)) # Bind results

rndEm 50% 2.5% 97.5%

d11E 8.9627 8.9567 7.9279 10.0541

sigmaE 8.6316 8.6265 8.1620 9.0935

apply the function melt() from the package reshape. Thus, we need to attach
that package. The function is used to stack the variables, contained in the data
frame parSimD1s, into one column, named (by default) value (see also the
description of Panel R3.9). During the process, another variable, named (by default)
variable, is created to identify the values of value, which correspond to the
original variables from parSimD1s. The formula, provided as the first argument of
the densityplot()-function call, requests the plot of a Gaussian kernel estimate
(the default) of the density function for the empirical distribution of values of each
variable. The resulting plots are presented in Fig. 16.13.
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R16.24 ARMD Trial: Syntax to construct the density plots for the simulation-based
estimates of the fixed-effects coefficients and variance-covariance parameters for
model M16.1. Objects betaE, STe, and sigmaE were created in Panel R16.22

> names(sigmaE) <- names(STe) <- NULL # For vectors

> parSimD1 <- # Matrix

+ rbind(betaE, ST1 = STe, sigma = sigmaE)

> parSimD1t <- # Transposed

+ data.frame(t(parSimD1), check.names=FALSE)

> parSimD1s <- # Subset

+ subset(parSimD1t, select = -`(Intercept)`) # Intercept omitted

> require(reshape) # melt function needed

> densityplot(~value | variable, # Fig.16.13

+ data = melt(parSimD1s), # Molten data

+ scales = list(relation = "free"),

+ plot.points = FALSE)

> detach(package:reshape)

The density plots, presented in Fig. 16.13, are relatively symmetric. They sug-
gest, for instance, that CIs, based on the normal-distribution approximation of the
empirical distribution, might be adequate for construction of the interval estimates
of the parameters.

16.7.3 Test for Random Intercepts

In Panel R16.25, we present different approaches to compute the p-value for the
REML-based LR test for the need of including random intercepts in model M16.1.

As explained in Sect. 13.7.2, in this case, the null hypothesis specifies that the
variance of the random effects is zero, which is a value on the boundary of the
parameter space. Thus, asymptotically, the null distribution of the test is given by
the 50%–50% mixture of the c2

0 and c2
1 distributions. In Panel R16.25a, we illustrate

the computation of the p-value based on the mixture distribution. First, we fit the
model corresponding to the null hypothesis, i.e., a classical, homoscedastic LM.
We store the fit of the model in the object vis.lm2 of class lm. By applying the
generic function logLik() we obtain the logarithm of the REML for the null and
the alternative models and we compute the value of the LR-test statistic (4.29). Note
that it corresponds to the value obtained with the help of the function anova() in
Panel R16.17a. To calculate the p-value, we halve the p-value resulting from the c2

1
distribution. Obviously, it indicates a statistically significant result of the LR test.

In Panel R16.25b, we evaluate the p-value by simulating the finite-sample-size
distribution of the LR-test statistic with the help of the function exactRLRT() from
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Fig. 16.13 ARMD Trial: Density plots for the simulation-based estimates for model M16.1

the package RLRsim (Sect. 14.7). The result is exactly the same as the one given in
Panel R16.17b. Note, however, that the function is applied to the object fm16.1mer,
which is an object of class mer.

Finally, we compute the empirical p-value by simulating a number of samples
of the dependent variable from the null model, computing the value of the LR-
test statistic for these samples, and using the so-obtained empirical distribution.
This approach is presented in Panel R16.25c. To simulate nsim=100 samples of
the values of the dependent variable from the null model, we use the simulate()

generic function. We store the samples as the columns of the data frame lm2sim.
Then, with the help of the apply() function, we compute, for each column of the
data frame, the value of the LR-test statistic. Toward this end, we create an auxiliary
data frame dfAux by replacing the variable visual in the armd data frame with
the simulated sample. We then fit the null model to the auxiliary data frame, and by
applying the function logLik(), we extract the log-REML value from the model-fit
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R16.25 ARMD Trial: The REML-based likelihood-ratio test for no random
intercepts for model M16.1. The model-fit object fm16.1mer was created in
Panel R16.19
(a) Using 0.5c2

0 +0.5c2
1 as the null distribution

> lm2.form <- visual ~ visual0 + time + treat.f + treat.f:time

> vis.lm2 <- lm(lm2.form, data = armd) # The null model

> (RLRTstat <- # Compare to R16.17

+ -2 * as.numeric(logLik(vis.lm2, REML=TRUE)

+ - logLik(fm16.1mer))) # log-REML for M16.1 (alternative)

[1] 249.97

> 0.5 * pchisq(RLRTstat, 1, lower.tail = FALSE) # p-value

[1] 1.3211e-56

(b) Using the function exactRLRT() to simulate the null distribution

> require(RLRsim)

> exactRLRT(fm16.1mer) # M16.1 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 249.97, p-value < 2.2e-16

(c) Using the simulate.mer() method to obtain the empirical p-value

> lm2sim <- simulate(vis.lm2, nsim = 100)# y simulated from the null model

> RLRTstatSim <- apply(lm2sim,

+ 2, # For each column

+ function(y){

+ dfAux <- within(armd, visual <- y) # Auxiliary data

+ lm0 <- lm(formula(vis.lm2), data = dfAux)# The null model

+ llik0 <- as.numeric(logLik(lm0, REML=TRUE))# log-REML, the null

+ llikA <- as.numeric(logLik(refit(fm16.1mer, y)))

+ RLRTstat<- -2 * (llik0 - llikA) # LR-test statistics

+ })

> mean(RLRTstat <= RLRTstatSim) # Empirical p-value

[1] 0

object lm0. Next, we refit the alternative model M16.1 to the sampled data with the
help of the function refit() and we use the function logLik() to extract the log-
REML. Finally, we compute the LR-test statistic, as defined in (4.29). To obtain the
empirical p-value, we compute the proportion of the simulated values of the test
statistic, which are larger than or equal to the observed value. The resulting p-value
is equal to 0.
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16.7.4 Test for Random Slopes

In this section, we revisit model M16.7, defined in Sect. 16.6.2. The model included
random intercepts and random slopes for time and assumed that residual variance
was constant. Additionally, the random intercepts and slopes were assumed to be
independent.

In Panel R16.26, we fit model M16.7 by employing the lmer() function and
conduct the test for the interaction term. In particular, in Panel R16.26a, we note
the use of two Z-terms, (1|subject) and (0 + time|subject), in the lmer()

formula (Sect. 15.3.1). By using the two terms, we essentially emulate a diagonal
2×2 matrixD (see Table 15.1). We also show selected results for the fitted model by
extracting suitable components (see Table 15.3) of the model-fit object fm16.2mer.

Panel R16.26b demonstrates the construction of the LR test for the
treat.f:time interaction. Toward this end, we first refit model M16.7, while
omitting the interaction term from the model-defining formula. Then we apply the
anova() generic function to obtain the result of the LR test. Note that the results,
stored in model-fit objects lmer2Dd and lmer3Dd, were obtained using the default
fitting method, i.e., REML. However, the LR test, reported by the anova() method,
is constructed using the ML, because it pertains to a test of a hypothesis for a fixed
effect. The computed p-value indicates that the result of the test is statistically not
significant at the 5% significance level.

In Panel R16.27, we present different approaches to compute the p-value for the
REML-based LR test for the need of including random slopes in model M16.7.

In this case, the null distribution of the test is, asymptotically, given by the
50%–50% mixture of the c2

1 and c2
2 distributions (Sect. 13.7.2). Panel R16.27a,

we illustrate the computation of the p-value based on the mixture distribution.
Toward this end, we use the function logLik() to extract the logarithm of REML
for models M16.1 and M16.7, which are represented by the model-fit objects
fm16.1mer and fm16.2mer, respectively. Then we compute the value of the
REML-based LR-test statistic (4.29). Note that it corresponds to the value obtained
with the help of the function anova() in Panel R16.18a. To calculate the p-value,
we sum the halves of the p-values resulting from the c2

1 and c2
2 distributions. The

result indicates a statistically significant result of the LR-test.
In Panel R16.27b, we evaluate the p-value by simulating the finite-sample-size

distribution of the REML-based LR-test statistic with the help of the function
exactRLRT() from the package RLRsim (Sect. 14.7). Note that, in this case, we
need to fit an auxiliary model, which includes random slopes as the only random
effects (see the description of the function exactRLRT() in Sect. 14.7). The code
and results are comparable to those given in Panel R16.18b. Note, however, that in
Panel R16.27b the function exactRLRT() is applied to objects of class mer.
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R16.26 ARMD Trial: Model M16.7 fitted using the function lmer()

(a) Fitting the model and extracting basic information

> fm16.2mer <- # M16.7
+ lmer(visual ~ visual0 + time + treat.f + treat.f:time +

+ (1|subject) + (0 + time|subject),

+ data = armd)

> summ <- summary(fm16.2mer)

> coef(summ) # t-Table

Estimate Std. Error t value

(Intercept) 5.349030 2.332568 2.2932

visual0 0.898460 0.039317 22.8519

time -0.215370 0.032266 -6.6749

treat.fActive -2.313752 1.209754 -1.9126

time:treat.fActive -0.055059 0.047090 -1.1692

> unlist(VarCorr(fm16.2mer)) # ̂D. Short printout

subject subject

54.071157 0.079359

> sigma(fm16.2mer) # ŝ
[1] 6.6834

(b) Likelihood-ratio test for the treat.f:time interaction

> fm16.2aux <- # Model M16.7 with ...

+ update(fm16.2mer, . ~ . - treat.f:time) #... interaction omitted

> anova(fm16.2aux, fm16.2mer)

Data: armd

Models:

fm16.2aux: visual ~ visual0 + time + treat.f +

fm16.2aux: (1 | subject) + (0 + time | subject)

fm16.2mer: visual ~ visual0 + time + treat.f + treat.f:time +

fm16.2mer: (1 | subject) + (0 + time | subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm16.2aux 7 6441 6474 -3213

fm16.2mer 8 6441 6480 -3213 1.38 1 0.24

16.8 Chapter Summary

In this chapter, we analyzed the ARMD data by applying LMMs. By using the
models, the hierarchical structure of the data was directly addressed, which allowed
taking into account the correlation between the visual acuity measurements obtained
for the same individual.

Table 16.4 provides information about the models defined in this chapter.
The main tool that was used to fit the models in Sects. 16.2–16.6 was the

function lme() from the package nlme. In Sect. 16.7, we refitted some of the
models using the function lmer() from the package lme4.0. The latter function
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R16.27 ARMD Trial: The REML-based likelihood-ratio test for no random slopes
in model M16.7. Model-fit objects fm16.1mer and fm16.2mer were created in
Panels R16.19 and R16.26, respectively

(a) Using 0.5c2
1 +0.5c2

2 as the null distribution

> RML0 <- logLik(fm16.1mer) # log-REML, M16.1 (null)

> RMLa <- logLik(fm16.2mer) # log-REML, M16.7 (alternative)

> (RLRTstat <- -2 * as.numeric(RML0 - RMLa))

[1] 140.83

> .5 * pchisq(RLRTstat, 1, lower.tail = FALSE) + # p-value
+ .5 * pchisq(RLRTstat, 2, lower.tail = FALSE)

[1] 1.3971e-31

(b) Using the function exactRLRT() to simulate the null distribution

> require(RLRsim)

> mAux <- lmer(visual ~ # Auxiliary model with ...

+ visual0 + time + treat.f + treat.f:time +

+ (0 + time| subject), # ... random slopes only.

+ data = armd)

> exactRLRT(m = mAux, # Auxiliary model

+ m0= fm16.1mer, # M16.1 (null)

+ mA= fm16.2mer) # M16.7 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 140.83, p-value < 2.2e-16

is especially suited for, e.g., LMMs with crossed random effects, but it can only
deal with conditional-independence models with homoscedastic residual errors. In
this respect, it offers a more limited choice of models than lme(). For this reason,
in our presentation, we primarily focused on the use of lme().

In the process of arriving at the form of the final model M16.5, we fixed the
mean structure as in (16.1) and built a series of models (see Table 16.4) with
various random structures: model M16.1 with random intercepts and homoscedastic
residual variances (Sect. 16.2); model M16.2 with random intercepts and residual
variances described by a variance function defined as a power of the measurement
time (Sect. 16.3); model M16.3 with correlated random intercepts and random
slopes and the power-of-time residual variances (Sect. 16.4.1); and model M16.4
with independent random intercepts and random slopes and the power-of-time
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residual variances (Sect. 16.4.2). The last model gave a satisfactory fit to the data
and allowed us to simplify the mean structure by adopting a constant treatment
effect, as reflected in model M16.5 in Sect. 16.4.3.

The presented approach was adopted mainly for illustrative purposes. In practice,
we should start building the model using the most general fixed- and random-effects
structures. Then, we might consider simplifying the random-effects structure while
checking the fit of the simplified models using the LR test or information criteria
(Sect. 13.7.2). When a more parsimonious structure with a satisfactory fit to the
data has been found, we could consider in turn simplifying the mean structure.
After arriving at a final model, we should check its fit by residual diagnostics
(Sect. 13.6.2).

Thus, in the case of the visual acuity data, we might begin, for instance, from
model M16.3, but with time included in the mean structure as a factor, and try to
simplify the model by removing the random effects of time. We would most likely
find that the simplification was worsening the fit of the model. Thus, we might settle
for a model with random intercepts and time effects, and consider simplifying the
mean structure by assuming, e.g., a continuous time effect and a constant treatment
effect. This step would most likely lead us to model M16.5 as the final model.

In Sect. 16.5, we additionally considered model M16.6 with correlated random
intercepts and random slopes and time-specific residual variances. As the model
assumes a slightly more general residual-variance structure than model M16.3, it
could offer a better fit. We discovered, however, that model M16.6 could not be
fitted to the data by the function lme(). From a practical point of view of using the
function to fit LMMs, this example illustrates that the results of a model fit need
always to be carefully checked for symptoms of nonconvergence. This is because
the function may fail to report any apparent error messages that would indicate
problems with convergence of the estimation algorithm.

In Sect. 16.6, we discussed the issue of testing hypotheses about the random-
effects structure. This is a difficult issue, due to the problems with obtaining the null
distribution of the LR-test statistic in situations when the null hypothesis involves
values of parameters at the boundary of the parameter space. Exact analytical
results are available only for a limited set of special cases. In practice, a simulation
approach is often used. However, the R functions available for this purpose are
also limited in their scope. For instance, they apply to models with homoscedastic
residual errors. For this reason, their application to the models considered for the
ARMD data, which specified the residual variances using the varPower(·) variance
function, was not possible. In such a case, the choice of the random effects structure
may need to be based on an informal comparison of the fit of the models based
on residual diagnostics and/or the information criteria. To nevertheless illustrate
the tools for testing hypotheses about the random-effects structure, we considered
model M16.7 with uncorrelated random intercepts and slopes and homoscedastic,
independent residual errors.

As mentioned earlier, in Sect. 16.7, we refitted models M16.1 and M16.7 using
the function lmer() from the package lme4.0. This allowed us to illustrate the
differences in the use of the function, as compared to lme(). Important differences
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include, e.g., the form of the model-defining formula and the methods to extract
components from a model-fit object. Also, lmer() does not report p-values, which
means that the user needs to know additional tools that allow to evaluate results of
significance tests. We have presented such tools in Sects. 16.7.2–16.7.4.

In the next chapter, we further illustrate the use of the function lme() for fitting
LMMs by applying the models in the analysis of the PRT study data.



Chapter 17
PRT Trial: Modeling Muscle Fiber
Specific-Force

17.1 Introduction

In Sect. 3.3, we presented an exploratory analysis of the measurements of muscle
fiber isometric and specific force, collected in the PRT study. In this chapter, we use
LMMs to analyze the data.

In particular, we first focus on data for the muscle fiber specific force. In
Sect. 17.2, we consider type-1 fibers only and fit an LMM with two correlated,
heteroscedastic, occasion-specific random effects for each individual and ho-
moscedastic independent residual errors. We subsequently modify the model for
residual variation using the power-of-the-mean variance function (Sect. 17.3). In
the next step, we consider models for both fiber types. In Sects. 17.4 and 17.5, we
construct conditional-independence LMMs with four correlated, heteroscedastic,
fiber-type×occasion-specific random effects for each individual. In Sects. 17.6
and 17.7, the random-effects structure of the models is simplified by considering
more parsimonious structures of variance covariance matrices of the random effects.
Toward this end, we develop and use a new class of positive-definite matrices, the
pdKronecker class. Finally, in Sect. 17.8, we construct the most comprehensive
LMM, which takes into account the data for two dependent variables, i.e., the
isometric and specific force, and for both fiber types. A summary of the chapter
is presented in Sect. 17.9.

17.2 A Model with Occasion-Specific Random Intercepts
for Type-1 Fibers

We begin with an analysis of a subset of the data pertaining to type-1 fibers only.
Modeling these data should give us insight into, the variance-covariance structure
of the pre- and post-training measurements for the particular type of fibers. The

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__17,
© Springer Science+Business Media New York 2013
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information can be useful in constructing a more advanced model, which would
take into account both fiber types.

17.2.1 Model Specification

Figures 3.5 and 3.6 indicate that there is a considerable variability between subjects
with respect to the means and variances of the specific-force measurements for each
of the four combinations of the fiber type and occasion levels. This suggests that an
LMM with occasion-specific random intercepts for a subject might be reasonable
to model the type-1 fiber data. Inclusion of the random intercepts should allow for
adjusting for the possible correlation between the repeated measurements of the
type-1 fibers for the same individual at the same occasion, i.e., pre- or post-training,
as well as between the two different occasions.

The model should also take into account the factors used in the experimental
design. In particular, it should include the effect of the intensity of training
(intervention), which was the main effect of interest. Also, as the experiment was
stratified for sex and age, these two factors should be included in the model as
well. Possible effects of the occasion (pre- and post-training) should be taken into
account. Finally, BMI of the subject can potentially influence the value of the fiber’s
specific force and should be adjusted for, too.

Taking into account the aforementioned considerations, we use model M17.1,
defined by the following equation:

SPEC.FOitr = b0 +b1×PRTi +b2×OCCit +b3×SEXi

+b4×AGEi +b5×BMIi

+b12×PRTi×OCCit +b34×SEXi×AGEi

+b0it + eitr

≡ mit + b0it + eitr, (17.1)

where SPEC.FOitr is the value of the specific force for the r-th (r = 1, . . . ,ni1t) type-
1 fiber sample measured for the subject i (i = 1, . . . ,N) at the occasion t (t = 1,2 for
pre- and post-training, respectively). In (17.1), PRTi, OCCit, SEXi, and AGEi are
the values of the indicator variables for the i-th subject for, respectively, the “low-
intensity” intervention (control) group, “post-intervention” measurement occasion t,
females, and the older age group. BMIi is the value of subject’s BMI. The coefficient
of interest is b12, associated with the PRT×OCC interaction term. It quantifies
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the post- versus pre-intervention change in the specific force measurements for the
low-intensity-training group, as compared to the high-intensity group. The SEX×
AGE interaction term is included along with corresponding main effects to take into
account stratification used in the study.

The residual random errors eitr are assumed to be independent and normally
distributed with mean zero and variance s 2. It follows that the variance-covariance
matrix of the errors for the i-th subject is given by

Ri = s 2Ini1t
. (17.2)

In addition to the residual errors, the model equation specifies, for each subject,
two occasion-specific, i.e., pre- and posttreatment, random intercepts: b0i1 and b0i2,
respectively. We assume that the vector bi ≡ (b0i1,b0i2)

′ is normally distributed with
mean zero and variance-covariance matrix D, that is,

bi ≡
(

b0i1

b0i2

)

∼N (0,D), (17.3)

where

D =

(

d11 d12

d12 d22

)

.

17.2.1.1 The Marginal Interpretation

Model M17.1 implies that the marginal expected value of SPEC.FOitr is equal to
mit, defined in (17.1).

Inclusion of b0i1 and b0i2 in the model allows for modeling of the correlation
between the SPEC.FO measurements obtained for a particular individual. This can
be seen from the resulting marginal variances and covariances:

Var(SPEC.FOi1r) = d11 +s 2, Var(SPEC.FOi2r) = d22 +s 2,

Cov(SPEC.FOi1r,SPEC.FOi2r) = Cov(SPEC.FOi1r,SPEC.FOi2r′) = d12,

where r �= r′. Thus, the marginal variance-covariance matrix Vi, defined in (13.25),
of the vector

yi = (SPEC.FOi11, . . . ,SPEC.FOi1ni11
,SPEC.FOi21, . . . ,SPEC.FOi2ni12

)′,

is of dimension (ni11 + ni12)× (ni11+ ni12) and has the following structure:
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. (17.4)

It follows that any two pre-training type-1 fiber measurements for the same individ-
ual are positively correlated with the correlation coefficient equal to d11/(d11+s 2).
Similarly, the correlation coefficient for any two posttreatment measurements is
equal to d22/(d22 + s 2). Thus, different strength of correlation between mea-
surements taken at different occasions for the same individual is allowed by the
model. Finally, the correlation coefficient for a pair of a pre- and post-training

measurements is equal to d12/

√

(d11 +s 2)(d22 +s 2).

17.2.2 R Syntax and Results

In Panel R17.1, we fit model M17.1 to the data for type-1 fibers and, based on the
object representing model fit, we explore data grouping/hierarchy implied by the
model.

Toward this end, in Panel R17.1a, we create the model formula, corresponding to
the fixed-effects part of (17.1). Then, we create the data frame prt1, which contains
the subset of the data frame prt, consisting of observations for type-1 fibers. Note
that, in the subset()-functioncall, we use the argumentselect=-fiber.f,which
removes the factor variable fiber.f from the subset. Finally, we fit model M17.1
to the subset using the function lme() (Sect. 14.5). Note that, in the formula used in
the argument random, we remove the intercept. As a result, we include in the model
two random intercepts, corresponding to the levels of the factor occ.f. The two
intercepts are defined at the levels of the single grouping-factor id (Sect. 14.3.1).
The variance-covariance matrix of the random intercepts is assumed, by default,
to have a general form. The results of fitting of the model are stored in the object
fm17.1.

In Panel R17.1b, we extract information about the data hierarchy, implied by
the syntax used in Panel R17.1a. By using the getGroupsFormula() function
(Sect. 14.4), we verify that the grouping is defined by the levels of the factor id.
With the help of the function getGroups(), we extract the grouping factor from
the model-fit object, store it in the object grpF, and display the structure of grpF
by applying the generic function str(). In particular, we learn that the factor has
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R17.1 PRT Trial: Model M17.1 fitted to the data for type-1 fibers using the function
lme()
(a) Fitting of the model

> data(prt, package = "nlmeU")

> lme.spec.form1 <-

+ formula(spec.fo ~ (prt.f + occ.f)^2 + sex.f + age.f +

+ sex.f:age.f + bmi)

> prt1 <- subset(prt, fiber.f == "Type 1", select = -fiber.f)

> fm17.1 <- # M17.1:(17.1)
+ lme(lme.spec.form1,

+ random = ~occ.f - 1|id, # D:(17.3)
+ data = prt1)

(b) Data grouping/hierarchy implied by the model

> getGroupsFormula(fm17.1)

~id

<environment: 0x0000000019905c30>

> str(grpF <- getGroups(fm17.1))

Factor w/ 63 levels "5","10","15",..: 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "label")= chr "id"

> nF1 <- xtabs(~grpF) # Number of type-1 fibers per subject

> range(nF1) # Min, max number of type-1 fibers

[1] 6 36

> nF1[which.min(nF1)] # Subject with the minimum number of fibers

275

6

> str(fm17.1$dims) # Basic dimensions used in the fit

List of 5

$ N : int 1299

$ Q : int 1

$ qvec : num [1:3] 2 0 0

$ ngrps: Named int [1:3] 63 1 1

..- attr(*, "names")= chr [1:3] "id" "X" "y"

$ ncol : num [1:3] 2 8 1

63 levels, corresponding to the patients included in the study. With the help of the
function xtabs(), we create a contingency table for the levels of the grouping factor
and store it in the object nF1. By applying the function range(), we check that the
minimum and maximum number of observations per patient are equal to 6 and 36,
respectively. The minimum is obtained for the patient with id equal to 275. Finally,
we show the structure of the list, which is contained in the dims component of the
model-fit object. The list comprises five components:
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R17.2 PRT Trial: Estimates of the fixed-effects coefficients for model M17.1. The
model-fit object fm17.1 was created in Panel R17.1

> fixed1 <- summary(fm17.1)$tTable # ̂b, se(̂b), t-test
> nms <- rownames(fixed1) # b names

> nms[7:8] <- c("fLow:fPos", "fMale:fOld") # Selected names shortened

> rownames(fixed1) <- nms # New names assigned

> printCoefmat(fixed1, digits = 3, # See also Table 17.1

+ has.Pvalue = TRUE, P.values = TRUE)

Value Std.Error DF t-value p-value

(Intercept) 127.724 15.416 1234.000 8.28 3e-16

prt.fLow 2.886 4.338 57.000 0.67 0.509

occ.fPos 4.703 2.667 1234.000 1.76 0.078

sex.fMale -1.385 5.364 57.000 -0.26 0.797

age.fOld 8.984 5.155 57.000 1.74 0.087

bmi 0.491 0.578 57.000 0.85 0.399

fLow:fPos -2.133 3.750 1234.000 -0.57 0.570

fMale:fOld -12.680 7.553 57.000 -1.68 0.099

• N is the number of observations included in the data used for fitting the model
• Q is the number of levels of grouping
• qvec is a numeric vector, which provides the number of random effects at each

level of grouping, from the innermost to the outermost level, where the last two
values are equal to zero and correspond to the fixed effects and the response,
respectively

• ngrps is a vector providing the number of groups at each grouping level, from
the innermost to the outermost level, with the last two values equal to one and
corresponding to the fixed effects and the response, respectively

• ncol is a numeric vector containing the number of columns in the model matrix
for each level of grouping, from the innermost to outermost level, with the last
two values equal to the fixed effects and to one

Thus, the printout in Panel R17.1b indicates that model M17.1 was fitted to
1,299 observations, grouped according to a single factor named id with 63 levels,
consistent with the results presented in Sect. 2.3. The model included two random
effects at each level of the grouping factor. The model matrix included two columns
for the random effects and eight columns for the fixed effects (including the
intercept), as specified by the model equation (17.1).

In Panel R17.2, we present the estimates of the fixed-effects coefficients for
model M17.1. To obtain a legible display, we first save the tTable component of
the list resulting from applying the generic summary() function to the model-fit
object fm17.1 (Sect. 14.6). Then, we extract the names of the rows of the tTable

component using the function rownames() and we use the same function to shorten
the selected row names. Finally, we print out the fixed-effects table using the print-
Coefmat() function. For the description of the use of the function, see the syntax
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in Panel M16.1 and its explanation in Sect. 16.2.2. An explanation of the arguments
of the function can be obtained by issuing the command ?printCoefmat.

In the printout, presented in Panel R17.2, it is worth noting that there are two
different numbers of degrees of freedom used for the fixed-effects coefficients.
The t-tests of the coefficients for prt.fLow, sex.fMale, age.fOld, bmi, and
fMale:fOld, are based on 57 degrees of freedom. These coefficients are estimated
at the level g = G = 1 of grouping (see Sect. 14.7), i.e., at the individual level. At
this level, there are 63 groups. Thus, according to (14.1), the number of degrees of
freedom equals 63− (1+ 5) = 57, because there are five coefficients at this level
of grouping, and the model includes an intercept (see also Sect. 16.7.1). On the
other hand, the coefficients for occ.fPos and fLow:fPos are estimated at the level
G + 1 = 2 of grouping, i.e., at the observation level. Given that there are 1,299
observations in total, the number of degrees of freedom, according to (14.1), equals
1,299− (63+ 2) = 1,234. As explained in Sect. 14.7, this number is also assumed
for the intercept, although the intercept is treated as being estimated at the level g= 0
of the data hierarchy. Note that, as was mentioned in Sect. 13.7.1, the computation
of the degrees of freedom does not reflect the fact that the true distribution the test
statistic is merely approximated by a central F-distribution (Sect. 7.6.1).

In Panel R17.3, we present estimates of the matrices D and Ri for model M17.1.
They are extracted from the model-fit object fm17.1 using the function getVar-

Cov() (Sect. 14.6).
In Panel R17.3a, we present the estimate of the matrix D. The matrix is of

dimension 2×2, as defined in (17.3). Using the estimated values of the elements of
the matrix, the correlation coefficient between the random intercepts corresponding
to the pre- and post-training measurement occasions is estimated to be equal to
166.45/

√
238.70 ·201.48= 0.759. The result of the calculations is confirmed using

the VarCorr() function.
In accordance with (17.2), the matrices Ri are diagonal with a constant element

s 2 on the diagonal. The dimension of the matrix Ri depends on the number of
repeated observations for type-1 fibers for a particular individual. In Panel R17.3b,
we extract the estimates of the matrix for the subjects with id equal to "5" and
"275". As we noted in Panel R17.1b, for the subject “275”, there are only six
measurements in total (five pre- and one post-training). Thus, we can actually
print out the entire estimate of the matrix Ri. However, this is not advisable for
the subject “5”, for whom 30 measurements were collected (12 pre- and 18 post-
training). In this case, it is better if we print the first six elements of the diagonal
of the matrix, which we can extract from the matrix with the help of the function
diag().

In fact, given the constant, diagonal structure of the matrices Ri, we could
avoid the use of the functions getVarCov() or VarCorr() altogether and simply
compute the estimate of the residual variance s 2, based on the component sigma of
the object obtained by applying the function summary() to the model-fit object
fm17.1 (see Table 14.5 in Sect. 14.6). Note that, in model M17.1, s can be
interpreted as the SD of the residual random errors. The resulting estimate of s 2

is equal to 505.59, which, obviously, corresponds to the values of the diagonal
elements of estimated matrices Ri for subjects “5” and “275”.
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R17.3 PRT Trial: The estimated D andRi matrices for model M17.1. The model-fit
object fm17.1 was created in Panel R17.1
(a) The estimate of the matrix D

> getVarCov(fm17.1) # ̂D: (17.3)

Random effects variance covariance matrix

occ.fPre occ.fPos

occ.fPre 238.68 166.42

occ.fPos 166.42 201.46

Standard Deviations: 15.449 14.194

> VarCorr(fm17.1)

id = pdLogChol(occ.f - 1)

Variance StdDev Corr

occ.fPre 238.68 15.449 occ.fPr

occ.fPos 201.46 14.194 0.759

Residual 505.59 22.485

(b) The estimates of the matrix Ri for subjects “5” and “275”

> Ri <- # Ri is a list containing ̂Ri ...

+ getVarCov(fm17.1, c("5", "275"),# ... for subjects "5" and "275".

+ type = "conditional")

> Ri$"275" # ̂Ri for the subject "275": (17.2)

1 2 3 4 5 6

1 505.59 0.00 0.00 0.00 0.00 0.00

2 0.00 505.59 0.00 0.00 0.00 0.00

3 0.00 0.00 505.59 0.00 0.00 0.00

4 0.00 0.00 0.00 505.59 0.00 0.00

5 0.00 0.00 0.00 0.00 505.59 0.00

6 0.00 0.00 0.00 0.00 0.00 505.59

> Ri.5 <- Ri$"5" # ̂Ri for the subject "5" ...

> dim(Ri.5) # ... with large dimensions ...

[1] 30 30

> (Ri.5d <- diag(Ri.5)[1:6]) # ... its first 6 diagonal elements.

1 2 3 4 5 6

505.59 505.59 505.59 505.59 505.59 505.59

> sgma <- summary(fm17.1)$sigma # ̂s
> sgma^2 # ̂s 2

[1] 505.59

In Panel R17.4, we extract information about the estimate of the marginal
variance-covariance matrix Vi for model M17.1 for the subject “5.” Given that the
matrix is of dimension 30× 30, we need to construct an abbreviated printout of
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R17.4 PRT Trial: The estimated marginal variance-covariance matrix Vi for
model M17.1. The model-fit object fm17.1 and the data frame prt1 were created
in Panel R17.1
(a) Rows/cols names for the subject “5”

> dt5 <- # Data with 30 observations

+ subset(prt1,

+ select = c(id, occ.f), # ... and 2 variables

+ id == "5") # ... for the subject "5".

> auxF1 <- function(elv) {

+ idx <- 1:min(length(elv), 2) # Up to two indices per vector

+ elv[idx] # ... returned.

+ }

> (i.u5 <- # Selected indices printed

+ unlist(

+ tapply(rownames(dt5), # ... for the subject "5"

+ dt5$occ.f, # ... by occ.f subgroups

+ FUN = auxF1)))

Pre1 Pre2 Pos1 Pos2

"1" "2" "20" "22"

> dt.u5 <- dt5[i.u5, ] # Raw data for selected indices

> (nms.u5 <- # Row names constructed

+ paste(i.u5, dt.u5$occ.f, sep = "."))

[1] "1.Pre" "2.Pre" "20.Pos" "22.Pos"

(b) The matrix Vi estimate for the subject “5”

> Vi <- # Vi is a list containing ...

+ getVarCov(fm17.1, "5", # ... matrix ̂Vi for subject "5".

+ type = "marginal")

> Vi.5 <- Vi$"5" # Vi.5 is a ̂Vi matrix: (17.4)

> Vi.u5 <- Vi.5[i.u5, i.u5] # A sub-matrix selected, ...

> rownames(Vi.u5) <- nms.u5 # ... row/column names changed,

> Vi.u5 # ... the sub-matrix printed.

1 2 20 22

1.Pre 744.27 238.68 166.42 166.42

2.Pre 238.68 744.27 166.42 166.42

20.Pos 166.42 166.42 707.05 201.46

22.Pos 166.42 166.42 201.46 707.05

> cov2cor(Vi.u5) # Corr( ̂Vi)

1 2 20 22

1.Pre 1.00000 0.32069 0.22941 0.22941

2.Pre 0.32069 1.00000 0.22941 0.22941

20.Pos 0.22941 0.22941 1.00000 0.28493

22.Pos 0.22941 0.22941 0.28493 1.00000
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the elements of the matrix. Toward this end, in Panel R17.4a, we select the data
for the variables id and occ.f for the subject with id=="5" and store them in
the data frame dt5. Then we define an auxiliary function auxF1(), which, for a
vector, selects at most two index values. Subsequently, with the help of the generic
function tapply(), we apply auxF1() to the vectors which contain names of the
rows of the data frame dt5 for different values of the factor occ.f. The resulting
list contains indices for two different Pre and Pos observations for the subject “5.”
With the help of the generic function unlist(), we simplify the list to a vector
and store it in the object i.u5. We use the vector to select the corresponding rows
from the data frame dt5. Finally, we use the generic function paste() to, first,
convert the values of vectors i.u5 and dt5$occ.f to characters and, second, to
concatenate the character values using “.” as a separator. The concatenated strings,
stored in the vector nms.u5, will be used to label the rows/columns in abbreviated
printouts.

In Panel R17.4b, we use the function getVarCov() (Sect. 14.6) to extract the
estimate of the marginal variance-covariance matrix Vi for model M17.1 for the
subject “5.” We store the estimate in the matrix-object Vi.5. The dimension of
the matrix is large, 30× 30, so we select from the matrix the rows and columns
that correspond to the observations indexed by the values of the index vector i.u5,
which was created in Panel R17.4a. The resulting submatrix is of dimension 4× 4
and can easily be displayed. Before displaying it, however, we abbreviate the names
of the rows of the sub-matrix using the generic function rownames() and the
character-vector nms.u5. Finally, we print out the submatrix. The printout clearly
shows the structure, indicated in (17.4). Using the results shown in Panel R17.3,
we can check that the estimate of the variance of pre-training measurements is
equal to 744.27 = 238.68+ 505.59. The estimate of the correlation coefficient
between two within-subject pre-training values is equal to 238.68/744.27= 0.321.
For two post-training measurements, the estimated correlation coefficient is equal
to 201.46/707.05= 0.285, while for a pair of a pre- and post-training observations,
it is equal to 166.42/

√
744.27 ·707.05 = 0.229. Thus, two pre-training or two

post-training observations for the same individual exhibit about the same level of
correlation, which is slightly higher than the correlation between a pair of pre-
training and post-training observations. The result of the calculations is confirmed
by using the cov2cor(Vi.u5) command.

Panel R17.5 presents the syntax to extract and plot EBLUPs (Sect. 13.6.1) of the
random effects (intercepts) for model M17.1. The predictors are extracted from the
model-fit object using the generic function ranef() (Sect. 14.6) and stored in the
object rnf. By using the function var(), we obtain the estimates of the variances
of ̂b0i1 and ̂b0i2. We note that the variances are smaller than the corresponding
estimates in the ̂D matrix, shown in Panel R17.3a. This is a well-known feature
of the EBLUPs and illustrates the “shrinkage” phenomenon (see, e.g., (13.51) in the
current volume and Sect. 7.5 in Verbeke and Molenberghs 2000).

By applying the plot() function to the object, we obtain the side-by-side plot,
shown in Fig. 17.1a. The plot shows the random-effects predictors for the two levels
of the occ.f factor. It indicates that the estimates are correlated: small (large) values
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R17.5 PRT Trial: Empirical BLUPs for the random effects for model M17.1. The
model-fit object fm17.1 was created in Panel R17.1

> rnf <- ranef(fm17.1) # ̂bi: (13.50)

> (vrnf <- var(rnf)) # var(̂bi). Compare to ̂D in R17.3a.

occ.fPre occ.fPos

occ.fPre 184.31 141.70

occ.fPos 141.70 150.59

> plot(rnf) # Side-by-side plot (Fig. 17.1a)

> library(ellipse)

> myPanel <- function(x,y, ...){

+ panel.grid(h = -1, v = -1)

+ panel.xyplot(x, y)

+ ex1 <- # Ellipse based on ̂D: (17.3)

+ ellipse(getVarCov(fm17.1))

+ panel.xyplot(ex1[, 1], ex1[, 2], type = "l", lty = 1)

+ ex2 <- ellipse(vrnf) # Ellipse based on var(̂bi).

+ panel.xyplot(ex2[ ,1], ex2[, 2], type = "l", lty = 2)

+ }

> xyplot(rnf[, 2] ~ rnf[, 1], # Scatterplot ̂bi1 vs. ̂bi0 (Fig. 17.1b)

+ xlab = "Pre-intervention",

+ ylab = "Post-intervention",

+ xlim = c(-40, 40), ylim = c(-40, 40),

+ panel = myPanel)

a b

Side-by-side Scatterplot

Fig. 17.1 Empirical BLUPs for the random effects for model M17.1

of the Pre-level random effect are associated with small (large) values of the Pos-
level random effect. This is in agreement with the estimated value of the matrix
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R17.6 PRT Trial: Plots of the conditional Pearson residuals for model M17.1. The
model-fit object fm17.1 and data frame prt1 were created in Panel R17.1

> prt1r <- # Auxiliary data

+ within(prt1,

+ { # Pearson residuals

+ residP1 <- residuals(fm17.1, type = "p")

+ fitted1 <- fitted(fm17.1)

+ })

> range(prt1r$residP1) # Info for y-axis range

[1] -2.8753 5.7108

> xyplot(residP1 ~ fitted1| occ.f, # Resids vs. fitted (Fig. 17.2a)

+ data = prt1r, ylim = c(-6, 6),

+ type = c("p", "smooth"),

+ grid = TRUE)

> qqnorm(prt1r$residP1); qqline(prt1r$residP1) # Q-Q plot (Fig. 17.3a)

D (see the discussion of the results presented in Panel R17.3). To illustrate the
correlation, we plot the scatterplot of the estimated random intercepts using the
function xyplot(). The resulting graph is shown in Fig. 17.1b and provides a visual
interpretation of the correlation. We also enhanced the default scatterplot graph,
with the help of the ellipse() function from the ellipse package. Specifically,
we added two ellipses representing the 95% confidence regions corresponding to the
2×2 matrices ̂D (solid line) and var(̂bi) (dashed) line, respectively. The relationship
between these two ellipses, with one being inner to the other, provides yet another,
more comprehensive illustration of “shrinkage”.

In Panel R17.6, we construct plots of the conditional Pearson residuals to evalu-
ate the fit of model M17.1 to the data (Sect. 13.6.2). Note that, in Sect. 13.6.2, it was
argued in favor of using the normalized residuals, which should be approximately
independent and follow the standard normal distribution. However, according to
model M17.1, the conditional residual errors are independent and homoscedastic,
so the use of the Cholesky-decomposition-based transformation presented in (13.54)
creates residuals equivalent to the Pearson residuals.

To construct the plots, we first add the variables residP1 and fitted1 to
the prt1 data frame. The variables contain the conditional Pearson residuals and
subject-specific fitted values (Sect. 13.6.2), respectively, which are extracted from
the model-fit object fm17.1 with the help of the functions residuals() and
fitted(), respectively (Sect. 14.6). With the help of the xyplot() function, we
plot a scatterplot of the conditional Pearson residuals versus the fitted values,
separately for the Pre and Pos levels of the occ.f factor. Note that we use the type
argument to add the loess-smoothed curve to the scatterplots. The resulting graph is
shown in Fig. 17.2a. Especially for the post-training measurements, the scatterplot
suggests a possibility of an increase of residual variance with an increasing mean
value. We will attempt to address this issue in the next section.
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We also construct a normal Q-Q plot of the Pearson residuals using the function
qqnorm(). The plot is shown in Fig. 17.3a. A deviation from normality, especially
for the right-hand tail, can be observed.

17.3 A Mean-Variance Model with Occasion-Specific
Random Intercepts for Type-1 Fibers

In this section, we will modify model M17.1 to address the issue of the increasing
residual variance, suggested by the residual scatterplots shown in Fig. 17.2a.

Toward this end, we consider model M17.2 which, similarly to model M17.1, is
defined by (17.1), but which assumes that the residual variance is a power function
of the conditional mean value (Sect. 13.4.2):

Var(eitr | b0it) = s 2(mit + b0it)
2d, (17.5)

where mit was defined in (17.1). Thus, model M17.2 is an example of a mean-
variance model (Sect. 13.8). In what follows, we will fit model M17.2 and compare
it with model M17.1.

17.3.1 R Syntax and Results

The syntax used to fit model M17.2 to the observations from the data frame prt1 is
presented in Panel R17.7. Note that we fit the model by updating the specification
of model M17.1, represented by the object fm17.1, with an appropriate value of the

a b

Fig. 17.2 Plots of the conditional Pearson residuals versus fitted values for models (a) M17.1
and (b) M17.2
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a b

Fig. 17.3 Normal Q-Q plots for the conditional Pearson residuals for models (a) M17.1
and (b) M17.2

R17.7 PRT Trial: Model M17.2 fitted to the data for type-1 fibers using the function
lme(). The model-fit object fm17.1 and the data frame prt1 were created in
Panel R17.1

> fm17.2 <- # M17.2 ← M17.1
+ update(fm17.1,

+ weights = varPower(form = ~fitted(.)),

+ data = prt1)

> intervals(fm17.2)$varStruct # 95% CI for d, (17.5)

lower est. upper

power 1.1859 1.566 1.9461

attr(,"label")

[1] "Variance function:"

> anova(fm17.1, fm17.2) # H0: d=0 (M17.1⊂M17.2)

Model df AIC BIC logLik Test L.Ratio p-value

fm17.1 1 12 11936 11998 -5956.2

fm17.2 2 13 11895 11962 -5934.5 1 vs 2 43.548 <.0001

weights argument (see Table 14.4). The results are stored in the object fm17.2 and
details are presented in Table 17.1.

In Panel R17.7, by referring to the varStruct component of the object that
results from the application of the intervals() function (Sect. 14.6) to the model-
fit object fm17.2, we obtain the 95% CI for the parameter d (Sect. 13.7.3). The CI
indicates that d> 1, i.e., that the residual variance does increase with the mean value.
Given that model M17.1 is nested within M17.2, with the help of the anova()

function (Sect. 14.7), we obtain the p-value of the REML-based LR test comparing
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Table 17.1 PRT Trial: REML-based parameter estimatesa for models M17.1 and M17.2 for type-
1-fiber measurements with occasion-specific random intercepts

Parameter fm17.1 fm17.2

Model label M17.1 M17.2
Log-REML value −5,956.25 −5,934.47

Fixed effects:
Intercept b0 127.72(15.42) 128.51(15.19)
PRT (low vs. high) b1 2.89( 4.34) 3.02( 4.35)
Occasion (post vs. pre) b2 4.70( 2.67) 4.97( 2.61)
Sex (M vs. F) b3 −1.38( 5.36) −1.51( 5.27)
Age (old vs. yng) b4 8.98( 5.15) 7.85( 5.11)
BMI b5 0.49( 0.58) 0.43( 0.57)
PRT(low):Occ(post) b12 −2.13( 3.75) −2.28( 3.69)
Sex(M):Age(old) b34 −12.68( 7.55) −11.28( 7.44)

Variance components(id):
sd(occ(pre))

√
d11 15.45(12.24,19.49) 15.60(12.40,19.64)

sd(occ(pos))
√

d22 14.19(11.14,18.08) 13.68(10.68,17.52)
cor(occ(pre),occ(pos)) %12 0.76( 0.51, 0.89) 0.76( 0.52, 0.89)

Variance function:

power (md) d 1.57(1.19,1.95)
Scale s 22.49(21.59,23.42) 0.01(0.00,0.06)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

the two models (Sect. 13.7.2). The p value is statistically significant at the 5%
significance level, indicating that we can reject the null hypothesis that d = 0.

Figure 17.2 compares the scatterplots of the conditional Pearson residuals versus
the fitted values for models M17.1 and M17.2. The syntax necessary to obtain the
plot for model M17.2 is similar to the one used in Panel R17.6 for model M17.1 and,
therefore, we do not show it. Compared to the corresponding plot for model M17.1,
the variability of residuals for model M17.2 appears to be more constant across the
increasing values of the fitted values.

Figure 17.3 presents the normal Q-Q plot for the residuals for models M17.1
and M17.2. Plots were constructed using the qqnorm()-function call similar to the
syntax given in Panel R17.6. Again, it seems that the use of the power variance
function (17.5) reduced the deviation from normality in model M17.2 as compared
to model M17.1, but it has not completely removed it.

Table 17.1 presents a summary of the parameter estimates for models M17.1
and M17.2. In general, the estimated values of the fixed-effects coefficients are
similar for the two models, with standard errors somewhat smaller for model M17.2.
The latter point illustrates the gain in efficiency of the fixed-effects estimation when
the residual variance structure is properly accounted for (Sect. 7.8.2).

The estimates of the matrix D for models M17.1 and M17.2 are also similar.
A marked difference can be observed for the value of the scale parameter s , but
it is understandable, given different specifications of the residual error variance-
covariance structures for the two models.
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Finally, it is worth noting that, while getting an insight into the marginal variance-
covariance and correlation structures, implied by model M17.1, posed no particular
problem (see, e.g., Panel R17.4), it is more challenging for model M17.2. This is
because the use of the variance function (17.5) implies that the marginal structures
are different for different individuals.

17.4 A Model with Heteroscedastic
Fiber-Type×Occasion-Specific Random Intercepts

The analyses of the type-1 fiber data, presented in Sects. 17.2 and 17.3, suggest
that pre- and post-training observations for the same individual exhibit a positive
correlation, which is slightly higher than the correlation between a pair of pre-
training or post-training observations. This might be expected for type-2 fibers
as well.

In this section, we extend the models, used in Sects. 17.2 and 17.3, so that we can
analyze the data for both fiber types simultaneously. Toward this end, we consider
the use of four random intercepts per individual, which allow us to account for
the correlation between measurements obtained for different fiber types at different
occasions.

17.4.1 Model Specification

As was mentioned in Sect. 17.2.1, Figs. 3.5 and 3.6 indicate a considerable between-
subject variability with respect to the means and variances of the specific-force
measurements for each of the four combinations of the occasions and fiber types.
This suggests that an LMM with fiber-type×occasion-specific random intercepts for
a subject might be reasonable. The model should also take into account the factors
used in the experimental design.

Taking into account these considerations, we specify model M17.3 as follows:

SPEC.FOijtr = b0 +b1×PRTi +b2×OCCit +b3×SEXi

+b4×AGEi +b5×BMIi +b6×FIBERij

+b12×PRTi×OCCit +b16×PRTi×FIBERij

+b26×OCCit×FIBERij +b34×SEXi×AGEi

+bijt + eijtr

≡ mijt + bijt + eijtr. (17.6)
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Compared to (17.1), (17.6) uses an extra index, j, which indicates fiber types (j =
1,2). Moreover, it includes the variable FIBERij, which is an indicator variable for
the type-2 fibers for the i-th subject. Note that two-way interactions of variables
PRTi and OCCit with FIBERij are included, to allow for different effects of the
training intensity and measurement occasion for different fiber types. The effects of
SEXi and AGEi are assumed to be the same for both fiber types, however.

Apart from the residual random errors eijtr, which are assumed to be independent

and normally distributed with mean zero and variance s 2, the model equation
specifies, for each subject, four fiber-type×occasion-specific random intercepts:
bi11, bi12, bi21, and bi22. Let us define the vector bi = (bi11,bi12,bi21,bi22)

′, with
the elements of the vector given in lexicographic order, i.e., first ordered by fiber
type (first index) then by occasion (last index), so that the index, which corresponds
to occasion, varies more quickly. This particular ordering will prove important for
models defined later in this chapter. We assume that bi is normally distributed with
mean zero and variance-covariance matrix

D ≡

⎛

⎜

⎜

⎝

d11,11 d11,12 d11,21 d11,22

d12,11 d12,12 d12,21 d12,22

d21,11 d21,12 d21,21 d21,22

d22,11 d22,12 d22,21 d22,22

⎞

⎟

⎟

⎠

, (17.7)

where djt,j′t′ = dj′t′,jt. The reason for using the somewhat nonstandard notation for
the elements of the matrix D in (17.7) is that the four-index subscripts reflect the
2× 2 factorial design of fiber types and occasions, for which the random intercepts
are defined. Moreover, they clearly show that the ordering of rows and columns
of the matrix D corresponds to the ordering of the elements of the vector bi. The
notation will prove useful when, e.g., we will be comparing model M17.3 with other
models later in this chapter.

17.4.1.1 Marginal Interpretation

The model equation (17.6) implies that the marginal expected value of the
SPEC.FOijtr measurement is equal to mijt, defined in (17.6). The marginal variances
and covariances can be expressed as follows:

Var(SPEC.FOijtr) = djt,jt +s 2,

Cov(SPEC.FOijtr,SPEC.FOij′t′r′) = djt,j′t′ ,

where j �= j′ or t �= t′ or r �= r′.
To get more insight in the structure of the marginal variance-covariance and

correlation matrices, let us define vectors:

yijt ≡ (SPEC.FOijt1,SPEC.FOijt2, . . . ,SPEC.FOijtnijt
)′,
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and

yi ≡ (y′i11,y
′
i12,y

′
i21,y

′
i22)
′.

The marginal variance-covariance matrix Vi of yi, implied by model M17.3, has the
following block structure:

Vi ≡ ZiDZ′i +Ri =

⎛

⎜

⎜

⎝

Vi,11 Vi,11,12 Vi,11,21 Vi,11,22

V ′i,11,12 Vi,12 Vi,12,21 Vi,12,22

V ′i,11,21 V ′i,12,21 Vi,21 Vi,21,22

V ′i,11,22 V ′i,12,22 V ′i,21,22 Vi,22

⎞

⎟

⎟

⎠

. (17.8)

The diagonal blocks Vi,jt are matrices of dimension nijt × nijt and have the same
structure as the matrix shown in (17.4), with all diagonal elements equal to djt,jt +

s 2 and all off-diagonal elements equal to djt,jt. The off-diagonal blocks Vi,jt,j′ t′ are
matrices of dimension nijt× nij′t′ , with all elements equal to djt,j′t′ .

The corresponding marginal correlation matrix Ci has a blocked structure similar
to that of matrix Vi, shown in (17.8), with blocks of the same dimensions as
the blocks of Vi. The four diagonal blocks of Ci are correlation matrices with
a compound-symmetry structure. They contain correlation coefficients that are
all equal to d2

jt,jt/(d
2
jt,jt + s 2) and that describe the correlation between any two

different measurements taken for fiber type j at the same occasion t for a particular
individual. The six off-diagonal blocks of the matrix Ci have all their elements equal

to djt,j′t′/
√

(d2
jt,jt +s 2)(d2

j′t′,j′t′ +s 2). These elements correspond to the correlation

coefficients between any two measurements taken for different fiber types (if j �= j′)
at the same occasion t, for the same fiber type j at different occasions (if t �= t′), or
for different fiber types at different occasions (if j �= j′ and t �= t′).

17.4.2 R Syntax and Results

Panel R17.8 displays the R syntax used to fit model M17.3 with the help of the
function lme(). First, in Panel R17.8a, we update the fixed-effects formula, used
for model M17.1, by adding the factor fiber.f and its two-way interactions with
factors prt.f and occ.f, as specified in (17.6). Then we use the updated formula
in the call to the function lme(). Note that, in the random argument, we use the
formula fiber.f:occ.f-1|id, i.e., we include neither the intercept nor the main
effects of fiber.f and occ.f. As a result, for each individual, we define four
random effects, which correspond to the levels of the fiber.f:occ.f interaction,
i.e., to the four fiber-type× occasion combinations.

The fitted model is stored in the object fm17.3. The printout of fm17.3 is
extensive and we do not present it in Panel R17.8. We investigate, however, several
of its components.

First, in Panel R17.8b, we show the estimates of the fixed-effects coefficients
with their estimated standard errors, degrees of freedom, values of t-test statistic,
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R17.8 PRT Trial: Model M17.3 with four random intercepts fitted to the data for
both fiber types using the function lme(). The formula-object lme.spec.form1
was created in Panel R17.1
(a) Model fitting

> lme.spec.form3 <-

+ update(lme.spec.form1, # M17.3 ← M17.1
+ . ~ . + fiber.f + prt.f:fiber.f + occ.f:fiber.f)

> fm17.3 <-

+ lme(lme.spec.form3, # (17.6)

+ random = ~occ.f:fiber.f - 1|id, # D:(17.7)
+ data = prt)

(b) Fixed-effects estimates

> fixed.D4 <- summary(fm17.3)$tTable # ̂b, se(̂b), t-test
> rnms <- rownames(fixed.D4) # b names (not shown)

> rnms[8:11] <- # Selected names shortened

+ c("Low:Pos", "Low:Type2", "Pos:Type2", "Male:Old")

> rownames(fixed.D4) <- rnms # Short names assigned

> printCoefmat(fixed.D4, digits = 3, zap.ind = 5)

Value Std.Error DF t-value p-value

(Intercept) 129.611 14.288 2403.000 9.071 0.00

prt.fLow 1.951 4.313 57.000 0.452 0.65

occ.fPos 4.299 2.503 2403.000 1.717 0.09

sex.fMale -2.037 5.021 57.000 -0.406 0.69

age.fOld 8.694 4.759 57.000 1.827 0.07

bmi 0.399 0.532 57.000 0.749 0.46

fiber.fType 2 25.302 2.404 2403.000 10.524 0.00

Low:Pos -1.134 3.408 2403.000 -0.333 0.74

Low:Type2 -6.263 6.966 57.000 -0.899 0.37

Pos:Type2 -4.078 2.913 2403.000 -1.400 0.16

Male:Old 4.094 2.372 2403.000 1.726 0.08

and the corresponding p value. Toward this end, we refer to the component tTable
of the object resulting from applying the function summary() to the model-fit object
fm17.3. Before printing out the contents of the tTable array, we shorten the names
of selected rows. To display the results, we use the function printCoefmat(),
which allows more control over the format of the printout (see the syntax in
Panel M16.1 and its explanation in Sect. 16.2.2).

The fixed effect of most interest is the Low:Pos interaction term. The estimated
coefficient is not significantly different from 0, with the p-value of the t-test equal to
0.74. It is worth noting that, for the fixed effects that are associated with covariates
measured at the subject level, such as bmi, the number of degrees of freedom is
equal to 57, as was the case for model M17.1 (see Panel R17.2). This is because
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the number of subjects and the number of fixed effects, which are estimated at the
subject level, is the same for both models. On the other hand, the number of degrees
of freedom for the fixed-effects estimated at the observation, i.e., muscle-fiber level
is larger for model M17.3 compared to model M17.1. This is because the model
is fitted to the data for both fiber types, i.e., to 2,471 observations in total, not just
to type-1 fibers. Hence, the number of degrees of freedom for the observation-level
coefficients is equal to 2,471− (63+ 5)= 2,403 (Sects. 14.7 and 17.2.2).

In Panel R17.9, we present the R syntax used to extract the results related to the
variance-covariance matrix of the random effects and residual errors. In particular,
in Panel R17.9a, the estimate of the matrix D is extracted from the object fm17.3
by assigning the value "random.effect" to the argument type of the extractor-
function getVarCov(). The vector nms. is used to replace the default (long) names
for the rows and columns of the matrix displayed using the rownames function.
The diagonal elements of the estimated matrix D suggest that we might consider
simplifying the structure of the matrix D by assuming a constant variance for the
random intercepts. However, such a structure is not supported by the standard pdMat
classes available in R. We will attempt to address this issue in Sect. 17.7.

The estimated correlation matrix, corresponding to D, is displayed with the
help of the function cov2cor(). It is worth noting the similarity of, e.g., the
elements [1,2] and [3,4], corresponding to the correlation coefficient between the
random effects for different fiber types at the pre- and post-training measurements,
respectively. This suggests a possibility of a more parsimonious representation of
the matrix. We will investigate this issue in Sects. 17.6 and 17.7.

In Panel R17.9b, we extract information about matrices Ri. Their dimensions
depend on the number of repeated observations for a particular subject. For the
individual with id equal to "5", the matrix Ri is of dimension 41×41. Hence, it is
not advisable to display the entire matrix. However, in accordance with the definition
of model M17.3, the matrices Ri are diagonal with a constant element s 2 on the
diagonal. Thus, it is sufficient to display a few elements from the diagonal. As seen
in Panel R17.9b, the first six diagonal elements of the matrix Ri for the subject “5”
are all equal to 599.13.

Alternatively, given the constant, diagonal structure of the matrices Ri, we
can simply report the estimated value of the scale parameter s 2. Note that, in
model M17.3, the scale parameter s can be interpreted as residual variance. To
obtain its estimate, we refer to the component sigma of the model-fit object fm17.3.
The estimate of s 2 is equal to 599.13, which, obviously, corresponds to the values
of the diagonal elements of the estimated matrix Ri for the subject “5”.

Panel R17.10 shows the syntax to display the 95% CIs (Sect. 13.7.3) for
the standard deviations and correlation coefficients, corresponding to the estimate
of the matrix D, which was presented in Panel R17.9. The intervals are obtained
with the help of the function intervals() (see Table 14.5). Note that the default
names, used by the function to identify the parameters, are too long. Thus, before
displaying the confidence intervals, we modify the names. Toward this end, we
store the result of application of the function intervals() to the model-fit object
fm17.3 in the object CI. The latter object is a list with two components: reStruct
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R17.9 PRT Trial: The estimates of the matrix D and s 2 for model M17.3 with four
random intercepts. The model-fit object fm17.3 was created in Panel R17.8
(a) The D-matrix estimate

> fm17.3cov <- # ̂D: (17.7) extracted

+ getVarCov(fm17.3, type = "random.effect")

> rownames(fm17.3cov) # Long names ...

[1] "occ.fPre:fiber.fType 1" "occ.fPos:fiber.fType 1"

[3] "occ.fPre:fiber.fType 2" "occ.fPos:fiber.fType 2"

> nms. <- c("T1.Pre", "T1.Pos", "T2.Pre", "T2.Pos")# ... abbreviated

> dimnames(fm17.3cov) <- list(nms., nms.) # ... and reassigned.

> fm17.3cov # ̂D: (17.7) printed

Random effects variance covariance matrix

T1.Pre T1.Pos T2.Pre T2.Pos

T1.Pre 248.78 175.32 212.49 155.38

T1.Pos 175.32 184.61 109.99 172.97

T2.Pre 212.49 109.99 241.63 133.74

T2.Pos 155.38 172.97 133.74 247.03

Standard Deviations: 15.773 13.587 15.544 15.717

> fm17.3cor <- cov2cor(fm17.3cov) # Corr( ̂D) ...

> print(fm17.3cor, digits = 2, # ... printed.

+ corr = TRUE, stdevs = FALSE)

Random effects correlation matrix

T1.Pre T1.Pos T2.Pre T2.Pos

T1.Pre 1.00 0.82 0.87 0.63

T1.Pos 0.82 1.00 0.52 0.81

T2.Pre 0.87 0.52 1.00 0.55

T2.Pos 0.63 0.81 0.55 1.00

(b) The Ri-matrix estimate for the subject “5”

> dim(R.5 <- # Dims of ̂Ri ...

+ getVarCov(fm17.3,

+ type = "conditional")[["5"]]) # ... for subject "5".

[1] 41 41

> diag(R.5)[1:6] # First 6 diagonal elements

1 2 3 4 5 6

599.13 599.13 599.13 599.13 599.13 599.13

> (sgma <- fm17.3$sigma) # ŝ
[1] 24.477

> print(sgma^2) # ŝ 2

[1] 599.13
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R17.10 PRT Trial: Confidence intervals for the standard deviations and correlations
corresponding to the matrix D for model M17.3. The model-fit object fm17.3 was
created in Panel R17.8

> CI <- intervals(fm17.3, which = "var-cov") # 95% CIs for qD
> interv <- CI$reStruct$id

> # rownames(interv) # Long names (not shown)

> thDnms <-

+ c("sd(T1Pre)", "sd(T1Pos)", "sd(T2Pre)", "sd(T2Pos)",

+ "cor(T1Pre,T1Pos)", "cor(T1Pre,T2Pre)", "cor(T1Pre,T2Pos)",

+ "cor(T1Pos,T2Pre)", "cor(T1Pos,T2Pos)",

+ "cor(T2Pre,T2Pos)")

> rownames(interv) <- thDnms # Short names assigned

> interv # CIs printed

lower est. upper

sd(T1Pre) 12.29101 15.77280 20.24091

sd(T1Pos) 10.60119 13.58706 17.41391

sd(T2Pre) 12.27121 15.54447 19.69085

sd(T2Pos) 12.25335 15.71709 20.15996

cor(T1Pre,T1Pos) 0.55111 0.81810 0.93314

cor(T1Pre,T2Pre) 0.61009 0.86667 0.95874

cor(T1Pre,T2Pos) 0.34280 0.62679 0.80581

cor(T1Pos,T2Pre) 0.19870 0.52079 0.74134

cor(T1Pos,T2Pos) 0.53362 0.80998 0.93005

cor(T2Pre,T2Pos) 0.23955 0.54742 0.75526

and sigma. (The information of the structure of the object can be displayed using
the command str(CI).) The former component contains just a data frame named
id, which includes three variables: est, lower, and upper. The variables provide,
respectively, the point estimate and the lower and upper limits of the CI, for
each parameter. Thus, we extract the data frame by referring to the component
reStruct$id of the object CI and we store it in the data frame object interv.
Then we modify the row names of interv by creating the vector thDnms with the
new names and by assigning the new names to the rows of interv with the help
of the rownames() function. Finally, we display the CIs. The lower limits of the
CIs for the standard deviations are considerably larger than 0, which indicates that
using all four random intercepts is justified. The intervals confirm that, as suggested
earlier, we might consider simplifying the structure of the matrix D by assuming a
constant variance for the random intercepts. Similarly, the lower limits of the CIs
for the correlation coefficients are considerably larger than 0, indicating a positive
correlation between the random intercepts.

Panel R17.11 shows the syntax to create plots of the conditional Pearson
residuals for model M17.3 and normal Q-Q plots. The residuals are obtained by
applying the residuals() function (see Table 14.5) to the fm17.3 model-fit
object. Note that, in Sect. 13.6.2, it was argued in favor of using the normalized
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R17.11 PRT Trial: Plots of the conditional Pearson residuals for model M17.3. The
model-fit object fm17.3 was created in Panel R17.8

> residP3 <- residuals(fm17.3, type = "p") # Pearson residuals

> xyplot(residP3 ~ fitted(fm17.3)| # Scatterplots ...

+ fiber.f:occ.f, # ... per type*occasion (Fig. 17.4)

+ data = prt,

+ type = c("p", "smooth"))

> qqnorm(residP3); qqline(residP3) # Q-Q plot (Fig. 17.5)

Fig. 17.4 Plots of the conditional Pearson residuals versus fitted values for model M17.3

residuals, which should be approximately independent and normally distributed.
However, according to model M17.3, (conditional) residual errors are independent,
so the normalized residuals are equivalent to Pearson residuals.

In Fig. 17.4, we use the xyplot() function to draw a scatterplot of the residuals
against the fitted values for each combination of the fiber type and occasion. The
syntax is similar to that shown in Panel R17.6. Similarly to the case of model M17.1,
one could argue that the plots indicate a mean-dependent variance patterns. Thus, the
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Fig. 17.5 Normal Q-Q plot of the conditional Pearson residuals for model M17.3

use of the power variance function (17.5) to address this issue might be considered.
We leave it as an exercise to the reader.

At the bottom of Panel R17.11, we also show the use of the function qqnorm() to
draw the normal Q-Q plot of the conditional residuals. The plot is shown in Fig. 17.5.
A large part of the plot is reasonably linear. A deviation in the right tail is clear,
though. It suggests a somewhat “thinner” right tail of the distribution of the residuals
than that expected from a normal distribution. The pattern corresponds to the one
seen in Fig. 17.3 for models M17.1 and M17.2, which were only fitted to the type-1
fiber data.

17.4.2.1 Marginal Interpretation

The estimates of the fixed-effects coefficients, presented in Panel R17.8b, can be
interpreted as the coefficients of the covariates involved in the marginal expected
value mijt (17.6) of the SPEC.FOijtr measurements.

Panel R17.12 demonstrates the syntax for extracting information about the
estimate of the marginal variance-covariance matrix Vi, defined in (17.8).

In Panel R17.12a, we use the extractor-function getVarCov() (see Table 14.5)
with arguments type="marginal" and individual="5" to extract the estimate of
the marginal variance-covariance for the individual with identified by the grouping
factor id equal to "5". The result of the application of the function to the model-fit
object fm17.3 is stored in the object Vx. The object is a list with one component,
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R17.12 PRT Trial: Estimates of the matricesVi and Ci for model M17.3. The model-
fit object fm17.3 was created in Panel R17.8. The auxiliary function auxF1() was
defined in Panel R17.4
(a) The estimated matrix V i for the subject “5”

> Vx <- # Vx is a list ...

+ getVarCov(fm17.3, type = "marginal",

+ individual = "5") # ... with one component.

> Vmtx.5 <- Vx$"5" # Vmtx.5 is ̂V i matrix: (17.8)...

> dim(Vmtx.5) # ... with large dimensions.

[1] 41 41

> dt5 <- # Data with 41 rows ...

+ subset(prt,

+ select = c(id, fiber.f, occ.f), # ... and 3 variables ...

+ id == "5") # ... for subject "5".

(b) Selected indices for rows and columns of ̂V i

> (i.u5 <- unlist( # Selected indices printed.

+ tapply(rownames(dt5), # Indices for subject "5" ...

+ list(dt5$fiber.f, dt5$occ.f), # ... by fiber.f and occ.f.

+ FUN = auxF1)))

[1] "1" "2" "3" "5" "20" "22" "21" "25"

> dt.u5 <- dt5[i.u5, ] # Raw data for selected indices

> nms.u5 <-

+ paste(format(i.u5, 2, justify = "right"),

+ abbreviate(dt.u5$fiber.f, 2), # Row names abbreviated

+ dt.u5$occ.f, sep = ".")

(c) A submatrix of ̂V i and the corresponding correlation matrix

> Vmtx.u5 <- Vmtx.5[i.u5, i.u5] # Submatrix of ̂V i for subject "5"

> dimnames(Vmtx.u5) <- list(nms.u5, i.u5) # dimnames assigned

> Cmtx.u5 <- cov2cor(Vmtx.u5) # Submatrix of Corr(̂V i)
> uptri <- upper.tri(Cmtx.u5) # Logical matrix

> Vmtx.u5[uptri] <- Cmtx.u5[uptri]

> print(Vmtx.u5, digits = 2) # Submatrix printed

1 2 3 5 20 22 21 25

1.T1.Pre 848 0.29 0.25 0.25 0.22 0.22 0.18 0.18

2.T1.Pre 249 847.91 0.25 0.25 0.22 0.22 0.18 0.18

3.T2.Pre 212 212.49 840.76 0.29 0.14 0.14 0.16 0.16

5.T2.Pre 212 212.49 241.63 840.76 0.14 0.14 0.16 0.16

20.T1.Pos 175 175.32 109.99 109.99 783.74 0.24 0.21 0.21

22.T1.Pos 175 175.32 109.99 109.99 184.61 783.74 0.21 0.21

21.T2.Pos 155 155.38 133.74 133.74 172.97 172.97 846.16 0.29

25.T2.Pos 155 155.38 133.74 133.74 172.97 172.97 247.03 846.16
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which is a variance-covariance matrix. (The information of the structure of the
object can be displayed using the command str(CI).) We extract the component
and save the matrix in the object Vmtx.5. The dimension of the matrix is large: it
is 41× 41, as can be seen in Panel R17.12a from the output of the dim(Vmtx.5)

command. Printing of the whole matrix is thus not advisable. As seen from (17.8),
however, the matrix should have a particular structure. Thus, printing a sub-matrix,
corresponding to a set of a few measurements for different fiber types and occasions,
should yield enough information.

Toward this end, we create the data frame dt5, which contains the subset
of 41 rows for the variables id, fiber.f, and occ.f for the subject “5”. In
Panel R17.12b, with the help of the function tapply(), we apply the auxiliary
function auxF1(), which was defined in Panel R17.4, to select two indices for
each combination of levels of the factors fiber.f and occ.f from the vector of
the row names of the data frame dt5. The resulting list contains indices for two
different measurements for each combination of the levels of the fiber.f and
occ.f factors for the subject “5”. By applying the generic function unlist(), we
simplify the list to a vector and store it in the object i.u5. We use the vector to
select the corresponding rows from the data frame dt5 and store them in the data
frame dt.u5. Finally, we apply the generic function paste() to, first, format the
width of the values of the vector i.u5 to two characters; second, to abbreviate the
values of the factor variable fiber.f from the data frame dt.u5 to two characters;
and third, to concatenate the so-formatted variables with the values of the variable
occ.f from the data frame dt.u5 using “.” as separator. The concatenated strings,
stored in the vector nms.u5, will be used to label the rows/columns in abbreviated
printouts.

Finally, in Panel R17.12c, we select a submatrix of Vmtx.5, with rows and
columns selected using the vector of indices i.u5, and store it in the object
Vmtx.u5. Next, with the help of the function dimnames, we label the rows and
columns of Vmtx.u5 using the vectors nms.u5 and i.u5, respectively. With the help
of the function cov2cor, we also compute the correlation matrix corresponding to
Vmtx.5 and store the result in the object Cmtx.u5. By applying the upper.tri()
function, we create a logical matrix uptri, which indicates the upper triangle of
the matrix Cmtx.u5. With the help of the logical matrix, we replace the upper-
triangle elements of Vmtx.5 with the upper-triangle elements of Cmtx.5. In this
way, we can compactly print out the information about the structure of matrices
Vi and Ci for the subject “5”. The printout clearly indicates that the matrices have
got the structure described in Sect. 17.4.1.1. The estimates of the correlation-matrix
elements suggest that, for instance, the correlation coefficient between any two
pre-training measurements for type-1 and type-2 fibers, as well as for any two post-
training measurements for type-2 fibers, is equal to 0.29. On the other hand, the
correlation coefficient between any two post-training measurements for type-1 fibers
is estimated to be equal to 0.24.

Model M17.3 could be used as a ground for inference regarding the factors
influencing the value of the SPEC.FO measurements. However, in the next sections,
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we consider several modifications of the model for purposes of illustration of various
aspects of modeling of the variance-covariance structure of an LMM and of the
related R tools and syntax.

17.5 A Model with Heteroscedastic
Fiber-Type×Occasion-Specific Random
Intercepts (Alternative Specification)

In this section, we consider an alternative parameterization of model M17.3, which
enables further insight into the random structure of the data.

17.5.1 Model Specification

An equivalent form of model M17.3, which we will label as model M17.3a, can be
obtained by using a different parameterization of random effects:

SPEC.FOijtr = b0 +b1×PRTi +b2×OCCit +b3×SEXi

+b4×AGEi +b5×BMIi +b6×FIBERij

+b12×PRTi×OCCit +b16×PRTi×FIBERij

+b26×OCCit×FIBERij +b34×SEXi×AGEi

+bi0 + bi1×FIBERj + bi2×OCCt

+bi3×OCCt×FIBERj + eijtr, (17.9)

where the indices and symbols have a similar meaning as in (17.6). In (17.9), bi0
is an overall random intercept, shared by all measurements made for subject i,
while bi1 is a random effect shared by all measurements for type-2 fibers (note
that FIBERj = 1 for type-2 fibers and 0 otherwise). Likewise, bi2 is a random effect
shared by all post-training measurements (OCCt = 1 for post-training measurements
and 0 otherwise). Finally, bi3 is a random effect shared by all post-training
measurements for type-2 fibers. We assume that the vector bi ≡ (bi0,bi1,bi2,bi3)

′

is normally distributed with mean zero and variance-covariance matrix

D ≡

⎛

⎜

⎜

⎝

d0 d01 d02 d03

d01 d1 d12 d13

d02 d12 d2 d23

d03 d13 d23 d3

⎞

⎟

⎟

⎠

. (17.10)

To establish the equivalence of models M17.3 and M17.3a, we first note that
the mean structure is the same. Thus, we only need to check the equivalence of
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the random structure. Toward this end, note that, according to model M17.3a, the
random error in pre-training measurements for type-1 fibers includes, in addition to
the residual error, the random intercept bi,0; the error in pre-training measurements
for type-2 fibers includes bi,0 + bi,1; the error in post-training measurements for
type-1 fibers includes bi,0 + bi,2; and the error in post-training measurements for
type-2 fibers includes bi,0 + bi,1 + bi,2 + bi,3. Thus, upon defining

bi11 ≡ bi0,

bi12 ≡ bi0 + bi1,

bi21 ≡ bi0 + bi2,

bi22 ≡ bi0 + bi1 + bi2 + bi3, (17.11)

we can write the defining equation (17.9) of model M17.3a in the form of the
equation (17.6) of model M17.3. Note that the transformation (17.11) can be
compactly written as

⎛

⎜

⎜

⎝

bi11

bi12

bi21

bi22

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

bi0

bi1

bi2

bi3

⎞

⎟

⎟

⎠

≡ TD

⎛

⎜

⎜

⎝

bi0

bi1

bi2

bi3

⎞

⎟

⎟

⎠

. (17.12)

It follows that the matrix D, specified in (17.7), can be obtained from the one given
in (17.10) using the following transformation:

⎛

⎜

⎜

⎝

d11,11 d11,12 d11,21 d11,22

d12,11 d12,12 d12,21 d12,22

d21,11 d21,12 d21,21 d21,22

d22,11 d22,12 d22,21 d22,22

⎞

⎟

⎟

⎠

= TD

⎛

⎜

⎜

⎝

d0 d01 d02 d03

d01 d1 d12 d13

d02 d12 d2 d23

d03 d13 d23 d3

⎞

⎟

⎟

⎠

T′D. (17.13)

The transformation inverse to (17.12) allows to write the defining equation (17.6) in
the form of (17.9).

17.5.2 R Syntax and Results

In Panel R17.13, we present the R syntax for fitting model M17.3a with the help
of the function lme(). The main part of computations is given in Panel R17.13a.
As compared to the syntax shown in Panel R17.8a, the main difference lies in the
formula specified in the random argument. More specifically, the formula used in
Panel R17.13a corresponds to the parameterization of the random-effects structure,
applied in (17.9).
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R17.13 PRT Trial: Model M17.3a fitted using the function lme(). The formula-
object lme.spec.form 3 was defined in Panel R17.8
(a) Model fitting and extracting D estimate

> fm17.3a <-

+ lme(lme.spec.form3, # M17.3a
+ random = ~1 + fiber.f + occ.f + fiber.f:occ.f|id,

+ data = prt)

> print(fm17.3a$sigma, digits = 4) # ̂s
[1] 24.48

> fm17.3acov <- # ̂D
+ getVarCov(fm17.3a,

+ type = "random.effect", individual = "5")

> dimnames(fm17.3acov)[[1]] # Row/col ̂D names ...

[1] "(Intercept)" "fiber.fType 2"

[3] "occ.fPos" "fiber.fType 2:occ.fPos"

> nms <- c("(Int)", "T2", "Pos", "T2:Pos") # ... shortened

> dimnames(fm17.3acov) <- list(nms,nms) # ... and assigned.

> print(fm17.3acov, digits = 4) # ̂D printed

Random effects variance covariance matrix

(Int) T2 Pos T2:Pos

(Int) 248.90 -36.34 -73.48 16.41

T2 -36.34 65.45 -29.04 -21.75

Pos -73.48 -29.04 82.71 37.38

T2:Pos 16.41 -21.75 37.38 63.70

Standard Deviations: 15.78 8.09 9.094 7.981

(b) Verification of (17.13)

> td <- # TD: (17.12) created...

+ matrix(c(1, 0, 0, 0,

+ 1, 0, 1, 0,

+ 1, 1, 0, 0,

+ 1, 1, 1, 1),

+ nrow = 4, ncol = 4, byrow = TRUE)

> mat.D4 <- td %*% fm17.3acov %*% t(td) # ... and applied.

> dimnames(mat.D4) <- list(nms., nms.) # Row/col names shortened.

> print(mat.D4, digits = 5) # ̂D: (17.7); see R17.9.

T1.Pre T1.Pos T2.Pre T2.Pos

T1.Pre 248.86 175.38 212.52 155.45

T1.Pos 175.38 184.60 110.00 173.01

T2.Pre 212.52 110.00 241.64 133.77

T2.Pos 155.45 173.01 133.77 247.08
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Fig. 17.6 PRT Trial: Scatterplot matrix of the predicted random effects (EBLUPs) for
model M17.3 (below diagonal) and M17.3a (above diagonal)

The fitted model is stored in the object fm17.3a. The estimates of the fixed-
effects coefficients are the same as those for model M17.3 and can be found in
Panel R17.8b. In Panel R17.13a, we focus on selected results related to the random
structure of model M17.3a. The estimate of residual SD, extracted from the model-
fit object using its $sigma component, corresponds to the estimate obtained for
model M17.3 (see Panel R17.9). The estimate of the matrix D, specified in (17.10),
is extracted from the object fm17.3a using the getVarCov() function, stored as
fm17.3acov, and printed (after shortening the row and column names). It shows
comparable variances for bi1, bi2, and bi3. This suggests that both fiber type and
occasion contribute a similar amount of random variability to the data.

Additionally, in Panel R17.13b, the transformation (17.13) is applied to the
estimated D matrix to show its equivalence (up to a rounding error) to the estimated
D matrix for model M17.3 (Panel R17.9).

Figure 17.6 presents scatterplots of the predicted random effects (EBLUPs), as
defined in (13.50), for models M17.3 and M17.3a. The EBLUPs were extracted
from the relevant model-fit objects using the function ranef() (see Table 14.5).
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Note that, to save the space, we do not present the R syntax, necessary to create
Fig. 17.6. The scatterplots, presented in the figure, illustrate the correlation between
the predictors of the various random effects for each model separately. The values of
the correlation coefficients are indicated on the plots. It can be observed that, while
there is a substantial correlation between the EBLUPs for model M17.3, there is
much less association between the EBLUPs for model M17.3a. This is due to the
different parameterizations of the random-effects structure, used in the two models.
In particular, (17.11) shows that, for example, the random effects in model M17.3
share the random component bi0. Thus, the effects are bound to be correlated.

17.6 A Model with Heteroscedastic
Fiber-Type×Occasion-Specific Random
Intercepts and a Structured Matrix D

As mentioned in Sect. 17.4, the estimated form of the random-effects variance-
covariance matrix D of model M17.3, presented in Panel R17.9, suggests that
we might consider simplifying the structure of the matrix. Toward this end, in
Sect. 17.7, we will use a new pdMat class, pdKronecker, which we have developed
and described in more detail in Sect. 20.2. In the current section, however, we will
illustrate the use of the pdKronecker class.

17.6.1 Model Specification

First, we fit model M17.4, given by (17.6), but with the matrix D equal to the
Kronecker product of two unstructured, 2×2 matrices, A and B, say, corresponding
to the fiber type and occasion, respectively. For reasons of implementation in R, the
resulting matrix is represented as follows:

D = s 2⊗ (cI1)⊗A⊗B ≡ s 2⊗ c⊗
(

1 a12

a21 a22

)

⊗
(

1 b12

b21 b22

)

= s 2c

⎛

⎜

⎜

⎝

1 b12 a12 a12b12

b21 b22 a12b21 a12b22

a21 a21b21 a22 a22b12

a21b12 a21b22 a22b21 a22b22

⎞

⎟

⎟

⎠

, (17.14)

where ⊗ denotes the (right) Kronecker product. Note the use of the identity matrix
I1 of dimension 1× 1 in (17.14). The order of taking the Kronecker product of
matrices A and B implies the ordering of the elements of the vector bi, explained in
Sect. 17.4.1.
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R17.14 PRT Trial: Model M17.4 fitted using the functions lme() and pdKro-

necker(). The formula-object lme.spec.formwas defined in Panel R17.8

> pdId <- pdIdent(~1) # cI1 in (17.14)

> pd1UN <- pdLogChol(~fiber.f - 1) # A for FiberType

> pd2UN <- pdLogChol(~occ.f - 1) # B for PrePos

> pdL1 <- # List of pdMat objects

+ list(X = pdId,

+ FiberType = pd1UN,

+ PrePos = pd2UN)

> (pdKnms <- names(pdL1)) # Names saved for later use

[1] "X" "FiberType" "PrePos"

> fm17.4 <- # M17.4
+ lme(lme.spec.form3,

+ random = list(id = pdKronecker(pdL1)),

+ data = prt)

The correlation matrix, corresponding to (17.14), is given by

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a1

s 2c
√

a2

b1

s 2c
√

b2

b1a1

s 2c
√

b2a2
a1

s 2c
√

a2
1 b1a1

s 2c
√

b2a2

b1

s 2c
√

b2
b1

s 2c
√

b2

b1a1

s 2c
√

b2a2
1 a1

s 2c
√

a2
b1a1

s 2c
√

b2a2

b1

s 2c
√

b2

a1

s 2c
√

a2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎝

1 x y z
x 1 z y
y z 1 x
z y x 1

⎞

⎟

⎟

⎠

. (17.15)

It is worth noting that the correlation matrix has a particular structure, presented at
the right-hand side of (17.15). Thus, the Kronecker-product representation, specified
in (17.14), allows for different variances of the four random intercepts included
in model M17.4, but leads to a more parsimonious correlation structure of the D
matrix, as compared to (17.7). In particular, it implies, e.g., equality of the elements
[1,2] and [3,4] or of the elements [1,4] and [2,3]. Also, elements on the anti-diagonal
are equal. Note that an approximately similar structure can be observed for the
estimated D matrix of model M17.3 (see Panel R17.9).

17.6.2 R Syntax and Results

The main argument of the pdKronecker-class constructor function is a list of pdMat
objects (see Sect. 14.2), representing the matrices used in the Kronecker product.
The first object on this list needs to be a pdIdent-class object, representing 1× 1
matrix corresponding to cI1 in (17.14).
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Table 17.2 PRT Trial: REML-based parameter estimatesa for models M17.4 and M17.5

Parameter fm17.4 fm17.5

Model label M17.4 M17.5
Log-REML value −11523.18 −11523.84

Fixed effects:
Intercept b0 126.22(14.28) 126.52(14.43)
PRT (low vs. high) b1 2.18(4.09) 2.09(4.18)
Occasion (post vs. pre) b2 3.90(2.74) 3.79(2.79)
Sex (M vs. F) b3 −1.62(5.01) −1.70(5.09)
Age (old vs. yng) b4 8.32(4.77) 8.24(4.82)
BMI b5 0.56(0.53) 0.54(0.54)
Fiber (type 2 vs. 1) b6 25.29(2.49) 25.35(2.45)
PRT(Low):occ(post) b12 −0.05(3.60) 0.29(3.61)
Sex(M):age(Old) b34 −9.14(7.00) −7.91(7.07)
PRT(low):fiber(T2) b16 −4.00(2.99) −4.09(2.96)
Occ(post):fiber(T2) b26 3.97(2.34) 3.91(2.33)

Variance components(id):
sd(fiber(T1), occ(pre))

√
d11 14.64(11.64,18.40) 15.15(12.89,17.81)

Fiber type (A)
var(T2)/var(T1) a22:(17.14) 1.25(0.66, 2.20)
cov(T2, T1)/var(T1) a12:(17.14) 0.93(0.70, 1.16)
%(T2, T1) a12:(17.16) 0.83(0.66, 0.92)

Occasion (B)
var(pos)/var(pre) b22 0.92(0.44, 1.72)
cov(pos, pre)/var(pre) b12 0.64(0.42, 0.87)
%(pos, pre) b12 0.67(0.45, 0.81)

Scale s 24.47(23.76,25.20) 24.47(23.77,25.20)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

Panel R17.14 displays the syntax used to fit model M17.3 with the D matrix
given by (17.14). First, we define pdMat objects representing the matrices cI1, A,
and B, as specified in (17.14), using the pdIdent() and pdLogChol() constructor
functions (Sect. 14.2.1). The matrices are stored in objects pdId, pd1UN, and pd2UN,
respectively. Then, the named list pdL1, containing the pdMat-class objects, is
created. Also, the names of the components of pdL1 are stored in an auxiliary vector
pdKnms to facilitate labeling of the displayed output later. Finally, the model is fitted
using the appropriate lme()-function call, with the value of the argument random
provided in the form of a named list of pdMat-objects (Sects. 14.3 and 14.5). The
results of fitting of the model are stored in the object fm17.4. The estimates of the
fixed-effects coefficients are presented in Table 17.2.

Panel R17.15 displays the estimated D matrix stored in DmtxKron1 object. To
increase legibility of the printout, we modify the default row and column names.

The estimated D matrix has the structure defined in (17.14). It is close to its
counterpart obtained for model M17.3 (see Panel R17.9). Again, the estimated
variances of the random intercepts suggest a possibility of a constant variance.
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R17.15 PRT Trial: Evaluating the heteroscedastic Kronecker-product structure of
the matrix D for model M17.4. The objects fm17.4 and pdKnms were created in
Panel R17.14

> DmtxKron1 <- getVarCov(fm17.4) # ̂D: (17.14)

> rownames(DmtxKron1) # Long row/col names

[1] "fiber.fType 1:occ.fPre" "fiber.fType 1:occ.fPos"

[3] "fiber.fType 2:occ.fPre" "fiber.fType 2:occ.fPos"

> nms <- c("T1:Pre", "T1:Pos", "T2:Pre", "T2:Pos")# Short names...

> dimnames(DmtxKron1) <- list(nms, nms) # ... assigned.

> DmtxKron1 # ̂D displayed.

Random effects variance covariance matrix

T1:Pre T1:Pos T2:Pre T2:Pos

T1:Pre 214.24 137.81 199.57 128.37

T1:Pos 137.81 197.43 128.37 183.92

T2:Pre 199.57 128.37 267.58 172.12

T2:Pos 128.37 183.92 172.12 246.60

Standard Deviations: 14.637 14.051 16.358 15.703

> sgma <- fm17.4$sigma # ̂s ...

> (sgma2 <- sgma^2) # ... and ̂s 2

[1] 598.68

> reSt <- fm17.4$modelStruct$reStruct # Random-effects structure

> pdKron1 <- reSt[[1]]

> names(pdKron1) <- pdKnms # Component names reinstated

> (c1 <- as.numeric(as.matrix(pdKron1$X))) # Mandatory multiplier

[1] 0.35785

> c1*sgma2 # Compare to ̂d11

[1] 214.24

> (A1 <- as.matrix(pdKron1$FiberType)) # ̂A for fiber type

fiber.fType 1 fiber.fType 2

fiber.fType 1 1.00000 0.93155

fiber.fType 2 0.93155 1.24901

> (B1 <- as.matrix(pdKron1$PrePos)) # ̂B for occasion

occ.fPre occ.fPos

occ.fPre 1.00000 0.64324

occ.fPos 0.64324 0.92157

> # sgma2 * c1 %x% A1 %x% B1 # ̂D ≡s 2cI1⊗̂A⊗ ̂B:(17.14)

Panel R17.15 also presents a method to extract the estimated components of
the D matrix from the model-fit object fm17.4. The estimate of residual SD is
obtained from the sigma component of the object. The corresponding estimate of
the residual variance is very close to the estimate obtained for model M17.3 and
shown in Panel R17.8.
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The other matrices, related to the Kronecker-product structure, defined in (17.14),
are extracted from the modelStruct$reStruct component of the model-fit object.
The component is of reStruct class, and we store it in the object reSt. The object
contains only a single component of pdMat class, which, in turn, is extracted and
stored in the object pdKron1. The latter object represents a Kronecker product
and contains three components, which correspond to the matrices involved in the
reperesentation, defined in (17.14). To facilitate referring to the components, we
name them using the function “names()<-” and the vector pdKnms. We then extract
the components and store them as matrix-objects c1, A1, and B1. It can be verified
that, by taking the Kronecker product of the estimated residual variance and the
three matrices, an estimate of the matrix D is obtained, which corresponds to the
one stored in the DmtxKron1 object.

17.7 A Model with Homoscedastic
Fiber-Type×Occasion-Specific Random
Intercepts and a Structured Matrix D

In this section, we address the issue of simplifying the structure of the matrix D,
given by (17.7), by assuming a constant variance for the random intercepts.

17.7.1 Model Specification

Toward this end, we fit model M17.5, given by (17.6), but with the matrix D defined
as a product of two 2× 2 compound-symmetry matrices A and B, corresponding to
fiber type and occasion, respectively. The resulting matrix is represented as follows:

D = s 2⊗ (cI1)⊗A⊗B ≡ s 2⊗ c⊗
(

1 a12

a21 1

)

⊗
(

1 b12

b21 1

)

= s 2c

⎛

⎜
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1 b12 a12 a12b12

b21 b22 a12b21 a12b22

a21 a21b21 a22 a22b12
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. (17.16)

The corresponding correlation matrix is
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R17.16 PRT Trial: Model M17.5 fitted using the functions lme() and pdKro-

necker(). The formula-object lme.spec.formwas defined in Panel R17.8

> pdId <- pdIdent(~1) # cI1 in (17.16)

> pd1CS <- pdCompSymm(~fiber.f -1) # A for FiberType

> pd2CS <- pdCompSymm(~occ.f-1) # B for PrePos

> pdL2 <-

+ list(X = pdId,

+ FiberType = pd1CS, # A
+ PrePos = pd2CS) # B
> fm17.5 <- # M17.5
+ lme(lme.spec.form3,

+ random = list(id=pdKronecker(pdL2)),

+ data = prt)

The structure of the correlation matrix is the same as the one implied by the
Kronecker products of general matrices, shown in (17.15). However, in contrast
to (17.15), variance components on the diagonal are constrained to be equal.

17.7.2 R Syntax and Results

Panel R17.16 displays the R syntax used to fit model M17.5 with the D matrix
specified by (17.16). Similarly to the syntax shown in Panel R17.14, the objects
of pdMat class representing matrices cI1, A, and B, as specified in (17.16),
are first defined using the pdIdent() and pdCompSymm() constructor functions
(Sect. 14.2.1). The matrices are then stored in the objects pdId, pd1CS, and pd2CS,
respectively. Next, the named list pdL2 is created, with the three matrices as the
components. Finally, the model is fitted using an appropriate lme()-function call,
with the value of the argument random provided in the form of a named list of
pdMat-class objects (Sects. 14.3 and 14.5). The results of the fitting of the model
are stored in the object fm17.5.

Panel R17.17 displays the estimated matrix D for model M17.5. As implied by
(17.16), the elements on the diagonal are equal. Note that the corresponding SD
equals 15.15, which is perfectly compatible with the results shown in Panel R17.10
for model M17.3 with a general matrix D.

At this point, it is of interest to evaluate whether the simplifications of the D
matrix structure, obtained using the Kronecker product, have impact on the model
fit. Toward this end, we use the REML-based LR test (Panel R17.18), because the
matrix D structures, specified by (17.7), (17.14), and (17.16), imply a sequence of
nested models and all three models having the same mean structure. Panel R17.18
presents the output of the suitable anova()-function calls. Clearly, none of the
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R17.17 PRT Trial: Evaluating the homoscedastic Kronecker-product structure of
the matrix D for model M17.5. The objects nms and fm17.5 were created in
Panels R17.15 and R17.16, respectively

> DmtxKron2 <- getVarCov(fm17.5) # D̂
> dimnames(DmtxKron2) <- list(nms,nms) # Row/col names shortened

> DmtxKron2 # D̂ printed

Random effects variance covariance matrix

T1:Pre T1:Pos T2:Pre T2:Pos

T1:Pre 229.57 153.35 191.48 127.91

T1:Pos 153.35 229.57 127.91 191.48

T2:Pre 191.48 127.91 229.57 153.35

T2:Pos 127.91 191.48 153.35 229.57

Standard Deviations: 15.152 15.152 15.152 15.152

R17.18 PRT Trial: Likelihood-ratio tests for models M17.3–M17.5, implied by the
matrix D structures specified in (17.7), (17.14), and (17.16). The model-fit objects
fm17.3, fm17.4, and fm17.5 were created in Panels R17.8, R17.14, and R17.16,
respectively

> anova(fm17.3, fm17.4, fm17.5) # M17.3 ⊃ M17.4 ⊃ M17.5

Model df AIC BIC logLik Test L.Ratio p-value

fm17.3 1 22 23084 23212 -11520

fm17.4 2 17 23080 23179 -11523 1 vs 2 6.0852 0.2980

fm17.5 3 15 23078 23165 -11524 2 vs 3 1.3176 0.5175

> anova(fm17.3, fm17.5) # M17.3 ⊃ M17.5

Model df AIC BIC logLik Test L.Ratio p-value

fm17.3 1 22 23084 23212 -11520

fm17.5 2 15 23078 23165 -11524 1 vs 2 7.4028 0.3882

tests is statistically significant at the 5% significance level. The result suggests
that model M17.4, with the simplified structure of the matrix D resulting from the
Kronecker product of two general variance-covariance matrices (17.14), can be used
instead of the more complex model M17.3. Moreover, model M17.4 can be further
simplified to model M17.5, with the matrix D defined by the Kronecker product
of two compound-symmetry matrices, as specified in (17.16). The result of the LR
test comparing directly models M17.3 and M17.5, shown also in Panel R17.18, is
statistically not significant, which confirms that the latter model can be used instead
of the former.

The estimates of the fixed-effects coefficients of model M17.5 are presented in
Table 17.2. They differ very little as compared to the estimates for model M17.5.
This reflects the fact that the simplification of the structure of the D of the latter
model did not worsen the fit, as implied by the results of the LR test. There is
also not much difference between the estimates of the fixed-effects coefficients
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and their standard errors for model M17.5 and the corresponding values shown
in Panel R17.8b for model M17.3. Note that, as was the case for models M17.3
and M17.3a, the estimate of the coefficient of interest, PRT(Low):Occ(Post), is
statistically not significant for model M17.5.

17.8 A Joint Model for Two Dependent Variables

In this section, we briefly illustrate how the new pdKronecker class can be used
to fit an LMM jointly to two dependent variables. Toward this end, we consider
two outcome variables from the PRT data: the specific force (SPEC.FO) and the
isometric force (ISO.FO).

17.8.1 Model Specification

We fit model M17.6, defined as follows:

yivjtr = bv,0 +bv,1×PRTi +bv,2×OCCit +bv,3×SEXi

+bv,4×AGEi +bv,5×BMIi +bv,6×FIBERij

+bv,12×PRTi×OCCit +bv,16×PRTi×FIBERij

+bv,26×OCCit×FIBERij +bv,34×SEXi×AGEi

+bivjt + eivjtr, (17.18)

where the notation corresponds to that used in (17.6) and yivjtr indicates the r-th
measurement of the v-th variable (v = 1 for ISO.FO and 2 for SPEC.FO) for the
subject i at the occasion t and the fiber type j. The residual random errors eijtvr are
assumed to be independent and normally distributed with mean zero and variance
s 2

v, where

s 1 ≡ s and s 2 = ds . (17.19)

For each subject, the model equation specifies also eight variable×fiber-
type×occasion-specific random intercepts bijtv. We define the vector

bi ≡ (bi111,bi112,bi121,bi122,bi211,bi212,bi221,bi222)
′,

with the elements in a lexicographical order defined by indices for the dependent
variable (index v, varying most slowly), fiber type (index j), and occasion (index
t, varying most quickly). We assume that the vector bi is normally distributed with
mean zero and the variance-covariance matrix D that can be represented as follows:
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D = s 2⊗ (cI1)⊗E⊗A⊗B (17.20)

= s 2c

(

1 e12

e21 e22

)

⊗
(

1 a12

a21 a22

)

⊗
(

1 b12

b21 b22

)

.

The matrices E, A, and B used in (17.21) are associated with factors having two
levels each, representing two dependent variables, fiber type, and the occasion at
which the measurement was taken, respectively. Note that the order of the matrices
in the Kronecker product is compatible with the ordering of the elements of the
vector bi. The blocked structure of the matrix D, given in (17.21), implies a similar
correlation structure of the four type×occasion-specific random intercepts for each
of the two dependent variables. The correlation structure is identical to the one
presented in (17.15).

17.8.2 R Syntax and Results

Panel R17.19 displays the R syntax used to fit model M17.6 with the D ma-
trix specified by (17.21). First, with the help of the function melt() from the
package reshape, a new data frame, prt.Dep2, is created from the data frame
prt. For each subject, the function “stacks” measurements from the variables
ISO.FO and SPEC.FO in one variable, named by default value, and adds an
extra variable, named DV, that contains labels (“iso.fo” or “spec.fo”) that identify
the contents of value. All other variables from the data frame prt are appro-
priately copied to the data frame prt.Dep2. Then, the model-formula object
lme.DV.form, corresponding to the fixed-effects part of (17.18), is created (see
Sect. 5.2). Basically, the formula uses a syntax similar to that used to create
the formula-object lme.spec.form (Panel R17.8), but adds interactions of the
factors fiber.f and occ.f with DV to include the dependent-variable-specific
terms.

Next, the pdMat-class object pd3UN, corresponding to the matrix E in (17.21),
is initialized using the pdLogChol() constructor function (Sect. 14.2.1). The object
is stored together with the objects pd1Id, pd1UN, and pd2UN as named components
of the list pdL. The names of the components are stored in the vector pdKNms for
purposes of labeling printouts. Finally, model M17.6 is fitted using an appropriate
lme()-function call. Note that the value of the argument random is provided in
the form of a named list of pdMat-class objects (Sects. 14.3 and 14.5). Also,
the argument weights is specified using the varIdent-class constructor function
(Sect. 8.2). This allows specifying different residual variances for the two dependent
variables. Finally, the argument control is provided with the list lmeC, created
by applying the function lmeControl() with the argument msMaxIter=100. This
allows to increase the maximum number of iterations in the internal loop of the
estimation algorithm (Sect. 13.8.1) from 50 (default) to 100. It appears that in the
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R17.19 PRT Trial: Model M17.6 for two dependent variables fitted using the
functions lme() and pdKronecker(). Objects pd1Id, pd1UN, and pd2UN were
created in Panel R17.14

> prt.Dep2 <- # Raw data transposed

+ melt(prt, measure.var = c("iso.fo", "spec.fo"),

+ variable_name = "DV") # DV indicates dep. variable

> lme.DV.form <- # Formula with interactions

+ formula(value ~ -1 + DV + DV:(-1 + (prt.f + occ.f

+ fiber.f)^2

+ + sex.f + age.f + sex.f:age.f + bmi))

> pdUN <- pdLogChol(~DV-1) # E for DV

> pdL <-

+ list(X = pdId,

+ DV = pdUN,

+ FiberType = pd1UN,

+ PrePos = pd2UN)

> pdKnms <- names(pdL) # Names saved for later use

> lmeC <- lmeControl(msMaxIter = 100) # Maximum iterations

> fm17.6 <-

+ lme(lme.DV.form, # Fixed part

+ random = list(id = pdKronecker(pdL)), # 8 random effects

+ data = prt.Dep2,

+ weights = varIdent(form = ~1|DV), # DV-specific variance

+ control = lmeC)

case of model M17.6 the increase is necessary to obtain convergence. The results of
fitting of the model are stored in the object fm17.6.

Panel R17.20 displays the blocks of the estimated D matrix for model M17.6.
First, the function getVarCov() (see Table 14.5) is used to extract the estimate
of the matrix from the model-fit object. To simplify printouts, the default row and
column names are replaced by abbreviated ones. Then, the two diagonal 4×4 blocks
of the estimated matrix D are printed out, together with the off-diagonal block. The
diagonal blocks show a clear difference in the scale of the dependent variables.
Additionally, with the help of the cov2cor() function, the diagonal block of the
correlation matrix, corresponding to D, is displayed. As mentioned before, it gives
the correlation between the four fiber-type×occasion random intercepts for each
of the two dependent variables. The correlation structure does resemble the one
obtained for model M17.3 (Panel R17.9), although the magnitude of the estimated
correlation coefficients is smaller. This is most likely due to the fact that they are an
“average” of associations for the two dependent variables.

In Panel R17.21, the estimated components of the Kronecker-product structure,
defined in (17.21), are displayed. In particular, the estimated SD for the ISO.FO
variable is extracted from the sigma component of the model-fit object fm17.6. The
estimated values of the parameters of the varIdent-class residual variance function
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R17.20 PRT Trial: The estimate of the matrix D for model M17.6. The model-fit
object fm17.6 was created in Panel R17.19

> DmtxDV2Kron <- getVarCov(fm17.6)

> rownames(DmtxDV2Kron) # Row/col ̂D names

[1] "DViso.fo:fiber.fType 1:occ.fPre"

[2] "DViso.fo:fiber.fType 1:occ.fPos"

[3] "DViso.fo:fiber.fType 2:occ.fPre"

[4] "DViso.fo:fiber.fType 2:occ.fPos"

[5] "DVspec.fo:fiber.fType 1:occ.fPre"

[6] "DVspec.fo:fiber.fType 1:occ.fPos"

[7] "DVspec.fo:fiber.fType 2:occ.fPre"

[8] "DVspec.fo:fiber.fType 2:occ.fPos"

> nms <- # ... shortened

+ c("is:T1:Pre", "is:T1:Pos", "is:T2:Pre", "is:T2:Pos",

+ "sp:T1:Pre", "sp:T1:Pos", "sp:T2:Pre", "sp:T2:Pos")

> dimnames(DmtxDV2Kron) <- list(nms, nms) # ... and assigned.

> print(DmtxDV2Kron[1:4, 1:4], digits = 2) # Block for iso.fo

is:T1:Pre is:T1:Pos is:T2:Pre is:T2:Pos

is:T1:Pre 0.048 0.035 0.033 0.024

is:T1:Pos 0.035 0.043 0.024 0.030

is:T2:Pre 0.033 0.024 0.068 0.049

is:T2:Pos 0.024 0.030 0.049 0.061

> print(DmtxDV2Kron[5:8, 5:8], digits = 5) # Block for spec.fo

sp:T1:Pre sp:T1:Pos sp:T2:Pre sp:T2:Pos

sp:T1:Pre 206.37 148.90 141.26 101.93

sp:T1:Pos 148.90 186.45 101.93 127.63

sp:T2:Pre 141.26 101.93 290.84 209.86

sp:T2:Pos 101.93 127.63 209.86 262.77

> print(DmtxDV2Kron[1:4,5:8], digits = 3) # Off-diagonal block

sp:T1:Pre sp:T1:Pos sp:T2:Pre sp:T2:Pos

is:T1:Pre 1.342 0.968 0.919 0.663

is:T1:Pos 0.968 1.213 0.663 0.830

is:T2:Pre 0.919 0.663 1.892 1.365

is:T2:Pos 0.663 0.830 1.365 1.709

> print(cov2cor(DmtxDV2Kron)[1:4, 1:4], # Corr. block for iso.fo

+ digits = 3)

is:T1:Pre is:T1:Pos is:T2:Pre is:T2:Pos

is:T1:Pre 1.000 0.759 0.577 0.438

is:T1:Pos 0.759 1.000 0.438 0.577

is:T2:Pre 0.577 0.438 1.000 0.759

is:T2:Pos 0.438 0.577 0.759 1.000
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R17.21 PRT Trial: Evaluating the Kronecker-product structure (17.21) of the matrix
D for model M17.6. Objects fm17.6 and pdKnms were created in Panel R17.19

> (sgma <- fm17.6$sigma) # ̂s 1 (iso.fo):17.19

[1] 0.21513

> (vStDV2 <- fm17.6$modelStruct$varStruct) # ̂d
Variance function structure of class varIdent representing

iso.fo spec.fo

1.00 113.49

> sgma*coef(vStDV2, unconstrained = FALSE) # ̂s 2 (spec.fo)

spec.fo

24.414

> reStDV2 <- fm17.6$modelStruct$reStruct # Random-effects structure

> DV2pdxKron <- reStDV2[[1]]

> names(DV2pdxKron) <- pdKnms

> (c3 <- as.matrix(DV2pdxKron$X)) # Mandatory multiplier

(Intercept)

(Intercept) 1.0365

> (E3 <- as.matrix(DV2pdxKron$DV)) # ̂E for dep. variables

DViso.fo DVspec.fo

DViso.fo 1.000 27.977

DVspec.fo 27.977 4301.753

> (A3 <- as.matrix(DV2pdxKron$FiberType)) # ̂A for fiber type:
(17.21)

fiber.fType 1 fiber.fType 2

fiber.fType 1 1.00000 0.68454

fiber.fType 2 0.68454 1.40935

> (B3 <- as.matrix(DV2pdxKron$PrePos)) # ̂B for occasion

occ.fPre occ.fPos

occ.fPre 1.00000 0.72155

occ.fPos 0.72155 0.90350

are extracted from the modelStruct component of the model-fit object and stored
in the object vStDV2. In fact, the variance function involves only one parameter, d,
which is the ratio of the SDs for the SPEC.FO and ISO.FO variables, as defined in
(17.19). The estimated value of the ratio is very large, confirming a difference in the
measurement scale of the two dependent variables.

To extract the estimate of d itself on the unconstrained scale, we used the coef()
generic function with the unconstrained argument set to FALSE. By multiplying
the result by the estimated value of the residual SD for the variable ISO.FO, stored
in the object sgma, we obtain the estimated residual SD for the variable SPEC.FO.
It corresponds to the value estimated for model M17.3 (see Panel R17.9).

Other matrices, used in the Kronecker-product structure, defined in (17.21), are
extracted from the modelStruct$reStruct component of the model-fit object.
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R17.22 PRT Trial: Verification of the Kronecker-product structure (17.21) for
model M17.6. The objects c3, A3, B3, and E3 were created in Panel R17.21 and
the object nms was created in Panel R17.20

> cKron3 <- sgma^2 %x% c3 %x% E3 %x% A3 %x% B3 # Kronecker product ...

> rownames(cKron3) <- nms

> print(cKron3, digits = 2) # ... printed

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

is:T1:Pre 0.048 0.035 0.033 0.024 1.34 0.97 0.92 0.66

is:T1:Pos 0.035 0.043 0.024 0.030 0.97 1.21 0.66 0.83

is:T2:Pre 0.033 0.024 0.068 0.049 0.92 0.66 1.89 1.36

is:T2:Pos 0.024 0.030 0.049 0.061 0.66 0.83 1.36 1.71

sp:T1:Pre 1.342 0.968 0.919 0.663 206.37 148.90 141.26 101.93

sp:T1:Pos 0.968 1.213 0.663 0.830 148.90 186.45 101.93 127.63

sp:T2:Pre 0.919 0.663 1.892 1.365 141.26 101.93 290.84 209.86

sp:T2:Pos 0.663 0.830 1.365 1.709 101.93 127.63 209.86 262.77

The component is of reStruct class, which we store in the object reStDV2. The
object contains only a single component that inherits from the pdMat class, which
we extract and store in the object DV2pdxKron. The latter object is an object of
pdKronecker class with four components, which correspond to the matrices involved
in the reperesentation, defined in (17.21). To facilitate referring to the components,
we name them using the function “names()<-” and the vector pdKnms. We then
extract the components and store them as the matrix-objects c3, A3, B3, and E3. As
shown in Panel R17.22, it can be verified that, by taking the Kronecker product of
the estimated value of the residual variance s 2 and the three matrices, we obtain the
result corresponding to the matrix stored in the DmtxKron1 object in Panel R17.20.

In Panel R17.23, a printout of the estimates of the fixed-effects coefficients for
model M17.6 is presented. Toward this end, we refer to the component tTable of
the object resulting from applying the function summary() to the model-fit object
fm17.6. Before printing out the contents of the tTable array, we shorten the row
names. To display the results, we use the function printCoefmat(), which allows
more control over the format of the printout (see the syntax in Panel M16.1 and its
explanation in Sect. 16.2.2).

The estimates of the fixed-effects coefficients for the variable SPEC.FO are
comparable to the values obtained for model M17.3 (see Panel R17.8b). The
effects of interest, interactions iso:Low:Pos and spec:Low:Pos, are individually
statistically not significant, indicating that the data do not support rejecting the null
hypothesis of the lack of effect of the training intensity.

Note that conducting individual tests for the effect of training intensity on
the two dependent variables might raise concerns about the need for a multiple
comparison correction. Clearly, given the nonsignificance of the individual tests,
in our case, such a correction would not change the conclusions. Formally,
however, one could address this issue by conducting a joint test of significance
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R17.23 PRT Trial: Estimates of the fixed-effects coefficients for model M17.6. The
model-fit object fm17.6 was created in Panel R17.19

> fixed.DV2.Kron1 <- summary(fm17.6)$tTable

> fxdNms3 <-

+ c("iso:1", "spec:1", "iso:Low", "spec:Low", "iso:Pos",

+ "spec:Pos", "iso:T2", "spec:T2", "iso:Male", "spec:Male",

+ "iso:Old", "spec:Old", "iso:BMI", "spec:BMI",

+ "iso:Low:Pos", "spec:Low:Pos", "iso:Low:T2", "spec:Low:T2",

+ "iso:Pos:T2", "spec:Pos:T2", "iso:Male:Old", "spec:Male:Old")

> rownames(fixed.DV2.Kron1) <- fxdNms3

> printCoefmat(fixed.DV2.Kron1, digits = 3, cs.ind = c(1, 2),

+ dig.tst = 2, zap.ind = 5)

Value Std.Error DF t-value p-value

iso:1 0.22321 0.20182 4858 1.1060 0.27

spec:1 125.08991 13.73703 4858 9.1060 0.00

iso:Low -0.01715 0.05720 4858 -0.2998 0.76

spec:Low 2.12290 4.00821 4858 0.5296 0.60

iso:Pos 0.02793 0.03077 4858 0.9080 0.36

spec:Pos 3.99249 2.46368 4858 1.6205 0.10

iso:T2 0.03032 0.04252 4858 0.7130 0.48

spec:T2 25.37114 3.18342 4858 7.9698 0.00

iso:Male 0.05954 0.07093 4858 0.8395 0.40

spec:Male -2.11642 4.81216 4858 -0.4398 0.66

iso:Old 0.01082 0.06746 4858 0.1604 0.87

spec:Old 8.08777 4.58276 4858 1.7648 0.08

iso:BMI 0.02184 0.00755 4858 2.8925 0.00

spec:BMI 0.60113 0.51340 4858 1.1709 0.24

iso:Low:Pos 0.02186 0.04061 4858 0.5383 0.59

spec:Low:Pos -0.16110 3.13993 4858 -0.0513 0.96

iso:Low:T2 0.01656 0.05511 4858 0.3006 0.76

spec:Low:T2 -4.12297 4.01129 4858 -1.0278 0.30

iso:Pos:T2 0.06492 0.02744 4858 2.3663 0.02

spec:Pos:T2 4.10831 2.47640 4858 1.6590 0.10

iso:Male:Old 0.05800 0.09894 4858 0.5862 0.56

spec:Male:Old -8.71976 6.72175 4858 -1.2972 0.20

> anova(fm17.6, type = "marginal")

numDF denDF F-value p-value

DV 2 4858 45.140 <.0001

DV:prt.f 2 4858 0.283 0.7535

DV:occ.f 2 4858 1.437 0.2376

DV:fiber.f 2 4858 33.586 <.0001

DV:sex.f 2 4858 0.708 0.4926

DV:age.f 2 4858 1.730 0.1773

DV:bmi 2 4858 4.184 0.0153

DV:prt.f:occ.f 2 4858 0.168 0.8449

DV:prt.f:fiber.f 2 4858 0.767 0.4645

DV:occ.f:fiber.f 2 4858 3.610 0.0271

DV:sex.f:age.f 2 4858 1.561 0.2101
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of the two interaction terms, iso:Low:Pos and spec:Low:Pos. In the context
of model M17.6, we can construct such a test by testing the significance of
the interaction DV:prt.f:occ.f. Toward this end, in Panel R17.23, we use
the anova(fm17.6, type="marginal") command. The p-value for the test of
significance of the interaction is equal to 0.84, indicating that neither interaction
iso:Low:Pos nor spec:Low:Pos is statistically significant.

The printout shown in Panel R17.23 suggests that the mean structure of the model
could be simplified by removing, e.g., all interactions except of the occasion×type
term for both dependent variables. Given the illustrative nature of the example, we
do not pursue this direction, though.

17.9 Chapter Summary

In this chapter, we analyzed the PRT data by applying LMMs. The data had a
more complex structure than the ARMD data, analyzed in the previous chapter. In
particular, in the PRT dataset, multiple measurements for several variables for two
fiber types at two different occasions (pre- and post-training) were available for each
individual. This leads to a complex association structure between the measurements.
By using LMMs, the hierarchical structure of the data and association structure were
taken into account.

Table 17.3 provides information about the models defined in this chapter.
The main tool which was used to fit the models was the function lme() from the

package nlme. The function capabilities were extended by introducing a new class
of positive-definite matrices, defined by the Kronecker product of standard pdMat-
class matrices, which can be used for defining the random effects structure of an
LMM. At current, the solution is not available for the lmer() function from the
package lme4.0.

Table 17.3 PRT Trial: Summary of linear mixed-effects models defined and fitted using REML
in Chap. 17

Model label Section Syntax R-object Model eq. Matrix D eq.
Residual
variance

(a) Models for the specific force for type-1 fibers only
M17.1 17.2 R17.1 fm17.1 (17.1) (17.3) constant
M17.2 17.3 R17.7 fm17.2 (17.1) (17.3) varPower

(b) Models for the specific force for type-1 & 2 fibers

M17.3 17.4 R17.8 fm17.3 (17.6) (17.7) constant
M17.3aa 17.5 R17.13 fm17.3a (17.9) (17.10) constant
M17.4 17.6 R17.14 fm17.4 (17.6) (17.14) constant
M17.5 17.7 R17.16 fm17.5 (17.18) (17.16) constant

(c) Joint model for the specific and isometric forces for type-1 & 2 fibers

M17.6 17.8 R17.19 fm17.6 (17.18) (17.21) constant
a Model M17.3a is equivalent to model M17.3
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We started by considering the data for the specific force as the dependent variable
for type-1 fibers only. In Sect. 17.2, we fitted a conditional-independence LMM with
two correlated, heteroscedastic, occasion-specific random effects for each individual
(model M17.1). Based on the evaluation of the goodness-of-fit, we modified the
model using the power-of-the-mean variance function (model M17.2 in Sect. 17.3).
In neither of the models, the effect of intensity of the training was statistically
significant.

In the next step, we considered models for the specific force for both fiber types.
In Sect. 17.4, we constructed model M17.3: a conditional-independence LMM with
four correlated, heteroscedastic, fiber-type×occasion-specific random effects for
each individual. We also considered an equivalent, re-parameterized form of the
model, in which the random-effects structure was expressed by a linear model
using fiber-type and occasion effects (model M17.3a in Sect. 17.5). The analysis
of the random-effects structure suggested that it could be simplified by considering
homoscedastic random effects. Toward this end, the newly developed pdKronecker
class of positive-definite matrices was instrumental. First, for demonstration pur-
poses, we used it in Sect. 17.6 to fit model M17.4 with heteroscedastic random
effects, but with a more structured variance-covariance matrix of the random effects
than the one used for model M17.3. Then we used the pdKronecker class to fit
model M17.5 with four correlated, homoscedastic, fiber-type×occasion-specific
random effects for each individual (Sect. 17.7). By using the LR test, we verified that
the simplification of the random-effects structure did not statistically significantly
influence the fit of the model, as compared to model M17.3.

In principle, parsimonious modeling of the variance-covariance structure of the
data can increase the efficiency of estimation of the fixed effects. However, in our
case, not much influence of the modeling on the point estimates and SEs of the
fixed-effects coefficients could be observed. In particular, in none of the models the
effect of training intensity was statistically significant.

Finally, in Sect. 17.8, we considered the most complex LMM for two dependent
variables, the specific force and the isometric force, and the two fiber types.
Model M17.6 included eight correlated, heteroscedastic random effects, one for
each combination of the dependent variable, fiber type, and occasion. It assumed
different residual variances for the two dependent variables. The model allowed
adjusting not only for the correlation between repeated measures for different fiber
types at different occasions, but also for the association between measurements for
the two different dependent variables. Also, it provided a natural way for a joint test
of significance of the effect of training intensity on the two dependent variables. The
result of the test was statistically not significant.

The presented sequence of models was aimed at extending the illustration of the
capabilities of the function lme() for fitting LMMs. The models could be further
modified by, for example, simplifying the fixed-effects structure. We did not pursue
this direction, however, given the nonsignificance of the effect of training intensity.



Chapter 18
SII Project: Modeling Gains in Mathematics
Achievement-Scores

18.1 Introduction

The SII Project was described in Sect. 2.4. In Sect. 3.4, an exploratory analysis of
the data was presented. The data have a hierarchical structure, with pupils grouped
in classes which, in turn, are grouped in schools. Thus, we deal with two levels
of grouping in the data or, equivalently, with a three-level data hierarchy. In this
chapter, we use LMMs to analyze the change in mathematics achievement-scores for
pupils, MATHGAIN. In particular, we use models, which include random intercepts
for schools and classes to account for the data hierarchy.

We begin in Sect. 18.2 with the model considered by West et al. (2007). In
Sects. 18.3–18.7, we propose a series of models with different mean structures that
allow investigating the influence of various school- and pupil-level covariates on
the dependent variable. Section 18.8 illustrates the use of the function lmer() from
the package lme4.0 for fitting the final model from Sect. 18.7. Section 18.9 briefly
summarizes the most important findings and topics presented in this chapter.

18.2 A Model with Fixed Effects for School-
and Pupil-Specific Covariates and Random
Intercepts for Schools and Classes

We begin the analysis of the data from the SII project by considering the model,
proposed by West et al. (2007) (Model 4.4, Chap. 4, p. 159).

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__18,
© Springer Science+Business Media New York 2013
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18.2.1 Model Specification

Model M18.1 is defined as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+b3×MATHKINDsci +b4×SEXsci +b5×HOUSEPOVs

+b0s+ b0sc + esci

≡ msci + b0s+ b0sc+ esci, (18.1)

where s indexes schools (s = 1,2, . . . ,N), c indexes classes (c = 1,2, . . . ,ns), and
i indexes individual pupils (i = 1, . . . ,nsc). In (18.1), SEX and MINORITY are
values of pupil-level indicator variables for, respectively, girls and minority pupils.
MATHKIND and SES are continuous variables providing pupil’s math score in
kindergarten and pupil’s socioeconomic status, respectively. Finally, HOUSPOV is
a continuous, school-level variable containing the information about the percentage
of neighboring households below the poverty level. Note that the mean structure of
model M18.1 does not include any class-specific covariates.

The residual random errors esci in (18.1) are assumed to be independent and
normally distributed with mean zero and a common variance s 2. In addition to the
residual errors, the model equation includes, for each pupil, two random intercepts:
b0s and b0sc. The first one is the random effect of school, while the second one is
the random effect of the class. We assume that the random intercepts b0c and b0sc
are independent and normally distributed with means zero and variances d1 > 0
and d2 > 0, respectively. Moreover, they are independent of the residual random
errors esci.

18.2.1.1 Marginal Interpretation

Model M18.1 implies that the marginal expected value of MATHGAINsci is equal
to msci, defined in (18.1).

Inclusion of the random intercepts b0s and b0sc in the model allows modeling of
the correlation between the MATHGAIN measurements obtained for pupils from
the same school, as well as for pupils from the same class. This can be seen from
the resulting marginal variances and covariances:

Var(MATHGAINsci) = d1 + d2 +s 2,

Cov(MATHGAINsci,MATHGAINsc′i′) = d1, (18.2)

Cov(MATHGAINsci,MATHGAINsci′) = d1 + d2, (18.3)

where c �= c′ and i �= i′. It follows that gains in math scores of any two pupils
from the same school are correlated with the within-school correlation coefficient
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equal to d1/(d1 + d2 +s 2). Similarly, the within-class correlation coefficient for
measurements of any two pupils from the same class (within the same school) is
equal to (d1 + d2)/(d1 + d2 + s 2). Given that d1 > 0 and d2 > 0, it follows that
the within-school correlation coefficient is assumed to be smaller than the within-
class one.

18.2.2 R Syntax and Results

In Panel R18.1, we show the R syntax to fit model M18.1. First, we load the
SIIdata data frame from the package nlmeU. Then we define the model-formula
object form1, which corresponds to the fixed-effects part of (18.1). We use the
formula object in the call to the function lme(). Note that we use the random

argument in the form of a list with named components containing one-sided
formulae (see the syntax (a) in Table 14.1). The formulae specify random intercepts
for the levels of the nested grouping factors schoolid and classid. The model is
fitted by using the ML estimation method, and the results are stored in the object
fm18.1.

At the end of Panel R18.1, we present an alternate, simpler syntax for the random
argument (see the syntax (d) in Table 14.1). As it was mentioned in Table 14.2,
the simplified syntax requires the same form of the variance-covariance matrices
of the random effects for the different levels of grouping. This is the case for
model M18.1, as it includes only random intercepts at both the school and class
levels of grouping.

In Panel R18.2, we extract information about the data hierarchy, implied by
the syntax used in Panel R18.1. By using the getGroupsFormula() function (see
Sect. 14.4), we verify that the hierarchy is defined by the grouping factors schoolid
and classid, with the latter nested within the former. By applying the function
getGroups() with the argument level=1, we extract the grouping factor, which
defines the first (highest) level of the data hierarchy, from the model-fit object and
store it in the object grpF1. We display the structure of grpF1 by applying the
generic function str(). The printout indicates that the grouping factor schoolid
has 107 different levels.

By applying the function getGroups() without the use of the argument level,
we extract the grouping factor, which defines the second (lowest) level of the data
hierarchy, and store it in the object grpF2. The display of its structure indicates that
this is the grouping factor classid, with 312 different levels. This information is
consistent with the results presented in Sect. 3.4.

In Panel R18.3, we show the estimates of the fixed-effects coefficients along
with their estimated variance-covariance matrix (see Sect. 13.5.5) for model M18.1.
Toward this end, in Panel R18.3a, we use the function fixef() (see Table 14.5).
The variance-covariance matrix is extracted from the model-fit object fm18.1

in Panel R18.3b with the help of the function vcov() (see Table 14.5). Before
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R18.1 SII Project: Model M18.1 fitted to the data using the function lme()

> data(SIIdata, package="nlmeU")

> form1 <-

+ formula(mathgain ~ ses + minority + # (18.1)

+ mathkind + sex + housepov)

> (fm18.1 <-

+ lme(form1,

+ random = list(schoolid = ~1, # See Table 14.1, syntax (a)

+ classid = ~1),

+ data = SIIdata, method = "ML"))

Linear mixed-effects model fit by maximum likelihood

Data: SIIdata

Log-likelihood: -5694.8

Fixed: mathgain ~ ses + minority + mathkind + sex + housepov

. . . [snip]
Number of Observations: 1190

Number of Groups:

schoolid classid %in% schoolid

107 312

> update(fm18.1, # An alternative syntax

+ random = ~1 | schoolid/classid) # See Table 14.1, syntax (d)

Linear mixed-effects model fit by maximum likelihood

Data: SIIdata

Log-likelihood: -5694.8

Fixed: mathgain ~ ses + minority + mathkind + sex + housepov

(Intercept) ses minorityMnrt=Yes

284.91086 5.23255 -7.74566

mathkind sexF housepov

-0.47061 -1.23071 -11.30141

Random effects:

Formula: ~1 | schoolid

(Intercept)

StdDev: 8.5881

Formula: ~1 | classid %in% schoolid

(Intercept) Residual

StdDev: 9.018 27.056

Number of Observations: 1190

Number of Groups:

schoolid classid %in% schoolid

107 312

. . . [snip]
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R18.2 SII Project: Data grouping/hierarchy implied by model M18.1. The model-fit
object fm18.1 was created in Panel R18.1

> getGroupsFormula(fm18.1) # Grouping formula

~schoolid/classid

<environment: 0x0000000007010718>

> str(grpF1 <- getGroups(fm18.1, level=1)) # Grouping factor at level 1

Factor w/ 107 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1...

- attr(*, "label")= chr "schoolid"

> str(grpF2 <- getGroups(fm18.1)) # Grouping factor at level 2

Factor w/ 312 levels "1/160","1/217",..: 1 1 1 2 2 2 2 2 2 2...

- attr(*, "label")= chr "classid"

> grpF2

[1] 1/160 1/160 1/160 1/217 1/217 1/217 1/217

[8] 1/217 1/217 1/217 1/217 2/197 2/197 2/211

. . . [snip]
[1184] 107/96 107/96 107/96 107/96 107/96 107/239 107/239

attr(,"label")

[1] classid

312 Levels: 1/160 1/217 10/178 10/208 10/278 10/303 ... 99/266

displaying the matrix, we abbreviate the names of the fixed-effects coefficients with
the help of the function abbreviate() and use them instead of the full names
assigned by default.

In Sect. 14.6, it was mentioned that the information about the estimated com-
ponents of the variance-covariance structure of an LMM can be extracted from a
model-fit object with the help of the function getVarCov() (see also Table 14.5).
Unfortunately, as it is illustrated in Panel R18.4, the function does not work
for models with multiple levels of grouping. Thus, we need to resort to other
methods/functions to extract the information.

In particular, we can use the function VarCorr(). From the printout shown
in Panel R18.4, we can observe that the estimated residual variance is an order
of magnitude larger as compared to the estimated variances of the school- and
class-specific random effects. By using the formulae (18.2) and (18.3), we can
conclude that the estimated form of model M18.1 implies that the correlation
coefficient between the improvement in math scores for pupils from the same
school is estimated to be equal to 73.755/(73.755+ 81.325+ 732.015) = 0.08,
while for the pupils from the same class it is estimated to be equal to (73.755+
81.325)/(73.755+81.325+732.015)= 0.17. Thus, in accordance with the remark
about (18.2)–(18.3) made earlier, the within-class correlation coefficient is larger
than the within-school one.

Panel R18.5 presents the results of the tests for the fixed effects (Sect. 13.7.1)
of model M18.1. The tests are obtained by applying the function anova() to the
model-fit object fm18.1. In Panel R18.5a, F-tests for the individual effects are
presented (Sect. 13.7.1). Note that, by using the argument type="marginal", we
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R18.3 SII Project: Estimates of the fixed-effects coefficients and their estimated
variance-covariance matrix for model M18.1. The model-fit object fm18.1 was
created in Panel R18.1
(a) Estimates of the fixed-effects coefficients.

> (fxd <- fixef(fm18.1)) # ̂b
(Intercept) ses minorityMnrt=Yes

284.91086 5.23255 -7.74566

mathkind sexF housepov

-0.47061 -1.23071 -11.30141

(b) Estimated variance-covariance matrix of ̂b.

> vcov1 <- vcov(fm18.1) # ̂Var(̂b)
> nms <- abbreviate(names(fxd)) # Abbreviated b names ...

> dimnames(vcov1) <- list(nms, nms) # ... assigned.

> print(vcov1, digits = 2)

(In) ses mM=Y mthk sexF hspv

(In) 120.71 1.6855 -6.9166 -0.23666 -0.7671 -18.5034

ses 1.69 1.5421 0.4282 -0.00456 0.0386 0.9669

mM=Y -6.92 0.4282 5.6276 0.00814 -0.0619 -4.3187

mthk -0.24 -0.0046 0.0081 0.00049 -0.0012 0.0077

sexF -0.77 0.0386 -0.0619 -0.00117 2.7358 -0.1442

hspv -18.50 0.9669 -4.3187 0.00767 -0.1442 96.4760

R18.4 SII Project: Extracting the estimates of the variances for the random
intercepts of model M18.1 using the getVarCov() and varCorr() functions. The
model-fit object fm18.1 was created in Panel R18.1

> getVarCov(fm18.1)

Error in getVarCov.lme(fm18.1) :

Not implemented for multiple levels of nesting

> VarCorr(fm18.1)

Variance StdDev

schoolid = pdLogChol(1)

(Intercept) 73.755 8.5881

classid = pdLogChol(1)

(Intercept) 81.325 9.0180

Residual 732.015 27.0558
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R18.5 SII Project: Marginal-approach F-tests of the fixed effects for model M18.1.
The model-fit object fm18.1 was created in Panel R18.1
(a) Tests for all fixed effects

> anova(fm18.1, type = "marginal")

numDF denDF F-value p-value

(Intercept) 1 874 669.09 <.0001

ses 1 874 17.67 <.0001

minority 1 874 10.61 0.0012

mathkind 1 874 446.27 <.0001

sex 1 874 0.55 0.4582

housepov 1 105 1.32 0.2537

(b) Tests for selected effects

> anova(fm18.1, Terms = c("housepov"))

F-test for: housepov

numDF denDF F-value p-value

1 1 105 1.3172 0.2537

> anova(fm18.1, Terms = c("sex"))

F-test for: sex

numDF denDF F-value p-value

1 1 874 0.55084 0.4582

(c) The effects of sex and housepov tested jointly

> anova(fm18.1, Terms = c("housepov", "sex"))

Error in anova.lme(fm18.1, Terms = c("housepov", "sex")) :

Terms must all have the same denominator DF

request the marginal-approach tests (Sect. 14.7). Results of the tests for the effects
of the variables SEX and HOUSEPOV are statistically not significant at the 5%
significance level. It is worth noting that the F-test for the variable HOUSEPOV is
based on a different number of denominator degrees of freedom than the other tests.
This is due to the fact that HOUSEPOV is a school-level variable, while the other
variables are defined at the pupil level (Sect. 14.7).

Panel R18.5b presents the use of the argument Terms of the function anova() to
obtain separate tests for the effects of variables SEX and HOUSEPOV (Sect. 14.7).
Note that, by default, results of the marginal-approach tests are reported. Of course,
the results are identical to those displayed in Panel R18.5a.

Finally, in Panel R18.5c, we attempt to perform a joint F-test for the effects of
the variables SEX and HOUSEPOV. Because the variables are defined at different
levels of the data hierarchy, the test fails. For this reason, in Sect. 18.4, we will
employ the LR test to examine the joint effect of the two variables.
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First, however, we check the fit of model M18.1 to the data, because any tests
based on a model are only meaningful as long as the model offers a reasonable
representation of data. Thus, in Panel R18.6, we present the R syntax for residual
diagnostics. We focus on marginal residuals, which allow us to examine whether the
relationship between MATHGAIN and HOUSEPOV is linear.

In Panel R18.6a, we extract, with the help of the function resid() (see
Table 14.5), residuals from the model-fit object fm18.1. Note that we use the
argument level=0 (see Table 14.5). Thus, the function returns the marginal
residuals (Sect. 13.6.2), as required.

We store the residuals in the object rsd1. By applying the function range() to
the object, we display the minimum and maximum values of the residuals. To iden-
tify observations with residuals larger, in absolute value, than 120, say, we create
the logical vector outi, which identifies the rows in the data frame SIIdata that
correspond to those residuals. We then use the vector to display the row numbers.
We also use the vector to display the values of the residuals from the object rsd1.
Note that the displayed values are labeled by levels of the schoolidgrouping factor.

Panel R18.6b presents the code to construct plots of the marginal residuals
against the values of the HOUSEPOV covariate for each sex. In the plot, the
residuals larger, in absolute value, than 120 are to be identified. Toward this end,
first, the myPanel() function is constructed, which selects the residuals and labels
the corresponding symbols in the plot. By using the argument pos=3 in the ltext()
function, we indicate that the labels should be positioned above the data symbols.
Then the xyplot() function is used to display the plot.

The resulting plot is shown in Fig. 18.1. The regression lines suggest that
association between the mean of MATHGAIN and the HOUSEPOV variable may
depend on sex. Thus, we might want to include an interaction between HOUSEPOV
and SEX in model M18.1. This is what we consider next.

18.3 A Model with an Interaction Between School-
and Pupil-Level Covariates

In this section, we consider model M18.2. Compared to M18.1, model M18.2
includes an interaction between HOUSEPOV and SEX in the mean structure.

18.3.1 Model Specification

Model M18.2 is defined as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+b3×MATHKINDsci +b4×SEXsci +b5×HOUSEPOVs

+b4,5×HOUSEPOVs×SEXsci

+b0s+ b0sc + esci

≡ msci + b0s+ b0sc+ esci. (18.4)
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R18.6 SII Project: Plots of the marginal residuals for model M18.1. The model-fit
object fm18.1 was created in Panel R18.1
(a) Marginal residuals

> rsd1 <- # Marginal residuals

+ resid(fm18.1, level = 0)

> range(rsd1) # Range

[1] -176.86 124.84

> outi <- abs(rsd1) > 120 # Selection of outliers

> as.numeric(SIIdata$childid[outi]) # Outliers' ids

[1] 41 665 754

> rsd1[outi] # Outliers' values and labels

4 62 70

-176.86 122.55 124.84

(b) Plot of the marginal residuals vs. housepov by sex.

> myPanel <- function(x,y, subscripts, ... ){

+ panel.xyplot(x,y,... )

+ outi <- abs(y) > 120

+ y1 <- y[outi]

+ x1 <- x[outi]

+ ltext(x1, y1, names(y1), pos=3)

+ }

> xyplot(rsd1 ~ housepov|sex, SIIdata, # Fig. 18.1

+ type = c("p","r"),

+ panel = myPanel)

Note that model M18.1 is nested within model M18.2. The random-effects structure
of the two models is the same. Consequently, the marginal variances and covariances
for both models are the same and given in (18.2) and (18.3).

18.3.2 R Syntax and Results

In Panel R18.7, we fit model M18.2 and test the hypothesis about the added term.
Toward this end, we first create, in Panel R18.7a, the model-formula object form2.
Specifically, we add, with the help of the function update(), the interaction term
sex:housepov to the model-formula object form1. Then we fit the model by
updating the model-fit object fm18.1 with the newly-created model formula. Note
that the new model is fitted using the same estimation method that was applied when
fitting the model represented by the object fm18.1, i.e., the ML estimation. The
results are stored in the model-fit object fm18.2. Details of the results are shown in
Table 18.1.



440 18 SII Project: Modeling Gains in Mathematics Achievement-Scores

Fig. 18.1 SII Project: Scatterplots of the marginal residuals versus housepov by sex for
model M18.1

Table 18.1 SII Project: ML estimatesa of the parameters for models M18.1–M18.3

Par. fm18.1 fm18.2 fm18.3

Model label M18.1 M18.2 M18.3
Log-ML value −5694.82 −5693.35 −5695.77

Fixed effects:
Intercept b0 284.91(11.01) 282.66(11.09) 282.34(10.84)
Ses b1 5.23( 1.24) 5.16( 1.24) 5.36( 1.24)
Minority(Y vs. N) b2 −7.75( 2.38) −7.66( 2.38) −8.28( 2.33)
Mathkind b3 −0.47( 0.02) −0.47( 0.02) −0.47( 0.02)
Sex (F vs. M) b4 −1.23( 1.66) 2.52( 2.74)
House pov. b5 −11.30( 9.85) −0.81(11.65)
Sex(F) × housepov b4,5 −21.18(12.34)

reStruct(schoolid):
SD(b0s)

√
d1 8.59(6.15,11.99) 8.71(6.28,12.07) 8.52(6.04,12.00)

reStruct(classid):
SD(b0sc)

√
d2 9.02(6.36,12.78) 8.86(6.19,12.69) 9.10(6.43,12.86)

Scale s 27.06(25.83,28.33) 27.03(25.81,28.31) 27.07(25.85,28.35)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

Next, we apply the summary() function to extract information about the fitted
model. Note that the resulting output was abbreviated. Selected lines indicate that
the added interaction term is statistically not significant at the 5% significance level.
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R18.7 SII Project: Model M18.2 fitted using the function lme(). The objects form1
and fm18.1 were created in Panel R18.1
(a) Fitting the model

> form2 <- update(form1, . ~ . + sex:housepov) # (18.4)

> fm18.2 <- update(fm18.1, form2) # M18.2 ← M18.1
> summary(fm18.2) # Summary

Linear mixed-effects model fit by maximum likelihood

Data: SIIdata

AIC BIC logLik

11407 11458 -5693.3

. . . [snip]
Fixed effects: mathgain ~ ses + minority + mathkind + sex + ...

Value Std.Error DF t-value p-value

(Intercept) 282.656 11.0936 873 25.4792 0.0000

. . . [snip]
sexF:housepov -21.175 12.3367 873 -1.7165 0.0864

. . . [snip]

(b) Testing the hypothesis about the sex:housepov interaction term

> anova(fm18.2, Terms = "sex:housepov") # Approximate F -test

F-test for: sex:housepov

numDF denDF F-value p-value

1 1 873 2.9462 0.0864

> anova(fm18.1, fm18.2) # M18.1 ⊂ M18.2

Model df AIC BIC logLik Test L.Ratio p-value

fm18.1 1 9 11408 11453 -5694.8

fm18.2 2 10 11407 11458 -5693.3 1 vs 2 2.9477 0.086

In Panel R18.7b, we demonstrate two alternate ways to test the interaction.
First, we apply the function anova() to the model-fit object with the argument
Terms="sex:housepov" (Sect. 14.7). As a result, we obtain the F-test for the
interaction term. Note that, formally speaking, it is a sequential-approach test, but
because the interaction is specified as the last term in the model formula, the test is
equivalent to the marginal-approach test.

Second, we apply the function anova() to the model-fit objects fm18.1 and
fm18.2. As a result, we obtain the LR test for the interaction between HOUSEPOV
and SEX (see Sect. 14.7).

The results of both the F-test and the LR test are statistically not significant at the
5% significance level, but they are significant at the 10% significance level. Given
the fact that tests for interaction terms have less power than tests for main effects,
we might consider retaining the sex:housepov interaction term in the model. We
will come back to this issue in the next section.
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R18.8 SII Project: Model M18.3 fitted using the function lme(). The model-fit
objects form1 and fm18.1 were created in Panel R18.1; the object fm18.2, in
Panel R18.7

> form3 <- update(form1, . ~ . - sex - housepov) # (18.5)

> fm18.3 <- update(fm18.1, form3) # M18.3 ← M18.1
> anova(fm18.1, fm18.3, fm18.2) # M18.3 ⊂ M18.1 ⊂ M18.2

Model df AIC BIC logLik Test L.Ratio p-value

fm18.1 1 9 11408 11453 -5694.8

fm18.3 2 7 11406 11441 -5695.8 1 vs 2 1.8877 0.3891

fm18.2 3 10 11407 11458 -5693.3 2 vs 3 4.8355 0.1842

18.4 A Model with Fixed Effects of Pupil-Level
Covariates Only

In this section, we consider model M18.3, which, as compared to model M18.1,
excludes terms associated with HOUSEPOV and SEX variables from the mean
structure.

18.4.1 Model Specification

Model M18.3 is defined as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+b3×MATHKINDsci

+b0s+ b0sc + esci

≡ msci + b0s+ b0sc+ esci. (18.5)

Note that the model is nested within models M18.1 and M18.2. The marginal
variances and covariances for model M18.3 are given in (18.2) and (18.3).

18.4.2 R Syntax and Results

To fit model M18.3 we create, in Panel R18.8, the model-formula object form3
by removing, with the help of the function update(), the terms sex and housepov

from the model-formula object form1. Then we fit the model by updating the model-
fit object fm18.1with the newly-created model formula. Note that the new model is
fitted using the same estimation method that was applied to fit the model represented
by the object fm18.1, i.e., the ML estimation. The results are stored in the model-fit
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a b

Fig. 18.2 SII Project: Scatterplots of the marginal residuals versus (a) mathkind and (b) ses for
model M18.3

object fm18.3. Details of the results are presented in Table 18.1. We then apply
the function anova() to the model-fit objects fm18.1, fm18.2, and fm18.3. As a
result of using the most parsimonious model as the middle argument, we obtain two
LR tests: one based on models M18.1 and M18.3, and one based on models M18.2
and M18.3.

The first test verifies the joint null hypothesis that the fixed-effects coefficients
of the variables SEX and HOUSEPOV are equal to zero. Recall that the F-test for
this hypothesis could not be obtained (see Panel R18.5). The result of the LR test
is statistically not significant and implies that the variables could be removed from
model M18.1, leading to model M18.3.

The second LR test verifies the joint null hypothesis that the effects of the
variables SEX and HOUSEPOV, including their interaction, are equal to zero. Note
that the F-test for the interaction alone was significant at the 10% significance
level (Sect. 18.3.1). However, the result of the LR test is statistically not significant,
suggesting that the variables SEX and HOUSEPOV, including their interaction, can
be removed from model M18.2. Again, this leads to the choice of model M18.3.

Figure 18.2 presents the plots of the marginal residuals versus MATHKIND and
SES for model M18.3. The vector of the residuals, rsd3, was created in a way
similar to the vector rsd1 in Panel R18.6. The two plots in Fig. 18.2 were created
by using the following syntax:

> xyplot(rsd3 ~ mathkind, SIIdata, # Fig. 18.2a

+ type = c("p", "smooth"))

> xyplot(rsd3 ~ ses, SIIdata, # Fig. 18.2b

+ type = c("p", "smooth"))

The smoothed line added to the residuals shown in Fig. 18.2a clearly indicates a
nonlinear effect of the variable MATHKIND on the mean value of the dependent
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variable. This suggests that we might consider modifying the mean structure of
model M18.3, given by (18.5), by using a different functional form of MATHKIND.
Such a modification will be considered in the next section.

18.5 A Model with a Third-Degree Polynomial of a
Pupil-Level Covariate in the Mean Structure

In this section, we consider a model similar to M18.3, but with the linear effect of
variable MATHKIND replaced by a third-degree polynomial function. We will refer
to this model as model M18.4.

18.5.1 Model Specification

Model M18.4 is defined as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+b3,p1
× p1(MATHKINDsci)+b3,p2

× p2(MATHKINDsci)

+b3,p3
× p3(MATHKINDsci)

+b0s+ b0sc+ esci

≡ msci + b0s+ b0sc+ esci, (18.6)

where p1(MATHKINDsci), p2(MATHKINDsci), and p3(MATHKINDsci) are or-
thogonal polynomials of degree 1, 2, and 3, respectively. Note that models M18.1
and M18.3 are nested within model M18.4. The random-effects structure of the
models is the same.

As compared to the use of an “ordinary” linear combination of powers of
variable MATHKIND, the use of the orthogonal polynomials gives the advantage
of removing the multicollinearity between the covariates corresponding to the
coefficients b3,p1

, b3,p2
, and b3,p3

. The disadvantage is that, to obtain the final form
of the third-degree polynomial for MATHKIND, the coefficients of the orthogonal
polynomials need to be calculated and combined with b3,p1

, b3,p2
, and b3,p3

.

18.5.2 R Syntax and Results

Panel R18.9 presents the R code for fitting model M18.4. The formula, assigned to
the formula-object form4, includes the result of applying the function poly() to
the variable mathkind. The function returns orthogonal polynomials of a particular
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R18.9 SII Project: Model M18.4 fitted using the function lme(). The model-fit
object fm18.3 was created in Panel R18.8

> form4 <- # (18.6)

+ formula(mathgain ~ ses + minority + poly(mathkind, 3))

> fm18.4 <- update(fm18.3, form4) # M18.4 ← M18.3
> anova(fm18.3, fm18.4) # M18.3 ⊂ M18.4

Model df AIC BIC logLik Test L.Ratio p-value

fm18.3 1 7 11406 11441 -5695.8

fm18.4 2 9 11352 11397 -5666.7 1 vs 2 58.067 <.0001

Table 18.2 SII Project: ML-based parameter estimatesa for models M18.4–M18.6

Par. fm18.4 fm18.5 fm18.6

Model label M18.4 M18.5 M18.6
Log-ML value −5666.73 −5665.71 −5663.91

Fixed effects:
Intercept b0 62.12( 2.07) 207.48(10.51) 61.35( 2.08)
Ses b1 5.22( 1.21) 5.22( 1.21) 8.84( 1.95)
Minority(Y vs. N) b2 −7.19( 2.29) −7.09( 2.29) −6.86( 2.29)
mathkind poly(3)

Linear b3,p1
−658.17(31.14) −660.46(31.08)

Quadratic b3,p2
128.94(28.32) 124.46(28.32)

Cubic b3,p3
−175.73(28.09) −178.34(28.06)

mathkind bs(df=4)
bs1 b3,f1

−92.38(15.05)
bs2 b3,f2

−159.72(12.35)
bs3 b3,f3

−169.96(13.85)
bs4 b3,f4

−271.89(19.46)
Ses ×Mnrty(Y/N) b1,2 −5.82( 2.45)

reStruct(schoolid):
SD(b0s)

√
d1 8.46(6.01,11.91) 8.45(6.00,11.91) 8.17(5.70,11.71)

reStruct(classid):
SD(b0sc)

√
d2 9.07(6.49,12.69) 9.05(6.46,12.66) 9.27(6.70,12.82)

Scale s 26.36(25.17,27.61) 26.34(25.15,27.58) 26.28(25.10,27.53)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

degree computed over the specified set of points (Sect. 5.3.1). In our case, we
use a polynomial of the third degree. By updating the model-fit object mth3 with
the newly-defined formula object, we fit model M18.4 to the data using the ML
estimation. Note that we do not display the results; they are shown in Table 18.2.
Then, with the help of the anova() function, we calculate the log-likelihoods for
models M18.3 and M18.4. As a result, we obtain the LR test for the null hypothesis
that b3,p2

= b3,p3
= 0 in (18.6). The result of the test is statistically significant at

the 5% significance level and indicates that including the third-degree polynomial
of the variable MATHKIND improves the fit of model M18.3.
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R18.10 SII Project: Predicted values of mathgain for model M18.4. The model-fit
object fm18.4 was created in Panel R18.9

> auxL <- # Auxiliary list

+ list(ses = 0,

+ minority = factor(c("Mnrt=No", "Mnrt=Yes")),

+ mathkind = seq(290, 625, by = 5))

> dim (auxDt <- expand.grid(auxL)) # Data frame created

[1] 136 3

> names(auxDt)

[1] "ses" "minority" "mathkind"

> prd <- predict(fm18.4, auxDt, level = 0) # Predicted values

> prd4Dt <- data.frame(auxDt, pred4 = prd)

> head(prd4Dt)

ses minority mathkind pred4

1 0 Mnrt=No 290 212.38

2 0 Mnrt=Yes 290 205.19

3 0 Mnrt=No 295 203.41

4 0 Mnrt=Yes 295 196.21

5 0 Mnrt=No 300 194.83

6 0 Mnrt=Yes 300 187.64

> xyplot (pred4 ~ mathkind, groups = minority, # Fig. 18.3a

+ data = prd4Dt, type = "l", grid = TRUE)

Panel R18.10 presents the syntax for creating a plot of predicted values for
model M18.4. Toward this end, we first create an auxiliary list auxL. The names
of the components of the list correspond to the names of the covariates included in
the model. The component ses is set to the numeric value of 0, minority is a factor
with two levels, and mathkind is a numeric vector containing values from 290 to
625 in steps of 5. The list is used as an argument in the function expand.grid()

to create a data frame from all combinations of the values of the vectors and factors
contained in the components of the list. The resulting data frame, auxDt, contains
136 rows and three variables. Note that the number of rows is equal to 1× 68× 2,
i.e., it corresponds to the number of combinations of the values of the vectors ses
and mathkind and factor minority from the list auxL.

The data frame auxDt is then used in the argument newdata of the function
predict() (see Table 14.5). The function is applied to the model-fit object fm18.4
to compute the predicted values for model M18.4. By specifying the argument
level=0, we obtain the population-level predicted values, i.e., estimates of the
mean-values msci, as defined in (18.7).

We store the resulting numeric vector in the object prd. We add the vector as the
variable pred4 to the data frame auxDt and store the result in the data-frame object
prd4Dt. Finally, we use the latter data frame in the argument data of the function
xyplot() to construct the plot of the predicted values against the values of the
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a b

Fig. 18.3 SII Project: Plots of the predicted values of mathgain for model M18.4 versus
(a) mathkind and (b) ses for the two minority levels

variable mathkind within the groups defined by the levels of the factor minority.
Note that, per definition of the data frame prd4Dt, the plot corresponds to the value
of ses equal to 0.

The resulting plot is shown in Fig. 18.3a. It indicates that the mean value of the
gain in the math score decreases with increasing pupil’s math score in the spring of
the kindergarten year.

Figure 18.3b presents the plot of the predicted values for model M18.4 versus
the values of the variable ses within the groups defined by the levels of the factor
minority. The value of the mathkind covariate is assumed to be equal to 450. The
xyplot()-function call, necessary to create the plot, is very similar to the one used
to construct the plot in Fig. 18.3a (see Panel R18.10).

The plot in Fig. 18.3b indicates a linear increase of the mean value of the gain in
the math score with increasing pupil’s socioeconomic status. Of course, the linearity
of the increase stems from the assumption made about the functional form of the
effect of the variable SES on the expected value of MATHGAIN in (18.6).

Figure 18.4 presents the plot of the marginal residuals versus the covariates
MATHKIND and SES for model M18.4. We do not present the necessary code,
as it is similar to the one used to create, e.g., Fig. 18.2. The smoothed line shown
in the plot suggests that the inclusion of the third-degree polynomial of the variable
does not fully remove the nonlinearity with respect to MATHKIND, observed in
Fig. 18.2a. To address this issue, we could consider using a smooth function of
MATHKIND. A model including such a function is presented in the next section.
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a b

Fig. 18.4 SII Project: Scatterplots of the marginal residuals versus (a) mathkind and (b) ses for
model M18.4

18.6 A Model with a Spline of a Pupil-Level Covariate
in the Mean Structure

In this section, we consider model M18.5, which results from replacing the third-
degree polynomial of the variable MATHKIND in model M18.4 by a spline.

18.6.1 Model Specification

Model M18.5 is defined as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+f (MATHKINDsci)

+b0s+ b0sc + esci

≡ msci + b0s+ b0sc+ esci, (18.7)

where f (MATHKINDsci) denotes a smooth function (spline) of MATHKINDsci.
Note that the random-effects structure of the model is the same as for models
M18.1–M18.4. However, the models are not nested within model M18.5.
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R18.11 SII Project: Model M18.5 fitted using the function lme(). The model-fit
objects fm18.3 and fm18.4 were created in Panels R18.8 and R18.9, respectively

> require(splines)

> form5 <- # (18.7)

+ formula(mathgain ~ ses + minority + bs(mathkind, df = 4))

> fm18.5 <- update(fm18.4, form5) # M18.5 ← M18.4
> AIC(fm18.3, fm18.4, fm18.5)

df AIC

fm18.3 7 11405.53

fm18.4 9 11351.47

fm18.5 10 11351.42

> detach(package:splines)

18.6.2 R Syntax and Results

Panel R18.11 presents the R syntax for fitting model M18.5 to the data. Note that we
need to attach the package splines. The formula-object form5 represents a formula
corresponding to the fixed-effects structure of (18.7). In particular, it includes the
function bs() applied to the variable mathkind. The function returns a B-spline
(Sect. 5.3.1). In our case, we use a cubic spline (the default) with four degrees of
freedom. As a result, we obtain two splines joined at one knot located at the median
of the values of the mathkind variable. More information about the use of the
function bs() can be obtained from the R help-system by issuing the command
?bs after attaching the package splines.

By updating the model-fit object fm18.3 with the newly-defined formula object,
we fit model M18.5 to the data by using the ML estimation.

The results of fitting of model M18.5 are presented in Table 18.2. They suggest
that, e.g., the improvement in math scores for minority pupils was, on average,
lower by about −7.1, as compared to nonminority pupils. On the other hand, the
improvement in math scores increased, on average, by 5.2 with a unit increase of
the SES variable.

It might be of interest to compare the fits of models M18.3 and M18.4 with
model M18.5 to check if the use of the smooth function of the variable MATHKIND
improves the fit of the models. As models M18.3 and M18.4 are not nested within
model M18.5, we cannot use the LR test to compare their fits. Instead, we may
use an information criterion (Sect. 13.7.1). In Panel R18.11, we apply the function
AIC() (see Table 14.5) to compute AIC (see Sect. 4.7.2) for the three models. The
lowest value of the criterion is obtained for model M18.5. Formally speaking, this
suggests that the model fits the data better than the other two models. Note, however,
that the difference in AIC between models M18.4 and M18.5 is minimal and we
could consider the description of the data offered by the former model as well.
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18.7 The Final Model with Only Pupil-Level Variables
in the Mean Structure

In this section, we construct model M18.6, which includes an interaction between
variables SES and MINORITY. Given the minimal difference in AIC between
models M18.4 and M18.5 (see Sect. 18.6), we use the former as a basis for
model M18.6.

18.7.1 Model Specification

Model M18.6 is specified as follows:

MATHGAINsci = b0 +b1×SESsci +b2×MINORITYsci

+b1,2×SESsci×MINORITYsci +b3,p1
× p1(MATHKINDsci)

+b3,p2
× p2(MATHKINDsci)+b3,p3

× p3(MATHKINDsci)

+b0s+ b0sc+ esci

≡ msci + b0s+ b0sc+ esci, (18.8)

where, as in (18.6), p1(MATHKINDsci), p2(MATHKINDsci), and
p3(MATHKINDsci) are orthogonal polynomials of degree 1, 2, and 3, respectively.
Note that model M18.4 is nested within model M18.6. The random-effects structure
of the models is the same, with marginal variances and covariances given in (18.2)
and (18.3).

18.7.2 R Syntax and Results

Panel R18.12 presents the R syntax for fitting model M18.6 to the data. It also
contains the result of the LR test for the comparison of models M18.5 and M18.6.
The result of the test is statistically significant at the 5% significance level. It
allows to reject the null hypothesis that the fixed-effect coefficient of the interaction
between SES and MINORITY is equal to zero.

The estimated value of the coefficient for the interaction can be found in
Table 18.2. It indicates that, for minority pupils, the increase of the improvement
in math scores, corresponding to a unit increase of the SES variable, was smaller by
about−5.8 than the increase for nonminority pupils.

In Panel R18.13 we present the code used to create plots of various types of
residuals shown in Figs. 18.5 and 18.6.
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R18.12 SII Project: Model M18.6 fitted using the function lme(). The model-fit
object fm18.4 was created in Panel R18.9

> form6 <- # (18.8)

+ formula(mathgain ~ ses + minority + poly(mathkind, 3) +

+ ses:minority)

> fm18.6 <- update(fm18.4, form6) # M18.6 ← M18.4
> anova(fm18.4, fm18.6) # M18.4 ⊂ M18.6

Model df AIC BIC logLik Test L.Ratio p-value

fm18.4 1 9 11352 11397 -5666.7

fm18.6 2 10 11348 11399 -5663.9 1 vs 2 5.6455 0.0175

R18.13 SII Project: Plots of residuals for model M18.6. The model-fit object
fm18.6 was created in Panel R18.12
(a) Plots of the marginal residuals

> rsd6 <- resid(fm18.6, level = 0)

> xyplot(rsd6 ~ ses | minority, SIIdata,

+ type = c("p", "smooth")) # Fig.18.5

(b) The normal Q-Q plots of the class-level conditional Pearson residuals

> qqnorm(fm18.6) # Fig. 18.6a

> qqnorm(fm18.6, # Equivalent call

+ form = ~resid(., type = "p", level = 2))

> qqnorm(fm18.6, # Fig. 18.6b

+ form = ~resid(., type = "p") # Residuals...

+ | sex*minority, # ... by sex and minority.

+ id = 0.0005) # Outliers identified.

(c) The normal Q-Q plot of the school-level conditional Pearson residuals

> qqnorm(fm18.6, # Plot not shown

+ form = ~resid(., type = "p",

+ level = 1)) # School level

Figure 18.5 presents the scatterplots of the marginal residuals versus the values
of the variable SES for the two levels of the variable MINORITY for model M18.6.
The figure was created by using the syntax shown in Panel R18.13a. In particular, we
extract the residuals from the model-fit object fm18.6 with the help of the function
resid() and store them in the object rsd6. Subsequently, we use the object in the
formula provided to the function xyplot() to construct the plot of the residuals
against the values of the variable ses within the groups defined by the levels of the
factor minority.
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Fig. 18.5 SII Project: Scatterplots of the marginal residuals versus ses for the two minority

levels for model M18.6

It may be noted that both panels of Fig. 18.5 suggest that the effect of SES is not
linear. Thus, model M18.6 might be further modified by using a smooth function to
capture the effect of the variable. We leave investigation of this modification as an
exercise to the reader.

At this point, we take a closer look at the conditional residuals (Sect. 13.6.2) of
the underlying model M18.6. Because there are two levels of grouping in the data,
there are also two types of conditional residuals: class-level ones, which are the
differences between the observed values of the dependent variable and the estimated
means m̂sci +̂b0s +̂b0sc, and school-level ones, which are based on the deviations
from the estimated means m̂sci+̂b0s. Note that the class-level residuals are predictors
of the residual errors esci.

In Panel R18.13b, we present the syntax for constructing the normal Q-Q plot
of the class-level conditional Pearson residuals (see Table 7.5; Sect. 13.6.2; and
Table 14.5). Toward this end, the function qqnorm() is used. The results are
displayed in Fig. 18.6. Note that we present two equivalent forms of the qqnorm()-
function call for the construction of Fig. 18.6a. The second form shows explicitly
the arguments of the function. In particular, it is worth noting that the argument
level=2 is used in the function resid() (Sect. 14.6). This is the highest grouping
level, i.e., the classid level (see Panel R18.2). As a result, the class-level residuals
are created. On the other hand, in Panel R18.13c, we create school-level conditional
residuals by using the argument level=1 in the call to the function resid().

The plot, shown in Fig. 18.6a, is reasonably linear, with a few deviations from
linearity in the tails.
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a b

Fig. 18.6 SII Project: Normal Q-Q plots of the conditional Pearson residuals for model M18.6.
(a) Overall (b) By sex and minority

Panel R18.13b also includes the qqnorm()-function call necessary to construct
the normal Q-Q plot for the four combinations of the levels of the SEX and
MINORITY variables. In the call, we use the argument id=0.0005. As a result, the
observations with the absolute standardized residuals greater than the 1− 0.0005/2
quantile of the standard normal distribution are identified in the plot. By default,
the outlying observations are labeled using the levels of the innermost grouping
factor; in our case, this is classid. More information about the arguments of the
qqnorm() function for the lme-class objects can be obtained from the R help-system
by issuing the command ?qqnorm.lme.

The plots, shown in Fig. 18.6b, are reasonably linear. Note that only four
observations are labeled in the plots. This is because we used a relatively low
probability value in the argument id; this choice was made for illustrative purposes
in order to limit the number of labeled points in the plots. In practice, we might have
used a larger value, like 0.05, that would correspond to selecting the observations
with the absolute standardized residuals larger than 1.96.

As has just been mentioned, the plots, shown in Fig. 18.6, do not raise substantial
doubts about the assumption of the normality of residual error. However, there may
be situations when we might want to investigate the influence of outliers on the
assumption in more detail. In Panel R18.14, we illustrate how such an investigation
can be conducted.

In particular, in Panel R18.14a, we create a logical vector keep, which identifies
the rows of the vector rsd6 that contain the Pearson residuals with an absolute value
smaller than say 3. We then store the selected residuals in the vector rsd6x. By
displaying the rows of rsd6, which correspond to the logical negation of keep, we
check that there are ten observations with residuals larger than or equal, in absolute
value, to 3. These ten observations are not included in the vector rsd6x.
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R18.14 SII Project: Normal Q-Q plots of the class-level conditional Pearson
residuals for model M18.6 after excluding outlying residuals. The objects fm18.6
and rsd6 were created in Panels R18.12 and R18.13, respectively
(a) Identifying and excluding outlying residuals

> rsd6p <- resid(fm18.6, type = "p")

> keep <- abs(rsd6p) < 3

> rsd6x <- rsd6p[keep]

> rsd6p[!keep]

4/179 8/147 27/104 40/9 53/14 62/22 70/152 75/42

-5.8391 3.8563 3.2514 -3.4276 3.0977 4.0555 3.9099 3.2727

85/196 86/132

3.3377 -3.1083

(b) Normal Q-Q plot of the extracted residuals (Fig. 18.7a)

> qqDtx <- qqnorm(rsd6x, plot.it = FALSE)

> xp1 <- xyplot(x ~ y, data.frame(qqDtx)) # Draft plot

> update(xp1, # Plot updated

+ ylab = "Quantiles of standard normal",

+ xlab = "Standardized residuals",

+ grid = TRUE)

(c) Normal Q-Q plots of the residuals by sex and minority (Fig. 18.7b)

> qqDtx2 <- cbind(SIIdata[keep, ], qqDtx)

> xp2 <- # See R18.14b how to update xp2

+ xyplot(x ~ y | sex*minority, data = data.frame(qqDtx2))

In Panel R18.14b, we apply the function qqnorm() to the vector rsd6x, and
store the result in the object qqDtx. The object is then used in a call to the function
xyplot() to create the normal Q-Q plot, presented in Fig. 18.7a. As compared to
Fig. 18.6a, the plot shows less deviations from linearity.

Finally, in Panel R18.14c, we merge the object qqDtx with the part of the data
frame SIIdata, which corresponds to the observations with residuals smaller, in
absolute value, than 3. We store the resulting data frame in the object qqDtx2. In
this way, we can use the covariates, contained in the data frame SIIdata, in a plot
of the residuals. The object qqDtx2 is then used in a call to the function xyplot()

to create separate normal Q-Q plots for the different combinations of the SEX and
MINORITY levels. The plots are presented in Fig. 18.7b. As compared to Fig. 18.6b,
they show less deviations from linearity.

In Panel R18.15, we present the code which can be used to create plots of the
predicted random effects (Sect. 13.6.1). In particular, in Panel R18.15a, we use the
function ranef() (Sect. 14.6) to extract the estimates of the random effects from
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a b

Fig. 18.7 SII Project: Normal Q-Q plots of the conditional Pearson residuals for model M18.6
with ten outlying residuals omitted. (a) Overall (b) By sex and minority

the model-fit object fm18.6. We store the result in the object ref6. The object is
a list with two components corresponding to the two grouping factors, schoolid
and classid. The components are data frames which contain the EBLUPs of the
random effects for the levels of the two factors.

Applying the function plot() to the object ref6 would, by default, result in a
plot of the predicted random effects for the grouping factor at the highest level of
the data hierarchy, i.e., class. However, the labels of the levels of the factor at the
vertical axis of the plot would appear nonlegible. Thus, before displaying the plot,
we may want to simplify the labels. Toward this end, we first save the result of the
application of the function plot() to ref6 in the object pref6. We then extract the
y-axis labels by referring to the component Y.limits of pref6 and store it in the
object pref6lims. With the help of the function length(), we get the number of
the labels, store it as the scalar len, and create the index-vector sel which contains
every 15th integer from 1 to len. We then set all elements of the character-vector
pref6lims, except those corresponding to the values contained in sel, to an empty
string. Finally, we use the function update() to update the plot-object pref6 by
assigning the modified vector of labels to the ylim component. We also modify the
ylab component, which corresponds to the y-axis label. The resulting plot is shown
in Fig. 18.8a. The plot could be used to, e.g., select predicted random effects with
extremely large or small values. Arguably, there are no such values in the graph
presented in Fig. 18.8a.

Panel R18.15b shows the syntax to create the plot, corresponding to the one
shown in Fig. 18.8a, for the random effects for schools. To this end, we first use the
extractor-function ranef() with the argument level=1 (Sect. 14.6) to extract the
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R18.15 SII Project: Predicted random effects (EBLUPs) for model M18.6. The
model-fit object fm18.6 was created in Panel R18.12
(a) Predicted random effects for classes (Fig. 18.8a)

> ref6 <- ranef(fm18.6) # Random effects for classes.

> mode(ref6) # A list ...

[1] "list"

> length(ref6) # ... with two components.

[1] 2

> pref6 <- plot(ref6) # Default plot for classes; not legible.

> pref6lims <- pref6$y.limits # Y-labels extracted

> len <- length(pref6lims) # No. of labels

> sel <- seq(1, len, by = 15) # Select every 15-th label.

> pref6lims[-sel] = "" # Other labels set to blank.

> update(pref6, ylim = pref6lims, # Assign new Y-labels.

+ ylab = "classid %in% schoolid") # Y-axis label

(b) Predicted random effects for schools (Figure 18.8b)

> ref61 <- ranef(fm18.6, level = 1) # Random effects for schools.

> plot(ref61) # Plot the random effects.

a b

Fig. 18.8 SII Project: Dotplots of the predicted random effects (EBLUPs) for the two grouping
factors (a) class and (b) school for model M18.6
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predicted random effects, and then we apply the function plot(). The resulting plot
is shown in Fig. 18.8b. Based on the plot, one could conclude that, e.g., the predicted
random effect for school 76 has a relatively large negative value.

As was mentioned in Sect. 13.6.1, Q-Q plots and histograms of predicted random
effects are of limited value when checking the normality of the effects is of interest.
However, the plots of can be used to detect, e.g., outlying values. In Panel R18.16,
we present the R syntax to construct normal Q-Q plots for the predicted school and
class random effects for model M18.6. Toward this end, the function qqnorm()

is used (see also Panels R18.13 and R18.14). We first apply it to construct the
plot for the EBLUPs of the random effects for classes. By using the argument
id=0.2, we identify in the plot the observations with the predicted random effects
greater, in absolute value, than the 1−0.2/2= 0.90 quantile of the standard normal
distribution. Finally, we modify the label of the x-axis using the argument xlab.
The resulting normal Q-Q plot is shown in Fig. 18.9a. We use a similar syntax to
construct a normal Q-Q plot for the predicted random effects for schools. The plot
is shown in Fig. 18.9b.

Figure 18.10 presents the plots of the predicted values for model M18.6 versus
the values of the variables mathkind (with the value of ses assumed to be equal
to 0) and ses (with the value of mathkind assumed to be equal to 450) within the
groups defined by the levels of the factor minority. The plots are very similar to
the those presented in Fig. 18.3. The main modification is the addition of the 95%
CIs for the predicted values. The syntax, necessary to create the plots in Fig. 18.10,
is more complex than the one used to construct the plots shown in Fig. 18.3 (see
Panel R18.10); thus, we do not present it here.

18.8 Analysis Using the Function lmer()

In this section, we briefly illustrate how to fit model M18.6 using the function
lmer() from the package lme4.0.

In Panel R18.17, we present three different calls to the function lmer(), which
fit model M18.6 to the SIIdata. The first call uses a general (recommended) syntax
for specifying the random-effects structure for a two-level LMM with nested effects
(see syntax (2b) in Table 15.1). In particular, the nesting of grouping factors, i.e.,
classid within schoolid, is explicitly expressed using the crossing operator :
(see Sect. 5.2.1) in the Z-term (1|schoolid:classid), included in the model
formula along with the (1|schoolid) term. To shorten the printout of the results
of fitting of the model, we first save the application of the function summary()

to the model-fit object fm18.6mer in the object summ. We then print summ using
the function print() with the argument corr=FALSE. In this way, we omit the
correlation matrix of the estimated fixed-effects coefficients from the printout. The
displayed results are essentially the same as those shown in Table 18.2.
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R18.16 SII Project: Normal Q-Q plots of the predicted random effects (EBLUPs)
for model M18.6. The model-fit object fm18.6 was created in Panel R18.12

> qqnorm(fm18.6, ~ranef(., level = 2), # Random effects for classes

+ id = 0.2, # Fig. 18.9a

+ xlab = "Random effects for classes")

> qqnorm(fm18.6, ~ranef(., level=1), # Random effects for schools

+ id = 0.2, # Fig. 18.9b

+ xlab = "Random effects for schools")

a b

Fig. 18.9 SII Project: Normal Q-Q plots of the predicted random effects (EBLUPs) for the two
grouping factors (a) class and (b) school for model M18.6

In the data frame SIIdata, the levels of the factor classid have been coded
as explicitly nested within the levels of schoolid (Sect. 2.4.3). This approach is
actually recommended in the case of representing factors with nested levels. Hence,
it is possible to fit model M18.6 using a simpler syntax, namely, (1|schoolid) +

(1|classid)) for the random-effects structure (see syntax (2a) in Table 15.2). In
particular, in the second syntax shown in Panel R18.17, the Z-term for the factor
classid, (1|classid), does not use the crossing operator : and, therefore, does
not explicitly indicate the nesting. However, given that the nesting is explicitly
reflected in the data, the syntax also fits model M18.6.

Finally, the third form of the lmer()-function call, shown in Panel R18.17, uses
the nonessential operator / (see Table 5.3) in the Z-term (1|schoolid/classid)

to abbreviate the specification of the random-effects part of the lmer() model
formula (see syntax (2c) in Table 15.2).
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a b

Fig. 18.10 SII Project: Plots of the predicted values with 95% confidence intervals versus
mathkind and ses for the two minority levels for model M18.6. Predicted values (a) versus
mathkind (ses set to 0) (b) versus ses (mathkind set to 450)

In Panel R18.18, we extract selected additional information from the model-fit
object fm18.6mer. In particular, we use the anova() function to extract the results
of F-tests for the fixed effects. As it was mentioned in Sect. 15.5, for mer-class
model-fit objects, the function does not provide p-values for the tests. To obtain the
p-values, extra calculations are needed. These were illustrated in, e.g., Panel R16.21.

By applying the function logLik() (see Table 15.3), we extract the value of the
log-likelihood (Sect. 13.5.3) for model M18.6. The obtained value is equivalent to
the one reported for the lme() function in, e.g., Panel R18.12.

The estimated values of the variances of the school- and class-level random
effects are obtained with the help of the function VarCorr() (see Table 15.3).
Note that, to make the display legible, we apply the function unlist() to the
result of the application of the function VarCorr() to the object fm18.6mer. The
obtained values are corresponding to the SDs reported for the lme() function in
Table 18.2. The estimate of the scale parameter s is obtained by applying the
sigma() extractor-function to the model-fit object (see Table 15.3). It correspond
to the value shown, e.g., in Table 18.2. Note that, given that model M18.6 is
a conditional-independence LMM with homoscedastic residual errors, s can be
interpreted as the residual SD.

In Panel R18.19, we demonstrate how to create normal Q-Q plots for conditional
residuals and predicted random effects. Specifically, in Panel R18.19a, we show the
code used to extract the raw class-level residuals (Sect. 13.6.2) and to construct the
normal Q-Q plot for them (Sect. 15.4). Note that we do not show the plot itself, as
it corresponds to the one shown in Fig. 18.6a. The only difference is that the latter
shows the Pearson residuals (Sect. 7.5.1).
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R18.17 SII Project: Model M18.6 fitted using the function lmer(). Three forms of
syntax for nested random effects presented in Table 15.2 are illustrated

> library(lme4.0)

> fm18.6mer <-

+ lmer(mathgain ~ ses + minority + poly(mathkind, 3) + ses:minority +

+ (1|schoolid) + (1|schoolid:classid), # Syntax #1 (general)

+ data = SIIdata, REML = FALSE)

> summ <- summary(fm18.6mer)

> print(summ, corr = FALSE)

Linear mixed model fit by maximum likelihood

Formula: mathgain ~ ses + minority + poly(mathkind, 3) + ...

Data: SIIdata

AIC BIC logLik deviance REMLdev

11348 11399 -5664 11328 11291

Random effects:

Groups Name Variance Std.Dev.

schoolid:classid (Intercept) 86.0 9.27

schoolid (Intercept) 66.8 8.17

Residual 690.9 26.28

Number of obs: 1190, groups: schoolid:classid, 312; schoolid, 107

Fixed effects:

Estimate Std. Error t value

(Intercept) 61.35 2.07 29.65

ses 8.84 1.94 4.55

minorityMnrt=Yes -6.86 2.28 -3.01

poly(mathkind, 3)1 -660.46 30.99 -21.31

poly(mathkind, 3)2 124.46 28.24 4.41

poly(mathkind, 3)3 -178.34 27.97 -6.37

ses:minorityMnrt=Yes -5.82 2.44 -2.39

> update(fm18.6mer,

+ mathgain ~ ses + minority + poly(mathkind, 3) + ses:minority +

+ (1|schoolid) + (1|classid)) # Syntax #2

. . . [snip]
> update(fm18.6mer,

+ mathgain ~ ses + minority + poly(mathkind, 3) + ses:minority +

+ (1|schoolid/classid)) # Syntax #3

. . . [snip]

Panel R18.19b presents the code used to extract the predicted random effects
(Sect. 13.6.1) and to construct their normal Q-Q plots for schools and classes. First,
we use the function ranef() (see Table 15.3) to extract the predictors (EBLUPs)
and save the result in the object rnf6qn. Application of the function plot() to
the object results in a display of two normal Q-Q plots, one for the school-specific
predictors and one for class-specific predictors. To allow processing the plots, we
store the result in the object rnf6qn. The object is a list with two components named
schoolid and classid which contain the Q-Q plots for the respective factors.
We then select each of the components in turn and, with the help of the function
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R18.18 SII Project: Extracting information about the estimated fixed- and random-
effects structure of model M18.6 from the mer-class model-fit object. Object
fm18.6mer was created in Panel R18.17

> anova(fm18.6mer) # Approximate F-test statistics

Analysis of Variance Table

Df Sum Sq Mean Sq F value

ses 1 481 481 0.70

minority 1 8 8 0.01

poly(mathkind, 3) 3 368141 122714 177.62

ses:minority 1 3936 3936 5.70

> logLik(fm18.6mer) # ML value

'log Lik.' -5663.9 (df=10)

> unlist(VarCorr(fm18.6mer)) # ̂d1 and ̂d2

schoolid:classid schoolid

85.981 66.768

> sigma(fm18.6mer) # ̂s
[1] 26.285

R18.19 SII Project: Plots of the raw class-level conditional residuals and predicted
random effects for model M18.6. The model-fit object fm18.6mer was created in
Panel R18.17
(a) Normal Q-Q plot of the raw class-level residuals

> rsd6 <- resid(fm18.6mer)

> qqnorm(rsd6)

(b) Normal Q-Q plot of predicted random effects

> rnf6mer <- ranef(fm18.6mer) # Random effects

> rnf6qn <- plot(rnf6mer, grid = TRUE)# Q-Q plot for random effects

> update(rnf6qn[["schoolid:classid"]], # For classid (see Fig. 18.9a)

+ ylab = c("Random effects for classes"))

> update(rnf6qn[["schoolid"]], # For schoolid (see Fig. 18.9b)

+ ylab = c("Random effects for schools"))

update(), we modify the label of the vertical axis. The resulting plots correspond
to those shown in Fig. 18.9, but with switched axes and without an indication of the
outlying values of the predicted random effects.
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Table 18.3 SII Project: Summary of linear mixed-effects models defined and fitted in Chap. 18

Modela Section Syntax R-object Mean Comment

M18.1b 18.2 R18.1 fm18.1 (18.1) West et al. (2007)
M18.2 18.3 R18.7 fm18.2 (18.4) sex:housepov added to M18.1
M18.3 18.4 R18.8 fm18.3 (18.5) sex, housepov removed
M18.4 18.5 R18.9 fm18.4 (18.6) poly(mathkind, 3)

M18.5 18.6 R18.11 fm18.5 (18.7) bs(mathkind, df = 4)

M18.6 18.7 R18.12 fm18.6 (18.8) minority:ses added to M18.4
18.8 R18.17 fm18.6mer

aAll models were fitted using the ML estimation
bThe mean structure for model M18.1 is defined by the following formula:
mathgain ~ ses + minority + mathkind + sex + housepov

18.9 Chapter Summary

In this chapter, we analyzed the SII data by applying LMMs. The dataset is an
example of data with a three-level hierarchy, with pupils grouped in classes, and
classes grouped in schools. To deal with the hierarchy, we used models which
included random intercepts for schools and classes. Marginally, the models allowed
for correlation between the improvements in math scores for pupils from the same
school and/or from the same class. In particular, the models implied that the within-
class correlation coefficient was larger than the within-school one (Sect. 18.2).

Table 18.3 provides a summary information about all models considered in this
chapter. We focused on the modeling of the mean structure. As a starting point,
we assumed, in Sect. 18.2, the model proposed by West et al. (2007) (Model 4.4,
Chap. 4, p. 159). In Sects. 18.3 and 18.4, we investigated the need for the inclusion
of the school-level variables HOUSEPOV and SEX and their interaction in the mean
structure. It turned out that the corresponding terms could be left out from the model.
In Sects. 18.5 and 18.6, we modified the functional form of the effect of the variable
MATHKIND. In particular, in Sect. 18.5, we considered the use of a third-degree
polynomial, while in Sect. 18.6, we used a spline function. We found that the latter
provided only a minimally better fit to the data. Finally, in Sect. 18.7, we considered
an inclusion of an interaction between MINORITY and SES in the mean structure
of the model. It turned out that the effect of interaction was statistically significant.

To fit the models to the data, we primarily used the function lme() from the
package nlme. This function is a natural choice for fitting LMMs with nested
random effects. The presented sequence of models allowed us to illustrate several
additional features of the function lme(), like the specification of multilevel LMMs,
the use of spline functions for fixed effects (Sects. 18.6 and 18.7), and the use of
marginal residuals to assess linear relationship with respect to covariates.

All the models could also be fitted by using the function lmer() from the lme4.0
package. For comparison purposes, in Sect. 18.8, we briefly showed how to fit the
final model by applying the function. An important point in this respect was the
proper specification of the nesting of the random effects in the syntax.
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The results of fitting of all models were summarized in Tables 18.1 and 18.2.
The final model, model M18.6, suggests that, on average, the gain in math score
is smaller for minority pupils. The mean gain increases linearly with pupil’s
socioeconomic status, but the increase is much slower for minority pupils. On the
other hand, the mean gain decreases as a third-degree polynomial of pupil’s math
score in the spring of the kindergarten year. According to the estimated random
structure of model M18.6, improvements in math scores for pupils from the same
school are correlated with the correlation coefficient of 0.08. For pupils from the
same class, the correlation coefficient is equal to 0.18.



Chapter 19
FCAT Study: Modeling Attainment-Target
Scores

19.1 Introduction

The FCAT study was described in Sect. 2.5. An exploratory analysis of the data from
the study was presented in Sect. 3.5. In this chapter, we use LMMs with crossed
random effects to analyze the data. In particular, we consider the models proposed
by Tibaldi et al. (2007).

First, we analyze the total target scores. In Sect. 19.2, we consider, for illustration
purposes, a simple two-way ANOVA model with crossed fixed effects. The fixed-
effects estimates for this model are used as a reference for the random-effects
estimates obtained for LMMs. Next, we consider an LMM with crossed random
effects for targets and pupils and with independent, homoscedastic residual errors.
In Sect. 19.3, we fit the model using the function lmer() from the package lme4.0,
while in Sect. 19.4 we fit it using the function lme() from the package nlme. In this
way, we can illustrate the merits of both functions when applying them for fitting
LMMs with crossed random effects.

We then conduct an alternative analysis of the FCAT data by considering the
average target score instead of a total score as the dependent variable. In Sect. 19.5,
we analyze the score using an LMM with crossed random effects and independent,
heteroscedastic residual errors. To fit the model, we use the function lme().

We conclude this chapter with Sect. 19.6, where we briefly summarize our
findings.

19.2 A Fixed-Effects Linear Model Fitted Using
the Function lm()

We begin the analysis of the data with a simple two-way ANOVA model applied
to the total target scores. In particular, we consider effects of pupils and targets as
fixed.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__19,
© Springer Science+Business Media New York 2013
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19.2.1 Model Specification

We consider model M19.1, defined as follows:

SCOREst = m+b1,s+b2,t + est, (19.1)

where t indexes targets (t = 1,2, . . . ,n) and s indexes pupils (s = 1,2, . . . ,m), with
n = 9 and m = 539. In (19.1), m is the overall mean of the total attainment-target
score, b1,s is the coefficient corresponding to the fixed effect for the s-th pupil, and
b1,t is the coefficient corresponding to the fixed effect for the t-th target. The residual
random errors est are assumed to be independent and normally distributed with mean
zero and variance s 2. Thus, (19.1) can be seen as an example of an equation for an
LM with homogeneous variance, specified at the level of the observation unit, as
given by (4.1).

We should stress that model M19.1 is considered only for reference purposes
and should not be treated as a reasonable model for the FCAT data. In particular,
it involves a large number of coefficients for the fixed effects, because it includes a
separate effect for each of the pupils and targets. Moreover, it ignores the difference
in the scales for the different scores and the correlation between responses for
different attainment targets obtained for the same pupil.

19.2.2 R Syntax and Results

In Panel R19.1, we show the R syntax to fit model M19.1. First, we load the
fcat data frame from the package nlmeU. We then change the default values of
the contrasts option to contr.sum and contr.poly for unordered and ordered
factors, respectively (Sect. 5.3.2). The use of the contr.sum contrasts implies that
the estimated fixed effects can be interpreted as fixed deviations from the overall
mean.

Subsequently, we fit model M19.1 to the data using the function lm(), which is
included in the set of basic functions in R (Sect. 5.4). The model formula scorec

~id + target implies that the levels of factors id and target define the fixed
effects in the mean structure. Note that, by default, an intercept is included in the
formula (Sect. 5.2.1). Moreover, by default, the OLS estimation is used (Sect. 4.4.1).

The results of fitting of the model are stored in the object fm19.1. An abbreviated
display of the results, presented in Panel R19.1, shows the estimated coefficients for
the fixed effects defined by the id and target factors. The estimated mean value
of responses over all pupils and attainment targets is equal to 3.9033. For the pupil
with, e.g., id=1, the mean response over all targets is larger by 0.9856 from the
mean value. On the other hand, for the fifth attainment target (structuring of a comic-
strip text, see Table 2.1), the mean response for all pupils was larger by 2.0707 than
the overall mean value.
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R19.1 FCAT Study: Model M19.1 with crossed fixed-effects of targets and pupils
fitted using the function lm()

> data(fcat, package = "nlmeU")

> opts <- options() # Global options saved

> options(contrasts = # Default contrasts changed

+ c("contr.sum", "contr.poly"))

> options("contrasts") # Changes verified

$contrasts

[1] "contr.sum" "contr.poly"

> (fm19.1 <- # M19.1: (19.1)

+ lm(scorec ~ id + target, data = fcat))

Call:

lm(formula = scorec ~ id + target, data = fcat)

Coefficients:

(Intercept) id1 id2 id3 id4

3.9033 0.9856 0.3189 0.9856 0.9856

. . . [snip]
id535 id536 id537 id538 target1

-2.6811 0.0967 -1.5700 -1.1255 -1.3300

target2 target3 target4 target5 target6

0.1932 1.3082 -1.1649 2.0707 -0.2966

target7 target8

1.1282 -1.5026

> options(opts) # Global options restored

We will use the estimated fixed-effects coefficients for reference purposes. Thus,
in Panel R19.2, we extract the estimates from the model-fit object fm19.1 with the
help of the function coef() (see Table 5.5) and store them in the vector fxd. Note
that the order of elements of the vector corresponds to the printout of the estimates
presented in Panel R19.1. To extract the estimated coefficients corresponding to the
factor id, we create a logical vector idx. The vector identifies those elements of
fxd which names begin with the string "id". To identify the elements, we apply the
function substr() to the character vector which contains the names of the rows of
fxd. In particular, the function extracts a substring of length 2, starting at the first
character of each name. We then compare the extracted substrings with the character
string "id".

By using the vector idx, we select the elements which correspond to the
estimated coefficients for the levels of the factor id from the vector fxd. We store
the elements in the vector fxi and print out their names to check the correctness
of the selection. Finally, we add to the vector the negative of the sum of all the
elements. Note that, according to the definition of the contr.sum contrast, this is
the estimated value of the coefficient for the last level of the factor id. Finally, we
store the updated vector in the object fxd.id.
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R19.2 FCAT Study: Extracting the estimated fixed-effects coefficients for
model M19.1. The model-fit object fm19.1 was created in Panel R19.1
(a) Extracting the estimates for the factor id

> fxd <- coef(fm19.1)

> idx <- substr(names(fxd), 1, 2) == "id" # Logical vector

> names(fxi <- fxd[idx])

> (fxd.id <- c(fxi, "id539" = -sum(fxi))) # ̂b2,s
id1 id2 id3 id4 id5 id6

0.985570 0.318903 0.985570 0.985570 0.874459 0.541126

. . . [snip]
id535 id536 id537 id538 id539

-2.681097 0.096681 -1.569986 -1.125541 -0.681097

(b) Extracting the estimates for the factor target

> idx <- substr(names(fxd), 1, 6) == "target"

> names(fxi <- fxd[idx])

[1] "target1" "target2" "target3" "target4" "target5" "target6"

[7] "target7" "target8"

> (fxd.trgt <- c(fxi, "target9" = -sum(fxi))) # ̂b1,t

target1 target2 target3 target4 target5 target6 target7

-1.33004 0.19316 1.30818 -1.16491 2.07071 -0.29664 1.12822

target8 target9

-1.50258 -0.40610

In Panel R19.2b, we extract the estimates of the coefficients corresponding to
the levels of the factor target. The R code is very similar to the one used in
Panel R19.2a. The estimates are stored in the vector fxd.trgt, which will be used,
together with the vector fxd.id, for comparison purposes with the results of the
analysis conducted in the next section.

19.3 A Linear Mixed-Effects Model with Crossed Random
Effects Fitted Using the Function lmer()

Pupils participating in the FCAT study can be considered a random representation
of all pupils in Flanders. Similarly, the evaluated attainment targets might be con-
sidered a random sample of many possible targets that could be measured. Hence,
we could consider the effects of pupils and targets as random (see, e.g., Van den
Noortgate et al. (2003) or Tibaldi et al. (2007)). Consequently, we could analyze
the data using an LMM. Note that each pupil provided a response for all targets.
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Thus, we can consider an LMM in which the random effects of pupils and attainment
targets are crossed (Sect. 15.2). In this section, we fit such a model to the FCAT data
using the function lmer() from the package lme4.0.

19.3.1 Model Specification

Following Tibaldi et al. (2007), we consider model M19.2, defined as follows:

SCOREst = m+ b1,s+ b2,t + est, (19.2)

where b1,s ∼ N (0,dS) is the random effect corresponding to the pupil s (s =
1,2, . . . ,n), b2,t ∼ N (0,dT) is the random effect corresponding to the target t

(t = 1,2, . . . ,m) and independent of b1,s, and est ∼ N (0,s 2) is the residual
(measurement) error independent of both b1,s and b2,t. Note that (19.2) has the form
corresponding to (15.4).

19.3.1.1 Marginal Interpretation

Model M19.2 implies that the marginal expected value of SCOREts is equal to m,
defined in (19.2). The marginal variances and covariances are as follows:

Var(SCOREst) = dT + dS +s 2,

Cov(SCOREst,SCOREs′t) = dT , (19.3)

Cov(SCOREst,SCOREst′) = dS, (19.4)

Cov(SCOREst,SCOREs′t′) = 0,

where t �= t′ and s �= s′. Equation (19.3) implies that responses for different targets for
the same pupil are correlated with the correlation coefficient equal to dT/(dT +dS+

s 2). On the other hand, (19.4) implies that responses of different pupils for the same
target are also correlated with the correlation coefficient equal to dS/(dT +dS+s 2).

19.3.2 R Syntax and Results

In Panel R19.3, we fit model M19.2 to the FCAT data using the function lmer()

from the package lmer4 (Chap. 15). The model formula used in the function call
specifies two crossed random effects corresponding to the levels of factors target
and id (Sect. 15.3.1). As was mentioned in Sect. 15.1, the function lmer() uses
the sparse-matrix representations, which facilitates the large-matrix manipulations
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R19.3 FCAT Study: Model M19.2 with crossed random effects of targets and pupils
fitted using the function lmer()

> library(lme4.0)

> system.time(

+ fm19.2mer <-

+ lmer(scorec ~ (1|target) + (1|id),

+ data = fcat))

user system elapsed

0.13 0.00 0.13

> fm19.2mer # M19.2: (19.2)

Linear mixed model fit by REML

Formula: scorec ~ (1 | target) + (1 | id)

Data: fcat

AIC BIC logLik deviance REMLdev

16204 16230 -8098 16196 16196

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 0.686 0.828

target (Intercept) 1.616 1.271

Residual 1.347 1.161

Number of obs: 4851, groups: id, 539; target, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.903 0.425 9.18

necessary when fitting LMMs. For purposes of comparison with the function lme(),
in Panel R19.3, we execute the lmer()-function call while applying the function
system.time(). The latter computes the execution time of the former. From the
output, it can be seen that the execution took a fraction of a second.

The estimated values of dS, dT , and s 2, shown in Panel R19.3, are equal to,
respectively, 0.686, 1.616, and 1.347. The estimate of the overall mean value is
equal to 3.903, as for the fixed-effects model M19.1 (see Panel R19.1). This is due
to the balanced nature of the dataset.

Panel R19.4 presents the R code to extract basic information from the model-
fit object fm19.2mer. First, we create the object summ.merFit, which is of class
summary.mer and represents a summary of the mer-class model-fit object. Informa-
tion about the slots, available in a summary.mer-class object, can be obtained, after
loading the package lme4.0, by issuing the command help("mer-class") (see
also Sect. 15.4).

By applying the isREML() extractor function (see Table 15.3) to the model-
fit object, we obtain the information whether REML estimation (Sect. 13.5.2) was
used. Note that the call to the lmer() function, applied in Panel R19.3, did not
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R19.4 FCAT Study: Extracting information about the fitted form of model M19.2.
The model-fit object fm19.2mer was created in Panel R19.3

> summ.merFit <- summary(fm19.2mer) # Summary of the model-fit

> isREML(fm19.2mer) # REML used?

[1] TRUE

> (cl <- getCall(summ.merFit)) # Function call

lmer(formula = scorec ~ (1 | target) + (1 | id), data = fcat)

> cl$data # The name of data frame

fcat

> formula(fm19.2mer) # Formula

scorec ~ (1 | target) + (1 | id)

> fixef(fm19.2mer) # ̂b
(Intercept)

3.9033

> coef(summ.merFit) # ̂b, se(̂b), t-test

Estimate Std. Error t value

(Intercept) 3.9033 0.42536 9.1764

> (VCorr <- unlist(VarCorr(fm19.2mer))) # ̂dS,
̂dT

id target

0.68637 1.61578

> sigma(fm19.2mer) # ̂s
[1] 1.1608

change the default value of the REML argument, which is REML=TRUE (Sect. 15.3).
Hence, the REML estimation was used, as confirmed in Panel R19.4.

The call to the function which led to the creation of the mer-class model-fit object
is obtained by applying the getCall() extractor function (see Table 15.3) and
stored in the object cl. Obviously, the result shown in Panel R19.4 is the same as the
call used in Panel R19.3 to create the model-fit object fm19.2mer. By referring to
the data component of the cl object (Table 15.3), we obtain the value of the data
argument used in the call, i.e., the name of the data frame used to fit the model.
Similarly, by referring to the formula component, we could extract the value of the
formula argument. Alternatively, as shown in Panel R19.4, we can extract the model
formula by applying the generic function formula() (Table 15.3) directly to the
model-fit object.

With the help of the function fixef() (Table 15.3), we extract the esti-
mates of the fixed-effects coefficients from the model-fit object fm19.2mer. For
model M19.2, it is only the value of the overall intercept. To obtain the matrix of
the estimates together with their SEs and values of the t-test statistics, we use the
coef(summ.merFit) command.



472 19 FCAT Study: Modeling Attainment-Target Scores

R19.5 FCAT Study: Normal Q-Q plots of the predicted random effects (EBLUPs)
and the corresponding random coefficients for model M19.2. The model-fit object
fm19.2mer was created in Panel R19.3

> rnf <- ranef(fm19.2mer) # ranef.mer-class object

> names(rnf)

[1] "id" "target"

> length(plx <- plot(rnf)) # Two Q-Q plots saved.

[1] 2

> plx[1] # Fig. 19.1a

$id

> plx[2] # Fig. 19.1b

$target

> plot(coef(fm19.2mer)) # Fig. 19.2

Information about the estimated variance-covariance matrices of the random ef-
fects is extracted from the model-fit object with the help of the function VarCorr()
(Table 15.3). Note that the object, resulting from the application of the function, is
a list with components named after the factors used in the model formula to define
the random-effects structure. Thus, in the case of the model-fit object fm19.2mer,
it is a list with two components named id and target. To compactly display
the information about the variance-covariance matrices of the random effects
corresponding to the levels of the two factors, we unlist() the object resulting
from the application of the VarCorr() function. We then obtain the estimates of
the variances of the random intercepts for id and target. Note that the two random
intercepts are uncorrelated, as implied by the model formula used in the call to the
function lmer() in Panel R19.3 (Sect. 15.3.1).

Finally, the estimate of the scale parameter, s , is obtained by using the
sigma() extractor function (Table 15.3). Note that model M19.2 is a conditional-
independence LMM with homoscedastic residual errors; hence, s can be also
interpreted as the residual SD.

According to the results presented in Panel R19.4, the estimated values of the
random-effects variances dS and dT are equal to 0.6864 and 1.6158, respectively.
The estimate of the residual variance s 2 is equal to 1.16082 = 1.3475. Thus,
the total variability of the total target scores equals 0.6864+ 1.6158+ 1.3475 =
3.6497. The between-pupil and between-target variability constitutes, respectively,
18.8% and 44.3% of the total variability. Note that these percentages give also,
in accordance with (19.3) and (19.4), the estimated values of the correlation
coefficients between responses for different targets for the same pupil and between
responses of different pupils for the same target, respectively.

In Panel R19.5, we present the R code to extract the predicted random effects
(EBLUPs; see Sect. 13.6.1) for model M19.2. To extract the estimates, we apply
the function ranef() (Table 15.3) to the model-fit object fm19.2mer and store
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a b

Fig. 19.1 FCAT Study: Normal Q-Q plots of the predicted random effects (intercepts) for (a) id
(b) target in model M19.2

the result in the object rnf. The object is a list with two named components, id
and target, which are data frames that contain the predicted random effects. The
default plot for the object produces two graphs with normal Q-Q plots of the effects,
one for each factor. This is because model M19.2 includes a single random effect
for each of the factors (Sect. 15.4). In Panel R19.5, we store the result of applying
of the plot() function to the object fm19.2mer in the object plx. The latter is a
list with two components named id and target. By displaying the components,
we obtain separate normal Q-Q plots for the estimated random intercepts associated
with two factors. The plots are presented in Fig. 19.1.

Figure 19.2 presents two related Q-Q plots. They are constructed by plotting the
predicted random coefficients for model M19.2, obtained by applying the coef()

function to the object fm19.2mer. The coefficients result from summing the fixed
effects and the “coupled" random effects (see Sects. 14.6 and 15.4). Note that,
because model M19.2 includes intercept as the only fixed effect, the Q-Q plots
shown in Fig. 19.2 have essentially the same shape as the ones presented in Fig. 19.1.

As was mentioned in Sect. 13.6.1, Q-Q plots and histograms of predicted random
effects are of limited value when checking the normality of the effects is of interest.
Thus, the Q-Q plots shown in Figs. 19.1 and 19.2 should be treated with caution.
Their shapes do indicate a possible deviation from normality, however. This might
be due to, e.g., the fact that the responses for the attainment targets were, strictly
speaking, not continuous.

In Panel R19.6, we present the R code to create dotplots of the predicted
random effects for model M19.2. Toward this end, we use the function dotplot()

(Sect. 15.4). To obtain separate plots for the factors id and target, we first store
the result of applying the function to the object rnf, which contains the EBLUPs, in
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Fig. 19.2 FCAT Study: Normal Q-Q plots of the predicted random coefficients for model M19.2

R19.6 FCAT Study: Dotplots of the predicted random effects (EBLUPs) for
model M19.2. Objects fm19.2mer and rnfwere created in Panels R19.3 and R19.5,
respectively
(a) Without confidence intervals

> dpx <- dotplot(rnf)

> # dpx[1] # Dotplot for id (not shown)

> dpx[2] # Fig. 19.3a

$target

(b) With confidence intervals

> rnf.pVar <- ranef(fm19.2mer, postVar = TRUE) # ranef.mer-class object

> dpx.pVar <- dotplot(rnf.pVar)

> # dpx.pVar[1] # Dotplot for id (not shown)

> dpx.pVar[2] # Fig. 19.3b

$target

the object dpx. The latter is a list with two components named id and target. By
displaying the components, we can obtain separate dotplots for the random effects
corresponding to the two factors. In Fig. 19.3a, we show the plot for target. Note
that the levels of the factor, shown on the y-axis, are ordered according to increasing
values of the predicted random intercepts. The default plot for id is illegible and
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a b

Fig. 19.3 FCAT Study: Dotplots of the predicted random effects for the factor target for
model M19.2. Effects (a) without confidence intervals (b) with confidence intervals

would need to be preprocessed before displaying. To save space, we do not present
the necessary code, nor the plot itself.

The dotplot, shown in Fig. 19.3a, can be enhanced by adding CIs to the point
predictors of the random effects. In Panel R19.6b, we present the necessary R code.
In particular, we extract the random effects from the fm19.2mer model-fit object
using the function ranef() with the argument postVar=TRUE. In this way, the
resulting object rnf.pVar is extended by incorporating the conditional variance-
covariance matrices, also called the “posterior variances”, of the random effects.
Note that the default value of the argument is FALSE. More information about
the arguments of the function ranef() can be obtained by issuing the command
?ranef.

We then apply the function dotplot() to the object rnf.pVar. To obtain
separate plots for the factors id and target, we first store the result of the
application of the function in the object dpx.pVar, which is a list with two
components bearing the names of the factors. By displaying the components, we
obtain dotplots with 95% CIs for the random effects corresponding to the two
factors. In Fig. 19.3b, we show the plot for target. The plot can be seen as an
example of a “caterpillar plot.” It can be used to, e.g., detect observations with
extreme values of the predicted random effects. In our case, a clustering of targets,
reflecting dependence on the number of items, can be clearly observed. For instance,
target 5, which includes nine items, has got the largest random effect, and it is
followed by targets 3 and 7, each based on eight items.

In Panel R19.7, we present the R code to reproduce the results, which illustrate
the “shrinkage” phenomenon (see, e.g., (13.51) and Sect. 7.5 in Verbeke and
Molenberghs (2000)) for the estimated random effects for model M19.2.
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R19.7 FCAT Study: Various ways of illustrating “shrinkage” of the predicted
random effects (EBLUPs) for model M19.2. Objects fxd.id, VCorr, and rnf were
created in Panels R19.2, R19.4, and R19.5, respectively

(a) var(̂bi)≤ ̂Var(̂bi) (see (13.51))

> (eVCorr <- sapply(rnf, var)) # var(̂b1,s), var(̂b2,t),

id target

0.56346 1.61458

> VCorr # ̂Var(b1,s) ≡ ̂dS, ̂Var(b2,t) ≡ ̂dT

id target

0.68637 1.61578

> all(eVCorr < VCorr)

[1] TRUE

(b) abs(̂b1,s)−abs(b1,s)≥ 0 for intercepts associated with the factor id

> rnf.id <- rnf$id # Data frame with ̂b1,s

> arnf.id <- abs(rnf.id) # abs(̂b1,s)

> afxd.id <- abs(fxd.id) # abs(̂b1,s)
> range(afxd.id - arnf.id)

[1] 0.002584 0.480100

(c) Same as in the part (b) above, for target

> rnf.trgt <- rnf$target

> arnf.trgt <- abs(rnf.trgt)

> afxd.trgt <- abs(fxd.trgt)

> range(afxd.trgt - arnf.trgt)

[1] 0.00021946 0.00235273

(d) Graphical illustration of the relation in part (b) above for the factor id

> names(dt <- data.frame(afxd.id, arnf.id))

[1] "afxd.id" "X.Intercept."

> names(dt)[2] <- "arnf.id"

> myPanel <- function(x, y, ... ){

+ panel.grid(h = -1, v = -1)

+ panel.lines(c(0, 3), c(0, 3), lty = 2)

+ panel.xyplot(x, y, ... )

+ }

> xyplot(arnf.id ~ afxd.id, # Fig. 19.4a

+ data = dt, panel = myPanel)
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More specifically, in Panel R19.7a, we compute the sample variances of the
predicted random effects for model M19.2. Toward this end, with the help of
the function sapply(), we apply the function var(), which calculates sample
variance, to each element of the list rnf. Note that, as was mentioned in the
description of the code in Panel R19.5, rnf is a list with two named components
which are data frames that contain the EBLUPs for factors id and target. We store
the sample variances for the two factors in the vector eVCorr. We then compare the
variance to the estimated variances dS and dT of the (assumed) normal distribution
of the random effects, which were computed earlier and stored in the vector VCorr.
The comparison shows that the sample variances of the random-effects predictors
are smaller than the estimated variances of the random effects. This illustrates the
shrinkage, as defined by, e.g., (13.51) and (7.7) in Verbeke and Molenberghs (2000).

In Panel R19.7b, we store the data frame, which is contained in the component id
of the object rnf and which contains EBLUPs of the random effects for the factor
id, in the object rnf.id. We then compute the absolute values of the EBLUPs and
store them in the object arnf.id. Similarly, we compute the absolute values of
the estimated fixed-effects coefficients for the factor id for model M19.1. We then
calculate the range of the differences between the absolute values of the two sets of
estimates. It can be seen that the range includes only positive real values. Thus, the
absolute values of the predicted random effects for the factor id in LMM M19.2 are
smaller than the absolute values of the estimates of the corresponding fixed-effects
coefficients in LM M19.1. Hence, the former can be seen as being “shrunk” relative
to the latter. Panel R19.7c presents similar code and results for the factor target.

Finally, the R code, shown in Panel R19.7d, is used to construct a graphical
illustration of the results presented in Panel R19.7b. First, we create the data frame
dt by merging the data frames afxd.id and arnf.id. The resulting data frame
contains two variables, afxd.id and X.intercept, corresponding to the fixed-
effects estimates and random-effects predictors for the factor id for models M19.1
and M19.2, respectively. For the sake of consistency, we change the name of the
second variable to arnf.id with the help of the names() function. Then, we
define the function myPanel(), which adds a grid aligned with the axis labels
(panel.grid(h=-1,v=-1)) and a dashed line (lty=2) connecting the points with
the coordinates (0,0) and (3,3). We use the function in the panel argument of
the xyplot() function, which produces a scatterplot of variables afxd.id and
arnf.id from the data frame dt. The plot is shown in Fig. 19.4a. It suggests that
the values of the arnf.id variable, i.e., the absolute values of the random-effects
EBLUPs for the factor id for model M19.2, are smaller than the absolute values for
the corresponding fixed-effects estimates for model M19.1. Again, this can be seen
as the result of “shrinkage.”

Figure 19.4b shows a scatterplot similar to the one shown in Fig. 19.4a, but for
the factor target. The plot was constructed using an R code corresponding to the
one presented in Panel R19.7d. Thus, we do not show the code. For target, there
is only a minimal amount of “shrinkage.”
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a b

Fig. 19.4 FCAT Study: Illustration of “shrinkage”. Plots on the absolute scale of the predicted
random effects for model M19.2 versus the corresponding fixed-effects estimates for model M19.1
for factors (a) id and (b) target

In the next section, we will fit model M19.2 to the FCAT data using the function
lme() from the package nlme (see Chap. 14). As was mentioned in Sect. 15.1,
definitions of several functions from the packages nlme and lme4.0 differ. Hence,
before attempting to use the former package, we should detach the latter to avoid
masking functions’ and names’ conflicts. We may also want to detach the package
Matrix, which is required by lme4.0, but not by nlme. In addition, we remove the
objects rnf and plx, as we would like to reuse them in R sessions to follow. To
these aims, the following R commands should be used:

> detach(package:lme4.0)

> detach(package:Matrix)

> rm(rnf, plx)

19.4 A Linear Mixed-Effects Model with Crossed Random
Effects Fitted Using the Function lme()

In this section, we fit model M19.2 to the FCAT data using the function lme() from
the package nlme (see Chap. 14).

In Panel R19.8, we present the suitable syntax. Obviously, we first have to attach
the package nlme.

To fit model M19.2, we first need to add to the data two auxiliary variables,
one1 and one2, with all values equal to 1. We use the function within() to add
the variables to the data frame fcat, and we store the result in a new data frame,
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R19.8 FCAT Study: Model M19.2 fitted using the function lme()

> library(nlme)

> fcat1 <- within(fcat, one1 <- one2 <- 1L)

> system.time(

+ fm19.2 <-

+ lme(scorec ~ 1,

+ random = list(one1 = pdIdent(~target - 1),

+ one2 = pdIdent(~id - 1)),

+ data = fcat1))

user system elapsed

45.47 0.53 46.04

> fm19.2 # M19.2: (19.2)

Linear mixed-effects model fit by REML

Data: fcat1

Log-restricted-likelihood: -8097.8

Fixed: scorec ~ 1

(Intercept)

3.9033

Random effects:

Formula: ~target - 1 | one1

Structure: Multiple of an Identity

targetT1(4) targetT2(6) targetT3(8) targetT4(5)

StdDev: 1.2711 1.2711 1.2711 1.2711

targetT5(9) targetT6(6) targetT7(8) targetT8(6)

StdDev: 1.2711 1.2711 1.2711 1.2711

targetT9(5)

StdDev: 1.2711

Formula: ~id - 1 | one2 %in% one1

Structure: Multiple of an Identity

id1 id2 id3 id4 id5 id6 id7

StdDev: 0.82847 0.82847 0.82847 0.82847 0.82847 0.82847 0.82847

. . . [snip]
id533 id534 id535 id536 id537 id538 id539

StdDev: 0.82847 0.82847 0.82847 0.82847 0.82847 0.82847 0.82847

Residual

StdDev: 1.1608

Number of Observations: 4851

Number of Groups:

one1 one2 %in% one1

1 1
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fcat1. We then apply the function lme() with the fixed argument (Sect. 14.5)
specified using a formula with scorec as the dependent variable and an intercept
as the only fixed effect. The random-effects structure is defined using the random

argument in the form of a named list (Table 14.1). In the list, the variables one1
and one2 are considered to be the grouping factors. Note that the syntax implies
that the levels of the factor one2 are assumed to be nested within the levels of
one1. However, as both factors have got only one level, the nesting is irrelevant,
because all observations are treated, in fact, as coming from a single group. As a
result, the random-effects structures, defined for both factors by the pdIdent()

constructor functions (Sect. 14.2.1), are crossed. In particular, the formulae which
are used in the constructors specify that random effects are defined by the levels of
factors id and target. In both cases, the variance-covariance matrix of the random
effects is defined by a positive-definite matrix of class pdIdent (Sect. 14.2.1), i.e.,
by a multiple of an identity matrix. Thus, the random effects are independent and
normally distributed with a constant variance.

Note that treating all the observations as coming from a single group has an
important implication for the size of the design matrices which are used in the
numerical calculations. The lme()-function syntax, used in Panel R19.8, defines a
model which formally corresponds to an LMM with nested random effects, specified
by (15.7), with

y≡ (SCORE11, . . . ,SCORE19,SCORE21, . . . ,SCORE539,9)
′,

the design matrix X ≡ 14851, the random-effects matrices Z1 ≡ I539⊗ 19 and Z12 =
1539⊗I9, and the random-effects vectors b1≡ (b1,1,b1,2, . . . ,b1,539)

′ (for pupils) and
b12 ≡ (b12,1,b12,2, . . . ,b12,9)

′ (for targets). It follows that the matrices Z1 and Z12 ≡
Z2 are of dimensions 4851× 539 and 4851× 9, respectively. From the structure of
the Z-matrices, it can be seen that, in fact, the random effects are crossed and that
the specified model is equivalent to the LMM defined by (15.8).

As was mentioned in Sect. 15.1, the function lme() does not use the sparse-
matrix representations, which are employed in the function lmer(). Hence, lme()
requires longer computation time than lmer(). To show this, in Panel R19.8, we
execute the lme()-function call while applying the function system.time(). From
the output, it can be seen that the execution took more than 45 s. This is substantially
longer than the execution time obtained for the function lmer(), which was equal
to a fraction of a second (see Panel R19.3).

Note that, in the lme()-function call used in Panel R19.8, the argument method
was left unspecified. Thus, the REML estimation was used (Sects. 13.5.2 and 14.5).

The results, shown in Panel R19.8, correspond to those displayed in Panel R19.3.
In Panel R19.9, we show the R syntax which allows us to extract some basic

information from the model-fit object fm19.2
In particular, in Panel R19.9a, we extract the name of the data frame used for

fitting of the model. Toward this end, we refer to the data component of the call

component of the model-fit object (Table 14.6). We confirm that the model was fitted
to the extended data frame fcat1, created in Panel R19.8.
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R19.9 FCAT Study: Extracting information about the fitted form of model M19.2.
The model-fit object fm19.2 was created in Panel R19.8
(a) Basic information

> fm19.2$call$data # Data name

fcat1

> logLik(fm19.2) # REML value

'log Lik.' -8097.8 (df=4)

> fixef(fm19.2) # ̂b
(Intercept)

3.9033

> fm19.2$dims$N # Number of observations

[1] 4851

(b) Estimated variances of the random effects (intercepts)

> getVarCov(fm19.2)

Error in getVarCov.lme(fm19.2) :

Not implemented for multiple levels of nesting

> VarCorr(fm19.2)

Variance StdDev

one1 = pdIdent(target - 1)

targetT1(4) 1.61575 1.27112

. . . [snip]
targetT9(5) 1.61575 1.27112

one2 = pdIdent(id - 1)

id1 0.68637 0.82847

. . . [snip]
id538 0.68637 0.82847

Residual 1.34745 1.16080

By applying the function logLik() (Table 14.5), we print out the value of the
log-restricted-likelihood for the fitted model. Note that in the lme()-function call,
shown in Panel R19.8, the default value of the method argument (Table 14.4) was
used. Thus, model M19.2 was fitted to the fcat1 data frame using the REML
estimation.

With the help of the function fixef() (Table 14.5), we extract the estimated
value of the intercept from the model-fit object fm19.2. By referring to the N

component of the dims component of the model-fit object, we confirm that the
model was fitted to the 4,851 observations from the data frame fcat1.

In Panel R19.9b, we extract information about the estimated variance-covariance
structure of the random effects. As can be seen from the printouts presented in
the panel, the default tool, which can be used for this purpose, i.e., the function
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R19.10 FCAT Study: Confidence intervals for the fixed-effects coefficients and the
variance-covariance parameters of model M19.2. The model-fit object fm19.2 was
created in Panel R19.8

> intervals(fm19.2)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 3.0691 3.9033 4.7376

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: one1

lower est. upper

sd(target - 1) 0.77274 1.2711 2.0909

Level: one2

lower est. upper

sd(id - 1) 0.77044 0.82847 0.89088

Within-group standard error:

lower est. upper

1.1366 1.1608 1.1855

getVarCov() (Table 14.5), fails to produce results. Thus, we use the alternative
solution, i.e., the function VarCorr(). The obtained results are exactly the same as
those shown in Panel R19.3.

Panel R19.10 presents 95% CIs (Sect. 13.7.3) for the fixed-effects coefficients
and the variance-covariance parameters. The intervals are obtained by applying the
function intervals() (Table 14.5) to the model-fit object fm19.2. Note that, for
a proper performance of the function, it is necessary to fit model M19.2 using the
two auxiliary variables one1 and one2, as was done in Panel R19.8.

Panel R19.11 presents the R code for extracting and plotting the predicted ran-
dom effects (Sect. 13.6.1) and residuals (Sect. 13.6.2). In particular, in Panel R19.11a,
we use the function ranef() (Table 14.5) to obtain the random-effects predictors
(EBLUPs) and store them in the object rnf. Note that the object is a list with two
components, named one1 and one2. The components are data frames with one row
which provide the predictors of the random effects for the factors target and id,
respectively (see the lme()-function call in Panel R19.8). Next, we attempt to use
the plot() function to obtain normal Q-Q plots of the estimates. Unfortunately,
the use of this method results in error. To overcome this issue, in Panel R19.11b,
we present an alternative method to construct the plots. Toward this end, we first
use the function lapply() to transpose the two components of the object rnf
and store them in the object rnft. Next, we use lapply() to apply the function
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R19.11 FCAT Study: Extracting and plotting predicted random effects and residuals
for model M19.2. The model-fit object fm19.2 was created in Panel R19.8
(a) Default plot() method does not work

> rnf <- ranef(fm19.2)

> plot(rnf)

Error in eval(expr, envir, enclos) : object '.pars' not found

(b) Alternative method for the normal Q-Q plots of the predicted random effects

> rnft <- lapply(rnf, t) # Transpose components

> names(plxLis <- # Auxiliary list ...

+ lapply(rnft, qqnorm, # ... with two components

+ plot.it = FALSE))

[1] "one1" "one2"

> plx <-

+ lapply(plxLis,

+ FUN = function(el) xyplot(y ~ x, data = el, grid = TRUE))

> plx[["one1"]] # Q-Q plot for id (see Fig. 19.1a)

> plx[["one2"]] # Q-Q plot for target (see Fig. 19.1b)

(c) Extracting and plotting conditional Pearson residuals

> rsd2 <- # Equivalent to raw residuals

+ resid(fm19.2, type = "pearson")

> xyplot(rsd2 ~ target, data = fcat1) # Fig. not shown

> bwplot(rsd2 ~ target, data = fcat1, # Fig. 19.5

+ panel = panel.bwxplot) # User defined panel (not shown)

qqnorm() to the transposed components and store the prepared Q-Q plots in the list-
object plxLis. Note that, while creating the object plxLis, we use the argument
plot.it=FALSE to suppress displaying the plots. The object has two components,
named one1 and one2. We apply the function lapply() to create normal Q-Q plots
for each of the components with the help of the function xyplot() and store the
plots in the object plx. Finally, by “displaying” each of the two components of the
object plx, we can display the separate Q-Q plots of predicted random effects for
target and id. Note that we do not show the resulting plots, as they are identical
to the graphs presented in Fig. 19.1.

In Panel R19.11c, with the help of the function resid() (see Table 14.5),
we extract conditional Pearson residuals (Sect. 13.6.2) from the model-fit object
fm19.2 and store them in the object rsd. Note that, given the structure of
model M19.2, the residuals are equivalent to the raw residuals. By using the
xyplot()-function call, presented in Panel R19.11c, we would obtain a stripplot
of the residuals for each target. We do not show the resulting graph. Instead, to
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Fig. 19.5 FCAT Study: Stripplots of the conditional Pearson residuals for different targets for
model M19.2

enhance its interpretation, we use the use function bwplot() from the package
lattice to superimpose a box-and-whiskers plot over each stripplot (see also, e.g.,
Panel R12.9). Note that in the panel argument we use an auxiliary panel function
which combines a stripplot with a box-and-whiskers plot, adds a grid of horizontal
lines aligned with the axis labels, and adds a bit of jitter to the x-axis coordinates of
the points between the whiskers. For the sake of brevity, we do not show the code
for the function (but we include it in the package nlmeU).

The resulting plot is shown in Fig. 19.5. It suggests a slightly nonconstant
variability of residuals across different targets. It may be due to the difference in
the measurement scale for different targets, resulting from the different number of
items (Sect. 2.5). We will address this issue in the next section.
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19.5 A Linear Mixed-Effects Model with Crossed Random
Effects and Heteroscedastic Residual Errors Fitted
Using lme()

As mentioned at the end of the previous section, the scores for different targets were
measured on different scales due to the different number of items per target. In this
section, we try to address this issue by fitting an LMM similar to model M19.2, but
using the average target response as the dependent variable.

19.5.1 Model Specification

Let us denote by ITEMSCOREsti the response of the s-th pupil to the i-th item for
the target t. Note that i= 1, . . . ,nt, with n1 = 4, n2 = 6, n3 = 8, n4 = 5, n5 = 9, n6 = 6,
n7 = 8, n8 = 6, and n9 = 5. Consider the following model, proposed by Tibaldi et al.
(2007):

ITEMSCOREsti = m̃+˜b1,s+˜b2,t + ẽsti, (19.5)

where ˜b1,s ∼ N (0,˜dS) is the random effect corresponding to the pupil s, ˜b2,t ∼
N (0,˜dT) is the random effect corresponding to the target t and independent of ˜b1,s,

and ẽsti ∼N (0, s̃ 2
) is the residual (measurement) error independent of both ˜b1,s and

˜b2,t. Equation (19.5) implies that, for the total target score,

SCOREst ≡
nt

∑
i=1

ITEMSCOREsti,

the following holds:

SCOREst = nt · m̃+ nt ·˜b1,s + nt ·˜b2,t +
nt

∑
i=1

ẽsti. (19.6)

Formally speaking, (19.6) implies that, with a varying number of items per target,
the mean and variance of the total score SCOREst are different for different targets.
However, if the number of items per target is similar, the mean and variance
are approximately constant. This is the case of the FCAT data. Thus, the use of
model M19.2, defined in (19.2), could be justified.

However, if we were concerned about the variability of the mean and variance
due to the varying number of items, we could perform an alternative analysis of the
FCAT data. Toward this end, we might consider the average target score,
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SCOREst/nt =
nt

∑
i=1

ITEMSCOREsti/nt.

Equation (19.5) implies that

SCOREst/nt = m̃+˜b1,s+˜b2,t +
nt

∑
i=1

ẽsti/nt

= m̃+˜b1,s+˜b2,t + ẽ∗st. (19.7)

Consequently, the average target score is normally distributed with the following
(marginal) mean and variance:

E(SCOREst/nt) = m̃, (19.8)

Var(SCOREst/nt) = ˜dS +˜dT + s̃ 2
/nt. (19.9)

Thus, the mean of the average target score is constant and equal to the mean of
the item response, defined in (19.5). On the other hand, the variance of the average
target score depends on the number of items through the rescaled residual-variance
component, s̃ 2

/nt.
We label the model, defined by (19.7)–(19.9), as model M19.3. Note that its

form is very similar to model M19.2, defined in (19.2). In particular, it includes the
intercept as the only fixed effect and contains two crossed random effects for pupils
and targets. An important formal difference is the presence of the target-specific
residual variance, as shown in (19.9). A fundamental difference, however, is that
all the fixed and random effects of model M19.3 are specified at the item level, as
defined by (19.5). On the other hand, the effects of model M19.3 were defined on
the target (total score) level, as seen from (19.6).

In the next section, we fit model M19.3 to the FCAT data.

19.5.2 R Syntax and Results

Panel R19.12 presents the R code to fit model M19.3 to the FCAT data using the
function lme() from the package nlme (Chap. 14).

Before fitting the model, we need a few steps to prepare data. First, we create the
vector nItms that contains the number of items per target. We use it to construct
the variable nItems which, in turn, is used to create the mean target score. Both
variables are created within the data frame fcat1 with the help of the function
within(). The resulting data frame is stored in the object fcatm.

Additionally, we use the vector nItms to create the vector varWghts which
contains the inverse of the square root of the number of items for each target. Next,
we transform the elements of varWghts into the ratios relative to the first element
which is equal to 0.5. The first element of the transformed vector is necessarily equal
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R19.12 FCAT Study: Model M19.3 fitted using the function lme()

> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # Number of items per target

> (nms <- levels(fcat1$target)) # Names extracted ...

[1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"

[8] "T8(6)" "T9(5)"

> names(nItms) <- nms # ... and assigned

> fcatm <- # Add to the data frame...

+ within(fcat1,

+ {

+ nItems <- nItms[as.numeric(target)] #... no. of items...

+ scorem <- scorec/nItems # ... mean target-score.

+ })

> (varWghts <- 1/sqrt(nItms)) # Variance function weights

T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6)

0.50000 0.40825 0.35355 0.44721 0.33333 0.40825 0.35355 0.40825

T9(5)

0.44721

> (fxdW <- varWghts[-1]/0.5) # Ratios wrt the 1st element

T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

0.81650 0.70711 0.89443 0.66667 0.81650 0.70711 0.81650 0.89443

> fm19.3 <- # M19.3
+ lme(scorem ~ 1,

+ random = list(one1 = pdIdent(~target - 1),

+ one2 = pdIdent(~id - 1)),

+ weight = varIdent(form = ~1|target, fixed = fxdW),

+ data = fcatm)

to 1, so we remove it. The result is stored in the vector fxdW. The reason for such a
construction of the vector will become clear in the sequel.

Finally, we fit model M19.3 by applying the function lme() to the data frame
fcatm. The values of the fixed and random arguments are similar to the values
used in the lme()-function call to fit model M19.2 (see Panel R19.8). Of course, the
formula used in the fixed argument specifies the mean target score, scorem, as
the dependent variable. Note that we do not specify the argument method, so that
the REML estimation is used (Sect. 14.5).

To define the target-specific residual variance, as implied by (19.9), we use the
weight argument (Sect. 14.5). In particular, we use the varIdent-class constructor
function (Sect. 8.2) to specify different variances per strata defined by levels of the
target factor. Moreover, we use the fixed argument of the constructor function to
fix the values of the variance parameters. In this case, the parameters are the ratios of
residual SDs for various targets relative to the first target (Sect. 7.3.2). In particular,
according to model M19.3, SD for the t-th target is assumed to be equal to s̃ /

√
nt.

Hence, the corresponding variance-function parameter dt is equal to
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R19.13 FCAT Study: Results of fitting model M19.3. The model-fit object fm19.3
was created in Panel R19.12

> summary(fm19.3)$tTable

Value Std.Error DF t-value p-value

(Intercept) 0.61319 0.031088 4850 19.724 2.285e-83

> VarCorr(fm19.3)

Variance StdDev

one1 = pdIdent(target - 1)

targetT1(4) 0.0083463 0.091358

. . . [snip]
targetT9(5) 0.0083463 0.091358

one2 = pdIdent(id - 1)

id1 0.0172872 0.131481

. . . [snip]
id538 0.0172872 0.131481

Residual 0.0506879 0.225140

(s̃ /
√

nt)/(s̃ /
√

n1) = (1/
√

nt)/(1/
√

n1) = (1/
√

nt)/0.5,

with d1 ≡ 1 (Sect. 7.3.2). This is exactly how the elements of the vector fxdW have
been defined. Hence the use of the vector in the fixed argument of the lme()

function in Panel R19.12.
As a side remark, we note that, instead of the varIdent() constructor function,

we could also use the varFixed() one (Sect. 8.2). Toward this end, we would need
to add to the fcatm data frame a variable containing the inverse of the number of
items for each target response. The variable would then be used as the variance
covariate in the varFixed() constructor function. We leave this as an exercise to
the reader.

Results of fitting of the model are shown in Panel R19.13. The mean value
of the item response is estimated to be equal to 0.6132. The estimates of the
variances of the target- and pupil-specific random effects are equal to 0.0083 and
0.0173, respectively. Note that they are much smaller than the estimates obtained
for model M19.2 (see Panel R19.9). As mentioned before, the difference is due
to the fact that the dependent variables, used in the two models, are measured on
different scales.

The scale parameter, s , is estimated to be equal to 0.2251. The parameter is
equal to the SD for the first target, which is given by s̃ /

√
n1 = s̃ /2. Hence, the

estimate of s̃ 2 is equal to 2 · (0.22512) = 0.2028.
The estimated values of ˜dS, ˜dT , and s̃ 2 imply that the total variance of item

responses is equal to 0.0173+ 0.0083+ 0.2028= 0.2284. The between-pupil and
between-target variability constitutes, respectively, 7.6% and 3.6% of the total
variance.
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It is worth noting that model M19.3 cannot be fitted using the function lmer()

from the package lme4.0. This is because the function allows to fit only LMMs with
independent, homoscedastic residual errors (Sect. 15.3.1).

19.6 Chapter Summary

In this chapter, we analyzed the FCAT data by applying LMMs. In particular, we
used LMMs with crossed random effects.

First, we analyzed the total target score as the dependent variable. For illustration
purposes, in Sect. 19.2, we fitted a two-way, fixed-effects ANOVA model. Toward
this end, we used the function lm(). In Sect. 19.3, we fitted an LMM with crossed
random effects and independent, homoscedastic residual errors by using the function
lmer() from the package lme4.0. By comparing the predicted random effects with
the estimates of the fixed-effects coefficients from the ANOVA model, we could
illustrate the “shrinkage” of EBLUPs. In Sect. 19.4, we fitted the same LMM by
using the function lme() from the package nlme. Toward this end, we had to
perform additional data manipulations. Moreover, the required computation time
was substantially longer than for the function lmer(). This illustrated the advantage
of using the sparse-matrix representations in the latter function.

In Sect. 19.5, we conducted an alternative analysis of the FCAT data. It was
based on considering the average target score as the dependent variable. We
analyzed the score by using an LMM with crossed random effects and independent,
heteroscedastic residual errors. To fit the model, we used the function lme(). Note
that the model could not be fitted using the function lmer(), because the function
does not allow for heteroscedastic residual errors.

Although the FCAT data set has got a relatively simple structure, its analysis is
not as straightforward. For instance, as illustrated by models M19.2 and M19.3, the
data can be modeled on the target or item scale. Clearly, the choice of the scale is
important and influences the results. It also entails different assumptions regarding,
e.g., homoscedasticity of residual errors. Also, treating the set of targets and pupils,
included in the study, as random samples from a population, may be debatable. Such
an approach was considered by, e.g., Van den Noortgate et al. (2003) or Tibaldi et al.
(2007). In fact, models M19.2 and M19.3 were proposed by Tibaldi et al. (2007).
However, an alternative would be to, e.g., consider the effects of targets as fixed and
the effects of pupils as random. We leave the pursuit of this line of analysis to the
reader.



Chapter 20
Extensions of the R Tools for Linear
Mixed-Effects Models

20.1 Introduction

In this chapter, we present selected tools and functions introduced in the nlmeU
package.

In particular, in Sect. 20.2, we describe in more detail the experimental class
pdKronecker, which represents Kronecker products of positive-definite matrices.
The class is useful to define variance-covariance matrices of random effects in
LMMs in cases when the effects exhibit a factorial structure. Note that the class
was applied in the analysis of the PRT trial data in Chap. 17. Section 20.3 presents
the tools for conducting influence diagnostics for a fitted LMM. In Sect. 20.4, we
introduce the function simulateY(), which can be used to simulate the values
of the dependent variable based on a fitted LMM. The function is useful in, e.g.,
computing the empirical p-values of the tests based on the LMM. Finally, in
Sect. 20.5, we consider the issue of computing the power of a test of a fixed effect
in an LMM using Pwr() function and a simulation technique.

20.2 The New pdMatClass: pdKronecker

In Sect. 14.2, we described several pdMat classes available in the package nlme,
which can be applied to represent the positive-definite matrix D involved in the
definition of the distribution of random effects in LMMs. These classes were
designed primarily for models in which the random effects could be presented as
a vector bi without any factorial structure imposed on its elements. Sometimes,
however, such a structure can be present. This was the case for the PRT trial data,
described in Sects. 2.3 and 3.3 and analyzed in Chap. 17.

When specifying an LMM, the presence of a factorial structure in the random
effects can be ignored. For the PRT data, such a strategy was applied, e.g., in
model M17.5 in Sect. 17.4. The drawback is that, unless constraints are imposed

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__20,
© Springer Science+Business Media New York 2013
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R20.1 A hypothetical example illustrating the concept of the new pdKronecker class

> D1 <- c(3, 9,

+ 9, 30)

> dim(D1) <- c(2, 2) # D1 for factor f1

> D2 <- c(2, 4,

+ 4, 10)

> dim(D2) <- c(2, 2) # D2 for factor f2

> D1 %x% D2 # D1 ⊗ D2

[,1] [,2] [,3] [,4]

[1,] 6 12 18 36

[2,] 12 30 36 90

[3,] 18 36 60 120

[4,] 36 90 120 300

on the variance-covariance matrix of the random effects, it may require estimation
of a relatively large number of variance-covariance parameters. In the case of
model M17.5, the matrix was of dimension 4× 4 and involved ten parameters.
Although we were successful in fitting the model to the PRT data, it may happen that
the need to estimate a large number of variance-covariance parameters may cause
problems in fitting an LMM.

The issue can be addressed by a parsimonious specification of the matrix D,
resulting from the recognition of the factorial structure in the random effects.
Examples of such strategy were provided in the analysis of the PRT data in
Sects. 17.6–17.8. Toward this end, we defined a new pdMat class, i.e., pdKronecker,
which represents the matrix D in terms of a Kronecker product of matrices of
lower dimensions. As a result, the matrix is represented with a smaller number
of parameters. The pdKronecker class implements the methodology developed
by Galecki (1994).

In this section, we present further details on the use of the pdKronecker class. In
the presentation, we use a hypothetical, simple example of the structure implied by
the class. The example is shown in Panel R20.1.

For simplicity, we assume that the factorial structure in the random effects is
imposed by two crossed factors, f1 and f2, say, each with two levels. They will
be defined in more detail later in this section. Similar to the PRT example, we
assume that each factor contributes its own factor-specific matrix, D1 and D2, say,
shown in Panel R20.1. The two matrices define the overall matrix D = D1⊗D2,
where ⊗ stands for the (right) Kronecker product. This conceptual framework
has an attractive interpretation, in that each of the underlying factors contributes
independently to the overall D matrix. It is worth noting that other pairs of matrices,
e.g., D1/c and cD2, where c is a constant greater than zero, result in the same matrix
D. Thus, to assure the identifiability of the model for the matrix D = D1⊗D2, and
to uniquely define the decomposition of the D matrix, constraints on the elements
of D1 and D2 need to be imposed. We will deal with this issue later in this section.
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R20.2 Construction of the main argument of the pdKronecker() constructor
function. Matrices D1 and D2 were created in Panel R20.1

> library(nlme)

> (pdId <- pdIdent(as.matrix(1), form = ~1)) # Mandatory

Positive definite matrix structure of class pdIdent representing

[,1]

[1,] 1

> (pd1 <- pdLogChol(D1, form = ~f1-1)) # D1

Positive definite matrix structure of class pdLogChol representing

[,1] [,2]

[1,] 3 9

[2,] 9 30

> (pd2 <- pdLogChol(D2, form = ~f2-1)) # D2

Positive definite matrix structure of class pdLogChol representing

[,1] [,2]

[1,] 2 4

[2,] 4 10

> pdL1 <- # The main argument

+ list(X = pdId,

+ pD1 = pd1,

+ pD2 = pd2)

20.2.1 Creating Objects of Class pdKronecker

In Panels R20.2 and R20.3, we illustrate how to use the pdKronecker()constructor
function to create an example of an object representing the corresponding class.

First, in Panel R20.2, we illustrate the most convenient way to define the main
argument of the constructor function by creating a list of objects of the pdMat class.
Toward this end, after attaching the nlme package, we define the objects. In general,
they do not have to be initialized. However, in Panel R20.2, we use the matrices
D1 and D2 (Sect. 14.2.1) to initialize objects of pdMat class. In this way, we can
simultaneously illustrate how to construct an initialized object of class pdKronecker
representing the matrix D.

Note that the first object created in Panel R20.2, pdId, is a mandatory object
of class pdIdent (Sect. 14.2.1). It represents a 1× 1 matrix needed to address the
identifiability issue mentioned earlier. The two other objects, pd1 and pd2, are of
class pdLogChol and represent the matrices D1 and D2, respectively. By using pdId,
pd1, and pd2, we create the list pdL1 which will be used as the main argument of
the pdKronecker() construction-function call.

In Panel R20.3, we illustrate the construction of an object of class pdKronecker.
Toward this end, in Panel R20.3a, we formally define the factors f1 and f2 by
using the gl() function. We store the factors in an auxiliary data frame named dt.



494 20 Extensions of the R Tools for Linear Mixed-Effects Models

R20.3 Construction of an object of class pdKronecker. The object pdL1 was created
in Panel R20.2
(a) Auxiliary data containing the definitions of factors f1 and f2

> f1 <- gl(2, 1, labels = c("A","B"))

> f2 <- gl(2, 1, labels = c("a","b"))

> (dt <- data.frame(f1, f2))

f1 f2

1 A a

2 B b

(b) Constructing an object of class pdKronecker

> library(nlmeU)

> (pdK <- pdKronecker(pdL1, data = dt)) # D1 ⊗ D2

Positive definite matrix structure of class pdKronecker ...

f1A:f2a f1A:f2b f1B:f2a f1B:f2b

f1A:f2a 6 12 18 36

f1A:f2b 12 30 36 90

f1B:f2a 18 36 60 120

f1B:f2b 36 90 120 300

> (nms <- Names(pdK))

[1] "f1A:f2a" "f1A:f2b" "f1B:f2a" "f1B:f2b"

Subsequently, in Panel R20.3b, we use the pdKronecker() constructor function
from the package nlmeU to create the object pdK representing the matrix D1⊗D2.
We use the list pdL1 and the data frame dt as the first and second argument of
the pdKronecker() function, respectively. The auxiliary data are used to provide
the information needed to assign the names to the rows and columns of the matrix
represented by the object pdK. At the bottom of Panel R20.3b, we extract the names
with the help of the function Names(), print them, and store in the vector nms for
later use.

The construction of an initialized object of class pdKronecker can be useful
if, e.g., there is a need to provide initial values for the qD parameters for the
function lme(). The use of uninitialized pdMat-class objects to construct the
main argument of the pdKronecker() constructor function was illustrated in
Panels R17.14, R17.16, and R17.19.

20.2.2 Extracting Information from Objects of Class
pdKronecker

In Panel R20.4, we show how to extract the components used to represent a
Kronecker-product matrix represented by a pdKronecker-class object. For



20.2 The New pdMatClass: pdKronecker 495

R20.4 Extracting component matrices from an object of class pdKronecker. The
object pdK was created in Panel R20.3

> (c0x <- as.matrix(pdK[[1]]))

(Intercept)

(Intercept) 6

> (D1x <- as.matrix(pdK[[2]])) # Proportional to D1

f1A f1B

f1A 1 3

f1B 3 10

> (D2x <- as.matrix(pdK[[3]])) # Proportional to D2

f2a f2b

f2a 1 2

f2b 2 5

> Dx <-c0x %x% D1x %x% D2x # D = D1 ⊗ D2
> dimnames(Dx) <- list(nms, nms)

> Dx

f1A:f2a f1A:f2b f1B:f2a f1B:f2b

f1A:f2a 6 12 18 36

f1A:f2b 12 30 36 90

f1B:f2a 18 36 60 120

f1B:f2b 36 90 120 300

illustration, we use the object pdK. It is a list with three components, which are
pdMat-class objects. The classes of those objects correspond to the classes of the
objects pdId, pd1, and pd2, used to define pdK. In particular, the first component
is an object of class pdIdent, while the second and third components are objects
of class pdLogChol. In Panel R20.4, we extract the components from the list pdK,
and we apply the function as.matrix() to store them as the matrices c0x, D1x,
and D2x, respectively. From the printout of the matrices, we can see that they are
not equal to the matrices cI1, D1, and D2, represented by pdId, pd1, and pd2. This
is due to the fact, which was mentioned earlier, that the matrices used to create a
Kronecker product cannot be uniquely identified from the product itself. To resolve
the nonidentifiability, the matrices D1x and D2x are constrained to contain 1 as
the upper-left element. As a result, the matrices are proportional to D1 and D2,
respectively. In Panel R20.4, we show that the Kronecker product of the matrices
represented by c0x, D1x, and D2x is equal to the Kronecker product of D1 and D2.

In Panel R20.5, we explain how the formula associated with an object of the
pdKronecker class can be extracted. We also explain how it is built. This formula
plays a critical role in defining the random-effects design matrix Z, when an object
of class pdKronecker is used in the random argument of the lme() function. Not
surprisingly, the formula is created from the formulae, which we call component
formulae, applied in the definition of the pdMat-class objects used to define the
main argument of the pdKronecker() constructor function.
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R20.5 Extracting the formula from an object of class pdKronecker. The object pdK
was created in Panel R20.3
(a) Formula for the pdKronecker-class object

> formula(pdK, asList = TRUE) # List of component formulae

[[1]]

~1

[[2]]

~f1 - 1

[[3]]

~f2 - 1

> formula(pdK) # One-sided formula default)

~f2:f1 - 1

<environment: 0x000000000be54b40>

(b) Explaining how the formula for an object of the pdKronecker class is created

> (pdKform <- formula(~(f2-1):(f1-1)-1))

~(f2 - 1):(f1 - 1) - 1

> pdKterms <- terms(pdKform) # Terms object

> labels(pdKterms) # Expanded formula

[1] "f2:f1"

> attr(pdKterms, "intercept") # Intercept omitted

[1] 0

In Panel R20.5a, we use the formula() function to extract two representations
of the formula associated with the pdK object. The first representation is in the form
of a list. It allows identinfying the component formulae which correspond to the
formulae used to define objects pdId, pd1, and pd2 in Panel R20.2. The second
(default) representation is in the form of a one-sided formula used to create the
matrix Z. The formula contains the interaction of the factors f1 and f2 as the only
term (without an intercept). The order of f1 and f2 in the interaction term is reversed
to accommodate the order of rows in the D matrix resulting from the use of (right)
Kronecker product of the component matrices.

In Panel R20.5b, we explain how the matrix-Z formula is constructed from the
component formulae. More specifically, the formulae corresponding to the second
and third component of the object pdK are “multiplied” using the : operator, and
the intercept is removed from the obtained result. Note that the first component
formula ~1, associated with the mandatory pdIdent()-class object, is not used in this
operation. The resulting formula is stored in the object pdKform.
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By applying the terms() function (Sect. 5.2.2), we construct the object pdK-
terms, which contains the information about all the terms in the formula pdKform.
In particular, by applying the function labels(), we check that pdKform, in its
expanded form, contains only one term, i.e., "f2:f1". Moreover, by extracting the
intercept attribute of the pdKterms object, we verify that the formulae do not
contain the intercept. Thus, pdKform is indeed equivalent to the matrix-Z formula
of the object pdK.

20.3 Influence Diagnostics

In Sect. 4.5.3, we briefly discussed the issue of investigating the influence of
individual observations on the estimates of the parameters of an LM. Two measures
that can be used toward this end are Cook’s distance, defined in (4.26), and the
likelihood displacement, defined in (4.27). In Sects. 7.5.2, 10.5.2, and 13.6.3, we
indicated how these measures can be adapted to the case of LMs with heterogeneous
variance, LMs with fixed effects for correlated data, and LMMs, respectively. In this
section, we present an implementation of the likelihood displacement and Cook’s
distance for LMMs in R.

As an illustration, we consider model M16.5, which was fitted to the armd data
in Sect. 16.4.3. The results of fitting of the model were stored in the model-fit object
fm16.5.

20.3.1 Preparatory Steps

In this section, we present preparatory steps for influence diagnostics. We start with
the extraction of selected results for the fitted model M16.5. We then introduce an
auxiliary function logLik1()designed to calculate a contribution of a given subject
to the overall likelihood for a given model.

20.3.1.1 Selected Results for Model M16.5

In Panel R20.6, we fit the model M16.5 and extract basic results from the model
fit. First, in Panel R20.6a, we update the model-fit object fm16.5 to obtain the ML
estimates. The updated model fit is stored in the object mf16.5ml. With the help of
the function formula(), we recall the formula defining the mean structure of the
model. We also extract the name of the data frame used to fit the model. Finally, we
apply the logLik() function to obtain the value of the log-likelihood function for
model M16.5. Note that the number of degrees of freedom reported by logLik()

is equal to 8. It corresponds to the total number of the parameters in the model,
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R20.6 ARMD Trial: Extracting selected results for model M16.5. The model-fit
object fm16.5 was created in Panel R16.13
(a) Basic information

> fm16.5ml <- update(fm16.5, method = "ML")# ML estimation

> formula(fm16.5ml) # Recall model formula.

visual ~ visual0 + time + treat.f

> fm16.5ml$call$data # Recall data name.

armd

> logLik(fm16.5ml) # Log-ML value

'log Lik.' -3210.7 (df=8)

(b) Fixed-effects estimates and their variance-covariance matrix

> beta0 <- fixef(fm16.5ml) # ̂b
> names(beta0) # Long names

[1] "(Intercept)" "visual0" "time"

[4] "treat.fActive"

> names(beta0) <- abbreviate(names(beta0), minlength = 7) # Short names

> beta0 # ̂b printed.

(Intrc) visual0 time trt.fAc

5.44721 0.89973 -0.24155 -2.65638

> vcovb <- vcov(fm16.5ml) # ̂Var(̂b)
> colnames(vcovb) <- names(beta0) # Short names

> vcovb # ̂Var(̂b) printed.

(Intrc) visual0 time trt.fAc

(Intercept) 5.0475640 -7.9651e-02 -3.8602e-03 -6.8078e-01

visual0 -0.0796512 1.4407e-03 1.5213e-06 1.1239e-03

time -0.0038602 1.5213e-06 5.6988e-04 -6.1566e-05

treat.fActive -0.6807838 1.1239e-03 -6.1566e-05 1.2568e+00

i.e., four fixed-effects coefficients (b), four variance-covariance parameters (qD)
describing the diagonal matrix D, one parameter (d) related to the power variance
function describing the diagonal matrix Ri, and the scale parameter s .

In Panel R20.6b, we extract the b estimates and their estimated variance-
covariance matrix. Toward this end, we use the functions fixef()) and vcov(),
respectively. We save the estimates and the matrix in the objects beta0 and
vcovb, respectively. They will be needed for influence diagnostics performed in
Sect. 20.3.2. Note that, with the help of the abbreviate() function, the names of
the b coefficients in the vector beta0 are shortened to (at least) seven characters, to
simplify the display of the contents of the vector. The abbreviated names are also
used to label the columns of the vcovb matrix.
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20.3.1.2 An Auxiliary Function logLik1()

At the bottom of Panel R20.6a, we used the logLik() function to obtain the value
of the log-likelihood for the fitted model M16.5. It should be noted that the function
returns the log-likelihood evaluated at the set of the estimated fixed effects and
variance-covariance parameters and for the dataset, to which the model was fitted. In
the context of influence diagnostics, we need a more general function which allows
to evaluate the log-likelihood function for an arbitrary set of values of the model
parameters and with respect to data different than the ones used to fit the model.

Toward this end, we can use the auxiliary function logLik1() which has been
included in the package nlmeU. The primary use of the function is to calculate
the contribution of one subject in the data to the overall log-likelihood, defined
in (13.27) for a given model. The use of the function in the context of influence
diagnostics will be presented in Sect. 20.3.2.

The function logLik1(), illustrated in Panel R20.7, has three arguments:

modfit An object of class lme representing an LMM fitted to a given dataset
using the ML estimation

dt1 A data frame with data for one subject, for whom the log-likelihood
function is to be evaluated

dtInit An optional auxiliary data frame

The data frame provided in the argument dt1 is typically created by choosing a
subset with one subject from the data used to obtain the model-fit object specified in
the modfit argument. However, in general, any plausible data for one subject, not
necessarily from the dataset used to fit the model, can be used.

The auxiliary data provided in the argument dtInit is temporarily appended
to the dt1 data during the logLik1()-function execution. It may be necessary in
a situation when the information, contained in the data defined by the argument
dt1, is not sufficient to properly construct the objects needed to calculate the log-
likelihood. This may occur if, e.g., dt1 does not contain information about all levels
of a factor needed to construct the design matrix, variance function, or correlation
matrix. In most cases, the data frame used in the dtInit argument is obtained by
selecting a small subset of the data used to fit the model.

The logLik1() function returns the numeric contribution of the single subject,
with the data specified in the dt1 argument, to the log-likelihood for the model
specified in the modfit argument.

20.3.1.3 Contributions of Individual Subjects to the Log-Likelihood
for Model M16.5

Panel R20.7a illustrates how to calculate contributions of individual subjects to the
log-likelihood for a given model. In particular, we first create the data frame df1

with the data for the subject “1” from the data frame armd. Then, we apply the
function logLik1() to calculate the contribution of the subject to the log-likelihood
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R20.7 ARMD Trial: Contributions of individual subjects to the log-likelihood for
model M16.5. The model-fit object fm16.5ml was created in Panel R20.6
(a) Examples of using the function logLik1()

> require(nlmeU)

> df1 <- subset(armd, subject %in% "1") # Data for subject "1"

> logLik1(fm16.5ml, df1) # logLiki for subject "1"

[1] -6.6576

> lLik.i <- by(armd, armd$subject,

+ FUN = function(dfi) logLik1(fm16.5ml, dfi))

> lLik.i <- as.vector(lLik.i) # Coerce array to vector

> lLik.i[1:5] # logLiki for the first five subjects

[1] -6.6576 -13.4708 -11.1361 -13.3109 -12.9930

> sum(lLik.i) # ∑
i
logLiki; compare to Panel R20.6a

[1] -3210.7

(b) Plot of individual contributions to the log-likelihood (traditional graphics)

> nx <- by(armd, armd$subject, nrow) # ni
> lLik.n <- lLik.i/as.vector(nx) # logLiki/ni
> outL <- lLik.n < -6 # TRUE for values < -6

> lLik.n[outL] # logLiki/ni < −6

[1] -6.0775 -7.2559 -6.2956 -6.9220 -6.3644 -6.7953 -6.5079

> subject.c <- levels(armd$subject)

> subject.x <- as.numeric(subject.c)

> plot(lLik.n ~ subject.x, type = "h") # Fig. 20.1

> points(subject.x[outL], lLik.n[outL], type = "p", pch = 16)

> text(subject.x[outL], lLik.n[outL], subject.c[outL])

for model M16.5. Note that we use the data frame df1 as the second argument, i.e.,
dt1, of the function. The contribution to the log-likelihood for the first subject is
equal to −6.6576.

Next, we use the function logLik1() to compute the log-likelihood contri-
butions for all subjects from the data frame armd. Toward this end, we use the
function by(), which splits armd into data frames containing data for each subject
separately and applies the function logLik1() to each of the data frames. As
a result, we obtain the one-dimensional array lLik.i of class by with the log-
likelihood contributions for all 234 subjects. Although not critical, we convert
the array to a vector with the same name using the as.vector() function. In
Panel R20.7a, we display the first five elements of the vector. We also compute
the sum of all log-likelihood contributions by applying the function sum() to
the vector. The result, −3210.7, corresponds to the value of the log-likelihood



20.3 Influence Diagnostics 501

function for model M16.5, obtained with the help of the function logLik() in
Panel R20.6a.

In Panel R20.7b, we present the syntax to plot the per-observation individual
log-likelihood contributions. First, with the help of the by() function, we create
the array nx, which contains the number of observations for each subject from
the data frame armd. Next, we compute the per-observation individual-subject log-
likelihood contributions by dividing the contributions by the number of observations
for each subject. In this way, we adjust for the difference in the number of
observations for different subjects. The per-observation contributions are stored
in the vector lLik.n. We then select and print out the elements of the vector
corresponding to the per-observation contributions less than, say,−6. Subsequently,
we create the character vector subject.c with subjects’ identifiers. We also create
the corresponding numeric vector subject.x. The latter is used in the formula
used in the call to the traditional graphics function plot() to obtain a plot of the
per-observation log-likelihood contributions for all subjects. By using the function
points(), we add points identifying the values of the contributions smaller than
−6. Moreover, with the help of the function text(), we label the points with
the corresponding subjects’ identifiers from the character vector subject.c. The
resulting plot is shown in Fig. 20.1 and should be primarily treated as an illustration
of how the logLik1() function works. Influence-diagnostics calculations will be
presented in the next section.

20.3.2 Influence Diagnostics

In this section, we use the results of the preparatory steps, conducted in Sect. 20.3.1,
to perform influence-diagnostics calculations for model M16.5. More specifically,
we evaluate the influence of every subject included in the dataset armd.

20.3.2.1 Fitting the Model to the “Leave-One-Subject-Out” Data

In Panel R20.8, we create a list containing the results of fitting model M16.5 to
the “leave-one-subject-out” (LOO) datasets and explore its contents. In particular,
in Panel R20.8a, we define the function lmeU(), which fits the model to the data
from the armd data frame with a particular subject removed. The identifier of the
subject to be removed is passed as the only argument, cx, of the function. When the
function lmeU() is executed, an LOO data frame, named dfU, is created with the
subject, indicated by the cx argument, omitted. Subsequently, model M16.5 is fitted
to dfU by applying the update() function to the model-fit object fm16.5ml. As a
result, the function lmeU() returns an object of class lme.

Next, with the help of the function lapply(), we apply the function lmeU() to
the consecutive elements of the character vector subject.c. As a result, we obtain
the list lmeUall, with lme-class model-fit objects as elements. The model-fit objects
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Fig. 20.1 ARMD Trial: Plot of the per-observation individual-subject log-likelihood contributions
for model M16.5 using traditional graphics

contain the results of fitting model M16.5 to the armd data frame, while removing
the data for each subject in turn. Finally, we name the components of the lmeUall
list using the subject identifiers stored in the vector subject.c.

Note that the creation of the lmeUall list involves refitting model M16.5 many
times, and it therefore takes a long time. The execution time can be shortened if
we decide to perform, e.g., a reduced number of likelihood iterations, instead of
performing iterations until convergence as we did here. This may be a reasonable
choice given that the starting values for the numerical optimization used by the
lmeU() function are taken from the model-fit object fm16.5ml. The values, based
on the first few iterations, are expected to give a fairly good approximation of the
LOO estimates.

In Panel R20.8b, we explore the contents of the lmeUall list. The names of the
first six components are printed out using the function names(). To extract the LOO
data frame for, e.g., the subject “6”, we refer to the "6" component of the lmeUall
list. The extracted data frame is stored in the object dataU6. By using the function
dim(), we check that the data frame has 863 observations and 8 variables. Note that
the data frame armd has 867 observations (see Panel R2.5), while the subject “6”
had four visual-acuity measurements (see, e.g., Panel R16.2). Thus, by leaving the
subject out, we reduce the number of observations from 867 to 863. Moreover, by
displaying the first six unique values of the variable subject from the dataU6 data
frame, we check that the subject “6” was, indeed, omitted from the data.
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R20.8 ARMD Trial: Model M16.5 fitted to a sequence of “leave-one-subject-
out” (LOO) datasets. The objects fm16.5ml and subject.c were created in
Panels R20.6 and R20.7, respectively
(a) Creating the object lmeUall containing fitted models

> lmeU <- function(cx) {

+ dfU <- subset(armd, subject != cx) # LOO data

+ update(fm16.5ml, data = dfU) # LOO fit

+ }

> lmeUall <- lapply(subject.c, lmeU) # List with LOO fits

> names(lmeUall) <- subject.c # Names assigned

(b) Exploring the contents of the lmeUall object

> names(lmeUall)[1:6]

[1] "1" "2" "3" "4" "6" "7"

> dataU6 <- lmeUall[["6"]]$data # LOO data for subject "6"

> dim(dataU6) # Number of rows is 863

[1] 863 8

> unique(dataU6$subject)[1:6] # Subject no. 6 omitted

[1] 1 2 3 4 7 8

234 Levels: 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 240

20.3.2.2 Likelihood Displacement for Model M16.5

The likelihood displacement was defined in (4.27). For an LMM, it requires the
computation of the full log-likelihood (13.27) for ̂Q, the ML estimate of Q ≡
(b ′,q ′,s 2)′ obtained by fitting the model to all data, and for ̂Q(-i), the ML estimate
obtained by fitting the model to the data with the i-th subject excluded (Sect. 13.6.3).
Note that both values of the log-likelihood, used in the definition of likelihood
displacement, should be calculated taking into account all observations.

In Panel R20.9, we present the code used to calculate and to plot individual-
subject likelihood displacements for model M16.5. Toward this end, in Panel R20.9a,
we define an auxiliary function lLik() which, for a given subject indicated by the
main argument, cx, extracts the lme-class model-fit object for the corresponding
LOO data. The model-fit object is stored in the object lmeU. The corresponding
log-likelihood value is extracted from lmeU with the help of the function logLik()

and stored in the object lLikU. Note that the stored log-likelihood value does not
include the contribution from the excluded subject. Hence, the function logLik1()
is invoked to calculate the contribution of subject cx and to store it in the object
lLik.s. The returned value llikU + lLik.s is the log-likelihood evaluated for
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R20.9 ARMD Trial: Likelihood displacements for model M16.5. The objects
subject.c and lmeUall were created in Panels R20.7 and R20.8, respectively
(a) Calculation of the likelihood displacements

> lLik <- function(cx){

+ lmeU <- lmeUall[[cx]] # LOO fit extracted

+ lLikU <- logLik(lmeU, REML = FALSE) # LOO log-likelihood

+ df.s <- # Data for subject cx...

+ subset(armd, subject == cx)

+ lLik.s <- logLik1(lmeU, df.s) # ... and log-likelihood.

+ return(lLikU + lLik.s) # "Displaced" log-likelihood...

+ }

> lLikUall <- sapply(subject.c, lLik) # ... for all subjects.

> dif.2Lik <- 2*(logLik(fm16.5ml) - lLikUall) # Vector of LDi
> summary(dif.2Lik)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00285 0.00948 0.01490 0.05280 0.03300 0.82200

(b) Plot of the likelihood displacements with an indication of outlying values

> names(dif.2Lik) <- subject.c # Subjects' ids assigned

> outL <- dif.2Lik > 0.5 # Outlying LDi's
> dif.2Lik[outL]

73 75 104 114 121 227 231

0.57543 0.56786 0.56269 0.66459 0.82188 0.55467 0.59549

> library(lattice)

> subject.f <- factor(subject.c, levels = subject.c)

> myPanel <- function(x, y, ... ){

+ x1 <- as.numeric(x)

+ panel.xyplot(x1, y, ... )

+ ltext(x1[outL], y[outL], subject.c[outL]) # Label outlying LDi's
+ }

> dtp <- # Fig. 20.2

+ dotplot(dif.2Lik ~ subject.f, panel = myPanel, type = "h")

> lxlims <- length(dtp$x.limits)

> update(dtp, xlim = rep("", lxlims), grid = "h")

all observations from the armd data frame using the “displaced” estimates of the
model parameters, i.e., ̂Q(-i).

The function lLik() is then sequentially applied to all subjects in the armd

data frame with the help of the sapply() function. The resulting vector lLikUall
contains the values of the “displaced” log-likelihood for all subjects. Subsequently,
it is used in the calculation of the values of likelihood displacement for all subjects,
as discussed in Sect. 13.6.3. The displacements are stored in the vector dif.2Lik.
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Fig. 20.2 ARMD Trial: Plot of the likelihood-displacement values versus subjects’ rank for
model M16.5 for all subjects from the armd dataset

By applying the summary() function to the vector, we obtain summary statistics of
the computed likelihood-displacement values.

In Panel R20.9b, we create the logical vector outL which indicates the subjects
with the values of the likelihood displacement exceeding, say, 0.5. From the printout
of the selected elements of the vector dif.2Lik it follows that there are seven such
subjects.

We then use the function dotplot() from the package lattice to plot the
likelihood-displacement values for all subjects. The x-axis of the plot is constructed
using numeric representation of the subject.f factor, containing values ranging
from 1 to 234, rather than the subject labels stored in the subject.c vector. In
the panel argument we apply a user-defined myPanel() function, which labels the
outlying likelihood displacements using the corresponding subject’s identifier. Note
that we save the plot in the object dtp, which we then update by adding a grid of
horizontal lines and by removing illegible labels on x-axis.

The resulting plot is shown in Fig. 20.2. The seven subjects with the likelihood-
displacement values larger than 0.5 are clearly identified.

20.3.2.3 Cook’s Distance for the b Estimates

Cook’s distance for the b estimates was defined in (4.26) for the classical LM. The
definition can be extended to LMMs in a straightforward manner.
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R20.10 ARMD Trial: Calculation of Cook’s distances for model M16.5. The objects
vcovb and beta0 were created in Panel R20.6, while the objects subject.c and
lmeUall were created in Panels R20.7 and R20.8, respectively
(a) Calculation of Cook’s distances

> betaUall <- sapply(lmeUall, fixef) # Matrix with ̂b(−i)
> vb.inv <- solve(vcovb)

> CookDfun <- function(betaU){

+ dbetaU <- betaU - beta0 # ̂b(−i)−̂b
+ CookD.value <- t(dbetaU) %*% vb.inv %*% dbetaU

+ }

> CookD.num <- apply(betaUall, 2, CookDfun)

> (n.fixeff <- length(beta0)) # Number of fixed effects

[1] 4

> rankX <- n.fixeff # Rank of matrix X
> CookD <- CookD.num/rankX # Cook's distance Di

(b) Plot of Cook’s distances using traditional graphics. Outlying values annotated

> outD <- CookD > 0.03 # Outlying Di's
> subject.c[outD] # Subjects' ids

[1] "75" "114" "145" "227" "231"

> plot(CookD ~ subject.c,

+ ylab = "Cook's D", type = "h") # Fig. 20.3

> text(as.numeric(subject.c[outD]),

+ CookD[outD], subject.c[outD]) # Annotation

> points(subject.c[outD], CookD[outD])

In Panel R20.10, we present calculations of Cook’s distance for the b estimates
for model M16.5. The calculations are somewhat simpler compared to that for the
likelihood displacement presented in the previous section. In Panel R20.10a, we
present the syntax that can be used to perform the calculations.

We begin by creating a matrix containing the LOO estimates of b. Toward this
end, with the help of function sapply(), we apply the function fixef() to each of
the lme-class objects contained in lmeUall.

Next, we compute the inverse of the variance-covariance matrix of ̂b with the
help of the function solve(). We store the resulting matrix in the object vb.inv.

Subsequently, we define the function CookDfun() which, for a vector given in
the betaU argument, computes the value of the numerator of Cook’s distance, as
in (4.26). The function is then applied sequentially to all columns of the matrix
betaUall with the help of the sapply() function. The resulting vector is divided
by the number of the fixed-effects coefficients, which, under the assumption that
the design matrix is of full rank, is equivalent to the rank of the design matrix. The
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Fig. 20.3 ARMD Trial: Plot of Cook’s distances versus subjects’ identifiers for model M16.5 for
all subjects from the armd dataset

outcome is stored in the vector CookD and contains the values of Cook’s distance
for all subjects.

In Panel R20.10b, we create the logical vector outD which indicates the subjects
with the values of Cook’s distance exceeding, say, 0.03. From the printout of the
selected elements of the vector subject.c, it follows that there are five such
subjects.

We then use the function plot() to plot the Cook’s distance values for all
subjects. The plot is enhanced by adding the labels and symbols (closed circles) for
the subjects with outlying values of the distance. The result is shown in Fig. 20.3.
Note that subjects "75", "114", "227", and "231" are present both in Figs. 20.2
and 20.3.

Figure 20.4 presents the scatterplot matrix of the two-dimensional projections of
the (̂b(−i)−̂b)/ŝe(̂b) differences for all pairs of the fixed-effects coefficients.

The plot was generated using the splom() function. The main argument of
the function was obtained by subtracting the beta0 vector from the rows of the
transposed betaUallmatrix, created in Panel R20.10. Note that, to conserve space,
we do not present the details of the syntax used to create Fig. 20.4.

The labels used in the panels located on the diagonal of the figure provide the
estimates of the fixed-effects coefficients of model M16.5 and their estimated SEs.
The panels above diagonal include points for all subjects. The points for nonoutlying
values are plotted using the small-size open circles. The five outlying values are
displayed using different plotting symbols defined in the legend of the figure at the
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Fig. 20.4 ARMD Trial: Standardized differences (̂b(−i)−̂b)/ŝe(̂b) for model M16.5

top of the graph. The panels below the diagonal focus on the five outlying values.
The ellipses represent the two-dimensional projections of an ellipsoid corresponding
to Cook’s distance of 0.03.

The plots shown in Fig. 20.4 suggest that, for instance, removing the subject
“75” attenuates the estimate of the coefficient of the treat.fActive variable,
i.e., the treatment effect. The effect of removal of this subject on the estimates
of the remaining fixed-effect coefficients is relatively small. In contrast, removing
the subject “227” affects the estimates of all fixed-effects coefficients to a different
degree and in different directions. More specifically, the intercept is driven toward
lower values; the positive slope associated with visual acuity at baseline, visual0,
is further increased; the negative slope associated with time is brought closer to
zero; and the treatment effect is attenuated.
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Overall, we note that the effect of removing any of the subjects on the fixed-
effects estimates is fairly small, as it does not exceed 0.4 of the SE of any of the
estimates.

20.4 Simulation of the Dependent Variable

In this section, we consider simulation of the dependent variable, based on the
marginal distribution implied by the fitted model. Toward this end, we have
developed the function simulateY(), which can be used for objects of class lme.
We note that the function is different from simulate.lme(), available in the nlme
(Sect. 14.7), in that the latter returns simulation-based REML and/or ML values and
not the values of the dependent variable.

In Panel R20.11, we demonstrate the use of the simulateY() function to
create the empirical distribution of the b estimates. As an example, we consider
model M16.5, which was fitted to the armd data in Sect. 16.4.3. Note, however, that
the presented syntax is fairly general and can be used for other LMMs as well.

We apply the function simulateY() to the object fm16.5ml. Recall that this
object was created in Panel R20.6a and stores the results of the ML estimation of
model M16.5. We note that the object fm16.5ml is used as the main (first) argument

R20.11 ARMD Trial: The use of the simulateY() function to create the em-
pirical distribution of ̂b for model M16.5. The object fm16.5ml was created in
Panel R20.6a

> library(nlmeU)

> simY <- simulateY(fm16.5ml, nsim=1000) # Simulated y from M16.1
> auxDt <- subset(armd, # Auxiliary data

+ select = c(subject, visual, visual0, time, treat.f))

> simYsumm <-

+ apply(simY,

+ MARGIN = 2, # Over columns

+ FUN = function(y){

+ auxDt$visual <- y # Dependent variable updated

+ auxFit <- # Update M16.1 with new y

+ update(fm16.5ml, data = auxDt)

+ summ <- summary(auxFit) # Summary

+ beta <- fixef(summ)

+ list(beta = beta)

+ })

> simYsumm[[1]] # ̂b for the 1st simulation

$beta

(Intercept) visual0 time treat.fActive

4.59395 0.90295 -0.24768 -3.94995
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of the simulateY() function. The value of the second argument, nsim, requests
generation of 1,000 simulations. They are drawn from the marginal distribution of
the dependent variable implied by the fitted model M16.5. The generated data are
stored in the matrix simY with 867 rows and 1,000 columns.

In the next step, we prepare an auxiliary data frame auxDt. It contains a subset of
variables from the armd data frame. The selected variables are those that are needed
to fit model M16.5. Next, with the help of the apply() function, we sequentially use
every column of the matrix simY as the argument y of an auxiliary function defined
in the argument FUN of apply(). The auxiliary function performs the following
steps:

• The dependent variable visual in the auxDt data frame is replaced with a new
set of simulated values contained in the vector y.

• Model M16.5 is fitted to the modified data frame.
• The vector beta with the estimates of fixed-effects coefficients is extracted from

the summary of the model-fit object with the help of the fixef() function.
• The vector of estimates is returned as a list with one component named beta.

The apply()-function call returns a list named simYsumm with 1,000 components,
each corresponding to one simulation. This list contains all the information about
the empirical distribution of the ̂b estimates. For the reader’s reference, the first
component with the estimates obtained for the first simulation is presented at the
bottom of Panel R20.11.

It should be mentioned that the creation of the simYsumm list involves refitting
model M16.5 many times, and it therefore takes a long time. The execution time
can be shortened, if we decide to perform, e.g., a reduced number of likelihood
iterations, instead of performing iterations until convergence (see also a similar
comment for Panel R20.8a in Sect. 20.3.2).

It is also worth noting that the creation of the auxiliary data frame auxDt with
selected variables for use within the apply() function is important for at least three
reasons: to avoid overwriting the original data stored in the data frame armd, to
reduce the amount of internal memory used, and to shorten the execution time of
the update() function used to refit model M16.5.

In Panel R20.12, we explore the basic characteristics of the empirical distribution
of the b estimates obtained in Panel R20.11.

Toward this end, with the help of the sapply() function, we extract the vectors
with the values of ̂b for each simulation from the list-object simYsumm and bind
them column-wise into the matrix betaE. Then, we use the function rowMeans()

to compute the mean values of the columns, i.e., across the rows, of betaE. As a
result, we obtain the sample means of the 1,000 (simulated) estimates of the fixed-
effects coefficients for the intercept and the variables time and treat.f. The mean
values are close to the ML estimates obtained in Panel R20.6b for model M16.5
fitted to the data frame armd.
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R20.12 ARMD Trial: Summary statistics of the empirical distribution of ̂b for
model M16.5. The object simYsumm was created in Panel R20.11

> betaE <- sapply(simYsumm, # Matrix with ̂b
+ FUN = function(x) x$beta)

> rowMeans(betaE) # Empirical ̂b (see Panel R20.6b)

(Intercept) visual0 time treat.fActive

5.37646 0.90113 -0.24115 -2.66659

> cov(t(betaE)) # Empirical ̂Var(̂b)
(Intercept) visual0 time treat.fActive

(Intercept) 4.7447721 -7.5371e-02 -3.5957e-03 -0.64417519

visual0 -0.0753712 1.3785e-03 -1.6726e-05 0.00072322

time -0.0035957 -1.6726e-05 5.5794e-04 0.00183248

treat.fActive -0.6441752 7.2322e-04 1.8325e-03 1.22061704

By applying the function cov() to the transpose of the matrix betaE, we obtain
the empirical estimate of the variance-covariance matrix of ̂b. Again, the estimate
is close to the ML estimate obtained in Panel R20.6b for the model M16.5 fitted to
the data frame armd.

It is worth noting that the calculations performed in Panels R20.11 and R20.12
can be extended, in a straightforward manner, to create empirical distributions for
the estimates of other parameters of the model M16.5 like, e.g., the parameter d
defined in (16.8) or parameters d11 and d22 defined in (16.16). In Sect. 20.5.3, the
syntax to simulate values of the F-statistics is given.

20.5 Power Analysis

Power analysis is an important step in the design of any experiment. In this section,
we present R tools that can be used to compute the power of an F-test of a fixed
effect in an LMM. In particular, we consider two approaches. One is based on
the method proposed by Helms (1992) and its implementation described in Litell
et al. (2006). A description of the approach is also presented in Verbeke and
Molenberghs (2000). The second approach is based on simulations. It uses the
function simulateY(), introduced in Sect. 20.4.

For illustration purposes, we consider the power analysis for the test of the
treatment effect in model M16.5. The model was defined for the ARMD data in
Sect. 16.4.3. First, in Sect. 20.5.1, we consider a post hoc power analysis based on
the fitted model M16.5. Then, in Sects. 20.5.2 and 20.5.3, we consider an a priori
power analysis.
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R20.13 ARMD Trial: Preparatory steps for the post hoc power calculations for the
treatment effect (M16.5). The model-fit object fm16.5 was created in Panel R16.13
(a) Extracting the basic information about the model

> formula(fm16.5) # Recall formula

visual ~ visual0 + time + treat.f

> fixef(fm16.5) # ̂b
(Intercept) visual0 time treat.fActive

5.44156 0.89983 -0.24156 -2.65528

(b) F-test for the treatment effect using the anova() function

> anova(fm16.5) # Default call

numDF denDF F-value p-value

(Intercept) 1 632 8471.1 <.0001

visual0 1 231 558.6 <.0001

time 1 632 102.1 <.0001

treat.f 1 231 5.5 0.0195

> anova(fm16.5, Terms = "treat.f") # Terms argument

F-test for: treat.f

numDF denDF F-value p-value

1 1 231 5.5345 0.0195

> anova(fm16.5, L = c("treat.fActive" = 1)) # L argument

F-test for linear combination(s)

[1] 1

numDF denDF F-value p-value

1 1 231 5.5345 0.0195

20.5.1 Post Hoc Power Calculations

In this section, we illustrate a post hoc power analysis for the treatment effect
in model M16.5. The model was fitted to the ARMD data in Sect. 16.4.3 and is
represented by the model-fit object fm16.5. The mean structure and the model
equation are given in (12.9) and (16.17), respectively. The coefficient of interest is
b3, as it describes the “Active” treatment effect. We are interested in testing the null
hypothesis H0 : b3 = 0 against the alternative hypothesis HA : b3 �= 0. In particular,
we want to compute the power for the alternative hypothesis HA,c : b3 = c , where c
is the value of b3 estimated from the data.

In Panel R20.13, we present several preparatory steps for the post hoc power
calculations. The actual calculations are deferred to Panel R20.14.

First, in Panel R20.13a, we recall the formula for the fixed effects, used in fitting
of model M16.5. The term of interest is treat.f. Then, with the help of the
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R20.14 ARMD Trial: The post hoc power calculations for the treatment effect in
model M16.5. The model-fit object fm16.5 was created in Panel R16.13
(a) Detailed calculations “by hand”

> alpha <- 0.05 # a
> df1 <- 1 # numDF

> df2 <- 231 # denDF

> Fvalue <- 5.5345 # F-value (from R20.13b)

> (Fcrit <- # Critical value for the F-test under H0
+ qf(1 - alpha,

+ df1 = df1, df2 = df2, ncp =0))

[1] 3.882

> nc <- Fvalue * df1 # Noncentrality parameter

> pf(Fcrit, # Power

+ df1 = df1, df2 = df2,

+ ncp = nc, lower.tail = FALSE)

[1] 0.64907

(b) Post hoc power calculations using the Pwr() function

> library(nlmeU)

> Pwr(fm16.5) # Default call

Power calculations:

numDF denDF F-value nc Power

(Intercept) 1 632 8471.1 8471.1 1.0000

visual0 1 231 558.6 558.6 1.0000

time 1 632 102.1 102.1 1.0000

treat.f 1 231 5.5 5.5 0.6491

> Pwr(fm16.5, L = c("treat.fActive" = 1)) # The L argument

Power calculations for a linear combination:

treat.fActive

[1,] 1

numDF denDF F-value nc Power

1 1 231 5.5345 5.5345 0.6491

function fixef(), we extract the estimates of the fixed-effects coefficients from
the model-fit object fm16.5. In this way, we learn about the values of the estimates
and about the names used to identify the estimates. In particular, we note that the
fixed-effect estimate named treat.fActive corresponds to the treat.f term. We
also note that c, used in specification of HA,c, is equal to -2.65.

In Panel R20.13b, we explore three different forms of the syntax for the
anova()-function call to obtain the F-test for treat.f. All of these forms use
the model-fit object fm16.5 as the main argument. The most commonly used
syntax, which was also applied in earlier chapters, does not involve any additional
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arguments. By default, it returns results of the sequential-approach F-tests for all
terms in the mean structure of the model. The last two forms use the Terms and L

arguments, respectively, and return the F-test just for the desired term, i.e., treat.f.
All three calls to the anova() function return the value of 5.54 for the F-test statistic
for the treat.f factor. The value will be used later in the power calculations.
At this point, we want to bring reader’s attention to the syntax employing the L

argument. This syntax is the most general, because it allows specifying any linear
hypothesis involving the b elements. Typically, the argument L is set to a matrix, L,
introduced in (4.30) in the context of the classical LM. In our example, the argument
L = c("treat.fActive" = 1)) defines the vector L≡ (0,0,0,1).

The reason why we present, in Panel R20.13b, the three different forms of syntax
for the anova()-function call is that they can be adopted by the Pwr() function,
which will be introduced later in this section.

In Panel R20.14, we demonstrate how to perform the post hoc power calculations
for the treatment effect in model M16.5.

First, in Panel R20.14a, we perform detailed calculations “by hand.” We specify
all the information needed to perform the calculations, including the level of
significance a, the numerator and denominator degrees of freedom, and the value
of the F-test statistic from the ANOVA table displayed in Panel R20.13b. We store
these values in the objects alpha, df1, df2, and Fvalue, respectively.

Then, we use the first three objects as the arguments for the function qf(), which
is the quantile function for the F-distribution, to calculate the critical value, Fcrit,
of the F-test for the treatment effect under the null hypothesis H0. Based on the
value of the F-test statistic and the number of the numerator degrees of freedom,
we calculate the noncentrality parameter nc and use it as an argument in pf(), the
cumulative distribution function for a noncentral F-distribution, to calculate the post
hoc power for the observed treatment effect. The obtained power is equal to 0.65.

In Panel R20.14b, we present the post hoc power calculations using the generic
function Pwr() that has been included in the package nlmeU. The syntax of the
Pwr()-function call is similar to that used for anova() in Panel R20.13b. The
calculations performed by the function Pwr() proceed in a similar way to the one
presented in Panel R20.14a. Thus, the result is identical. We conclude that, at the
significance level a = 0.05, the post hoc power to detect the observed difference
of −2.65 in visual acuity is 0.65.

The post hoc power is a re-expression of the p-value (Lenth 2001). Hence, it does
not add any new information about the current study. It could be of some value if
we contemplated repeating the current study with exactly the same sample size. The
post hoc power would then provide information about the probability of rejecting
the null hypothesis if the treatment effect were of the same magnitude as the one we
have observed. In practice, however, it is more important and meaningful to perform
a priori power calculations, i.e., to compute the power of a newly-designed study
before the study commences. In the next section, we present the use of the Pwr()

function toward this end.
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20.5.2 A Priori Power Calculations for a Hypothetical Study

In this section, we perform a priori power calculations using the analytical formulae
proposed by Helms (1992).

For the sake of the presentation, let us imagine that we intend to design a two-
group randomized clinical trial to investigate the effect of a new intervention on
visual acuity in patients with age-related macular degeneration.

Based on the cost considerations, the tentative sample size is set to n = 20
subjects per group. Similarly to the ARMD trial, we plan to have four-time
measurements at the same time points, i.e., at 4, 12, 24, and 52 weeks.

We assume that, in the analysis of the data, the following simplified model will
be employed:

VISUALit = b0 +b2×TIMEit +b3×TREATi

+ b0i + b2i×TIMEit + eit. (20.1)

The mean structure of the model is defined by the effects of continuous time and
treatment factor, represented by the time and treat.f terms in the lme()-function
model formula. The random-effects structure is defined in the same way as in
model M16.5, with a diagonal matrix D (16.16) and the power-of-time variance
function (16.8).

For the purpose of the new study, we assume that the clinically meaningful and
attainable treatment effect, i.e., the mean difference in visual acuity between the
two treatment groups, is equal to b3 = 10 letters at each timepoint between 4 and 52
weeks. We also assume that, every 10 weeks, visual acuity declines in both groups,
on average, by b2 = 1 letter. Consequently, we specify the null hypothesis H0 : b3 =
0, with the alternative HA,c : b3 = 10.

For the power calculations, we set the values of the variance-covariance parame-
ters as follows: d11 = 100, d22 = 0.09, d= 0.15, and s = 5. These values are slightly
higher as compared to those obtained for model M16.5 and should result in a more
conservative power estimate.

The a priori power calculations will be performed in the following steps:

• Construction of an exemplary dataset (Panel R20.15)
• Construction of an object of class lme containing all the information about the

alternative model (Panel R20.16)
• Calculation of the power using the function Pwr() (Panel R20.17)

In Panel R20.15, we illustrate how to create an exemplary dataset for an a priori
power analysis for a treatment effect in a newly-designed, hypothetical study.

First, we define the numeric vectors npg and subject containing, respectively,
the number of subjects per treatment group and subjects’ identifiers. Then, with the
help of the function gl(), we create the treat.f factor for the subject-level data.
The first argument of the function gl() specifies the desired number of levels (in
our case, two); the second indicates the number of replications of each level (in our
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R20.15 ARMD Trial: Constructing an exemplary dataset for an a priori power
analysis of the treatment effect in a hypothetical study
(a) Create an exemplary dataset

> npg <- 20 # No of subjects per group

> subject <- 1:(2*npg) # Subjects' ids

> treat.f <- gl(2, npg, labels = c("Placebo", "Active"))

> dts <- data.frame(subject, treat.f) # Subject-level data

> dtL <-

+ list(time = c(4, 12, 24, 52),

+ subject = subject)

> dtLong <- expand.grid(dtL) # "Long" format

> mrgDt <- merge(dtLong, dts, sort = FALSE) # Merged

> exmpDt <-

+ within(mrgDt,

+ {

+ m0 <- 65 - 0.1 * time # Under H0
+ mA <- 85 - 0.1 * time # Under HA
+ mA <- ifelse(treat.f %in% "Active", mA, m0)

+ })

(b) The syntax to create Fig. 20.5 illustrating the exemplary data

> selDt <-

+ with(exmpDt,

+ {

+ lvls <- levels(treat.f) # "Placebo", "Active"

+ i <- match(lvls, treat.f) # 1, 81

+ subj <- subject[i] # 1, 21

+ subset(exmpDt, subject %in% subj)

+ })

> library(lattice)

> xyplot(mA ~ time, # Fig. 20.5

+ groups = treat.f,

+ data = selDt,

+ type = "l",

+ auto.key = list(lines = TRUE, points = FALSE),

+ grid = TRUE)

case, 20); and the third provides the labels for the levels (in our case, "Placebo"
and "Active").

Next, we construct the data frame dts with two variables, subject and
treat.f, with the first 20 subjects coming from the "Placebo" group and the
subsequent 20 subjects coming from the "Active" group. In addition, we create
the list dtL with two components named "time" and "subject". Both are
numeric vectors; the first one contains the values of 4, 12, 24, 52, while the
second one contains the values from 1 to 40. Then, with the help of the function
expand.grid()we construct a “long”-format data frame dtLong, which contains
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R20.16 ARMD Trial: Constructing an object of class lme representing the alternative
model. The object exmpDt was created in Panel R20.15a
(a) Objects of class pdMat and varPower to define variance-covariance structures

> D0 <- diag(c(100, 0.09)) # D
> sgma <- 5 # s
> (D <- D0/(sgma*sgma)) # D

[,1] [,2]

[1,] 4 0.0000

[2,] 0 0.0036

> (pd1 <- pdDiag(D, form = ~time, data = armd))

Positive definite matrix structure of class pdDiag representing

(Intercept) time

(Intercept) 4 0.0000

time 0 0.0036

> (vF <- varPower(form = ~time, fixed = 0.15))

Variance function structure of class varPower representing

power

0.15

(b) Fitting the model to the exemplary data using the lme() function with 0 iterations

> cntrl <-

+ lmeControl(maxIter = 0, msMaxIter = 0, niterEM = 0,

+ returnObject = TRUE, opt = "optim")

> fmA <-

+ lme(mA ~ time + treat.f,

+ random = list(subject = pd1),

+ weights = vF,

+ data = exmpDt,

+ control = cntrl)

> fixef(fmA) # b verified

(Intercept) time treat.fActive

65.0 -0.1 20.0

> sigma(fmA) # s ≈ 0

[1] 2.2947e-14

the combinations of all values of the two vectors from the dtL list. Subsequently,
we merge dtLong and dts by applying the merge() function. The result is
stored as the data frame mrgDt. Finally, with the help of the function within(),
we add to the data frame two variables, m0 and mA. They contain the expected
values of the dependent variable under the null and the alternative hypothesis,
respectively. The variable mA is the key variable in the context of the power



518 20 Extensions of the R Tools for Linear Mixed-Effects Models

R20.17 ARMD Trial: The use of the Pwr() function to perform the a priori power
calculations for the treatment effect in a hypothetical study. The objects sgma and
fmA were created in Panels R20.16a and R20.16b, respectively
(a) Power calculations using the Pwr() function

> Pwr(fmA, sigma = sgma, L = c("treat.fActive" = 1))

Power calculations for a linear combination:

treat.fActive

[1,] 1

numDF denDF F-value nc Power

1 1 38 8.043 8.043 0.7892

(b) Use of the altB argument to create data for plotting the power curve

> dif <- seq(1, 15, by = 0.1) # Δ
> dim(dif) <- c(length(dif), 1)

> colnames(dif) <- "treat.fActive"

> dtF <- # Data for Fig. 20.6

+ Pwr(fmA, sigma = sgma,

+ L = c("treat.fActive" = 1), altB = dif)

> dtF[ ,1:4] # Four variables

(Intercept) time treat.fActive Power

1 65 -0.1 1.0 0.058804

2 65 -0.1 1.1 0.060664

. . . [snip]
91 65 -0.1 10.0 0.789248

. . . [snip]
140 65 -0.1 14.9 0.984490

141 65 -0.1 15.0 0.985534

(c) Plotting the power curve

> xyplot(Power ~ treat.fActive, # Fig. 20.6

+ data = dtF, type="l",

+ auto.key = list(lines = TRUE, points = FALSE),

+ grid = TRUE)

calculations. On the other hand, m0 plays an auxiliary role and is not essential for
the calculations.

It is worth noting that the exemplary dataset exmpDt is created solely using
the assumed values of the fixed effects. The random structure of the model is not
reflected by any means in the exemplary data.

In Panel R20.15b, we demonstrate how to graphically represent the expected
values of the dependent variable under the model implied by the exemplary data.
Toward this end, we create an auxiliary data frame selDt by extracting two subjects,
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Fig. 20.5 ARMD Trial: Mean values for the alternative model for the a priori power analysis, as
specified by the exemplary data

one from the "Active" group and another from the "Placebo" group. We then use
these data to plot, with the help of the xyplot() function from the lattice package,
the values of the variable mA against time separately for each of the treatment
groups. The resulting plot is shown in Fig. 20.5.

In Panel R20.16, we create an object of class lme containing all the information
about the alternative model. Toward this end, first, in Panel R20.16a, we initialize
the object pd1 representing the diagonal variance-covariance matrix D for the
random effects. The object is initialized with the use of the pdDiag-class constructor
function (Sect. 14.2.1). In addition, with the help of the varPower-class constructor
function (Sect. 8.2.1), we create the object vF, which represents the assumed
variance function. Note that we use the argument fixed of the constructor function,
which implies that the variance-function parameter d is fixed at the assumed value
of 0.15 and is not to be changed during any numerical-optimization routine.

In Panel R20.16b, we use the lme() function to create an object of class
lme representing the alternative model. The underlying idea is to incorporate all
the variance-covariance parameters, defined in Panel R20.16a, into the model-fit
object and hold the parameters unchanged. We also require that the fixed-effects
coefficients, implied by the exemplary dataset exmpDt, remain unchanged. Toward
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this end, we set the components maxIter, msMaxIter, and nIterEM of the
lmeControl list to zero so that the lme() function is executed without performing
any iterations, i.e., without any change of the initial values of the model parameters.
To avoid irrelevant error messages, we indicate, by setting the appropriate value
of the opt component of the list, the use of the optim() optimizer instead of
nlinmb() used by default. Finally, we set the logical value of the returnObject

component to TRUE, indicating that lme() should return the model-fit object when
the maximum number of iterations is reached without convergence of the algorithm.

We store the lmeControl list with the appropriately modified components in
the object cntrl. We then use the object in the control argument of the lme()

function to fit the assumed LMM to the exemplary dataset exmpDt. By extracting
the values of the fixed-effects coefficients from the model-fit object fmA, we confirm
that they correspond to the values assumed for the alternative model. Although we
do not show it in Panel R20.16b, it is straightforward to demonstrate that also the
variance-covariance parameters incorporated in fmA did not change as compared
to their initial values, as intended. We note, however, that in contrast to the other
variance-covariance parameters, the value of the scale parameter s has become very
close to zero, i.e., has changed from the starting value s = 5. This is not surprising,
given that in the exemplary dataset no residual random error was introduced. The
fact that the value of s is close to zero is a confirmation that the exemplary data and
the fixed-effects formula, used in the lme()-function call, define the same mean
structure, as intended.

In Panel R20.17, we present various arguments used in the Pwr()-function
call. In Panel R20.17a, we employ a typical set of arguments to perform a priori
power calculations. The syntax is similar to the one employing the L argument in
Panel R20.14b for the post hoc power analysis. The only, but critical, difference is
the use of the sigma argument. The use of the argument replaces the close-to-zero
value of the scale parameter s in the model-fit object fmA with the intended value
of 5, stored in the object sgma.

The resulting output of the Power() indicates that the power of the F-test for the
assumed alternative hypothesis, which specifies the mean difference in visual acuity
between the two treatment groups equal to 10, is equal to 0.789.

In Panel R20.17b, we demonstrate the use of the additional argument altB of
the Pwr() function to create data for the plotting of power curves. First, we create a
one-column matrix dif with different values of the treatment effect ranging from 1
to 15. To assure the proper merging of the information contained in the matrix, we
apply the name "treat.fActive" for the matrix column corresponding to fixed
effect that is being tested. By applying the function Pwr() with the argument altB,
we create the data frame named dtF, which can be used to plot a power curve
showing the relationship between the treatment effect and the power of the F-test.
For the readers’s reference, a few selected rows of the data frame dtF are printed.

Finally, in Panel R20.17c, we use the xyplot() function from the lattice
package to plot the power curve. The resulting plot is shown in Fig. 20.6.
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Fig. 20.6 ARMD Trial: The power curve resulting from the a priori power calculations

20.5.3 Power Evaluation Using Simulations

In Sect. 20.5.2, we performed a priori power calculations based on the analytical
formulae proposed by Helms (1992). In this section, we demonstrate how to evaluate
power using simulations.

Typically, to evaluate the power, we would simulate the empirical distribution of
the test statistic under the null and alternative hypotheses. For the sake of simplicity
of presentation, we will use a simplified approach. More specifically, we will use
the well-established analytical approximation of the null distribution of the F-test
statistic by an F-distribution with an appropriate number of degrees of freedom. In
contrast, the empirical F-test-statistic distribution under the alternative hypothesis
will be obtained using simulations. We note, however, that our presentation extends
in a straightforward way to the simulation of the test statistics both under the null
and alternative hypotheses.

To illustrate the simulation approach, we will use the same example of a
hypothetical study as in Sect. 20.5.2. In particular, for calculations, we use the
objects exmpDt, sgma, and fmA, created in Panels R20.15a, R20.16a, and R20.16b,
respectively. Recall that these objects contain the exemplary data, the scale parame-
ter, and the information about the LMM needed for the power calculations.

In Panel R20.18, we present the essential steps needed to simulate the distribution
of the F-test statistics under the alternative hypothesis.
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R20.18 ARMD Trial: Simulation of the F-test statistics based on the model-fit object
fmA. The objects exmpDt, sgma, and fmA were created in Panels R20.15a, R20.16a,
and R20.16b, respectively

> simA <- simulateY(fmA, sigma = sgma, nsim = 1000) # Simulation

> dt <- exmpDt # Working copy

> simfmA <-

+ apply(simA,

+ 2, # Over columns

+ function(y){

+ dt$mA <- y # mA over-written

+ auxFit <- update(fmA, data = dt)

+ anova(auxFit) # ANOVA table

+ })

> simfmA[[1]] # First ANOVA

numDF denDF F-value p-value

(Intercept) 1 119 4186.2 <.0001

time 1 119 4.8 0.0307

treat.f 1 38 3.4 0.0738

First, we use the simulateY() function from the package nlmeU (Sect. 20.4)
to simulate the values of the dependent variable. Toward this end, we employ the
marginal distribution of the dependent variable implied by the model-fit object fmA.
Recall that this object contains the information about all the parameters necessary
for the power calculations, except of the scale parameter s . To provide the value of
the parameter, we use the argument sigma. The simulated values of the dependent
variable are stored in the columns of a 160× 1000 matrix simA. Next, with the
help of the apply() function, we sequentially use every column of the matrix simA

as the argument y of an auxiliary function. The auxiliary function performs the
following steps:

• The dependent variable mA in a working copy dt of the exemplary dataset exmpDt
is replaced with a new set of simulated values contained in the vector y.

• The model-fit object mA is updated by re-fitting the model to the modified data
frame and stored as the object auxFit.

• The function anova() is applied to the model-fit object auxFit.

The apply()-function call returns a list named simfmA with 1,000 components,
each corresponding to one simulation. This list contains the information about the
F-tests for the fixed effects of the alternative LMM. For the reader’s reference, the
first component of the list is presented at the bottom of Panel R20.18.

It is straightforward to note that, to obtain empirical null distribution of the F-
test statistics, we would proceed in a very similar way. The only difference would
be that, instead of the model-fit object fmA, we would use a similar model-fit object,
but fitted to the m0 dependent variable (see Panel R20.15a), instead.
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R20.19 ARMD Trial: Empirical power of the F-test for the treatment effect based
on the simulated values of the F-test statistics. The object simfmA was created in
Panel R20.18

> FstatE <- # Empirical F-test statistics under HA
+ sapply(simfmA, function(x) x["treat.f", "F-value"])

> summary(FstatE)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.056 4.650 8.240 9.270 12.600 38.200

> Fcrit <- qf(1- 0.05, 1, 38, ncp =0)

> (nsim <- length(FstatE))

[1] 1000

> (powerE <- sum(FstatE > Fcrit)/nsim) # Empirical power

[1] 0.783

In Panel R20.19, we demonstrate the syntax allowing to finalize the simulation-
based power calculations.

First, we use the sapply() function to extract the values of the F-test statistic for
the "treat.f"fixed effect from the ANOVA tables contained in the components of
the simfmA list. These values represent the empirical distribution of the test statistic
under the alternative hypothesis HA. They are stored in the numeric vector FstatE.
By applying the summary() function to the vector, we obtain the summary statistics
of the empirical distribution. As we mentioned earlier, the critical value Fcrit of the
F-test statistic at the significance level a= 0.05 under the null hypothesis is obtained
based on the well-established approximation involving a central F-distribution. The
empirical power is simply obtained by calculating the proportion of the simulated
values of the F-test statistic larger than the critical value. The empirical power of
0.783, shown in Panel R20.19, is very close to the value obtained based on the
analytical formulae in Panel R20.17a.

In summary, the simulation approach to power calculations is attractive, due to
its flexibility. It can prove especially useful if the impact of various mechanisms of
missing values needs to be investigated. In that case, the missing data patterns to
be evaluated need to be reflected in the exemplary data used to create the model-fit
objects underlying the simulations.
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523
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base package (cont.)
levels(), 16, 19, 46, 105, 332, 487, 500,

516
library(), 9, 40, 43, 51, 57, 58, 62, 63,

169, 278, 319, 363, 395, 460, 470,
479, 493, 494, 504, 509, 513, 516

list(), 42, 46, 50, 63, 219, 285, 287,
291, 293, 344, 349, 373, 376, 380,
405, 409, 413, 416, 418, 420, 421,
424, 425, 434, 436, 446, 479, 487,
516–518

load(), 28
log(), 93, 99–101, 281, 282
match(), 30, 516
matrix(), 278, 413
mean(), 50, 63, 375, 378
merge(), 24, 57, 62, 516, 517
methods(), 158, 279
mode(), 16, 456
names(), 13–15, 18, 21, 24, 25, 29, 33, 50,

57, 94, 95, 98–100, 103, 105, 116,
286, 287, 368, 376, 416, 424, 436,
439, 446, 468, 472, 476, 477, 483,
494, 498, 502, 503

nrow(), 316, 319, 324, 342
options(), 9, 105, 467
ordered(), 93, 103
paste(), 35, 42, 62, 393, 409
pmax(), 375
pmin(), 375
print(), 48, 103, 108, 156, 210, 219, 223,

226, 239, 367, 368, 405, 409, 413,
425, 427, 436, 457, 460

prmatrix(), 288, 289
range(), 34, 35, 55, 56, 58, 59, 332, 389,

396, 438, 439, 476
rbind(), 375, 376
rep(), 42, 203, 504
require(), 9, 29, 120, 321, 368, 376, 378,

382, 449, 500
rm(), 57, 478
rowMeans(), 375, 510, 511
rownames(), 117, 390, 393, 394, 403–406,

409, 418, 425
sapply(), 15, 54, 55, 373, 374, 476, 477,

504, 506, 510, 511, 523
save(), 28
seq(), 40, 118, 446, 456, 518
solve(), 205, 506
sqrt(), 93, 99, 101, 169, 282, 487
subset(), 18, 19, 29, 40, 46, 48, 49, 62,

203, 341, 342, 376, 388, 389, 393,
409, 500, 503, 504, 509, 516

substr(), 467, 468

sum(), 54, 58, 59, 317, 468, 500,
523

summary(), 33, 48, 58, 108, 109, 116,
117, 119, 154, 156, 161, 210,
211, 218, 222, 279, 290, 294, 298,
313, 314, 321, 322, 370, 373, 390,
391, 403, 427, 440, 457, 504, 523

system.time(), 470, 479, 480
t(), 205, 282, 316, 317, 319, 324, 375,

376, 413, 506, 511
table(), 41
tapply(), 42–44, 46, 48–50, 63, 393, 394,

409, 410
tcrossprod(), 316–318
unique(), 14, 57, 62, 155, 503
unlist(), 380, 393, 394, 409, 410, 459,

461, 471, 472
upper.tri(), 282, 283, 409, 410
var(), 46, 48, 394, 395, 477
with(), 41, 46, 49, 50, 63, 516
within(), 19, 22, 23, 27, 35, 46, 60, 62,

316, 371, 372, 378, 396, 478, 479,
486, 487, 516, 517

E
ellipse package, 8, 171, 395, 396

ellipse(), 171, 395, 396

F
Functions, replacement

coef()<-, 153, 200, 212
colnames()<-, 42, 103, 115, 498, 518
contrasts()<-, 19, 105
diag()<- 282
dim()<- 492, 518
dimnames()<-, 219, 223, 226, 239, 405,

406, 409, 503, 504
names()<-, 14, 51, 57, 376, 418, 419, 427,

487, 498, 503, 504
options()<-, 467
rownames()<-, 117, 368, 390, 393, 403,

406, 427, 428

G
graphics package, 64

abline(), 118, 365
plot(), 118, 119, 500, 506

data.frame objects, 201
points(), 500, 501, 506
text(), 500, 501, 506
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L
lattice package, 8, 40, 43, 52, 53, 61–63, 121,

169, 227, 340, 345, 374, 484, 504,
505, 516, 519, 520, 529

bwplot(), 43, 169, 227, 228, 233, 339,
340, 483, 484

densityplot(), 374–375
dotplot(), 52, 61, 62, 313, 473–475, 504
histogram(), 63
ltext(), 439, 504
panel.bwplot(), 43, 228, 484
panel.grid(), 228, 395, 476, 477
panel.lines(), 476
panel.stripplot(), 228
panel.xyplot(), 395, 439, 476, 504
splom(), 171, 507
update(), 40, 43, 228, 454–456, 461, 504
xyplot(), 40, 58, 61, 62, 201, 345, 395,

396, 407, 438, 439, 443, 446,
447, 451, 454, 476, 477, 483, 516,
518–520

lme4 package, 4, 260, 312, 322, 325, 326
lme4.0 package, 4, 5, 304, 310, 312, 313, 325,

326, 374, 381, 431, 462, 478
anova()

mer objects, 371, 379, 380, 461
coef()

mer objects, 313, 472, 473
summarymer objects, 313, 371, 380,

471
fixef(), 294, 295, 481, 498, 506, 509,

510, 512, 513, 517
getME(), 313, 321–325
lmer(), 4, 6, 7, 301, 303–327, 367–384,

429, 431, 457–462, 465, 468–480,
489

lmList class, 292
mer class, 312–315, 321–324, 326, 369,

372, 377, 379, 459–461, 470–472,
474

plot

coef.mer objects, 313, 472
ranef.mer objects, 313, 395, 461,

472
ranef(), 313, 460, 461, 472, 474, 475
ranef.mer class, 472, 474
refit(), 314, 315, 373, 378
sigma(), 312, 313, 369, 370, 373, 380,

459, 461, 471, 472
simulate.mer() method, 314, 315,

372–376
summary.mer class, 373, 470
VarCorr(), 313, 369, 370, 380, 459, 461,

471, 472

M
Matrix package, 8, 9, 303, 318, 319, 478,

527
Cholesky(), 318–320
Diagonal(), 319, 370
expand(), 322, 323
nnzero(), 318, 319
sparse matrix class(es)

ddiMatrix, 323
dgCMatrix, 318, 319, 321
dpoMatrix, 368
dsCMatrix, 319, 324
pMatrix, 319, 320, 323
sparseMatrix, 319, 324

tcrossprod(), 319, 321, 322
methods package

as(), 319, 324
show(), 287
slot(), 312
slotNames(), 312

N
nlme package, 3–9, 28, 29, 35, 36, 72, 89, 107,

109, 119, 120, 128, 129, 132, 136,
137, 149–151, 154, 160, 179, 181,
182, 190, 191, 197, 198, 209, 263,
264, 266, 267, 275, 276, 278, 284,
289, 294, 299, 300, 303, 325, 327,
361, 374, 380, 429, 462, 465, 478,
479, 486, 489, 491, 493, 509

anova()

gls objects, 110, 157, 161, 164, 165,
211, 219, 220, 222–226, 235, 237,
363

lme objects, 297, 298, 300, 350, 358,
362–365

as.matrix()

pdMat objects, 277, 279, 417
reStruct objects, 288

augPred()

lme objects, 342
augPred(), 342, 343
coef()

corStruct objects, 199, 200, 203–205,
208, 211, 212

gls objects, 108, 109
lme objects, 294, 295, 467, 468
lmeStruct objects, 291, 426
pdMat objects, 279, 281–283, 287,

417
reStruct objects, 287–290
summary.gls objects, 109
summary.lme objects, 294
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nlme package (cont.)
varFunc objects, 152, 153, 157, 168,

426
corAR1(), 200, 205–207, 221, 222, 224
corCompSymm(), 198, 203, 204, 212,

217
corExp(), 201, 206, 208, 209, 291
corMatrix(), 199, 201–208, 210–212,

280
corSpatial classes

corExp, 181–183, 185, 200–202, 206,
208, 209, 291

corGaus, 181–183, 200
corLin, 181–183, 200
corRatio, 181–183, 200
corSpher, 181–183, 200

corStruct classes
corAR1, 181, 182, 200, 202, 204–207,

240
corARMA, 181–183
corCAR1, 181, 182
corCompSymm, 181, 182, 198,

202–204, 206, 212, 217, 240
corStruct class, 7, 197–202, 209, 211, 240,

290–292, 297
Dim(), 279
fixef(), 295, 369, 433, 471, 481, 498,

506, 510, 512
getCovariate(), 154, 155, 157, 201,

203, 204, 207, 210, 211
getData(), 109
getGroups(), 154, 155, 157, 331, 332,

388, 389, 433, 435
getGroupsFormula(), 155, 157, 286,

287, 290, 331, 332, 388, 389, 433,
435

getVarCov(), 211, 219, 295, 332–334,
336, 337, 369, 391, 394, 404, 408,
414, 424, 425, 435, 436, 481, 482

gls class, 109, 110, 156, 157, 173, 210, 214,
233, 296, 361, 364

gls(), 6, 72, 89–111, 113, 116, 119, 120,
132, 136–138, 149–168, 173, 179,
190, 197–212, 216–218, 221, 224,
236, 240, 293, 327, 363, 364

groupedData class, 36, 209, 292, 293, 308
gsummary(), 28–30
Initialize(), 151, 152, 199, 201,

203–208
intervals(), 109, 119, 120, 156, 157,

161, 162, 210, 217, 218, 221, 225,
294, 295, 312, 348, 349, 354, 357,
374, 398, 404, 406, 482

is.Initialized(), 278, 286, 287

lme, 8, 275, 292–301, 303, 312, 314, 369,
453, 499, 501, 503, 506, 509, 515,
517, 519

lme(), 4, 6–8, 96, 100, 108, 150, 158,
198, 212, 263, 264, 275–301, 303,
308–312, 314, 325, 327, 330, 331,
336, 356, 359, 367, 372, 380–384,
388, 389, 398, 402, 403, 412, 413,
416, 417, 420, 423, 424, 429, 430,
433, 434, 441, 442, 445, 449, 451,
459, 462, 465, 470, 478–489, 494,
495, 509, 515, 517, 519, 520

lmeControl(), 423, 424, 517, 520
lmeStruct class, 275, 290, 291, 297, 301
lmeStruct(), 290, 291
lmList class, 292, 293, 342
logDet(), 210, 211, 279, 280, 290
Names(), 279, 280, 286, 287, 494
pdBlocked(), 276, 311
pdCompSymm(), 277, 278, 420
pdDiag(), 276, 285, 293, 310, 349, 355,

517
pdIdent(), 311, 416, 417, 420, 479–488,

493, 496
pdLogChol(), 282, 283, 333, 337, 392,

416, 417, 423, 424, 436, 493
pdMat classes

pdCompSymm, 276–281, 286, 290
pdDiag, 276, 284, 349, 519
pdIdent, 276, 416, 480, 493, 495, 496
pdLogChol, 276, 282, 283, 285, 347,

493, 495
pdNatural, 276, 282, 283
pdSymm, 276–284, 286, 288, 290,

293
pdMat class, 275–288, 291, 301, 404,

415–417, 419, 420, 423, 427, 429,
491–497, 517

pdMatrix(), 281, 282, 290
pdNatural(), 282, 283
pdSymm(), 277, 278, 282, 285, 293
plot()

augPred objects, 345
gls objects, 169, 201, 228–230, 394
lme objects, 339
ranef.lme objects, 455–457, 483
simulate.lme objects, 299, 365
Variogram objects, 215

ranef(), 292, 295, 339, 342, 352, 394,
395, 414, 454–455, 458, 482, 483

reStruct class, 7, 275, 283–292, 295, 297,
301, 332, 338, 357, 419, 427, 440,
445

reStruct(), 284, 285, 287, 290, 291
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simulate(), 299, 300, 361, 364–366
simulate.lme class, 299
simulate.lme() method, 314, 367, 509
update(), 154

gls objects, 164, 221, 225, 226, 235,
237

lme objects, 330, 336, 348, 349, 354,
358, 362, 365, 398, 434, 439, 441,
442, 445, 451, 498, 503, 509, 510,
522

mer objects, 380, 460
varCorr(), 280, 294, 295, 332, 333, 337,

355, 391, 392, 435, 436, 481, 488
varExp(), 128, 129, 150, 151, 291
varFunc classes

varComb, 151
varConstPower, 151
varExp, 151, 152, 291
varFixed, 151
varPower, 151, 152, 158, 217, 381, 429,

517, 519
varFunc class, 7, 149–158, 199, 290–292,

297
Variogram(), 199–201, 214–216
VarPower(), 150, 151, 158, 163, 164, 217,

240, 336, 338, 398, 517
varWeights(), 154, 155, 157, 168

nlmeU package, 8, 9, 12–17, 26, 28, 34, 36,
40, 98, 340, 433, 466, 484, 491, 494,
499, 514, 522, 527

logLik1(), 497, 499–501, 503, 504
missPat(), 16, 17
pdKronecker(), 416, 420, 424,

493–495
pdMat classes

pdKronecker, 385, 415, 416, 422, 427,
430, 491–496

Pwr(), 491, 513–515, 518, 520
sigma(), 517
simulateY(), 491, 509–511,

522
nlmeU package; datasets

armd, 14, 17–20, 35, 36, 106, 120, 151,
154, 222, 339, 341, 497, 499–504,
507, 509–511

armd.wide, 14–18, 35, 36, 40, 41, 44, 46,
48, 98, 99, 101, 106

armd0, 14, 17–20, 35, 36, 40, 42, 43
fcat, 34–36, 63, 466, 467, 470, 471, 478,

479
prt, 22–24, 36, 48–51, 388, 389, 403, 407,

409, 413, 416, 420, 423, 424
prt.fiber, 22–24, 36
prt.subjects, 22–24, 36, 48, 49

SIIdata, 26–31, 36, 54–57, 59–62, 433,
434, 438, 439, 443, 451, 454, 457,
458, 460

R
reshape package, 8, 17, 50, 51, 64, 374, 425

cast(), 17, 51, 52, 57, 64
melt(), 17, 50, 51, 57, 64, 374, 376, 423,

424
RLRsim package, 8, 17, 50, 51, 64, 374, 425

exactRLRT(), 300, 315, 361, 363–366,
376, 378, 379, 382

S
splines package, 8, 101, 449

bs(), 93, 101, 445, 449, 462
stats package

AIC(), 109, 164, 222, 294, 300, 362, 449
anova(), 109, 116, 118
anova.lm(), 298
BIC(), 109, 294, 300
C(), 105, 106
coef(), 108, 109, 116, 117, 467, 468
confint(), 108, 109
contr.helmert(), 103, 104
contr.poly(), 19, 103, 104, 106
contr.SAS(), 103, 104
contr.sum(), 103–106
contr.treatment(), 102–104, 106,

114
contrasts(), 19, 105, 106, 115
cor(), 46–48
cov(), 511
cov2cor(), 47, 48, 219, 223, 226, 239,

282, 283, 334, 335, 337, 355,
393, 394, 404, 405, 409, 410, 424,
425

deviance(), 313
fitted(), 108, 109, 118, 163, 169, 228,

230, 294, 296, 312, 313, 396, 398,
407

formula class, 7, 90–101, 107, 114, 155,
157, 209, 280, 290, 292, 308–312,
364, 465, 496

formula(), 16, 91, 99, 109, 114, 115,
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217, 237, 279, 280, 286, 287, 289,
290, 297, 312, 313, 331, 354, 378,
389, 424, 434, 445, 449, 451, 471,
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lm class, 108–110, 116, 293, 376
lm(), 72, 89–111, 113–120, 308, 378,

465–467, 489
logLik(),109 154–157, 210, 313,

376–379, 392, 459, 461, 481,
497–499, 501, 503, 504

model.frame class, 97, 111
model.frame(), 94, 96–99, 101, 107,

109, 115, 297
model.matrix(), 94, 96, 97, 102, 103,

109, 288, 289, 296, 297, 313, 316,
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na.omit(), 97
pchisq(), 364, 365, 378, 382
pf(), 371, 513, 514
poly(), 93, 98–102, 444, 445, 451, 460,

462
predict(), 101, 109, 119, 156, , 210, 294,

296, 343, 446
printCoefmat(), 116, 117, 330, 331,

371, 372, 403, 427, 428
pt(), 371
qf(), 513, 514
qnorm(), 342
qqline(), 119, 396, 407
qqnorm(), 119, 228, 233, 234, 339, 342,

352, 357, 396, 397, 399, 407, 408,
451–454, 457, 458, 461, 483

quantile(), 375
resid(), 118, 119, 156, 157, 169, 210,

211, 228, 230, 234, 294, 296, 339,
340, 342, 357, 438, 451, 452, 454,
461, 483

residuals(), see resid()
rnorm(), 316
terms class, 94–96, 100–102, 110, 237
terms(), 94, 95, 97, 102, 496, 497
update(), 93, 95, 107, 403, 441, 442
vcov(), 108, 109, 294, 295, 313, 368, 433,

436, 498
xtabs(), 35, 41, 55, 56, 58, 59, 321, 322,

332, 389

U
utils package, 9

data(), 15, 18, 25, 29, 34, 40, 49, 55, 63,
99, 389, 434, 467

head(), 13–15, 18, 19, 21, 22, 24, 33, 51,
62, 98, 99, 102, 103, 115, 446

help(), 95, 98, 102, 150, 151, 156, 198,
200, 276, 277, 284, 286, 295,
298–300, 308, 312, 318, 330, 391,
449, 453, 475

read.csv(), 13, 14, 22, 23
str(), 13–16, 18, 21–23, 25–27, 33,

35, 105, 331, 332, 369, 370, 388,
389, 406, 410, 433, 435, 467,
468

tail(), 51, 62

W
WWGbook package, 3, 4, 8, 24, 25

classroom dataset, 24–27
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A
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Age-related Macular Degeneration (ARMD)

Trial, 5, 6, 11–20, 35, 36, 39–48,
113–121, 159–173, 213–241,
327–384, 498, 500, 502–509,
511–513, 515–519, 521–523

Akaike’s information criterion (AIC), see
information criteria

aliasing, see model identifiability
analysis of covariance, see ANCOVA
analysis of variance, see ANOVA
ANCOVA, 69, 91, 107
ANOVA, 69, 92, 107, 117, 298, 465, 489, 514,

522, 523
attainment target, see Flemish Community

Attainment-targets (FCAT) Study
autocorrelation function, 183
autoregressive

correlation structure, see correlation
structure, serial

moving average process, see correlation
structure, serial

B
Bayesian information criterion (BIC), see

information criteria
best linear unbiased prediction (BLUP), see

prediction, best linear unbiased
(BLUP)

C
Cholesky decomposition, see matrix

decomposition
compound-symmetry, see correlation structure,

serial

confidence interval
fixed effects, 84, 140, 194, 269
variance-covariance parameters, 84, 140,

193, 269, 270
constrained parameterization, see

parameterization
continuous-time autoregressive process, see

correlation structure, serial
contrast function, see factor(s)
convergence problems, see estimation

problems
Cook’s distance, see influence diagnostics
correlated errors, see linear model for

correlated data
correlated observations, 11, 24, 39, 45, 47,

53, 77, 118, 119, 168, 173, 179,
196, 197

correlated residual errors, 197
correlated residuals, 77, 78, 137, 146, 171,

181, 191
correlation coefficient, 45, 171, 172
correlation function, 180–185, 197, 200

coefficients, 198
constructors in R, 198
distance function, 181, 182, 184, 206
parameters, 181, 193, 198, 200

nugget effect, 184, 190, 198, 199
range, 184, 185, 197, 199, 201,

291
representation in R, 197, 198

correlation matrix, 46–48, 179–181, 188,
191, 199

correlation structure, 6, 177, 181–182,
196
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A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4,
© Springer Science+Business Media New York 2013

537



538 Subject Index

correlation structure (cont.)
serial, 182–183, 198, 202–206

autoregressive moving average
(ARMA)process, 181–183

autoregressive of order 1 (AR1), 181,
182, 188, 204–206

compound-symmetry, 181–183, 189,
203, 204

continuous-time autoregressive process,
181, 182

general, 181, 182, 189
spatial, 181–184, 190, 198, 200, 206

exponential, 181–183, 206, 209
Gaussian, 181–183, 200
linear, 181–183, 200
spherical, 181–183, 200

D
data

balanced, 34, 206, 470
clustered, 3
grouped, see data grouping
hierarchical, 12, 24, 35, 36, 53, 178, 241,

245, 246
longitudinal, 3
multivariate, 3

data grouping
multi-level, 36, 179, 245, 248
single-level, 35, 178, 179, 245–247

degrees of freedom
approximation

Kennward and Roger method, 138
Satterthwaite method, 138

F-test, see F-test
t-test, see t-test

design considerations
power analysis, 6, 491, 511

a priori, 511, 514–523
post hoc, 511–514

random effects
crossed, 249, 303–307
nested, 249, 304–307

design matrix
fixed effects, 69, 70, 72, 89, 94–111, 114,

115, 120, 155, 179, 247, 255, 297,
313, 329, 480, 499, 506

random effects, 288, 289, 317, 322, 495
deviance, 313, 321, 368, 460, 470

E
EM algorithm, 264, 293, 525
empirical Bayes (EB) estimation,

see prediction, best linear
unbiased (BLUP)

empirical best linear unbiased predictor
(EBLUP), see prediction, best linear
unbiased (BLUP)

empirical distribution
F-test statistic, 521–523
fixed effects estimates, for, 374–376,

509–511
likelihood ratio (LR) test statistic, 268, 269,

298, 299
variance-covariance parameters’ estimates,

for, 373–375
estimation problems, 357, 360
execution time, 470, 480, 502, 510
exponential correlation, see correlation

structure

F
F-distribution

central, 83, 138
non-central, 514

F-test, 83, 145, 192, 235, 267, 298
degrees of freedom, 84, 138
fixed effects, 30, 83, 109, 183
null distribution, 83, 138, 146, 192, 267,

298, 521–523
approximate, see degrees of freedom

approximation
empirical, see empirical distribution
exact, 83

statistic, 83
factor(s)

contrast function, 103, 104, 106, 114
contrasts

default in R, 105, 106, 114, 289, 467
Helmert, 104
polynomial, 104, 114, 115

crossed
fully, 34
partially, 31

decoding, 102–106
grouping, 11, 12, 30, 31, 34–36
matrix of contrasts, 19, 103–106, 109, 116,

289, 466, 467
nested

explicitly coded, 31, 36, 310, 311, 457
implicitly coded, 31, 36

ordered, 17, 103, 105, 106, 114, 466
fiber-specific force, see Progressive Resistance

Training (PRT) study
Fisher’s z-transform, 188

modified, 189
fixed effects

confidence intervals, see confidence
interval
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estimation
ML, see maximum likelihood (ML)

estimation
REML, see restricted maximum

likelihood (REML) estimation
F-test, see F-test
general linear hypothesis, 82, 235
inference, 81–84, 138, 140, 192, 267,

269
likelihood ratio (LR) test, see likelihood

ratio (LR) test
score test, 81–83

versus random effects, 247
Wald test, 82, 83

Flemish Community Attainment-targets
(FCAT) Study, 6, 12, 31–36, 63–64,
465–489

formula, in R

expanded, 94
lmer(), 308–312
one-sided, 150, 198, 277, 278
operators, 90–94

essential, 91, 92
nonessential, 91, 92

syntax, 90–94
two-sided, 89, 91
Z-term, 309

G
Gaussian correlation, see correlation structure
general correlation, see correlation structure
general linear hypothesis, see fixed effects
generalized least squares (GLS) estimation

algorithm, 72, 143
ML-based, 145
pseudo-likelihood (GLS-PL), 142–144,

194
REML-based, 144, 195, 272

generalized linear mixed-effects model
(GLMM), see model

generalized linear model (GLIM), see model
generic function, 4, 50, 94, 97, 107–109, 116,

118, 151, 152, 154, 156, 163, 199,
200, 202, 210, 211, 229, 288, 289,
292, 295, 312, 314, 321, 322, 367,
372, 376, 377, 379, 388, 390, 394,
410, 426, 433, 471, 514

graphics
grid-based, 64
traditional, 64, 118, 119, 121, 201,

500–502, 506
grouping factor, see factor

H
hat matrix, 77, 79, 136, 137
Henderson’s mixed model equations,

259
Hessian matrix, see matrix
heterogeneous variance, see residual

variance-covariance structure
heteroscedasticity, see residual variance-

covariance structure
homogeneous variance, see residual

variance-covariance structure
homoscedasticity, see residual variance-

covariance structure

I
influence diagnostics

Cook’s distance, 80, 81, 137, 497, 505–507,
527

likelihood displacement, 80, 81, 137, 192,
267, 497, 503–505

information criteria
Akaike’s (AIC), 87, 109, 110, 163, 164,

173, 193, 222, 225, 239, 268, 269,
294, 300, 350, 361, 362, 449, 450

Bayesian (BIC), 87, 109, 110, 157, 193,
268, 269, 294, 300

information matrix, Fisher
expected, 81
observed, 81, 136, 140, 190, 193

isometric force, see Progressive Resistance
Training (PRT) study

iteratively re-weighted least squares (IRLS),
144

K
Kronecker product, 6, 249, 415, 416, 418–421,

423, 424, 426, 427, 429, 491, 492,
494–496

L
likelihood displacement, see influence

diagnostics
likelihood function

full, 73, 131, 132, 142, 186, 256
profile, 132–134, 136, 142, 145, 187, 188,

193, 256, 257, 260, 261, 263, 271,
272

pseudo-, see generalized least squares
estimation (GLS) estimation

restricted, 74, 134, 187, 256
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likelihood ratio (LR) test
fixed effects, 82, 83, 139, 145, 192,

236–239, 267, 268, 298, 314, 437,
441, 443, 445, 450

ML versus REML, 139, 157, 165, 193, 220,
224, 237, 268, 298, 379

ML-based, 139, 237, 267, 298, 299, 437,
441, 443, 445, 450

null distribution
asymptotic, 82, 83, 139, 220, 267–269,

298, 350, 362–364, 366, 367, 376,
379

empirical, see empirical distribution
random effects, 268, 269, 298–300, 314,

315, 350, 361–367, 376–383, 420,
421, 430

marginal versus hierarchical view, 269
REML-based, 139, 157, 162, 163, 165,

193, 220, 224, 225, 268, 298–300,
361–367, 376–380

variance-covariance parameters, 139, 157,
162, 163, 165, 192, 220, 224, 225,
356–358, 398

linear correlation, see correlation structure
linear mixed-effects model, see model
linear model

classical, see linear model with
homogeneous variance

with heterogeneous variance, see model
with homogeneous variance, see model

linear model with homogeneous variance, see
model linear with homoogenous
variance

longitudinal data format
long, 13, 17, 18, 20, 22, 32, 35, 42,

516
wide, 13, 15, 17, 35

M
marginal model, see model, population-average
matrix

Hessian, 81, 190, 263
Jacobian, 82
permutation, 259, 261, 319–323,

325
positive-definite

representation in R, 188–190, 261–263,
276–283, 491–497

positive-semidefinite, 47, 307
sparse, 257, 259, 318, 319, 321–325

matrix decomposition
Cholesky

lower-triangular, 205, 258–261, 280,
317–320

upper-triangular, 186, 189, 191, 200,
232, 262, 266, 280, 282, 283, 396

QR, 107, 116
singular value (SVD), 262, 276, 282, 525

maximum-likelihood (ML) estimation
fixed effects, 73, 74, 133, 187, 256, 260
variance-covariance parameters, 73, 74,

135, 187, 256, 260
meta-analysis, 245
missing at random (MAR) mechanism, see

missing data
missing data

missing at random (MAR), 273
patterns, 41, 44, 45, 206

missing data patterns, see missing data
model

conditional independence, 257, 300, 312,
369, 382, 385, 430, 459, 472

generalized linear (GLIM), 69, 72
generalized linear mixed-effects (GLMM),

254, 257, 275, 312
linear mixed-effects (LMM)

classical, 249, 250, 252, 270–273
extended, 249, 250, 252, 270–273
hierarchical specification, 249, 251, 270
multi-level, 248, 249, 272
single-level, 247, 248, 270
two-stage, 247

linear with fixed effects for correlated data,
177–196, 209–211, 238, 255, 263

linear with heterogeneous variance,
123–146, 154–156, 177–196,
209–211, 238, 255, 263
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marginal, implied by LMM, 254, 255
mean-variance 127, 141, 144, 194, 195,

270, 272
nonlinear mixed-effects (NLMM), 254,

257, 275, 312
population-average, 177, 196, 327

versus mixed-effects model, 263, 269
model building

correlation structure, 6, 7, 177, 181–185,
196

mean structure, 4, 7, 72, 86, 89, 90, 107,
154, 239–241, 292, 382, 383

model reduction, 85–87, 140, 141, 193
model selection, 84, 86, 140, 192, 267
random-effects structure, 7, 275, 276,

283–286, 292, 293, 297, 307–311,
383, 385
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variance structure, 84–86, 140, 141, 193
model formula, 89–94
model frame, 96–100
model identifiability, 124, 129, 179, 247, 251,

356, 492, 493, 495
aliasing, 129, 153, 236

model reduction, see model building
model selection, see model building
model-fit object, 108, 156, 210, 293, 312
moving average process, see correlation

structure, balanced data
multi-level data grouping, see data grouping

N
nugget parameter, see correlation function

parameters

O
object-oriented (O-O) programming, 4, 5 108
offset, 69, 71, 72, 100, 107, 142, 308
ordered factor, see factor
ordinary least squares (OLS), 72–76, 107, 116,

120, 466, 525
orthogonal polynomials, 19, 444, 450

P
parameterization

constrained, 135, 188–190, 261–263
unconstrained, 135

log-Cholesky, 262, 276, 282, 356
Pearson residuals, see residuals
penalized iteratively re-weighted least squares

(PnIRLS), 272
penalized least squares (PnLS), 257–261
penalized weighted least squares (PWLS),

257
plot(s)

dotplot, 52, 61, 313, 456, 473–475
histogram, 63, 64, 265, 457, 473
normal quantile-quantile (Q-Q), 35, 78,

118, 119, 191, 233, 234, 265,
266, 313, 339, 342–344, 350–352,
359, 396–399, 406–408, 451–455,
457–461, 472–474, 482, 483
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scatterplot, 58–62, 78, 118, 119, 169–172,

227–232, 266, 313, 339, 340,
395–399, 414, 440, 443, 448, 451,
452, 477

scatterplot matrix, 45, 47, 171, 172, 232,
414

stripplot, 227, 229, 233, 341, 351, 483
population-average model, see Model
power calculations, see design considerations
prediction

best linear unbiased (BLUP), 265, 315,
342, 394, 395, 414, 415, 455–458,
460, 472–477, 489, 525

population-averaged, 296, 343–346, 352,
353, 446

subject-specific, 296, 343–346, 352, 353
subject-specific profiles, 346, 352, 353

Progressive Resistance Training (PRT) study,
20–24, 48–53, 385–430

pseudo-likelihood, see generalized least
squares (GLS) estimation

R
random effects

coupled with fixed effects, 247, 295, 313,
473

crossed, see design considerations
nested, see design considerations
normality assumption, 247–249, 252, 253,

264, 265
posterior distribution, 267

posterior mean 253, 254
posterior mode, 254
posterior variance, 475

prediction, see prediction, best linear
unbiased (BLUP)

prior distribution, 253
prior mean, 253

random intercept, 269, 277, 284, 286, 309,
310, 321–323, 327–364, 367–378,
385–463, 468–489

random slope, 277, 309, 310, 321–323,
346–361, 364–367, 379–384

shrinkage, 254, 265, 394, 396, 475–479
test for, see likelihood ratio (LR) test

random intercept, see random effects
random slope, see random effects
random-intercepts model

compound symmetry, see compound
symmetry

range parameter, see correlation function
parameters

rational quadratics correlation, see correlation
structure

residual diagnostics, 76, 78–79, 136, 137, 191,
265, 266

residual errors, 5–7, 70
heteroscedastic, 6
homoscedastic, 5
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heterogeneous variance, 79, 124–130
heteroscedasticity, 124–130, 137, 160, 179
homogeneous variance, 69, 75, 79
homoscedasticity, 113, 123, 162
measurement error, 305, 469, 485

residuals
conditional, 265, 266, 296
marginal, 266, 296
normalized, 192, 210, 211, 232–234, 266,

294, 296, 396, 407
Pearson, 136–137, 156, 157, 191, 214, 215,

266, 294, 296
population-level, see marginal residuals
raw, 76–79, 109, 136, 137, 191, 265, 266,

294, 296, 313
scaled, 76–78
standardized, 76
studentized

externally, 76, 77, 79
internally, 76, 77, 79

subject-specific, 313
restricted maximum likelihood (REML)

estimation
comparison with ML, 74, 75, 87, 134, 187,

256
fixed effects, 75, 134, 188, 257, 260
variance-covariance parameters, 74, 134,

187, 256, 257, 260
restricted maximum likelihood (REML)

function, see likelihood
function

S
safe prediction, 101
sample-size calculations, see design

considerations
Satterthwaite method, see degrees of freedom
scale-location plot, see plot(s)
Schwarz information criterion, see information

criteria, Bayesian
score test, 81–83

semivariogram function, 184, 185, 200–202
estimate, 191, 214–216

shrinkage, see random effects
single-level grouping, see data grouping
smoothing, 170, 216, 396, 443, 447–452
specific force, see Progressive Resistance

Training (PRT) study
splines, 79, 93, 101, 448, 449, 493
Study of Instructional Improvement (SII), 6,

11, 24–31, 36, 53–62, 431–464

T
t-distribution, 84, 140, 269, 298
t-test

degrees of freedom, 84
fixed effects, 84
null distribution, 84, 140
statistic, 84

V
variance function, 125, 127–129

coefficients, 150
constructors in R, 150
exponent of covariate, 128
groups of, 128, 129
mean-dependent, 128, 129
power of covariate, 128
representation in R, 151
stratum-specific, 127–129

variance-covariance parameters
confidence intervals, see confidence

interval
estimation

ML, see maximum likelihood (ML)
estimation

REML, see restricted maximum
likelihood (REML) estimation

inference, 139–141, 164, 192,
268

likelihood ratio (LR) test, see likelihood
ratio (LR) test
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