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Guest Preface

Concrete, the solid that forms at room temperature from mixing Portland cement
with water, sand, and aggregates, suffers from time-dependent deformation under
load. This creep occurs at a rate that degrades the durability and truncates the life
span of concrete structures, and it can lead in some (fortunately rare) cases to
catastrophic failures unless a rational approach is put in place that blends the
underlying mechanics and physics of concrete creep and shrinkage with engi-
neering ingenuity and mathematical eloquence to gain predictive impact at the scale
of engineering operations.

It is precisely this challenging mission that Zdeněk Bažant and Milan Jirásek
embraced and accomplished in this generational masterpiece; the definite book on
creep and shrinkage of concrete the community of engineers and scientists has been
waiting for.

For generations of scientists and engineers, concrete creep has been a daunting
task: Creep rates are intrinsically low, thus requiring typically long time scales for
laboratory experimentation under highly controlled hygrothermal conditions. The
load-induced deformation must be separated from other sources of deformation
related to an ever evolving microstructure and other chemo-physical aging and
out-of-equilibrium phenomena that define the very nature of concrete’s life cycle.
Moreover, creep of concrete is by its very nature dissipative. This means that the
work provided to the material or structural system in form of load is not recovered,
but irreversibly lost in the creation of deformation in excess of elastic reversible
deformation. An engineer in charge of a structural design will thus aim at moni-
toring via modeling and simulations a controlled energy dissipation, so as to avoid
that this energy would be dissipated in an uncontrolled way in, e.g., fracture cre-
ation. With limited experimental creep data thus available, engineers must rely on
models to predict, over extended periods of time, the impact of creep deformation
on structural functionality, integrity and stability, force and moment distribution (in
statically indeterminate structures), to ultimately minimize, by inverse design of
materials and structures, the impact of structural creep on performance.

With a life worth of experience in Structural Engineering and Design, the core
proposition of Zdeněk Bažant and Milan Jirásek is the need for reliable engineering
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models of concrete creep that permit engineers to meet the tasks ahead of designing
high-performance concrete structures with high confidence levels. These models are
calibrated against a large database of creep and shrinkage painstakingly collected
and developed by Zdeněk Bažant since the early 1960s. In their most advanced
version, these models permit a rapid recalibration from short-term tests. Enabled by
the physics of the phenomena at stake, these models become an integral part of the
innovation pathway for sustainable concrete and concrete structures.

This is science-enabled engineering at its best! Decoded by two engineering
scientists of eminent status and encyclopedic knowledge of the mechanics and
physics of concrete creep, this book is a must-read for any structural engineer and
engineering scientist in search of concrete innovation.

Franz-Josef Ulm
Massachusetts Institute of Technology,

Former Vice-President of the Engineering
Mechanics Institute of the

American Society of Civil Engineers,
Director, Concrete Sustainability Hub at MIT
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Preface

The literature on concrete creep and shrinkage is vast and scattered over many
media. A host of books have already been devoted to this subject. Some are
valuable compilations of diverse properties and experimental results, but lack a
coherent system. A few champion formalistic beauty of sophisticated mathematical
treatment based, however, on oversimplified unrealistic hypotheses. Others are
focused on simple methods of analysis for practical design (nothing is, of course,
wrong with simple methods except when they are simplistic).

In this book, we present a different kind of exposition of the subject. We attempt
to balance a sound, theoretically justified, mathematical modeling at the level of
current knowledge with careful attention to laboratory test results, measurements on
structures, structural design applications, analysis of design standards or recom-
mendations, and numerical algorithms.

To make our book useful to different kinds of readers, we divide it in two parts:
Part I deals with the essentials required for designing structures, and Part II deals
with advanced subjects concerned with the effects of moisture, solidification, aging,
cracking, and temperature, the consideration of which is necessary for more
accurate predictions. We mark by asterisks the titles of the sections that elaborate on
various highly theoretical aspects and can be skipped by a reader interested mainly
in practical design. Throughout the book, we emphasize the randomness of creep
and shrinkage effects and their probabilistic treatment.

Both parts together give an all-encompassing presentation, although with some
exceptions. We must admit that our exposition of the nanoscale mechanism of creep
and shrinkage may soon be regarded incomplete because the current research,
driven by increased concern with sustainability of infrastructure and facilitated by
advanced micro- and nanoscale measurements as well as computer simulations, is,
at the time of writing, advancing rapidly (especially in the research group of
Franz-Josef Ulm at M.I.T., with collaborators worldwide). We must also admit that
our coverage of the consequences of the large autogenous shrinkage and
self-desiccation in modern concretes is only superficial because the long-term data
and the understanding of nanomechanics are still too limited. We must admit, too,
that our discussions of time-dependent growth of cracking damage and fracture, of
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deformation rate effects under impact and explosions, and of high-temperature
effects in fire or hypothetical nuclear accidents, could be more thorough if the scope
of the book permitted.

Our book is intended for university researchers and educators, for members of
committees formulating design recommendations, and for practicing engineers
designing or evaluating creep sensitive structures such as large-span prestressed
bridges, supertall buildings, large roof shells and nuclear containments, airport
pavements, underground excavation linings, and ocean oil platforms. Parts of the
book can be used for teaching graduate level courses. Supplementary materials will
be made available at http://mech.fsv.cvut.cz/ConcreteCreep.

The book grew out of various courses taught by each of the authors, including:
sections of the first author's short intensive courses on Material Modeling of
Concrete (including creep and shrinkage) taught at Swedish Cement & Concrete
Institute in Stockholm in 1976, Chalmers University in 1977, University of Mexico
in 1977 and École nationale des ponts et chausées in Paris in 1978, his short course
on Concrete Creep and Shrinkage at Politecnico di Milano in 1982, sections of his
short courses on Inelastic Materials and Structures at EPF de Lausanne in 1983,
1988, and 1991 and at Luleå University in 1994, and sections of his course on
Material Modeling taught at Northwestern University in the 1980s; and sections
of the second author's course on Deformation and Failure of Materials taught at
CTU Prague. The first author also deeply values the three-year experience in creep
analysis of large bridges that he gained as a bridge engineer in Dopravoprojekt,
Prague (1961–63). Valuable was also his experience as a staff consultant at Sargent
& Lundy Engineers, Chicago, during 1974. He also benefited from the experience
with creep and hygro-thermal effect that he gained while serving during 1974–94 as
a staff consultant to the Reactor Analysis Division of Argonne National Laboratory.
He feels particularly grateful for 48 years of almost continuous funding of
numerous research projects, concerned fully or partly with creep, shrinkage, and
durability, by the US National Science Foundation, Department of Transportation,
Department of Energy, Electric Power Research Institute and W.R. Grace Co.

We wish to express our deep thanks to many respected colleagues for valuable
discussions on the subject. The first author was introduced to the subject in 1959 by
his undergraduate advisor Jan Klimeš at CTU Prague. During 1967–69, the first
author was lucky to have visionary mentors in Robert L'Hermite at CEBTP Paris,
Boris Bresler at UC Berkeley, and especially Treval C. Powers of PCA Skokie, a
giant of cement physics who inspired the first author's research direction while both
held visiting appointments at the University of Toronto during 1967–68. The first
author wishes to acknowledge the stimulating interactions and collaborations with
Gianluca Cusatis at Northwestern University, Qiang Yu of Pittsburgh University,
Franz-Josef Ulm and Roland Pelenq of M.I.T., Jialiang Le at University of
Minnesota, Kaspar Willam, Yunping Xi, and Mija Hubler at UC Boulder, Roman
Wendner at BOKU Vienna, Folker H. Wittmann, Christian Huet, and Thomas
Zimmermann at EPF Lausanne, Ignacio Carol at UPC Barcelona, Matthieu
Vandamme of Université Paris Est, Vladimír Křístek, Vít Šmilauer, Zdeněk Bittnar,
and Petr Havlásek at CTU Prague, and Joško Ožbolt at Stuttgart University. Thanks
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for valuable collaborations on the subject are also due to many of the first author's
former doctoral students at Northwestern University,1 as well as postdoctoral
associates and visiting scholars.2

The second author is grateful for stimulating discussions with his colleagues at
the Czech Technical University in Prague, in particular with Jan Zeman, Vít
Šmilauer, Zdeněk Bittnar, Bořek Patzák, Radek Štefan, Vladimír Křístek, Jan Vítek,
Lukáš Vráblík, Tomáš Vogel, and Pavel Demo, as well as with many international
experts, including Christian Huet, Gilles Pijaudier-Cabot, Ignacio Carol, Joško
Ožbolt, Peter Grassl, Franz-Josef Ulm, Mija Hubler, Dariusz Gawin, Francesco
Pesavento, Luca Sorelli, and Jean-Michel Torrenti. Special thanks are due to Petr
Havlásek, who collaborated with the second author on the development of mod-
eling techniques and numerical algorithms for creep, shrinkage, moisture transport,
and heat transfer; this research was funded by the Czech Science Foundation
(projects 103/09/H078 and P105/10/2400) and by the European Social Fund
(project CZ.1.07/2.3.00/30.0034). Assistance with the preparation of some of the
figures was provided by students of the Czech Technical University.3

Last but not least, as expressed in our dedication, we wish to thank our beloved
wives Iva and Vlasta for their sustained support of our professional activities, which
made the arduous work on this book possible.

Evanston, USA Zdeněk P. Bažant
Prague, Czech Republic Milan Jirásek
July 2017

1 They included Leonard J. Najjar, Spencer T. Wu, Ali A. Asghari, Elmamoun Abdalla Osman,
Werapol Thonguthai, Sang-Sik Kim, Liisa Panula, Tatsuya Tsubaki, Jenn-Chuan Chern, Santosh
Prasannan, Joong-Koo Kim, Yunping Xi, Ravindra Gettu, Sandeep Baweja, Goangseup Zi, Qiang
Yu, Guang-Hua Li, and Mija Helena Hubler.
2 They included Laurent Granger, Anders Boe Hauggaard, Franz-Josef Ulm, Alexander Steffens,
Geir Horrigmoe, Henrik O. Madsen, Tong-Sheng Wang, Joško Ožbolt, M. Elisabeth Karr, Jaroslav
Navrátil, Larissa Molina, Zhishen Wu, Milan Holický, Daniele Ferretti, Vít Šmilauer, Goangseup
Zi, Abdullah Dönmez, Enrico Masoero, and Mohammad J.A. Qomi.
3 They included Marek Vinkler, Hana Hasníková, Pavel Fišar, Dominika Majerová, Aneta
Bulíčková, and Michal Šmejkal.
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Symbols

Since this book covers a wide range of phenomena, theories, and models, it is next
to impossible to keep the notation systematic and simple and at the same time
consistent with the standard notation in each particular area of research. For the
readers’ convenience, the following list provides an overview of most symbols used
throughout the book, with brief definitions and occasional comments explaining in
which equation, section, or chapter the symbol is introduced. Completely generic
symbols, e.g., c used as some constant or f used as some function, are not included.

The list shows that certain duplicities arise and are tolerated, in particular in
cases when a symbol has two or more completely different meanings that can hardly
be confused. For instance, w denotes the deflection of a beam, but also the water
content in a concrete mix. On the other hand, symbols that could be confused must
be kept unique. For this reason, we systematically denote the total water content in
drying concrete as wt and the evaporable water content as we, even though w is
often used in the literature.

Symbol Meaning
A Area, cross-sectional area
A Affinity (Chap. 13)
A Parameter used by Hansen isotherm (Appendix I.1)
A Water absorption coefficient (Appendix J.16)
AT Temperature factor (Chaps. 4 and 7)
AT Parameter used in Eqs. (12.41)–(12.42)
Ac Area of concrete part of a section
Ac Coefficient used in Eq. (13.89)
Ag Exponent used in Eq. (J.17)
An Coefficient used in Eq. (13.74)
Ap Area of prestressing steel part of a section (Chap. 4)
Ap Parameter used in Eqs. (12.41)–(12.42)
As Area of steel part of a section
Aw Exponent used in Eq. (J.16)
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Ak Parameter used in Eq. (13.88)
Ax Parameter of Bary formula (12.37)
A0, . . .A5 Parameters in Eq. (13.71)
A0, A1 Parameters in Eq. (D.54)
a Aggregate content in concrete mix
a Permeability (Chap. 13)
a Crack size
a Parameter used by ACI model in Eq. (E.23)
a Moisture ratio corresponding to a complete monolayer

(Appendix I.1)
a Scale function of the gamma process (Appendix K.8)
aT Parameter used in Eqs. (13.99) and (13.103)
aTw, aTT Parameters used in Eq. (13.77)
a�g Auxiliary coefficient defined in Eq. (J.25)
a�l Auxiliary coefficient defined in Eq. (J.23)
aww, awT Parameters used in Eq. (13.76)
a0 Initial crack size
a0 Permeability at saturation (Chap. 13)
a0, . . .a5 Parameters in Eq. (13.71)
a1, a2, a3 Coefficients of cubic function in Eq. (13.63)
B Auxiliary variable defined in Eq. (J.29)
BT Surface heat transfer coefficient (Chap. 13)
Bv Surface vapor transfer coefficient
B1, B2 Parameters in Eq. (13.32)
B Strain-displacement matrix
b Width of rectangular section
b Parameter used by ACI model in Eq. (E.23)
b Parameter used by Langmuir isotherm (Appendix I.1)
b Parameter used by Künzel isotherm (Appendix I.1)
b Shape function of the gamma process (Appendix K.8)
b1, b2 Coefficients in Eq. (J.36)
b3, b4 Coefficients in Eq. (J.37)
b Body force vector
�b Column matrix of body forces
C Moisture diffusivity
CA Axial sectional compliance
CI Bending sectional compliance
CS Coupling sectional compliance (Sect. 4.3)
CS Parameter used by microprestress theory (Chap. 10)
CT Function used by BSB model (Appendix I.1)
�Cf Incremental flow compliance
Cl Diffusivity of liquid water in saturated concrete
Cp Effective specific heat capacity of concrete (Chap. 13)
Cp Isobaric specific heat capacity (Sect. 13.5)
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Cpa Specific heat capacity of dry air (Chap. 13)
Cpag Specific heat capacity of aggregates (Chap. 13)
Cpc Specific heat capacity of cement (Chap. 13)
Cpg Specific heat capacity of pore gas (Chap. 13)
Cpl Specific heat capacity of liquid water (Chap. 13)
Cps Specific heat capacity of solid skeleton (Chap. 13)
Cps0 Specific heat capacity of solid skeleton at room temperature

(Chap. 13)
Cpv Specific heat capacity of water vapor (Chap. 13)
Cpw Specific heat capacity of moisture (Chap. 13)
Cp0 Specific heat capacity of fresh concrete (Chap. 13)
Cv Molar concentration of vapor
Cw Factor defined in Eq. (8.249)
Cc Parameter used in Eq. (10.1)
C m Dimensionless elastic compliance matrix
Cx Parameter of Bary formula (12.38) (Sect. 12.7)
C0 Moisture diffusivity at zero humidity (Appendix I.4.1)
C0 Parameter of the BET isotherm (8.54)
C0, . . .C5 Parameters in Eq. (13.72)
C1 Parameter in cyclic creep law (Sect. 7.13)
C1 Moisture diffusivity at saturation (Chap. 8)
C1;28 Moisture diffusivity at saturation and at the age of 28 days

(Appendix I.4.2)
c Cement content in concrete mix
c, c0, c1 Parameters used by microprestress theory (Chap. 10)
cf Material length (Chap. 10)
ch Parameter used by GL2000 model (Appendix E.4)
ck Auxiliary constants (Appendix F)
cp Moisture permeability
cp1 Moisture permeability at saturation
c1, c2 Parameters used by Lykow isotherm (Appendix I.1)
D Effective cross-sectional thickness
D Characteristic dimension (Chap. 12)
D Beam depth (Chap. 12)
D Modified age-dependent modulus (Sect. A.4.2)
D Dissipated energy (Appendix G)
DM Mechanical dissipation (Appendix G)
DT Thermal diffusivity (Chap. 13)
Dav Free air-vapor diffusion coefficient
De Elastic material stiffness matrix
Dh Liquid conduction coefficient (Appendix J.6)
Dk Incremental material stiffness matrix
Dt. . . Material time derivative of …
Dw Capillary transport coefficient (Appendix J.6)
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Dl Parameter of lth aging Kelvin unit
Dv Dimensionless elastic stiffness matrix
D0 Transitional size
D0 Free air-vapor diffusion coefficient at reference conditions

(Sect. J.1)
d Parameter used by ACI model in Eq. (E.25)
d Parameter used by Posnow isotherm (Appendix I.1)
d Column matrix of displacement parameters
da Maximum aggregate size
E Elastic (Young’s) modulus, spring stiffness
Ef. . .g Expectation of … (Appendix K.8)
EN Normal microplane stiffness (Sect. 12.8)
EN0 Initial normal microplane stiffness (Sect. 12.8)
ET Shear microplane stiffness (Sect. 12.8)
ET0 Initial shear microplane stiffness (Sect. 12.8)
Eas Asymptotic modulus (age-dependent)
Ec Elastic modulus of concrete
Ecyc Cyclic effective modulus (Sect. 7.14)
Edyn Dynamic modulus
Eef Effective modulus
�Ek Incremental modulus in step number k
Eref Reference value of elastic modulus
Es Elastic modulus of steel
Et Tangent modulus of prestressing steel
El Stiffness of lth rheologic unit
Eð1Þ Final value of elastic stiffness at full solidification
E1 Final value of elastic modulus (Appendix D)
E

00 Age-adjusted effective modulus
E0 Asymptotic modulus (age-independent)
E1 Short-term elastic modulus at age t1
E28 Conventional elastic modulus

EðcÞ
28

Estimate of conventional elastic modulus based on creep
compliance

EðsÞ
28

Estimate of conventional elastic modulus based on strength

e Eccentricity
e Auxiliary strain-like variable (Chap. 9)
er Dimensionless strain rate
erl Column matrix of dimensionless strain rates in unit l
ez Unit vector in direction opposite to gravity acceleration
eb;a Rate of energy transfer from phase b to phase a, per unit

volume (Sect. 13.5.6)
F Concentrated force
F Isothermal strain energy density (Appendix G)
F� Isothermal complementary energy density (Appendix G)
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Fb Interatomic force (Sect. 12.6)
Fp Function describing the stress–strain law for prestressing steel

(Sect. 4.3.4)
f Filler content in concrete mix
f Column matrix of equivalent nodal forces
fc Compression strength
fc Allowable compressive stress (Sect. 7.14)
f 0c Reference strength (Sect. 11.4.2)
fck Characteristic compression strength (Appendix E)
fcm Mean compression strength (Appendix E)
�fc Standard compression strength
f 0c Reduced (characteristic, specified) compression strength
~fc Current (age-dependent) compression strength
fcr Function describing a cohesive cracking law (Chap. 12)
f 0cr Required mean compression strength (Appendix E)
fk Auxiliary functions (Appendix F)
�ft Mean tensile strength
ft Allowable tensile stress (Sect. 7.14)
f , �f Distributed load
f Joint probability density
f Microwave frequency (Sect. 13.3.4)
fN Normal loading function (Sect. 12.8)
fref Reference strength (Appendix C)
fT Shear loading function (Sect. 12.8)
fVD Volumetric-deviatoric loading function (Sect. 12.8)
fX Marginal probability density of random variable X
fYX Conditional probability density of random variable Y for

given X
f 0Y Prior probability density of long-time response
f
00
Y

Posterior probability density of long-time response
�fy Mean yield stress of prestressing steel
fp Ultimate strength of prestressing steel
fpy Specified yield strength of prestressing steel
fpu Specified tensile strength of prestressing steel
fs Stoichiometric coefficient in Eq. (13.63)
f 0y Marginal probability density of short-time response
fx Function used by damage models (Sect. 12.7)
f1, f2, f3 Functions defined in Eqs. (13.80)–(13.82)
G Shear modulus of elasticity
G Generic nonlinear transformation (Sect. 6.2)
G Gibbs free energy, free enthalpy
G Energy release rate
Gf Fracture energy
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g Gravity acceleration
g Dimensionless energy release function (Chap. 10)
g Auxiliary function defined in Eq. (3.23)
l Specific Gibbs free energy (Sect. 13.5 and Appendix G)
gsh Function defined in Eq. (13.105)
gx, ~gx Functions used by damage models (Sect. 12.7)
H Heaviside step function
H Height of a water column (Sect. 8.3.2)
Hc Released hydration heat (Chap. 13)
Hmax Potential hydration heat (Chap. 13)
Hp Pressure head, hydraulic head
Ht Total head
Hinf Ultimate hydration heat (Chap. 13)
HD Redistribution function
h Pore relative humidity
h Depth of rectangular section
h Planck constant (Sect. 12.6)
�h Average pore relative humidity
��h Pore relative humidity averaged in space and time (Sect. 8.4.6)
h� Specific enthalpy (Sect. 13.5)
hc Parameter of Bažant–Najjar model
hc Process zone thickness (Chap. 12)
henv Environmental relative humidity
�henv Average ambient relative humidity (Sect. 8.4.6)

ĥenv Peak amplitude of ambient relative humidity (Sect. 8.4.6)
hwg Specific enthalpy of water vapor (Chap. 13)
hin Initial relative humidity (Chap. 13)
hwl Specific enthalpy of liquid water (Chap. 13)
hs Thickness of computational crack band (Chap. 12)
h�s Humidity rate due to self-desiccation
hws Specific enthalpy of water in hydrates (Chap. 13)
h0 Initial relative humidity
I Moment of inertia
I Identity operator
Ib Moment of inertia of a beam (Sect. 4.1)
Ic Moment of inertia of a column (Sect. 4.1)
Ic Moment of inertia of concrete part of a section
Ik Auxiliary constants (Appendix F)
Is Moment of inertia of steel part of a section
I4, I5, I6 Higher-order moments of sectional area (Sect. 7.14)
is Radius of inertia of steel part of a section
J Compliance function for aging material
J Jacobian (Sect. 13.5)
�J Average compliance
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J Compliance operator (acting on variable t)
J0 Compliance operator acting on variable t0

JG Shear compliance function
JK Bulk compliance function
Jb Basic creep compliance function
Jd Drying creep compliance function
J1d Final value of drying creep compliance (Appendix D)
Jf Flow compliance function
Jtot Total material compliance in presence of cyclic loading
Jv Viscoelastic compliance function
JD Function defined in Eq. (4.22)
J0 Compliance function for nonaging material
j Mass flux vector
ja Mass flux of dry air
jAa Advective mass flux of dry air
jDa Diffusive mass flux of dry air
jg Mass flux of gas
jAg Advective mass flux of gas

jl Mass flux of liquid water
jr Radial mass flux
js Mass flux of solid phase
jv Mass flux of water vapor
jAv Advective mass flux of water vapor
jDv Diffusive mass flux of water vapor
jw One-dimensional mass flux of moisture (all phases of water)
jw Mass flux of moisture (all phases of water)
jx, jy, jz Components of mass flux vector
K Bulk modulus of elasticity
K Stress intensity factor
K Structural stiffness matrix
~K Structural stiffness matrix for unit elastic modulus
KI Mode-I stress intensity factor
Kc Critical stress intensity factor, fracture toughness
Kh Hydraulic permeability, hydraulic conductivity, filtration

coefficient
Kl Bulk modulus of liquid water
Kmax Maximum stress intensity factor in cycles
Kmin Minimum stress intensity factor in cycles
K0 Intrinsic permeability
K0;ref Reference value of intrinsic permeability
K1 Permeability coefficient (Appendix J.6)
k Reciprocal moisture capacity (Chap. 8)
�k Average reciprocal moisture capacity (Chap. 8)
kB Boltzmann constant
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kT Thermal conductivity (Chap. 13)
kT Function used by BSB model (Appendix I.1)

k dryð Þ
T

Thermal conductivity of dry concrete (Chap. 13)

k dry;0ð Þ
T

Thermal conductivity of dry concrete at room temperature
(Chap. 13)

kT0 Thermal conductivity of fresh concrete (Chap. 13)
kh Parameter used by B3
kr Relative permeability
kr;g Relative permeability to gas
kr;l Relative permeability to liquid water
ks Parameter used by B3 and B4
ksh Shrinkage coefficient
k�sh Shrinkage ratio
k�sh;ij Tensorial components of shrinkage ratio (Sect. 13.3.3.3.2)
kt Parameter used by B3
ktw Proportionality factor used in Eq. (8.225)
ktw0 Proportionality factor used in Eq. (8.209)
kea Parameter used by model B4 (Appendix D)
ksa Parameter used by B4
k1 Reciprocal moisture capacity at saturation (Chap. 8)
k1 Parameter used by microprestress theory (Chap. 10)
L Span
L Stress impulse memory function for aging material
L Continuous retardation spectrum
L� Auxiliary function derived from retardation spectrum

(Appendix F)
L Likelihood function (Appendix K.6)
Lc Height of a column
Lf Continuous retardation spectrum (age-independent)
Lij Coefficients used for evaluation of shear strain on microplane

(Sect. 12.8)
Lk kth order approximation of continuous retardation spectrum
L�0 Stress impulse memory function for nonaging material
l Tangential vector on microplane (Sect. 12.8)
la Size of atomic lattice block (Sect. 12.6)
ld Thickness of hindered adsorbed layer
li Components of tangential vector on microplane (Sect. 12.8)
l0 Material characteristic length
M Number of rheologic units in a chain (without isolated spring)
M Bending moment
M Total mass of a body (Sect. 13.5)
MC Moment resultant of stresses in concrete (Sect. 7.14)
MCEB Mean deviation (Appendix K.4)
MD Moment due to dead load (Sect. 7.14)
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MDLP Moment due to dead load, live load, and prestress
(Sect. 7.14)

ML Moment due to live load (Sect. 12.8)
Ma Molar mass of dry air
Mij Coefficients used for evaluation of shear strain on microplane

(Sect. 7.13)
Msh Bending moment due to shrinkage
Mw Molar mass of water
m Exponent in creep laws, for B3 model set to 0.5
m Exponent in Paris law (Sect. 7.13)
m Parameter of van Genuchten law (8.16)
m Parameter in isotherm formula (13.66)
m Exponent used by ACI model in Eq. (E.30)
m Measure defined in (K.14)
m Tangential vector on microplane (Sect. 12.8)
ma Apparent density of dry air
mdeh Mass of water released by dehydration per unit volume

(Chap. 13)
mev Mass of evaporated water per unit volume (Chap. 13)
mi Components of tangential vector on microplane (Sect. 12.8)
ml Apparent density of liquid water
ms Apparent density of solid skeleton
mv Apparent density of water vapor
_mb;a Rate of phase change from phase b to phase a (Sect. 13.5)
N Normal force, axial force
N Number of strata (Sect. 6.2)
N Displacement interpolation matrix
NC Force resultant of stresses in concrete (Sect. 7.14)
Ncyc Number of cycles
Nij Coefficients used for evaluation of normal strain on

microplane (Sect. 12.8)
Nm Number of microplanes (Sect. 12.8)
Nsh Normal force due to shrinkage
n Exponent in creep laws, for B3 model set to 0.1
n Parameter used by Hansen isotherm (Appendix I.1)
n Unit outward normal vector (on a boundary)
n Normal vector on microplane (Sect. 12.8)
nf Parameter of Kachanov law (12.33)
ni Components of normal vector on microplane (Sect. 12.8)
nk Auxiliary constants (Appendix F)
np Porosity
np0 Capillary porosity at reference temperature (Chap. 13)
P Axially applied compressive force
P Probability
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PD Dead load
P�
D Factored dead load

PL Live load
P�
L Factored live load

Pmax Maximum load, ultimate load
Pcr Critical load, buckling load
p Pressure
p Number of random parameters (Sect. 6.2)
p Parameter used by microprestress theory (Chap. 10)
pa Air pressure
pad Average longitudinal stress in hindered adsorbed layer
pad;f Longitudinal stress when a nanopore just gets filled
patm Atmospheric pressure
pc Capillary pressure
pd Disjoining pressure
pentry Entry pressure
pf Pressure at the moment a nanopore gets filled
pg Gas pressure
pgel Average gel pressure (Sect. 8.8)
ph Hydrostatic pressure
pl Pressure in liquid (capillary) water
pl0 Reference pressure
pv Partial vapor pressure in capillary pores
pv;env Ambient vapor pressure
pv;f Vapor pressure when a nanopore just gets filled
psat Saturation vapor pressure of water
p1, p2 Update parameters used in Eq. (3.34) or Eq. (11.4)
p3 Update parameter used in Eq. (H.6)
p1, p2, p3, p4, p5,
p5H

Parameters used by model B4 (Appendix D)

psc, psw, pew Exponents used by model B4 (Appendix D)
Q Auxiliary function used by models B3 and B4
Q Activation energy
QT Activation energy used by fib model (Appendix E.22)
Qa Latent heat of adsorption minus latent heat of condensation
Qe Activation energy of hydration
Qf Auxiliary function used by B3 model (Appendix C)
Qp Activation energy of flow of prestressing steel
Qr Activation energy of viscous processes
Qs Activation energy of microprestress relaxation
Qw Activation energy of water migration at low temperature

(Chap. 13)
Q0 Activation energy of separation of interatomic bonds

(Sect. 12.5)
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q Quotient in geometric progression
q One-dimensional conductive heat flux (Chap. 13)
q Conductive heat flux vector (Chap. 13)
qconv Rate of energy loss by convective heat flux, per unit surface

area (Chap. 13)
qg Conductive heat flux vector in gaseous phase (Sect. 13.5.6)
q1 Conductive heat flux vector in liquid phase (Sect. 13.5.6)
qn Normal heat flux
qr Radiation heat flux vector (Chap. 13)
qs Parameter used by log-double-power creep law
qs Conductive heat flux vector in solid phase (Sect. 13.5.6)
q1, q2, q3, q4, q5 Parameters of models B3 and B4
q�5 Auxiliary parameter defined in Eq. (D.72)
R Relaxation function for aging material
R Universal gas constant
R Relaxation operator (acting on variable t)
R0 Relaxation operator acting on variable t0

RA Operator defined in Eq. (4.82)
RI Operator defined in Eq. (4.78)
RS Operator defined in Eq. (4.77)
Rc Relaxation operator for concrete
Rs Relaxation operator for steel
R0 Relaxation function for nonaging material
r Radial coordinate
r Radius of capillary meniscus
r Parameter of Bažant–Najjar model
r Distributed heat source per unit mass (Chap. 13)
r Auxiliary function used by B3 model (Appendix C)
r, r0 Parameters used in Eq. (13.103)
rg Distributed heat source in gaseous phase (Sect. 13.5.6)
rl Distributed heat source in liquid phase (Sect. 13.5.6)
rs Distributed heat source in solid phase (Sect. 13.5.6)
ra Parameter used by model B4 (Appendix D)
rew Exponent used by model B4 (Appendix D)
r1, r2 Principal radii of curvature
S Strain impulse memory function for aging material
S Shrinkage function defined in Eq. (3.16)
S Generic static quantity
S Static moment of a section (Sect. 4.3)
S Microprestress (Chap. 10)
S Boundary of a spatial domain representing a body of interest
S Standard deviation of compression strength tests

(Appendix E)
S Auxiliary function (Appendix F.4)
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SCEB Relative error (Appendix K.3)
Scr Critical saturation degree (Appendix J.2)
Se Exposed surface area of a concrete part
Sir Irreducible saturation degree (Appendix J.2)
Sj Points separating individual strata (Sect. 6.2)
Sl Saturation degree (by liquid)
Sspec Specific area (of pores)
St Unsupported (free) part of boundary of a body
S�0 Strain impulse memory function for nonaging material
s Standard deviation
s Distance between neighboring atoms (Sect. 8.2)
s Crack spacing
s Weighted standard error (Sect. 11.4)
s Specific entropy (Sect. 13.5 and Appendix G)
s Parameter used by CEB, fib, and GL2000 models

(Appendix E)
s� Specific entropy production (Sect. 13.5 and Appendix G)
_s Rate of instantaneous microprestress (Chap. 10)
sY Standard deviation of random variable Y
s0Y Prior approximation of standard deviation of Y
S

00
Y

Posterior approximation of standard deviation of Y
sc Spacing of dominant cracks
sc;max Maximum possible crack spacing
sef Exponent used by model B4s (Appendix D)
ssf Exponent used by model B4s (Appendix D)
s2, s5 Parameters used by model B4s (Appendix D)
T Temperature (absolute)
T , T1, . . .T4 Auxiliary functions (Appendix F.4)
TC Temperature expressed in �C
Tcr Critical temperature of water
Tenv Ambient temperature (Chap. 13)
Tg Characteristic time of aging process (Sect. 9.8.2)
Th Period of humidity cycles (Sect. 8.4.6)
Tinit Initial temperature
Ttr Transition temperature in Eq. (13.79)
T0 Room temperature (usually 293 K)
t Time (general)
t Current age
t Surface force vector
�t Column matrix of prescribed surface forces
t0 Age at loading in a creep test
t̂, t̂d Time of drying
t0T Temperature-adjusted age (Appendix E.2.2)
t0adj Adjusted age at loading (Appendix E.2.2)
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ta Average age at self-weight application (Sect. 7.9)
tc Age at construction end (Chap. 7)
tc Characteristic time of hydration (Chap. 13)
td Delay time for the onset of hydration (Chap. 13)
te Equivalent age
te0 Equivalent time at the onset of drying (Appendix D)
tf Age at failure or time to failure
tk Time of kth stress jump or kth time instant in a numerical

solution
tm Age of 1000 days or 1500 days (Sect. 7.9)
tp Time at peak humidity (Sect. 8.4.6)
tr Reduced time
tref Reference time (Sect. 9.4 and Eq. I.4.2)
ts Reduced microprestress time
t0 Age at the onset of drying (end of curing)
t1 Age at first loading
t1c Age at which a bridge was open for traffic (Sect. 7.14)
u Moisture ratio
u Specific internal energy (Sect. 13.5)
u Sectional perimeter in contact with the atmosphere

(Appendix E.2.1)
ua Axial displacement
uf Displacement due to fracture (Sec 7.13.2)
uh Maximum hygroscopic moisture ratio (Appendix I.1)
up Displacement of prestressing steel
V Volume (of a concrete part, of a body)
V Spatial domain representing a body of interest
Va Activation volume (Sect. 12.6)
Vg Volume occupied by gas
Vl Volume occupied by liquid water
Vm Monolayer capacity (Appendix I.1)
Vp Pore volume
Vs Volume of solid skeleton
Vtot Total volume
v Volume growth function used in solidification theory
v Specific volume
v Velocity vector
va Activation volume tensor (Sect. 12.6)
vc Subcritical crack growth velocity (Sect. 12.5)
vl Filtration velocity, Darcy velocity
v1 Filtration velocity vector, volumetric water flux
vn Normal velocity
vv Volume flux of vapor
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vð1Þ Final value of volume growth function used in solidification
theory

WL Total water loss per unit surface area
w Water content in concrete mix
w Deflection
~w Volumetric water content (Appendix J.3)
wc Crack opening
wd Water content released by dehydration (Chap. 13)
we Evaporable water content
wf Critical crack opening (at zero stress)
wf Evaporable water content at free saturation (Appendix J.6)
wh Water deficiency due to hydration
wh;1 Terminal water deficiency
wmid Midspan deflection
wn Non-evaporable water content
wsh Deflection due to shrinkage
wt Total water content
wl Integration weight of microplane number l (Sect. 12.8)
w1 Evaporable water content in saturated concrete at 25�C

(Chap. 13)
X Generic random variable
X Set of random variables
X Position vector in initial (reference) configuration (Sect. 13.5)
X1 Redundant force
x, y, z Spatial coordinates
x Position vector in current configuration (Sect. 13.5)
xd Penetration depth
xs Position of saturation front
Y Generic response variable
Y Set of response variables
�Y Mean value of variable Y
�Y 0 Prior mean of Y
�Y 00 Posterior mean of Y
Y95% 95% confidence limit
Z Auxiliary function used by B3 model (Appendix C)
Zsh, Zw Sums of squared deviations (Appendix H)
z0 Initial deviation of column axis from straight line
a Parameter of generalized trapezoidal and midpoint rules
a Parameter used by creep models (double-power and

log-double-power)
a Relative crack length (Sect. 12.6)
a Temperature-dependent parameter defined in Eq. (13.83)
a Exponent used by model B4 (Appendix D)
a Exponent used by fib model (Appendix E.2.2)
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a Collection of internal variables (Sect. 13.5)
aE Parameter used by CEB and fib models (Appendix E.2)
aT (linear) coefficient of thermal expansion
aT;ij Tensorial coefficients of thermal expansion (Sect. 13.3.3.3.2)
ae, ar, as Parameters describing influence of humidity on transformed

times te, tr, ts
ah Parameter used in Eq. (I.17)
avT Volumetric coefficient of thermal expansion
aAl , a

C
l , a

D
l , a

f
l Correction factors (Appendix F)

a0 Parameter of Bažant–Najjar model
a1, a2 Parameters used by B3
b Scaling factor
b Brittleness number (Sect. 12.5)
b Parameter used in Eq. (13.106)
b Dimensionless shape factor (Appendix I.4.1)
bD Dissipative thermodynamic forces (Sect. 13.5)
bH Parameter used by CEB and fib models (Appendix E.2)
bN Stiffness reduction factor (Sect. 12.7)
bQ Quasi-conservative thermodynamic forces (Sect. 13.5)
bT Function used by model B4 (Appendix D)
bcurT , bdlT Parameters used by model B4 (Appendix D)
bc Convective mass transfer coefficient (Sect. J.7)
beT, brT, bsT Factors describing influence of temperature on transformed

times te, tr, ts
beh, brh, bsh Factors describing influence of humidity on transformed times

te, tr, ts
bf , bT Parameters used by CEB model (Appendix E.2.1)
bh Parameter used in Eq. (I.17)
bk Auxiliary constant used by exponential algorithm
Ca Surface water concentration
C1 Mass of full mononuclear water layer per unit area
c Parameter used in Sect. 4.3.4
c Surface tension at solid–liquid interface
c Normalized permeability (Sect. 8.4)
c Exponent used by fib model (Appendix E.2.2)
c, c1, . . .c6 Parameters used by ACI model (Appendix E.3)
ca Surface tension at interface between solid and free adsorbed

water
ca1 Parameter used in Eq. (10.1)
ce Surface heat emissivity (Chap. 13)
cgl Surface tension at gas–liquid interface
ch Parameter used in Eq. (I.17)
cx Exponent used in Eq. (12.40)
c0 Solid surface tension
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c0, c1, c2 Dimensionless geometry factors (Sect. 7.13.2)
D. . . Increment of ...
DCv Additional moisture diffusivity due to cracking (Sect. 8.36)
DJcycN Cyclic creep compliance
DTmax Ultimate temperature increase (Chap. 13)
DW Water loss from a wall per unit area of its mid-surface
DW1 Final water loss from a wall per unit area of its mid-surface
Dhwl;g Specific enthalpy of vaporization (Chap. 13)
Dhws;l Specific enthalpy of dehydration (Chap. 13)
Dt�crit Estimate of critical time step
Dts Conventional delay
Dw Water loss
Dw1 Final water loss per unit volume
DecycN Strain increment due to cyclic loading
De

00
f:k

Flow strain increment under constant stress in step number k
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Chapter 1
Introduction: How the Theory Evolved
and How It Impacts Practice

Abstract Complex physical phenomena usually have a long history, must draw on
many fields of science, and have a multifaceted practical impact. The creep, shrink-
age, moisture diffusion, and thermal effects in concrete are an excellent example.
This brief chapter highlights the main historical advances, beginning in 1887. It in-
troduces the reader to the general problematics and breadth of the present complex
phenomenon and points out diverse creep, moisture, and thermal effects on practical
concrete structures, not only negative but also positive. Additionally, recognizing
that various concrete structures have very different levels of sensitivity to these ef-
fects, the present chapter discerns five different structure types requiring different
levels of sophistication in design calculations, depending on the practical impact.
They range from simple and crude quasi-elastic estimates to computations based on
experimentally verified theory of greater, though inevitable, complexity.

The shrinkage of hardened Portland cement paste was identified by chemist Henri
Louis Le Chatelier in Paris in 1887 [568], and the creep of concrete was discovered
by William Kendrick Hatt at Purdue University in 1907 [470]. Yet, despite the long
history of research, the understanding of these phenomena is still far less than com-
plete. Advances in research came in spurts, mostly in response to new needs and
problems of construction.

The first major impetus for research came in the 1930s and 1940s, first due to
design of long-span arches, whose long-term stability could not have been ensured
without creep buckling analysis, and then, mainly, due to the invention of prestressed
concrete, which would have been impossible without getting grasp of the prestress
losses caused by creep and shrinkage. The names of Eugène Freyssinet in Paris,
Gustaaf Paul Robert Magnel in Ghent, and Franz Dischinger in Munich may be
mentioned among the pioneers from that period. Simultaneously, another major im-
petus came during the 1930s due to construction of very large dams, in which the
relaxation by creep of the stresses caused by hydration heat and shrinkage was the
main factor limiting the speed of construction and played an important role in ensur-
ing the integrity of the dam. Important test data were obtained by many experimental
researchers, among whom the contributions of George Earl Troxell and Raymond
E. Davis in Berkeley and of the Bureau of Reclamation in Denver were prominent.
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The next impetus was provided during the 1950s by the development of double
cantilever method of segmental erection of long-span prestressed box girder bridges,
which was the brainchild of Ulrich Finsterwalder in Munich. The greatest spurt in
research was engendered by the flourishing of nuclear power during the 1960s and
1970s, particularly by the problems of integrity of large containment shells and reac-
tor vessels, for which creep at elevated temperature is of great concern. This research
was extended during the 1970s and 1980s to the problems of preventing ormitigating
hypothetical high-temperature nuclear accidents, with spinoff to explosive spalling
of tunnel linings in fire. The biannual SMiRT conferences (Structural Mechanics in
Reactor Technology) provided at that timewere themain forum for research on creep
and shrinkage.

Problems of sustainability of cement production and use currently motivate ex-
tensive researches in the group of Franz–Josef Ulm at M.I.T. based on molecular
dynamics simulations of deformation and the role of water movements on the level
of nanopores in hydrated cement. These researches are having various fundamental
implications for the nanoscale mechanism of concrete creep and shrinkage and its
consequences for macroscale modeling.

Another current surge of interest in creep was spurred in 2008 by the release
of previously sealed technical data on the 1996 collapse of Koror-Babeldaob (KB)
Bridge in Palau. Although most large bridges are supposed to be designed for at least
a 100-year lifetime, this bridge of a span of 241m (a world record among prestressed
box girders) deflected within 18years by 1.61m (compared to the design camber).
The analysis at Northwestern University (cf. Chap.7) blamed the observed deflection
mainly on obsoleteness of the standard recommendations of engineering societies.
In consequence, a concerted effort was launched (under the auspices of RILEM1)
to gather information on other similar bridges. Despite widespread reluctance and
pernicious legal obstacles to releasing data, the result has been a collection of deflec-
tion data of 71 large-span box girders, most of which developed within 20–30years
excessive deflections that required costly retrofit or bridge closing.

This latest experience documents one historical impediment to progress—the
structural damage due to creep often takes two to three decades to develop. Retroac-
tively, it thus becomes very difficult to pin the blame precisely, and the legal litigation
of the damage often leads to an incorrect settlement, e.g., blaming the excessive de-
flections on shoddy construction. Not being too concerned about distant future, many
practicing engineers and consultants, even those sitting on code-making committees,
do not seem to be very worried about creep.

Pervasive problems have been the reluctance of most structural firms to reveal
data from failures and damages, and particularly the legal sealing of data from the
litigation of these damages in courts. Progress in structural engineering has tradi-
tionally depended on the analysis of failures. If the data on failures are not released,
progress is impeded, with enormous costs to the society. This may, for example,
help to explain why an obsolete, simplistic, and misleading creep and shrinkage

1RILEM is the French acronym of the International Union of Laboratories and Experts in Con-
struction Materials, Systems and Structures.
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model adopted in 1971 is, after more than four decades, still surviving as a standard
recommendation.

Another obstacle to the development of a rational theory of creep and shrinkage
has been the enormous effect of concrete composition and diverse admixtures on the
creep and shrinkage properties. The worldwide database is vast but is complicated
by large differences in creep and shrinkage properties of various concretes, which
are very hard to describe and filter out mathematically, yet obscure the trends with
respect to time, age, sectional thickness, environmental humidity, etc. This is one
reason for the proliferation of diverse creep and shrinkage models calibrated by only
limited selections of test data.

In practice-oriented studies, there has been a tendency to deduce all the concrete
design equations by curve fitting of test data. This empirical approach has worked
adequately in many cases. But for creep, the purely empirical approach is insufficient
and a solidly founded theory is indispensable. The reason is that, in the available
database of thousands of creep and shrinkage tests, most of creep tests (about 95%)
have a duration of less than 6years and only a few exceed 12years, while the design
lifetimes of many creep-sensitive structures are supposed to be at least a century. To
fill this huge time gap, awell-founded theory is inevitable. To validate the theory, data
on multidecade deformations of large structures, such as bridges and tall buildings,
should be collected and their inverse analysis should be conducted to validate the
theory. Only meager efforts of this kind have so far been made.

The theory and modeling of creep and shrinkage has recently been unsettled
by the realization that the self-desiccation and autogenous shrinkage of modern
concretes with very low water-cement ratios or large amounts of admixtures, or
both, are phenomena of decades long duration, reaching much larger magnitudes
than in old concretes. The self-desiccation can cause the relative humidity in the
pores to drop as low as to 70%. The autogenous shrinkage can even exceed the
drying shrinkage. They both evolve logarithmically for at least a decade, and probably
centuries. Unfortunately, at the time of writing, the experimental information on the
long-term self-desiccation and autogenous shrinkage is meager and, in the existing
database, themultiyear autogenous shrinkage has been neither recorded nor separated
from creep and drying shrinkage data. Consequently, these phenomena cannot be
modeled here as thoroughly as they deserve (and their full treatmentmust be relegated
to a future second edition).

Perhaps surprisingly, the creep of concrete has little in common with the creep of
other materials, particularly metals, polymers, and clays. The physical origin is com-
pletely different, and the mathematical models, too. The problem of concrete creep
and shrinkage intersects with many fields of engineering and science—structural de-
sign, experimental methods, design of experiments, aging viscoelasticity, mechanics
of materials and structures, mathematical modeling by differential and integral equa-
tions, materials science, microscopy, silicate and colloid chemistry, poromechanics,
thermodynamics, theory of constitutive relations, water diffusion and sorption in con-
crete, nanomechanics, molecular dynamics simulations at the atomistic level, mod-
eling of the associated cracking and fracture, probabilistic modeling, optimization,
statistical evaluation and prognosis. In prestressed structures, the creep of concrete
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is intertwined with the viscoplasticity of prestressing steel, in retrofitted structures
with the creep of polymeric laminates, and in structures undergoing uneven long-time
settlement with the consolidation and creep of clay.

The effects of creep and shrinkage are mainly of interest for the long-term ser-
viceability and durability of structures and have strong implications for sustainability
of civil engineering infrastructure. Errors in the prediction of creep and shrinkage
effects can lead to intolerable excessive deflections of bridges, differential column
shortening in super-tall buildings, shrinkage cracking with consequent ingress of wa-
ter and corrosion of reinforcement, stress redistributions which also lead to cracking,
endangerment of leak-tightness of nuclear containments, etc. Creep can also com-
promise structural safety since it reduces the long-time critical load in buckling of
columns, thin roof shells, tunnel linings, and tunnels or buildings in fire. For instance,
the tragic collapse of the KB Bridge three months after retrofit was likely triggered
by creep buckling of a previously delaminated top slab, overloaded by additional
prestressing tendons.

Accuracy Levels Recommended for Practice

The degree of sensitivity of various structures to creep and shrinkage varies widely.
Accurate and laborious analysis of creep and shrinkage is necessary only for certain
special types of structures. The following approximate classification of sensitivity
levels of structures may be made on the basis of general experience [107]:

Level 1. Reinforced concrete beams, frames, and slabs with spans under 20m
(65 ft.) and heights of up to 30m (100 ft.), plain concrete footings, retain-
ing walls.

Level 2. Prestressed beams or slabs of spans up to 20 m (65 ft.), high-rise building
frames up to 100 m (325 ft.) high.

Level 3. Medium-span box girder, cable-stayed or arch bridges with spans of up to
80 m (260 ft.), ordinary tanks, silos, pavements, tunnel linings.

Level 4. Long-span prestressed box girders, cable-stayed or arch bridges; large
bridges built sequentially in stages by joining parts; large gravity, arch or
buttress dams; cooling towers; large roof shells; very tall buildings.

Level 5. Record-span bridges, nuclear containments and vessels, large offshore
structures, large cooling towers, record-span thin roof shells, record-span
slender arch bridges, super-tall buildings.

Level 5 requires the most realistic and accurate analysis based on a model such
as B3 or B4—typically performed using step-by-step numerical integration of a
rate-type constitutive law, coupled with the solution of the differential equations
for drying and heat conduction, statistical estimation of confidence limits and with
updating based on short-time tests of given concrete. The designers usually prefer a
simpler creep and shrinkage model. But it makes little sense to run a detailed finite
element analysis, sometimes with statistical estimates and experimental updates,
while at the same time using a poor material model introducing much larger errors.
Anyway, the cost of proper level 5 analysis is minuscule compared to the cost of
large structures of extreme designs. The error in maximum deflections, stresses, and
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cracking predictions caused by replacing a realistic creep and shrinkage model with
a simplistic estimation of creep and shrinkage effects is often larger than the gain
from replacing old fashioned frame analysis by pencil with finite element analysis
by computer.

Examples of level 5 structures are long-span prestressed box girders, especially
when segmentally erected, cable-stayed bridges and arches, large gravity arch or
buttress dams, cooling towers, large roof shells, super-tall buildings, nuclear con-
tainments and vessels, large offshore structures, large-span roof shells.

An accurate analysis is also necessary for level 4 and is recommended, though
not requisite, for level 3. This includes, e.g., medium-span box girders, cable-stayed
or arch bridges, silos, pavements, prestressed beams with spans over 65–165 ft. (20–
50m), and high-rise buildings frames up to 325 ft. (100m) tall.

Although most of this book is focused on levels 4 and 5, a simplified method,
such as the age-adjusted effective modulus method (Chap.4, [76]), endorsed by the
American Concrete Institute (ACI) and by fib,2 is recommended for levels 3 and
lower. This method is nevertheless also useful for preliminary design estimates at
levels 4 and 5. The effective modulus method (Chap.4) suffices for level 2. For level
1, creep and shrinkage analysis of the structure is not required, although a crude
empirically based estimate using the effective modulus is desirable to check whether
level 1 is indeed applicable.

Since creep and shrinkage deformations inevitably exhibit large statistical scatter,
a statistical analysis (Chap. 6) with estimation of 95% confidence limits should be
mandatory for level 5 and is recommended for level 4. If high temperatures occur,
their analysis ought to be detailed for level 5 and approximate for level 4. For level
3, their analysis is unnecessary though advisable and can be ignored for levels 1 and
2 (except for the effects of hydration heat).

In many situations, the neglect or simplistic estimation of creep and shrinkage
may not only compromise durability but may also lead to overdesign. For example,
creep is very beneficial in mitigating the damage and cracking caused by long-term
expansive processes in concrete, such as the alkali–silica reaction or reinforcement
corrosion. It greatly reduces the stresses caused by drying shrinkage or swelling, by
nonuniform autogenous shrinkage, by gradual long-time differential settlement of
structures on consolidating clayey foundations, or by changes of structural system,
which are typical of modern prestressed concrete construction procedures.

Some research subjects, such as the elastic analysis of structural frames, become
closed after several decades. Not the science field of creep and hygrothermal effects.
After 130years of research, this field has expanded to enormous breadth and the end
is not yet in sight. Thus, the present coverage of the cutting-edge subjects will surely
have to be updated in less than a decade, although many parts of the present coverage
are probably definitive.

Thepresent fieldnow includes, or impinges on, a number of scientificdisciplines—
aside from deformations and strength of structures and traditional laboratory testing,

2The acronym “fib” (officially written in lower case italics) stands for “fédération internationale du
béton,” in English the International Federation for Structural Concrete.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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also modern computational mechanics, fracture mechanics, chemo-mechanics, ther-
momechanics and thermodynamics, diffusion theory, nanomechanics, scale bridging,
probabilistic modeling of materials and structures, stochastic processes, stability of
structures and crack systems, statistical interpretation and fitting optimization of big
data gathered in enormous worldwide databases, intelligent use of sensors to collect
data from structures, optimum inverse analysis of sensor data collected from struc-
tures or laboratory specimens, effects of chemical composition and of the material
micro or nanostructure, and nanoscale experimental methods. This book aims to
interpret these scientific disciplines, some in detail, some only tangentially, in one
coherent exposition.

Finally, let us point out that what would greatly reduce uncertainties in the devel-
opment of creep and shrinkage theories would be to agree internationally, among all
laboratories, to accompany every creep and shrinkage testing programby similar tests
performed on one and the same standard concrete, with a predefined composition,
curing procedures, and moisture conditions. But, at present, this is just a dream.



Chapter 2
Fundamentals of Linear Viscoelasticity

Abstract Despite complexities such as aging due to cement hydration or strong
moisture sensitivity, the creep of concrete at service stress levels belongs to the broad
realm of linear viscoelasticity, a theory that has been extensively studied beginning
with the works of Maxwell, Kelvin, and Boltzmann in the late nineteenth century.
Thanks to linearity, we introduce the compliance function as the basic material char-
acteristic for constant sustained stress. Then we use the principle of superposition
to characterize the creep at variable stress, calculate the relaxation function for con-
stant imposed strain, and generalize the creep model to multiaxial stress. Finally we
introduce an operator notation, which simplifies the mathematical exposition and
illuminates the main concepts.

2.1 Characterization of Creep by Compliance Function

Laboratory tests and measurements on real structures indicate that, for many mate-
rials, strain tends to grow when the stress is kept at a constant level. This phenom-
enon is usually referred to as creep. For materials that exhibit creep, stress tends to
decrease when the strain is kept constant, which is referred to as relaxation. Creep
and relaxation are intimately linked and have a common origin in viscous defor-
mation processes in the material microstructure. Such time-dependent behavior can
lead to undesirable effects on the structural level, e.g., to dramatic growth of bridge
deflections or to loss of prestress in cables, and so it needs to be taken into account by
using appropriate constitutive models. One possible approach consists in replacing
the dependence between the current values of stress and strain by the dependence
of the current value of stress (or strain) on the entire previous history of strain (or
stress).

In general, the stress–strain relation can be nonlinear, but it is convenient to start
from a relatively simple linear theory and later generalize it as needed, e.g., by adding
the strain induced by cracking or plastic yielding, and also the stress-independent part
of deformation due to shrinkage and thermal effects. Classical linear viscoelasticity
is based on the superposition principle, which states that the responses to individual
loading histories can be superimposed. In mathematical terms, this means that the

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6_2
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mapping of the stress history onto the corresponding strain history (or vice versa) is
described by a linear operator.

Boltzmann Superposition Principle: (2.1)

If, for a given material,
stress history σa(t) corresponds to strain history εa(t)

and stress history σb(t) corresponds to strain history εb(t)
then,

for arbitrary real constants ca and cb,
σ (t) = caσa(t) + cbσb(t) corresponds to ε(t) = caεa(t) + cbεb(t).

This principle, first proposed by Boltzmann [243] for nonaging phenomena and
later generalized by Volterra [840] for aging phenomena, is an enhanced form of
the superposition principle used in linear elasticity, which works with the current
values of stress and strain. Linear viscoelasticity takes into account the entire history
of stress and strain, described by functions of time t .

The superposition principle is not, of course, a fundamental law of physics. It
is a convenient hypothesis, valid only approximately and not under all conditions.
For example, for concrete the superposition is a realistic hypothesis only if all the
principal stresses remain in the service stress range (i.e., below 40–50% of uniax-
ial strength). At higher stresses, a damage law must be appended. For basic creep
(i.e., creep of a sealed specimen, see Sect. 3.1) within the service stress range, the
assumption of linearity agrees with test results very well. But in the case of drying or
variable temperature, the superposition principle is accurate only if it is coupled with
a realistic constitutive law for cracking damage. It has sometimes been suggested that
the superposition did not apply to unloading during strain reversal, but these were
cases of creep with drying in which the irreversibility of cracking was not accurately
accounted for by a constitutive law applied at each material point. However, the use
of an effective creep model for the whole cross section of a member exposed to
drying (the so-called sectional approach, see Sects. 3.5 and 3.6), as defined in codes
or society recommendations and also by models B3 and B4, may lead, even within
the service stress range, to significant deviations from the principle of superposition.

Once accepted, the principle of superposition serves as a handy tool for constitu-
tive modeling. Based on superposition, the uniaxial stress–strain relation of a given
viscoelastic material can be constructed from one single function J (t, t ′), called the
compliance function, or, alternatively, from a closely related function R(t, t ′), called
the relaxation function.

Consider a special experiment—the creep test, in which a previously stress-free
material sample is subjected to a given uniaxial stress σ̂ at time t ′, and the stress level
is then kept constant at all later times. Mathematically, the prescribed stress history
is characterized by the function

σ(t) = σ̂ H(t − t ′) (2.2)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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where H is the Heaviside step function, defined by the rule1

H(s) =
{
0 for s < 0
1 for s ≥ 0

(2.3)

Up to time t ′, the material is at zero stress and therefore does not deform.2 At time
t ′, stress jumps to a given level σ̂ , and this induces a certain instantaneous3 strain. For
a rate-independent material model (not necessarily elastic, but possibly elastoplastic,
damage model, fracture model, etc.), the strain would afterward remain constant as
long as the stress is kept constant. In reality, delayed deformation processes taking
place in the material microstructure lead to creep, which manifests itself by a gradual
strain increase, described by a function ε(t). The superposition principle implies that
if we divide the resulting strain history ε(t) by the stress level σ̂ at which the creep
test was performed, we obtain a function that is independent of the applied stress
level and characterizes the material. Therefore, the evolution of strain induced by the
special prescribed stress history (2.2) is given by

ε(t) = σ̂ J (t, t ′) (2.4)

where J is the compliance function of the viscoelastic material; see Fig. 2.1a. The
value of J at (t, t ′) can be interpreted as the strain at time t induced by a unit stress
acting from time t ′. Of course, if t < t ′, the value of J must be zero.

For a linear elastic material characterized by Young’s modulus E , the mechanical
strain measured during the creep test is equal to zero for all times t preceding the
time t ′ when the stress is applied and equal to σ̂ /E for all times t after the stress
application. Such a strain history is described by the function ε(t) = (σ̂ /E)H(t−t ′),
and so the compliance function of an elastic material is

J (t, t ′) = 1

E
H(t − t ′) (2.5)

The compliance function of a linear viscoelastic material has a similar meaning to
the inverse value of the elastic modulus in time-independent linear elasticity, and
its units are 1/Pa. If the material properties do not evolve in time, the compliance
function depends only on the time lag t − t ′, i.e., on the duration of loading (elapsed
time), and not on times t and t ′ separately. In that case we can write

1The value of Heaviside function at s = 0 is often defined as 1/2, for symmetry reasons. For the
present purpose, it is preferable to set H(0) = 1.
2Here, we consider only the mechanical strain, i.e., the stress-induced part of deformation. Of
course, in general one needs to account for other sources of deformation, such as thermal changes
or shrinkage, which will be incorporated in Sect. 2.5.
3What exactly is meant by “instantaneous” strain depends on the time scale at which we work. It
is hard to make a clear distinction between the truly instantaneous strain and the part of creep that
takes place very shortly after loading.
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Fig. 2.1 Histories of stress and strain in a (a) creep test, (b) relaxation test

J (t, t ′) = J0(t − t ′) (2.6)

where J0 is also a compliance function, but this time is considered as a function of
only one variable, the duration of loading. Compliance functions in the form (2.6) are
characteristic of nonaging materials, such as polymers. In contrast to that, concrete
is a typical example of a material with evolving microstructure due to chemical
processes such as cement hydration. Chemical changes in the microstructure as well
as relaxation of self-equilibrated stresses in the nanostructure result into changes of
viscoelastic properties, and so the compliance function depends not only on the load
duration but also on the age of the sample. The age is usuallymeasured from the initial
setting time, i.e., from the time when the hardening fresh concrete first becomes a
solid (typically several hours after mixing). Only for sufficiently old concrete, further
changes of mechanical properties might be negligible, in which case the compliance
function can be considered in the simple form (2.6). Realistic analysis of concrete
structure must be based on the general form of compliance function, characteristic
of aging materials.

For real materials, the superposition principle is applicable with sufficient accu-
racy only within a certain range of stresses. This is illustrated in Fig. 2.2a, b, which
presents the results of creep tests performed by Komendant, Polivka and Pirtz [551]
on sealed concrete cylinders. From age t ′ = 90days, the specimens were loaded by
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Fig. 2.2 Creep tests at various stress levels: (a, c) strain evolution, (b, d) compliance function

uniaxial compression at three different stress levels. Figure2.2a shows the strain4

as a function of the load duration, t − t ′, up to more than 1year. Higher stresses
of course induce larger strains, but the evolution of compliance (defined as strain
divided by stress) is almost the same at low and medium stresses (|σ̂ | = 14.5 MPa
and 22.0 MPa), as documented in Fig. 2.2b. Therefore, proportionality is verified at
least up to the stress level of 22 MPa, which is about one half of the compression
strength of this particular concrete, f̄c = 45.4 MPa. At stress |σ̂ | = 29.3 MPa, the
compliance is visibly higher, which indicates a deviation from proportionality. To
complement the picture, Fig. 2.2c, d shows, this time in a semi-logarithmic scale, the
results of creep experiments reported by Mamillan [598]. The tested concrete had
a lower 28-day compressive strength, f̄c = 33.9 MPa, and was loaded at an early
age (t ′ = 7days). Consequently, the deviation from linearity occurs already at lower
stress levels than in Fig. 2.2a, b.

The results plotted in Fig. 2.2 confirm the empirical rule that creep becomes non-
linear for stresses exceeding about one half of the strength limit. The cause of non-
linearity is the time-dependent growth of microcracks. The nonlinear creep behavior

4Concrete creep tests are typically performed under compression, and the resulting creep strains are
thus negative. For simplicity, the negative sign is sometimes omitted in graphical representations
of the results, e.g., in Fig. 2.2a, but the sign must be included in all calculations. Of course, the
compliance is always positive, no matter whether it is determined from a compressive or a tensile
test.
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Fig. 2.3 Creep isochrones: (a) schematic plot covering the range up to peak stress, (b) actual
isochrones constructed from the data of Komendant et al. [551]

may be visualized by plotting the so-called stress-strain isochrones; see Fig. 2.3.
They are obtained by conducting constant load creep tests at different stress levels
and connecting the points reached at the same time.

Fig. 2.4 Basic rheologic units: (a) elastic spring, (b) viscous dashpot

The compliance function of a specific material can be determined by the creep
test. The experimentally measured creep curve could be described by a sequence
of points, but for theoretical derivations and practical applications it is useful to
approximate it by a suitable analytical function. The general form of such function
can be motivated by closed-form solutions obtained for rheologic models, which
consist of elementary units coupled in series or in parallel. In viscoelasticity, the basic
units are a spring (Fig. 2.4a), representing an idealized elastic response, and a dashpot
(Fig. 2.4b), representing an idealized viscous behavior. In linear viscoelasticity, both
types of units are governed by linear laws. The force transmitted by a linear spring
is assumed to be proportional to the elongation (change of length with respect to
the initial stress-free configuration), and the force transmitted by a linear dashpot
is assumed to be proportional to the elongation rate. Since the rheologic model
represents the behavior of an infinitesimal material volume (sometimes called the
material point), forces actually represent stresses and elongation represents strain.
The spring stiffness E then has the meaning of an elastic modulus, measured in Pa,
and the material constant η characterizing the dashpot is the viscosity, measured in
Pa · s (i.e., in kg · m−1s−1). The inverse of viscosity, 1/η, is called the fluidity.
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Fig. 2.5 Kelvin chain

The compliance functions of various rheologic models are derived in Appendix
A. For our purpose, the most important case is the Kelvin chain, consisting of a finite
number of Kelvin units coupled in series (Fig. 2.5). Each Kelvin unit is formed by a
spring and a dashpot coupled in parallel. One of the units in theKelvin chain is usually
taken as a simple spring, which is a special case of a Kelvin unit with zero viscosity of
the dashpot (so that this dashpot carries no stress and can be removed). The compli-
ance function of a Kelvin chain composed of M +1 Kelvin units with elastic moduli
Eμ, μ = 0, 1, 2, . . . M , and viscosities η0 = 0 and ημ, μ = 1, 2, . . . M , is given by

J0(t) =
⎡
⎣ 1

E0
+

M∑
μ=1

1

Eμ

(
1 − e−t/τμ

)⎤⎦ H(t) (2.7)

where τμ = ημ/Eμ are the retardation times. From the mathematical point of view,
the time-dependent part of (2.7) is the Dirichlet series (or Prony series); see Hardy
and Riesz [459].

For concrete, as an aging viscoelastic material, an appropriate generalization is
needed. Since the time is measured from the set of concrete and the creep test starts
at a certain age t ′ > 0, the variable t on the right-hand side of (2.7) must be replaced
by the load duration, t − t ′. In tests started at different ages, different compliance
curves are obtained, and so the model parameters should be considered as functions
of t ′. It turns out that the retardation times can be fixed, and only the moduli need to
be taken as age-dependent. The generalized form of (2.7) thus reads

J (t, t ′) =
⎡
⎣ 1

D0(t ′)
+

M∑
μ=1

1

Dμ(t ′)

(
1 − e−(t−t ′)/τμ

)⎤
⎦ H(t − t ′) (2.8)

The age-dependent moduli Dμ(t ′) cannot be directly interpreted as current stiff-
nesses of aging elastic springs, as explained in detail in Appendix A. This is why
they are denoted by symbols different from the age-independent spring stiffnesses
Eμ from (2.7).

Example 2.1. Approximation of a measured compliance function by Dirichlet
series

Real data measured in creep tests are usually scattered, and a piecewise linear inter-
polation between the measured values may lead to irregularities, such as a negative
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creep rate in certain time intervals. It is much better to use a global approximation
by a smooth function, and the Dirichlet series is perfectly suitable for this purpose.

Consider the compliance function extracted from the creep test of Komendant et
al. [551] at the age of t ′ = 90days and at the low stress level of σ̂ = 14.5 MPa. In
this illustrative example, variable t ′ will be considered as fixed, and instead of age-
dependent parameters Dμ(t ′) we will deal with their values at age 90days, denoted
simply as Dμ.

The simplest approximation can be based on the so-called standard linear solid,
i.e., on a Kelvin chain consisting of an elastic spring and a Kelvin unit (which
corresponds to M = 1 in (2.8)), with the compliance function given by

J (t, t ′) = J0(t − t ′) = 1

D0
+ 1

D1

(
1 − e−(t−t ′)/τ1

)
, t ≥ t ′ = 90 days (2.9)

This model possesses only one characteristic time, τ1. For load durations t − t ′
much larger than τ1, the compliance function is almost constant. Since the data in
Fig. 2.2 indicate that the compliance still grows at several hundred days, let us set
τ1 = 100 days. Moduli D0 and D1 can then be determined by optimal fitting, based,
e.g., on the least-square method. The best agreement is obtained for D0 = 33.30
GPa and D1 = 62.74 GPa (see also Table2.1a), and the resulting approximation is
shown in Fig. 2.6a.

At afirst glance, thefitting seems tobeperfect, but a closer examination reveals that
the analytical approximation deviates from the measured data for times of loading
shorter than about 10days and also for those longer than about 300days. This is
best seen if the results are replotted with the load duration in logarithmic scale; see
Fig. 2.6b. Such a plot reveals that the exponential function in (2.9) is almost constant
for times of loading much shorter or much longer than the characteristic time τ1. By
changing τ1, we can shift the range in which the measured data can be fitted but we

Table 2.1 Parameters of
Dirichlet series used in
Example 2.1

(a) M = 1

μ Dμ τμ

[GPa] [day]

0 33.30 -

1 62.74 100

(b) M = 4

μ Dμ τμ

[GPa] [day]

0 40.43 -

1 324.63 0.5

2 421.47 5

3 145.80 50

4 52.04 500
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can never extend that range. Covering a wider range is possible only by adding more
exponential terms with different characteristic times, i.e., by increasing the number
of Kelvin units in the chain.

Fig. 2.6 Fitting of a measured compliance function by Dirichlet series

Figure2.6d shows the best fit obtained for a chain consisting of an elastic spring
and four Kelvin units, with retardation times ranging from 0.5 to 500days in a geo-
metric progression with quotient 10. The model parameters are listed in Table2.1b.
The graph of the compliance function in semi-logarithmic scale (logarithmic scale
for the load duration, linear scale for the compliance) clearly indicates that the mea-
sured compliance keeps increasing even after long load durations, which is not so
obvious if the horizontal axis is kept in the linear scale; see Fig. 2.6c. The experimen-
tal data used in this example have been recorded only up to 2years, but the fact that
the creep process never really stops has been confirmed by other tests running up to
10 or even 30years, and by bridge deflection over even longer periods; see Chap. 7.
However, every Kelvin chain with a finite number of units can capture the growth
of compliance only up to times that are comparable to the maximum retardation
time. The number of units (i.e., the number of terms in the Dirichlet series) and their
retardation times must be adjusted to the specific application, having in mind the
shortest and the longest loading times for which the viscoelastic response needs to
be represented accurately. �

http://dx.doi.org/10.1007/978-94-024-1138-6_7
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2.2 Integral Stress–Strain Relation

Once the compliance function of a viscoelastic material is known, it is possible to
evaluate the strain induced by any given stress history. All that is needed is the
principle of superposition.

Consider first a simple loading program with stress increasing by a jump from
zero to σ1 at time t1 and then remaining constant up to time t2, when it increases by
a jump to σ2 and then remains constant again. Such a stress history is the sum of two
jump functions and can be described as

σ(t) = Δσ1 H(t − t1) + Δσ2 H(t − t2) (2.10)

where Δσ1 = σ1 and Δσ2 = σ2 − σ1. Since the stress history Δσ1 H(t − t1) would
lead to strain history Δσ1 J (t, t1) and stress history Δσ2 H(t − t2) to strain history
Δσ2 J (t, t2), the prescribed stress history (2.10) leads to strain history

ε(t) = Δσ1 J (t, t1) + Δσ2 J (t, t2) (2.11)

This argument can be extended by induction to an arbitrary finite series, and so the
stress history

σ(t) =
n∑

k=1

Δσk H(t − tk) (2.12)

leads to strain history

ε(t) =
n∑

k=1

Δσk J (t, tk) (2.13)

This is graphically shown in Fig. 2.7a.
Expressions (2.12)–(2.13) correspond to loading programs for which the stress

changes by jumps at a finite number of time instants and between the jumps remains
constant. By reducing the length of intervals between the jumps and simultaneously
reducing the size of jumps, we can proceed in the limit to the description of more
general stress histories, as illustrated in Fig. 2.7b. The sum in (2.13) turns into an
integral, and the strain evaluation formula can be written as5

ε(t) =
∫ t

0
J (t, t ′) dσ(t ′) (2.14)

5In integral expressions similar to (2.14), t is called the current time, t ′ is the historic time, and
t − t ′ is the elapsed time. In mathematical terms, the compliance function J is called the kernel
of the integral transform mapping the stress rate onto the strain. For nonaging materials, J (t, t ′)
is replaced by J0(t − t ′), called the convolution kernel, and the integral in (2.14) represents the
convolution of the compliance function and the stress rate.
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Fig. 2.7 Application of the superposition principle: (a) piecewise constant stress history with a
finite number of jumps, (b) limit transition to a continuous stress history

The isolated time instants tk are replaced by the integration variable t ′ that sweeps
through the history from time zero to the current time t , and the finite increments
Δσk at times tk are replaced by increments dσ(t ′). To cover the general case of stress
histories which can be piecewise continuous with finite jumps at certain isolated time
instants, the right-hand side of (2.14) must be interpreted as a generalized type of
integral called the Stieltjes integral. A finite stress jump Δσk at time tk contributes
to the value of the integral by J (t, tk)Δσk .

Equation (2.14) is not only a consequence of the principle of superposition but
its equivalent alternative statement. Indeed, (2.1) follows from (2.14). Using super-
position, one may further generalize Eq. (2.14) for the case of multiaxial stress and
strain; see Sect. 2.4.

In terms of the classical Riemann integral, formula (2.14) can be rewritten in a
somewhat clumsy form as

ε(t) =
n∑

k=1

J (t, tk)Δσk +
∫ t−1

0
J (t, t ′) σ̇ (t ′) dt ′

+
n∑

k=2

∫ t−k

t+k−1

J (t, t ′) σ̇ (t ′) dt ′ +
∫ t

t+n
J (t, t ′) σ̇ (t ′) dt ′ (2.15)
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where tk , k = 1, 2, . . . n, are those time instants between zero and the current time
t when the stress changes by jumps Δσk , k = 1, 2, . . . n. In each interval between
two jumps, the stress is assumed to be a differentiable function of time, and so the
infinitesimal increments dσ(t ′) can be replaced by σ̇ (t ′) dt ′ where σ̇ is the time
derivative of stress, i.e., the stress rate. The superscripts “plus” and “minus” at the
integration limits t+k−1 and t−k indicate that integration starts just after tk−1 and ends
just before tk , because at tk−1 and tk the time derivative of stress is not defined in the
classical sense.

For the frequent case in which concrete is free of stress until some loading age
t1 at which a finite stress σ1 is applied suddenly (by a jump), and afterward σ(t) is
continuous and differentiable, formula (2.15) reduces to

ε(t) = J (t, t1) σ1 +
∫ t

t+1
J (t, t ′) σ̇ (t ′) dt ′ (2.16)

Often it is practical to work with the strain rate. Differentiating (2.14) according
to the Leibniz rule, we have

ε̇(t) = σ̇ (t)

E(t)
+

∫ t

0
J̇ (t, t ′) dσ(t ′) (2.17)

where we tacitly assume that the current time t at which we compute the strain rate
is not one of the times tk at which σ has a jump; E(t) denotes the (instantaneous)
elastic modulus at time t , defined as E(t) = 1/J (t, t), and the dot over J denotes
partial derivative with respect to t (not t ′), i.e., J̇ (t, t ′) = ∂ J (t, t ′)/∂t . For a smooth
stress history starting with a jump, Eq. (2.17) may again be written in terms of the
Riemann integral similar to (2.16):

ε̇(t) = J̇ (t, t1) σ1 + σ̇ (t)

E(t)
+

∫ t

t+1
J̇ (t, t ′) σ̇ (t ′) dt ′ (2.18)

The integral stress–strain relation (2.14) is based on the superposition of infinitely
many stress histories, each of which exhibits a stress jump by dσ(t ′) at time t ′ and
afterward remains constant; see Fig. 2.7b. Alternatively, one could use the superpo-
sition of infinitely many stress impulses, each of which acts at a finite level σ(t ′)
during an infinitesimal time interval starting at time t ′. The corresponding formula
can be derived from Eq. (2.16) if the integral on the right-hand side is integrated
by parts. The resulting expression contains the partial derivative of the compliance
function J with respect to its second argument, t ′. For convenience, we introduce
the so-called stress impulse memory function

L(t, t ′) = −∂ J (t, t ′)
∂t ′

(2.19)
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which will later be shown to have a specific physical meaning. Since J (t, t ′) has a
jump at t = t ′, it is not differentiable at this point in the classical sense. One could
use the theory of distributions and deal with generalized derivatives, but it is perhaps
simpler to consider the variable t ′ in the integral in (2.16) as running to an upper
limit t−, just before time t . Integration by parts then yields

∫ t−

t+1
J (t, t ′) σ̇ (t ′) dt ′ = J (t, t−)σ (t−) − J (t, t+1 )σ (t+1 ) −

∫ t−

t+1

∂ J (t, t ′)
∂t ′

σ(t ′) dt ′ =

= σ(t)

E(t)
− J (t, t1)σ1 +

∫ t

t1
L(t, t ′)σ (t ′) dt ′ (2.20)

where E(t) = 1/J (t, t−) is the instantaneous modulus at age t . Substituting (2.20)
into (2.16), we obtain the modified integral stress–strain relation

ε(t) = σ(t)

E(t)
+

∫ t

t1

L(t, t ′)σ (t ′) dt ′ (2.21)

which was for concrete introduced by Maslov [609] and used in some simplified
analytical solutions by Arutyunian [39].

The first term on the right-hand side of (2.21) reflects the instantaneous response
to the stress acting at the current time t . The stress impulse memory function L
indicates how the strain at the current time t is affected by a unit stress impulse
acting at a previous time t ′. Function L is closely linked to the compliance func-
tion J . In practice, the compliance function is preferred, for two reasons: (i) The
compliance function can be directly determined from the creep test, and (ii) for real-
istic compliance functions, the impulse function L(t, t ′) tends to infinity as t → t ′
and the numerical evaluation of the integral in (2.21) becomes difficult. Of course,
from the mathematical point of view, the stress–strain relations (2.16) and (2.21) are
equivalent.

2.3 Relaxation Function

If the strain history ε(t) is given, then (2.16) or (2.21) represents a Volterra integral
equation for the unknown stress history.6 For realistic forms of J (t, t ′), this integral
equation cannot be solved analytically.7 But accurate numerical solutions, in which
the integral is approximated by a discrete sum, are easy. In this way, one can for

6It is interesting to note that (2.16) is a Volterra equation of the first kind, with the stress rate as the
unknown function and the compliance function as the kernel of the integral operator, while (2.21)
is a Volterra equation of the second kind, with the stress as the unknown function and the stress
impulse memory function as the kernel.
7Analytical solutions exist for nonaging materials with compliance functions corresponding to
rheologic chains, but for chains consisting of many units they are usually very complicated.
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example find the relaxation function R(t, t ′), which is defined as the stress history
σ(t) caused by unit constant strain imposed at age t ′.

As already mentioned, relaxation means spontaneous stress decrease under con-
stant strain. A relaxation test is a direct counterpart of the creep test: A certain strain
ε̂ is suddenly imposed at time t ′ and afterward kept constant, and the corresponding
stress history is measured; see Fig. 2.1b. But practically, a relaxation test is more dif-
ficult to perform because either the strainmust be electronically or manually adjusted
in short intervals to a constant value, or the load frame must be much stiffer than the
specimen, which is next to impossible.

By virtue of the principle of superposition, we can write the stress history as

σ(t) = ε̂R(t, t ′) (2.22)

where R(t, t ′) is the relaxation function. Following the same line of reasoning as in
the preceding section, the superposition principle can equivalently be stated in its
inverse form

σ(t) =
∫ t

0
R(t, t ′) dε(t ′) (2.23)

which expresses the stress history in terms of the strain history. This compact expres-
sion based on the Stieltjes integral could be rewritten in a form analogous to (2.15)
using the Riemann integral. For strain histories that are discontinuous only at the
onset of loading at time t1 and afterward remain differentiable, we can write, in
analogy to (2.16),

σ(t) = R(t, t1) ε1 +
∫ t

t+1
R(t, t ′) ε̇(t ′) dt ′ (2.24)

Formulae (2.23)–(2.24) for evaluation of the stress history from a given strain his-
tory represent the inversion of formulae (2.14) and (2.16) for evaluation of the strain
history from a given stress history. So the compliance function and the relaxation
function are not independent. If the compliance function is known, the correspond-
ing relaxation function can be obtained from Eq. (2.16) written for the stress history
σ(t) = ε̂R(t, t1) and strain history ε(t) = ε̂H(t − t1) which describe the relaxation
test. Setting σ1 = ε̂R(t1, t1), we obtain after easymanipulations the integral equation

J (t, t1)R(t1, t1) +
∫ t

t+1
J (t, t ′) Ṙ(t ′, t1) dt ′ = 1 for all t ≥ t1 (2.25)

with R(t, t1) as the unknown function of t (with fixed t1). Here, Ṙ is the partial
derivative of the relaxation function with respect to its first argument, t . In the special
case t = t1, the integral vanishes and the equation reduces to an algebraic one, from
which R(t1, t1) = 1/J (t1, t1) = E(t1). So the instantaneous material stiffness is the
reciprocal value of the instantaneous material compliance, but in general the value of
the relaxation function is not equal to the reciprocal value of the compliance function.



2.3 Relaxation Function 23

Equation (2.25) can be solved numerically, with the integral approximated by a finite
sum. In this way, the values of the relaxation function R(tk, t1) for a series of time
instants tk , k = 1, 2, 3 . . . N , can be constructed. This will be explained in detail
in Chap.5; see Eqs. (5.22)–(5.23). One should note that if the compliance function
J (t, t1) of an aging viscoelastic material is known only for one specific value of t1
(e.g., determined from a creep test started at age t1), it is not possible to determine
the corresponding relaxation function R(t, t1), because evaluation of the integral in
(2.25) requires evaluation of the compliance function J (t, t ′) for general values of
t ′ between t1 and t .

The foregoing solution of relaxation curves based on the principle of superposition
agrees very well with experiments for concrete, but only in absence of severe drying;
see Fig. 3.8b.

The integral stress–strain equation can also be presented in terms of rates. In
analogy to (2.17) or (2.18), we can write

σ̇ (t) = E(t)ε̇(t) +
∫ t

0
Ṙ(t, t ′) dε(t ′) (2.26)

or

σ̇ (t) = Ṙ(t, t1) ε1 + E(t)ε̇(t) +
∫ t

t+1
Ṙ(t, t ′) ε̇(t ′) dt ′ (2.27)

where E(t) = R(t, t) = instantaneous elastic modulus at age t , and the dot over
R denotes partial derivative with respect to the first variable, t , i.e., Ṙ(t, t ′) =
∂R(t, t ′)/∂t .

Finally, in analogy to (2.21), we can write

σ(t) = E(t)ε(t) +
∫ t

t1

S(t, t ′)ε(t ′) dt ′ (2.28)

where

S(t, t ′) = −∂R(t, t ′)
∂t ′

(2.29)

is the so-called strain impulse memory function.
In general, neither σ(t) nor ε(t) is prescribed. Then (2.14) or (2.23) represents

a uniaxial stress–strain relation for linear aging creep. The fact that, for concrete,
J (t, t ′) and R(t, t ′) do not depend merely on the time lag (elapsed time) t− t ′, but on
t and t ′ separately, is a consequence of aging (Figs. 3.7 and 3.8a). The theory defined
by constitutive equation (2.14) or (2.23) is called the aging linear viscoelasticity.
The aging, unfortunately, prevents transplanting from nonaging viscoelasticity the
Laplace transform methods for solving structural creep problems. Thus, the aging is
amajor obstacle to analytical solutions. It requires that accurate solutions be obtained
numerically, by step-by-step integration in time; see Chap.5.

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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In the special case of nonaging classical linear viscoelasticity, widely used for
polymers, the compliance function depends only on the elapsed time t − t ′, i.e.,
J (t, t ′) = J0(t − t ′), and then the relaxation function has a similar property and can
be expressed as R(t, t ′) = R0(t − t ′). One can also define the corresponding stress
impulse memory function L∗

0 and strain impulse memory function S∗
0 as the time

derivatives of J0 and R0, respectively. If these derivatives are considered in the sense
of distributions and contain a singular Dirac-like component, the right-hand sides of
Eqs. (2.21) and (2.28) can be written as convolutions and after transformation into
the Laplace space they reduce to simple products between the Laplace images. In
classical viscoelasticity, the Laplace transformof the stress impulsememory function
L∗
0 is called the retardance and the Laplace transform of the strain impulse memory

function S∗
0 is called the relaxance.

As proven by Roscoe [733], the compliance function J0(t) of any nonaging vis-
coelastic material can be approximated with arbitrary accuracy by the series (2.7),
representing the compliance function of aKelvin chain. The relaxation function R0(t)
of a nonaging viscoelastic material can be approximated by the relaxation function
of a Maxwell chain (also called a Wienert model), consisting of a sufficient number
of Maxwell units coupled in parallel (Fig. 2.8). Each Maxwell unit is formed by a
spring and a dashpot coupled in series. In Appendix A, it is shown that the relax-
ation function of a Maxwell chain with M units characterized by stiffnesses Eμ and
viscosities ημ, μ = 1, 2, . . . M , is given by

R0(t) =
⎛
⎝ M∑

μ=1

Eμe
−t/τμ

⎞
⎠ H(t) (2.30)

where the parameters τμ = ημ/Eμ are in this context called the relaxation times.
The sum in (2.30) is a special case of Dirichlet series.

For nonaging chains, it is possible to prove that every Maxwell chain is exactly
equivalent to a certain conjugate Kelvin chain and vice versa. The rules for construct-
ing the conjugate of a given chain were formulated by Alfrey and Doty [32].

Approximation of the relaxation function for agingmaterials could be based on an
aging Maxwell chain, for which the stiffnesses Eμ and viscosities ημ are considered
as age-dependent. The corresponding relaxation function

R(t, t ′) =
⎛
⎝E0(t

′) +
M∑

μ=1

Eμ(t ′)e−(t−t ′)/τμ

⎞
⎠ H(t − t ′) (2.31)

is a straightforward generalization of the Dirichlet series (2.30). Treatment of rheo-
logic models with age-dependent properties is discussed in detail in Appendix A, but
for practical application it is more convenient to use nonaging chains in combination
with the solidification theory; see Chap. 9.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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Fig. 2.8 Maxwell chain

2.4 Viscoelasticity Under Multiaxial Stress

So far we have considered stress and strain as scalars, tacitly assuming that the
material is subjected to uniaxial stress. This is sufficient for the description of trusses,
and also of beams and frames, if the effects of shear and torsion are neglected. For
walls, slabs, shells, and massive structures, such as dams or nuclear containments,
two- and three-dimensional constitutive laws are needed.

Recall that the generalized Hooke’s law, describing a linear elastic isotropic mate-
rial, works with two independent elastic constants, e.g., with Young’s modulus E and
Poisson’s ratio ν, or with the bulk modulus K and shear modulusG. The extension to
viscoelasticity should, in general, consider two independent compliance functions,
e.g., JK (t, t ′) for the bulk compliance (related to changes of volume) and JG(t, t ′)
for the shear compliance (related to changes of shape). Although the nanoscale creep
mechanism consists presumably in sliding, themacroscale deformation involves both
deviatoric and volumetric changes, which is a consequence of porosity. Since truly
three-dimensional creep data are still scarce, in practical applications it is usually
assumed that all compliance functions can be obtained by appropriate scaling of
the uniaxial compliance function J (t, t ′), in other words, that Poisson’s ratio is not
affected by creep and can be considered as a constant.8 When this assumption is
accepted, the three-dimensional generalization of the uniaxial viscoelastic strain–
stress law (2.14) is written as

ε(t) =
∫ t

0
J (t, t ′)Cν dσ (t ′) = Cν

∫ t

0
J (t, t ′) dσ (t ′) (2.32)

Here,

Cν =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.33)

8This assumption would not be realistic at young ages, when the material evolves from a liquid
(fresh concrete mix) to a solid (hardened concrete) and Poisson’s ratio decreases from initial values
near 0.5 to final values near 0.2.
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is the dimensionless elastic compliance matrix corresponding to a unit value of
Young’s modulus, ε is the 6 × 1 column matrix of strain components, and σ is the
6× 1 column matrix of stress components. In a similar spirit, the three-dimensional
generalization of the uniaxial viscoelastic stress–strain law (2.23) is written as

σ (t) =
∫ t

0
R(t, t ′)Dν dε(t ′) = Dν

∫ t

0
R(t, t ′) dε(t ′) (2.34)

where

Dν = C−1
ν = 1

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 0.5 − ν 0 0
0 0 0 0 0.5 − ν 0
0 0 0 0 0 0.5 − ν

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.35)

is the dimensionless elastic stiffness matrix, corresponding to a unit value of Young’s
modulus. Two-dimensional versions of the stress–strain law valid under plane–
stress or plane–strain conditions are easily obtained by an appropriate modification
of matrix Dν .

2.5 Operator Notation

Defining aVolterra integral operator for creep on the basis of (2.14), one can approach
the structural creep analysis in a powerful, general, and elegant manner. Recall that
an operator assigns to each function from a suitable domain of definition and another
function as its image. A simple example is a differential operator that assigns to each
differentiable function its derivative. In viscoelasticity, we introduce the compliance
operator (or creep operator) J that maps the stress history onto the corresponding
strain history, and the relaxation operator R that maps the strain history onto the
corresponding stress history. From this definition, it is clear that these operators are
mutually inverse—their composition produces the identity operatorI , which maps
an arbitrary function onto itself.

The operator notation is more compact and also more general than the explicit
integral notation. For instance, the strain–stress relations (2.14), (2.15), (2.16), and
(2.21) are all transcribed as

ε(t) = J {σ(t)} (2.36)

where the braces emphasize that J is an operator applied on the entire function
σ(t) (and not just a function of the value of σ at a fixed point t). In a similar spirit,
the stress–strain relations (2.23), (2.24), and (2.28) are transcribed as
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σ(t) = R{ε(t)} (2.37)

Obviously, operators J and R are mutually inverse:

J −1 = R, R−1 = J (2.38)

This relation is useful when equations involving the rheologic operators J and R
need to be solved. Another useful property is the linearity of these operators, formally
expressed by the formulae

J {c1σ1(t) + c2σ2(t)} = c1J {σ1(t)} + c2J {σ2(t)} (2.39)

R{c1ε1(t) + c2ε2(t)} = c1R{ε1(t)} + c2R{ε2(t)} (2.40)

valid for all real numbers c1 and c2 and all integrable functions σ1, σ2, ε1, and ε2.
Equations (2.39) and (2.40) are yet anotherwayofwriting the superposition principle.

Finally, it is good to know that the creep operator maps the Heaviside function on
the compliance function and the relaxation operator maps the Heaviside function on
the relaxation function9:

J {H(t − t ′)} = J (t, t ′) (2.41)

R{H(t − t ′)} = R(t, t ′) (2.42)

Inverting these relations, we get

H(t − t ′) = R{J (t, t ′)} = J {R(t, t ′)} (2.43)

For a linear elastic material characterized byYoung’s modulus E , the stress–strain
relations ε(t) = σ(t)/E and σ(t) = Eε(t) can formally be presented as (2.36) and
(2.37) with the rheologic operators J = I /E and R = EI set to multiples of
the identity operatorI . In view of (2.41) and (2.42), the corresponding compliance
and relaxation functions are J (t, t ′) = H(t − t ′)/E and R(t, t ′) = EH(t − t ′).

So far, we have considered only the part of strain directly induced by stress. In
general, strain is also affected by temperature and humidity changes. Usually, it is
assumed that the total strain can be additively decomposed into the mechanical strain
(induced by stress), thermal strain, and shrinkage strain. Equations (2.36)–(2.37) are
then generalized to

9In this book, whenever an operator is applied on a function of several variables, it is supposed that
it acts on variable t , and the other variables are considered as parameters. In some rare cases, it
will be necessary to let an operator act on variable t ′, and this will be emphasized by denoting the
operator as J ′ or R′ instead of J or R.
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ε(t) = J {σ(t)} + εsh(t) + εT (t) (2.44)

σ(t) = R{ε(t) − εsh(t) − εT (t)} (2.45)

where εsh is the shrinkage strain (see Sect. 3.5) and εT is the thermal strain (see
Sect. 10.6.2).

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_10


Chapter 3
Basic Properties of Concrete Creep,
Shrinkage, and Drying

Abstract Clear and unambiguous definition and characterization of material prop-
erties is the essential basis of analysis, although it has not been achieved in much of
the literature. We begin by discussing the dependence of elastic modulus on the rate
or duration of short-time loading and introduce the notion of asymptotic modulus for
infinitely fast loading. Then, we define the basic creep as the creep at constant mois-
ture content, introduce the creep coefficient as the ratio of creep strain to properly
defined elastic strain, and proceed to discuss shrinkage and creep of cross sections
at drying exposure. Our attention is then focused on common misconceptions in
measuring, defining, and reporting creep and shrinkage data, such as initial strains
incompatible with the elastic modulus. We warn about false extrapolations caused
by plots in linear time scale and point out problems due to autogenous shrinkage
in modern concretes. Finally, we emphasize the importance of updating long-term
predictions on the basis of short-time measurements on structures.

3.1 Sources and Characterization of Time-Dependent
Deformations

In structural metals, time-dependent deformation at constant stress is observed only
under elevated temperatures or under very high stresses. By contrast, the strains
in concrete increase with time even if the applied stress is much smaller than the
material strength. Although, with a few exceptions such as creep buckling [115,
Chapter 9], the time-dependent deformations of concrete normally have little effect
on the safety against collapse, they play an important role in serviceability and
durability of structures, and their economic impact is enormous

Two components of the time-dependent strains of concrete can be distinguished:

1. hygro-thermal strain, which is independent of stressσ and at constant temperature
represents the shrinkage strain, εsh (negative), and

2. additional (delayed) mechanical strain produced by stress, called in general
creep.

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6_3
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The time-dependent shear strain is purely due to creep because thermal expansion
and shrinkage are volumetric and do not produce shear strains.

The existence of shrinkage has been vaguely known since the invention ofmodern
concrete in the early 1800s, and was first clearly documented by Le Chatelier in 1887
[568]. The existence of creep was discovered in 1907 by Hatt [470]. For service
stress levels (up to 40% of strength) and at constant moisture content, creep depends
on applied stress σ linearly and can be described by linear viscoelasticity using
the general framework outlined in Chap. 2. During drying or at high stress levels,
concrete creep is nonlinear, but the term viscoplasticity, used for nonlinear creep
of metals at high temperature, is inappropriate because concrete does not exhibit
plasticity (except under enormous confining pressure). The nonlinear dependence of
creep on stress is caused essentially by cracking or microcracking damage.

(a) (b) (c)

εsh(t)
σ

εσ(t) ε(t) recovery

load-free loaded unloaded
companion (creep) specimen
specimen specimen

Fig. 3.1 (a) Shrinkage deformation, (b) mechanical deformation (elastic + creep) produced by
stress, and (c) recovery after unloading

When exposed to a dry atmosphere, a concrete specimen gradually shrinks
(Fig. 3.1a). The magnitude of shrinkage strain εsh is an increasing function of time t
which approaches a finite bound at a gradually decreasing rate (Figs. 3.2a and 3.3).
In normal concretes, most of shrinkage represents the drying shrinkage, which is
caused mainly by increase of the capillary tension of pore water and the solid surface
tension of pore walls, as well as thinning of multimolecular hindered adsorbed water
layers in cement gel micropores. This kind of shrinkage is engendered by diffusion
of water out of pores. Specimens immersed in water exhibit swelling (positive εsh),
which is normally an order of magnitude smaller than drying shrinkage, and thus
often negligible. The cause of swelling is incorporation of additional water into the
porous nanostructure as well as an increase of the water content of hindered adsorbed
layers only a few molecules thick, acting as part of the solid microstructure.

Apart of shrinkage, called theautogenous shrinkage, is causedbyvolumechanges
exhibited by the chemical reactions of cement hydration under sealed conditions.1 It

1The term “autogenous shrinkage” refers to the macroscopic (bulk) changes, while a related term
“chemical shrinkage” refers to the internal volume changes due to chemical reactions. Autogenous
shrinkage is smaller than the chemical shrinkage, due to the voids generated by hydration.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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(a)

(b)

(c)
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εc = creep strain

εe = elastic strain

εsh= drying shrinkage

loading

unloading

t2 (age)

elastic recovery

creep recovery

t0 (start of drying)

Fig. 3.2 Curves of shrinkage, creep, and recovery after unloading

)b()a(

300 mm
160 mm

D=83 mm

drying time, t− t0 [day]

sh
ri
nk
ag
e
st
ra
in
,|ε

sh
|[1

0−
6
]

1000010001001010.1

800
700
600
500
400
300
200
100
0

300 mm
160 mm

D=83 mm

drying time, t − t0 [day]

sh
ri
nk
ag
e
st
ra
in
, |ε

sh
|[1

0−
6
]

2000150010005000

800
700
600
500
400
300
200
100
0

Fig. 3.3 Shrinkage measured by Wittmann, Bažant, Alou, and Kim [878] on cylinders with
different diameters D (data points) compared to theoretical curves: (a) logarithmic time scale,
(b) linear time scale

is the only type of shrinkage taking place in sealed specimens. For normal-strength
concrete of high water-cement ratio (above 0.55) and no admixtures, it represents
only a small fraction of the drying shrinkage and is usually neglected. However, for
the modern high-strength concretes cast with a very low water-cement ratio (0.4 or
less) and various admixtures, the autogenous shrinkage is comparable in magnitude
to the drying shrinkage andmust be taken into account. After the relative humidity2 of

2The pore relative humidity is defined as h(pv, T ) = pv/psat(T ) where pv is the partial vapor
pressure in the capillary pores and psat(T ) is the saturation vapor pressure of water at temperature T .
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water vapor in the pores of concrete drops below about 65%, the chemical reactions
of hydration virtually stop, and so does the autogenous shrinkage.

Under stress, a concrete specimen deforms with time more than an identical load-
free companion specimen (Fig. 3.1b). The difference is the mechanical strain εσ (t),
which consists of

1. the elastic (or instantaneous, short-time) strain, εe and
2. the creep strain, εc.

If uniaxial stress σ is suddenly imposed on a concrete sample at age t1, the elastic
strain is εe = σ/E(t1) where E(t1) is the elastic modulus at age t1. At constant
stress, creep strain increases at a gradually decreasing rate (Fig. 3.2b, c). As far as
it is known, no bound on the creep strain exists, but this is not an alarming property
because a 500-year compliance is projected to be only about 20–25% higher than
the 50-year compliance.3

Unloading of concrete at some age t2 (Fig. 3.1c) results in an instantaneous strain
recovery corresponding to the elasticmodulus E(t2) at age t2, followed by a long-time
monotonic partial recovery of creep strain at a gradually decreasing rate (Fig. 3.2c,
dashed curve).

The creep that occurs at constant moisture content of concrete is called the basic
creep. It is caused by breakage and reformation of atomic bonds at various highly
stressed sites within the colloidal microstructure of the calcium silicate hydrate gels
in the hardened cement paste.

Simultaneous drying causes additional creep, called the drying creep (or Pickett
effect, or stress-induced shrinkage). The drying creep evolves in time similar to
shrinkage and exhibits a similar dependence on cross-sectional thickness D (Fig. 3.3),
while the basic creep is independent of D. Figure 3.4 shows the classical tests of
Pickett [690], which were the first to demonstrate the drying creep and revealed that
it occurs both for drying and wetting. The specimens were plain concrete beams of
square cross section (with side 50.8 mm, span 813mm, andmidspan load 222N); data
point series LC corresponds to loading accompanied by humidity cycles (drying–
wetting–drying–wetting, etc.), series LD to loading with drying, series L to loading
without drying, and series D to drying without loading.

The drying creep has complex physical causes. One is that drying elevates the
local stress peaks within the microstructure of calcium silicate hydrates and thus
increases the rate of bond breakages [132]. Another cause is apparent, due to the
fact that a large part of the observed drying creep in compression has its origin in
cracking, and is treated as creep only for convenience [198, 874]. The reason is that
the drying of concrete specimens produces nonuniform distribution of pore humidity
and local shrinkage, which creates self-equilibrated stresses that may cause extensive
microcracking. The microcracking is expansive and thus it diminishes the observed
drying shrinkage of the companion compressed specimen, compared to what would

3Like all materials, the primary creep of concrete, proceeding under constant stress at decaying
rate, must eventually transit to the so-called secondary creep, which proceeds at constant rate. The
transition time, called the Maxwell time, occurs in rocks at 100 years, as approximately inferred
from geologic processes. Doubtless the same can be expected for concrete.
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Fig. 3.4 Test data by Pickett [690]

be expected for nomicrocracking. Therefore, the shrinkage customarilymeasured on
load-free specimens is in fact an apparent shrinkage, which is significantly less than
the true shrinkage in the absence ofmicrocracking. The true shrinkage can occur only
under sufficient compressive stress, simultaneouslywith compressive creep.Adeeper
discussion of the physical sources of drying creep will be presented in Sect. 10.1,
and a method for their separate assessment will be described in Sect. 12.4.

A salient property of concrete creep is aging. What is meant by aging is very
different from the aging effects in other materials (e.g., the gradual degradation of
strength of fiber composites). In concrete, the aging causes the strength as well as
the elastic modulus E to increase with age t , with the rate of increase gradually
diminishing in time. One manifestation is that the elastic recovery is smaller than the
initial elastic strain (Fig. 3.2c). Another is that concrete specimens loaded at a high
age creep much less than those loaded at low age (Figs. 3.5, 3.7 and 3.8a).

An important, though not the sole, cause of aging in creep is the chemical process
of hydration. The hydration products, chiefly the tricalcium silicate hydrate gel
(essentially identical to the mineral tobermorite), gradually fill the pores of hard-
ened cement paste; hence, the total volume and the mean size of capillary pores
decrease,whichgradually stiffens and strengthens themicrostructure.However, since
the aging process continues (at pore humidities above 75%) for many years after the
chemical process of hydration becomes very slow, there must be another cause. It
is the gradual relaxation of stress peaks of self-equilibrated microprestress on the
nanoscale in cement gel microstructure [132]. This provides one motivation for the
microprestress-solidification theory, described in Chap. 10.

Typically, the ratios of the creep rates (at the same load duration) of concretes
loaded at the ages of 3 days, 1 year, and 10 years to the creep rate of concrete loaded
at the age of 28 days are about 7, 0.3, and 0.1. In view of this paramount role of
aging, the time is always measured from the initial set of concrete, i.e., from the
instant when concrete first becomes a solid. Thus, in concrete creep calculations, the
time variable t always corresponds to the age of concrete.

During a certain initial period, concrete remains in the formwork and thus cannot
dry. At surfaces without formwork, drying should be (and normally is) prevented by
moist covers (e.g., burlap), sealing membranes, or sprays, to achieve proper curing.
For shrinkage calculations, it is important to know the approximate age t0 at the start

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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of drying, which roughly corresponds to the age at the removal of formwork or the
end of other drying protection.

The mathematical description of time-dependent behavior of concrete can be
developed within the framework of linear aging viscoelasticity (see Chap. 2), with
certain adjustments and generalizations. To capture all the important phenomena,
it is necessary to account for the additional strain due to cracking (governed by
an appropriate smeared crack model or damage model), and for the nonmechanical
(hygro-thermal) strain induced by thermal expansion and shrinkage. All these effects
will be lumped into the so-called eigenstrain, ε̃. In most of what follows, we consider
only the shrinkage strain, setting ε̃(t) = εsh(t). The strain evaluation formula (2.14)
needs to be enriched by the eigenstrain and generalized to

ε(t) =
∫ t

0
J (t, t ′) dσ(t ′) + ε̃(t) (3.1)

A similar adjustment is required for the stress evaluation formula, in which only the
mechanical strain (without its part caused by cracking) enters as the cause of stress,
and so (2.23) is rewritten as

σ(t) =
∫ t

0
R(t, t ′) d

[
ε(t ′) − ε̃(t ′)

]
(3.2)

Development of a realistic model for predicting the compliance function and
shrinkage function of a given concrete is a difficult problem that has engendered
intense polemics for a long time. Since many structures are designed for lifetime
over 100 years while laboratory data for multidecade creep are very scant (and for
more than 30 years nonexistent), the combination of laboratory datawithmultidecade
observations of creep deformations on structures has recently become a problem of
great interest. The problem calls for careful analysis of extensive data from long-
time tests conducted on different concretes and in different environments, generally
exhibiting large statistical scatter.When short-timemeasurements on a given concrete
are to be extrapolated to long times, it is necessary to use a compliance function that
is correct for both long and short times.

It is important to note that the compliance function should account not only for
basic creep but also for drying creep, which depends on the variations of humidity
and cannot be considered as a function of the current time t and the age at loading
t ′ only. For the sake of simplicity, we will still write the compliance function with
two arguments t and t ′, but this function will be considered as the sum of the basic
compliance function and the additional compliance due to drying creep, denoted as
Jd and dependent on factors that influence the drying process; see Sect. 3.6.

A realistic prediction tool for creep and shrinkage of concrete is model B3
[104, 107], which represents a RILEM standard recommendation (1995). Its recent
improvement,model B4, has also been accepted as aRILEM recommendation, devel-
oped by the RILEM Technical Committee TC-242-MDC [136]. Model B3 and, to
some extent, model B4 will be presented in the following sections of this chapter.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Both of these models decompose the compliance function into three additive parts
which have a different physical origin:

J (t, t ′) = 1

E0
+ Jb(t, t

′) + Jd(t, t
′) (3.3)

Here, E0 is the time-independent asymptotic modulus, Jb is the basic creep compli-
ance, and Jd is the drying creep compliance. The individual terms will be discussed
separately in Sects. 3.2, 3.3, and 3.6. All the times such as t or t ′ will be expressed
in days and measured from the set of concrete.

3.2 Asymptotic Modulus

Concrete happens to exhibit non-negligible creep even for extremely short load dura-
tions, and even the dynamic modulus Edyn(t), which is obtained by sound velocity
measurements and corresponds to the durations of sound vibration periods, is age-
dependent and non-negligibly affected by creep [104, 107].

The asymptotic modulus, i.e., parameter E0 in (3.3), corresponds to extrapolat-
ing the creep curve to loading durations many orders of magnitude shorter than ever
measured. Bažant andOsman [173] and Bažant and Baweja [105, 107] demonstrated
the age-independence of E0 by considering the compliances for load durations t − t ′
ranging from about 10 seconds to several days. They fitted the compliances by a
function of the type J = 1/E0 + c(t − t ′)n and obtained the parameters by optimiz-
ing the fit of data for various ages t ′ at loading. The E0 values for various t ′ were
nearly the same, and the coefficient of variation of errors of the fit did not increase
significantly when E0 was forced to be exactly the same for all t ′.

Figure 3.5a shows such fits constructed for creep curves corresponding to the
same concrete tested at different ages t ′ = 28, 90, and 270 days, using n = 0.1. Note
that the variable on the horizontal axis is the load duration raised to power 0.1. The
extrapolation to zero load duration gives for all these tests almost the same value,
which we will consider as a constant (age-independent) material parameter E0. This
is also consistent with the data for loading times as short as 0.001 s, deduced from the
complex modulus corresponding to vibration tests of Radjy and Richards [712]. The
advantage of introducing E0 corresponding to such extrapolation is that, unlike the
short-term (or static) elastic modulus E(t ′), the asymptotic modulus E0 is unaffected
by creep. Of course, the assumption that E0 is age-independent is empirical and holds
with reasonable accuracy only for concrete older than at least 3 days (Fig. 3.5b); a
more refined model would be needed for creep at very young ages.



36 3 Basic Properties of Concrete Creep, Shrinkage, and Drying

)b()a(

270 days
90 days

t = 28 days

t − t = 0.01 day

(t− t )0.1 [day0.1]

J(
t,
t
)
[1
0−

6
/M

Pa
]

1.210.80.60.40.20

35

30

25

20

15

90 days
28 days
7 days
3 days

t = 1 day

t − t = 0.01 day

(t − t )0.1 [day0.1]

J(
t ,
t
)
[1
0−

6
/M

Pa
]

1.210.80.60.40.20

300

250

200

150

100

50

0

Fig. 3.5 Extrapolations of short-time creep data to zero load duration: (a) data of Komendant et al.
[551], (b) data of Pirtz [696] measured on Dworshak Dam concrete

Even though the asymptotic modulus of very young concrete is probably not con-
stant (i.e., not age-independent), the creep strain for short load durations still grows
proportionally to (t − t ′)0.1. This is confirmed by the experimental data of Boulay
presented by Acker and Ulm [21] and replotted in Fig. 3.6. Boulay’s measurements,
performed on concrete at the age of 1 day, cover extremely short load durations
starting from 8.5 microseconds.
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Fig. 3.6 Creep compliance as a function of the load duration raised to the power of 0.1, based on
the experimental data of Boulay presented by Acker and Ulm [21]

The short-term (or static) modulus of elasticity, including its age dependence, is
defined as

E(t ′) = 1

J (t ′ + Δts, t ′)
(3.4)

where Δts is a load duration selected such that the strain delayed by less than Δts is
from the practical point of view considered as instantaneous. The choice of Δts ≈
0.01 day ≈ 15 min gives (for t ′ = 28 days) good agreement with the conventional
elastic modulus E28 defined in the ACI Building Code 318-05. The dynamic modulus



3.2 Asymptotic Modulus 37

Edyn, including its age dependence, is obtained ifΔts is replaced byΔtd ≈ 10−7 day
≈ 0.01 s. Equation (3.4) with J computed according to model B3 captures the age
dependence of E better than the American Concrete Institute (ACI) recommendation
of E being proportional to the square root of the compression strength at age t [107];
see formulae (D.54)–(D.56) in Appendix D.

As a crude empirical estimate, the asymptotic modulus can be taken as E0 =
E28/0.6. If the conventional elastic modulus at age 28 days, E28, is not measured
directly, it can be estimated from the standard compression strength f̄c (mean uni-
axial compression strength determined on standard cylinders at age 28 days) using
the empirical formula recommended by ACI (1999),

E28 = 57 ksi ·
√

f̄c
1 psi

(3.5)

or, in SI units,

E28 = 4.733 GPa ·
√

f̄c
1 MPa

(3.6)

In practice, E28 is often estimated from the reduced strength, f ′
c , which is the strength

value required for design and is about 30% smaller than the mean strength f̄c. But
to estimate the mean value of E28, the mean value of strength f̄c must, of course, be
used in (3.5) because that is how this empirical formula was calibrated [671].

The fib Model Code for Concrete Structures 2010 recommends a somewhat dif-
ferent empirical formula for evaluation of the conventional elastic modulus,

E28 = 21.5 GPa · αE ·
(

f̄c
10 MPa

)1/3

(3.7)

which corresponds to the load duration in the order of 10 s. Here, αE is a dimension-
less coefficient that depends on the aggregate type and is equal to 1.0 for quartzite
aggregates, 0.9 for limestone aggregates, 0.7 for sandstone aggregates, and 1.2 for
basalt and dense limestone aggregates.

3.3 Basic Creep

Figure 3.7 exhibits the typical compliance curves of sealed concrete specimens (basic
creep) for unit stresses applied at various ages at loading, t ′. If the first reading is taken
15 minutes after loading and the corresponding deformation is regarded as elastic
(instantaneous), as has often been done, then the initial compliance J (t ′ + Δts, t ′) =
1/E(t ′) decreases with the age at loading t ′ at a gradually decreasing rate (see the
dotted curve in Fig. 3.7a). Since concrete exhibits non-negligible creep already for
load durations as short as a fraction of a second, the age effect on E(t ′) can be
regarded as a special case of the age effect on the creep curves. Note that for loading
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of young concrete, the effect of increasing the loading age t ′ is mainly to shift the
creep curve vertically downwards, while for the loading of old concrete, the effect is
mainly to shift the creep curve horizontally to the right (Fig. 3.7a).

Since the range of significant creep stretches over at least ten orders of magnitude
of load duration, it is insufficient and potentially misleading to plot the creep curves
in the actual (linear) time scale (Fig. 3.7a). Such a scale can display the creep trend
for only one to two orders of magnitude of t and t ′. The plots in the linear time scale
obscure either long times or short times, or both. Therefore, experimental validations
of creep models based on plots in the linear time scale must be distrusted. Proper
validation requires the creep curves to be plotted in the logarithmic time scale.

A typical creep compliance plot in the logarithmic scale of load duration t − t ′
is shown in Fig. 3.7b. Now, we see the reason for the term asymptotic modulus—as
t − t ′ tends to 0, all the creep curves approach a horizontal asymptote at compliance
level 1/E0. This is confirmed by test data, with the exception of creep curves obtained
for very young ages at loading, below 3 days [107]. The slope of the creep curves
in the log-time initially increases, but later each of the curves approaches a straight
line, which has about the same slope for all the ages at loading. For a higher age
t ′ at loading, this transition occurs at a longer duration t − t ′ but at smaller strain.
Experimental evidence of the very large effect of the age at loading, t ′, on both the
compliance function and the relaxation function is exemplified by Figs. 3.8 and 3.9.

Figures 3.10 and 3.11 demonstrate further simple properties of basic creep. In the
semilogarithmic plots in Fig. 3.10, the graphs of compliance functions for various
ages at loading approach parallel straight lines. This implies that, after some initial
period, the compliance function becomes logarithmic. The graphs of the compliance
rate ( J̇ ≡ ∂ J/∂t) versus time in Fig. 3.11, which are plotted as logarithmic on both
axes, show that after some lapse of time the compliance rates for various ages at
loading approach a single straight line of slope−1. This means that J̇ (t, t ′) ∝ −1/t ,
the integration of which confirms that the long-time basic creep is logarithmic. These
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Fig. 3.7 Compliance functions for basic creep at various ages t ′ at loading: (a) linear time scale,
t ′ ranging from 3 to 90 days, (b) logarithmic time scale, t ′ ranging from 3 to 3000 days
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Fig. 3.8 Effect of aging on compliance functionmeasured on (a) Shasta Dam concrete (after [126]),
(b) Dworschak Dam concrete [696]
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Fig. 3.9 Effect of aging on relaxation function measured on Ross Dam concrete [455, 458] in (a)
semilogarithmic scale, (b) linear scale

basic properties are what motivated the formulation of the compliance function of
the B3 and B4models. The theoretical curves obtained with the B3model are plotted
in Fig. 3.12.

A very simple form of the basic creep compliance function is provided by the
double-power law [173],

Jb(t, t
′) = φ1

E0

(
t ′−m + α

) (
t − t ′

)n
(3.8)

which gives acceptable approximation only for, roughly, load duration t − t ′ ≤ 365
days and age at loading t ′ between 14 and 365 days, with the parameter values
n = 0.1, m ≈ 1/3, α ≈ 0.05, and φ1 ranging from 2 to 6, depending on the specific
concrete, and with t and t ′ substituted in days. If parameters m and α are taken by
their default values, the asymptoticmodulus should be set to E0 = (1 + 0.239φ1)E28

where E28 is the conventional elastic modulus of concrete at age 28 days.
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Fig. 3.10 Compliance functions J for basic creep at various ages at loading: (a) data of Komendant
et al. [551], (b) data of Pirtz [696]
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Improved predictions can be obtained with the log-double-power law

Jb(t, t
′) = qs ln

[
1 + ψ

(
t ′−m + α

) (
t − t ′

)n]
(3.9)

first proposed by Bažant and Chern [117] and used in the short form of B3 model
[108]. The typical values of the model parameters are n = 0.1, m = 0.5, α = 0.001, ψ
= 0.3, and qs = 11.4/E28. For Jb evaluated according to this model, the asymptotic
modulus in (3.3) should be set to E0 = E28/0.6.

The full form of model B3 [104, 107] has been based on a systematic theoretical
formulation of the basic physical phenomena involved, and on statistical optimization
with regard to most of the test data that exist in the literature. Since the model is
based on the solidification theory (to be explained in detail in Chap. 9), the basic
creep compliance is more conveniently defined by its time rate than its accumulated
value:

∂ Jb(t, t ′)
∂t

= n(q2t−m + q3)

(t − t ′) + (t − t ′)1−n
+ q4

t
(3.10)

inwhichn = 0.1 andm = 0.5 are empirical parameterswhose values canbe taken the
same for all normal concretes, andq2, q3, andq4 are empirical constitutive parameters
whose prediction is discussed in Appendix C. The total basic creep compliance
is obtained by integrating (3.10) with the initial condition Jb(t ′, t ′) = 0 (because
the instantaneous compliance is fully reflected by the constant term 1/E0 ≡ q1 in
(3.3)). The terms containing q3 and q4 can be integrated in closed form, but the term
containing q2 leads to a binomial integral which cannot be expressed analytically.
So the basic creep compliance function has the form

Jb(t, t
′) = q2Q(t, t ′) + q3 ln[1 + (t − t ′)n] + q4 ln

(
t

t ′

)
(3.11)

where

Q(t, t ′) =
∫ t

t ′

ns−m

(s − t ′) + (s − t ′)1−n
ds (3.12)

is a function that can be obtained by numerical integration or by interpolation from
a table computed in Bažant and Baweja [104, 107]. The values of Q(t, t ′) can also
be calculated from the approximate explicit formula (C.2) given in Appendix C.

The new B4 model [136] uses the same form of compliance function (3.11) as
the B3 model but recommends different empirical formulae for the estimation of
parameters q1 to q4; see Appendix D.1.1.

A characteristic property of the basic creep curves for different t ′ is that they do not
diverge, i.e., always approach each other with increasing t , which is mathematically
expressed by the inequality

∂2 J (t, t ′)/∂t∂t ′ ≥ 0 (3.13)

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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This so-called nondivergence condition [152] is satisfied by the compliance function
(3.11) used by the full B3model and by theB4model, but is violated by the short form
of B3 (3.9) as well as by the double-power law (3.8) and by other forms endorsed
by ACI, CEB-fib and JSCE; see Sect. 9.6. When a creep formula with divergent
creep curves is used in the superposition principle to predict creep recovery after
unloading, the recovery curve is nonmonotonic. This feature is thermodynamically
inadmissible for the Kelvin chain model [139] and may inhibit the convergence of a
computer simulation of a nonlinear problem that involves creep. Therefore, the short
form of B3 is not suitable for large-scale computer analyses; exclusively the full B3
model or, even better, the new B4 model, should be used for that purpose.

3.4 Creep Coefficient

In creep analysis of structures, it is convenient to characterize creep by a dimension-
less creep coefficient, which is defined as4

ϕ(t, t ′) = creep strain at time t for stress σ̂ applied at age t ′

“initial elastic” strain at age t ′
=

= σ̂ J (t, t ′) − σ̂ /E(t ′)
σ̂ /E(t ′)

= E(t ′)J (t, t ′) − 1 (3.14)

Most authors (and most design codes) have in the past defined creep by the creep
coefficient ϕ instead of the compliance function J , the latter being a sum of the
initial elastic compliance and the creep compliance. However, in structural design
one is interested only in the response for load durations at least an order of magnitude
longer than the load duration corresponding to the definition of the (static, short-term)
elastic modulus E . Then, it is only the sum (i.e., the total compliance J ) that matters
for the results of analysis, the subdivision between the creep and elastic parts being
irrelevant. The definition of creep coefficient runs into the problem that the range of
freedom in the definition of the “initial” deformation is considerable—e.g., the ratio
of the J -values for the load durations of 1 hour and 1 second can for young concrete
exceed 1.5. This introduces a danger.

The danger is that the code makers specify only the creep coefficient ϕ but not the
corresponding value of E that gives the correct compliance J , in agreement with the
measurement used to calibrate the code. The designer may then combine this creep
coefficient with different values of elastic modulus, for example, the value specified
in the design code. This value is incompatible because it has been calibrated by tests
involving load cycles and different load application times, and may be very different
from the moduli corresponding to the initial deformations in the creep tests.

4Formula (3.14) represents the standard definition of creep coefficient. Some models and codes use
a modified definition, with E(t ′) replaced by E(28); see Appendix E for details.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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Likewise, many experimenters reported only the measured values of the creep
coefficient or creep strain without specifying the measured initial elastic strain. Such
reports of test data are virtually useless. Therefore, the designer should always first
establish the values of the compliance function J and then use them to determine ϕ

according to (3.14). If that is done, the choice of the particular definition of elastic
modulus has no appreciable effect on the calculated long-time response at variable
stress (and no effect at all at constant stress).

3.5 Mean Cross-Sectional Shrinkage

Shrinkage evolves differently at different points of the cross section of a concrete
beam or plate. Therefore, its effects should properly be analyzed two- or three-
dimensionally, e.g., by subdividing the cross section or the structure into many finite
elements. Such analysis necessitates a local constitutive relation for shrinkage (see
Sect. 8.6), in which the free (unhindered) shrinkage strain rate ε̇sh at a generic point
of structure may be given as a function of the rate of pore relative humidity ḣ.

To keep structural analysis simple, a uniform “average” or “effective” shrinkage
of the whole cross section is usually assumed. In view of deflection measurements
on prestressed box girder bridges that came to light during the last decade [558],
this classical simplifying assumption often causes major errors in predicting long-
time deflections and cracking (see Chap. 7). Nevertheless, this assumption remains
acceptable for structures of low creep and shrinkage sensitivity and still forms the
basis of current design practice.While it greatly simplifies long-time structural analy-
sis, it makes the expressions for the shrinkage function considerably more complex
because the cross section is typically in a highly nonuniform state of pore humidity
and residual stress.

According tomodels B3 [104, 107] andB4 [136], the average longitudinal shrink-
age of a cross section of a long beam or plate may be approximately calculated as

εsh(t) = −ε∞
sh kh S(t − t0) (3.15)

where t is the current age of concrete, t0 is the age at the start of drying, ε∞
sh is the

theoretical magnitude of the final shrinkage strain at zero ambient humidity (typi-
cally 0.0003 – 0.0011), kh is a coefficient depending on the average environmental
humidity henv (relative vapor pressure), and S(t̂) is an increasing function of the
duration of drying, t̂ = t − t0. This function describes the evolution of normalized
shrinkage strain |εsh|/ε∞

sh in a perfectly dry environment, starting from its initial
value 0 at t̂ = 0 and approaching asymptotically 1 as t̂ → ∞. A suitable formula,
theoretically justified in Sect. 8.4.5.1, is

S(t̂) = tanh

√
t̂

τsh
(3.16)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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where τsh is traditionally called the shrinkage halftime, because it roughly indicates
the time at which εsh reaches one half of its final value.5

The shrinkage halftime in model B3 can be estimated as

τsh = kt (ks D)2 (3.17)

in which kt is a factor dependent on concrete diffusivity, ks is a cross-sectional
shape factor, and D is the effective cross-sectional thickness. Factor kt is inversely
proportional to the diffusivity of pore water in concrete.6 It can be estimated using
the empirical formula in line 5 of Table C.2 in Appendix C, based on the compression
strength and age of concrete at the onset of drying. The values of ks for different
specimen shapes given in Table 3.1 are based on solutions of the nonlinear diffusion
equation for drying of concrete [166]. The definition of D is such that, for an infinite
slab, it represents the actual thickness. For a general concrete member, it can be
estimated as D = 2V/Se where V and Se are the volume and the exposed surface
area of the concrete part.

Table 3.1 Values of shape factor ks
Specimen shape ks

Infinite slab 1.00

Infinite cylinder 1.15

Infinite square prism 1.25

Sphere 1.30

Cube 1.55

Model B4 estimates the shrinkage halftime using a slightly modified formula

τsh = τ0kτa

(
ks

D

1 mm

)2

(3.18)

where ks is the same shape factor as in model B3, kτa is a factor dependent on
the aggregate type, with default value 1, and parameter τ0 takes into account the
composition of the concrete mix; see Appendix D for details. Recently, Donmez and
Bažant [356] have pointed out that, for a nonlinear diffusionmodel, the optimal value
of the shape factor depends on the ambient humidity. The refinement is minor and
will be described in Sect. 8.4.5.2.

5In fact, one half of the final shrinkage is reached already at time t = 0.3τsh, while at time t = τsh
the shrinkage function S(t̂) is at 76% of its final value. Despite that, we will stick to the traditional
terminology commonly used in the diffusion theory.
6The diffusivity of concrete is extremely low, as manifested, for instance, by the fact that the core of
a standard 6-inch (150 mm) cylinder may take up to 20 years to dry to the environmental humidity.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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The typical shapes of the shrinkage curves, proportional to function S(t̂), are
portrayed in Fig. 3.3. The proportionality of τsh to the square of thickness is a salient
property of all kinds of diffusion processes, linear as well as nonlinear. This property
is well verified by many data (see, e.g. Fig. 3.3). Other data show some deviations
occurring at longer times (Fig. 3.13). This can be explained by two causes: the
simultaneous aging and the microcracking. They usually have opposite effects at
long times. Often they nearly cancel each other, with the result that the scaling
τsh ∝ D2 still works reasonably well.

D1 D2

logτsh,1 logτsh,2

|εsh|

log(t t0)

2log(D2/D1)

effect of aging

effect of microcracking

Fig. 3.13 Horizontal shift of the shrinkage curve in logarithmic time scale by distance
2 log(D2/D1) caused by a change of diameter from D1 to D2, and the effects of cracking and aging

Another consequence of the diffusion origin of drying shrinkage is that the initial
part of the shrinkage curve must evolve as

√
t̂ .7 Function S(t̂) in (3.16) is used

because it satisfies this property asymptotically for small t̂ and because it also exhibits
a reasonable asymptotic form for long times t̂ . The proportionality of shrinkage
strain to the square root of drying time at the early stages of the drying process is
confirmed by Fig. 3.14a, which shows that the plot of the logarithm of shrinkage
versus the logarithm of drying time is initially a straight line of slope 1/2. The small
deviations for very short times are due to neglecting finiteness of surface emissivity.
The deviations for long times reveal the limited reach of the square-root function,
which ought to be, and is, shorter for thinner specimens. The expected form of the
initial asymptotics is further confirmed by Fig. 3.14b, in which the shrinkage strain
is plotted as a function of the square root of drying time and the initial part of the
graph is seen to be very close to a straight line. The concept of asymptotic matching
is illustrated in Fig. 3.15.

Thefinal shrinkage strain ε∞
sh corresponds to aperfectly dry environment (henv = 0)

and, for a concrete of given composition, can be roughly estimated from the empir-
ical formulae [106] given in Appendix C. In an environment of relative humidity
henv > 0, it must be reduced by the factor

7An exception is a cement paste specimen less than a few millimeters thick, in which the finiteness
of surface emissivity modifies the initial shrinkage curve. The emissivity is roughly equivalent to
adding on the surface a layer about 1 mm thick.
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Fig. 3.14 Test data of Wittmann et al. [878] (a) in logarithmic scale, (b) with shrinkage plotted
against the square root of drying time
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Fig. 3.15 Shrinkage curve viewed as asymptotic matching of the theoretically determined asymp-
totic behaviors for short and long drying times

kh = 1 − h3env (3.19)

This formula can be used only up to henv = 98%,which is the value recommended as a
suitable approximation of relative environmental humidity of sealed normal-strength
concrete. Of course, the initial relative humidity in the pores of concrete is 100%, but
under sealed conditions, this value decreases in timedue to self-desiccation caused by
cement hydration.8 With kh = 1 − 0.983 = 0.0588, formula (3.15) gives, for normal
concretes (but not high-strength concretes), reasonable approximate values for the
autogenous shrinkage. Fully saturated conditions with henv = 100% are achieved
only if the concrete surface is kept wet, which happens, e.g., for concrete immersed
in water. Under such conditions, concrete exhibits swelling, i.e., an expansion of
volume, which is the opposite of shrinkage. This phenomenon can be approximately
modeled by formula (3.15) with kh = −0.2.

8For instance, for ordinary concrete with water-cement ratio w/c = 0.46 hydrating under sealed
conditions, Baroghel-Bouny et al. [57] reported that the pore relative humidity decreased to 97%
after 1 month, 95% after 6 months, and 93% after 2 years. In contrast to that, for high-strength
concrete with w/c = 0.26, containing silica fume and superplasticizer, they found much lower
values: 77% after 1 month, 72% after 6 months, and 64% after 2 years.
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Fig. 3.16 Thickness and environmental humidity effects on shrinkage curves

Figure 3.16 compares the curves of shrinkage εsh for various relative environ-
mental humidities henv and for various effective thicknesses D. A change of henv is
manifested as a vertical scaling of the shrinkage curve. On the other hand, a change
of D causes a horizontal shift of the curve in the logarithmic time scale. In some older
models [11, 14], a change of D is manifested as vertical scaling, which is incorrect.

(a)

(b)

(c)

b

b b

-b
x

xhenv = 50%

h
t1t2

t3

εsh

1.0

0.5
0

wall

cracks

Fig. 3.17 (a) Pore humidity distributions during drying, (b) free shrinkage of slices imagined to
be cut out, and (c) shrinkage stresses

The character of the pore water diffusion process, which is governed by the dif-
fusion equation (Sect. 8.3), is illustrated by Fig. 3.17a, which shows the typical
profiles at subsequent times of the pore relative humidity h over the cross section.
The free shrinkage of a material point is roughly proportional to the loss of water
from concrete, which in turn is roughly proportional to the relative humidity h in the
pores. Due to nonuniformity of pore humidity profiles, shrinkage produces long-time
self-equilibrated stresses, called shrinkage stresses. Although they are partly relaxed
due to creep, they are large enough to cause micro- or macrocracking, which in turn
further reduces these stresses.

The origin of shrinkage stress is explained by Fig. 3.17b, which showswhat would
happen if the cross section were cut in slices without affecting the pore humidity

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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profiles. As shown, each slice would shrink independently, according to its current
humidity. This would cause the slices to develop different shortenings. In a long
concrete beam or slab strip, however, the cross section must remain plane (or else
arbitrarily large shear stress would develop between the slices). As a consequence,
stresses required to achieve equal lengths of all the slices must develop. This obvi-
ously produces longitudinal tensile stresses near the surface and longitudinal com-
pressive stresses in the core; see Fig. 3.17c. At the end of drying, though, this picture
gets reversed, because of creep, microcracking, and nonuniform aging.

3.6 Mean Drying Creep in the Cross Section

The additional mean cross-sectional compliance caused by simultaneous drying,
expressing a coupling between creep and shrinkage, can be estimated from the for-
mula [104]

Jd(t, t
′) = q5

√
e−g(t−t0) − e−g(t ′−t0) (3.20)

valid for t ≥ t ′ ≥ t0. The formula can be used as a rough approximation (for long
times only) even if t0 > t ′, in which case t ′ must be replaced by t0 [107]. Of course,
if t < t ′, the compliance function vanishes. All these adjustments can be captured
by a general formula

Jd(t, t
′) = q5

√〈
e−g(t−t0) − e−g(〈t ′−t0〉)〉 (3.21)

in which the angular brackets (called Macauley brackets) denote an operator extract-
ing the positive part of the argument, i.e., 〈x〉 ≡ max(x, 0). This means that 〈t ′ −
t0〉 = t ′ − t0 if t ′ ≥ t0, and 〈t ′ − t0〉 = 0 if t ′ < t0.

Like shrinkage, and unlike basic creep, the drying creep is bounded. It depends
on humidity and cross-sectional thickness through the shrinkage shape function S(t̂)
defined in (3.16). Recall that the drying creep compliance Jd is added to the asymp-
totic compliance 1/E0 and to the basic compliance Jb describing the basic creep;
see (3.3). Since the formulae for basic creep compliance and also for the asymptotic
modulus in the full version and the short version of model B3 are different, the opti-
mal agreement of the total compliance with the experimental data is obtained for a
different function g(t̂) and a different value of parameter q5.

For the short form of model B3 with basic compliance function given by the
log-double-power law (3.9), it is recommended to use

g(t̂) = 3
[
1 − (1 − henv)S(t̂)

]
(3.22)

and, as an empirical estimate, q5 = 0.0006/ f̄c.
For the full model B3 with basic compliance function given by (3.11), the recom-

mended formulae are
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g(t̂) = 8
[
1 − (1 − henv)S(t̂)

]
(3.23)

q5 = 7.57 × 105

f̄c(ε∞
sh )0.6

(3.24)

Example 3.1. Compliance curves predicted by model B3

The relative contributions of instantaneous compliance, basic creep, and drying creep
according to the full form of model B3 are illustrated by a specific example.

Consider a concretemixwithwater contentw = 170 kg/m3, type-I cement content
c kg/m3, and aggregate content a = 1800 kg/m3. This is very close to the composi-
tion used by Komendant et al. [551] for their second mix, series 14–26. The standard
compression strength measured on companion specimens was f̄c = 45.4 MPa. Sup-
pose that the mix is used to produce a concrete slab of thickness D = 200 mm, cured
in air with initial protection against drying until the age t0 = 7 days. Subsequently,
the slab is exposed to an average environmental humidity henv = 70%.

The parameters of the full B3 model are estimated according to the recommen-
dations described in Table C.2 in Appendix C and in formula (3.17) as9

q1 ≡ 1/E0 = 126.77 f̄ −0.5
c = 18.81 [×10−6/MPa] (3.25)

q2 = 185.4 c0.5 f̄ −0.9
c = 126.9 [×10−6/MPa] (3.26)

q3 = 0.29(w/c)4q2 = 0.7494 [×10−6/MPa] (3.27)

q4 = 20.3(a/c)−0.7 = 7.692 [×10−6/MPa] (3.28)

kt = 0.085 t−0.08
0 f̄ −0.25

c = 0.02803 [day/mm2] (3.29)

τsh = kt (ks D)2 = 1121 [day] (3.30)

ε∞
s = α1α2

(
0.019w2.1 f̄ −0.28

c + 270
) = 702.4 [×10−6] (3.31)

ε∞
sh = ε∞

s × 0.57514
√
3 + 14/(t0 + τsh) = 701.1 [×10−6] (3.32)

q5 = 7.57 × 105 f̄ −1
c

(
ε∞
sh

)−0.6 = 327.0 [×10−6/MPa] (3.33)

In (3.30), we have used ks = 1 for an infinite slab, and in (3.31) α1 = 1 for type-I
cement and α2 = 1.2 for curing in air with initial protection against drying. Note that
the value of ε∞

sh to be substituted into formula (3.33) is 701.1 and not 701.1 × 10−6.
The environmental humidity is not needed for evaluation of parameters (3.25)–(3.33),
but it is incorporated into the definition (3.23) of function g(t̂) that influences the
drying creep compliance Jd according to formula (3.20).

The total compliance J (t, t ′) is plotted in Fig. 3.18a as a function of the current age
t and in Fig. 3.18b in semilogarithmic scale as a function of the load duration t − t ′ for
four different ages at loading, t ′ = 1week, 1month, 3months, and 1 year. The dashed
horizontal line indicates the asymptotic elastic compliance q1 = 1/E0 (considered

9We evaluate all the parameters to four significant digits, even though the intrinsic error of the
empirical formulae is certainly much larger. However, highly accurate values calculated here can
be useful for checking the correct implementation of the formulae into various programs and design
tools.
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by model B3 as age-independent), and the dotted descending curve in Fig. 3.18a
shows the evolution of the static elastic compliance 1/E(t) = 1/J (t + Δts, t) (the
reciprocal value of the short-term elastic modulus defined in (3.4)) as a function of
the concrete age t . In Fig. 3.18b, the short-term elastic compliance would be found at
the intersection of the compliance curve with a vertical line at t − t ′ = Δts = 0.01
day. The decrease of this compliance with age reflects the growth of the short-term
modulus due to aging.

Figure 3.18a is plotted with time in the linear scale, and it shows that the compli-
ance increases dramatically just after loading, while later its evolution slows down.
To provide a better idea about the behavior for very short or very long load durations,
Fig. 3.18b shows the compliance as a function of the load duration in logarithmic
scale on the horizontal axis. The graph covers a wide range of load durations from
10−5 day (roughly 1 second) to 105 days (roughly 300 years). It is interesting to note
that the actual compliances after just 1 second of loading are way above the asymp-
totic compliance 1/E0. In fact, even for a load duration as short as 1 microsecond
(about 10−11 day), there would be a non-negligible difference between the compli-
ance and its asymptotic limit for t − t ′ → 0+. The reason is that the initial part of
the compliance curve is dominated by a term proportional to (t − t ′)0.1, and the load
duration must be decreased by ten orders of magnitude in order to reduce this term
by one order of magnitude.
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Fig. 3.18 Compliance functions predicted by model B3 in Example 3.1
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Another interesting point revealed by Fig. 3.18b is that the compliance curves for
very large load durations approach straight lines (in semilogarithmic scale), the slope
of which is independent of the age at loading, but the maximum slope is attained
before that, for load durations in the order of 1000 days. This is caused by the contri-
bution of drying creep, which approaches a finite limit and remains almost constant
for load durations much larger than the shrinkage halftime τsh, which is in the present
example equal to 1121 days. If only the basic creep is considered, the compliance
curve is convex (in the semilogarithmic scale), as indicated by the dashed curve in
Fig. 3.18c. This figure presents a decomposition of the total compliance curve for
loading at age t ′ = 28 days into individual contributions, which are then plotted sep-
arately in Fig. 3.18d. The first component of the compliance is the asymptotic elastic
compliance q1 = 1/E0, which is represented by the horizontal dashed line in both
parts of the figure. The second component, attributed to viscoelastic processes and
represented in model B3 by the terms with parameters q2 and q3 (see the first two
terms on the right-hand side of (3.11)), is plotted by the dotted curve and dominates
the short-term creep, in the present example up to a hundred days (here, we use the
adjective “short-term” in a different meaning than when the “short-term modulus”
was discussed). The long-term creep is dominated by the logarithmic expressionwith
parameter q4 (last term on the right-hand side of (3.11)), which is physically inter-
preted as a viscous flow (with increasing age-dependent viscosity) and is responsible
for the asymptotic behavior as the load duration approaches infinity. Up to about
10 days of loading, this term has a negligible contribution. Finally, the drying creep
compliance is controlled by parameter q5 and in Fig. 3.18d is plotted by the solid
curve. As already discussed, this part of creep is bounded, as is shrinkage. The fact
that the final value of the drying creep compliance in Fig. 3.18d seems to be close
to the asymptotic compliance is just a coincidence, because this value depends on
environmental humidity and for another choice of humidity would be different.

The graphs constructed in this example illustrate the basic trends, but the relative
importance of individual contributions to the total creep compliance depends on
many factors. For instance, drying creep may become very important for concrete
that starts drying early and is exposed to low environmental humidity.

Estimation of the model parameters using empirical formulae of the new
model B4 is, for the same input data, presented in Appendix D; see Example D.1.

�

3.7 Common Misconceptions in Measuring and Defining
Creep

3.7.1 Incompatible Initial Strain

For linear creep analysis of structures, the only required material property is the
compliance function J (t, t ′). The alternative description of creep by two functions,
the creep coefficient ϕ(t, t ′) and the elastic modulus E(t ′), is only a matter of conve-
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nience. Different combinations of ϕ(t, t ′) and E(t ′) that give the same compliance
function J (t, t ′) = [1 + ϕ(t, t ′)]/E(t ′) give also identical results in structural creep
analysis.

However, the fact that the definition of initial elastic deformation 1/E(t ′) is, to a
large extent, ambiguous has been a source of trouble. Many investigators in the past
reported the compliance increase ΔJ (t, t ′) = J (t, t ′) − J (t ′ + Δts, t ′), but not the
total compliance J (t, t ′). Instead, they reported the value of elastic modulus E(t ′).
That would be correct only if concrete exhibited no short-time creep. But it does.

The sustained load has often been initially applied in the loading frame under
manual control through springs or hydraulic jacks, in which case the load application
lasted between Δts = 1min. to 1h. Pistons loaded by compressed air released by a
fast valve from a bottle have also been used, and in that case, the load applicationmay
take as little as Δtd = 0.001 s. The studies that omit the initial deformation report the
value of elastic modulus E(t ′). However, this value is measured by the standard code
procedure for elastic modulus tests, which is very different from the actual process
of applying the load on the creep specimens and involves load cycling. Thus, the
value of such 1/E(t ′) can differ very much from the unreported initial compliance
J (t ′ + Δts, t ′) in the creep test.

To realize the range of ambiguity, note that for the concrete from Example 3.1
loaded at the age of 7 days, the ratios of the strains caused by load durations 1 s,
1min, and 1 hour to the strain after 0.001 s are respectively 1.24, 1.46, and 1.74 (for
loading at the age of 28 days, these ratios are 1.14, 1.27, and 1.44); see Fig. 3.18b.

Consequently, experimental studies in which the total strain in the creep apparatus
has not been reported are virtually worthless. The creep coefficient and elastic mod-
ulus to be used in creep analysis must always be evaluated from the same J (t, t ′).
Whether Δts in (3.4) is chosen as 0.001 day or 0.1 day makes no difference for
long-time creep predictions.

3.7.2 Plotting Creep Curves in Actual, Rather than
Logarithmic, Time Scale

It has unfortunately been prevalent to plot the creep test results (as well as creep
deflections of structures) in the actual (linear) scale. Figure 3.19a–c shows such
plots of J (t, t ′) versus t − t ′ for typical parameters of model B3, and for the creep
durations of 30, 500, and 10,000 days. Also inserted are data points giving a realistic
impression of the scatter ofmeasurements. Figure 3.19dgives the corresponding plots
of J (t, t ′) versus log(t − t ′). This graph gives clear information on creep evolution
through the entire period from 0.01 day to 30 years, but the linear scale plots visualize
creep only for one order of magnitude. Moreover, due to inevitable scatter, one is
tempted to conclude, from the terminal slope of the linear scale plots ending at 30,
500, or 10,000 days, that the creep rise is leveling off at the end of the plot and that
the creep growth will be over at 100, 1,500, or 30,000 days, respectively.
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Fig. 3.19 Compliance functions in different ranges of load duration

3.7.3 Creep “Inflation”

Plotting creep test data in the actual (linear) time scale explains the historical phenom-
enon called the creep “inflation.” During the 1930 and 1940s, when most available
tests had the duration of only about 1 year, the codes or standard practice recommen-
dations featured creep prediction formulae with a rather small “final” value. During
the 1960s, longer creep tests became abundant, and the “final” value was raised, or
“inflated.” Only recently, thanks to plotting in the logarithmic time scale, it has been
accepted widely (though not yet universally) that there is no evidence for a “final”
creep value.

The absence of an upper bound on creep is, of course, no problem for design.
Indeed, according to model B3, the 500-year compliance is predicted to be only
about 20–25% higher than the 50-year compliance.

3.7.4 Is Tensile Creep Different from Compression Creep?

Formore than half-century, this apparently plausible point has repeatedly been falsely
exploited by critics to dismiss mathematical creep models and research proposals.
Simply saying “tension,” with no qualifier, means that a different (greater) creep
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occurs as soon as the stress passes from compression to tension. In other words, the
creep isochrones (Sect. 2.1) for various fixed time durations would have to exhibit a
sudden slope change at the zero point, as schematically shown in Fig. 3.20. But this
is not seen in experiments. If it were, then some sudden change of microstructure
would have to occur while crossing the zero stress state. Yet none occurs. Within the
range of applicability of linear constitutive models, which is nonzero for both tension
and compression, there can be no difference between tension and compression.

σ

ε

t t

t− t = 100 days

t− t = 100 days
correct

alleged

Fig. 3.20 Realistic creep isochrones (solid) and a fictitious isochrone (dashed) with a nonphysical
change of slope at the origin

Further note that a zero macroscopic stress does not correspond to zero stresses
in the microstructure; it only corresponds to a zero resultant of the microstresses.
The microstresses, in general, are scattered and do not transit from compression to
tension at the moment the macrostress crosses zero. Some transit earlier, some later.
So, even if the compression–tension transition caused a sudden change of creep at
the microscale, there would still be a smooth continuity of the macroscale creep law
when passing from compression to tension.

There is a difference, of course, in the transition to nonlinear creep at higher
stress. This transition occurs at about the same percentage of the strength limit under
uniaxial stress, about 40 to 50%. But in uniaxial tension it may occur at a much
smaller stress magnitude than in uniaxial compression.

The early studies prior to 1960 tried to make the viscosity coefficient in the rate-
of-creep model (Appendix B) stress-dependent, or to modify the compliance by a
nonlinear function of uniaxial tensile stress, and then use that compliance in memory
integrals, sometimes with further nonlinearity introduced through compound mem-
ory integrals. But that was simplistic, while the compound integrals were artificially
complicated. These models were not consistently formulated for general triaxial

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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stress states and ignored the necessity of yield surfaces in the tensorial constitutive
model for creep. This subject, however, is better discussed in the context of the
theories of damage mechanics and plasticity.

Thenonlinearity of creep is causedbydamage, in tensionmainly bymicrocracking
damage. That is properly captured by using a general triaxial damage model, such
as the microplane model (Sect. 12.8), or a plastic-fracturing model based on yield
surfaces, to calculate the additional nonlinear strain (for the same stress) that must be
added to the linearly calculated creep strain. The damage model should also include
the rate effect, i.e., the dependence of the damage strain rate on the stress.

There is one constitutive law that includes a sudden stiffness change at zero
stress. It is the classical “no-tension” material model, which is the limit of multiaxial
plasticity for yield strength approaching zero. According to this model, the material
can carry no tensile stress in all directions. The extension to creep is obvious.

3.7.5 Autogenous Shrinkage

Autogenous shrinkage is the shrinkage caused by the hydration of concrete indepen-
dently of external drying. It used to be considered negligible and its growth short-
lived, but ongoing research shows that, for modern concretes with low water-cement
ratios and a variety of admixtures, it is significant and long-lasting. It can even exceed
the drying shrinkage. After an initial transient period, it grows logarithmically for at
least ten years, and probably a century. Unlike drying shrinkage, it is the strongest
in sealed specimens and is insensitive to specimen size, except indirectly

The autogenous shrinkage will require changes in the evaluation of creep and
shrinkage experiments. It must be measured for the whole duration of creep and
shrinkage tests. It must be subtracted from the basic creep data measured on sealed
specimens (or else one gets a false impression of nonlinear dependence of stress).
In drying shrinkage and drying creep specimens, the autogenous shrinkage proceeds
in the specimen core until the drying front arrives from the exposed surface (thus,
its effect may last for decades and is large in thick specimens but is negligible in
thin ones). It decreases with decreasing relative humidity h in the pores and does not
proceed if h drops below about 0.7. For more detail, see Sect. 8.7.

3.8 Updating Long-Time Creep and Shrinkage Predictions
from Short-Time Measurements

Problems with durability and long-term serviceability of concrete structures attest to
the uncertainty in creep and shrinkage predictions. Three kinds of uncertainty may
be distinguished:

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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1. The intrinsic uncertainty, due to the fact that concrete creep and shrinkage are
random processes even if all the influencing parameters are fixed.

2. The uncertainty stemming from the random variability of concrete composition
and curing, which can have two origins:

a. basic variability due to inevitable imperfections of normally affordable qual-
ity control, and

b. additional variability due to deliberate vagueness of design specifications,
permitting a significant range of compositions.

3. The uncertainty due to randomness of environmental conditions, particularly the
relative humidity and temperature.

The intrinsic uncertainty is mathematically more complicated since it calls for ran-
dom process treatment (e.g., [300]). It is relatively small compared to the second and
third kinds, which are the sole focus in this section.

The greatest is the second kind of uncertainty. It is aggravated by the sophistication
ofmodern concretes, especially high-strength concretes, because diverse admixtures,
high-rangewater reducers, andpozzolanic ingredients have an appreciable, yet poorly
understood, effect on creep and shrinkage [263, 264].

Unless precise specifications are made and precise quality control is ensured, the
scatter of the databases of creep and shrinkage tests around the world [107, 160, 175,
488, 727, 871] is symptomatic of the scatter to be expected in design. The scatter
seen in these databases is mainly of the second kind and is very large (in fact, so
large that prediction models giving realistic and unrealistic time curves have nearly
the same overall error in comparison with an unfiltered database).

Since materials science of cement and concrete has not advanced enough to cap-
ture the effects of concrete composition, it is necessary to update the predictionmodel
on the basis of short-time tests on the given concrete. If the tests, their extrapolation,
andmodel updating are conducted properly, model B3 permits a drastic improvement
in long-time predictions [104, 107]. So does model B4.

To assess the expected behavior of the concrete considered for a design and con-
struction project, only a limited time such as 1 to 3 months is usually available. The
updating is most effective only if the prediction model has a form amenable to lin-
ear regression and if it gives realistic shrinkage and creep curves from the shortest
durations up. Models B3 and B4 satisfy these conditions.

The updating of creep predictions from short-time tests should be mandatory for
highly creep-sensitive structures, characterized in Chap. 1 as level 5; it is advisable
for level 4, and often useful for level 3, but not needed for levels 1 and 2.

3.8.1 Updating Creep Predictions

The simplest update procedure could consist in proportional scaling of the entire
compliance function by a single factor. However, better results can be achieved

http://dx.doi.org/10.1007/978-94-024-1138-6_1
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by separate scaling of the constant part of the compliance function (corresponding
to instantaneous elasticity) and the variable part of the compliance function (corre-
sponding to creep), using two update parameters, p1 and p2. The improved prediction
of the compliance function is constructed in the form

J (t, t ′) = p1 + p2F(t, t ′) (3.34)

where function
F(t, t ′) = Jb(t, t

′) + Jd(t, t
′) (3.35)

is evaluated according to model B3 using the empirical formulae for the effect of
composition parameters and strength; see Table C.2 in Appendix C. If the data agreed
with the form of model B3 exactly, the plot of the actually measured compliance
values Ji versus the predicted creep compliance values Fi = F(ti , t ′i ) would be a
single straight line for all the measurements labeled by subscript i , with p1 = 1/E0

and p2 = 1. The vertical deviations of the data points from this straight line represent
errors which are to be minimized by linear least-square regression.

So we consider the plot of the known (measured) short-time values Ji (i =
1, 2, . . . n) (say, up to 28 days of creep duration) versus the corresponding values of
Fi , calculated from model B3, and pass through these points a regression line; see
Fig. 3.22. The Y -intercept and the slope of this line give the values of p1 and p2 that
are optimum in the sense of the least-square method. According to the well-known
normal equations of least-square linear regression (e.g., [330]),

p2 =

n∑
i=1

Fi Ji − nF̄ J̄

n∑
i=1

F2
i − nF̄2

, p1 = J̄ − p2 F̄ (3.36)

where n is the number of measured values, J̄ = ∑
i Ji/n =mean of all the measured

compliance values, and F̄ = ∑
i Fi/n = mean of all the corresponding predicted

creep compliance values.

Example 3.2. Updating basic creep prediction

Let us illustrate the procedure by considering, as an example, the data for basic
creep by L’Hermite, Mamillan, and Lefèvre [580] (see also L’Hermite andMamillan
[579]). The composition of concrete used in their tests was characterized by water
content w = 171.5 kg/m3, cement content c = 350 kg/m3, and aggregate content
a = 1685 kg/m3, and the measured mean (cylindrical) compressive strength was
f̄c = 33.9 MPa. The empirical formulae from Table C.2 in Appendix C give the
following parameter estimates: q1 = 21.77 × 10−6/MPa, q2 = 145.5 × 10−6/MPa,
q3 = 2.433 × 10−6/MPa, and q4 = 6.757 × 10−6/MPa. The corresponding predic-
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Fig. 3.21 Example of improving the prediction of basic creep by the use of short-time test data

tion of the compliance function for loading at age t ′ = 7 days is not very good, as is
apparent from Fig. 3.21 (dashed curve).

We now pretend we know only the first 5 data points for the first 28 days of creep
duration, which are indicated in Fig. 3.21 by solid circles. The values of measured
compliances Ji and of predicted creep compliances Fi , i = 1, 2, . . . 5, are listed in
Table 3.2 and graphically presented in Fig. 3.22. According to formula (3.36), the
optimal values of update parameters are

p2 =

n∑
i=1

Fi Ji − nF̄ J̄

n∑
i=1

F2
i − nF̄2

= 12825 − 5 × 51.37 × 49.4

13389 − 5 × 51.372
= 0.7016 (3.37)

p1 = J̄ − p2 F̄ = 49.4 − 0.7016 × 51.37 = 13.36 [10−6/MPa] (3.38)

After the correction, the updated compliance function (3.34) gives not only an excel-
lent fit within the range of load duration up to 28 days, but also a very good prediction
up to the last measured value at 2070 days; see the solid curve in Fig. 3.21.

Updating of the compliance function according to (3.34) is equivalent to replac-
ing the values q1, q2, q3, and q4 calculated from the formulae in Table C.2 by
the values q∗

1 = p1 = 13.36 × 10−6/MPa, q∗
2 = p2q2 = 102.1 × 10−6/MPa, q∗

3 =
p2q3 = 1.707 × 10−6/MPa, and q∗

4 = p2q4 = 4.740 × 10−6/MPa. Note that this
equivalence would not hold if parameters qi were not involved linearly in the expres-
sion for the compliance function. Based on the updated parameters, the compliance
function J (t, t ′) can be evaluated for real structures, using ages at loading other
than the t ′-value used for the test specimens. The effective thickness, environmental
humidity, etc., may also differ. For drying creep, parameter q5 would be replaced by
q∗
5 = p2q5. �
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Table 3.2 Evaluation of an improved prediction of basic creep

i ti − t ′ Ji Fi Fi Ji F2
i

[day] [10−6/MPa] [10−6/MPa] [10−12/(MPa)2] [10−12/(MPa)2]

1 1 42 40.40 1697 1632

2 7 47 49.06 2306 2407

3 14 51 53.30 2718 2841

4 21 53 56.03 2970 3139

5 28 54 58.05 3135 3369

Sum 247 256.84 12825 13389

Average 49.40 51.37

p2 = 0.7016
slope

p1 = 13.36

predicted creep compliance, Fi [10−6/MPa]
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Fig. 3.22 Predicted versus measured compliance values and the regression line from which para-
meters p1 and p2 can be determined

As shown in Fig. 3.21, a major improvement of long-time prediction is achieved
by updating based on short-time measurements. The well-known formulae of linear
regression [330] also yield the coefficients of variation of p1 and p2, which in turn
provide the coefficient of variation of J (t, t ′) for any given t and t ′. However, better
estimates of the coefficients of variation may be obtained by the Bayesian statistical
approach, to be discussed in Sect. 6.4.

To maximize the benefit of updating, the measurements should start immediately
after applying the load, because it helps to anchor the overall slope of the creep
curve in the logarithmic time scale. Short-time data spanning from load durations
t − t ′ = 10 s to 3 days give a much better update than those from 2 hours to 3
days (provided that, of course, the model has a realistic time curve in that range).
In our example, the available readings span from 1 day to 28 days, but an equally
good update could probably be achieved if they spanned from 1 hour to 3 days. To
minimize statistical bias (see Chap. 11), the readings used for updating should be
spaced at approximately equal intervals in the logarithmic time scale (i.e., should
form a geometric progression in time; cf. Chaps. 5 and 11).

http://dx.doi.org/10.1007/978-94-024-1138-6_6
http://dx.doi.org/10.1007/978-94-024-1138-6_11
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_11
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To improve the prediction of the drying creep part, an update based on water loss
measurements on companion specimens is very helpful, as discussed in Sect. H.1.

3.8.2 Difficulties in Updating Shrinkage Predictions

For shrinkage, the problem of extrapolating short-time data is much harder than it is
for creep. The reason is that, if the time range of shrinkage measurements does not
extend into the final stage at which the shrinkage curve of εsh versus log(t − t0) levels
off, the problem of fitting the shrinkage formulae (3.15)–(3.16) to themeasured strain
values is what is known in mathematics as an ill-conditioned problem, meaning that
the parameters of the optimum fit are very sensitive to small changes in the data. In
other words, very different values of parameters ε∞

sh and τsh can give almost equally
good fits of shrinkage data.

To clarify the problem, see Fig. 3.23a where two shrinkage curves according to
model B3 are plotted. The solid curve corresponds to shrinkage halftime τsh = 1000
days and final shrinkage ε∞

sh = 1.5 × 10−3, and the dashed curve to τsh = 400 days
and ε∞

sh = 1.0 × 10−3. Despite the large difference in parameter values, the curves
nearly coincide up to 200 days. If the data do not reach beyond the time at which
the curves begin to diverge significantly (which may be unattainable for normal size
specimens), there is no way to determine the model parameters unambiguously. This
is true not only for models B3 and B4 but also for other shrinkage formulae.

Possible pitfalls are further illustrated by Fig. 3.23b which compares shrinkage
measurements on different concretes whose durations are not long enough. The solid
curve corresponds to a relatively porous concrete A that dries quickly and reaches
moisture equilibrium soon but has a low final shrinkage, while the dashed curve
corresponds to a dense concrete B which dries very slowly but has a large final
shrinkage. However, a short-time shrinkage test, terminating at the points marked,
would be misleading, suggesting that concrete A has a higher final shrinkage than
concrete B, whereas the opposite is true.

Such plots, combined with simple estimates of the shrinkage halftime, reveal that
a reliable determination of the final value of shrinkage would require, for 6-inch
(15cm)-diameter cylinders, measurements of at least 5 years in duration, which is
much too long for a designer. Even with a 3-inch (7.5cm)-diameter cylinder, this
would exceed 15 months. A significant acceleration of the shrinkage process would
require using specimens of diameter 0.5 or 1 in. (1.27 or 2.54cm). Such specimens,
smaller than the aggregate size, would need to cut by a saw. A correction, probably
small, would then have to be made for the wall effect stemming from different
composite interaction of cement mortar and aggregate pieces near the surface.

Increasing the temperature of the shrinkage tests to about 50◦Cwould not shorten
the drying times drastically and would introduce further uncertainties about the
effects of temperature, such as the effect of thermally accelerated hydration on perme-
ability, the thermal effect on shrinkage stress relaxation and shrinkagemicrocracking,
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Fig. 3.23 (a) Example of shrinkage evolutions with nearly the same initial shrinkage but very
different final values, (b) possible shrinkage evolutions for geometrically identical specimens of
different concretes, exposed to the same environment

etc. A greater increase of temperature would raise the uncertainty of inferences for
the room temperature.

To overcome the difficulties with shrinkage updating, the following two refined
extrapolation methods have been proposed:

1. Weight Loss Method: It has been widely accepted that drying shrinkage strains
are approximately proportional to the water loss,Δw. Indeed, the water loss curve
is similar to the shrinkage curve. But there is one important difference: Unlike
shrinkage, even if the water loss is measured (by weighting) only during the first
1 to 3 months, the final water loss can be predicted reasonably well, in two ways:
(a) By drying the specimen in the oven (at 105 ◦C), one can determine the water
loss for zero relative humidity and then use an approximate desorption isotherm
to interpolate the water loss to the given relative humidity; or (b) knowing w/c
ratio in the concrete mix, one can, at least in theory, estimate the water content
evaporable at zero humidity and then interpolate. Once the final value of water
loss is known, one can obtain the halftime of the water loss curve τw (assuming
that the water loss follows the same type of function as shrinkage). Considering
the shrinkage halftime τsh to be nearly the same, one can calibrate the formula
for the entire shrinkage curve. The details of this procedure, proposed by Bažant
and Baweja [104], are described in Appendix H.

2. Diffusion SizeEffectMethod: Assuming all the shrinkage in drying environment
to be caused by diffusion of water from the specimen (i.e., autogenous shrinkage
to be absent), and shrinkage and specific water loss increments at each point of
specimen to be roughly proportional, one could, in theory, exploit the diffusion
size effect. The test of a cast 6-inch-diameter cylinder (D = 2V/Se = 3 in.) can
be accompanied by a test of 1 in. square prism cut out from concrete (D =
0.5 in.), which dries (and supposedly shrinks) about 36 times faster (ignoring
a small correction for the wall effect). Thus, the shrinkage curve of the small
specimen supposedly approaches its final value within a short enough time. By
simultaneous optimization of the fit of this curve and of the short-time data for the
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large specimen, τsh can thus be identified. It is then simple to calculate the final
shrinkage for the 6-inch-diameter cylinder; see the detailed procedure in Bažant
and Donmez [124].

Initially, from a few examples, it seemed that the weight loss method worked.
But significant discrepancies have been observed later [471]; see, e.g., Fig. H.3 in
Appendix H. Likewise, the method of diffusion size effect seemed to work in some
examples but in others was poor.

Therefore, while the use of both extrapolation methods is surely better than the
alternative of intuitive extrapolation by a curve drawn by eye, none of them is truly
predictive and reliable in practice. Why? The likely cause is that the role of auto-
genous shrinkage is much bigger than expected, especially in modern concretes, as
proposed in Bažant, Donmez, Masoero, and Rahimi Aghdam [125]. This will be
discussed in Sect. 8.7.

http://dx.doi.org/10.1007/978-94-024-1138-6_8


Chapter 4
Structural Effects of Creep and
Age-Adjusted Effective Modulus Method

Abstract We begin with creep analysis of structures having homogeneous mate-
rial properties, which is a feature requiring uniformity of concrete age and, in the
case of drying exposure, also uniformity of concrete wall thickness. We explain the
Boltzmann–Volterra elastic–viscoelastic analogy for creepwith a linear stress depen-
dence and discuss the effects of changes in structural system, which occur commonly
during modern construction. Then, we derive and expound in detail the age-adjusted
effectivemodulusmethod (AAEM), the simplest method to obtain good approximate
estimates of the creep effects in the presence of aging—a method that is featured
by now in most, if not all, design codes and recommendations. Our discussion then
proceeds to calculating the stress redistributions in structures, and cross sections in
which the creep properties are not homogeneous, or in which the nonuniformity is
introduced by drying. Careful attention is given to stress relaxation in prestressed
members, which is caused not only by the creep and shrinkage of concrete but also
by the relaxation of prestressing steel at variable stress and temperature.We present a
recently developedviscoplasticmodel for prestressing steel, justify itmathematically,
emphasize that the tendon relaxation should be computed as part of creep structural
analysis, and point out that daily cycles of tendon heating can greatly increase the
prestress loss.Wefinish our discussionwith the creep buckling of columns and shells,
accurate assessment of which is particularly important for structural safety.

4.1 Homogeneous Structures

Perfectly homogeneous structures are rarely encountered in practice, but a solid
understanding of their behavior and analysis constitutes a good starting point for
deeper discussion of more general problems. A structure is considered as homo-
geneous, if all its parts are made of the same material with the same properties;
for concrete structures, this means that the concrete used in all parts should have
not only the same composition but also the same age and curing. Strictly speaking,
drying should also develop in the same way everywhere in the structure, because
it affects the drying creep compliance. This last condition is, of course, impossible
to satisfy pointwise, but as an approximation one can introduce the effective cross-

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6_4
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sectional compliance that reflects the average properties over the cross section, and
in this sense, the structure is homogeneous, e.g., if all cross sections are the same
and subjected to the same environmental humidity.

4.1.1 Elastic–Viscoelastic Analogy

For homogeneous structures with no change of structural system (supports, internal
hinges, etc.), it is possible to prove that all equations derived under the assumption
of a linear elastic behavior remain valid for a linear viscoelastic behavior, after the
following adjustments, equivalent to the theorems of McHenry [619]:

• multiplication by the elastic modulus is replaced by application of the relaxation
operator, R,

• division by the elasticmodulus is replaced by application of the compliance (creep)
operator, J .

To illustrate this general rule, consider the well-known relation between the bend-
ing moment, M , and the curvature of the beam axis, κ . In elasticity, the moment–
curvature relation is derived by combining the integral formula for the bending
moment expressed as the moment resultant of normal stresses,

M =
∫

A
zσ(z) dA (4.1)

with the elastic stress–strain law, σ = Eε, and with the formula

ε(z) = εa + κz (4.2)

describing the linear strain distribution across the section (which is a consequence of
the assumption that the sections remain planar even after deformation). After easy
manipulations, the above equations yield the moment–curvature relation

M =
∫

A
zσ(z) dA =

∫
A

zEε(z) dA =
∫

A
zE(εa + κz) dA =

= Eεa

∫
A

z dA + Eκ

∫
A

z2 dA = E Iκ (4.3)

in which I = ∫A z2 dA is the sectional moment of inertia. Note that, according to
(4.2), the strain, in general, depends not only on the curvature, κ , but also on the
axial strain, εa. However, if the coordinate z is measured from a centroidal axis y,
then
∫

A z dA vanishes and there is no cross-coupling between the axial stretching and
bending. The resulting formula (4.3) shows that the bending moment M is propor-
tional to the beam curvature κ , with the bending stiffness E I as the proportionality
coefficient.
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The foregoing derivation can be extended to a viscoelastic beam. Equations (4.1)–
(4.2) remain valid and only the stress–strain law needs an adjustment. Instead of the
simple Hooke’s law σ = Eε, we must consider the viscoelastic stress–strain law,
most easily formulated in the operator notation as σ = R{ε}.1 Since the relaxation
operator R is linear, we can write

M =
∫

A
zσ(z) dA =

∫
A

zR{ε(z)} dA =
∫

A
zR{εa + κz} dA =

= R{εa}
∫

A
z dA + R{κ}

∫
A

z2 dA = IR{κ} (4.4)

Of course, the resulting formula can also be presented as M = R{Iκ}, because the
sectional moment of inertia, I , is not a function of time and therefore is perceived by
the relaxation operator as a constant (even though it may depend on the coordinate x
measured along the beam axis). For simplicity, we have not marked explicitly which
quantities may depend on time, since this is obvious.

Using the operator formalism, the moment–curvature relation (4.4) can easily be
converted into its inverse form,

κ = J

{
M

I

}
= J {M}

I
(4.5)

This is the viscoelastic counterpart of the elastic relation κ = M/E I . As already
alluded to, division by the elastic modulus E (i.e., multiplication by the elastic com-
pliance 1/E) is replaced by application of the compliance operator J .

The replacement rules based on the elastic–viscoelastic analogy [619] for aging
materials greatly facilitate the analysis of homogeneous aging viscoelastic structures.
For instance, it is known frombasic structural analysis that if an elastic beam clamped
at both ends is loaded by a uniformly distributed load of intensity f̄ and by vertical
settlement w̄b of its right support, then the moment reaction at the left support is
calculated as Ma = f̄ L2/12 + 6E I w̄b/L2 and the deflection at midspan as wm =
f̄ L4/384E I + w̄b/2, where L is the beam span and E I is the sectional bending
stiffness. If the material of the beam is linear viscoelastic, the foregoing formulae
need to be rewritten as follows:

Ma = f̄ L2

12
+ R

{
6I w̄b

L2

}
= f̄ L2

12
+ 6IR {w̄b}

L2
(4.6)

wm = J

{
f̄ L4

384I

}
+ w̄b

2
= J

{
f̄
}

L4

384I
+ w̄b

2
(4.7)

Note that the terms which do not depend on the elastic modulus are unaffected. So,
for instance, the reactions caused by the distributed load remain the same, no matter
whether the material is elastic or viscoelastic, and this is true not only for statically

1For simplicity, the effects of shrinkage and thermal strain are neglected here. They could be easily
added by using the general form of the stress–strain law (2.45).

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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determinate (isostatic) structures, for which the reactions follow directly from the
equilibrium equations, but also for statically indeterminate (or redundant) structures,
as long as they are homogeneous.

By contrast, the reactions caused by nonuniform support settlement or by tem-
perature changes are proportional to the elastic modulus and if the material is vis-
coelastic, they tend to relax. If the support settlement takes place abruptly at time
t1, its history is described by the function w̄b(t) = ŵb H(t − t1) where ŵb is a con-
stant, and the correspondingmoment reaction Ma(t) = (6I/L2)R

{
ŵb H(t − t1)

} =
(6I ŵb/L2)R {H(t − t1)} = (6I ŵb/L2)R(t, t1) evolves proportionally to the relax-
ation function R(t, t1). For general loading histories, R {w̄b(t)} needs to be com-
puted numerically, but this is the only extra effort required by the viscoelastic solu-
tion as compared to the elastic one. The simplicity of this procedure is what makes
the assumption of structural homogeneity so convenient and popular, but the error
induced by such a simplification should always be examined with great care.

The elastic–viscoelastic analogy is applicable not only to simple formulae derived
by pencil calculations or found in design manuals but also to the sets of equations
used by the slope-deflection method for analysis of redundant beam structures, or by
the finite element method for analysis of arbitrarily complicated structural models
(plates, shells, three-dimensional models, etc.). All such methods applied to linear
elastic problems with small strains and displacements lead to a linear system of
equations Kd = f where K is the structural stiffness matrix, d is the column matrix
of unknown displacement parameters (e.g., of displacements and rotations of the
joints), and f is the column matrix of the equivalent external forces reflecting the
applied load.All the stiffness coefficients inK are proportional to the elasticmodulus,
and so we can formally write K = EK̃ where K̃ is the stiffness matrix evaluated with
a unit value of the elastic modulus. The set of equations describing the viscoelastic
structure is then

K̃R{d(t)} = f (t) (4.8)

provided that the equivalent external forces f (t) do not depend on the elastic modulus
(which is the case if they come only from applied loads, but not if they express the
effects of temperature changes or support settlement). The solution of (4.8) can
formally be written as

d(t) = J
{

K̃
−1

f (t)
}

= K̃
−1
J {f (t)} (4.9)

where, of course, the inverse stiffnessmatrix K̃
−1

is never constructed explicitly (mul-

tiplication by K̃
−1

is based on a suitable decomposition of K̃, e.g., on the Cholesky
or L DLT decomposition). The right-hand side of (4.9) indicates that it is sufficient
to transform the load history using the compliance operator and then solve the elastic
problem for a structure with unit elastic modulus, subjected to transformed loading
J {f (t)}. In the particular case of external loading applied abruptly at time t1 and
then remaining constant, all the displacement parameters d(t) evolve proportionally
to the compliance function J (t, t1), as discussed before for a simpler beam problem.
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The general rules describing the behavior of a homogeneous viscoelastic structure
under constant external solicitation (by dead loads, temperature changes, and support
settlement) acting from time t1 can be summarized as follows:

• The static quantities (such as reactions, internal forces, or stresses) induced by
constant external forces remain constant.

• The static quantities induced by constant temperature changes and support
settlement decrease in proportion to the relaxation function R(t, t1).

• The kinematic quantities (such as deflections, rotations, curvatures, or strains)
induced by constant external forces increase in proportion to the compliance
function J (t, t1).

• The kinematic quantities induced by constant temperature changes and sup-
port settlement remain constant.

Under time variable loads, the governing equations are still set up quite easily,
but their solution may require application of the relaxation or creep operator to
certain functions of time. The corresponding integrals can be computed numerically
or approximated in the spirit of the AAEM method, to be developed in Sect. 4.2.

Example 4.1. Shrinkage of a restrained bar

In statically indeterminate structures, thermal or shrinkage strains cannot be fully
accommodated by deformation of the structure, and compatibility constraints lead
to the development of internal forces.

As the simplest case, consider a restrained bar, e.g., a pavement slab, subjected
to drying shrinkage. In reality, the drying process is nonuniform across the section
and stresses would develop even in a statically determinate bar with zero resultant
internal forces (see Fig. 3.17). This phenomenon requires a solution of the diffusion
equation that governs the evolution of relative pore humidity and will be discussed
in Sect. 8.6; see Fig. 8.48. Here, we present a simplified approach, which deals with
the average value of shrinkage strain over the section, estimated using model B3.

In a restrained bar, the total strain must be zero, and thus the mechanical strain
(related to stress by a linear viscoelastic model) is equal to minus the shrinkage
strain. In other words, in the general stress–strain relation (2.45), we set ε(t) = 0
and εT (t) = 0 and express the stress as

σ(t) = −R{εsh(t)} (4.10)

The stress history is thus obtained by applying the relaxation operator to the given
function εsh(t) that describes the history of shrinkage strain (and changing the sign).
Since the shrinkage strain is negative (contractive), positive (tensile) stresses can be
expected. For an elasticmaterial, such stresseswould be proportional to the shrinkage
strain. For a viscoelastic material, they are partially relaxed by viscous effects.

The competition between stress build-up due to growing shrinkage and stress
relaxation due to viscoelasticity results into a nonmonotonic stress evolution with a
peak at a time comparable to the shrinkage halftime. This is documented in Fig. 4.1,
which shows the stress history corresponding to concrete with the same properties

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Fig. 4.1 History of stress induced by restrained shrinkage

as in Example 3.1. The solid curve represents the stress history in concrete exposed
to the environmental humidity henv = 70% at age t0 = 3 days. The stress evaluated
according to (4.10) grows up to its peak value 5.68 MPa, which is attained approxi-
mately at 1300days. Of course, such a high tensile stress could hardly be transmitted
by concretewith compressive strength 45.4MPa, forwhich the tensile strength can be
estimated as 3.4 MPa. Restrained shrinkage would lead to cracking, and the stresses
would be reduced by tensile softening of the material.

The maximum stress calculated by a viscoelastic model (with cracking neglected)
is even higher if the drying process starts later, e.g., at t0 = 28 days, as indicated by
the top dashed curve in Fig. 4.1. The reason is that the shrinkage strains remain
almost the same, but the material becomes stiffer due to aging. Only if the concrete
is exposed to a higher environmental humidity, shrinkage is reduced and the induced
stresses as well. The dotted curve in Fig. 4.1 corresponds to henv = 90% and has its
peak at stress level 2.85 MPa and drying time approximately 1500days. �

As demonstrated in the previous example, the shrinkage-induced stresses in a fully
restrained slab are likely to exceed the tensile strength, and crackingwould need to be
taken into account in order to get more realistic results. However, the stress histories
computed according to Eq. (4.10), i.e., with cracking neglected, can be useful when
solving problems with partially restrained deformation. For instance, the problem of
shrinkage in a statically indeterminate frame has the same mathematical structure
as shrinkage in a restrained bar, but the resulting stress is lower and depends on the
flexibility of the structure.

Example 4.2. Restrained shrinkage of a frame

Consider a two-hinge portal frame in Fig. 4.2a, which is statically indeterminate of
degree 1, and so it can be analyzed using a single unknown redundant force, e.g.,
the horizontal reaction X1 introduced according to Fig. 4.2b. If the axial flexibility
of the bars is neglected (as compared to the bending flexibility) and the material
is considered as linear elastic, the governing equation of the force (or compliance)
method reads

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.2 Two-hinge portal frame: (a) frame geometry, (b) statically redundant reaction, (c) bending
moment diagram, (d) normal force diagram
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2L3
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3Ic
+ L L2

c

Ib

)
X1 + Lεsh = 0 (4.11)

where L and Lc are the lengths of the beam and column, Ib and Ic are their sec-
tional moments of inertia, and E is the elastic modulus. For a viscoelastic material,
multiplication by the elastic compliance 1/E must be replaced by application of
the compliance operator J . Using the relaxation operator R, the equation can be
formally solved and the solution can be written as

X1(t) = −
(
2L3

c

3L Ic
+ L2

c

Ib

)−1

R{εsh(t)} (4.12)

Same as in the case of a restrained bar, we need to apply the relaxation operator
to the history of shrinkage strain. The resulting redundant force X1 thus evolves in
proportion to the stress that would develop in a fully restrained bar, with a propor-
tionality factor dependent on the frame geometry. The same holds (with different
proportionality factors) for other static quantities, such as bending moments or nor-
mal forces. The time at which the maximum stress is attained is the same as for
the restrained bar, but, of course, the value of that stress is different, affected by the
frame geometry. The horizontal member of the frame is subjected to normal force
N (t) = X1(t) and bending moment M(t) = LcX1(t) (both constant along the mem-
ber); see Fig. 4.2c,d. According to the beam theory, the corresponding maximum
tensile stress in the bottom fibers is

σmax(t) = N (t)

Ab
+ M(t)

Wb
=
(

1

Ab
+ Lc

Wb

)
X1(t) =

= −
(

1

Ab
+ Lc

Wb

)(
2L3

c

3L Ic
+ L2

c

Ib

)−1

R{εsh(t)} (4.13)

where Ab is the cross-sectional area of the member and Wb is its elastic sectional
modulus (for a rectangular sectionofwidthb anddepthh,wehave Ab = bh andWb =
bh2/6). The proportionality factors in (4.12 and (4.13) decrease with increasing
Lc, which is quite natural, since higher columns (with all the other dimensions
unchanged) are more flexible. However, it may be somewhat surprising that for
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Lc → 0 the factors tend to infinity and not to finite values which would correspond
to the response of a restrained bar. The reason is that if Lc becomes small, the
contributions of axial deformation and shear to the structural flexibility are no longer
negligible. For simplicity, the formula used here was based on bending only, but the
other terms need to be added if frames with Lc � L and the limit case of a bar with
Lc = 0 are to be captured properly.

For a typical case with Lc = L = 10h and equal rectangular sections of the beam
and columns, the geometrical factor multiplying −R{εsh(t)} in (4.13) is about 0.03.
This means that the shrinkage-induced stresses are more than 30 times lower than
in a fully restrained bar, and their peak values certainly do not exceed the tensile
strength. Of course, these stresses need to be combined with those caused by the
self-weight and other loads. �

4.1.2 Change of Structural System

An interesting type of problem arises if the structural system is changed during the
life of the structure (typically during the construction phase). This will be illustrated
by the following example.

Example 4.3. Cantilever end placed on support

In cantilever construction of prestressed concrete box girder bridges,2 the balancing
of the pier is made easier if the end span is cast from the pier toward the abutment
as a cantilever (Fig. 4.3). To simplify the analysis, we assume the whole cantilever
to have the same age t , representing the average of the actual ages of the casting
segments of the cantilever, and the dead load to be applied when this average age
is t1. At age t2 > t1, a bearing is placed under the end of the cantilever and is made
to fit snugly (which may induce an initial vertical reaction at the support). This
changes the structural system from statically determinate (system I, for t < t2) to
statically indeterminate, or redundant (system II, for t ≥ t2). Assuming, for the sake
of simplicity, the forces acting at the end of the opposite, counterbalancing cantilever
erected from the same pier to have a negligible effect on the vertical reaction Fb(t)
at the abutment, Fb(t) is a single statically indeterminate force (Fig. 4.3).

Elementary analysis of an elastic cantilever provides the formulae for deflection
at the free end. For simplicity, we assume a constant cross section with moment of
inertia I , but it would be easy to adapt the analysis to the case of a variable cross

2One important cause of underestimation of long-time creep deflections of prestressed concrete
box girders by beam-type analysis has been the neglect of the so-called shear lag, a phenomenon
characterized byout-of-planewarping of cross sections in zones of high shear force, and bynonlinear
stress distribution, particularly the development of stress peaks in the top slab near the webs. This
effect is classical knowledge in elasticity but has often been overlooked in creep analysis. For shear
lag correction of beam-type creep analysis, see Křístek and Bažant [557]. If three-dimensional or
shell-type finite elements are used for creep analysis, the shear lag is, of course, accounted for
automatically.
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Fig. 4.3 Effect of placing the end of a cantilever on a support

section. The deflection due to uniformly distributed load f is f L4/8E I and the
deflection due to concentrated load F acting at the free end is F L3/3E I . This is all
we need to know in order towrite the general expression for the viscoelastic cantilever
loaded by a time-dependent uniform load f (t) and time-dependent reaction force
Fb(t):

wb(t) = J

{
f (t)L4

8I
− Fb(t)L3

3I

}
= L4

8I
J { f (t)} − L3

3I
J {Fb(t)} (4.14)

The negative sign at the second term is due to the fact that the reaction Fb is considered
as positive if it acts upward while the deflection is positive if it is downward; see
Fig. 4.3.

In our particular problem, the uniform load is applied abruptly at time t1 and
afterward held fixed. So it is described by f (t) = f̂ H(t − t1) where f̂ is a given
constant (dead weight per unit length). The concentrated force Fb(t) represents the
vertical reaction at the right support and is yet to be determined. Before the change
of the structural system, i.e., at times t < t2, the support does not exist, and force
Fb(t) is known to be zero while the deflection wb(t) is unknown. After the change
of the structural system, i.e., at times t > t2, the reaction force Fb(t) is unknown and
the end deflection wb(t) must remain constant (unless the support experiences some
settlement). Equation (4.14) is valid throughout the entire history, and it serves for
the evaluation of deflection wb(t) at times t ≤ t2 and of reaction Fb(t) at t > t2.

Assuming further that there is no jacking up nor pulling down of the cantilever end
before the bearing at the abutment is installed, we require continuity of deflection
wb(t) at time t = t2, which implies continuity of the reaction Fb(t). Substituting
J { f (t)} = J { f̂ H(t − t1)} = f̂ J (t, t1) into (4.14), we get

wb(t) = f̂ L4

8I
J (t, t1) − L3

3I
J {Fb(t)} (4.15)

For t ≤ t2, the second term on the right-hand side vanishes and the deflection
increases proportionally to the compliance function, as expected. The deflection
at time t = t2 is

wb(t2) = f̂ L4

8I
J (t2, t1) (4.16)
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and subsequently remains constant. Therefore, the entire history of deflection can be
described as

wb(t) =

⎧⎪⎪⎨
⎪⎪⎩

f̂ L4

8I
J (t, t1) for t ≤ t2

f̂ L4

8I
J (t2, t1) for t ≥ t2

(4.17)

The history of the reaction force can now be calculated by inverting (4.15):

Fb(t) = R

{
3I

L3

(
f̂ L4

8I
J (t, t1) − wb(t)

)}
= 3 f̂ L

8
H(t − t1) − 3I

L3
R{wb(t)}

(4.18)
Functionwb(t) is already known, but in (4.17) it is described by different expressions
in two intervals. However, to getR{wb(t)}, the relaxation operator must be applied to
the entire history—it would be incorrect to evaluateR{wb(t)} for t ≥ t2 by applying
R on the constant function in the second line of (4.17). Therefore, it is useful to
transform the piecewise description of wb(t) into a single expression, valid at all
times t :

wb(t) = f̂ L4

8I
J (t, t1) [1 − H(t − t2)] + f̂ L4

8I
J (t2, t1)H(t − t2) (4.19)

If this is substituted into (4.18), the resulting expression for the history of the
reaction force can be written, after some rearrangements, as

Fb(t) = 3 f̂ L

8
HΔ(t, t2, t1) (4.20)

where

HΔ(t, t2, t1) = R {JΔ(t, t2, t1)} (4.21)

JΔ(t, t2, t1) = [J (t, t1) − J (t2, t1)] H(t − t2) (4.22)

�
Note that the factor 3 f̂ L/8 in (4.20) corresponds to the reaction force Fb that

would be induced if the given load were applied on the structure after the change
of the structural system, i.e., on a beam clamped at its left end and simply sup-
ported at its right end (system II in Fig. 4.3). The function HΔ(t, t2, t1) multiplying
this coefficient, defined in (4.21)–(4.22), looks complicated but has quite a simple
physical meaning. Note that the function JΔ(t, t2, t1) defined in (4.22) vanishes for
t < t2 (because then H(t − t2) = 0) and equals J (t, t1) − J (t2, t1) for t ≥ t2. There-
fore, JΔ(t, t2, t1) represents the difference between the strain history generated in a
creep test at a unit stress level started at time t1, and the strain history in a mixed
creep-relaxation test, in which creep at constant unit stress takes place from time
t1 till time t2, and subsequently, the strain level is fixed and stress is relaxed; see
Fig. 4.4a. Applying the relaxation operator R to JΔ(t, t2, t1), we obtain the dimen-
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Fig. 4.4 Illustration of functions JΔ and HΔ

sionless function HΔ(t, t2, t1) describing the decrease of stress with respect to its
initial unit level in such a mixed test; see Fig. 4.4b. Since HΔ(t, t2, t1) character-
izes the stress redistribution after the change from creep to relaxation, it may be
called the redistribution function [310, 311]. For fixed t1 and t2, function JΔ is a
continuous function of t that vanishes up to t = t2 ≥ t1 and then gradually increases,
without a jump. Moreover, its derivative with respect to t is, for t > t2, equal to
J̇ (t, t1). The redistribution function HΔ, formally defined in (4.21)–(4.22), can thus
be evaluated as

HΔ(t, t2, t1) =
∫ t

t2

R(t, t ′) J̇ (t ′, t1) dt ′ for t ≥ t2 ≥ t1 (4.23)

Fig. 4.5 Redistribution function HΔ(t, t2, t1) plotted as a function of variable t for t1 = 14 days
and t2 = 15, 100 and 1000days, in (a) logarithmic scale, (b) linear scale

For illustration, the redistribution function is plotted in Fig. 4.5 for the concrete
from Example 3.1, with the first loading at age t1 = 14 days and the change of
structural scheme, respectively, at t2 = 15 days, 100days, and 1000days. The solid
curves represent the “exact” redistribution functions, obtained by an accurate numer-
ical integration, as described in Chap. 5. It can be observed that if the redistribution
starts early after loading, the redistribution function rises steeply and approaches
values close to 1 (which would correspond to full redistribution). On the other hand,

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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if the redistribution starts late, the redistribution function grows more gradually and
even after 30years is still far below 1.

The redistribution function serves as a handy tool for the description of evolution
of reactions and internal forces after a change of structural system. Consider for
instance the moment reaction Ma at the left support of the cantilever whose right end
is placed on a support at time t2; see Example 4.7. Since we have already derived
formula (4.20) for the history of statically indeterminate reaction Fb, we can easily
compute the value of Ma at any time, only from equilibrium:

Ma(t) = 1

2
f (t)L2 − Fb(t)L = 1

2
f̂ L2H(t − t1) − 3 f̂ L2

8
HΔ(t, t2, t1) (4.24)

Here, f̂ L2/2 is the moment reaction on the cantilever (system I), i.e., before the
change of structural system. It is worth noting that for HΔ = 1, we would obtain
Ma = f̂ L2/8, which is the moment reaction that would arise if the load were applied
on system II, i.e., after the change of structural system. So the factor −3 f̂ L2/8
multiplying HΔ in (4.24) represents the difference between the moment reactions
computed for the given load on an elastic structure after and before the change of
the structural system. The redistribution function HΔ(t, t2, t1) specifies the relative
amount of redistribution at time t if the load is applied at time t1 and the structural sys-
tem is changed at time t2. The same general description of the redistribution process
applies to any static quantity such as a reaction or an internal force. For instance, if we
want to express the force reaction at the left support, Fa , it is sufficient to compute its
value on the cantilever (system I), f̂ L , and on the statically indeterminate beam with
left end clamped and right end simply supported (system II), 5 f̂ L/8, and then write

Fa(t) = f̂ L H(t − t1) +
(
5 f̂ L

8
− f̂ L

)
HΔ(t, t2, t1) (4.25)

= f̂ L H(t − t1) − 3 f̂ L

8
HΔ(t, t2, t1)

The Heaviside function H(t − t1) is used here only for formal reasons, to make the
formula valid even for t < t1, and it can be omitted if we specify that only times
t ≥ t1 are considered.

The general rule for redistribution of any static quantity S upon a change of
structural system from I to II is formally expressed by the formula

S(t) = S̃ H(t − t1) + ΔS̃ HΔ(t, t2, t1) (4.26)

in which S̃ is the value of this static quantity (e.g., internal force) computed on the
initial structural system I, and ΔS̃ is the difference between the values computed
on systems II and I. The general symbol S can be replaced by a reaction, bending
moment, shear force, stress, etc.

For kinematic quantities δ, such as deflections, rotations, curvatures, etc., the
following rule can be derived:
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δ(t) = δ̃ J (t, t1) + Δδ̃ JΔ(t, t2, t1) (4.27)

Recall that JΔ = J {HΔ} is defined in (4.22). Symbol δ̃ denotes the value of the
kinematic quantity of interest computed on system I using a unit elastic modulus,
and Δδ̃ is the difference between the values computed on systems II and I using (in
both cases) the unit elastic modulus.

Application of these general rules will be illustrated by the next example.

Example 4.4. Simply supported beams made continuous

Continuous bridge beams are often assembled from precast prestressed concrete
beams, which are transported from a plant to the site, raised on the supports and
later joined at time t2 to create a continuous beam (this is more efficient than simply
supported beams and has a better seismic performance); see Fig. 4.6a. The joining
can, for instance, be achieved by placing a continuous reinforced concrete slab on
top of the beams, by the welding of steel bars, or by installing additional prestressing
tendons running from one span to the next.

I

II

II

I

(a)

(b)

θ

Δθ = 0

t2 ≤ t

t1 ≤ t ≤ t2

t = t2

t = t2

t = t1

t > t2

Fig. 4.6 Simply supported beams made continuous

Let the age of concrete at which the beams are placed on the supporting piers be
denoted as t1. Initially, each span acts as a simply supported beam and is statically
determinate. The deflections due to self-weight, acting since time t1, increase freely,
which causes the beam ends to gradually undergo rotations θ(t) (slope increase,
Fig. 4.6b). This continues until age t2 at which the beam ends are joined.

The joining at age t2 changes the structural system fromstatically determinate (sys-
tem I) to statically indeterminate (system II). After that, the additional end rotations
of the adjacent beams are forced to be the same. Since the continuing deflection is
opposed by this restraint, negative moments above the supports gradually build up.

For the sake of simplicity, we will consider a continuous beam of infinitely many
identical spans. Then, by virtue of symmetry conditions, the additional rotations
Δθ above the support must be zero (Fig. 4.6b), and each beam after the change
of structural system behaves as clamped at both ends. The moments above the
supports computed on the simply supported beams (system I) are zero, and the
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moments computed on the clamped beams (system II) are − f̂ L2/12. The negative
sign indicates that tensile stresses arise in the top part of the section. The actual
evolution of the moments Ms above the supports (extreme negative moments) in the
viscoelastic structure with a change of structural system is, according to the general
rule (4.26), given by

Ms(t) = − f̂ L2

12
HΔ(t, t2, t1) (4.28)

The extreme positive moments Mm at midspan of each beam would be on a simply
supported beam (system I) equal to f̂ L2/8 and on a clamped beam (system II) to
f̂ L2/24. Their redistribution due to the change of structural system is described by

Mm(t) = f̂ L2

8
H(t − t1) +

(
f̂ L2

24
− f̂ L2

8

)
HΔ(t, t2, t1) =

= f̂ L2

8
H(t − t1) − f̂ L2

12
HΔ(t, t2, t1) (4.29)

The deflection at midspanwould be 5 f̂ L4/384I on an elastic simply supported beam
with unit elasticmodulus, and f̂ L4/384I on an elastic clamped beamwith unit elastic
modulus. According to the general rule (4.27), the evolution of the deflection on the
viscoelastic structure with a change of structural system is given by

wm(t) = 5 f̂ L4

384I
J (t, t1) − 4 f̂ L4

384I
JΔ(t, t2, t1) (4.30)

Substituting for JΔ from (4.22), we can rewrite the result as

wm(t) =

⎧⎪⎪⎨
⎪⎪⎩

5 f̂ L4

384I
J (t, t1) if t1 ≤ t ≤ t2

f̂ L4

384I
J (t, t1) + 4 f̂ L4

384I
J (t2, t1) if t2 ≤ t

(4.31)

For illustration, the history of extreme bending moments and of deflection at
midspan is plotted in Fig. 4.7 for the following specific case: beam span L = 25 m,
cross section of area A = 0.4m2, andmoment of inertia I = 0.07m4, effective depth
D = 0.2 m and shape factor ks = 1.25 (estimated), concrete properties, curing and
environmental humidity the same as in Example 3.1, basic and drying creep described
by model B3, effect of shrinkage on bending neglected, loading by self-weight of the
simply supported beam applied at age t1 = 14 days, and structural system changed
to clamped beam at age t2 = 28 days. For specific weight ρg = 24 kN/m3, we obtain
f̂ = ρg A = 9.6 kN/m and f̂ L4/384I = 139.5 MN/m. For the given concrete, the
conventional modulus of elasticity is E28 = 31.9 GPa, and the maximum deflection
caused by the self-weight on a simply supported beam with elastic modulus E28

would be 5 f̂ L4/384E28 I = 21.9mm.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.7 Simply supported beams loaded at t1 = 14 days and made continuous at t2 = 28 days:
history of (a) extreme bending moments and (b) deflection at midspan

As shown in Fig. 4.7a, the bending moment at midspan jumps to f̂ L2/8 = 750
kN at the age of 14days and remains constant until the change of structural system
at the age of 28days. After the change, it gradually decreases due to the develop-
ment of a negative moment at the support. The difference between the moments at
midspan and at the support remains constant, as dictated by equilibrium. At the age
of 10,000days, the moment at midspan is reduced to 320 kN and the moment at
the support is −430 kN. If the beam was clamped from the beginning, the moments
would be 250 kN and −500 kN. The corresponding value of the redistribution func-
tion HΔ(10000, 28, 14) is (750 − 320)/(750 − 250) = 430/500 = 0.86. The bend-
ing moment distribution at the age of 10,000days is thus “composed” of 86% of
the moment distribution corresponding to system II (clamped beam) and 14% of
the moment distribution corresponding to system I (simply supported beam). The
results presented here are based on the “exact” redistribution function, evaluated by
accurate numerical integration according to linear viscoelasticity.

Figure4.7b shows the history ofmidspan deflection (solid curve). For comparison,
the dashed curves indicate the deflections that would evolve on a simply supported
beam (top curve) and on a clamped beam (bottom curve), both loaded by self-weight
at the age of 14days. �

4.2 Age-Adjusted Effective Modulus Method

4.2.1 Background

For a realistic compliance function such as model B3, and even for relatively simple
functions such as the log-double-power law (3.9) or the typical design creep for-
mulations, concrete creep problems cannot be solved analytically, even within the
framework of aging linear viscoelasticity. They require a step-by-step numerical inte-
gration, which is unnecessarily tedious for preliminary design or simple structures.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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A simple approximate solutionmethod is, therefore, needed for design practice. Such
a method is adequate if the nonlinear effects of drying, with the inherent cracking,
and the large statistical uncertainties of creep and shrinkage, are either ignored or
handled too simplistically. The inherent errors of creep structural analysis are often
large enough to dwarf the errors caused by simplifications of aging viscoelastic analy-
sis, making an accurate linear viscoelastic solution almost useless. In any case, the
simplified approach presented in this chapter is generally insufficient for the actual
design of large creep-sensitive structures. Nevertheless, even then this simplified
approach is instructive, to develop understanding of the qualitative nature of creep
and shrinkage effects, and thus has a place in preliminary design studies.

The history of simplified approaches to creep analysis is reviewed in Appendix B.
The earliest of such methods was the effective modulus method [623], in which
the creep solution for time t is obtained by elastic structural analysis based on the
so-called effective modulus

Eef = 1

J (t, t1)
= E(t1)

1 + ϕ(t, t1)
(4.32)

where t1 is the time atwhich the loadwas applied. Evidently, thismethod is exact only
if the loads and stresses in a structure have a single-step history (i.e., are constant since
the instant of first loading, t1); see Fig. 4.8a. The corresponding strain or displacement
history must be a multiple of the compliance function. This condition is far from
reality if one deals with a statically indeterminate system afflicted by significant long-
time stress redistributions caused by nonuniformity of creep properties or by drying,
or if the structural system is changed during the construction, or if the permanent
loads are applied gradually. The error magnitude depends on the degree of deviation
from a single-step history of load and stresses. The error can be very large, especially
for long-time response of structures loaded at a young age [167].

Two more sophisticated methods, which attempt to facilitate the creep analysis of
structures by introducing a simplified form of the compliance function J (t, t ′), are
historically important:

1. One such method was the Glanville–Dischinger method, or briefly Dischinger
method [353, 427], also called the rate-of-creepmethod (and inRussia the theory
of aging; [820]), and its later refinement known as the improved Dischinger
method [746] or the rate-of-flowmethod [369]. In all the variants of this method,
the compliance function was simplified to a form that allows reducing structural
creep problems to ordinary linear differential equations in a transformed time,
with constant coefficients, one first-order equation for each static or kinematic
unknown.

2. Another such method was the Maslov–Arutyunyan method [39, 609], which
used another (purportedly better) simplification of J (t, t ′) permitting the creep
problem to be reduced to ordinary linear first-order differential equations with
time-dependent coefficients, again one equation for each static or kinematic
unknown. In the case of one unknown, this equation can be solved analytically
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in terms of an incomplete gamma function. This method, which became popular
with mathematically inclined Soviet researchers, is obviously much more com-
plicated than the first, while the first is still substantially more complicated than
the effective modulus method.

After more extensive test data and data of long duration became available and
were systematically analyzed [80, 175], it turned out that the aforementioned two
methods leading to first-order differential equations are, on the average, not more
accurate than the simple effective modulus method, which leads to algebraic linear
equationswith time as a parameter. Thus, the experimental evidence rendered the two
aforementioned methods pointless. None of them is sufficiently accurate compared
to the computer solutions for a realistic (unsimplified) compliance function based
directly on long-time measurements spanning broad ranges of load durations and
ages at loading.

A remedy that is sufficiently accurate for linear aging viscoelasticity in most basic
situations and accepts an arbitrary form of compliance function was found in the age-
adjusted effective modulus method (AAEM). It was formulated and mathematically
proven by Bažant [76], as a modification and rigorous refinement of the earlier
relaxation method proposed by Trost [816], who used perspicacious though intuitive
semiempirical arguments and ignored the effects of aging on the elastic modulus and
relaxation coefficient.

Fig. 4.8 Stress and strain histories for which (a) the effective modulus method is exact, (b) the
age-adjusted effective modulus method is exact
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The AAEM is formulated for a one-step loading history: the load is applied sud-
denly at age t1 and then is either constant until the current time t or varies monoton-
ically at a gradually decreasing rate; see Fig. 4.8b. The corresponding strain (or
displacement) history is an arbitrary linear combination of a (shifted) Heaviside
function and the compliance function. The response to multistep load histories can,
of course, be obtained by superposing the solutions for several one-step histories.
While the effective modulus method takes one step from the unstressed state of struc-
ture at time t−

1 just prior to the first loading to the current state at time t , the AAEM
takes one step from the initial stressed state at time t+

1 just after application of the
load to the current state at time t . So, the initial state just after loading, which plays
no role in the effective modulus method, must be calculated separately, in advance.
This is accomplished by standard elastic analysis of the structure based on modulus
E(t1) = R(t+

1 , t1) = 1/J (t+
1 , t1). In practical applications, time t+

1 is usually con-
sidered as t1 + Δtc where Δtc is the conventional delay, about 15min. Therefore,
E(t1) is not the asymptotic modulus but rather the static (short-term) modulus of
elasticity, and the relation R(t+

1 , t1) = 1/J (t+
1 , t1) holds only approximately.

The reader who is not interested in the theoretical background can skip the details
of the derivation and proceed directly to the final formulae (4.40) and (4.52)–(4.53).

4.2.2 Fundamental Equation of AAEM

Suppose that the material was under zero stress and strain until time t1, at which
the stress and strain suddenly increased by a jump and then evolved smoothly, at a
gradually decreasing rate, until the current time t . If the initial strain ε1 = ε(t+

1 ) and
the current strain incrementΔε(t) = ε(t) − ε(t+

1 ) are known, the strain history up to
time t can be approximated by a linear combination of the jump function H(t ′ − t1)
(which describes the strain evolution in a relaxation test) and the compliance function
J (t ′, t1) (which describes the strain evolution in a creep test); see Fig. 4.9a. Note that
t ′ is an auxiliary time variable running from the initial time t1 to the current time t .
With the coefficients of linear combination denoted as α and β, the (approximate)
strain history is expressed as

ε(t ′) = α + β J (t ′, t1), t ′ ≥ t1 (4.33)

The corresponding stress history

σ(t ′) = αR(t ′, t1) + β, t ′ ≥ t1 (4.34)

is a linear combination of the relaxation function R(t ′, t1) (which describes the stress
evolution in a relaxation test) and the jump function H(t ′ − t1) (which describes the
stress evolution in a creep test); see Fig. 4.9b.

Constants α and β can be determined from the given initial strain ε1 and the
strain incrementΔε(t). Recalling that J (t+

1 , t1) = 1/E(t1),we can rewrite conditions
ε(t+

1 ) = ε1 and ε(t) − ε(t+
1 ) = Δε(t) as
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Fig. 4.9 (a) AAEM approximation of the strain history and (b) the corresponding stress history

α + β

E(t1)
= ε1 (4.35)

β

[
J (t, t1) − 1

E(t1)

]
= Δε(t) (4.36)

and solve for the constants

β = Δε(t)

J (t, t1) − 1
E(t1)

= E(t1)Δε(t)

E(t1)J (t, t1) − 1
= E(t1)Δε(t)

ϕ(t, t1)
(4.37)

α = ε1 − β

E(t1)
= ε1 − Δε(t)

ϕ(t, t1)
(4.38)

In the last step of (4.37), we have exploited the relation E(t1)J (t, t1) − 1 = ϕ(t, t1),
which follows from the definition of the creep coefficient (3.14).

Substituting the derived expressions for α and β into (4.34), we obtain the approx-
imation of the stress history in terms of the initial strain and the strain increment
between times t1 and t :

σ(t ′) =
[
ε1 − Δε(t)

ϕ(t, t1)

]
R(t ′, t1) + E(t1)Δε(t)

ϕ(t, t1)
= R(t ′, t1)ε1 + E(t1) − R(t ′, t1)

ϕ(t, t1)
Δε(t)

(4.39)
The key point is that this stress approximation has been constructed from a strain
approximation that exactly matches the values of strain at times t1 and t . Therefore,
even though (4.39) is defined for an arbitrary time t ′, it is actually accepted as the
stress approximation only at time t . If t changes, the values of “constants” α and
β are adjusted accordingly, as described by formulae (4.37)–(4.38). The resulting
approximation of the stress history for an arbitrary t is obtained simply by substituting
t for t ′ in (4.39). Introducing the age-adjusted effective modulus [76]

E ′′(t, t1) = E(t1) − R(t, t1)

ϕ(t, t1)
= E(t1) − R(t, t1)

E(t1)J (t, t1) − 1
, t > t1 (4.40)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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we can write the final formula as

σ(t) = R(t, t1)ε1 + E ′′(t, t1)Δε(t) (4.41)

This is one form of the fundamental equation of the AAEM, which replaces the
“exact” integral relation between the strain and stress histories (2.24) by a much
simpler algebraic relation.

The attentive reader has certainly noticed that the numerator and the denominator
in (4.40) become very small for short elapsed times t − t1. With E(t1) considered as
the asymptotic modulus, E0, the fraction would tend to E0 as t − t1 → 0+. However,
in practical applications of theAAEMmethod, E(t1) is considered as the static (short-
term) modulus of elasticity, corresponding to the conventional delayΔts = 0.01 day.
The fraction then tends to infinity as t − t1 → Δt+

s (because the denominator tends
to zero but the numerator does not), and the formula is not applicable to elapsed
times t − t1 close to Δts . This will be explained in more detail in Example 4.5, and
a remedy will be proposed.

4.2.3 Alternative Derivation of AAEM∗

The first term on the right-hand side of (4.41), R(t, t1)ε1, describes stress relax-
ation at constant strain and perfectly agrees with the term that appears in the exact
formula (2.24),

σ(t) = R(t, t1) ε1 +
∫ t

t+
1

R(t, t ′) ε̇(t ′) dt ′ (4.42)

The second term on the right-hand side of (4.41) represents the influence of strain
changes between time t+

1 (just after the initial load application) and current time t ,
and it can be considered as an approximation of the integral in (4.42):

∫ t

t+
1

R(t, t ′) ε̇(t ′) dt ′ ≈ E ′′(t, t1)
∫ t

t+
1

ε̇(t ′) dt ′ = E ′′(t, t1)Δε(t) (4.43)

So the age-adjusted effective modulus E ′′(t, t1) represents the relaxation function
R(t, t ′) averaged (in some generalized sense) over all t ′ between t1 and t .

If the effective value of R(t, t ′) were computed by simple averaging, the approx-
imation (4.43) would be exact for histories with constant strain rate ε̇(t ′), i.e., for
strain evolving as a linear function of time. This could be a good approximation of the
real history in certain special cases (see, e.g., the effects of cyclic loading described
in Sect. 7.13), but a typical response of a viscoelastic structure is characterized by
a gradual decay of the strain rate. Therefore, the AAEM is based on the condition
that the result be exact for any linear combination of relaxation (at constant strain)
and creep (at constant stress). In a relaxation test, the strain is constant, its rate van-

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_7


4.2 Age-Adjusted Effective Modulus Method 83

ishes and the integral in (4.42) vanishes as well, and so its approximation (4.43) is
in this case exact since Δε(t) = 0. For a creep test at a unit stress level, we can set
σ(t) = H(t − t1) and ε(t) = J (t, t1). Substituting this into (4.42) and considering
t > t1, we get

1 = R(t, t1) J (t+
1 , t1) +

∫ t

t+
1

R(t, t ′) J̇ (t ′, t1) dt ′ (4.44)

where J̇ denotes the derivative of the compliance function with respect to its first
argument. Thus, the exact value of the integral on the left-hand side of (4.43) is

∫ t

t+
1

R(t, t ′) J̇ (t ′, t1) dt ′ = 1 − R(t, t1)J (t+
1 , t1) = 1 − R(t, t1)

E(t1)
(4.45)

and the approximation on the right-hand side of (4.43) is exact if

1 − R(t, t1)

E(t1)
= E ′′(t, t1)

[
J (t, t1) − 1

E(t1)

]
(4.46)

From this condition, we can determine the age-adjusted effective modulus

E ′′(t, t1) = 1 − R(t, t1)J (t+1 , t1)

J (t, t1) − J (t+1 , t1)
= E(t1) − R(t, t1)

E(t1)J (t, t1) − 1
= E(t1) − R(t, t1)

ϕ(t, t1)
(4.47)

Equations (4.42)–(4.47) in effect represent an alternative derivation of the age-
adjusted effective modulus, and confirm formula (4.40). Yet another derivation is
given in Bažant [76, 87, 126] and Jirásek and Bažant [521].

4.2.4 Ramifications of AAEM

The stress–strain relation (4.41) is applicable at all times t ≥ t1. In the special case
of t = t1, it reduces to the simple elastic stress–strain relation describing the instan-
taneous response,

σ1 = E(t1)ε1 (4.48)

where σ1 = σ(t+
1 ) = initial stress just after the application of strain ε1.

Equation (4.41) can easily be inverted to obtain an expression for the strain incre-
ment in terms of the initial strain and the stress increment:

Δε(t) = σ1 + Δσ(t) − R(t, t1)ε1
E ′′(t, t1)

= E(t1) − R(t, t1)

E ′′(t, t1)
ε1 + Δσ(t)

E ′′(t, t1)
=

= ϕ(t, t1)ε1 + Δσ(t)

E ′′(t, t1)
(4.49)
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This is the traditional form of the fundamental equation of AAEM, derived by Bažant
[76]. Adding the initial strain ε1 and using the relation ε1 = σ1/E(t1), we get the
total strain at time t ,

ε(t) = ε1 + Δε(t) = [1 + ϕ(t, t1)] σ1

E(t1)
+ Δσ(t)

E ′′(t, t1)
= J (t, t1)σ1 + Δσ(t)

E ′′(t, t1)
(4.50)

This inverted form of the stress–strain relation has exactly the same structure as the
original formula (4.41), with the strain replaced by the stress, the relaxation function
by the compliance function, and the age-adjusted effective modulus by its reciprocal
value. Formula (4.50) can be considered as an approximation of the exact integral
formula

ε(t) = J (t, t1) σ1 +
∫ t

t+
1

J (t, t ′) σ̇ (t ′) dt ′ (4.51)

and the reciprocal value of E ′′(t, t1) plays the role of a weighted average of the
compliance J (t, t ′) over all t ′ between t1 and t , determined such that (4.50) gives
the exact result for the stress history corresponding to the relaxation test.

In summary, the age-adjusted effective modulus method consists in the following
approximations of the relaxation and creep operators:

R{ε(t)} ≈ R(t, t1)ε(t
+
1 ) + E ′′(t, t1)[ε(t) − ε(t+

1 )] (4.52)

J {σ(t)} ≈ J (t, t1)σ (t+
1 ) + 1

E ′′(t, t1)
[σ(t) − σ(t+

1 )] (4.53)

Such approximations can be applied not only on the level of the stress–strain relation
but also on the structural level, whenever the relation between two quantities (e.g.,
between load and deflection) is described by the relaxation or creep operator.

Since, for t ≥ t1, we have ϕ(t, t1) = E(t1)J (t, t1) − 1 andR{ϕ(t, t1)} = E(t1) −
R(t, t1), the definition of the age-adjusted effective modulus (4.40) can be trans-
formed into the following equivalent expressions:

E ′′(t, t1) = R{ϕ(t, t1)}
ϕ(t, t1)

= R{ΔJ (t, t1)}
ΔJ (t, t1)

= ΔR(t, t1)

J {ΔR(t, t1)} (4.54)

where ΔJ (t, t1) = J (t, t1) − J (t+
1 , t1) = J (t, t1) − 1/E(t1) = ϕ(t, t1)/E(t1) and

ΔR(t, t1) = R(t, t1) − R(t+
1 , t1) = R(t, t1) − E(t1) are the increments of the com-

pliance function or of the relaxation function over the interval (t1, t].
To keep the previous derivations simple,we have neglected the effects of shrinkage

and temperature changes. Such effects can be incorporated by replacing ε(t) with
the mechanical strain, εσ (t) = ε(t) − εsh(t) − εT (t); see Eqs. (2.44)–(2.45).

For convenience, the age-adjusted effective modulus, whose primary definition is
(4.40), is normally expressed in the form

E ′′(t, t1) = E(t1)

1 + χ(t, t1)ϕ(t, t1)
(4.55)

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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where
χ(t, t1) = E(t1)

E(t1) − R(t, t1)
− 1

ϕ(t, t1)
(4.56)

is the so-called aging coefficient. Forχ(t, t1) = 1, the effectivemodulus (4.32)would
be obtained as a special case. It turns out that χ varies relatively little, usually from
0.5 to 1.0, with 0.8 as the most typical value. The exact evaluation of the age-adjusted
effective modulus according to (4.40) requires the evaluation of the relaxation func-
tion,which is not readily available becausemost creepmodels specify the compliance
function or the creep coefficient as the primary material characteristics and the cor-
responding relaxation function would need to be solved numerically from (2.25) or
similar equations. Instead of that, the age-adjusted effectivemodulus can be estimated
from (4.55), with the aging coefficient χ rougly approximated by a constant. Tables
of χ , computed for certain compliance functions, have been included in Bažant [76]
and ACI Committee 209 design recommendations [12, 13].

The basic Eqs. (4.52)–(4.53) of AAEM are exact for all the strain histories repre-
senting a linear transformation of the creep coefficient curve, i.e.,

ε(t) − εsh(t) = a + bϕ(t, t1), t ≥ t1 (4.57)

where a and b are arbitrary constants. This includes a broad range of strain histo-
ries illustrated in Fig. 4.8b. The actual strain histories in structures under permanent
load are usually well approximated by (4.57). This is the reason for the good accu-
racy of AAEM in a broad range of problems. By contrast, the effective modulus
method is exact only for a more limited set of histories, namely for creep at con-
stant stress (Fig. 4.8a).

The AAEM has been generalized in a matrix form for the vectors of force and dis-
placement components [93], and also for bending creep of composite cross sections
[566, 567] and for loads varying in time monotonically at a decreasing rate [541].

4.2.5 Approximation of Relaxation Function

Formula (4.40) defining the age-adjusted effective modulus contains not only the
compliance function, which is directly prescribed by the creep model, but also the
relaxation function, which needs to be evaluated by inverting the integral relation
between the strain history and the stress history. To dispensewith a computer solution
of the relaxation function R(t, t ′) for a given compliance function J (t, t ′), one may
use the following semiempirical approximate formula developed by Bažant, Hubler,
and Jirásek [135]:

R(t, t ′) = 1

J (t, t ′)

[
1 + c1(t ′)J (t, t ′)

10 J (t, t − Δt)

(
J (tm, t ′)
J (t, tm)

− 1

)]−10

(4.58)

where Δt = 1 day, tm = (t + t ′)/2, and

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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c1(t
′) = 0.08 + 0.0119 ln t ′ (4.59)

Formula (4.58) is a refinement of a previously used formula, developed by [153],
which had been formulated for a predecessor of model B3 and is not suitable for
the full version of model B3 (especially not for multidecade relaxation of young
concrete).

Example 4.5. Approximation of relaxation function

For comparison, approximations of the relaxation function based on the explicit
formula (4.58) are plotted in Fig. 4.10 (dashed curves, marked as “R approx”), along
with a highly accurate numerical solution (solid curves, marked as “R exact”) and
with the reciprocal value of the compliance function (dotted curves, marked as “1/J”).
The input parameters (concrete composition and strength, curing, environmental
humidity) are the same as in Example 3.1.

Figure4.10a shows the relaxation curves for basic creep and Fig. 4.10b for drying
creep, in both cases for three ages at loading, t ′ = 10, 100, and 1000days (from top to
bottom). For short elapsed times t − t ′, the relaxation function R(t, t ′) is very close
to the reciprocal compliance function 1/J (t, t ′), while for long times the values of
R are substantially smaller than 1/J . The accuracy of the analytical approximation
of R by formula (4.58) can be considered as sufficient for quick practical estimates.

Figure4.11 shows the age-adjusted effective modulus E ′′(t, t1) for three ages at
loading in the same plot (from top to bottom, the three families of curves correspond
to t1 = 1000, 100, and 10days). Again, exact values are indicated by the solid curves,
approximate values based on (4.58) by the dashed curves and, for comparison, the
reciprocal compliance values (i.e., the effectivemodulus (4.32)) by the dotted curves.
In practical applications, the AAEM method is useful for long-time predictions of
structural behavior, and so it is the accuracy for large elapsed times t − t1 thatmatters.
However, it is interesting to note that the standard AAEM formula (4.40) with E(t1)
considered as the static modulus of elasticity, 1/J (t1 + Δts, t1), has a singularity at
t − t1 = Δts = 0.01 day. The reason is that the relation R(t1 + Δts, t1) = 1/J (t1 +
Δts, t1) holds only approximately. For t → t1 + Δts , the denominator in (4.40) tends
to zero but the numerator does not, and the fraction blows up. This would not happen
if E(t1) was considered as the asymptotic modulus. However, the overall accuracy
of the AAEM method is usually better if the initial response includes creep up to
elapsed time Δts , i.e., if its evaluation is based on the conventional static modulus
rather than on the asymptotic one.

The singularity of E ′′ at t − t1 = Δts is harmless if the AAEM predictions are
constructed for elapsed times substantially larger than the conventional delay Δts . If
one intends to plot the complete evolution of the response, starting from elapsed times
near or even below Δts , it can be useful to adopt a modified definition of AAEM,
which provides a continuous transition from the formula based on the asymptotic
modulus to the standard formula based on the static modulus. The key idea is that
E(t1) is considered as the static modulus only if the elapsed time exceeds 10 times
the conventional delay (i.e., if t − t1 > 0.1 day); otherwise, it is replaced by a mod-
ulus corresponding to the delay (t − t1)/10 instead of Δts . Formula (4.40) is then
rewritten as

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.10 Comparison of the explicit approximation of relaxation function by formula (4.58) and
a highly accurate numerical solution: (a) basic creep, (b) drying creep

E ′′(t, t1) = 1 − R(t, t1)J (t∗
1 , t1)

J (t, t1) − J (t∗
1 , t1)

(4.60)

where

t∗
1 =
{
0.9t1 + 0.1t if t1 < t < t1 + 10Δts
t1 + Δts if t1 + 10Δts ≤ t

(4.61)
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This modified definition of AAEM is graphically compared to the standard one in
Fig. 4.12 for elapsed times t − t1 between 10−4 day and 1day. For t1 − t ≥ 10Δts =
0.1 day, both definitions coincide.

Fig. 4.11 Age-adjusted effective modulus and its approximation for (a) basic creep, (b) drying
creep

Fig. 4.12 Age-adjusted effective modulus according to the standard formula (4.40) and its modi-
fication (4.60)

Fig. 4.13 Relative error of the approximation of age-adjusted effective modulus for (a) basic creep,
(b) drying creep
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The relative error of the approximate evaluation of AAEM based on the approx-
imation of the relaxation function by formula (4.58) is shown in Fig. 4.13. In the
present case, this error ranges from −7% to +4%. The relative error is taken here
with respect to the actual value of AAEM. If it was taken with respect to the sta-
tic modulus, the relative errors for long-term loading would be much smaller. Note
that evaluation of AAEM is based on the modified definition (4.60); otherwise, the
magnitude of the error would blow up for t − t1 approaching 0.01 day.

Fig. 4.14 Aging coefficient for (a) basic creep, (b) drying creep

Finally, Fig. 4.14 shows the aging coefficient, again for three ages at loading and
for basic and drying creep. The aging coefficient varies approximately between 0.6
and 0.9. In very crude approximations, it can be taken as a constant, equal to 0.8.

�

4.2.6 Simple Applications of AAEM

Example 4.6. Stresses due to restrained shrinkage: AAEM approximation

In Examples 4.1 and 4.2, the history of the shrinkage strain εsh had to be transformed
by the relaxation operator, which was achieved by numerical integration. A quick
estimate can be constructed by the AAEMmethod. The initial time t1 in the sense of
AAEMmust be considered as the time t0 at the onset of drying. Since the initial value
εsh(t0) is zero, the first term in formula (4.52) vanishes and theAAEMapproximation
of (4.10) can be written simply as

σ(t) = −R{εsh(t)} ≈ −E ′′(t, t0)εsh(t) (4.62)
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The age-adjusted effective modulus E ′′ can be computed from its definition (4.60),
or estimated according to (4.55) with a constant value of the aging coefficient. Defi-
nition (4.60) contains the relaxation function, which can be accurately evaluated by
numerical solution of Eq. (2.25), or estimated according to formula (4.58).

In Fig. 4.15a, the solid curve corresponds to the exact history of shrinkage-induced
stress (computed by an accurate numerical evaluation of the integral defining the
relaxation operator) for concrete cured until time t0 = 28 days and then exposed to
an environment of relative humidity henv = 70%. The dashed and dotted curves are
AAEM approximations computed in four different ways:

Fig. 4.15 (a) History of stress induced by restrained shrinkage, (b) evolution of mechanical strain
(minus the shrinkage strain) and its AAEM approximations for two different drying times, 1000
and 5000days

• AAEM-eR ... from (4.60) using an “exact” value of relaxation function, obtained
numerically,

• AAEM-aR ... from (4.60) using an approximate value of relaxation function,
obtained from formula (4.58),

• AAEM-0.8 ... from (4.55) using a constant value of the aging coefficient, χ = 0.8,
• EM ... from (4.55) using aging coefficient χ = 1, which means that the AAEM is
replaced by the effective modulus (4.32).

All thesemethods correctly predict that the evolution of stress is notmonotonic. Up to
1000days, the best accuracy is achieved by AAEM-eR, followed by AAEM-aR. The
other two methods underestimate the peak stress. In the range of drying times above
1000days, when the stress decreases, none of the methods is reliable. All of them
substantially underestimate the rate at which stress is relaxed. The reason is that the
AAEMmethod approximates the actual evolution ofmechanical strain (in the present
case, of minus the shrinkage strain) as a constant plus a multiple of the compliance
function. The initial strain is in the present case almost zero (it corresponds to the
shrinkage strain afterΔts = 0.01 day of drying, which is extremely small), and so the
approximation is in fact a multiple of the function defining the evolution of the creep
coefficient. As long as the shrinkage strain keeps growing sufficiently fast, such an

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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approximation is quite realistic; see the dashed curve in Fig. 4.15b, which is used as
the AAEM approximation when estimating the stress at drying time t − t0 = 1000
days. For times at which the drying process is almost complete and the shrinkage
strain curve approaches a horizontal asymptote, the AAEM approach leads to a
strain evolution that initially lags behind the actual one and only later catches up;
see the dotted curve in Fig. 4.15b, which is used as the AAEM approximation when
estimating the stress at drying time t − t0 = 5000 days. Since the strain increments
are imposed later than the actual ones, there remains less time for relaxation and
the resulting approximate stress is higher than the correct one according to linear
viscoelasticity. �

Example 4.7. Redistribution function

The redistribution function HΔ, formally defined in (4.21)–(4.22), can be evaluated
by numerical integration according to (4.23). For quick estimates, it is more conve-
nient to use an approximation of the integral operator by an algebraic formula based
on the age-adjusted effective modulus. Here, it is essential to realize that the redis-
tribution function (4.21) is obtained by applying the relaxation operator to a special
function JΔ(t, t2, t1), which is zero up to time t = t2 (greater than t1) and only then
starts gradually increasing. Therefore, the initial time of the AAEM approximation,
in the original derivation denoted as t1, should now be taken as t2, and the appropriate
age-adjusted effective modulus will be E ′′(t, t2). Since JΔ(t, t2, t1) does not change
by a jump at t = t2, the AAEM approximation (4.52) of the relaxation operator
simplifies to

HΔ(t, t2, t1) = R {JΔ(t, t2, t1)} ≈ E ′′(t, t2)JΔ(t, t2, t1) =
= E ′′(t, t2) [J (t, t1) − J (t2, t1)] H(t − t2) (4.63)

In Fig. 4.16, the dotted curves, marked as “AAEM-eR,” are the AAEM approxima-
tions of the redistribution function computed using an “exact” value of the relaxation
function, obtained numerically, and the dashed curves, marked as “AAEM-aR,” are
the AAEM approximations computed using an approximate value of the relaxation
function according to formula (4.58). Of course, from the practical point of view,
the approach denoted as AAEM-eR makes little sense. If the designer is ready to
invest the effort into an accurate numerical evaluation of the relaxation function, it is
better to evaluate directly the redistribution function (rather than its AAEM approx-
imation), because the numerical effort is comparable. If a quick estimate is needed,
the relaxation function entering the definition of the AAEM should be approximated
by the closed-form formula (4.58), which corresponds to the AAEM-aR approach.
However, plotting the curves that would be obtained with the AAEM-eR approach
is useful for comparison of the relative contribution of two sources of error, coming
from the AAEM approximation of the actual history and from the approximation of
the relaxation function. As illustrated by the results plotted in Fig. 4.16, the relative
importance of these two sources of error varies depending on the specific case. For
redistribution starting at age t2 = 15 days, the approximation of R is quite accurate
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and the main source of error is in the AAEM approximation. For t2 = 100 days,
both sources contribute, and for t2 = 1000 days, the main source of error is in the
approximation of R. Of course, this discussion refers only to the present illustrative
example and the observations cannot be considered as general. �

Fig. 4.16 Redistribution function HΔ(t, t2, t1) for t1 = 14 days and t2 = 15, 100 and 1000days,
plotted in (a) logarithmic scale, (b) linear scale

4.3 Nonhomogeneous Structures

In practice, most concrete structures need to be treated as nonhomogeneous. The
sources of heterogeneity are multiple: differences in age of individual segments,
presence of passive reinforcement or prestressed tendons, nonuniformity of the dry-
ing process and the related effect of wall thickness differences, etc.

The stress redistributions caused by creep in nonhomogeneous, statically inde-
terminate structures generally consist of a gradual transfer of stress from the parts
that creep more (e.g., a younger concrete, a lower-strength concrete, a thinner cross
section, a drying member) to the parts that creep less. Steel parts in composite steel–
concrete structures do not creep (except possibly in fire), and so the effect of creep
is, in general, a gradual transfer of stress into the steel parts.

Unprestressed steel reinforcement, likewise, does not creep (except in fire).
Because of their very high stress, the prestressing tendons do creep, but very differ-
ently from concrete. Their behavior is viscoplastic and causes prestress relaxation.

The reinforcement thus introduces an inhomogeneity into the creep properties of
the structure and leads to stress redistributions between steel and concrete. A rigorous
approach is to consider the reinforcement and the concrete as separate parts of the
structure.

In prestressed concrete structures, though, the effect of reinforcement stiffness
on the creep deformations of beams is generally small, for two reasons: (1) the
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ratio of the cross-sectional area of reinforcement to the total cross-sectional area is
small, compared to unprestressed structure, and (2) the cross sections do not undergo
cracking. In all the preceding examples and in Example 4.8, this effect is therefore
neglected.

The restraining effect of reinforcement on creep becomes significant in structures
that develop distributed cracking, which includes all unprestressed reinforced con-
crete beams and plates. This effect is nonlinear and its treatment will be discussed
in Chap.12.

4.3.1 Stress Redistributions Due to Differences
in Age of Concrete

Example 4.8. Joining two cantilevers of different age

Since concrete loaded at young age creepsmore than concrete loaded at old age, large
differences in age lead to significant redistributions of internal forces in structures.
As an example, consider again a box girder bridge cast by the cantilever method.
In the interest of economy, the pair of steel trusses at each pier that support new
segments during erection is used repeatedly to erect one cantilever pair after another.
Consider, therefore, that in Fig. 4.17a the left cantilever is older by Δt than the right
cantilever (a difference Δt of 3–6months is not unusual).

t = t2t = t2

t > t2t > t2t2 ≤ t

t1 ≤ t ≤ t1+Δt

t1+Δt ≤ t ≤ t2

older

younger

(a) (b)

Fc

Fc

Fig. 4.17 Effect of creep differences due to differences in age

Let the general (global) time variable t be measured from the set of the left
(older) cantilever, and let t1 be the age of each cantilever at which the self-weight is
assumed to be applied.3 This means that the older cantilever is loaded at time t1 and
the younger one at time t1 + Δt (when its own age is t1). As long as the opposite
cantilevers of the pair in one span are separated, they deflect independently of each
other. At time t = t2, they are joined. For the sake of simplicity, assume that their
joining is done by installing a horizontally sliding hinge, which provides only one

3This is of course a simplification; in reality, the bendingmoments due to self-weight grow gradually
as the cantilever is being erected.

http://dx.doi.org/10.1007/978-94-024-1138-6_12
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statically indeterminate internal force Fc(t) in each span (full continuity at midspan
is a better, deflection mitigating, design, but it provides three statically indeterminate
forces at midspan).

If the cantilevers were allowed to deflect independently, the left (older) one would
deflect after time t2 less than the right (younger) one because more of creep has
occurred before t2 in the left cantilever. Therefore, if the differences in deflection are
prevented, the pair of vertical forces representing Fc will act on the left cantilever
downward, and on the right cantilever upward (Fig. 4.17b). In other words, Fc is the
shear force transmitted by the sliding hinge c.

The age difference makes the structure nonhomogeneous, but in the sense of our
simplifying assumptions, each cantilever is homogeneous. Similar to the examples
in the preceding section, we decompose the problem into two loading cases, one
corresponding to the permanent load and the other to the statically indeterminate
force. The deflection at the right end of the left cantilever can easily be expressed by
superposition of these two loading cases as

wca(t) = J

{
f (t)L4

8I

}
+ J

{
Fc(t)L3

3I

}
(4.64)

For simplicity, we assume that both cantilevers have the same dimensions, but, of
course, it would be no problem to adapt the solution to a more general case. The
self-weight is constant from time t1, so we can set f (t) = f̂ H(t − t1) and rewrite
(4.64) as

wca(t) = f̂ L4

8I
J (t, t1) + L3

3I
J {Fc(t)} (4.65)

A similar formula holds for the left end of the right cantilever, but we must take into
account that (i) the age of this cantilever at time t is t − Δt , and (ii) the positive force
Fc acts on this cantilever upward. So (4.65) must be modified to

wcb(t) = f̂ L4

8I
J (t − Δt, t1) − L3

3I
Jt−Δt {Fc(t)} (4.66)

Here, Jt−Δt is a time-shifted compliance operator that uses compliance function
J (t − Δt, t ′ − Δt) instead of J (t, t ′), which reflects the fact that a load acting from
global time t ′ till global time t is actually acting from age (of the younger cantilever)
t ′ − Δt until age t − Δt .

Until time t2, the deflections wca(t) and wcb(t) evolve independently and the force
Fc(t) is zero. After the change of structural system at time t2, further increments of
deflections at the joined cantilever endsmust be the same, and the history of statically
indeterminate force Fc(t) can be computed from the compatibility condition

wca(t) = wcb(t) + Δw, t ≥ t2 (4.67)

where Δw is a constant that corresponds to the difference between wca and wcb just
after the joining. If the construction procedure used to join the cantilever ends at
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time t2 does not introduce any initial force Fc, then Δw can be directly computed as
the difference between wca(t2) and wcb(t2), which are evaluated from (4.65)–(4.66)
with the terms reflecting the influence of Fc still equal to zero. However, since, in
general, a nonzero initial force Fc may be introduced, we consider Δw for a while
as an additional unknown that will later be related to the initial value of Fc.

Substituting (4.65) and (4.66) into (4.67), we obtain an equation from which the
history of Fc can be solved. Since this equation has an integral character, it is good to
present it in a form valid at all times t , not just at times t ≥ t2 as the original compat-
ibility condition (4.67). This can be formally achieved if both sides of (4.67) are first
multiplied by H(t − t2). The point is that for t < t2 the value of H(t − t2) is zero and
the resulting equation reduces to the identity 0 = 0. After the aforementioned sub-
stitutions and subsequent simple rearrangement, the compatibility condition (4.67)
is transformed to

J {Fc(t)} + Jt−Δt {Fc(t)} = 3 f̂ L

8
{J (t − Δt, t1) − J (t, t1)} H(t − t2) +

+3I

L3
Δw H(t − t2) (4.68)

Equation (4.68) is valid at all times t . Writing it specifically for t = t+
2 = time

just after the change of structural system, we obtain a relation between the initial
force Fc(t

+
2 ) and the yet unknown displacement difference Δw:

Fc(t
+
2 )

E(t2)
+ Fc(t

+
2 )

E(t2 − Δt)
= 3 f̂ L

8
{J (t2 − Δt, t1) − J (t2, t1)} + 3I

L3
Δw (4.69)

This is a universal relation that covers also the specific case with Fc(t
+
2 ) = 0. The

constant Δw can now be expressed in terms of Fc(t
+
2 ) and eliminated from (4.68).

Interestingly, after this substitution, the difference of compliance functions J (t, t1) −
J (t2, t1) multiplied by H(t − t2) appears on the right-hand side, and this is in fact
the previously introduced function JΔ(t, t2, t1) defined in (4.22). Another similar
expression, [J (t − Δt, t1) − J (t2 − Δt, t1)]H(t − t2), can be identified as JΔ(t −
Δt, t2 − Δt, t1). This brings the resulting equation for the history of the statically
indeterminate force into the relatively compact form

J {Fc(t)} + Jt−Δt {Fc(t)} = 3 f̂ L

8
[JΔ(t − Δt, t2 − Δt, t1) − JΔ(t, t2, t1)] +

+
[

1

E(t2)
+ 1

E(t2 − Δt)

]
Fc(t

+
2 )H(t − t2) (4.70)

Such an integral equation cannot be solved by a simple application of the usual
relaxation operator, because the operator acting on the unknown function Fc(t) is
the sum of the compliance operatorJ and the shifted compliance operatorJt−Δt .
The solution can be obtained numerically, replacing the integrals by finite sums.Once
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the history of the internal reaction Fc has been determined, the deflection history can
be obtained from (4.65)–(4.66).

For illustration, an accurate numerical solution computed for concrete with the
same properties as in Example 3.1 is plotted in Fig. 4.18. In this specific example,
the older cantilever is cast at time t = 0 and loaded at age t = t1 = 30 days, while
the younger cantilever is cast at time t = Δt = 60 days and loaded at time t =
t1 + Δt = 90 days, when its age is 30 days. Drying creep in an environment of
70% relative humidity is considered. The internal reaction just after the change of
structural system, Fc(t

+
2 ), is set to zero. The solid curves in Fig. 4.18a correspond

to the deflections that would evolve on two independent cantilevers. They have the
same shape and are shifted in time by Δt = 60 days. These curves reflect the first
terms in Eqs. (4.65) and (4.66), respectively, and until time t = t2 = 120 days they
represent the actual deflection. The subsequent evolution of deflections of the joined
cantilevers is marked by the dashed curves, whose vertical distance remains constant.
Deflection of the older cantilever is augmented and deflection of the younger one is
reduced. The time variable t on the horizontal axis is taken as the age of the older
cantilever. The deflections on the vertical axis are normalized by the “instantaneous”
deflection, calculated with the conventional modulus of elasticity.

Figure4.18b shows the internal reaction Fc as a function of the time t − t2 elapsed
after joining the cantilevers. The horizontal axis corresponds to the time elapsed
after joining the cantilevers, in logarithmic scale. Force Fc on the vertical axis is
normalized by the total weight of one cantilever, f̂ L . It is interesting to note that
the force transmitted by the hinge first increases, but approximately after 360days,
it attains its maximum and then decreases. �

Fig. 4.18 Joined cantilevers of different age: evolution of (a) deflection, (b) force transmitted by
the hinge

Example 4.9. Joining two cantilevers of different age: AAEM approximation

An approximate solution of Eq. (4.70) from the previous example can easily be
constructed using the AAEM method, with t2 considered as the starting time. For
t > t2, the terms on the left-hand side of (4.70) are approximated as

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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J {Fc(t)} ≈ J (t, t2)Fc(t
+
2 ) + ΔFc(t)

E ′′(t, t2)
(4.71)

Jt−Δt {Fc(t)} ≈ J (t − Δt, t2 − Δt)Fc(t
+
2 ) + ΔFc(t)

E ′′(t − Δt, t2 − Δt)
(4.72)

where ΔFc(t) = Fc(t) − Fc(t
+
2 ) is the continuous increment of the joining force Fc

from the value Fc(t
+
2 ) just after the change of the structural system to the current

value Fc(t). Now it is easy to substitute the approximations (4.71)–(4.72) into (4.70)
and solve for the increment

ΔFc(t) =
J ∗
Δ

3 f̂ L

8
− ϕ∗Fc(t

+
2 )

1

E ′′(t, t2)
+ 1

E ′′(t − Δt, t2 − Δt)

(4.73)

For brevity, we have denoted

J ∗
Δ = JΔ(t − Δt, t2 − Δt, t1) − JΔ(t, t2, t1) (4.74)

ϕ∗ = ϕ(t, t2)

E(t2)
+ ϕ(t − Δt, t2 − Δt)

E(t2 − Δt)
(4.75)

Accuracy of the AAEM solution is illustrated in Fig. 4.19. The solid curve rep-
resents the accurate numerical solution, already shown in Fig. 4.18b. The internal
reaction just after the change of structural system, Fc(t

+
2 ), is set to zero. Various

dashed and dotted curves in Fig. 4.18b show the approximations based on (4.73),
with the age-adjusted effective moduli E ′′(t, t2) and E ′′(t − Δt, t2 − Δt) evaluated
in four different ways: (i) AAEM-eR ... using an “exact” value of relaxation func-
tion, obtained numerically, (ii)AAEM-aR ... using an approximate value of relaxation
function, obtained from formula (4.58), (iii) AAEM-0.8 ... using a constant value
of the aging coefficient, χ = 0.8, (iv) EM ... using aging coefficient χ = 1, which
means that the AAEM is replaced by the effective modulus.

Fig. 4.19 Joined cantilevers of different age: comparison of approximate solutions
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The performance of individual methods is qualitatively very similar to Example
4.6, in which the force (stress) evolution was also nonmonotonic. The early response
is captured by the AAEM approximation fairly well. However, the accuracy deterio-
rates at later stages, after the peak. This can be explained by the fact that the histories
of stress or strain (and thus also of force or deflection) that are captured by AAEM
exactly are, in their continuous part (i.e., with the exception of the initial jump), all
monotonic; see Fig. 4.9. If the actual stress (force) history is not monotonic, as is the
case here, the approximation becomes too crude and the error increases. This has been
illustrated by Fig. 4.15b in Example 4.6. In the range where the force decreases, none
of the methods is reliable. The smallest error is obtained with the effective modulus,
but this happens only by chance, because the EM method obviously underestimates
the changes of the force, both positive and negative. �

4.3.2 Stress Redistributions in Beams of Composite Cross
Section

In steel–concrete composite beams, as well as composite beams with cross sections
consisting of parts of very different age or quality, creep causes stress redistributions
within the cross sections, which generally transfer stress to the part creeping less,
that is, to the steel part or to the concrete part of higher age or higher strength [80,
87, 110].

Consider a general composite beam consisting of several parts, each of which
exhibits different creep and shrinkage properties (a steel part is a special case with
zero creep and shrinkage). For simplicity, we assume that the cross section is sym-
metric with respect to its vertical axis z, but not necessarily symmetric with respect to
the horizontal axis y about which the beam bends (the symmetry conditions must, of
course, be satisfied not only by the geometric shape of the section but also by the dis-
tribution of material properties). Our goal is to derive general relations between the
internal forces (normal force N and bending moment M) and the variables character-
izing the deformation of an infinitesimal beam segment (axial strain εa and curvature
κ). For a homogeneous cross section, the moment–curvature relation has already
been derived in (4.4). However, for a nonhomogeneous cross section the relaxation
operator R is not independent of the cross-sectional coordinates y and z (because
the relaxation functions of different parts are not the same), and so we cannot bring
R in front of the integrals over the cross section. We also consider the influence
of shrinkage, and so the stress–strain relation is expressed as σ = R{ε − εsh}. The
shrinkage strain εsh can vary across the section, i.e., it is a function of the cross-
sectional coordinates y and z. The derivation in (4.4) is then modified as follows (for
brevity, we do not mark the dependence on time t explicitly):
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M =
∫

A
zσ(z) dA =

∫
A

zR{ε(z) − εsh(y, z)} dA =
∫

A
zR{εa + κz − εsh(y, z)} dA =

=
∫

A
zR dA{εa} +

∫
A

z2R dA{κ} −
∫

A
zR{εsh(y, z)} dA = RS{εa} + RI {κ} + Msh (4.76)

where we have introduced new operators RS and RI , formally defined as

RS =
∫

A
zR dA (4.77)

RI =
∫

A
z2R dA (4.78)

This is a compact way of writing that operators RS and RI are defined by the
same general formula (2.23) or (2.24) as the relaxation operator R, but the relax-
ation function R(t, t ′) is replaced by RS(t, t ′) = ∫A z R(t, t ′; y, z) dA and RI (t, t ′) =∫

A z2R(t, t ′; y, z) dA, resp. By listing the sectional coordinates y and z explicitly
among the arguments of R, we have emphasized that the relaxation function at indi-
vidual points, in general, depends on their coordinates (because different parts of
the section are made of different materials). For a homogeneous cross section,RI is
equal to IR where I is the sectional moment of inertia (with respect to coordinate
axis y), and if the material is elastic, application of IR is replaced by multiplication
by the bending stiffness E I . The operator RS for a homogeneous section equals to
SR where S is the static moment of the section, which vanishes if the coordinate
axis y passes through the centroid. For a nonhomogeneous section, the operatorRS

vanishes only in special cases, e.g., if the geometric and material properties of the
section are symmetric with respect to the horizontal axis y. IfRS vanishes, Eq. (4.76)
reduces to the moment–curvature relation

M = RI {κ} + Msh (4.79)

and the bending effects get decoupled from the axial effects (described by the relation
between the normal force and the axial strain, to be derived later).

Symbol Msh that appears in (4.76) and (4.79) stands for the bending moment due
to shrinkage,

Msh = −
∫

A
zR{εsh(y, z)} dA (4.80)

This is the moment that would build up from stresses due to restrained shrinkage if
the beam segment were forced to remain in the undeformed state (with zero axial
strain and zero curvature). If the cross section and the drying process are symmetric
with respect to axis y, the moment due to shrinkage vanishes.

As already mentioned, unless the operator RS defined in (4.77) happens to van-
ish, bending and axial deformation of the beam are coupled. It is therefore useful
to derive the relation between the normal force N and the parameters that char-
acterize the deformation of the beam segment, εa and κ . The derivation is fully
analogous to (4.76):

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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N =
∫

A
σ(z) dA =

∫
A
R{ε(z) − εsh(y, z)} dA =

∫
A
R{εa + κz − εsh(y, z)} dA =

=
∫

A
R dA{εa} +

∫
A

zR dA{κ} −
∫

A
R{εsh(y, z)} dA = RA{εa} + RS{κ} + Nsh (4.81)

where

RA =
∫

A
R dA (4.82)

is yet another operator describing the sectional stiffness, which reduces, for a homo-
geneous viscoelastic section, to AR, and for an elastic section to multiplication by
the normal stiffness E A, and

Nsh = −
∫

A
R{εsh(y, z)} dA (4.83)

is the normal force due to shrinkage.
In summary, the relation between the internal forces in a composite viscoelastic

cross section and the deformation parameters is described by (4.81) and (4.76), i.e.,

N = RA{εa} + RS{κ} + Nsh (4.84)

M = RS{εa} + RI {κ} + Msh (4.85)

If the operator RS vanishes, e.g., due to symmetry, these equations describe sepa-
rately the axial deformation and bending effects. In a general case, the equations are
coupled. In principle, one could decouple them by shifting the y axis such that RS

vanishes, in the spirit of themethod of transformed cross section, but since this partic-
ular position of the axis would in general vary in time, the calculation would be quite
tedious [73, 167]. Instead of that, it is always possible to solve (4.84)–(4.85) as a set
of two equations. For instance, if the cross section is subjected to a bending moment
only (with zero normal force), the history of εa can be expressed from (4.84) in terms
of the history of κ and then substituted into (4.85) to obtain a pure moment–curvature
relation. This procedure will be demonstrated by the following example.
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Fig. 4.20 Concrete slab on a steel beam (dimensions in mm)
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Example 4.10. Restrained shrinkage of top slab in composite beam

Consider the effect of shrinkage of a top slab of a simply supported steel–concrete
composite beam (Fig. 4.20) in which the bending moments from permanent load are
large enough to prevent shrinkage cracking of the slab. In that case, the full drying
shrinkage and drying creep (or stress-induced shrinkage) takes place. The slab is
assumed to be so thin that the bending moment in the slab is negligible. For the sake
of simplicity, we assume that the drying and loading start at the same age t0 = t1.

The problem is a special case of the general composite cross section consisting of
two parts (steel and concrete), one of which (steel) does not creep. For this particular
problem, the basic Eqs. (4.84)–(4.85) turn out to have the simplest possible form if the
origin of the sectional coordinates y and z is placed at the centroid of the concrete slab
section. Since the normal force is zero, this does not affect the value of the bending
moment (which is normally expressed with respect to the centroidal axis of the entire
cross section). Let us introduce the following notation (see also Fig. 4.20): Ac =
sectional area of the concrete slab, As = sectional area of the steel beam, Is =moment
of inertia of the steel beam with respect to its own centroidal axis, is = √

Is/As =
radius of inertia of the steel beam, r = vertical distance between the centroids of the
concrete slab and of the steel beam, Es = elastic modulus of steel. We also assume
that the moment of inertia of the concrete slab with respect to its centroidal axis
(which is used here as the coordinate axis y) is negligible. The “sectional” operators
defined in (4.82) and (4.77)–(4.78) can now be evaluated as follows:

RA =
∫

A
R dA = As EsI + AcRc (4.86)

RS =
∫

A
zR dA = r As EsI (4.87)

RI =
∫

A
z2R dA = (Is + r2 As)EsI = (i2s + r2)As EsI (4.88)

Here, we have denoted the relaxation operator of concrete as Rc, to formally dis-
tinguish it from the position-dependent relaxation operatorR, which is equal toRc

in the concrete part of the section but is equal to Rs in the steel part of the section.
Since the steel is assumed to be elastic, its relaxation operator is Rs = EsI where
I denotes the identity operator (mapping each function onto itself), because then the
stress–strain law for steel reduces to Hooke’s law: σ = Rs{ε} = EsI {ε} = Esε.

Furthermore,we can evaluate the normal force and bendingmoment due to shrink-
age according to Eqs. (4.83) and (4.80). The normal force due to shrinkage turns out
to be Nsh = −AcRc{εsh} where εsh is the shrinkage strain in concrete (calculated
as the average shrinkage strain for the given thickness of the slab) and the moment
due to shrinkage Msh vanishes due to our particular choice of the coordinate system.
Now, we can write the basic equations (4.84)–(4.85) with εa replaced by εcc = strain
in the concrete slab4:

4We denote the strain in the concrete slab as εcc and not simply as εc, because εc is reserved for the
creep strain while εcc denotes the total strain in concrete.
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As Esεcc + AcRc{εcc} + r As Esκ − AcRc{εsh} = 0 (4.89)

r As Esεcc + (Is + r2 As
)

Esκ = M (4.90)

Here, the normal force N has been set to zero and the bending moment M is con-
sidered as given, since for a statically determinate structure it follows from the equi-
librium equations. Equation (4.90) has an algebraic character, and it can be used to
eliminate the curvature from (4.89). After simple manipulations, we obtain

Es Is

i2s + r2
εcc + AcRc{εcc} = AcRc{εsh} − r

i2s + r2
M (4.91)

This is an integral equation for the unknown εcc, which describes the strain history at
the beam “axis,” but due to our special choice of the coordinate system it is in fact the
(average) strain in the concrete slab. To clearly show the nature of this equation, we
rewrite it from the compact operator notation into the more explicit notation using
integrals:

Es Is

i2s + r2
εcc(t) + Ac R(t, t1)εcc(t

+
1 ) + Ac

∫ t

t+
1

R(t, t ′)ε̇c(t
′) dt ′ =

= Ac

∫ t

t1

R(t, t ′)ε̇sh(t ′) dt ′ − r M(t)

i2s + r2
(4.92)

When processing the termRc{εsh} on the right-hand side, we have taken into account
that the drying is assumed to start at time t0 = t1. Thus, the shrinkage strain has no
jump at time t1 and the term R(t, t1)εsh(t1) can be omitted.

Equation (4.92) could be solved numerically, if the integrals are approximated
by finite sums. For a quick estimate, it is possible to use the AAEM method and
approximate (4.91) by

Es Is

i2s + r2
εcc(t) + Ac R(t, t1)εcc(t

+
1 ) + Ac E ′′(t, t1)

[
εcc(t) − εcc(t

+
1 )
] =

= Ac E ′′(t, t1)εsh(t) − r M(t)

i2s + r2
(4.93)

This algebraic equation needs to be solved first at the initial time t = t+
1 , just after

application of the load, and then, with εcc(t
+
1 ) already known, it can be solved at an

arbitrary time t > t1 to get εcc(t). The initial strain

εcc(t
+
1 ) = − r

Es Is + (i2s + r2)Ac Ec(t1)
M(t+

1 ) (4.94)

must of course agree with the elastic solution based on the static elasticity modulus
of concrete, Ec(t1). At a general time t > t1, we obtain
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Δεcc(t) = ϕ(t, t1)εcc(t
+
1 ) + εsh(t)

1 + Es Is

(i2s + r2)Ac E ′′(t, t1)

− r ΔM(t)

Es Is + (i2s + r2)Ac E ′′(t, t1)
(4.95)

with ΔM(t) = M(t) − M(t+
1 ) denoting the increment of bending moment, which

can be set to zero if the applied load remains constant and the structure is statically
determinate. Formula (4.95) describes the time evolution of the strain increment in
concrete, and the corresponding stress in concrete can be obtained in the spirit of the
AAEM method as

σ(t) = Rc{εcc(t) − εsh(t)} ≈ R(t, t1)εcc(t
+
1 ) + E ′′(t, t1) [Δεcc(t) − εsh(t)]

(4.96)
It is also easy to express the curvature κ(t), e.g., from (4.90), and to evaluate the
strain and stress evolution at an arbitrary point of the steel section. Finally, from the
distribution of curvature along the beam axis (with moment M depending on the
position x), one can compute the deflections.

Note that if the steel area ismuch larger than the concrete area,we have Ac/As ≈ 0
and the stress change in concrete is the largest possible, i.e., the same as if the concrete
slab were fully restrained. On the other hand, if the steel area is much smaller than
the concrete area, we have As/Ac ≈ 0, and then there is no stress change in concrete,
the same as in the case of free shrinkage.

Fig. 4.21 Concrete slab on a steel beam: history of (a) strain in concrete, (b) stress in concrete,
(c) maximum stress in steel, (d) midspan deflection
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For illustration, Fig. 4.21 shows the history of strain in concrete, stress in concrete,
maximum tensile stress in steel, and midspan deflection for the following specific
case: sectional dimensions according to Fig. 4.20, concrete properties the same as
in Example 3.1, onset of drying and loading by self-weight at age t0 = t1 = 14
days, environmental humidity henv = 70%, simply supported beam of span L =
20 m. The distance between the centroids of the steel beam and concrete slab is
r = 442.3mm, and the sectional characteristics are Ac = 0.3m2, As = 0.078m2,
Is = 9.49 × 10−3 m4 and is = 348.8mm. Young’s modulus of steel is considered as
Es = 210 GPa and the densities of steel and concrete as ρs = 7850 and ρc = 2420
kg/m3. The self-weight f = gρc Ac + gρs As = 13.13 kN/m leads to the bending
moment at midspan Mm = f L2/8 = 656.4 kNm.

The solid curves in all parts of Fig. 4.21 have been computed by an accurate
numerical method, the dashed curves by the AAEM method with the relaxation
function approximated by formula (4.58). Just after loading by self-weight, the stress
in concrete is compressive (Fig. 4.21b). Even without drying, a partial redistribution
of stress from concrete to steel would take place, because concrete creeps but steel
does not. Drying shrinkage accelerates this redistribution, and the stress in concrete
changes sign after approximately 80days of loading and drying. Tensile stresses in
concrete gradually build up but, once the shrinkage process slows down, they are
reduced by relaxation. The maximum tensile stress of 3 MPa (i.e., slightly below
the estimated tensile strength, f̄t = 3.4MPa) is attained approximately at 2500days.
Due to the redistribution, the maximum tensile stress in steel increases from its
initial value of 30 MPa to its peak value of 46.4 MPa (Fig. 4.21c). Note that the
total strain in concrete is negative (Fig. 4.21a) but, except for the very early stage,
is smaller in magnitude than the shrinkage strain, and so the mechanical strain is
positive. For comparison, the shrinkage strain is indicated in Fig. 4.21a by the dotted
curve. In general, the AAEM approximation provides quite a good estimate of all the
quantities of interest. The peak tensile stress in concrete is slightly underestimated,
and its relaxation for load durations above 10,000days (not covered by the figure)
would be underestimated as well. �

4.3.3 Effects of Nonuniform Drying

The average cross-sectional compliance and shrinkage functions predicted by model
B3, or any other model serving similar purposes, have a more limited usefulness than
traditionally assumed. The reason is that the drying process, which drives shrink-
age and drying creep and causes nonhomogeneity of shrinkage and creep properties
throughout the cross section, is usually nonsymmetric and thus leads to a curva-
ture change of the beam axis. Recently, it became clear [558] that neglect of this
nonsymmetry has often been one major cause of gross mispredictions of long-time
deflections of structures, particularly large-span prestressed concrete bridges. The
importance of this problem had not been realized until the late 1990s, after long-time
deflection measurements on long-span prestressed box girders became available and
systematic occurrence of excessive deflections was documented [560, 836].

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Although it has been the standard practice for decades to take into account the
nonhomogeneity (or nonuniformity) of shrinkage and creep properties in composite
cross sections combining steel and concrete or different concretes, the nonhomo-
geneity caused by drying has typically been ignored. Only the average shrinkage and
creep properties of the concrete parts of the cross section have been considered in
calculations. However, these average properties are defined under the assumption of
symmetric drying. They cannot capture the coupling between axial deformation and
bending of a beam—the main consequence of drying nonsymmetry. This coupling is
particularly large in box girders built by the cantilever method, in which the top and
bottom slabs often have very different thicknesses, causing order-of-magnitude dif-
ferences in dryinghalftimes. The effects of nonuniformdryingon creep and shrinkage
are referred to as differential creep and differential shrinkage.

An accurate analysis of the effects of drying requires solving the differential
equation for water transport through the pores of concrete. This will be discussed
in Chap.8. However, for cross sections consisting of flanges (slabs, plates), such as
box or T cross sections, a simple estimation of the effects of nonuniform drying can
usually bemade on the basis ofmodel B3, provided that each flange is considered as a
distinct body, and that model B3 is applied to each flange separately, to determine its
average long-time deformation [558]. Let us explain it by a series of simple examples.

Fig. 4.22 Idealized box section (webs neglected)

Example 4.11. Idealized webless box: differential shrinkage

Figure4.22 shows a segmented cantilever, having an idealized cross section con-
sisting only of top and bottom slabs, with massless webs. Applying model B3 to
each slab separately, and assuming the same environmental conditions for each, the
longitudinal shrinkage strains of the top and bottom slabs evolve as

εt (t̂) = −ε∞ tanh
√

t̂/τt , εb(t̂) = −ε∞ tanh
√

t̂/τb (4.97)

respectively,where t̂ is the drying duration, ε∞ is themagnitude of the final shrinkage,
and τt and τb are the drying halftimes of the top and bottom slabs. The final shrinkage
is given by ε∞ = khε

∞
sh where kh depends on the ambient relative humidity, and ε∞

sh
depends on the concrete composition and curing; see Eqs. (3.15) and (3.19) and
Table C.2. According to formula (3.17), based on the diffusion theory, we have

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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τt = kt (ks Dt )
2, τb = kt (ks Db)

2 (4.98)

where kt is a material parameter, ks is the shape factor, for slabs approximately equal
to 1, and Dt and Db are the thicknesses of the slabs. Consequently,

τb =
(

Db

Dt

)2
τt (4.99)

Strictly speaking, one should consider ε∞
sh as dependent on the shrinkage halftime

and thus on the slab thickness; see the empirical formula in line 7 of Table C.2. This
is only a minor effect which, in the present crude approximation, can be neglected
(this assumption will be verified in Example 4.15).

If Db > Dt , the top slab is drying faster and shrinkage produces a positive girder
curvature

κsh(t̂) = εb(t̂) − εt (t̂)

Hc
= ε∞

Hc

(
tanh
√

t̂/τt − tanh
√

t̂/τb

)
(4.100)

where Hc is the distance between the centroids of the top and bottom slabs; see
Fig. 4.22. The bending stiffness of these slabs is assumed to be much smaller than
the bending stiffness of the whole cross section.

Fig. 4.23 Evolution of curvature due to differential shrinkage

From (4.99), we note that if, for instance, Db/Dt = 3 (which is quite typical), the
second, negative, term in (4.100) has a halftime 9× longer than the first. Therefore,
drying causes initially a positive curvature, which later decreases. If the segment is a
part of a cantilever, positive curvature contributes to lifting of the cantilever end, and
the decrease of curvature at later stages contributes to sinking of the cantilever end.
For several ratios Db/Dt , the evolution of curvature according to (4.100) is plotted
in Fig. 4.23. �

Consider a cantilever of length L , with its left end at x = 0 clamped. The shrinkage
deflection at the right end at x = L is
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wsh(t̂) = −
∫ L

0
(L − x)κsh(x, t̂) dx (4.101)

The negative sign corresponds to upward deflection (lifting). Since the sectional
dimensions are often variable along the beam axis, the curvature depends on the
axial coordinate x . For given functions Dt (x), Db(x) and Hc(x), the integral in
(4.101) can be evaluated numerically. The complete formula obtained by combining
(4.98), (4.100), and (4.101) reads

wsh(t̂) = −ε∞
∫ L

0

L − x

Hc(x)

(
tanh

√
t̂

kt k2
s D2

t (x)
− tanh

√
t̂

kt k2
s D2

b(x)

)
dx (4.102)

One should also consider that different segments of the cantilever can be exposed to
drying at different times. Introducing a global time variable t , defined for instance as
the age of the oldest segment, and denoting the (global) time at the onset of drying
of the segment at position x as t0(x), we can rewrite (4.102) in a still more general
form,

wsh(t) = −ε∞
∫ L

0

L − x

Hc(x)

(
tanh

√
t − t0(x)

kt k2
s D2

t (x)
− tanh

√
t − t0(x)

kt k2
s D2

b(x)

)
dx (4.103)

Nonuniform drying leads not only to changes of curvature due to nonuniform
shrinkage but also to differences in drying creep compliance of individual slabs. The
growth of drying creep compliance of the thicker slab is delayed with respect to the
thinner slab. This has an effect on the evolution of the bending compliance of the
cross section.

Example 4.12. Idealized webless box: differential creep

For illustration, consider again the idealized cross section from Fig. 4.22, with areas
of the top and bottom slabs denoted as At and Ab and the total area denoted as
A = At + Ac. Suppose that the section is subjected to a bending moment M and
normal force N (the internal forces are considered here as the resultants of stresses
in concrete only, including the stresses in concrete generated by prestressing). The
stresses in each slab can be considered approximately as uniform (neglecting again
the bending stiffnesses of the slabs) and are given by

σt = N

A
− M

Hc At
, σb = N

A
+ M

Hc Ab
(4.104)

The growth of the corresponding average strains εt and εb in the slabs is determined
by compliance functions Jt and Jb, which can differ due to the influence of the
thickness on the drying halftime and thus on the drying creep (note that Jb in this
example refers to the total compliance function of the bottom slab, and not to the
basic compliance function).
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If the internal forces arise at age t1 and remain constant afterward, the evolution
of strains is given by

εt (t) = σt Jt (t, t1), εb(t) = σb Jb(t, t1) (4.105)

and the corresponding axial strain a curvature can be evaluated as

εa(t) = Abεb(t) + At εt (t)

A
= Ab Jb(t, t1) + At Jt (t, t1)

A2 N + Jb(t, t1) − Jt (t, t1)

AHc
M (4.106)

κ(t) = εb(t) − εt (t)

Hc
= Jb(t, t1) − Jt (t, t1)

AHc
N + 1

H2
c

(
Jb(t, t1)

Ab
+ Jt (t, t1)

At

)
M

(4.107)

The factor multiplying N on the right-hand side of (4.106) represents the axial com-
pliance of the section, CA, and the factor multiplying M on the right-hand side of
(4.107) represents the bending compliance of the section, CI . The factor multiplying
M in (4.106) is the same as the factor multiplying N in (4.107), and it represents a
coupling compliance, CS , which characterizes the interaction between axial defor-
mation and bending. If the creep compliance functions of both slabs are the same,
Jt = Jb = J , the sectional compliances are CA = J (t, t1)/A, CI = J (t, t1)/I and
CS = 0, where I = H 2

c At Ab/A is the moment of inertia of the section with respect
to its horizontal centroidal axis. In this case, bending is uncoupled from the axial
deformation, same as in elasticity, and the axial and bending compliances grow
proportionally to the (unique) creep compliance function. Differences between the
drying creep compliances of the top and bottom slabs lead to a somewhat different
evolution of the compliances and to coupling between axial deformation and bending.
Let us now examine the errors induced by neglecting the differential creep effects,
i.e., by setting both Jt and Jb to the creep compliance function J that corresponds to
the overall effective thickness.

0.2

1.5

0.8
2.52.5

0.450.45
6.1

Fig. 4.24 Pier cross section of a typical box girder (dimensions in meters)
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Fig. 4.25 Creep compliance functions for three different slab thicknesses

For the purpose of quantitative comparison, consider a typical pier section of a
box girder in Fig. 4.24 with Dt = 0.2 m, Db = 0.8 m, At = 2.4 m2, Ab = 5.6 m2,
A = 8 m2, and Hc = 2.0 m. The overall effective thickness of the section (with
webs neglected) is evaluated from the condition A/D = At/Dt + Ab/Db as D =
0.421 m. The concrete properties, curing, and humidity are taken the same as in
Example 3.1, and the age at loading is set to t1 = 28 days. Figure4.25 shows the creep
compliance functions corresponding to the top slab thickness, average thickness, and
bottom slab thickness. The drying halftimes are τt = 1, 121 days, τaver = 4, 968 days
and τb = 17, 936 days. Figure4.26 shows the sectional compliances evaluated from
formulae (4.106)–(4.107) (solid curves), or estimated as J (t, t1)/A and J (t, t1)/I
from the compliance function J that corresponds to the overall effective thickness
(dashed curve). It turns out that the maximum relative error is only 2.8% for the axial
compliance and 3.5% for the bending compliance. A similar analysis has been done
for a real case—the main pier cross section of the Koror–Babeldaob Bridge in Palau,
for which Dt = 280mm and Db = 1150mm; see Fig. 7.3 in Chap.7. The maximum
relative error turns out to be 3.2% for the axial compliance and 4.1% for the bending
compliance.

To complete the analysis, one should also check the error arising from the coupling
compliance, CS . Here, it does not make sense to evaluate the relative error because
the approximation leads to CS = 0. The coupling compliance can be expected to be
small, but what should it be compared to? What matters is whether the curvature
due to the normal force can be comparable to the curvature caused by other effects
(bending moment and differential shrinkage). This will be addressed in the next
example. �

Example 4.13. Idealized webless box: differential creep and shrinkage combined

To assess the relative importance of differential creep and differential shrinkage,
let us consider both effects simultaneously. Of course, the behavior depends on the
actual combination of internal forces, which should correspond to a reasonable stress
distribution. We will examine two extreme cases:

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_7
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Fig. 4.26 (a) Axial and (b) sectional bending compliances evaluated either from the compliance
function corresponding to the average thickness, or using more accurate expressions from formulae
(4.106)–(4.107)

1. the girder is prestressed such that the stress in concrete resulting from a combi-
nation of prestressing and dead load is uniform and equal to −0.4 f ′

c ;
2. the girder is prestressed such that the stress in concrete vanishes at the centroid

of the top slab and equals −0.4 f ′
c at the centroid of the bottom slab.

In case 1, the bending moment vanishes and the normal force is N = −0.4 f ′
c A.

The resulting curvature can be expressed as

κ(t) = ε∞
Hc

(
tanh

√
t − t0)

τt
− tanh

√
t − t0

τb

)
− 0.4 f ′

c

Hc
(Jb(t, t1) − Jt (t, t1))

(4.108)
where the first term is the contribution of differential shrinkage according to (4.100)
and the second term is the contribution of differential creep according to (4.107). As
usual, t0 is the age at the onset of drying and t1 is the age at loading. The curvature
is seen to be inversely proportional to the distance Hc between the centroids of the
top and bottom slabs. The relative error due to various simplifications is properly
reflected by the dimensionless curvature, Hcκ , which is in fact equal to the difference
of strains in bottom and top slabs, εb − εt .

For the concrete from Example 3.1 (with characteristic strength f ′
c = f̄c − 8

MPa = 37.4 MPa) and box cross section from Fig. 4.24, environmental humidity
henv = 70%, and times t0 = 7 days and t1 = 28 days, the dimensionless curvature
evaluated according to the “exact” formula (4.108) is plotted in Fig. 4.27a by the
solid curve, marked as DC+DS, which means that both differential creep and differ-
ential shrinkage are included. The dashed curve (DS) and dotted curve (DC) show
separately the contribution of differential shrinkage and differential creep. It is seen
that the effect of differential creep on the curvature is less pronounced than, but still
comparable to, the effect of differential shrinkage. Both of them contribute to positive
curvatures (convex shape of the deflection curve). This is logical, since the top slab
is thinner, dries out faster, and thus the negative strains due to creep and shrinkage
are larger in magnitude than those in the bottom slab.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.27 Evolution of dimensionless curvature and the effect of neglecting differential shrink-
age and differential creep: (a) for uniform compressive stress, (b) for zero stress in top slab and
compressive stress in bottom slab (note the different vertical scales)

In case 2, the strain in the top slab is just the shrinkage strain (evaluated for
effective thickness Dt ) and the strain in the bottom slab is a sum of the shrinkage
strain (for effective thickness Db) and creep strain, including drying creep. The
corresponding time evolution of curvature is given by

κ(t) = ε∞
Hc

(
tanh

√
t − t0

τt
− tanh

√
t − t0

τb

)
− 0.4 f ′

c

Hc
Jb(t, t1) (4.109)

For the same conditions as in case 1, the dimensionless curvature evaluated according
to (4.109) is plotted in Fig. 4.27b by the solid curve (DC+DS). The dashed curve
(C+DS) shows the result that would be obtained with differential shrinkage taken
into account but creep evaluated from the compliance function that corresponds
to the average thickness (of course under bending, it does make sense to neglect
creep completely). Finally, the dotted curve (DC) shows what would be obtained if
differential creep is considered but differential shrinkage neglected.

The curvatures are negative (concave deflection curve), except for the period
between the onset of drying and the onset of loading, when there is no creep and the
differential shrinkage produces the same effect as in case 1. Thus, the initial part of
the solid curve is the same as in Fig. 4.27a. Note that the two graphs displayed in
Fig. 4.27 are plotted in a different scale on the vertical axis. After the onset of loading
by a combination of compressive normal force and negative bending moment (case
2, Fig. 4.27b), large negative curvatures occur. Their magnitude is alleviated mainly
by the effects of differential shrinkage while differential creep plays only a minor
role. Neglecting differential creep leads in this case to a relative error (in curvature)
not exceeding 7%. On the other hand, neglecting differential shrinkage would lead
to a relative error of up to 47%. �

The example has shown that the effect of differential shrinkage on the curvature
of prestressed box girders can be important while the effect of differential creep (on
curvature) is less pronounced. However, differential creepmay also have an influence
on the axial strain andmay lead to warping of the floors in tall buildings with massive
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exterior columns and relatively thin interior core walls, even if they are exposed to
the same environmental humidity. This will be illustrated next.

Example 4.14. Tall building: differential creep and shrinkage

Consider a tall building with exterior columns and interior walls that have been
designed for the same stress level. For simplification, suppose that the stress varies
linearly from zero at the top to the maximum level σ < 0 at the base but the section
is constant (designed for the base). Then, the vertical displacement at the top of a
column or wall of initial height H can be evaluated as

w(t) = −H
(σ
2

J (t, t1) + εsh(t − t0)
)

(4.110)

and the difference in vertical displacements of the wall and column is

Δw(t) = ww(t) − wc(t) = −H
(σ

2
(Jw(t, t1) − Jc(t, t1)) + εsh,w(t − t0) − εsh,c(t − t0)

)
=

= − Hσ

2
(Jw(t, t1) − Jc(t, t1)) + Hε∞

(
tanh

√
t − t0
τw

− tanh

√
t − t0

τc

)
(4.111)

For the concrete from Example 3.1, stress σ = −0.4 f ′
c = −15MPa, building height

H = 200 m, effective thicknesses Dc = 1 m and Dw = 0.15 m, ambient humid-
ity henv = 60%, and times t0 = 7 days and t1 = 28 days, the evolution of Δw is
plotted in Fig. 4.28a. The displacement difference culminates after 5–6years and
attains about 125mm.

For comparison, Fig. 4.28b shows analogous results for high-strength concrete
characterized by f̄c = 95 MPa, w/c = 0.31, a/c = 3.11 and c = 530 kg/m3. The
stress level is set to σ = −35 MPa, and the building height is considered as H =
400m while all the other parameters remain the same. The shape of the curves is
similar to the previous case, but the maximum displacement difference is about
237mm. In actual design, the cross-sectional area will decrease with the height to

Fig. 4.28 Evolution of displacement difference between exterior columns and interior walls in a
tall building, caused by differential creep (DC) and differential shrinkage (DS): (a) normal-strength
concrete and building height of 200m, (b) high-strength concrete and building height of 400m

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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keep the stress nearly uniform, and then the displacement differencewill, of course, be
larger, though not much larger because the shrinkage contributes to the displacement
difference much more than does the creep. �

Examples 4.11–4.13 presented a simplified analysis, illustrating the basic trends.
In real situations, the cross section of a box girder needs to be subdivided into at least 3
parts: top slab, bottom slab, andwebs.Because each has a different effective thickness
Di , model B3 yields different shrinkage and creep for each. Obviously, one may
also take into account different average environmental humidities and temperatures
(during exposure to, or shielding from, the sun; sealing by asphalt pavement; kind of
ventilation inside the box; etc.), and possible differences in concrete compositions
and ages.

Rigorous analysis of the problem can be based on general equations for a com-
posite cross section, summarized in (4.84)–(4.85). Each part of the section is now
characterized by a certain compliance function Ji (t, t ′) and shrinkage strain evo-
lution εsh,i (t̂), both dependent on the thickness Di . Let us denote the area of part
number i as Ai , its static moment with respect to the centroidal axis (of the entire
section) as Si , and its moment of inertia with respect to the centroidal axis as Ii .
For each part of the section, the compliance function Ji (t, t ′) uniquely determines
the corresponding relaxation function Ri (t, t ′) and relaxation operatorRi . Operators
used in (4.84)–(4.85) and defined in (4.82) and (4.77)–(4.78) are then expressed as

RA =
∫

A
R dA =

∑
i

AiRi (4.112)

RS =
∫

A
zR dA =

∑
i

SiRi (4.113)

RI =
∫

A
z2R dA =

∑
i

IiRi (4.114)

where the sum is taken over all the parts of the cross section.
If operators Ri are indeed different, Eqs. (4.84)–(4.85) for the normal force

and bending moment are coupled (this ocurred in Example 4.12, see Eqs. (4.106)–
(4.107)). Their solution would require step-by-step numerical procedures or approx-
imation by the AAEM method. However, as illustrated by Examples 4.12 and 4.13
(see Figs. 4.26 and 4.27), the error induced by neglecting differential creep is often
acceptable (if not negligible). If all parts of the section have the same properties
and age, and if differential creep is neglected, all operatorsRi become identical and
equal to the average operatorR, which corresponds to the creep compliance function
determined for the overall effective thickness of the entire section. The big advantage
is that operator

RS =
∫

A
zR dA =

∑
i

SiRi =
(∑

i

Si

)
R = SR = 0 (4.115)
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in this case vanishes, because S =∑i Si is the staticmoment of the entire sectionwith
respect to its centroidal axis, and Eqs. (4.84)–(4.85) get uncoupled. Operators RA

and RI reduce to operator R multiplied by the cross-sectional area A and moment
of inertia I , respectively, and Eq. (4.85) reduces to the simple moment–curvature
relation (4.79). The effects of differential shrinkage are reflected in the definition of
internal forces due to shrinkage, Eqs. (4.80) and (4.83), which can now be rewritten
as

Nsh = −
∫

A
R{εsh(y, z)} dA = −R

{∫
A

εsh(y, z) dA

}
= −R

⎧⎨
⎩
∑

i

Ai εsh,i

⎫⎬
⎭ (4.116)

Msh = −
∫

A
zR{εsh(y, z)} dA = −R

{∫
A

zεsh(y, z) dA

}
= −R

⎧⎨
⎩
∑

i

Si εsh,i

⎫⎬
⎭ (4.117)

The relations between internal forces and deformation variables are then given by

N = RA{εa} + Nsh = AR{εa} − R

{∑
i

Aiεsh,i

}
= AR

{
εa − εa,sh

}
(4.118)

M = RI {κ} + Msh = IR{κ} − R

{∑
i

Siεsh,i

}
= IR {κ − κsh} (4.119)

where

εa,sh = 1

A

∑
i

Aiεsh,i (4.120)

is the axial strain induced by differential shrinkage and

κsh = 1

I

∑
i

Siεsh,i (4.121)

is the curvature induced by differential shrinkage.
Note that Eq. (4.100) exploited in Example 4.11 is a special case of (4.121),

with S1 = −At Ht , S2 = Ab Hb = −S1, εsh,1 = εt , εsh,2 = εb and I approximated by
At H 2

t + Ab H 2
b , where Ht and Hb are the distances of the centroids of the top and

bottom slabs from the centroid of the entire section, and Ht + Hb = Hc. Let us check
how inclusion of the web affects the results of Example 4.11.

Example 4.15. Complete box girder cross section with nonuniform drying

Consider a typical section of a box girder in Fig. 4.24, divided into three parts: top
slab, bottom slab, and webs, denoted by subscripts 1, 2, and 3. The centroid of the
section is found to be at the distance of 1.421m from the top fibers, and the centroidal
moment of inertia is I = 7.629 m4. The areas, static moments, and effective thick-
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nesses of individual parts are summarized in Table4.1. The table also contains the
estimated shrinkage halftimes and final shrinkage values (referring to a completely
dry environment) for the same concrete and the same curing conditions as in Exam-
ple 3.1. Despite the dramatic differences in shrinkage halftimes, the final shrinkage
values differ by a fraction of a percent, which confirms that the simplifying assump-
tion of a unique value of final shrinkage in Example 4.11 was, for practical purposes,
fully justified. Recall that ε∞

sh denotes the theoretical magnitude of final shrinkage in
a completely dry environment, and it needs to bemultiplied by a humidity-dependent
factor to get the final shrinkage at the actual humidity.

Table 4.1 Geometric properties and shrinkage characteristics for individual parts of the box girder
cross section from Fig. 4.24

part i Ai [m2] Si [m3] Di [m] τsh,i [day] ε∞
sh,i [10

−6]

Top slab 1 2.4 −3.1694 0.2 1121 701.11

Bottom slab 2 5.6 3.8047 0.8 17936 699.76

Webs 3 1.35 −0.6353 0.45 5675 699.96

The evolution of axial strain and curvature caused by shrinkage can now be eval-
uated from an expanded version of formulae (4.120)–(4.121),

εa,sh(t̂) = −kh

A

3∑
i=1

Aiε
∞
sh,i tanh

√
t̂

τsh,i
(4.122)

κsh(t̂) = −kh

I

3∑
i=1

Siε
∞
sh,i tanh

√
t̂

τsh,i
(4.123)

in which kh = 1 − h3
env = 1 − 0.73 = 0.657 is the factor that takes into account the

ambient relative humidity of 70%; see formula (3.19). The dependence of axial strain
and curvature on the drying time is represented by the solid curves in Fig. 4.29. For
comparison, the dashed curves show the approximations that would be obtained for
an idealized webless section. For curvature, the corresponding formula (4.100) has
been derived in Example 4.11; it could also be obtained from (4.123) by setting
A = A1 + A2, H1 = Hc A2/A, H2 = Hc A1/A, S1 = −A1H1, S2 = A2H2 = −S1,
S3 = 0, and I = A1H 2

1 + A2H 2
2 (section consisting of top and bottom slabs only).

In a similar fashion, an approximate formula for axial strain can be derived from
(4.122) by setting A3 = 0 and A = A1 + A2.

It can be expected that the simplifiedmethodneglecting thewebs overestimates the
actual curvature. Free shrinkage of the webs would lead to their uniform contraction,
but if the top slab shrinks more than the bottom slab, the webs are forced into bending
and their flexural stiffness reduces the resulting curvature (as compared to the case
without webs). Indeed, in the present example, the simplified method overestimates
the maximum curvature by about 11%; see Fig. 4.29b. For the axial strain, the error
induced by neglecting the web is very small; see Fig. 4.29a.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.29 Evolution of (a) axial strain, (b) curvature caused bydifferential shrinkage; approximation
based on (4.100), with webs neglected, and more accurate results based on (4.123), with webs
accounted for

Since the shrinkage is now constrained by the condition that the section remain
planar (which did not represent a constraint for thewebless section), self-equilibrated
stresses are induced in the section. They can be calculated by combining the general
viscoelastic stress–strain Eq. (2.45) with formula (4.2) for linear distribution of nor-
mal strain across the section, in which the axial strain εa and curvature κ are set to
their values caused by shrinkage:

σ(z, t) = R{ε(z, t) − εsh(z, t)} = R{εa,sh(t) + κsh(t)z − εsh(z, t)} =

= −kh

3∑
i=1

(
Ai

A
+ zSi

I

)
ε∞
sh,iR

{
tanh

√
t − t0
τsh,i

}
+ khε∞

sh,k(z)R

{
tanh

√
t − t0
τsh,k(z)

}

(4.124)

Here, k(z) is an integer-valued function that provides the number of the section part
to which the point with coordinate z belongs (in general, k could also depend on the
y coordinate, but in the present case, the individual parts are bounded by horizontal
lines, and thus, the vertical coordinate uniquely determines the corresponding part).

As usual, application of the relaxation operator can be approximated by theAAEM
method, which leads to

σ(z, t) ≈ E ′′(t, t0)
[
εa,sh(t) + κsh(t)z − εsh(z, t)

] =

= kh E ′′(t, t0)

⎡
⎣−

3∑
i=1

(
Ai

A
+ zSi

I

)
ε∞
sh,i tanh

√
t − t0
τsh,i

+ ε∞
sh,k(z) tanh

√
t − t0
τsh,k(z)

⎤
⎦

(4.125)

For the specific concrete, section, and conditions considered in this example, the
evolution of stresses due to differential shrinkage at four characteristic points of the
section is plotted in Fig. 4.30. The selected points are the centroid of the top slab

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Fig. 4.30 Evolution of stresses caused by differential shrinkage

(TS), centroid of the bottom slab (BS), top of the webs (TW), and bottom of the
webs (BW). As seen in Fig. 4.30, shrinkage-induced stresses in the top slab and at
the bottom of the webs are tensile while stresses at the top of the web and in the
bottom slab are compressive. This is logical, since free shrinkage would lead to the
fastest growth of strain magnitude in the top slab, slower growth in the webs, and the
slowest growth in the bottom slab (see the drying halftimes in Table4.1). To ensure
planarity of the section, the top slab must be stretched by tensile stresses and the
bottom slab must be shortened by compressive stresses, and the resulting negative
bendingmoment is compensated by a positivemoment in thewebs, leading to tension
in the bottom part of the web and compression in the top part. The top slab dries out
relatively fast, and themaximum tensile stress in the top slab develops approximately
after 1000days. Simultaneously, the compressive stress in the top part of the webs
attains its maximum. The development of tensile stress in the bottom part of the web
is delayed because it is mainly driven by the difference between shrinkage in the
web and in the bottom slab. It is also interesting to note that the compressive stress
in the bottom slab remains very small. This is because the bottom slab is massive (it
accounts for 60% of the total area) and dries out extremely slowly, with a halftime
of almost 50years.

Finally, it should be noted that the self-equilibrated stresses due to shrinkage
have been evaluated here using the assumption that shrinkage is uniform through
the thickness of each of the section parts (top slab, bottom slab, webs). Such an
assumption is implicitly contained in the adopted sectional approach. In reality, the
drying process is faster near the surface and slower in the core, which leads to
additional self-equilibrated stresses, tensile near the surface, and compressive in the
core. Their evaluation requires more detailed modeling of the drying process and
will be discussed in Sect. 8.6. �

The foregoing results refer to typical concretes and environmental humidities.
There exist concretes with a significantly higher drying creep and structures exposed
to lower humidities. For these, the differential effects would be stronger.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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4.3.4 Stress Relaxation in Prestressed Members

4.3.4.1 Model of Prestressing Steel Relaxation

Over time, the prestress force in a steel tendon installed in a concrete member relaxes
due to creep and shrinkage of concrete aswell as viscoplasticity of steel,manifested as
prestress relaxation. The problem is more difficult than the problem of a composite
cross section treated in Example 4.10, because the prestressing tendons exhibit a
time-dependent behavior that does not obey the principle of superposition. Before
analyzing the complex processes in a prestressed concrete member, it is necessary
to postulate an appropriate constitutive law governing the behavior of the tendons.

For prestress relaxation at constant strain and temperature, Sect. 2.3.4.5 of the
CEB Model Code 1990 [322] specifies the formula

σp0 − σp(t)

σp0
= ρ1000

(
t

λ1

)k

(4.126)

where σp is the stress in the steel tendon; σp0 = σp(0) is the initial prestress, i.e.,
the stress in tendon when the prestressing force is transferred to the anchor (which
is usually also the maximum stress ever experienced by the tendon); t is the time
elapsed since the transfer of prestress force onto concrete; λ1 = 1000h; and ρ1000

and k are parameters. Note that the difference σp0 − σp(t) represents the prestress
loss at time t , and the fraction on the left-hand side of (4.126) is the relative prestress
loss, also called the relaxation ratio, ρ(t).

Parameter ρ1000 represents the relaxation ratio after t = 1000h. Its recommended
values are different for three classes of prestressing steel: normal wires and strands
(class 1), improved ones (class 2), and bars (class 3); see Table4.2. The value of
ρ1000 is also affected by the initial prestress level, i.e., by the ratio σp0/ f p where
f p is the ultimate strength of prestressing steel. Parameter k can be estimated from
relaxation tests as k ≈ log10(ρ1000/ρ100) where ρ100 is the value of relaxation ratio
measured after t = 100h of relaxation. It is recommended to set k = 0.12 for class
1 and k = 0.19 for class 2. An example of the evolution of prestress (normalized by
the ultimate strength f p) for class 1 of prestressing steel and for different values of
initial prestress is plotted in Fig. 4.31a. Note that the time scale is logarithmic and
the time variable t is given in days.

Table 4.2 Values of parameter ρ1000 for three classes of prestressing steel and various levels of
initial prestress (according to the CEB Model Code)

Prestressing steel Class σp0/ f p

0.6 0.7 0.8

Normal wires and strands 1 4% 8% 12%

Improved wires and strands 2 1% 2% 5%

Bars 3 2% 4% 7%

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Fig. 4.31 Prestress relaxation according to (a) CEB formula (4.126), for class 1 (k = 0.12), (b)
Eurocode formulae (4.126)–(4.128), for class 1 (A = 43.12 × 10−5, B = 6.7), (c) formula (4.129)
used in American practice, for stress-relieved tendons ( f py/ f pu = 0.85)

The Eurocode [373] uses the same power law (4.126) as the CEB Model Code,
but the recommended values of parameters ρ1000 and k are different. The relaxation
ratio after 1000h is given by

ρ1000 = AeBσp0/ f p (4.127)

where parameters A and B depend on the class and are listed in Table4.3. Exponent
k is considered as dependent on the initial prestress ratio and is given by

k = 0.75

(
1 − σp0

f p

)
(4.128)

In American practice, the manufacturers’ data on prestress loss due to steel relax-
ation at constant strain and temperature are often approximated by another formula
[591] [647, Sect. 3.3], which can be written in the present notation as follows:

σp0 − σp(t)

σp0
= 〈σp0 − s0〉

sy

〈
ln

(
t

λ0

)〉
(4.129)
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Table 4.3 Values of parameters A and B for three classes of prestressing steel (according to the
Eurocode)

Prestressing steel Class A B

Normal wires and strands 1 43.12 × 10−5 6.7

Improved wires and strands 2 1.65 × 10−5 9.1

Bars 3 7.92 × 10−5 8.0

Parameters s0 and sy depend on the specified yield strength of prestressing steel,
f py and are given by s0 = 0.55 f py and sy = (10 ln 10) f py = 23.03 f py . Parameter
λ0 is equal to 1h. The Macauley brackets 〈 〉 extract the positive part, defined
as 〈x〉 = max(x, 0). While formula (4.129) gives generally a slower evolution of
prestress loss than the CEB formula (4.126) and is meaningful only for t  λ0, it is
more realistic in that it has a bound, which is set at 0.55 f py . The typical values of f py

are 0.80 f pu for prestressing bars, 0.85 f pu for stress-relieved tendons, and 0.90 f pu

for low relaxation tendons, where f pu is the specified tensile strength of prestressing
steel.

If plotted in the semilogarithmic scale, the ACI empirical formula (4.129) is
represented by a straight line; see Fig. 4.31b. Therefore, it cannot capture the short-
time relaxation accurately, although its long-time estimate is acceptable.

As exemplified by the KB Bridge in Palau, to be analyzed in detail in Chap.7,
the strain variation in steel bonded to concrete need not be negligible when dealing
with creep-sensitive structures. Also, the sun exposure of the pavement can cause
appreciable heating of the tendons embedded in the top slab [210]. The heating can
be very important not only for bridges but also for prestressed nuclear containments
or vessels. Plenty of test data on prestressing steel relaxation exist for constant strain
and constant room temperature [207]. The most extensive data are given in Magura
et al. [591]. The data for variable strain and variable temperature are much more
limited but those that exist [281, 737] suffice for calibration.

Relaxation of prestressing steel can be described by a constitutive model that
considers the total strain as a sum of the elastic, plastic, and viscous strains, with the
viscous strain εv defined by the rate equation

ε̇v = AT (T ) f (ε, σp) (4.130)

Here, σp is the stress in prestressing steel, ε is the strain in steel, T is the absolute
temperature, and AT is a temperature factor, which equals 1 at temperature T0 = 293
K (20◦C). Realistic expressions for functions f and AT , derived and experimentally
calibrated in Bažant and Yu [207], have the form

AT (T ) = exp

(
Q p

kB T0
− Q p

kB T

)
(4.131)

http://dx.doi.org/10.1007/978-94-024-1138-6_7
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f (ε, σp) =
⎧⎨
⎩

kc1−1/kρ
1/k
0

〈Fp(ε) − γ f̄ y〉
Et (ε)

[ζ 1/c(ε, σp) − 1]1−1/k

λ1ζ 1+1/c(ε, σp)
for σp > γ f̄ y

0 for σp ≤ γ f̄ y

(4.132)
where

ζ(ε, σp) = Fp(ε) − γ f̄ y

σp − γ f̄ y
(4.133)

Expression (4.131) is based on the rate process theory, with Q p denoting the acti-
vation energy of flow of prestressing steel and kB = 1.38 · 10−23 J/K the Boltzmann
constant.5 For practical applications, it is convenient to consider the ratio Q p/kB as a
single parameter, with the dimension of temperature. Its values determined by fitting
are Q p/kB = 14, 600 K for the data of Shinko Wire Company, Ltd. (Amagasaki,
Japan), and Q p/kB = 7000 K for the data of Rostásy et al. [737]. The value of
Q p/kB = 12, 000 K gives a reasonable agreement with the Eurocode [373] formula
AT (T ) = 1.14T −T0 in the range between 10 ◦C and 45 ◦C. Note that the activation
energy can vary enormously depending on the type of steel. Therefore, tests are
recommended whenever the temperature effects play an important role.

In formulae (4.132)–(4.133), λ1 = 1000h and k, c, ρ0 and γ are positive empir-
ical constants for the given steel. Examples of their values determined by fitting of
experimental data for various types of prestressing steel are given in Table4.4. In
Bažant and Yu [207], parameter ρ0 was considered as dependent on the strain level,
but this dependence is rather weak and makes only a little difference.

Furthermore, Fp is the function describing the stress–strain law σp = Fp(ε) for
short-time loading. At constant strain, Fp(ε) = σp0 = initial prestress. Function
Et (ε) = dFp(ε)/dε = describes the tangent modulus of steel for loading (ε̇ > 0),
which is equal to Young’s modulus E = 200 GPa if the prestress is not above the
linear range and for unloading (ε̇ < 0); f̄ y = mean yield strength of prestressing
steel (defined by 1% offset); γ f̄ y = threshold below which there is no relaxation
(parameter γ is taken safely as γ = 0.45, although the American practice uses
γ = 0.55). Constant c ≈ 2 controls the transition from short-time relaxation to the
long-time asymptotic value, and exponent k characterizes the initial relaxation curve
σp0 − σp ∝ t k . According to optimum fitting of published data, Bažant and Yu [207]
recommended the value of k ≈ 0.08, which differs from the values used in the CEB
Model Code.

For the special case of constant ε and T , Eqs. (4.130)–(4.133) integrate to a for-
mula which, for high stress, is close to the CEB formula (4.126), and for lower
stress approaches a threshold, γ f̄ y , in agreement with the American practice for-
mula (4.129). At variable ε or T , numerical integration is needed.

5In expressions similar to (4.131), the universal gas constant R is sometimes used instead of the
Boltzmann constant kB . Both approaches are equivalent, and they differ only by the meaning of
activation energy Q, which is taken permole if R is used, or per elementary entity (atomormolecule)
if kB is used. In any case, for practical applications it is more convenient to specify directly the
fraction Q/R (or Q/kB ), which has the dimension of temperature.
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The viscous strain defined by the rate Eq. (4.130) is added to the elastic and plastic
strains and to the thermal strain. The resulting stress–strain equation is conveniently
written in the rate form

ε̇ = σ̇p

Et
+ ε̇v + αT Ṫ (4.134)

where the first term on the right-hand side represents the sum of elastic and plastic
strain rates, and αT is the thermal expansion coefficient of prestressing steel. Of
course, under variable temperature, the strain that enters the viscous law (4.130) as
the first argument of function f should not be the total strain but the mechanical
strain,

ε∗ = ε − αT (T − Tinit) (4.135)

obtained from the total strain by subtracting the thermal strain. Here, Tinit denotes
the initial temperature. Combining (4.134) with (4.130) in which ε is replaced by ε∗,
we can express the rate of stress in the prestressed tendon as

σ̇p = Et
[
ε̇∗ − AT (T ) f (ε∗, σp)

]
(4.136)

For the purpose of general finite element analysis, the rate Eq. (4.136) must be
converted to an incremental form. Approximating the rates within a typical time step
Δt byfinite differences,we can express the prestress increment (typically negative) as

Δσp = Et (ε
∗)
[
Δε∗ − AT (T )Δt f (ε∗, σp)

]
(4.137)

The term Et (ε
∗)Δε∗ on the right-hand side of (4.137) represents the stress change

calculated according to the short-time stress–strain law. In most cases, the tangent
modulus Et is equal to the Young modulus of prestressing steel. Only if the yield
stress is exceeded and the strain increment is positive (i.e., plastic yielding takes
place), Et should be understood as the elastoplastic tangent modulus. In that case, a
more accurate result is obtained if Et (ε

∗)Δε∗ is replaced by the increment Fp(ε
∗ +

Δε∗) − Fp(ε
∗).

The right-hand side of (4.137) depends on both stress and strain. For a given strain
and temperature evolution, the mechanical strain ε∗ can be substituted, e.g., by its
midpoint value. In an explicit approach, the stress σp at the beginning of the step
can be used. Higher accuracy can be achieved by an implicit approach, with (4.137)
considered as a nonlinear equation from which the stress σp at midstep or at the end
of the step can be computed by a local iterative procedure. At the structural level,
this numerical scheme has to be combined with an appropriate implementation of a
creep and shrinkage model for concrete.

Figures4.32, 4.33, and 4.34 compare the curves computed from Eq. (4.137) with
typical test data from the literature. The corresponding parameters are listed in
Table4.4. The mean yield strength f̄ y is a physical parameter taken according to
the original sources. The other parameters have been obtained by fitting of the exper-
imental relaxation curves [207] and slightly modified for the present purpose.
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Figure4.32 shows the evolution of stress in standard relaxation tests performed
by Magura et al. [591] at room temperature, with different levels of initial stress.
Labels NR and OT refer to two different types of prestressing steel. The effect
of elevated temperature is illustrated in Fig. 4.33 for the temperature range from
the room temperature to 80 ◦C in the tests of Shinko Wire Company (Fig. 4.33a),
and to 175 ◦C in the tests of Rostásy et al. [737] (Fig. 4.33b). The measured data
clearly demonstrate that elevated temperatures due to sun exposure can enormously
accelerate the stress relaxation, especially in hot countries. Finally, in the relaxation
tests of Buckler and Scribner [281] plotted in Fig. 4.34, the strain was kept constant
for 24h, then suddenly reduced and subsequently kept constant again. In most cases
presented here, the fits of the test data based on the model of Bažant and Yu [207]
are excellent, with the exception of high temperatures above 150 ◦C, which occur
in fire. For such temperatures, the basic trend is still captured but the shape of the
simulated relaxation curves deviates from the experimental one; see the lowest curves
in Fig. 4.33b.

Table 4.4 Parameters used for fitting of relaxation tests

Parameter Magura-NR Magura-OT Buckler Shinko Rostásy

f̄ y [MPa] 1565 1334 1806 1550 1670

k 0.082 0.083 0.298 0.223 0.26

ρ0 0.32 0.33 0.22 0.17 0.063

γ 0.45 0.5 0.53 0.52 0.55

c 3 2 2 3 2

Q p/kB [K] − − − 14600 7000

Fig. 4.32 Fitting of steel relaxation tests [591] by the model based on (4.130)–(4.133): (a) series
NR101-105, (b) series OT101-104
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Fig. 4.33 Fitting of steel relaxation tests at different constant temperatures by the model based
on (4.130)–(4.133): (a) tests of Shinko Wire Company, temperature levels 20 ◦C, 40 ◦C, 60 ◦C, and
80 ◦C (from top to bottom), (b) Rostásy, Thienel, and Schütt [737], temperature levels 20 ◦C, 55 ◦C,
70 ◦C, 110 ◦C, 130 ◦C, 155 ◦C, and 175 ◦C (from top to bottom)

Fig. 4.34 Fitting of steel tests under varied strain [281] by the model based on (4.130)–(4.133):
(a) tests SR8-5, (b) test SR14-10

4.3.4.2 Numerical Solution of a Centrically Prestressed Strut

In the preceding section, the history of strain in a prestressed tendon was considered
as prescribed and the corresponding stress history was evaluated by numerically
solving differential equation (4.136), in the numerical approximation rewritten as
(4.137). Let us now examine what happens if the prestress relaxation interacts with
creep and shrinkage of a concrete member.

For illustration of the basic phenomena, consider first the simple case of a centri-
cally prestressed strut with a constant cross section. Suppose that the concrete strut
freely shrinks until time t1, at which the steel tendons are prestressed and anchored.
Let us denote the initial prestress, just after installation of the tendons, as σp1. The
loss of prestress due to slip is already incorporated in the value of σp1, and the loss
of prestress due to wobble friction is neglected, so that we can consider the prestress
as uniform along the strut.
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As long as the total normal force transmitted by the prestressed strut is zero, the
stress in concrete, σc, and the stress in prestressing tendons, σp, are linked by the
condition

Acσc(t) + Apσp(t) = 0 (4.138)

with Ac and Ap, respectively, denoting the sectional areas of concrete and of pre-
stressed tendons.

During the prestressing procedure, the strain in steel jumps fromzero to εp1 and the
strain in concrete from εsh,1 to εcc1. Here, εsh,1 = εsh(t1) denotes the shrinkage strain
(in the sense of sectional average) at time t1. If the prestress is applied sufficiently
fast, the strain in concrete just after prestressing,

εcc1 = εsh,1 + σc1

Ec1
(4.139)

can be evaluated using the short-term elastic modulus of concrete at age t1, Ec1 =
Ec(t1). Subsequently, the strains in concrete and prestressing steel evolve, but their
difference remains constant. We can therefore write

εcc(t) = εcc1 + εp(t) − εp1 (4.140)

The corresponding evolution of stresses can formally be described by relations

σc(t) = Rc{εcc(t) − εsh(t)} (4.141)

σp(t) = Rp{εp(t)} (4.142)

in which Rc denotes the linear relaxation operator for concrete and Rp is the non-
linear relaxation operator that formally describes the stress–strain relation for pre-
stressing steel.

Substituting (4.140) into (4.141) and then substituting (4.141)–(4.142) into
(4.138), we obtain an equation

AcRc{εp(t) − εp1 + εcc1 − εsh(t)} + ApRp{εp(t)} = 0 (4.143)

from which the unknown function εp(t) can be computed. Note that the evolution
of shrinkage strain, εsh(t), is considered as known. The initial strain in steel, εp1 =
εp(t1), is evaluated from the given initial prestress σp1 by inverting the short-term
stress–strain law for steel, σp1 = Fp(εp1), and the initial stress and strain in concrete,
σc1 and εcc1, then follow from (4.138)–(4.139).

Equation (4.143) is highly nonlinear and needs to be solved numerically. Its
approximate solution will be constructed step by step, starting from the prescribed
value εp1 at time t1 and proceeding to strains εpk = εp(tk) at time instants tk ,
k = 2, 3, . . . n. In a typical computational step number k, the value of εpk is already
known and our task is to compute εp,k+1 = εpk + Δεpk . We could directly manip-
ulate Eq. (4.143) and construct its numerical counterpart, but the derivation will be
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easier to follow if we get back to the original set of Eqs. (4.138) and (4.140)–(4.142),
discretize them separately and then eliminate all unknowns except for Δεpk .

For the state at the end of step number k, condition (4.138) is written as

Acσc,k+1 + Apσp,k+1 = 0 (4.144)

where σc,k+1 and σp,k+1, respectively, denote the stresses in concrete and steel at
the end of the step, which have to be expressed in terms of the unknown increment
Δεpk based on constitutive Eqs. (4.141)–(4.142) combined with the compatibility
condition (4.140).

Application of the concrete relaxation operator in (4.141) can be approximated
in the spirit of the AAEM method by the formula

σc,k+1 ≈ Rk+1(εcc1 − εsh,1) + E ′′
k+1(εcc,k+1 − εcc1 − εsh,k+1 + εsh,1) (4.145)

in which Rk+1 = R(tk+1, t1) is the relaxation function and E ′′
k+1 = E ′′(tk+1, t1) is the

age-adjusted effective modulus, both evaluated for the time interval from t1 to tk+1.
Based on (4.140), we can write

εcc,k+1 − εcc1 = εp,k+1 − εp1 = εpk + Δεpk − εp1 (4.146)

and thus the right-hand side of (4.145) can be converted to a linear expression in
terms of the basic unknown, Δεpk . Introducing an auxiliary constant

σ̃c,k+1 = Rk+1(εcc1 − εsh,1) + E ′′
k+1(εp,k − εp1 − εsh,k+1 + εsh,1) (4.147)

we can rewrite (4.145) in the simple form

σc,k+1 = σ̃c,k+1 + E ′′
k+1Δεpk (4.148)

Note that σ̃c,k+1 has a direct physical meaning—it represents the stress that would
arise in concrete at the end of the step if the strain remained constant during step
number k.

The prestress relaxation operator Rp in (4.142) describes in an abstract way the
constitutive law for the tendon, which is actually specified by differential Eq. (4.136),
in the numerical approximation rewritten as (4.137). In the present case, the relation
σp = Rp{εp} is within step number k approximated by

Δσpk = Et
[
Δεpk − Δtk f (εpk + Δεpk, σpk + Δσpk)

]
(4.149)

For simplicity, we assume that the temperature is kept at the reference level and thus
the factor AT can be omitted. Equation (4.149) defines an implicit link between the
stress and strain increments. Formally, we can define function sk which assigns to
each strain increment Δεpk the corresponding stress increment
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Δσpk = sk(Δεpk) (4.150)

obtained as the solution of (4.149).
Substituting (4.148) and (4.150) combinedwithσp,k+1 = σpk + Δσpk into (4.144)

and rearranging the terms, we get a nonlinear equation

Ac E ′′
k+1Δεpk + Apsk(Δεpk) = −Acσ̃c,k+1 − Apσpk (4.151)

for the unknown strain increment Δεpk . The solution is computed by iteration. The
right-hand side of (4.151) is a constant that can be directly evaluated. It corresponds to
minus the normal force calculated under the assumption that the strain during the step
remains constant. Starting from the initial guess Δε

(0)
pk = 0, the left-hand side is then

successively linearized around the current (iterated) solution Δε
(i)
pk , i = 0, 1, 2, . . .,

and the solution is updated until the left-hand side of (4.151) becomes sufficiently
close to the right-hand side.

Note that evaluation of function sk , defined implicitly as the solution of (4.149),
also requires iteration, which is embedded in the iterative solution of (4.151). The
need for two nested iterative loops can be avoided by using an alternative approach,
in which (4.149) is considered as the fundamental equation. From linear Eq. (4.144)
and (4.148), the unknown stress in steel at the end of the step can easily be expressed
in terms of the strain increment Δεpk as

σp,k+1 = − Ac

Ap
σc,k+1 = − Ac

Ap

(
σ̃c,k+1 + E ′′

k+1Δεpk
) = σ̃p,k+1 − E∗

k+1Δεpk

(4.152)
where

σ̃p,k+1 = − Ac

Ap
σ̃c,k+1, E∗

k+1 = Ac

Ap
E ′′

k+1 (4.153)

are auxiliary constants, introduced to simplify the notation. Substituting (4.152) into
(4.149), we obtain a single nonlinear equation

(Et + E∗
k+1)Δεpk − EtΔtk f (εpk + Δεpk, σ̃p,k+1 − E∗

k+1Δεpk) = σ̃p,k+1 − σpk

(4.154)

which needs to be solved iteratively for the unknown Δεpk . A slight disadvantage
could be that such an approach is not applicable in the limit case when Ap = 0.
However, this is the trivial case with no prestressing tendons, which does not require
any computations.

When solving (4.154), one needs to be careful, because the value of f (εp, σp)

tends to infinity for σp approaching Fp(εp) from below and is undefined for
σp ≥ Fp(εp) > γ f̄ y (note that ζ < 1 for σp > Fp(εp) > γ f̄ y , and ζ 1/c − 1 is then
negative, which leads to an undefined power expression in the numerator of the last
fraction in (4.132)). Physically, this is reasonable, because the actual stress σp can
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never exceed the stress computed from the short-term stress–strain law, with relax-
ation effects neglected. However, numerical iteration could in some cases require the
evaluation of function f from formula (4.132) for certain nonconverged combina-
tions of stress and strain which are physically inadmissible, and this must be avoided.
It is therefore advisable to determine in advance a range of values of the strain incre-
ment Δεpk within which the value of f is defined and the difference between both
sides of Eq. (4.154) changes sign. A lower bound on the solution Δεpk is provided
by the condition Fp(εp,k+1) > σp,k+1 which, in the range of elastic short-term steel
behavior, can be rewritten as Et

(
εpk + Δεpk

)
> σ̃p,k+1 − E∗

k+1Δεpk and leads to
the constraint

Δεpk >
σ̃p,k+1 − Etεpk

Et + E∗
k+1

(4.155)

For values of Δεpk close to this lower bound, f is very large and the left-hand side
of (4.154) is negative, very large in magnitude, and therefore algebraically smaller
than the right-hand side.

An upper bound is obtained if we find an increment Δεpk for which f = 0
and simultaneously (Et + E∗

k+1)Δεpk ≥ σ̃p,k+1 − σpk . According to (4.132), we
have f (εp,k+1, σp,k+1) = 0 for σp,k+1 ≤ γ f̄y, which in our case means σ̃p,k+1 −
E∗

k+1Δεpk ≤ γ f̄y. If both aforementioned conditions are satisfied as strict inequali-
ties, the left-hand side of (4.154) is larger than the right-hand side and Δεpk cannot
be a solution. From these considerations, we obtain the constraint

Δεpk ≤ max

(
σ̃p,k+1 − γ f̄y

E∗
k+1

,
σ̃p,k+1 − σpk

Et + E∗
k+1

)
(4.156)

Once the interval in which the solution must be located has been identified,
Eq. (4.154) can be solved for instance by the Newton method, making sure that
the initial guess and all subsequent iterated approximations remain within this
interval. Should the iterative process lead to a value outside the interval, it is better
to switch to a slower but more robust technique, such as the secant method, or even
the bisection method.

Example 4.16. Interaction of prestress relaxation with creep and shrinkage in a
centrically prestressed strut

To get an idea about the relative importance of individual phenomena, let us compute
the evolution of strain and stress for a specific case. The concrete is supposed to have
the same properties as in Example 3.1, and the properties of prestressing tendons are
taken from the column of Table4.4 that corresponds to the experiments of Buckler
andScribner [281]. The reinforcement ratio is set to Ap/Ac = 0.01.Concrete is cured
until 7days and then left stress-free until the age of 28days, when the tendons are
prestressed to σp1 = 1300 MPa. The stress in concrete is computed from condition
(4.138) and is, for the given reinforcement ratio of 1%, initially equal to σc1 =
−13 MPa.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 4.35 Relaxation of prestress in a tendon and its interaction with creep and shrinkage: (a) strain
evolution, (b) stress evolution

For simplicity, we do not consider any external loading of the strut (otherwise, we
would need to replace zero on the right-hand side of (4.144) by the normal force).
Figure4.35 shows the evolution of strain and stress in the tendon computed by the
numerical algorithm with an initially very small and gradually increasing time step.
The strain in concrete differs from the strain in prestressing steel by a constant, and
the compressive stress in concrete is 100 times smaller in magnitude than the tensile
stress in the tendon. The top curves (dashed) in both parts of Fig. 4.35 correspond
to the case of prestress relaxation under constant strain (note that the scale on the
time axis is in days, not in hours as in Figs. 4.32, 4.33, and 4.34). It is seen that, in
a standard relaxation test, the prestress would decrease from its initial value 1300
MPa to 1223 MPa after 100days and to 1099 MPa after 10,000days. But the strain
in the prestressed concrete strut would actually remain constant only if the concrete
did not shrink and remained elastic (with no creep). For shrinkage alone (still with
no creep), the strain in the tendon would decrease as indicated by the dotted curve in
Fig. 4.35a, and the prestress would decrease to 1209 MPa after 100days and to 1063
MPa after 10,000days. Of course, this is a fictitious case, but the results illustrate the
relative importance of shrinkage. On the other hand, if there is no shrinkage (e.g.,
under sealed conditions) but the concrete exhibits basic creep, the strain and stress
evolutions correspond to the short-dashed curves, and the prestress decreases to 1187
MPa after 100days and to 1045MPa after 10,000days. Finally, if creep and shrinkage
in an environment of 70% relative humidity are taken into account (including drying
creep), the strain and stress evolve as shown by the solid curves, and the prestress
decreases to 1165 MPa after 100days and to 988 MPa after 10,000days.

In summary, the relative loss of prestress after 10,000days due to steel relaxation
(at constant strain) is, in this particular example, about 15%, and the effects of
basic creep under sealed conditions would add another 4%, while the effects of
creep and shrinkage under 70% ambient relative humidity would add almost 9% (to
the original 15%). Of course, all these results refer to the specific combination of
material properties and reinforcement ratio used in the present example and should
not be considered as generally valid. �
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4.3.4.3 Prestressed Beams

In general, a prestressed concrete beam can be subjected to a combination of axial
compression and bending. The deformation of each section is characterized by the
axial strain εa (measured at the centroid) and curvature κ , which may both vary along
the beam axis. For a reinforced concrete beam, as a special case of a composite beam,
the internal forceswould be linked to the deformation variables byEqs. (4.84)–(4.85),
with operators RA, RS , and RI given by (4.86)–(4.88). However, for a prestressed
beam we can use formulae (4.84)–(4.85) only for the contribution of the concrete
part of the cross section. For the prestressed steel part, we must take into account
three aspects that call for appropriate modifications of the mathematical model:

1. the stress–strain law is nonlinear and time-dependent,
2. the initial strain in prestressed steel differs from the initial strain in concrete, and
3. the difference between the strains in steel and in adjacent concrete may even

evolve in time.

The first aspect implies that the operator Rp describing the special constitutive law
for prestressing steel is nonlinear. If thiswere the only difference compared to the case
of reinforced concrete, it would be sufficient to replace in (4.86)–(4.88) the product
EsI (i.e., the product of the steel elastic modulus and the identity operator) byRp,
and the reinforcing steel area As by the prestressing steel area Ap. However, due to
the second aspect listed above, such a simple replacement is not possible because
Rp must be applied on the strain in prestressing steel, εp, which is not the same as
the strain in the adjacent concrete. When the prestress is applied, the tendons are
stretched and, if the beam is posttensioned, the adjacent concrete is compressed. The
strain in concrete may also contain another negative component caused by previous
shrinkage. It is therefore better to consider the strain in prestressing steel, εp, as an
additional (in principle independent) deformation variable and evaluate the internal
forces as the sum of contributions from concrete and from prestressing steel.

The internal forces in an eccentrically prestressed beam are expressed as

N = RA{εa} + RS{κ} + ApRp{εp} + Nsh (4.157)

M = RS{εa} + RI {κ} + eApRp{εp} + Msh (4.158)

e

Fig. 4.36 Cross section of concrete beam with prestressed tendons
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where operators RA,RS , and RI are given by formulae analogous to (4.86)–(4.88)
but with the steel part omitted, and e denotes the distance of the tendon centroid
(or of the centroid of a group of tendons) from the horizontal centroidal axis; see
Fig. 4.36. If the compliance function of concrete is the same across the whole section
(i.e., if differential creep is neglected), the above equations reduce to

N = AcRc{εa} + ApRp{εp} + Nsh (4.159)

M = IcRc{κ} + eApRp{εp} + Msh (4.160)

where Ic is the moment of inertia of the concrete part of the section. Although both
of these equations are nonlinear (due to nonlinearity of Rp), they can be combined
such that the resulting equation becomes linear. Indeed, multiplying (4.159) by e and
subtracting it from (4.160), we obtain

M − Ne = Rc{Icκ − eAcεa} + Msh − eNsh (4.161)

Physically, the right-hand side of (4.161) corresponds to the moment resultant of
stresses, expressed with respect to the horizontal axis that passes through the tendon
centroid (i.e., is shifted by e with respect to the centroidal axis of the section). The
force in the tendon does not contribute to this moment, and this is why εp does not
appear in the condition. Equation (4.161) is linear but still needs to be combined
with one of the original nonlinear equations, (4.159) or (4.160). The resulting set of
two equations contains two unknown functions. To proceed further, we have to take
into account how the strain in prestressing steel, εp, is related to the deformation
variables εa and κ , which correspond to the axial strain in concrete and curvature of
the concrete segment.

A direct relation between the strains in prestressing steel and in concrete can
be established only if the two materials are perfectly bonded. This is the case for
pretensioned members, and approximately also for posttensioned members if they
are injected with grout. Even then, the initial strains in the two materials are not the
same, but their difference remains constant in time. Thus, one can write

εp(t) = εa(t) + eκ(t) + Δεpc1, for t ≥ t1 (4.162)

where Δεpc1 is the difference between the steel and concrete strains at time t1 when
the bond is formed. Based on (4.162), εp can be eliminated from the set of equations
describing the problem.

If the structure is statically determinate, the internal forces can be precomputed
from equilibrium with external forces (independently of the constitutive and kine-
matic equations) and afterward treated as known functions. Inverting Eq. (4.161) and
taking into account definitions (4.80) and (4.83) of Nsh and Msh, we can express the
curvature in terms of the axial strain. The result can be presented in the form

κ = eAc

Ic
εa + κ∗ (4.163)
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where

κ∗ = 1

Ic

(
Jc{M} − eJc{N } +

∫
A
(z − e)εsh dA

)
(4.164)

is a function that can be computed from the history of internal forces and shrinkage
strain. Based on (4.162)–(4.163), it is easy to convert (4.159) into an equation

AcRc{εa} + ApRp

{(
1 + e2 Ac

Ic

)
εa + eκ∗ + Δεpc1

}
= N − Nsh (4.165)

with εa as the only unknown function.
Due to nonlinearity of Rp, Eq. (4.165) requires a numerical solution. Its formal

structure is similar to Eq. (4.143) solved in Sect. 4.3.4.2, and thus the numerical
procedure developed in that section can be reused after straightforwardmodifications.
In fact, the problem addressed in Sect. 4.3.4.2 (an axially prestressed strut with zero
internal forces and uniform strain) can be interpreted as a special case of the present,
more general formulation. For r = 0 and N = 0, Eq. (4.165) is equivalent to (4.143),
with εa replaced by εp − Δεpc1 where Δεpc1 = εp1 − εcc1, and with Nsh rewritten
as −AcRc{εsh}. For the special case of uniform strain, the assumption that strains in
steel and concrete differ by a constant is justified even in the absence of a bond.

If the structure is statically indeterminate, Eqs. (4.159)–(4.160) and (4.162)must
be combined with the equilibrium equations and with kinematic equations εa = u′

a
and κ = −w′′ that link the deformation variables to the axial displacement ua and
deflectionw. Due to nonlinearity of the prestress relaxation operatorRp, the problem
always requires a numerical solution.

The situation becomes evenmore complicated if a perfect bond between steel ten-
dons and concrete is not ensured. The strain in the tendon then cannot be expressed
directly from the axial strain (in concrete) and curvature. The tendon can slip, and its
axial displacement must be introduced as an additional unknown function, u p. The
strain in the tendon (or group of tendons subjected to the same strain) is expressed
as εp = u′

p, and the difference between the increments of u p and ua − w′z is the
slip displacement, which is related by an additional constitutive law to the shear flux
between the tendon and concrete. The shear flux then enters an additional equilib-
rium equation for the tendon in axial direction, which, combined with the standard
two equilibrium equations for the whole beam, provides three equations for three
unknown functions, ua , w and u p. These equations have a differential character with
respect to the spatial variable x , but they also contain the constitutive operators Rc

and Rp describing the dependence of stress on the strain history. If the beam con-
tains several groups of tendons with a different strain in each group, one unknown
displacement function is introduced for each group and one additional equilibrium
equation is set up for each group.
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4.3.5 Creep Buckling

Creep and shrinkage cause excessive deflections and stress redistributionswith crack-
ing, which compromise durability but not much structural safety. From the safety
viewpoint, it is important to take into account the reduction of the long-time buckling
strength of slender columns, thin plates and shells; see Bažant and Cedolin [115]. As
a prototype buckling problem, consider a beam-column with cross section character-
ized by the (possibly variable) moment of inertia I and with a slight initial deviation
from the perfectly straight shape described by function z0 (distance of the centroids
of individual cross sections from the straight line connecting the centroids of the
end sections). The beam-column is loaded by a lateral load of intensity f (possibly
variable along the axis) and by an axially applied force P > 0 which induces a com-
pressive normal force N = −P (constant along the axis). If the material behavior is
linearly elastic, with Young’s modulus E , the general equation for the deflection6 w
may be written as

(E I w′′)′′ + P(w + z0)
′′ = f (4.166)

As a special case, for a beam with constant cross section and with no lateral load,
the governing equation can be simplified to

E I wI V + P(w + z0)
′′ = 0 (4.167)

This fourth-order differential equation must be combined with two boundary condi-
tions at each end, which depend on the type of supports. For a pin-ended column of
length L , they read

w(0) = 0, w′′(0) = 0, w(L) = 0, w′′(L) = 0 (4.168)

If the initial imperfection is approximated by a harmonic function

z0(x) = z̄0 sin
πx

L
(4.169)

then equation (4.167) with boundary conditions (4.168) has the analytical solution

w0(x) = w̄ sin
πx

L
(4.170)

with maximum deflection

w̄ = z̄0
P

Pcr − P
(4.171)

6By “deflection”w wemean the additional lateral displacement with respect to the initial unstressed
state. The initial deviation of the column axis from a straight line is characterized by function z0,
and the sum z = z0 + w will be called the “deflection ordinate.”
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where

Pcr = E Iπ2

L2
(4.172)

is the critical load (buckling load). It is also useful to express themaximumdeflection
ordinate (i.e., the total deviation from the straight shape),

z̄ = z̄0 + w̄ = z̄0

(
1 + P

Pcr − P

)
= z̄0

1

1 − P/Pcr
(4.173)

With growing load P , the deflection grows and tends to infinity as P approaches
Pcr. For a perfectly straight column with z̄0 = 0, the deflection remains zero as long
as P < Pcr, and it can become arbitrarily large for P = Pcr. Of course, this is only
an idealized case. A real column always has an initial imperfection, and axial com-
pression is accompanied by bending. Since the material has a finite strength, the
combination of internal forces (axial force and bending moment) becomes inad-
missible before the critical load computed for an idealized linear elastic material is
attained.

If the material exhibits creep, the deflections due to the dead load grow in time,
which amplifies the bending moment and contributes to failure. In Eq. (4.166), it
is necessary to replace the multiplication by elastic modulus by application of the
relaxation operator. For reinforced concrete, this equation is generalized to

(Es Isw′′ + IcR{w′′})′′ + P(w + z0)
′′ = f (4.174)

where Es is the elastic modulus of steel, Is and Ic are the moments of inertia of
the reinforcing bars and of the concrete part of the section (with respect to the
centroidal axis of the whole section), andR is the relaxation operator characterizing
the viscoelastic behavior of concrete. The deflection w now depends not only on the
spatial coordinate x but also on the time t .

In general, Eq. (4.174) would need to be solved numerically in space and time.
To illustrate the basic phenomena caused by the time-dependent behavior of the
material, let us consider the simple case of a column with a constant cross section
and no lateral loading, and with an initial imperfection described by the harmonic
function (4.169). The governing equation then takes the form

Es IswI V + IcR{wI V } + Pw′′ = P
π2

L2
z̄0 sin

πx

L
(4.175)

This equation with boundary conditions (4.168) has a solution of the form (4.170)
with the constant w̄ replaced by a function of time satisfying the integral equation

π4

L4
(Es Isw̄ + IcR{w̄}) − π2

L2
Pw̄ = P

π2

L2
z̄0 (4.176)
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The solution can be constructed by a step-by-step procedure, or approximated using
the AAEM method; see Sect. 4.2.

Suppose that the force P is applied at time t1 and afterward remains con-
stant. In the spirit of the AAEM method, we can replace R{w̄(t)} by R(t, t1)w̄1 +
E ′′(t, t1)[w̄(t) − w̄1] where w̄1 = w̄(t+

1 ) is the maximum deflection just after load-
ing. To keep the derivation easier to follow, we omit arguments t and t1 of R and E ′′,
and we rewrite (4.176) as

π2

L2

(
Es Isw̄ + Ic

[
Rw̄1 + E ′′(w̄ − w̄1)

])− Pw̄ = Pz̄0 (4.177)

At time t = t+
1 , we have w̄ = w̄1 and R = E ′′ = E1 = short-term elastic modulus at

age t1. The initial (short-term, elastic) value of the maximum deflection calculated
from (4.177) can be expressed in the form

w̄1 = z̄0
P

Pcr,1 − P
(4.178)

where

Pcr,1 = (Es Is + E1 Ic)π
2

L2
(4.179)

is the critical load evaluated according to formula (4.172) valid for elasticity, with the
elastic bending stiffness of the section E I set equal to Es Is + E1 Ic, i.e., calculated
using the short-term elastic modulus of concrete. Once w̄1 is known, we can proceed
to a general time t and express the corresponding maximum deflection w̄ as

w̄ = Pz̄0 + π2

L2 (E ′′ − R)Icw̄1

P ′′
cr − P

= Pz̄0
P ′′

cr − P

(
1 +

π2

L2 (E ′′ − R)Ic

Pcr,1 − P

)
(4.180)

in which

P ′′
cr = (Es Is + E ′′ Ic)π

2

L2
(4.181)

is the critical load evaluated again from formula (4.172), but this time with the elastic
modulus of concrete replaced by the age-adjusted effective modulus E ′′. Formula
(4.180) can be recast as

w̄ = z̄0
P(P∗

cr − P)

(P ′′
cr − P)(Pcr,1 − P)

(4.182)

where

P∗
cr = Pcr,1 + π2

L2
(E ′′ − R)Ic = (Es Is + E∗ Ic)π

2

L2
(4.183)

is yet another critical load, calculated with the modulus of concrete set to
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E∗ = E1 + E ′′ − R = E ′′E1 J (4.184)

The last identity in (4.184) follows from the definition of the age-adjusted effective
modulus (4.47).

The derived formula (4.182) for the maximum deflection contains three auxiliary
critical loads. The short-term critical load Pcr,1 is constant while P ′′

cr and P∗
cr evolve in

time. Initially, at t = t+
1 , all these critical loads coincide because E ′′(t+

1 , t1) = E1 and
J (t+

1 , t1) = 1/E1. If the load P applied at time t1 attains or exceeds the short-term
critical load Pcr,1, stability is lost immediately. If P < Pcr,1, the maximum deflection
starts from the initial value w̄1 given by (4.178) and its subsequent growth at constant
load P is described by (4.182) with time-dependent values of P ′′

cr and P∗
cr . For

times t > t1, we have P ′′
cr < Pcr,1 < P∗

cr because E ′′ < E1 < E∗ (the last inequality
is equivalent to E ′′ J < 1, which follows from R J ≤ 1 and from the definition of
the age-adjusted effective modulus (4.47). Due to the decrease of the age-adjusted
effective modulus E ′′, the critical load P ′′

cr decreases in time, and as it approaches P
from above, the deflection growth is accelerated and the column fails. The theoretical
time to failure t f − t1 canbe calculated from the condition P ′′

cr (t f , t1) = P .Of course,
in reality the column fails somewhat earlier because at large deflections the material
behavior ceases to be linear viscoelastic.

Formula (4.182) can be rewritten in the dimensionless form as

w̄

z̄0
=

P∗
cr
P − 1(

P ′′
cr
P − 1

) (
Pcr,1

P − 1
) = μπ∗ − 1

(μπ ′′ − 1)(μ − 1)
(4.185)

where

μ = Pcr,1

P
, π∗ = P∗

cr

Pcr,1
, π ′′ = P ′′

cr

Pcr,1
(4.186)

Parameterμ plays the role of a short-term safety factor (ratio between the short-term
critical load and the actually applied load). Factors π∗ and π ′′ represent the time-
dependent critical loads P∗

cr and P ′′
cr normalized by the short-term critical load Pcr,1.

They can be evaluated as

π∗ = Es Is + E∗ Ic

Es Is + E1 Ic
, π ′′ = Es Is + E ′′ Ic

Es Is + E1 Ic
(4.187)

and if the contribution of reinforcement to the bending stiffness is neglected, they
reduce to normalized moduli:

π∗ ≈ E∗

E1
= E ′′ J, π ′′ ≈ E ′′

E1
(4.188)

For illustration, Fig. 4.37a shows the dependence of the normalized critical loads
π∗ and π ′′ on the load duration t − t1 for concrete described by the B3 model with
parameters from Example 3.1. The age at loading is set to t1 = 100 days and drying

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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creep is taken into account, with t0 = 7 days and henv = 70%. As expected, factor
π∗ increases in time while factor π ′′ decreases. In Fig. 4.37b, the growth of the
normalized deflection w̄/z̄0 in time is plotted for different values of the short-term
safety factor μ. For instance, μ = 1.25 means that the applied load is at 80% of the
short-term critical load (P/Pcr,1 = 1/μ = 1/1.25 = 0.8). The short-term deflection
(meaning the deflection at 0.01day after loading) is then w̄1 = 4z̄0, as follows from
(4.178) with Pcr,1/P = μ = 1.25. At 1day after loading, the deflection is already 9.3
times the initial imperfection z̄0, at 10days it is 115 times z̄0, and it blows up within
a few additional days. For μ = 2, i.e., for an applied load at 50% of the short-term
critical load, the short-term deflection is equal to the initial imperfection z̄0 and the
deflection after 1day is still only 1.3 z̄0. However, after 100days it grows to 3.5 z̄0,
and it blows up at about 2years. The actual shape of this curve in linear scale is better
seen in Fig. 4.37c.

Figure 4.37d shows the time to failure t − t f as a function of the short-term safety
factor μ. The solid curve corresponds to the theoretical time at which P ′′

cr = P , and
the deflection becomes infinite. From the practical point of view, the deflections
should be limited by a finite value. The dashed curve shows the time at which the
deflection attains 20 times the initial imperfection, and the dotted curve corresponds
to 5 times the initial imperfection.

Fig. 4.37 Creep buckling: (a) dependence of the normalized critical loads on the load duration,
(b)–(c) dependence of the normalized deflection on the load duration, (d) dependence between the
short-term safety factor and the time to failure
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Thedesign for creepbuckling is based on the evaluation of themaximumbending
moment due to dead load combined with live load. The effects of creep are taken into
account for the dead load only, while the response to the superimposed live load is
considered as elastic. The combination of the resulting maximum bending moment
and normal force must not fall outside the cross-sectional interaction diagram. To
take into account the statistical uncertainties of the loads, the design values of the
dead and live loads, PD and PL , are replaced by the factored loads P∗

D = ψDu PD

and P∗
L = ψLu PL where, according to the ACI Standard [17], the factors guarding

against overload uncertainty are ψDu = 1.2 and ψLu = 1.6 when both dead and live
load act jointly, and ψDu = 1.4 when the dead load is considered separately.

The statistical uncertainties of the column properties are reflected by two other
factors. The stiffness reduction factor, φK , accounts for the variability in the sectional
bending stiffness E I and the moment magnification analysis and is applied on the
critical load. According to ACI Committee 318 [17], φK = 0.75 for an isolated
column and 0.875 for a multistory frame. The strength reduction factor, φ, accounts
for variations in material strength and dimensions and for inaccuracies in the design
equations and reflects the degree of ductility of the member under the load effects
being considered and the importance of the member. For compression-controlled
failure,φ = 0.75 formemberswith spiral reinforcement and 0.65 for other reinforced
members.

For sustained loading by the factored dead load P∗
D , we can calculate (e.g., by

the method indicated above, or by step-by-step computer analysis with a rate-type
creep law described in Chap.5) the maximum deflection ordinate z̄(t) = z̄0 + w̄(t)
at time t corresponding to the specified lifetime. Consider now that at time t the axial
load is rapidly increased from P∗

D to P∗
D + P∗

L where P∗
L is the factored live load.

For this overload, the short-term response can be evaluated using an elastic analysis,
with the elastic modulus taken as the short-term modulus E(t) corresponding to the
current age t . Let us denote the corresponding short-term critical load as Pcr(t) (for
a simply supported column, Pcr(t) = (Es Is + E(t)Ic)π

2/L2).7 To take into account
the uncertainties in the properties of the column, this critical load is later multiplied
by the stiffness reduction factor φK .

Before the overload by P∗
L , the column is loaded by axial load P∗

D and its total
deflection is z̄(t) = z̄0 f (t). For short-term loading (or unloading), it behaves like
an elastic column with an initial imperfection z̃0, which can be evaluated from
Eq. (4.173), rewritten as

7In fact, the ACI Standard [17] recommends to estimate the sectional bending stiffness as Es Is +
0.2Ec Ic where the concrete elastic modulus Ec is reduced by factor 0.2 (it is also possible to
use a more accurate formula, which incorporates the dependence on the specific combination of
normal force and bending moment; see Eq. (10-8) in [17]). This huge reduction of Ec is in code
commentary attributed to the effects of cracking and nonlinearity in the stress–strain response. The
consideration of cracking apparently refers to combinations of axial force with significant bending
moments, which can lead to tensile strains. Similar provisions occur in Eurocode [373], with 0.2
replaced by a factor that depends on concrete grade, member slenderness ratio, and the relative axial
force (ratio of axial force to maximum allowable force).

http://dx.doi.org/10.1007/978-94-024-1138-6_5
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z̄(t) = z̃0(t)
1

1 − P∗
D

φK Pcr(t)

(4.189)

Physically, z̃0 can be interpreted as the deflection ordinate which would be found
right after a sudden removal of the axial load. For a viscoelastic column, z̃0 is larger
than the initial imperfection z̄0 because of the accumulated deformation due to creep
and because of aging.

From (4.189), it is easy to express

z̃0(t) = z̄(t)

(
1 − P∗

D

φK Pcr(t)

)
(4.190)

and then the total deflection ordinate for a column axially loaded by P∗
D + P∗

L is
calculated as

z̄DL(t) = z̃0(t)
φK Pcr(t)

φK Pcr(t) − P∗
D − P∗

L

= z̄(t)
φK Pcr(t) − P∗

D

φK Pcr(t) − P∗
D − P∗

L

(4.191)

Themagnified bendingmoment for which a column under sustained load and sudden
overload must be designed is

M∗
DL(t) = (P∗

D + P∗
L ) z̄DL(t) (4.192)

The design requirement is that, in the limit interaction envelope of bending moment
M versus axial load P , the point (M∗

DL/φ, (P∗
D + P∗

L )/φ) must not lie outside the
envelope. Here, P∗

D and P∗
L are the factored loads and φ is the strength reduction

factor.

4.3.6 Reduction of Flexural Creep Due to Cracking in
Unprestressed Reinforced Concrete

In unprestressed reinforced concrete (RC) beams, the tensile cracking causes that the
effective creep coefficient for flexure is much smaller than in prestressed concrete
beams, in which cracking is suppressed. The situation is explained in Fig. 4.38,
where a cross section is subjected to a sustained bending moment M which causes
distributed cracking up to the neutral axis (n.a.) of zero strain. The middle diagram
shows the typical stress distribution σ(z) under service load, the resultant C of the
compressive stresses in concrete, and the tensile force T in the steel bar. The diagram
on the right depicts the corresponding elastic strain distribution, for which the strain
at the level of C is εC

e = σ C/E (segment 23 in the figure). The elastic bending
curvature is given by the strain diagram slope κe = dε/dz, which is the slope of line
103 in the figure.
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Fig. 4.38 Reinforced concrete cross section subjected to bending

The key point to note is that the tensile strain at the level of steel bar remains,
under constant moment M , constant, because the steel bar does not creep and is under
approximately constant stress. So, point 1 does notmove.On the other hand, the strain
at the level of compression resultant C will grow by creep increment εC

c = ϕσ C/E
(segment 34 in the figure) where ϕ is the creep coefficient. The curvature increment
due to concrete creep is then κc = εC

c /r where r is the arm of internal forces (C = T ).
The sum of the initial elastic curvature and the additional curvature due to creep,
κe + κc, is thus equal to the slope of the line connecting points 1 and 4. The curvature
change at no strain change in steel will of course require a downward shift of the
neutral axis from point 0 to point 5, which would cause closing of the distributed
cracks over portion 05 of cross-sectional depth.

For comparison note that, in the absence of cracking, which is the case of pre-
stressed beam, the beam curvature after creep, κpr, would be given by the slope of
the dashed line 04, which can be 2 to 5 times greater than the cracked beam curva-
ture that has just been calculated (compare slopes of lines 451 and 40 in the figure).
Furthermore, prestressed beams are in reality much more slender and, consequently,
they can have 3 to 10 times greater creep curvatures and deflections than reinforced
concrete beams over the same span.

This observation shows that the creep analysis of unprestressed reinforced con-
crete beams and frames is much less important than it is for prestressed beams and
frames. For unprestressed beams and frames, the estimates of creep deflections can
be very crude or even skipped. Aside from the prestress loss, this was another reason
why the introduction of prestressed concrete in the 1940s required (and depended
on) taking creep into account.



Chapter 5
Numerical Analysis of Creep Problems

Abstract Introduction of computers several decades ago was a quantum jump in
what is feasible in creep structural analysis. It made possible efficient step-by-step
evaluation of history integrals or integration of differential equations for both frame-
type and finite element creep analysis of structures. Closer to the first principles is
the numerical analysis based on history integrals. We discuss it first and point out its
limitations due to excessive computer demands. Then, we present the rate-type con-
version of creep analysis with aging, which represents a generalization of the Kelvin
chain model of classical viscoelasticity, leads to far more efficient calculations, and
makes it easy to take into account the effects of drying, variable environment, and
cracking. We examine the accuracy and numerical stability of various numerical
integration schemes and emphasize the exponential algorithm, which is uncondi-
tionally stable, allowing arbitrarily increasing time steps as the stress changes fade
out. The algorithm is first presented for a nonaging Kelvin chain and then extended
to a solidifying chain and to a chain with general aging.

5.1 Numerical Analysis of Structural Creep Problems
Based on History Integrals

In linear viscoelasticity, the relations between stress and strain histories are given by
the integral expressions (2.14) and (2.23). Analytical evaluation of the integrals is
possible only for simplemodels and simple histories of the prescribed variable (stress
or strain). For general applications, numerical integration schemes are needed. They
can rely on standard quadrature rules known from numerical mathematics, such as
the trapezoidal rule or the Simpson rule. For highly nonlinear compliance functions,
the accuracy can be increased by special quadrature rules.

Approximations of the impulse memory integral by sums were proposed, e.g., by
Prokopovich [709, 710]. Early numerical analyses of structural problems based on
approximating the integral

∫ t
0 J (t, t ′) dσ(t ′) with a sum were presented by Bresler

and Selna [255], Ghali, Neville and Jha [425], Selna [771], Tadros, Ghali and Dilger
[798, 799], Cederberg and David [302], and Rashid [718]. The last two were the
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first finite element studies of creep in nuclear reactor vessels. Composite redundant
steel-concrete beams were solved numerically by Bažant [73].

Suppose that the stress history σ(t) in a certain time interval [t1, tmax] is prescribed
(with no stress acting before time t1), and the corresponding strain history ε(t) is
to be computed. The evolution of strain can be characterized by values εk = ε(tk)
at discrete time instants t1, t2 = t1 + Δt1, t3 = t2 + Δt2, ... tn−1 = tn−2 + Δtn−2,
tn = tn−1 + Δtn−1 = tmax. In typical structural applications, it is appropriate to use
increasing time steps Δtk , because the creep process slows down in time. Optimally
(for constant load), the time increments Δtk may be selected as constant in the
logarithmic scale, which means that they form a geometric progression. Several
steps per decade usually suffice.

The initial value of strain at time t−1 , just before the onset of loading, is prescribed,
usually as ε1 = 0. The strain at times tk , k = 2, 3, . . . n, is approximated according
to the numerical quadrature rule by1

εk =
∫ tk

t−1
J (tk, t

′) dσ(t ′) ≈
k−1∑

i=1

Jk,i Δσi (5.1)

where
Δσi = σ(ti+1) − σ(ti ) (5.2)

is the stress increment in time step number i , and coefficients Jk,i are evaluated as

Jk,i = J

(

tk,
ti+1 + ti

2

)

(5.3)

for the midpoint (or rectangular) rule, or as

Jk,i = J (tk, ti+1) + J (tk, ti )

2
(5.4)

for the trapezoidal rule. For convenience, we denote

ti+1/2 = ti+1 + ti
2

= ti + 1

2
Δti (5.5)

1The superscript “minus” at the lower bound t−1 of the integral in (5.1) emphasizes that integration
in the Stieltjes sense starts just before time t1, so that the potential initial change of stress by a jump
is captured correctly. In fact, if the stress history contains jumps, numerical accuracy is increased
by treating the corresponding terms separately, in the spirit of formula (2.15). This is equivalent
to using zero-duration time steps associated with the stress jumps at certain discrete times. More
specifically, if the stress has a jump at time tjump, we select the time steps of the numerical scheme
such that tk = t−jump and tk+1 = t+jump for a certain time step number k. The duration of that step,

Δtk , is then zero, but the stress increment, Δσk = σ(t+jump) − σ(t−jump), is nonzero and corresponds
to the stress jump.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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and rewrite (5.3) as
Jk,i = J

(
tk, ti+1/2

)
(5.6)

Note that, for simplicity, we use J with subscripts k, i , even though a more logical
(but clumsier) notation would be Jk,i+1/2.

The increment of strain in step number k is

Δεk = εk+1 − εk = Jk+1,kΔσk +
k−1∑

i=1

ΔJk,i Δσi (5.7)

where
ΔJk,i = Jk+1,i − Jk,i (5.8)

Equation (5.7) can be interpreted as the numerical counterpart of the analytical
formula (2.17), and it shows that the incremental stress–strain relation is linear. To
emphasize that, we rewrite (5.7) as

Δεk = Δσk

Ēk
+ Δε′′

k (5.9)

where

Ēk = 1

Jk+1,k
(5.10)

is the incremental modulus in step number k and

Δε′′
k =

k−1∑

i=1

ΔJk,i Δσi (5.11)

is the strain increment caused by creep at constant stress (in step number k). In
this way, the strain increment is presented as the sum of two terms, one of which
is proportional to the stress increment and represents the “almost” instantaneous
deformation while the other is independent of the stress increment and represents
the delayed effects.

The asymptotic rate of convergence is the same for both rules (midpoint and
trapezoidal). It depends on the type of stress history and may be affected by the
special form of the compliance function, but in the optimal case is quadratic [75].

Example 5.1. Accuracy and convergence rate of integration schemes*

Let us apply the midpoint rule (MR) and the trapezoidal rule (TR) to a simple
calculation of the strain history corresponding to the prescribed stress history shown
in Fig. 5.1a. The material is loaded at age t = 30 days by suddenly applied stress
5 MPa, which remains constant until t = 60 days. Subsequently, the stress increases
quadratically up to the level of 15 MPa, attained at t = 90 days, and afterward is
kept constant.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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First, consider a very simple nonaging viscoelastic model with compliance func-
tion given by

J (t, t ′) = 1

E0
+ 1

E1
exp

(

− t − t ′

τ1

)

(5.12)

which corresponds to the so-called standard linear solid (elastic spring of stiffness E0

coupled in series with a Kelvin unit characterized by stiffness E1 and retardation time
τ1). The specific values of model parameters are taken as 1/E0 = 20 × 10−6/MPa,
1/E1 = 24×10−6/MPa, and τ1 = 15 days. Owing to the simple form of compliance
function and stress history, the integral expression for the strain evolution can be
evaluated analytically. The exact strain history is shown in Fig. 5.1b by the solid
curve. The isolated points represent the values obtained with a uniform time step
Δt = 15 days using the MR (filled circles) or the TR (crosses). Since the stress has
a jump at time t = 30 days, a zero-size step is inserted before the regular steps. Up
to t = 60 days, the numerical solution is exact, because creep takes place at constant
stress. Later the numerical solution slightly deviates from the exact one, but the
accuracy is seen to be good, even with a relatively large step. In this particular case,
the MR leads to a larger error than the TR. The convergence rate can be assessed by
plotting the error against the step size in logarithmic scale. In Fig. 5.1c, the relative
error of strain at time t = 90 days is used for this purpose. For comparison, the
dashed line indicates slope 2:1. The actual slope of the error plot is very close to
this ideal slope, which means that the error is for both rules (almost) proportional
to the square of the step size. In other words, the asymptotic convergence rate is
quadratic. The accuracy of the TR is found to be higher than the accuracy of the MR,
but this conclusion cannot be considered as a general rule. For instance, if the convex
quadratic evolution of stress between times 60 days and 90 days is replaced by a
linear one, or by a concave quadratic one, the strain at 90 days numerically evaluated
by the MR would be more accurate than if the TR (with the same step size) is used.
The asymptotic convergence rate would still remain quadratic.

It can be proven that quadratic convergence rate is guaranteed if the compliance
function and the stress history have bounded second derivatives. It is sufficient if
this condition is satisfied “in the piecewise sense”, i.e., the stress history may exhibit
kinks (discontinuities of the first derivative) or jumps at a finite number of time
instants. At those time instants at which the stress history is discontinuous, zero-size
computational steps should be inserted.

As explained in Chap. 3, the actual creep compliance function of concrete is,
for very short load durations, proportional to a power function with exponent n,
usually taken as 0.1. The derivative of such a function is unbounded (and the second
derivative as well), which may spoil the quadratic convergence rate. For instance,
consider that the material is described by the log-double-power law (3.9) (short
form of B3 model), with conventional elastic modulus E28 = 30 GPa and with
standard values of all other parameters. The corresponding strain history is plotted in
Fig. 5.1d. The solid curve shows the converged results (computed with a very short
time step), while the isolated points represent the values obtained with a uniform
time step Δt = 15 days using the MR (filled circles) or the TR (crosses). To capture

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 5.1 (a) Prescribed stress history considered in Example 5.1, (b) the corresponding strain
history for the standard linear solid (simple case of Kelvin chain), (c) relative error of numerically
evaluated strain at time t = 90 days for the standard linear solid, (d) strain history for the short
form of model B3, (e) relative error of numerically evaluated strain at time t = 90 days for the short
form of model B3

properly the stress jump at t = 30 days, the first integration step has zero size and
the corresponding stress increment is Δσ1 = 5 MPa. In this first step, the strain
jumps to J (t+1 , t1)Δσ1 = q1Δσ1 = Δσ1/E0 = 5 MPa/50 GPa = 100 × 10−6,
where E0 = E28/0.6 = 50 GPa is the asymptotic modulus and q1 = 1/E0 is the
instantaneous compliance. In Fig. 5.1d, the first cross and circle seem to be located
in the middle of a vertical segment representing the exact solution, but actually only
the lower part of that segment up to the first point is exactly vertical, while the upper
part follows the shape of the compliance function and slightly bends to the right,
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which is not visible in the present scale of the time axis covering many days. In fact,
the numerical solution is exact up to time t = 60 days, independently of the size of
subsequent steps. Indeed, if all the stress increments except the first one vanish, the
sum in (5.1) reduces to Jk,1Δσ1, and since t1 = t2, formulae (5.6) and (5.4) both yield
the same Jk,1 = J (tk, t1). Note that if the stress jump was smeared over a nonzero
time step Δt1, some error would be induced. Of course, this error would tend to zero
as Δt1 → 0+.

The error2 plot in Fig. 5.1e indicates that the asymptotic convergence rate is no
longer quadratic. Detailed convergence analysis leads to a theoretical convergence
rate slightly faster than linear, with the error proportional to the step size raised to
the power of 1 + n, where n = 0.1 is the exponent in the power law that dominates
the initial part of the creep compliance function. The actual slope of the error plot
in Fig. 5.1e is indeed very close to the theoretical slope 1.1:1, which is indicated by
the dashed line.

Fig. 5.1e refers to the error in strain at time 90 days. Interestingly, if a similar
plot is constructed for the error in strain at time 120 days (or at any other time larger
than 90 days), quadratic convergence rate is detected. This is because the stress rate
is zero starting from 90 days, and thus the product J (t, t ′)σ̇ (t ′) vanishes for t ′ > 90
days. However, for any nonconstant stress history, the quadratic convergence rate
would be spoiled.

ttk+1tk

Δtk
2

TR

MR
J(tk+1,t )

ttk+1tk

GMR
J(tk+1,t )

α Δtk

Fig. 5.2 Illustration of the accuracy of integration schemes for a highly nonlinear compliance
function: (a) standard midpoint and trapezoidal rules, (b) generalized midpoint rule with optimal
position of the integration point

For typical, highly nonlinear compliance functions with an unbounded derivative,
the MR can be expected to provide better results that the TR. The reason is illus-
trated in Fig. 5.2a: The actual area under the graph of the (highly nonlinear part of)

2Since the exact value of the strain at time 90 days is not available (for the log-double-power law,
the integral expression for strain cannot be evaluated analytically), it is not possible to evaluate
the true error. Instead of the difference between the numerical solution and the exact one, the error
is considered here as the difference between the numerical solution for the given step size and a
more accurate numerical solution obtained with the step size divided by two. Such a pseudo-error
exhibits the same asymptotic behavior as the actual error and thus can serve for examination of the
convergence rate.
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compliance function is much better approximated by the rectangle corresponding to
the MR than by the trapezoid corresponding to the TR.

Optimal accuracy can be achieved with the generalized midpoint rule (GMR),
if the sampling point is shifted to a special position, determined such that a power
function with exponent n is integrated exactly. Consider a function f having the form
f (t, t ′) = a + b(t − t ′)n , where n is given and a and b are arbitrary constants. The
following integral can be evaluated analytically:

I =
∫ tk+1

tk

f (tk+1, t
′) dt ′ = a Δtk + b

∫ Δt

0
sn ds = a Δtk + b

n + 1
(Δtk)

n+1 (5.13)

The generalized midpoint rule uses one sampling point placed at t∗ = (1 − α)tk +
αtk+1 where α is an adjustable parameter between 0 and 1 (note that α = 0.5
would correspond to the standard midpoint rule). Using such a rule, the integral is
approximated as

I ≈ Δtk f (tk+1, t
∗) = Δtk

[
a + b(tk+1 − t∗)n

] = a Δtk + bΔtk [(1 − α)Δtk]
n

(5.14)
Comparing this with the exact value in (5.13), we find the optimal value of α =
1 − (1 + n)−1/n . For a linear function f , exponent n is 1 and the standard midpoint
rule with α = 0.5 turns out to be optimal, as expected. However, for exponent
n = 0.1 characteristic of creep compliance functions, optimal accuracy is achieved
with α = 1 − 1.1−10 ≈ 0.614457. This is graphically illustrated in Fig. 5.2b.

In application to the evaluation of the integral in (5.1), the generalized midpoint
rule with α = 1 − (1 + n)−1/n has to be applied to the last interval only (i.e., for
i = k − 1), because this is the only interval in which the integrated function has the
assumed form (constant plus a power function of the distance from the end point
of the interval). In other intervals, the optimal position of the sampling point would
need to be adjusted depending on the distance from the point at which the derivative
of the compliance function is infinite. In this way, a higher convergence rate could
be achieved. If, for simplicity, the standard midpoint rule with α = 0.5 is applied
in all intervals except the last one, the accuracy is increased, but the asymptotic
convergence rate remains the same (of order 1.1); see the convergence plot labeled
as GMR in Fig. 5.1e. �

Formula (5.8) is suitable for models which specify a closed-form expression for
the compliance function. For the solidification theory (Chap. 9), and in particular the
B3 model (Chap. 3), the compliance function is defined not directly but in terms of
its rate. For the standard midpoint rule, the coefficient Jk,i is given by (5.6) and its
increment corresponding to an increase of tk by Δtk can be approximated as

ΔJk,i = Jk+1,i − Jk,i = J (tk+1, ti+1/2) − J (tk, ti+1/2) ≈ J̇
(
tk+1/2, ti+1/2

)
Δtk
(5.15)

where J̇ is the derivative of the compliance function with respect to its first argument.
In this way, the factors ΔJk,i are computed directly, without the need to evaluate the

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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compliance function (which is not available in a closed form for this class of models).
However, the compliance value Jk+1,k is still needed because it appears in definition
(5.10) of the incremental modulus. Its accurate evaluation requires special attention,
as follows.

Recall that, according to the midpoint rule (5.6), Jk+1,k = J
(
tk+1, tk+1/2

)
corre-

sponds to a load duration of half a step, Δtk/2, which can be very short. For short
load durations, the compliance function is highly nonlinear in time, and its rate tends
to infinity as the load duration approaches zero. The term in the compliance func-
tion J (t, t ′) responsible for such behavior is proportional to (t − t ′)n , and its time
derivative is proportional to (t − t ′)n−1. The situation is thus similar to Example 5.1,
but now the power function to be integrated has exponent n − 1 instead of n, and the
integration variable is t instead of t ′. The optimal value of parameter α to be used
in the generalized midpoint rule is then α = (1 + n − 1)−1/(n−1) = n1/(1−n). For
the typical value n = 0.1, we get α = 0.110/9 ≈ 0.077426. Since the integration
is performed over an interval of size Δtk/2, the integration point is at the distance
of αΔtk/2 = 0.038713Δtk from its left boundary, and the optimal formula for the
compliance reciprocal to the incremental modulus reads

Jk+1,k = J
(
tk+1, tk+1/2

) = J (tk+1/2, tk+1/2) +
∫ tk+1

tk+1/2

J̇ (t, tk+1/2) dt ≈

≈ J (tk+1/2, tk+1/2) + J̇ (tk+1/2 + 0.038713Δtk, tk+1/2)
Δtk
2

(5.16)

The instantaneous (asymptotic) compliance J (tk+1/2, tk+1/2) is obtained easily; e.g.,
for the B3 model, it is equal to parameter q1, which is in fact the reciprocal value of
the asymptotic modulus.

The foregoing equations have beenwritten for the uniaxial case, but they are easily
generalized to multiaxial stress. Stress and strain are then characterized by column
matrices, and the stress is premultiplied by the unit elastic compliance matrix Cν

defined in (2.33), which depends only on the Poisson ratio, assumed here to be
unaffected by creep. For instance, the incremental relation (5.9) is for multiaxial
stress rewritten as

Δεk = 1

Ēk
CνΔσk + Δε′′

k (5.17)

where the incremental modulus Ēk is still given by (5.10) and the expression for
creep strain increment,

Δε′′
k = Cν

k−1∑

i=1

ΔJk,i Δσ i (5.18)

is a straightforward generalization of (5.11).
Equation (5.9) or (5.17) is easy to invert, and so it can be adapted to the case

when the strain history is given and the stress history needs to be computed. The
numerically approximated incremental stress–strain relation reads

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Δσk = Ēk
(
Δεk − Δε′′

k

)
(5.19)

for uniaxial stress and
Δσk = ĒkDν

(
Δεk − Δε′′

k

)
(5.20)

for multiaxial stress. Recall thatDν = C−1
ν is the unit elastic stiffness matrix defined

in (2.35).
In the context of a finite element simulation of a viscoelastic structure, Eq. (5.20)

is written at each Gauss integration point of the finite element model and the stress
is substituted into the standard expression for equivalent nodal forces. The resulting
equations at the structural level are incrementally linear (and thus can be solved
exactly, without the need for equilibrium iteration), but the structural stiffness matrix
needs to be recomputed in each time step, because the incremental modulus Ēk

changes in time.
In each time step, Δε′′

k can be evaluated from the previous stress history, and
thus is known. Therefore, (5.20) is equivalent to an elastic stress–strain relation with
eigenstrains due to creep, and the response of the structure can be analyzed using the
following algorithm [75, 80].

Algorithm 5.1

1. For a given time step number k, assemble the structural stiffness matrix from
element contributions based on the material stiffness matrix ĒkDν , with the incre-
mental modulus Ēk given by (5.10).

2. Assemble the increment of the equivalent load vector corresponding to stress
decrements due to relaxation,

ĒkDνΔε′′
k = Ēk

k−1∑

i=1

ΔJk,i Δσ i (5.21)

This is the contribution to the right-hand side of the incremental equilibrium
equations, to be added to the contribution of the external load increments and of
the nonmechanical effects, such as temperature changes and shrinkage, during
step number k.

3. Solve the set of linear equilibrium equations at the structural level to obtain the
displacement increments.

4. Update the displacements and stresses, increment the step counter k by 1, and
proceed to the next time step (go to 1).

One possible application of Eq. (5.19) is the numerical evaluation of the relaxation
function corresponding to a given compliance function. In the first time step of zero
duration, a unit strain increment is prescribed, and in the subsequent time steps the
strain increments are set to zero. The computed stresses then represent the approx-
imate values of the relaxation function. This is formally described by the recursive
formula

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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R1 = 0, R2 = Ē1 = 1

J (t1, t1)
(5.22)

Rk+1 = Rk − 1

Jk+1,k

k−1∑

i=1

ΔJk,i (Ri+1 − Ri ) , k = 2, 3, . . . n − 1 (5.23)

The computed values Rk are approximations of R(tk, t1). For an aging material, the
computation needs to be repeated with different values of the initial time t1, in order
to obtain a complete description of the relaxation function. Since the first time step
is chosen to have zero duration, we have t2 = t1 and, according to (5.10) and (5.22),
R2 = Ē1 = 1/J2,1 = 1/J (t1, t1). Thus, the theoretical initial value of the relaxation
function is captured exactly.3 For instance, for the B3 model, we obtain R2 = E0 =
asymptotic modulus.

As will be shown in the next example, formulae (5.22)–(5.23) lead to an under-
estimation of the early part of the relaxation curve. In particular, the approximation
R3 is always below the exact value R(t3, t1). This is caused by the highly nonlinear
early stress evolution in a relaxation test. The numerical scheme approximates the
stress within one time step as a linear function of time, but the early part of the
relaxation function is very close to the reciprocal compliance function, and its graph
(plotted in the linear scale) is convex and strongly curved; see Fig. 5.3b. With R3

equal to the exact value, the assumed linear approximation connecting the points at
t1 and t3 would be above the actual curve (inclined dotted line in Fig. 5.3b) and the
corresponding strain at t3 would be larger than the actual one. However, the strain
in the relaxation test is prescribed (by a unit value), and so the value of R3 used by
the numerical scheme with linear stress interpolation must be below the exact value
R(t3, t1) to make sure that the numerically evaluated strain is equal to the actual one.

It turns out that the relaxation value R3 obtained according to (5.22)–(5.23) is,
at least for a reasonably sized initial step Δt2, less accurate than a simple estimate
based on the reciprocal value of compliance function (i.e., on the effective modulus).
This observation leads to a modified recursive procedure:

R1 = 0, R2 = R3 = 1

J (t3, t1)
(5.24)

Rk+1 = Rk − 1

Jk+1,k

k−1∑

i=1

ΔJk,i (Ri+1 − Ri ) , k = 3, 4, . . . n − 1 (5.25)

Note that not only R3 but also R2 has been set equal to the effective modulus,
1/J (t3, t1). Although we know that the exact value of R2 is 1/J (t1, t1), for the evalu-
ation of R4, R5 etc. it is essential to use a reduced value of R2, otherwise the problem
with underestimated relaxation values would reappear. Theoretical justification is

3Note that R1 = 0 represents the value R(t−1 , t1) just before the application of strain, and R2 = Ē1

represents the value R(t+1 , t1) just after the application of strain, i.e., the asymptotic modulus.
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provided by the fact that the assumption of constant stress 1/J (t3, t1) during the first
nonzero step from t1 = t2 to t3 (horizontal dashed line in Fig. 5.3b) is closer to the
actual, highly nonlinear stress evolution (solid curve) than the assumption of a linear
stress variation between 1/J (t1, t1) at t1 = t2 and 1/J (t3, t1) at t3 (inclined dotted
line). Of course, the value of R2 specified in (5.24) needs to be used in the recursive
evaluation of (5.25) but in the output can be replaced by the correct value according
to (5.22).

Example 5.2. Numerical evaluation of relaxation function

Consider concrete with the same properties as in Example 3.1, subjected to relax-
ation without drying. The compliance function is approximated by model B3 with
parameters q1, q2, q3, and q4 determined in (3.25)–(3.28). Figure 5.3a shows the
corresponding relaxation function over a very wide range of load durations, t − t ′,
with the age at the onset of relaxation set to t ′ = 28 days. It is clear that the relaxation
process is initially very fast, because of the big difference between the asymptotic and
conventional moduli. For comparison, the horizontal dashed line shows the asymp-
totic modulus, which would be approached for t − t ′ → 0+. Already after 1 second
of relaxation (approximately 10−5 day), the relaxation function drops to 73% of the
asymptotic modulus, and after 1 day it drops to 52%; see also the solid curve in
Fig. 5.3b.
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Fig. 5.3 Accurately evaluated relaxation function (a) in semilogarithmic scale over a wide range
of load durations, (b) in linear scale up to 1 day

The curve plotted in Fig. 5.3a has been constructed using a highly accurate numer-
ical solution, with the first nonzero time step Δt2 = 10−15 day and with subsequent
time steps forming a geometric progression with quotient q = 1.1. The influence
of the choice of the time step on the accuracy of numerical solution is illustrated
in Fig. 5.4a. The solid curve corresponds to the (almost exact) reference solution,
and the isolated points to values obtained according to formulae (5.22)–(5.23) with
initial step Δt2 = 1 day (circles) and Δt2 = 10 days (crosses), in both cases using
q = 2. The results confirm that the relaxation value after the first nonzero step is
underestimated, as explained in the discussion preceding the present example. For
Δt2 = 1 day, the error is relatively small and in subsequent steps decreases and
becomes almost negligible. On the other hand, for Δt2 = 10 days, the error is large

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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and is only partially reduced in subsequent steps. In principle, the basic procedure
described by (5.22)–(5.23) could be used, but for good accuracy it would be advisable
to select the initial step size at least an order of magnitude smaller than the shortest
time of interest, and not larger than 1 day (for concrete loaded at a young age, one
would need to be even more careful).

Amodified procedure described by formulae (5.24)–(5.25) leads to more accurate
results, as documented in Fig. 5.4b. The choice of the quotient and of the initial time
steps is the same as in Fig. 5.4a, but the value of relaxation function after the first
nonzero step is set to the reciprocal value of the compliance function. This leads to a
slight overestimation, but the error is much lower than in the previous case, and the
accuracy is preserved in subsequent steps as well. For comparison, the dashed curve
indicates the reciprocal of the compliance function. For initial steps larger than 10
days, the initial error would be much more pronounced, but up to 1 day the curves
of R and 1/J almost coincide, and up to 10 days the difference remains quite small.

Fig. 5.4 Values of relaxation function computed numerically, with different initial time steps Δt2
and quotients q

Finally, Fig. 5.4c demonstrates the influence of the quotient q that characterizes
the growth of the time step. The solution obtained with initial step Δt2 = 1 day and
quotient q = 2 (marked by circles) remains sufficiently accurate up to 10,000 days
(and even later). For the same initial step but quotient q = 5 (marked by crosses),
some error would build up gradually. Graphically, this error may still look negligible,
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but at elapsed time 3906 days the numerical approximation underestimates the exact
value of relaxation function by more than 17%, and at elapsed time 19,531 days
(not shown in the figure) by 25%. A dramatic increase of the step size is thus not
recommended. The choice of q = 2 (doubling the step size after each step) seems
to be a very reasonable compromise between accuracy and efficiency. For instance,
in the present example the recommended procedure covers the range from 1 day to
90 years in just 15 steps, with relative error not exceeding 5% (with respect to the
current value of relaxation function). �

The integral approach presented in this section has been based on numerical
approximation of formula (2.14) for the computation of the strain history from the
stress history, using repeated evaluation of the compliance function.A dual procedure
could be developed,whichwould use a given relaxation function and approximate the
integral in (2.23). However, since most of the available experimental data correspond
to creep tests (and not to relaxation tests), the compliance function is considered as
the primary characteristic of the viscoelastic behavior of concrete. Thus, the dual
approach dealing with the relaxation function is not really practical.

For the evaluation of the creep strain increment according to (5.11), the values of
stress increments in all previous time steps must be known. In very large structural
systems, the storage of the entire stress history at each integration point of each
finite element and the evaluation of history integrals according to (5.1) can become
prohibitively expensive, evenwith themost powerful computers.Note that the storage
requirements and thenumber of operations needed to assembleone structural stiffness
matrix and one right-hand side are proportional to the number of preceding time steps.
If the total number of time steps in the analysis, Nstep, is large, the total CPU time
becomes proportional to N 2

step (or evenworse, if thememory capacity is exceeded and
external storage must be used). For example, the total number of assembly-related
operations in an analysis with 500 time steps is 100 times larger than in an analysis
with 50 time steps (on the same finite element mesh), and with 5000 time steps it
would be 10,000 times larger.

The computational complexity of the problem can be substantially reduced if the
integral stress–strain relation is replaced by a differential one, dealing with certain
history (internal) variables. This leads to more efficient computational schemes,
described in the next section.

5.2 Efficient Rate-Type Creep Analysis

Approaches based on the differential (rate-type) formulation are computationally
more efficient. Moreover, they are inevitable for incorporating the effects of variable
humidity and temperature (treated in Sects. 10.6.1–10.8), and for generalization
to nonlinear effects such as distributed cracking and damage (Chap. 12). The key
idea of the rate-type approach is that a general compliance function (nonaging or
aging) can be approximated by a Dirichlet series (A.25) or (A.40) corresponding to
a Kelvin chain. Each unit of the chain is described by a differential equation that can
be integrated in a step-by-step manner. In contrast to the integral approach, it is not

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_12
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necessary to store the entire previous history but only a limited (and fixed) number of
history variables that are updated after each step. The number of numerical operations
per step is constant, independent of the total number of steps.

The solution proceeds again in a sequence of time steps Δtk , k = 1, 2, . . . n − 1,
starting from time t1 at which the load is first applied. At the beginning of each step,
the values of history variables are known from the previous step (or, for the first step,
from the initial conditions). In typical long-time creep analysis of structures under
constant loads, the response initially varies fast and Δtk needs to be very short, e.g.,
0.01 day, while at the end the response varies slowly, and Δtk can be very long, e.g.,
100 days. So, the time step must be greatly increased for efficiency of computation.
As will be demonstrated in Sect. 5.2.1, the most common integration algorithms
for ordinary differential equations lose numerical stability or at least accuracy if
Δtk becomes much larger than the shortest retardation time of the Kelvin chain.
This is overcome by the exponential algorithm, originally proposed for nonaging
materials by Zienkiewicz, Watson and King [897] and Taylor, Pister and Goudreau
[803] and extended to aging materials by Bažant [74]. The exponential algorithm
will be developed for a nonaging Kelvin model in Sects. 5.2.2–5.2.3, extended to
a Kelvin chain in Sect. 5.2.4, and adapted to solidification and general aging in
Sects. 5.2.5–5.2.8.

5.2.1 Generalized Trapezoidal Rule∗

A simple yet important rheologic model, which can be used as a building block
of more general ones, is the nonaging Kelvin model in Fig. 5.5, described by the
first-order differential equation

Eε(t) + ηε̇(t) = σ(t) (5.26)

where E and η are model parameters characterizing, respectively, the elastic and
viscous behavior (for more details see Appendix A). The ratio τ = η/E is the
retardation time that sets the time scale at which the viscoelastic processes captured
by this model take place.

σσ

ε

E

η

Fig. 5.5 Kelvin model
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Suppose that the stress history σ(t) is given and the strain history ε(t) is to be
evaluated. As already mentioned, the numerical solution proceeds in a sequence of
time steps. The increment of strain over a time step can be obtained by integrating
the strain rate. To this end, Eq. (5.26) is rewritten as

ε̇(t) = 1

τ

(
σ(t)

E
− ε(t)

)

(5.27)

and formally integrated over time step number k, from time tk to time tk+1:

εk+1 − εk = 1

τ

∫ tk+1

tk

(
σ(t)

E
− ε(t)

)

dt (5.28)

The stress history σ(t) is given, but the strain history ε(t), which also appears in
the integrand, is characterized only by the discrete values ε1, ε2, . . . εn at times
t1, t2, . . . tn . It is thus natural to approximate the integral using the trapezoidal rule.
The standard trapezoidal rule would give equal weights to the values at both ends
of the interval. However, to allow for more flexibility of the resulting scheme, it is
useful to consider a generalized trapezoidal rule (GTR) with weight factors 1 − α

and α assigned to times tk and tk+1, where α is an adjustable parameter between 0 and
1.4 Approximating the integral in (5.28) by the GTR yields the algebraic equation

εk+1 − εk = Δtk
τ

(
(1 − α)σk + ασk+1

E
− (1 − α)εk − αεk+1

)

(5.29)

from which the strain at the end of the step is easily expressed as

εk+1 = τ − (1 − α)Δtk
τ + αΔtk

εk + (1 − α)Δtk
E(τ + αΔtk)

σk + αΔtk
E(τ + αΔtk)

σk+1 (5.30)

This formula provides the final strain in step number k, based on the initial strain
and on the initial and final stress. By its recursive application, an approximation of
the strain history can be constructed. The factors multiplying εk , σk and σk+1 depend
on the model parameters E and τ , on the step size Δtk and on parameter α of the
numerical scheme. For α = 0, the GTR reduces to the forward Euler (FEu) method,
with a very simple update formula

εk+1 = εk + Δtk
τ

(σk

E
− εk

)
(5.31)

4In fact, α = 0means that the strain rate is evaluated at the beginning of the step and then assumed to
be constant, which corresponds to the forward Euler method. Similarly, α = 1 means that the strain
rate (considered as constant during the step) is evaluated at the end of the step, which corresponds
to the backward Euler method. The standard trapezoidal rule, which deals with the average of the
initial and final rates, is obtained for α = 0.5.
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For α = 1, the backward Euler (BEu) method is obtained, and α = 0.5 gives the
standard trapezoidal rule (STR).

Numerical stability of the scheme depends on the factor multiplying εk in (5.30),
which determines whether an error δε in the strain value is amplified or damped by
the numerical scheme. If this factor is larger than 1 in magnitude, the error grows and
after some time dominates over the actual solution. Since the denominator τ +αΔtk
is always positive, the condition of numerical stability can be written as

|τ − (1 − α)Δtk | ≤ τ + αΔtk (5.32)

which is equivalent to (1 − 2α)Δtk ≤ 2τ . The method is thus unconditionally
stable for α ≥ 0.5, while for α < 0.5 it is only conditionally stable and the critical
time step is Δtcrit = 2τ/(1 − 2α). In particular, the BEu method and the STR are
unconditionally stable, while the FEu method is conditionally stable with critical
time step Δtcrit = 2τ .

Fig. 5.6 (a) Prescribed history of stress acting on a Kelvin model; (b)-(d) histories of strain com-
puted by the (b) forward Euler method, (c) backward Euler method, (d) standard trapezoidal rule

Example 5.3. Solution of Kelvin model by generalized trapezoidal rule

For illustration, the graphs in Fig. 5.6b-d show the numerical solutions of the strain
history induced in a Kelvinmodel by a prescribed stress history specified in Fig. 5.6a.
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Fig. 5.7 Convergence diagram for different versions of the GTR, showing the dependence of the
error on the step size

The stress scale is normalized by the spring stiffness E and the time scale by the
retardation time τ . The stress jumps to 10−4E at time 0 and remains constant until
time 5τ . Then, it increases linearly to value 5 × 10−4E attained at time 10τ and
subsequently decreases quadratically and reaches zero at time20τ . From thatmoment
on, the stress remains at zero level.

The strain histories numerically computed by the three special versions of the
GTR are presented in Fig. 5.6b-d. For each integration scheme, three different time
steps (in this example kept constant during the entire solution) have been used. For
the shortest time step, Δt = 0.2τ , the results (plotted as solid curves) are almost
the same for all the three methods and are visually indistinguishable from the exact
solution. Some differences can be observed for larger time steps. The forward Euler
method (Fig. 5.6b) is inaccurate for Δt = τ and becomes unstable for Δt = 5τ >

2τ = Δtcrit . The backward Euler method (Fig. 5.6c) is somewhat more accurate
for Δt = τ , and the error remains reasonable even for Δt = 5τ . The standard
trapezoidal rule leads to a good accuracy forΔt = τ (Fig. 5.6d), but large deviations
of an oscillatory character appear for Δt = 5τ .

The accuracy of the methods can be compared quantitatively if a specific measure
of the error is defined and evaluated. In this example, we use the root-mean-square
of the differences between the numerical solution and the exact one at all times tk
between 0 and 30τ . For a piecewise polynomial stress history, Eq. (5.26) admits
an analytical solution, and so the error of the numerical scheme can be evaluated
precisely. The dependence of the error on the step size is shown in logarithmic scale
in the convergence diagram in Fig. 5.7. Individual points correspond to errors of the
numerical schemes for different time steps, ranging from 0.01τ to 10τ . The dashed
straight lines do not directly connect the points; they just indicate slopes 1:1 and 2:1
and help to identify the asymptotic convergence rates. As the step size tends to zero,
the error of the forward as well as backward Euler methods is proportional to the
step size, which means that in the logarithmic plot the points lie on a straight line
of slope 1. For the standard trapezoidal rule, the error is proportional to the square
of the step size and the points lie on a straight line of slope 2. This is in agreement
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with the theoretical analysis of the numerical scheme5, according to which α = 0.5
(corresponding to the STR) is the only value that leads to a quadratic convergence
rate, and for all the other values the convergence rate is linear. �

The asymptotic convergence rate determines the error evolution as the step size
tends to zero and thus is related to accuracy for very short time steps. From this
point of view, the STR is clearly superior to the forward or backward Euler methods.
However, it is also interesting to look at the accuracy for medium or even large
step sizes. As seen in Fig. 5.7, the error of the forward Euler method blows up
for steps larger than tcrit = 2τ , due to the loss of numerical stability. Already for
step sizes below tcrit but comparable to it, the error is substantially larger than for
the other methods; see also the strain values for Δt = τ in Fig. 5.6b. The STR
gives the best accuracy for step sizes below 2.5τ , but for larger steps the backward
Euler method seems to be superior. This can be confirmed by a computation with
step size 10τ continued over a longer time interval (still using the prescribed stress
history from Fig. 5.6a, with stress after time 20τ identically equal to zero). Of course,
one cannot expect a high accuracy with such a long step, but the numerical results
should at least reflect the main features of the solution, and in particular they should
quickly approach zero after time 20τ . This is indeed the case for the backward Euler
scheme but not for the STR. As shown in Fig. 5.8a, the strain values computed by
the STR oscillate even after complete removal of the stress, and the amplitude of
oscillations decreases only slowly. The pollution of the results by such oscillations
becomes especially strong if the step size is progressively increased Fig. 5.8b shows
the strain values obtained when the initial step size Δt1 = 0.1τ is doubled in each
subsequent step. For the STR, a large error is still observed at times one or two orders
of magnitude larger than the duration of the loading impulse. Again, the backward
Euler method gives acceptable results.

The dramatic differences in the performance of the STR and the backward Euler
method with large steps can be explained by looking at the factor multiplying εk in
(5.30), which approaches 1 − 1/α as Δtk → ∞. For the STR, α = 0.5 and the
factor approaches −1. This means that if no stress is applied and a large time step is
used, εk+1 has the opposite sign than and almost the same magnitude as εk . Similar
oscillations, albeit less dramatic, can be expected for all values of α between 0.5 and
1, as soon as the step size becomes sufficiently large. For α < 0.5, the magnitude
of the oscillations would grow, which corresponds to numerical instability. Only for
α = 1, i.e., for the backward Euler method, the factor multiplying εk remains positive
for all step sizes, and the oscillations cannot appear.

The foregoing analysis indicates that no version of the GTR is perfectly suited
for applications to creep problems. The STR would give the highest accuracy for

5The numerical approximation of the integral in (5.28) based on the STR is exact for a linear
function, and so the error of integration from tk to tk + Δt is dominated by the quadratic part of
the integrand and is proportional to (Δt)3. The total number of time steps over an interval of fixed
length is inversely proportional to Δt , and so the cumulative error is proportional to (Δt)2. For all
other versions of the GTR, with α 	= 0.5, the integration is exact for a constant function only, and
the error is due to the linear part of the integrand, thus being proportional to (Δt)2 in one time step
and to Δt after accumulation over a fixed interval.
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short steps but generates spurious oscillations if the steps are long. The backward
Euler method is free of such oscillations, but its convergence rate is inferior. In this
discussion, “long” and “short” steps are taken relative to the retardation time of the
model, τ . In real applications, Kelvin chains consisting of units with very different
retardation times are used, and the step size is usually increased during the analysis
by orders of magnitude. Therefore, it cannot be avoided that the steps are “short” for
some of the units and “long” for others. Amethod exhibiting a quadratic convergence
rate and at the same time providing a reasonable response for long steps is needed.
Such a method will be developed in the next sections.
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Fig. 5.8 Comparison of strain histories computed by the standard trapezoidal rule and the backward
Euler method using (a) constant step size 10τ , (b) initial step size 0.1τ increased in geometric
progression with quotient 2

5.2.2 First-Order Exponential Algorithm∗

The key idea of the exponential algorithm is that if the stress on the right-hand side
of (5.26) is constant, this equation has an exact analytical solution of an exponential
type. If the stress is variable, we can replace it in each step of numerical integration by
a constant, e.g., by weighted average of the initial and final value, and then construct
the analytical solution and evaluate the strain increment over the time step. The
value of strain at the end of the step is then used as initial condition for the analytical
solution in the next step.

For convenience, we divide Eq. (5.26) by E and take into account that η/E =
τ = retardation time of the model. Within time step number k, the stress can be
approximated by a constant, σk+α = (1 − α)σk + ασk+1, where α is an adjustable
parameter between 0 and 1, with default value α = 0.5. The resulting differential
equation with a constant right-hand side,

ε(t) + τ ε̇(t) = σk+α

E
(5.33)
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has the general solution

ε(t) = σk+α

E
+ C e−t/τ (5.34)

where C is an arbitrary integration constant.
The solution is valid for tk ≤ t ≤ tk+1 and must satisfy the initial condition

ε(tk) = εk = strain at the end of the previous step (or, in the first step, zero).
Substituting the general solution (5.34) into the initial condition,we evaluate constant
C and construct the particular solution

ε(t) = σk+α

E
+

(
εk − σk+α

E

)
e−(t−tk )/τ (5.35)

The value of strain at t = tk+1 then provides the initial condition for the next step.
To simplify the notation, we introduce an auxiliary constant

βk = e−Δtk/τ (5.36)

which makes it possible to express the strain at the end of the step by the simple
formula

εk+1 = ε(tk+1) = βkεk + (1 − βk)
σk+α

E
(5.37)

Subtracting εk , we obtain the strain increment

Δεk = εk+1 − εk = (1 − βk)
(σk+α

E
− εk

)
(5.38)

Formula (5.38) has a clear physical interpretation. At the beginning of the incre-
ment, the elastic spring transmits stress Eεk . The total stress applied during the
increment, σk+α , is assumed to be constant. The difference between the total stress
and the elastic stress is the viscous stress transmitted by the dashpot, σv. If the ini-
tial viscous stress σv(tk) = σk+α − Eεk vanishes, the system is in equilibrium at a
zero strain rate and the strain remains constant during the entire step. The expres-
sion in the last parentheses in (5.38) represents the initial viscous stress divided by
the spring stiffness, and if it vanishes, the numerically evaluated strain increment
vanishes as well. In general, the strain rate is proportional to the viscous stress, but
since an increase of strain leads to an increase of elastic stress while the total stress
remains constant, the viscous stress decreases and the strain rate as well. This is
why the strain increment according to (5.38) is not simply proportional to the incre-
ment of time. The dependence on the time increment Δtk is captured by the factor
1 − βk = 1 − e−Δtk/τ , which is for Δtk 
 τ approximately equal to Δtk/τ and for
very large time increments tends to 1. The expression in the last parentheses in (5.38)
is in fact the strain increment that would be needed to transmit the given total stress
exclusively by the elastic spring, with no contribution from the dashpot.

Let us emphasize that if the total stress indeed remains constant, formula (5.38)
gives the exact solution for arbitrarily large time increments. This is the big advantage
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of the exponential algorithm as compared to the most common integration schemes
which usually approximate the solution by polynomials. The exponential algorithm
is unconditionally stable, because the factor βk multiplying εk in (5.37) is always
smaller in magnitude than 1. Moreover, it is always positive, and so spurious oscil-
lations for large steps are not expected.
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Fig. 5.9 (a) Strain histories computed by the first-order exponential algorithm using different time
increments, (b) convergence diagram showing the dependence of the error on the step size

Example 5.4. Solution of Kelvin model by first-order exponential algorithm

For illustration, the numerically evaluated strain histories corresponding to the stress
history fromFig. 5.6a are computed by the exponential algorithmusing three different
time steps and plotted in Fig. 5.9a. Factor α is set to its default value 0.5. As expected,
the initial loading stage at constant stress is reproduced exactly, independently of the
time step. In the second and third stage with linear and quadratic stress history, the
solution with time step Δt = τ remains quite accurate, but relatively large errors are
observed for Δt = 5τ . The last stage at constant (zero) stress would be reproduced
exactly if the initial conditions were exact. Due to the error accumulated during the
preceding stages, the numerical solutions are not really exact, but with increasing
time all of them correctly tend to zero strain.

The error (defined again as the root-mean-square of the deviations from the exact
solution at all times tk between 0 and 30τ ) is shown in Fig. 5.9b as a function of the
step size Δt . For comparison, the error has also been evaluated for the nonstandard
value α = 1. From the slope of the convergence diagram, it can be seen that the
convergence rate is quadratic for the default value α = 0.5 but only linear for α = 1.
The default value is thus optimal for short steps. However, closer examination of
Fig. 5.9b reveals that if the step size is 5τ or larger, α = 1 provides higher accuracy.
The reason for that will be explained in the next section.

Finally, the graphs in Fig. 5.10 show that the exponential algorithm does not lead
to any spurious oscillations if a large time step is used (Fig. 5.10a), nor if the initially
short time step is progressively increased (Fig. 5.10b). This is true for both α = 0.5
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and α = 1, but the latter choice leads to higher accuracy, which confirms the previous
conclusion based on Fig. 5.9b. �

Fig. 5.10 Strain histories computed by the first-order exponential algorithm using (a) constant step
size 10τ , (b) initial step size 0.1τ increased in geometric progression with quotient 2

5.2.3 Second-Order Exponential Algorithm

Accuracy of the exponential algorithm can be increased at almost no additional
expense by using a piecewise linear approximation of the stress history instead of a
piecewise constant one. The derivation could be based on (5.26) with the right-hand
side replaced by σk+(t−tk)Δσk/Δtk , whereΔσk = σk+1−σk is the stress increment
in step k. The same final formula for the strain increment is obtained by an alternative
derivation that is preferred here because it permits an easy generalization to the case
of aging, to be treated in Sects. 5.2.5–5.2.8.

Equation (5.26) governing the behavior of a nonaging Kelvin model is derived in
Appendix A by substituting the equations describing an elastic spring and a viscous
dashpot,

σe(t) = Eε(t) (5.39)

σv(t) = ηε̇(t) (5.40)

into the stress equivalence (internal equilibrium) condition

σe(t) + σv(t) = σ(t) (5.41)

Differentiating (5.39) with respect to time and combining it with (5.40), we find a
link between the elastic stress rate and the viscous stress:

σ̇e(t) = E ε̇(t) = E
σv(t)

η
= σv(t)

τ
(5.42)
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where τ = η/E is, as usual, the retardation time. Substituting (5.42) into the rate
form of (5.41),

σ̇e(t) + σ̇v(t) = σ̇ (t) (5.43)

we obtain a differential equation for the viscous stress,

σv(t)

τ
+ σ̇v(t) = σ̇ (t) (5.44)

with the stress rate on the right-hand side. Within time step number k, the stress rate
can be approximated by a constant, and (5.44) becomes

σv(t)

τ
+ σ̇v(t) = Δσk

Δtk
(5.45)

The approximation is exact if the stress rate σ̇ (t) is constant, i.e., if the stress history
is linear (within the time step). Equation (5.45) is again a first-order linear differential
equation with constant coefficients and constant right-hand side, similar to (5.33),
and its particular solution satisfying the initial condition σv(tk) = σvk is

σv(t) = τ
Δσk

Δtk
+

(

σvk − τ
Δσk

Δtk

)

e−(t−tk )/τ (5.46)

The increment of the viscous stress is then easily evaluated as

Δσvk = σv(tk+1)−σv(tk) = (1−βk)

(

τ
Δσk

Δtk
− σvk

)

= λkΔσk−(1−βk)σvk (5.47)

where βk is the factor defined in (5.36) and

λk = (1 − βk)
τ

Δtk
= (

1 − e−Δtk/τ
) τ

Δtk
(5.48)

is another auxiliary factor introduced for convenience.
Note that both βk and λk monotonically decrease from 1 and asymptotically

approach 0 as the time step Δtk is varied from 0 to ∞. When Δtk/τ is too large,
the exponential expression in (5.36) may cause in computations an underflow, which
should be avoided by setting βk = 0. On the other hand, whenΔtk/τ is much smaller
than 1, βk approaches 1 and the evaluation of λk from (5.48) is inaccurate; it should
be replaced by the first few terms of the Taylor series,

λk = 1 − 1

2
(Δtk/τ) + 1

6
(Δtk/τ)2 − . . . (5.49)

So far, the solution (5.47) is formally the same as that for the constant stress
approximation (see Eq. (5.38)), but it is written in terms of the viscous stress instead
of the strain. To evaluate the strain,weneed to express the strain rate as ε̇(t) = σv(t)/η
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and integrate.6 Using the initial condition ε(tk) = εk and integrating the right-hand
side of (5.46) divided by the viscosity η (which is equal to Eτ ), we get

ε(t) = ε(tk)+
∫ t

tk

σv(t ′)
η

dt ′ = εk+ Δσk

E

t − tk
Δtk

− 1

E

(

σvk − τ
Δσk

Δtk

)
(
e−(t−tk )/τ − 1

)

(5.50)
and the strain increment over the time step then is

Δεk = ε(tk+1) − ε(tk) = (1 − λk)
Δσk

E
+ (1 − βk)

σvk

E
(5.51)

Note that this is again an incrementally linear stress–strain relation, which could be
presented in the form (5.9) with Ēk = E/(1 − λk) and Δε′′

k = (1 − βk)σvk/E . The
big advantage compared to the integral approach is that, in contrast to (5.11), the
evaluation of Δε′′

k is very simple and does not require the knowledge of the entire
previous history but only the value of the viscous stress σv at the beginning of the step.
So, in principle, the viscous stress should be stored as an internal variable, updated
by increments evaluated from (5.47). Another variable that needs to be stored is of
course the strain, ε. Before the first step, both σv and ε are set to zero.

Incidentally, for the present simplemodel (nonagingKelvin unit), variables σv and
ε are not independent—they are linked by the stress equivalence condition Eε+σv =
σ , which follows from (5.39) and (5.41). So the viscous stress can always be evaluated
from the values of total stress and strain as

σv(t) = σ(t) − Eε(t) (5.52)

and it does not really need to be stored, if the strain ε is stored. This will no longer
be true for the solidifying Kelvin model, to be treated in Sect. 5.2.5.

Evaluation of the viscous stress from (5.52) brings an additional benefit: No
special treatment is needed if the stress history is discontinuous, provided that the
time instants at which the stress changes by a jump are included among the times
tk used by the numerical scheme. If, at time tk , the stress happens to change by a
jump from σ−

k to σ+
k , the stress increment Δσk−1 corresponding to the time interval

(tk−1, tk) is calculated with σ−
k as the final value, the viscous stress at the beginning

of the next step is set to σ+
vk = σ+

k − Eεk , and the next stress increment Δσk is
calculated using σ+

k as the initial value. This is more accurate than approximating
the stress history by a continuous function with the value (σ+

k + σ−
k )/2 at time tk .

In fact, a proper treatment of the stress jump is obtained simply by using a zero-size
step from t−k to t+k ≡ tk+1, because for Δtk = 0 we have βk = 1 and λk = 1, and
from (5.47) and (5.51) we obtain Δσvk = Δσk = σ+

k − σ−
k and Δεk = 0.

6Continuity of strain follows from boundedness of the strain rate, which in turn follows from the
boundedness of the viscous stress (equal to the product of a finite viscosity and the strain rate).
Note that we work here on the level of one Kelvin unit, which will later become a part of a Kelvin
chain. The chain usually contains a spring that reflects the instantaneous elastic response. So the
total strain of the chain can change by a jump, but such a jump is fully accommodated by the elastic
spring, and the partial strains in Kelvin units remain continuous.
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If (5.52) is taken into account, it is no longer necessary to use formula (5.47) for
the update of the viscous stress, and formula (5.51) for the strain increment can be
rewritten as

Δεk = (1 − λk)
Δσk

E
+ (1 − βk)

(σk

E
− εk

)
(5.53)

By adding εk , one obtains a formula for εk+1 in which εk is multiplied by βk . This is
the factor that determines numerical stability of the algorithm, and it happens to have
the same value as for the first-order version; cf. (5.37). Consequently, the second-
order exponential algorithm is also unconditionally stable and does not generate
spurious oscillations for very large time steps.
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Fig. 5.11 (a) Strain histories computed by the second-order exponential algorithm using different
time increments, (b) convergence diagram showing the dependence of the error on the step size

Example 5.5. Solution of Kelvin model by second-order exponential algorithm

The accuracy of the improved (second-order) formula of exponential algorithm (5.53)
is superior to the basic (first-order) formula (5.38). The result is exact not only for
constant stress histories but also for linear ones. This is illustrated by the numerical
solution of the strain history corresponding to the prescribed stress history from
Fig. 5.6a. Independently of the size of the time increment, the response during the
first two stages of loading is captured exactly. In the last two stages, the deviations
from the exact solution are quite small; see Fig. 5.11a. The error diagram in Fig. 5.11b
indicates that the convergence rate is quadratic. So the convergence rate is the same
as for the first-order version (with default value α = 0.5), but the absolute accuracy
of the second-order version is higher. Note that the straight line in Fig. 5.11b is
shifted down with respect to the straight line of the same slope in Fig. 5.9b. In this
particular example, the error of the second-order exponential algorithm turns out to
be seven times smaller than the error of the first-order exponential algorithm (for the
same step size). It can also be verified that no oscillations appear if the second-order
exponential algorithm is used with a large or a progressively increasing time step;
see Fig. 5.12. �
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Fig. 5.12 Strain histories computed by the second-order exponential algorithm using (a) constant
step size 10τ , (b) initial step size 0.1τ increased in geometric progression with quotient 2

The second-order formula (5.53) permits a direct comparison with the first-order
formula (5.38). Recalling that σk+α = σk + αΔσk , we can see that both formulae
coincide if 1− λk = α(1− βk). It is instructive to look at the Taylor expansions for
short time steps. For the sake of simplicity, we leave out subscripts k at β, λ, and Δt :

1 − β = 1 − e−Δt/τ = Δt

τ
− 1

2

(
Δt

τ

)2

+ . . . (5.54)

1 − λ = 1 − (1 − β)
τ

Δt
= 1

2

Δt

τ
− 1

6

(
Δt

τ

)2

+ . . . (5.55)

Both 1 − β and 1 − λ are equal to zero for Δt = 0 and tend to 1 for Δt → ∞, but
their values for finite time steps are different. The identity 1− λ = α(1− β) cannot
hold for arbitrary step sizes with a fixed value of α. For α = 0.5, the first-order terms
in the expansions of α(1 − β) and of 1 − λ coincide, which justifies α = 0.5 as
the default choice for the first-order method. This choice is optimal for short steps
(compared to the retardation time τ ), and it leads to the same (quadratic) rate of
convergence as the second-order method. On the other hand, for long time steps the
accuracy is higher with α close to 1, because the ratio (1− λ)/(1− β) approaches 1
as Δt tends to infinity. This explains why the error of the first-order algorithm with
time step 5τ or larger was smaller when α was set to 1 than it was when the default
value 0.5 was used (see Figs. 5.9b and 5.10).

For all the integration rules discussed so far, the strain at the end of the step,
εk+1, can be expressed as a linear combination of the strain at the beginning of the
step, εk , and the stresses at the beginning and at the end of the step, σk and σk+1.
The coefficients in this linear combination depend on the physical parameters E and
τ and on the step size Δtk . They are summarized in Table 5.1. Numerical stability
is guaranteed if the coefficient at εk , does not exceed 1 in magnitude. Spurious
oscillations appear if this coefficient is negative.
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5.2.4 Nonaging Kelvin Chain

So far, the numerical solution based on the rate-type approach has been developed
for a single Kelvin unit. As explained in Example 2.1, such a simple model can
reflect viscoelastic properties of concrete over a limited range of load durations only.
This range can be enhanced by using a Kelvin chain, consisting of several Kelvin
units with different retardation times, coupled in series. Recall that the compliance
function of such a chain is given by the Dirichlet series (2.7).

Table 5.1 Coefficients in strain update formula according to different integration methods

Method εk σk σk+1

Generalized
trapezoidal rule

GTR
τ − (1 − α)Δtk

τ + αΔtk

(1 − α)Δtk
E(τ + αΔtk)

αΔtk
E(τ + αΔtk)

Forward Euler FEu
τ − Δtk

τ

Δtk
Eτ

0

Backward Euler BEu
τ

τ + Δtk
0

Δtk
E(τ + αΔtk)

Standard
trapezoidal rule

STR
2τ − Δtk
2τ + Δtk

Δtk
E(2τ + Δtk)

Δtk
E(2τ + Δtk)

First-order
exponential
algorithm

EXP-1 βk
1 − βk

2E

1 − βk

2E

Second-order
exponential
algorithm

EXP-2 βk
λk − βk

E

1 − λk

E

Generalization of the exponential algorithm to a nonaging Kelvin chain is easy,
because all the units in the chain are under the same stress σ , and the total strain ε is
the sum of partial strains εμ, μ = 0, 1, 2 . . . M . Therefore, Eq. (5.53) can be written
separately for each unit of the chain, with all variables except for the stress and stress
increment marked by an additional subscript μ that refers to the number of unit. The
overall strain increment is then obtained by summing the contributions of individual
units:

Δεk =
M∑

μ=0

Δεμk =
⎛

⎝ 1

E0
+

M∑

μ=1

1 − λμk

Eμ

⎞

⎠ Δσk +
M∑

μ=1

(1 − βμk)

(
σk

Eμ

− εμk

)

(5.56)
Note that we have included the “zeroth” unit, which is an elastic spring of stiffness
E0 (without any dashpot). The spring could be considered as a Kelvin unit with zero
viscosity and therefore zero (or negligibly small) retardation time, but it is more
instructive to treat it separately.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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The first term on the right-hand side of (5.56) can be interpreted as the strain
increment due to a change of the applied stress. In this term, the stress increment is
multiplied by the incremental compliance

1

Ēk
= 1

E0
+

M∑

μ=1

1 − λμk

Eμ

(5.57)

Note that λμk is very close to 1 (larger than 0.99) if Δtk/τμ < 0.02 and very close
to 0 (smaller than 0.01) if Δtk/τμ > 100. In the former case, the μ-th Kelvin unit
acts as almost rigid, while in the latter case it acts as almost elastic (i.e., almost as a
spring with no viscous damping).

The second term on the right-hand side of (5.56) is the strain increment due to
creep at constant stress,

Δε′′
k =

M∑

μ=1

(1 − βμk)

(
σk

Eμ

− εμk

)

(5.58)

With this notation, (5.56) can be written in the compact form

Δεk = Δσk

Ēk
+ Δε′′

k (5.59)

This is formally the same incrementally linear strain–stress equation as equation
(5.9) used by the integral-type approach. The difference is that in the integral-type
approach the incremental modulus Ēk and the strain increment due to creep Δε′′

k
are evaluated using formulae (5.10)–(5.11), while the differential approach leads
to formulae (5.57)–(5.58). The integral approach requires storing the entire history
of stress, and the number of terms in formula (5.11) increases with increasing step
number. By contrast, the differential approach requires storing a limited and fixed
number of internal variables (partial strains εμ) that are updated after each step, and
the number of terms in formula (5.58) does not depend on the step number.

In a strain-drivenmaterial subroutine of a finite element code, the strain increment
is prescribed and the stress increment has to be computed. Equation (5.59) is easily
inverted, and the stress increment is evaluated as

Δσk = Ēk(Δεk − Δε′′
k ) (5.60)

The derivation of the exponential algorithm has been presented for stress and
strain as scalars (uniaxial case), but it is easily extensible to the general multiaxial
case. The only important modification is that the matrix Dν or Cν must be inserted
into the relation between stresses and strains. Recall thatDν is the unit elastic stiffness
matrix, given by (2.35), and Cν = D−1

ν is the unit elastic compliance matrix, given
by (2.33). Equations (5.58)–(5.59) are thus replaced by

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Δε′′
k =

M∑

μ=1

(1 − βμk)

(
1

Eμ

Cνσk − εμk

)

(5.61)

Δεk = 1

Ēk
CνΔσk + Δε′′

k (5.62)

Algorithm 5.2 Second-order exponential algorithm for nonaging Kelvin chain

1. At the beginning of the simulation (i.e., at time t = t1), set all partial strains εμ,
μ = 1, 2, . . . M , to zero.

2. For a given time step k from tk to tk+1 = tk + Δtk , compute the factors

βμk = e−Δtk/τμ

λμk = (1 − βμk)
τμ

Δtk

}

μ = 1, 2, . . . M (5.63)

the incremental modulus

Ēk =
⎛

⎝ 1

E0
+

M∑

μ=1

1 − λμk

Eμ

⎞

⎠

−1

(5.64)

and the auxiliary compliance

C̄k =
M∑

μ=1

1 − βμk

Eμ

(5.65)

3. Compute the creep strain increment

Δε′′
k = C̄kCνσk −

M∑

μ=1

(1 − βμk)εμk (5.66)

4. For a given strain increment Δεk , compute the stress increment

Δσk = ĒkDν(Δεk − Δε′′
k ) (5.67)

5. Update the partial strains

εμ,k+1 = βμkεμk + 1 − βμk

Eμ

Cνσk + 1 − λμk

Eμ

CνΔσk, μ = 1, 2, . . . M (5.68)

6. Increment the step counter k and proceed to the next step (go to 2).

Note that step 1 is executed only once, before the start of the time incrementation loop.
Steps 2 and 3 are executed once per time step, and step 4 must be repeated in every
equilibrium iteration. If the entire structure is linear viscoelastic and the incremental
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material stiffness ĒkDν is used in setting up the structural stiffness matrix, equilib-
rium is restored immediately after the first iteration. However, if certain parts of the
model are nonlinear (e.g., due to cracking), additional iterations may be needed. Also
note that step 2 of the algorithm does not need to be repeated if the time increment
Δtk remains the same as in the preceding time step.

5.2.5 Solidifying Kelvin Unit

Derivation of the second-order exponential algorithm for a nonaging Kelvin model
started from Eq. (5.43), which is the rate form of the stress equivalence condition.
The rate of stress in the elastic spring, σ̇e, was eliminated using relations (5.39)–
(5.40), which govern the behavior of individual rheologic units (elastic spring and
viscous dashpot). In the case of aging, the elastic law must be formulated in the rate
form; see Appendix A.4 for a detailed justification. Equations (5.39)–(5.40) are then
generalized to

σ̇e(t) = E(t)ε̇(t) (5.69)

σv(t) = η(t)ε̇(t) (5.70)

Functions E(t) and η(t), describing the evolution of elastic stiffness and viscosity
due to aging, could be in principle independent.

The solidification theory, to be explained in detail inChap. 9, attributes the changes
of material properties to gradual deposition of a solidifying constituent with age-
independent properties. Therefore, both E(t) and η(t) are assumed to be propor-
tional to the same function v(t) that describes the growth of the relative volume
of the solidifying constituent. The ratio η(t)/E(t) = τ thus remains constant, and
the relation σ̇e(t) = E(t)σv(t)/η(t) = σv(t)/τ , similar to (5.42), still holds. Conse-
quently, Eqs. (5.44)–(5.48) remain valid for a solidifying Kelvin unit. Only Eq. (5.50)
needs an adjustment, because the viscosity (which appears in the denominator of the
integrand) is now variable. For simple forms of function v(t), one could try to inte-
grate the strain rate exactly, but in general it is more convenient to approximate the
viscosity within the current time step by a constant, ηk+1/2 = τ Ek+1/2. Equation
(5.51) then remains valid if E is replaced by Ek+1/2:

Δεk = (1 − λk)
Δσk

Ek+1/2
+ (1 − βk)

σvk

Ek+1/2
(5.71)

A substantial difference as compared to the nonaging case is that Eq. (5.52) is no
longer applicable (a similar relation could be written in terms of rates but not in terms
of the total values). Therefore, the viscous stress cannot be recovered from the values
of stress and strain. It must be stored as an internal variable and updated according
to formula (5.47). Equation (5.53) is also inapplicable, because its derivation was
based on (5.52). The strain increment must be evaluated from (5.71).

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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5.2.6 Solidifying Kelvin Chain

The main assumption of the solidification theory is that the changes of apparent
rheologic properties are caused by deposition of a nonaging constituent. The growth
of the relative volume of the solidified material is characterized by a function v(t)
that starts from v(0) = 0 and asymptotically tends to a certain finite limit, v∞.
The viscoelastic behavior of the constituent can be described by a nonaging Kelvin
chain with constant partial moduli E∞

μ and constant viscosities η∞
μ = τμE∞

μ , which
determine the compliance function7

Φ(t) =
M∑

μ=1

1 − e−t/τμ

E∞
μ

(5.72)

The aging material is then characterized by a solidifying Kelvin chain with partial
moduli

Eμ(t) = E∞
μ v(t), μ = 1, 2, . . . M (5.73)

and partial viscosities

ημ(t) = η∞
μ v(t) = τμEμ(t), μ = 1, 2, . . . M (5.74)

which are all proportional to one and the same function v(t).
Regarding the algorithmic treatment, we can proceed from a solidifying Kelvin

unit to a solidifying Kelvin chain along similar lines as in the nonaging case; see
Sect. 5.2.4. The total strain ε is written as the sum of partial strains εμk in individual
units, with the same stress increment Δσ applied to all the units. Exploiting formula
(5.71) for each unit, we obtain the incremental strain–stress law

Δεk =
M∑

μ=1

Δεμk = Δσk

vk+1/2

M∑

μ=1

1 − λμk

E∞
μ

+ 1

vk+1/2

M∑

μ=1

(1−βμk)
σvμk

E∞
μ

= 1

Ēk
Δσk+Δε′′

k

(5.75)
where

Ēk = vk+1/2

⎛

⎝
M∑

μ=1

1 − λμk

E∞
μ

⎞

⎠

−1

(5.76)

and

Δε′′
k = 1

vk+1/2

M∑

μ=1

1 − βμk

E∞
μ

σvμk (5.77)

7Note that the constant term 1/E0, which reflects the instantaneous elastic compliance, does not
appear in (5.72). The reason for leaving it out will be explained after Algorithm 5.3.
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The updating formula for viscous stresses in individual units (playing the role of
internal variables) easily follows from (5.47):

σvμ,k+1 = λμkΔσk + βμkσvμk (5.78)

Note that there is no need to evaluate or store the partial strains εμk because they do
not explicitly appear in Eqs. (5.76)–(5.78). Only the variables σvμk ,μ = 1, 2, . . . M ,
need to be updated in each computational step. So the memory requirements are the
same as for the nonaging chain, for which the partial strains are stored.

Generalization to multiaxial stress is also straightforward, and the resulting com-
putational procedure is described by the following algorithm. The internal variables
have the meaning of viscous stress and thus have the same number of components
as the stress (i.e., 6 in the three-dimensional setting). They are arranged in column
matrices σv.

Algorithm 5.3 Exponential algorithm for solidifying Kelvin chain

1. At the beginning of the simulation (time t = t1), set all components of internal
variables σvμ, μ = 1, 2 . . . M , to zero. Set the step counter k to 1.

2. For a given time step from tk to tk+1 = tk + Δtk , compute the mid-step (or
average) relative volume vk+1/2, the factors βμk and λμk given by (5.63), and the
incremental modulus Ēk given by (5.76).

3. Compute the strain increment due to creep,

Δε′′
k = Cν

vk+1/2

M∑

μ=1

1 − βμk

E∞
μ

σ vμk (5.79)

4. For a given strain increment Δεk , compute the stress increment

Δσk = ĒkDν(Δεk − Δε′′
k ) (5.80)

5. Update the internal variables using the formula

σ vμ,k+1 = λμkΔσk + βμkσ vμk (5.81)

6. Increment the step counter k by 1 and proceed to the next step (go to 2).

Note that if the time step remains constant, the factors βμk and λμk do not need to be
reevaluated, but the incremental modulus Ēk does, because of the aging effect.

Algorithm 5.3 describes the numerical treatment of a solidifying Kelvin chain.
Note that it does not explicitly mention a term that would correspond to an isolated
spring, without a parallel dashpot, which is necessary for the description of instan-
taneous elasticity. The reason is that the solidifying Kelvin chain is just a building
block of a complete creep model. In model B3, it is coupled in series not only with
an elastic spring, but also with an aging dashpot that reflects the logarithmic nature
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of long-term creep. Yet another contribution to strain is added if the effects of drying
on creep are incorporated using the sectional approach.

For the moment, let us restrict attention to basic creep. Truly instantaneous elastic
effects are, according to model B3, captured by a nonaging spring of stiffness E0

equal to the asymptotic modulus. The corresponding contribution to the strain incre-
ment due to a stress increment Δσ k is simply Cν Δσ k/E0. The aging dashpot that
reflects long-termviscous flowhas a variable viscosityηf (t) = t/q4,which is not pro-
portional to function v(t) used by the solidification theory, because the aging process
is attributed to a different physical mechanism (relaxation of microprestress—see
Chap. 10). The increment of viscous flow strain can be approximated as

Δεfk =
∫ tk+1

tk

Cνσ (t)

ηf(t)
dt ≈ Δtk

ηf,k+1/2
Cν

(

σk + 1

2
Δσk

)

(5.82)

In summary, after adding a nonaging spring and an aging dashpot, Eqs. (5.76) and
(5.79) have to be modified as follows:

Ēk =
⎛

⎝ 1

E0
+ 1

vk+1/2

M∑

μ=1

1 − λμk

E∞
μ

+ Δtk
2ηf,k+1/2

⎞

⎠

−1

(5.83)

Δε′′
k = Cν

vk+1/2

M∑

μ=1

1 − βμk

E∞
μ

σ vμk + Δtk
ηf,k+1/2

Cνσk (5.84)

After these modifications, Algorithm 5.3 can be used for the numerical treatment of
basic creep described by model B3.

The drying creep compliance function (3.20) used by model B3 does not have
the format implied by the solidification theory and needs to be treated separately, in
the context of general aging viscoelasticity. The same is true for typical compliance
functions recommended by codes such as CEB or ACI, which do not even separate
basic and drying creep.

5.2.7 Aging Kelvin Unit

As explained in detail in Appendix A, a general compliance function of an aging
viscoelastic material (not necessarily derived from the solidification theory) can be
approximated by the Dirichlet series

J (t, t ′) =
⎡

⎣ 1

E0
+

M∑

μ=1

1 − e−(t−t ′)/τμ

Dμ(t ′)

⎤

⎦ H(t − t ′) (5.85)

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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representing an aging Kelvin chain. Note that variables Dμ are different from the
moduli Eμ of individual Kelvin units; see Sect. A.4.2 for a detailed explanation.
The underlying equation that governs the behavior of one aging Kelvin unit is the
second-order differential equation

σ̇ (t) = D(t)ε̇(t) + η(t)ε̈(t) (5.86)

in which η(t) = τD(t), according to the assumption that is used in Appendix A to
construct the compliance function (5.85). Equation (5.86) can thus be rewritten as

ε̇(t) + τ ε̈(t) = σ̇ (t)

D(t)
(5.87)

This is a second-order differential equation, but it can be converted to a first-order
equation in terms of the strain rate. It is convenient (albeit not necessary) to use the
dimensionless strain rate er(t) = τ ε̇(t) as the unknown function. Equation (5.87)
then becomes

er(t)

τ
+ ėr(t) = σ̇ (t)

D(t)
(5.88)

which has the same format as (5.44), only with the unknown function σv(t) replaced
by er(t) and the right-hand side σ̇ (t) by σ̇ (t)/D(t). Following the same approach as
in Sect. 5.2.3, we replace the right-hand side within the current computational step
by a constant, Δσk/Δtk Dk+1/2, and impose the initial condition er(tk) = erk = value
of er at the end of the previous step. In analogy to (5.46), the solution is then

er(t) = τ Δσk

Δtk Dk+1/2
+

(

erk − τ Δσk

Δtk Dk+1/2

)

e−(t−tk )/τ (5.89)

and the increment of er over the k-th step is evaluated as

Δerk = τ Δσk

Δtk Dk+1/2
(1 − βk) − (1 − βk)erk = λk

Δσk

Dk+1/2
− (1 − βk)erk (5.90)

Integrating the strain rate, we obtain the strain increment

Δεk = 1

τ

∫ tk+1

tk

er(t) dt = (1 − λk)
Δσk

Dk+1/2
+ (1 − βk)erk (5.91)

The final formula linking the strain increment to the stress increment is very
similar to (5.51), except that the constantmodulus E is replaced by the age-dependent
value Dk+1/2 and σvk/E is replaced by erk (recall that, for a nonaging material,
σvk = ηε̇k = Eτ ε̇k = Eerk). The dimensionless strain rate er plays here the role of
an internal variable.
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5.2.8 Aging Kelvin Chain

From an aging Kelvin unit, we can proceed to an aging Kelvin chain along simi-
lar lines as in the previous cases of nonaging and solidifying Kelvin models; see
Sects. 5.2.4 and 5.2.6. The resulting relations can be summarized in the following
algorithm, written in the multidimensional context. The internal variables have the
meaning of dimensionless strain rates and thus have the same number of components
as the strain (i.e., 6 in the three-dimensional setting). They are arranged in column
matrices erμ, μ = 1, 2, . . . M . Note that the memory requirements are the same as
for a nonaging or solidifying chain.

Algorithm 5.4 Exponential algorithm for aging Kelvin chain

1. At the beginning of the simulation (time t = t1), set all components of internal
variables erμ, μ = 1, 2 . . . M , to zero. Set the step counter k to 1.

2. For a given time step from tk to tk+1 = tk + Δtk , compute the mid-step (or
average) stiffness moduli Dμ,k+1/2, the factors βμk and λμk given by (5.63), and
the incremental modulus

Ēk =
⎛

⎝ 1

E0
+

M∑

μ=1

1 − λμk

Dμ,k+1/2

⎞

⎠

−1

(5.92)

3. Compute the strain increment due to creep,

Δε′′
k =

M∑

μ=1

(1 − βμk)erμk (5.93)

4. For a given strain increment Δεk , compute the stress increment

Δσk = ĒkDν(Δεk − Δε′′
k ) (5.94)

5. Update the internal variables using the formula

erμ,k+1 = λμk

Dμ,k+1/2
CνΔσk + βμkerμk (5.95)

6. Increment the step counter k by 1 and proceed to the next step (go to 2).

If the time step remains constant, the factorsβμk andλμk donot need to be reevaluated,
but the incremental modulus Ēk does, because of the aging effect.



Chapter 6
Uncertainty Due to Parameter Randomness
via Sampling of Deterministic Solutions

Abstract Concrete creep and shrinkage are notorious for high random scatter of
input parameters and high uncertainty of long-time predictions. Obviously, the struc-
tural design should not be basedmerely onmean predictions. In this chapter, we show
how to estimate realistic confidence limits on the long-time creep and shrinkage
predictions. Except for creep buckling of columns and shells, these limits are, fortu-
nately, far less stringent than those required for failure prevention, but nevertheless
important to make premature structural repair or demolition rare enough. Because
sustainable design calls for structural lifetimes in excess of a century, we focus
on long-term predictions of structural performance in the light of the randomness
of material and environmental parameters. We emphasize the numerical sampling
approach based on repeated runs of deterministic analysis of creep and shrinkage
effects for judiciously selected random samples of input data. Finally, our discussion
is focused on improving long-term predictions by means of the Bayesian updating in
which the uncertainty due to the experimental data and prediction model is reduced
by prior data on short-time creep of the given concrete and on the observed initial
deformations of the given structure.

Although, under precise laboratory conditions, shrinkage and creep of one and the
same concrete exhibit relatively small scatter, similar to that of elasticmodulus [878],
the random variability affecting concrete structures is very large. The reason is the
variability of environment, curing and composition, and unaffordability of perfect
quality control. The consequence is a high random scatter in long-time structural
behavior, impairing durability. When the type of concrete is undecided at the time
of design, then the scatter due to differences among various types of concrete that
could be used is the largest of all.

A quantitative assessment of long-time random scatter has not been a standard
practice. However, for creep sensitive structures, it should be, and it can be performed
relatively easily. An effective method to do that is to apply probabilistic sampling to
a deterministic creep and shrinkage prediction model. A model such as B3, giving a
realistic picture of themean long-time behavior,must be used for the scatter estimates
to be meaningful.

© Springer Science+Business Media B.V. 2018
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in Concrete Structures, Solid Mechanics and Its Applications 225,
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6.1 Random Parameters in Creep and Shrinkage Model

While creep and shrinkage are stochastic processes [300], their values and structural
effects can approximately be treated as functions of a set of random parameters. In
principle, each parameter of the selected creep and shrinkage model could be consid-
ered as a random variable, but no information on their separate statistical properties
can be extracted from the existing databases, and so it is more convenient and suffi-
ciently realistic to consider a strong correlation among some of the parameters and
assume that several model parameters are controlled by the same random variable.
Further simplification is achieved by assuming that all these random variables have
the normal (Gaussian) distribution and are statistically independent, although some
correlations surely exist and have been considered by Xi and Bažant [882], along
with expanding the number of random variables.

For instance, in the case of model B3, it is assumed that parameters qi , i =
1, 2, . . . 5, are perfectly correlated and depend on one single random variable X (1)

in the following way:

qi = (1 + ω1X
(1))q̄i , i = 1, 2, . . . 5 (6.1)

Here, the bar over q denotes the mean value, which corresponds to the determin-
istic version of the model and is estimated from the concrete composition using the
formulae from Table C.2 in Appendix C. Symbols qi without the bar denote (in this
chapter) the parameters considered as random variables. Random variable X (1) has
the standard normal distribution (i.e., has a zero mean and a unit standard deviation),
andω1 is the coefficient of variation of randomparameters qi , which characterizes the
scatter of elastic and creep compliances. Based on statistical analysis of the data in the
RILEM database, Bažant and Baweja [107] recommended to useω1 = 0.23 = 23%.

The final value of shrinkage (in a perfectly dry environment) is considered to be
statistically independent of the compliance parameters and is described as

ε∞
sh = (1 + ω2X

(2))ε̄∞
sh (6.2)

where ω2 = 0.34 is the coefficient of variation and X (2) is a random variable having
again the standard normal distribution. Thus, random variables X (1) and X (2) have
the same type of statistical distribution, but they characterize different phenomena
and are considered as statistically independent. Two additional random variables
with the standard normal distribution, X (3) and X (4), are introduced to characterize
the variability of environmental humidity and compression strength:

henv = (1 + ω3X
(3))h̄env (6.3)

fc = (1 + ω4X
(4)) f̄c (6.4)

The values of the coefficients of variation recommended by Bažant and Baweja
[107] are ω3 = 0.20 and ω4 = 0.15.

Bažant and Liu [163] considered a total of eight random parameters, but here we
will use the formulation with four parameters only, as in Bažant and Baweja [107].
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Since the empirical formulae for the estimation of parameters q1, q2, q3, q5, and
ε∞
sh contain the compression strength, the random value fc of compression strength
must be computed before Eqs. (6.1)–(6.2) are used, and this random value must be
substituted in the formulae in Table C.2 instead of the mean compression strength
f̄c. Of course, if this is done, ω1 is not the true coefficient of variation of random
variables qi (i = 1, 2, 3, 5) and ω2 is not the true coefficient of variation of random
variable ε∞

sh , but this is the price to pay for simplicity.
As already mentioned, Bažant and Baweja [107] recommended to set the coeffi-

cient of variation of environmental humidity to ω3 = 0.2. This should be considered
as a general recommendation to be used in the absence of detailed information on
the specific climatic conditions at the site of the structure. If such information is
available, it is often possible to use a reduced value of ω3. First, it is important
to understand the precise meaning of the model parameter denoted as henv, which
represents the average value of environmental humidity during a certain period of
interest. The environmental humidity measured at a given location exhibits large
fluctuations due to complex atmospheric processes, but short-term oscillations have
a very limited influence on the evolution of humidity inside the concrete structure,
which is the actual driving force behind shrinkage and drying creep (a detailed analy-
sis of the penetration depth of such oscillations and its relation to their frequency
will be presented in Sect. 8.4.6). Therefore, the coefficient of variation to be used
in the description of random environmental effects on creep and shrinkage does not
characterize the deviations of instantaneous values of humidity from their overall
mean. It is rather related to the uncertainty caused by the random character of the
average humidity. The key point here is the specification of the period of interest
over which the humidity is averaged. What exactly this means can be best explained
by an example.

Suppose that we are concerned about potential cracking due to restrained shrink-
age, and we would like to estimate the stresses arising in a concrete frame one
week after the end of curing. In such a case, the calculation should be based on
the average value of environmental humidity during that week. If we know that the
frame will be exposed to the environment e.g., in Fresno, California, we can use the
available data recorded in the past by the local weather station (downloadable from
http://ipm.ucanr.edu/weather). Each day of the period 2000–2014 is represented in
Fig. 6.1a by a dot, with horizontal coordinate corresponding to the date (ignoring
the year) on which the measurement was taken and vertical coordinate to the daily
average of relative humidity1. The statistical ensemble of all these daily averages
has the mean value of 61.2% (which is the average humidity over the 15years con-
sidered) and the standard deviation of 13.5%, which gives a coefficient of variation
equal to 13.5/61.2 = 0.221. However, we are interested in the average humidity
during a (randomly selected) week, so we cluster the daily values into groups of
7 consecutive days and for each of them calculate the weekly average. The resulting
statistical ensemble has of course still the same mean value, but the standard devia-

1Since the available data sets contain only themaximum andminimum relative humiditiesmeasured
on each day, the daily average is estimated as the average of these two reported values. This is
sufficient for the present purpose. For real calculations, it would be better to get access to the actual
daily averages evaluated from more detailed records.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://ipm.ucanr.edu/weather
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Fig. 6.1 (a) Daily average humidities recorded in Fresno, California, in 2000–2014 (indicated by
dots), mean humidities in various months (solid) and the range of mean plus and minus standard
deviation of daily averages (dashed), (b) histogram of weekly average humidities in July (years
2000–2014 combined) and its approximation by normal distribution

tion is slightly reduced to 12.4%, which corresponds to a coefficient of variation of
0.203. If we process in a similar way the monthly averages, we find another slight
reduction to a standard deviation of 11.6% and a coefficient of variation of 0.19. A
dramatic reduction is observed for annual averages: The standard deviation drops to
2.2%, which corresponds to a coefficient of variation of 0.036.

The origin of the high variability of daily, weekly, andmonthly average humidities
is of course in the seasonal variations, which are clearly manifested in Fig. 6.1a. The
solid line connects the mean values of relative humidities calculated for each month
separately. The dashed lines mark the mean plus and minus the standard deviation of
the ensemble of daily average humidities for each month. For the given set of data,
the highest mean relative humidity of 76.8% is found in January and the lowest mean
relative humidity of 46.6% is found in July. Averaging over the whole year wipes
off such seasonal variations; it is irrelevant when exactly the one-year period starts
because it always covers all seasons equally.

For shorter periods of interest, the variability can also be reduced if we specify, at
least approximately, at which time of the year the period will start. For instance, if a
concrete frame is to be exposed to the environment in July and the calculation aims at
the response after one week of exposure, one should consider the ensemble of weekly
averages evaluated for the weeks of July only. Figure6.1b shows the corresponding
histogram and its approximation by the normal distribution. The mean value of
humidity, h̄env, is then set to themean humidity in July, i.e., to 46.6%, and the standard
deviation to 3.7%, which corresponds to a coefficient of variation ω3 = 0.08.

The statistical characteristics of daily,weekly, andmonthly averages for allmonths
of the year (still based on the data from Fresno, 2000–2014) are summarized in
Table6.1. In each row, the name of the month is followed by the mean value of
relative humidity and by the coefficient of variation of daily, weekly, and monthly
averages. This is complemented by the coefficients of variation of quarterly averages,
which are specified for the four quarters in the last column of the table. The last row
contains the characteristics that refer to all the data recorded (in anymonth). It should
be emphasized that the table is in no way universal; it refers to the data collected
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Table 6.1 Statistical characteristics of average humidities based on data recorded in Fresno,
California, between 2000 and 2014

Mean Day Week Month Quarter

Jan 76.8 0.129 0.098 0.087

Feb 72.6 0.108 0.080 0.061 0.059

Mar 67.4 0.112 0.080 0.055

Apr 61.6 0.140 0.104 0.085

May 52.8 0.161 0.123 0.074 0.061

Jun 48.0 0.144 0.098 0.071

Jul 46.6 0.115 0.080 0.058

Aug 49.0 0.107 0.066 0.037 0.040

Sep 52.3 0.115 0.079 0.049

Oct 60.5 0.146 0.118 0.070

Nov 70.9 0.125 0.091 0.061 0.056

Dec 76.5 0.125 0.095 0.074

All 61.2 0.221 0.203 0.190 0.169

at the Fresno weather station between 2000 and 2014. The table cannot be directly
used for calculations of structures at other locations and is not meant to become a
design tool. It has been set up to illustrate a suitable methodology and basic trends.

The presented case study confirms that the generally recommended coefficient
of variation of 0.2 is quite realistic, provided that the period of interest is relatively
short (between a day and several months) and that, at the same time, it is not known
in which season of the year the drying process will take place. For one-year or
multiyear calculations, the uncertainty caused by humidity variation in time is much
lower and the coefficient of variation can be reduced. Some reduction is also possible
for shorter periods of interest if they refer to a specific date range within the year
(e.g., to a specific month) and parameter h̄env is set to the mean humidity evaluated
for that range. However, when introducing such reductions, one needs to account
for the influence of spatial variability. The actual on-site conditions differ from the
conditions at the nearest weather station, and thus the mean humidity is not known
precisely, even if long-term records from the station are available. Depending on
local conditions, the coefficient of variation determined by statistical analysis of the
recorded data may need to be increased.

Instead of being treated as a random parameter, the random environmental humid-
ity can be more realistically modeled as a random process in time. This refined
approach, however, makes sense only if it is based on the diffusion equation for pore
water transfer. An effective way of dealing with random processes is the spectral
approach [92, 192, 193]. Unfortunately, it is applicable only to the linear diffusion
equation, which means that some effective value of diffusivity, independent of pore
humidity, must be used. Since the diffusivity decreases about 20 times during drying,
the error due to considering it as constant can offset the advantages of the spectral
approach. Therefore, wewill restrict our attention to the description based on random
variables.
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6.2 Latin Hypercube Sampling of Parameters of Creep
and Shrinkage Model

For given values of random variables X (i), one can calculate deterministically the
time-dependent response Y (X (i), t). The response of interest can, for example, be the
stress or strain predicted by model B3, or a structural response such as the bending
moment at a given cross section, the reaction at a given support, or the maximum
deflection, delivered by a computer program or pencil calculation. To obtain the
statistics of response, the idea is to generate random parameter samples of equal
probability, calculate for each sample the deterministic response, and then obtain the
statistics of the collection of all responses, especially the mean and variance.

A rigorous fundamental approach is theMonte Carlo simulation, which is, how-
ever, computationally demanding and inefficient. At the opposite extreme of simplic-
ity is themethod of two-point estimates, applied to creep byMadsen andBažant [589],
in which each random variable X (i) is sampled only at±1, which means that the cor-
responding model parameters are sampled at their mean plus or minus the standard
deviation. A more accurate and more effective approach is the stratified sampling,
in which the range [0, 1] of the cumulative distribution function (cdf) of each ran-
dom variable X (i) is subdivided into N strata (or layers) of equal probability 1/N ,
and the random variables used to generate the input parameters for the deterministic
calculations are sampled only at one point of each stratum (see Fig. 6.2, for N = 8).

Fig. 6.2 Illustration of stratified sampling: (a) standard Gaussian cumulative distribution function
and (b) the corresponding probability density function

To justify the optimal choice of the sampling points, let us show how the stratified
sampling is exploited for the evaluation of the basic stochastic characteristics. For
simplicity, we consider one randomvariableY whose dependence on another random
variable X is described by a deterministic rule Y = G(X), G being a given function.
Variable X is a random model parameter, function G represents the deterministic
model, and Y is the random response variable of interest. Random variable X is
characterized by the cumulative distribution function (cdf) F(X), or by its derivative,
the probability density function (pdf) f (X) = dF(X)/dX . If the dependence of Y
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on X is nonlinear, the exact cdf or pdf of random variable Y is hard to determine, but
we can compute the basic stochastic characteristics, such as themean (mathematical
expectation)

Ȳ =
∫ ∞

−∞
Y f (X) dX =

∫ ∞

−∞
G(X) f (X) dX (6.5)

or the standard deviation sY , which is the square root of the variance

s2Y =
∫ ∞

−∞
(Y−Ȳ )2 f (X) dX =

∫ ∞

−∞
Y 2 f (X) dX−Ȳ 2 =

∫ ∞

−∞
[G(X)]2 f (X) dX−Ȳ 2

(6.6)
The integrals can be evaluated analytically only in special cases. In general, the mean
and variance need to be computed numerically, usually as

Ȳ ≈
N∑
j=1

Y j �Fj (6.7)

s2Y ≈
N∑
j=1

Y 2
j �Fj − Ȳ 2 (6.8)

where Y j = G(X j ), j = 1, 2, . . . N , are the response values determined at suitably
selected sampling points X j , j = 1, 2, . . . N , and �Fj , j = 1, 2, . . . N , are the
probabilities associated with those sampling points (they are the finite counterpart
of the infinitesimal increments dF(X) = f (X)dX ).

In the crude Monte Carlo method, we generate a sequence of N numbers � j

between0 and1using a quasi-randomgeneratorwith uniformprobability density, and
for each of them, we determine the sampling value X j from the condition F(X j ) =
� j and assign the weight�Fj = 1/N . However, the spacing of generated values� j

in the interval [0, 1] is not really uniform, and convergence of the approximations to
the exact values with increasing N is relatively slow.

An improvement can be achieved by a stratification method, which divides the
interval [0, 1] into N subintervals (strata) of equal length and uses one sampling point
per subinterval, again with equal weights �Fj = 1/N . A natural choice would be to
take � j = (2 j − 1)/2N as the midpoint of the j th stratum. However, a somewhat
better accuracy is achieved if the sampling points are chosen such that, for the special
case of Y = X , the mean value be computed exactly.

Let us define points Sj , j = 0, 1, . . . N , as the points in the domain of the random
variable X whose images F(Sj ) separate the individual strata in the interval [0, 1]; see
Fig. 6.2a. Mathematically, these points can be defined as the solutions of equations
F(Sj ) = j/N , j = 0, 1, . . . N , admitting that S0 → −∞ and SN → ∞ are possible.
The integral defining the mean value of X can then be split into a sum of integrals
over intervals [Sj−1, Sj ], and each of these contributions to the total integral should
be represented by the corresponding term in the sum (6.7) exactly. In mathematical
writing, the approximation
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N∑
j=1

∫ Sj

S j−1

X f (X) dX ≈ 1

N

N∑
j=1

X j (6.9)

is exact if
X j = N

∫ Sj

S j−1

X f (X) dX, j = 1, 2, . . . N (6.10)

This result has a clear geometrical interpretation. If we divide the area under the
graph of the probability density function by vertical cuts at points Sj into N slices
of equal areas (Fig. 6.2b), then the integral in (6.10) is the first-order moment (static
moment) of the j th slice with respect to the vertical line X = 0, and the area of that
slice is 1/N . The right-hand side of (6.10) is thus the horizontal coordinate of the
centroid of the j th slice.

It is known that if we concentrate the mass of each slice into the centroid of
that slice, the overall centroid (whose horizontal coordinate corresponds to the mean
value X̄ ) does not move, and this is why the numerical approximation of the mean
is exact if the sampling points are selected according to (6.10). Based on a similar
geometrical interpretation it can be shown that, with this choice of the sampling
points, the variance S2X , which corresponds to the centroidal moment of inertia, will
always be underestimated (though negligibly if N is large).

With sampling points X j defined in (6.10), the approximation of the mean
response Ȳ is exact not only for the identity mapping Y = X , but also for any linear
transformation Y = aX +b where a and b are arbitrary constants. This follows from
the fact that in such cases Ȳ = a X̄ + b. A good, though not exact, approximation of
the mean can be expected for general nonlinear transformations Y = G(X).

As an example, Table6.2 gives the coordinates of sampling points X j for the
cases of N = 8, 16, or 32 strata of the standard Gaussian cdf. The sum of these N
coordinates is always zero, because

∑
j X j/N must give the mean value X̄ , which is

zero for the standard Gaussian distribution. In fact, for the Gaussian distribution and
for any other symmetric distribution, the approximation of the mean value would
be exact even for other (symmetric) choices of the sampling points, e.g., X j =
F−1(( j− 1

2 )/N ), but this is only because the error in stratumnumber j is compensated
by the same error with the opposite sign in the opposite stratum, number N + 1− j
(this would not be the case for nonsymmetric distributions).

The sum of squares of the sampling point coordinates divided by N represents the
approximation of the variance of X and ideally should be equal to one (again for the
standard Gaussian distribution). The actual values for N = 8, N = 16, and N = 32
are 0.9450, 0.9778, and 0.9908, respectively. As expected, the variance is slightly
underestimated, but the error tends to zero as the number of strata is increased. If the
sampling points were chosen so as to correspond to the cdf values at the midheight
of each stratum, the approximated value of the variance would be 0.8510 for N = 8,
0.9237 for N = 16, and 0.9611 for N = 32, and so the error would be bigger.
Interestingly, if the estimate of the variance is computed using N − 1 instead of
N in the denominator, the foregoing values change to 0.9726, 0.9852, and 0.9922,
respectively, and they get even closer to the exact value 1 than for sampling points
at centroids.
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Table 6.2 Coordinates of sampling points to be used for a random variable with the standard
Gaussian distribution in stratified sampling with (a) 8 strata, (b) 16 strata, (c) 32 strata (to save
space, points 1–16 with negative coordinates have been omitted for N = 32)
j X j (centroid) X j (Midpoint)

(a) N = 8

1 −1.646828 −1.534112

2 −0.895384 −0.887146

3 −0.491349 −0.488776

4 −0.157976 −0.157311

5 0.157976 0.157311

6 0.491349 0.488776

7 0.895384 0.887146

8 1.646828 1.534112

(b) N = 16

1 −1.967743 −1.862675

2 −1.325913 −1.318009

3 −1.012887 −1.009990

4 −0.777881 −0.776422

5 −0.579964 −0.579132

6 −0.402735 −0.402250

7 −0.237459 −0.237202

8 −0.078493 −0.078412

9 0.078493 0.078412

10 0.237459 0.237202

11 0.402735 0.402250

12 0.579964 0.579132

13 0.777881 0.776422

14 1.012887 1.009990

15 1.325913 1.318009

16 1.967743 1.862675

(c) N = 32

17 0.039186 0.039176

18 0.117800 0.117770

19 0.197151 0.197099

20 0.277767 0.277690

21 0.360235 0.360130

22 0.445235 0.445097

23 0.533591 0.533410

24 0.626336 0.626099

25 0.724828 0.724514

26 0.830935 0.830511

27 0.947376 0.946782

28 1.078398 1.077515

29 1.231294 1.229857

30 1.420532 1.417793

31 1.683275 1.675920

32 2.252211 2.153875
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If the random response Y depends on p random model parameters, the stratifi-
cation can be applied to each parameter separately, and the sampling values X (i)

j ,
j = 1, 2, . . . N , can be determined for each parameter X (i), i = 1, 2, . . . p. But if
we consider all possible combinations of N values of X (1) with N values of X (2),
etc., we end up with N p sampling points, which can be a huge number.

The number of sampling points is greatly reduced by theLatin hypercube sampling
(LHS) method [505, 620]. Its main idea can best be explained if only two random
parameters are considered. The potential sampling points can be represented by a
table with N rows (corresponding to the strata of parameter X (1)) and N columns
(corresponding to the strata of parameter X (2)). To cover all these combinations of
random parameters, we would need to perform N 2 deterministic calculations (e.g.,
computer runs or formula evaluations) of response values Y jk = G(X (1)

j , X (2)
k ) and

then estimate the mean and variance of Y using a generalized version of formulae
(6.7)–(6.8) (with double sums over all j and k). Of course, a preliminary estimate
based on a subset of the sampling points could be constructed even before all those
N 2 calculations are finished. The key idea of LHS is that the sampling points are
not processed in a random order, or in a regular order (e.g., in a double loop with j
and k running from 1 to N ), but in a special order constructed so that, in the first N
calculations, each stratum of X (1) gets sampled once and only once and each stratum
of X (2) gets sampled once and only once, and the same holds also for the second
series of N calculations, for the third series, etc. Of course, if we finish all N series of
N calculations, all N 2 sampling points are covered and the final result is exactly the
same as it is with any other ordering.However, the intermediate estimates constructed
after the first series, after the second, etc., in general provide better approximations
than if the sampling points are processed in a random order, and much better than
if the points are processed in a regular order. In practice, only one series is used, so
that the number of calculations is reduced from N 2 to N .

The condition that each stratum of each variable be processed once and only once
in the first series of N calculations represents a constraint but does not imply a unique
choice of this subset of sampling points. In terms of the table with N rows and N
columns, the condition means that if we mark by a certain symbol those points that
will be processed in the first series, this symbol should appear once and only once in
each row and in each column. The same condition should be satisfied for the second
series, marked by another symbol.

If all the N series are described by N different symbols, the table gets filled
completely and represents what is in mathematics known as the Latin square; see the
examples in Fig6.3. The adjective “Latin” refers to the fact that when Euler studied
this type of tables, he was filling them by letters of the Latin alphabet, as in Fig6.3a.
Of course, in the application to sampling it is more natural to use integers from 1
to N , corresponding to the number of series (Fig6.3b, c). A Latin square describes
the sampling technique for p = 2 parameters, but the concept can be extended to a
Latin cube for p = 3, and further to a p-dimensional Latin hypercube for a general
case. This explains the name of the LHS method.
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(a) (b) (c)

B D A C
C A D B
A B C D
D C B A

2 4 1 3
3 1 4 2
1 2 3 4
4 3 2 1

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

Fig. 6.3 Examples of Latin squares

As already mentioned, the advantage of the LHS method is that good estimates
of the basic response characteristics can be obtained with a reduced number of
sampling points. In fact, already after the first series of N response calculations, the
first estimates can be constructed, and this is how the method is normally used. The
quality of sampling can further be improved if the basic condition (each stratum of
each parameter sampled once) is supplemented by additional constraints that ensure
a reasonably “uniform” coverage of the entire space of random parameters.

For instance, constructing the rows by cyclic permutation leads to the Latin square
shown inFig 6.3c,which formally satisfies the basic condition but the sampling points
that would be used in the first series are located on the diagonal, as if the parameters
X (1) and X (2) were strongly correlated. So the first series provides no information
on the response for low values of X (1) combined with high values of X (2), or for
high values of X (1) combined with low values of X (2). Using such series can bias
the results, and since we have a choice, it is better to work with sampling series that
are “better balanced.” Formula (6.10) for the coordinates of sampling points for one
random parameter X has been derived from the condition that the mean value of X
be reproduced exactly, and this property is preserved for each random parameter X (i)

by each series of samples based on the LHS technique. The variances of each X (i)

are also captured with a good accuracy.
However, nothing is known a priori about the covariances, which may or may not

be reproduced well, depending on the specific sampling series. If parameters X (i)

are assumed to be stochastically independent, their covariances should be zero, and
the deviation from these theoretical values serves as a measure of bias introduced by
the specific series of sampling points.

Based on this idea, powerful tools for optimization of LHS tables have been
developed [843]. They can generate good series of sampling points not only for
uncorrelated parameters X (i) with normal distribution but also for parameters with
many other distributions and with an arbitrary covariance matrix specified by the
user.

To relieve an engineer from having to generate Latin hypercubes and check the
covariance matrices, Table6.3 describes a possible choice of sampling points for
N = 8, 16, and 32 strata and p = 4 (almost) uncorrelated random parameters with
normal distribution. The absolute values of all sample Pearson correlation coeffi-
cients are below 0.04 for N = 8 and N = 16 and below 0.02 for N = 32. Each
integermik represents the number of the stratum to be sampled for the input variable
X (i) in the kth response calculation. In other words, the sampling point in the kth
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response calculation has coordinates (X (1)
m1k

, X (2)
m2k

, . . . X (p)
mpk ). Computational experi-

ence indicates that one series of eight response calculations usually gives acceptable
engineering accuracy. Repeating the calculations with other series, a picture of accu-
racy of statistical estimates can be obtained.

Table 6.3 Uncorrelated LHS sampling

run k m1k m2k m3k m4k

(a) N = 8

1 6 7 4 1

2 7 5 8 3

3 8 2 1 5

4 1 3 2 2

5 4 8 3 8

6 3 1 7 7

7 5 4 6 6

8 2 6 5 4

(b) N = 16

1 6 13 1 15

2 15 14 8 8

3 2 16 10 2

4 9 9 5 4

5 14 12 4 10

6 4 8 16 16

7 1 2 2 7

8 3 7 6 13

9 13 10 3 9

10 16 4 9 6

11 7 15 14 3

12 11 5 7 12

13 12 6 15 11

14 5 3 12 1

15 10 1 11 5

16 8 11 13 14

(c) N = 32

1 15 16 31 12

2 17 30 10 24

3 27 20 8 10

4 18 7 7 14

(continued)
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Table 6.3 (continued)

run k m1k m2k m3k m4k

5 24 6 2 3

6 12 24 19 26

7 2 8 12 8

8 1 3 29 25

9 28 19 22 7

10 32 1 24 17

11 26 11 6 28

12 11 9 4 30

13 19 17 20 18

14 21 23 1 27

15 16 27 32 4

16 22 25 16 23

17 9 28 3 11

18 3 2 25 15

19 8 18 15 19

20 29 31 30 31

21 5 21 21 6

22 25 22 28 32

23 7 14 17 21

24 20 15 26 13

25 23 5 5 5

26 14 10 14 9

27 30 26 27 1

28 13 4 23 20

29 31 12 13 22

30 4 32 9 16

31 6 13 18 29

32 10 29 11 2

6.3 Histograms and Statistics of Response, and Confidence
Limits for Design

The response valuesY1,Y2, . . . YN for all the deterministic calculations (or computers
runs), made for N different combinations of random parameters, may be arranged
by increasing values. Then they may be plotted as the histograms of Y versus the
percentile of responses that are smaller than Y .
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(a) (b)

32 samples
16 samples
8 samples

stress [MPa]

cu
m
ul
at
iv
e
di
st
ri
bu
tio

n
fu
nc
tio

n

2- 0 2 4 6 8 01 21 41 61

1

0.8

0.6

0.4

0.2

0

32 samples
16 samples
8 samples

percentile

st
re
ss

[M
Pa
]

09 69 991 4 01 52 05 57

16
14
12
10
8
6
4
2
0
-2

Fig. 6.4 Cumulative histograms plotted (a) in linear scales, (b) in the normal probability paper

Such histograms (calculated for the problem of shrinkage-induced stress, to be
discussed in Example 6.1) are exemplified in Fig. 6.4. The random variable whose
distribution is examined is the stress in a restrained bar after 220days of drying.
As an alternative to the usual representation in Fig. 6.4a, it is instructive to plot the
cumulative histograms in the normal probability paper, which has scales such that
the normal distribution appears as a straight line (Fig. 6.4b). The slope of that line is
proportional to the standard deviation and the value at 50% is the median, which, for
the normal distribution, coincideswith themean. Typically, the calculated histograms
are approximately straight, which confirms that the distribution of responses Y j is
almost normal (Gaussian). Figure6.4 demonstrates that the histograms for 8, 16, and
32 response calculations are not significantly different. Generally, 8 are acceptable
and 16 good enough for engineering purposes. For the same number of deterministic
calculations (e.g., computer runs) of response, Latin hypercube sampling has been
shown to give better statistical estimators than other methods [620, 621].

The estimates of themean and the variance of response are evaluated using formu-
lae (6.7)–(6.8) with uniform weights �Fj = 1/N . The square root of the variance
is then the standard deviation. For easy reference, the resulting formulae for the
estimates of the mean, standard deviation, and coefficient of variation are rewrit-
ten here as2

Ȳ = 1

N

N∑
j=1

Y j , sY =
√√√√ 1

N

N∑
j=1

(Y j − Ȳ )2, ωY = sY
Ȳ

(6.11)

2The estimate of the standard deviation in (6.11) is the so-called maximum likelihood estimate,
which would be unbiased in the statistical sense (i.e., free of systematic error) only if the exact
mean value were known in advance, which is not the case here. An unbiased estimate is obtained if
the factor 1/N is replaced by 1/(N − 1). Obviously, for large N , the biased and unbiased estimates
differ negligibly. For more details see Bulmer [284], p. 130, Mandel [604], p. 134, Song [783],
p. 262, Freund [399].
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After determining these basic characteristics of response, one can easily estimate the
confidence limits with a desired percentage cutoff. For this purpose, the type of pdf
must be rationally chosen.

This choice is a difficult question for the safety of structures under extreme loads
of short duration, because the margins of distribution matter. However, for concrete
creep and shrinkage problems, such temporary overloads do not matter, except when
a sudden overload comes after large creep buckling deflections (Sects. 9.5 and 9.6 in
Bažant and Cedolin [115]). In typical creep and shrinkage problems, only the central
range of pdf matters. In such cases, the assumption of normal (Gaussian) distribution
generally appears to be adequate.

According to the table ofGaussian pdf, the values Ȳ±sY or (1±ωY )Ȳ represent the
16 and 84% probability cutoffs. This means that if these cutoffs were used for bridge
design, then about 1 in 6 concrete structures would not have the design lifetime, i.e.,
would have to be closed or repaired prematurely. On the other hand, emulating for
creep deflections the standard safety requirement that not more than 1 in a million of
structures may collapse, would be excessive by far and economically wasteful.

As a reasonable and affordable requirement, concrete structures such as bridges
should be designed so that no more than 1 in 20 structures would require closure
or repairs (for nuclear concrete structures, of course, more stringent limits are nec-
essary). This means that the design of concrete structures should be based on 95%
probability that the tolerable limits (e.g., maximumdeflection) are not exceeded. This
will henceforth be referred to as the one-sided 95% confidence limit (for a symmetric
distribution, this is equal to the usual two-sided 90%confidence limit). If the response
variable Y used in the design criterion has a normal distribution, the one-sided 95%
confidence limit that must not exceed the tolerable value is obtained as

Y95% = Ȳ + 1.65 sY = (1 + 1.65 ωY ) Ȳ (6.12)

Example 6.1. Calculating the statistics of creep and shrinkage prediction and
structural effects

The simplest application of the Latin hypercube sampling just described is to deter-
mine the mean and coefficient of variation of the predictions of model B3. Figure6.5
gives an example of the curves that represent the evolution of the mean value and of
the mean ± standard deviation (i.e., for the normal distribution, the two-sided 68%
confidence limits) for the strain in a creep test of drying concrete with the same prop-
erties as in Example3.1, loaded from time t1 = 7 days by constant compressive stress
σ = −5MPa and simultaneously exposed to environmental humidity henv = 70%.
Note the large spread between the top and bottom curves, which represent 16 and
84% probability cutoffs. About 1/6 of the responses must be expected to lie above,
and 1/6 below, these curves. The mean curve lies precisely in the middle. Note that
simulations with different numbers of strata, ranging from 8 to 32, give in this case
almost the same results.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 6.5 Mean value and two-sided 68% confidence limits (i.e., curves of mean ± standard devia-
tion) for the strain in a creep test of drying concrete

Figures6.6–6.9 show the curves of Ȳ and of Ȳ ± sY obtained in the numerical
examples of typical structural responses analyzed in Chap.4. All of them have been
constructed for concrete with the same properties as in Example3.1, using model
B3. The cdf range was partitioned into 8, 16, and 32 strata. The solid curves in
Figs. 6.5–6.9 correspond to 32 strata, the dashed curves to 16 strata, and the dotted
curves to 8 strata. Comparisons indicate that 8 strata give acceptable engineering
accuracy, and 16 strata give good accuracy.

Fig. 6.6 Mean value and two-sided 68% confidence limits for (a)–(b) stress due to shrinkage in a
restrained bar, (c)–(d) horizontal reaction due to shrinkage in a two-hinge portal frame

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_3


6.3 Histograms and Statistics of Response, and Confidence Limits for Design 193

Figure6.6a shows the stress history in a restrained bar (e.g., a pavement slab)
of thickness D = 50 mm exposed to the environmental humidity henv = 70% at
age t0 = 7 days, evaluated according to Eq. (4.10) from Example 4.1. The curve
characterizing the mean response is for 16 strata almost the same as it is for 32
strata and is not too far from the thick dash-dotted curve curve computed with one
simulation using the mean values of all parameters. The histograms for this case are
plotted in Fig. 6.4, and for the other examples the histograms look similar.

The graphs in Fig. 6.6a have been obtained with the standard values of coefficients
of variation recommended by Bažant and Baweja [107], i.e., ω1 = 0.23, ω2 = 0.34,
ω3 = 0.2, and ω4 = 0.15. For comparison, Fig. 6.6b shows analogous graphs that
would be obtained with ω3 reduced to 0.05 and the other coefficients of variation
kept unchanged. Recall that ω3 describes the uncertainty associated with the ambi-
ent humidity, discussed in detail in Sect. 6.1. It is interesting that even though the
present example deals with stresses induced by drying shrinkage, a reduction of the
coefficient of variation of the average ambient humidity leads to only a moderate
reduction of the band between the confidence limits. At the same time, the mean
response is shifted slightly upwards, which is caused by the nonlinear dependence
of the ultimate shrinkage on the ambient humidity.

The graphs in Fig. 6.6c,d show the history of the horizontal reaction force in a two-
hinge portal frame in Fig. 4.2 exposed to environmental humidity henv = 70% at age
t0 = 7 days.Again, the results have been computed for the standard value ofω3 = 0.2
(Fig. 6.6c) and for the reduced value ofω3 = 0.05 (Fig. 6.6d). This example has been
solved using the approach from Example 4.2, and the specific frame geometry has
been taken the same as in Madsen and Bažant [589]: frame dimensions L = 10m
and B = 5 m, moment of inertia of all members Ib = Ic = 2.13×10−3 m4, effective
thickness D = 200mm, and shape factor ks = 1.25.

Fig. 6.7 Simply supported beams made continuous: mean value and two-sided 68% confidence
limits for the (a) bending moment and (b) deflection at midspan

Figure6.7a shows the evolution of the bending moment at midspan after a change
of structural system, in which simply supported beams are made continuous; see
Example4.4. In contrast to Fig. 6.6, the spread of the curves is extremely small.
Only the results obtained with 8 strata are plotted here because the results with 16
or 32 strata are very similar and the curves would overlap. The reason for the low
sensitivity of the bending moment to the random parameters is that the bending

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
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moment before the change of structural system, 750kNm, is independent of material
properties (because the initial structural system is statically determinate, the internal
forces being fully determined by equilibrium), and the evolution of bending moment
after the change to a continuous beam is controlled by the redistribution function and
is not affected by shrinkage. The redistribution function is constructed by applying
the relaxation operator on function J�, which depends on the compliance function.
If, for a specific combination of random parameters, the concrete exhibits higher
creep, it also exhibits faster relaxation and both these effects partially cancel. On the
other hand, the deflection atmidspan depends on the compliance function and ismore
sensitive to the randomness of creep than the moment redistribution; see Fig. 6.7b.
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Fig. 6.8 Two opposite cantilevers of different age joined at midspan: mean value and two-sided
68% confidence limits for the (a) normalized internal reaction force and (b) normalized deflection
of older cantilever

Figure6.8 refers to the problem of interaction between two opposite cantilevers
of different age joined at midspan, already discussed in Example4.8. The evolution
of the normalized reaction force in Fig. 6.8a exhibits quite a low scatter, only slightly
higher than the scatter of bending moment in Fig. 6.7a, while the evolution of nor-
malized deflection in Fig. 6.8b exhibits higher scatter, similar to the deflection in
Fig. 6.7b. As in Example4.8, the force is normalized by the weight of one cantilever
and the deflection by the deflection of an elastic cantilever with Young’s modulus
equal to the conventional modulus E28.

Fig. 6.9 Steel–concrete composite beam: mean value and two-sided 68% confidence limits for the
(a) stress in concrete and (b) midspan deflection

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
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Finally, Fig. 6.9 shows the evolution of the stress in concrete and of the midspan
deflection of the steel–concrete composite beam already analyzed in Example4.10.
The effect of randomness is very strong, because both the stress and the deflection
depend on shrinkage, and the randomness of shrinkage is combined here with the
randomness of creep. Note that, by contrast, shrinkage had no influence on the results
plotted in Figs. 6.7 and 6.8, because of the assumed symmetry of the cross sections
with respect to the horizontal axis. The composite beam does not possess such sym-
metry and shrinkage of the concrete part leads to a change of curvature and thus
of deflection. The mean stress in c dded, the tensile strength would be exceeded.
This indicates that cracking can be expected for some of the composite beams with
properties and loading considered in Example4.10.

In summary, the examples revealed the strongest influence of randomness in the
cases where both the creep and shrinkage have an effect on the result, followed by the
caseswhere only the creep (or relaxation) plays a role. Interestingly, the redistribution
of internal forces and stresses is much less affected by the random variation of creep
properties. Of course, these are only observations of the basic trends, which should
not be understood as general rules. All the problems considered in this example
were treated by Bažant and Liu [163] using a predecessor of model B3. The results
presented here have been obtained with model B3, using an accurate numerical
solution (not an AAEM approximation). �

Thewide spread between the curves in Figs. 6.5, 6.6, 6.7b, 6.8b, and 6.9 documents
the uncertainty in predicting the creep and shrinkage and their structural effects. This
gives ample justification to the point made in the preceding chapter, namely that
updating based on short-time measurements should be conducted for every sensitive
structure. It also underscores the importance of designing not for the mean but for the
one-sided 95% confidence limits (i.e., values not exceeded with 95% probability).

Furthermore, the wide spread of statistical results indicates that designs based
only on accurate and tedious deterministic analysis of creep and shrinkage and their
structural effects are futile. They make sense only if the uncertainties are also taken
into account. Otherwise, the simple AAEM is just as good for design as are accurate
numerical solutions.

6.4 Bayesian Improvement of Statistical Prediction
of Creep and Shrinkage Effects∗

Updated predictions of the long-term structural response, which help to minimize
the uncertainties associated with the model parameters, should ideally be based on
short-time measurements taken on the specific structure of interest or on laboratory
specimens of the same composition, casting, and curing as the concrete used in the
structure. If such measurements are so limited that their extrapolation is unreliable,
or if they do not exist at all, the updating can exploit other sources of information,
e.g., available measurements on a similar concrete, extracted from the database, or
deflections of another similar bridge in the same geographical area.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
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The updating can be carried out on the basis of the Bayes theorem of the theory
of probability [36, 229, 446, 716, 783]. The Bayesian approach can be used to
update either the long-time strain predictions of the creep and shrinkage model such
as B3, or the predictions obtained by a computer program for long-time creep and
shrinkage effects on a given structure, such as the deflections. The former update can
be reduced analytically to numerical evaluation of a certain integral [116], while the
latter normally requires an entirely numerical discrete approach such as the Latin
hypercube sampling [145, 557].

Fig. 6.10 Updating of creep predictions

The problem of updating may be explained by means of Fig. 6.10. Without any
test data for the given concrete or a similar concrete, we can predict the statistical
characteristics of the response using the general information on the random varia-
tion of material properties for all concretes of the same or similar composition, as
described in Sect. 6.1. The mean values of model parameters are estimated from a
few basic material characteristics (such as the strength and the mass fractions of
water, cement, and aggregates), which cannot define the resulting concrete uniquely.
The actual material properties are affected by many other factors, e.g., by the type
and shape of aggregates, mineral type, granulometry, admixtures, and the procedures
of mixing, casting and curing. In addition to that, modern concretes often contain
components other than just water, cement, gravel, and sand, e.g., superplasticizers,
water reducers, silica fume, limestone fillers, fly ash, and blast-furnace slag. An
exact characterization of the concrete mix composition and its treatment is thus next
to impossible, and if we estimate the response from the basic composition character-
istics only, we cannot expect high accuracy. This was documented by the examples
in Sect. 6.3 and is reflected by the wide spread of the prior prediction in Fig. 6.10.

As shown in Sect. 3.8, the predictions of long-time behavior can be greatly
improved if short-time test data are available. The updating procedures presented
in that chapter focused on the mean response only. Although the statistics of regres-

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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sion could have been calculated also, theymight not have been accurate. Nowwewill
develop tools for a better prediction of the statistical characteristics of such updates,
which lead to much closer confidence limits than the original predictions; see the
posterior prediction in Fig. 6.10, which has been constructed based on the short-time
measurements denoted as Ym .

6.4.1 Background on Bayesian Statistics∗

Some mathematical background needs to be reviewed first. IfP(A) andP(B) are
the probabilities of two random events A and B, the probabilityP(A∩B) that events
A and B occur simultaneously is equal to the productP(A)P(B) only if the events
are stochastically independent. In general one can write

P(A ∩ B) = P(A)P(B|A) (6.13)

where P(B|A) is the conditional probability that event B occurs provided that
event A has occurred. In fact, relation (6.13) serves as the definition of conditional
probability

P(B|A) = P(A ∩ B)

P(A)
(6.14)

which can be interpreted as the “number of cases in which events A and B occur
simultaneously” divided by the “number of cases in which event A occurs.” Since
the conditional probabilityP(A|B) is defined asP(A ∩ B)/P(B), it follows that

P(B|A) = P(B)

P(A)
P(A|B) (6.15)

This relation is known as the Bayes theorem, dating back to the eighteenth century.
All these considerations can be extended to randomvariables, say X andY , charac-

terized by the joint probability density function f (X,Y ). Recall that f (X̃ , Ỹ ) dX dY
gives the probability that the value of X lies between X and X + dX and at the same
time the value of Y lies between Y and Y + dY . Integrating over the domain Y of
all possible values of Y , we obtain the marginal probability density of variable X ,

fX (X) =
∫
Y

f (X,Y ) dY (6.16)

Typically,Y is the interval (−∞,∞) or [0,∞). The conditional probability density
of Y for a given value of X can be defined, in analogy to (6.14), as
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fY X (Y |X) = f (X,Y )

fX (X)
= f (X,Y )∫

Y
f (X,Y ′) dY ′

(6.17)

and the Bayes theorem is written in analogy to (6.15) as

fY X (Y |X) = fY (Y )

fX (X)
fXY (X |Y ) (6.18)

Equation (6.18) represents a link between the conditional probabilities fY X (Y |X)

and fXY (X |Y ) and provides one of them if the other is known. Now let us see how
this theory can be applied to the updating of creep and shrinkage predictions.

6.4.2 Method of Bayesian Analysis∗

Wewill denote by X the random variables that influence the material properties, by y
the short-time response, and by Y the long-time response. To give a simple example,
we can imagine that y is just a scalar that corresponds to the strain measured in the
creep test after one day of loading and Y is a scalar that corresponds to the strain
measured in the creep test after one year of loading. In general, y will be a column
matrix collecting the information from several measurements, e.g., strains after 1,
7, and 28days of loading, and Y may also contain the values referring to several
long-time predictions, e.g., strains after 1, 5, and 30years. For all concretes sharing
the same basic composition characteristics (but differring in many other aspects, as
discussed before), the random variables X have a certain distributionwith a relatively
large scatter. Let us characterize this distribution by the marginal probability density
function fX (X) where X ∈ X .

For a given value of X , the material properties are known and the corresponding
responses y and Y can, in principle, be calculated. The dependence of y and Y on X
is still not deterministic, because even if we consider precisely the same concrete mix
subjected to precisely the same treatment and environmental conditions, the response
will vary from sample to sample, or from structure to structure, as known from
experiments. However, the scatter of the response under such controlled conditions
would no doubt be much smaller than the scatter of the responses of all concretes
with the same values of the basic composition parameters only. Let us denote by
fyX ( y|X) and fY X (Y |X) the conditional probability density functions of random
variables y and Y for fixed material properties X .

Put in simple terms, for one response variable y and for given properties X = X̃ ,
function fyX (y|X̃) can be constructed from the histogram of measurements of strain
after 1day in the same type of creep test repeated under the same environmental
conditions on many samples made of the same concrete batch, prepared and cured
following the same procedure. The coefficient of variation of this random distribution
can be expected to be about 5–8%.
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If the marginal probability density of X and the conditional probability density of
y for all possible values of X are known (in practice theywill usually be approximated
by functions that correspond to the normal distribution), the joint probability density

f (X, y) = fX (X) fyX ( y|X) (6.19)

can be constructed according to (6.17), and then the marginal probability density of
the short-time response y can be computed as

f ′
y( y) =

∫
X

f (X, y) dX =
∫
X

fyX ( y|X) fX (X) dX (6.20)

The prime in f ′
y indicates that this is the so-called prior, i.e., a prediction that does not

make use of any previous knowledge other than the basic composition characteristics.
At this stage there is no fundamental difference in the treatment of y and Y yet. The
prior probability density of the long-time response is evaluated using an analogous
formula

f ′
Y (Y) =

∫
X

fY X (Y |X) fX (X) dX (6.21)

Note the difference between the prior probability density f ′
Y (Y) and the conditional

probability density fY X (Y |X). The former characterizes the scatter in response of
many kinds of concrete in general while the latter characterizes the statistical scatter
for one particular concrete.

Now the crucial point is that if, in a certain specific test, we measure the actual
value ym of the short-time response y, we can improve the prediction of the long-
time response Y in this same test. From the measured y, we cannot determine the
precise value of X because the dependence of y on X is not deterministic, and even
if it were, it would not be uniquely invertible. Still, the measured information is very
useful, because it can be used to “narrow down the range in which X may lie.” In
mathematical terms, the prior probability density function of X can bemodified based
on the newly acquired information, and the integral in (6.21) can be re-evaluated with
fX replaced by the modified (posterior) probability density function f ′′

X , to get the
posterior probability density function of the long-time response,

f ′′
Y (Y) =

∫
X

fY X (Y |X) f ′′
X (X) dX (6.22)

The key step of the updating procedure is the determination of the posterior prob-
ability density function f ′′

X . This function is in fact the conditional probability of
X provided that y is equal to the measured value ym . So, using the Bayes theorem
(6.18), we can write

f ′′
X (X) = fXy(X| ym) = fX (X)

f ′
y( ym)

fyX ( ym |X) (6.23)
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and, substituting this in (6.22), we get the final formula

f ′′
Y (Y) =

∫
X

fY X (Y |X)
fX (X)

f ′
y( ym )

fyX ( ym |X) dX =

∫
X

fY X (Y |X) fyX ( ym |X) fX (X) dX
∫
X

fyX ( ym |X) fX (X) dX
(6.24)

Before formula (6.24) can be applied to a real case, the prior probability density
fX and the conditional probability densities fyX and fY X must be known or reason-
ably estimated. Probability density fX describes the variability of material properties
among all concretes of the same basic composition. This was already discussed in
Sect. 6.3, where the variability of parameters of model B3 was described by four
random variables X (1), X (2), X (3), and X (4), which were assumed to be normally dis-
tributed and mutually independent (uncorrelated). In that section, we used variables
with standard normal distribution and their relation to the actual model parameters
was described by linear transformations (6.1)–(6.4). Each of these transformations
contained two constants defining the mean value and the coefficient of variation of
the respectivemodel parameter. Themean values are estimated from the composition
using the empirical formulae that represent the deterministic version of model B3,
and the coefficients of variation associated with variables X (1), X (2), X (3), and X (4)

were taken according to the recommendations of Bažant and Baweja [107] as 23, 34,
20 and 15%, respectively.

It remains to specify the conditional probability densities fyX and fY X , which
describe the variability of measured short-time and long-time responses for one
and the same concrete. Again, the simplest assumption is that, for fixed properties
X , the individual components of y are normally distributed and uncorrelated. The
assumption of no correlation is of course somewhat questionable, because closely
spaced measurements in the same test are certainly not independent. However, for
reasonably spaced measurements, the correlation is weak and can be neglected. Each
component of y represents the value measured at a specific time, e.g., after one day
of loading, and its mean value is expected to be close to the prediction obtained, for
that time, using the deterministic version of model B3 with parameters determined
from the given value of X .

So it is sufficient to estimate the coefficient of variation of measurements from
many tests on the same concrete. It can be expected that this coefficient of variation
does not strongly depend on X (i.e., is about the same for different concretes) and
for long-time measurements is larger than for short-time ones. We will further use
the symbol ωyX for the coefficient of variation corresponding to the conditional
probability density fyX and ωY X for that corresponding to fY X , knowing that for
different components of y and Y it may be different (especially if the long-time
predictions cover a wide range of times).

Having outlined the assumptions regarding the random distribution of parameters
X and the conditional probabilities of the short-time and long-time responses, we
proceed to the evaluation of the prior and posterior response predictions. From the
practical point of view, the fundamental characteristics of the response are the mean
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and the standard deviation. Other important stochastic characteristics, such as the
confidence limits, can be estimated from the mean and standard deviation if a certain
type of distribution (usually normal) is assumed.

Let us first discuss the evaluation of the prior characteristics, denoted by single
primes and derived from the prior distribution. For instance, to characterize the prior
prediction of the long-time response, we need to evaluate the mean and variance of
random variable Y with the prior pdf f ′

Y given by (6.21). For simplicity, we will
develop the formulae related to one single component of Y denoted as Y , knowing
that each component can be treated separately. Using the specific form (6.21) of the
pdf, we can express the prior mean of Y as

Ȳ ′ =
∫
Y

Y f ′
Y (Y ) dY =

∫
X

[∫
Y

Y fY X (Y |X) dY

]
fX (X) dX (6.25)

where Y denotes the domain of the random variable Y , usually the set of all real
numbers. The integral in the brackets represents the mean response Y for fixed
parameters X , which is supposed to be equal to the prediction of the deterministic
model with the given parameters. Therefore, there is no need to evaluate the integral
in brackets numerically, and we can replace it by the symbol G(X) where function
G describes the deterministic model. The right-hand side of (6.25) then reduces to
an integral over the parameter space X , which is a generalized form of (6.5). In
analogy to (6.7), we can construct the numerical approximation

Ȳ ′ =
∫
X

G(X) fX (X) dX ≈
N∑
j=1

G(X j )�Fj = 1

N

N∑
j=1

G(X j ) (6.26)

where X j are sampling points with equal prior probabilities �Fj = 1/N . Note the
slight difference between (6.5)–(6.8), where Y was considered as a deterministic
function of X , and the present situation, in which even for fixed X the value of Y
is random and the deterministic function G describes the dependence of the mean
response Y on parameters X . This had no effect on the resulting formula (6.26) for
the mean, but the expression for the variance will be more involved than (6.8). To
derive it, we start from the definition of prior variance

s ′2
Y =

∫
Y

Y 2 f ′
Y (Y ) dY − Ȳ 2 =

∫
X

[∫
Y

Y 2 fY X (Y |X) dY

]
fX (X) dX − Ȳ 2 (6.27)

Now the point is that the integral in the brackets is not just the square of G(X) (as it
would be if Y were a deterministic function of X), but it is equal toG2(X)+s2Y (X) =
(1 + ω2

Y )G2(X) where s2Y (X) = ω2
Y G

2(X) is the variance of Y under fixed X and
ωY is the coefficient of variation of Y for fixed X , assumed to be independent of
the parameters X . Therefore, the prior approximation of the response variance is
computed as



202 6 Uncertainty Due to Parameter Randomness via …

s ′2
Y ≈

N∑
j=1

[
G2(X j ) + ω2

Y )
]

�Fj − Ȳ 2 = 1

N

N∑
j=1

G2(X j ) + ω2
Y − Ȳ 2 (6.28)

For simplicity, we have shown the derivation for one long-time response variable Y ,
but the same formulaewould apply to all components ofY and also to the components
of the short-time response y (with the appropriate G and ωY for each component).

The main objective in this section is to show how the posterior estimate of the
long-time response can be evaluated. The posterior mean and variance are defined
by formulae analogous to (6.25) and (6.27), but with the prior pdf fX (X) replaced
by the posterior pdf f ′′

X (X), given by (6.23). So the posterior mean is given by

Ȳ ′′ =
∫
X

G(X) f ′′
X (X) dX = 1

f ′
y( ym)

∫
X

G(X) fyX ( ym |X) fX (X) dX (6.29)

Introducing, for convenience, weight factors

p j = fyX ( ym |X j ), j = 1, 2, . . . N (6.30)

and normalized weight factors

�F ′′
j = p j∑N

k=1 pk
, j = 1, 2, . . . N (6.31)

we can approximate (6.29) by

Ȳ ′′ ≈
∑N

j=1 G(X j )p j∑N
j=1 p j

=
N∑
j=1

G(X j )�F ′′
j (6.32)

This is very similar to the prior estimate (6.26), but the uniformweights�Fj = 1/N
are replaced by the nonuniform weights �F ′′

j given by (6.31). The contribution of
individual sampling points is in the posterior weighted by factors which express the
relative likelihood that the material with properties corresponding to the sampling
parameter values would exhibit the actually measured short-time response ym . The
posterior estimate of the variance is constructed in an analogous way, starting from
(6.28) and replacing the uniform weights by the updated ones:

s ′′2
Y ≈

N∑
j=1

G2(X j )�F ′′
j + ω2

Y − (
Ȳ ′′)2 (6.33)

It suffices to assume that all the distributions are normal, and then the foregoing
values for the mean and standard deviation (square root of variance) permit fixing
the posterior probability distributions and determining the confidence limits.
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Fig. 6.11 Kishwaukee River Bridge (Illinois): (a) longitudinal section and close-up of cantilever
(half-span) analyzed, (b) box-girder segment; reprinted from [145] with permission from ASCE

Example 6.2. Updating prediction of bridge deflections

Bayesian analysis in combination with the Latin hypercube sampling of the random
parameter sets was applied to the analysis of long-time bridge deflections by Bažant
and Kim [145]. The Kishwaukee River Bridge, used in this example, is a segmental
box-girder prestressed concrete bridge constructed by the cantilever erection method
(Fig. 6.11a top). The analysis focused on one half-span cantilever (Fig. 6.11a bottom)
consisting of 19 segments of different ages (Fig. 6.11b). The creep and shrinkage of
concrete were described by a predecessor of model B3 and the model parameters
were controlled by 8 independent random variables.

Typical cumulative histograms of the prior and posterior distribution of deflec-
tion of the 17th segment after 45years are plotted on the normal probability paper in
Fig. 6.12. The histogram in Fig. 6.12a was obtained with one series of 16 simulations,
using 16 strata for each random variable. The histogram in Fig. 6.12b combines the
results obtained in 4 different series, each consisting of 16 simulations. Analogous
histograms for 1 or 4 series consisting of 32 simulations using 32 strata are shown in
Fig. 6.12c, d. The closeness of the histograms to a straight line fit confirms that the
normal distribution is a good assumption. As expected, the straight line approxima-
tion has a smaller slope for the posterior distribution than for the prior one, because
the updating reduces the standard deviation.

Figure6.13 gives an example of the deflection histories corresponding to themean
response and to 68% confidence limits (mean ± standard deviation) for the prior
prediction and for the posterior prediction updated on the basis of the short-time data
points shown,which documents that the uncertainty of prediction has been drastically
curtailed by the Bayesian sampling approach. The predictions in Fig. 6.13a are based
onone series of 16 simulations, and those inFig. 6.13bonone series of 32 simulations.
For details of these calculations, see Bažant and Kim [145]. Treatment of certain
anomalies in the measured deflections is described on p. 2543 of that paper. �
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Fig. 6.12 Cumulative histograms of the prior and posterior distribution of bridge deflection at
segment number 17 after 45years

Fig. 6.13 Prior and posterior predictions of the history of bridge deflection (mean values and 68%
confidence limits) at segment number 17



Chapter 7
Paradigms of Application, Phenomena
Affecting Creep Deformations,
and Comparisons to Measurements on
Structures

Abstract In this chapter, we explain by examples how to apply in practice the
methods presented in the preceding chapters. We compare the calculation results to
the measurements on structures and assess the errors of various methods. The most
revealing examples aiding progress are those of major serviceability loss. First, we
discuss the La Lutrive Bridge, which was an early documented example of excessive
creep deflections. Then, we present a striking paradigmof excessive creep deflections
and prestress loss, offered by the Koror–Babeldaob (KB) Bridge, which has recently
been analyzed in detail atNorthwesternUniversity. In this context, we outline theway
to adapt commercial finite element software to concrete creep analysis and comment
on algorithmic aspects. We also discuss the effects of wall thickness, cracking, and
temperature (including the effect of solar heating of prestressing steel embedded in
concrete) and explain the method of determining the model parameters. Evidence of
excessive deflections from 69 other bridges is summarized and interpreted. Finally,
we give a préci of recent results on cyclic creep, with application to prestressed box
girder bridges, and show that its effects on deflections are negligible, especially for
large spans,while its effects on stress redistributions and crackingmay be appreciable
for medium spans.

In this chapter, whose main part closely follows a series of papers by Bažant et al.
[209–211], predictions of various models will be compared. The models to be con-
sidered include the B3 model, the ACI-209 model, the CEB-fib model, the GL 2000
model, and the JSCE model. For their description, see Appendices C and E. In Sect.
7.8, we will also refer to the design recommendation of Japan Road Association
(JRA) [528], which is a slightly updated version of the JSCE model.

© Springer Science+Business Media B.V. 2018
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7.1 Drying Effects in Viaduct La Lutrive

Unrealistic representation of drying and its effect on shrinkage and creep is often an
important, though not dominant, factor in excessive long-time deflections. This has
been early on documented by the viaduct La Lutrive (near Montreux, Switzerland)
(Fig. 7.1). As has been typical, the thin top slab dried and shrank first, also exhibiting
drying creep. This caused lifting. Only after the top slab almost finished drying, the
bottom slab started to dry and shrink, with some additional drying creep, which was
pulling the bridge down faster than predicted by the traditional analysis based on
uniform (average) shrinkage and creep properties of the whole box.

Fig. 7.1 Lutrive bridge: (a) elevation, (b) cross section (dimensions in meters), (c) deflection
component due to differential shrinkage, (d) deflection measured or predicted by various models;
figure originally published in ACI Concrete International, 2006

The curve in Fig. 7.1c shows (in actual time scale) the model B3 prediction of
the upward vertical deflection [558]. After this curve is superposed on the model
B3 prediction of creep (with drying creep), the deflection curve closely matches the
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measurements of maximum deflection (shown by data points in Fig. 7.1d). Note the
large difference from the deflection curve predicted according to the ACI recommen-
dation [11], reapproved in 2008; seeAppendix E.3. This differencemust be attributed
not only to the neglect of differential shrinkage and creep, but also to the fact that
the early creep models (which still languish in various standard recommendations)
greatly underestimate the long-time creep.

The unexpectedly small downward deflections which are often observed during
the first few years lead to euphoric self-satisfaction. Then, as the bridge ominously
begins deflecting downward at a faster rate than expected, gloom sets in. The picture
is aggravated if, as has been typical, the design was based on an outdated prediction
model such as that of ACI [11], which greatly underestimates long-time creep.When
the deflections become much larger than predicted in design, panic may develop and
provoke risky remedial measures. The records for the pioneering German bridges
in the 1950s (Worms, Koblenz, Bendorf) are either nonexistent or sealed from the
public.

A long record of excessive deflections also exists for the Zvíkov Bridge in
Bohemia, built in 1962 [558].

The foregoing discussion highlights the importance of taking into account the
effects of nonuniformity and nonsymmetry of drying. It also shows that approxi-
mate estimates of these effects can be achieved quite easily by applying model B3
separately to different flanges in the cross section.

7.2 Description of the KB Bridge in Palau and Input Data

Recent studies [558–560, 646, 836] reported measurements documenting grossly
excessive long-time deflections on a number of long-span prestressed box girder
bridges [558]. The most blatant example of excessive deflections is provided by the
KB Bridge, which crossed the Toegel Channel between the islands of Koror and
Babeldaob in the Republic of Palau in the tropical Western Pacific (Fig. 7.2). When
completed in 1977, itsmain span of 241m (791 ft.) set theworld record for prestressed
concrete box girders [886]. The final deflection, measured as a difference from the
design camber of −0.3 m (or −12 in.), was expected to terminate at 0.76 to 0.88 m
(30.0 to 34.6 in.), as predicted in design [3, 775] based on the original CEB-FIP
recommendations (1970-1972). According to the 1971 ACI model [11], reapproved
in 2008 [14], the deflection (measured from the design camber) would have been
predicted as 0.71 m (28 in.), according to [615], and 0.74 m (29 in.), according to
the present calculations with the ACI model.

After 18 years, the deflection measured since the end of the construction reached
1.39 m (54.7 in.) and kept growing [3, 367].
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Fig. 7.2 Koror–Babeldaob Bridge in Palau: (a) deck view at midspan hinge before retrofit, (b)–(c)
side view before retrofit, (d)–(e) after collapse (in 1996); images courtesyACI; DYWIDAGSystems
International; Wiss, Janney, Elstner Associates, Inc.; image (a) originally published on the cover of
ACI SP-194, 2002; images (b)–(d) originally published in ACI Concrete International, June 2010;
image (e) originally published in ACI Structural Journal, Nov-Dec 2011

The design camber of 0.305 m (12 in.) was not met [775], because an additional
creep deflection of 0.229 m (9 in.) was accumulated during the segmental construc-
tion, making the actual camber only 0.076m (3 in.) when the cantilevers were joined.
Thus, the total 18-year deflection atmidspanwas 1.61m (5.3 ft.). Remedial prestress-
ing was undertaken, but caused collapse 3months after its completion (on September
26, 1996), with two fatalities and many injuries [286, 615, 670, 694, 695, 785]; see
Fig. 7.2d-e.

As a result of legal litigation, the technical data collected on this major disaster
by the investigating agencies have been unavailable to the engineering public for
many years. In view of this fact, a resolution (proposed by Bažant, in the name of a
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worldwide group of 47 experts listed in [209]) was introduced at the 3rd Structural
Engineers World Congress in Bangalore. The resolution called, on the grounds of
engineering ethics, for the release of all the technical data necessary for analyzing
major structural collapses, including the bridge in Palau. It passed on November
6, 2007, and was circulated widely. In January 2008, the Attorney General of the
Republic of Palau permitted the release of the necessary technical data.

The main span of 241 m (791 ft.) consisted of two symmetric concrete cantilevers
connected at midspan by a horizontally sliding hinge. Each cantilever was made of
25 cast-in-place segments of depths varying from 14.17 m (46.5 ft.) at the main piers
to 3.66 m (12 ft.) at midspan. The main span was flanked by 72.2 m (237 ft.) long
end spans, in which the box girder was partially filled with rock ballast to balance
the moment at the main pier. The total length of the bridge was 386 m (1266 ft.). The
thickness of the top slab ranged from 432 mm (17 in.) at the main piers to 280 mm
(11 in.) at the midspan. The thickness of the bottom slab varied from 1153 mm (45.4
in.) at the main piers to 178 mm (7 in.) at the midspan. Compared to the depth of
girder, the webs had a relatively small thickness of 356mm (14 in.), constant through
the whole main span. The elevation and two cross sections are shown in Fig. 7.3.

Fig. 7.3 Cross sections of box girder at main pier andmidspan of main span (dimensions in meters)

Type-I Portland cement was used for the superstructure [775]. The mass density
of concrete was ρ = 2325 kg/m3 (145 lb/ft.3). The top slab was covered by concrete
pavement of average thickness 76 mm (3 in.) and density 2233 kg/m3 (139 lb/ft3).
The aggregate was crushed basalt rock of the maximum aggregate size of about 19
mm (3/4 in.), supplied from a quarry on the island of Malakal. Beach sand from
Palau, washed to keep the chloride content well within allowable limits, was used as
the fine aggregate [368].

Although no original measurements of the elastic modulus E of concrete are
known, some information was obtained in 1990 by core sample tests [510], which
yielded the static modulus of elasticity E = 22.1 GPa (3200 ksi). In 1995, further
core sample tests [367] made just before the retrofit revealed the porosity to be high
and E to be about 21.7 GPa (3150 ksi). Both investigations showed values about
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23% lower than the value E = 28.3 GPa (4110 ksi) estimated from the compression
strength1 according to theACI empirical formula (3.5). In JICA’s on-site investigation
just before the retrofit, truck load tests were conducted, and matching the deflection
measured at midspan by finite element elastic analysis one gets, after correction for
concrete age according to the ACI formula, the average conventional modulus E28

of about 22.0 GPa, or 3190 ksi [510]. This is the value adopted for analysis since the
load test gives the average elastic modulus in the box girder while the core samples
are subjected to local random scatter.

The prestress was generated by Dywidag threaded alloy bars (tendons) of yield
strength 1034 MPa (150 ksi) and diameter 31.8 mm (1.25 in.), extended by couplers,
anchored by nuts, and grouted in ducts of diameter of 47.6 mm, or 1.9 in. [3, 359].
Some tendons were stressed from one end, and some from both [615, 886]. The
jacking force of each tendon was 0.60 MN, or 135 kips [359]. There were 316
tendons above the main pier, densely packed in four layers within the top slab. Their
combined initial prestressing force was about 190 MN, or 42600 kips [615, 694,
886]. The same threaded bars were used to provide vertical prestress in the webs
and horizontal transverse prestress in the top slab. The tendon spacing in the webs
ranged from 0.3 to 3 m, or 1 to 10 ft. [775]. The horizontal transverse tendons in the
top slab were spaced at 0.56 m, or 22 in. [3, 615].

The alloy steel of the tendons had yield strength 1034 MPa (150 ksi) and ultimate
strength 1054 MPa, or 153 ksi [359]. Its Young modulus was assumed as 200 GPa
(29000 ksi) and Poisson ratio as 0.3. There was also unprestressed steel reinforce-
ment [3], which was taken into account in calculations. In post-collapse examination,
neither the prestressed nor the unprestressed steel showed any signs of serious cor-
rosion, despite the tropical marine environment (some of the ducts showed mild
corrosion, irrelevant for deflections).

The construction of each segment took slightly more than 1 week [796]. When
the concrete strength in the segment just cast attained 17.2 MPa (2500 psi), 6 to 12
tendonswere stressed to 50%of their final jacking force [796], andwhen the concrete
strength reached 24.1 MPa (3500 psi), all the tendons terminating in this segment
were stressed fully. The segmental erection of the opposite symmetric cantilevers
was almost simultaneous and took about 6 to 7 months [886].

Despite close monitoring, the camber planned to offset the anticipated long-time
deflections was not met. The creep and shrinkage during the segmental erection
caused an unintended initial sag of 229 mm (9 in.) at midspan, which could not be
corrected during the erection because it would have required abrupt large changes
of slope [775]. The initial sag before installation of the midspan hinge is included
neither in the reported deflectionmeasurements nor in the deflection curves in figures.

The initial deflections for the first two years were benign. However, the longer
term deflections came as a surprise. In 1990, the midspan deflection reached 1.22 m,

1Themean 28-day compressive strength f̄c = 35.9MPa (5200 psi) is based on the results of cylinder
tests during construction, reported in a private communication byZelinski [890], the formerResident
Engineer at the KB Bridge construction, after he read Bažant et al. [211]. For further corrections
by Zelinski, see [209].

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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or 48 in. [510], which caused ride discomfort, vibrations after each vehicle passage,
and excessive deterioration of road surface. By 1993, the deflection reached 1.32 m,
or 52 in. [3]. In 1995, just before the removal of roadway pavement (of average
thickness of 76 mm, or 3 in.), the midspan deflection reached 1.39 m (54.7 in.) and
was still growing [367].

7.3 Creep Structural Analysis Utilizing Commercial
General-Purpose Finite Element Program

As justified in the preceding chapters, concrete under service conditions and nonde-
creasing strains can be assumed to follow aging linear viscoelasticity with correc-
tions for tensile cracking, humidity and temperature variations, and drying creep (or
Pickett effect). The compliance function J (t, t ′) of concrete is deduced from the
chosen creep and shrinkage prediction model. The ACI, CEB-FIP, JSCE, GL, and
B3 models are considered [14, 104, 107, 390, 405, 407, 529]; see Chap. 3 and
Appendices C and E. The same finite element program with the same step-by-step
time integration based on Kelvin chain is used for all these models.

As explained in Chap. 5 and further discussed in Sect. 7.4, step-by-step analysis in
short time steps reduces the structural creep problem to a sequence of elastic problems
with eigenstrains, one such problem for each time step [68]. Each such analysis can be
carried outwith an adapted elastic finite element program. So onemerely needs to find
a suitable commercial finite element program which has the requisite geometric and
material modeling features. The software ABAQUS/Standard (Simulia, Providence,
Rhode Island) has been chosen, and various supplemental computer subroutines have
been developed to introduce the incremental effects of creep and shrinkage based on
different models.

The plates (slabs and walls) of the box girder are subdivided into eight-node hexa-
hedral isoparametric finite elements (Fig. 7.4). Since the stresses caused by load do
not vary significantly through the thickness and plate bending is not important when
traffic loads are not considered, the finite elements are chosen to extend through the
whole thickness, except that the top slab thickness is subdivided into two elements.
Although accurate modeling of drying creep may generally require the wall thick-
ness to be subdivided into at least six finite elements, model B3 makes it possible to
avoid thickness subdivision because it is based on an approximate solution of drying
profile evolution depending on plate thickness and on analytically established scaling
properties of the nonlinear diffusion equation. Because the creep specimens in the
database are loaded centrically and are drying symmetrically, this approach would
not be accurate for cross sections subjected to flexure or highly eccentric compres-
sion. However, for the present case of box cross sections with relatively thin walls,
this approach is accurate because the resultant of normal stresses across the wall is
everywhere nearly centric, same as in standard creep tests.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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Fig. 7.4 Three-dimensional finite element mesh of the KB Bridge; figure originally published in
ACI Concrete International, June 2010

In view of symmetry, only one half of the bridge is analyzed. Together with the
pier, it is subdivided into 5036 hexahedral elements; see themesh in Fig. 7.4. The pre-
stressing tendons and the nonprestressed steel bars are subdivided into further 6764
bar elements connected rigidly (with no slip) to the nodes of the three-dimensional
mesh (for reinforcement description, see [3]). Sufficiency of mesh fineness has been
validated by checking that a finer mesh with 20,144 hexahedral elements would yield
only a negligible correction of the computed elastic deflections.

The differences in the ages of various segments, the sequential prestressing at
various times, and the stepwise load increase in individual segments during con-
struction (including the extra weight of 1068 kN, or 240 kips, introduced during the
construction by the form carrying traveler) are taken into account according to the
actual cantilever erection procedure. To simulate this segmental erection procedure,
the elements are deactivated at first and then progressively reactivated according to
the construction sequence.

The initial time steps after the hinge installation at midspan are 100 × 0.1 days
and then 10 × 10 days. After that, the time step is kept constant at 100 days up to
19 years. For the deflection prediction up to 150 years, all the subsequent time steps
are 1000 days.

The individual prestressing bars, the number of which is 316 above the main
pier, are modeled as two-node line elements, attached to concrete at the nodes. The
individual bars of unprestressed steel reinforcement are modeled similarly. Although
the tendons were not prestressed fully at one time [796], each tendon is assumed to
get fully prestressed 7 days after its anchoring segment had been cast. Capturing
the time schedule accurately matters for the initial deflection history, but not for
multidecade deflections.

Since the tendons are straight, the curvature friction is nil and only the wobble
friction needs to be taken into account. To do that, the initial prestress is dimin-
ished according to the length of each individual tendon with an approximate wobble
coefficient 0.0003/ft or 0.00098/m [359, 660].

The prestress losses caused by creep and shrinkage and by sequential prestressing
of tendons are automatically reproduced by the finite element simulation, provided
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that the behavior of concrete is described by an appropriate creep and shrinkage
model. Modeling of the loss due to prestressing steel relaxation is based on the
approach proposed by Bažant and Yu [207] and presented in Sect. 4.3.4.1.

Because of significant strain change in the tendons, caused by axial contraction
and flexure of the box girder due to creep and shrinkage, Eqs. (4.130)–(4.133) yield
for the KB Bridge considerably smaller steel relaxation than the CEB Code formula
which ignores decreasing strain. However, this difference is more than offset by the
effect of periodic daily heating of the tendons in the top slab [207]. For the KB
Bridge, the tropical sunlight is considered to heat the pavement to 55◦C at least, and
a simple calculation of heat conduction indicated that the top layer of tendons must
have reached at least 30◦C within 2.5 hours after pavement heating, and for about 6
hours daily. Based on Eq. (4.131) and on the value Qp/kB ≈ 14, 600 K, deduced
from the data of Shinko Wire Co. (see Fig. 4.33a), it is estimated that, as a time-
averaged value, parameter AT ≈ 2 for these tendons. Parameters of the prestress
relaxation model proposed by Bažant and Yu [207] and described in Sect. 4.3.4 are
set to k = 0.12 and ρ0 = 6.5%.

7.4 Numerical Implementation and Algorithmic Aspects

In thematerial library of ABAQUS, nomaterial model can capture the characteristics
of the creep compliance functions J (t, t ′) of the prediction models under consid-
eration. Therefore, an individual material constitutive law corresponding to every
different creep and shrinkage prediction model had to be developed for the user sub-
routine UMAT. The three-dimensional generalization is obtained assuming material
isotropy, characterized by a time-independent Poisson ratio ν [80, 87, 126]; see Sect.
2.4. Based on core sample tests [367], ν = 0.21 is used in simulations.

For the sake of efficiency of large-scale computer analysis, it is advantageous
to avoid computation of history integrals. This is made possible by converting the
stress–strain equations to an equivalent rate-type form, based on the Kelvin chain
model; see Sect. 5.2.

In the case of model B3 (which represents RILEM Recommendation 1995), con-
version of the compliance function of basic creep to a rate-type creep law is particu-
larly easy, as explained in Sect. 5.2.6. The Kelvin chain model is in this case applied
to the nonaging solidifying constituent, and thus, its moduli are age-independent,
but only for basic creep, and except the aging viscous flow term. As explained in
Sect. 5.2.6, the flow term can be treated separately, because it has no heredity, i.e.,
no memory, no history integral; see the modified version of Algorithm 5.3 based on
Eqs. (5.83) and (5.84).

Besides the basic creep, there is in model B3 a separate drying creep term, which
captures the Pickett effect. It is approximated by compliance function Jd given by
(3.20), which does not have the structure corresponding to the solidification theory.
Such a compliance function can be approximated by general Dirichlet series (2.8),
which corresponds to an aging Kelvin chain. The age-dependent moduli Dμ can

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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214 7 Paradigms of Application, Phenomena Affecting Creep Deformations…

be evaluated using an approximation of the retardation spectrum, as explained in
Sect. F.4. Alternatively, the spectra of the basic and drying creep compliance can be
combined and the compliance function can be approximated by one aging Kelvin
chain, which is the most efficient approach.

The microprestress-solidification theory, which will be explained in Chap. 10,
allows a more accurate representation of drying creep, aging, and thermal effects and
thus would have been more realistic. However, it would have required calculating the
distributions of pore relative humidity across the thickness of each slab, which would
have necessitated not one but at least five finite elements over the slab thickness.

For empirical models such as those of ACI, CEB, JSCE, and GL, a nonaging
constituent in the sense of the solidification theory cannot be identified. Therefore,
approximations by aging Kelvin chains must be used, with retardation spectra deter-
mined by the formulae from Sect. F.3.

As will be discussed in Sect. 11.2, the models other than B3 exhibit some serious
deficiencies, theoretical as well as practical. One deficiency, especially for the ACI
model, is that the long-time creep is strongly underestimated. Another deficiency of
the ACI model, and to a lesser extent the CEB model, is that the drying creep, which
is very sensitive to the cross-sectional thickness, is not separated from the basic creep
and that the effects of thickness on shrinkage and drying creep are described by a
scaling factor on the strain at fixed time, rather than by scaling of the time rate of
strain [98].

Algorithm 7.1 Finite element analysis using a creep and shrinkage model

1. For each integration point of each finite element that represents concrete: Initialize
(by zero values) the column matrix of internal variables erμ,1, μ = 1, 2, . . . M .
Set the step counter k to 1.

2. Start the step number k from time tk to tk+1 = tk + Δtk .
3. For each integration point of each finite element that represents concrete, compute

a. the midstep stiffness moduli Dμ,k+1/2, using suitable formulae based on
the retardation spectrum, e.g., formulae from Sect. F.3 for the ACI or CEB
model,

b. the factors βμk and λμk given by (5.63),
c. the incremental modulus

Ēk =
⎛
⎝ 1

E0
+

M∑
μ=1

1 − λμk

Dμ,k+1/2

⎞
⎠

−1

(7.1)

d. the column matrix of strain increments due to creep

Δε′′
k =

M∑
μ=1

(1 − βμk)erμk (7.2)

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_11
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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e. the increment of shrinkage strain Δεsh,k = εsh(tk+1) − εsh(tk), based on the
effective thickness tb and environmental humidity henv,

f. the increment of thermal strain ΔεT,k = αT [T (tk+1) − T (tk)], which may
be considered to take into account seasonal changes but is not needed here
because the temperature in the tropics is constant, and

g. the increment of eigenstrain

Δε̃k = (Δεsh,k + ΔεT,k)δ + Δε′′
k (7.3)

where δ is the column matrix corresponding to unit normal strains and zero
shear strains (in the three-dimensional setting, it has three unit entries and
three zero entries).

4. For each integration point of each finite element that represents steel (passive
reinforcement or prestressed cables), compute the incremental stiffness and the
increment of eigenstrain using an appropriatematerialmodel (e.g., an elastoplastic
model for passive reinforcement and an elastoviscoplastic model described by
(4.136) for prestressing steel).

5. Assemble the incremental structural stiffness matrix Kk , using the standard finite
element procedure based on numerical evaluation of the integral

Kk =
∫
V
BTDkB dV (7.4)

where V is the spatial domain occupied by the investigated structure, B is the
standard strain-displacement matrix containing the derivatives of the shape func-
tions, andDk is the incremental material stiffness matrix. At integration points of
elements that represent concrete, Dk is equal to ĒkDν , where Ēk is the incremen-
tal modulus given by (7.1) and Dν is the dimensionless elastic material stiffness
matrix (2.35), corresponding to unit Young’s modulus. At integration points of
elements that represent steel, Dk is the tangent material stiffness matrix of the
appropriate material model.

6. Assemble the incremental equivalent force vector Δf k (right-hand side of the
discretized equilibrium equations), using the standard finite element procedure
based on numerical evaluation of the integral

Δf k =
∫
V
NTΔb̄k dV +

∫
St

NTΔt̄k dS +
∫
V
BTDkΔε̃k dV (7.5)

where N is the displacement interpolation matrix containing the shape functions,
Δb̄k is the vector of increments of prescribed body forces, Δt̄k is the vector of
increments of prescribed surface forces on the unsupported part of boundary, St ,
and Δε̃k is the increment of eigenstrains evaluated according to (7.3).

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_2


216 7 Paradigms of Application, Phenomena Affecting Creep Deformations…

7. Solve the incremental discretized equilibrium equations2

KkΔdk = Δf k (7.6)

and determine the column matrix of incremental nodal displacements Δdk .
8. For each integration point of each finite element:

a. evaluate the strain increment Δεk = BΔdk ,
b. compute the stress increment using the formula

Δσ k = ĒkDν(Δεk − Δε̃k) (7.7)

for concrete and an appropriate stress–strain equation for steel (e.g., an
elastic-perfectly plasticmodel for passive reinforcement and formula (4.137)
for prestressed cables), and update the stress σ k+1 = σ k + Δσ k ,

c. update the internal variables for concrete using the formula

erμ,k+1 = λμk

Dμ,k+1/2
CνΔσ k + βμkerμk (7.8)

9. Increment the step counter k by 1 and proceed to the next step (go to 2).

7.5 Effects of Slab Thickness, Temperature, and Cracking

Model B3 combined with the sectional approach predicts separately the basic creep
of the material (i.e., the part of creep unaffected by moisture content variation) and
the additional effects of drying. It gives the average shrinkage and average drying
creep (or stress-induced shrinkage) in a centrically loaded and symmetrically drying
cross section.

The shrinkage ismodeled by eigenstrain increments. In each of the 25 segments of
the central half-span, the plate thicknesses and concrete ages are different, resulting
in a different shrinkage function and different compliance function for each plate of
each segment.

Křístek et al. [558] revealed extreme sensitivity of the early box girder deflec-
tions to the differences in the rates of shrinkage and drying creep between the top
and bottom slabs, as illustrated by Examples 4.11 and 4.15 and the example of La
Lutrive Bridge in Sect. 7.1. Thanks to the fact that model B3 is physically based, the
differences in its parameters between the top and bottom can be assessed realistically,
based on the known drying rates.

2If the structural model contains some nonlinear components (e.g., nonlinear equation for prestress
relaxation, plastic yielding of steel reinforcing bars, or the effect of concrete cracking), this step
requires iterations.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
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These rates are characterized by the shrinkage halftimes, which can be estimated
as τsh = kt (ks D)2; see formula (3.7). The shape factor ks is for plates equal to 1;
see Table 3.1. Parameter kt can be estimated from the empirical formula given in
line 5 of Table C.2 in Appendix C. For the onset of drying at t0 = 7 days and
mean compressive strength f̄c = 35.9 MPa (5200 psi), its approximate value is 2.98
day/cm2 (19.2 day/in.2).

The mean temperature of the bottom slab and webs was probably 25◦C, but the
top slab with the roadway layer, exposed on top to intense tropical sunlight, was
probably some 20◦Cwarmer during the day. According to the curves for the effect of
temperature on permeability in Fig. 10.3b,c of Bažant and Kaplan [142], this likely
caused a 10-fold decrease of τsh for the top slab. Furthermore, while no cracking
could have occurred in the compressed bottom slab, the top slab near supports may
have developed hairline cracks since it was under tension, albeit low, due to excessive
prestress loss. Based on the experiments reported by Bažant, Şener, and Kim [122],
cracks of width 0.15 mm increase the drying rate about three times. The same may
be assumed for the top slab, and so the value of kt = 19.2 days/in.2 was used for
the bottom slab and the webs, and the value of kt = 19.2/(3 × 10) = 0.64 days/in.2

for the top slab. In calculations of deflections, the stiffness of the pavement layer
is entirely neglected, since it is unreinforced and in tension. However, since the
pavement tends to decelerate the drying and heating of top slab, its thickness is taken
into account in shrinkage and temperature calculations.

The shrinkage halftime τsh depends on the effectivemember thickness D = 2V/Se
with V = volume and Se = surface of the member. It used to be commonplace to
consider one V/Se value as a characteristic of the whole cross section, i.e., to take
V and Se as the characteristics of the whole box. In that case, D was a property of
the whole cross section, resulting in a supposedly uniform shrinkage and supposedly
uniform creep properties. Recently, however, it has been shown by Křístek, Bažant,
Zich, and Kohoutková [558] that, to avoid serious errors (which usually lead to
overoptimistic interpretation of early deflections), differences in the drying rate due
to different thicknesses of the top slab, the bottom slab, and the webs must be taken
into account.

A simple way to do that, demonstrated in [558], is to apply a model such as B3
separately to each part of the cross section. Since the drying halftimes are proportional
to slab-thickness square, the thickness differences then yield different shrinkage and
drying creep compliance in each different plate.

According to the ACImodel, an increase in thickness reduces creep and shrinkage
through a certain constantmultiplicative factor and scales down the allegedfinal value
for infinite time. However, in reality (except for a small multiplicative reduction due
to a higher degree of hydration reached in thicker slabs), a thickness increase causes
a delay, properly modeled as deceleration and characterized as an increase of the
shrinkage halftime, which is proportional to the thickness square (e.g., if the ultimate
shrinkage for a slab 0.10m thick is reached in 5 years, for a slab 1m thick it is reached
in 500 years, i.e., virtually never).

Because of excessive prestress loss, the top slab is found to get into tension after the
first year. Although no large tensile cracks were observed [3, 510], sparse fine cracks

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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in the first six segments from the midspan were reported. The mean tensile strength

is estimated according to ACI as f̄t = 6 psi ×
√

f̄c/psi = 433 psi (3.0 MPa), where

f̄c = 5200 psi = mean compression strength. Calculations show that if the tensile
strength limit f̄t is ignored, the tensile stresses in the top slabwould in later years reach
the level of about 2 f̄t . The most realistic model would be the cohesive crack model
with rate-dependent softening, applied to growing parallel cracks of uniform spacing,
with the material between the cracks considered as viscoelastic [162]. However, to
implement this model with ABAQUS has been found to be virtually impossible.

After trying with ABAQUS various simplifications, the computations were even-
tually run under the simplifying assumption that the effective incremental modulus
Ēk for the current time step (which includes the effect of creep and is evaluated in
step 3c of Algorithm 7.1) gets reduced to Ēk/4 when the tensile stress exceeds 0.7 f̄t .
With this simplification, the maximum computed tensile stress in the top slab is
about 3.0 MPa, and the corresponding strain is 1.83× larger than the actual strain at
peak tensile stress.With hardening due to positive Ēk/4 compensated by the strength
reduction to 70%, the tensile stress resultant happens to be about the same as that
obtained with a more realistic model consisting of a bilinear softening stress–strain
relation with an unreduced tensile strength limit and the softening modulus of about
−Ēk/3. The error compared to this more realistic model is estimated as < 1% of the
deflection. For comparison, if unlimited tensile strengthwere assumed, the computed
deflections would have been about 4% smaller.

Combined with the steel stiffness, the softening of concrete would have resulted
in overall tension stiffening, which would have been easy to implement had all the
computations been programmed. But, in the algorithm with ABAQUS, the tensile
softening turned out to be intractable because it would have interfered with the
programming of exponential algorithm for creep. This is why a positive modulus
Ēk/4 had to be adopted.

7.6 Determination of Model Parameters

The input parameters of the creep and shrinkage prediction models may be divided
into extrinsic and intrinsic. For all models, the extrinsic parameters, which include
the environmental factors, are:

1. the age at the start of drying, taken here as t0 = 7 days, which is the mean period
of the segmental erection cycle ranging from 5 to 10 days [775, 796];

2. the average environmental humidity henv = 0.70;
3. the effective thickness of cross section D = 2V/Se, which is different for the

web, top slab, and bottom slab and varies along the span;
4. for the extended model B3 capturing the thermal effects on creep, also the tem-

perature.
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The intrinsic input parameters, which reflect the composition of concrete, vary
from model to model. The formulation of ACI, CEB, and GL models was driven by
simplicity, as desired by many engineers. Accordingly, the main intrinsic parameter
in these models is the mean standard 28-day compression strength f̄c. The other
major influencing parameters such as the cement content and the water-cement and
aggregate-cement ratios are taken into account by factors some of which act merely
as vertical scaling even when the shape of the curve should change, too (as in drying
effect in ACI model).

Model B3, which became a RILEM Recommendation [727], is special in that the
freely adjustable parameters of the compliance function (q1, q2, . . . q5) are more than
one. They can be adjusted according to concrete composition. If unknown, they can,
of course, be set equal to their recommended default values. If the composition is
unknownor its effect represented poorly, they have the advantage that one can explore
the reasonable ranges of the unknown concrete mix parameters, run the computation
of structural response for various plausible sets of values of these parameters, and
thus get a picture of the possible range of structural responses to expect. Two sets of
input parameters have been considered in the present computations.

Set 1 (Pure Prediction):

For simple prediction on the basis of composition, the following input is used:

1. The mean compressive strength at 28 days, f̄c = 35.9 MPa (5200 psi), reported
by Zelinski [890]. Note that ABAM Engineers [3] interpret the value of 5200 psi
as the so-called specified compression strength (in terminology of the ACI code),
which is lower than f̄c by 1.34× standard deviation, and this is how the strength
value is considered by Bažant [211]. However, the records of Raymond Zelinski,
the Resident Engineer at the KB Bridge construction, are deemed more reliable,
and so the results of Bažant [211] had to be recalculated [209, 210].

2. The conventional (28-day) elasticmodulus E28 was neither specified in design nor
measured during construction. The E28 value identified from the truck load test
just before the retrofit is appropriate for set 2 but must not be used for set 1, which
is intended to check purely the prediction capability of the model. The only way
E28 could have been estimated at the time of design was from the approximate
ACI formula (3.5) (already in use at that time), which gives E28 = 28.3 GPa
(4110 ksi).

3. According to Zelinski’s records, the specific cement content was c = 535 kg/m3

(33.4 lb/ft3), the aggregate-cement ratio was a/c = 2.9, and the water-cement
ratio was w/c = 0.40 (a superplasticizer was used).

The resulting parameters determined from concrete composition using the B3
empirical formulae (Appendix C) are shown in Table 7.1 in the columns denoted as
“set 1”. To account for the plasticizer effects observed by Brooks [266], the values
of q2, q3, and q4 have been increased by 20%.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Set 2 (Updated):

For a better estimate, only the values of q2, q5, ε∞
s , and kt , governing mainly the

response for the first few years, were estimated from the composition, and the esti-
mates of the remaining parameterswere improved. Parameterq1 was adjusted accord-
ing to the elastic modulus obtained in the truck load test, and parameters q3 and q4
were identified by a trial-and-error procedure, conductedwith two objectives inmind:

1. Obtain the closest possible fit of the measured deflection of the KB Bridge.
2. Check that the parameter values give compliance curves within a realistic range

for structural concretes, matching some existing tests.

The resulting parameter values are given in Table 7.1 in the columns marked as “set
2”. They give compliance curves similar to those observed in the 30-year tests of
Brooks [267], although the composition was different from Brooks’ tests.

Table 7.1 Two sets of parameters of model B3 used in the analysis of Palau Bridge

Parameter Set 1 Set 2 Unit Set 1 Set 2 Unit

q1 0.146 0.188 10−6/psi 21.2 27.3 10−6/MPa

q2 1.420 1.420 10−6/psi 206.0 206.0 10−6/MPa

q3 0.011 0.262 10−6/psi 1.6 38.0 10−6/MPa

q4 0.080 0.140 10−6/psi 11.6 20.3 10−6/MPa

q5 2.33 2.33 10−6/psi 337.9 337.9 10−6/MPa

ε∞
s 0.981 0.981 10−3 0.981 0.981 10−3

kt 19.2 19.2 days/in.2 2.97 2.97 days/cm2

kt (top slab) 0.64 0.64 days/in.2 0.10 0.10 days/cm2

It is easy to check that the terminal asymptotic slope of the compliance curves of
model B3 is proportional to nq3 + q4; see, e.g., the integrated form of Eq. (9.31).
Vice versa, to determine parameter q3 and especially q4, multidecade creep tests are
necessary (note that n = 0.1, and thus, q3 has only a weak influence on the terminal
slope). Such information is scant in the existing worldwide database of creep tests.
The database is totally dominated by the test data for load durations < 6 years,
which are relatively insensitive to q4. Consequently, parameter q4 cannot be uniquely
identified from the database. For this reason, and becausemultidecade laboratory data
cannot be acquired soon, the best way to obtain an improved empirical estimate of
parameter q4 from concrete composition would be an inverse finite element creep
analysis of measured multidecade deflections of many existing box girder bridges
[211].

To calculate and compare the predictions of various models, all the properties
of concrete and environmental histories of the KB Bridge concrete would have to
be known. But they are not. So, comparing the predictions of various models either
mutually or with the observations is not fully informative. Nevertheless, what can
be compared is whether the observed deflections are within the realistic range of

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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possible predictions of each model. It has been shown [209, 210] that they are within
the realistic range for model B3, but not at all for other models, particularly the ACI,
CEB, JSCE, and GL models.

For model B3, the predictions are not fixed because there exist input parameters
that are unavailable for the KB Bridge and are thus free to set within their realistic
range. But the predictions of the other models are fixed by the reported value of
concrete strength, with no flexibility of adjustment (a partial exception is the JSCE
model which takes into account the water content w and cement content c). The data
available for the KB Bridge, as presented here, do not suffice to obtain for this bridge
a unique compliance function (unless the default parameter values are used). But
they do suffice to obtain unique compliance functions for the ACI, CEB, JSCE, and
GL models, although at the cost of ignoring many important influences.

Some engineers view it as advantageous if the model predicts creep and shrinkage
from as few parameters as possible, particularly from the concrete design strength
only [14]. Slightly more convenient though it may be, realistic it is not. If the addi-
tional parameters of model B3 for the given concrete are known, a better prediction
can be made. If they are unknown, they can be assigned their typical, or default,
values, and thus, predictions can still be made even if only the strength is known.
Furthermore, varying the main influencing parameters of model B3 through their
realistic range, one can explore the realistic range of the responses to expect, and
design the structure for the most unfavorable realistic combination. With the other
models, among the intrinsic influences only the effect of strength variation can be
explored.

7.7 Results of Simulations and Comparisons
to Measurements

7.7.1 Calculated Deflections

As the first check of the computational model, comparison was made with the bridge
stiffness, which was measured in January 1990 in a load test by Japan International
Cooperation Agency [510]. An average downward deflection of 30.5 mm (0.10 ft.)
was recorded at midspan when two 12.5 ton trucks were parked side by side on each
side of the midspan hinge (one previous paper erroneously assumed that only one
truck was parked on each side). The front wheels of two trucks on each side are
assumed to have been 3 m away from the midspan. The rear wheels, 12 m behind
the front wheels, are assumed to carry 60% of the truck weight. The finite element
code gives the deflection of 30 mm (0.098 ft.) under the load of 245 kN (55.1 kips).
The deflection was assumed to be measured 0.1 day after load application, which
means that the calculation included the 0.1-day creep. Given the uncertainty about
the actual test duration and rate of loading, the agreement with the measurement is
good enough.
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The results of long-term creep calculations are shown in Figs. 7.5 and 7.7, both
in the linear and logarithmic time scales (t − tc denotes the time measured from the
end of construction, and tc is the time when the midspan hinge is installed). The data
points show the measured values. The circles represent the data reported by the firm
investigating the excessive deflection [367], and the square boxes the data accepted
from a secondary source [510]. For comparison, the figures show the results obtained
with model B3 and the ACI, CEB, JSCE, and GL models. All these responses have
been computed with the same finite element program and the same step-by-step time
integration algorithm. For model B3, it was possible to consider the effect of the
differences in thickness of the slabs and webs on their drying rates.

Fig. 7.5 Midspan deflections calculated by various creep and shrinkage models in normal and
logarithmic scales, compared with measurements (data points)

Figure7.5 shows the deflection curves up to the moment of retrofit at about 19
years of age. Since well-designed bridges (such as the Brooklyn Bridge) have lasted

Fig. 7.6 Calculated midspan deflections extended up to 150 years, compared with measurements
(data points)
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Fig. 7.7 Midspan deflections obtained with B3 model using different assumptions on drying creep
and shrinkage, compared with measurements (data points)

much longer, Fig. 7.6 shows the same curves extended up to 150 years under the
assumption that there has been no retrofit (and thus no collapse).

According to the ACI, CEB, and JSCE models, the compliance curves and the
deflection curves terminate with a horizontal asymptote. But according to model
B3, the long-time compliance curves are logarithmic. Thus, model B3 predicts the
deflection curve to terminate in the logarithmic time scale with an asymptote that is a
straight line of a finite slope; see Fig. 7.5b, which shows that the final slope obtained
by model B3 with set-2 parameters agrees very well with the observations. For set-1
parameters, the deflection predicted at 18 years is grossly underestimated (but not as
grossly as for the other models).

The measured deflection at 18 years since span closing, which was 1.39 m, is
closely matched by the deflection calculated from model B3 with set-2 parameters.
This measured deflection is roughly 3 times larger than that calculated for the ACI or
CEB model (which is 0.47 m or 0.53 m), and about the double of that calculated for
the GL model (which is 0.65 m); see Fig. 7.5. Besides, the ACI, CEB, JSCE, and GL
deflection curves have shapes rather different from those of model B3 as well as the
observed deflection history. They all give relatively high deflection growth during
the first year, but far too low from 3 years on, especially for the ACI, CEB, and JSCE
models.

For times longer than about 3 years, the deflections are seen to evolve almost
linearly in the logarithmic time scale, which is to be expected for theoretical reasons
[98]. So the terminal deflections can be extrapolated to longer times graphically;
see Fig. 7.6. The graphical straight-line extrapolation is seen to agree almost exactly
with model B3 calculations up to 150 years. It is virtually certain that if the bridge
were left standing without any retrofit, the bridge would not have collapsed and the
150-year deflection would have reached 2.2 m (7.3 ft.), well beyond the limit of
serviceability.
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Capturing correctly the initial deflection history is essential for correct extrap-
olation, to foresee later troubles. The differential shrinkage and differential drying
creep compliance due to nonuniform drying is important in this respect [558, 561].
Note in Fig. 7.5 that, for the first measured deflection at about 1000 days, model B3
(with set-2 parameters) gives by far the closest prediction.

Fig. 7.7 presents the midspan deflection that is obtained

1. if the drying creep is neglected (labeled “basic creep + shrinkage”),
2. if both the shrinkage and drying creep are neglected (labeled “basic creep only”),

and
3. if the shrinkage and the drying creep compliance are considered to be uniformover

the cross section, being deduced from the overall effective thickness D = 2V/Se
of the whole cross section (labeled “uniform over section”).

The solid curve (labeled “complete model”) represents the reference solution using
the complete model B3 with set-2 parameters. Note that the use of uniform creep and
shrinkage properties throughout the cross section neglects the curvature growth due
to differential shrinkage and differential drying creep and gives results dominated
by the unusually thin webs. Also note that the effect of mean drying can be very
different from the mean of the effects of drying in the individual slabs [155].

The full three-dimensional analysis reveals that the classical engineering theory
of bending (in which the cross sections are assumed to remain plane and normal)
is too simplified to capture the true deformation of box girders. Its main deficiency
is that it lacks the effects of shear lags, which are different for the self-weight and
for the prestress loads from tendon anchors. In Fig. 7.8, the distribution of normal
and shear stress is shown in the cross section located at 14.63 m (48 ft.) from the
main pier under self-weight, and in the cross section at 60.35 m (198 ft.) from the
main pier under prestress. The shear stress distribution looks unusual; the reason
is the arch form of the box girder and the fact that the distribution is plotted for a
section that is vertical and thus not orthogonal to the centroidal axis of the curved
arch-like beam. Significant shear stresses are seen to exist in the top and bottom
slabs. The computations show that the shear lag occurs in four different ways—
in the transmission of vertical shear force due to vertical reaction at the pier, in the

Fig. 7.8 Normal and shear stress distributions caused by (a) self-weight, (b) prestress; reprinted
from [210] with permission from ASCE
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transmission of the concentrated forces from tendon anchors, and for each of these in
both horizontal slabs and in the vertical walls. Only full three-dimensional analysis
can capture this behavior. It always yields larger deflections and larger prestress
losses.

7.7.2 Calculation of Prestress Losses Due to Creep,
Shrinkage, Cyclic Creep, and Steel Relaxation

The significant discrepancy between the full three-dimensional analysis and the
analysis based on the engineering theory of bending is demonstrated in Fig. 7.9.
The deflections and prestress losses3 for both cases are evaluated using the B3 model
with set-2 parameters.Compared to the three-dimensional analysis, the analysis using
the classical bending theory is found to underpredict the deflections by 20% and the
prestress loss by 10%. This is despite the relatively high span-to-box-width ratio of
this two-lane bridge. For multilane bridges with a wider box, these errors would be
larger. For the ACI model, the shear lag effect on deflection and prestress loss is
less pronounced (and both phenomena are grossly underestimated). Fig. 7.9a also
includes an example of prediction of a widely used commercial program for creep
of prestressed bridges, named SOFiSTiK [782], in which the CEB model from early
1970s is embedded as a black box. The creep effects are calculated either by beam
elements with memory integrals, or by two- or three-dimensional finite elements
using the Trost method [816], which is a predecessor of the AAEM method where
the aging of elastic modulus and the time variability of aging coefficient (called in
this case relaxation coefficient) is neglected. The figure documents that the predic-
tions of this commercial code, still in wide use, are inferior to all the other methods
studied; see in detail Yu, Bažant and Wendner [889].

An approximate correction for the shear lag has actually been considered in the
KB Bridge design [775]. But it was considered only due to self-weight and only
in the top slab. It was done by introducing into a beam-type analysis the classical
effective width [6, 232, 352, 596, 722], which is not very accurate and still misses
the shear lags in the webs and bottom slabs and those due to prestress forces from
anchors, which add up to a major error.

Accuracy in calculating the prestress loss is crucial because the bridge deflection
is a small difference of two large but uncertain numbers—the downward deflection

3The simulation of prestress losses must take into account the construction sequence. The cantilever
consists of 25 segments, which are added sequentially, with 7 days spent by construction of each
segment and 1.1 day by its prestressing. The plots in Figs. 7.9b and 7.10 show the evolution of
stress in tendons used for prestressing of segment number 7, and the elapsed time is measured
from the end of construction of this segment, tc7, which precedes the end of construction of the
whole cantilever, tc, by 146.9 days. The jumps apparent in Fig. 7.10b are caused by prestressing of
additional segments number 8 to 25.
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Fig. 7.9 Comparison of (a) deflections and (b) prestress loss obtained by full three-dimensional
analysis (solid curves) with those according to the bending theory with cross sections remaining
planar (dashed curves), using the B3 model with set-2 parameters and ACI model

due to self-weight, and the upward deflection due to prestress. The shear lag plays
a relatively more important role in the former. The error due to neglecting the shear
lags is thus magnified. Calculations show that, compared to the classical theory of
bending, all the shear lags combined will increase the elastic downward deflection
due to self-weight by 18% and the elastic upward deflection due to initial prestress
by 14%, which jointly produce the aforementioned total shear lag effect of 20%.

Fig. 7.10 Prestress loss in tendons at main pier, predicted using B3, ACI, CEB, JSCE, and GL
models (the elapsed time is measured from the end of construction of the seventh segment)

It is also important to consider that the steel relaxation is a viscoplastic phenom-
enon which occurs at variable rather than constant strain and is strongly influenced
by elevated temperature, as described by the viscoplastic constitutive law proposed
in Bažant and Yu [207] and presented in Sect. 4.3.4. That law builds on the formulae
for constant strain relaxation used in both the European code [322, 381] and the

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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American practice [591, 647], formulates the strain change effects as validated by
the experiments of Buckler and Scribner [281], and introduces the temperature effect
through the activation energy and the Arrhenius factor [326] calibrated by the test
data of Rostásy et al. [737], roughly also matching the data from fib [381]. Calcula-
tions by Bažant et al. [210] showed that the heating of the top slab by tropical sun
must have significantly intensified the steel stress relaxation, which in turn must have
increased the deflections.

As transpired from the simulation of the bridge in Palau, the excessive deflection
is accompanied by longitudinal creep and shrinkage contraction of the box girder.
Although this contraction tends to cause a reduction of the subsequent prestress loss
due to steel relaxation, the temperature increase due to solar heating of the top slab,
togetherwith the continuing longitudinal creep and shrinkage contraction of concrete,
more than compensates for this reduction, thus causing the excessive prestress loss
to continue and eventually reach values much higher than those for constant strain
of steel and constant temperature.

The environmental fluctuations of both temperature and humidity, of course, affect
also the concrete.However, the daily temperature fluctuations have little overall effect
on the concrete, and the seasonal ones are negligible in the tropics. Even at higher
latitudes, the humidity fluctuations due to weather and the seasonal changes are not
too important for multidecade deflections because the moisture diffusivity is about
1000 times lower than the thermal diffusivity [150]; see Chaps. 8 and 13. Anyway,
the effect of seasonal changes cannot be extracted from the measured deflection
histories of 69 bridges presented in [138].

An important point to note is that the predicted 19-year prestress loss is only
22% and 24% when the ACI and CEB models are used in the present finite element
code, but about 46% when the B3 model with parameter set 2 is used (Fig. 7.10).
The correctness of prestress loss predicted by model B3 is confirmed by nine stress
relief tests which were made by ABAM on three tendons just before the retrofit
[367]. Normally, only nondestructive methods are permitted. This makes it next
to impossible to measure the stresses in grouted tendons. But for the KB Bridge,
the cutting of tendons was not a big sacrifice because additional tendons were to be
installed anyway. Thus, the decision to retrofit furnished a unique opportunity to learn
about the actual prestress losses. Sections of three tendons were bared, and strain
gauge were glued at three different locations on each of the three tendons. Each
of these tendons was then cut, and the stress was calculated from the shortening
measured by the gauge next to the cut; see Table 7.2.

The average stress obtained from nine measurements on the tendons was 377
MPa (54.7 ksi). This means that the average prestress loss over 19 years was 50%.
The coefficient of variation was 12.3%. Similar tests were also conducted by another
investigating company (Wiss, Janney and Elstner, Highland Park, Illinois), and the
averagemeasured prestress loss was almost the same. This confirms that the prestress
loss predicted by finite element simulations based on model B3 is realistic, while the
ACI and CEB models grossly underestimate the actual values.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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Table 7.2 Summary of strain relief tests of prestressed tendons of KB Bridge in Palau [367]

Tendon Location Measured strains Mean strain Mean stress

[10−6] [10−6] [MPa]

1 1640 1640 1630 1637 327.3

1 2 1650 1640 1650 1647 329.3

3 1680 1700 1710 1697 339.3

Average 332.0

4 1810 1820 1790 1807 361.3

2 5 1810 1800 1790 1800 360.0

6 1780 1790 1790 1787 357.3

Average 359.6

7 2250 2230 2220 2233 446.7

3 8 2220 2220 2210 2217 443.3

9 2170 2150 2170 2163 432.7

Average 440.9

In the mid-1970s, the prestress loss used to be calculated not by finite elements
but by simple formulae based on the beam theory [660]. A lump estimate of the
final prestress loss was generally used, and, according to Shawwaf [775], it was used
for the KB Bridge. According to the lump estimate, the prestress loss would have
been 22%, which is marked in Fig. 7.10 by a thin horizontal line labeled as “design
prediction.” Compared to themeasurements, the errors of this estimate are enormous,
and so are the errors compared to the present calculation based on model B3. These
errors are one reason why the long-time deflections were so badly underestimated in
design. Onemust conclude that, for large box girders, the standard textbook formulae
for prestress loss are inadequate and dangerously misleading.

7.8 Excessive Long-Term Deflections of Other Box Girders

It is deplorable that the data on excessive deflections usually go unpublished. Never-
theless, Dr. Yasumitsu Watanabe, the Chief Engineer of Shimizu Corp., Tokyo, gra-
ciously made available the data on some of the excessively deflecting large Japanese
bridges which epitomize the experience in many other countries. These deflection
data are plotted in Fig. 7.11, where the data points represent themeasured deflections,
and the dashed curves show the prediction based on the design recommendation of
Japan Road Association (JRA) [528]. The solid curves give the predictions of model
B3 calculated in the same way as for the KB Bridge, after adjusting the composition
parameters similarly to set 2, as mentioned before. The deflection of one of the four
Japanese bridges, Koshirazu, is not excessive yet, but the trends portend trouble for
the future.
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Fig. 7.11 Excessive deflections observed in four Japanese bridges

The results of the analysis of the KB Bridge in Palau and four Japanese bridges
have shown that the excessive deflections and prestress loss can be explained and
even closely matched with realistic material parameters. Are such excessive deflec-
tions rare?

They are not. A subsequent search of various papers, society reports, and company
reports [138, 208] under the auspices of the RILEM Committee TC-MDC (Multi-
Decade Creep, founded in 2010) led to a veritable wake-up call—see Figs. 7.12
and 7.13 documenting the deflection histories of 69 large bridge spans [251, 387,
608, 683, 836], many of them excessive. All, except for one arch, are segmental box
girders, and many of them exceed the maximum acceptable deflection, 1/800 of the
span according to the AASHTO standard [2]. Hard to obtain though such examples
are, hundreds more probably exist. In the original reports, the data were plotted in a
linear time scale, which obscured the systematic long-term logarithmic trend.

Of course, segmental bridges that have not deflected excessively (such as the Pine
Valley Creek Bridge in California built in 1975) exist, too. Note that even if a poor
creep model is used, the deflections can be low if one adopts some or all of the six
precautionary measures listed in Sect. 7.11 [210, 211]. Most of them, though, are
span-limiting or costly, or both, and render esthetically pleasing slenderness harder
to achieve.
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Fig. 7.12 Deflections of 69 bridge spans (part 1),manyof themexcessivewithin lifetime (horizontal
axis: time from construction end, t − tc [day]; vertical axis: deflection/span [%])
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Fig. 7.13 Deflections of 69 bridge spans (part 2),manyof themexcessivewithin lifetime (horizontal
axis: time from construction end, t − tc [day]; vertical axis: deflection/span [%])

The absence of a midspan hinge has been known to reduce deflections. However,
it is not a panacea. Even bridges without a midspan hinge, designed by the code,
can suffer excessive deflections. This is, for example, documented by the data on the
Děčín Bridge over Elbe in North Bohemia; see Fig. 7.14. About 10 of the 69 bridges
in Figs. 7.12–7.13 have no midspan hinge.

Contrary to concerns expressed by many researchers, the cyclic creep does not
contribute significantly to the deflection of large-span prestressed bridges. However,
in medium-span bridges (40-80 m), the cyclic creep can lead to nonnegligible addi-
tional inelastic strains causing cracking damage; see Sect. 7.13.
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Fig. 7.14 Excessive deflections observed on the continuous bridge over the Elbe River in Děčín,
Czech Republic

7.9 Approximate Multidecade Extrapolation
of Medium-Term Deflection

The logarithmic time plots in Figs. 7.12 and 7.13 give no hint of an approach to an
asymptotic bound. Such a bound is a feature incorrectly implied by all the society
recommendations except model B3 (and its predecessors since 1978) and the new fib
model. They document that the long-term creep is a logarithmic curve, as observed
on the basis of laboratory data in Bažant, Carreira and Walser [114].

Why have the recommendations on creep been misleading, for decades? Aside
from disregard of the theoretical basis and questionable interpretation of the lab-
oratory test data, the cause also lies in inevitable statistical bias of the worldwide
laboratory database [160]. In the latest and largest database, assembled at North-
western University during 2010–2013 [488], only 5% of creep test curves exceed
6 years in duration, and less than 2% attain 18 years. Most of them were obtained
on old types of concretes, very different from modern concretes. Moreover, the data
readings are heavily biased for short times and ages.

Also, when the database values of J or εsh are plotted as a function of t − t ′, the
averages of the values of henv, t ′ or D in subsequent time intervals are far from being
equal in all the intervals, which brings in another source of bias. Therefore, even if
the statistical bias is filtered by proper weighting [161], the database does not suffice
to bring the multidecade trend to light.

Consequently, inverse interpretation of the bridge deflection histories in Figs. 7.12
and 7.13 appears to be the salvation. Ideally, one should conduct statistical inverse
three-dimensional finite element creep analysis of these bridges. But it has appeared
impossible to obtain data that would suffice for finite element analysis of these 69
bridge spans, except for six of them.

The time at which the compliance curve becomes a straight line in the logarithmic
time scale depends on many factors, but on the average, it is about three years. It is
interesting to note in Figs. 7.12 and 7.13 that, beginning at about 1000 days since
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the span closing, the bridge deflection curves, too, become straight lines in the loga-
rithmic time scale. This means that the complex transient processes, particularly the
gradual filling of the capillary pores by cement hydration products, drying shrinkage
and drying creep, and the steel relaxation rate greatly attenuate within a few years,
and that the relaxation of microprestress becomes a stationary process preserving the
logarithmic creep curve.

This observation suggests that deflection wm measured roughly at tm = 1000 days
after the span closing could simply be extrapolated to long times by assuming similar-
ity to J (t, t ′). For some bridges, tm = 1500 days is better. To keep the extrapolation
simple, two severe simplifications of the regime prior to span closing need to be
introduced [138]:

1. The age differences among the box girder segments must be ignored, and the
age of concrete must be characterized by one common effective (or average) age
tc at the span closing.

2. Instead of the gradual increase of the bendingmoment in the cantilever segments
during the erection, one must consider one common average age ta at which the
moments due to self-weight are applied to the erected cantilever.

Because of these simplifications, the long-time deflections do not grow in pro-
portion to the total compliance J (t, ta). Nevertheless, for the additional deflection
w that develops after the span closing time tc, the errors in approximating the early
loading history must decay with time and eventually become negligible when t � tc,
i.e., after the lapse of a sufficient time, tm . It appears that the smallest such time is
roughly tm = 1000 days (measured from span closing).

Before the span closing and for a few years afterward, the drying and aging
processes, of course, make the box girder response very complicated. But later,
after time tm , these effects nearly die out and the box girder begins to behave as
a nearly homogeneous structure (Sect. 4.1), for which the growth of deflection w
should be roughly proportional to the increment of the compliance function that has
occurred since the closing time tc; i.e., w(t) = C[J (t, ta) − J (tc, ta)], where C is a
certain constant (of course different for each bridge). The value of C or wm can vary
widely and its calculationwould require a detailed finite element analysis considering
creep with drying and the construction sequence. However, C may be calibrated
experimentally from wm . To get w(tm) = wm , we need to set C = wm/[J (tm, ta) −
J (tc, ta)]. This leads to the approximate extrapolation formula [138]

w(t) = wm
J (t, ta) − J (tc, ta)

J (tm, ta) − J (tc, ta)
(7.9)

To analyze the data in Figs. 7.12 and 7.13, the values tm = 1000 days, tc = 120 days
and ta = 60 days were assumed for all the bridges [138]. In recent studies, tm = 1500
days seems preferable.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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Fig. 7.15 Verification of extrapolation formula (7.9) by comparisons with accurate finite element
creep solutions for the KB Bridge in Palau

To check how good this formula is, we may take advantage of the creep deflection
curves accurately calculated by finite elements for the KB Bridge in Palau using
the B3, ACI, and CEB material models [209–211]. For each curve, we use (7.9) to
extrapolate the computed deflection wm using the same compliance function J (t, t ′)
as that used in finite element computations. The resulting extrapolations are shown
in Fig. 7.15. It is remarkable how close to the computed curve each extrapolation is,
especially in the case of model B3. This validates the usefulness of formula (7.9).

To apply formula (7.9) to the bridges in Figs. 7.12 and 7.13, one must specify the
mean concrete strength f̄c, and for model B3 alsow/c, c, and ρ. Unfortunately, these
parameters are known for only six among the 69 bridges. So, individual comparisons
for each bridge are impossible. Nevertheless, we can make a useful comparison at
least in the mean relative sense for all the bridges combined.

We will assume that the specified design (or characteristic) strength of concrete in
these older bridgeswas on the average31MPa (4500psi),which implies (according to
CEB-fib, with the characteristic strength set to 31MPa) themean strength to be at least
f̄c = 39MPa (5660 psi); see formula (E.1). Furthermore, wewill assume the average
effective cross-sectional thickness of D = 0.25 m (10 in.), and the environmental
humidity of 70% for the Scandinavian bridges (NorsundBru, Tunstabron,Alnöbron),
and 65% for other bridges. For the other parameters, we assume w/c = 0.5, c = 400
kg/m3 (25 lb./ft.3), and ρ = 2300 kg/m3 (143 lb./ft.3). Of course, the deflection curve
extrapolated in this way from wm will likely be incorrect for each particular bridge.
But the mean of the extrapolations for all the bridges should still be approximately
equal to the mean of the correct extrapolated slopes that would be obtained if the
properties of each individual concrete were known.

Fourteen of the 69 bridge spans in Figs. 7.12 and 7.13 are omitted from the
extrapolation exercise. The reason is that, for La Lutrive, Zuari, Wonhyo, Sangjin,
and Ruiz, the record of deflection values starts at times much longer than 1000 days,
and so it would be very difficult to get a reasonable estimate of wm .

The measured deflections corresponding to 55 bridge spans are represented by
the dots in Fig.7.16. To make the presentation of data for different bridges in the
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Fig. 7.16 Extrapolations by formula (7.9) from measured 1000-day deflection wm for 55 sets of
bridge deflection records for average concrete properties, obtained using models ACI-209, CEB
Model Code 1990, fib Model Code 2010, GL2000 and B3

same graph meaningful, the deflections for each bridge are normalized by the value
at 1000 days from construction end, interpolated from the nearest measured values.
The advantage of the normalized plot is that the prediction constructed according to
(7.9) is the same for all bridges and depends only on the compliance function, i.e., on
the creep model adopted. The extrapolations obtained with the ACI, CEB, fib, GL,
and B3 models are shown in Fig. 7.16 as smooth curves. None of these models is
found to be satisfactory since they all systematically and significantly underestimate
the measured long-time deflections. Nevertheless, model B3 does not perform as
poorly as the others. It is seen to have two important advantages:

1. The long-time form of model B3 is a logarithmic curve (seen as a straight line
in the semilogarithmic scale), which agrees with the long-time shape of the data,
while the long-time curves for the ACI and CEB models (as well as JSCE and
JRA models, not plotted here) level off as they approach a horizontal asymptote.
The GL model would also level off, but much later. The fib Model Code 2010
terminates with an unbounded logarithmic curve similar to B3.

2. Model B3 is the only one that can be updated without compromising the short-
time performance, because the slope of the straight long-time asymptote can be
separately controlled.
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These advantages are shared by model B4, which gives for this specific concrete
composition somewhat slower deflection growth after 1000 days than B3. The same
holds true for the new fib model.

From Fig. 7.16, it can be observed that the extrapolations from 1000 days to a
high age t such as 30 to 100 years could be improved by multiplying the deflection
increment from 1000 days to time t by the factor of about 1.6. Then, the extrapolation
would be roughly in the middle of the range of data in Fig. 7.16.

In segmental bridges that are made continuous through the midspan (and thus
have no midspan hinge), the internal forces redistribute so as to approach the elastic
moment distribution for a continuous bridge. The redistribution can be estimated
as explained in Sect. 4.1.2, and a correction to (7.9) could be devised. However,
it is interesting that this simple formula gives good extrapolations even for these
bridges, e.g., for the Děčín and Vepřek bridges. The explanation is that the degree of
redistribution after 1000 days must have been very small, which could be explained
by the relative shallowness and high flexibility of the cross section at midspan.

7.10 Uncertainty of Deflection Predictions and Calculation
of Confidence Limits

Creep and shrinkage are notorious for their relatively high random scatter. For this
reason, it has been argued during the last two decades [145, 147] that the design
should be made not for the mean deflections, but for some suitable confidence limits
such as 95% [163]. Adopting the Latin hypercube sampling of the input parameters
explained in Sect. 6.2, one can easily obtain such confidence limits by repeating the
deterministic computer analysis of the bridge according to model B3 8 times, one
run for each of eight different randomly generated samples of eight input parameters.

As explained in Chap. 6, the range of the cumulative distribution of each random
input variable (assumed to be Gaussian) is partitioned into N = 8 intervals of equal
probability. The parameter values corresponding to the centroids of these intervals are
selected according to randomly generated Latin hypercube tables, such as Table 6.4a.
The values are then used as the input parameters for eight deterministic computer
runs of creep and shrinkage analysis.

One random input variable is the environmental relative humidity henv, whose
mean and coefficient of variation are estimated as 0.7 and 20%. The others are B3
model parameters q1, q2, q3, q4, q5, kt , and ε∞

s . Their means are taken from set 2
(see Table 7.1), except for parameter q2 = 1.04 × 10−6/MPa (these are preliminary
parameter values available when the stochastic analysis was made, and differ slightly
from the final values used to calculate Fig. 7.5). The estimated coefficient of variation
is 23% for creep parameters q1, q2, q5, and 30% for q3, q4 (these have a higher
uncertainty as they relate to long-term creep, for which the data are scarce). For
shrinkage parameters kt and ε∞

s , it is 34% [104, 107, 175].

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_6
http://dx.doi.org/10.1007/978-94-024-1138-6_6
http://dx.doi.org/10.1007/978-94-024-1138-6_6
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The responses from each deterministic computer run for model B3, particularly
the midspan deflections at specified times, are collected in one histogram of eight
values, whose mean w̄ and coefficient of variation ωw are the desired statistics.
Knowing these, and assuming the Gaussian (or normal) distribution, one can get the
one-sided 95% confidence limit as w95 = (1 + 1.65ωw) w̄. This is the limit that is
exceeded with the probability of 5%; in other words, the limit would be exceeded by
one out of 20 identical bridges, which seems to give optimal balance between risk
and cost.

Fig. 7.17 Mean values and 5% and 95% confidence limits of deflections predicted by model B3 in
normal and logarithmic scales

The curves of the mean, and of the one-sided 95% and 5% confidence limits for
the KB Bridge in Palau, are shown in Fig. 7.17. Note that the curves of the present
three-dimensional finite element creep calculations according to the ACI and CEB
models lie way outside the statistical confidence band obtained with model B3.

Using the NU database [488] as the prior information, one could further improve
the statistics of long-term deflection by means of Bayesian statistical analysis [557],
as described in Sect. 6.4.

Note that the probabilistic problem of deflections is, fortunately, much easier
than that of structural safety. For the latter, the extreme value statistical theory must
be used since the tolerable probability of failure is < 10−6, which is far less than
the value of 0.05 that is acceptable for deflections. Unlike here, the distribution tail
becomes a major problem.

7.11 Precautionary Deflection-Minimizing Design
and Tendon Layout

In design, it is prudent to minimize deflections and prestress losses by the following
measures, most of which have been known though often not followed:

http://dx.doi.org/10.1007/978-94-024-1138-6_6
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1. choose a concrete with a low long-time creep;
2. give concrete more time to gain strength before prestressing;
3. install empty ducts for possible later installation of additional tendons;
4. use a tendon layout that minimizes deflections [561];
5. use excess prestress causing upward deflection;
6. avoid midspan hinge and make the girder stiff at midspan;
7. use stiffer (deeper) girders, especially at midspan;
8. minimize steel relaxation by using low relaxation steel and by reducing the ratio

of initial prestress to tendon strength;
9. locate tendons so as to minimize their heating (especially for bridges in the trop-

ics).

The avoidance of a hinge has often been thought to be a panacea, but it is not,
especially if the flexural stiffness atmidspan is not high. It does reduce deflections and
has the advantage that the roadway of an excessively deflected bridge has no sudden
change of slope, which reduces vibrations due to traffic loads and ride discomfort,
and makes deflections less noticeable. However, at least seven among the bridges
deflecting more than 0.001 of the span in Figs. 7.12 and 7.13 have no hinges (Parrots
Ferry, Grubbenvorst, Wessem, Empel, Hetern, Ravenstein and Děčín).

Measures 4–8 may explain why some old bridges have not deflected excessively
even if a poor creep prediction model was used in design. One such bridge may be
the first large US prestressed segmental box girder, the Pine Valley Creek Bridge
(later named N. I. Greer Memorial Bridge) on Interstate 8 in the San Diego County,
California, designed in 1972 by Man-Chung Tang and built in 1974, with the main
spanof 137m.Although thedeflections of this bridgehavenot been reported, there are
no signs of problems. This multispan girder has a constant depth and a high stiffness
at midspan. The main span has no hinge, but the adjacent shorter spans do. To avoid
the risk of errors in calculation of moment redistribution due to creep, jacking was
used at span closure to produce the same moment distribution as in a bridge built on
a falsework, i.e., as in a continuous beam. So there was no moment redistribution
due to creep. The stress at the pier due to self-weight was reduced approximately
to that for a continuous beam, and the stress profile was changed roughly to that
in Fig. 7.18c. Since the segment of positive moments created by jacking was short,
the stress due to self-weight did not dominate, producing at midspan a self-weight
stress distribution like that in Fig. 7.18c. Also, a significant camber was planned
and actually achieved. It must be warned, however, that avoidance of a hinge helps
significantly only if the midspan is nearly as stiff in flexure as the ends of the span
and if jacking is used.

To explain the effect of excess prestress, consider the stress profiles in a negative
moment cross section of a segmental girder sketched in Fig. 7.18, in which σP , σD ,
and σL are the stresses caused by the prestress, by the dead load (self-weight), and
by the live load (traffic). The dashed lines mark the compressive and tensile strength
limits that cannot be exceeded.

For a small enough span, the live load dominates, |σL | � |σD|, as shown in
Fig. 7.18a. To satisfy the tensile and compressive stress limits, the bending moment
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Fig. 7.18 Stress distributions in a prestressed cross section under bending: (a) small span, (b) large
span, economic design, (c) large span, precautionary design

under prestress and dead load alone must be positive (the corresponding stress dis-
tribution is marked by the thick solid line in Fig. 7.18a). This means that the creep
will cause an upward deflection and one need not worry about creep (no cases of
excessive upward deflections are known).

For a large span, |σL | � |σD|. If the girder is designed most efficiently from the
strength viewpoint, with a full use of the tensile and compressive stress limits (Fig.
7.18b), the dead load stress profile corresponds to a large negative bending moment.
This might or might not lead to unacceptable creep deflections, but in any case, a
realistic and accurate creep analysis is required.

Alternatively, the large-span girder may be designed so that the dead load and
the prestress cause an approximately uniform stress profile (Fig. 7.18c), which is
inefficient from the strength viewpoint. As a result of such a design, the creep will
cause mainly shortening of the girder but no significant vertical deflection compared
to the design in Fig. 7.18b, and errors in creep prediction will not matter. Of course,
even after superposing the live load stress profile σL , there will be large margins
against the tensile stress limit on top and against the compressive strength limit at
bottom (Fig. 7.18c). A deeper and more massive cross section, and a higher level of
prestress, will have to be used. This will force the design to be heavier, less slender,
and more expensive, and the increased self-weight may even prevent bridging the
desired span. Hence, such a precautionary but inefficient design is often impossible.

Modern tall buildings and nuclear containments are highly sensitive to creep and
shrinkage. It is again important to use a realistic prediction model and calibrate
it by short-time tests (Sect. 3.8, Appendix H). Differential shortening of concrete
columns in a very tall tower is a potential problem, even if they are made of high-
strength concrete. To minimize it, it is wise to make the cross sections of all columns
identical and their environment the same (this measure was used by W. Baker of
SOM, Chicago, in the design of Burj Khalifa tower in Dubai).

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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7.12 Deflection-Mitigating Layout of Tendons

Compared to statically determinate beams, the statically indeterminate beams pro-
vide more opportunity to minimize the deflections. Moving the tendon anchorages
between the segments of positive and negative bendingmoments, or changing the ten-
don eccentricity in the segments of transition between positive and negativemoments
(inwhich the prestress is not fully utilized from the stress level viewpoint), can greatly
affect the midspan deflection. For the sake of simplicity, we consider the structure
as homogeneous, i.e., we neglect the stress redistributions due to creep. We also
consider other deflection sources, e.g., the differential shrinkage, as unimportant for
multidecade deflections. With these simplifications, the problem of optimum layout
of the prestressing tendon can be limited to elastic deflections.

Consider a prestressed tendon anchored at sections a and b of a beam of total
length L , with eccentricity4 described by a function e(x). Prestressing of the tendon
by a force P > 0 (considered for simplicity as uniform) generates in concrete primary
bending moments

M1(x) =
⎧⎨
⎩
0 for 0 ≤ x < a
−Pe(x) for a ≤ x ≤ b
0 for b < x ≤ L

(7.10)

If the beam is statically indeterminate (e.g., a continuous beam), additional self-
equilibrated moments M2(x) arise. In an elastic calculation, the corresponding total
curvature is expressed simply as κ(x) = [M1(x) + M2(x)]/E I (x), where E is the
elastic modulus and I is the sectional moment of inertia. The deflection at a specific
section, e.g., at midspan, can be evaluated using the principle of virtual forces. Let
us denote by M̄(x) the distribution of bending moments caused on the same elastic
beam by a unit vertical force applied at midspan. The midspan deflection is then
given by

wmid =
∫ L

0
M̄(x)κ(x) dx =

∫ L

0

M̄(x)[M1(x) + M2(x)]
E I (x)

dx (7.11)

Taking into account that M̄(x)/E I (x) = κ̄(x) = curvature that would be caused by
the unit force, we can rewrite (7.11) as

wmid =
∫ L

0
κ̄(x)[M1(x) + M2(x)] dx = −P

∫ b

a
κ̄(x)e(x) dx (7.12)

Note that the integral
∫ L
0 M2(x)κ̄(x) dx vanishes because moments M2 are self-

equilibrated and curvatures κ̄ are compatible. Thismeans that the secondarymoments
M2 do not need to be calculated if only the deflectionwmid is of interest. If the integral

4The eccentricity is considered as positive if the centroid of the prestressed tendons is below the
centroid of the section; see Fig. 4.36.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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∫ L
0 κ̄(x)e(x) dx is positive, the deflection due to prestress is negative and themidspan
lifts up, which is advantageous for the reduction of the resulting total deflections after
adding the self-weight and traffic loads. Since the sign of curvature κ̄ is the same
as the sign of moment M̄ , it is good to use maximum positive eccentricity (tendons
below the beam axis) in the region where moments due to the unit force are positive
(tension in bottom fibers) and maximum negative eccentricity in the region where
moments due to the unit force are negative. Some of the best designers have used such
wisdom intuitively. A practical example based on the bridge over the Labe (Elbe)
River in Mělník is available in Křístek et al. [561].

For a simply supported beam, κ̄ is positive along thewhole span, whichmeans that
tendons below the beam axis cause lifting of the beam, as expected. For a continuous
beam, an example of the distribution of moments M̄ is shown in Fig. 7.19. To reduce
the midspan deflection in the main span, the tendons should be placed, as much as
possible, below the beam axis in the central part of the main span, and above the
beam axis in the outer parts of the main span and in the side spans. For a symmetric
three-span beam with uniform cross-sectional stiffness E I , the relative size of the
zone with positive moments M̄ is characterized by

α = 1

2
+ L1

2L1 + 3L2
(7.13)

with the meaning of L1, L2, and α specified in Fig. 7.19. For L1 = 0, we obtain
α = 0.5, which corresponds to a beam clamped at both ends. The limit L1 → ∞
corresponds to a simply supported beam with α = 1.

L1L1 L2

αL2

Fig. 7.19 Continuous beamwithmoments due to a unit force, and examples of tendons contributing
to a negative deflection at midspan

In statically determinate structures, the opportunity to minimize deflection by
tendon layout is lesser, but some exists. In a cantilever of a box girder with midspan
hinge, the prestress force, cross-sectional height, and wall thicknesses are normally
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decreased with distance from the support. However, the deflections can get mitigated
if these design variables are decreased less than allowed by stress considerations. This
makes it possible to use a higher prestress than necessary, whichwill pull themidspan
up.

7.13 Effect of Cyclic Stress Variations on Creep
Compliance

7.13.1 History of Cyclic Creep Models

In discussions at conferences, it has often been claimed that the cyclic creep caused
by repeated traffic loads explains the excessive long-time deflections of box girder
bridges. But this is not true. Following a recent in-depth study of Bažant and Hubler
[134], let us examine why.

The cyclic creep of concrete, also called the fatigue creep (or vibro-creep, as a
literal translation of the Russian term vibropolzuchest’) is the long-time deformation
produced by cyclic load. This phenomenon was experimentally detected by Féret in
1906 and was also observed by Probst in 1925, Mehmel and Heim in 1926, and Ban
in 1933 (cf. [223]). More systematic experiments permitting quantitative character-
ization had to wait until the works of Gaede [402] and of Mehmel and Kern [625].
AfterWorldWord II, many researchers studied this phenomenon experimentally and
proposed various approximate and mutually contradictory empirical formulas [59,
69, 70, 149, 176, 231, 268, 287, 409, 443, 483, 486, 574, 575, 597, 644, 654, 662,
668, 863, 872]. After conducting extensive tests of cyclic creep in compression,
Gaede [402] proposed a formula of the general form

Δε
cyc
N = cσmaxN

r
cyc (7.14)

where Δε
cyc
N is the strain increment due to cyclic loading after Ncyc cycles, σmax is

the maximum uniaxial stress in periodic cycles, and r and c are empirical constants.
Equation (7.14) was based on compression cycles from 0.14 f̄c to 0.75 f̄c. Such
cycles reached way beyond the service stress range allowed in bridge design, which
is limited by 40% of standard compression strength.

Wittmann [872] tried to generalize his power law for a (static) creep curve, ε(t) =
atn sinh(bσ/ f̄c) in which a, b, and n are empirical constants. He ignored the aging
and used a hyperbolic sine function based on his assumption of thermally activated
transitions. Considering cyclic stress σ(t) = σm + Δσ sinωt whereω is the circular
frequency and σm and Δσ are the mean value and half-amplitude of cyclic stress,
Wittmann empirically generalized this power law by replacing the constant exponent
nwith the variablen = n0 + c(Δσ/ f̄c)d ,wheren0, c, andd were constants calibrated
by Gaede’s data.
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The most comprehensive diverse tests were conducted by Neville et al. [483, 654,
863]. Neville and Hirst [654] proposed that the cyclic creep is an inelastic defor-
mation caused by microcracking, but made no attempt to model the microcracking
per se. In view of the hardening effect under low stress cyclic creep observed in
some experiments [59, 231, 483, 654, 863], they suggested that the microcracking
occurs at the aggregate interfaces. Garrett [409] speculated that these microcracks
could expose unhydrated cement to further hydration which in turn might cause fur-
ther deformation. Hirst and Neville [483], and later also Brooks and Forsyth [268],
assumed that the total cyclic creep strain εcyc = εstatA(ln t)B , where εstat is the static
creep strain and A and B are calibration parameters.

Later on, Pandolfi and Taliercio [668] suggested a more complicated formula
for cyclic creep of concrete based on numerical simulations. They emphasized two
concepts: The time is only implicitly related to the number of cycles, Ncyc, i.e., the
tests should be interpreted in terms of Ncyc, and the loading frequency is indirectly
related to the loading rate [486]. Damage evolution models based on failure surfaces
in the stress space have also been suggested. However, prior to 2014, no model based
on fatigue growth of individual microcracks under cyclic loading has been published.

The phenomenological formulations treated cyclic creep in two ways: either as a
deformation Δε

cyc
N that is additional to the static creep [70], or as an acceleration of

the static creep [149, 176, 210]. Both were able to provide acceptable fit of the main
data, doubtless because of their limited duration—mostly less than 10 days, and 28
days as the maximum. This is much less than the desirable lifetimes of large-span
bridges, which are 100 to 150 years. For such extrapolation to be realistic, the cyclic
creep model must based on a sound theory rooted in micromechanics. Although
the micromechanics has been discussed intuitively in qualitative terms [409, 654,
e.g.] or in terms of damage mechanics [404, 590], no micromechanics-based and
experimentally validated constitutive model seems to have been published prior to
2014.

7.13.2 Macroscopic Strain Due to Small Growth
of Microcracks∗

Unlikemetals and fine-grained ceramics, themicrostructure of concrete is disordered
and full of microcracks on all the scales—from the nanoscale to the macroscale of
a representative volume element (RVE), whose size is typically 0.1 m (assuming
normal size aggregates). The growth of cracks larger than the RVE reduces strength
and stiffness and is countered by reinforcing bars. Cracks much smaller than the
RVE do not appreciably affect strength and do not reduce material stiffness. Under
fatigue loading, such cracks must be expected to grow, which causes additional
deformation referred to as cyclic creep, but do not appreciably reduce the unloading
stiffness or elastic modulus. Indeed, the experimental results for cyclic compressive
loading of concrete within the service stress range (i.e., for stresses less than 40%
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of the strength) show no degradation of material strength for subsequent short-time
loading up to failure and indicate only a slight decrease of concrete stiffness [475].

Fig. 7.20 Mode-I penny-shaped crack and a generic microcrack in three dimensions

Consider a generic three-dimensional planar crack of size a, for instance a penny-
shaped crack of radius a (Fig. 7.20). In the case of compression loading, we imagine
a shear crack with combined modes II and III, and in the case of tensile loading,
a pure mode-I crack. For the sake of simplicity, the crack is assumed to grow in a
self-similar way, expanding in its plane in proportion to a. The energy release rate
due to three-dimensional self-similar growth of the crackmay generally be expressed
as

G (σ, a) = γ1

a

∂�∗
f (σ, a)

∂a
(7.15)

where�∗
f is the complementary energy (or Gibbs’ free energy) due to fracture alone,

per microcrack, σ is the applied remote stress (precisely, stress at infinity), and γ1 is
a dimensionless geometry factor which, e.g., would be equal to 1/2π in the case of
a penny-shaped crack in mode I. Even though the stress intensity factors must vary
along the crack edge in three dimensions, one can define an effective stress intensity
factor at the crack edge,

K (σ, a) = √
EG (σ, a) (7.16)

on the basis of the average energy release rate of the microcrack,

G (σ, a) = γ2aσ 2/E (7.17)

Here, E is Young’smodulus and γ2 is a dimensionless geometry factor. For the simple
case of a mode-I penny-shaped crack, K = KI = 2σ

√
a/π [178, 797], which gives

γ2 = 4/π . According to Eqs. (7.15) and (7.17), the total energy release rate per
crack, due to fracture alone, is

∂�∗
f (σ, a)

∂a
= a

γ1
G (σ, a) = γ2σ

2

γ1E
a2 (7.18)
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Integration at constant σ furnishes the complementary energy due to fracture alone,

�∗
f (σ, a) = γ2σ

2

3γ1E
a3 (7.19)

Let the volume per microcrack be l3c and consider, for the sake of simplicity, all
the microcracks to be orthogonal to the direction of applied stress σ . According to
Castigliano’s theorem [298], we may calculate the displacement u f due to fracture
(at infinity, per crack) as follows:

u f = ∂�∗
f (P, a)

∂P
= 1

l2c

∂�∗
f (σ, a)

∂σ
= γ0

El2c
σa3 (7.20)

Here, P = σ l2c is the remotely applied force per crack, and γ0 = 2γ2/3γ1 is yet
another dimensionless constant characterizing the geometry. The macroscopic strain
caused by the formation of microcracks of size a under remotely applied stress σ is
then

εsc = u f

lc
= γ0

El3c
σa3 = γ0

a3

l3c

σ

E
(7.21)

To obtain the total compliance (or deformation), one would have to add the part of
compliance of the structure before crack formation. But this part is included in the
viscoelastic compliance (or creep deformation) as is not part of the cyclic creep.

The total microcrack size increment over Ncyc cycles is ΔaN = aN − a0, where
aN is the crack size after Ncyc cycles and a0 is the initial crack size before cyclic
loading. If ΔaN were not small compared to a0, the cyclic loading of concrete in
the service stress range would have to cause a significant loss of structural stiffness.
If the loss of stiffness is small, it will be offset (or even overcompensated) by the
increase of strength due to aging and to long-time compression. This can explain why
no loss of short-time unload–reload stiffness due to cyclic creep has been reported.
According to (7.21), the strain increment due to cyclic loadingmay now be expressed
as

Δε
cyc
N = γ0

El3c
σ(a3N − a30) = γ0

El3c
σa30

[(
1 + ΔaN

a0

)3

− 1

]
(7.22)

In failure analysis, large ΔaN need to be considered. But since the creep strains in
service are always small, we may assume that ΔaN/a0 � 1. Then, upon noting that
(1 + x)3 ≈ 1 + 3x when x � 1, we may linearize (7.22) as follows:

Δε
cyc
N = 3γ0

σ

E

(
a0
lc

)3
ΔaN
a0

(7.23)
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7.13.3 Strain According to Paris Law for Subcritical
Microcrack Growth∗

Consider cyclic loading of amplitude Δσ = σmax − σmin (Fig. 7.21a). [669] showed
that, except for very large stress amplitudes and very high σmax occurring in fail-
ure analysis, the fatigue growth of a crack depends only on the amplitude ΔK of
the stress intensity factor K but not on its maximum and minimum individually.
The dependence of the crack length increment per cycle on the amplitude can be
approximated by the Paris law

Δa

ΔNcyc
= λ

(
ΔK

Kc

)m

(7.24)

in which Kc is the critical stress intensity factor for monotonic loading and prefactor
λ and exponent m are empirical constants.
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Fig. 7.21 Typical cyclic stress histories: (a) harmonic loading, (b) infrequent cycles, (c) rare cycles,
(d) real loading

The Paris law is a good approximation for the intermediate range of fatigue crack
growth, which is relevant for creep deflections of structures in service. For very large
or small ΔK , the crack growth rate deviates from the slope m, producing S-shaped
deviations when Kmax and ΔK exceed certain thresholds. While exceeding these
thresholds is important for failure analysis, it is not for deformations in the service
stress range (i.e., for stresses less than 40%of the strength limit).When Kmax andΔK
vary broadly, it is further important to take into account the dependence of prefactor
λ on the ratio Kmax/Kmin, but again this is not important within the service stress
range. Recently, it has been shown that on the atomic scale, exponent m must be
equal to 2 and that m must increase when moving up to higher scales [156, 569].
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Thus, for microcracks much smaller than the RVE, exponent m must be expected to
be much smaller than its value for macrocracks in concrete, which is 10.

The amplitude ΔK is controlled by the remotely applied stress amplitude Δσ ,
and so one can write

ΔK = c
√
a Δσ (7.25)

where c is a dimensionless geometry constant. For example, formode-I penny-shaped
cracks, c = 2/

√
π . Substituting (7.25) into (7.24), we would get variable a on both

sides of the equation. Although the resulting differential equation could be easily
integrated by parts, we may consider that, in the case of creep under service loads,
Δa � a0. So, ΔK = c

√
a0Δσ . Integration at constant Δσ then delivers, for small

crack extensions:

ΔaN = aN − a0 = λ

(
c
√
a0 Δσ

Kc

)m

Ncyc (7.26)

Substituting (7.26) into (7.23) and rearranging, we obtain for the strain increment
due to cyclic creep after Ncyc cycles the formula

Δε
cyc
N = C1 σ

(
Δσ

f̄c

)m

Ncyc (7.27)

where

C1 = 3γ0
E

λ

a0

(
a0
lc

)3
(

f̄cc
√
a0

Kc

)m

(7.28)

Here, f̄c is the standard compression strength of concrete, introduced merely for
convenience of dimensionality.

It is noteworthy thatΔε
cyc
N is predicted to depend on both σ and Ncyc linearly. This

agrees with the available cyclic creep measurements and is convenient for structural
analysis. Of course, parametersC1 andmmust be calibrated using experimental data.

7.13.4 Compressive Cycles via Dimensional Analysis and
Similitude∗

Although the analysis in (7.15)–(7.22) was exemplified by a mode-I crack, it is
equally applicable to cyclic creep under compressive and shear loadings, which are of
main practical interest for prestressed structures in which almost no concrete is under
tension. Under compression, five types of cracks producing inelastic compressive
strain can be distinguished:

1. crushing band propagating transversely to compression [366, 794, 795], shown
in Fig. 7.22a;
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2. wedge-splitting cracks [204] at hard inclusions, parallel to compression
(Fig. 7.22b);

3. interface cracks at inclusions (Fig. 7.22c);
4. pore-opening cracks parallel to compression [379, 539, 751], shown in Fig. 7.22d;

and
5. wing-tip frictional cracks inclined to compression direction [42, 485, 506, 531,

768], shown in Fig. 7.22e.

The last is observed only rarely and is the only type that can be conceived to develop in
a homogeneous medium that contains only preexisting microcracks or weak planes
but neither inclusions nor pores [768]. The first type, i.e., Suresh’s crack growth,
differs from the others in that only a finite crack extension is possible, but in the
present case, it does not matter since very small crack length growth is assumed at
the outset.

(a) (b) (c) (d) (e)
σ

σ

Fig. 7.22 Five types of cracks producing axial inelastic strain: (a) transversely propagating crushing
band, (b) axial wedge-splitting cracks at hard inclusions in hardened cement paste, (c) interface
cracks at inclusions, (d) pore-opening axial cracks, and (e) inclined wing-tipped frictional cracks

Detailed mathematical analysis of these compressive cracks would be rather com-
plicated. We will, therefore, resort to dimensional analysis and similitude consider-
ations [51, 53]. According to Buckingham’s �-theorem [51, 280] (which should in
fairness be called the Vashy-Buckingham theorem [835]), the description of a phys-
ical system in terms of Nt parameters can be reduced to a description in terms of
Ni = Nt − Nd independent dimensionless parameters, where Nd is the number of
independent physical dimensions among the parameters.

In Eq. (7.17) for the energy release rate, from which everything follows, the
original parameters are the crack size a [dimension m], applied remote stress σ

[dimension N/m2], elastic modulus E [dimension N/m2], and the energy release
rate per unit area of crack G [dimension N/m], which means that Nt = 4. These
parameters have only Nd = 2 independent dimensions, length and force. So the
number of dimensionless independent parameters is Ni = 4 − 2 = 2. They can be
selected as

�1 = EG

σ 2a
, �2 = σ

E
(7.29)
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where K 2 = EG . The governing relation must have the form�(�1,�2) = 0. In the
special case of a mode-I penny-shaped crack, the governing relation must coincide
with (7.18), and so it must have the form �1 − μ0�2 = 0, where μ0 is a constant.
Indeed, this gives

G = μ0
σ 2

E
a2 (7.30)

which is identical to (7.18) (with μ0 = γ2/γ1). The subsequent derivation of the
cyclic creep strain proceeds the same way as before, i.e., the integration of (7.30)
at constant load yields the complementary energy, whose differentiation at constant
length then yields (according to Castigliano’s theorem) the displacement. This is
then combined with the Paris law and leads to the same form of the cyclic creep law.
Although the Paris law seems not to have been tested for cyclic compression (except
for transverse crushing band [794]), it is expected to apply.

7.13.5 Cyclic Creep Compliance and Multiaxial
Generalization

Because σ appears in (7.27) linearly, it is possible to define the cyclic creep compli-
ance

ΔJ cyc
N (t) = C1

(
Δσ

f̄c

)m

Ncyc(t) (7.31)

The total material compliance in presence of cyclic loading component is

Jtot (t, t
′) = J (t, t ′) + ΔJ cyc

N (t) (7.32)

where J (t, t ′) is the standard compliance function (which reflects the elastic defor-
mation and creep under sustained load), and Ncyc(t) is the number of stress cycles
imposed on the material up to time t . The standard engineering theory of bending
cannot be used, since the distribution of Δσ over the cross section is nonlinear and
thus makes the distribution of Δε

cyc
N over the cross section nonlinear [70].

Noexperimental information seems to exist for cyclic creepundermultiaxial stress
or tensile loading, nor cyclic creep with cycles of varying amplitudes. Nevertheless,
it appears reasonable to neglect transverse strains and to expect that under tension
the cyclic creep per unit stress is at least as large as it is under compression. Also
note that, for the special case of a crack normal to the maximum principal stress
direction, an analysis similar to (7.15)–(7.21) gives a zero additional lateral strain
due to crack opening.

A three-dimensional finite element program for creep and cyclic creep in a bridge
has been formulated by [210] under the assumption that the cyclic creep eigenstrains
corresponding to individual principal stresses can be superposed.
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It would be convenient to model the cyclic creep as an acceleration of static creep.
This alternative [149, 176], attractive for simplicity of computations, was tried but
later rejected. It works only within one order of magnitude of the number of cycles
and gives great error when stretched to several orders of magnitude. The reason that
in previous publications the existing test data could be fitted using this alternative is
that the data had very limited time span (only about 10 days). So the cyclic creep
must be considered to be an eigenstrain, as written in (7.32), which is in fact the way
the cyclic creep was empirically treated in the earliest mathematical model [69, 70].

7.13.6 Calibration by Existing Test Data

Experimental verification presented by Bažant and Hubler [134] relied on well-
documented laboratory data from the literature. Because Bažant and Hubler’s cyclic
creep model described here is applicable only within the service stress range (i.e., for
stresses up to 40% of concrete strength), the tests in which this limit was exceeded,
or those in which fatigue failure occurred, were excluded from calibration. For each
curve, the B3 creep model was first calibrated to fit the static creep curve (i.e., the
curve for zero stress amplitude), which must be subtracted from the data to separate
the effect of cyclic creep. The B3 parameters thus calibrated were then used in the
joint least-square optimization of the fits of all cyclic test curves to determine the
optimum values of cyclic creep parameters C1 and m in (7.31). The fits of the test
curves are shown in Fig. 7.23. They include both cyclic creep and static creep, the
latter under either sealed conditions (basic creep) or drying conditions (drying creep).

The data set ofWhaley and Neville [863] is the most comprehensive set available,
containing cyclic tests done under both sealed and drying conditions. The initial
strains, unfortunately, were not measured, and so they are estimated by extrapolation
of the model B3 curve fitted to the initial portion of the data. Whaley and Neville
measured the cyclic creep at various amplitudes andmean stress levels, at a frequency
of 585 cycles/min. One of their data sets, studying the effect of mean stress, could
not be used because the maximum stresses in the cycles exceeded the fatigue limit.

Also considered for calibration were the tests of Mehmel and Kern [625], which
reported the effect of stress cycling on the drying creep at various average stresses and
various amplitudes of the cyclic load, at two different frequencies, 380 cycles/min.
and 3000 cycles/min. Moreover, Hirst and Neville [483] reported tests at 3000
cycles/min. and various stress amplitudes. Further cyclic test data do exist, but were
not used because they either lacked the reference static creep test (at zero amplitude)
or used a concrete with unusual mix proportions.

The optimum fit of (7.31) to the test data is presented in Fig. 7.23. With the
optimized parameter values C1 = 46 · 10−6/ MPa and m = 4, the fit of the data is
quite close, with a coefficient of variation of only 5% (root-mean-square error divided
by data mean).

The fact that the experiments verify the exponent value m = 4 is interesting.
According to the activation-energy-based probabilistic theory of quasibrittle fracture
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Fig. 7.23 Optimal fitting of test data by (a)–(b) Whaley and Neville [863], (c)–(d) Mehmel and
Kern [625], and (e) Hirst and Neville [483]

[156, 569], exponentm of the Paris law should be equal to 2 on the nanoscale.Moving
up through the scales causes the exponent m of the crack growth law to increase by
approximately 2 for each order of scale magnitude. This matches the fact that for
metals and fine-grained ceramics, in which the RVE is of micrometer size, m ≈ 4.
In concrete, one has to cross several more scales to reach the scale of an RVE, which
is of the size of 0.1 m. Thus, it is no wonder that the exponent of Paris law for
macroscale crack propagation in concrete is about 10 [206]. In this light, it is not at
all surprising that the cyclic creep exponent of concrete is equal to 4. In view of the
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theory of Bažant and Le [156], this value of m implies that the relevant cracks that
cause the cyclic creep should be micrometer-scale cracks, far smaller than the RVE
size.

7.14 Effects of Cyclic Creep on Bridge Deflections and
Cracking

7.14.1 Stress Distribution in a Prestressed Cross Section
Under Variable Loading

Consider now prestressed segmental box girders, many of which were shown to suf-
fer from excessive long-time deflections and often develop excessive cracking [137,
138]. Whenever excessive bridge deflections or cracking are discussed at confer-
ences, usually someone blames cyclic creep, despite the absence of any supportive
calculations.

h

h

ht

hb
y

z

L

Fig. 7.24 Typical bridge cross section at the pier

Figure7.24 shows a simplified form of a typical cross section at pier of a box
girder bridge. For the sake of simplicity, we use the engineering theory of bending,
with the cross sections remaining plane. If the material strength is utilized fully
(which is for record-span bridges inevitable), cross section dimensions and prestress
level are designed so that the longitudinal normal stresses σ reach their allowable
limits, σ = − fc ( fc > 0) at the bottom face of coordinate z = hb and σ = ft at the
top face of coordinate z = −ht , where coordinate z is measured from the horizontal
centroidal axis y and is positive downward, hb > 0 and ht > 0 are the distances of
the bottom and top fibers from this axis, with hb + ht = h = cross-sectional depth.
After prestress losses, the allowable stresses in highway bridges are, according to
AASHTO [1], fc = 0.4 f ′

c in compression and ft = 6 psi
√

f ′
c/psi in tension, where

f ′
c is the specified compressive strength. For structures other than bridges, ACI [18]

sets a higher limit for compression, fc = 0.45 f ′
c , while the limit for tension remains

the same as according toAASHTO.The calculations to be presented herewill be done
with the limits ft = 0 and fc = 0.4 f̄c where f̄c is the mean compressive strength,
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which can be estimated from the specified compressive strength as f̄c ≈ 0.4( f ′
c +

1200psi); see the ACI formula (E.4). However, these differences in allowable stress
limits do not affect the general conclusions significantly.

Fig. 7.25 Bridge cross section at the pier, designed to reach allowable limits: profiles of the stresses
due to (a) dead load, (b) cyclic live load and (c) prestress, and profiles of the (d) total stress, (e)
average stress, and (f) stress amplitude

If the cross sections remain planar and the stress–strain equation for concrete is
linear (elastic or viscoelastic), the distribution of normal stress in concrete across
the depth, due to bending moment MC and normal force NC , is described by the
well-known formula

σ(z) = MC

I
z + NC

A
(7.33)

where A and I are the sectional area and sectional moment of inertia with respect
to the horizontal centroidal axis. Here, MC and NC are understood as the resultants
of stresses in concrete only (note that M and N in Eqs. (4.157)–(4.158) were the
total internal forces, which included the contribution of stresses in steel). For a
fully loaded bridge, we substitute NC = −P and MC = MDLP ≡ MD + ML − Pe
where P > 0 is the prestress force and e is its eccentricity5, and MD and ML are,
respectively, the bending moments6 due to dead load (including self-weight) and due
to live load, representing the traffic load (for the sake of simplicity, we assume the
statically indeterminate moments due to prestressing, denoted as M2 in Sect. 7.12, to

5The eccentricity is considered as positive if the centroid of the prestressed tendons is below the
centroid of the section; see Fig. 4.36. In pier cross sections, which transmit negative bending
moments, the tendons are near the top fibers and the eccentricity is thus negative.
6The bending moment is considered as positive if it causes tension in the bottom fibers. At the pier
section, the moments due to dead load and live load are negative, while the moment due to prestress,
−Pe, is positive, because e < 0.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
http://dx.doi.org/10.1007/978-94-024-1138-6_4
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be negligible, as they often are in large box girders with a flexible midspan; otherwise
they would have to be added to −Pe). The corresponding linear stress distributions
are plotted in Fig. 7.25a-c separately for the effects of dead load, live load, and
prestress. The total stress distribution is then shown in Fig. 7.25d, where the shaded
area indicates the range in which stresses vary if the live load varies between zero
and its maximum value.

The section is assumed to be designed such that the stress σDLP , caused by the
combination of dead load, full live load, and prestress, is equal to ft in the top fibers
and to− fc in the bottomfibers; see the thick solid line in Fig. 7.25d. These conditions
uniquely determine the stress distribution described by the linear function

σDLP(z) = ft (hb − z) − fc(ht + z)

h
(7.34)

To get the stress σDP corresponding to the combination of dead load and prestress
(plotted by the dashed line in Fig. 7.25d), we need to subtract from σDLP the contri-
bution of the bending moment ML due to live load:

σDP(z) = σDLP(z) − ML

I
z = ft (hb − z) − fc(ht + z)

h
− ML

I
z (7.35)

In service conditions, the actual stress varies between σDP and σDLP , with mean
value (Fig. 7.25e)

σ̄ (z) = σDLP(z) + σDP(z)

2
= ft (hb − z) − fc(ht + z)

h
− ML

2I
z (7.36)

and amplitude (Fig. 7.25f)

Δσ(z) = |σDLP(z) − σDP(z)|
2

= |ML z|
I

(7.37)

The use of an arithmetic average in (7.36) means that the periods of positive and
negative deviations from the average are considered to have equal durations and
similar time profiles, which is what characterizes the experiments used in calibration
(Fig. 7.21a).When, however, the load cycles are asymmetric as shown in Fig. 7.21b,c,
the proper value of σ̄ is debatable since no such tests have been reported. If linear
superposition of the load effects were applicable, then σ̄ would represent the time
average of stress over the cycle (shown by the horizontal dashed lines in Fig. 7.21).
But since the dependence of cyclic creep on the stress deviation from the mean is
highly nonlinear, the time shape of cycle is probably unimportant and mainly the
extremes matter. Then, the average value σ̄ = (σDP + σDLP)/2 = σD + σL/2 + σP

may be used for all cycle profiles.
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7.14.2 Curvature and Residual Stresses Due to Cyclic Creep

The distributions of the mean stress σ̄ and stress amplitude Δσ across the depth,
already shown in Fig. 7.25e,f, are for easier reference replotted in Fig. 7.26a,b. Due
to the dependence on the fourth power of Δσ , the additional compliance caused by
cyclic creep,

ΔJ cyc
N (z, t) = C1Ncyc(t)

(
Δσ(z)

f̄c

)4

= C1Ncyc(t)

( |ML z|
I f̄c

)4

(7.38)

evaluated from (7.31) with m = 4, is very small near the centroidal axis and much
higher near the top and bottom fibers; see Fig. 7.26c. For simplicity, we have set
exponent m to 4, which is the value obtained by optimum fitting of experimental
data [134]. Of course, the subsequent derivation could be generalized to an arbitrary
value of m.

The product of the additional compliance ΔJ cyc
N and the mean stress, which is

here denoted as σ̄ , gives the inelastic strains (or eigenstrains) due to cyclic creep,

Δε
cyc
N (z, t) = ΔJ cycN (z, t)σ̄ (z) = C1Ncyc(t)

( |ML z|
I f̄c

)4 (
ft (hb − z) − fc(ht + z)

h
− ML

2I
z

)

(7.39)
which are plotted in Fig. 7.26d. To simplify the notation, let us introduce a dimen-
sionless factor

μL = −MLh

2I f̄c
(7.40)

where the minus sign is used in order to get positive μL for negative ML (at the pier
section, the moment due to the traffic load is negative). Formula (7.39) can then be
rewritten as

Δε
cyc
N (z, t) = 16C1Ncyc(t)μ4

L

h5
[
( ft hb − fcht ) z

4 + (μL f̄c − ft − fc)z
5
]

(7.41)

Fig. 7.26 Bridge cross section at the pier, forwhich the prestressing eccentricity and bridge span has
been designed to reach allowable limits: (a) average stress, (b) amplitude of cyclic stress variation,
(c) cyclic creep compliance, (d) free cyclic strain, (e) residual strain, (f) actual linearly distributed
strain due to cyclic creep effects on the section
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The dependence of the inelastic strainsΔε
cyc
N on the vertical coordinate z is highly

nonlinear and the condition that the cross sections must remain planar would be
violated. Therefore, residual strains εr shown in Fig. 7.26e must develop to enforce
the planarity of cross sections, in the same way as it happens for shrinkage or thermal
strains. The resulting linearly distributed strains caused by the effects of cyclic creep
on the section, shown in Fig. 7.26f, can be expressed as

Δε
cyc
N (z, t) + εr (z, t) = Δεcyca (t) + Δκcyc(t) z (7.42)

where Δε
cyc
a and Δκcyc are deformations due to cyclic creep at the sectional level

(additional axial strain at the centroid and additional curvature).
The residual strains εr give rise to residual stresses σr , which are linked to εr by

the viscoelastic law

σr (z, t) = R {εr (z, t)} = R
{
Δεcyca (t) + Δκcyc(t) z − Δε

cyc
N (z, t)

}
(7.43)

in which R is the relaxation operator; see Sect. 2.5. The residual stresses are self-
equilibrated, because the normal force and bending moment may be considered to
be unaffected by cyclic creep (this is a simplifying assumption in the case of stati-
cally indeterminate structures, in which cyclic creep causes some redistribution of
internal forces). The conditions that self-equilibrated stresses σr have zero resultants
(vanishing normal force and bending moment) are mathematically written as

∫
A
σr (z, t) dA = 0 (7.44)

∫
A
z σr (z, t) dA = 0 (7.45)

Substituting (7.43) into (7.44)–(7.45) and applying the compliance operator J on
both sides of the equations, we get

∫
A

[
Δεcyca (t) + Δκcyc(t) z − Δε

cyc
N (z, t)

]
dA = 0 (7.46)

∫
A
z

[
Δεcyca (t) + Δκcyc(t) z − Δε

cyc
N (z, t)

]
dA = 0 (7.47)

Since
∫
A dA = A = sectional area,

∫
A z dA = 0, and

∫
A z

2 dA = I = sectional
moment of inertia, conditions (7.46)–(7.47) combined with (7.41) directly lead to

Δε
cyc
a (t) = 1

A

∫
A

Δε
cyc
N (z, t) dA = 16C1Ncyc(t)μ4

L

Ah5
[
( ft hb − fcht ) I4 + (μL f̄c − ft − fc)I5

]
(7.48)

Δκcyc(t) = 1

I

∫
A
z Δε

cyc
N (z, t) dA = 16C1Ncyc(t)μ4

L

I h5
[
( ft hb − fcht ) I5 + (μL f̄c − ft − fc)I6

]
(7.49)

where Ik = ∫
A z

k dA, k = 4, 5, 6, are higher-order moments of the sectional area.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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To assess the relative importance of the additional curvature due to cyclic
creep, it is useful to introduce the dimensionless ratio Δκcyc(t)/κref where κref =
MDLP/E I = −( fc + ft )/Eh is the elastic curvature caused by the maximum
moment

MDLP = I

h
(σDLP(hb) − σDLP(−ht )) = − I

h
( fc + ft ) (7.50)

Formula (7.49) can be transformed into

Δκcyc(t)

κref
= EC1Ncyc(t)

(
β4κμ

4
L + β5κμ

5
L

)
(7.51)

where

β4κ = 16

I h4

(
fcht − ft hb
fc + ft

I5 + I6

)
(7.52)

β5κ = − 16I6 f̄c
I h4( fc + ft )

(7.53)

are dimensionless coefficients dependent on the geometry of the section and on the
ratios between allowable stresses fc and ft and the mean compressive strength f̄c.

Once the sectional deformation measuresΔε
cyc
a andΔκcyc have been determined,

it is easy to evaluate the residual stresses from (7.43). A typical distribution of these
stresses across the depth of the section has the same shape as the profile of residual
strains in Fig. 7.26e. The residual stresses growproportionally to the number of cycles
and are positive near the top and bottom fibers and negative near the centroid. Near
the bottom fibers, the additional tensile residual stresses that develop due to cyclic
creep effects are superposed onto large compressive stresses induced by prestress
and sustained loading, and the resulting stresses certainly remain for a long time
compressive. The most critical situation arises near the top fibers, where the stresses
due to prestress and dead and live loads are small and compressive, or even tensile
(if the allowable stress ft is considered as positive). Therefore, let us examine the
residual stress at the top fibers,

σr (−ht , t) = R
{
Δεcyca (t) − Δκcyc(t) ht − Δε

cyc
N (−ht , t)

}
(7.54)

Based on (7.41) and (7.48)–(7.49), the residual stress can be expressed as

σr t (t) ≡ σr (−ht , t) = C1 f̄c
(
β4σμ4

L + β5σ μ5
L

)
R{Ncyc(t)} (7.55)

where

β5σ = 16

h5

(
I5
A

− I6ht
I

+ h5t

)
(7.56)

β4σ = 16
ft hb − fcht

f̄ch5

(
I4
A

− I5ht
I

− h4t

)
− ft + fc

f̄c
β5σ (7.57)
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are dimensionless coefficients that depend on the cross section and on the ratios
fc/ f̄c and ft/ f̄c.

7.14.3 Appraisal of the Magnitude of Cyclic Creep Effects in
Structures

In the preceding section, we have derived formulae (7.51) and (7.55), which char-
acterize the additional curvature due to cyclic creep and the residual stress in the
top fibers. The additional curvature leads to an increase of deflection, which can be
roughly estimated as the elastically computed deflection (due to the full load) mul-
tiplied by the ratio Δκcyc/κref from (7.51). If this ratio is much smaller than 1, the
effect of cyclic creep on deflections is negligible.

Since we assume that the section has been designed with allowable tensile stress
ft = 0, the residual stress σr t given by (7.55) is at the same time the maximum
(tensile) stress in the whole section—it is the total stress in the top fibers when the
full load (including the live load) is applied. Cracking can be expected to occur when
this maximum stress reaches the mean tensile strength of the material, f̄t . Therefore,
if the ratio σr t/ f̄t is much smaller than 1, there is no danger of cracking induced by
cyclic creep.

Example 7.1. Rectangular section

To get a rough idea about the order of magnitude of the consequences of cyclic
creep, consider first a rectangular section of width b and depth h, for which
ht = hb = h/2, A = bh, I = bh3/12, I4 = bh5/80, I5 = 0, and I6 = bh7/448. The
allowable stresses are taken as fc = 0.4 f̄c and ft = 0. Formulae (7.52)–(7.53) then
yield β4κ = 3/7 and β5κ = −15/14, and formulae (7.56)–(7.57) yield β5σ = 2/7
and β4σ = 8/175. Using the value C1 = 46 × 10−6/MPa identified by [134] and
assuming typical values E = 24 GPa and f̄t = 0.1 f̄c, we can rewrite (7.51) and
(7.55) as

Δκcyc(t)

κref
= 0.473μ4

L (1 − 2.5μL) Ncyc(t) (7.58)

σr t (t)

f̄t
= 0.505μ4

L (1 + 6.25μL)
R{Ncyc(t)}

E
(7.59)

Recall that the extreme (negative) moment due to the dead load, live load, and
prestress is MDLP = −( fc + ft )I/h; see (7.50). Combining this with (7.40) and
setting fc = 0.4 f̄c and ft = 0, we get

ML

MDLP
= − ML h

( fc + ft )I
= μL

2 f̄c
fc + ft

= 5μL (7.60)
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which means that

μL = ML

5MDLP
(7.61)

If, for instance, the moment due to live load is 10% of the total moment, then μL =
0.02, and formulae (7.58)–(7.59) combined with the rough estimate R{Ncyc(t)} ≈
ENcyc(t) give

Δκcyc(t)

κref
= 7.2 × 10−8Ncyc(t) (7.62)

σr t (t)

f̄t
= 9.1 × 10−8R{Ncyc(t)}

E
≈ 9.1 × 10−8Ncyc(t) (7.63)

This means that, after 1 million cycles, the contribution of cyclic creep to the deflec-
tion would be about 7% of the elastic deflection, and the tensile residual stress in the
top fibers would be about 9% of the tensile strength.

Fig. 7.27 Dependence of normalized residual stress and normalized curvature caused by cyclic
creep on normalized moment due to live load for a rectangular cross section: (a) after 103 cycles,
(b) after 106 cycles

Fig. 7.27 shows the normalized residual stress σr t/ f̄t (for f̄t = 0.1 f̄c) and the
normalized curvature Δκcyc/κref as a function of the normalized moment due to
live load, ML/MDLP . After 103 cycles (Fig. 7.27a), the effects of cyclic creep are
negligible for moments due to live load up to one half of the maximum moment.
However, after 106 cycles (Fig. 7.27b), these effects are negligible only if themoments
due to live load are not more than 10% of the maximum moment. �

The foregoing estimates (7.58)–(7.59) are just simple approximations, for two
reasons: (i) the section has been assumed to be rectangular, which leads to different
residual strains near the top fibers than for a box girder, and (ii) the relation between
residual strain and residual stress has been assumed to be elastic (becauseR{Ncyc(t)}
has been replaced by ENcyc(t)) while in reality the stress would be affected by
relaxation and aging. Nevertheless, if such a strongly simplified analysis indicates



260 7 Paradigms of Application, Phenomena Affecting Creep Deformations…

that the effect of cyclic creep is negligible, it is fully sufficient. If, on the other
hand, the crude estimate predicts that considerable stresses might be generated by
the effects of cyclic creep, the analysis needs to be refined.

Let us first explore the effect of the cross-sectional geometry. For a given section,
the geometrical characteristics such as A, I , I4, I5, and I6 can be evaluated numeri-
cally.

Example 7.2. Koror–Babeldaob Bridge

As a real example, consider the KB Bridge described in Sect. 7.2. The section at
the pier (Fig. 7.3) consisted of the top slab of thickness 0.432 m and width 9.62
m, bottom slab of thickness 1.153 m and width 7.32 m, and two webs, each of
thickness 0.356 m. The total height of the section was 14.17 m. From these dimen-
sions, all necessary geometrical characteristics can be calculated: ht = 8.16 m,
hb = 6.01m, A = 21.6m2, I = 649m4, I4 = 28.4 × 103 m6, I5 = −114 × 103 m7,
and I6 = 1.45 × 106 m8. The corresponding dimensionless coefficients evaluated
from (7.52)–(7.53) and (7.56)–(7.57) are β4κ = 0.319, β5κ = −2.22, β5σ = 0.354,
and β4σ = 0.0122.

For the KB Bridge, Bažant and Hubler [134] estimated the moment due to traffic
load to be just 2.5% of the total moment. This means that ML/MDLP = 0.025, and,
according to (7.61), μL = ML/5MDLP = 0.005. Formulae (7.51) and (7.55) with
E = 24 GPa, C1 = 46 × 10−6/MPa, and f̄t = 0.1 f̄c then yield

Δκcyc(t)

κref
= 0.352μ4

L (1 − 6.96μL) Ncyc(t) = 2.2 × 10−10Ncyc(t) (7.64)

σr t (t)

f̄t
= 0.135μ4

L (1 + 29.0μL)
R{Ncyc(t)}

E
= 9.6 × 10−11R{Ncyc(t)}

E

≈ 9.6 × 10−11Ncyc(t) (7.65)

These are negligible effects even for Ncyc = 109 cycles, while a realistic number is
Ncyc = 107. �

To get more insight into the role played by the shape of the section, it is useful
to construct analytical expressions for an idealized box or I-shaped section, char-
acterized by the total area, A, and areas of the top and bottom flanges, At and Ab.
In calculations of second- and higher-order moments, the thickness of the flanges
is neglected, i.e., each flange is represented by a “concentrated area” At or Ab at
distance ht or hb from the centroidal axis. The web (or, in a box section, both webs
combined) is represented by a rectangle of width b = (A − At − Ab)/h and depth
h. Introducing dimensionless parameters αt = At/A, αb = Ab/A, αf = αt + αb, and
αtb = αt − αb, the geometrical characteristics can be expressed as

b = A − At − Ab
h

= A

h
(1 − αf ) (7.66)

ht = (A − At − Ab)h/2 + Abh

A
= h

2
(1 − αt + αb) = h

2
(1 − αtb) (7.67)

hb = h − ht = h

2
(1 + αt − αb) = h

2
(1 + αtb) (7.68)
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Im = b

m + 1

(
hm+1
b − (−ht )

m+1
)

+ At (−ht )
m + Abh

m
b = (7.69)

= Ahm

2m

{
1 − αf

2(m + 1)

[
(αtb + 1)m+1 − (αtb − 1)m+1

]
+ αb(αtb + 1)m + αt(αtb − 1)m

}

Based on this, it can be shown that the dimensionless coefficientsβ4κ ,β5κ ,β4σ , and
β5σ , defined in (7.52)–(7.53) and (7.56)–(7.57), depend exclusively on αt and αb or,
alternatively, onαf andαtb (and, of course, on the ratios between the allowable stresses
and the mean compressive strength, which are considered here as fc/ f̄c = 0.4 and
ft/ f̄c = 0). Note that αf = (At + Ab)/A is the relative area of flanges and αtb =
(At − Ab)/A reflects the asymmetry of the section. The dependence of coefficients
β on the relative flange area αf is plotted in Fig. 7.28 for different values of the
asymmetry coefficient αtb. The case of αf = 0 corresponds to a rectangular section
with no flanges, and the values of coefficients β are then those from Example 7.1.
The thick master curves are valid for sections with a horizontal axis of symmetry,
for which αtb = 0. The other curves cover the range of αtb between −0.2 and 0.2.
Their leftmost points correspond to sections with one flange only, i.e., a T-shaped
section for positive αtb and an inverted T section for negative αtb. For the section of
the KB Bridge plotted in Fig. 7.3 left and analyzed in Example 7.2, the value of the
asymmetry coefficient would be αtb ≈ −0.2 (negative because the bottom flange is
very massive).

Fig. 7.28 Dependence of coefficients (a) β4σ , (b) β5σ , (c) β4κ , and (d) β5κ on the relative flange
area, αf = (At + Ab)/A, for different values of the asymmetry coefficient, αtb = (At − Ab)/A
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Even though formulae (7.67)–(7.69) are just approximate, the graphs in Fig. 7.28
illustrate the basic trends and reveal the influence of various parameters. For large-
span bridges with small ratios between the traffic load and the self-weight, parameter
μL is small and the terms with μ4

L dominate, which means that the response is
controlled by coefficients β4σ and β4κ . As shown in Fig. 7.28a, the maximum value
of β4σ for a symmetric section is about 0.06 and is attained if the flanges represent
about 20 to 25% of the total area. For larger relative flange areas and for asymmetric
sections with the bottom flange more massive than the top one (i.e., for αtb < 0),
coefficient β4σ decreases. Thus, knowing that the cyclic creep coefficient C1 is close
to 1/E , we can construct a very crude estimate of the maximum residual stress,
σr t (t)/ f̄c ≈ 0.06μ4

L Ncyc(t). Here, we neglect the effects of relaxation and aging on
the residual stress, and at the same time, we ignore the term with μ5

L , which may
become important formoderate ratios between the traffic load and self-weight, i.e., for
medium- and small-span bridges. Fig. 7.28b shows that coefficient β5σ multiplying
μ5

L in (7.56) is never larger than 0.29 for section with equal flanges, but for sections
with a more massive bottom flange, it may become larger (recall that its value was
0.354 for the KB Bridge).

The additional curvature due to cyclic creep is described by formula (7.51), with
coefficients β4κ and β5κ . Since the latter coefficient is always negative (see Fig.
7.28d), the termwithμ5

L can safely be neglected. For symmetric sections and sections
with the bottom flangemoremassive than the top one, coefficient β4κ never exceeds 1
(see Fig. 7.28c). Therefore, a conservative estimate of the additional curvature would
be Δκcyc(t)/κref ≈ μ4

L Ncyc(t). Based on this, it can be expected that if the number
of cycles is not larger than 1/μ4

L , the additional deflection due to cyclic creep will
not exceed the short-term elastic deflection.

The foregoing crude estimates should be understood as tools for a quick decision
whether a deeper analysis of cyclic creep effects is worth the effort. For instance, for
the KB Bridge, we have μL = 0.005 (see [134] and Example 7.2), and even if the
number of cycles is set to 10 million, the crude estimates give σr t ≈ 4 × 10−4 f̄c ≈
4 × 10−3 f̄t and Δκcyc ≈ 6 × 10−3κref (while the more accurate estimates (7.64)–
(7.65) give σr t ≈ 10−3 f̄t and Δκcyc ≈ 2 × 10−3κref ). So, indeed, the cyclic creep
effects are virtually nil.

In small- and medium-span prestressed bridges, with very low moments due to
self-weight, the relative stress amplitude ismuch larger,whichmeans that cyclic creep
effects may become important. To appraise it, one should perform a more accurate
analysis. First, the sectional characteristics and the corresponding coefficients β

should be determined by exact integration, based on the real sectional geometry.
Second, it should be taken into account that the residual strains develop gradually
over years and decades, and so the residual stresses get relaxed by creep but also
feel the effect of aging. At a still higher level of sophistication, the residual stresses
should be added to the average stresses due to dead load, live load, and prestress
when the residual strains are evaluated.

The effects of relaxation and agingon the residual stresses are already incorporated
in formula (7.55) through the relaxation operatorR applied on the function Ncyc(t)
that describes the increase of the cumulative number of cycles in time. As a first
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approximation, the intensity of traffic can be considered as constant, and then the
number of cycles

Ncyc(t) = νc〈t − t1c〉 (7.70)

increases proportionally to the time elapsed from the time t1c at which the bridge was
open for the traffic, with νc denoting the frequency (number of traffic load cycles
per unit of time). Based on the definition of the relaxation operator (see (2.37) and
(2.24)), we can write

R{Ncyc(t)} =
∫ t

t1c

R(t, t ′) ˙Ncyc(t
′) dt ′ = νc

∫ t

t1c

R(t, t ′) dt ′ (7.71)

Inprevious simple estimates,which ignored the relaxation effects, the termR{Ncyc(t)}
was replaced by ENcyc(t), with E denoting the elastic modulus. The improved esti-
mate accounting for relaxation and aging should use

R{Ncyc(t)} = Ecyc(t, t1c)Ncyc(t) (7.72)

where

Ecyc(t, t1c) = R{Ncyc(t)}
Ncyc(t)

= νc

νc(t − t1c)

∫ t

t1c

R(t, t ′) dt ′ = 1

t − t1c

∫ t

t1c

R(t, t ′) dt ′

(7.73)
is the cyclic effective modulus—a special type of effective modulus obtained by
averaging the relaxation function R(t, t ′) over t ′ ranging from t1c to t .

Example 7.3. Cyclic effective modulus for the B3 model

For illustration, let us evaluate the cyclic effective modulus Ecyc defined in (7.73)
for the B3 model with parameters that were used by Bažant, Yu and Li [209] in their
analysis of the KB Bridge.

The objective is to compute Ecyc(t, t1c) for fixed t1c and variable t . Instead of
a direct evaluation of the integral in (7.73), which would require multiple costly
computations of the relaxation function (repeated for each t), it is more efficient to
consider this integral as the stress at time t generated by strain history ε(t) = 〈t − t1c〉.
Evaluation of the stress history generated by such a prescribed strain evolution can be
done, e.g., using the numerical scheme described by Eqs. (5.8)–(5.11) in Sect. 5.1.
The algorithm starts from σ1 = 0 at time t1 = t1c, and then, in each time step Δtk ,
k = 2, 3, . . ., the strain increment Δεk is set to Δtk and the stress increment Δσk

is obtained from (5.9). The cumulated stress increments provide the stress σk , and
dividing it by tk − t1c, we obtain the cyclic effective modulus Ecyc(tk, t1c).

Using this numerical scheme, the cyclic effective modulus has been evaluated
for the B3 model with parameters taken from set 1 in Table 7.1 and with the same
conditions as in the analysis of the KB Bridge: start of drying at t0 = 7 days, ambient
humidity henv = 70%, and effective thickness D = 432mm corresponding to the top
slab of the KB Bridge. Parameter kt has been considered by its standard value 2.97

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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Fig. 7.29 (a) Cyclic effective modulus for model B3 with set-1 parameters, with cyclic loading
from age t1c = 300 days, (b) influence of model parameters and age on cyclic effective modulus

days/cm2, not by the reduced value from the last row of Table 7.1, which is somewhat
speculative.

In Fig. 7.29a, the dependence of the cyclic effective modulus Ecyc(t, t1c) on the
duration of cyclic loading is compared to the relaxation function R(t, t1c) and to
the reciprocal value of the compliance function, 1/J (t, t1c). These graphs have been
plotted for t1c = 300 days. Interestingly, the beneficial relaxation effects are felt only
during the first few years and the decrease of Ecyc is much slower than the decrease
of the relaxation function. After a few years, the decrease becomes extremely slow
and later the trend can even get reverted and the cyclic effective modulus increases.
This is better seen from the graphs in semilogarithmic scale, plotted in Fig. 7.29b.
Here, the evolution of the cyclic effective modulus is shown for two sets of model
parameters (set 1 and set 2 from Table 7.1) and for three different ages at the start of
cyclic loading. After about 20 years, the cyclic effective modulus becomes almost
independent of the age atwhich the cyclic loading started and remains almost constant
(for set 2) or even increases (for set 1).

The numerical results show that an approximation of R{Ncyc(t)} by Ncyc(t)/J
(t, t1c) (i.e., multiplication of Ncyc(t) by the standard effective modulus) would be
unsafe and would underestimate the residual stresses. In fact, a simple replacement
ofR{Ncyc(t)} by ENcyc(t) with E taken as constant (e.g., equal to the conventional
modulus of elasticity) turns out to be more realistic. The reason is that the benefi-
cial effect of relaxation (i.e., reduction of the residual stresses) is partially or fully
compensated, or even overcompensated, by the effect of aging. Due to aging, the
instantaneous increment of residual stress generated by a given increment of resid-
ual strain is higher for older concrete, and also the subsequent relaxation of this
stress is much less pronounced than for young concrete. Since the residual strains
are gradually increased over the whole life of the bridge, the residual stresses at age
of say 30 years are much more affected by the properties of “old” concrete (say from
5 to 30 years of age) than by the properties of relatively young concrete. �

There are probably other effects which cannot be analyzed because of the lack of
test data. For example, the prefactor C1 in (7.27) is likely to decrease with age.
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To appraise the cyclic creep effects in large prestressed segmental box girders,
Bažant and Hubler [134] analyzed six large-span bridges—the ill-fated KB Bridge
in Palau, bridges Koshirazu, Tsukiyono, Konaru, and Urado in Japan, and the North
Halawa Valley Viaduct in Hawaii (for details of these bridges see [209] and [210]).
To make comparisons easier, they assumed that, in all these bridges, the P and MDL

values were the maximum allowable for each cross section. Based on the dimensions
of each bridge, the live and dead loads (including the self-weight) were determined,
and the bending moments at the pier were calculated assuming the girder to be rather
flexible at midspan, in which case the moment at the pier is almost as large as it
would be for a hinge at midspan. The results were presented in terms of (i) the
inelastic residual strain ratio, defined as the maximum residual strain produced in
the pier cross section (at either top or bottom face) by stress cycling, εr , divided
by the elastic strain, ft/E , and (ii) the inelastic residual curvature ratio, defined as
the additional curvature due to load cycling, Δκcyc, divided by the elastic curvature,
( fc + ft )/Eh. The inelastic residual curvature ratio after 2 million cycles was found
to be below 2.3% in absolute value for all bridges analyzed. The inelastic residual
strain ratio was extremely low for two bridges with the largest span—the KB Bridge
in Palau (about 2 × 10−6) and the Urado Bridge (about 1%). For the other bridges,
with spans around 100 m, this ratio was between 5% and 56%.

It is interesting to note that whereas the static long-time creep deflections grow
in time approximately logarithmically, the cyclic creep deflections grow linearly,
provided that the traffic load frequency and amplitude remain constant. This property
is verified by experiments and, theoretically, is a consequence of Paris law (7.24),
which states that the crack extension is proportional to the number of cycles, Ncyc.
Consequently, even if the cyclic creep effects are insignificant within the first 10
years of service, they may become significant, compared to creep, after 50 years.

For the KB Bridge in Palau, the calculated cyclic creep effects were virtually nil.
Why? Partly because heavy trucks were rare, but mainly because this record-span
bridge was totally dominated by self-weight. The bending moment due to traffic
represented only about 2.5% of the total bending moment. Consequently, the ratio
Δσ/σ̄ was unusually small, only about 0.025. Since the exponent, equal to 4, is
high, one has (Δσ/σ̄ )4 ≈ 4 × 10−7. This explains why the cyclic creep contribution
to curvature, deflection, and cracking must have been, in this bridge, virtually zero.
However, the high value, 4, of the exponent causes that a 20-fold increase of the ratio
of traffic load to self-weight will increase the cyclic creep contribution about 105

times.
The foregoing analysis also indicates that, for heavily travelled bridges (unlike the

KB Bridge), the time average of the traffic load should be included in creep analysis.

7.14.4 Recapitulation

A realistic hypothesis for the mechanism of cyclic creep is that it is caused by
growth of preexisting micrometer-scale subcritical cracks governed by the Paris
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law. The relative increase of crack lengths must be considered small, because no
significant decrease of stiffness of bridge girders has been reported. The cyclic creep
strain is obtained from the sum of openings of the microcracks calculated from the
amplitude of the stress intensity factor, which itself is assumed to be proportional to
the amplitude of the applied cyclic load. Detailed derivation of the form of the cyclic
creep law is possible for mode-I cracks, either tensile or (in the sense of crushing
band) compressive. A general applicability of this law for other types of cracks can
be justified by dimensional analysis and similitude arguments.

The derived cyclic creep law can fit the test data available in the literature quite
well and has been calibrated by them. The data show that the Paris law exponent
must be about 4. This observation is consistent with the recent finding that the Paris
law exponent on the atomic scale must be 2 and that the exponent should roughly
double during each scale transition, in this case from the nanoscale to the micrometer
scale. The exponent of 4 is high enough to make cyclic creep deflections enormously
sensitive to the relative amplitude of the applied cyclic stress. While the static creep
deflections grow in time approximately logarithmically, the cyclic creep deflections
grow linearly. This is a consequence of the Paris law. Consequently, even when the
cyclic creep is unimportant for ten years of service, it may become important for
hundred years of service.

Calculation examples indicate that, contrary to often voiced opinions, the cyclic
creep effects are absolutely negligible for large-span prestressed segmental box gird-
ers, which are totally dominated by self-weight. In particular, the cyclic creep could
have played no role in the excessive deflections of the ill-fated world-record KB
Bridge in Palau and other large-span bridges. For small spans (up to 40 m), having
a small proportion of self-weight, the ratio of cyclic creep deflections to the span is
not negligible but it does not matter since, due to prestress needed to resist the live
load, the static creep in such bridges causes upward deflections.

Cyclic creep can produce major tensile strains in small- and medium-span pre-
stressed bridges and thusmay contribute significantly to their cracking and corrosion.
Other structures, such as those supporting large turbines or electric generators, can
also suffer from surface tensile cracking caused by cyclic creep.

7.15 Conclusions for Method of Analysis and Design

The excessive deflections of the KB Bridge in Palau are perfectly explicable. In the
order of decreasing importance, the main causes of underestimation of deflections
and prestress loss are as follows:

1. Poor material model for creep and shrinkage.
2. Beam-type analysis instead of a full three-dimensional analysis.
3. Differences in the rates of shrinkage and drying creep due to different thicknesses

of slabs in the box cross section.
4. Lack of statistical estimation of the range of possible responses.

The analysis in this chapter leads to the following conclusions:
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1. As a purely predictive tool, none of the available material models for predicting
creep and shrinkage is satisfactory.

2. The 1971 ACI model (reapproved in 2008) and, to a somewhat lesser extent, the
CEB and JSCE models severely underestimate multidecade deflections as well
as the prestress losses, and give an unrealistic shape of deflection growth curves.
The more recent GL model gives better predictions, but not sufficiently better.
Unlike the parameters in theACI, fib, GL, and JSCEmodels, the basic parameters
q1, . . . q5 of model B3 can be updated by linear regression of compliance data.

3. Model B3, which is to a large extent theoretically based and has been calibrated
by filtering out the database bias for short durations and ages, gives signifi-
cantly better multidecade predictions of deflection history and its shape, and of
deflection growth rate.

4. Even model B3 is unsatisfactory when its input parameters are estimated from
the composition of concrete or taken at their default values. Nevertheless, thanks
to its free parameters, model B3 can be made to fit the measurements perfectly
with parameter values that are within their realistic range. Thus, the form of
model B3 appears to be correct, and the problem is with the empirical formulae
predicting the input parameters from the composition of concrete. Obviously,
these formulae must be improved.

5. The box girders are thick-walled shells for which the beam-type analysis is
inadequate. Three-dimensional analysis must be used. Its main purpose is to
capture the shear lag effects, which are rather different for self-weight and for
the loads from prestressing tendons, and occur not only in the top slab but also
in the webs and the bottom slab. At the piers, the self-weight produces large
vertical shear forces in the web, while the loads from tendon anchors produce
shear lags mainly in the top slab. The shear lag for the self-weight is stronger
than it is for the prestress. Since the total deflection is a small difference of two
large numbers, one for the downward deflection due to self-weight and the other
for the upward deflection due to prestress, small percentage errors in each will
result in a far larger percentage error in the total deflection.

6. For box girders with a larger width-to-span ratio than the KB Bridge (which
had only two lanes for a span of 241 m), the difference between the beam-
type analysis of creep and shrinkage and the three-dimensional analysis which
captures the shear lag effects must be expected to be larger.

7. The effect of thickness differences among the webs and the top and bottom slabs
on shrinkage and drying creep must be taken into account. This leads to nonuni-
form creep and shrinkage properties throughout the cross section, manifested as
differential drying creep compliances and differential shrinkage.

8. In the creep and shrinkage predictionmodel, the drying creep should be separated
from the basic creep, because the former is thickness-dependent and approaches
a finite terminal value while the latter is thickness-independent and unbounded.
Only model B3 and the new fib model have this feature. The thickness-induced
differences in the compliance functions for drying creep are oftenmore important
than those in shrinkage.
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9. The prestress loss in box girders can be 2 to 3 times higher than that predicted
by simple textbook formulae or lump estimates. It can also be much higher
than that calculated by the theory of beam bending, in which the cross sections
are assumed to remain plane. The prestress loss should be calculated as part
of the three-dimensional finite element creep analysis, rather than estimated in
advance.

10. When dealing with large creep-sensitive structures, the creep and shrinkage
prediction model must be updated by means of short-time tests of the creep
and shrinkage of the given concrete, as discussed in Sect. 3.8 and Appendix H.
The updating is effective only if the curves of creep and shrinkage growth have
correct shapes for short times. To this end, differential shrinkage and differential
drying creep must be estimated realistically in conformity with the diffusion
theory, which is a feature of model B3.

11. The shrinkage tests should be accompanied by simultaneous measurements of
water loss due to drying (Sect. H.1) or else the extrapolations can have errors of
the order of 100%. As either an alternative, or an additional measure to improve
extrapolation, shrinkage tests of standard cylinders (of 7.5 to 15 cm diameter)
can be supplemented by tests of much smaller prisms (which can be sawed out
of larger blocks even if the prism thickness is less than the aggregate size). Such
prisms shrink much faster and approach the terminal phase of shrinkage curve
much earlier. This allows using the diffusion scaling to improve the extrapolation
[124]. B3 andB4 aremodels that have been specifically formulated so as to allow
easy updating by linear regression, while for other models the updating problem
is nonlinear.

12. Large bridges should be designed not for the mean but for the 95% confidence
limit on the predicted deflection. The necessary statistical analysis is easy. It
suffices to repeat a deterministic computer run of structural response about 10
times, using random samples of the input parameters, generated according to
the Latin hypercube sampling. Then, one merely needs to estimate the mean and
variance of the calculated response values. Since the distribution of structural
response can be assumed to be normal (within such confidence limits), the mean
and variance suffice to obtain the confidence limit for the response.

13. As observed inKřístek et al. [558], the deflection evolution of large box girders is
often counterintuitive. The deflections at first grow slowly or are even negative,
which may lead to unwarranted optimism, and after a few years, a rapid and
excessive deflection growth sets in.

14. In design, it is prudent to minimize deflections and prestress losses by the afore-
mentioned nine measures, listed in Sect. 7.11.

15. Cyclic creep is not a significant cause of excessive deflections, although it can
produce large residual tensile strains at the bottom and top faces.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Chapter 8
Moisture Transport in Concrete

Abstract After presenting the fundamentals in the previous chapters constituting
Part I, we begin here Part II dealing with advanced topics. In this chapter, we study
concrete as porous material, the mechanical behavior of which is strongly affected
by the presence and migration of moisture (i.e., various phases of water) through the
pore space. We present the basic concepts and equations characterizing the moisture
transport under isothermal conditions. We discuss the thermodynamic aspects and
briefly describe various transport mechanisms. Then, we focus attention on rela-
tively simple models with a limited number of parameters, particularly on the clas-
sical Bažant–Najjar model, which can be effectively used in practical applications
and is recommended in design codes. After deriving a nonlinear moisture diffusion
equation, we study various problems of practical interest by combining analytical
and numerical techniques. The cases we cover include drying of a slab or half-space
(under constant or variable ambient humidity), steady flux ofmoisture through awall,
and spreading of a hydraulic pressure front into unsaturated or self-desiccated con-
crete. The link between moisture transport and shrinkage is also discussed. Finally,
we briefly comment on the changes required to take into account the effects of self-
desiccation and autogenous shrinkage and outline the diffusion processes affecting
the alkali–silica reactions (ASR).

The transport of moisture in porous materials and its interplay with the mechanical
behavior is in general described by the theory of partially saturated porous media
[221, 222, 328, 424, 572, 766], with the theoretical support of thermodynamics
of multiphase systems [435, 467, 468]. In general, the hygromechanical phenom-
ena should be considered simultaneously with heat transport and with the chemical
processes of hydration. Sophisticated thermo-hygro-chemo-mechanical models have
been proposed in the literature [419, 420]. Unfortunately, the aforementioned theo-
ries are hard to apply to concrete because the delineation of the solid and fluid phases
is blurred and variable in time, and the parameters to account for it are not known and
would be hard to determine. For this reason, simpler models with a limited number
of parameters, such as Bažant and Najjar’s [166], turn out to be more effective.

Much of the moisture in concrete consists of the hindered adsorbed water in
nanopores 0.3 ∼ 3 nm thick. Although evaporable (by definition), its movement
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is controlled by surface forces of adsorption. Depending on many factors, it may
act as part of the solid skeleton or the fluid system. Therefore, the aforementioned
theories of multiphase media are not easily applicable to concrete (except perhaps
near saturation).

In this chapter, we restrict attention to a simplified description of moisture trans-
port under isothermal conditions. The influence of mechanical fields on the transport
properties is neglected, although in the case of extensive damage it is not negligible.
The effect of hydration is incorporated only approximately.More general approaches
will be discussed in Chaps. 10 and 13.

8.1 Water in Concrete

The hardened cement pastes, and thus also cement mortars and concrete, are porous
and strongly hydrophilic materials. Aside from the water that is chemically bound
in the hydration products (mainly calcium silicate hydrates and calcium hydroxide)
and can get liberated only upon heating to more than 550 ◦C, these materials contain
a large amount of evaporable water, filling the pores. In water-saturated hardened
cement paste, the evaporable water typically represents 15 to 40% of volume. In
saturated concrete, the evaporable water content depends on the cement fraction.
At most about 90% of volume can be occupied by mineral aggregates, and then,
if the aggregate porosity is negligible, the content of initially available evaporable
water can be as low as 2 to 3% of volume and even slightly less when air-entraining
admixtures and entrapped air are present.

Three phases of evaporable water may be distinguished (Fig. 8.1):

1. capillary water, i.e., liquid water residing in capillary pores, which typically have
micrometer dimensions, and bounded by capillary menisci (pressure1 pl in liquid
capillary water is often negative, which means that the water is under tension);

2. water vapor in capillary pores, of partial pressure pv > 0; and
3. adsorbed water, which is of two kinds:

a. the free adsorbed layers, which can be up to 5 water molecules in thickness
(≈ 5 × 0.27 nm), are held at pore walls and have contact with water vapor,
and

b. the hindered adsorbedwater layers in cement gel pores (nanopores) of width
smaller than 10 water molecules (2.7 nm), in which the maximum thickness
of adsorbed water layers cannot develop, causing transverse pressure across
the layer called the disjoining pressure, pd . The hindered adsorbed water
communicates with vapor and capillary water only by diffusion along the
nanopore.

1Variables referred to as pressures characterize hydrostatic stress states, but with an opposite sign
convention—positive pressure corresponds to compressive (negative) hydrostatic stress.

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_13


8.1 Water in Concrete 273

When convenient, water in both liquid and vapor forms will be referred to as the
moisture.

2ld

free
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δa solid adsorbent particle
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pd − p fπa capillary water
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(with air)

Fig. 8.1 Idealized sketch of a hindered adsorbed water layer with transition into the capillary pore;
π ′
a is the total spreading pressure in the free adsorbed layer, π ′

d is the total spreading pressure in
the hindered adsorbed layer, pd is the disjoining pressure, p f is the pressure at the moment the
nanopore gets filled, r is the radius of the capillary meniscus, δa is the thickness of the free adsorbed
layer, and ld is the thickness of the hindered adsorbed layer

In this book, the evaporable water content (mass of evaporable water per unit vol-
ume of concrete) is denoted aswe, and the nonevaporable water content (chemically
bound water, sometimes including what cement chemists call the interlayer water,
which is contained between the layers of C-S-H) is denoted aswn. Of course, bothwe

and wn in general vary in time. Their initial values are we(0) = w and wn(0) = 0,
where w is the initial water content in the mix, which is one of the fundamental
parameters defining the concrete mix composition. The sum wt = we + wn is the
total water content, which remains constant (and equal tow) under sealed conditions
but decreases when drying takes place.

Because of very low permeability of concrete, the evaporable (mobile) water con-
tentwe always varies slowly enough to justify the assumption that all thewater phases
in contact within a capillary pore of concrete are in thermodynamic equilibrium at
any time.

As will be shown later, the evaporable water content is closely related to the
relative humidity of water vapor in the pore space. The pore relative humidity

h = pv
psat

(8.1)



274 8 Moisture Transport in Concrete

(for brevity sometimes called just the “humidity”) is defined as the partial pressure
of water vapor pv divided by the saturated vapor pressure psat (which is a function of
the temperature, see Eq. (8.17) for the precise definition). The pore relative humidity
in general varies throughout the specimen or structure andwill be used as the primary
unknown of the diffusion equation describing the moisture transport. It should not be
confused with the environmental (ambient) relative humidity, henv, which is derived
from the partial pressure of water vapor in the air near the surface of the specimen
or structure and which is used as a prescribed quantity in the boundary condition for
the diffusion equation. The capillary water dominates at relative humidities above
85% and almost disappears at 50%.

At the moment of set, concrete starts as perfectly saturated, with 100% pore rela-
tive humidity (h = 1). If the surface of the concrete specimen or structure is exposed
to the environment, which is usually at lower humidity (unless the concrete part is
submerged in water), moisture migrates from concrete pores into the environment
and the total water content in concrete decreases. This drying process leads to a
decrease of the pore relative humidity h, which causes a part of shrinkage, called the
drying shrinkage.

However, it turns out that shrinkage also occurs even in perfectly sealed specimens,
in which the total water content remains constant. This is the part of shrinkage called
the autogenous shrinkage which is driven chemically, by a slight volume decrease
during the hydration reactions and by chemically caused self-desiccation. The auto-
genous shrinkage is large in concretes with low water-cement ratios (w/c < 0.35),
which is the case of modern high-strength concretes. It is sometimes nonnegligible
even for medium w/c around 0.5. In the B3 model, it is lumped with drying shrink-
age (which is insufficient for low, and some cases of medium, w/c), while in the
new B4 model, it is described by a separate formula. In normal-strength concretes,
autogenous shrinkage represents only about 5% of the total shrinkage, but in mod-
ern high-strength concretes, it can lead to strains reaching 350 ∼ 700 × 10−6 in
magnitude [484, 570, 679, 857], in some extreme cases even higher. For instance,
Holt [484] measured autogenous shrinkage strain of 1200 × 10−6 in magnitude on
concrete with water/cement ratio 0.30 (rapidly hardening cement). On cement paste
with silica fume, autogenous shrinkage strains exceeding 2000× 10−6 in magnitude
can be observed [515, 586].

The autogenous shrinkage is consequence of self-desiccation [700]. The chem-
ical reaction of water with cement creates solid hydration products that contain
chemically bound water. The amount of evaporable water occupying the pore space
therefore decreases, but the pore volume decreases as well, due to the deposition of
hydration products on the pore walls. If the volume of water and cement consumed
by the chemical reaction were exactly equal to the volume of products resulting from
that reaction, the pores would remain fully saturated by water. Although the reaction
products on the nanoscale have a slightly lower volume than the initial reactants,
the expansion is reversed to compression by viscoelastic deformation of the solid
skeleton caused by the decrease of pore humidity, due either to self-desiccation or to
external drying, except in water immersion in which the expansion is manifested as
swelling; see also [111, 125].
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The shrinkage that would occur without the resistance of the solid skeleton is
called the chemical shrinkage. It can be assessed bymixing cement with an excessive
amount of water (to avoid formation of a solid skeleton) and measuring the volume
decrease during hydration. The solid skeleton that develops in a hardening cement
paste restricts the shrinkage process and reduces the autogenous shrinkage (the actual
relative size change of a sealed specimen) as compared to the chemical shrinkage. The
fact that the reduced volumeof the hydration products is only partially accommodated
by autogenous shrinkage leads to water deficiency in the pore space and thus to a
decrease of pore humidity even at constant total water content.

The self-desiccation in sealed normal-strength concretes without admixtures is
relatively limited, but, in high-strength concretes which are made with a very low
water-cement ratio, it can reduce the pore relative humidity in sealed specimens to
levels comparable with typical environmental relative humidities [282, 516, 676].
For instance, Baroghel-Bouny et al. [57] reported values of h = 93% for ordinary
concrete (water-cement ratio 0.48) after 2years in sealed conditions, and much lower
values for high-strength concrete (water-cement ratio 0.26, with silica fume and
superplasticizer), with h decreasing to 72% after 6months, 69% after 1 year, and
64% after 2years in sealed conditions.

Any rewetting causes swelling, which used to be explained by expansion of hin-
dered adsorbed water layers in the nanopores. But the ongoing research at North-
western University led to a new paradigm of deformations during hydration, which
gives a more accurate picture of the swelling mechanism [125].

The fact that the volume of cement hydration products is slightly smaller than
the original volume of cement and water, known since 1887, is valid only on the
nanoscale. It does not mean that the hydration reaction causes overall contraction of
the porous cement paste and concrete. As first suggested in 2015 [125], the opposite
is true for porous cement paste as a whole. The growth of C-S-H shells around anhy-
drous cement grains pushes the adjacent contacting shells apart and thus causes vol-
ume expansion of the porous cement paste on the material scale, while the nanoscale
volume contraction of hydration products contributes to porosity. The growth of
ettringite and portlandite crystals may also cause additional expansion, but is never
dominant. On the material scale, the expansion always dominates over the contrac-
tion, i.e., the hydration per se is, in the bulk, always expansive, while the source
of all of the observed shrinkage, whether autogenous or due to external drying, is
the compressive elastic or viscoelastic strain in the solid caused by a decrease of
chemical potential of pore water, with the corresponding decrease in pore humidity,
increase of solid surface tension and, mainly, decrease of disjoining pressure. The
expansiveness of hydration reaction is the only way to explain swelling of thin spec-
imens under water. However, there must be a large size effect of diffusion type, such
that thicker walls shrink rather than swell even under water immersion. Thanks to
expansiveness of hydration, the swelling and both the drying and autogenous shrink-
age can all be predicted from one and the same unified model. Comparisons with the
existing experimental evidence confirm that.

Furthermore, despite current lack of experimental evidence, the model implies
that there must be a large size effect on the diffusion of water that gradually fills the
self-desiccated pores to 100% humidity. This diffusion is much slower than drying.
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As shown in Bažant [79] (see also Sect. 8.5), the amount of water that needs to be
delivered to the propagating front of wetting is large because the humidity at the self-
desiccated front must be raised to 100% before the wetting front can advance farther.
Thus the interface condition at the advancing wetting front gives a large interface
sink of water, which greatly slows down the advance of the diffusion front of wetting
(note that a similar negative sink is absent at the front of drying which, therefore,
propagates relatively much faster). The result is that structural members thicker than
about 0.2 m must be expected to always shrink (autogenously) under water for at
least a century, due to self-desiccation of most of their interior volume. The swelling
of the (relatively thin) surface layer is cancelled by inducing a compressive stress
parallel to the surface, which is beneficial as it prevents the formation of surface
cracks.

At room temperature, the process of concrete drying is very slow, due to extremely
low permeability of concrete. A slab of thickness D = 15 cm exposed to an environ-
ment of 50% relative humiditymay takemore than 10years to dry to a nearly uniform
specific water content; see Fig. 8.27a for an example. The drying times increase with
the square of thickness (and so the wall of a nuclear containment, about 1m thick,
would take about 900years to dry, if there were no cracking). Therefore, the nonuni-
form self-equilibrated stresses caused by drying shrinkage persist long enough to be
strongly reduced by creep.

By contrast, the diffusion process of heat conduction in concrete is about 1000
times faster, which has the fortunate consequence that, in most situations, the heating
and drying problems may be analyzed as uncoupled [150]. Exceptions are the rapid
drying at high temperature, as in a fire or nuclear accident [142, 188], or the peeling
of contaminated surface layers of concrete by microwave blast [213]; see Chap.13.
Another exception is moisture movement in young mass concrete, in which the
chemical processes of hydration can significantly raise the temperature.

8.2 Pore Fluids at Thermodynamic Equilibrium

8.2.1 Multiphase Porous Medium

Although the multiphase porous medium is not a sufficient model for concrete,
because of nanopore water that behaves as both the solid and fluid, it is nevertheless a
useful simple basis for further refinements. Transport properties of porous materials
strongly depend on the morphology of the pore space. If the material microstructure
is known, the effective macroscopic properties can, in theory [357], be determined
by appropriate upscaling techniques (this would probably be quite complicated if the
surface adsorption forces were taken into account).

To keep the presentation simple, we will use a phenomenological approach and
start directly from a macroscopic description. Instead of treating the pore space as a
three-dimensional subdomain of a very complicated shape, we consider a smeared
description, which deals with the solid skeleton and the pores as two overlaid con-
tinua. The pores are characterized by the relative volume they occupy, i.e., by the
porosity, np, which may vary across the body as a function of the macroscopic coor-

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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dinates. In the fully saturated case, all pores are filled with liquid water. However,
in general, the pores also contain wet air, i.e., air mixed with water vapor. The rela-
tive volume of liquid water with respect to the pore volume is called the saturation
degree, Sl (strictly speaking, one should distinguish between the capillary degree of
saturation and the vacuum degree of saturation). Formally,

np = Vp

Vtot
= Vl + Vg

Vs + Vl + Vg
(8.2)

Sl = Vl

Vp
= Vl

Vl + Vg
(8.3)

where Vtot = Vs +Vl +Vg is the total volume, Vs is the volume of the solid skeleton,
Vp = Vl + Vg is the pore volume, Vl is the volume occupied by liquid water, and Vg

is the volume occupied by gas (wet air).
In general, all the volumes mentioned above may vary not only in space but

also in time, due to deformation processes, cracking, phase changes, and chemical
reactions (such as hydration). If we consider a chemically inert material with small
deformations only (and ignore hindered adsorbed water), the changes of porosity
np can be neglected because both Vtot and Vs remain constant, up to negligible
correction terms. However, the subdivision of Vp into Vl and Vg may evolve, and
thus, the saturation degree Sl is a time-dependent variable.

In a partially saturated porousmedium, the following phases can be distinguished:

1. solid skeleton, which contains chemically bound (nonevaporable) water;
2. liquid pore water, consisting of capillary water;
3. adsorbed water, which is neither liquid nor solid and consists of

a. free adsorbed water,
b. hindered adsorbed water;

4. pore gas (wet air), which is a binary mixture of two ideal gases, namely

a. dry air,
b. water vapor.

However, the existing multiphase models do not distinguish the adsorbed and liquid
water, and so we will consider the adsorbed water as part of liquid water. Variables
referring to one of the phases will be denoted by subscripts s (solid), l (liquid), g
(gas), v (vapor), and a (air). Subscript w will refer to water as chemical species (in
the form of liquid or adsorbed water or water vapor). For instance, ρ with a subscript
will denote the true (bulk) mass density of the corresponding phase (per unit volume
of the space occupied by this phase), while m with a subscript will be the apparent
mass density (per unit volume of the porous medium). Since mass is additive, it is
easy to establish the relations

m = ms + ml + ma + mv = ρsVs + ρl Vl + ρaVg + ρvVg

Vtot
=

= ρs(1 − np) + ρln pSl + (ρa + ρv)np(1 − Sl) (8.4)
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The evaporable water consists of the liquid water (capillary and adsorbed) and
water vapor. Therefore, the evaporable water content, previously defined as the mass
of evaporable water per unit volume of the porous medium, can be expressed as2

we = ml + mv = ρln pSl + ρvnp(1 − Sl) (8.5)

It is important to distinguish between the evaporable water content in concrete
(taken per unit volume of concrete) and in cement paste (per unit volume of paste). In
some experimental reports and models, the amount of evaporable water is character-
ized by themoisture ratio, u, defined as the mass of evaporable water per unit mass of
the dry material. This variable is dimensionless and can be expressed in percent. To
emphasize that it represents the mass fraction and not the volume fraction, it is some-
times specified in kg/kg or, equivalently, in g/g. Again, it is important to distinguish
between mass fractions with respect to the mass of cement, to dry hardened cement
paste, or to dry concrete. The mass of cement is understood here as the initial mass
of cement in the mix, i.e., as a constant, while the masses of dry hardened cement
paste and dry concrete evolve in time, due to the incorporation of chemically bound
water into the solid skeleton.

For instance, the water-cement ratio, w/c, is in fact the initial value of the mass
fraction of evaporable (or total) water, taken with respect to the mass of cement.

8.2.2 State Equations

The thermodynamic state of a fluid is characterized by temperature and pressure,
from which the density can be determined, using an appropriate state equation.3 For
the present purpose, it can be assumed that the local exchange of energy among the
phases is sufficiently fast (compared to the time scale of processes that we investigate
here), and thermal equilibrium is restored instantaneously; i.e., all the phases are at
the same absolute temperature, T . On the other hand, the liquid pressure4 pl and the

2Density ρl refers here to the density of liquid water in the capillary pores. Strictly speaking, the
density of adsorbed water is slightly different, but for simplicity, we neglect this difference.
3Recall that positive pressure corresponds to compressive (i.e., negative) hydrostatic stress. From
the point of view of thermodynamics, temperature and pressure represent the state variables, and
differentiation of the appropriate thermodynamic potential (specificGibbs free energy,μ, also called
specific free enthalpy) with respect to these variables provides the state laws that determine the
conjugate thermodynamic forces—specific entropy and specific volume (i.e., the reciprocal value
of true density); see Sect. 13.5.5. The specific free enthalpy is linked by the Legendre transformation
to other thermodynamic potentials, such as the specific Helmholtz free energy or specific enthalpy.
Note that quantities denoted as “specific” refer to a unit mass of the substance. The chemical
potential is usually understood as the free enthalpy per unit amount of the substance, i.e., per mole.
In the literature, the chemical potential is often denoted as μ, but here we reserve this symbol for
the specific free enthalpy (which is equal to the chemical potential divided by the molar mass).
4Pressure pl refers here to the pressure in the capillary water. The stress state of adsorbed water is
different and is not even hydrostatic; see Sect. 8.2.6.2.

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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gas pressure pg are in general different, due to the effect of surface tension along
curved boundaries of capillary menisci.

The pore gas (wet air) is a binary mixture of vapor and air, both of which can be
considered as ideal gases. According to the Boyle–Mariotte state equation of ideal
gases (in its early form postulated by Robert Boyle in 1662 and by Edme Mariotte
in 1676), the densities of air and vapor can be expressed as

ρa = Ma pa
RT

(8.6)

ρv = Mw pv
RT

(8.7)

where pa and pv are the partial pressures of dry air and water vapor, Ma = 28.96
g/mol and Mw = 18.02 g/mol are the molar masses of dry air and water (masses of
one mole of the respective substance), and R = 8.31446 J/K mol is the universal
gas constant.

According to Dalton’s law, formulated by J. Dalton in 1803, the pressure of the
gas mixture is the sum of the partial pressures, i.e.,

pg = pa + pv (8.8)

For a given vapor concentration, described by the dimensionless ratio

Cv = ρv

ρg
= ρv

ρv + ρa
(8.9)

the partial variables can be eliminated and the gas density can be expressed as a
function of the gas pressure and temperature. It turns out that the resulting formula

ρg = ρa + ρv = Mg pg
RT

(8.10)

again corresponds to an ideal gas, with the molar mass of the wet air given by

Mg = MwMa

(1 − Cv)Mw + CvMa
=

(
1 − Cv

Ma
+ Cv

Mw

)−1

(8.11)

The state equation of liquid water is much more complicated than that of an ideal
gas; see for instance the IAPWS-95 water and steam tables [500], or formula (13.71)
in Chap. 13. For the present purpose, it is sufficient to know that the mass density
of water at standard atmospheric pressure (average sea-level pressure) p0 = patm =
101.325 kPa and at temperature T0 = 293.15 K (20 ◦C) is ρl0 = 998.2 kg/m3, and
its bulk modulus is Kl = 2.2 GPa. This means that a change of pressure by 1 MPa
changes the mass density by less than 0.05%. Consequently, at constant temperature
we will consider the mass density of liquid water, for most purposes, as constant,
ρl = ρl0. Compared to concrete, the compressibility of liquid water is about 5 to 12
times larger (at standard conditions).

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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8.2.3 Capillary Pressure and Relative Humidity

At a planar interface between two fluids, mechanical equilibrium requires the pres-
sures on both sides to be equal. The interface behaves like a membrane subjected to
the surface tension γgl , which is dependent on temperature and for water–air inter-
face at 20 ◦C is equal to 0.0728 N/m. If the interface is curved (which is the case
for capillary menisci), the equilibrium equation contains a term proportional to the
surface tension multiplied by the curvature, and the pressures on both sides are no
longer the same. The equilibrium condition leads to the Young–Laplace equation
(qualitatively described by Thomas Young in 1805 and mathematically formulated
by Pierre-Simon Laplace in 1806)

pg = pl + 2γgl
r

(8.12)

where
1

r
= 1

2

(
1

r1
+ 1

r2

)
(8.13)

is themean curvature of the interface, i.e., the average of the principal curvatures 1/r1
and 1/r2. Variables r1 and r2 represent the principal radii of curvature. Of course,
for a spherical interface, we have r1 = r2 = r = radius of the sphere.

γglγgl
rr gas

liquid

α

αα

pg

pl

r sinα

π/2−α

Fig. 8.2 Curved interface between a gas and a liquid, subjected to the gas pressure, pg, liquid
pressure, pl , and surface tension, γgl

Equation (8.12) is easiest demonstrated for a part of a spherical meniscus sketched
in Fig. 8.2. The vertical resultant of the pressure difference pg − pl over the curved
interface is given by (pg − pl)π(r sin α)2 (it is the same as if pg − pl were applied
on a flat disk of radius r sin α). The vertical resultant of the surface tension is γgl ·
2πr sin α ·cos(π/2−α) (because the surface tension acts on a circle of radius r sin α

and is inclined by angle π/2−α with respect to the vertical direction). Setting up the
free body equilibrium equation in the vertical direction and taking into account that
cos(π/2−α) = sin α, we obtain the condition (pg− pl)r = 2γgl , which corresponds
to (8.12).
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The signs in (8.12) have been chosen such that positive curvature corresponds to
the case of a concave water meniscus, which is the typical case. The gas pressure is
then larger than the pressure in the capillary water. The difference

pc = pg − pl (8.14)

is called the capillary pressure (or the suction stress). The Young–Laplace equation
(8.12) can thus be rewritten as

pc = 2γgl
r

(8.15)

If the capillary pressure exceeds the gas pressure, the pressure in liquid water, pl ,
becomes negative, which means that the water is under tension. Note that some
authors define the capillary pressure with the opposite sign, i.e., as pc = pl − pg.
Here, we adhere to definition (8.14).

High capillary pressures are associated with highly curved gas–liquid interfaces,
which typically occur in small pores when the large pores remain empty. At low
capillary pressures, capillary menisci are formed in larger pores, while small pores
are completely filled bywater. It is therefore clear that the capillary pressure is closely
related to the saturation degree. Indeed, models for transport of water in soils and
other porous geomaterials often express the saturation degree as a function of the
suction stress (and potentially of other variables, such as temperature); the graph of
this function is then called themoisture retention curve (or capillary pressure curve).
In principle, it seems tempting to deduce the link between the saturation degree and
the capillary pressure from purely geometrical considerations. However, this is a very
tedious task, even if the detailed morphology of the pore space is known. One reason
is that the relation is nonunique, because for one and the same capillary pressure one
can find many different configurations of capillary menisci with the mean radius of
curvature satisfying the Young–Laplace equation.5 It is more practical to establish
the retention curve experimentally. In soil mechanics, it is often approximated by the
analytical expression

pc = pentry + π0

(
S−1/m
l − 1

)1−m
(8.16)

proposed by van Genuchten [828]. Here, pentry is the entry pressure, i.e., the value
of capillary pressure below which the pores remain fully saturated, and π0 and m
are additional parameters. Baroghel-Bouny et al. [57] fitted their own experimental
results by a formula equivalent to (8.16), with pentry set to zero and with parameters
π0 = 18.6 MPa andm = 0.44 for normal-strength concrete and π0 = 46.9 MPa and
m = 0.49 for high-strength concrete; see Fig. 8.3.

5To obtain a unique relation, one would need to consider the area of the water-air interface per
unit volume as an additional variable that characterizes the state of the system; see Gray and
Hassanizadeh [436].
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Fig. 8.3 Dependence between capillary pressure and degree of saturation for normal-strength and
high-strength concrete, according to Baroghel-Bouny et al. [57]

At the gas–liquid interface, the two phases can exchange not only momentum and
energy but also mass. Liquid water can change into vapor by evaporation, and vapor
can change into liquid by condensation. This process is driven by the difference
in the specific free enthalpies of the two phases. At thermodynamic equilibrium,
these potentials have the same value6 [441, 487]. The specific free enthalpy depends
on temperature and pressure, but the function describing this dependence for liquid
water, μl , is different from that valid for water vapor, μv . Therefore, even if both
phases are at the same temperature, thermodynamic equilibrium does not imply that
their pressures are the same.

Consider first that liquid water is kept at the atmospheric pressure, patm. If the
functions describing the specific free enthalpy of liquid water and vapor, μl and μv ,
are known, the vapor pressure at thermodynamic equilibrium, p∗

sat, can be computed
from the condition

μv(p
∗
sat, T ) = μl(patm, T ) (8.17)

Pressure p∗
sat which satisfies (8.17) corresponds to the partial pressure of saturated

vapor just above a flat interface between liquid water and air at atmospheric pressure.

6For a fundamental proof, first note that a necessary condition of equilibrium of any system can be
characterized by the stationarity of a proper thermodynamic potential. The internal energy, enthalpy,
and Helmholtz free energy are here inapplicable because they are functions of the extrinsic system
characteristics such as volume (or relative displacement) and entropy. We have a multiphase system
in which the phases exchange mass, and in that case the potential must depend on the intrinsic
characteristics only. Such a potential is the Gibbs free energy (also called free enthalpy), G, of the
multiphase system,which is characterized by stresses (or pressures) and temperature. TheGibbs free
energy of a system containing a liquid phase ofmassml at pressure pl and temperature T and a vapor
phase ofmassmv at pressure pv and temperature T isG(pv, pc, T ) = μl (pl , T )ml+μv(pv, T )mv ,
where μl and μv are the specific (i.e., per unit mass) Gibbs free energies of liquid water and water
vapor. Now, consider that mass dml is transferred from vapor to liquid at constant pressures and
constant temperature. To conserve mass of the entire system, dmv = − dml , and so dG =
μl dml + μv dmv = (μl − μv) dml . Noting that thermodynamic equilibrium is maintained if
and only if dG = 0 (e.g., [441], Sect. 18), we thus conclude that, at equilibrium, μl = μv , and for
changes maintaining thermodynamic equilibrium, dμl = dμv .
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The vapor is saturated in the sense that if the actual vapor pressure were smaller than
p∗
sat, the evaporation rate would exceed the condensation rate and the vapor pressure

would increase up to the saturation value (and conversely, if the actual vapor pressure
were above p∗

sat, the condensation rate would exceed the evaporation rate and the
vapor pressure would decrease down to the saturation value). Temperature is present
in (8.17) as a parameter, and the resulting value of p∗

sat depends on it; thus, we
consider p∗

sat as a function of T .
Even though Eq. (8.17) properly defines a certain temperature-dependent charac-

teristic value of vapor pressure p∗
sat with a clear physical meaning, it could not be

used at temperatures that substantially exceed 100 ◦C, i.e., the boiling point of water
at atmospheric pressure. Therefore, it seems preferable to define the saturated vapor
pressure, psat, by the condition

μv(psat, T ) = μl(psat, T ) (8.18)

which describes thermodynamic equilibrium between liquid water and water vapor
that are subjected to the same pressure. Physically, this would correspond to the
conditions in a closed container in which the “atmosphere” above a flat surface of
liquid water contains only water vapor, and so the pressures in both phases of water
are the same. Using this definition, psat can be evaluated for temperatures up to the
critical point of water. In fact, the pairs of values psat and T that satisfy Eq. (8.18)
represent the boundary between the domains corresponding to liquid phase and gas
phase in the p−T phase diagram of water. This so-called coexistence curve extends
from the triple point at p = 611.657 Pa and T = 273.16 K to the critical point at
p = 22.064 MPa and T = 647 K.

Fig. 8.4 Saturated vapor pressure as a function of temperature, according to Antoine’s equation
(8.19)

A good approximation of the dependence of saturated vapor pressure on temper-
ature is provided, e.g., by the equation [38]

psat(T ) = patm exp

(
11.9515(T − 373.15 K)

T − 39.724 K

)
(8.19)
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If psat in logarithmic scale is plotted against T in linear scale, the graph of (8.19)
is a hyperbola; see Fig. 8.4. At T = 293.15 K (20 ◦C), the saturated vapor pressure
is only 0.023patm = 2.33 kPa. However, for temperatures above 300 ◦C it exceeds
8 MPa. Note that psat(373.15 K) = patm, which is related to the fact that 373.15 K
(100 ◦C), is the boiling point of water at atmospheric pressure.

Formula (8.19) is accurate in the range of temperatures between 0 ◦C and 100 ◦C.
For higher temperatures, up to the critical point 374 ◦C (above which there is no dif-
ference between the liquid and gaseous phases of water), better accuracy is obtained
if coefficients 11.9515 and 39.724 are replaced by 12.1074 and 28.665, but the dif-
ference is below 4%.

8.2.4 Kelvin Equation

The saturated vapor pressure psat corresponds to the case when the liquid and vapor
are at the same pressure. In general, thermodynamic equilibrium at temperature T
can be attained even for liquid water at pressure pl and water vapor at a different
pressure pv, provided that

μv(pv, T ) = μl(pl , T ) (8.20)

Instead of looking for the specific form of potentials μv and μl and solving the
nonlinear equation (8.20), we can exploit the fact that the thermodynamic variable
conjugate to the pressure is the specific volume, i.e., volume occupied by a unit
mass of the substance, which is the reciprocal value of the mass density (mass of
the substance occupying a unit volume). According to the state law (13.70), which
will be derived in Sect. 13.5.5, the specific volume is equal to the partial derivative
of specific free enthalpy with respect to the pressure p. Therefore, we can write

μv(pv, T ) = μv(psat, T ) +
∫ pv

psat

∂μv(p, T )

∂p
dp = μv(psat, T ) +

∫ pv

psat

dp

ρv(p, T )
(8.21)

where p is a dummy integration variable that represents the pressure continuously
changing from psat to pv. Expressing the vapor density ρv according to the state
equation of ideal gas (8.7) and integrating, we get

μv(pv, T ) = μv(psat, T ) + RT

Mw

ln
pv
psat

(8.22)

Compared to vapor, liquid water can be considered as incompressible; i.e., ρl can be
treated as a constant.7 This leads to

7Of course, the density of water, ρl , depends on temperature, but for simplicity, we do not mark it
explicitly. The same comment applies to the saturated vapor pressure, psat , in (8.21)–(8.24).

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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μl(pl, T ) = μl(psat, T ) +
∫ pl

psat

∂μl(p, T )

∂p
dp = μl(psat, T ) +

∫ pl

psat

dp

ρl
=

= μl(psat, T ) + pl − psat
ρl

(8.23)

Substituting (8.22)–(8.23) into (8.20) and taking into account (8.18), we obtain the
Kelvin equation (sometimes called the Kelvin-Laplace equation)

RT

Mw

ln
pv
psat

= pl − psat
ρl

(8.24)

Recall that the ratio between the actual partial vapor pressure pv and the saturated
vapor pressure psat is the relative humidity; see (8.1). Equation (8.24) can thus be
rewritten as

pl − psat(T ) = RTρl(T )

Mw

ln h, or h = exp

(
Mw(pl − psat(T ))

RTρl(T )

)
(8.25)

This is the “rigorously derived” form of Kelvin equation, of course, with a certain
small error caused by the assumptions of (i) incompressibility of liquid water and
(ii) behavior of water vapor as an ideal gas.

In the literature, one can often find the Kelvin equation in somewhat different
forms. For instance, the left-hand side of the first equation in (8.25) is sometimes
replaced by pl− patm or by pl− pg ≡ −pc. Also, psat in the fraction on the right-hand
side of formula (8.1) defining the pore relative humidity could be understood as p∗

sat
obtained from (8.17) rather than psat obtained from (8.18). It is good to realize that
all these modified forms of Kelvin equation differ by terms that are comparable to
the error induced by the simplifications needed to derive (8.25), as will be shown
next. Readers not interested in detail can skip the following discussion and continue
reading after Eq. (8.43).

First, let us clarify the relation between psat and p∗
sat. Since (8.24) holds for all

pairs of pressures pv and pl that satisfy condition (8.20), it is applicable to pv = p∗
sat

and pl = patm, which yields

ln
p∗
sat

psat
= Mw(patm − psat)

RTρl
(8.26)

The right-hand side of (8.26) is typically very small. To see that clearly, let us
introduce auxiliary quantities

ρatm = Mw patm
RT

, ρsat = Mw psat
RT

(8.27)

which represent the density of vapor under the atmospheric pressure and under the
saturation pressure, computed from the Boyle–Mariotte state law (8.7). With this
notation, Eq. (8.26) can be rewritten as
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ln
p∗
sat

psat
= ρatm − ρsat

ρl
(8.28)

and it becomes apparent that the right-hand side is very small. Indeed, in the tem-
perature range below 100 ◦C, 0 < psat < patm and thus 0 < ρsat < ρatm and
0 < ρatm − ρsat < ρatm. The value of ρatm computed for T = 273 K (0 ◦C) is about
0.79 kg/m3, and for higher T , it is still smaller. Since the density of liquid water, ρl ,
is much higher, near 1000 kg/m3, the ratio on the right-hand side of (8.28) remains
below 0.8 · 10−3 and the relative difference between psat and p∗

sat is not greater than
0.08%. The same holds for the relative difference between relative humidities defined
as pv/psat or as pv/p∗

sat. So the alternative definition of the saturated vapor pressure
by condition (8.17) would be acceptable at usual atmospheric temperatures (but not
at high temperatures such as those induced by fire).

The derivation leading to (8.24) can be repeated with the reference equilibrium
state characterized by pl = patm and pv = p∗

sat instead of pl = pv = psat. The
resulting form of Kelvin equation is then

RT

Mw

ln
pv
p∗
sat

= pl − patm
ρl

(8.29)

Note that (8.29) is fully equivalent with (8.24) and could be obtained directly by
combining (8.24) with (8.26). Equations analogous to (8.25) can be written as

pl − patm = RTρl(T )

Mw

ln h∗, or h∗ = exp

(
Mw(pl − patm)

RTρl(T )

)
(8.30)

in which h∗ = pv/p∗
sat is a slightly modified pore relative humidity. If h∗ is replaced

in (8.30) by the standard pore relative humidity, h = pv/psat, the additional error
remains below 0.08% (at temperatures below 100 ◦C).

Yet another admissible approximate form of the Kelvin equation can be con-
structed by rewriting (8.24) as

RT

Mw

ln
pv
psat

= pv − psat
ρl

+ pl − pv
ρl

(8.31)

and then neglecting the first term on the right-hand side. This approximation is justi-
fied by the fact that (8.31) corresponds to the following relation involving integrals:

∫ pv

psat

dp

ρv(p)
=

∫ pv

psat

dp

ρl
+

∫ pl

pv

dp

ρl
(8.32)

Since ρv � ρl , the first integral on the right-hand side is much smaller than the
integral on the left-hand side and thus can be neglected, which leads to

RT

Mw

ln
pv
psat

= pl − pv
ρl

(8.33)
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In the literature, one can also find an interpretation of the Kelvin equation as a
relation between the relative pore humidity and the capillary pressure, written as

pc = − RTρl(T )

Mw

ln h, or h = exp

(
− Mw pc
RTρl(T )

)
(8.34)

Recall that the capillary pressure is defined as pc = pg− pl , where pg is the pressure
of the pore gas, equal to the sum of partial pressures of vapor and dry air. If the pores
contain no air, relations (8.34) directly correspond to (8.33), because then pg = pv
and pc = pv − pl . But even if the pore gas is a mixture of dry air and vapor, the
partial pressure of dry air is usually negligible compared to the capillary pressure,
and (8.34) can still be used, as an approximation.

Historical note:

In the literature on partially saturated porous media, the Kelvin equation is often
understood in the sense described above, i.e., as a relation between the pressures
of liquid water and water vapor at thermodynamic equilibrium, or as the relation
between the capillary pressure and relative humidity. For instance, Schrefler [766] or
Gawin, Pesavento and Schrefler [421] presented the Kelvin equation in a form that
corresponds to our formula (8.34), while Coussy [328] presented it in a form that
corresponds to (8.29).

It is interesting to note though that William Thomson, who became Lord Kelvin
in 1892, derived in his short paper [812] a somewhat different and less accurate
equation, which would in the present notation read

pv = psat −
(
1

r1
+ 1

r2

)
γglρv

ρl − ρv

(8.35)

where the term in parentheses could be replaced by 2/r ; see (8.13). The objective of
Thomson [812] was to show that the pressure of vapor near a curved interface with
liquid water is different from the vapor pressure near a flat interface. He considered
a sufficiently large closed container filled by water and its vapor, separated by a
flat interface. If a vertical capillary tube is placed inside the container, the capillary
meniscus of mean radius r separating liquid water and vapor in the tube will, at
equilibrium, be located at a certain height H above the flat reference surface. The
verbal reasoning of Thomson [812] implies that he expressed the vapor pressure pv
and liquid pressure pl near the meniscus as

pv = psat − ρvgH (8.36)

pl = psat − ρlgH (8.37)

where psat is the pressure of both liquid water and vapor at the flat interface. The
difference between the pressures is thus pv − pl = (ρl − ρv)gH , and by combining
this with the Laplace equation (8.12) in which pg = pv, we can express the height
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H = 2γgl
(ρl − ρv)gr

(8.38)

Finally, substituting this into (8.36) and replacing 2/r by 1/r1 + 1/r2, as justified
by (8.13), yields (8.35).

A simplifying assumption implicitly contained in the reasoning leading to the
“original Kelvin equation” (8.35) was that the vapor density ρv was considered as
constant even though the vapor pressure must actually vary from psat to pv along
the path from the flat surface to the curved meniscus. The state equation for gas was
not used at all, and no integration was necessary. This is also the reason why no
logarithmic term appeared in the resulting equation.

Instead of combining Eqs. (8.36)–(8.37) with the Laplace equation, as done by
Thomson [812], one can use (8.37) to express the height

H = psat − pl
ρlg

(8.39)

and then eliminate H from (8.36) and invoke the state equation of ideal gas for ρv.
After simple manipulations, the resulting equation can be converted into

RT

Mw

(
1 − psat

pv

)
= pl − psat

ρl
(8.40)

This looks similar to (8.24), except that, on the left-hand side, ln(pv/psat) is replaced
by 1 − psat/pv. If the fraction pv/psat is close to 1, one can write

ln
pv
psat

= − ln
psat
pv

= − ln

(
1 + psat

pv
− 1

)
≈ −

(
psat
pv

− 1

)
= 1 − psat

pv
(8.41)

Therefore, assumptions used in the derivation of the original Kelvin equation (8.35)
combined with the state law of ideal gas (and with no need to exploit the Laplace
equation) lead to Eq. (8.40), which can be considered as a good approximation of the
“modern Kelvin equation” (8.24), as long as pv does not substantially differ from
psat. This is exactly the case that Thomson [812] had in mind—he gave an example
with H = 13 m, leading to pv = 0.999 psat.

The approach used by Thomson [812] can easily be adapted to cases in which pv
differs substantially from psat. Instead of writing the expression for pv directly in the
total form (8.36), one would have to consider the cumulative effect of differential
increments dpv = −ρvg dH with variable ρv related to pv by the state equation.
After the separation of variables and integration, the corrected form of (8.36) would
be

ln
pv
psat

= −Mw

RT
gH (8.42)

and elimination of H based on (8.39) would lead to the modern Kelvin equation
(8.24).
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To conclude this historical remark, let usmention that vonHelmholtz [842] studied
the vapor pressure near the surface of a spherical liquid droplet of radius r̂ and
obtained a relation that would in the present notation read

pv
psat

= exp

(
2γgl Mw

r̂ RTρl

)
(8.43)

If the term 2γgl/r̂ is replaced by pl− pg ≡ −pc, as follows from the Laplace equation
(8.12) (in which r corresponds to −r̂ , because the curvatures of a droplet and of a
capillary meniscus have opposite signs), then (8.43) becomes equivalent with our
Eq. (8.34).

It is useful to note that the term RTρl/Mw has the meaning of a (fictitious)
pressure that would compress vapor to the density of liquid water if the ideal gas
state lawwere still applicable at such high pressures. It is therefore not surprising that
this term is much larger than the atmospheric pressure. At 20 ◦C, we get RTρl/Mw

= 135 MPa, and Kelvin equation (8.25) leads to pl = psat + 135 MPa × ln h.
This indicates that the magnitude of liquid pressure is usually much higher than the
vapor pressure (except for pore relative humidities close to 1), because the saturated
vapor pressure at 20 ◦C is just 2.33 kPa. To give an example, for h = 0.9 one gets
pl = −14.2 MPa and pv = 0.9× 2.33 kPa = 2.1 kPa. Replacing pl − psat by pl or
by −pc then induces a negligible error.

For pore relative humidity h = 0.5, the liquid pressure evaluated from the Kelvin
equation is pl = −93.6MPa (tension) and, according to theYoung–Laplace equation
(8.12), the mean radius of the capillary meniscus is r = 1.56 nm. This is approxi-
mately at the limit of applicability of bulk thermodynamics. Capillary tension 93.6
MPa is not much smaller than the tensile strength of water, and the radius of the
meniscus is about six times the effective diameter of a water molecule (0.27 nm).
Therefore, at pore relative humidities below 50%, concrete contains almost no cap-
illary water. For details, see, e.g., Brinker and Scherer [257]. The mean pressure
change in hindered adsorbed water from the saturation state is roughly equal to the
capillary pressure [78], which means that microstress peaks of the order of 100 MPa
are exerted locally by hindered adsorbed water onto the solid skeleton of cement gel
(in more detail, see Sect. 8.2.6.2).

For h = 0.3, one gets pl = −162.5 MPa, which is comparable to the tensile
strength of liquid water on the molecular scale. So, capillary (liquid) water cannot
exist at all for pore relative humidities below 30%.

Themagnitudes of the capillary pressure and of the vapor pressure are comparable
only for pore relative humidities very close to 1. For h = 1, the capillary pressure
vanishes. Capillary interfaces (menisci) still exist, but they must have a zero mean
curvature, which is the case for a plane or for anticlastic (saddle) surfaces with
r2 = −r1. The menisci may exist even for h > 1, in which case 1/r1 + 1/r2 < 0;
see Fig. I.7 in Appendix I.2.
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8.2.5 Sorption Isotherm

As already explained, the degree of liquid saturation Sl of a porous solid can be linked
to the suction pc (capillary pressure) and temperature T by a function that depends
on the pore structure and pore size distribution. Kelvin equation (8.34) provides a
link between the capillary pressure pc and the pore relative humidity h (provided
that the pore gas pressure is close to the atmospheric pressure, or at least negligible
compared to the capillary pressure). Therefore, the degree of saturation, which is
related by a certain function ΦpT to the suction and temperature, can alternatively
be expressed using a function ΦhT of the pore relative humidity and temperature:

Sl = ΦpT (pc, T ) = ΦpT

(
−ρl RT

Mw

ln h, T

)
≡ ΦhT (h, T ) (8.44)

At the same time, the saturation degree is related to the evaporable8 water content
we (mass of evaporable water per unit volume of the porous material [kg/m3]) by
Eq. (8.5), which also contains densities ρl and ρv . The mass density of liquid water,
ρl , can be considered as a constant, and the mass density of water vapor, ρv , can be
expressed in terms of the pore relative humidity and temperature by combining the
state equation for vapor (8.7) with the definition of relative humidity (8.1):

ρv = Mw pv
RT

= Mw psat
RT

h (8.45)

Combining (8.5) and (8.44)–(8.45), we can proceed to an alternative description of
moisture storage in the pore space, with the moisture retention curve (saturation-
suction relation) transformed into a relation between the evaporable water content
and the pore relative humidity (of course affected by temperature):

we = np

[
ρlΦhT (h, T ) + Mw psat

RT
h (1 − ΦhT (h, T ))

]
(8.46)

Equation (8.46) takes into account both liquid water and water vapor. However,
at moderate temperatures, the liquid water dominates. This can be demonstrated by
evaluating the fraction in the second term at T = 293 K (20 ◦C):

Mw psat
RT

= 0.018 × 2330

8.31 × 293

kg

m3
= 0.0172

kg

m3
(8.47)

The value of Mw psat/RT is seen to be much lower than the liquid water density
ρl ≈ 1000kg/m3,whichmultiplies the saturationdegree in thefirst term, representing
the contribution of liquid water. Consequently, (8.46) can be simplified to

8We refer here to the evaporable water because the chemically bound water is considered as a part
of the solid skeleton and thus does not occupy the pore space. But note that the evaporable water
includes the adsorbed water, which acts mechanically as part of the solid skeleton.
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we = npρlΦhT (h, T ) (8.48)

At constant temperature, the relation between the evaporable water contentwe and
the pore relative humidity h is known as the sorption isotherm. More specifically,
the desorption isotherm describes we as a function of h at decreasing water content
(drying), while the adsorption isotherm (sometimes called just the sorption isotherm)
applies to increasing water content (wetting).

As illustrated in Fig. 8.5, the desorption and adsorption isotherms exhibit pro-
nounced hysteresis, which means that they lie significantly lower for sorption than
for desorption. On subsequent cycles, the area of the hysteretic loops does not vanish.
Sorption–desorption reversals at intermediate h between 0 and 1 follow still different
paths. Generally, for dh < 0, the minimum possible loss dwe and, for dh > 0, the
minimum possible gain dwe take place. At high relative humidities, the hysteretic
phenomena can be attributed to the nonuniqueness of the surfaces of capillarymenisci
of liquid water in larger pores, caused, e.g., by the ink-bottle effect [274]. At low
relative humidities, capillary water does not exist, but the hysteresis is still observed.
This has traditionally been explained by pore collapse but, according to Bažant and
Bazant [109], such an explanation is not valid.9 Two different phenomena suffice to
explain the hysteresis:

1. nonequilibrium snap-throughofwater content of nanopores caused bynonunique-
ness in the misfit disjoining pressures engendered by a difference between the
nanopore width and an integer multiple of the thickness of a monomolecular
adsorption layer; and

2. molecular condensation in flow along the nanopores, under the influence of solid
surface forces.

These phenomena are discussed in more detail and from other view points in
Sect. 8.2.6.3 and Appendix I.2.

Figure8.5a shows the first desorption isotherm (solid) and the first sorption
isotherm (dashed) according to the data reported by Baroghel-Bouny [55] for con-
crete after 1 year of sealed curing. The concrete mix was composed of 1936kg
of aggregates, 353 kg of cement, and 152kg of water per cubic meter of concrete
(water/cement ratio 0.43), and the mean compressive strength measured on cylinders
at 28days was 49.4 MPa. The isotherm was determined at 23 ◦C, and the reference
“dry” state was considered as the state at 3% pore relative humidity (instead of the
state after drying in an oven, which could alter the pore structure). The experiment
started by desorption from 100% relative humidity to 3% relative humidity; see
the solid curve in Fig. 8.5a. As demonstrated in Fig. 8.5b, the measured desorption
isotherm is in the range between 30 and 100% relative humidity very close to a
straight line. The lower dashed curve in Fig. 8.5a shows the isotherm for adsorption

9The experimental data presented, e.g., by Baroghel-Bouny [55] show that the second desorption
roughly follows the first, whichwould be impossible if pore collapsed (howwould they get rebuilt?).
Also, if one would calculate the amount of shrinkage based on the idea of collapsed pores, its
magnitude would be an order of magnitude higher than observed.
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Fig. 8.5 (a) Difference between the sorption and desorption isotherms (experimental data adopted
from Baroghel-Bouny [55]), (b) approximation of the desorption isotherm by a straight line

from 3 to 100% relative humidity, which is highly curved and lies below the des-
orption isotherm. The upper (short) dashed curve illustrates the behavior when the
adsorption starts after previous desorption down to 72% relative humidity. Strong
hysteresis is observed. For comparison, Fig. 8.5a also contains the second desorption
isotherm (plotted by the dotted curve), which closely follows the first desorption
isotherm, at least in the range from 100 to 50% pore relative humidity. This proves
that “pore collapse” cannot be the cause of sorption hysteresis, since auto-rebuilding
of pore walls is unimaginable.

Many specific formulae for approximation of sorption isotherms have been pro-
posed in the literature. Some of them are described in Appendix I.1. They typically
contain several parameters that need to be determined by fitting of experimental data.
For practical applications, it would be very useful to predict the parameters frombasic
information such as the composition of the concrete mix. A model of this kind has
been developed by Xi, Bažant and Jennings [883], based on the BSB model [277],
which is a three-parameter generalization of the BET model [276]. The details are
presented in Appendix I.1. For illustration, Fig. I.5 shows the isotherms predicted by
the model of Xi et al. [883] for different ages, cement types, water-cement ratios, and
temperatures. Note that these isotherms refer to adsorption (increasing humidity),
are valid for cement paste only and are plotted in terms of the moisture content (or
total water content) by mass.

Approximation of the measured isotherms from Fig. 8.5a by various analytical
formulae is shown in Appendix I.1; see Fig. I.1. The appendix also contains another
example of isotherms for concrete, based on the data reported by Ahlgren [22];
see Fig. I.2. The desorption isotherm shown there is again close to a straight line.
Therefore, inmost calculations of concrete drying,wewill dealwith linear isotherms.
Such an approximation is quite good for mature concretes with low water-cement
ratio (and thus low porosity).

If we focus on the description of drying, the relation between water content and
humidity at constant temperature is formally described by we = φ(h), where φ is a



8.2 Pore Fluids at Thermodynamic Equilibrium 293

function characterizing the desorption isotherm. It is important to bear in mind that
this is not a universal function—it depends on the characteristics of the pore space,
which evolve in time due to aging. For simplicity,10 let us consider φ as a function of
the so-called equivalent age te, representing the equivalent hydration period (to be
defined in Sect. 10.6.1). The rate of growth of te depends on the pore relative humidity
and temperature and is given by ṫe = βeT (T ) βeh(h); see Eq. (10.28). Dependence of
the evaporablewater content on pore relative humidity and equivalent age is described
by

we = φ(h, te) (8.49)

Later, we will need to express the rate of the total water content, wt , which enters
the water mass balance equation (8.76). In addition to the evaporable water content,
we, we have to consider the content of chemically boundwater,wn, which increases in
time due to the hydration reactions (of course at the expense of the evaporable water)
and can be described as a function of te. Differentiating the relation wt = we + wn

and taking into account (8.49) and (10.28), we obtain

ẇt = ẇe + ẇn = ∂φ(h, te)

∂h
ḣ + ∂φ(h, te)

∂te
ṫe + dwn(te)

dte
ṫe =

= ∂φ(h, te)

∂h
ḣ +

(
∂φ(h, te)

∂te
+ dwn(te)

dte

)
βeT βeh(h) (8.50)

The derivative ∂φ/∂h represents the slope of the desorption isotherm and is called
the moisture capacity [kg/m3]. The inverse slope of the isotherm,

k(h, te) =
[
∂φ(h, te)

∂h

]−1

(8.51)

is also called the reciprocal moisture capacity [m3/kg]. For a linear isotherm, the
moisture capacity is independent of h. For example, the straight line in Fig. 8.5b
has slope 1/k = 108 kg/m3 and the corresponding reciprocal moisture capacity is
k = 9.26 × 10−3 m3/kg.

The second termon the right-hand side of (8.50) is related to the hydration reaction
and represents the rate at which water would need to be supplied (per unit volume
of concrete) in order to maintain constant relative humidity in the pores. Equation
(8.50) can be rewritten in the inverse form

ḣ = k(h, te)

[
ẇt −

(
∂φ(h, te)

∂te
+ dwn(te)

dte

)
βeT βeh(h)

]
= k(h, te)ẇt + h∗

s (h, te)

(8.52)
where

10Since the hydration kinetics depend on humidity and temperature, a complete model should in
fact deal with a coupled thermo-hygro-chemical problem.

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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h∗
s (h, te) = −k(h, te)

(
∂φ(h, te)

∂te
+ dwn(te)

dte

)
βeT βeh(h) (8.53)

is the humidity rate due to self-desiccation.

8.2.6 Free and Hindered Surface Adsorption, Disjoining
Pressure, and Its Continuum Thermodynamics∗

8.2.6.1 Adsorption—Free and Hindered∗

In strongly hydrophilic solids such as the Portland cement paste, the pore walls are
always covered by an adsorption layer and the transition to a capillary meniscus is
smooth, with a virtually zero contact angle. The thickness of the adsorption layer,
δa , depends on h and T and reaches no more than 5 molecular layers (each of them
being 0.27nm thick, which is the the effective diameter of one H2O molecule). The
layer is always in contact with the capillary water or the vapor. The water molecules
constantly leave and others reenter the adsorption layer, lingering in it for a certain
time called the lingering time. Generally, the adsorbed molecules linger for about 1
ns, which means they move approximately after each 105 thermal atomic vibrations.

The mass of free multimolecular adsorbed layer at pore humidity h and temper-
ature T is given by the BET isotherm [276, 345, 479, 888]:

Γa

Γ1
= 1

1 − h
− 1

1 − h(1 − C0eQa/RT )
(8.54)

This equation, statistically derived by E. Teller, is accurate for h ∈ (0.05, 0.5); here,
Γa = surface water concentration = mass of adsorbed water per unit surface area
[kg/m2],Γ1 ≈ ρl×0.27 nm= 263×10−9 kg/m2 =mass of fullmonomolecular layer
per unit surface area, Qa = latent heat of adsorptionminus latent heat of condensation
of vapor (always> 0), andC0 = constant depending on adsorption entropy (C0 ≈ 1).
Note that the volumetric mass density of adsorbed water is close to the density of
liquid water, ρl . The surface water concentration Γa is equal to ρlδa , where δa is
the equivalent thickness of the adsorbed layer (Fig. 8.1). The dimensionless fraction
Γa/Γ1 could be replaced by δa/δ1, where δ1 = 0.27 nm. A generalization of (8.54)
that includes interactions along the adsorbed layer was statistically derived byBazant
and Bažant [216].

Baroghel-Bouny [55] showed that if the experimentally determined adsorption
isotherms are plotted in terms of the average thickness of the adsorbed layer (instead
of the water content or moisture ratio), a universal “master curve” is obtained for
different cementitious materials in the range of low pore relative humidities, up to
63%. This confirms that, in this range, multilayer surface adsorption is the dominant
moisture storage mechanism. For higher humidities, capillary water becomes impor-
tant and the pore size distribution (affected, e.g., by the water/cement ratio) starts
playing a role. A linear relationship betweenw/c and the water content at the relative
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humidity of 90% was reported by Baroghel-Bouny [54, 55], both for adsorption and
for desorption.

In pores of thickness less than 10 water molecules (2.7 nm), which are plentiful
in Portland cement paste, the full thickness of free adsorption layers cannot develop.
At sufficiently high relative humidities, the adsorption layer is prevented by the pore
walls from attaining its full thickness δa,max and the adsorption is hindered; see the
right part of Fig. 8.1. Consequently, a transverse pressure pd , called the disjoining
pressure, must develop [71, 77, 348, 349]. As will be shown in Chap.10, it plays a
major role in creep of concrete.

Fig. 8.6 Free adsorption and stresses in the surface phase: (a) actual distribution of longitudinal
stress, (b)–(e) equivalent stress and force distributions. Note that the sum of solid surface tension
and of the spreading pressure in the adsorption layer is normally the surface tension. For this reason,
the tensile resultant γ ′

0 is shown to be greater than the compression resultant π ′. The fact that the
stress is tensile causes the solid to shrink. The dashed lines show the adsorption layer of thickness
δa , which can reach up to five molecular layers

In contrast to bulk liquid water, the adsorbed layers are not in a hydrostatic stress
state, which is caused by their interaction with the solid surface. If the surface effects
were neglected, the solid particles as well as the adsorbed water layers could be
imagined to be in mechanical equilibrium at the same hydrostatic pressure pg as the
pore gas. However, atoms and molecules near an interface such as the surface of a
solid particle tend to rearrange into the energetically most favorable configuration,
which leads to a stress redistribution. The transverse stress, i.e., the normal stress
acting in the direction perpendicular to the solid–fluid interface, is typically very
small, while the longitudinal stress, i.e., the normal stress acting in parallel to the
interface, can be very large. As schematically shown in Fig. 8.6, the excess tensile
longitudinal stress in the solid, lumped into a force per unit length, represents the solid
surface tension γ0, and the excess compressive longitudinal stress in the adsorbed
layer, lumped into a force per unit length, represents the spreading pressure11 π ,
considered as positive in compression. The sum γ = γ0 + (−π) is then the surface

11Here, the term “pressure” is a historically rooted misnomer; its dimension is not N/m2, but force
per unit length, N/m.

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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tension on the solid–liquid interface (recall that the surface tension on the gas–
liquid interface, introduced in Sect. 8.2.3, was denoted as γgl). In a free adsorbed
layer, the transverse stress (normal to the solid surface) is virtually unaffected, and
the spreading pressure π is denoted more specifically as πa . In a hindered adsorbed
layer, the transverse stress increases by the disjoining pressure, pd , and the spreading
pressure is denoted as πd . One can also define the total spreading pressures π ′

a
and π ′

d , which are the resultants of the total stress (not only of the excess stress)
across the thickness of the adsorbed layer; see Figs. 8.1 and 8.6c. Approximately,
π ′
a = πa + δa pg (where pg is the pore gas pressure), if we neglect the fact that,

up to the distance of 5 molecules from the solid surface, the pore gas pressure pg is
influenced by the solid surface forces.

In contrast to free adsorption, the exchange of hindered adsorbed water molecules
with the capillary water and vapor is not almost immediate and may take a longer
time. It requires diffusion of water molecules along the hindered adsorbed water
layers, driven by the difference in chemical potentials, or spreading pressures. This
diffusion was analyzed in Bažant [78] and Bažant and Moschovidis [164] and was
proposed as one cause of delayed thermal expansion [72, 78]. It is doubtless also
one cause of the relaxation of microprestress (Chap. 10).

8.2.6.2 Disjoining Pressure in Hindered AdsorbedWater in Nanopores∗

To estimate the average nanopore width, first note that most of the adsorbate in
nanoporous solids is in the form of hindered adsorption layers, i.e., layers confined
in the nanopores, which are usually defined as pores less than about 3nm wide
[47]. Further note that 1 cm3 of hardened Portland cement paste contains the internal
surface of about 500m2, while the total porosity is typically about 50%,with the large
capillary pores occupying about 15% and the nanopores about 35% of the material
volume. The capillary pores contribute almost nothing to the internal pore surface,
because their surface-to-volume ratio is several orders of magnitude smaller than that
of the nanopores. So, if the nanopores were flat, with two opposite planar surfaces
each, the average nanopore width would be about 2 × 0.35 cm3/500 m2 = 1.4
nm, which is about 5 water molecule diameters (for cylindrical nanopores, a similar
calculation would give the average nanopore diameter 2.8 nm, but flat nanopores are
probably closer to reality). The hindered adsorbed layers in such nanopores have no
surface directly exposed to vapor and communicate with the vapor in macropores
only by diffusion along the adsorption layer. It has been well known that a large
transverse stress, called the disjoining pressure [348, 349] (aka solvation pressure
[47]), must develop in these layers.

Development of the theory of hindered adsorption for concrete was stimulated by
Powers’ general qualitative ideas on the creep mechanism [703]. Its mathematical
formulation for calcium silicate hydrates (C-S-H) gradually emerged in Bažant [71,
72, 77, 78] and was reviewed in a broad context in Bažant [80]. The recent advent of
molecular dynamics (MD) simulations is advancing the knowledge of nanoporous
solids and gels or colloidal systems in a profound way [317–319, 526, 527, 595,

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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673, 781, 831]. Particularly exciting have been the new results by Rolland Pellenq
and co-workers at the Concrete Sustainability Hub at MIT led by Franz-Josef Ulm
[246, 260, 261]. These researchers use numerical MD simulations to study sorption
and desorption in nanopores of coal and calcium silicate hydrates. MD simulations
have been used to study the effect of a molecular interlayer of water on the rate of
sliding of two opposite walls of C-S-H [830].

MD simulations (mainly in the group of F.-J. Ulm and R. Pellenq at MIT) have
recently shown that water molecules in nanopores too thin to accommodate the
full thickness of the water adsorption layers exert on the walls of hydrated cement
enormous forces, which show high alternating scatter between negative and positive
values, although the mean force is compressive. Because of the scatter, one needs an
overall model for the mean behavior, which must be based on continuum thermody-
namics and has been derived long ago; see Bažant [78], with preliminary versions in
[71, 77]. Continuum thermodynamics is appropriate and necessary for longitudinal
mass transfer along the nanopores to and from the large capillary pores because a
vast number of molecules is involved in the longitudinal direction.

Consider now an idealized pore with planar rigid adsorbent walls and a width
2ld that is smaller than the combined width 2δa of the free adsorption layers at the
opposite walls given by the BET equation (8.54), in which the dimensionless ratio
Γa/Γ1 is equal to δa/δ1, with δ1 = 0.27 nm. Then, the adsorbate has no surface
in contact with the vapor and full adsorption layers cannot build up freely at the
opposite pore walls, i.e., the adsorption is hindered and a disjoining pressure pd
must develop. Since the free water adsorption layer on each surface can be up to
5 molecules thick, the pores less than 10 molecules wide (2ld < 2.7 nm) cannot
accommodate the full thickness of opposite free water adsorption layers. This leads
to hindered adsorption with disjoining pressure (at high enough relative humidity).
The adsorbed water communicates by diffusion of adsorbed water molecules along
the pore with the water vapor in an adjacent macropore.

Let us now derive a relation between the disjoining pressure and the relative
humidity. The arguments are similar to the derivation of Kelvin’s equation in
Sect. 8.2.4. In a process in which thermodynamic equilibrium is maintained, the
specific free enthalpies (i.e., Gibbs free energies per unit mass) of the vapor and of
its adsorbate,μv andμad , must remain equal, and the same holds for their increments:

dμad = dμv (8.55)

A detailed justification has already been provided in footnote 6. Under isothermal
conditions, this means that, for a nanopore filled by adsorbed water,

dpd + 2 dpad
3ρad

= dpv

ρv

(8.56)

where ρad is the average mass density of the adsorbate (which probably is, in the case
of water, somewhere between the mass densities of ice and liquid water). Factors 2
and 3 appear in (8.56) because we assume a planar pore filled by water layer under
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in-plane (longitudinal) biaxial stress and a different transverse stress. The disjoining
pressure pd = 0 as long as the nanopore is not filled because pd is considered as the
excess transverse pressure. Symbol pad = πd/ ld denotes the longitudinal stress in
the hindered adsorption layer averaged through the layer thickness (here we assume
the gas pressure pg to be negligible, or else pad would equal π ′

d/ ld ); pad has the
dimension ofN/m2 and (in contrast to stress) is taken positive for compression. Recall
that πd is the longitudinal spreading “pressure” [N/m] in the adsorption half-layer
of thickness ld ; πd is superposed on the solid surface tension γ0 which is generally
larger in magnitude, and so the surface tension, γ = γ0 − πd , is actually tensile;
see Fig. 8.6b,e. Thus the decrease of spreading pressure with decreasing h causes an
increase of surface tension, which is large at nanoscale globules (of typical size 10
nm) and is one of the causes of shrinkage.

Further note that if pd and pad were equal, the left-hand side in (8.56) would
be dpd/ρad , which is the standard form for a bulk fluid. Also, in contrast to solid
mechanics, the left-hand side in (8.56) cannot be replaced by εy dpd + 2εx dpad
because strains εx and εy cannot be defined (since the molecules in adsorption layers
migrate and the difference between pd and pad is caused by the forces from solid
adsorbent wall rather than by strains).

Based on the ideal gas equation for vapor (8.7), the vapor density ρv can be
expressed in terms of the vapor pressure pv , and Eq. (8.56) can be rewritten as

dpd + 2 dpad
3ρad

= RT

Mw

dpv

pv

(8.57)

Assuming constant density of adsorbed water, ρad , integration of (8.57) leads to

pd + 2pad = 3ρad RT

Mw

ln pv + C (8.58)

where C is an integration constant, which must determined from a suitable initial
condition. Before the nanopore gets filled, the disjoining pressure pd is zero. The
pore relative humidity h f at which the nanopore just gets filled can be approximately
obtained from a quadratic equation representing the inverse of the BET isotherm,12

and the corresponding vapor pressure is pv, f = h f psat. The disjoining pressure
at this state is still zero. Denoting the value of the longitudinal pressure when the
nanopore just gets filled as pad, f , we can substitute all the values that characterize
this state into (8.58) and determine constantC . Equation (8.58) can then be rewritten
as

pd + 2pad − 2pad, f = 3ρad RT

Mw

(
ln pv − ln pv, f

) = 3ρad RT

Mw

ln
h

h f
(8.59)

12The calculation based on the BET isotherm is only approximate since the BET statistics is one-
dimensional and inaccurate when the pore is almost full, i.e., when the adsorption layers on the
opposite surfaces are almost touching, with almost no vapor between them.
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where, as usual, h = pv/psat = pore relative humidity. In this form, the equation is
easier to interpret, but it still contains an unknown constant, pad, f . The advantage
compared to (8.58) is that the constant now has a direct physical meaning (unlike
the original constant C).

For pore relative humidities below h f , the disjoining pressure pd is identically
zero, and (8.59) could be used to evaluate the changes of pad . But for pore relative
humidities above h f , both pd and pad vary, andwithout some additional information,
it is impossible to separate their increments. As a convenient approximation, it can
be assumed that the ratio of the increments of in-plane spreading pressure pad and
disjoining pressure pd , mathematically defined as

κ = dpad
dpd

(8.60)

remains constant. This new parameter will be called the disjoining ratio. If the adsor-
bate were a fluid, κ would equal 1. Since it is not, κ 
= 1. The role of κ is somewhat
similar to the Poisson ratio ν of elastic solids (or, more precisely, to ν/(1 − ν)). It
can probably be assumed that κ is smaller but not much smaller than 1.A rigorous
calculation of κ would require introducing a constitutive equation relating pad and
pd (this was attempted in [164], but led to a complex hypothetical model with many
uncertain parameters). Of course, relation (8.60) can be used only when the nanopore
is filled, i.e., for h ≥ h f . For an unfilled nanopore, the changes in disjoining pressure
are zero.

Assuming that the disjoining ratio κ is a known constant and cumulating the
increments of pd and pad with respect to the state at which the nanopore just gets
filled (and at which pd = 0 and pad = pad, f ), we obtain

pad − pad, f = κpd for h ≥ h f (8.61)

Based on this relation, we can eliminate pad from (8.59) and construct a formula for
the disjoining pressure,

pd = 3ρad RT

(1 + 2κ)Mw

ln
h

h f
for h ≥ h f (8.62)

If κ = 1 (and if an additional term p′
f is added), Eq. (8.62) coincides with Eq.29

derived in 1972 by Bažant [78], but κ = 1 was an oversimplification.
Equation (8.62) gives the disjoining pressure caused by longitudinal interactions

along the nanopore with the capillary macropore. The actual transverse pressures
in the nanopores are statistically scattered, and formula (8.62) gives the average
disjoining pressure. Superposed on this average must be transverse pressures due to
accommodating within the nanopore discrete layers of water molecules. Due to this
discreteness and small number of layers across the width, such additional pressures
are scattered and cannot be calculated by thermodynamics. They require discrete
analysis, which is pursued next.
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8.2.6.3 Hysteresis Due to Snap-Through Instability in Nanopore
Filling∗

The BET isotherm, as well as Eq. (8.62) for hindered adsorption, is perfectly
reversible. However, even though the adsorbed water represents most of the evap-
orable pore water for humidities below 80%, the sorption–desorption isotherms are
observed to be highly irreversible, and even in the low humidity range [55, 372, 382,
705, 717], MD simulations indicate the same [246, 260, 261]. This irreversibility
has been a perplexing feature for more than half a century. Some explanations have
been proposed, but they were intuitive and in conflict with other observations. For
example, it was speculated that water desorption (or drying) causes pore collapse.
However, if formulated mathematically, this would require the shrinkage to be at
least an order of magnitude higher than observed, and it would also conflict with
the recent observation that water sorption (or wetting) is irreversible upon second
drying, too (it is inconceivable that collapsed pores would rebuild themselves during
wetting).

The thermodynamic equation (8.62) describes the pressure due to continuumfluid-
type interaction along the pore. However, it cannot capture the additional transverse
forces due to the discreteness of molecular layers confined in nanopores [109]. This
discreteness provides a theoretically consistent explanation of the sorption hysteresis
at lowhumidities. To explain, consider Fig. 8.7,which shows the curve of interatomic
pair potential Φ (e.g., the Lennard-Jones potential), and the corresponding curve of
interatomic force F = dΦ/ ds, as a function of distance s between the neighboring
atoms.

Fig. 8.7 (a) Interatomic pair potential Φ and the corresponding interatomic force F and secant
stiffness C , (b) interatomic forces between opposite pore walls visualized by springs
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A noteworthy point is that, for a given value ofΦ (shown by the dashed horizontal
line in Fig. 8.7a), there generally exist two different equilibrium states (s1, F1) and
(s2, F2), as shown in Fig. 8.7a. Since the adsorbed water can behave like a fluid, the
transition from one of these states to the other can take place with no supply and
no loss of energy (in a solid this is not possible). This property is one of the causes
(aside from molecular coalescence along the nanopores [216]) of sorption hysteresis
in narrow nanopores.

It is instructive to consider one or two adsorbate molecules (standing for one or
two molecular layers) between two walls representing the opposite nanopore walls,
as shown in Fig. 8.7b. The interatomic forces can be imagined as the forces in springs
connecting the atoms (or molecules) and the pore walls. For the state in Fig. 8.7b–
right, the pore is too wide for one molecule, and thus, the springs transmit tension
(F > 0). For the state in Fig. 8.7b–left, the same pore is too narrow for twomolecules,
and thus, the springs transmit compression (F < 0). The point is that if the energies
are for both states equal, a molecule can be added in Fig. 8.7b–right or removed
in Fig. 8.7b–left with no energy loss nor gain. This is possible since adsorbed water
molecules are a fluid. They linger in the same position for about 10−9 s (whichmeans
that there is one interatomic bond break per 105 thermal vibrations of atoms, since
the atomic thermal vibration frequency is about 1014/s). Then, the atoms jump to
another position, 109 times per second. Thus, the transition from the compressed to
the tensile state, which corresponds to the horizontal dashed line in Fig. 8.7a, can
occur at no change of energy, i.e., no work done, no energy obtained. So it must
occur spontaneously. In fact, the transition must occur dynamically, in a manner that
is analogous to snap-through of flat arches or shells.

Fig. 8.8 Dynamic snap-throughs of adsorbate content

Based on this observation, one can show [109] that, during the filling of a pore
of variable thickness, the transition from one molecular layer to two layers, or from
two to three, etc., occurs at no energy change and spontaneously; see Fig. 8.8. The
consequence for the adsorption/desorption isotherm of specific evaporable water
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content we versus relative humidity h is that the smooth curve obtained according
to thermodynamics is modified by the superposed wavy curve shown in Fig. 8.8.
When the nanopores are drying, the path 76ab4cdef must be followed, and when
they are wetting, a different path, namely path f1234567, must be followed. The
curved segments of these paths represent stable equilibrium states, while the vertical
segments represent dynamic jumps, analogous to jumps called “snap-through” in the
theory of structural stability. Thus, it is clear that the paths of drying and wetting
must be different—hence the hysteresis in the filling of the narrowest nanopores.

What is the relation to continuum thermodynamics? It accounts only for interac-
tions along the pore. The disjoining pressure derived from these interactions, given
by Eq. (8.62), is then modified by transverse interactions which are discrete and not
describable by continuum thermodynamics and produce forces added to the disjoin-
ing pressure obtained from thermodynamics.

This kind of hysteresis gets weaker as the nanopore gets wider. It disappears for
nanoporesmore than about 10watermolecules wide. But there is anothermechanism
of sorption hysteresiswhich operates even formuchwider nanopores—themolecular
condensation with attractive lateral interactions described by Cahn–Hilliard equation
for gradient energy. It is similar to the ink-bottle effect [274] on the capillary (or
micrometer) scale; for detail, see [216].

8.3 Moisture Transport

8.3.1 Transport Mechanisms

As transpires from the previous section, the state of pore fluids in concrete can be
characterized by the temperature, T , liquid water pressure, pl , pore gas pressure,
pg, and partial pressure of water vapor, pv. The partial pressure of dry air and the
capillary pressure are easily expressed as pa = pg − pv and pc = pg − pl , while the
spreading pressures and the disjoining pressure may be considered to be uniquely
related to pv because local thermodynamic equilibrium may be assumed to prevail
macroscopically at all times. For the same reason, the liquid pressure pl is linked to
the vapor pressure pv and temperature T by Kelvin equation (8.24). Thus, in general,
three variables remain as primary unknowns. In general, they vary in space and in
time, and their evolution must be determined from equations that take into account
the transport of heat and mass.

In the present chapter, we restrict attention to the transport of pore fluids under
isothermal conditions, with the temperature playing the role of a fixed parameter T0
(uniform in space and constant in time). Extensions to variable temperature will be
discussed in Chap. 13. At isothermal conditions, two independent unknown pressure
fields, e.g., pl and pg, must be determined from two mass balance equations (written
for moisture and for dry air) combined with suitable constitutive equations that

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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describe the relevant transport mechanisms. In the present context, the following
specific mechanisms can be distinguished:

1. molecular diffusion (ordinary diffusion),
2. effusion (Knudsen diffusion),
3. surface diffusion,
4. advective water flow,
5. advective flow of pore gas (wet air).

The first two mechanisms correspond to transport of water vapor, which is also
affected by mechanism 5. Surface diffusion (mechanism 3) is a process of transport
of molecules adsorbed at the pore walls, which can be considered either as a spe-
cial phase, or as a part of the liquid phase (which is the approach followed here).
Mechanism 4 corresponds to transport of liquid water.

Molecular diffusion is driven by the gradient ofmolar concentration of vapor in the
pore gas. It dominates in capillary pores with diameters substantially exceeding the
mean free path of water vapor molecules (which is 80nm at 25 ◦C). In pores smaller
than 50nm and especially in nanopores, the collisions against pore walls provide
the main diffusion resistance, and this case is known as the Knudsen diffusion. The
diffusivity decreases with decreasing pore size. At low humidity, most of the water
is adsorbed in one or several layers at the pore walls, and surface diffusion with
molecules of water climbing along the walls (or moving in the manner of “random
walk”) can become dominant. On the other hand, at high saturation degrees, the
dominant mechanism is the advective flow of liquid water driven by the gradient of
its pressure (more precisely, by the gradient of the total head, as will be explained
in Sect. 8.3.2), similar to water flow in fully saturated porous media. The advective
flow of pore gas is driven by the gradient of gas pressure.

The following two subsections present separately the main ingredients needed
by a simple but complete transport model. Section8.3.2 introduces the Darcy law
that governs advective flow as the dominant transport mechanism in a fully saturated
porous medium. Section8.3.3 is devoted to the mass balance equation for moisture
(all phases of water combined). In Sect. 8.3.4, simple models for moisture transport
in saturated and partially saturated concrete are constructed by combining the mass
balance equation and the transport law (in the Darcy form for the saturated case, or
in another form proposed by Bažant and Najjar [166] for the partially saturated case)
with the state equation of water for the saturated case or with the desorption isotherm
for the partially saturated case. For each case, we obtain a single partial differential
equation with one primary unknown field. A broader description of alternative and
more general transport models for porous materials can be found in Appendix J.

8.3.2 Darcy’s Law

For transport of liquidwater in a fully saturatedporousmedium, itmay seemnatural to
assume that the driving force is the gradient of liquid pressure pl . However, in some
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applications, the gravity forces may play an important role and their contribution
needs to be subtracted from the liquid pressure before the gradient is computed.
Note that the hydrostatic pressure in water contained in a reservoir and subjected to
gravity forces increases linearly with the depth below the free surface (gas–liquid
interface) but, despite the existence of a pressure gradient, the water is in a state of
static equilibrium. The pressure variation is balanced by the body forces due to the
self-weight, and there is no reason to expect a flow induced by the pressure gradient.
A similar reasoning can be applied to a fully saturated porous medium. Therefore, it
can be expected that flow is related to the deviation of the actual pressure from the
gravity-induced hydrostatic pressure.

Fig. 8.9 Darcy’s filtration experiments: (a) scheme of the experimental setup, (b) distribution of
pressures ph and pl along the height, (c) distribution of the total head, elevation head, and pressure
head along the height

In his classical experiments, Darcy [337] measured the flow of water through ver-
tical pipes filled by sand. The experimental setup is schematically shown in Fig. 8.9a.
Darcy found the steady-state flow rate to be proportional to the total height of the
water column, H = h1 − h2, and inversely proportional to the height of the sand
column, L . The flow rate can be characterized by the filtration velocity (or Darcy
velocity), vl , which represents the magnitude of the volume flux of liquid water and
is defined as the volume of liquid passing across the section of a unit area (of the
porous material, including the solid skeleton) per unit of time [m3/m2s=m/s]. The
experimentally found relation is then written as

vl = Kh
H

L
(8.63)

where Kh is the hydraulic conductivity or hydraulic permeability [m/s]. This quantity
has a direct physical meaning—it represents the filtration velocity at which a layer of
water (bounded by two horizontal free surfaces that are kept at atmospheric pressure)
subjected to gravitywouldpass vertically through theporousmedium.For this reason,
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Kh is sometimes called the characteristic filtration velocity or filtration coefficient.
Note that the filtration velocity is smaller than the actual average velocity at which
the water is passing through the pores, because the flux vl is taken per unit total area
and not per unit area of the pores.

To postulate the general form of Darcy’s law, let us analyze the distribution of
pressure in the filtration experiment. Figure8.9b shows the liquid pressure pl as a
function of the vertical coordinate z, which is measured from the bottom surface of
the sand sample and is positive above that surface. The dashed line corresponds to the
distribution of the hydrostatic pressure that would build up if the bottom section of the
pipe were closed. This pressure distribution is given by ph(z) = patm + ρlg(H − z),
where patm is the atmospheric pressure (pressure of the ambient air, equal to the
liquid pressure at the planar free surface), ρl is the mass density of the liquid, and g
is the gravity acceleration. When the bottom section of the pipe is open and water
can freely flow out, the liquid pressure distribution in the reservoir remains the same,
but in the pore space inside the pipe, it is redistributed until a linear distribution
indicated by the solid line is attained. For 0 ≤ z ≤ L , the liquid pressure during
steady-state flow is given by pl(z) = patm + ρlg(H − L)z/L . As already justified,
the flow is driven by the gradient of the difference between the actual pressure pl
and the hydrostatic pressure ph . Since both pressures depend only on the vertical
coordinate z, this gradient is a vertically oriented vector, and its magnitude is in the
porous sample evaluated as

d[pl(z) − ph(z)]
dz

= ρlg
d

dz

[
(H − L)z

L
− H + z

]
= ρlg

H

L
(8.64)

This means that the norm of the pressure difference gradient is the ratio H/L that
appears in the “original”Darcy law (8.63)multiplied by a factorρlg, which represents
the specific weight of water. To be able to identify H/L directly with the gradient
of a certain variable, we divide the pressures by ρlg. This motivates the definition of
the total head

Ht (z) = H + pl(z) − ph(z)

ρlg
= pl(z) − patm

ρlg
+ z (8.65)

The added constant H has no influence on the gradient and has been included to get
a more direct physical meaning of the resulting quantity (Fig. 8.9c). On the right-
hand side of (8.65), the second term is simply the height of the point above the
reference plane and the first term is the height of the water column that would lead
to hydrostatic pressure pl . Thus, the sum of these two terms, Ht (z), represents the
level to which water would rise in a fictitious pipe13 connected to the current point z,
as illustrated in Fig. 8.9. Note that in a water reservoir, we would have pl(z) = ph(z)
and Ht (z) = H = const., which confirms that no water flow is expected if the
gradient of Ht vanishes. The first term on the right-hand side of (8.65) is called the

13Thefictitious pipe that illustrates the physicalmeaningof the total head is considered as sufficiently
wide, so that the capillary pressure induced by the pipe itself be negligible.
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pressure head (or hydraulic head, orwater potential), denoted as Hp, and the second
term is the elevation head; see Fig. 8.9c.

Since the factor H/L in (8.63) corresponds to the (magnitude of the) gradient of
the total head, Darcy’s law in its more general form can be written as

vl = −Kh∇Ht (8.66)

where vl is the filtration velocity vector (or volumetricwater flux), and∇ (pronounced
“nabla”) is a differential operator which, in the present context, provides the gradient
of the scalar field on which it is applied (the components of ∇ are partial derivatives
with respect to individual spatial coordinates).

Of course, in a general situation (different from the Darcy filtration experiment),
the liquid pressure pl and thus also the pressure head

Hp = pl − patm
ρlg

(8.67)

depend on all spatial coordinates. The same is true for the total head Ht , and so
the filtration velocity vector vl can have a general direction. The elevation head still
depends on the vertical coordinate only, and its gradient is a unit vector ez in the
direction opposite to the gravity acceleration vector. We can thus write the general
form of (8.65) as

Ht (x) = Hp(x) + z (8.68)

The filtration velocity vl represents the volume flux (volume of liquid water passing
through unit area per unit of time), and its multiplication by the mass density ρl

provides the mass flux of liquid water, j l = ρlvl [kg/m2s]. Combining this with
(8.65) and (8.66), we obtain an equivalent form of the Darcy law, expressed in terms
of the mass flux and pressure gradient instead of the volume flux and total head
gradient:

j l = ρlvl = −ρl Kh∇
(
pl − patm

ρlg
+ z

)
= −Kh

g
∇ pl − ρl Khez (8.69)

Note that the density of liquid water, ρl , has been treated as a constant.
The second term on the right-hand side of (8.69) is important in geotechnical

problems, when the porous body of interest has large dimensions and the hydrostatic
pressure caused by the self-weight of the fluid is nonnegligible compared to the actual
pore pressure. For concrete members of usual sizes, it can be omitted, but it would
need to be kept for large structures such as dams. In general, this term is negligible
if the vertical dimension of the investigated structure or structural member is much
smaller than the pressure head. To get an idea, the pressure head corresponding to
the excess pressure of 1 MPa is about 100 m.

For fully saturated porous media, the Darcy law can be derived by lineariz-
ing the fluid momentum balance equation under certain simplifying assumptions
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[469]. According to Gray and Hassanizadeh [436], an additional term (accounting
for changes in energy due to changes in saturation) would need to be added in the
partially saturated case, but such an extended form of the law would be hard to cal-
ibrate. A phenomenological generalization of the Darcy law to partially saturated
porous media, which is referred to as the Darcy–Buckingham law, is presented in
Appendix J.2, see equation (J.11).

The hydraulic permeability Kh introduced in (8.63) has a direct physical meaning
and is relatively easy to measure, but it depends not only on the porous material
in which the flow takes place but also on the fluid. Darcy’s law has been presented
here for liquid water flow, because this is the problem for which it was originally
postulated. However, the same type of law can be used for advective flow of other
fluids, e.g., of air.

Therefore, it is useful to separate the influence of the pore geometry from that of
the pore fluid. An incompressible Newtonian fluid can be characterized by its mass
density ρ f and dynamic shear viscosity η f (the proportionality factor between the
shear stress and the shear strain rate). Except for high temperature and some cases
of thin bodies, the flow velocity is low enough for the flow to be laminar. For an
idealized model of a pore as a cylindrical pipe of radius r , the Stokes equations
governing the flow can be solved analytically and the mean velocity (averaged over
the cross section of the pipe) is found to be equal to the negative derivative of total
head along the pipe multiplied by r2ρ f g/8η f , i.e., to be proportional to the square of
the pore radius and to the mass density of the fluid, and inversely proportional to the
dynamic viscosity of the fluid [357]. To get the corresponding filtration velocity, the
mean velocity in the pipe must be multiplied by the porosity, because the filtration
velocity is defined as volume flux per unit total area of the porous medium (including
the solid skeleton, in which there is no flow).

It is natural to expect that similar relations will be valid for a general porous
medium.Based on dimensional analysis, the hydraulic permeability can be expressed
as

Kh = K0ρ f g

η f
(8.70)

where K0 is the intrinsic permeability [m2], which is a property of the pore space
only, independent of the properties of the pore fluid.With the gravity effect neglected,
Eq. (8.69) is then rewritten as

j l = −K0ρl

ηl
∇ pl (8.71)

where subscripts l indicate that we consider the flow of a liquid. An analogous
equation

j g = −K0ρg

ηg
∇ pg (8.72)
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can be set up for the flow of a pore gas (subscript g). The driving force is now the
gradient of the gas pressure.

The intrinsic permeability K0 is proportional to the square of a characteristic pore
size. For concrete, its typical values are in the range from10−21 to 10−16 m2 [328]. For
instance, Baroghel-Bouny et al. [57] obtained K0 = 3× 10−21 m2 for concrete with
water/cement ratio 0.48 and compressive strength 49.4 MPa, and K0 = 0.5× 10−21

m2 for high-strength concrete with water/cement ratio 0.26 and compressive strength
115.5 MPa, while Gawin et al. [420] used K0 = 100 × 10−21 m2 for concrete with
water/cement ratio 0.45 and compressive strength 49.4 MPa, and K0 = 0.5× 10−21

m2 for cement paste with water/cement ratio 0.37. Powers et al. [707] measured the
evolution of hydraulic permeability Kh of cement paste with water/cement ratio 0.7,
and they obtained approximately 10−10 m/s at the age of 7days and 10−12 m/s at
the age of 28days, which corresponds to intrinsic permeabilities K0 of 10−17 and
10−19m2, respectively.

The advantage of the separation of geometrical effects from material properties
of the fluid is that if the intrinsic permeability is determined from measurements
of flow of a specific fluid, the hydraulic permeability for any other fluid (of known
density and viscosity) can be calculated without the need for additional experiments.
For liquid water, the dynamic viscosity is approximately ηl = 10−3 kg/m · s, and
the density is approximately ρl = 1000 kg/m3. The factor ρlg/ηl is thus 107/m · s.
For dry air, the dynamic viscosity is approximately ηa = 1.8 · 10−5 kg/m · s, and
the density at atmospheric pressure and room temperature is ρa = 1.2 kg/m3, which
gives ρag/ηa = 0.667 × 106/m · s. Consequently, for a given porous medium, the
hydraulic permeability to water is 15 times larger than the hydraulic permeability
to air (provided that the air is under atmospheric pressure). Of course, here, we are
comparing the flow of liquid water in a fully saturated medium with the flow of air
in a perfectly dry medium.

The terminology related to transport properties is not fully unified and may par-
tially depend on the specific field of application (hydrology, geotechnical engineer-
ing, building physics, concrete structures). The law that describes the dependence
of a flux on a gradient can be written in 6 different formats, because (i) the flux
can be considered as the volume flux or mass flux and (ii) the gradient operator can
be applied on pressure, total head, or relative humidity. For each of these formats,
the proportionality coefficient corresponds to a certain kind of “permeability.” To
avoid confusion, it is always advisable to check the units in which the permeability
measure is expressed, because the units uniquely identify the specific meaning of
that parameter. All the theoretically possible combinations of flux and gradient are
summarized in Table8.1. In this book, the following three permeability measures
are used:

• the hydraulic permeability (also called hydraulic conductivity or characteristic
filtration velocity), Kh ,measured inm/s,which links the volumeflux to the gradient
of total head;

• the permeability coefficient, Kh/g, measured in s, which links the mass flux to the
gradient of pressure; and
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Table 8.1 Possible forms of the relationship between flux and gradient, with the corresponding
units in which the proportionality coefficient is measured

Gradient of

Pressure
Pa
m = kg · m−2 · s−2

Total head
m
m = 1

Relative
humidity
1
m = m−1

Volume flux m3

m2s = m · s−1 kg−1 · m3 · s m · s−1 m2 · s−1

Mass flux kg
m2s =
kg · m−2 · s−1

s kg · m−2 · s−1 kg · m−1 · s−1

• the moisture permeability, cp, measured in kg/m · s, which links the mass flux to
the gradient of relative humidity.

The permeability coefficient is the factor multiplying ∇ pl in (8.69), which is equal
to the hydraulic permeability divided by gravity acceleration. Therefore, no special
symbol for this coefficient is needed—it will be denoted as Kh/g.

It has been shown that the hydraulic permeability to liquid water is about 15
times higher than the hydraulic permeability to air (for the same concrete). This may
sound surprising, since intuitively one expects that air “passes more easily” through
a given porous medium than water does. The clue is in the physical meaning of
hydraulic permeability, which is also called the characteristic filtration velocity. It is
the filtration velocity at which a layer of the fluid would pass vertically through the
medium due to gravity forces, provided that the pressure in the fluid is uniform. The
density of air is about 800 times smaller than that of water, and thus, the filtration
velocity of air would be lower, despite the fact that water has about 55 times higher
dynamic viscosity than air. Here, we are comparing the volume fluxes under a given
gradient of total head.

On the other hand, if we compare horizontal volume fluxes under a given pressure
gradient, the hydraulic permeability needs to be divided by theweight of fluid per unit
volume and the resulting proportionality coefficient K0/ηa characterizing air flow
would be 55 times higher than the coefficient K0/ηl characterizing water. This means
that if a porous wall is subjected at one face to a higher pressure of the surrounding
fluid than at the other face, the volume of the fluid passing through the wall is 55
times higher if the fluid is air than if it is water.

8.3.3 Mass Balance Equation

Consider the transport of a certain substance (such as water or air) in a porous
medium. Looking at the mass flux across the boundaries of a small control volume
inside themedium,we can construct themass balance equation,which describesmass
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Fig. 8.10 Three-dimensional flux into and out of a prismatic control volume

conservation of the considered species and serves as the fundamental field equation
for the transport problem. In the absence of internal mass sources or mass sink, the
mass conservation law requires that the mass contained in the volume increases by
the net flux into the volume, integrated over the corresponding time interval.

Let us examine a small prismatic control element of sides Δx,Δy,Δz and
volume ΔV = Δx Δy Δz, centered at point (x0, y0, z0), as shown in Fig. 8.10.
The mass that enters the control volume during time Δt through the left face,
which is perpendicular to the x-axis and has area Δy Δz, can be expressed as
jx (x0 − Δx/2, y0, z0) Δy Δz Δt , where jx is the x-component of the mass flux
vector j . On the opposite face, the mass that leaves the control volume during time
Δt is jx (x0 + Δx/2, y0, z0) Δy Δz Δt . To get the net mass gain in the control
volume, we subtract the outward from the inward flux, which gives

[ jx (x0 − Δx/2, y0, z0) − jx (x0 + Δx/2, y0, z0)]Δy Δz Δt =
= − jx (x0 + Δx/2, y0, z0) − jx (x0 − Δx/2, y0, z0)

Δx
ΔV Δt (8.73)

In the limit Δx → 0, the fraction in (8.73) becomes the partial derivative ∂ jx/∂x
evaluated at point (x0, y0, z0). Similar expressions can be constructed for the contri-
bution of the outward and inward fluxes in the y and z directions (Fig. 8.10). Summing
the net gains and taking the limit for Δx , Δy, Δz, and Δt approaching zero, one
finds that the total mass gain per unit volume and unit time is

−
(

∂ jx
∂x

+ ∂ jy
∂y

+ ∂ jz
∂z

)
≡ −∇ · j (8.74)
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where ∇ · j is the divergence14 of the mass flux.
To keep the presentation simple and easy to follow, the derivation of the mass

balance equation has been presented here in a somewhat sloppy fashion (from the
mathematical point of view). If the dimensions of the control volume are considered
as finite, the mass passing the left face per unit of time would not be exactly equal to
jx (x0 − Δx/2, y0, z0) Δy Δz; it would differ from this value by higher-order terms
that vanish in the limit of Δy → 0 and Δz → 0.

An alternative derivation from a broader principle can be based on the diver-
gence theorem (Gauss theorem). Consider a control volume V of an arbitrary shape,
bounded by a surface denoted as S. The mass (per unit time) leaving the control
volume through an infinitesimal part of the boundary dS with outward normal n is
given by j · n dS. Integrating over the entire boundary S, we obtain the net loss per
unit time. Based on the divergence theorem, the surface integral can be transformed
into a volume integral: ∫

S
j · n dS =

∫
V

∇ · j dV (8.75)

Shrinking the control volume to a point, we find that the net loss of mass per unit
volume and unit time is ∇ · j . The net gain has of course the opposite sign.

The mass balance equation has a particularly simple form for those substances
that are not affected by phase changes or chemical reactions. This is the case for dry
air and for the total moisture (which includes all phases of water, both evaporable
and chemically bound). In contrast to that, the mass balance equation for water vapor
only (or for the pore gas, consisting of dry air and water vapor) needs to contain a
source/sink term reflecting evaporation and condensation. Themass balance equation
for evaporable water needs to contain a sink term reflecting hydration.

Let us now construct the specific form of themass balance equation for moisture.
The mass of moisture per unit volume corresponds to the total water content, wt .
Mass conservation requires that the net gain given by (8.74) be equal to the time
derivative of the total water content. If the total mass flux of moisture is denoted as
jw, the resulting equation reads

ẇt = −∇ · jw (8.76)

For further developments, it is convenient to split wt into the sum of we and wn and
express we according to (8.5). The balance equation (8.76) is then presented in the
form

d

dt

[
ρln pSl + ρvnp(1 − Sl)

] + ẇn = −∇ · jw (8.77)

14The dot · between ∇ and j in (8.74) denotes the contraction (scalar product) of two vectors (first-
order tensors), which produces a scalar. Without this dot, ∇ j would be interpreted as the gradient
of the flux, which is a second-order tensor. In engineering (or matrix) notation, the divergence is
written as ∇T j where ∇T = {∂/∂x, ∂/∂y, ∂/∂z} is a row matrix of differential operators.
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An analogous mass balance equation can be set up for dry air; see equation (J.22) in
Appendix J.4.

8.3.4 Differential Equations for Moisture Transport

Having prepared all the necessary ingredients, we can combine the basic equations
and construct the governing partial differential equation(s) in terms of the primary
unknown field(s).

A great variety of models for moisture transport in porous media have been pro-
posed in the literature. Their complete description and detailed discussion is out of
scope of the present treatise. For illustration, Table8.2 shows a selection of models
with indication of the gradients that were considered as driving themoisture transport
mechanisms. Of course, this table is by far not complete; it only gives a flavor of the
multitude of approaches found in the literature.

Table 8.2 Selected models for moisture transport and the gradients driving transport mechanisms
in porous materials (concrete where marked)

Publication ∇we ∇ pl ∇ pg ∇ pv ∇ pc ∇
(
pv
pg

)
∇h ∇Ht

Richards [724] •
Krischer [553] • •
Lykov [587] •
Pihlajavaara [693], con-
crete

•

Bažant and Najjar [165],
concrete

•

Pedersen [672], Nicolas
[656]

• •

Künzel [556] • •
Gawin, Majorana and
Schrefler [414], concrete

• • • •

Hagentoft et al. [444] • •
Moonen [636] • • •
Coussy [328] • • •
Meftah, Pont and Schre-
fler [624]

• •

8.3.4.1 Water Transport in Fully Saturated Concrete

A simple model for liquid water transport in fully saturated concrete based on the
water mass balance equation combined with the Darcy law, can be considered as a
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special case of the model proposed by Richards [724] and often used in soil mechan-
ics; see Appendix J for more detail.

At full saturation (i.e., for Sl = 1 and jw = j l ), the mass balance equation (8.77)
reduces to

d

dt

(
ρln p

) + ẇn = −∇ · j l (8.78)

On the right-hand side, the water flux j l can be expressed using the Darcy law (8.69).
Noting that ∇ · ∇ = ∇2 = Laplace operator, and expanding the time derivative on
the left-hand side, we get

ρ̇ln p + ρl ṅ p + ẇn = Kh

g
∇2 pl + Kh

∂ρl

∂z
(8.79)

The liquidwater densityρl is sometimes considered as constant (e.g., in the derivation
of Kelvin equation). In the present context, it is important to take into account the
compressibility of water. The temperature is assumed to be constant, and so the
linearized state equation of water can be written as

ρl(pl) = ρl0

(
1 + pl − patm

Kl

)
(8.80)

where Kl is the bulk modulus of water and ρl0 is the water density at atmospheric
pressure. Substituting (8.80) into (8.79), we obtain, after a simple rearrangement,

ṗl = Cl∇2 pl + Kh

np

∂pl
∂z

− Kl

ρl0np
ẇh (8.81)

where

Cl = KlKh

ρl0npg
(8.82)

is the diffusivity of liquid water in saturated concrete [m2/s], and

ẇh = ẇn + ρl ṅ p (8.83)

is the rate of water deficiency due to hydration, consisting of two contributions with
opposite signs. Note that the porosity rate ṅ p is negative. The loss of water due to
chemical reactions (first term, positive) is partially compensated by the reduction of
porosity (second term, negative).

An application of Eqs. (8.81)–(8.83) to the analysis of spreading of a hydraulic
pressure front in a dam will be presented in Sect. 8.5.
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8.3.4.2 Moisture Transport in Partially Saturated Concrete
(Bažant–Najjar Model)

Carlson [293] was probably the first to notice that the linear diffusion theory is inap-
plicable to concrete, grossly overpredicting the long-timemoisture loss. Pickett [690]
proposed predicting the long-time moisture loss with a linear diffusion theory but
greatly reduced diffusivity. The errors with long-time prediction were further docu-
mented by Pihlajavaara [693]. Cognizant of these observations, and benefiting from
the first measurements of pore humidity distributions enabled by the development
of Monfore gauge [8] at Portland Cement Association (Skokie, Illinois), Bažant and
Najjar proposed [165] and elaborated [166] a nonlinear model for moisture transport
in concrete, with the pore relative humidity h as the primary unknown. Their model,
which has been embodied in the fibModel Code [381], directly postulates that, under
constant temperature, the total moisture flux is driven by the gradient of pore relative
humidity. Mathematically, such a transport law is written as

jw = −cp ∇h (8.84)

where cp is the moisture permeability [kg/m·s], to be determined experimentally.
Equation (8.84) relates the moisture flux to the humidity h and its gradient, but

the moisture mass balance equation (8.76) is written in terms of the total moisture
content wt . To obtain a differential equation for humidity as the primary unknown,
it is necessary to combine these equations with formula (8.52), which provides the
link between the rates of wt and of h. In this way, we obtain the governing equation
of the Bažant–Najjar model,

ḣ = k(h, te)∇ · [
cp(h, te)∇h

] + h∗
s (h, te) (8.85)

Recall that k is the reciprocal moisture capacity (inverse slope of the sorption
isotherm) and h∗

s is the rate of change of humidity due to self-desiccation. Both
are functions of the humidity h and equivalent age te. In general, the moisture per-
meability cp depends on the equivalent age, too, because the hydration process results
into changes of the pore structure. Identification of the specific form of functions k, cp
and h∗

s is quite tedious and requires extensive experimental data. Due to the scarcity
of such data, various simplified versions of Eq. (8.85) can be useful.

The changes of pore humidity due to self-desiccation are virtually negligible for
normal strength concretes with no admixtures and with water-cement ratio w/c >

0.45, in which self-desiccation typically reduces h to about 0.98 and never below
0.93. In that case, the humidity sink term h∗

s on the right-hand side of (8.85) can be
omitted. It can also be omitted for sufficiently old concretes, of any kind, in which
the humidity drop due to further progress of self-desiccation is negligible. For such
concretes, the evolution of microstructure can be neglected as well, which means
that the dependence of the moisture capacity and permeability on the equivalent age
can be disregarded. The governing differential equation then takes on the simplified
form
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ḣ = k(h)∇ · [cp(h)∇h
]

(8.86)

The possibility to omit the sink term, which is what motivated Bažant and Najjar
[166], is a big modeling advantage of the approach based on the gradient of h. On
the other hand, for high-strength concretes, in which the water-cement ratio is very
low (0.18 ∼ 0.35), the self-desiccation may reduce h substantially (even as low as
0.64; see [57]). For modern concretes with admixtures, the self-desiccation can be
significant even if w/c ≥ 0.5. In these cases, the sink term cannot be omitted from
the right-hand side of (8.85).

If the moisture capacity is considered as constant (i.e., if the isotherm is approxi-
mated by a straight line), Eq. (8.86) can further be simplified to

ḣ = ∇ · [C(h)∇h] (8.87)

where
C(h) = kcp(h) (8.88)

is the moisture diffusivity [m2/s]. For mature good quality concretes, its values are
very low—roughly 10 to 20 mm2/day at saturation (h = 1), and for high-strength
concrete even much less.

For concrete, the dependence of diffusivity on pore relative humidity is very strong
(as noticed already by Carlson [293]) and cannot be ignored in computations. A jump
in diffusivity to roughly 5% of its value at full saturation (or less) occurs mainly
between 85 and 60% humidity. This fact, established by Bažant and Najjar [165]
on the basis of experimental data on the evolution of pore humidity distributions
in cylinders and slabs, is illustrated in Figs. 8.25a-c and 8.28. The dotted curves,
representing optimum fits by the linear diffusion theory, are in blatant disagreement
with the data of Abrams and Orals [9]. The solid curves, which fit much better, are
the result of optimization of the function C(h), which established that the humidity
dependence of concrete diffusivity may be approximately described by the empirical
law [165]

C(h) = C1

⎛
⎜⎜⎝α0 + 1 − α0

1 +
(
1 − h

1 − hc

)r

⎞
⎟⎟⎠ (8.89)

where C1 = C(1) is the diffusivity at full saturation, α0 is the ratio C(0)/C(1), hc is
the pore relative humidity at which C(hc) = [C(0) + C(1)]/2, and r is a parameter
affecting the shape of the curve; see Fig. 8.11. Typical values identified by Bažant
and Najjar [165, 166] based on fitting of experimental data15 are α0 ≈ 0.05 and
hc ≈ 0.75.

15Whether the value of C(h) is constant for h < 0.60 is an open question. Constancy was assumed
because of the lack of data. It might be that C(h) approaches almost 0 as h → 0 (as suggested by
the optimal fit of the steady state profile in Fig. 8.29). Tests are needed.
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Fig. 8.11 Dependence of normalized diffusivity C(h)/C1 on relative humidity h according to
formula (8.89) proposed by Bažant and Najjar [165], for different values of exponent r and for
α0 = 0.05 and hc = 0.75

According to many classical data [8, 9, 31, 476, 497] analyzed by Bažant and
Najjar [165, 166], the optimumvalue is r = 16, and according to some other classical
data [456], the optimum is r = 6. In some calculations of structures (in which, of
course, many phenomena other than drying intervened), various intermediate values
of r seemed optimum. In the absence of more recent precise measurements, it is
recommended to use r = 12 as a compromise. As demonstrated in Fig. 8.11, high
values of r lead to an abrupt drop of diffusivity near h = hc, and the curves for
r = 12 and r = 16 are not too different. Therefore, the precise value of r is not as
important as the choice of the other parameters. The values recommended by the fib
Model Code 2010 [381] are α0 = 0.05, hc = 0.8, r = 15 and

C1 = 10−8m2/s

( f̄c/MPa) − 8
(8.90)

For instance, for concretewithmean compression strength f̄c = 40MPa, this formula
gives C1 = 3.125 × 10−10 m2/s = 27 mm2/day.

For a linear desorption isotherm, the reciprocalmoisture capacity k is constant and
the moisture permeability, calculated as cp(h) = C(h)/k, exhibits the same strong
dependence on h as the diffusivity. Even if the isotherm is nonlinear, the change of its
slope is relatively small and the observed dramatic reduction of diffusivity at lower
humidities must again be due to a strong reduction of moisture permeability.

For constant diffusivity, (8.87) reduces to the linear diffusion equation

ḣ = C ∇2h (8.91)

where∇2 = ∇·∇ denotes the Laplace operator. Equations of this form typically arise
in science and engineering when a certain phenomenon is described by (i) a balance
equation that contains the time derivative of a certain variable and the divergence of its
flux, and (ii) a constitutive equation that links the flux to the gradient of the primary
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variable. A prominent example is the heat conduction equation, which combines
energy balance with Fourier’s law postulating proportionality of the heat flux to the
temperature gradient. Equations (8.85)–(8.87) are nonlinear forms of the diffusion
equation. Note that the term “diffusion” is used here in a broad sense and covers all
transport mechanisms, while the “molecular diffusion” as one of the mechanisms
has a more specific meaning.

The linear equation (8.91) can easily be solved by Fourier series expansions [297].
A closed-form solution for a half-space will be derived in Sect. 8.4.4.1; see (8.181).
A similar one-dimensional formulation is also possible for spherically or axially
symmetric problems, for which the linear problem is solved by series expansions in
terms of spherical or cylindrical harmonics. Unfortunately, though, the assumption
of constant diffusivity is realistic for concrete only in rare situations—when both the
initial humidity h0 and the ambient humidity henv are within the range in which the
curve of C(h) in Fig. 8.11 is almost flat, which occurs only if either both are between
85 and 100%, or both below 65%.

8.3.4.3 Boundary and Initial Conditions

In Sects. 8.3.4.1–8.3.4.2, two typical models for moisture transport at constant tem-
perature have been presented:

1. The model describing water flux in fully saturated concrete based on the Darcy
law deals with the liquid water pressure pl as the primary unknown field, and the
governing differential equation is given by (8.81).

2. The model of Bažant and Najjar [165, 166] uses the pore relative humidity as the
primary unknown, and the governing differential equation is given by (8.85) in
the most general case, by (8.86) if the hydration reaction with its effect on the
pore structure is neglected, by (8.87) if the sorption isotherm is approximated by
a straight line, and by (8.91) if the diffusivity is approximated by a constant.

To make the solution of a differential equation unique, appropriate boundary
conditions need to be specified at each point of the boundary. For problems described
by a single differential equation with one scalar unknown field, only one scalar
boundary condition is used.

At an impervious part of the boundary, the fluxes normal to the boundary vanish.
This can be ensured by enforcing zero normal components of the gradients that drive
the fluxes. The normal component of the gradient is in fact the directional derivative in
the direction perpendicular to the boundary. For the model from Sect. 8.3.4.1, a zero
flux is equivalent to a vanishing normal derivative of the total head. This condition
can be rewritten in terms of the liquid pressure as

∂pl
∂n

= −ρlgez · n (8.92)
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where n is the outward unit vector normal to the boundary. The scalar product
ez · n vanishes if the boundary segment is vertical. For the Bažant–Najjar model, a
zero normal derivative of pore relative humidity must be enforced at an impervious
boundary. The same type of boundary condition is applicable at a plane of symmetry.

At a permeable boundary in contact with the surrounding atmosphere, it is reason-
able to assume that the pore liquid pressure is equal to the atmospheric pressure. If
the permeable boundary is in contact with water in a reservoir (which is the case, e.g.,
at the upstream face of a dam), the pore liquid pressure is set equal to the hydrostatic
pressure at the corresponding depth below the free surface. For the Bažant–Najjar
model, the simplest condition at a permeable boundary in contact with the surround-
ing atmosphere is that the pore relative humidity is equal to the ambient relative
humidity, henv. This follows from the assumptions that the vapor pressure in the
partially saturated pores is equal to the ambient vapor pressure, pv,env, and that the
temperature and thus the saturation pressure at the boundary are the same as their
environmental values.

More refined boundary conditions take into account that the exchange of vapor
between the surface and the environment is not instantaneous. This can be reflected
by the condition that the outward normal flux jw · n is proportional to the difference
in pressures:

jw · n = Bv

(
pv − pv,env

)
(8.93)

The proportionality factor Bv is called the surface vapor transfer coefficient. In
general, it depends on the movement of air, illumination, or partial insulation, and
its typical values are 75 × 10−9 s/m for outdoor conditions and 25 × 10−9 s/m for
indoor conditions [556].

For the Bažant–Najjar model, condition (8.93) is reformulated as

jw · n = ηe (ln h − ln henv) (8.94)

with proportionality factor ηe, called the surface emissivity [kg/m2s], which cor-
responds to the water vapor transfer coefficient Bv from (8.93) multiplied by the
saturated vapor pressure. At 20◦C, we have psat = 2.33 kPa, and the surface emis-
sivity can be estimated as ηe ≈ 175 × 10−6 kg/m2s ≈ 15 kg/m2day for outdoor
conditions and ηe ≈ 58 × 10−6 kg/m2s ≈ 5 kg/m2day for indoor conditions.

Instead of relating the boundary flux to the jump in logarithm of relative humidity,
as done in (8.94), it is possible to consider it as proportional to the jump in relative
humidity, which leads to a slightly modified boundary condition

jw · n = η∗
e (h − henv) (8.95)

To get a similar behavior for conditions (8.94) and (8.95), the proportionality factor
η∗
e used in (8.95) should be somewhat higher than ηe from (8.94). At very early

stages of the drying process, when h is close to 1, both conditions would be almost
equivalent if η∗

e = ηe ln henv/(henv − 1), while for very late stages, when h is close
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to henv, one would need to set η∗
e = ηe/henv. For instance, for henv = 0.5, these

relations, respectively, lead to η∗
e = 1.39ηe and η∗

e = 2ηe.
For ease of computations, Bažant and Najjar [166] suggested that the boundary

condition of finite emissivity can be approximately represented by imagining the
concrete surface to be covered by an additional concrete layer of some small thickness
δe, and prescribing h = henv at the surface of this layer. The thickness of such a
fictitious layer can be roughly estimated as the ratio between the permeability and
the surface emissivity. It appears that generally δe ≤ 1 mm. The smallness of δe
documents that the boundary conditions of prescribed h are usually adequate for
typical concrete members (though not for extremely thin mortar or hardened cement
paste specimens).

The boundary condition usually deals with a fixed (time-independent) value of
henv, which represents the mean ambient humidity. This is perfectly justified for
laboratory tests in a climatic chamber with controlled humidity (and temperature),
but less so for real structures exposed to natural variations. In linear diffusion, the
variability of environmental humidity and temperature could be taken easily into
account by spectral analysis of diffusion for a spectral environment [92, 192, 193].
But the linear diffusion model is too crude. For nonlinear diffusion, Monte Carlo
simulation is a suitable approach. Some insight can also be gained by looking at the
effects of periodic daily and annual variations; see Sect. 8.4.6.

In addition to boundary conditions, it is also necessary to prescribe the initial
distribution of the primary unknown field (i.e., pore relative humidity for the Bažant–
Najjar model) in the form of an initial condition. Most accurately, the simulation
should start at casting and the governing equation should include the sink term due
to self-desiccation. In this case, the initial state would be fully saturated and the initial
condition h = 1.0 would be imposed at time t = 0. However, often an approximate
analysis starts at the moment of exposure to environment, t0, at which concrete must
have self-desiccated to some extent. Then, the initial value for normal concrete could
be about 0.97, but for modern concretes of very small water-cement ratios, it could
be as low as 0.8.

To give an example, typical simple initial and boundary conditions for moisture
transport across a concrete slab of thickness D considered as a one-dimensional
problem and described by the Bažant–Najjar model are

h(x, t0) = h0 for 0 ≤ x ≤ D (8.96)

h(0, t) = henv for t > t0 (8.97)

h(D, t) = henv for t > t0 (8.98)

where h0 = initial humidity in concrete pores, and henv = ambient relative humidity,
considered here as constant. If the finite emissivity of the surface is taken into account,
conditions (8.97)–(8.98) are replaced by

jx (0, t) + η∗
e h(0, t) = η∗

e henv for t > t0 (8.99)

− jx (D, t) + η∗
e h(D, t) = η∗

e henv for t > t0 (8.100)
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From the mathematical point of view, conditions (8.97)–(8.98) are Dirichlet
boundary conditions, because they prescribe the value of the primary unknown h. The
zero-flux condition on an impervious boundary could be rewritten in terms of the gra-
dient of h and thus corresponds to a Neumann condition. Conditions (8.99)–(8.100)
combine the value of the unknown function and its derivative and are classified as
Robin boundary conditions. For zero surface emissivity (η∗

e = 0), they would be
equivalent to Neumann conditions, and for infinite surface emissivity (η∗

e = ∞) to
Dirichlet conditions.

8.3.5 Scaling Properties

The governing equation (8.86) of the Bažant–Najjar model (with the sink term due to
self-desiccation neglected) can be considered as an example of a nonlinear diffusion
equation. The word “diffusion” should be understood here in the general sense, not
just as one specific transport mechanism, but as a general process governed by a
parabolic differential equation, same as, e.g., heat conduction. Dimensional analysis
of the diffusion equation provides important information on the scaling properties of
the solution.

Instead of formal analysis, we will use simple arguments. If the geometric shape
of the structure remains the same but all its dimensions are multiplied by a scaling
factor, β, we can map each point of the original structure onto a point of the scaled
structure by a homothetic transformation. Any given distribution of humidity across
the structure ismappedonto the correspondinghumidity distribution across the scaled
structure. After this transformation, all the first derivatives with respect to the spatial
coordinates are reduced β times (because all distances increase β times), and the
boundary conditions of prescribed value or zero flux remain the same.

Consequently, the rate at which humidity decreases is reduced β2 times, because
on the right-hand side of (8.86), the components of the humidity gradient are reduced
β times; then, they are multiplied by the diffusivity (which, at the same humidity,
remains the same) and transformed by the divergence operator that uses spatial deriv-
atives again, so the result is once more reduced β times. Thus, for the same concrete,
the times needed to reach the same level of drying are proportional to the square of
the structure size.

The foregoing arguments show that if h1(x, t) is the solution of the diffusion
problem (8.86) obtained on a certain domain of characteristic size D1 (e.g., on a slab
of thickness D1) for initial humidity h0, constant environmental humidity henv, and
neglected self-desiccation, then the solution of the same problem on a geometrically
similar domain of characteristic size D2 = βD1 can be written as

h2(x, t̂) = h1

(
x
β

,
t̂

β2

)
(8.101)
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For convenience, we have written the solution as a function of the drying time t̂ =
t − t0, measured from the onset of drying at concrete age t0. Otherwise, the scaling
relation for the time variable would look more complicated. Since t̂ and t differ just
by a constant, there is no need to distinguish between partial derivatives with respect
to t̂ and t , and we will use the simpler notation ∂/∂t .

The scaling rule (8.101) has an important implication: The drying times of geo-
metrically similar structures of different sizes exposed to the same environmental
conditions are proportional to the square of the size. This is true independently of the
precise definition of “drying time,” which can be taken, e.g., as the time after which
the maximum humidity in the structure attains a given threshold, or as the time after
which the average humidity in the structure attains a given threshold. The scaling
rule provides justification of the general form of Eq. (3.17), in which the shrinkage
halftime is taken proportional to the square of the effective thickness D.

On the other hand, if we consider the same structure size but a concrete with β

times larger diffusivity (i.e., with β times larger permeability cp or β times smaller
moisture capacity 1/k), the rate of drying increases β times and the time needed
to reach the same level of drying is inversely proportional to the diffusivity. This
scaling rule justifies why parameter kt in (3.17) should be inversely proportional to
the diffusivity.

8.3.6 Effect of Distributed Cracking on the Rate of Drying

Concrete structures, especially reinforced ones, function with large zones intersected
by systems of closely spaced parallel hairline cracks. One might expect these cracks
to enhance the overall moisture permeability cp of concrete in the directions parallel
to the cracks. A simple model for the enhancement was set up by Bažant and Raft-
shol [184] under the assumption that crack walls are perfectly planar, with uniform
opening δ. Assuming viscous laminar flow of air with water vapor, they found the
additional diffusivity to be

ΔCv = αc
ρv psatk

12ηv

× δ3

s
(8.102)

where αc = 1 if the crack surfaces are perfectly planar, ρv and ηv =mass density and
viscosity of water vapor, psat = saturated vapor pressure, k = reciprocal moisture
capacity, and δ and s = width and spacing of the cracks. To get an idea how strong
this influence could be, consider typical values ρv = 0.013 kg/m3 (at 75% pore
relative humidity), ηv = 18 × 10−6 Pa·s, psat = 2338 Pa and k = 9 × 10−3 m3/kg,
from which

ρv psatk

12ηv

= 0.013 × 2338 × 0.009

12 × 18 × 10−6
s−1 ≈ 1.27 × 103 s−1 (8.103)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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For idealized, perfectly planar smooth cracks (αc = 1) having the width of δ = 0.1
mm and spacing of s = 7 cm, (8.102) would then give

ΔCv = 1.27× 103 × (0.1 × 10−3)3

0.07
m2/s = 18.14× 10−9 m2/s ≈ 1570 mm2/day

(8.104)
whichwould roughly be a 150-fold increase in diffusivity (compared to typical values
in the order of 10 mm2/day).

Fig. 8.12 (a) C-shaped specimen with crack-producing tie rod, (b) map of crack shapes and crack
widths observedbymicroscope,with values in 0.01mm;figure originally published inACIMaterials
Journal, Sep-Oct 1987

To check this prediction, Bažant et al. [122] tested C-shaped beams deformed
permanently by a tie rod (Fig. 8.12). Cracking localization was prevented (and thus
uniform crack spacing achieved) by placing reinforcing steel bars on the tensile side.
For the width of 0.1mm and spacing 7 cm, the measured diffusivity was only 2.25×
greater than the diffusivity of uncracked concrete. So, the empirical value of αc in
(8.102) is about 1.25/156 = 0.008, for this case. The logical explanation is that the
crack space must be partly discontinuous or contain narrow necks obstructing the
flow.

The laws that govern crack spacing will be discussed in more detail in Sect. 12.2.
Empirical expressions that relate the increase of permeability to a damage variable
will be presented in Sect. 12.7.

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_12
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8.4 One-Dimensional Moisture Transport

8.4.1 One-Dimensional Diffusion Equation

In many practical problems, moisture transport can approximately be described in
the one-dimensional setting. This is the case in particular for flat slabs or walls with
two parallel boundary surfaces exposed to the ambient humidity (not necessarily the
same on both sides). If the other parts of the boundary are impermeable or remote
(so that one can assume an infinite slab or wall), moisture transport takes place in the
direction perpendicular to the midplane of the flat member. All variables of interest
become independent of the in-plane coordinates y and z and can be considered as
functions of a single spatial coordinate x , measured in the direction perpendicular to
the mid-surface. Of course, we must also assume that the material properties depend
exclusively on x , e.g., that the material is homogeneous or formed by homogeneous
layers parallel to the midplane.

Under the foregoing assumptions, Eq. (8.86) reduces to

ḣ = k(h)
[
cp(h) h′]′

(8.105)

where h(x, t) is the unknown function describing the pore relative humidity, and
the prime denotes differentiation with respect to x . For constant moisture capacity,
(8.105) simplifies to

ḣ = [
C(h) h′]′

(8.106)

which is the one-dimensional version of (8.87). For a slab of thickness D exposed
to the same ambient humidity on both sides, these equations can be combined with
initial condition (8.96) and either Dirichlet boundary conditions (8.97)–(8.98) or, if
a finite surface emissivity is considered, Robin boundary conditions (8.99)–(8.100).
If the material properties are symmetric with respect to the midplane, it is possible to
solve the problem on the interval [0, D/2] and replace the second boundary condition
by the zero-flux condition

jx (D/2, t) = 0 for t > t0 (8.107)

which is equivalent to the homogeneous Neumann condition

h′(D/2, t) = 0 for t > t0 (8.108)

Another type of problem that can be described using a single spatial variable is
radial moisture transport in an axisymmetric body, e.g., in a cylindrical specimen.
The corresponding differential equation could be derived by formal manipulations
of the general diffusion equation (8.86), based on a transformation from Cartesian to
polar coordinates. However, it is more instructive to construct it from the modified
form of the mass balance equation.
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Consider a small element of an axisymmetric body shown in Fig. 8.13, with mois-
ture flux exclusively in radial direction. The mass flux jr is thus a function of the
radial coordinate r only. Neglecting the higher-order terms, the net flux (difference
between the influx through the section at r and the outflux through the section at
r + Δr ) per unit volume can be expressed as

jr × r Δα Δz − ( jr + Δ jr ) × (r + Δr)Δα Δz

r Δα Δz Δr
≈ −r Δ jr + jr Δr

r Δr
= −Δ jr

Δr
− jr

r
(8.109)

Fig. 8.13 Radial flux into and out of a control volume extracted from an axisymmetric body

Taking the limit ofΔr → 0, the fractionΔ jr/Δr becomes the derivative d jr/ dr .
Note the presence of an additional term, − jr/r , which stems from the difference
between the areas of the sections at r and at r + Δr . Consequently, the moisture
mass balance equation (8.76) is, in the present case of axisymmetric radial flow,
replaced by

ẇt = − d jr
dr

− jr
r

(8.110)

According to the Bažant–Najjar transport law (8.84), the radial flux is given by

jr = −cp(h)
dh

dr
(8.111)

If the rate of the water content ẇt is expressed in terms of the humidity rate ḣ using
(8.52) and the effect of self-desiccation is neglected, Eq. (8.110) can be rewritten as

ḣ = k(h)

[
d

dr

(
cp(h)

dh

dr

)
+ cp(h)

r

dh

dr

]
(8.112)
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This is the one-dimensional nonlinear diffusion equation corresponding to the
Bažant–Najjar model for axisymmetric radial moisture transport. For constant mois-
ture capacity k, it could be written as

ḣ = d

dr

(
C(h)

dh

dr

)
+ C(h)

r

dh

dr
(8.113)

where C(h) = kcp(h) is the moisture diffusivity.

8.4.2 Numerical Solution by Finite Differences

The diffusion equation (8.105) or (8.112) is a partial differential equation for the
unknown pore relative humidity, which depends on the temporal variable t and spa-
tial variable x . Approximate numerical solutions of such problems are usually based
on a suitable discretization technique that converts the problem into a set of alge-
braic equations for a finite number of unknowns. Perhaps the most straightforward
approach is to replace the partial derivatives (both in space and in time) by finite
differences.

8.4.2.1 Forward Euler Method

Let us start from the simplest case of a one-dimensional linear diffusion equation

ḣ(x, t) = C h′′(x, t) (8.114)

which corresponds to (8.106) with constant diffusivity C . The spatial interval [0, L]
can be divided into m equally sized subintervals of length Δx = L/m, and the
approximate solution is sought at points xi = i Δx , i = 0, 1, . . .m, and at time
instants tk , k = 0, 1, . . . n, where t0 is the initial time at which the initial condition
is prescribed and n is the total number of time steps. The (approximately computed)
value of h(xi , tk) will be denoted as h(k)

i .
Suppose that the solution is known at time tk , and we would like to proceed to

time tk+1 = tk + Δt (the time step can be variable, but when discussing a single
time step, we denote it simply as Δt). Within the time interval from tk to tk+1, it is
natural to approximate the time derivative on the left-hand side of (8.114) evaluated at

point xi by the finite difference expression
(
h(k+1)
i − h(k)

i

)
/Δt . If the second spatial

derivative on the right-hand side of (8.114) is approximated by a finite difference
expression based on the currently known values (i.e., on the values at time tk), the
resulting equations
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h(k+1)
i − h(k)

i

Δt
= C

h(k)
i−1 − 2h(k)

i + h(k)
i+1

(Δx)2
, i = 1, 2, . . .m − 1 (8.115)

for unknown values h(k+1)
i become decoupled and their solution can be directly

expressed as

h(k+1)
i = h(k)

i + C Δt

(Δx)2

(
h(k)
i−1 − 2h(k)

i + h(k)
i+1

)
, i = 1, 2, . . .m − 1 (8.116)

This procedure is fully explicit in the sense that no set of coupled equations needs
to be solved and the solution is obtained in a straightforward way by evaluating the
update formula on the right-hand side of (8.116), which can be done recursively for
k = 0, 1, 2, . . . n−1. The approach based on the finite difference scheme (8.115) can
be considered as the forward Euler method because the right-hand side represents an
approximation of the second spatial derivative at time tk and the approximation of
the time derivative on the left-hand side is a forward finite difference from tk to tk+1.

To get a complete algorithm of the forward Euler method, an additional detail
has to be clarified. In Eqs. (8.115)–(8.116), the boundary points with i = 0 and
i = m have been deliberately omitted. Their treatment depends on the type of
boundary conditions. If the pore relative humidity on the boundary is set equal to
the prescribed ambient humidity (Dirichlet condition (8.97) or (8.98)), we simply
set h(k+1)

0 = henv(tk+1) or h(k+1)
m = henv(tk+1). If the boundary condition involves

the moisture flux (which depends on the humidity gradient), one can approximate
the humidity gradient (i.e., spatial derivative) on the boundary by a finite difference

expression. Instead of using a one-sided formula, e.g.,
(
h(k+1)
m − h(k+1)

m−1

)
/Δx on the

right boundary, it is better to evaluate the central difference, which uses a (fictitious)
value of the solution outside the domain, at a “ghost” point xm+1. However, by
combining the boundary condition with Eq. (8.115) written at the boundary point
(i.e., for i = m), the additional unknown can be eliminated and a closed-form update
formula for the value at the boundary is obtained.

For instance, the homogeneous Neumann condition (8.108) imposed on the right
boundary, i.e., at x = L ≡ D/2, can be approximated by

h(k)
m+1 − h(k)

m−1

2 Δx
= 0 (8.117)

which implies that the ghost-point value h(k)
m+1 should be set equal to h(k)

m−1. Using
this identity in (8.116) written for i = m, we obtain

h(k+1)
m = h(k)

m + 2C Δt

(Δx)2

(
h(k)
m−1 − h(k)

m

)
(8.118)

On the left boundary, subscripts m − 1 and m would be replaced by 1 and 0.
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Example 8.1. Accuracy and stability of the forward Euler method

Let us illustrate the performance of the forward Euler method by solving a problem
for which a closed-form solution is available. Consider the linear diffusion equation
(8.114) with the initial humidity distribution16

h(x, 0) = 0.6 + 0.4 sin
πx

2L
, 0 ≤ x ≤ L (8.119)

and with boundary conditions

h(0, t) = 0.6, t > 0 (8.120)

h′(L , t) = 0, t > 0 (8.121)

It is easy to check that the exact solution is given by

h(x, t) = 0.6 + 0.4 sin
πx

2L
exp

(
− t

τ

)
(8.122)

where

τ = 4L2

Cπ2
(8.123)

is a characteristic time, introduced for convenience.

Fig. 8.14 Relative humidity profiles at times t = 0, 0.5τ , τ , 1.5τ , and 2τ : exact solution (solid
curves) versus numerical results (isolated points)

The initial values h(0)
i at time t0 = 0 are obtained from the initial condition (8.119),

and the values at times t1, t2, etc., are then calculated using the boundary condition
(8.120) for point x0 = 0, the recursive update formula (8.116) for points x1 to xm−1,

16For simplicity, in the present section devoted to numerical methods, we set the initial time t0 to 0,
without linking the time scale to the age of concrete. Consequently, there is no need to distinguish
here between the “actual time,” t , and the duration of drying, t̂ = t − t0.
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and formula (8.118) for point xm = L . The results can be conveniently presented in
terms of the dimensionless spatial coordinate x/L and the dimensionless time t/τ .
Figure8.14a compares the exact solution at times 0, 0.5τ , τ , 1.5τ , and 2τ , plotted
by solid curves, with the approximate values computed by the forward Euler method
with grid spacing Δx = L/5 = 0.2L and time step Δt = τ/40 = 0.025τ . A
visual comparison indicates that the solution is sufficiently accurate for engineering
purposes, even on such a coarse spatial grid (only 4 internal grid points plus 2 points
on the boundary). Some limited numerical error is discernible only if the figure is
replottedwith amodified scale on the vertical axis; see Fig. 8.14b. Of course, the error
is low owing to a high regularity of the problem. If a sharp drying front penetrates
into a specimen, steep humidity gradients arise and the error increases, especially
for a nonlinear diffusion model.

Let us explore in more detail the dependence of the error on the grid spacing Δx
and time step Δt . For the present problem, the exact value of humidity at the right
boundary and at time t = τ (truncated to 6 significant digits) is h(L , τ ) = 0.747152
while a numerical solution by the forward Euler method with Δx/L = 0.2 and
Δt/τ = 0.025 leads to h(40)

5 = 0.746520, which corresponds to an absolute error
of 6.32 × 10−4. The choice of numerical parameters Δx and Δt must be made
judiciously, because the error is affected by the spatial as well as the temporal dis-
cretization. For instance, if Δx/L = 0.2 is fixed and Δt tends to zero, the numerical
result does not converge to the exact value but to 0.748363, and the magnitude of the
error becomes larger than for the finite step Δt = 0.025τ .

One might think that a good idea would be to keep a constant ratio between the
grid spacing and the time step. However, if Δx and Δt are both reduced to one half,
i.e., to 0.1L and 0.0125τ , the error decreases only slightly, from 6.32 × 10−4 to
6.20× 10−4. Even worse, if the reduction of both parameters to one half is repeated,
the error blows up. The computed humidity profiles at times 0.1τ and 0.2τ are
plotted in Fig. 8.15a and the history of humidity at x = L (right boundary) is shown
in Fig. 8.15b. It is clear that the solution becomes polluted by an oscillatory mode,

Fig. 8.15 Loss of numerical stability in a computation with Δx = 0.05L and Δt = 0.00625τ :
(a) relative humidity profiles at times t = 0, 0.1τ , and 0.2τ , (b) evolution of relative humidity at
the right boundary
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τ

Fig. 8.16 Convergence diagram for the forward Euler method; the dashed line has slope 2 in the
logarithmic scale

the magnitude of which increases exponentially. This is a manifestation of numerical
instability.

Later, it will be shown that a safe estimate (upper bound) of the critical time step
is given by

Δt∗crit = (Δx)2

2C
= (Δx)2π2τ

8L2
(8.124)

Therefore, numerical stability is guaranteed if the time step is selected such that

Δt

τ
≤ π2

8

(
Δx

L

)2

(8.125)

Since the critical time step is proportional to the square of the grid spacing Δx , it
makes sense to vary the numerical parameters such thatΔt/(Δx)2 remains constant.
Starting again from Δx/L = 0.2 and Δt/τ = 0.025 (for which condition (8.125) is
satisfied), we can proceed toΔx/L = 0.2/2 = 0.1 andΔt/τ = 0.025/4 = 0.00625,
then to Δx/L = 0.1/2 = 0.05 and Δt/τ = 0.00625/4 = 0.0015625, etc. The error
in the numerically computed relative humidity at the right boundary and at time t = τ

is plotted in Fig. 8.16 for various values of the grid spacing Δx , ranging from L/2 to
L/640. For each computation, the time step is determined asΔt = 0.625τ(Δx/L)2,
which is at about 51% of the critical time step estimated according to (8.124). The
dashed straight line in Fig. 8.16 is an auxiliary line of slope 2 in the logarithmic scale.
It is clear that the error is proportional to (Δx)2 (and thus proportional to Δt). This
means that if the grid spacing is reduced to one half and the time step is reduced
to one quarter, the error drops to one quarter, but the computational time increases
2× 4 = 8 times. Reducing the error by two orders of magnitude requires a thousand
times higher computational effort. �

The forward Euler method is very simple and easy to use, but its disadvantage
is that it possesses only conditional stability. If the numerical solution at time tk
is perturbed by δh(k)

i , i = 0, 1, 2, . . .m, application of formula (8.116) leads to a
perturbation at time tk+1 given by
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δh(k+1)
i = θ δh(k)

i−1 + (1 − 2θ)δh(k)
i + θ δh(k)

i+1, i = 1, 2, . . .m − 1 (8.126)

where, for convenience, the dimensionless fraction C Δt/(Δx)2 is denoted as θ .
Numerical instability occurs if the perturbation (which is always induced by finite
arithmetics) is magnified by the algorithm, instead of being damped. On an infinite
interval (or even on a finite interval with homogeneous Neumann boundary condi-
tions), the most dangerous perturbation is an oscillatory mode with δh(k)

i = (−1)i ak ,
where ak is the magnitude of the perturbation at time tk . Substitution of this assumed
perturbation mode into (8.126) leads to

δh(k+1)
i = θ (−1)i−1ak + (1 − 2θ)(−1)i ak + θ(−1)i+1ak =

= (1 − 4θ)(−1)i ak = (1 − 4θ) δh(k)
i (8.127)

The factor 1 − 4θ is always smaller than 1 and so the perturbation cannot grow
monotonically. However, if 1−4θ becomes negative and larger than 1 in magnitude,
the perturbation at a given point changes sign in each time step and its magnitude
grows, which corresponds to numerical instability. The stability condition 1− 4θ ≥
−1 (i.e., θ ≤ 1/2) can be rewritten in terms of the original parameters as

C Δt

(Δx)2
≤ 1

2
(8.128)

The resulting estimate of the critical time step is thus givenby the alreadyused relation
(8.124). It is denoted as Δt∗crit (with an asterisk) to emphasize that the actual critical
time step can be different (slightly larger), if the prescribed boundary conditions act
as constraints that do not allow the development of the most dangerous oscillatory
mode in its pure form.

For instance, if the problem from Example 8.1 is solved with Δx/L = 0.1 and
Δt/τ = 0.01242, the time step is actually slightly above the estimated critical time
stepΔt∗crit = (π2/8)0.12τ = 0.012337τ , but the solution remains numerically stable.
However, if the time step is increased to 0.01243τ , numerical stability is lost. For
time steps just above the critical one, the growth of numerical perturbations from
the level of machine precision to the level of appreciable oscillations takes many
time steps. This is why the computation with an unstable time step Δt = 0.0125τ
(which was actually mentioned in Example 8.1) leads to quite a small error at time
t = τ . Nevertheless, to make sure that the results can be trusted even for long times,
computations with unstable time steps should be avoided.

8.4.2.2 Implicit Methods

The time step imposed by the stability condition can become prohibitively short
in problems which require a good spatial resolution to capture steep gradients of
humidity, e.g., at a propagating drying front. For instance, if the grid spacing near
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the exposed surface of a drying specimen is set toΔx = 0.1mm, a typical diffusivity
of concrete at saturation C = 20 mm2/day leads to an estimated critical time step
of 2.5× 10−4 day, and 4000 computational time steps are required to cover one day
of drying. In simulations of the drying process over years, dozens of millions of
computational steps would be needed. Therefore, it is useful to develop numerical
schemes that are unconditionally stable, i.e., stable for arbitrarily large time steps.

Unconditionally stable schemes can be obtained by modifying the approximation
of the second spatial derivative on the right-hand side of the diffusion equation.
Recall that the approximation on the right-hand side of (8.115) corresponds to time
tk , i.e., to the time at the beginning of the current step, while the approximation of the
time derivative on the left-hand side can be expected to provide the highest accuracy
in the middle of the time step from tk to tk+1. A more general family of methods is
constructed by expressing the right-hand side as a weighted average of the second
spatial derivatives evaluated at tk and at tk+1. This leads to an approximation of the
diffusion equation (8.114) by

h(k+1)
i − h(k)

i

Δt
= C

(
(1 − α)

h(k)
i−1 − 2h(k)

i + h(k)
i+1

(Δx)2
+ α

h(k+1)
i−1 − 2h(k+1)

i + h(k+1)
i+1

(Δx)2

)

(8.129)
where α is a numerical parameter between 0 and 1. The choice of α = 0 corresponds
to the original forward Euler scheme (8.115), the choice of α = 1 gives the backward
Euler method, and the case of α = 0.5, which could be interpreted as the trapezoidal
rule, is traditionally called the Crank–Nicolson method [329].

For all nonzero values of parameter α, Eq. (8.129) written for i = 1, 2, . . .m − 1
contains the unknown values at time tk+1 not only on the left-hand side but also on
the right-hand side, and each equation contains not only h(k+1)

i but also h(k+1)
i−1 and

h(k+1)
i+1 . Consequently, the equations become coupled and the method is no longer

explicit. Moving all unknown terms to the left-hand side and all known terms to the
right-hand side, we can rewrite the equations as

−θαh(k+1)
i−1 + (1 + 2θα)h(k+1)

i − θαh(k+1)
i+1 =

= θ(1 − α)h(k)
i−1 + [1 − 2θ(1 − α)]h(k)

i + θ(1 − α)h(k)
i+1 (8.130)

where, as before, θ = C Δt/(Δx)2. If the unknown values at time tk+1 are collected
into a column matrix and Eq. (8.130) with i = 1, 2, . . .m − 1 is rewritten in the
matrix form, the system matrix multiplying the unknowns on the left-hand side is
tridiagonal, with coefficients 1 + 2θα on the diagonal and coefficients −θα just
below and just above the diagonal.

For Dirichlet boundary conditions, the value of h(k+1)
0 or h(k+1)

m is set to the pre-
scribed ambient humidity at time tk+1 and the corresponding terms in the equations
that correspond to i = 1 or i = m − 1 are moved to the right-hand side. For a
homogeneous Neumann boundary condition (zero flux, i.e., zero humidity gradient)
at the right boundary, the ghost-point values h(k)

m+1 and h(k+1)
m+1 are set equal to h(k)

m−1
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and h(k+1)
m−1 , and Eq. (8.130) is rewritten for i = m as

− 2θαh(k+1)
m−1 + (1+ 2θα)h(k+1)

m = 2θ(1− α)h(k)
m−1 + [1− 2θ(1− α)]h(k)

m (8.131)

If the zero-flux condition is imposed on the left boundary, subscripts m − 1 and m
are replaced by 1 and 0.

For coupled linear equations with tridiagonal matrices, efficient storage schemes
and fast solvers are available, with computational complexity proportional to the
number of unknowns. Each time step becomes more expensive than for the forward
Eulermethod, but, with a proper choice of parameterα, themethod is unconditionally
stable and the time step can be in principle arbitrarily large (of course, accuracy may
deteriorate for very large time steps, but stability is never lost).

Numerical stability can be assessed by checking the potential growth of oscil-
latory perturbations. Assuming that δh(k)

i = (−1)i ak and δh(k+1)
i = (−1)i ak+1,

i = 0, 1, 2, . . .m, and substituting these expressions into (8.130), one finds that the
magnitudes ak and ak+1 are linked by

(1 + 4θα)ak+1 = [1 − 4θ(1 − α)]ak (8.132)

The factor 1+ 4θα on the left-hand side is always positive and larger than the factor
1 − 4θ + 4θα on the right-hand side (for positive θ and for α between 0 and 1).
Therefore, the growth of perturbations is prevented if

1 + 4θα ≥ −(1 − 4θ + 4θα) (8.133)

which is equivalent with
2θ(1 − 2α) ≤ 1 (8.134)

Recall that α is a fixed parameter characterizing the numerical method, while θ

is proportional to the time step. If α ≥ 1/2, condition (8.134) is satisfied for any
time step and themethod is unconditionally stable. This includes theCrank–Nicolson
schemewithα = 1/2 aswell as the backwardEuler schemewithα = 1. Forα < 1/2,
the method is conditionally stable and the critical time step can be estimated as

Δt∗crit = (Δx)2

2C(1 − 2α)
(8.135)

As a special case, for α = 0, we obtain the critical time step (8.124) of the forward
Euler method.

Example 8.2. Accuracy and stability of implicit methods

The same problem as in Example 8.1 is now solved by the backward Euler (BEu)
method and by the Crank–Nicolson (CN) method. For the initial choice of grid
spacing Δx = 0.2L and time step Δt = 0.025τ , the error in the relative humidity
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at the right boundary at time t = τ is 3.02 × 10−3 for BEu and 1.2 × 10−3 for CN.
This is actually higher than the error of the forward Euler (FEu) method evaluated in
Example 8.1, which was just 6.32 × 10−4. However, the short time step used by the
FEumethod was dictated by stability considerations while the unconditionally stable
BEu and CN methods can be run with a much longer time step. A better balance
between the spatial and temporal discretization can lead to a higher accuracy at a
comparable computational cost. For instance, if the numerical parameters are set to
Δx = 0.1L andΔt = 0.1τ , the error of the CNmethod is reduced to 1.8×10−4 and
the total number of unknowns is m × n = 10 × 10 = 100 instead of 5 × 40 = 200
unknowns in the previous case.

τ

ττ

Fig. 8.17 Convergence diagrams: dependence of error (a) on grid spacing, (b) on the product of
grid spacing and time step

Since the BEu and CN methods are unconditionally stable, during refinement of
the spatial grid, it is not necessary to reduce the time step proportionally to (Δx)2.
Instead, one can keep the ratio Δt/Δx fixed. The convergence diagram in Fig. 8.17a
shows that, for the CNmethod represented by hollow circles, the error is then propor-
tional to (Δx)2 (the dashed line has slope 2 in the logarithmic scale). This means that
if the grid spacing and the time step are simultaneously reduced to one half, the error
is reduced to one quarter, while the computational effort increases four times. For
the BEu method, the results are less favorable. The hollow squares in Fig. 8.17a cor-
respond to the BEu method with time step proportional to the grid spacing (marked
as BE1 in the figure legend). Upon refinement, the error is seen to decrease much
more slowly than for the CN method. Faster convergence is obtained if the BEu
method is used with time step proportional to the square of the grid spacing (filled
squares, marked as BE2). The slope of the diagram in Fig. 8.17a is then the same
as for the CN method, but the computational effort grows faster. To obtain a fair
comparison, the error is replotted as a function of the product of the dimensionless
grid spacing Δx/L and the dimensionless time step Δt/τ in Fig. 8.17b. The variable
on the horizontal axis thus corresponds to 1/(mn) and is inversely proportional to
the computational effort. As expected, the fastest convergence rate is achieved for
the CN method and the comparison between BE1 and BE2 reveals that reduction
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of the time step proportionally to the square of the grid spacing is indeed a better
choice.17 For the sake of interest, the results obtained with the explicit FEu method
are plotted here as well; see the filled circles. For this particular problem, the FEu
method is seen to outperform the BEu method. �

The results obtained so farmay seem to indicate that the backward Eulermethod is
not a good choice. However, such a conclusion would be premature. In Examples 8.1
and 8.2, the exact solution was a harmonic function of the spatial coordinate, with a
relatively large wavelength (compared to the size of the computational domain) and
with an amplitude exponentially decaying in time. In typical simulations of drying
specimens or structures, the initial humidity distribution is uniform and a part of the
boundary is suddenly exposed to a lower ambient humidity. In such cases, a drying
front propagates from the exposed surface into the core. This is accompanied by very
high humidity gradients, especially at early stages of the process. The effect of such
high gradients on the performance of finite difference methods is illustrated by the
next example.

Example 8.3. Numerical simulations of drying from an exposed surface

Consider a slab of thickness D with an initially uniform pore relative humidity
h(x, 0) = 1, exposed at both boundary surfaces (i.e., at x = 0 and x = D) to the
ambient humidity henv = 0.6. Due to symmetry, it is sufficient to solve the diffusion
equation (8.114) on the interval [0, L] where L = D/2, with the same boundary
conditions (8.120)–(8.121) as in Examples 8.1 and 8.2. For easy comparison with
the previous results, let us again use the characteristic time τ = 4L2/Cπ2.

At early stages of drying, a discernible reduction of humidity is limited to a
narrow layer adjacent to the exposed surface. This phenomenon obviously could not
be captured properly if the computational grid spacing is too wide. Therefore, let us
use a division of the interval [0, L] into m = 10 subintervals of length Δx = 0.1L
as the coarsest grid. If the problem is solved by the forward Euler (FEu) method, the
time step must be kept below the critical one. Formula (8.124) leads to an estimated
critical time step Δt∗crit = (π2τ/8)(Δx/L)2 ≈ 1.234τ(Δx/L)2 = 0.01234τ , and
so the simulation should remain stable with the actual time step set to Δt = 0.01τ .
Humidity profiles at selected times between t = 0 and t = τ are plotted in Fig. 8.18.
The isolated points correspond to the numerical solution obtained by the FEumethod
with Δx = 0.1L and Δt = 0.01τ , and the curves represent a highly accurate
numerical solution obtained with a much smaller time step on a very fine grid.
The accuracy of the solution on the relatively coarse grid is seen to be satisfactory.
The BEu and CN methods with the same numerical parameters Δx = 0.1L and

17The convergence rates of the methods examined here are closely related to the accuracy of the
underlying finite difference approximations. For sufficiently smooth functions, an approximation
of the second spatial derivative by the central difference formula is second-order accurate. The
formula for the first temporal derivative on the left-hand side of (8.115) or (8.129) is second-order
accurate as an approximation of the value of ḣ at (tk + tk+1)/2 (because then it corresponds to a
central difference in time) but only first-order accurate when used as a forward difference at tk or
as a backward difference at tk+1.
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τ

Fig. 8.18 Humidity profiles at times 0, 0.2τ , 0.4τ , 0.6τ , 0.8τ , and τ after exposure of the left
boundary to ambient humidity henv = 0.6; the isolated points have been computed using the
forward Euler method with grid spacing Δx = 0.1L and time step Δt = 0.01τ , and the solid
curves correspond to a highly accurate numerical solution

Δt = 0.01τ would produce very similar plots. The potential advantage of the implicit
methods is that they can be run with a longer time step, while the time step of the
explicit FEu method is constrained by the stability condition. This advantage of
implicit methods becomes important, especially for finer grids, because the critical
time step of the FEu method is proportional to the square of the grid spacing. For
instance, for Δx = 0.01L , one would get Δt∗crit = 0.0001234τ , and about 10,000
time steps would be needed to cover the time interval from 0 to τ using the FEu
method, while the BEu or CN methods could in theory use arbitrarily large steps.

τ τ

Fig. 8.19 Humidity profiles at times 0, 0.1τ , 0.2τ , 0.3τ , and τ after exposure of the left boundary
to ambient humidity henv = 0.6, computed with grid spacing Δx = 0.1L and time step Δt = 0.1τ
using the (a) backward Euler method, (b) Crank–Nicolson method; the solid curves correspond to a
highly accurate numerical solution and the dashed lines connect points that represent the coarse-grid
solution

Of course, a deterioration of accuracy can be expected if the time step is too large.
Let us therefore repeat the simulation on the same grid (Δx = 0.1L), using the
implicit methods with a ten times longer time step, Δt = 0.1τ . Figure8.19 shows
the initial uniform humidity profile and the profiles after steps 1, 2, and 3 (i.e., at
times t = 0.1τ , 0.2τ and 0.3τ ) and after step 10 (at time t = τ ). For the BEumethod
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τ τ

Fig. 8.20 Humidity profiles near the exposed boundary at times 0, 0.001τ , 0.002τ , . . . 0.006τ after
exposure to ambient humidity henv = 0.6, computed with grid spacing Δx = 0.001L and time step
Δt = 0.001τ using the (a) backward Euler method, (b) Crank–Nicolson method; the solid curves
correspond to even steps and the dashed curves to odd steps

(Fig. 8.19a), the results at early stages exhibit some error, but the overall evolution
of the profiles is reasonable. In contrast to that, the results obtained with the CN
method (Fig. 8.19b) exhibit a pathology—the profiles obtained in the second and
third computational steps intersect, which is caused by a nonmonotonic evolution of
humidity at the first internal grid point, i.e., at x = 0.1L . The drying process should
lead to a gradual reduction of humidity at each internal point, but the numerically
computed values of relative humidity at x = 0.1L after steps 1 to 6 are 0.799, 0.666,
0.681, 0.653, 0.656, and 0.644. Such oscillations are clearly nonphysical.

An oscillatory evolution of humidity near the exposed boundary is found in cal-
culations based on the CN method even on fine grids if the time step is not suffi-
ciently short. Figure8.20b shows humidity profiles number 0 to 6 in the vicinity of
the boundary (note that the scale on the horizontal axis is from 0 to 0.05) obtained
for Δx = 0.001L and Δt = 0.001τ . Since the grid is fine, the numerical results
are plotted by curves instead of by isolated points, and for better understanding, the
even profiles are shown by solid curves while the odd profiles by dashed curves. No
pathologies are detected for the BEu method with the same numerical parameters;
see Fig. 8.20a.

To avoid the pathological oscillations produced in simulations with a large time
step by the CN method, one could use the BEu method, but the accuracy of the
solution would still be compromised. A better remedy can be sought in an adaptive
modification of the computational time step. Initial stages of the drying process,
when high gradients of humidity lead to fast moisture transport near the exposed
boundary, require sufficiently short time steps. Later on, when the humidity profile
becomes more flat and the transport slows down, longer steps can be used to increase
the efficiency of the numerical procedure. Since the moisture flux is driven by the
humidity gradient, a simple adaptive scheme can be based on inverse proportionality
of the time step to the humidity gradient at the beginning of the step.

Figure8.21 shows that if the time step is properly adjusted, the CN method can
correctly capture the evolution of the humidity profile, with no pathological oscil-
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Fig. 8.21 Humidity profiles after individual computational steps, obtained using the Crank–
Nicolson method with grid spacing Δx = 0.1L and time step adaptively increased from Δt1 =
0.01τ to Δt30 = 0.97τ ; the solid lines connect points that represent the coarse-grid solution, and
the simulation covers the time range up to tmax = 5τ

lations, and at the same time provide computational efficiency. The simulation was
performed on a coarse grid with Δx = 0.1L , using an initial time step Δt1 = 0.01τ ,
which is slightly below the critical time step of the FEu method. At the end of the
first step, the maximum slope h′

max,1 of the humidity profile was determined, and the
second step was performed still with the same time increment, Δt2 = Δt1. After
the second step, the maximum slope h′

max,2 of the humidity profile was determined,
and the time increment for the third step, Δt3, was evaluated from the condition
Δt3h′

max,2 = Δt2h′
max,1. Using an analogous rule, the subsequent time steps were

progressively increased up to Δt30 = 0.97τ . The simulation was supposed to cover
the drying process up to time tmax = 5τ , and so the very last time step was set
to Δt31 = tmax − t30. In this way, the time interval of interest was covered in just
31 steps, while a simulation with the initial time step kept fixed (which would be
necessary for the conditionally stable FEu method) would require 500 steps. Of
course, such savings of the computational time are irrelevant for problems solved
on a coarse one-dimensional spatial grid, but they could be substantial in large-scale
multidimensional simulations of structures drying over many years.

Despite the coarseness of the spatial grid, the evolution of relative humidity at
the grid points is captured by the CN method with an adaptively increased time step
quite well, as shown in Fig. 8.22a. The solid curve corresponds to a highly accurate
solution, which used not only a very short (and fixed) time step but also a fine spatial
grid. The filled circles show the results of theCNmethodwith the time step adaptively
increased fromΔt1 = 0.01τ , which required 31 steps over the time period up to time
tmax = 5τ , while the empty circles correspond to the CN method with a fixed time
step Δt = 0.1τ and a total of 50 steps. For easier evaluation of the differences,
Fig. 8.22b shows the same results over the initial period up to time t = τ . It is clear
that the computation with adaptive time stepping provides a good resolution of the
fast initial drying, thanks to the initially short time step 0.01τ . In contrast to that, the
computation with the time step fixed to 0.1τ gives a slower reduction of the relative
humidity at x = L and an oscillatory evolution at the grid point near the exposed
boundary (x = 0.1L), which is consistent with the results shown in Fig. 8.19b. �
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τ τ

Fig. 8.22 Relative humidity at the impervious boundary (x = L) and at the internal grid point
closest to the exposed boundary (x = 0.1L): (a) evolution over the entire time period up to t =
tmax = 5τ , (b) initial evolution up to time t = τ

8.4.2.3 Axisymmetric Problems

So far we have considered the linear diffusion equation in the form (8.114), which
corresponds tomoisture flux across the thickness of an infinite slab. The linear version
of Eq. (8.113), which describes an axisymmetric problem (radial moisture flux in an
infinite cylinder), can be written as

ḣ(x, t) = C

(
h′′(x, t) + 1

x
h′(x, t)

)
(8.136)

where the diffusivity C has been considered as constant and the radial coordinate r
has been renamed to x , to keep the same formalism as for the drying slab.

Extension of finite difference methods to Eq. (8.136) is relatively easy. It suffices
to enrich the discretized equation by a suitable approximation of the additional term
Ch′(x, t)/x . The first spatial derivative is best approximated by a central difference
formula. Consequently, approximation (8.129) based on the generalized trapezoidal
rule is extended to

h(k+1)
i − h(k)

i

Δt
=C

(
(1 − α)

h(k)
i−1 − 2h(k)

i + h(k)
i+1

(Δx)2
+ α

h(k+1)
i−1 − 2h(k+1)

i + h(k+1)
i+1

(Δx)2

)

+ C

(
(1 − α)

h(k)
i+1 − h(k)

i−1

2xi Δx
+ α

h(k+1)
i+1 − h(k+1)

i−1

2xi Δx

)
(8.137)

Moving all known terms to the right-hand side and all unknown terms to the left-hand
side, we can rewrite (8.137) as
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−θα

(
1 − Δx

2xi

)
h(k+1)
i−1 + (1 + 2θα)h(k+1)

i − θα

(
1 + Δx

2xi

)
h(k+1)
i+1 =

= θ(1 − α)

(
1 − Δx

2xi

)
h(k)
i−1 + [1 − 2θ(1 − α)]h(k)

i + θ(1 − α)

(
1 + Δx

2xi

)
h(k)
i+1

(8.138)

which is a generalization of (8.130). Recall that θ = C Δt/(Δx)2. If the axisymmet-
ric problem is solved on the interval [0, L] where x = 0 corresponds to the cylinder
axis and L is the cylinder radius (and if the grid is regular, which is an assumption
already used in the derivation of all the foregoing finite difference approximations),
fractions Δx/xi can be replaced by 1/ i . Equation (8.138) is also applicable to a
hollow cylinder, with x ∈ [L1, L2], where L1 is the inner radius and L2 is the outer
radius.

For α = 0, the left-hand side of (8.138) reduces to h(k+1)
i and an explicit update

formula

h(k+1)
i = θ

(
1 − Δx

2xi

)
h(k)
i−1 + (1 − 2θ)h(k)

i + θ

(
1 + Δx

2xi

)
h(k)
i+1 (8.139)

corresponding to the forward Euler method is obtained as a generalization of (8.116).
For α > 0, the scheme is implicit and a coupled set of equations with a tridiagonal
matrix has to be solved.

For a solid cylinder, the left computational boundary is actually at the axis of sym-
metry and the appropriate boundary condition is h′(0, t) = 0. This can be translated
into the condition h(k)

−1 = h(k)
1 for the fictitious value of relative humidity at the ghost

node located at x−1 = −Δx . However, Eq. (8.138) cannot be directly used for i = 0
because of the presence of x0 = 0 in the denominator. Instead of that, one needs to
go back to the original multidimensional linear diffusion equation (8.91) and take
into account the fact that if the relative humidity depends exclusively on the radial
coordinate r , the Laplacean at the axis of symmetry18 is equal to 2 d2h/dr2, which
in the present notation corresponds to 2h′′ evaluated at x = 0. Therefore, the finite
difference approximation of the diffusion equation for i = 0 is written as

h(k+1)
0 − h(k)

0

Δt
= 2C

(
(1 − α)

h(k)
−1 − 2h(k)

0 + h(k)
1

(Δx)2
+ α

h(k+1)
−1 − 2h(k+1)

0 + h(k+1)
1

(Δx)2

)

(8.140)
and substituting h(k)

−1 = h(k)
1 and h(k+1)

−1 = h(k+1)
1 , we obtain

18Note that if z is the axis of symmetry and if the humidity depends only on the radial coordinate
r = √

x2 + y2, the second derivatives at the axis of symmetry are ∂2h/∂x2 = ∂2h/∂y2 = d2h/dr2

and ∂2h/∂z2 = 0, and so ∇2h = 2d2h/dr2. Another argument leading to the same result is that as
r → 0, we have dh/dr → 0 and the ratio (dh/dr)/r tends to d2h/dr2 based on the L’Hospital rule.
Consequently, the second term on the right-hand side of (8.113) tends to C(h)d2h/dr2 and, for
constant diffusivity, the right-hand side of (8.113) evaluated at r = 0 becomes equal to 2C d2h/dr2.
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h(k+1)
0 − h(k)

0

Δt
= 4C

(Δx)2

(
(1 − α)(h(k)

1 − h(k)
0 ) + α(h(k+1)

1 − h(k+1)
0 )

)
(8.141)

from which

(1 + 4θα)h(k+1)
0 − 4θαh(k+1)

1 = [1 − 4θ(1 − α)]h(k)
0 + 4θ(1 − α)h(k)

1 (8.142)

This equation together with Eq. (8.138) written for i = 1, 2, . . .m − 1 forms a set
of m linear equations for unknowns h(k+1)

i , i = 0, 1, 2, . . .m − 1 (assuming that a
Dirichlet boundary condition is prescribed at x = L and thus h(k+1)

m is known).

Example 8.4. Drying of a cylinder

Consider a cylinder of radius R = L with uniform initial relative humidity h(x, 0) =
1, exposed at time t = 0 to ambient humidity henv = 0.6. The cylinder is considered
either as very long (theoretically infinite), or as sealed on both flat ends, so that
moisture flux occurs at the curved boundary only and the problem can be described
by the one-dimensional linear diffusion equation (8.136). Properties of the basic
finite difference methods have already been discussed in the previous examples, and
for the axisymmetric problem, they would be very similar. Let us, therefore, focus
on the differences between the evolution of humidity in a slab and in a cylinder,
assuming that the numerical solution has been found with a high level of accuracy.

For easier comparison, for both cases, we denote the length of the spatial interval
as L (equal to one half of the thickness D for a slab and to the radius R for a cylinder)
and we use a characteristic time τ = 4L2/Cπ2 introduced in (8.123). Accurately
computed profiles of relative humidity at selected times after exposure ranging from0
to τ are plotted in Fig. 8.23a, and the evolution of themaximum relative humidity (i.e.,
of the relative humidity at the cylinder axis) is shown in Fig. 8.23b. For comparison,
the evolution of the maximum relative humidity in a slab is plotted by the dashed
curve.

Another variable of interest is the average humidity, because its rate is (for a
model with constant moisture capacity) proportional to the rate of total water loss.
The average is understood here as the volume average over the actual specimen, and
thus, it is defined as

h̄(t) = 1

L

∫ L

0
h(x, t) dx (8.143)

for a slab and as

h̄(t) = 1

πL2

∫ L

0
h(x, t)2πx dx = 2

L2

∫ L

0
h(x, t)x dx (8.144)

for a cylinder. The evolution of average humidity in a slab and in a cylinder is shown
in Fig. 8.24, both in the linear scale and in the semilogarithmic scale. The value of
h̄ = 0.8,which is “halfway” between the initial value of h̄ = 1 and the asymptotically
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τ

Fig. 8.23 (a) Humidity profiles in a cylinder at times 0, 0.2τ , 0.4τ , 0.6τ , 0.8τ , and τ after exposure
to drying, (b) evolution of maximum relative humidity in a cylinder of radius R = L and in a slab
of thickness D = 2L

τ τ

Fig. 8.24 Evolution of average relative humidity in a slab and in a cylinder: (a) linear scale,
(b) semilogarithmic scale

approached final value of h̄ = 0.6, is attained at time tslab = 0.4854τ for the slab
and at time tcyl = 0.1555τ for the cylinder.

It is natural to expect that the drying process is faster for the cylinder, because
we have considered a cylinder of a radius equal to one half of the slab thickness.
Since the drying time scales with the square of the size (see Sect. 8.3.5), the average
humidity of 0.8 would be reached simultaneously (at time 0.4854τ ) by a slab of
thickness D = 2L and a cylinder of radius

R =
√
tslab
tcyl

D

2
=

√
0.4854

0.1555
L = 1.767L (8.145)

The effective size of a radially drying cylinder, defined as twice the volume divided
by the area of the exposed surface, corresponds to the radius. Consequently, the
shape factor that should multiply the effective size (radius) of a cylinder to get the
equivalent thickness of a slab that would dry approximately at the same rate (in the
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sense that it would reach the average humidity of 0.8 at the same time) is

ks = D

R
= 2L

1.767L
= 1.132 (8.146)

The corresponding evolution of average humidity is indicated in Fig. 8.24b by the
dotted curve.A systematic evaluation of the shape factor and an improved criterion for
matching the average humidity curves obtained for specimens of different geometries
will be presented in Sect. 8.4.5.2. �

8.4.2.4 Nonlinear Diffusion

So far, all numerical simulations of drying have been performed using a linear form
of the diffusion equation, with a constant diffusivity C . For concrete, the diffusiv-
ity strongly depends on the pore relative humidity (or moisture content), as already
explained in Sect. 8.3.4.2. To extend the basic finite difference methods to the non-
linear case, first note that the right-hand side of the nonlinear diffusion equation
(8.106) contains the first spatial derivative of humidity, which is multiplied by the
humidity-dependent diffusivity and then differentiated again. Using again the gener-
alized trapezoidal rule, we can replace the right-hand side of (8.106) by a weighted
average of approximations at times tk and tk+1, with weights 1 − α and α. The
resulting finite difference equation reads
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i
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(8.147)

To simplify the notation, the diffusivity that corresponds to humidity h(k)
i+1/2 =(

h(k)
i + h(k)

i+1

)
/2 has been denoted as C (k)

i+1/2, and an analogous meaning has been

attributed to C (k)
i−1/2, C

(k+1)
i+1/2 and C

(k+1)
i−1/2.

Collecting all unknown terms on the left-hand side and all known terms on the
right-hand side, we can rewrite (8.147) as
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(8.148)
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in which θ
(k+1)
i−1/2 = C (k+1)

i−1/2Δt/(Δx)2 etc. For α = 0, the left-hand side of (8.148)

reduces to h(k+1)
i and the formula becomes explicit. For any nonzero value of para-

meter α, each of the equations obtained by writing Eq. (8.148) for i = 1, 2, . . .m−1
contains three unknowns and a coupled set of equations needs to be solved. In con-
trast to (8.130), these equations are now nonlinear because factors θ

(k+1)
i−1/2 and θ

(k+1)
i+1/2

depend on the unknowns h(k+1)
i−1 , h(k+1)

i , and h(k+1)
i+1 . This calls for an iterative solution,

e.g., by the Newton–Raphson method, which is based on a successive linearization
of the expression on the left-hand side around the current approximate solution. The
ratio between the computational costs of implicit methods and of the explicit forward
Euler method is thus higher than in the linear case.

In each time step, the iterative process is initialized by setting the approximation
of the humidity values at the end of the step, h(k+1,0)

i , equal to the already known
(converged) values at the beginning of the step, h(k)

i , with i = 1, 2, . . .m − 1 (the
second superscript in h(k+1, j)

i refers to iteration number j). The right-hand side of
(8.148) is directly evaluated (because it depends exclusively on the already known
values), and the left-hand side is replaced by the linear part of the Taylor expansion
around the initial approximation. For instance, the first term on the left-hand side of
(8.148) is linearized as follows:

− αθ
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Here, δhi−1 and δhi are unknown iterative corrections of the approximate values
h(k+1,0)
i−1 and h(k+1,0)

i , and coefficients θ
(k+1,0)
i−1/2 and θ
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After linearization, Eq. (8.148) can be rewritten as

− αA(k+1,0)
i δhi−1 + (1 + αB(k+1,0)

i ) δhi − αC (k+1,0)
i δhi−1 = R(k+1,0)

i (8.152)

where
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(8.155)

are dimensionless coefficients and R(k+1,0)
i is the residual, defined as the difference

between the right-hand side and the left-hand side of (8.148).
Equations (8.152) written for i = 1, 2, . . .m − 1 are linear and sparse (the corre-

sponding matrix is tridiagonal) and can be solved using the same efficient algorithm
as the set of equations (8.130) corresponding to the linear diffusion model. Once the
corrections δhi are computed, the approximation of humidities at the end of the cur-
rent step is updated to h(k+1,1)

i = h(k+1,0)
i + δhi and the residual R

(k+1,1)
i is evaluated

for this improved approximation. If the residual is not small (i.e., if its norm exceeds
a prescribed tolerance), the left-hand side of (8.148) is linearized again, but this time
around h(k+1,1)

i , and additional corrections δhi are computed from a set of linear
equations analogous to (8.152) but with coefficients A(k+1,1)

i , B(k+1,1)
i , and C (k+1,1)

i

and residual R(k+1,1)
i evaluated from h(k+1,1)

i instead of h(k+1,0)
i . The iterative process

continues until the residual becomes sufficiently small. When the convergence crite-
rion is satisfied, the humidity approximations h(k+1, j)

i computed in the last iteration
number j are considered as the converged values h(k+1)

i and the simulation proceeds
to the next time step.

Themain idea of theNewton–Raphson procedure has been explained for the set of
typical finite difference equations (8.148) with i = 1, 2, . . .m − 1. These equations
are sufficient if Dirichlet conditions are prescribed on both ends of the interval and
thus the boundary values h0 and hm are known for an arbitrary time tk or tk+1. For
boundary conditions that involve the humidity gradient, additional equations must
be set up, as already exemplified by (8.131) in the linear case. Let us derive the
additional equation that corresponds to Robin boundary condition (8.99) prescribed
on the left boundary. Since our primary unknown is the pore relative humidity, we
express the moisture flux in terms of the humidity gradient as jx = −cph′, with
cp = moisture permeability, and then multiply both sides of (8.99) by the reciprocal
moisture capacity k. The resulting boundary condition

−C (h(0, t))
∂h(0, t)

∂x
+ kη∗

e h(0, t) = kη∗
e henv (8.156)

can be replaced by the corresponding finite difference approximation

−C (k)
0

h(k)
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−1
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0 = kη∗

e henv (8.157)
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from which we get

h(k)
−1 = h(k)

1 + 2Δx kη∗
e

C (k)
0

(
henv − h(k)

0

)
(8.158)

Note that the factor k that multiplies η∗
e represents the reciprocal moisture capacity

and not the time step number. Formula (8.158) is applicable to an arbitrary time
step and thus remains valid if the superscript (k) is in all terms replaced by (k+1).
Exploiting this formula, the ghost-node humidities h(k)

−1 and h
(k+1)
−1 can be eliminated

from Eq. (8.148) written for i = 0.
Examples of humidity profiles obtained by numerical solution of nonlinear dif-

fusion equation (8.106) will be presented in the next section for specific cases with
available experimental data that can be used for parameter identification.

Let us conclude the present numerical section by a short remark on alternative
spatial discretization techniques. Finite difference methods are convenient for prob-
lems solved in one spatial dimension, i.e., on a spatial domain that corresponds to
an interval, which can be easily covered by a uniform grid. For multidimensional
problems, the finite element method provides much more flexibility regarding the
spatial discretization. Arbitrarily shaped domains can be handled, and the computa-
tional mesh can be refined in regions with high humidity gradients. Finite element
methods for modeling of fluid flow in porous media are extensively treated, e.g., in
Lewis and Schrefler [572].

For problems that involve sharp moving interfaces between oversaturated and
dried concrete, a numerical method that leads to an exact satisfaction of the mass
balance equation is preferable. A spatial discretization that ensures exact mass bal-
ance can be constructed by the finite volumemethod [377, 592, 593], to be discussed
in Sect. 13.4.

8.4.3 Drying of a Slab

8.4.3.1 Fitting of Experimental Data

To illustrate the influence of variable diffusivity and of the boundary condition on the
evolution of humidity profiles, consider first the experiments of Abrams andOrals [9]
and their fits by the Bažant–Najjar [166] model, described in Sect. 8.3.4.2. Abrams
and Orals [9] measured the pore relative humidity in 6-inch specimens subjected to
one-dimensional drying at three different environmental humidities (henv = 0.1, 0.35
and 0.5). Figure8.25a-c shows the measured values (isolated points), for each case at
four different locations and at twodifferent times of drying. The solid curves represent
fits obtained with humidity-dependent diffusivity and Dirichlet boundary conditions
(h = henv on the exposed surface). The parameters of the diffusivity function (8.89)
are listed in Table8.3, in the column denoted as “set A.” For comparison, the dashed
curves show the results obtained with Robin boundary conditions (8.99)–(8.100) and

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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slightlymodified parameters of function (8.89), denoted as “set B.” Finally, the dotted
curves correspond to the profiles that would be obtained with a linear model (i.e.,
constant diffusivity) and Dirichlet boundary conditions, with parameters denoted as
“set C.”

Note that the moisture permeability cp and the reciprocal moisture capacity k do
not need to be specified separately, but only their product kcp = C (the diffusivity)
matters. The moisture capacity would play a role only if we wanted to compute the
flux or water loss. Similarly, the surface emissivity η∗

e does not need to be specified
directly, because if the boundary condition (8.99) is rewritten in terms of the humidity
gradient and both sides are multiplied by k (to convert the moisture permeability
into the diffusivity), the resulting Eq. (8.156) contains the product kη∗

e but not η∗
e

separately. This is why Table8.3 specifies the product kη∗
e as a relevant parameter

that characterizes the boundary. Typical values of the moisture capacity are in the
order of 100 kg/m3, and so the actual surface emissivity for set B would be roughly
η∗
e ≈ 10−3m/day×100 kg/m3 = 0.1 kg/m2day. This is much less than the typical

values mentioned in Sect. 8.3.4.3, and thus, the illustrative solutions plotted by the
dashed curves in fact correspond to specimens with partial protection against drying.
For realistic values of surface emissivity, the solutions would be virtually the same
as with the Dirichlet boundary condition.

Table 8.3 Parameters used for fitting of the humidity profiles measured by Abrams and Orals (sets
A-C), Abrams and Monfore (sets D and E), and Nilsson (sets F and G)

Parameters set A set B set C set D set E set F set G

α0 0.05 0.05 1 0.12 1 0.3 0.4

hc 0.8 0.75 – 0.75 – 0.7 0.9

r 16 16 – 6 – 6 20

C1 [mm2/day] 60 70 8 25 8 5 6

kη∗
e [mm/day] – 1 – 0.1 0.1 – –

Boundary
conditions

Dirichlet Robin Dirichlet Dir./Robin Dir./Robin Dirichlet Dirichlet

Figure8.25d shows the data of Abrams and Monfore [8] and their fits obtained
with parameter sets D and E, listed in Table8.3. The experiments were performed
on a 6-inch slab with one surface exposed to the environment of relative humidity
henv = 0.1 and the opposite surface sealed. If the sealed boundary had been truly
impervious, the test would have been equivalent to symmetric drying of a 12-inch
slab. However, the actually recorded pore humidities are not monotonically increas-
ing with increasing distance from the exposed boundary (see the isolated points in
Fig. 8.25d). This indicates that the seal was leaking and the homogeneous Neumann
condition at the sealed surface is not appropriate. The simulation with the Bažant–
Najjar model is thus done with the Dirichlet condition at the exposed boundary
(x = 0) and Robin condition at the sealed boundary (x = 152 mm), using a low
value of surface emissivity. The measured shape of the humidity profiles can be
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Fig. 8.25 Humidity profiles and their fits by the Bažant–Najjar model: (a) data of Abrams and
Orals, henv = 0.1, (b) data of Abrams and Orals, henv = 0.35, (c) data of Abrams and Orals,
henv = 0.5, (d) data of Abrams and Monfore, henv = 0.1, drying times (from top to bottom): 40,
50, 90, 130, 230, 270, and 480days

approximated quite well with the nonlinear diffusion model (parameter set D) if kη∗
e

is set to 0.1 mm/day; see the solid curves in Fig. 8.25d. For comparison, the dashed
curves show the results obtained with a linear diffusion model (parameter set E),
which leads to large deviations from the experimental data.

The values of diffusivity at saturation,C1, determined by fitting of the experimen-
tal results of Abrams and Orals [9] and listed in columns A and B of Table8.3, are
between 60 and 70 mm2/day. Much lower values have been found by fitting of two
data sets reported by Nilsson [661], who tested slabs with the thickness of 160mm
exposed to 40% environmental humidity after 3 and 28days of curing. The corre-
sponding parameters are listed, respectively, in columns F and G of Table8.3, and
the computed curves are shown along with the measured values in Fig. 8.26. Only
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Fig. 8.26 Humidity profiles and their fits by the Bažant–Najjar model, data of Nilsson [661],
exposure to henv = 0.4 after (a) 3days of curing, (b) 28days of curing

Dirichlet boundary conditions are presented here because the results with Robin
boundary conditions are not much different [473].

Good approximations of the flat part of the humidity profiles in the specimen
core have been made possible by taking into account the self-desiccation and setting
the initial pore relative humidity in the entire specimen to 99% for set F (3days of
curing) and to 98% for set G (28days of curing). Note that, for the present optimized
data sets, the ratio α0 ≡ C(0)/C(1) is well above the range between 0.025 and 0.1
recommended by Bažant and Najjar [166].

The humidity profiles in Figs. 8.25 and 8.26 have been limited to the drying times
at which the measured humidity values were reported in the original papers. An
example of the complete evolution of the humidity profile is provided in Fig. 8.27a,
based on a simulation with parameter set A. For comparison, Fig. 8.27b shows the
profiles that would be obtained with constant diffusivity (parameter set C). It is seen
that the shapes of the profiles at late stages of drying are quite similar (but they
are attained at different times). This is not surprising, because when the maximum
humidity in the specimen core becomes sufficiently smaller than 0.8 (which is the
value of parameter hc), the diffusivity evaluated from (8.89) is almost constant across
the whole specimen and the nonlinearity of the governing equation becomes very
weak.

The differences between the models with variable and constant diffusivity are
also illustrated by Fig. 8.28, which shows the time evolution of relative humidity at
the distance of 76mm from the exposed surface of the slab used by Abrams and
Monfore [8]. At humidities close to 1, the nonlinear model with set-D parameters
exhibits a higher diffusivity than the linear model with set-E parameters. Therefore,
the initial stage of drying is faster for the nonlinear model. After some time, the
zone with lower humidities near the boundary gets thicker and its lower diffusivity
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Fig. 8.27 Humidity profiles in a 6-inch slab exposed to 50% ambient relative humidity up to long
times, computed with (a) variable diffusivity (parameter set A), (b) constant diffusivity (parameter
set C)

Fig. 8.28 Evolution of relative humidity at a point of a slab exposed to 10% ambient relative
humidity: (a) linear time scale, (b) logarithmic time scale

acts as a barrier for the moisture flux. The drying process is thus slowed down, as
compared to the linear model. Figure8.28 clearly shows that a good agreement with
experimental results cannot be achieved without accounting for the nonlinearity.

8.4.3.2 Long-Time Asymptotics of Drying

Consider now the idealized case of constant ambient humidity, henv. Near the end of
the drying process, the pore humidity h(x, t) throughout the wall is close to henv, and
so the reciprocal moisture capacity, k, and the permeability, cp, may be considered
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as almost constant. They are also independent of concrete age, because for pore
humidity below about 65 to 80% (depending on the type of cement) the hydration
reaction stops, and the environmental humidity is often lower. Therefore, the final
stage of drying is properly described by the linear diffusion equation (8.91) with
constant diffusivity Ce = C(henv).

A slab of thickness D is described by a one-dimensional version of the diffusion
equation,

ḣ(x, t) = Ceh
′′(x, t) (8.159)

The solution can be constructed by expanding the humidity profiles into Fourier
series in terms of the spatial coordinate x :

h(x, t) = henv +
∞∑
n=1

hn(t) sin
nπx

D
(8.160)

The coefficients hn multiplying individual harmonic terms are taken as time-
dependent, and their evolution is determined from the diffusion equation. Substituting
(8.160) into (8.159), we obtain the relation

∞∑
n=1

ḣn(t) sin
nπx

D
= −

∞∑
n=1

Ce
n2π2

D2
hn(t) sin

nπx

D
(8.161)

which can be satisfied for all x ∈ (0, D) only if the terms multiplying individual
harmonic functions on both sides are the same. Therefore, the original second-order
partial differential equation is transformed into a series of first-order ordinary differ-
ential equations

ḣn(t) = −n2π2Ce

D2
hn(t), n = 1, 2, . . . (8.162)

Separation of variables leads to the solutions

hn(t) = hn(t̄) exp

(
−n2π2Ce

D2
(t − t̄)

)
, n = 1, 2, . . . (8.163)

Time t̄ would normally be taken as the initial time t0, and the corresponding
value hn(t̄)would be obtained from the initial distribution of humidity. However, the
diffusion problem is in general nonlinear and its linear version applies only to the
late stages of the drying process, when the humidity profile is almost uniform. So
we cannot precisely specify the initial condition, but formula (8.163) still provides
valuable information on the asymptotic behavior at very long times.

As time t tends to infinity, the argument of the exponential function in (8.163)
tends to minus infinity, and the exponential term thus tends to zero. As expected,
the solution (8.160) approaches a uniform humidity distribution. But the important
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point is that the exponential terms in (8.163) do not decay at the same rate—those
with a higher value of n decay faster, due to the presence of n2 in the argument of the
exponential. If the initial distribution of humidity is symmetric, the even harmonic
terms in (8.160) vanish from the very beginning, and the rate of decay of the leading
term with n = 1 is an order of magnitude lower than the rate of decay of higher-
order termswith n ≥ 3. Therefore, at long times, higher-order harmonicswill become
negligible compared to the first harmonic term. This is clearly seen in the numerical
solutions shown in Fig. 8.27.

We can conclude that the asymptotic solution is given by

h(x, t) = henv + Δh̄ sin
πx

D
exp

(
−π2Ce

D2
(t − t̄)

)
(8.164)

where Δh̄ is a constant that corresponds to the difference between the humidity
h(D/2, t̄) in the middle of the slab at some large time t̄ and the environmental
humidity henv. The distribution of humidity across the slab is given by a sine half-
wave with an amplitude exponentially decreasing in time. A similar distribution of
humidity was considered in Examples 8.1 and 8.2, where it was assumed that the
diffusion equation is linear and the initial humidity distribution is harmonic, and
thus, (8.164) was the exact solution, not just the asymptotic one.

Research underway atNorthwestern at the timeof proof indicates that, for ambient
humidities above cca 0.8, Eq. (8.164) needs a correction by adding a term evolving
either logarithmically or as a power function of low exponent such as 0.2. The reason
is self-desiccation, which evolves in this way for at least 10 years, probably for a
century or more.

8.4.3.3 Steady-State Permeation Through an Unsaturated Wall

Permeability of manymaterials is measured by steady-state water flux through a wall
whose opposite surfaces are kept at different humidities h(0) = h0 and h(D) = hD .
However, due to very small permeability, a steady-state permeation in concrete is
attainable only for thin concrete slabs—within about 5years for a concrete slab < 5
cm thick, and within 100days for a slab of mortar or cement paste < 1 cm thick. No
wonder that there exist only scant experimental data for the steady state. The results
of Wierig [868], converted by Bažant and Najjar [166] from the water content to
relative humidity assuming a linear isotherm, are reproduced in Fig. 8.29. It should
be noted that the steady state of the humidity profile is highly nonlinear. This is a
direct manifestation of the strong dependence of diffusivity on relative humidity, as
given by (8.89).

At steady state, the water content wt remains constant in time and the water flux
jx is thus uniform across the slab (this follows from the one-dimensional version of
the mass balance law (8.76) with a zero left-hand side). The one-dimensional version
of the transport law (8.84) can be written as
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jx = −cp(h)
dh

dx
(8.165)

After separation of variables and integration, one gets

jx x = −
∫ h(x)

h0

cp(h) dh (8.166)

The yet unknown flux jx is determined from the condition

jx D = −
∫ hD

h0

cp(h) dh (8.167)

which follows from the boundary condition h(D) = hD .
For a given function cp(h) describing the dependence of permeability on pore

relative humidity, we can evaluate (at least numerically) the function

Γp(h) = −
∫ h

h0

cp(h̃) dh̃ =
∫ h0

h
cp(h̃) dh̃ (8.168)

and rewrite (8.166) as
x

D
= Γp(h(x))

Γp(hD)
(8.169)

By solving this equation, we could get a formula describing the dependence of h(x)
on x , based on the inverse function of Γp. Instead of that, we can construct the
humidity profile by computing the values of x/D corresponding to selected values
of h(x) directly from (8.169).

For instance, for boundary values h0 = 0.95 and hD = 0 and for the permeability
function cp(h) in the same form as the Bažant–Najjar diffusivity function (8.89)
with somewhat unusual parameter values α0 = 0.005, hc = 0.98 and r = 1.4 (see
Fig. 8.29b), the steady-state humidity profile plotted in Fig. 8.29a by the solid curve
fits the measured values (extracted by Bažant and Najjar [166] from the experimental
data of Wierig [868]) very well. Note that parameter cp1 (permeability at saturation)
and the wall thickness D do not affect the shape of the profile (although they do
affect the water flux).

The desorption isotherm affects the conversion of water content into pore relative
humidity but, as long as its slope (the reciprocal moisture capacity k) is constant, it
has no influence on the shape of the steady-state humidity profile. For a model with
constant permeability, a constant flux would imply a constant humidity gradient and
the humidity profile would be linear; see the dashed line in Fig. 8.29a. It is obvious
that the deviation from linearity is substantial. The “optimal” diffusivity function,
graphically shown in Fig. 8.29b, has a similar character to the function proposed by
Roncero [732] and described in Appendix I.4.1, see Eq. (I.18) and Fig. I.10.
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Fig. 8.29 (a) Distribution of pore relative humidity across a wall; dots correspond to experimental
data of Wierig [868], solid curve to the theoretical solution based on variable diffusivity according
to (8.89), dashed line to linear diffusion theory; (b) dependence of moisture permeability on pore
relative humidity providing a good fit of the humidity profile

8.4.4 Initial Drying and Analysis of Infinite Half-Space

8.4.4.1 Penetration Depth of Drying Front After Sudden Exposure:
Initial Asymptotics

The depth of penetration of a drying front beneath the body surfacemay be defined as
the distance to the point where ameasurable change of humidity occurs. Let us at first
ignore aging and consider the initial penetration of drying fronts from the opposite
surfaces into a slab or a wall. Before the drying fronts meet, the problem is equivalent
to the penetration of a drying front into a half-space. The diffusion equation can be
reduced to one spatial dimension, because the solution depends only on the coordinate
x defined as the distance from the surface exposed to the environmental humidity. To
facilitate the scaling analysis, it is convenient to consider the pore relative humidity
h(x, t̂) as a function of x and of the drying time t̂ = t − t0. Equation (8.105) is then
solved with the initial condition h(x, 0) = 1 for x ≥ 0, and the boundary condition
h(0, t̂) = henv for t̂ > 0, in which henv is the given environmental humidity.

As already explained in Sect. 8.3.5, simple scaling arguments show that if h1(x, t̂)
is the solution of the diffusion problem on a certain domain of size D1, then the
solution of the diffusion problem on a geometrically similar domain of size D2 =
αD1 is given by h2(x, t̂) = h1(x/α, t̂/α2), provided that the initial and boundary
conditions are consistent with the scaling relation. Since the infinite half-space is
self-similar (i.e., is mapped onto itself by a homothetic mapping with an arbitrary
scaling factor α), both solutions h1 and h2 refer to the same domain and we obtain
the condition

h(x, t̂) = h(αx, α2 t̂) for all α > 0 (8.170)
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Consequently, if we know the humidity profile as a function of x at one fixed time
instant, we can easily construct the profile at any other time by simple rescaling
of the spatial coordinate. Thus, the solution can be described by a function of one
variable only, and the partial differential equation (8.105) can be transformed into
an ordinary differential equation. To achieve that, we could introduce a new variable
ξ = x/

√
t̂ and, taking into account the scaling condition (8.170), write the solution

as a function of ξ only, e.g., as h(x, t̂) = f (ξ).
However, it is better to work with dimensionless, normalized variables, because

then the transformed problemhas the simplest possible form.Therefore,we introduce

the dimensionless variable ξ = x/
√
k1cp1 t̂ , where k1 = k(1) and cp1 = cp(1) are,

respectively, the reciprocal moisture capacity at full saturation and the permeability
at full saturation. Due to the scaling condition (8.170), the dependence of humidity
on the spatial variable and time can be expressed in the form

h(x, t̂) = henv + (1 − henv) f (ξ), ξ = x√
k1cp1 t̂

(8.171)

Here, f is a new unknown function, which is normalized such that its value is 0 when
h = henv and is 1 when h = 1. The advantage is that the boundary conditions for f
then do not depend on the environmental humidity henv, as will be shown later.

According to the chain rule, partial derivatives with respect to space and time can
be expressed as

∂•
∂x

= ∂•
∂ξ

∂ξ

∂x
= 1√

k1cp1 t̂

∂•
∂ξ

(8.172)

∂•
∂t

= ∂•
∂ξ

∂ξ

∂ t̂
= − x

2
√
k1cp1 t̂3

∂•
∂ξ

= − ξ

2t̂

∂•
∂ξ

(8.173)

Using (8.171)–(8.173) in (8.105), we get an ordinary differential equation

ξ
∂ f

∂ξ
+ 2κ( f )

∂

∂ξ

[
γ ( f )

∂ f

∂ξ

]
= 0 (8.174)

in which

κ( f ) = k(henv + (1 − henv) f )

k1
(8.175)

γ ( f ) = cp(henv + (1 − henv) f )

cp1
(8.176)

are the normalized reciprocal moisture capacity and normalized permeability, con-
sidered as functions of the normalized humidity variable f .
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Equation (8.174) is a nonlinear ordinary differential equation, to be solved for
the unknown function f (ξ) on the interval [0,∞). Since it is an equation of the
second order, it requires two boundary conditions. One of them, f (0) = 0, directly
follows from the boundary condition h(0, t̂) = henv of the original partial differential
equation. The solution should also reflect the initial condition of the original problem.

For fixed x > 0 and t̂ approaching zero from above, variable ξ = x/
√
k1cp1 t̂ tends to

plus infinity, so the initial condition h(x, 0) = 1 will be translated into the condition
f (ξ) → 1 as ξ → ∞ (i.e., in shorthand notation, f (∞) = 1).

Example 8.5. Humidity profiles for the linear diffusion model

Equation (8.174) remains nonlinear even if the original partial differential equation
(8.105) is linear, i.e., for constant values of k and cp. Nevertheless, in this special
case, the solution can be constructed in closed form. Denoting g = ∂ f/∂ξ , we can
rewrite (8.174) with constant k and c (i.e., with functions κ and γ defined in (8.175)
and (8.176) identically equal to 1) as

ξg + 2
∂g

∂ξ
= 0 (8.177)

Integration after separation of variables then gives

g(ξ) = g0 exp

(
−ξ 2

4

)
(8.178)

where g0 is an integration constant. Integrating g and using the boundary conditions
f (0) = 0 and f (∞) = 1 to determine g0 and another, newly emerged integration
constant, we finally get

f (ξ) = erf

(
ξ

2

)
(8.179)

where erf is thewell-known error function, closely related to theGaussian cumulative
distribution function and defined by the formula

erf(x) = 2√
π

∫ x

0
e−s2 ds (8.180)

�

Function f given by (8.179) and plotted in Fig. 8.30 by the dashed line represents
the solution of the linear diffusion problem on a half-space, in terms of the original
physical variables written as
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Fig. 8.30 Dimensionless humidity profile f (ξ) for the Bažant–Najjar model with parameters α0 =
0.05,hc = 0.8, and r = 15 (solid), compared to the profile corresponding to linear diffusion (dashed)

h(x, t̂) = henv + (1 − henv) erf

⎛
⎝ x

2
√
kcpt̂

⎞
⎠ (8.181)

For fixed t̂ , we obtain the profile of humidity through the half-space at the given
time, described by a linearly transformed error function of x . For fixed x , we obtain
the history of humidity at the given distance from the surface. If we prescribe a fixed
value of h between henv and 1, we obtain a relation between x and t̂ characterizing
the propagation of the plane of given humidity into the half-space.

For instance, if we define the drying front as the set of points at humidity 1−Δh,
where Δh is a small constant, we obtain from the condition h(xd , t̂d) = 1 − Δh the
following description of the depth of penetration xd as a function of the drying time
t̂d :

xd = 2
√
kcpt̂d erf

−1

(
1 − Δh

1 − henv

)
= constant ×

√
t̂d (8.182)

More specifically, if we consider the drying front as the point where the pore relative
humidity differs from 1 by only 1% of the value by which the environmental relative
humidity differs from 1, we haveΔh/(1−henv) = 0.01 and (8.182) can be rewritten
as

xd ≈ 3.6
√
kcpt̂d (8.183)

This is very close to the formula xd =
√
12kcpt̂d ≈ 3.46

√
kcpt̂d , widely used as a

simple engineering estimate based on an approximation of the humidity profile by a
parabola (to be developed later, see formula (8.195)).

Independently of the choice of Δh, the depth of penetration, xd , is always pro-
portional to the square root of the drying time. This is a logical consequence of
the fact that a given value of humidity uniquely corresponds to a certain value of

ξ = x/
√
kcpt̂ and, to make ξ constant, x must be proportional to

√
t̂ or, put the other

way around, t̂ proportional to x2.
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We can also characterize the role of the diffusivity, C = kcp. From (8.182), it is
easily seen that the drying depth (at a fixed time) is proportional to the square root
of diffusivity and also that the drying time (at a fixed distance from the surface) is
inversely proportional to the diffusivity.

Interestingly enough, the foregoing results remain qualitatively correct even if
the diffusion problem is nonlinear, i.e., if the parameters k and cp are functions of
humidity. In such a case, a closed-form solution of the differential equation (8.174)
is in general not available, but the solution can be constructed numerically. Nomatter
how the resulting function f (ξ) looks, a constant humidity implies constant ξ , i.e., a

constant ratio x/
√
k1cp1 t̂ . So again, for fixed material properties, we have xd ∝

√
t̂d

and t̂d ∝ x2d .
This explains why, for short drying times, the shrinkage function S(t̂) should

be proportional to
√
t̂ ; see Eq. (3.16). If the entire function k(h) is multiplied by a

constant βk and the entire function cp(h) is multiplied by a constant βc, then the
normalized functions κ( f ) and γ ( f ) defined in (8.175) and (8.176) do not change
and thus also the solution f (ξ) of Eq. (8.174) remains the same. The scaling factors
will affect only the relation between x and t̂ for given ξ , because constants k1 and cp1
are scaled by βk and βc, and so drying depths are proportional to

√
βkβc and drying

times inversely proportional to βkβc.

Fig. 8.31 Dimensionless humidity profile f (ξ) for the Bažant–Najjar model: (a) influence of
parameter α0, (b) influence of parameter hc, (c) influence of parameter r , (d) influence of ambient
humidity henv

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Example 8.6. Humidity profiles for the Bažant–Najjar model

Consider the Bažant–Najjar model with diffusivity approximated by function (8.89)
and with the parameters recommended by the fib Model Code: α0 = 0.05, hc = 0.8,
and r = 15. The normalized reciprocal moisture capacity function κ defined by
(8.175) is identically equal to 1.At henv = 60%, the normalized permeability function
γ defined by (8.176) can be expressed as

γ ( f ) = α0 + 1 − α0

1 +
(
1−henv−(1−henv) f

1−hc

)r = 0.05 + 0.95

1 +
(
1−0.6−0.4 f

1−0.8

)15 =

= 0.05 + 0.95

1 + [2(1 − f )]15
(8.184)

Equation (8.174) simplifies to

ξ
∂ f

∂ξ
+ 2

∂

∂ξ

[
γ ( f )

∂ f

∂ξ

]
= 0 (8.185)

The numerically constructed solution is plotted by the solid line in Fig. 8.30. On the
vertical axis, the values of f between 0 and 1 correspond to the humidities between
60 and 100%. It is clearly seen that the humidity gradient is much higher in the
boundary layer with f between 0 and 0.5 (i.e., h between 60 and 80%) than in
the core. The reason is that, for the present nonlinear model, the diffusivity at pore
humidities below hc = 80% is strongly reduced. For comparison, solution (8.179)
corresponding to the linear diffusion model is plotted in Fig. 8.30 by the dashed line.

The influence of individual parameters of the Bažant–Najjar model and of the
ambient humidity on the shape of the humidity profile is illustrated in Fig. 8.31.
In all four graphs, the solid curve corresponds to the standard fib parameters. In
Fig. 8.31a, parameter α0 is changed from 0.05 to 0.1, 0.3, and 0.5. As α0 approaches
1, the nonlinearity fades away and the humidity profile approaches the erf function.
In Fig. 8.31b, parameter hc is changed from 0.8 to 0.7 and 0.6. Again, the nonlinearity
fades away, because the transition to low diffusivity takes place at lower humidities.
In Fig. 8.31c, the exponent r is changed from 15 to 9 and 6. The effect on the shape of
the humidity profile is rather weak. For lower exponents, the transition between the
regions with low and high diffusivity becomes more gradual. Finally, in Fig. 8.31d,
the ambient humidity henv is changed from 60 to 70, 80 and 90%. This has a similar
effect as a reduction of hc at fixed henv. �

8.4.4.2 Water Loss After Sudden Exposure: Initial Asymptotics

It is also interesting to calculate the total water loss WL (per unit area of the drying
surface, [kg/m2]) as a function of the drying time. The rate ofWL corresponds to the
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flux jx on the surface, but it has the opposite sign because the normal to the surface
is oriented in the negative direction (for our particular formulation on the interval
[0,∞)). So the total water loss at time t̂ can be evaluated as

WL(t̂) = −
∫ t̂

0
jx (0, t

′) dt ′ (8.186)

According to the one-dimensional version of (8.84) combined with (8.171)–(8.172),
we have

jx (0, t̂) = −cp(h(0, t̂))
∂h(0, t̂)

∂x
= −cp(henv)

1 − henv√
k1cp1 t̂

d f (0)

dξ
(8.187)

and so

WL(t̂) = (1 − henv)cp(henv) fξ0√
k1cp1

∫ t̂

0

dt ′√
t ′

= 2(1 − henv)cp(henv) fξ0√
k1cp1

√
t̂ (8.188)

where fξ0 = d f (0)/dξ is the derivative of f with respect to ξ evaluated at ξ = 0. As
may have been expected, the total water loss is proportional to the square root of the
drying time. The proportionality factor depends on the permeability function and on
the desorption isotherm. For instance, for the linear diffusion problem, we can use
the solution f (ξ) given by (8.179) to evaluate fξ0 = 1/

√
π , and the proportionality

factor is obtained explicitly as

2(1 − henv)cp fξ0√
kcp

= 2(1 − henv)

√
cp
πk

(8.189)

Since kcp = C = diffusivity, the resulting expression for the total water loss after
drying time t̂ can be presented as

WL(t̂) = 1 − henv
k

2√
π

√
Ct̂ (8.190)

Here, the first fraction, (1 − henv)/k, represents the mass of water that is removed
from a unit volume of concrete when it dries from full saturation to relative humid-
ity h (recall that 1/k is the moisture capacity). The second fraction, 2/

√
π , is a

dimensionless factor related to the shape of the humidity profile. The last term,
√
Ct̂ ,

reflects the effect of diffusivity and of the drying time. The ratioWL(t̂)/[(1−henv)/k]
defines an equivalent drying depth in the sense that the water mass actually removed
from the half-space is equal to the water mass that would be removed by uniformly
drying a surface layer up to this depth.

A frequently used simple engineering estimate of the depth of penetration is based
on the approximation of the humidity profile by a parabola with apex at the prop-
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Fig. 8.32 Parabolic humidity profile used by a simple engineering estimate of the drying front
position

agating front; see Fig. 8.32. Of course, such a quadratic humidity distribution does
not satisfy the diffusion equation pointwise, but the dependence of the penetration
depth xd on time can be estimated using the relation between the flux at the boundary
and the water loss. The flux at the boundary can be linked to the humidity gradi-
ent, which corresponds to the slope of the parabola (see Fig. 8.32 for a geometrical
interpretation):

jx (0, t̂) = −cp
∂h(0, t̂)

∂x
= −cp

1 − henv
xd(t̂)/2

(8.191)

The water loss at a given time corresponds to the shaded area above the humidity
profile (see Fig. 8.32) multiplied by the moisture capacity:

WL(t̂) = 1

k

∫ xd (t̂)

0
[1 − h(x, t̂)] dx = 1

k
× 1

3
(1 − henv)xd(t̂) (8.192)

Substituting (8.191)–(8.192) into the differential form of Eq. (8.186),

dWL(t̂) = − jx (0, t̂) dt̂ (8.193)

we obtain
1 − henv

3k
dxd(t̂) = cp

2(1 − henv)

xd(t̂)
dt̂ (8.194)
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Separation of variables and integration with initial condition xd(0) = 0 then leads
to the formula

xd(t̂) =
√
12kcpt̂ =

√
12Ct̂ (8.195)

which is often used as an engineering estimate of the penetration depth. Comparison
to (8.182) shows that this estimate corresponds to the point at which the exact value of
humidity deviates from the initial value by 1.43% of the difference 1− henv between
the initial value and the ambient humidity applied at the boundary.

The time-square-root initial evolution of the penetration depth of drying front after
a sudden environmental exposure is a salient asymptotic feature of the diffusion
equation. It is well known for the linear diffusion equation, but it applies to the
nonlinear diffusion equation as well [146], which is an important point for concrete
drying and shrinkage. The aging due to hydration merely shortens the period of
validity of the time-square-root law but does not kill it because the square root
initially always grows infinitely faster than the hydration degree.

8.4.5 Evolution of Total Water Loss from a Specimen

8.4.5.1 Asymptotics of the Water Loss Process

Let us denote the water loss from a flat slab (or wall), per unit area of its plane,
as ΔW [kg/m2]. Two drying fronts propagate into the slab from its two surfaces
exposed to the environmental humidity, and initially, they do not influence each
other. Therefore, the initial evolution of the water loss as a function of the drying
time t̂ can be approximated by 2WL(t̂), whereWL is the water loss per unit area of the
drying surface, computed for a semi-infinite specimen. Recalling formula (8.188),
we can write19

ΔW (t̂) ≈ 2WL(t̂) = 4(1 − henv)cp(henv) fξ0√
k1cp1

√
t̂ (8.196)

To characterize the kinetics of drying, it is useful to introduce a dimensionless
function

S(t̂) = ΔW (t̂)

D Δw∞
(8.197)

which grows from0 to 1 anddescribes the evolution ofΔW from0 to thefinal (asymp-
totic) value ΔW∞ = limt̂→∞ ΔW (t̂) = D Δw∞. Here, D is the slab thickness and

19Recall that factor fξ0 depends on the specific nonlinear characteristics of the permeability cp
and reciprocal moisture capacity k and on the ambient humidity. The dependence of fξ0 on henv
is not marked in (8.196) because, in contrast to moisture permeability cp , factor fξ0 is not directly
available as an explicit function of henv, but it is determined by solving differential equation (8.174)
on a semi-infinite domain [0,∞) and evaluating the derivative of the solution at ξ = 0.
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Δw∞ is the final water loss per unit volume of concrete, which can be determined
from the ambient humidity henv using the desorption isotherm. For sufficiently short
times, the approximation of function S based on (8.196) can be presented in the form

S(t̂) ≈ 2WL(t̂)

D Δw∞
= 4(1 − henv)cp(henv) fξ0

DΔw∞
√
k1cp1

√
t̂ =

√
t̂

τw0
, for t̂ � τw0

(8.198)
where

τw0 = k1cp1

(
Δw∞

1 − henv

D

4 fξ0cp(henv)

)2

(8.199)

is a certain characteristic time of the drying process.
If the desorption isotherm is approximately linear and its reciprocal slope k is

taken as a constant (equal to k1), then the fraction Δw∞/(1 − henv) can be replaced
by 1/k and (8.199) simplifies to

τw0 = C1

(
D

4 fξ0C(henv)

)2

(8.200)

where C1 = kcp1 is the diffusivity at full saturation and C(henv) = kcp(henv) is the
diffusivity for pore relative humidity equal to the ambient relative humidity henv. For
a linear diffusion problem with constant diffusivity C(h) = C1, the value of fξ0 is
1/

√
π (as follows from (8.179)–(8.180)) and we get

τw0 = πD2

16C1
(8.201)

Fitting Eq. (8.198) to short-time water loss data is a fast method to measure mois-
ture transport properties of concrete, but one must make sure that the exposure to
drying environment is really sudden and that, prior to exposure, the specimen seal has
not leaked anymoisture (and if the specimen is too thin, a correction for finite surface
emissivity may be necessary). It is clear that (8.198) has limited validity, because for
drying times t̂ > τw0, it would yield S > 1, which is physically impossible.

During the terminal stage of the drying process, the asymptotic solution (8.164)
can be used, and the approach of function S, describing the dimensionless water loss,
to the final asymptotic value of 1, is found to be exponential:

1 − S(t̂) = 1 − ΔW (t̂)

ΔW∞
= ΔW∞ − ΔW (t̂)

ΔW∞
≈ 1

ΔW∞
1

k(henv)

∫ D

0
(h(x, t̂) − henv) dx =

= Δh̄

DΔw∞k(henv)

∫ D

0
sin

πx

D
dx exp

(
−π2Ce

D2 (t0 + t̂ − t̄)

)

Here, Δh̄ is the difference between the pore relative humidity at the slab center and
the ambient relative humidity at a fixed (large enough) time t̄ . To emphasize the
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structure of the resulting expression, we can rewrite the asymptotic approximation
as

1 − S(t̂) ≈ Ae−t̂/τw∞, for t̂ → ∞ (8.202)

where

A = 2Δh̄

πΔw∞k(henv)
exp

(
π2Ce(t̄ − t0)

D2

)
(8.203)

τw∞ = D2

π2Ce
(8.204)

An asymptoticmatching formula satisfying both (8.198) and (8.202) can be set up,
but is not simple. However, only the initial asymptotic behavior described by (8.198)
can be calibrated experimentally because the terminal phase of drying arrives so late
that it is impossible to run drying experiments long enough (except for specimens
< 1 cm in thickness). A simple approximate form of the dimensionless function S(t̂)
is

S(t̂) = tanh

√
t̂

τw
(8.205)

where τw is yet another characteristic time, usually referred to as the halftime of
drying, even though it does not correspond to the time at which S = 1/2. If τw
is set equal to τw0, formula (8.205) matches the initial asymptotic form in (8.198)
because tanh s ≈ s for small s. As for the terminal asymptotic form (8.202), there is
a difference from (8.205); indeed, denoting

√
t̂/τw = s, we have, for large s,

1 − S(t̂) = 1 − tanh

√
t̂

τw
= 1 − es − e−s

es + e−s
= 2e−2s

1 − e−2s
≈ 2e−2s = 2e−2

√
t̂/τw

(8.206)
A function S of a similar form, but possibly with a different characteristic time

τsh, can be used for the evolution of shrinkage. The tanh-root function is used by the
B3 model. Its predecessor, model BP [175], used the function S(t̂) = √

t̂/(τsh + t̂)
proposed by Bažant, Osman and Thonguthai [174]. This function also begins in
proportion to

√
t̂ but approaches the final asymptotic value differently, namely as

1/t̂ , which can be checked as follows:

1− S(t̂) = 1−
√

t̂

τsh + t̂
= 1− 1√

1 + τsh
t̂

≈ 1− 1

1 + τsh
2t̂

=
τsh
2t̂

1 + τsh
2t̂

≈ τsh

2t̂
(8.207)

To compare the asymptotics, let f (t̂) be the function on the right-hand side of (8.202),
describing the asymptotic behavior of the “exact” water loss, and f1(t̂) and f2(t̂) be,
respectively, the functions on the right-hand sides of (8.206) and (8.207), describing
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the asymptotic behavior of the B3 formula and of the old BP formula, and let us
calculate the limit

lim
t̂→∞

f1(t̂) − f (t̂)

f2(t̂) − f (t̂)
= lim

s→∞
2e−2s − Ae−τws2/τw∞

τsh
2τws2

− Ae−τws2/τw∞
= lim

s→∞
2s2e−2s − As2e−τws2/τw∞

τsh
2τw

− As2e−τws2/τw∞
= 0

(8.208)
So we see that (8.206) is infinitely closer to the water loss asymptotics (8.202) than
is (8.207). However, using a similar procedure, one can show that (8.206) is still
“infinitely far” from the correct asymptotics (8.202), because the limit of f1/ f is
also zero. Thus, we have in (8.206) and (8.207) two simple formulas with poor
asymptotics, but the latter is poorer than the former. This is the reason why the
function used in model BP was replaced by the tanh-root function. Nevertheless,
Gardner co-opted the BP model function for his second model, denoted as GL [407].

The existing experimental data are not of sufficient duration to verify the long-
time asymptotics. They can be fitted equally well by either of the aforementioned
functions.

8.4.5.2 Effective Thickness for Drying

The scaling relation (8.101) shows that all one-dimensional drying problems are
similar [52], with slab thickness D being merely a parameter in the general solution.
According to (8.199)–(8.201), the characteristic time of the one-dimensional water
loss process is proportional to the square of the slab thickness and can be expressed
as

τw0 = ktw0D
2 (8.209)

where ktw0 is a certain proportionality factor. For a linear diffusion problem, formula
(8.201) implies that the proportionality factor is given by the simple expression

ktw0 = π

16C1
(8.210)

where C1 is the (constant) diffusivity.
For a nonlinear diffusion problem with a nonlinear desorption isotherm and vari-

able permeability, factor ktw is not a pure material parameter but is affected by the
environmental humidity. According to (8.199), it can be expressed as

ktw0 = k1cp1
[4 fξ0k̄(henv)cp(henv)]2

(8.211)

where

k̄(henv) = 1 − henv
Δw∞

= 1 − henv
w0 − w∞

(8.212)



8.4 One-Dimensional Moisture Transport 365

is the average reciprocal moisture capacity in the range between the environmental
humidity and full saturation. Recall that fξ0 is the derivative of the dimensionless
function f , which can be computed by solving Eq. (8.174) with boundary conditions
f (0) = 0 and f (∞) = 1. Note that the dependence of ktw0 on the environmental
humidity henv stems not only from the presence of k̄(henv) and cp(henv) in the denom-
inator of (8.211) but also from the fact that the normalized functions κ and γ that
appear in (8.174) depend, according to (8.175)–(8.176), on henv.

If the desorption isotherm can be approximated by a straight line with constant
slope 1/k, formula (8.211) simplifies to

ktw0 = C1

[4 fξ0C(henv)]2 = 1

16C1 f 2ξ0γ
2(0)

(8.213)

whereC1 = k1cp1 is the diffusivity at saturation andC(henv) = kcp(henv) = C1γ (0)
is the diffusivity at the environmental humidity.

Example 8.7. Dependence of characteristic time of drying on environmental
humidity

Consider again the Bažant–Najjar model with diffusivity approximated by function
(8.89) and with the parameters recommended by the fib Model Code, α0 = 0.05,
hc = 0.8 and r = 15.Thegraphof function f , evaluated numerically, has been shown
in Fig. 8.30. The derivative of function f at ξ = 0 is fξ0 ≈ 6.17. For henv = 0.6,
formulae (8.184) and (8.213) yield

γ (0) = 0.05 + 0.95

1 + 215
≈ 0.05003 (8.214)

ktw0 = 1

16C1 f 2ξ0γ
2(0)

≈ 0.655

C1
(8.215)

We have not specified the diffusivity at saturation, C1, to emphasize that the value of
ktw0 is inversely proportional to C1. The proportionality factor of 0.655 is more than
three times higher than the factor π/16 ≈ 0.196 which would, according to (8.210),
apply to a linear diffusion problem.

To illustrate the effect of environmental humidity on the value of ktw0 (and thus on
the characteristic time of drying), Fig. 8.33 shows the dimensionless product ktw0C1

as a function of the environmental humidity henv. Note that if henv is close to 1,
the diffusion problem is almost linear and ktw0C1 is close to π/16. This applies to
environmental humidities above 0.8, which is the value of parameter hc. For lower
henv, the product ktw0C1 increases with decreasing environmental humidity. This is
natural, since the diffusivity at lower humidities is reduced and the drying process
slows down, which is reflected by an increase of its characteristic time. �

The previous example has confirmed that the characteristic time is inversely pro-
portional to the diffusivity. Recall that the B3 model uses formula (3.17), which is

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 8.33 Dependence of dimensionless product ktw0C1 on the ambient humidity, computed using
the Bažant–Najjar model with parameters α0 = 0.05, hc = 0.8 and r = 15

analogous to (8.209), for evaluation of the shrinkage halftime, with the proportion-
ality factor kt considered as a material property and estimated using the empirical
formula in line 5 of Table C.2 in Appendix C. It should be stressed that factor ktw0
evaluated in Example 8.7 and factor kt used by the B3 model do not have exactly
the same meaning. First, the example deals with the water loss process, while the
B3 formula refers to the drying shrinkage process, which can have somewhat differ-
ent kinetics. Second, the characteristic time τw0 studied in the example is related to
the initial phase of the process (before the drying fronts meet) while the B3 model
uses the halftime τsh for fitting of the entire evolution of shrinkage strain, and the
optimal value may differ from the one that gives the best initial asymptote (this is
also the reason why we distinguish between τw0 and τw). Nevertheless, it is interest-
ing to compare the values for a particular case. For concrete with mean compressive
strength f̄c = 40MPa, exposed to the ambient humidity at t0 = 7 days, the empirical
formula from Table C.2 gives

kt = 0.085 t−0.08
0 f̄ −1/4

c day/mm2 = 0.029 day/mm2 (8.216)

According to the fib formula (8.90), the diffusivity of this concrete at saturation
would be

C1 = 10−8

40 − 8
m2/s = 3.125 × 10−10 m2/s = 27 mm2/day (8.217)

and, according to (8.215), the corresponding factor is

ktw0 = 0.655

27
day/mm2 ≈ 0.024 day/mm2 (8.218)

Thismeans that, in this particular case, the shrinkage halftime τsh evaluated according
to the B3 model is about 1.21× the characteristic time τw0 evaluated by asymptotic
fitting of the initial water loss data computed with the Bažant–Najjar model with
parameters recommended by fib, assuming 60% ambient humidity.
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Proportionality of the water loss characteristic time to the square of the structure
size is not limited to one-dimensional problems. Similar scaling arguments apply to
axisymmetric and spherically symmetric problems, as well as to any set of geometri-
cally similar bodies, such as a set of cubes or spheres of various sizes. Interestingly, if
the effective size is defined as D = 2V/Se, where V is the volume of the body and Se
is the area of its surface exposed to the ambient humidity, the characteristic time τw0
that refers to the initial phase of drying is given by the same formula (8.209) as for a
slab, independently of the shape of the body. This can be theoretically justified by the
fact that the water loss per unit surface area in an infinite half-space is, according to
(8.188), proportional to the square root of drying time, with a proportionality factor
that depends on the material and on the environmental humidity. In a finite body,
such proportionality holds during the initial phase of drying, when the drying front
propagates from each boundary point in the direction perpendicular to the boundary
and nonnegligible changes of water content occur only in a narrow surface layer.
Therefore, if t̂ is sufficiently small, the dimensionless function S that characterizes
the kinetics of drying (defined as the ratio between the water loss at time t̂ and the
final water loss at t̂ → ∞) can be approximated as

S(t̂) ≈ SeWL(t̂)

V Δw∞
= 2WL(t̂)

(2V/Se)Δw∞
(8.219)

This result is completely analogous to formula (8.198)with slab thickness D replaced
by effective thickness 2V/Se. Consequently, characteristic time τw0 is still given by
(8.199), later rewritten as (8.209), with factor ktw0 dependent on the material and on
the environmental humidity but independent of the shape of the body.

To confirm the expected shape independence of characteristic time τw0, let us reuse
the results of Example 8.4, in which the drying process was simulated using a linear
diffusion model for a slab of thickness D = 2L and for a cylinder of radius R = L ,
and the evolution of the average pore relative humidity h̄ was plotted in Fig. 8.24a.
For a linear isotherm, the loss of water content is proportional to the reduction of
pore relative humidity and the dimensionless function

S(t̂) = 1 − h̄(t̂)

1 − henv
(8.220)

is easily computed from the evolution of the average pore relative humidity, h̄, intro-
duced in Example 8.4 and defined by formula (8.143). For matching of the initial
asymptotics, it is convenient to transform the time variable such that the short-time
approximation (8.198) corresponds to a straight line. This is achieved by introducing
a scale proportional to the square root of drying time.

In Fig. 8.34a, the thick solid curves correspond to function S for a cylinder of
radius R = L and for a slab of thickness D = 2L , and the dashed straight lines
are tangents at the origin. Note that the dimensionless variable on the horizontal
axis is

√
t̂/τ , where τ = 4L2/(Cπ2) = auxiliary time-scale parameter. Since the
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τ τ

Fig. 8.34 Function S determined using a linear diffusion model: (a) drying time scaled by auxiliary
constant τ = 4L2/(Cπ2), (b) drying time scaled by characteristic time τw0 = πD2/(16C)

simulations have been based on a linear diffusion model, the expected value of
characteristic time τw0 isπD2/(16C), as follows from (8.201). For the slab, this gives
τw0 = π(2L)2/(16C) = πL2/(4C) = (π3/16)τ , and the short-time asymptotic
form of function S is

S(t̂) ≈
√

t̂

τw0
= 4√

π3

√
t̂

τ
(8.221)

Indeed, it can be verified that the slope of the initial tangent in Fig. 8.34a is 4/
√

π3 ≈
0.718. For a cylinder, the effective size 2V/Se turns out to be equal to the cylinder
radius (assuming that the cylinder is infinitely long or that the flat parts of the surface
are sealed). Since the simulation has been done for R = L , wemust substitute D = L
and formula (8.201) gives τw0 = πL2/(16C) = (π3/64)τ . This is why the slope of
the initial tangent in Fig. 8.34a is 8/

√
π3 ≈ 1.437, which is twice as much as for the

slab. As noted already in Example 8.4, if the cylinder diameter is equal to the slab
thickness, the cylinder dries out faster. Now, we know exactly that the ratio of the
characteristic times (of initial drying) for the cylinder and the slab is in this case 1:4
because the characteristic time is proportional to the square of effective size and the
ratio of the effective sizes is 1:2.

If the cylinder diameter is doubled (i.e., if the cylinder radius is set equal to the
slab thickness), both specimens have the same effective size and thus the same char-
acteristic time τw0, and the initial evolution of function S has the same short-time
asymptote for both specimens. This is documented in Fig. 8.34b, where the curves
from Fig. 8.34a are replotted with dimensionless variable

√
t̂/τw0 on the horizontal

axis. The initial tangents now coincide. However, at later stages the drying process in
a slab of thickness D proceeds faster than in a cylinder of radius D. For comparison,
the dotted curve shows the graph of the tanh-sqrt function (8.205) for the choice
τw = τw0. It is seen that this analytical expression provides a reasonable approxi-
mation of function S for the cylinder but systematically underestimates the values
of S computed for the slab. Clearly, identification of the drying halftime τw from
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asymptotic matching of the initial drying is not the best approach if the objective is
to obtain a good overall agreement.

Amore appropriate procedure is to adjust parameter τw such that a suitably defined
measure of the deviation of the analytical approximation from the “actual” function
S would be minimized. It seems reasonable to minimize the difference between S(t̂)
and tanh

√
t̂/τw in the least-square sense, using the square-root scale for the time of

drying on the horizontal axis. The objective function to be minimized is thus defined
as

Φ(τw) =
∫ ∞

0

[
S(t̂) − tanh

√
t̂/τw

]2

d
√
t̂ = 1

2

∫ ∞

0

[
S(t̂) − tanh

√
t̂/τw

]2 dt̂√
t̂

(8.222)
and condition dΦ(τw)/dτw = 0 leads to a nonlinear equation

∫ ∞

0

S(t̂) − tanh
√
t̂/τw

cosh2
√
t̂/τw

dt̂ = 0 (8.223)

which needs to be solved numerically, e.g., by the Newton method.
An alternative, simpler approach is to enforce satisfaction of condition S(t̂) =

tanh
√
t̂/τw at one single time instant, t̂∗, defined e.g., as the time at which S(t̂∗) =

0.5. The corresponding halftime is then evaluated as

τw = t̂∗

atanh2(0.5)
≈ 3.314 t̂∗ (8.224)

A similar condition was used by Donmez and Bažant [356] in a somewhat different
context (they did not determine the halftime leading to the best analytical approxi-
mation but the ratio between the halftimes corresponding to different geometries).

If function S is evaluated using the linear diffusion model with diffusivity C ,
Eq. (8.223) gives the optimal value of drying halftime τw = 0.1284 D2/C =
0.6539 τw0 for a slab and τw = 0.1817 D2/C = 0.9256 τw0 for a cylinder. The result-
ing graphs of numerically computed functions S and their analytical approximations
by function (8.205) are plotted in Fig. 8.35a. The variable on the horizontal axis is√
t̂/τw, and so the graph of the analytical function is the same for both geometries.

For comparison, Fig. 8.35b shows analogous results for drying halftimes determined
from formula (8.224), which leads to τw = 0.1630 D2/C = 0.8300 τw0 for a slab and
τw = 0.2089 D2/C = 1.0637 τw0 for a cylinder. It transpires that least-square fitting
provides a better overall fit (Fig. 8.35a), whilematching of the values at S = 0.5 leads
to a good agreement in the initial stage but to larger deviations later on (Fig. 8.35b).
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τ τ

Fig. 8.35 Function S, obtained using a linear diffusion model, and its analytical approximation
(8.205) with drying halftime τw determined by (a) least-square fitting, (b) matching the times that
correspond to S = 0.5

The results shown in Figs. 8.34 and 8.35 refer to the linear diffusion model, which
is not realistic for concrete. For highly nonlinear models, such as the one based on
the Bažant–Najjar formula (8.89) for humidity-dependent diffusivity, the shape of
numerically evaluated function S as well as the optimal value of drying halftime τw
depends on the ambient humidity. For the characteristic time τw0 that refers to the
initial asymptotics of the drying process, such dependence has already been demon-
strated in Example 8.7 and plotted in Fig. 8.33 in terms of the product ktw0C1, which
represents the dimensionless factor that multiplies D2/C1 when evaluating τw0, with
C1 denoting the diffusivity at saturation. In a similar fashion, the drying halftime τw
can be characterized by the dimensionless factor ktwC1, which corresponds to the
ratio between τw and D2/C1.

Fig. 8.36 Dependence of dimensionless product ktwC1 on the ambient humidity, computed using
the Bažant–Najjar model with parameters α0 = 0.05, hc = 0.8, and r = 15 by (a) least-square
fitting, (b) matching the times that correspond to S = 0.5
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Numerically evaluated dependence of factor ktwC1 on the ambient relative humid-
ity is shown in Fig. 8.36, in which solid curves correspond to a slab and dashed
curves to a cylinder. For comparison, the graph of factor ktw0C1 from Fig. 8.33 is
reproduced here using dotted curves. The results obtained by least-square fitting are
shown in Fig. 8.36a, while Fig. 8.36b refers to the halftimes determined by match-
ing the values at S = 0.5. It turns out that the latter method gives somewhat lower
halftimes in the range of ambient humidities between 40 and 70%. The reason is
explained in Fig. 8.37, which shows the numerically computed functions S for 60%
ambient humidity and their analytical approximations. Least-square fitting leads
to τw = 0.9790D2/C1 for a slab and τw = 1.3806D2/C1 for a cylinder (i.e., to
ktwC1 = 0.9790 and 1.3806), and the analytical approximation is initially below
the actual S-curve and later above it (Fig. 8.37a). Matching at S = 0.5 leads to
τw = 0.6486D2/C1 for a slab and τw = 0.9274D2/C1 for a cylinder, and the
analytical approximation is initially very good but later substantially overestimates
the actual values (Fig. 8.37b) because for henv = 0.6 the slope of the numerically
computed S-curves abruptly decreases when S exceeds 0.5.

ττ

Fig. 8.37 Function S, obtained using a nonlinear diffusion model for ambient humidity henv = 0.6,
and its analytical approximation (8.205) with drying halftime τw determined by (a) least-square
fitting, (b) matching the times that correspond to S = 0.5

The foregoing examples indicate that the initial asymptotics of the drying process
is the same for a slab of thickness D and for a cylinder of radius D (for linear aswell as
nonlinear diffusion) but later the cylinder dries out more slowly, which is manifested
by higher values of the drying halftime determined by fitting of the numerically
calculated function S that characterizes the kinetics of drying. Similar trends can be
expected for specimens or structural members of other geometries. Even if the size
of the body is characterized by the ratio 2V/Se, the drying halftime still depends on
the specific shape of the body and is somewhat different from the drying halftime
of an infinite slab of thickness D = 2V/Se. It is convenient to describe the effect of
shape by another dimensionless factor ks , which transforms 2V/Se into an equivalent
thickness of a slab with the same drying halftime as the original body. The complete
formula for the characteristic time of drying, analogous to Eq. (3.17), is thus written

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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as
τw = ktw(ks D)2 (8.225)

For an infinite slab, ks = 1 and D is the actual thickness. The B3 model uses fixed
shape factors recommended by Bažant et al. [174], namely ks = 1.15 for an infinite
cylinder (or a finite cylinder with sealed ends), 1.25 for an infinite square prism, 1.30
for a sphere, and 1.55 for a cube. For bodies of other shapes, it is recommended to
interpolate or estimate the ks value by engineering judgment.However, if nonlinearity
of moisture transport is taken into account, it turns out that the values of ks should
also depend on the environmental humidity, henv. Such dependence is ignored by the
B3 model.

If the drying halftimes are extracted from numerical simulations of a cylinder of
radius D and a slab of thickness D drying at various ambient relative humidities, the
corresponding humidity-dependent shape factor can be evaluated based on (8.225).
Since the slab has by definition a unit shape factor, we can present the halftime
determined for the slab as τ slab

w = ktwD2, while the halftime determined for the
cylinder is τ

cyl
w = ktw(kcyls D)2 = (kcyls )2τ slab

w . The resulting shape factor for a cylinder
is thus obtained as

kcyls =
√

τ
cyl
w /τ slab

w (8.226)

Similar arguments have already been used in Example 8.4 in the context of linear
diffusion; cf. Eqs. (8.145)–(8.146). The analysis can now be extended to nonlinear
diffusion, which leads to humidity-dependent shape factors. It turns out that if the
drying halftimes are determined by least-square fitting (Fig. 8.36a), the dependence
of the shape factor on the ambient humidity is rather weak; see the solid curve in
Fig. 8.38. The value of kcyls evaluated in this way remains between 1.181 and 1.199
over the entire range of henv between 0 and 1. On the other hand, the drying halftimes
determined by matching of the values at S = 0.5 (Fig. 8.36b) lead to highly variable
kcyls , with values between 1.122 and 1.202; see the dashed curve in Fig. 8.38. The
dotted horizontal line corresponds to the humidity-independent shape factor used by
the B3 model.

Fig. 8.38 Dependence of shape factor kcyls on the ambient humidity, computed using the Bažant–
Najjar model with parameters α0 = 0.05, hc = 0.8, and r = 15
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8.4.6 Effects of Variable Environmental Humidity

Cycling of environmental conditions, typical in nature, may affect creep and shrink-
age appreciably, as documented by the tests of Bernhardt [237, 238], Al-Alusi,
Bertero and Polivka [24] and Hansen [451], discussed by Bažant and Wang [194].
The magnitude of this effect decreases with increasing thickness of cross section
and vanishes for massive structures, except in their surface layer. The influence of
humidity variations on creep can be captured by the microprestress-solidification
theory, to be presented in Chap. 10. Here, we focus on the evaluation of pore relative
humidity in a specimen subjected to variable environmental conditions.

If the evolution of ambient humidity is periodic, it can be expected that, after
a transitional period and at negligible rate of aging, a periodic evolution of the
pore humidity distribution will be approached. An analytical solution can easily be
developed for the one-dimensional linear diffusion problem described by Eq. (8.114)
and solved on the semi-infinite interval [0,∞). Let us first assume that the ambient
humidity

henv(t̂) = h̄env + ĥenv cos
2π t̂

Th
(8.227)

oscillates around its mean value h̄env harmonically, with period Th and peak ampli-
tude ĥenv. The asymptotically approached periodic pore humidity evolution can be
expected to have the form

h(x, t̂) = h̄env + A1(x) cos
2π t̂

Th
+ A2(x) sin

2π t̂

Th
(8.228)

where A1 and A2 are functions of the spatial variable only. Evaluating the spatial
and temporal derivatives and substituting them into the one-dimensional diffusion
equation (8.114), we can convert the problem into two coupled ordinary second-order
differential equations

CA′′
1(x) − 2π

Th
A2(x) = 0 (8.229)

CA′′
2(x) + 2π

Th
A1(x) = 0 (8.230)

with boundary conditions A1(0) = ĥenv, A2(0) = 0, A1(∞) = 0, and A2(∞) = 0.
The standard solution procedures for coupled linear differential equations with con-
stant coefficients lead to

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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A1(x) = ĥenve
−κhx cos κhx (8.231)

A2(x) = ĥenve
−κhx sin κhx (8.232)

where

κh =
√

π

CTh
(8.233)

is an auxiliary parameter introduced for convenience.The resultingperiodic evolution
of pore relative humidity is

h(x, t̂) = h̄env + ĥenve
−κhx cos

(
2π t̂

Th
− κhx

)
(8.234)

At each fixed spatial point, the evolution of humidity is harmonic, with an amplitude
that decays exponentially with the distance from the exposed boundary, x , and with
a phase shift that varies proportionally to the distance. The spatial distribution of
humidity at a fixed time instant has the character of an attenuated wave, shown in
Fig. 8.39 by the solid curves (which correspond to four equally spaced stages of the
cycle). The dashed exponential curves represent the upper and lower limits between
which the humidity varies at each point.

Fig. 8.39 Humidity profiles due to harmonic variation of ambient humidity with mean value 60%,
peak amplitude 10%, and period Th = 1 year, plotted for moisture diffusivity C = 4 mm2/day

The depth of the boundary layer affected by the harmonic variation of ambi-
ent humidity, δc, can be defined, e.g., as the distance at which the amplitude is
100× smaller than the amplitude of ambient humidity cycles. From the condition
exp(−κhδc) = 0.01, we get

δc = ln 100

κh
= ln 100

√
CTh
π

≈ 2.6
√
CTh (8.235)

If the thickness D of a wall is greater than 2δc, the pores in the core of the wall will
not feel the cyclic humidity effect; if it is smaller, the entire wall thickness will be
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affected. The solution has been derived for linear diffusion, but it can be used as
an estimate for nonlinear diffusion if the diffusivity does not vary too much in the
humidity range between h̄env − ĥenv and h̄env + ĥenv. For example, considering the
average diffusivity in this range as C = 4 mm2/day, one finds that the daily cycles of
environmental humidity will penetrate concrete to the depth of only 5.2 mm, while
the annual cycles will penetrate to the depth of 99mm (as illustrated in Fig. 8.39). The
core of any wall thicker than 200mmwill not feel the annual humidity cycles. All the
depths are reduced to one half if one considers a tenfold reduction of the amplitude
(instead of a reduction by a factor of 100) in the definition of δc. The factor of 2.6
in (8.235) is then replaced by 1.3 (because ln 10 = (ln 100)/2). For instance, if the
amplitude of daily ambient humidity variations is 20%, the pore humidity at the
distance of 2.6mm from the exposed surface will vary with amplitude 2% and at the
distance of 5.2mm with amplitude 0.2%.

The penetration depth calculated for a harmonic evolution of ambient humidity
represents an upper bound for the penetration depth under an arbitrary periodic
evolution with period Th . The reason is that a general periodic evolution can be
expanded into a Fourier series which contains harmonic terms with periods Th , Th/2,
Th/3, etc. Due to the linearity of the problem, solutions constructed for individual
harmonic terms can be superposed. Higher-frequency terms attenuate faster than the
first term, because Th in (8.233) is replaced by Th/n with n ≥ 2.

The linear diffusion model with no aging, considered so far, permits an analytical
treatment and closed-form estimation of the penetration depth under cyclic varia-
tions of the environmental humidity. To get a more complete picture, let us look
at the effects of variable (humidity-dependent) diffusivity, which can be studied by
numerical simulations.

Example 8.8. Concrete wall exposed to variable ambient humidity

Consider a concrete wall of thickness D = 300 mm, exposed on both sides to the
same environmental humidity henv. To capture seasonal variations, at least in an
approximate way, the history of environmental humidity is prescribed as

henv(t̂) = h̄env + ĥenv cos
2π(t̂ − t̂ p)

Th
(8.236)

with period Th = 365 days and with t̂ p = tp − t0 denoting the time shift between the
time instant tp at which the harmonic approximation of the typical annual variation
of ambient humidity attains its peak and the time at the onset of drying, t0. For the
real data collected at Fresno, California, during 2000–2014 and plotted in Fig. 6.1a,
the optimal fit by function (8.236) is obtained with h̄env = 0.61, ĥenv = 0.15 and tp
corresponding to January 12.

http://dx.doi.org/10.1007/978-94-024-1138-6_6
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To simulate moisture diffusion in concrete, let us use again the Bažant–Najjar
model with age-independent diffusivity approximated by function (8.89) and with
the parameters recommended by the fib Model Code, i.e., α0 = 0.05, hc = 0.8 and
r = 15. The initial pore relative humidity is considered as uniform and equal to 1.
Due to symmetry, the problem is solved on the interval [0, L], where L = D/2 = 150
mm, with boundary conditions h(0, t̂) = henv(t̂) and h′(L , t̂) = 0. The diffusivity at
saturation is set to C1 = 20 mm2/day.

Long-term effects of periodic ambient humidity described by (8.236) with h̄env =
0.61 and ĥenv = 0.15 are presented in the left column of Fig. 8.40. It is assumed
that the first exposure of the wall to the ambient humidity henv occurred on July 12,
when henv was at its minimum, 0.46, which means that t̂ p in (8.236) is set to Th/2.
Figure8.40a shows the pore relative humidity profiles in the left half of the wall at
selected times of exposure ranging from 5 to 160years (always referring to the state
after an integer number of annual cycles, on July 12). It is seen that the drying process
takesmany decades.After 40years of exposure, humidity in the core of thewall is still
decreasing. Moisture transport is slowed down by a dramatic reduction of diffusivity
at humidities below 0.8. The pore relative humidity at the plane of symmetry (at the
distance of 150mm from both exposed surfaces) is reduced to 0.661 after 40years,
0.623 after 80years, and 0.613 after 160years. The approach to a periodic response
takes a very long time, but eventually, the solution gets close to the theoretical one,
given by (8.234) in which t̂ is replaced by t̂ − t̂ p = t̂ − Th/2. This modification
accounts for the phase shift due to the specific choice of the day on which the wall is
first exposed to the environment (July 12). The profile corresponding to the humidity
distribution on July 12 according to the periodic solution based on a linear diffusion
model is indicated in Fig. 8.40a by the dashed curve. Parameter κh has been evaluated
from (8.233) using C = 1.0008 mm2/day, which is the diffusivity at h = h̄env.

Figure8.40c depicts pore relative humidity profiles at time instants that correspond
to quarters of the annual cycle during the 80th year of exposure, and Fig. 8.40e shows
how the pore relative humidity at the exposed surface and at the depths of 10 mm,
20 mm, and 30mm evolves during the 80th year. The solid curves represent the
numerically computed results; they are very close to the dashed curves, which have
been obtained from formula (8.234) with t̂ replaced by t̂ − t̂ p.

The results presented so far may seem to confirm that, after a (rather long) tran-
sitional phase, the humidity history in a wall exposed to periodic ambient humidity
approaches the periodic solution obtained for the linear diffusion model. However,
the results plotted in the left column of Fig. 8.40 refer to a particular case in which
the periodic solution is confined to a range with a relatively weak dependence of
diffusivity on pore relative humidity. Indeed, the ambient relative humidity varies
here between h̄env − ĥenv = 0.46 and h̄env + ĥenv = 0.76, and the moisture diffusivity
evaluated according to the Bažant–Najjar formula (8.89) with the present parame-
ters is almost constant below h = 0.7 (it varies from 1 mm2/day at h = 0 to 1.043
mm2/day at h = 0.7) and between h = 0.7 and h = 0.76 it varies between 1.043
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Fig. 8.40 (a) Profiles of relative humidity in July after 5, 10, 20, 40, 80, and 160years, (b) profiles
of relative humidity in July after 1, 2, 4, 8, and 16years, (c) profiles of relative humidity in July,
October, January, and April during the 80th year of exposure, (d) profiles of relative humidity in
July, October, January, and April during the 20th year of exposure, (e) variation of relative humidity
at the exposed surface and 10, 20, and 30mm from the surface during the 80th year of exposure, (f)
variation of relative humidity at the exposed surface and 10, 20, and 30mm from the surface during
the 20th year of exposure, (g–h) evolution of spatially averaged relative humidity
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and 2.158 mm2/day. Consequently, the nonlinearity affects only a narrow layer near
the surface, during a fraction of the annual cycle. It is thus interesting to explore what
would happen for ambient humidity ranges that involve more dramatic variations of
the corresponding diffusivity.

Suppose that the average ambient humidity is increased to h̄env = 0.7, while
all other parameters remain fixed. The results are graphically shown in the right
column of Fig. 8.40. The transitional stage of the drying process is now much
shorter than for h̄env = 0.61, as documented in Fig. 8.40b. The difference between
the humidity profiles in July after 8years and 16 years of exposure is very small (pore
relative humidity at the plane of symmetry slightly decreases from 0.795 to 0.788),
and in subsequent years, the profile remains virtually the same. The most striking
difference compared to the case of h̄env = 0.61 is that the pore relative humidity in
the core of the wall oscillates (with a very small amplitude) about a value close to
0.788, which is substantially higher than the average ambient humidity h̄env = 0.7.
This is a consequence of strong nonlinearity of the transport process. At higher
humidities, the moisture transport is faster, which breaks the “symmetry” of positive
and negative deviations from average values. Drying during the summer months
with a low ambient humidity is slower than wetting during the winter months with a
high ambient humidity, and the resulting humidity in the core is thus higher than it
would be for a linear diffusion model (or even for a nonlinear model if the ambient
humidity remained at its average value and did not vary at all). Predictions obtained
with a linear model, plotted in Fig. 8.40b,d by dashed curves, are now completely
off. The actual profiles are flatter in the top part (January) and steeper in the bottom
part (July). The annual variation of pore relative humidity at a given internal point is
far from harmonic, as shown in Fig. 8.40f. For the sake of clarity, the corresponding
variations predicted by the linear model are not shown in Fig. 8.40f; they would have
exactly the same shape as the dashed curves in Fig. 8.40e, just vertically shifted by
0.09.

To complete the analysis, let us have a closer look at the evolution of spatially
averaged pore relative humidity, h̄(t̂), introduced in Example 8.4 and defined by
formula (8.143). If the sorption isotherm is linear, the difference h̄(0) − h̄(t̂) is
proportional to the water loss, which is in turn roughly proportional to the average
shrinkage strain. The two graphs at the bottom of Fig. 8.40 present the evolution of
h̄(t̂) in a slab of thickness D = 300 mm. Since the transitional phase can be quite
long, the logarithmic scale is used here for the time of exposure on the horizontal
axis. For comparison, the dashed curve indicates how the spatially averaged humidity
would evolve at a constant ambient humidity, henv(t̂) = h̄env. In the terminal, almost
periodic phase, the spatially averaged pore relative humidity oscillates around a value
which is very close to the average ambient humidity h̄env = 0.61 in Fig. 8.40g but is
substantially higher than the average ambient humidity h̄env = 0.7 in Fig. 8.40h. By
averaging in time over the period of Th = 365 days (1 year), we find that the value

¯̄h = 1

Th

∫ t̂max

t̂max−Th

h̄(t̂) dt̂ (8.237)



8.4 One-Dimensional Moisture Transport 379

around which h̄(t̂) oscillates in the terminal phase is 0.613 for h̄env = 0.61 and 0.782
for h̄env = 0.7. Time t̂max in formula (8.237) corresponds to the end of the simulation
(t̂max = 50, 000 days in the present case, but already after 30,000days, the values of
¯̄h would be, respectively, 0.619 and 0.782). �

In the previous example, we have shown that if the moisture transport is governed
by a nonlinear diffusion equation, the average pore relative humidity in the structure

after a long-term exposure, ¯̄h, does not need to be equal to (or close to) the average

ambient relative humidity, h̄env. Howmuch ¯̄h deviates from h̄env depends on the range
in which the ambient humidity varies and on the sensitivity of moisture diffusivity
to the pore humidity in that range. For the range of henv = 0.61 ± 0.15, there is

almost no difference between ¯̄h and h̄env, while for the range of henv = 0.7 ± 0.15
the difference is appreciable.

To see the broad picture, let us perform a series of simulations for various ranges

of ambient humidities and evaluate ¯̄h in the terminal phase of each simulation, when
the response becomes sufficiently close to a periodic one. The results obtained for
a wall of thickness D = 300 mm with the Bažant–Najjar model using the diffusion
parameters fromExample 8.8 are shown in Fig. 8.41. The terminal mean pore relative

humidity, ¯̄h, is plotted as a function of the peak amplitude of ambient relative humidity
variation, ĥenv, for different values of the mean ambient relative humidity, h̄env. Each

curve starts from ĥenv = 0 and ¯̄h = h̄env, because for zero amplitude of henv, the
transport process corresponds to monotonic drying at a constant ambient humidity.

As the peak amplitude ĥenv grows,
¯̄h increases as well, but the effect becomes strong

only if the range h̄env± ĥenv has a substantial overlap with the range of highly variable
diffusivity. Each curve in Fig. 8.41 is terminated at ĥenv = 1− h̄env, to make sure that
the prescribed ambient relative humidity during the cycle never exceeds 1.

Fig. 8.41 Dependence of mean pore relative humidity in the terminal phase, ¯̄h, on the peak ampli-
tude of ambient relative humidity, ĥenv, for various levels of mean ambient relative humidity, h̄env

According to Fig. 8.41, if the mean ambient relative humidity is 0.6, the asymp-
totically approached mean pore relative humidity remains very close to 0.6 as long
as the peak amplitude of the ambient relative humidity does not exceed 0.16. On the
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other hand, if the ambient relative humidity varies around the samemean over a larger
range, e.g., with a peak amplitude of 0.25, the resulting mean pore relative humidity
increases to 0.73. In Example 8.8, we prescribed h̄env = 0.61 and ĥenv = 0.15 as
values that correspond to the best harmonic approximation of the actual variation of
humidity recorded in Fresno, California, during the period of 2000–2014. The period
in the harmonic approximation was set to 1 year, to capture the annual cycles. As
shown in Fig. 6.1a, the actual values recorded in Fresno varied over a wider range,
but the deviations from the smooth harmonic approximation can be considered as
random fluctuations due to weather changes, with zero mean. Since such fluctuations
rapidly change sign (typically after a few days), one might think that their effect on
the overall behavior is negligible because, in similarity to the daily cycles discussed
at the beginning of the present section, they affect only a narrow layer near the
exposed surface. However, such reasoning is correct only if the transport process can
be described by a linear model.

Fig. 8.42 (a–b) Evolution of spatially averaged pore relative humidity for various histories of
ambient humidity (constant, given by a harmonic function, specified by actually measured values),
(c) histogram of deviations of ambient relative humidity (daily averages) from a harmonic approxi-
mation of seasonal variations, (d) evolution of spatially averaged pore relative humidity for ambient
humidity given by a harmonic function superposed with random fluctuations

For a highly nonlinear behavior, even short-term fluctuations with zero mean can
have an effect on the overall long-term evolution of the pore humidity distribution.
A simulation of the same wall as in Example 8.8 subjected to an ambient humidity

http://dx.doi.org/10.1007/978-94-024-1138-6_6
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history directly taken from the actual weather station records reveals that the pore
relative humidity in the wall after 15years of exposure is substantially higher than
the results obtained for ambient humidity approximated by the best-fit harmonic
function with a period of 1 year; see Fig. 8.42a.

To demonstrate the long-term trends, the simulation has been extended to 60years,
with the measured data from 2000–2015 repeated in the subsequent 15-year periods.
Figure8.42b shows that, after a transitional period of about 12years, the “actual”
spatially averaged humidity h̄ fluctuates between 0.69 and 0.74. In contrast to that,
the solution computed for a harmonic approximation with period 1 year and peak
amplitude 0.15 slowly approaches a periodic solution oscillating around 0.61 (as
already shown in Example 8.8; see Fig. 8.40g). A response similar to the “actual”
one could be obtained by increasing the amplitude of the harmonic function, but
such an adjustment would be rather artificial. Instead of that, one can subtract the
smooth harmonic approximation from the measured ambient humidity values and
treat the difference as a random variable. From the histogram in Fig. 8.42c, it is
clear that this variable can be considered as normally distributed, with zero mean
and with a standard deviation of 0.077 (see the dashed curve). The best agreement
with the results computed for the measured data is achieved if the harmonic function
is combined with normally distributed random fluctuations characterized by zero
mean and a standard deviation of 0.09; see Fig. 8.42d.

8.5 Spreading of Hydraulic Pressure Front Into
Unsaturated Concrete

In submerged structures, a saturated zone under hydraulic pressure pl may be prop-
agating into a zone of unsaturated concrete. In that case, as shown by Bažant [79], it
is extremely important to take into account the self-desiccation of concrete. It causes
most of the concrete to become unsaturated, and thus deficient in water, which means
that the permeation of water under hydraulic pressure must supply to the pressure
front enough water to replenish the missing water before the pressure front can
propagate deeper into the structure. Calculations show that the filling of the pores
at pressure front is so slow that it leaves enough time for the profile of hydraulic
pressure to become almost linear.

The diffusion equation (8.85) written in terms of the pore relative humidity as the
primary unknown field describesmoisture transport in partially saturated concrete, in
which liquidwater coexists withwater vapor in the pore gas. To describe the transport
of liquid water in the fully saturated region between the upstream boundary of the
dam and the saturation front, a model based on the Darcy law and presented in
Sect. 8.3.4.1 can be used. Recall that the primary unknown field is then the liquid
pressure pl , which can be computed by solving differential equation

ṗl = Cl∇2 pl + Kh

np

∂pl
∂z

− Kl

ρl0np
ẇh (8.238)
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in which

Cl = KlKh

ρl0npg
(8.239)

is the diffusivity of liquid water in saturated concrete [m2/s], and

ẇh = ẇn + ρl ṅ p (8.240)

is the rate of water deficiency due to hydration (see Fig. 8.43 for a schematic illus-
tration of the physical origin of water deficiency).

Fig. 8.43 Change of pore space and water deficiency caused by hydration

Powers [701] estimated that the water deficiency amounts to about 28% of all
chemically combined water, which in turn represents (at the end of hydration) about
22% of the weight of cement. So the terminal water deficiency wh,∞ is about 28%×
22% = 6.2% of cement weight. For a lean dam concrete (without pozzolans), this
gives wh,∞ = 0.062× 112 ≈ 7 kg of water per m3 of concrete (for recent concretes
with pozzolans this would be about 3 kg/m3). The time variation may be considered
aswh(t) = wh,∞ fw(t), where fw(t) is a functionmonotonically increasing from 0 to
1, roughly in proportion to the strength gain formula (to take into account the heating
due to hydration, replace t with the equivalent hydration period te; see Sect. 10.6.1).
Equation (8.238) is a linear parabolic differential equation for the unknown pore
liquid pressure pl .

For a lean dam concrete, the hydraulic permeability Kh ≈ 50×10−12 m/s. For
instance, for a concrete with 112kg of cement per m3 of concrete, Carlson [294]
observed the values of 175, 60, and 40 × 10−12 m/s at 3, 12, and 24months of age,
respectively. For very lean concretes, with only 43kg of cement per m3, 70 to 200
kg/m3 of pozzolans, and 80 to 150kg of water per m3, the hydraulic permeability at
the age of 3months is about 6×10−12 m/s. These hydraulic permeabilities are several
orders of magnitude higher than those of dense structural concretes (but this is not
harmful for gravity dams because their leakage depends almost exclusively on joints
and cracks).

In the foregoing Eqs. (8.238)–(8.239), the fraction np/Kl , further denoted as �,
represents the compressibility of porewater, taking into account the effect of porosity.
According to the detailed theoretical discussion byBažant [79], the value of� should
be modified because the problem is complicated by several phenomena:

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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1. deformation of solid skeleton of cement gel incorporating layers of load-bearing
hindered adsorbed water;

2. uncertainty in delineating the part of hindered adsorbed water that should be
excluded from np (this water phase is load-bearing though evaporable); and

3. increase in accessible nanopore space with increasing pressure.

According to the experiments of Murata [644], � should be taken as approximately
equal to the bulk compressibility of concrete as a whole, which is about 100 ×
10−12/Pa for a one-year old lean dam concrete (see also [294]).

Consequently, the diffusivity can be estimated as

Cl = Kh

ρl0�g
≈ 50 × 10−12

1000 × 100 × 10−12 × 10
m2/s = 50×10−6 m2/s = 4.32 m2/day

(8.241)
which is near the upper bound of the diffusivities identified by Murata [644] from
penetration depth measurements. This is about 200,000× greater than the typical
diffusivity of unsaturated concrete just below saturation (C1 ≈ 20 mm2/day). The
reason for this huge difference is thatmuchwater needs to flow into unsaturated pores
to change pore humidity significantly, while very little water needs to be forced into
saturated pores to change the hydraulic pressure significantly.20

Due to the high diffusivity in the saturated region, the gradient of hydraulic head
ofwater diffusing, for example, into a concrete dam from its reservoir, must be almost
uniform up to the saturation front at the interface with unsaturated concrete, where
the liquid water is at (or near) the atmospheric pressure. The saturation front slowly
moves into the unsaturated region, and the speed of this motion is controlled mainly
by the rate at which the water supplied to the front can compensate for the water
deficiency in the unsaturated region caused by hydration.

To get insight into the physical mechanisms governing this process, let us look at
a simplified one-dimensional problem of water flow through a horizontal pipe filled
by concrete. All variables depend just on the horizontal spatial coordinate x (and on
time). Consequently, the gradient of the elevation head vanishes and the Darcy law
(8.69) can be simplified to

jx = −Kh

g

∂pl
∂x

(8.242)

Consider horizontal water flux from a boundary at x = 0, subjected to a given excess
pressure p0 applied at time t1, to the saturation front located at a certain distance xs ,
which varies in time. For high diffusivity Cl , the pressure profile can be expected to
be almost linear along the pipe and can be described by

pl(x, t) ≈ patm + p0

(
1 − x

xs(t)

)
, 0 ≤ x ≤ xs(t) (8.243)

20What is the ratio of permeabilities of saturated and unsaturated concretes? To answer it, it is
necessary to consider permeabilities that refer to gradients of the same variable, which is the
chemical potential. In this way, it was concluded that the ratio is about 6000 [79].
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Differentiating with respect to x and substituting into the Darcy law (8.242), we get
a relation between the flux and the position of the saturation front:

jx (t) = Kh

g

p0
xs(t)

(8.244)

If the boundary pressure is applied after completion of the hydration process, the
water deficiency in the unsaturated region is equal to its terminal value, wh,∞. The
amount ofwater (per unit area of the saturation front) needed to resaturate the concrete
and move the saturation front by an increment dxs is wh,∞dxs . This water must be
supplied by the flux jx during the time increment dt , which leads to the condition

wh,∞dxs = jx (t)dt (8.245)

After substitution from (8.244) and separation of variables, we obtain

xs(t)dxs = Kh p0
gwh,∞

dt (8.246)

Integrating this relation from time t1 at which the boundary pressure was applied to
the current time t , we get

x2s (t)

2
= Kh p0

gwh,∞
(t − t1) (8.247)

from which

xs(t) =
√
2Kh p0
gwh,∞

(t − t1) = √
Cw(t − t1), t ≥ t1 (8.248)

Using the aforementioned typical values Kh = 50 × 10−12 m/s and wh,∞ = 7
kg/m3 and considering, as an example, the excess pressure p0 = 0.49 MPa (which
corresponds to the applied pressure head p0/gρl = 49 m, i.e., to the depth of 49m
below the reservoir water level), we can evaluate the factor

Cw = 2Kh p0
gwh,∞

= 2 × 50 × 10−12 × 0.49 × 106

10 × 7
m2/s = 0.7× 10−6 m2/s (8.249)

The corresponding penetration depths xs of the saturation front after t − t1 = 1, 10
and 100years of exposure to the excess pressure are 4.7 m, 15 m, and 47 m. Since
the excess pressure p0 grows proportionally to the depth d below the water level,
factor Cw will be proportional to the d and the distance xs of the penetration front
from the boundary will be proportional to

√
d . Therefore, it can be expected that

the shape of the penetration front will be approximately parabolic, as schematically
shown in Fig. 8.44. Of course, this is just a simplified solution, valid for a constant
water level in the reservoir. Simultaneously, a drying front will propagate from the
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part of the dam boundary which is in contact with air. The present simplified solution
is not applicable to the region near the dam crest where both fronts meet, but it gives
a rough idea about the time it takes for the saturated region to reach the core of the
dam.

Fig. 8.44 Advance of the fronts of saturation and of drying in an ideal dam having no cracks, no
cracked joints, and no drainage (for a typical concrete

If the aggregate is porous and not completely saturated by the time of mixing, or
if air bubbles are entrained in concrete, the penetration depths can be easily reduced
by a factor of 2 to 4. On the other hand, for modern high-strength concrete, which
can have permeability 4 orders of magnitude lower and can undergo much stronger
self-desiccation, the penetration depth of saturation front would be several orders of
magnitude smaller.

If dam concrete (with no air bubbles) underwent no self-desiccation, we could
cancel the sink term with ẇh and Eq. (8.238) would, for one-dimensional flow in a
horizontal pipe, reduce to the standard linear diffusion equation

ṗl = Cl p
′′
l (8.250)

In analogy to (8.195), the penetration depths can then be estimated as xs =
√
12Cl t̂ ,

and for the typical value of Cl = 50 × 10−6 m2/s calculated in (8.241), the one-
year penetration depth would be xs ≈ 138 m—much greater than the value of 4.7m
obtained if the effect of self-desiccation is included.

The calculation of hydraulic pressure in concrete is important for the old, yet still
discussed, problem of uplift in dams [294, 392], which is further complicated by
the question of applicability of Terzaghi’s concept of effective stress (for a detailed
discussion, see [79]).

To clarify uplift, measurements of water pressure in dam concrete have been
made and surprisingly low pressure values have been recorded. For example, at the
University of California in Berkeley in the 1930s, a horizontal pipe filled with dam
concrete was connected at one end to a vertical pipe running through several stories,
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filled permanently by water. Pore pressure gauges were installed in the horizontal
pipe, but even after 30years, no pressure was measured even at the first gauge, at
the distance of 0.3m from the wet end under pressure (private communication by R.
Carlson and D. Pirtz in March 1969). The only possible explanation is either strong
self-desiccation (not likely in dam concrete), or prevalence of anticlastic capillary
surfaces leaving significant empty pore space even at 100% humidity.

8.6 Shrinkage and Stresses Due to Nonuniform Drying

Let us now consider the drying shrinkage under the assumption that the autoge-
nous shrinkage is negligible. This hypothesis is acceptable for most normal-strength
concretes, but not for high-strength concretes.21

It is a widely accepted empirical observation that the drying shrinkage strain εsh
is, at least in a certain range, approximately proportional to the loss of (total) water
content, i.e.,

ε̇sh = kshẇt (8.251)

where ksh is an empirical constant, which may be called the shrinkage coefficient.
For mature concrete with a linear desorption isotherm, (8.251) can be rewritten as

ε̇sh = ksh
ḣ

k
= k∗

shḣ (8.252)

where k is the reciprocal moisture capacity and k∗
sh = ksh/k is another propor-

tionality coefficient, which may be called the shrinkage ratio. The B3 model and
many researchers postulate the proportionality between the change of pore relative
humidity and the shrinkage strain increment directly, independently of the isotherm,
with k∗

sh considered as the primary parameter. The limitations of simple relations
(8.251) and (8.252) with constant proportionality coefficients can be illustrated by
two examples of measured data sets.

Granger [430] presented an experimental study of creep and shrinkage of con-
cretes used in six French power plants, with compressive strength ranging from 34.3
MPa (Penly) to 64.5 MPa (Flamanville). Among other tests, he measured shrinkage
and water loss on cylinders of 16cm in diameter, with sealed ends. The specimens
were cured in sealed conditions until the age of 28days and then were exposed to
an ambient relative humidity of 50%. The dependence between the water loss (in
mass percent) and shrinkage strain is shown in Fig. 8.45a. It is clear that the sim-
ple proportionality of the shrinkage strain increment to the change of water content
can provide a good approximation of the measured data in the intermediate range

21Can Eq. (8.252) be used to calculate autogenous shrinkage from the self-desiccation in high-
strength concretes? Settled though this question is not, it seems that a calculation based just on
(8.252) would underestimate the autogenous shrinkage.
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only. The corresponding coefficients ksh for individual concretes are between 9.5 and
18.5 × 10−6 m3/kg (slopes of the dashed lines in Fig. 8.45a divided by the density
of dry material, estimated as ρd = 2300 kg/m3). During the early and late stages
of the drying process, the evolution of shrinkage lags behind the water loss, and the
value of ksh would need to be reduced. The values of this coefficient averaged over
the entire range of data are between 6.6 and 15.4 × 10−6 m3/kg.

Fig. 8.45 (a) Relation between water mass loss and shrinkage strain measured by Granger [430]
for six different types of concrete, (b) relation between relative humidity and shrinkage strain
measured by Baroghel-Bouny et al. [57] for normal-strength (NS) and high-strength (HS) concrete
and hardened cement paste

Baroghel-Bouny et al. [57] performed water vapor desorption experiments on
slices about 3mm thick,wet-sawn fromcylinders after curingwith nowater exchange
for 1 year. The specimens were placed into sealed cells with relative humidity con-
trolled by saturated salt solutions and brought into moisture equilibrium. In addition
to the water loss at each level of relative humidity, the change of disk diameter was
measured by dial gauges and the results were converted into shrinkage strains, tak-
ing the state at 90.4% relative humidity as a reference. The tested materials included
normal-strength concrete (w/c = 0.48, f̄c = 49.4 MPa, ρ = 2285 kg/m3), high-
strength concrete (w/c = 0.26, f̄c = 115.5MPa,ρ = 2385 kg/m3), and also normal-
strength and high-strength hardened cement pastes. The results plotted in Fig. 8.45b
confirm that cement paste shrinks much more that the concrete as a whole. For
cement paste, the graph is close to a straight line over the entire range of humidities,
down to extremely low values. For concrete, especially for normal-strength concrete,
the graph is close to a straight line for humidities above 55%. At lower humidities,
the shrinkage strain remains almost constant. In the linear range, the coefficient
of proportionality between the change of humidity and the shrinkage strain (slope
of the dashed line in Fig. 8.45b) is, for normal-strength concrete, approximately
k∗
sh = 1.76 × 10−3. Using moisture capacity 1/k ≈ 99 kg/m3, estimated from the
desorption isotherm reported for this material by Baroghel-Bouny et al. [57], we get
ksh = kk∗

sh ≈ 17.8 × 10−6 m3/kg.
It would be of course possible to fit themeasured data in Fig. 8.45 bymore general,

nonlinear relations, leading to curves of variable slope. For instance, van Zijl [829]
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considered the shrinkage ratio k∗
sh as a linear or hyperbolic function of the relative

humidity, while Idiart [502] used a linear or quadratic dependence of the shrinkage
coefficient ksh on the water mass loss. However, such refined models involve several
parameters that are hard to predict based on composition.

Fig. 8.46 Relation betweenwater mass loss and strain in load-free specimensmeasured byKuchar-
czyková et al. [554] for three types of concrete

In a recent study,Kucharczyková,Daněk,Kocáb andMisák [554]measured simul-
taneously the water mass loss and length changes in concrete specimens, starting
already 1 hour after casting. Fresh concrete was cast into 1-m-long molds with
cross-sectional dimensions 100 × 60 mm, and the top surface was exposed to the
ambient relative humidity of 83%. The molds, equipped with a gauge measuring the
displacement of one end (with the other end fixed), were placed on a special weighing
table that allowed continuous monitoring of the weight loss. In the initial stage of the
test, the recorded length changes were slightly positive, culminating approximately
after 1 day, which can be attributed to the thermal expansion caused by hydration
heat or swelling from imbibed water before the drying front reached the specimen
core, or both. After 3days, the specimens were demolded and subsequently stored
at an ambient relative humidity of 55%. Shrinkage and mass loss were then moni-
tored until the age of 300days. The curves depicted in Fig. 8.46 show the results for
concrete mixes without additives, with Portland cement content ranging from 300
to 400 kg/m3 and water-cement ratio from 0.61 to 0.5. Remarkably, after an initial
stage of limited swelling (partly affected by thermal expansion), the increments of
shrinkage strain turned out to be almost perfectly proportional to the mass changes,
with shrinkage coefficient ksh ≈ 12 × 10−6 m3/kg.

A pervasive weakness of many comparisons with test data is that Eq. (8.251) or
(8.252) is considered and used as if representing material properties (i.e., locally,
point-wise), while the measured values usually represent average shrinkage over the
cross section, affected by residual stresses, creep due to these stresses, and distributed
cracking (with possible localizations); see the analysis in [150]. To measure true
material shrinkage, the environmental humidity must be reduced sufficiently slowly
[102, 212]. In a realistic analysis of shrinkage data, one must fit them inversely by
a finite element program based on experimentally documented strength and creep
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properties, as attempted by Bažant and Chern [117, 120], though with a shrinkage
and creep model inferior to B3 or B4.

The effect of pore humidity variation on creep properties is important but very
difficult to measure. Its direct measurement would require varying the pore humidity
in time while keeping it almost uniform over the cross section. Conceivably, such a
situation can be achieved if the environmental humidity henv is varied continuously
at a sufficiently small rate. For cement paste, limited tests of this kind have been
performed, e.g., by Bažant et al. [102], but their results were too scattered.

Let us estimate at which rate the ambient humidity would need to be varied in
order to keep the pore relative humidity almost uniform, which would permit a direct
measurement of free shrinkage and drying creep. Consider a wall of thickness D
exposed to slowly decreasing environmental humidity henv(t̂). If the distribution of
the relative pore humidity across thewall varies betweenhenv(t̂)on theboundaries and
henv(t̂)+Δh at the center of the wall, with Δh sufficiently small, then the reciprocal
moisture capacity k(h) and permeability cp(h) are almost uniform throughout the
entire thickness, close to k(henv) and cp(henv). The problem can then be accurately
described by the linear diffusion equation (8.91) with time-dependent diffusivity
C(t̂) ≡ k(henv(t̂))cp(henv(t̂)).

Suppose that, after a transitional period, the difference between the pore humidity
and the environmental humidity approaches a certain time-independent function
f (x). The solution of the diffusion equation has then the form

h(x, t̂) = henv(t̂) + f (x) (8.253)

Substituting this into Eq. (8.91), we obtain the condition

ḣenv(t̂) = C(t̂) f ′′(x) (8.254)

which can be satisfied only if f ′′(x) is a constant independent of x . Therefore,
function f must be quadratic, satisfying boundary conditions f (0) = 0 and f (D) =
0, which follow from h(0, t̂) = henv(t̂) and h(D, t̂) = henv(t̂). Taking into account
that f (D/2) should be equal to Δh, we get

f (x) = 4Δh

D2
(D − x)x (8.255)

and substituting this into (8.254) yields the condition

ḣenv(t̂) = −8C(t̂)Δh

D2
(8.256)

linking the rate of environmental humidity, ḣenv, to the magnitude of the humidity
variation across the thickness, Δh. Of course, this relation has been derived under
certain simplifying assumptions and is only approximate. The dependence of diffu-
sivity on pore humidity is not known accurately, and in practice, it would be difficult
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to vary the rate of environmental humidity exactly in proportion to the current diffu-
sivity, as required by condition (8.256). Nevertheless, this equation provides at least
a rough estimate of the rate at which the environmental humidity could be changed
in order to maintain an almost uniform humidity distribution across the thickness.

To directly observe free shrinkage and drying creep, the variation of stress across
the test specimen would have to be negligible, so as to avoid cracking as well as
creep due to residual stress (since creep is partly irreversible). This requires that
the differences in h within the cross section would not exceed about 3%. Consider a
typical value of diffusivity near saturation,C1 = 20mm2/day. For a slab of thickness
D = 100 mm, the rate of environmental humidity evaluated from (8.256) is

ḣenv = −8 × 20 × 0.03

1002
mm2/day

mm2
= −0.48 × 10−3/day (8.257)

This means that the environmental humidity can be brought from 100 to 90% in
0.1/ḣenv ≈ 208 days. At lower humidities, the diffusivity is also lower and the
admissible rate of environmental humidity would need to be further reduced. For
instance, if the diffusivity at 55%relative humidity is 20 times lower than at saturation,
the rate computed from (8.256) would be−0.024×10−3/day and the environmental
humidity should decrease from 60 to 50% in about 4160days (more than 11years).

Example 8.9. Environmental humidity variation slow enough to observe free
shrinkage and drying creep

The foregoing analytical estimates can be confirmed by numerical simulations. For
the concrete from Example 3.1, with mean compressive strength f̄c = 45.4 MPa,
the fib formula (8.90) for diffusivity at saturation gives C1 ≈ 23 mm2/day. Let us
simulate drying of an initially saturated slab of thickness D = 100 mm, using the
Bažant–Najjar model with parameters recommended by fib.

Fig. 8.47 Evolution of pore relative humidity at the surface and at distances 10, 20, 30, 40, and
50mm from the surface of a slab of 100mm in thickness, exposed to ambient humidity decreasing
(a) at a constant rate, (b) at a variable rate proportional to the diffusivity

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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If the ambient humidity is decreased by 0.05% per day, formula (8.256) withC(t̂)
set to C1 predicts the difference between the maximum and minimum pore relative
humidities across the section to be Δh = 2.72%. The computed evolution of pore
relative humidity at six selected points (at distances 0, 10, 20, 30, 40, and 50mm from
the surface) is plotted in Fig. 8.47a. After an initial transitional period of 100days, the
actual value of Δh is found to be 2.4% and then it slowly increases, reaching 2.7%
after 300days and 3.0% after 400days of drying. Subsequently, a strong reduction of
diffusivity in the range of relative humidities around 80% slows down the transport
process and the pore relative humidity at midplane decreases more slowly, which
leads to an increase of Δh to 8.4% after 600days of drying.

To obtain an almost constantΔh during the entire drying process, the rate of ambi-
ent humidity must be adjusted according to formula (8.256) in proportion to the cur-
rent diffusivity. When this is done, the difference between maximum and minimum
pore relative humidity is indeed kept roughly constant, even in the low-diffusivity
range, as documented in Fig. 8.47b. The terminal rate of humidity decrease (slope of
the dashed line in Fig. 8.47b) is 20 times smaller than the initial one. The numeri-
cally computed value ofΔh initially grows to 2.7%, subsequently drops to 1.8%, and
afterward slowly increases up to 2.7% again. For such a drying program, 3360days
would be needed to reach an average relative humidity of 70%, and 400days would
be needed for every additional reduction of 1%, which means that 50% would be
reached after 11,360days. �

Obviously, it is impossible to directly observe free shrinkage on concrete speci-
mens of regular sizes. Its characteristics must be deduced indirectly, by using finite
elements to fit the test results on specimens with highly nonuniform pore humidity
distribution. This is not easy and has been a great impediment to progress.

As follows from (8.256), the admissible rate of drying is inversely proportional to
the square of the specimen thickness D. If a specimen of 1mm in thickness is used,
the admissible drying times are reduced 10,000 times (as compared to D = 100
mm), provided that we consider the diffusivity to remain the same.22 Then, it is
possible to dry the specimen from 100 to 50% within 1 or 2days while keeping an
almost uniform distribution of pore relative humidity. This was exploited by Bažant
et al. [102] in their tests of cement paste performed on hollow cylinders with a wall
thickness of 0.71 mm.

Since the humidity profiles in real structures are nonuniform, the shrinkage strains
caused by humidity changes are incompatible, and so they must induce stresses to
achieve compatibility. In the central part of a long prism, compatibility requires that
(for symmetric drying) the total axial strains ε at all points of the cross section be
equal, i.e., that the cross sections remain planar. Figure8.48 schematically explains
why self-equilibrated axial stresses σ must develop to ensure compatibility within
the cross section (see also Fig. 3.17).

If the only goal is to avoid cracking, the calculation presented in the previous
example must be adjusted. The humidity does not need to be uniform, but the maxi-

22Of course, specimens 1mm thick can bemade only of cement paste, which has a higher diffusivity.
This must lead to a reduction factor less than 10,000, though not too different.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 8.48 Evolution of humidity, shrinkage, stress, and strain in various layers of a cross section,
with induced cracking; reproduced with permission from [94]

mum stress should not exceed the strength limit. How large differences in humidity h
within the cross section can be tolerated without causing tensile cracks? The answer
requires a numerical calculation of stresses induced by nonuniform shrinkage and
relaxedby creep; seeExample 8.10.Toget a quick impressionofmagnitudes, suppose
that a saturated concrete is suddenly exposed to henv = 50%. Right below the surface
the shrinkage is almost instantaneous and creep negligible. For the concrete from
Example 3.1, with Young’s modulus E = 32 GPa (4640 ksi), the free shrinkage can
be estimated as εsh = −(1−h3env)ε

∞
s = −(1−0.53)×702.4×10−6 ≈ −615×10−6,

and if no cracking occurred, tensile stress σ = −Eεsh = −32 GPa×(−0.000615) =
19.7 MPa = 2860 psiwould develop. This greatly exceeds the typical value of tensile
strength for such a concrete, f̄t = 3.4MPa (490 psi). So cracking begins immediately
after exposure to environmental humidity. All suddenly exposed concrete structures
contain hairline shrinkage cracks. On the other hand, if the ambient humidity is
reduced gradually and sufficiently slowly, the self-equilibrated stresses induced by
nonuniform shrinkage can be kept below the tensile strength and cracking can be
avoided.

To illustrate the interplay between shrinkage and creep, let us use a simplified
model that takes into account basic creep only. Drying creep is neglected because,
in the present context of the material point approach, its inclusion would require
advanced models such as the microprestress-solidification theory, to be covered in
Chap.10. Restriction to basic creep greatly simplifies the formulation because it
permits to treat the relaxation operator R as independent of the spatial coordinate.
For an infinite slab subjected to drying from its surfaces, the internal stress state is
equibiaxial (σx = 0, σy = σz) and the values of in-plane normal stresses depend only

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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on the x-coordinate measured across the thickness (and on time, of course). Since
the corresponding in-plane normal strains εy and εz are equal and independent of x ,
the general biaxial viscoelastic stress–strain law

σy(x, t) = 1

1 − ν2
R

{
εy(x, t) − εsh(x, t − t0) + ν

[
εz(x, t) − εsh(x, t − t0)

]}
(8.258)

can be rewritten as

σ(x, t) = 1

1 − ν
R {ε(t) − εsh(x, t − t0)} (8.259)

where ν is the Poisson ratio, σy and εy are denoted simply as σ and ε, and the
shrinkage strain is considered as a function of the time of drying, t̂ = t − t0. In the
absence of external loads and boundary constraints, the stress resultant must vanish,
which is described by the condition

∫ D

0
σ(x, t) dx = 0 (8.260)

In combination with (8.259), this leads to

ε(t) = 1

D

∫ D

0
εsh(x, t − t0) dx (8.261)

Suppose that the shrinkage strain is linked to the pore relative humidity by
Eq. (8.252). If the shrinkage ratio k∗

sh is constant, the rate equation can easily be
integrated in time to yield

εsh(x, t̂) = k∗
sh

[
h(x, t̂) − 1

]
(8.262)

Substituting this into (8.261) and then into (8.259), we obtain

ε(t) = k∗
sh

[
h̄(t − t0) − 1

]
(8.263)

σ(x, t) = k∗
sh

1 − ν
R

{
h̄(t − t0) − h(x, t − t0)

}
(8.264)

where h̄ denotes the pore relative humidity averaged across the slab thickness.
A simple analytical estimate can be constructed if creep is neglected and the

evolution of humidity is approximately described by (8.253) with function f given
by (8.255). The average humidity is then

h̄(t̂) = henv(t̂) + 4Δh

D2

1

D

∫ D

0
(D − x)x dx = henv(t̂) + 2

3
Δh (8.265)
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and the stress can be expressed as

σ(x, t) = Ek∗
sh

1 − ν

(
2

3
Δh − 4Δh

D2
(D − x)x

)
(8.266)

The maximum tensile stress is attained at the surface (i.e., at x = 0 or x = D) and
is given by

σmax = 2Ek∗
sh

3(1 − ν)
Δh (8.267)

To satisfy the condition σmax ≤ f̄t , the humidity difference is constrained by

Δh ≤ 3(1 − ν) f̄t
2Ek∗

sh

(8.268)

and the corresponding constraint for the rate of ambient humidity, deduced from
(8.256), reads

|ḣenv(t̂)| ≤ 12(1 − ν) f̄t C(t̂)

Ek∗
shD

2
(8.269)

Example 8.10. Environmental humidity variation slow enough to avoid cracking

Consider again a slab of thickness D = 100 mm, made of concrete with properties
from Example 3.1. To obtain a rough estimate of the drying rate that will not lead to
cracking, we can use formula (8.269) with material parameters C1 = 23 mm2/day,
E = 32GPa, ν = 0.2, f̄t = 3.4MPa and k∗

sh = 1.76×10−3. The resultingmaximum
allowedmagnitude of the environmental humidity rate is 0.133%/day near saturation
(i.e., at the early stage of the drying process, when C(t̂) ≈ C1). If the diffusivity at
low humidities is 20× smaller than near saturation, the rate would need to remain
below 0.0067%/day at late stages of the drying process. This corresponds to a change
of environmental humidity by 10% in 1500days.

The foregoing rough estimate is based on the elastic stress–strain law, but in
reality, the stresses will be reduced by relaxation. Therefore, for numerical simu-
lations, let us set the rate of environmental humidity to a somewhat higher value,
ḣenv = −0.2%/day, which corresponds to a reduction from 100 to 50% in 250days.
The corresponding evolution of pore relative humidity at selected points, computed
using the Bažant–Najjar model with parameters recommended by fib, is shown in
Fig. 8.49a. Between 50 and 100days of drying, the lines corresponding to humidities
at individual points are almost parallel, which means that the shape of the humidity
profile is getting close to the quadratic function that corresponds to (8.255). However,
after 100days of drying, the ambient humidity attains 0.8 and nonlinear effects gain in

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 8.49 Drying of a slab of 100mm in thickness at a constant rate of ambient humidity: evolution
of (a) pore relative humidity at the surface and at distances 10, 20, 30, 40, and 50mmfrom the surface,
(b) difference between maximum and minimum pore relative humidity, (c) stresses computed using
an elastic stress–strain law, (d) stresses computed using a viscoelastic stress–strain law, with drying
creep neglected

importance. To keep a constant shape of the humidity profile, the rate of dryingwould
need to be reduced, but at a constant rate of drying, the differenceΔh between maxi-
mum andminimum pore relative humidities dramatically increases; see Fig. 8.49b. If
the stress–strain law is assumed to be linear elastic, with Young’s modulus of 32GPa,
the maximum tensile stress (right at the exposed surface) exceeds the tensile strength
already after 47days; see Fig. 8.49c. For a viscoelastic law with basic creep only, the
shrinkage-induced stresses partially relax and the tensile strength is exceeded after
95days of drying; see Fig. 8.49d. In this calculation, it has been assumed that the
onset of drying occurred at t0 = 28 days.

To avoid cracking, the drying rate needs to be reduced when the humidity enters
the range inwhich the diffusivity decreases. If the rate of ambient humidity is varied in
proportion to the current diffusivity, starting from the initial value of−0.2%/day, the
pore relative humidity at the exposed surface (equal to the ambient relative humidity)
decreases to 0.7 in about 600days (Fig. 8.50a) and the stresses remain below the
tensile strength during this entire period (Fig. 8.50b). The peak value of maximum
stress, 3.24 MPa, is attained at 86days, and after that the stress decreases to levels
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Fig. 8.50 Drying of a slab of 100mm in thickness at a variable rate of ambient humidity, propor-
tional to the diffusivity: evolution of (a) pore relative humidity at the surface and at distances 10,
20, 30, 40, and 50mm from the surface, (b) stresses computed using a viscoelastic stress–strain law,
with drying creep neglected

Fig. 8.51 Drying of a slab of 100mm in thickness at a piecewise constant rate of ambient humidity:
evolution of (a) pore relative humidity at the surface and at distances 10, 20, 30, 40, and 50mm
from the surface, (b) stresses computed using a viscoelastic stress–strain law, with drying creep
neglected

close to 1 MPa. This indicates that the drying process during this stage could be
somewhat faster.

Figure8.51 shows the evolution of pore relative humidity and stress in a dry-
ing process with the ambient humidity rate kept at −0.2%/day during the first
100days, then reduced to −0.04%/day for the next 250days, and afterward reduced
to−0.02%/day for the last 250days. In this way, the value of henv = 0.65 is reached
in 600days and the computed stresses only slightly exceed the tensile strength; see
Fig. 8.51b. It can be expected that drying creep, which has been neglected in the
present simulation, would further reduce the stresses and the strength limit would
not be attained. �

It should be emphasized that the results presented in the previous example referred
to a particular case, with specific values of material parameters. The purpose of the
example was to illustrate the basic trends and to show that cracking due to shrinkage-
induced stresses can be avoided only if the drying rate is sufficiently low. For con-
cretes with a lower shrinkage ratio or higher diffusivity than in the example, the
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allowable rates of ambient relative humidity are higher. Also, if the drying specimen
is a long prism instead of a slab, the stress state is uniaxial instead of equibiaxial and
the factor 1/(1−ν) in formula (8.259) can be dropped, which means that the stresses
are reduced as compared to the case of a slab. On the other hand, if the prism has
all faces exposed to the ambient humidity, the one-dimensional diffusion equation is
not applicable and the transport problem would need to be solved in 2D or even in
3D.

In simple calculations presented in Examples 8.9 and 8.10, it was assumed that
the shrinkage strain is proportional to the change of pore relative humidity. Such
a linear law was applied locally, at individual material points. On the other hand,
in most experiments, the measured shrinkage strain corresponds to an average over
the whole specimen, and the drying process is nonuniform. Consequently, a direct
link between the relative humidity and the shrinkage strain is lost. Data obtained
from standard shrinkage experiments indicate that the relation between the ambient
relative humidity, henv, and the magnitude of the ultimate shrinkage, ε∞

sh , is strongly
nonlinear.23 Most models determine ε∞

sh as the product of a theoretical value of ulti-
mate shrinkage extrapolated to zero humidity environment and a humidity-dependent
correction factor. Models B3 and B4, as well as the fib model, specify the correction
factor kh by the cubic formula

kh = 1 − h3env (8.270)

where henv is the ambient relative humidity; see the solid curve in Fig. 8.52a. The
GLmodel uses a fourth-order polynomial indicated in Fig. 8.52a by the dotted curve,
and the ACI model uses a piecewise linear function indicated by the dashed lines.
Despite these differences, the overall dependence of kh (and thus of ε∞

sh ) on henv is
approximately the same for all models and is highly nonlinear.

Fig. 8.52 Influence of the ambient relative humidity on drying shrinkage: (a) correction factor kh
reflecting ambient relative humidity henv according to various models, (b) normalized experimental
data measured on concrete specimens [301, 538, 576, 577, 674, 817]

23Besides, ongoing research at Northwestern University suggests that an ultimate value of shrink-
age might not exist. The pore humidity decrease causes compressive stress in the solid skeleton.
Multiplied by a nonzero factor for the effective porosity, this compression produces creep strain
that is superposed on the shrinkage and evolves roughly logarithmically, with no upper bound.
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A closer inspection of the concrete creep and shrinkage database [488] reveals
that there are only a few experiments that can be directly used to study the relation
between the ultimate shrinkage and the ambient humidity.Normalized plots extracted
byHavlásek and Jirásek [474] from 12 selected data sets are shown in Fig. 8.52b. The
autogenous shrinkage in most of these tests was probably very low and is neglected.
To obtain dimensionless values that can be compared for different concretes (which
exhibit different levels of ultimate shrinkage in a dry environment), the values of ε∞

sh
measured for each concrete are scaled by a common factor such that the point that
corresponds to the lowest tested humidity would lie exactly on the theoretical curve
given by (8.270). The shape of the resulting graph in Fig. 8.52b confirms that the
theoretical formula describes the actual dependence reasonably well.

As already demonstrated in Fig. 8.45, the drying shrinkage of hardened cement
paste measured on very thin specimens at a gradually decreasing relative humidity
is often found to be an almost linear function of the relative humidity. This means
that the origin of the strongly nonlinear dependence of the ultimate drying shrinkage
of concrete on humidity has to be sought in effects that arise during upscaling from
the cement paste level to the concrete level.

Even though the specimens for experimentalmeasurement of drying shrinkage are
kept unloaded, internally they are not stress-free. Self-equilibrated stresses develop
due to a combination of the self-restraint and the aggregate restraint. Both of these
restraints arise due to incompatibility of locally evaluated free shrinkage strains. The
self-restraint is related tomacroscopic nonuniformity of the dryingprocess (discussed
in the previous examples), while the aggregate restraint is caused by differences in
shrinkage of concrete constituents (aggregates do not shrink, or shrink considerably
less than cement paste). The stresses generated by the restraints are relieved by creep
and, if the tensile strength is locally exceeded, also by microcracking.

The role of various phenomena and their effects on the ultimate shrinkage were
addressed in a comprehensive numerical study by Havlásek and Jirásek [474]. They
used a two-dimensional mesoscale model with inclusions (aggregates) considered
as linear elastic disks and matrix (mortar) as a viscoelastic material that exhibits
creep, shrinkage, and tensile cracking. A linear relationship between shrinkage and
humidity was assumed for the mortar. Basic creep was captured by the B3model and
drying creep by the microprestress-solidification theory (MPS), to be described in
Chap.10. An interfacial transition zone (ITZ) with a reduced strength was inserted
between the aggregates and mortar. Tensile cracking was taken into account using
an approach based on damage mechanics, with a scalar damage variable driven by
the maximum principal effective stress and with an exponential softening law.

The aggregates were supposed to occupy 70% of the total area, and their size
distribution was defined by the Fuller curve; see the top part of Fig. 8.53. The maxi-
mum aggregate size was set to 20 mm. The position of aggregates in the surrounding
matrix was randomly generated, avoiding overlaps. In order to make the analysis
computationally feasible, only grains larger than 2mm were explicitly modeled as
circular inclusions in the mesostructure. Consequently, the inclusions actually rep-
resented about two thirds of the total aggregates. Smaller grains were combined
with the cement paste into the matrix, which thus corresponded to mortar (not to

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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Fig. 8.53 Aggregate grading curve and a simplified scheme of themodeling approach and boundary
conditions

pure cement paste). The simulated specimen was a square extracted from a 100mm
thick “infinite wall” drying at henv = 50%. The geometry of the specimen and the
boundary conditions are shown in the bottom part of Fig. 8.53.

The dependence of the ultimate average shrinkage strain (evaluated from the total
change of length in the vertical direction in Fig. 8.53) on the ambient humidity is
shown in Fig. 8.54. The left part of the figure refers to a homogeneous material (with
the effective properties of concrete) and the right part to a material with a hetero-
geneous mesostructure described in the previous paragraph. Dotted lines represent
the results obtained if the mechanical response is assumed to be linear elastic (no
creep, no cracking). Dashed curves correspond to a material with basic creep only
(no drying creep, no cracking), dash-dotted curves to amaterial with basic and drying
creep (no cracking), and finally the solid curves to a material with basic and drying
creep and cracking. For the mesoscale model, these characteristics of the material
refer to the mortar, while the aggregates are always assumed to be linear elastic (with
a higher modulus than the mortar) and nonshrinking.

In the homogeneous case, the dependence of ε∞
sh on henv is perfectly linear not

only if the material is assumed to be linear elastic, but also if basic creep is taken
into account. The reason is that the relaxation operator is in such cases the same for
all material points, and Eqs. (8.258)–(8.261) are applicable. The resulting strain is
then equal to the spatial average of the local free shrinkage strains and is not affected
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by the specific values of elastic constants or creep parameters. This is no longer true
when drying creep is considered, because locally computed drying creep evaluated
according to the MPS theory depends on the evolution of humidity at the given
material point. Since drying is nonuniform, relaxation of stresses is not governed by
the same operator at all points of the sample, andR in Eq. (8.259)must be considered
as dependent on the spatial coordinate, x . When (8.259) is substituted into (8.260),
the position-dependent relaxation operator cannot be taken out of the spatial integral,
and the averaging rule (8.261) cannot be deduced. As shown in Fig. 8.54a, inclusion
of drying creep leads to some deviations from linearity, but the additional effect of
cracking remains limited.

When aheterogeneousmesostructure is considered, the differences between indi-
vidual approaches become more pronounced, see Fig. 8.54b. Nonlinearity appears
already for basic creep because the relaxation operator for the viscoelastic mortar is
different from the operator characterizing the elastic aggregates. The ultimate shrink-
age at henv = 0.2 is reduced by 4% as compared to the linear case (elastic mortar).
This reduction increases to 18% when drying creep is considered and to 28% when
cracking is added. This already is a substantial deviation from linearity, but still much
smaller than 59% predicted by formula (8.270).

Fig. 8.54 Computed ultimate shrinkage strain of concrete subjected to various levels of ambient
relative humidity: (a) homogeneous material, (b) mesoscale approach

The mesoscale model discussed so far neglected the possible nonlinear effects
of fine aggregates (smaller than 2 mm), which were “mixed” with cement paste to
form the mortar. The shrinkage strain in mortar was assumed to be proportional to
the change of pore relative humidity. However, such an assumption was originally
postulated for cement paste, and it is logical to expect that the presence of fine aggre-
gates in mortar would lead to deviations from linearity already at this level. In the
last part of their study, Havlásek and Jirásek [474] proposed a simplifiedmultiscale
approach, in which the nonlinear relation between shrinkage strain and pore relative
humidity was first extracted from fine-scale simulations of a heterogeneous mortar
(viscoelastic matrix with the properties of cement paste and elastic inclusions rep-
resenting fine aggregates) and subsequently used as input for mesoscale simulations
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of concrete. When the shrinkage ratio for cement paste was considered as constant
over the entire range of humidities (k∗

sh = 0.006), the ultimate shrinkage strain at
henv = 0.2 was found to be reduced by 36% as compared to the linear extrapolation
from values at high humidity; see the dashed curve in Fig. 8.55b.

The last improvement consisted in assuming a piecewise linear dependence of
shrinkage strain on humidity for cement paste, as illustrated in Fig. 8.55a. Even
though the proportionality between εsh and h is a reasonable approximation for
cement paste, as already demonstrated in Fig. 8.45b, a closer look at the experimental
data of Rougelot, Skoczylas, and Burlion [739] for a paste with w/c = 0.5 and of
Baroghel-Bouny et al. [57] for a paste with w/c = 0.35 (vertically shifted with
respect to Fig. 8.45b) reveals certain deviations from linearity at low humidities.
A good bilinear fit can be obtained with the shrinkage ratio k∗

sh reduced from 0.006
to 0.0036 in the range below h = 0.5. With such a nonlinear model for shrinkage
of cement paste, the multiscale approach resulted in a more pronounced deviation
from linearity for concrete; see the solid curve in Fig. 8.55b. The total reduction
of the ultimate shrinkage strain of concrete at henv = 0.2 was found to be 46% (as
compared to a linear extrapolation from high humidities).

Fig. 8.55 (a) Evaluation of the shrinkage ratio k∗
sh for cement paste, (b) dependence of the ultimate

shrinkage strain of concrete on ambient humidity, computed using a multiscale approach

It can be concluded that the nonlinearity of the dependence of the ultimate shrink-
age strain on the ambient humidity can, to a large extent, be attributed to the effects of
differential creep and cracking on the relaxation of self-equilibrated stresses that are
induced by nonuniform shrinkage in nonuniformly drying heterogeneous concrete.
Nevertheless, the strong nonlinearity shown in Fig. 8.52b and reflected by formula
(8.270) is not explained completely. Possibly, one may need to take into account
also the huge differences in permeability in the bulk and in cement paste, and the
dramatic changes in paste permeability caused by aging due to hydration.
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8.7 Effects of Self-Desiccation and Autogenous Shrinkage
in Drying or Swelling Specimens—A Problem
Requiring Further Research

8.7.1 Recent Paradigm-Changing Observations

Recently, exhaustive literature search related to the work on a new large database led
to the following paradigm-changing experimental observations, which will require
further research.

1. Drying and Autogenous Shrinkages Are not Additive: The drying and auto-
genous shrinkages have traditionally been considered as separate phenomena, to
be superposed. However, after a specimen is exposed to drying, the autogenous
shrinkage continues in the core until the arrival of the drying front with pore
humidity lower than the self-desiccation humidity, in which case the drying and
autogenous shrinkage interact. Should one consider their sum or maximum? It
would be the sum if the autogenous shrinkage were of direct chemical origin,
unrelated to self-desiccation, but the maximum of the two if not only the drying
shrinkage but also the autogenous one were caused by a decrease of pore humid-
ity, i.e., if the autogenous shrinkage were driven by self-desiccation. If the former
were true, then, due to high water supply, the autogenous shrinkage in normal
concretes with high w/c and only mild self-desiccation would have to be at least
as large as it is in modern concretes with strong self-desiccation. But it is far
from that. Therefore, both drying and autogenous shrinkages must be driven by
a decrease of pore humidity. Consequently, they cannot be additive (which will
require a revision of model B4).

2. Swelling: Inwater immersion,most concretes are swelling. Since the pore relative
humidity is maintained at 100% in water immersion, the expansion cannot be
driven by rising pore humidity. This indicates it must be driven by chemical
expansion during hydration. Since the hydration cannot be expansive in water
immersion and contractive without immersion, one must infer that the hydration
should always cause the hardened cement paste to expand, even in specimens
exposed to drying. Since drying specimens shrink, the magnitude of contraction
due to a decrease of pore humidity must be greater, even much greater, than
the magnitude of expansion due to hydration. And why specimens in fog room,
where the relative humidity is 100%, do not swell? Probably because the fog
cannot supply sufficient flux of water into the specimens to compensate for self-
desiccation (here the boundary condition would need to be written in terms of
surface emissivity).

3. Autogenous Shrinkage: As established at the dawn of cement research by Le
Chatelier and confirmed by Powers and others, the cement hydration reaction is
always contractive, i.e., the volume of the cement gel produced by hydration is
always smaller than the sum of the original volumes of anhydrous cement and
water used for hydration. So how can we explain why the hardened cement paste
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(a)

(b)

Fig. 8.56 (a) Isolated cement grain surrounded by the exact volume of water needed for hydration
(note the shrinkage), (b) interaction of two initially touching grains surrounded by water needed for
their hydration (note the increase of separation of grains even though the combined volume of all
reactants decreased)

expands? The explanation is probably the development of porosity. The growth
of contacting C-S-H shells around the cement grains produces crystallization
pressure and thus pushes the adjacent shells apart (see Fig. 8.56).

4. Long-Term Logarithmic Volume Change: Misled by an illusion of approach
to an asymptotic bound caused by plots in linear time scale, vast majority of
experimenters have terminated the self-desiccation, autogenous shrinkage, and
swelling tests within just a fewmonths. There exist nevertheless some data show-
ing autogenous shrinkage as well as swelling in water to continue logarithmically
for almost ten years [262, 679]. This gives a different picture than the standard
calorimetric procedure, which shows the hydration of cement to terminate within
about a year. It thus appears that hydration can continue for many years, probably
even decades and centuries (in fact, the C3S grains in some submerged Roman
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concrete still contain small unhydrated cores). This can be explained by grow-
ing C-S-H shells around the remaining anhydrous cement grains, which serve as
barriers for the diffusion of water molecules toward the anhydrous grain rem-
nant and of ions from the grain surface to the shell surface. This idea has been
mathematically formulated by Bažant et al. [125].

5. Creepas aSource ofLong-TermLogarithmic Shrinkage:Aside from the delay
caused by the diffusion barriers of C-S-H shells, another phenomenon that might
be suspected as a source of the decade-long logarithmic evolution of autogenous
shrinkage is the creep. Maintaining thermodynamic equilibrium requires equality
of the chemical potential in all the phases of pore water. So a decrease of pore
humidity must produce tensile stress changes in all the water phases, which must
be balanced by compressive stress changes in the solid skeleton. The stresses in
solid due to pore humidity change might in turn be thought to cause compressive
creep in the solid skeleton of cement paste, which is an idea suggested by Ulm,
Maou, and Boulay [827]. On the other hand, one might object that this kind of
creep should make a negligible contribution compared to the creep due to loads
applied externally on the macroscale, because the stresses introduced by a drop
in pore humidity fluctuate between tensile and compressive on the micro- and
nanoscales. For instance, a drop in disjoining pressure in the nanopore could be
balanced mainly by compressive forces in the solid bridges across the nanopores
and in the adjacent C-S-H sheets. These bridges and sheets are nanocrystalline and
thus should deform only elastically, with no creep, because themacroscopic creep
must, for other reasons, occur by sliding, whichmust take place in the connections
between the sheets, rather thanwithin the sheets. So creep as a source of long-term
shrinkage needs further study.

6. Logarithmic Long-Term Swelling: If humidity-induced creep existed, it would
have to be compressive.Hence, the observed logarithmicmultiyear swelling under
water immersion cannot be explained by creep. But it can be explained by dif-
fusion of water and ions through the growing barrier shell of C-S-H enveloping
the anhydrous cement grains (typical size 20–100 µm). The diffusion halftimes
increase as the square of the growing thickness of the shell. A thick enough shell
can slow down hydration to take many years or even decades (Fig. 8.56).

8.7.2 Improved Aging Characterization via a Model for
Hydration

Calculation of the effects of aging also needs to be improved. The aging is caused
by the chemical process of silicate hydration. It is widely accepted that hydration
terminates within about a year, but that is confirmed only for small specimens with
ample supply of water. The fact that the autogenous shrinkage can continue for many
years implies that the hydration must, too.
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The widely accepted idea that the hydration causes volume contraction must also
be revised. It is doubtless true that the volume of cement hydration products is slightly
smaller than the original volume of cement and reacted water [568, 705], which is
what has been called the chemical shrinkage. However, this does not mean that the
hydration reaction causes hardened cement paste to contract. In fact, once the C-S-H
shells that grow around anhydrous cement grains come into contact, they cannot
overlap and thus push the neighbors apart, applying crystallization pressure. This
causes the solid framework of cement paste to expand.

In Bažant et al. [125], a new ideawas proposed—this expansion always dominates
over the contraction, i.e., the hydration is, in the bulk, always expansive, while the
source of all of the observed shrinkage, whether autogenous or due to external drying,
is a decrease of pore humidity. This decrease, in turn, causes a decrease of chemical
potential of pore water, which is manifested as an increase of capillary tension in
micropores, a decrease of disjoining pressure in nanopores, and an increase of surface
tension on the nanoscale C-S-H globules (due to a decrease of spreading pressure in
adsorption layers). All these changes produce compressive elastic strain in the solid
C-S-H framework, which usually prevails over the expansion, except for specimens
immersed in water.

From the aforementioned long-term tests showing that the autogenous shrinkage
grows logarithmically in time over many years, it may be inferred that the growing C-
S-H shells enveloping the remnants of anhydrous cement grains must act as diffusion
barriers, inhibiting the diffusion of water molecules through these shells toward the
grain remnants, as well the diffusion of ions in the opposite direction. This must slow
down the hydration process and could explain why the hydration proceeds slowly
(and logarithmically) for many years and probably even decades and centuries.

This kind of hydration model might provide a more realistic basis for the age
effects on creep and shrinkage. It would also require updates in models B3 and B4.

Fig. 8.57 ASR gel formation due to water diffusion into reactive aggregate: (a) early stage of
diffusion, (b) late stage of diffusion, (c) idealization with spherical diffusion, after Bažant and
Rahimi-Aghdam [185], reproduced with permission from ASCE
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8.8 Creep and Diffusion as Processes Controlling
Alkali–Silica Reaction

The alkali–silica reaction (ASR) is a destructive long-term reaction which afflicts
mineral aggregates in concrete if they contain imperfectly crystalline silica (SiO2),
which is a condition hard to predict. Ions of sodium and potassium slowly diffuse
into the aggregate pieces and combine with silica, producing the ASR gel. The gel
can imbibe an enormous amount of water, if available. Thus, the ASR damage occurs
only in sufficiently massive structures such as dams, reactor containments, or large
bridges in which high pore humidity persists in the cross-sectional core for many
years. Because of the slowness of water and ion diffusion into the aggregate pieces,
the ASR typically begins only after several decades, often causing severe strength
degradation and fracturing. A good mathematical model is important for making
inferences from accelerated laboratory tests and for predicting the remaining lifetime
of the structure once the ASR is detected.

The history of production of ASR gel requires calculating the diffusion of water
from the pores into an aggregate piece considered, for simplicity, as spherical [186];
see Fig. 8.57. The next step is the formulation of a nonlinear diffusion model for
the penetration of gel into the micro- and nanopores in a mineral aggregate grain,
into the interface transition zone (ITZ) and into the microcracks very near the ITZ;
see Fig. 8.58 (the gel that penetrates farther into the pores and cracks in cement
paste or mortar is irrelevant since it calcifies by reacting with CaOH and thus stops
expanding). Calculating the effects of expansion requires considering the creep. This
was first done by Alnaggar, Cusatis, and Di-Luzio [33], who considered only the gel
production but not diffusion and used their lattice discrete particle model (LDPM),
assuming, as a simplification necessary to their LDPM approach, that the expansion
occurs between, rather than within, the particles.

Fig. 8.58 ASR reaction process and schematic illustration of ASR-induced damage: (a) alkali–
silica reaction, (b) formation of swelling and nonswelling ASR gel, (c) ASR-induced damage and
cracking, after Bažant and Rahimi-Aghdam [185], reproduced with permission from ASCE

The time span of the gel diffusion analysis spans from minutes to decades, which
poses problems of numerical stability of standard algorithms. Unconditional numer-
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ical stability has been achieved with a novel algorithm [186, Eq.25], which converts
the gel diffusion analysis to calculating the relaxation of the average gel pressure pgel
at constant total gel mass and at no material deformation (no creep) during each time
step, with sudden pressure jumps between the steps (in a spirit akin to the exponential
algorithm for creep, presented in Sects. 5.2.2–5.2.3).

Under these assumptions, the relaxation of the average gel pressure pgel within
the time step due to diffusive redistribution of gel within the fixed current volume of
accessible pores and cracks is given by the equation

dpgel
dt

+ pgel
τp

= 0 (8.271)

where τp is a characteristic time dependent on the gel compressibility (about the
same as water) and effective Darcy permeability, and on the current total volume
fraction of gel.

The gel expansion in the aggregate and the ITZ causes fracturing damage in
the surrounding concrete, which is analyzed by microplane model M7 [290, 291];
see Sect. 12.8.1 for more details on this advanced constitutive model. For realistic
modeling of the effects of gel expansion, it proved important to incorporate into
M7 the aging creep with a broad continuous retardation spectrum and exponential
algorithm [185].

The gel and the damaged concrete are macroscopically treated as a two-phase
(solid–fluid) medium. The medium is of nonstandard type, because of the nanopore
water that is load-bearing but mobile. The condition of equilibrium between the
phases is what mathematically introduces the fracture-producing load into the con-
crete. Depending on the stress tensor in the solid phase, the expansion is directional,
producing oriented cracking. The creep is found to have a major mitigating effect
on multidecade evolution of ASR damage and is important even for interpreting
accelerated laboratory tests lasting a few weeks.

Note that the eigenstrain caused by the ASR is of a different nature than the
thermal (or shrinkage) eigenstrain. The latter is simply additive to the stress-induced
deformation and is assumed to cause no damage to unrestrained concrete. On the
other hand, the ASR gel expansion into the pores and microcracks applies, from
within, a tensile hydrostatic stress to the porous solid skeleton of the material. It is
actually an eigenstrain on a sub-scale of thematerial (some investigatorsmodeled this
eigenstrain by assigning different thermal expansion coefficients to the aggregate and
the mortar matrix and imposing a temperature change; but this approach is correct
only for certain values of temperature change and could hardly be combined with
diffusion or creep effects).

In Rahimi-Aghdam, Bažant, and Caner [714], the theory for the material and
structural damage due to the alkali–silica reaction in concrete was calibrated and
validated by finite element fitting of the main test results from the literature, includ-
ing those of Multon and Toutlemonde [643], Ben Haha [227] and Poyet, Sellier,
Capra, Thévenin-Foray, Torrenti, Tournier-Cognon, and Bourdarot [708]. The frac-

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_12


408 8 Moisture Transport in Concrete

Fig. 8.59 Numerically calculated cracking patterns for different stress states: (a) unconfined load-
free, (b) radially confined load-free, (c) unconfined axially loaded, (d) radially confined axially
loaded; after Rahimi-Aghdam et al. [714], reproduced with permission from ASCE

ture mechanics aspects were handled by the crack band model; see Sect. 12.2. The
theory was shown to capture quite well

1. the effects of various loading conditions and stress states on the ASR-induced
expansion, and the orientation of cracking (Fig. 8.59);

2. degradation of the mechanical properties of concrete, particularly its tensile and
compressive strength, and elastic modulus;

3. the effect of temperature on ASR-induced expansion; and
4. the ASR dependence on external drying, for cross sections of various sizes, with

or without simultaneous temperature effect, and for various cross section thick-
nesses.

The finite element simulations utilized microplane model M7. The creep (with
aging), embedded in M7 using the approach described in Sect. 12.8.2, was found to
mitigate the predicted ASR damage significantly. The moisture diffusivity, both the
global one for external drying and the local one for mortar near the aggregate, was
considered to decrease 20 times as the pore humidity drops (Sect. 8.3.4.2). Close fits
have been achieved, and the model appears ready for predicting the ASR effects in
large structures.

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_12


Chapter 9
Solidification Theory for Aging Effect
on Stiffness and Basic Creep

Abstract The rate of concrete creep not only attenuates with the load duration but
also decreases, at a decaying rate, with the age at loading. This phenomenon, called
aging, complicates the mathematical modeling of creep. Since the phenomenological
approach that deals with age-dependent material properties has no physical underpin-
ning, we embark on a more physical approach, based on the analysis of solidification
of cement, which is the physical cause of aging (aside from microprestress relax-
ation, discussed in the next chapter). We show that one can attribute the aging to the
growth of volume fraction of a nonaging constituent of hydrating cement, approx-
imately considered as the C-S-H. The fact that this constituent can be considered
as nonaging brings about a considerable simplification of the material model. Then,
we show how the concept of solidification requires the compliance curves for dif-
ferent ages at loading not to diverge with time from each other, which in turn rules
out creep recovery curves with nonmonotonic decay. We also explain the problems
with creep compliance models giving a relaxation curve that crosses to the opposite
sign. We compare the behavior of a number of models from the literature and design
codes, and we show that many of them lead to divergence of compliance curves
or to relaxation crossing to the opposite sign, at least under certain specific condi-
tions. We conclude by pointing out the thermodynamic restrictions on rheological
Kelvin and Maxwell chains and their implications for the properties of compliance
and relaxation functions.

The characteristics of concrete creep evolve at a declining rate over many years and
even beyond a century. This aging (or maturing) behavior complicates the mathe-
matical description as well as experimental identification. Traditionally, it has been
modeled as a gradual variation of the material parameters in the compliance func-
tion for creep [94]. However, this classical modeling approach was purely phenom-
enological, with no physical underpinning. An approach based on the analysis of
solidification of cement, which is (aside from microprestress relaxation, discussed
in Chap. 10) the physical cause of aging, is more realistic and, as it turns out, also
brings about a simplification of the constitutive model for creep.

© Springer Science+Business Media B.V. 2018
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9.1 Growth of Volume Fraction of Calcium Silicate
Hydrates and Polymerization Hypothesis

It is logical to assume that the chemical reactions of hydration cause the aging
property of creep. In these reactions, the anhydrous cement grains are gradually
dissolving in the pore water and then recombining as the calcium silicate hydrate
(C-S-H) gel, which exhibits viscoelasticity, and other solid hydration products, e.g.,
calcium hydroxide, which exhibit elastic behavior. The newly formed C-S-H gel
is then being deposited at the surfaces of the pores in hardened cement paste. The
volume of hydration products (per unit volume of concrete), and thus also the overall
volume of the load-bearing solid skeleton in the cement paste, are growing at the
expense of the volumes of free (evaporable) water and anhydrous cement, which are
diminishing; see Fig. 8.43.

Thermodynamics of a system described only by properties varying in time is
impossible to formulate. It can be formulated only if the system is broken down to
time-invariant constituents whose concentrations are varying in time. In hardened
Portland cement paste, such a constituent is the C-S-H gel, which is nearly identical
to the gel of a natural mineral called tobermorite.

Thus, the aging property of creep must be attributed to volume growth of cement
gel, treated as a substance of time-invariant properties. This is the central idea of the
solidification theory proposed by Bažant [82] and developed in detail by Bažant and
Prasannan [179, 180]. The specific volume of cement gel that has solidified up to
time t will be denoted as v(t). This function can be normalized such that it approaches
1 as the time tends to infinity.

It is also possible that the C-S-H undergoes polymerization in which additional
bonds are gradually formed [179, 180]. Evidently, polymerization can cause an
increase of stiffness even if the volume of C-S-H does not grow. What really matters
is not the total volume growth of the C-S-H but the volume growth of that part of
C-S-H which forms a contiguously interconnected solid skeleton. Loose, uncon-
nected parts of C-S-H do not matter. Thus, strictly speaking, the variable v(t) should
better be interpreted as the volume fraction of the interconnected solid skeleton of
C-S-H, and the term “volume growth” will henceforth be used, for the sake of brevity,
to represent the growth of this fraction. By the time of writing, though, the phenom-
enon of polymerization of C-S-H has not yet been conclusively demonstrated. It is
nevertheless a plausible hypothesis, supported by some leading cement physicists
(e.g., H. Jennings).

The aforementioned concept of the solidification process in hydrating Portland
cement paste, pictured in Fig. 9.1, governs the viscoelastic strain, εv, which is imag-
ined to represent the effective microstrain to which the cement gel is subjected.
Consider that, at time t ′, material of relative volume dv solidifies from the pore solu-
tion (dashed hatching in Fig. 9.1) and gets attached to the surface of the previously
solidified volume v(t ′), i.e., to the pore wall. All the previously solidified material
volume is subjected to the same strain increments after time t ′ at which it solidified.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. 9.1 Model for role of solidification in creep

The macroscopic (or continuum) stress σ is the resultant of the microstresses from
the entire solidified material volume.

Viscoelastic strain increment dεv(t ′) introduced at time t ′ causes at time t the
microstress Ψ (t − t ′)dεv(t ′), where Ψ (t − t ′) is the relaxation function of the cement
gel. This function depends on the time lag t − t ′ only (rather than on t and t ′ sep-
arately) because the solidifying constituent is nonaging. The contribution of the
microstress to the macroscopic stress is proportional to the effective area on which
the microstress acts, which in turn is proportional to the specific volume of the
solidified material. Thus, the contribution of the microstress generated by the vis-
coelastic strain increment dεv(t ′) introduced at time t ′ to the macrostress at time t is
v(t ′)Ψ (t − t ′) dεv(t ′), and the total macroscopic stress at time t generated by all the
previously applied viscoelastic strain increments is

σ(t) =
∫ t

0
v(t ′)Ψ (t − t ′) dεv(t

′) (9.1)

It is now convenient to introduce an auxiliary strain-like variable e(t), defined
by the rate equation ˙e(t) = v(t)ε̇v(t) and initial condition e(0) = 0. This variable
can be interpreted as a certain type of effective viscoelastic strain in the cement gel,
which is fully recoverable after unloading. On the other hand, εv is only partially
recoverable, which is caused by the growth of v. Since de = v dεv, Eq. (9.1) can be
rewritten as

σ(t) =
∫ t

0
Ψ (t − t ′) de(t ′) (9.2)

This has the same form as the integral stress–strain relation of nonaging viscoelastic
material (2.23), with relaxation function Ψ (t − t ′) and with the strain replaced by
e. In other words, the actual stress σ in the solidifying material is linked to the
effective viscoelastic strain e by the constitutive relation characterizing the nonaging
constituent. It is thus easy to formally invert the stress–strain relation (9.2) and write

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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e(t) =
∫ t

0
Φ(t − t ′) dσ(t ′) (9.3)

where Φ(t − t ′) is the inverse kernel (or resolvent) of the Volterra integral equation
(9.2), representing the nonaging compliance function of the cement gel.

To transform the effective strain e into the actual viscoelastic strain ε, we need to
proceed to the rate form of (9.3) and divide it by the volume growth function1:

ε̇v(t) = ė(t)

v(t)
= 1

v(t)

[
Φ(0)σ̇ (t) +

∫ t

0
Φ̇(t − t ′) dσ(t ′)

]
(9.4)

Comparing this to the general expression (2.17) for the strain rate of an aging vis-
coelastic material,

ε̇(t) = σ̇ (t)

E(t)
+

∫ t

0
J̇ (t, t ′)dσ(t ′) (9.5)

we can identify the instantaneous compliance

1

Ev(t)
= Φ(0)

v(t)
(9.6)

and the compliance rate

J̇v(t, t
′) = Φ̇(t − t ′)

v(t)
(9.7)

where the dot over J denotes differentiation with respect to the first argument and
the subscript “v” at E and J emphasizes that these characteristics refer to the part of
total strain in concrete caused by the viscoelastic strain in the gel (and not yet to the
total strain in concrete).

Finally, using the instantaneous compliance Jv(t ′, t ′) = 1/Ev(t ′) = Φ(0)/v(t ′)
as the initial value and integrating (9.7) with respect to t (which is renamed as s,
so that t can be used as the upper integration limit), we obtain the macroscopic
compliance function of the gel deduced from solidification theory,

Jv(t, t
′) = Jv(t

′, t ′) +
∫ t

t ′
J̇v(s, t

′)ds = Φ(0)

v(t ′)
+

∫ t

t ′

Φ̇(s − t ′)
v(s)

ds (9.8)

This formula provides the link between the microscopic and macroscopic descrip-
tions of the solidifying constituent. On the microscopic level, the material properties
are represented by the compliance function of the nonaging constituent Φ and by
the solidification function v describing the growth of the specific volume of that con-
stituent in time. Each of these functions depends on a single variable, which is the

1A slightly longer derivation of (9.4), avoiding the use of relaxation function, was given by Bažant
[82], see also Bažant and Prasannan [179]. The present derivation was given by Bažant [96], as an
abbreviation of that by Carol and Bažant [296].
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duration of loading for Φ and the age for v. On the macroscopic level, we obtain the
compliance function Jv of aging viscoelasticity as a function of two variables—the
age at which the stress was applied and the current age.

The cement gel is the solid component of the hardened cement paste. This paste
also includes the capillary pores (while the nanopores, containing the load-bearing
hindered adsorbed water, are considered as part of the cement gel). The foregoing
constitutive relation has been formulated with the cement paste in mind. However,
as long as the aggregate is elastic, such a constitutive relation may also be used to
describe cement mortar and concrete, albeit with different coefficients and different
microcompliance function Φ(t). The reason is that the elastic restraint imposed by
the aggregate on the cement paste cannot change the form of the constitutive relation.

9.2 Basic Creep Model for Concrete

Extensive studies of test data showed that the viscoelastic strain εv(t) alone does not
suffice to describe concrete creep. It turns out that the so-called flow strain εf(t) must
be added to εv(t). The need for this additional term is also supported by the fact that
the hydration reaction almost stops after one year and the strength of concrete does not
increase at later ages (Fig. 9.2a), while the effective modulus 1/J (t ′ + 365, t ′) grows
with age t ′ for many years (Fig. 9.2b). Note that the effective modulus considered
here corresponds to the strain after one year of loading caused by unit stress applied
at age t ′. Both strength and effective modulus are normalized by their values at age
of 28 days. The strength evolution depicted in Fig. 9.2a is based on formula (E.39)
recommended by the fib Model Code, with parameter s = 0.25. The evolution of the
effective modulus in Fig. 9.2b is based on model B3 with parameters determined by
fitting the creep data for Wylfa Vessel concrete (shown in Fig. 9.6d).

Fig. 9.2 Effective modulus Eeff = 1/J (t ′ + 365, t ′) grows long after the strength has ceased to
grow
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The purely viscous strain (flow strain) εf is the completely irrecoverable part of
the creep strain, modeled by a viscous dashpot. Its physical origin will be explained
in detail in Chap. 10. Here, we simply postulate that the rate of flow

ε̇f(t) = σ(t)

η(t)
(9.9)

depends only on the current stress σ(t), although the corresponding viscosity η(t)
is age-dependent. The fact that the flow strain has no memory (i.e., no heredity,
no delayed elastic effect) simplifies the formulation. To be able to incorporate the
contribution of the flow strain into the general framework of viscoelasticity, we need
to evaluate the compliance function of an aging viscous dashpot. If the dashpot is
loaded at time t ′ by constant stress σ̂ , the evolution of the flow strain from its initial
value εf(t ′) = 0 is governed by the rate equation ε̇f(t) = σ̂ /η(t). Renaming t as s,
integrating from t ′ to t , and dividing the result by σ̂ , we obtain the flow compliance
function

Jf(t, t
′) =

∫ t

t ′

ds

η(s)
(9.10)

The complete model for basic creep of concrete is illustrated by the rheological
scheme in Fig. 9.1. In the absence of cracking, it considers the mechanical strain (i.e.,
the total strain minus the hygrothermal strain) as the sum of instantaneous elastic
strain, viscoelastic strain evaluated by the solidification model, and additional flow
strain:

ε(t) = σ(t)

E0
+ εv(t) + εf(t) (9.11)

Here, E0 = asymptotic elastic modulus representing the material stiffness for
extremely fast deformations (extrapolated to a zero duration of load). Combining
the compliance function of the nonaging elastic spring, H(t − t ′)/E0, the viscoelas-
tic compliance function of the solidifying constituent Jv(t, t ′) given by (9.8), and
the flow compliance function Jf(t, t ′) given by (9.10), we can present the strain
evaluation formula in the usual format (2.14) with the total compliance function

J (t, t ′) = 1

E0
H(t − t ′) + Jv(t, t

′) + Jf(t, t
′) (9.12)

The flow (or aging viscous) strain is important for long-time creep of concrete
loaded at young age. This is revealed by comparing Fig. 9.4a, b where the creep data
for Canyon Ferry Dam [455, 458] are fitted without and with the flow term. On the
other hand, when t − t ′ is not large, the flow term is unimportant compared to the
viscoelastic term (as documented by Fig. 3.18c, d).

Note that the flow term makes no contribution to creep recovery. The recovery is
due entirely to the viscoelastic strain. A significant part of the viscoelastic strain is
irrecoverable, due to aging.

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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9.3 Basic Creep Compliance Function of Model B3

To obtain a practically usable form of the compliance function based on the theoret-
ical framework presented in the preceding two sections, we need to select specific
formulae for the nonaging microcompliance function of the solidifying constituent,
Φ(t), for the specific volume growth function, v(t), and for the time-dependent flow
viscosity, η(t), so that the partial compliance functions Jv(t, t ′) and Jf(t, t ′) can be
evaluated from (9.8) and (9.10).

Experimental data reveal that the compliance curves for basic creep have the form
of power curves (t − t ′)n for short load durations t − t ′ and of logarithmic curves
for long durations, with a smooth transition in between. Since ln(1 + xn) is close to
xn for small x and close to n ln x for large x , and also

∫
dt/η(t) ∝ ln t if η(t) ∝ t ,

we may set

Φ(t − t ′) = q3 ln

[
1 +

(
t − t ′

λ0

)n]
(9.13)

1

η(t)
= q4

t
(9.14)

in which n, λ0, q3, and q4 are empirical material parameters (the last two already
represent the parameters of model B3). Note that Φ(0) = 0, because experimental
data suggest that the asymptotic modulus is approximately age-independent (with
the exception of very young ages), and thus, the instantaneous compliance is not
attributed to the solidifying constituent but added separately through the nonaging
spring in Fig. 9.1. The linear dependence of viscosity on age postulated in (9.14)
is designed such that the flow compliance function evaluated from (9.10) has the
logarithmic form

Jf(t, t
′) =

∫ t

t ′

ds

η(s)
= q4 ln

t

t ′
(9.15)

For the solidification effect, it is logical to adopt the experimentally justified function
from the double-power law and log-double-power law [175]:

1

v(t)
= 1 + 1

α

(
λ0

t

)m

(9.16)

where m and α are further empirical constants. For this specific choice, the compli-
ance function of the solidifying constituent evaluated from (9.8) is

Jv(t, t
′) = Φ(0)

v(t ′)
+

∫ t

t ′

Φ̇(s − t ′)
v(s)

ds =
∫ t

t ′

[
1 + 1

α

(
λ0

s

)m]
Φ̇(s − t ′) ds =

=
∫ t

t ′
Φ̇(s − t ′)ds +

∫ t

t ′
α−1λm

0 s
−mΦ̇(s − t ′) ds =
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= Φ(t − t ′) − Φ(0) +
∫ t

t ′

α−1λm
0 s

−mnq3ds

s − t ′ + λn
0(s − t ′)1−n

=

= q3 ln

[
1 +

(
t − t ′

λ0

)n]
+ q3

α
Q(t, t ′) (9.17)

where

Q(t, t ′) = nλm
0

∫ t

t ′

s−m ds

s − t ′ + λn
0(s − t ′)1−n

(9.18)

is a function which cannot be integrated in closed form and needs to be computed
by numerical integration or approximated by a suitable formula; see (C.2) in Appen-
dix C.

Substituting the specific forms of compliances (9.17) and (9.15) into the general
expression (9.12), we recognize the part of the compliance function of model B3 that
corresponds to instantaneous elasticity and basic creep; cf. Eqs. (3.3) and (3.11) in
Chap. 3. Data fitting revealed that, for most concretes, one can use the approximate
values n = 0.1, m = 0.5, and λ0 = 1 day. This is why parameter λ0 is not explicitly
used in (3.11), but it is implicitly present in the condition that all time variables
should be substituted in days. Furthermore, in model B3, the constant q3/α (which
appears in the second term of the final expression in (9.17)) is denoted as q2, and the
inverse of the asymptotic modulus, 1/E0, is denoted as q1. So the final formula is

J (t, t ′) = q1H(t − t ′) + q2Q(t, t ′) + q3 ln

(
1 + (t − t ′)n

λn
0

)
+ q4 ln

t

t ′
(9.19)

With the standard values of n,m, and λ0, only parameters q1, q2, q3, and q4 need to be
identified from test data. An important advantage is that these four free parameters are
involved linearly. Hence, they can be obtained from the test data by linear regression
(which always gives a unique result, unlike nonlinear regression).

Note that the aging of concrete is described in the stress–strain relation not by
one but by two functions, v(t) and η(t), and that the aging rate is further modified
by the dependence of the increments of the equivalent hydration period te on the
relative pore humidity h and temperature T ; see Eqs. (10.28), (10.31), and (10.34) in
Chap. 10. Inspired by the time-temperature shift (or time-temperature superposition
principle) for thermorheologically simple materials, widely used for polymers [313,
388, 770], there were many attempts to use a single time transformation to reduce
the stress–strain relation for concrete creep to an age-independent form, but only a
narrowly selected part of the experimental evidence could be modeled because, as
we see, more than one transformation is actually required.

Algorithmic treatment of a creep model with compliance function in the format
inspired by the solidification theory is straightforward and can be based on the pro-
cedure developed for a solidifying Kelvin chain; see Sect. 5.2.6. For this purpose, the
compliance function Φ characterizing the nonaging constituent needs to be approxi-
mated by Dirichlet series (5.72) corresponding to a nonaging Kelvin chain. This can

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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be achieved by least-square fitting or better by using the concept of a continuous
retardation spectrum, as described in detail in Sect. F.2.

Once the retardation times τμ are selected and the corresponding partial moduli
Eμ are determined, Algorithm 5.3 can be applied. In its original form, the algorithm
covers only the part of response that corresponds to the viscoelastic compliance
function Jv. To incorporate the nonaging spring of stiffness E0 = 1/q1 and the aging
dashpot with compliance function Jf , the incremental modulus should be evaluated
according to formula (5.83) and the creep strain increment according to formula
(5.84). Note that the partial moduli Eμ are determined only once, at the beginning
of the analysis, and need not be recomputed after each step, owing to the nonaging
character of compliance function Φ.

9.4 Absence of a Characteristic Time as the Reason
for Using Power Functions∗

Creep is the result of several processes which are not known to possess any distinct
characteristic time, i.e., a time at which the behavior would drastically change. Such
processes are termed self-similar, and the characteristic times are implied by the
transitions between these processes. It is illuminating to consider now one such
process in isolation.

Because of self-similarity, the ratio of compliances Φ(t2)/Φ(t1) for any two posi-
tive times t1 and t2 should depend exclusively on the ratio of times t2/t1. We can thus
consider a dimensionless compliance function f of dimensionless time τ = t/tref

applicable to a time period in which a single self-similar process dominates. The
self-similarity is characterized by the condition that

f

(
t

tref

)
= Φ(t)

Φ(tref)
(9.20)

where tref is an arbitrarily selected reference time. Function f is independent of the
choice of tref ; otherwise, the process would possess an intrinsic time scale. Equation
(9.20) directly implies that f (1) = 1. Using the fact that the reference time tref is
arbitrary, it is easy to prove2 that

f (βτ) = f (β) f (τ ) (9.21)

for any positive numbers β and τ . This is a functional equation for the unknown
function f . Differentiating (9.21) with respect to β (while treating τ as a constant),
we obtain

2The proof of (9.21) directly follows from the relations f (β) = Φ(βτ tref )/Φ(τ tref ) and f (τ ) =
Φ(τ tref )/Φ(tref ), which are based on (9.20). Note that the first relation uses τ tref instead of tref as
the reference time.

http://dx.doi.org/10.1007/978-94-024-1138-6_5
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τ f ′(βτ) = f ′(β) f (τ ) (9.22)

where f ′ is the derivative of f . Now, we set β = 1 and denote r = f ′(1). The
resulting differential equation

τ f ′(τ ) = r f (τ ) (9.23)

can be integrated by separation of variables, which gives f (τ ) = Cτ r . Condition
f (1) = 1 implies that the integration variable C is equal to 1, and the final solution is

f (τ ) = τ r (9.24)

Consequently, in the absence of a characteristic time, the dimensionless function f
must be a power function. This proof is similar to that used by Bažant [95] for the
size effect in structures and by Barenblatt [51] and others in fluid mechanics.

Going back to (9.20), we can see that the self-similar function Φ must be a power
function, too, and it has the form

Φ(t) = Φref

(
t

tref

)r

(9.25)

Note that this formula contains only two (not three) independent model parameters,
because tref can be chosen arbitrarily. Parameter Φref corresponds to the value of Φ

at t = tref . If tref is replaced by βtref , it is sufficient to replace Φref by βrΦref and
function Φ remains exactly the same. Any function different from a power function
would require a model parameter with the dimension of time. So functions such as
logarithmic, exponential, sinh could be expected to apply only for physical processes
possessing some characteristic time or terminal equilibrium state. For the logarithmic
function, however, its derivative is a power function (with exponent r = −1) and
thus possesses no characteristic time. This means that the characteristic time of the
logarithmic function is given by the integration constant.

In model B3, the logarithmic function describes the long-time creep because, for
very long creep times, t − t ′ � t ′, one process, namely the viscous flow correspond-
ing to a dashpot of viscosity η(t), should control the rate of creep. The decay of the
long-time creep rate is the consequence of aging, i.e., of the increase of η(t) with
t (which itself should be regarded, for long times, as the consequence of micropre-
stress relaxation rather than hydration reaction; see Chap. 10). Since the aging is the
only time-dependent process as far as η(t) is concerned, and since no characteristic
time is known for this process, a power function should again be expected for η(t).
Empirically, viscosity η(t) ∝ t is found to represent the rate of long-time creep well.
The integration of ε̇f(t) = σ̂ /η(t) ∝ σ̂ /t with initial condition εf(t ′) = 0 confirms
that the flow strain εf should evolve as ln(t/t ′), as used in model B3, and the role of
the characteristic time is played by the age at loading, t ′.

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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Combination of, or transition between, two or more self-similar processes involves,
of course, a characteristic time at which the transition is centered. Thus, e.g.,
Eq. (9.16) for volume growth involves a characteristic time, which could be defined,
e.g., as the halftime of hydration (i.e., the time at which v = 0.5, which gives
tchar = λ0α

−1/m). Likewise, the compliance function represents a transition between
two power laws.

The foregoing considerations support (though do not unambiguously prove) the
use of power functions of time in the expression of the compliance rate based on the
solidification theory; see Eq. (3.12) in model B3, which is the simplest combination
of power functions satisfying the physical requirements of the solidification theory.
Besides, the use of power functions happens to lead to the best agreement with test
data.

9.5 Asymptotic Matching Properties of Solidification
Theory and Insufficiency of Log-Double-Power Law

The way to combine the power functions for various self-similar processes can be
helped by considering the opposite short-time and long-time asymptotic behaviors
of these processes. The transition between the opposite asymptotes is called the
asymptotic matching. This matching is illuminating and useful for comparing various
models, even though the asymptotic regimes are reached only far beyond the practical
range of interest.

For sustained stress values in the linearity range (which is the service stress range),
extensive experimental evidence [272, 455, 458, 546, 551, 580, 598, 642, 697, 734,
736] reveals some simple asymptotic properties, which should be reflected in the
constitutive model. These properties are exhibited by both the simple log-double-
power law (3.9) and the solidification theory.

Matching of the asymptotic behavior for short and long times is most conveniently
done in terms of the compliance rate J̇ (t, t ′). The complete expressions for the
compliance rate are

J̇ (t, t ′) = (α + t ′−m)nqsψ

(t − t ′)
(
α + t ′−m

)
ψ + (t − t ′)1−n (9.26)

for the log-double-power law (3.9) and

J̇ (t, t ′) = J̇v(t, t
′) + J̇f(t, t

′) = Φ̇(t − t ′)
v(t)

+ q4

t
= (q3 + q2t−m)n

t − t ′ + (t − t ′)1−n
+ q4

t
(9.27)
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for the compliance function (9.19) of model B3. For simplicity, we have set λ0 = 1
day and then omitted this parameter, even though in rigorous writing it should be
kept for the sake of dimensionality (but the final conclusions would not be affected
by that).

Consider first the case of extremely short load durations. For short enough
durations (actually for t − t ′ < 10−10 day if n = 0.1), the term t − t ′ is negligible
compared to (t − t ′)1−n , and the term 1/t is negligible compared to 1/(t − t ′)1−n .
So, the compliance rates asymptotically behave as

J̇ (t, t ′) ≈ (α + t ′−m)nqsψ
(
t − t ′

)n−1
(9.28)

for the log-double-power law and

J̇ (t, t ′) ≈ (q3 + q2t
′−m)n(t − t ′)n−1 (9.29)

for model B3. Obviously, the short-time asymptotic behavior is identical (for an
arbitrary age t ′) if and only if both models use the same value of parameters n and
m, and parameters q2 and q3 of model B3 are equal to qsψ and αqsψ , resp., where
α, qs , and ψ are parameters of the log-double-power law.

Now, consider the long-time limit, in which t − t ′ dominates over (t − t ′)1−n (for
n = 0.1, this actually occurs for t − t ′ > 1010 days) and is approximately equal to
t . The compliance rates then asymptotically behave as

J̇ (t, t ′) ≈ nqs
t

(9.30)

for the log-double-power law and

J̇ (t, t ′) ≈ q3n + q4

t
(9.31)

for model B3. Matching is achieved if nqs = q3n + q4, and since we already know
from the short-time matching that q3 = αqsψ , we obtain the condition that parameter
q4 of model B3 should be equal to nqs(1 − αψ).

We have demonstrated that, with an appropriate choice of model parameters, the
asymptotic behavior of model B3 for both very short times and very long times
is identical with the asymptotic behavior of the log-double-power law. Since the
asymptotic portions of optimized fits by the log-double-power law were shown to
match quite well numerous broad-range creep data (see Fig. 2 of [118]), the foregoing
comparisons support (though do not prove) the choice of functions Φ(t − t ′), η(t),
and v(t) in (9.13), (9.14), and (9.16) and of their standard parameters n = 0.1, m =
0.5, and λ0 ≈ 1 day.
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It now seems that the remaining free parameters qi , i = 1, 2, 3, 4, could be
deduced from parameters E0, α, ψ , and qs of the log-double-power law. However,
as is clearly demonstrated in Fig. 9.3, it is actually necessary to determine them
directly by fitting of the experimental curves because, aside from the far-out asymp-
totics, the log-double-power law is distinctly inferior to the solidification theory. One
reason is that the transitions between the short-time and the long-time asymptotes
differ considerably from the solidification theory and their error shifts the long-time
asymptotes vertically, as shown in Fig. 9.3a (to demonstrate that the ultimate slope of
both curves is the same, the graph covers an extremely wide range of load durations,
reaching far beyond the range of practical interest). The second reason is that the
prediction of the log-double-power law coefficients, specified in the short-form B3
model, is fraught with greater errors. The third is a violation of the nondivergence
requirement for creep curves, to be discussed in Sect. 9.6.

Finally, it must be noted that no test data suffice to determine the asymptotes alone,
disregarding the transition between them. It is for this reason that data fittings by the
solidification theory and by the log-double-power law give rather different parameter
values. For instance, the parameters of model B3 determined by direct fitting of
experimental data (Fig. 9.3a) were q1 = 21.9, q2 = 67.5, q3 = 5.8, and q4 = 7.7 (all
in 10−6/MPa), while the parameters determined by asymptotic matching3 of the
LDPL (Fig. 9.3b) would be q1 = 0, q2 = 67.5, q3 = 12.8, and q4 = 249. In the latter
case, the agreement of the LDPL with experimental data within the range covered

Fig. 9.3 Compliance curves corresponding to (a) model B3 with parameters determined by fitting
of experimental data (solid curve) and log-double-power law with parameters determined by asymp-
totic matching (dashed curve), (b) log-double-power law with parameters determined by fitting of
experimental data and model B3 with parameters determined by asymptotic matching

3The long-time asymptotes of the dashed curve and of the solid curve in Fig. 9.3b seem to be quite
different, but the matching is based on their slope (compliance rate).
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by the tests seems to be excellent, but it could be achieved only with a zero (or very
low) instantaneous compliance and the extrapolation to long-term loading would
probably greatly overestimate the actual creep rate.

Example 9.1. Fitting of basic creep data

The basic creep data reported by Hanson [455] and Harboe [458] refer to the Canyon
Ferry Dam concrete and contain compliance curves measured for loading at five
different ages, ranging from 2 days to 1 year. In Fig. 9.4, the experimental results are
represented by isolated points. Figure 9.4a shows that fitting by a pure solidification
model (i.e., without the flow term, withq4 = 0) does not lead to satisfactory results. At
first glance, the agreement seems to be quite good for old concrete (two bottom curves,
ages at loading t ′ = 90 days or 365 days), but it has been achieved with parameter q1

artificially set to zero (and with q2 = 100 × 10−6/MPa and q3 = 30 × 10−6/MPa).
For physically realistic values of q1, the slope of all the compliance curves would
be underestimated by the model. With q1 = 0, this underestimation occurs only
for loading at younger ages (top curves in Fig. 9.4a). Even for older concrete with
seemingly good fits within the range of load durations covered by the experiments
(less than 300 days), extrapolation to much longer durations would lead to gross
errors. Available long-term creep tests indicate that for old concrete the increase of
slope of the creep curve in semilogarithmic scale happens later.

With the flow term included, a substantial improvement can be achieved and
extrapolation to shorter or longer load durations becomes much more reliable. The
fits in Fig. 9.4b have been constructed with parameter values q1 = 21.9, q2 = 67.5,
q3 = 5.8, and q4 = 7.7 (all in 10−6/MPa).

For comparison, Fig. 9.5 shows the fits of the same experimental data (Canyon
Ferry Dam) obtained with the log-double-power law. The agreement is better than

Fig. 9.4 Creep data for Canyon Ferry Dam concrete (for different ages at loading, t ′, given in the
legend in days) fitted by the B3 model (a) without the flow term, (b) with the flow term
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Fig. 9.5 Creep data for Canyon Ferry Dam fitted by the log-double-power law with two different
sets of parameters: (a) E0 = 125 GPa, qs = 2500 × 10−6/MPa, ψ = 0.027, α = 0.19, (b) E0 =
250 GPa, qs = 300 × 10−6/MPa, ψ = 0.28, α = 0.18

that for the pure solidification theory without the flow term (Fig. 9.4a), but not as
good as it is for the full B3 model (Fig. 9.4b). The two parts of Fig. 9.5 demonstrate
that a comparable quality of fits can be achieved for rather different parameter sets.
This is related to the fact that if all the parameters are considered to be free, the
parameter identification problem becomes in this case ill-conditioned. �

There has been a tendency to make statistical comparisons of creep and shrinkage
models only to the database as a whole. However, due to the large scatter of the
database, this cannot reveal the incorrectness in the shape of creep curves. To check
this shape, comparisons must be made with the individual measured curves. For the
B3 model based on the solidification theory, some of such comparisons are shown
in Fig. 9.6.

Note that the individual measured creep curves for basic creep demonstrate that
the terminal shape should be a logarithmic curve (as proposed already in [114]). The
basic information on the data is summarized in Bažant and Panula [175]. The optimal
parameter values listed in Table 9.1 have been taken from Bažant and Prasannan [180]
and converted to SI units.

Table 9.1 Model parameters (all in 10−6/MPa) obtained by optimum fitting of various sets of
experimental data

Test data Reference q1 q2 q3 q4

Canyon Ferry Dam [455, 458] 20.89 64.40 5.51 6.96

Ross Dam [455, 458] 23.50 108.78 1.44 6.95

L’Hermite et al. [576, 580] 6.90 78.61 16.82 2.84

Wylfa Vessel [272] 20.16 41.05 17.61 12.81



424 9 Solidification Theory for Aging Effect on Stiffness and Basic Creep

Fig. 9.6 Measured values of basic compliance functions at different ages t ′ and their fits by model
B3: (a) Canyon Ferry Dam (ages t ′ = 2, 7, 28, 90, and 365 days), (b) Ross Dam (ages 2, 7, 28, 90,
and 365 days), (c) L’Hermite et al. (ages 7, 28, 90, and 365 days), (d) Wylfa Vessel (ages 7, 60, 400,
and 4560 days)

9.6 Nondivergence of Compliance Curves

Apart from its physical justification, the solidification theory, in contrast to the log-
double-power law, double-power law, and all the previously proposed concrete creep
models used in design recommendations, has the advantage of providing nondiver-
gent creep curves. Geometrically, the condition of nondivergence means that the unit
creep curves for different loading ages t ′, plotted as functions of current age t (rather
than of the load duration t − t ′), must converge toward each other, i.e., their vertical
distance must be diminishing (Fig. 9.7a).
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Fig. 9.7 (a) Divergence of creep curves, (b) nonmonotonic recovery curve

Mathematically, the condition of nondivergence reads

∂ J̇ (t, t ′)
∂t ′

≥ 0 or, equivalently
∂2 J (t, t ′)

∂t ∂t ′
≥ 0 for all t ≥ t ′ (9.32)

Example 9.2 will demonstrate that violation of this condition does not necessarily
mean that the model is thermodynamically inadmissible. On the other hand, there
exist no thermodynamic or other fundamental arguments requiring divergence to
occur. Although instances of divergence are detected in a few test data, it is not
clear whether such instances might merely be random occurrences due to inevitable
statistical scatter. The divergence is definitely not a systematic feature of the creep
database (Fig.9.8). According to the solidification theory, which is the only available
thermodynamically justified theory for aging creep, the divergence is impossible.
The Kelvin chain, as a matter of principle, cannot exhibit divergence, provided that
all its moduli and viscosities remain positive. Since the few observed instances of
divergence are mild enough to be ascribable to inevitable statistical scatter, and since
most of the data can be closely fitted by the Kelvin chain, it appears that compliance
functions exhibiting divergence ought to be avoided.

Example 9.2. Creep model exhibiting divergence of compliance curves

The mechanism leading to divergence of compliance curves can be illustrated by
simple examples. One was given in Bažant and Kim [152], and another one is pro-
vided here. Consider a Maxwell chain consisting of two units, one of which is aging
(Fig. 9.9a). The relaxation times of both Maxwell units, τ1 and τ2 = 10τ1, are con-
sidered as constant, and the initial values of moduli E1 and E2 are equal. The first
unit is nonaging, and so modulus E1 remains constant. Modulus E2 increases from
its initial value E1 and asymptotically approaches 5E1; its growth is described by
the function

E2(t) = E1
(
5 − 4e−3t/τ2

)
(9.33)
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Fig. 9.8 Compliance curves plotted as a function of age: (a) Canyon Ferry Dam, (b) Ross Dam,
(c) L’Hermite et al., (d) Wylfa Vessel

The relaxation function of the chain can be expressed analytically as

R(t, t ′) = E1e−(t−t ′)/τ1 + E2(t
′)e−(t−t ′)/τ2 =

= E1

[
e−(t−t ′)/τ1 +

(
5 − 4e−0.3t ′/τ1

)
e−0.1(t−t ′)/τ1

]
(9.34)

The numerically computed compliance function J (t, t ′) is plotted in Fig. 9.9c (in
the dimensionless form, normalized by 1/E1) as a function of the current time
t (normalized by τ1) for different values of t ′, ranging from 0.05τ1 to τ1. The
curves slightly diverge—for each fixed value of t , the compliance rate (slope of the
compliance curve) is lower for compliance tests started at a later age. Consequently,
the corresponding strain recovery curves in Fig. 9.9d are increasing (of course after
the vertical drop that reflects the instantaneous strain change due to unloading).

To understand the mechanism that leads to divergent compliance curves, let us
analyze the redistribution of partial stresses σ1 and σ2 carried by individual units of
the chain. The behavior of the model is in general described by the relations
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Fig. 9.9 (a) Aging Maxwell chain, (b) evolution of partial stresses, (c) divergence of compliance
curves, (d) strain recovery

ε̇ = σ̇1

E1
+ σ1

η1
= σ̇2

E2
+ σ2

η2
(9.35)

σ = σ1 + σ2 (9.36)

where η1 = τ1E1 and η2 = τ2E2 are the viscosities of individual dashpots in the
Maxwell chain. In a creep test, the total stress remains constant and its rate vanishes.
The rate of partial stress σ2 can be eliminated from the second equation in (9.35) by
substituting σ̇2 = −σ̇1. The rate of partial stress σ1 is then expressed in terms of the
current values of both partial stresses:

σ̇1 = E1E2

E1 + E2

(
σ2

η2
− σ1

η1

)
(9.37)

Substituting this into the first equation in (9.35), we obtain an expression for the
strain rate

ε̇ = 1

E1 + E2

(
σ1

τ1
+ σ2

τ2

)
(9.38)

Interestingly, the current strain rate in a creep test depends (aside from the current
material properties) only on the current values of partial stresses σ1 and σ2 but not
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on the details of the previous history (the history is reflected by the current values
of internal variables). Since the sum of σ1 and σ2 in a creep test is fixed, the creep
rate can be deduced from one of these variables, say σ1. If the units are numbered
such that τ1 < τ2, then the strain rate in a creep test with higher σ1 is higher. This
provides a clue for understanding of the divergence phenomenon.

Initially, the moduli E1 and E2 are assumed to be equal. Therefore, in a creep
test A started at time t ′A = 0, the initial values of partial stresses are the same:
σA1(0) = σA2(0) = 0.5σ̄ where σ̄ is the applied stress. Since η2(0) > η1, the expres-
sion in parentheses in (9.37) is negative and partial stress σA1 decreases (while partial
stress σA2 simultaneously increases at the same rate). This means that the stress is
redistributed from the “fast unit” (with a short relaxation time) to the “slow” unit
(with a long relaxation time); see the solid curves in Fig. 9.9b.

Suppose for a moment that the chain is nonaging and its properties remain con-
stant. If another creep test B is started at some later time t ′B > 0, the initial values
of partial stresses in test B are again the same, σB1(t ′B) = σB2(t ′B) = 0.5σ̄ . In test A,
which started earlier, the stresses are already partially redistributed and σA1(t ′B) is
below its initial value σA1(0) and thus also below the value of σB1(t ′B). Consequently,
the strain rate at time t ′B evaluated from (9.38) is lower for test A than for test B, and
the compliance curves are converging. For a nonaging model, this is of course an
expected result.

Consider now the effect of aging, in our case manifested by an increase of modulus
E2 (and also of viscosity η2, since the relaxation time τ2 = η2/E2 remains constant).
In creep test B which started at time t ′B > 0, the initial values of partial stresses
are no longer the same. It is easy to show that the stresses are initially distributed
in proportion to the moduli of the corresponding units, since the dashpots do not
exhibit any instantaneous strain and the model reacts to a suddenly applied stress
in the same way as two springs coupled in parallel. Therefore, the initial value of
partial stress in unit 1 is σB1(t ′B) = σ̄ E1/[E1 + E2(t ′B)]. For E2(t ′B) substantially
larger than E1, the fraction E1/[E1 + E2(t ′B)] can be so small that σB1(t ′B) is less
than σA1(t ′B). If that happens, the strain rate in test B, evaluated from (9.38), is
smaller than in test A, and the compliance curves diverge. This is exactly the case
for the model considered here. Figure 9.9b shows the evolution of normalized partial
stresses σA1 and σA2 in a creep test A started at time 0 (solid curves) and of the
ratios E1/[E1 + E2(t)] and E2/[E1 + E2(t)] for the given evolution of modulus E2

according to (9.33) (dash-dotted curves). Finally, the dashed curves correspond to the
evolution of partial stresses σB1 and σB2 in a creep test B started at time t ′B = 0.5 τ1.
The fact that the dashed curves lie outside the range bounded by the solid curves
implies divergence.

A similar explanation can be provided for the behavior of the model after unload-
ing. If the creep test runs, e.g., from time t ′A = 0 till time t ′B = 0.5 τ1, the partial stress
in the fast unit 1 is reduced with respect to its initial value, and the partial stress in
the slow unit 2 is augmented. Upon full unloading at time t ′B , the total stress drops to
zero, but the individual units in general carry some nonzero self-equilibrated stresses
(i.e., partial stresses in units 1 and 2 have the same magnitude but opposite signs).
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1. In a typical (nondivergent) case, the partial stress in unit 1 becomes negative
because, before unloading, it was lower than the partial stress in the other unit. At
constant strain, the negative stress in unit 1 would relax faster than the positive
stress in unit 2, and the total stress would thus become positive. Since the total
stress is prescribed as zero, fast relaxation of negative stress must be compensated
for by a reduction of the strain (common to both units coupled in parallel), which
brings both units into self-equilibrium.

2. The previous arguments may be reversed if unit 2 is influenced by sufficiently fast
solidification during the creep test. Its current stiffness at time t ′B becomes very
high, and instantaneous unloading leads to a positive residual stress in unit 1 and
a negative residual stress in unit 2. Subsequently, fast relaxation of the positive
stress must be compensated for by an increase of the strain, which leads to the
type of recovery curves plotted in Fig. 9.9d. �

In the preceding example, the recovery curves were, after the initial drop,
monotonically increasing. As discussed by Bažant and Kim [152], for a chain with
3 or more Maxwell units it may happen that the sign of strain rate during recovery
changes from negative to positive, as schematically shown in Fig. 9.7b. This is called
nonmonotonic recovery.

Bažant and Kim [152] also examined in detail the conditions of thermodynamic
admissibility of an aging Maxwell chain. They showed that appropriate expressions
for the free energy and dissipated energy can be constructed if the viscosities of
all Maxwell units are nonnegative and if the stiffness moduli are nonnegative and
nondecreasing in time. All these conditions are satisfied by the model analyzed in
the preceding example.

In conclusion, even though divergence of compliance curves may be thermody-
namically admissible, in combination with the principle of superposition it causes a
pathological response: The curves of creep recovery after a sudden decrease of stress
are not monotonic; i.e., decreasing strain is after some time reversed to increasing
strain; see Fig. 9.7b. Another pathology that may arise for models based on a pre-
scribed compliance function is that the relaxation curves (computed using the prin-
ciple of superposition) eventually cross to the negative sign; i.e., the stress becomes
opposite to previous loading (Fig. 9.15b–d). This phenomenon will be examined in
Sect. 9.7.

It has been speculated that nonmonotonic recovery might indicate that the prin-
ciple of superposition fails when the strain magnitude is decreasing, and thus, a
nonlinear creep model might be required. There have also been many attempts of
nonlinear creep models at nondecreasing strains. However, as it turned out, these
nonlinearities are due to separate phenomena such as microcracking and drying,
which modify the results obtained with the principle of superposition. Therefore,
it seems inappropriate to introduce nonlinear concepts to model creep. Anyway, it
would greatly complicate creep analysis, especially in proper triaxial formulation.

Let us now proceed to a deeper analysis of the nondivergence inequality (9.32)
for the general form of solidification theory with the compliance rate given by (9.7).
Differentiating with respect to t ′, we get



430 9 Solidification Theory for Aging Effect on Stiffness and Basic Creep

∂ J̇v(t, t ′)
∂t ′

= − Φ̈(t − t ′)
v(t)

(9.39)

Since v(t) is always a positive function, condition (9.32) is satisfied if and only
if Φ̈(t − t ′) ≤ 0. Thus, the sufficient and necessary condition for nondivergence
of compliance curves generated by the solidification theory is that the compliance
function of the nonaging constituent be concave. In other words, the rate of creep
must monotonically decrease in time or remain constant, but must never increase
(which is called the principle of fading memory). This is a very natural condition
and easy to satisfy; it is satisfied by the function (9.13) used by the B3 model with
positive parameters q3 and λ0 and with exponent n between 0 and 1. The compliance
function of model B3 is in fact the sum of 1/E0, Jv(t, t ′) and Jf(t, t ′), but the flow
compliance Jf(t, t ′) defined in (9.10) always satisfies the nondivergence condition,
for any age-dependent viscosity η(t), because its rate J̇ (t, t ′) = 1/η(t) does not
depend on t ′, and thus the derivative in (9.32) vanishes. This is related to the fact
that the compliance curves Jf(t, t ′) plotted as functions of age t for different values
t ′ are just shifted vertically (recall that the starting assumption was that the rate of
the flow strain depends only on the current stress).

Note that condition (9.32) would be satisfied by the more general expression

J̇ (t, t ′) =
Ns∑
s=1

Φ̇s(t − t ′)
vs(t)

+ 1

η(t)
(9.40)

which corresponds to the case of several solidifying constituents with growing vol-
umes vs(t) and nonaging compliance functions Φs(t − t ′). For some further inter-
esting aspects, see [152].

So far we have considered only the basic creep compliance. For model B3, the
drying creep compliance, too, satisfies the nondivergence condition, as can be proven
by differentiation of (3.20):

∂2 Jd(t, t ′)
∂t∂t ′

= q5 ġ(t − t0) ġ(t ′ − t0) e−g(t−t0)−g(t ′−t0)

4
(
e−g(t−t0) − e−g(t ′−t0)

)3/2 (9.41)

Recall that g denotes here a positive decreasing function given by (3.23), and so the
derivative ġ is always negative. For all t > t ′ > t0, the numerator and the denominator
in (9.41) are both positive, which means that condition (9.32) is satisfied.

We have shown that creep models based on the solidification theory, in particular
the B3 model, never exhibit divergence of the compliance curves. On the other hand,
for many simple empirical models, divergence does occur, typically when the load
duration t − t ′ exceeds a certain limit that depends on the age t ′ at the start of the
creep test. The compliance functions used in various codes and recommendations
(see Appendix E) often have the general form

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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J (t, t ′) = 1

E(t ′)
+ c

f (t − t ′)
g(t ′)

(9.42)

in which E(t ′) is the aging elastic modulus, c is a positive constant (independent of
t and t ′, but possibly dependent on the concrete properties and environmental con-
ditions), f (t − t ′) is an increasing function describing the shape of the creep curve,
and g(t ′) is an increasing function that reflects aging (lower creep if the concrete is
loaded at a higher age). With appropriate choices of c, f , and g, Eq. (9.42) gives the
double-power law (3.8), formula (E.38) recommended by ACI, formula (E.13) used
by the CEB Model Code, or formula (F.83) suggested by JSCE. Differentiation of
(9.42) yields

∂ J (t, t ′)
∂t

= c
ḟ (t − t ′)
g(t ′)

(9.43)

∂2 J (t, t ′)
∂t∂t ′

= c
− f̈ (t − t ′)g(t ′) − ḟ (t − t ′)ġ(t ′)

g2(t ′)
(9.44)

and since c > 0, the nondivergence condition ∂2 J (t, t ′)/∂t∂t ′ ≥ 0 is violated if

f̈ (t − t ′)g(t ′) + ḟ (t − t ′)ġ(t ′) > 0 (9.45)

For simplicity, dots over f and g denote derivatives of these functions, no matter
whether the argument is denoted as t − t ′ or t ′. Since ḟ and g are positive functions,
the last condition can be rewritten as

f̈ (t − t ′)
ḟ (t − t ′)

> − ġ(t ′)
g(t ′)

(9.46)

The left-hand side of this inequality depends only on the load duration, t − t ′, and
the right-hand side only on the age at loading, t ′. Therefore, for each value of t ′,
we can evaluate the range of values of t − t ′ in which divergence occurs. Typically,
this happens when the load duration t − t ′ exceeds a certain limit, which can be
computed from (9.46) if the inequality sign is replaced by equality.

Example 9.3. Divergence of creep curves in design recommendations and codes

The compliance function stipulated by the CEB Model Code (see Sect. E.2.1) has
the form (9.42) with

f (t̂) =
(

t̂

βHβT + t̂

)0.3

, g(t ′) = 0.1 + t ′0.2 (9.47)

where βH and βT are parameters given by formulae (E.11) and (E.12), and t̂ = t − t ′.
Evaluating the derivatives, substituting them into (9.46) and solving for t − t ′ with
t ′ considered as given, we find that divergence occurs if

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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t − t ′ >
1

2

[
10t ′ + t ′0.8 − βH +

√
(10t ′ + t ′0.8 − βH )2 + 1.4βH (10t ′ + t ′0.8)

]
(9.48)

Parameter βT depends on the temperature and at 20◦C is equal to 1. Parameter
βH depends on the compressive strength, environmental humidity, and equivalent
thickness of the member. For concrete of mean compressive strength 35 MPa, it
must be in the range from 250 to 1500 (days). Figure 9.10a shows the critical load
duration t − t ′ after which divergence occurs as a function of the age at loading t ′
for the extreme values of βH and for an intermediate value βH = 750. It is clear that
the specific value of βH has only a marginal influence and that in general divergence
occurs when the load duration exceeds the age at loading by a factor of 10, for younger
concrete even less than that. A pathological consequence of divergent creep curves
combined with the principle of superposition is nonmonotonic recovery, illustrated
for the CEB Model Code in Fig. 9.11a.

Fig. 9.10 Critical load duration after which divergence of creep curves occurs, plotted as a function
of the age at loading for (a) CEB Model Code with different values of parameter βH , (b) ACI model,
double-power law (DPL) and log-double-power law (LDPL)

A similar analysis can be performed for the double-power law (3.8), the log-
double-power law (3.9), and the ACI model (described in Sect. E.3); the resulting
critical load durations are plotted in Fig. 9.10b. The analysis reveals that the double-
power law and especially the log-double-power law exhibit divergence after load
durations exceeding the age at loading only a few times (approximately 4 times for
the DPL and 2 times for the LDPL). Figure 9.11b presents examples of nonmonotonic
recovery for the ACI model and Fig. 9.11c for the log-double-power law. Only the
B3 model always leads to monotonic recovery, as confirmed by Fig. 9.11d.

The double-power law (3.8) violates the nondivergence condition (9.32) for
t − t ′ > (1 − n)(1 + αt ′m)t ′/m [152]. For standard parameter values n = 0.1, m =
1/3, and α = 0.05, this happens if the load duration t − t ′ exceeds the age at loading
t ′ approximately 3 to 4 times; see the dashed curve in Fig. 9.10b.

For the log-double-power law (3.9), the analysis is somewhat more tedious
because the compliance function does not have the form (9.42). Nevertheless, it
is still possible to analyze the nondivergence inequality and show that it is violated

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 9.11 Strain recovery obtained by the principle of superposition for concrete loaded by stress
1 MPa from age of 7 days, with stress removed after 1 month, 1 year, or 10 years, as predicted by
the (a) CEB model, (b) ACI model, (c) log-double-power law, (d) B3 model

for t − t ′ > (t ′1+m/m)(α + t ′−m)[1 − n + ψ(α + t ′−m)(t − t ′)n]. This condition is
implicit, because t appears also on the right-hand side, but for standard parameter
values n = 0.1, m = 0.5, α = 0.001, and ψ = 0.3, the term with (t − t ′)n is negligible.
Except for very early ages, the critical load duration is very close to t ′(1 − n)/m,
which is just 1.8 t ′; see the dotted curve in Fig. 9.10b.

As shown by Bažant and Kim [152], the ACI model with f (t̂) = t̂ψ/(d + t̂ψ)

and g(t ′) = t ′m/
√
b + a/t ′ violates the nondivergence condition (9.32) for

mb − aT (t − t ′) − √
D(t − t ′)

2bT (t − t ′)
< t ′ <

mb − aT (t − t ′) + √
D(t − t ′)

2bT (t − t ′)
(9.49)

where

T (t̂) = 1

t̂

(
1 + ψ

t̂ψ − d

t̂ψ + d

)
(9.50)

D(t̂) = [
aT (t̂) + mb

]2 − 2abT (t̂) (9.51)
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Fig. 9.12 Critical load duration after which divergence of creep curves occurs, plotted as a function
of the age at loading for (a) JSCE model, (b) Gardner–Lockman model (GL2000)

For standard parameters m = 0.118 (moist curing), ψ = 0.6, a = 4, b = 0.85, and
d = 10, the results are plotted in Fig. 9.10b by the solid curve. Divergence occurs
for those combinations of t ′ and t̂ ≡ t − t ′ that lie above the curve.

The basic creep compliance function of the JSCE model [786] has the form
(9.42) with f (t̂) = 1 − exp

(−0.09 t̂0.6
)

and g(t ′) = (ln t ′)0.67; see Appendix E.5.
The divergence condition (9.46) can be transformed into the inequality

1

t − t ′
+ 0.135

(t − t ′)0.4
<

1.675

t ′ ln t ′
(9.52)

The regions of divergence and convergence are graphically presented in Fig. 9.12a.
For instance, for loading at age t ′ = 28 days, divergence occurs for load durations
t − t ′ exceeding 280 days. �

Would it be possible at all to construct a compliance function in the form (9.42)
which does not exhibit divergence and at the same is realistic for concrete? Detailed
analysis of the divergence condition (9.46) shows that the answer is negative. The
left-hand side maximized over all t − t ′ ≥ 0 would need to be no larger than the
right-hand side minimized over all t ′ ≥ t ′min where t ′min is the youngest age at which
the concrete could potentially be loaded. Minimization of the right-hand side gives a
certain negative constant, say −G, and then, it is easy to show that the time derivative
of function f would need to satisfy the constraint ḟ (t̂) ≤ ḟ (t̂1) exp[−G(t̂ − t̂1)] for
all t̂ > t̂1 ≥ 0. Note that ḟ (t̂) is proportional to the strain rate in the creep test. To
avoid divergence, this rate would need to approach zero exponentially. For commonly
used models with compliance functions of the general form (9.42), the creep rate
typically approaches zero as a power function (e.g., for the CEB Model Code with
function f defined in (9.47), the creep rate is for long load durations proportional
to 1/t̂2), and so the condition of exponential decay is violated. The only model with
a nonpower decay is the JSCE model, for which the long-term asymptotic behavior
of the creep rate is governed by an exponential function of −t̂0.6 but even that is too
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slow compared to the exponential of −t̂ and the nondivergence condition is violated,
same as for models with a power-type decay.

Experiments indicate that the asymptotic decay of the creep rate is proportional to
1/t̂ , because the long-time creep evolution has a logarithmic character. So construct-
ing a model with an exponential decay of the creep rate (which is in fact the property
of the simple Kelvin model) just to satisfy the nondivergence condition would not be
reasonable. Fortunately, instead of tuning up the description of aging in the format of
(9.42), we can use a completely different approach—the solidification theory. This
is so far the only practical way of ensuring nondivergence over the entire range of
admissible ages at loading and load durations.

Example 9.4. Divergence of creep curves of the Gardner–Lockman model

ModelGL2000, proposed by Gardner and Lockman [407] and described in Sect. E.4,
can be considered as a generalized version of (9.42), given by

J (t, t ′) = 1

E(t ′)
+ c

[
f (t − t ′)
g(t ′)

+ h(t − t ′)
]

(9.53)

The analysis becomes more tedious, but the condition of divergence can again be
established. Divergence occurs if

ḧ(t − t ′)g2(t ′) + f̈ (t − t ′)g(t ′) + ḟ (t − t ′)ġ(t ′) > 0 (9.54)

Equation 9.53 covers the case of basic creep, with coefficient ch in (E.45) set to zero.
For the specific form of function

g(t ′) = √
t ′ (9.55)

used by Gardner and Lockman [407], condition (9.54) can be rewritten as

2ḧ(t − t ′) t ′3/2 + 2 f̈ (t − t ′) t ′ + ḟ (t − t ′) > 0 (9.56)

With t − t ′ considered as given, condition (9.56) is a cubic inequality in terms of√
t ′. For the functions

f (t − t ′) =
√

7(t − t ′)
t − t ′ + 7

(9.57)

h(t − t ′) = 2(t − t ′)0.3

(t − t ′)0.3 + 14
(9.58)

used by Gardner and Lockman [407], the results are plotted in Fig. 9.12b. It turns out
that condition (9.56) is never satisfied for t ′ > 11 days, and for t ′ < 9 days, it is satis-
fied for virtually all load durations. This means that the GL model exhibits divergence
only for loading at young age, and in that case, divergence occurs almost immedi-
ately. This conclusion is supported by Fig. 9.13, which shows the strain recovery
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curves according to model GL2000 for concrete loaded at age of 1 day (Fig. 9.13a)
or 7 days (Fig. 9.13b) and unloaded 1 day, 1 week, 1 month, or 1 year after load-
ing. In the extreme case of very young concrete and load removal after a very short
period (solid curve in Fig. 9.13a), nonmonotonic recovery is clearly visible. If the
load is removed after a longer period, or if the first loading occurs at a higher age,
nonmonotonic recovery is less pronounced or totally disappears. �

Fig. 9.13 Strain recovery obtained by the principle of superposition for concrete loaded by stress
1 MPa from age (a) 1 day, (b) 7 days, with stress removed after 1 day, 1 week, 1 month, or 1 year,
as predicted by the GL2000 model

Example 9.5. Divergence of creep curves of the new fib model

The recently approved fib Model Code 2010 [381] uses the compliance function in
the form

J (t, t ′) = 1

E(t ′) + c1 ln

(
1 +

(
0.035 + 30

t ′
)2

(t − t ′)
)

+ c2

0.1 + t ′0.2

(
t − t ′

βH + t − t ′
)γ (t ′)

(9.59)
where constants c1 and c2 depend on the compression strength and conventional
elastic modulus and c2 also depends on the ambient relative humidity, and notional
member size. The second term on the right-hand side of (9.59) represents the basic
creep compliance, Jb, and the third term represents the drying creep compliance, Jd.

Due to its logarithmic form, the basic creep compliance function satisfies the
nondivergence condition, because its second mixed derivative

∂2 Jb

∂t∂t ′
=

c1
(
0.035 t ′ + 30

) [(
0.035 t ′ + 30

)3 − 60 t ′
]

[
t ′2 + (0.035 t ′ + 30)2 (t − t ′)

]2 (9.60)

is positive for all t > t ′ > 0.
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The drying creep compliance function of the fib model has a form similar to the
previous CEB Model Code 1990, see (9.42) and (9.47), but the fixed exponent 0.3 is
replaced by the function

γ (t ′) = 1

2.3 + 3.5√
t ′

(9.61)

The second mixed derivative of the drying creep compliance function (i.e., of the
last term on the right-hand side of (9.59)) is given by a lengthy formula

∂2 Jd

∂t∂t ′
= c2βHγ (t ′)

(0.1 + t ′0.2)(βH + t − t ′)2

(
t − t ′

βH + t − t ′

)γ (t ′)
× (9.62)

×
[

γ̇ (t ′)
γ (t ′)

+ γ̇ (t ′) ln
t − t ′

βH + t − t ′
− 2

t ′0.8 + 10t ′
+ 2

βH + t − t ′
+ βH

(
1 − γ (t ′)

)
(t − t ′)(βH + t − t ′)

]

The nondivergence condition is satisfied if the expression in square brackets in the
second line of (9.62) is nonnegative. Function γ is increasing, and its values are
between 0 and 1/2.3 ≈ 0.435, which means that the term with 1 − γ (t ′) in the
numerator and t − t ′ in the denominator tends to plus infinity as t − t ′ → 0+. The
term with ln(t − t ′) tends to minus infinity but more slowly than the term with
1/(t − t ′) tends to plus infinity, and the other terms in square brackets tend to a finite
limit. Therefore, for any age t ′, the nondivergence condition is always satisfied if the
load duration t − t ′ is sufficiently short. On the other hand, it can be shown that for
a fixed age t ′ greater than 6.47 days the expression in the brackets tends to a negative
limit as t → ∞, and so the nondivergence condition is violated if the load duration
is sufficiently long.

Fig. 9.14 Critical load duration after which divergence of drying creep curves occurs, plotted as a
function of the age at loading for the fib Model Code 2010: (a) f̄c = 45.4 MPa, D = 100 mm, henv
ranging from 0.3 to 0.7, (b) f̄c = 20 MPa, henv = 0.3, D ranging from 100 to 1000 mm
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The foregoing analysis has revealed that the second mixed derivative of function
Jd(t, t ′) that reflects the contribution of drying creep is negative for some combi-
nations of parameters. However, this does not automatically mean that the creep
curves diverge, because what matters is the sign of the second mixed derivative of
the total creep compliance function, which combines basic creep with drying creep.
Whether divergence occurs or not depends on the ratio between factors c1 and c2,
which control the contributions of basic creep and drying creep in (9.59). Comparing
the compact formula (9.59) with the details of the fib model, described in Appen-
dix E.2.2, we find that c1 = 1.8/( f̄ 0.7

c E28) and c2 = 412φRH/( f̄ 1.4
c E28) where f̄c is

the mean compressive strength, E28 is the conventional elastic modulus, and φRH is
a factor given by formula (E.20), which depends on the ambient relative humidity
and notional member size. The ratio

c2

c1
= 412φRH

1.8 f̄ 0.7
c

≈ 228.9
φRH

f̄ 0.7
c

(9.63)

depends on the compressive strength, ambient relative humidity and notional member
size. For a given ratio c2/c1 and for each fixed age t ′, one can study the dependence
of ∂2 Jb/∂t∂t ′ + ∂2 Jd/∂t∂t ′ on t − t ′ numerically and find the critical value above
which the expression becomes negative and the nondivergence condition is violated.

For illustration, let us consider the same concrete and the same conditions as in
Example 3.1. For f̄c = 45.4 MPa, henv = 0.7, and D ≡ 2Ac/u = 100 mm, we obtain
βH = 370, φRH = 0.6463, and c2/c1 = 10.2. The corresponding regions of conver-
gence and divergence are separated in Fig. 9.14a by the dashed curve. Divergence is
indeed detected, but for this particular combination of parameters it occurs within
the first 10,000 days of loading only for concrete loaded at a relatively young age
(between 8 and 59 days). For instance, if the load is applied at 28 days, divergence
would occur for load durations that exceed 2166 days.

For comparison, Fig. 9.14a also shows the boundaries between the regions of
convergence and divergence for lower levels of ambient humidity, namely 0.5 and
0.3. Since factor φRH in (9.63) is proportional to 1 − henv, divergence of creep curves
is promoted by low ambient humidities and low compressive strengths, which lead
to an increase of the ratio c2/c1 and thus to a stronger influence of drying creep. For
an extreme case with henv = 0.3 and f̄c = 20 MPa, the convergence and divergence
regions are plotted in Fig. 9.14b. The notional member size is varied here between
100 and 1000 mm, and the results indicate that the divergence phenomenon occurs
earlier for larger members. However, even in the most unfavorable case, divergence
never occurs for load durations shorter than 20 times the age at loading.

In conclusion, divergence of creep curves cannot be excluded for the new fib
model, but is much less pronounced than for the previous CEB model. �
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9.7 Change of Sign of Relaxation Function

Another natural restriction on the behavior of viscoelastic models is that the stress
relaxation curves may not cross the horizontal axis into stress values of opposite
sign.

Indeed, applying compressive mechanical strain on a specimen cannot produce
a tensile stress (note that shrinkage is treated separately). For all the standard rec-
ommendations or codes, it is generally accepted that the response to variable stress
can be evaluated according to the principle of superposition, and this is the way the
relaxation curves are calculated. For model B3, crossing of the horizontal axis has
never been observed. This is confirmed in Fig. 9.15a, which shows that the relaxation
function remains positive up to extremely long times. All the examples of relaxation
curves plotted in Figs. 9.15 and 9.16 correspond to a concrete with the same strength
and composition as in Example 3.1.

For the CEB model, the crossing of the relaxation curves (calculated from the
principle of superposition) into values of opposite sign can occur; see Fig. 9.15b,
in which the relaxation function for concrete loaded at the age of 1 day becomes
negative after about 13 years of loading. For the ACI model and the JSCE model,
a change of sign occurs much earlier, approximately after 100 days of loading; see
Fig. 9.15c, d. All these models exhibit such a strange behavior only if the concrete
is loaded at a very young age. For the short form of the B3 model, based on the log-
double-power law, negative values of relaxation function occur even for relaxation
started at higher ages; see Fig. 9.15e. Interestingly, for the GL2000 model and the
fib Model Code 2010, the relaxation function remains positive, at least for the data
used in the present example; see Fig. 9.15f, g.

For models based on the solidification theory, negative values of relaxation func-
tion never occur. For more general aging models, it is not clear which condition
should be satisfied by the compliance function in order to avoid negative values of
the relaxation function. Of course, if a model is defined by its relaxation function, it
is easy to check whether this function is nonnegative. However, as already explained,
concrete creep models are usually defined by their compliance functions, because
(i) much more experimental data are available for creep tests than for relaxation
tests, (ii) measuring relaxation requires more expensive equipment, and (iii) stress
histories in structures are usually closer to the creep test.

All the curves presented in Fig. 9.15 correspond to sealed specimens (basic creep
only). Drying creep aggravates the problem with negative relaxation values for the
CEB model and ACI model (Fig. 9.16b, c), and the problem still persists for the JSCE
model (Fig. 9.16d). For models B3, GL2000, and fib, the computed relaxation curves
do not cross the zero axis even when the effect of drying at ambient relative humidity
henv = 50% is taken into account (Fig. 9.16a, e, f).

A detailed parametric study reveals that the fib model could lead to negative values
of the relaxation function, but only for very unusual parameter combinations that are
outside the declared range of applicability of this model. For instance, for a slab of
1 m in thickness, made of concrete with a mean compressive strength of 12 MPa,
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Fig. 9.15 Relaxation curves for saturated concrete, with the onset of relaxation at three different
ages: (a) B3 model, (b) CEB model, (c) ACI model, (d) JSCE model, (e) log-double-power law, (f)
GL2000 model, (g) fib Model Code 2010
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Fig. 9.16 Relaxation curves for a concrete slab of thickness 100 mm, exposed to an environment
of 50% relative humidity from age 1 day, with the onset of relaxation at three different ages: (a) B3
model, (b) CEB model, (c) ACI model, (d) JSCE model, (e) GL2000 model, (f) fib Model Code
2010

exposed to an environment of 10% relative humidity, and loaded at the age of 7 days,
the relaxation function would become negative after about 8500 days. However, the
code is applicable to concretes with a mean compressive strength of at least 20 MPa
exposed to an environment of at least 40% relative humidity. So, even though the
theoretical requirements are not satisfied perfectly, there is no problem in practical
applications.
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9.8 Thermodynamically Admissible Rheological Chains∗

9.8.1 General Properties∗

To gain more insight, let us systematically explore the general properties of thermo-
dynamically admissible rheological chains with aging units.

A general relaxation function can conveniently be approximated by a Dirichlet
series of the form

R(t, t ′) =
M∑

μ=1

Eμ(t ′) e−(t−t ′)/τμ , for t ≥ t ′ (9.64)

which corresponds to an aging Maxwell chain with fixed relaxation times τμ; see
formula (A.33) in Appendix A.4.1. Such a chain is thermodynamically admissible
if all the partial moduli Eμ are nonnegative at all times (the relaxation times τμ are
always assumed to be preselected positive constants). Maxwell chains with fixed
relaxation times are convenient because they lead to a simple form of the relaxation
function (9.64) but, in theoretical developments, one could also consider a more gen-
eral case with partial moduli Eμ and partial viscosities ημ specified by independent
functions of age. Thermodynamic admissibility is guaranteed if all the moduli as well
as all the viscosities are positive (springs with zero moduli and dashpots with zero
viscosities can be removed without affecting the behavior of the chain). It is good
to recall that the age-dependent spring moduli must be inserted into an incremental
form of the stress–strain law (σ̇ = E ε̇) and not into a total form (σ = Eε).

A general compliance function can conveniently be approximated by a general-
ized Dirichlet series of the form

J (t, t ′) = 1

E0(t ′)
+

M∑
μ=1

1 − e−(t−t ′)/τμ

Dμ(t ′)
, for t ≥ t ′ (9.65)

which corresponds to a special type of aging Kelvin chains; see formula (A.40)
in Appendix A.4.2. Again, one could consider a general aging Kelvin chain with
independent partial moduli Eμ and partial viscosities ημ, for which the admissibility
conditions are simply Eμ > 0 and ημ > 0 (for all μ and at all times). Formula (9.65)
is written in terms of time-dependent parameters Dμ which do not have a direct
physical meaning and are linked to moduli Eμ by condition Dμ − τμ Ḋμ = Eμ in
which τμ are constant (positive) retardation times. The conditions of thermodynamic
admissibility written in terms of time-dependent parameters Dμ then read Dμ > 0
(this replaces ημ > 0 because ημ = τμDμ) and Dμ/τμ ≥ Ḋμ; the latter condition
can be violated even for a positive Dμ if the growth of Dμ is too fast.

General properties of rheological chains with positive moduli and viscosities can
be summarized as follows:
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• M-R: For a thermodynamically admissible aging Maxwell chain, the relaxation
function is guaranteed to remain positive.

• M-D: There exists a thermodynamically admissible aging Maxwell chain that
leads to divergence of creep curves.

• K-R: For a thermodynamically admissible aging Kelvin chain, the relaxation func-
tion is guaranteed to remain positive.

• K-ND: For a thermodynamically admissible aging Kelvin chain, divergence of
creep curves cannot occur.

Property M-R, i.e., positiveness of the relaxation function for any aging Maxwell
chain with positive partial moduli and viscosities, directly follows from the repre-
sentation of the relaxation function by formula (A.30), which in the special case of
a chain with constant relaxation times reduces to formula (9.64).

Property M-D, i.e., the existence of an aging Maxwell chain with positive partial
moduli and viscosities for which the creep curves diverge, is proven by Example 9.2.
It transpires that divergence of creep curves and change of sign of relaxation func-
tion are two different phenomena, even though the specific models examined in
Example 9.3 usually suffer by both problems.

Property K-ND, i.e., nondivergence of creep curves corresponding to a Kelvin
chain with positive partial moduli and viscosities, is proven at the end of Appendix
A.4.2 based on formula (A.43) for the mixed second derivative of the compliance
function.

Finally, property K-R, i.e., positiveness of the relaxation function for any aging
Maxwell chain with positive partial moduli and viscosities, can be proven by contra-
diction. The starting assumption is that the evolution of all variables (stress, partial
strains, moduli) is continuously differentiable in time. This is not a major constraint,
since all models discussed so far are based on very regular compliance functions,
and the strain history in a relaxation test is constant (the initial jump is embedded
in the initial conditions). We consider an aging Kelvin chain with a positive strain ε̂

applied abruptly at time t1 and kept constant afterward. The objective is to show that
the stress can never become negative, provided that the partial moduli and viscosities
satisfy at all times the conditions Eμ ≥ 0 and ημ > 0. Since the proof is relatively
complicated, let us split it into two major steps that will be summarized first and
subsequently elaborated in detail:

1. If t3 is the first time instant at which the stress ceases to be positive (i.e., crosses or
touches the zero axis), then at least one of the Kelvin units must exhibit a positive
strain rate at time t3.

2. If one of the Kelvin units exhibits a positive strain rate at time t3, then there must
exist a time instant t2 ≤ t3 at which the total stress transmitted by that unit is
negative. However, this is in contradiction with the definition of t3 as the first
time instant at which the stress ceases to be positive.

Before going into detail, let us recall the basic notation and relations describing a
Kelvin chain. Such a chain is a serial arrangement of an elastic spring (unit number 0)
and M Kelvin units, each of which consists of an elastic spring and a viscous dashpot,
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coupled in parallel. The partial strains in individual units are denoted as εμ, the partial
stresses in individual springs and dashpots are denoted as σeμ and σvμ, and the basic
equations are

ε =
M∑

μ=0

εμ (9.66)

σ = σe0 (9.67)

σ = σeμ + σvμ, μ = 1, 2, . . . M (9.68)

σ̇eμ = Eμε̇μ, μ = 0, 1, 2, . . . M (9.69)

σvμ = ημε̇μ, μ = 1, 2, . . . M (9.70)

The initial response after a sudden application of strain ε(t1) = ε̂ is purely elastic,
and only the zeroth unit (spring with no dashpot) deforms. The corresponding initial
conditions are given by

ε0(t1) = ε̂ (9.71)

σe0(t1) = E0(t1)ε̂ (9.72)

σ(t1) = E0(t1)ε̂ (9.73)

εμ(t1) = 0, μ = 1, 2, . . . M (9.74)

σeμ(t1) = 0, μ = 1, 2, . . . M (9.75)

σvμ(t1) = E0(t1)ε̂, μ = 1, 2, . . . M (9.76)

The two steps of the proof that was outlined above can now be elaborated as
follows:

1. The initial stress σ(t1) given by (9.73) is positive, and subsequently, the stress
evolves in a continuous manner. If σ should ever become negative, there would
need to be a time instant t3 at which σ(t3) = 0 for the first time. Since σ(t) > 0
for all t < t3, the stress rate at t3 cannot be positive. The cases in which σ̇ (t3) < 0
and σ̇ (t3) = 0 are treated separately:

a. Suppose that σ̇ (t3) is strictly negative. Since ε̇(t3) = ε̇0(t3) + ∑M
μ=1 ε̇μ(t3) =

0 and ε̇0(t3) = σ̇ (t3)/E0(t3) < 0, there must exist at least one Kelvin unit
(further referred to by subscript k ∈ {1, 2, . . . M}) for which ε̇k(t3) > 0.

b. The statement that ε̇k(t3) > 0 for some k can be extended to the special
case when σ̇ (t3) = 0. In this case, we get ε̇0(t3) = 0 and

∑M
μ=1 ε̇μ(t3) = 0.

If none of the rates ε̇μ(t3) was positive, all of them would have to be zero.
However, this would imply that all the partial stresses in viscous dashpots,
σvμ(t3), vanish, and by combining this with the condition of zero total stress,
σ(t3) = 0, we would also get zero partial stresses σeμ(t3) in all elastic units.
If the model attains such a state of zero stress in all units and the strain
remains constant, all the stresses (partial and total) remain at zero forever
and negative stress is never reached.
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The partial conclusion is that relaxation to negative stress implies the existence
of at least one unit with a positive strain rate at the time instant t3 when the stress
for the first time ceases to be positive.

2. Now, we assume that, for a given k ∈ {1, 2, . . . M}, we have ε̇k(t3) > 0, and
we also know that σ(t3) = 0 and σ(t) > 0 for all t between t1 and t3. For
partial stresses in the kth unit, we get σvk(t3) = ηk(t3)ε̇k(t3) > 0 and σek(t3) =
σ(t3) − σvk(t3) = 0 − σvk(t3) < 0; i.e., the stress in the dashpot is positive and
the stress in the spring is negative. According to (9.75), the stresses in all
springs (except the zeroth spring) are initially zero. Since the stress in the kth
spring evolves continuously from σek(t1) = 0 to σek(t3) < 0, there must exist
a certain time instant t2 ≤ t3 at which σek(t2) < 0 and σ̇ek(t2) < 0. But then
ε̇k(t2) = σ̇ek(t2)/Ek(t2) < 0 and σvk(t2) = ηk(t2)ε̇k(t2) < 0; i.e., the stress in the
kth dashpot is negative at t2. The total stress σ(t2) = σek(t2) + σvk(t2) is thus
negative at t2, which is in contradiction with the facts that t2 ≤ t3 and that t3 was
defined as the first time instant at which the stress ceases to be positive.

This completes the proof of the K-R property.

9.8.2 Relation to Retardation Spectrum∗

It has been shown that thermodynamically admissible Kelvin chains lead to nondi-
verging creep curves and nonnegative relaxation functions. At the same time, the
conditions of nondivergence and nonnegative relaxation are violated by many mod-
els scrutinized in the present section and in the preceding one, in particular by the
ACI, CEB, JSCE, and LDPL models. A logical conclusion is that the compliance
functions of these models cannot be presented in the form of Dirichlet series (9.65)
with parameters satisfying the conditions Dμ > 0 and Ḋμ < Dμ/τμ for all μ and
at all times. Violation of such conditions can be demonstrated directly, using the
concept of a retardation spectrum, explained in detail in Appendix F.

In analogy to the representation of the compliance function of a nonaging linear
viscoelastic material by formula (F.1), the compliance function of an aging material
can be expressed as

J (t, t ′) = 1

Eas(t ′)
+

∫ ∞

τ=0
L(τ, t ′)

[
1 − exp

(
− t − t ′

τ

)]
d ln τ (9.77)

where Eas(t ′) is the instantaneous (asymptotic) modulus at age t ′ and L(τ, t ′) is
the age-dependent continuous retardation spectrum. As shown in Appendix F.1, the
retardation spectrum is closely related to the inverse Laplace transform of the com-
pliance function (more precisely, of its continuous part, which is why the initial
jump at t − t ′ = 0 is taken into account separately by the asymptotic compliance
1/Eas(t ′)). For a given compliance function J and a fixed age t ′, the auxiliary func-
tion Φ(t − t ′) = J (t, t ′) can be treated in the same way as a compliance function
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of a nonaging material and its retardation spectrum L(τ ) can be approximated using
the techniques described in Appendix F. The result of course depends on the age t ′,
and thus, the retardation spectrum of an aging material is considered as a function
of both τ and t ′.

A big advantage of the representation of viscoelastic properties by a retardation
spectrum is that, if the spectrum is known, one can directly proceed to an approx-
imation of the compliance function by a Dirichlet series with explicitly evaluated
coefficients that correspond to individual Kelvin units (with no need for determina-
tion of the coefficients by least-square fitting or similar optimization techniques). For
illustration, consider the usual choice of fixed retardation times forming a geomet-
ric progression with quotient 10, which means that τμ = 10μ−1τ1, μ = 2, 3, . . . M .
Based on a simple numerical quadrature scheme, the integral in (9.77) can be approx-
imated as follows:

∫ ∞

τ=0
L(τ, t ′)

[
1 − exp

(
− t − t ′

τ

)]
d ln τ ≈ (9.78)

≈
∫ τ1/

√
10

τ=0
L(τ, t ′) d ln τ +

M∑
μ=1

L(τμ, t ′)
[

1 − exp

(
− t − t ′

τμ

)]
(ln 10)

The first term on the right-hand side of (9.78) represents the contribution of the
part of the spectrum with very short retardation times. If the first retardation time,
τ1, is sufficiently small, this term could be neglected; otherwise, it is estimated based
on an analytical approximation of L(τ, t ′) for small τ or evaluated numerically. The
result is a function of t ′ only (i.e., is independent of the load duration, t − t ′) and
corresponds to an additional short-term compliance,

1

E∗
0 (t ′)

=
∫ τ1/

√
10

τ=0
L(τ, t ′) d ln τ (9.79)

which is to be added to the truly instantaneous compliance, 1/Eas(t ′). The resulting
approximation of the original compliance function by Dirichlet series then reads

J (t, t ′) = 1

E0(t ′)
+

M∑
μ=1

1

Dμ(t ′)

[
1 − exp

(
− t − t ′

τμ

)]
(9.80)

where

E0(t
′) =

(
1

Eas(t ′)
+ 1

E∗
0 (t ′)

)−1

(9.81)

Dμ(t ′) = 1

(ln 10) L(τμ, t ′)
(9.82)
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The physical moduli that correspond to the coefficients Dμ given by (9.82) are
evaluated as

Eμ(t ′) = Dμ(t ′) − τμ
dDμ(t ′)

dt ′ = 1

(ln 10) L(τμ, t ′) + τμ
1

(ln 10) L2(τμ, t ′)
∂L(τμ, t ′)

∂t ′ =

=
(

1 + τμ

L(τμ, t ′)
∂L(τμ, t ′)

∂t ′
)

Dμ(t ′) (9.83)

The model is guaranteed to be thermodynamically admissible if the partial moduli
Eμ as well as the partial viscosities τμDμ of all Kelvin units are positive at all ages
t ′ > 0. This is true independently of the specific choice of retardation times τμ if the
retardation spectrum satisfies the conditions

L(τ, t ′) > 0 (9.84)

L(τ, t ′) + τ
∂L(τ, t ′)

∂t ′
> 0 (9.85)

for all retardation times τ > 0 and at all ages t ′ > 0. Usually, L(τ, t ′) is a nonincreas-
ing function of t ′, and so the second condition represents a more severe restriction
than the first one.

It is also interesting to recall that if the mixed second derivative

∂2 J (t, t ′)
∂t∂t ′

=
∫ ∞

τ=0

1

τ 2

(
L(τ, t ′) + τ

∂L(τ, t ′)
∂t ′

)
exp

(
− t − t ′

τ

)
d ln τ (9.86)

obtained by double differentiation of (9.77) is nonnegative, then the creep curves
cannot diverge. Condition (9.85) is thus sufficient to guarantee nondivergence.

As shown by Jirásek and Havlásek [522], the spectral values L are positive for
virtually all compliance functions proposed for concrete.4 In the absence of aging,
L(τ, t ′) does not depend on t ′ and the derivative ∂L(τ, t ′)/∂t ′ vanishes. In that case,
conditions (9.84) and (9.85) are equivalent, and positivity of the retardation spectrum
is sufficient for thermodynamic admissibility as well as for nondivergence of creep
curves. On the other hand, for models with aging, the spectral content typically
decreases with increasing age t ′, and so the derivative ∂L(τ, t ′)/∂t ′ is negative and
condition (9.85) is potentially violated, even for a positive spectrum.

4Slightly negative spectral values were detected, in a narrow range of retardation times, for the
drying creep compliance function of the B3 model with some specific combinations of parameters.
However, this function represents only one contribution to the total compliance. When it is combined
with the basic creep compliance function, the spectral values are expected to become positive, at
least in the physically meaningful range of parameters.
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Example 9.6. Retardation spectrumandKelvinmoduli for basic creep compliance
function of fib model

For illustration, let us check conditions (9.84)–(9.85) for the fib Model Code 2010.
In the absence of drying, the compliance function recommended by this code can be
presented in the form

J (t, t ′) = 1

E(t ′)
+ a ln

(
1 + t − t ′

g(t ′)

)
(9.87)

where a = 1.8/(E28 f̄ 0.7
c ) is a parameter that depends on the specific concrete and

g(t ′) =
(

0.035 + 30

t ′

)−2

(9.88)

is an increasing function that reflects the effect of aging (with t ′ substituted in days,
as usual). For fixed t ′, the second term on the right-hand side of (9.87) is a special
case of the log-power law (F.15) with exponent n = 1. As shown in Appendix F.2,
the corresponding retardation spectrum

L(τ, t ′) = a e−g(t ′)/τ (9.89)

is available in a closed form, which is rather an exception among the widely used
creep models. Since a is a positive constant, condition (9.84) is easily verified.

To check condition (9.85), let us evaluate

L(τ, t ′) + τ
∂L(τ, t ′)

∂t ′
= a e−g(t ′)/τ + τ a e−g(t ′)/τ

(
− 1

τ

)
dg(t ′)

dt ′
=

= L(τ, t ′)
(
1 − ġ(t ′)

)
(9.90)

For the sake of brevity, the derivative of g with respect to its argument t ′ is denoted as
ġ. Since we already know that L(τ, t ′) > 0, the right-hand side of (9.90) is positive
if ġ(t ′) < 1 at all ages t ′ > 0. For the specific form of function g(t ′) given by (9.88),
we get

ġ(t ′) = 60 t ′

(0.035 t ′ + 30)3
(9.91)

It is easy to check that 60 t ′ < (0.035 t ′ + 30)3 for all t ′ > 0. Consequently, condition
(9.85) is satisfied, and the approximation of compliance function (9.87) by formula
(9.80) with parameters Dμ given by (9.82) always leads to a thermodynamically
admissible Kelvin chain, for an arbitrary choice of retardation times τμ. In fact, it
follows from (9.90) that, for the present model, formula (9.83) can be rewritten as

Eμ(t ′) = (
1 − ġ(t ′)

)
Dμ(t ′) (9.92)



9.8 Thermodynamically Admissible Rheological Chains∗ 449

This means that the partial moduli Eμ are obtained from coefficients Dμ by simple
scaling by a dimensionless factor 1 − ġ(t ′). The dependence of this factor on age is
presented in Fig. 9.17c.

For a concrete with compressive strength f̄c = 45.4 MPa and conventional mod-
ulus E28 = 32 GPa (the same values as in the comparative example in Appen-
dix E.6), parameter a = 1.8/(E28 f̄ 0.7

c ) is found to be equal to 3.892 × 10−6/MPa. In
Fig. 9.17a, the continuous retardation spectrum (9.89) is plotted as a function of the
retardation time τ , for selected ages t ′ ranging from 1 day to 10,000 days. Figure 9.17b
shows the corresponding function L(τ, t ′) + τ ∂L(τ, t ′)/∂t ′ given by (9.90), which,
as expected, remains positive. From these two functions, it is possible to evaluate
parameters Dμ given by (9.82) and partial moduli Eμ given by (9.83) or, equivalently,
by (9.92). The resulting partial compliances 1/Eμ are shown in Fig. 9.17d for age
t ′ = 100 days and for discrete retardation times τμ ranging from 1 day to 105 days.
It is confirmed that all the partial moduli are positive.

Fig. 9.17 Model for basic creep specified by the fib Model Code 2010: (a) continuous retardation
spectrum, L(τ, t ′), (b) function L(τ, t ′) + τ∂L(τ, t ′)/∂t ′, (c) age-dependent reduction factor 1 −
ġ(t ′), (d) partial compliances 1/Eμ at age t ′ = 100 days

As shown in Fig. 9.17a, the spectral values are extremely small for retardation
times below a certain age-dependent limit, which is about t ′/100 for ages up to
100 days and not less than t ′/1000 for ages up to 10,000 days. Parameters Dμ eval-
uated from formula (9.82) for retardation times τμ � t ′ are then huge (compared,
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e.g., to the elastic modulus), and the physical moduli Eμ evaluated from (9.92) are
not much smaller (at most by 30%, since 1 − ġ(t ′) > 0.7 for all ages t ′). This means
that the springs in Kelvin units with short retardation times are extremely stiff and
their contribution to the total strain of the Kelvin chain is negligible.

For instance, at age t ′ = 100 days, the stiffness of the spring in the unit with
retardation time 1 day is 695 × 103 GPa and its reciprocal value (compliance) is
1.44 × 10−9 /MPa, which is several orders of magnitude below the compliances of
units with longer retardation times; see Fig. 9.17d. Therefore, the Dirichlet series
approximating the compliance function of the fib model does not need to include
terms with retardation times below a certain limit.

This might look like an advantage from the computational point of view. However,
such an extremely low compliance of units with short retardation times is related to
the poor ability of the model to capture short-term creep, which is a consequence
of the selected form of the compliance function. For t − t ′ � g(t ′), i.e., for short
load durations, the compliance function (9.87) can be approximated by J (t, t ′) ≈
1/E(t ′) + a(t − t ′)/g(t ′), which means that the creep strain grows proportionally to
the duration of loading. As discussed in detail in Sect. 3.2, experimental data indicate
proportionality of short-term creep to a power function (t − t ′)n with a low exponent,
typically n = 0.1; see Figs. 3.5 and 3.6.

This feature is properly reflected by the B3 model, for which the basic creep strain
after the first minute of loading is roughly one half of the basic creep strain after the
first day (because for n = 0.1 we get (60 × 24)n ≈ 2.07). For the fib model, the basic
creep strain after the first minute is by three orders of magnitude smaller than the
basic creep strain after the first day, because for n = 1 we get (60 × 24)n = 1440.

For very long retardation times, the spectral value L(τ, t ′) is almost constant
and tends to a = 3.892 × 10−6 /MPa as τ → ∞; see Fig. 9.17a. The correspond-
ing coefficients Dμ tend to 1/(a ln 10) ≈ 111.6 GPa, and compliances 1/Eμ that
characterize the springs in Kelvin units with long retardation times get close to
a ln 10/

(
1 − ġ(t ′)

)
. At age t ′ = 100 days, this gives 1/Eμ → 10.66 × 10−6 /MPa

as τμ → ∞; see the values in the right part of Fig. 9.17d.
The fact that there is no upper limit on the retardation times of units that provide

significant contributions to the creep strains is related to the logarithmic nature of
the compliance function. This feature of the fib model is shared by the B3 model,
which also uses a compliance function with logarithmic growth; see the retardation
spectrum of the log-power law with exponent n = 0.1 in Fig. F.3c. For bounded
compliance functions, the long-term part of the spectrum is very different, as will be
demonstrated in Example 9.7. �

As already mentioned in Sect. 9.6, many of the compliance functions used by
creep models have the general form (9.42). The corresponding retardation spectrum
is then described by

L(τ, t ′) = c L f (τ )

g(t ′)
(9.93)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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where c is a constant, g(t ′) is an increasing function that describes aging, and L f (τ )

is the retardation spectrum obtained if function f (t̂) from (9.42) is treated as a
nonaging compliance function. For commonly used functions f (t̂), the nonaging
retardation spectrum L f (τ ) is positive and condition (9.84) is satisfied. To check
condition (9.85), let us evaluate

L(τ, t ′) + τ
∂L(τ, t ′)

∂t ′
= c L f (τ )

g(t ′)
− τ

c L f (τ )ġ(t ′)
g2(t ′)

= c L f (τ )

g(t ′)

(
1 − τ

ġ(t ′)
g(t ′)

)

(9.94)

For each age t ′, the ratio Tg(t ′) = g(t ′)/ġ(t ′) is positive and corresponds to a cer-
tain characteristic time of the aging process. The expression in parentheses on the
right-hand side of (9.94) becomes negative for all retardation times τ > Tg(t ′), and
condition (9.85) is violated.

Example 9.7. Retardation spectrum and Kelvin moduli for compliance function
of ACI model

For the ACI model, the compliance function has the form (9.42) with f (t̂) = t̂ψ/(d +
t̂ψ) and g(t ′) = t ′m/

√
b + a/t ′ and with typical parameters m = 0.118, ψ = 0.6,

a = 4, b = 0.85, and d = 10. The characteristic time of the aging process is then
given by

Tg(t
′) = g(t ′)

ġ(t ′)
= 2t ′(a + bt ′)

a + 2m(a + bt ′)
(9.95)

and condition (9.85) is violated for all τ > Tg(t ′). For large t ′, the value of Tg(t ′) is
close to t ′/m ≈ 8.5 t ′.

The multiplicative constant c in (9.93) is given by c = 2.35 γ /E28 where γ is
the product of factors γ1 to γ6 that depend on the concrete composition, type of
curing, ambient humidity, and member size; see Appendix E.3. For the concrete
and conditions considered in the comparative example in Appendix E.6, factor γ

is equal to 0.757 and the conventional modulus is E28 = 32 GPa, which gives c =
55.6 × 10−6/MPa. For this value of c, the continuous retardation spectrum (9.93)
of the ACI model is plotted in Fig. 9.18a, based on a high-order approximation of
function L f (τ ) described in Appendix F.3. The effect of age on the spectrum consists
in vertical scaling and is totally different from the effect of age for the fib model, which
was manifested in Fig. 9.17a by horizontal shifting in the logarithmic scale. This is
related to differences in the form of compliance functions. For the fib compliance
function (9.87), an age-dependent factor scales the load duration, while for the ACI
compliance function (and all other compliance functions that have the form (9.42))
another age-dependent factor scales the creep strain.

Figure 9.18b shows the function L(τ, t ′) + τ∂L(τ, t ′)/∂t ′ for different ages t ′
ranging from 1 day to 10,000 days. It is confirmed that formula (9.94) leads to neg-
ative values for τ > Tg(t ′) where Tg(t ′) is approximately one order of magnitude
larger than t ′. For instance, at age t ′ = 100 days, negative values are obtained for all
retardation times that exceed 712 days.
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Fig. 9.18 ACI model: (a) continuous retardation spectrum, L(τ, t ′), (b) function L(τ, t ′) +
τ∂L(τ, t ′)/∂t ′, (c) parameters 1/Dμ for t ′ = 100 days, (d) partial compliances 1/Eμ for t ′ = 100
days, (e) dependence of partial moduli Eμ on age

Since the retardation spectrum is positive, parameters Dμ evaluated from (9.82)
are also positive, for all retardation times and at all ages. Their reciprocal val-
ues 1/Dμ represent the coefficients in Dirichlet series (9.65) and are plotted in
Fig. 9.18c for discrete retardation times ranging from 0.01 day to 100,000 days and
for a fixed age t ′ = 100 days. Only Kelvin units with retardation times between 1
day and 10,000 days provide an important contribution to the compliance function.
For units with retardation times 0.1 day and 100,000 days, the coefficients 1/Dμ are,
respectively, 0.523 × 10−6/MPa and 0.455 × 10−6/MPa and are more than 20 times



9.8 Thermodynamically Admissible Rheological Chains∗ 453

smaller than the coefficient that corresponds to the retardation time of 100 days. The
contribution of units with very short or very long retardation times (below 0.1 day or
above 100,000 days) to the compliance function is negligible.

Even though the compliance function is approximated by Dirichlet series with
coefficients 1/Dμ that remain positive at any age, the physical moduli Eμ, which
represent age-dependent stiffnesses of individual Kelvin units, are not always posi-
tive. At t ′ = 100 days, the compliances 1/Eμ are positive for units with retardation
times up to 100 days, but the unit with τμ = 1000 days is characterized by a nega-
tive compliance 1/Eμ = −14 × 10−6/MPa, which has a similar magnitude as the
positive compliance of the unit with τμ = 100 days; see Fig. 9.18d. For units with
still longer retardation times, the compliances are also negative but very small in
magnitude.

To complete the picture, the dependence of moduli Eμ on concrete age t ′ for
three selected Kelvin units is presented in Fig. 9.18e. It turns out that these moduli
are increasing functions of age and their initial values are negative. The modulus
of the unit with τμ = 10 days becomes positive at age t ′ = 3.91 days, when the
condition Tg(t ′) = 10 days is satisfied. The moduli of the units with τμ = 100 days
and 1000 days become positive, respectively, at 21 and 135 days. �



Chapter 10
Microprestress-Solidification Theory
and Creep at Variable Humidity
and Temperature

Abstract After an initial period of less than one year, the relative decrease of creep
rate with the age at loading is much stronger than the relative decrease of the growth
rate of hydration degree. This suggests another source of long-term aging, which
is explained by relaxation of the so-called microprestress. We conceive the micro-
prestress as an overall characteristic of the disjoining pressures in nanopores filled
by hindered adsorbed water and the counterbalancing tensile stresses in the nanos-
tructure of hydrated cement. We model mathematically how the microprestress gets
generated by the volume changes due to hydration as well as the pore water content
changes and temperature changes. To anchor the model physically, we discuss the
pore structure of hydrated cement and water adsorption on its enormous internal
surface. We also present an alternative computational approach in which the micro-
prestress changes are replacedbyviscosity variation and showhow themicroprestress
theory is easily incorporated into finite element programs for creep.

The solidification theory explained in the preceding chapter separates viscoelas-
ticity of the solid constituent, the cement gel, from the chemical aging of the hard-
ened cement paste caused by solidification of gel particles and characterized by the
growth of volume fraction of hydration products. This permits considering the vis-
coelastic constituent as nonaging, and the decrease of creep compliance is explained
by volume growth of cement gel into the pores. However, this cannot explain the
multidecade continuation of significant compliance decrease because the volume
growth of cement gel becomes rather slow after about one year. Neither can this
explain the drying creep effect (or Pickett effect) and the transitional thermal creep.
This chapter will show that all these important phenomena can be explained by one
unified concept, the concept of microprestress.1

1The microprestress would perhaps better be called the nanoprestress, but the term microprestress
got fixed before everything “nano” became fashionable.

© Springer Science+Business Media B.V. 2018
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The microprestress characterizes self-equilibrated stress fields on the nanoscale
level which stretch the bonds and thus facilitate their breakage. The microprestress
is independent of the applied load, is initially produced by incompatible volume
changes in the microstructure during hydration, and later builds up when changes
of moisture content and temperature create thermodynamic imbalance between the
chemical potentials of vapor and adsorbed water in the nanopores of cement gel.
Further it is shown that the microprestress buildup and relaxation also capture a
third effect: the transitional thermal creep, i.e., the transitional creep increase due to
temperature change. A reduction in the number of parameters can be achieved by
eliminating themicroprestress from the formulation and reformulating the governing
differential equation in terms of viscosity as the primary internal variable. For com-
putations, an efficient integration algorithm is developed. Numerical simulations of
creep tests at variable temperature and humidity are used to identify the constitutive
parameters, and a satisfactory agreement with typical test data is documented.

10.1 Overview of Physical Mechanisms

The quest for a realistic physically based creep and shrinkage model for Portland
cement concrete has been confounded for decades by three intriguing phenomena:

1. The aging of concrete, which causes compliance J (t, t ′) at constant load duration
t − t ′ to decrease with age t ′ at loading. The aging is of two kinds:

a. Short-term chemical aging, which becomes weak (at room temperature)
at the age of about one year and is explained by the solidification theory
presented in Chap.9; and

b. long-term nonchemical aging, manifested by the fact that the decrease of
creep with the age at loading continues unabated even for many years, and
probably many decades after the degree of hydration of cement ceased to
grow. This phenomenon was explained by the relaxation of a nanoscale
microprestress [132], although, as alreadypointedout inChap.9, a long-term
increase of bonding, due to “polymerization” in calcium silicate hydrates,
might also play a role [179].

2. Thedrying creep effect, also called thePickett effect (or stress-induced shrinkage).
This is a transient effect consisting in the fact that the apparent creep during
drying is much larger than the basic creep (i.e., creep at moisture saturation)
while the creep after drying (i.e., after reaching thermodynamic equilibrium with
the environmental humidity) is much smaller than the basic creep. The physical
source of drying creep was shown [201] to involve two different mechanisms:

a. One is an apparent macroscopic mechanism, arising from the impossibility
of measuring the “true” material shrinkage, i.e., the theoretical shrinkage
which would occur if the decreasing specific water content during drying

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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could be kept uniform throughout the companion shrinkage specimen. Since
concrete is primarily used to resist compressive loads, creep is typically
tested under uniaxial compression. The creep (together with the initial elas-
tic deformation) is defined as the deformation difference between the loaded
specimen and a load-free companion. The nonuniformity of local drying
shrinkage in the load-free companion specimen produces distributed micro-
cracking (or softening damage), initially in the surface layer and later in the
core. This causes the observed shrinkage to be less than the “true” shrinkage
which would be observed if a uniform water content could be maintained
throughout, and the creep identified from the measured deformation differ-
ence is larger than the “true” creep [80, 117, 198, 201, 431, 874–876, 879].
Besides, by including the cracking strain from the companion specimen in
the drying creep, one gets a false impression of a nonlinear dependence on
the mean stress applied on the creep specimen. Obviously, the contribu-
tion of microcracking would be different for bending creep, and this is how
the portion of drying creep due to microcracking has been experimentally
identified [201].

b. The other is a true nanoscale mechanism, which resides in the nanostructure
and is explained by the hypothesis that the rate of shear (slip) due to break-
ages and restorations of bonds in the calcium silicate hydrates is reduced
(or amplified) by a decrease (or increase) in the magnitude of micropre-
stress that is acting across the slip planes and is controlled by changes in the
chemical potential (i.e., the Gibbs free energy per mole) of pore water due
to drying [78, 80].

3. The transitional thermal creep, which represents a transient increase of creep
after a temperature change, either heating or cooling. For similar reasons as the
drying creep effect, this effect also has two mechanisms:

a. An apparent macroscopic mechanism, due to thermally induced micro-
cracking that is analogous to drying creep; and

b. a“true” nanoscale mechanism, due to a change in the level ofmicroprestress
caused by a thermally induced change of chemical potential of nanopore
water.

While the apparent mechanisms 2a and 3a operate on the macroscopic scale of the
whole specimen or structure (on the scale of centimeters and meters), mechanism
1a operates on the scale of capillary pores (which is the micrometer scale), and
mechanisms 1b, 2b, and 3b operate on the scale of nanopores in calcium silicate
hydrates (which is the nanometer scale).

The solidification theory [179, 180], presented in the preceding chapter, showed
that the chemical aging (mechanism 1a) can be separated from the viscoelastic con-
stitutive model if that model is formulated not for concrete as a whole but specifically
for its solidifying constituent—the hardened cement gel, and if the chemical aging
is interpreted as a growth of the volume fraction of the solidifying constituent.
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Mechanisms 1b and 2b were initially modeled separately [179]. In a later study
[131, 132], both 1b and 2b were explained by one unified physical theory resting on
the idea of relaxation of microprestress—a stress that is created in the solid nanos-
tructure of cement gel either by microscopic chemical volume changes of various
chemical species during hydration or by an imbalance of chemical potentials among
the four phases of pore water (vapor, capillary, adsorbed, and hindered adsorbed).
The microprestress theory can also cover mechanism 3b. The fact that phenomena
as diverse as the long-term aging, drying creep and transitional thermal creep can all
be explained by one theory lends credence to its validity.

As another possible explanation of the drying creep effect and the transitional
thermal creep, it was speculated that the local microdiffusion flux of water mole-
cules between the nanoscale hindered adsorbed layers and the adjacent micrometer-
scale capillary pores in the hardened cement paste might accelerate the process of
breakage of atomic bonds in the C-S-H, which is the cause of creep [71, 78, 164].
Ongoing molecular dynamics simulations at Northwestern revealed that a movement
of water molecules along hindered adsorbed layersmust indeed accelerate the sliding
of opposite walls of planar nanopores [779]. For more detail, see Sect. 12.4.

10.2 Relevant Aspects of Pore Structure and Water
Adsorption in Hardened Cement Gel∗

For the subsequent analysis, it is helpful to review first some relevant characteristics
of the pore structure and porewater. The hardened Portland cement paste is a strongly
hydrophilic porous material whose pores have an enormous internal surface (about
500m2 per cm3). This implies that pores of width 0.3 to 1nm must occupy a major
portionof pore volume [109], and causes the surface adsorption forces to dominate the
stress levels in the microstructure, far exceeding any stresses that can be produced
by applied loads, as suggested already by Powers and Brownyard [705, 706] and
Powers [704]. The paste consists of unhydrated cement grains, hydration products
in the form of hardened cement gel (or xerogel, [874]) and capillary pores. The
capillary pores are defined here as the pores wider than 0.1μm, which are those
having a well-defined capillary meniscus (obeying the Laplace equation) and contain
liquid water unaffected by surface forces of the solid. The pores in the cement gel are
subcapillary and range from 0.26nm (the effective diameter of one water molecule)
to about 100nm.

The capillary water (region 5 in Fig. 10.1a) is in tension, i.e., under negative
pressure pl , proportional to the total curvature of capillary menisci. The magnitude
of pl is very large—when the relative humidity of water vapor in the capillary pore
is h = 50% at 20 ◦C, thermodynamic calculations based on the Kelvin equation
(8.25) show that pl = −93.5MPa, which is not much less than the tensile strength
of liquid water. The layers of adsorbed water (region 6) on the pore walls exposed
to water vapor (region 4) are subjected to spreading pressure (e.g., Bažant [78]),
which reduces the surface tension of the solid, γa , as a function of the mass of water

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. 10.1 (a) Idealized microstructure of hardened cement paste: 1–anhydrous cement, 2–inner
hydration products (interface transition zone), 3–outer hydration products, 4–air with water vapor,
5–capillarywater (note that the contact angle of capillarymeniscus is virtually zero), 6–free adsorbed
water, 7–hindered adsorption (dots = water molecules), (b) nanopore in cement gel, disjoining
pressure pd , microprestress S, and applied macroscopic stress σ ; reproduced from [131] with
permission from ASCE

molecules adsorbed per unit area of the surface. The effective thickness δa of the
adsorption layers (as well as the radius of the capillary menisci) is also a function
of h. A monomolecular adsorption layer of thickness δa = 0.263nm becomes full at
about h = 12% [702]. From about 40% relative humidity to saturation (100% relative
humidity), δa has themaximum thickness,which is fivewatermolecules (or 1.32nm).
For h < 80%, the majority of pore water is adsorbed water, free and hindered.

Most pores are less than ten water molecules in width. In such small nanopores2

(or gel pores), the full thickness of the adsorption layers cannot develop, i.e., the
adsorption is hindered. Consequently, a transverse compressive stress pd , called the
disjoining pressure,3 must be exerted by the hindered adsorbed layers on the nanopore
walls [71, 78, 164, 347–349, 704, 874–876], as schematically shown in Fig. 10.1b.
Calculations of adsorption thermodynamics [78] show the disjoining pressures to
be enormous; in a pore two water molecules wide, pd = 174MPa at saturation (h =
100%) and temperature 25 ◦C. There are other phenomena, such as the crystal growth
pressure, which act similarly.

The solid microstructure of C-S-H also contains water, called the interlayer
hydrate water, which is to some extent mobile and can evaporate in a zero-humidity
environment [383]. Doubtless thiswater acts similarly to the hindered adsorbedwater
and has not been from it mathematically distinguished. Therefore, when speaking
of the hindered adsorbed water and its disjoining pressure, we also have in mind the
interlayer hydrate water and its analogous pressure.

The disjoining pressure (as well as the crystal growth pressure) must be balanced
by tensile forces. These forces are carried partly by the solid framework around the
nanopore, and partly by bridges or bonds between the opposite walls of the same
nanopore (note that, unlike the schematic picture in Fig. 10.1b, thewalls are doubtless
very rough and have islands of contact bridging the opposite walls). The opposite
walls are also bridged by adjacent C-S-H sheets that are approximately normal to

2Originally, the gel pores were called “micropores”, but since their characteristic size is much below
a micron, often just a few nanometers, it seems that “nanopore” is a more appropriate expression.
3The disjoining pressure is a concept due to Deryagin [349]; see also Schmidt-Döhl and Rostásy
[760].
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thesewalls. As a reaction to the disjoining pressure (or crystal growth pressure), these
bridges (or bonds) must transmit very large tensions, which produce on the nanoscale
a self-equilibrated stress field. In other words, the solid part of microstructure of the
hardened cement gel is permanently in a pretensioned state (which partly explains
why the tensile strength is low but improves after drying if cracking is avoided).
The buildup of tensile microprestress in the bridges or bonds is also caused by local
volume expansions near the nanopore, which are induced by the chemical processes
of hydration.

Because the distances of migration of water molecules diffusing between the
nanopores and the adjacent capillary pore are very short, the hindered adsorbed
water doubtless establishes thermodynamic equilibrium (i.e., the equality of chemical
potentials) with the capillary water very fast, probably within seconds [117]. Thus,
all the phases of pore water may be assumed to always be locally in thermodynamic
equilibrium, and the disjoining pressure to respond almost instantly to the changes
in surface tension and in the pressure pl in capillary water. According to equation
44 in Bažant [78], the surface tension at the interface between the solid particle and
free adsorbed water layers is given by an equation of the form

γa = −Cγ RT

Mw
ln h + γa1 (10.1)

where R is the universal gas constant, Mw is themolarmass ofwater, T is the absolute
temperature, h is the pore relative humidity, and Cγ and γa1 are constants. Hence, at
constant temperature,

γ̇a = −Cγ RT

Mw

ḣ

h
(10.2)

Comparison with the Kelvin equation (8.25) or (8.34) reveals that the changes in the
liquid pressure, capillary pressure, and surface tension are virtually proportional. So
are the changes in disjoining pressure, as noted from Eq. (8.62).

10.3 The Concept of Microprestress and Its Relaxation

The challenge is to find a mechanism of aging that does not require volume growth
of the solidified constituent having fixed properties in time. The only possible mech-
anism is an increase of the resistance to slip, i.e., slip viscosity, and that in turn can
be attributed to a relaxation of a transverse normal tensile stress in the solid phase
(called microprestress, although it is a nanoscale feature). This key idea, advanced
in Bažant [95], can at the same time explain the Pickett effect and the transitional
thermal creep.

Why do we have in mind only the slip and not a crack-like separation of the
opposite surfaces of nanopores, which was the main feature of the intuitive cement
gel model advanced by Feldman and Sereda [383]? The slips breaking the bond at
one atomic sitemust terminatewith bond reformation at the next site and thus, similar
to dislocations in crystals, do not change material stiffness and do not cause major

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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volume expansion. In contrast to that, separations between the opposite surfaces of
nanopores or interlayers in C-S-H would not lead to bond reformations, and since
there are very many parallel nanopores and interlayers, simple calculations show
that such separations would have to cause a major volume expansion and stiffness
loss, which is not seen in experiments. So the hypothesis of a crack-like separation
mechanism is not viable.

But can slips explain volumetric creep, which does occur in concrete? They can.
Due to high porosity, a volume change can be produced by slipping only. Because
of high porosity and microstructure heterogeneity, a hydrostatic macroscopic stress
causes in the microstructure not only normal stresses but also shear stresses. Slipping
in the microstructure can lead to changes of the pore volume and thus to macroscopic
volumetric strain.

The idea of slip viscosity dependent on transverse microprestress cannot be
described by classical rheological models such as the Kelvin chain because they
are uniaxial. A multiaxial model is required. The bond breakages leading to shear
slips driven by shear stress are obviously influenced by normal stresses across the slip
direction. Therefore, the rheological model shown in Fig. 10.2 reflects interactions
between forces and deformations of two directions: axial and transverse.

Fig. 10.2 Rheologic scheme of complete microprestress-solidification theory: serial coupling of
an elastic spring, solidifying Kelvin chain, flow element affected by microprestress relaxation, and
units corresponding to free shrinkage and thermal expansion

The microstructure of hardened cement gel contains dispersed, highly localized
sites at which the atomic bonds are under a high tensile stress. Many of such highly
stressed bonds may represent bridges across the nanopores containing the hindered
adsorbed water, and the layers of hindered adsorbed water are the slip planes giving
rise to creep. The creep is the macroscopic result of numerous interatomic bond
breaks happening at different times at different overstressed sites (creep sites) in
the hindered adsorbed layers. The bond breaks happen with a certain frequency
determined by the kinetic energy of random thermal vibrations of atoms and by the
magnitude of the activation energy barrier. Because the tensile stress reduces the
activation energy barrier for bond rupture, this frequency of breaks increases as the
tensile stress across the slip plane increases, as one could easily show by calculations
according to the rate process theory. A temperature rise, which increases the kinetic
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energy of the atomic vibrations, must obviously also increase the frequency of bond
breakage, and this can explain the transitional thermal creep.

So themicroprestress theorypostulates that the source of creep (in the linear range)
is the shear slip at localized overstressed creep sites, represented by bridges across
the nanopores. The shear slip is the result of a dislocation-like series of breakages and
restorations of interatomic bonds (Fig. 10.1b). Each bond breakage and restoration
at one creep site relaxes the shear stress at that site. As the stress gets redistributed,
another creep site may become overstressed, causing again a bond to break, etc. A
progressive relaxation of the shear stress at the creep sites and gradual exhaustion of
the available overstressed creep sites cause the creep rate under a constant applied
macrostress to decline with time.

Bond breakages without restoration are of course possible, too. They cause tensile
microcracks to nucleate and grow. Because the crack growth is time-dependent, and
because the time dependence of crack growth has been shown to be significant even
for rather slow rates of growth [128, 140], the result is also creep. However, because
microcracks cause a decrease of stiffness on the macroscale, the result can only be
a nonlinear creep, which occurs beyond the service stress range of concrete. So the
source of the nonlinear part of creep of concrete, which occurs on approach to the
strength limit, is the time dependence of microcrack growth [95]. This phenomenon
is beyond the scope of the present treatise.

In view of the roughness of the pore surfaces in hydrated cement, the notion
that new bonds can form in a hardened cement gel may at first seem questionable.
However, the hardened cement gel with pore water is a metastable material whose
surfaces are strongly hydrophilic and readily adapt their shape. That new bonds form
quite easily is for example revealed by the classical experiment of Powers [704],
in which cement and water were placed in a rotating vessel with steel balls. This
produced a completely hydrated cement which was still a fine powder. The powder
was then stored in a container under a pressure of only about 0.01MPa. In a few
days, the powder solidified into a body whose strength was about the same as that of
a normally cured cement paste. So, the hydrated cement particles, when brought to
contact, stick together after a while, and nanocracks heal.

In another experiment revealing the capability to restore bonds [144, 259], con-
crete specimens confined under enormous pressure (many times the uniaxial com-
pression strength) were subjected to shear deformation in which the shear angle
reached 70 ◦. The uniaxial compressive strength of the cores drilled from such an
enormously deformed concrete was not zero but 25 to 30% of the strength of the
cores drilled from virgin identically cured specimens.

Themicroprestress, S, characterizing themagnitudeof the locally self-equilibrated
tensile stresses acting at the creep sites, i.e., across the bridges between the oppo-
site nanopore walls, is virtually independent of the applied macroscopic stress, σ

(Figs. 10.1b and 10.2). The microprestress is generated as a reaction to the disjoin-
ing pressure in the nanopore or to the high local shrinkage of small volumes in the
material. An increase of microprestress may also be caused by the crystal growth
pressures in the nanopore (e.g., in the bridges in Fig. 10.1b) which are induced by the
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growth of crystalline hydration products precipitated from aqueous solution. Large
crystal growth pressureswere documented, e.g., by Schmidt-Döhl andRostásy [760].

The fact that the applied macroscopic stress σ must have a virtually negligible
effect on the microprestress (and on the disjoining pressure) is corroborated by the
previous inference that the disjoining pressuremust respond to the changes in the cap-
illary tension and surface tension almost instantaneously [117] and proportionally;
these tensions are, in turn, functions of the relative humidity h in the capillary pores,
which has been shown to be independent of the applied macroscopic stress (the other
possible contributions to the microprestress, such as the high local volume changes
and crystal growth pressure during hydration, are independent, too). This fact was,
for example, confirmed by the experiments of Hansen [450, 451], which defeated
the consolidation theory of concrete creep. They showed that identical loaded and
load-free specimens dry equally fast. The solid framework of concrete and the hard-
ened cement paste is so stiff that the applied load cannot change the pore space, and
thus the relative humidity in the pore, by more than a fraction of a percent.

In the aforementioned study of Feldman and Sereda [383], it was surmised that
the applied compressive macrostress causes the walls of the nanopores to come into
contact and stick by establishing new bonds. However, a quantitative analysis shows
this to be impossible, for two reasons:

1. Because the nanopores with hindered adsorbedwater and the interlayer spaces are
not sparsely distributed but occupy a large fraction of any cross section through
the cement gel, the relative change of thickness of the nanopores and interlayer
spaces that can be produced by the applied macrostress is of the same order of
magnitude as the macroscopic strains, i.e., of the order of 0.1%; but this value is
too small for establishing new bonds.

2. Squeezing the opposite walls of nanopores together would cause much of the
interlayer and hindered adsorbed water to be expelled from compressed concrete
specimens, but this is contradicted by the experiments of Hansen [450, 451].

Since the concrete creeps, it is natural to expect the tensile microprestress S at
the creep sites (the bridges across the nanopores) to relax with time. The relaxation
reduces the rate of slip at the creep sites and also makes some of the creep sites
inactive. Such phenomena reduce the macroscopic creep rate and are manifested as
aging. This is the main idea that explains the long term aging. Obviously, the aging
due to microprestress relaxation is not associated with the volume growth of the
hydration products.

10.4 Generation and Relaxation of Microprestress

Themacroscopic creepdue to shear slip at the creep sitesmaybemodeledby aviscous
flow element serially coupled to the solidifying Kelvin chain, as shown in Fig. 10.2.
The bonds across the slip plane in the flow element, representing a nanopore filled
by hindered adsorbed water, are subjected to two stresses: the macroscopic applied
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stress σ causing shear slip, which acts in the figure horizontally, and the tensile
microprestress S, which acts in the figure vertically. The rate of strain in the flow
element is

ε̇ f = σ

η(S)
(10.3)

where the effective viscosity η is a decreasing function of S.
The relaxation of the microprestress S, acting in Fig. 10.2 vertically, is imagined

to be the result of another similar series coupling of a flow element and a spring
of stiffness CS , as shown in Fig. 10.2. Because the material is essentially isotropic,
and because the phenomena that generate the microprestress have no preferred ori-
entation, the value of S, which is actually the macroscopic characteristic of the
average microprestress at all creep sites, must be the same for all directions (the
only anisotropic phenomenon is the macroscopic stress and strain tensors, but they
can have no significant effect on the disjoining pressure, as already pointed out).
Therefore, the slip plane of the flow element governing the relaxation must also be
subjected to normal stress S (horizontal in Fig. 10.2), and so the viscosity must also
be η(S). Hence, the equation governing the relaxation of the microprestress may be
written as

Ṡ

CS
+ S

η(S)
= ṡ

CS
(10.4)

Here ṡ denotes the rate of the instantaneous microprestress induced by changes of
capillary tension, surface tension, and crystal growth pressure [131, 132].

To complete the model, we need to set up a suitable expression for η(S). Because
we do not know of any characteristic value of S separating ranges of qualitatively
different behavior, the function η(S) should be self-similar with respect to changes
of the scale by which S is measured. As explained in Sect. 9.4, the only function
satisfying this condition is a power function. So we set

1

η(S)
= cpS p−1 (10.5)

where c and p are positive constants, and p > 1becauseη(S) is a decreasing function.
The disjoining pressure and the microprestress S first develop during the initial

hardening of concrete. Initially, the cement hydration is rapid, microprestress builds
up mainly as a result of crystal growth pressures and very large localized shrinkage
at locations close to the nanopores. Later, after the volume changes due to hydration
have almost ceased, the microprestress changes are caused mainly by changes in the
disjoining pressure, which respond almost instantly to the changes in the capillary
tension and surface tension, and are governed by an equation of the same form
as (10.1).

Therefore, in analogy to (10.2), we may assume that the rate of additionally
generated microprestress is given by

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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ṡ = −c1
ḣ

h
(10.6)

where c1 is a constant. Note that (10.2), and thus also (10.6), holds at constant tem-
perature. A generalization to variable temperature will be developed in Sect. 10.6.1.
Equations (10.4)–(10.6) lead to the nonlinear differential equation

Ṡ + c0S p = −c1
ḣ

h
(10.7)

governing the microprestress relaxation. For simplicity, we have denoted CScp as
c0. Note that the microprestress S is independent of the applied macroscopic stress
σ and strain ε. The microprestress relaxation law (10.7) combined with relation
(10.5) replaces the explicit age dependence of viscosity. The long-term aging of flow
viscosity is simply a consequence of relaxation of the microprestress.

In the limiting case of no drying nor wetting (ḣ = 0, sealed specimens, basic
creep), we have

Ṡ = −c0S p (10.8)

Another argument for this equation is offered in Bažant et al. [132], page 1192.
Equation (10.7) (or Eq. (10.8) as its special case) is a first-order differential equa-

tion governing the evolution of microprestress S. To make the solution unique, a
suitable initial condition needs to be postulated.4 It can be deduced from the require-
ment that, in the absence of drying, the evolution of viscosity evaluated from the
microprestress theory according to (10.5) should be the same as in model B3, i.e.,
should be given by

η(t) = t

q4
(10.9)

where q4 is the parameter of model B3 that controls long-term creep. According to
(10.5), the corresponding microprestress evolution is described by

S(t) =
(

q4

cpt

)1/(p−1)

(10.10)

As long as there is no drying, microprestress can be computed directly from (10.10).
The value

S0 =
(

q4

cpt0

)1/(p−1)

(10.11)

4Strictly speaking, the initial condition for microprestress should be imposed at some fixed time,
independent of the times at which drying starts or the load is applied, because the evolution of
microprestress is considered as a phenomenon independent of the applied stress. Theoretically, the
microprestress starts from a zero value at the set of concrete, then builds up to some maximum, and
afterward relaxes. The very early stage of microprestress evolution is hard to describe accurately.
Fortunately, for creep calculations we need to know the value of microprestress only from the time
of load application.



466 10 Microprestress-Solidification Theory …

determined from (10.10) at time t0 (onset of drying) can be used in the initial condition
for microprestress,

S(t0) = S0 (10.12)

supplementing differential equation (10.7).
However, we need to make sure that the “assumed” microprestress evolution

(10.10) is consistent with differential equation (10.8), which is the special form of
(10.7) in the case of no drying. Evaluating the derivative

Ṡ(t) = − 1

p − 1

(
q4

cp

)1/(p−1)

t−p/(p−1) (10.13)

and substituting it along with (10.10) into (10.8), it can be easily shown that the
governing differential equation is satisfied at all times t if and only if

pc

(p − 1)c0
= q4 (10.14)

This is a constraint that links parameters p, c, and c0 of the microprestress theory to
parameter q4 of the B3 model. Since there exists an empirical formula for estimating
q4 from the composition, it is reasonable to consider q4 as one of the primary model
parameters for the microprestress theory as well, and take for instance parameter c
as a dependent one, given by

c = p − 1

p
c0q4 (10.15)

In this way, the microprestress theory reuses parameter q4 and introduces additional
parameters p and c0 (and also c1, which appears in the full form of equation (10.7)).
Using (10.15), parameter c can be eliminated, and Eqs. (10.5) and (10.10) can be
rewritten as

1

η(S)
= (p − 1)c0q4S p−1 (10.16)

S(t) =
[

1

(p − 1)c0t

]1/(p−1)

(10.17)

Recall that the explicit formula (10.17) for microprestress evolution applies only to
the case of no drying. Note that the evolution of viscosity calculated from (10.16)
and (10.17) is given by η(t) = t/q4 and is independent of parameters p and c0 (and
also of c1, which is obvious). This indicates that parameters p, c0, and c1 have no
effect on basic creep; they control the additional compliance due to drying creep.

Fitting of some test data showed that the value p = 2 works best [123, 132]. For
this special choice, Eqs. (10.16) and (10.17) simplify to
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1

η(S)
= c0q4S (10.18)

S(t) = 1

c0t
(10.19)

It is alsoworth noting that if the pore pressure changes very fast (ḣ → ∞), the term
c0S p in (10.7) is negligible compared to the rate terms and the equation reduces to

Ṡ = −c1
ḣ

h
(10.20)

This integrates to S = −c1 ln h + const., which is (and ought to be) of the same form
as the change of chemical potential and surface tension based on thermodynamics
(Kelvin and Laplace equations and ideal gas approximation for water vapor).

10.5 Unification of Microprestress and Solidification
Models

Aside from the long-term aging due to relaxation of microprestress, there is, of
course, the aging due to volume growth of hydration products, which dominates at
early ages. From extensive studies of test data [104, 180] and theoretical analysis
[295], it appears that this type of aging can be described by a solidifying Kelvin chain
(Fig. 10.2), in which the relaxation times are constant and all the spring moduli and
dashpot viscosities grow in proportion to the volume growth function v(t). Such
variation ensues from the volume growth of cement gel, which itself is characterized
by a Kelvin chain model with age-independent properties; see Chap.9.

In general, the microprestress might affect not only the viscosity of the flow term
but also the viscosities of the dashpots in the Kelvin units of the solidifying chain
(Fig. 10.2) and, vice versa, the volume growth might affect the viscosity of the flow
term and thus complicate the mathematical formulation. Fortunately, analysis of the
available test data shows that such a possibility need not be implemented in the
model. In other words, the effects of microprestress and of volume growth can be
assumed to be separated, acting on different parts of the chain model.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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Thecompliance functionof concrete according to themicroprestress-solidification
theory has the same general form

J (t, t ′) = q1H(t − t ′) + Jv(t, t ′) + Jf(t, t ′) (10.21)

as in the solidification theory, and uses the same expressions for the first two terms,
which characterize the asymptotic elastic compliance and the viscoelastic compli-
ance affected by the volume growth of hydration products. The last term, Jf(t, t ′),
representing the contribution of long-term viscous flow, is, instead of the explicit
logarithmic formula (9.15), given by

Jf(t, t ′) =
∫ t

t ′

dr

η(S(r))
= (p − 1)c0q4

∫ t

t ′
S p−1(r) dr (10.22)

which follows from (10.3) and (10.16). The microprestress S is dependent on the
evolution of relative pore humidity and must be solved from the differential equation
(10.7).

As mentioned before, in the solidification theory it is more convenient to write
the detailed expression for the compliance in terms of its rate [104, 179],

J̇ (t, t ′) = n(q2λ
m
0 t−m + q3)

(t − t ′) + λn
0(t − t ′)1−n

+ (p − 1)c0q4S p−1(t) (10.23)

in which q2, q3, m, n, and λ0 are empirical constants. According to extensive data
fitting, one can always take λ0 = 1 day, m = 0.5, and n = 0.1. On the other hand,
parameters q2, q3, and q4 depend on the type of concrete. They can be predicted on
the basis of compression strength of concrete and the composition of concrete mix
using the formulae of the B3 or B4 models given in Appendices C and D, although
it is preferable to determine at least q2 on the basis of short-time creep tests of the
given concrete using the updating procedure specified in Sect. 3.8.1; see also Bažant
and Baweja [104].

10.6 Temperature and Humidity Effects

10.6.1 Effects on Creep

The effect of temperature on concrete creep is twofold, generated by two different
mechanisms:

1. A temperature increase accelerates the bond breakages and restorations causing
creep, and thus increases the creep rate.

2. The higher the temperature, the faster is the chemical process of cement hydration
and thus the aging of concrete, which reduces the creep rate.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Usually, the former effect prevails, and then the overall effect of temperature rise
is an increase of creep. Nevertheless, for very young concretes in which hydration
progresses at elevated temperatures rapidly, heating can have the opposite effect.

At lower pore humidity, both the hydration and creep processes are slowed down,
but this is often overpowered by transient creep acceleration due to the rate of change
of humidity (or temperature). The decrease of creep of hardened cement pastes with
decreasing moisture content was reported by Cilosani [316] and Ruetz [741, 742]
and clearly demonstrated by the tests of Wittmann [870], Fig. 10.3. Cylinders of
diameter 18mm and height 60mm were cured for 28 days at room temperature in
sealed conditions and then oven-dried for 2 days at 105 ◦C. Afterward, they were
partially resaturated for at least 3 months (until equilibrium was reached) at various
constant humidities, ranging from 0 to 98%. The same environmental humidity was
then preserved during the entire creep test. Since the strainmeasurements during early
stages of loading exhibited scatter and were considered as unreliable, the reported
values correspond to strain increments with respect to the state at 1h after loading.
Therefore, the compliance values plotted in Fig. 10.3 are actually the increments
ΔJ (t, t ′) = J (t, t ′) − J (t ′ + Δt, t ′) with Δt = 1 h.

Fig. 10.3 Wittmann’s data [870] on creep of hardened cement paste at various constant water
contents (compliance at 1 h creep duration is subtracted from all values shown)

The effects of temperature and humidity on processes in the microstructure can
be described by introducing three transformed time variables:

• the equivalent age te (equivalent hydration period, or “maturity”), which indirectly
characterizes the degree of hydration,

• the reduced time tr , characterizing the changes in the rate of bond breakages and
restorations on the microstructural level, and

• the reduced microprestress time ts .

Under standard conditions, i.e., at room temperature (T0 = 293K) and for sealed
specimens (h ≈ 0.98), all these times are by definition equal to the actual age of
concrete t . Under higher temperatures, all processes are accelerated, which is taken
into account by the acceleration of the transformed times with respect to the physical
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time. Under lower humidity, all processes are slowed down. Under general tempera-
ture and humidity histories, equations describing the evolution of the microstructure
are written in terms of the transformed times.

The hydration process under standard conditions is characterized by a function
v(t) that specifies the relative volume of hydration products at age t . Under general
conditions, t is replaced by the equivalent age te, and the first part of Eq. (9.4) is
rewritten as

ε̇v(t) = ė(t)

v [te(t)]
(10.24)

In the integral formula (9.3) describing creep of the solidifying constituent, the load
duration is expressed in terms of the reduced time tr instead of the physical time t ,
and the formula is written as

e(t) =
∫ t

0
Φ

[
tr (t) − tr (t

′)
]
dσ(t ′) (10.25)

In a similar spirit, Eqs. (10.3) and (10.4) are generalized to

dεf
dtr

= σ

η(S)
(10.26)

1

CS

dS

dts
+ S

η (S)
= 1

CS

ds

dts
(10.27)

The rates at which the transformed times evolve are defined as products of two
functions, which respectively characterize the effects of temperature and of humidity
[86, 96]. Therefore, we write

dte
dt

= βeT (T ) βeh(h) (10.28)

dtr
dt

= βrT (T ) βrh(h) (10.29)

dts
dt

= βsT (T ) βsh(h) (10.30)

Functions describing the influence of temperature have the form motivated by the
rate process theory,

βeT (T ) = exp

[
Qe

R

(
1

T0
− 1

T

)]
(10.31)

βrT (T ) = exp

[
Qr

R

(
1

T0
− 1

T

)]
(10.32)

βsT (T ) = exp

[
Qs

R

(
1

T0
− 1

T

)]
(10.33)

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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where T is the absolute temperature, R is the universal gas constant,5 and Qe, Qr , and
Qs are activation energies for the hydration, viscous processes, and microprestress
relaxation, respectively. In previous works, based on the B3 model described in
Bažant [96], the ratios of activation energies to the universal gas constant varied in
the range from 2700 to 5000K. Model B4 uses 4000K for all these ratios.

Functions describing the influence of humidity have been postulated in the form

βeh(h) = 1

1 + [αe(1 − h)]4
(10.34)

βrh(h) = αr + (1 − αr ) h2 (10.35)

βsh(h) = αs + (1 − αs) h2 (10.36)

Analysis of experimental test data shows that the value of parameter αe is in the order
of 10, while αr and αs are in the order of 0.1 [96]. The graphs of functions βeh and
βrh (or βsh) for typical parameter values are plotted in Fig. 10.4. Note that, at room
temperature and 100% humidity, all factors β in (10.31)–(10.36) have unit values.

Fig. 10.4 Dependence of factors (a) βeh , (b) βrh or βsh on relative pore humidity

For a given history of temperature and relative pore humidity, we can introduce
functions

ψe(t) = βeT (T (t)) βeh(h(t)) (10.37)

ψr (t) = βrT (T (t)) βrh(h(t)) (10.38)

ψs(t) = βsT (T (t)) βsh(h(t)) (10.39)

and rewrite (10.28)–(10.30) as dte = ψe(t)dt , dtr = ψr (t)dt , and dts = ψs(t)dt .
Equations (10.26) and (10.27) then become

5In some papers, the Boltzmann constant kB is used instead of the universal gas constant R. Both
approaches are equivalent, and they differ only by the meaning of activation energy Q, which is
taken per mole if R is used, or per elementary entity (atom or molecule) if kB is used.
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ε̇f = ψrσ

η(S)
(10.40)

Ṡ

CS
+ ψs S

η(S)
= ṡ

CS
(10.41)

Substituting (10.5) into (10.41) and recalling that CScp has been denoted as c0, we
obtain

Ṡ + ψsc0 S p = ṡ (10.42)

which is the generalized version of (10.7).
In Eq. (10.42), the right-hand side term ṡ depends on capillary tension, surface

tension, crystal growth pressure, and disjoining pressure, all of which are sensitive
to temperature and humidity changes. As already explained, all the phases of water
can be assumed to be in local thermodynamic equilibrium. Under this assumption, it
follows from Kelvin’s equation (8.25), Eq. (8.62) for disjoining pressure and similar
equations that can be derived from the equality of chemical potentials at thermody-
namic equilibrium (as summarized in [78] and [80]) that the dependence of all the
aforementioned quantities on T and h has the general form (10.1). In Sect. 10.4, we
considered constant temperature and deduced from the rate equation (10.2) that the
rate of generated microprestress should be proportional to ḣ/h; see (10.6). Under
variable temperature, the rate form of (10.1) is

γ̇a = −Cγ R

Mw

d

dt
(T ln h) (10.43)

Therefore, we set

ṡ = −k1

(
Ṫ ln h + T

ḣ

h

)
(10.44)

where k1 is amodel parameter that corresponds to c1 in Eq. (10.6) divided by the room
temperature T0. Upon substitution of (10.44) into (10.42), the governing equation of
the microprestress at simultaneous humidity and temperature variation becomes

Ṡ + ψsc0 S p = −k1

(
Ṫ ln h + T

ḣ

h

)
(10.45)

Equation (10.45) gives results that depend on the sign of Ṫ and ḣ. In particu-
lar, negative increments of h (drying) and positive increments of T (heating) lead
to an increase of the microprestress (i.e., of the magnitude of stress peaks in the
microstructure), and thus to an increase of the slip rate and the rate of creep flow,
counteracting (and usually overpowering) the effect of βrh .

When drying switches to wetting, or heating to cooling, i.e., ḣ or Ṫ changes
its sign, the right-hand side of (10.45) becomes negative and the microprestress
relaxation is accelerated, which must reduce the creep rate at least temporarily. After

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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a while, this switchmust deactivate the current creep sites, i.e., the sites of the highest
microprestress at which shear slip must take place. However, new creep sites will
form at other locations in the microstructure which were previously unstressed. At
the new sites, creep will again be promoted by the change in ḣ or Ṫ . To model such
effects of the reversal of ḣ or Ṫ in a simplified manner, Cusatis [331] and Bažant
et.al. [123] suggested introducing the absolute value sign into (10.45), making the
right-hand side always nonnegative:

Ṡ + ψsc0 S p = k1

∣∣∣∣Ṫ ln h + T
ḣ

h

∣∣∣∣ (10.46)

Although this simple formulation does not capture the expected temporary decrease
of creep rate right after a change of sign of ḣ or Ṫ , it does reflect in the simplestmanner
the overall increase of creep rate likely to occur with some delay. Experimental data
[403, 690] indeed indicate an increase of the creep rate for both drying and wetting.
As for heating and cooling, the evidence is ambiguous; some data [378, 848] suggest
creep rate increase under cooling but others [452, 504] suggest the opposite, and so no
experimental validation is possible. However, the similarity of cooling with wetting
suggests that cooling should also enhance creep.

10.6.2 Hygrometric and Thermal Strains

Changes of the disjoining pressure, capillary tension, and surface tension must also
cause elastic deformation of the solid skeleton of cement gel, which represents the
free shrinkage, i.e., the shrinkage that occurs in infinitesimal elements of a continuum
at no macroscopic stress. By fitting of many experimental data, it transpires that the
rate of free shrinkage strain is approximately proportional to the rate of humidity,
i.e.,

ε̇sh = k∗
shḣ (10.47)

where k∗
sh is an empirical shrinkage ratio, which can be taken approximately as

constant (see also Sect. 8.6)).
The additional terms due to the so-called stress-induced shrinkage, which were

introduced by Bažant and Chern [117, 120] and are described in Sect. 13.3.3.2, do
not belong into the present expression for the shrinkage. They are now taken care of
by the dependence of viscosity on the history of humidity. So it transpires that the
microprestress theory does not represent a negation but a refinement of the previous
formulations [117, 120, 201]. Likewise, the present theory may be regarded as an
extension of the theory for the effect of hindered adsorption and disjoining pressure
on drying creep [78, 80, 164].

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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Temperature changes cause the thermal strain εT , proportional to the change of
temperature:

ε̇T = αT Ṫ (10.48)

In reality, the coefficient of thermal expansion αT depends on T , but only weakly
and, as an approximation, for moderate temperatures can be assumed to be constant.
Coefficient αT of concrete can be estimated from the coefficients of thermal expan-
sion of the constituents, cement paste and aggregate, and from their volume fractions
and elastic properties. The coefficient of thermal expansion of cement paste depends
onmany factors. Although there is no significant difference between αT for saturated
cement paste and αT for dry cement paste, measurements show αT to have higher
values for partial saturation. The hydration process tends to diminish αT . Typical val-
ues of αT for hardened cement paste are between 11 and 22 × 10−6/◦C [142, 628,
653]. However, since the cement paste occupies a much smaller relative volume than
the aggregates, the coefficient of thermal expansion of concrete is governed chiefly
by the aggregates, for which αT depends on their chemical composition and varies
from 4 × 10−6/◦C for limestone to almost 12 × 10−6/◦C for quartzite [247]. The
resulting thermal expansion coefficient of concrete is between 6 and 13 × 10−6/◦C,
with αT = 10 × 10−6/◦C as the typical value; see Table 8.4 in Neville [653] for more
details.

10.7 Alternative Computational Approach: Viscosity
Evolution Equation

The concept of microprestress appears to be essential for the theoretical and physical
justification of evolving viscosity and of the general format of governing equations.
On the other hand, themicroprestress cannot be directlymeasured, and a separate cal-
ibration of the microprestress relaxation equation (10.46) and of Eq. (10.16) describ-
ing the dependence of viscosity on microprestress is difficult, if not impossible. It
turns out that the microprestress can be completely eliminated, and the governing
equation can be reformulated in terms of viscosity [523]. Although the elimination
of microprestress severs the model from its physical basis, the resulting model is
still fully equivalent to the original one while its structure is simplified, the fitting of
model parameters becomes more transparent and the number of relevant parameters
gets reduced.

From (10.16), we can express the microprestress in terms of the viscosity as

S = [(p − 1)c0q4η]−1/(p−1) (10.49)

and differentiation with respect to time leads to

Ṡ = −(c0q4)
−1/(p−1)[(p − 1)η]−p/(p−1)η̇ (10.50)



10.7 Alternative Computational Approach: Viscosity Evolution Equation 475

Substituting (10.49) and (10.50) into (10.46), we obtain, after some rearrangements,

η̇ + k1[c0q4(p − 1)p]1/(p−1)

∣∣∣∣Ṫ ln h + T
ḣ

h

∣∣∣∣ ηp/(p−1) = ψs

q4
(10.51)

For the standard value of parameter p = 2, the resulting equation is

η̇ + k1c0q4

∣∣∣∣Ṫ ln h + T
ḣ

h

∣∣∣∣ η2 = ψs

q4
(10.52)

This is a nonlinear first-order differential equation for viscosity. It can be solved
directly, without resorting to the microprestress, which provides some degree of
computational simplification. At constant humidity and temperature, the second term
on the left-hand side vanishes and the equation simplifies to

η̇ = ψs

q4
(10.53)

At variable temperature or humidity, the second termon the right-hand side of (10.52)
slows down the growth of viscosity and, if sufficiently large, can even lead to a
temporary reduction of viscosity.

Reformulation of the governing differential equation in terms of viscosity clar-
ifies the role of individual parameters. Parameter p fully determines the exponent
p/(p − 1) at η in the nonlinear term. Parameters k1 and c0 appear only in the expres-
sion for the multiplicative factor in the nonlinear term, and they can be replaced
by one single parameter. Indeed, the values of k1 and c0 do not need to be known
separately—what matters is only the value of k1c

1/(p−1)
0 . For the standard choice

p = 2, this means that only the product k1c0 matters. However, the evolution of
microprestress changes if k1 and c0 are varied at constant product k1c0, which ren-
ders the physical basis ambiguous. To avoid this ambiguity, future research should
aim to improve the physical basis, which is ultimately rooted in the relaxation of
microprestress.

Since the microprestress is not directly measurable, parameters k1 and c0 cannot
be determined separately. Thus, optimal fitting based on macroscopically measured
variables would require choosing (arbitrarily) either k1 or c0 [472]. To avoid this
choice, k1 and c0 may be replaced by a single parameter which can be uniquely
determined. For instance, one could use k1c

1/(p−1)
0 as the new single parameter. To

avoid units with noninteger exponents (in the general case of p different from 2)
and to obtain a parameter with intuitive meaning, it is suggested to introduce a
parameter μS with the dimension of fluidity (reciprocal value of viscosity) and to
cast Eq. (10.51) in the form

η̇ + 1

μST0

∣∣∣∣Ṫ ln h + T
ḣ

h

∣∣∣∣ (μSη)p/(p−1) = ψs

q4
(10.54)
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where T0 is the room temperature.
A comparison of the second terms in (10.51) and (10.54) reveals that

μS = c0T p−1
0 k p−1

1 q4(p − 1)p (10.55)

This relation provides a link between the original parameters k1 and c0 and the new
parameter μS . Note that, at constant room temperature, k1T0 in (10.44) corresponds
to c1 in (10.6), and so relation (10.55) can be rewritten as

μS = c0cp−1
1 q4(p − 1)p (10.56)

For the standard choice p = 2, Eqs. (10.54)–(10.56) simplify to

η̇ + μS

T0

∣∣∣∣Ṫ ln h + T
ḣ

h

∣∣∣∣ η2 = ψs

q4
(10.57)

μS = c0T0k1q4 = c0c1q4 (10.58)

The initial condition for viscosity could be “derived” from the initial condition for
microprestress combined with relation (10.16). However, recall that initial condition
(10.12) with the initial value S0 given by (10.11) was actually derived from the
assumption that, in the absence of drying and at room temperature, the evolution of
viscosity should be the same as in models B3 and B4, i.e., should be given by (10.9).
Therefore, the initial condition for viscosity can be directly postulated as

η(t0) = t0
q4

(10.59)

Recent comparisons with a few selected data, especially those of Bryant and Vad-
hanavikkit [278], suggested that the microprestress solidification theory might be
giving an excessive delay of drying creep behind shrinkage, reversed size effect on
drying creep [133], and excessive creep under multiple temperature cycles [523].
Ongoing research aims at explaining or reducing these discrepancies by (i) consid-
ering a spectrum of microprestress relaxation times, (ii) separating the shrinkage
data into drying and autogenous, (iii) fitting of shrinkage and drying creep data for
specimens of different sizes, (iv) considering nanoscale volume expansion due to
long-term hydration reaction [125], and (v) considering more test data from the new
worldwide NU database [488].

On-going research, partly inspired by MD simulations, indicates that the theory
can be improved by distinguishing nano- and macro-viscosities and considering the
latter to depend on the microprestress and on the pore humidity rate. This improve-
ment can eliminate the reversed size effect on drying creep, the excessive delay of
drying creep after shrinkage and the excessive creep at temperature cycles.
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10.8 Numerical Implementation

For the sake of step-by-step finite element analysis, an incremental stress–strain
relationneeds to be formulated.Recall that the completemicroprestress-solidification
model can be considered as a serial coupling of an elastic spring, a solidifying Kelvin
chain, a dashpot with viscosity depending on the microprestress, and additional
units representing the strains due to shrinkage and thermal expansion; see Fig. 10.2.
Numerical treatment of a solidifying Kelvin chain coupled in series with an aging
dashpot has already been discussed in Sect. 5.2.6. Certain adjustments are needed
for the present model, because of the following two differences:

1. Viscosity of the aging dashpot (representing long-term viscous flow) is not an
explicit function of age but is governed by the differential evolution equation
(10.54).

2. The effect of temperature and humidity on the rate of various processes in the
microstructure is reflected by three transformed times, which replace the standard
physical time in the governing equations.

10.8.1 Evaluation of Flow Viscosity

In this subsection, the numerical algorithm is formulated on the basis of the viscosity
evolution equation (10.54) with initial condition (10.59), as suggested by Jirásek and
Havlásek [523]. A similar algorithm can be formulated in terms of microprestress
[131]. That approach will be inevitable for the expected refinement of the micropre-
stress concept, in which the viscosity would depend on additional variables.

Suppose that the value of viscosity ηk at time tk is known from the previous time
step or from the initial condition, and we want to obtain an approximation of the
value ηk+1 = ηk + Δηk at time tk+1 = tk + Δtk . If the temperature and humidity are
constant within the current step, the governing equation reduces to (10.53) and the
increment

Δηk = ψs

q4
Δtk (10.60)

can be evaluated exactly. At variable temperature or humidity, the coefficient multi-
plying ηp/(p−1) in the second term of (10.54) can be, within one time step, approxi-
mated by a constant. Since T0 andμS are constants, only the time derivative of T ln h
(i.e., the expression in the absolute value) needs to be approximated. Replacing time
derivatives by finite differences and approximating η by the average of ηk and ηk+1,
we rewrite (10.54) as

Δηk

Δtk
+ |Δ(T ln h)k |

T0Δtk
μ
1/(p−1)
S (ηk + 0.5Δηk)

p/(p−1) = ψs

q4
(10.61)

Here, Δ(T ln h)k denotes the increment of the product T ln h over the time step
number k, which could be written more explicitly as

http://dx.doi.org/10.1007/978-94-024-1138-6_5
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Δ(T ln h)k = Tk+1 ln hk+1 − Tk ln hk (10.62)

The evolution of temperature and pore humidity is evaluated separately (from the
corresponding equations for heat and moisture transport) and is affected neither by
microprestress, nor by viscosity. Therefore, Tk+1 and hk+1 can be considered as
known quantities. The only unknown in (10.61) is thus the increment of viscosity,
Δηk . The equation is nonlinear, because of the exponent p/(p − 1) in the second
term. The solution can be computed iteratively, e.g., by the Newton method.

Interestingly, for the standard value of p = 2, Eq. (10.61) is quadratic and thus can
be solved in closed form. But an even better approach is to exploit the exact solution
of the original differential equation (10.57) with the time derivative of T ln h replaced
by a constant. Indeed, for p = 2 and with d(T ln h)/dt replaced by Δ(T ln h)k/Δtk ,
Eq. (10.57) has the form

η̇ + A2η2 = B2 (10.63)

where

A =
√

μS|Δ(T ln h)k |
Δtk T0

(10.64)

B =
√

ψs

q4
(10.65)

are auxiliary constants introduced for convenience. Differential equation (10.63) is
still nonlinear, but its analytical solution can be found by separation of variables6:

∫ ηk+1

ηk

dη

B2 − A2η2
=

∫ tk+1

tk

dt (10.66)

1

2AB
[ln(B + Aη) − ln |B − Aη|]ηk+1

ηk
= tk+1 − tk (10.67)

B + Aηk+1

B + Aηk

B − Aηk

B − Aηk+1
= e2ABΔtk (10.68)

Note that in the last step, we have omitted the absolute value signs around B − Aηk

and B − Aηk+1. The reason is that these terms always have the same sign (both
positive, or both negative), and so their ratio is always positive.

Equation (10.68) can be transformed into a linear equation in terms of the viscosity
at the end of the step, ηk+1, and its solution reads

ηk+1 = B

A

B(1 − ẽ) + Aηk(1 + ẽ)

B(1 + ẽ) + Aηk(1 − ẽ)
,with ẽ = e−2ABΔtk (10.69)

6Note that if parameter p is different from its standard value 2, the solution cannot be constructed
analytically because a closed-form expression for the integral of 1/(B2 − A2ηp/(p−1)) is not avail-
able for general p.
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The advantage compared to the standard finite difference scheme leading to
Eq. (10.61) is that if the time derivative of T ln h is considered constant within
the time step, the solution is exact for an arbitrarily large Δtk . Therefore, one can
expect improved accuracy for large time steps even in cases when T ln h varies in a
more general fashion. This idea is an extension of the exponential algorithm to the
case of a nonlinear differential equation.

Formula (10.69) gives an explicit expression for updating of viscosity. It is useful
to reformulate it such that it would remain applicable in the degenerate case when
the second term in (10.54) vanishes, i.e., when the coefficient A in (10.63) is zero.
Since A appears in the denominator of the first fraction in (10.69), the formula cannot
be applied directly. Of course, one could treat this special case separately, since the
exact solution is known to have the simple form (10.60). However, if A is not exactly
zero but is very small, the full formula needs to be used and numerical problems
may arise due to the truncation error, because the numerator of the second fraction
in (10.69) is in such a case small as well. Fortunately, the entire expression on the
right-hand side tends to a finite limit corresponding to (10.60). To make it more
obvious, we deduce from (10.69) the expression for the viscosity increment (simply
by subtracting ηk from both sides) and then transform the resulting formula into

Δηk = 1 − ẽ

A

B2 − A2η2
k

B(1 + ẽ) + Aηk(1 − ẽ)
(10.70)

If A tends to zero, the first fraction in (10.70) approaches 2BΔtk , as can be shown
by expanding ẽ into Taylor series:

ẽ = e−2ABΔtk = 1 − 2ABΔtk + 2A2B2(Δtk)
2 − . . . (10.71)

1 − ẽ

A
= 2BΔtk − 2AB2(Δtk)

2 + . . . (10.72)

Therefore, if A is very small (compared to 1/(BΔtk)), one can replace the first
fraction in (10.70) by 2BΔtk(1 − ABΔtk), which properly tends to 2BΔtk as A
approaches zero. The second fraction in (10.70) tends to B/2 (because ẽ tends to 1),
and so the increment Δηk computed from (10.70) for vanishing A is equal to B2Δtk ,
which is the correct value implied by (10.60) and (10.65).

Formula (10.70) also properly reflects another special case when ηk happens to
be equal to B/A and the rate η̇ evaluated from (10.63) vanishes. In this case, the
viscosity remains constant during the entire step. Indeed, the numerator of the second
fraction in (10.70) vanishes for ηk = B/A, and the increment of viscosity is correctly
evaluated as zero.

10.8.2 Evaluation of Flow Strain Increment

Once the increment of viscosity is known, the viscosity can be updated and the
increment of viscous strain can be evaluated by numerical integration of Eq. (10.40):
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ηk+1 = ηk + Δηk (10.73)

Δε f,k =
∫ tk+1

tk

ψr (t)σ (t)

η(t)
dt ≈ Δtk

2

(
ψr,kσk

ηk
+ ψr,k+1σk+1

ηk+1

)
(10.74)

Formula (10.74) is based on numerical integration by the trapezoidal rule, which
is exact if the integrand ψr (t)σ (t)/η(t) is a linear function of time. As a minor
improvement, one can use a rule that gives the exact result for σ(t) and η(t)/ψr (t)
considered separately as two linear functions of time (this covers the case of basic
creep or creep at constant temperature and humidity, when σ(t) = const., ψr (t) =
const., and η(t) = ηk + (ψs/q4)(t − tk)). To simplify the notation, we introduce the
modified viscosity

η̃ = η

ψr
(10.75)

The flow strain increment is then approximated as

Δε f,k ≈
∫ tk+1

tk

σk + (t − tk)Δσk/Δtk
η̃k + (t − tk)Δη̃k/Δtk

dt =

= Δtk
Δη̃k

[(
σk − Δσk

η̃k

Δη̃k

)
ln

(
1 + Δη̃k

η̃k

)
+ Δσk

]
(10.76)

Due to the presence ofΔη̃k in the denominator, the formula fails for constantmodified
viscosity andmay lead to a high error for a very small increment ofmodified viscosity.
Therefore, if |Δη̃k | � η̃k , it is preferable to use an alternative formula

Δε f,k = Δtk
η̃k

[
σk

(
1 − Δη̃k

2η̃k

)
+ Δσk

(
1

2
− Δη̃k

3η̃k

)]
(10.77)

constructed from (10.76) by expanding the logarithmic function into truncated Taylor
series.

Formulae (10.76) and (10.77) have the general form

Δε f,k = Δε′′
f,k + C̄ f,kΔσk (10.78)

where Δε′′
f,k represents the increment of flow strain that would occur under constant

stress and C̄ f,k is the incremental flow compliance. For instance, according to (10.76)
we have

Δε′′
f,k = Δtk

Δη̃k
σk ln

(
1 + Δη̃k

η̃k

)
(10.79)

C̄ f,k = Δtk
Δη̃k

[
1 − η̃k

Δη̃k
ln

(
1 + Δη̃k

η̃k

)]
(10.80)
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and analogous expressions following from (10.77) are obvious. Due to serial cou-
pling of the viscous flow unit with the other model units (Fig. 10.2), the flow strain
increment Δε′′

f,k represents an additive contribution to the overall creep increment

Δε′′
k , and the incremental flow compliance C̄ f,k represents an additive contribution

to the overall incremental compliance (which is the reciprocal value of the incre-
mental modulus Ēk). These contributions will be included in formulae (10.113) and
(10.114).

10.8.3 Incorporation of Transformed Times

Having covered the numerical treatment of microprestress relaxation (by means of
the viscosity evolution equation) and flow strain increment, we can turn attention
to the modifications due to temperature and humidity effects, reflected by the three
transformed times which were introduced in Sect. 10.6.1.

The reducedmicroprestress time ts has already been incorporated through parame-
terψs into Eq. (10.42) governing the evolution ofmicroprestress, which is reflected in
the viscosity evolution equation (10.54) and, through parameter B defined in (10.65),
in Eqs. (10.69) and (10.70) for the numerical treatment of viscosity evolution. Recall
that ψs depends on current temperature and relative pore humidity and is given by
(10.33), (10.36), and (10.39).

The reduced time tr affects the creep rate according to (10.26) and is incorpo-
rated through parameter ψr into Eq. (10.40) for the rate of the viscous flow, which
is reflected in (10.74) and, through the modified viscosity (10.75), in (10.76) and
(10.77).

The reduced time tr also affects the growth of viscoelastic strain in the solidifying
material. It is incorporated into the integral formula (10.25) for creep of the solidi-
fying constituent, which is more efficiently handled in the differential format, with
the microcompliance function Φ of the solidifying constituent approximated by the
Dirichlet series (5.72) corresponding to a nonaging Kelvin chain. Under standard
conditions, the differential equation governing a typical Kelvin unit number μ has
the same form as (5.44),

σvμ

τμ

+ dσvμ

dt
= dσ

dt
(10.81)

where σvμ is the viscous stress in the unit and τμ is the retardation time. Under general
conditions, with variable temperature and humidity, the derivatives should be taken
with respect to the reduced time, tr . Recall that dtr = ψrdt , where the factor ψr

depends on the current temperature and relative pore humidity according to (10.32),
(10.35), and (10.38). Numerical treatment of the modified form of Eq. (10.81) can
follow the procedure valid under standard conditions (see Sect. 5.2.6), in which the
increment Δtk of real physical time is replaced by the reduced time increment

Δtr,k =
∫ tk+1

tk

ψr (t) dt ≈ ψr (tk+1/2)Δtk (10.82)

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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In this approximation, ψr is evaluated at the midpoint

tk+1/2 = tk + 1

2
Δtk (10.83)

The reduced time increment Δtr,k replaces Δtk in expressions (5.63) for factors βkμ

and λkμ.
The last modification of the standard algorithm is related to the equivalent age te,

which controls the solidification process. The values of equivalent age te,k = te(tk)
are obtained by cumulating the increments

Δte,k =
∫ tk+1

tk

ψe(t) dt ≈ ψe(tk+1/2)Δtk (10.84)

The relative volume of solidified material, v, is then computed from the equivalent
age instead of the real physical age. The average value of v in step number k is
estimated according to the midpoint rule as

vk+1/2 = v(te,k + 1

2
Δte,k) (10.85)

10.8.4 Incremental Stress Evaluation Algorithm

The numerical procedure for incremental stress–strain evaluation based on the
microprestress-solidification theory, with the effects of temperature and humidity
taken fully into account, can be conceived as an extended version of Algorithm5.3.

Before the actual incremental analysis, parameters E∞
μ and τμ (μ = 1, 2, . . . M) of

Dirichlet series approximating the nonaging microcompliance functionΦ need to be
determined. This can be conveniently done using the technique based on continuous
retardation spectrum, as explained in Appendix F. Since Φ is typically given by the
log-power law (9.13), its retardation spectrum can be approximated by the formulae
given in Section F.2. The corresponding volume growth function v is given by (9.16).
With this choice, the resulting basic creep compliance function is the same as inmodel
B3 or B4.

To take into account the effects of temperature and humidity, the evolution of T
and h must be known. In some cases, it can be prescribed or estimated, but in general
it is determined by a separate analysis of heat transfer and moisture diffusion, which
is either performed before the mechanical analysis, or runs concurrently. The values
of temperature and relative pore humidity at Gauss points of the finite element mesh
used by the mechanical analysis can be obtained by standard spatial interpolation.
If the analyses use different time steps, temporal interpolation is needed as well. In
this way, the temperature and humidity values such as Tk+1/2, Tk+1, hk+1/2, and hk+1

are obtained; they enter the stress evaluation algorithm as known input values.

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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Themechanical analysis starts at time t1, which is taken as the time of first loading
in the generalized sense—it can be the time when the self-weight or other forces are
applied on the structure, or time at the onset of drying, or time when temperature
starts deviating from the room temperature, whichever comes first.7 At time t1, we
set the initial values

η1 = t1
q4

(10.86)

σvμ,1 = 0, μ = 1, 2 . . . M (10.87)

te,1 = t1 (10.88)

ψr,1 = βrh(h1) βrT (T1) (10.89)

η̃1 = η1

ψr,1
(10.90)

k = 1 (10.91)

where h1 and T1 are the relative pore humidity and temperature at time t1. Typically,
h1 = 1 and T1 = T0 = room temperature, in which case ψr,1 = 1 and η̃1 = η1.

Algorithm 10.1 Incremental stress–strain relation according to the micro-
prestress-solidification theory

For a given time step from tk to tk+1 = tk + Δtk and for given history of temperature
and relative pore humidity:

1. Using formulae (10.31)–(10.36), evaluate factors

ψe,k+1/2 = βeh(hk+1/2) βeT (Tk+1/2) (10.92)

ψr,k+1 = βrh(hk+1) βrT (Tk+1) (10.93)

ψs,k+1/2 = βsh(hk+1/2) βsT (Tk+1/2) (10.94)

2. Update the equivalent age and evaluate the volume growth function v given by
(9.16) at midpoint:

Δte,k = ψe,k+1/2Δtk (10.95)

te,k+1 = te + Δte,k (10.96)

vk+1/2 = v

(
te,k + 1

2
Δte,k

)
(10.97)

7Strictly speaking, the self-weight is applied immediately after casting (on the structure supported
by the formwork), and the initial temperature is usually different from the room temperature and
very soon starts increasing due to the production of hydration heat. If such effects are studied in
detail, the simulation would need to start at a very early age, and its purpose would be to determine
the evolution of internal stresses due to nonuniform thermal effects, etc. However, in many practical
applications, the simulation starts at the end of curing or at formwork removal, and the previous
effects are neglected.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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3. Calculate the increment of reduced time and factors for the exponential
algorithm:

Δtr,k = 1

2

(
ψr,k + ψr,k+1

)
Δtk (10.98)

βμk = e−Δtr,k/τμ , μ = 1, 2 . . . M (10.99)

λμk = (1 − βμk)
τμ

Δtr,k
, μ = 1, 2 . . . M (10.100)

4. Prepare auxiliary factors for viscosity evaluation:

A =
√

μS|Tk+1 ln hk+1 − Tk ln hk |
Δtk T0

(10.101)

B =
√

ψs,k+1/2

q4
(10.102)

4. Compute viscosity of the flow unit at the end of the step:
If ABΔtk > 10−6

then evaluate

ẽ = e−2ABΔtk (10.103)

ηk+1 = B

A

B(1 − ẽ) + Aηk(1 + ẽ)

B(1 + ẽ) + Aηk(1 − ẽ)
(10.104)

else evaluate

ηk+1 = ηk + B2Δtk
1 + A2ηkΔtk

(10.105)

6. Evaluate the modified viscosity and its increment:

η̃k+1 = ηk+1

ψr,k+1
(10.106)

Δη̃k = η̃k+1 − η̃k (10.107)

7. Compute the viscous flow strain increment at constant stress and the incremental
viscous flow compliance.
If |Δη̃k | > 10−4η̃k

then evaluate

Lk = ln

(
1 + Δη̃k

η̃k

)
(10.108)

Δε′′
f,k = Δtk

Δη̃k
LkCνσ k (10.109)
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C̄ f,k = Δtk
Δη̃k

(
1 − η̃k

Δη̃k
Lk

)
(10.110)

else evaluate

Δε′′
f,k = Δtk

η̃k

[
1 − Δη̃k

2η̃k
+ 1

3

(
Δη̃k

η̃k

)2
]
Cνσ k (10.111)

C̄ f,k = Δtk
η̃k

(
1

2
− Δη̃k

3η̃k

)
(10.112)

8. Compute the incremental modulus

Ēk =
⎛
⎝ 1

E0
+ 1

vk+1/2

M∑
μ=1

1 − λμk

E∞
μ

+ C̄ f,k

⎞
⎠

−1

(10.113)

9. Evaluate the strain increment due to creep (at constant stress), and the increments
of shrinkage and thermal strain.

Δε′′
k = Cν

vk+1/2

M∑
μ=1

1 − βμk

E∞
μ

σ vμk + Δε′′
f,k (10.114)

Δεsh,k = k∗
sh(hk+1 − hk) (10.115)

ΔεT,k = αT (Tk+1 − Tk) (10.116)

Note that εsh,k and εT,k are scalars corresponding to normal strain components,
which are the same for all directions, provided that the material is isotropic.

10. For a given strain increment Δεk , compute the stress increment

Δσ k = ĒkDν(Δεk − Δε′′
k − Δεsh,k i − ΔεT,k i) (10.117)

Here, i = (1, 1, 1, 0, 0, 0)T is a columnmatrix with unit normal components and
zero shear components.

11. Update internal variables using the formula

σ vμ,k+1 = λμkΔσ k + βμkσ vμk, μ = 1, 2, . . . N (10.118)

12. Increment the step counter k by 1 and proceed to the next step (go to 1).

The algorithm is used for stress evaluation in the context of incremental structural
analysis and at the same time describes the evaluation of the incremental modulus
and of the strain increment at constant stress, which are needed for the assembly of
the structural stiffnessmatrix and of the right-hand side of the discretized equilibrium
equations. So the algorithm is in fact exploited twice within the same time step. In
the first run, the objective is to determine Ēk , Δε′′

k , Δεsh,k , and ΔεT,k , and so the
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execution is suspended after step 9. Once the displacement increments are computed
from the global equilibrium equations, the strain incrementΔεk can be evaluated and
the execution of the algorithm execution is resumed (provided that the values of Ēk

and Δε′′
k have been stored, otherwise some of the preceding steps of the algorithm

would need to be repeated). For the update of internal variables according to (10.118),
the factors λμk and βμk need to be stored as well, otherwise they would have to be
recomputed. In addition to the viscous stresses σ vμ,k+1, several other variables such
as the viscosity ηk+1, equivalent age te,k+1, and factor ψr,k+1 are stored (of course
only temporarily, until the end of the next step).

Certain details of Algorithm 10.1 could bemodified. For instance, when the incre-
ments of times te, tr , and ts are determined, we have a choice between the midpoint
and trapezoidal rules for the integration of factorsψe,ψr , andψs . Numerical solution
of the viscosity evolution equation could be simplified. The advantage of the present
algorithm is that creep at constant temperature and humidity is reproduced exactly,
for arbitrarily large time steps. However, this is a real advantage only if the time steps
are indeed large. For small steps, simpler formulae can be used, with a negligible
error. Branching in the code can be eliminated, viscosity can be updated according
to (10.105), and formulae (10.108)–(10.112) can be replaced by

Δε′′
f,k = Δtk

η̃k+1/2
Cνσ k (10.119)

C̄ f,k = Δtk
2η̃k+1/2

(10.120)

where
η̃k+1/2 = ηk + ηk+1

2ψr,k+1/2
(10.121)

is the approximation of the modified viscosity at midstep.
Let us also note that the algorithm assumes the standard value of parameter p of

the microprestress theory, namely p = 2. For other values of p, the evaluation of
Δηk would need to be based on an iterative solution of nonlinear algebraic equation
(10.61).

10.9 Analysis of Experimental Data on Temperature Effect

To illustrate the fitting capabilities of themodel and to provide examples of parameter
identification, typical experiments reported in the literature have been numerically
simulated. For each tested concrete, parameters q1, q2, q3, and q4 are obtained by
fitting the experimental data for basic creep at room temperature. Parameter μS ,
which controls the evolution of viscosity under general conditions, must be identified
from transient analysis of tests at variable temperature or humidity. Unless stated
otherwise, activation energies in (10.31)–(10.33) and parameters α used in formulae
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(10.34)–(10.36) are taken by their default values recommended by Bažant et al.
[123]: Qe/R = 2700 K, Qr/R = 5000 K, Qs/R = 3000 K, αe = 10, αr = 0.1,
and αs = 0.1. Parameters q1 to q4, which control basic creep, are summarized in
Table 10.1. Individual columns refer to the sets of experimental data that will be
analyzed in the following sections.

Table 10.1 Basic creep parameters used for fitting of experimental data reported by Nasser and
Neville (NN), Komendant et al. (KPPp—predicted from composition, KPPa—adjusted), and Fahmi
et al. (FPB)

Parameter Unit NN KPPp KPPa FPB

q1 [10−6/MPa] 15.0 18.9 14.0 19.5

q2 [10−6/MPa] 80.0 122.9 60.0 160.0

q3 [10−6/MPa] 24.0 0.751 16.0 5.25

q4 [10−6/MPa] 5.0 7.27 6.0 12.5

10.9.1 Basic Creep at Constant Elevated Temperature

The effect of temperature on basic creep is analyzed first, using two sets of experi-
mental data.

10.9.1.1 Data of Nasser and Neville

In the tests of Nasser and Neville [645], the specimens were heated to the test tem-
perature immediately after casting and protected against water loss. For this reason,
it is appropriate to consider h ≈ 1 during the analysis (h = 0.98 is assumed). As will
be shown in Sect. 10.9.1.3, if the temperature increases sufficiently long before the
onset of loading and then remains constant, parameterμS (or the original parameters
k1 and c0) has a negligible effect, and so it cannot actually be identified. The thermal
dependence of basic creep is then primarily due to the thermal activation of processes
such as hydration or viscous flow, which is reflected by the transformed times te, tr ,
and ts and controlled by the activation energies Qe, Qr , and Qs .

Nasser and Neville [645] studied the creep of cylindrical concrete specimens
subjected to three different levels of temperature. In their experiments, all specimens
were sealed in watertight jackets and placed in a water bath in order to guarantee
constant temperature, and they were loaded at the age of 14 days. The values of
parameters q1 = 15, q2 = 80, q3 = 24, and q4 = 5 (all in 10−6/MPa) determined
by Bažant et al. [123] provide a good agreement with experimental data at room
temperature; see Fig. 10.5a.

For a higher temperature, T = 71 ◦C, the agreement is good up to 30 days of load
duration, but afterward the computed rate of creep is too low (see the solid curve in
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Fig. 10.5b). A remedy can be sought in modifying the activation energy. Reduction
of Qs/R from the default value 3000 K to 2300 K leads to an excellent fit (see
the dashed curve in Fig. 10.5b). Unfortunately, the prediction for the highest tested
temperature, T = 96 ◦C, would be quite poor [472].

Changes in activation energyhave no influence on the resultswhen the temperature
is close to the room temperature. Before loading, the specimens had been subjected to
an environment at the given temperature, which accelerated the hydration processes,
i.e., the maturity of concrete. In other words, the higher the temperature, the lower
the initial compliance. On the other hand, for longer periods of loading, the higher
temperature increases the rate of bond breakages and thus accelerates creep. This
justifies the shape of the obtained curve for the medium temperature in Fig. 10.5b; it
is different from the one published by Bažant et al. [123], who did not consider the
effect of elevated temperature before loading and obtained, for the test at the medium
temperature, a higher initial compliance than at the room temperature.

Fig. 10.5 Experimental data ofNasser andNeville [645] and compliance functions for temperatures
of (a) 21 ◦C, (b) 71 ◦C

10.9.1.2 Data of Komendant et al.

Komendant et al. [551] performed creep tests under various sustained levels of tem-
perature and for different ages at loading. Two concretes made of very similar mix-
tures (which differed mainly by the type of aggregate, referred to as York and Berks)
were examined. Since their composition and the resulting strength were almost the
same, only one set of material parameters is used here for both concretes. The creep
experiments were carried out on cylindrical specimens sealed against the moisture
loss. All specimens were cured at 23 ◦C, and 5 days prior to loading the temperature
started increasing at constant rate of 13.33 ◦C/day until the target value 43 ◦Cor 71 ◦C
was reached.

Figure10.6a shows the valuesmeasured at room temperature (here taken as 23 ◦C)
and the computed compliance functions. Parameters qi estimated from the com-
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position of the concrete mixture using empirical formulae from Appendix C are
q1 = 18.9, q2 = 122.9, q3 = 0.751, and q4 = 7.27 (all in 10−6/MPa). This set of
parameters leads to an overestimation of aging; see the dashed curves, correspond-
ing to three different ages at loading. After an adjustment of parameters to q1 = 14,
q2 = 60, q3 = 16, and q4 = 6 (all in 10−6/MPa), an excellent fit is obtained; see the
solid curves in Fig. 10.6a.

As shown by Havlásek and Jirásek [472], the numerical results published by
Bažant et al. [123] are reproduced only when the numerical simulation starts at the
age of loading t ′ and the temperature history is simplified as constant. In such a
case, the results are almost insensitive to the choice of parameter μS , same as in
the previous section. However, this simplification does not correspond to the actual
heating history. Heating of the specimen shortly before the onset of loading generates
substantial microprestress that does not have sufficient time to fully relax before
the creep test starts. The early creep rate then becomes strongly influenced by the
elevated microprestress (which depends on age much less than on the time elapsed
after heating), and higher values of μS make this effect stronger. As shown by the
solid curves in Fig. 10.6b, the results obtained with the heating history properly taken

Fig. 10.6 Experimental data of Komendant et al. [551] and computed compliance functions (a)
for ages at loading t ′ = 28, 90, and 270 days and temperature T = 23 ◦C (dashed lines represent
predictions of the B3 model based on composition, solid lines are the optimum fit), (b) for age
at loading t ′ = 90 days and different temperature levels (solid lines computed with the correct
temperature history, dashed lines with a simplified approach)

into account agree very well with the experimental data if μS is set to 87.5 ×
10−6MPa−1 day−1. For comparison, the dashed curves show the results that would
be obtained if the simulation started at the onset of loading and the microprestress
generated by the temperature increase was ignored.
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10.9.1.3 Temperature Effects on Microprestress, Viscosity, and
Compliance

Creep tests presented in Sect. 10.9.1.1 as well as 10.9.1.2 were performed under
elevated temperatures, but differed in one important detail. Nasser and Neville [645]
stored the specimens at the desired elevated temperature right after casting, i.e., a
long time before loading, while Komendant et al. [551] stored them first at the room
temperature and then gradually increased the temperature to the prescribed test level
only a few days before the onset of loading. In the first case, the microprestress
generated by the change of temperature at an early age had enough time to relax
before the test, while in the second case it did not, which had an effect on the creep
compliance. Since the temperature affects not only the microprestress but also the
transformed times, the interplay among various partial effects is quite intricate and
it is useful to analyze their role in more detail and illustrate it by a simple example.

Consider again the tests of Komendant et al. [551], in which the specimens were
initially kept at 23 ◦C and the temperature was increased at a constant rate starting
at the age of 23 days, up to the level of 71 ◦C reached at the age of 26.6 days. The
creep test started shortly after the heating, at the age of 28 days. The corresponding
evolution of the flow viscosity η, computed from Eq. (10.57) with parameters q4 =

Fig. 10.7 Evolution of various quantities for specimens stored at 23 ◦C until different ages (3, 23,
or 43 days) and then heated in 3.6 days to 71 ◦C: (a) flow viscosity, (b) normalized microprestress,
(c) effective flow viscosity, (d) flow compliance for t ′ = 28 days
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6 × 10−6MPa−1 and μS = 87.5 × 10−6MPa−1 day−1, is shown by the solid curve
in Fig. 10.7a. Up to the age of 23 days, it follows a straight line described by η =
ψs t/q4, which corresponds to the evolution of flowviscosity at constant temperature.
In this particular test, the room temperature T = 23 ◦C was slightly higher than the
reference room temperature T0 = 20 ◦C, and so factor ψs = 1.11 is slightly larger
than 1 (factor βsh is set to 1 because the specimens were sealed8 and βsT = 1.11 is
computed from (10.33) with Qs/R = 3000 K). During the heating phase, the flow
viscosity is reduced from 4.23 TPa·day at 23 days to 2.79 TPa·day at 26 days. After
the age of 26.6 days, at constant elevated temperature T = 71 ◦C, the flow viscosity
grows linearly in time, but with a much higher slope than at the room temperature,
because factor ψs increases to 4.4. For comparison, the dash-dotted straight line
shows the linear evolution of flow viscosity at the reference room temperature T0 =
20 ◦C, which corresponds to basic creep at standard conditions. The dashed and
dotted curves illustrate what would happen if the heating phase is shifted by 20
days. If the heating takes place from 3 days to 6.6 days (dashed curve), the evolution
of flow viscosity is almost the same as if the specimen was stored at the elevated
temperature right after casting. If the heating takes place from 43 days to 46.6 days
(dotted curve), the drop in viscosity during the heating phase is more pronounced
and the subsequent linear growth is parallel to the other two cases, just shifted in
time.

From the physical point of view, it is interesting to examine the evolution of
microprestress, shown in Fig. 10.7b. The microprestress could be computed from
differential equation (10.45) or, since the flow viscosity is already known, simply
from relation (10.49), which for p = 2 reduces to

S(t) = 1

c0q4η(t)
(10.122)

As already explained, the actual values of microprestress depend on parameters k0
and c1, which cannot be calibrated separately based on available “macroscopic”
data. Therefore, the values plotted in Fig. 10.7b are normalized by the value of
microprestress that would be attained at the age of 28 days at the reference room
temperature and sealed conditions, which is given by S28 = 1/(c0 × 28 days). The
normalized value

S(t)

S28
= 28 days

q4η(t)
(10.123)

can then be evaluated without specifying parameter c0. At the reference room tem-
perature, the evolution of the normalized microprestress would follow the hyperbola
plotted in Fig. 10.7b by the dash-dotted line.When the specimen is heated, themicro-
prestress increases, and subsequently, at constant elevated temperature, relaxes faster

8Strictly speaking, βsh computed from (10.36) would be equal to 1 only for h = 1 while here we
consider the relative pore humidity to be h = 0.98 (for normal concrete). But for a sealed specimen
at room temperature, we should get basic creep, and so it is reasonable to set βsh = 1.
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than it would at the room temperature. This is caused by the temperature effect on
the rate of the reduced microprestress time ts , described by factor ψs .

From the practical point of view, the most important variable is the creep compli-
ance. Its part Jf attributed to the viscous flow is, according to (10.22), obtained by
integrating the reciprocal value of flow viscosity. For the standard value of parameter
p = 2, considered here, the flow viscosity is inversely proportional to the micropre-
stress, and so the flow compliance Jf(t, t ′) is proportional to the area under the graph
of microprestress evolution in time, taken from the onset of loading t ′ to the current
time t . However, one also needs to take into account the effect of temperature on
the creep rate, which was not yet considered in (10.22). Replacing the differential
of time by the differential of the reduced time tr (and still assuming p = 2), we can
write

Jf(t, t ′) = c0q4

∫ t

t ′
S(r)ψr dr = q4

28 days

∫ t

t ′

S(r)

S28
ψr dr (10.124)

where factor ψr depends on temperature and humidity. Therefore, what matters for
the flow compliance is the product of the normalized microprestress S/S28 with
factor ψr . This product is plotted in Fig. 10.7c. Since the activation energy Qr

is larger than Qs , the factor ψr = βrh = 12.6 computed at elevated temperature
71 ◦C is higher than ψs = βsh = 4.6, and the effect of ψr on creep acceleration is
stronger than the effect of ψs on acceleration of microprestress relaxation. This is
reflected by the resulting flow compliance Jf , plotted in Fig. 10.7d as function of the
current age t for a fixed age at loading t ′ = 28 days. Note that Jf is just the part of
compliance attributed to viscous flow, and the full compliance contains additional
terms that depend on parameters q1, q2, and q3 and correspond to the elastic spring
and solidifying viscoelastic unit.

Fig. 10.8 Evolution of the flow compliance J f (t, 28) of specimens stored at 23 ◦C until different
ages (3, 23, or 43 days) and then heated in 3.6 days to 71 ◦C: (a) computed with μS = 0, (b)
computed with Qs = 0 and Qr = 0

To elucidate the role of individual parameters, it is instructive to evaluate the flow
compliance that would be obtained if the microprestress generated by temperature
increase was neglected (Fig. 10.8a), or if the effect of temperature on reduced times tr
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and ts was neglected (Fig. 10.8b). In the first case, parameter μS is set to zero, which
has virtually no effect on the flow compliance of the specimen heated a long time
before loading (the dashed curve in Fig. 10.8a is almost the same as in Fig. 10.7d).
For specimens heated shortly before loading or after loading, the flow compliance
would be reduced if the generated microprestress was neglected. This explains why
the simulation of the tests done by Komendant et al. [551] is sensitive to the value
of parameter μS while the simulation of the tests of Nasser and Neville [645] is not.
Finally, Fig. 10.8b shows the compliance curves computed with activation energies
Qr and Qs set to zero, which means that the influence of temperature on factors ψr

and ψs is artificially suppressed. The reduction of compliance is dramatic, and this
confirms that the effect of temperature on the rate of relevant processes is substantial.

10.9.2 Transitional Thermal Creep

Consider now the transitional thermal creep tests of Fahmi et al. [378], in which
the temperature was changed during the load application. Mortar specimens had the
shape of a hollow cylinder and were cured for 21 days at 100% relative humidity
and 23 ◦C. During the tests, the specimens were either sealed (h ≈ 0.98) or exposed
to an environment of 50% relative humidity. The temperature was varied either in
one cycle (two-step heating followed by cooling) or in multiple cycles. Different
combinations of sealed/drying conditions and one or multiple temperature cycles
resulted into four testing programs, two of which are summarized in Table 10.2.

Table 10.2 Testing programs used by Fahmi et al. [378]

(a) Program #1 – sealed specimen (b) Program #2 – drying specimen

Duration T h σ

day [◦C] [%] [MPa]

21 23 100 0

37 23 98 −6.27

26 47 98 −6.27

82 60 98 −6.27

10 23 98 −6.27

25 23 98 0

Duration T henv σ

day [◦C] [%] [MPa]

18 23 100 0

14 23 50 0

37 23 50 −6.27

108 60 50 −6.27

10 23 50 −6.27

25 23 50 0

Due to the nonuniform distribution of humidity resulting from the drying process,
shrinkage strains and creep compliance are also nonuniform across the specimen.
Therefore, the simulation cannot be limited to one material point (representing the
specimen under uniform conditions), and a finite element model is needed. The
creep test takes place under constant force but, due to nonuniform creep and shrink-
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age, the stresses at individual points can vary, giving a constant resultant. Details
regarding the finite element mesh and boundary conditions are available in Jirásek
and Havlásek [523].

The four parameters of the B3 model describing the basic creep, q1 to q4, are
determined from the composition of the concrete mixture and from the compressive
strength using empirical formulae according to Appendix C. Parameters obtained
from this prediction require only minor adjustments to get the optimal fit; see the first
stage of the strain evolution in Fig. 10.9. The following values are used: q1 = 19.5,
q2 = 160, q3 = 5.25, and q4 = 12.5 (all in 10−6/MPa).

Besides the exponent p with standard value 2, the MPS theory reformulated in
terms of viscosity (Sect. 10.7) uses only one additional parameter,μS , which is varied
until the best agreement with experimental data is obtained. All other parameters
are initially set according to standard recommendations. A really good fit of the
first experimental data set (sealed specimen, one temperature cycle, Table 10.2a) is
obtained for μS = 875 × 10−6 MPa−1day−1; see Fig. 10.9a. The agreement is very
satisfactory, except for the last stage, which corresponds to unloading. It is worth
noting that the thermally induced part of creep accounts for more than a half of the
total creep (compare the experimental data with the solid curve labeled as “basic
creep” in Fig. 10.9a).

Fig. 10.9 Mechanical strain evolution for specimens loaded by compressive stress 6.27MPa:
(a) sealed specimens (pore relative humidity assumed to be 98%), loaded at time t ′ = 21 days,
(b) specimens drying at 50% environmental relative humidity, loaded at time t ′ = 32 days

To obtain an accurate creep evolution for the second loading history (drying and
one thermal cycle, Table 10.2b), it is first necessary to calibrate parameters of the
Bažant–Najjar model for moisture transport. The distribution of relative humidity
across the section was not measured, but the parameters can be identified from the
time evolution of shrinkage and thermal strains of the unloaded companion speci-
men (Fig. 10.10). Parameters α0 = 0.05, hc = 0.8, and r = 15 are set to their default
values according to fib recommendations [381]. A good agreement is reached with
maximum diffusivity C1 = 25 mm2/day, shrinkage ratio k∗

sh = 0.0039, and coeffi-
cient of thermal expansion αT = 8 × 10−6 K−1.
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Fig. 10.10 Evolution of the
sum of shrinkage and
thermal strains for specimens
drying at 50% environmental
relative humidity

Figure10.9b shows the comparison between the experimental and numerical
results. As usual, the difference between the total strain measured under load and the
total strain measured on a load-free companion specimen is reported as a measure of
creep strain and plotted against the load duration, although it actually includes also
the shrinkage reduction in the companion specimen due to diffuse cracking caused
by the nonuniformity of temperature and humidity over the specimen. To analyze
this effect, Bažant et al. [123] performed a cracking simulation, with the conclusion
that the role of cracking is for these particular tests negligible because the specimen
dimensions are very small.

Unfortunately, with default values of the other parameters, the value of μS cal-
ibrated on data set #1 cannot be used to fit another experimental data set reported
by Fahmi et al. [378], because it would lead to a gross overestimation of the creep.
These data can be accurately reproduced if the values of parameters αr and αs are
set to 0.01 and 1.0. But such a dramatic adjustment of the default values would be
rather artificial and physically unexplained. Parameters αs and αr control the effect
of reduced humidity on the rate of microprestress relaxation and the rate of bond
breakages, and thus their adjustment would have no effect on the response of sealed
specimens, with the good fit in Fig. 10.9a being preserved.

Simulations of testing programs #3 and #4, which involved several temperature
cycles, have been reported by Jirásek and Havlásek [523] but are not reproduced here
because many questions remain open. It turns out that if the MPSmodel is calibrated
on one temperature cycle, it overestimates the creep caused by subsequent repeated
cycles. According to the limited experimental evidence that exists, the actual effect
of temperature changes on creep fades away starting from the second cycle, which
is not reflected by the original microprestress source term on the right-hand side of
(10.46). A tentative remedy has been proposed by Jirásek and Havlásek [523], but
a more fundamental extension of the microprestress theory would be needed. This
will be no doubt the subject of future research. Recently, a good fit of all tests of
Fahmi et al. [378] with one set of parameters has been obtained by Gasch, Malm,
and Ansell [410], who considered parameter μS as variable, dependent on the pore
relative humidity.

For further examples of transitional thermal creep, see Figs. 13.17 and 13.18 in
Sect. 13.3.3.

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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10.10 Comment on Applications and Review of Main Points

The microprestress-solidification theory serves as the theoretical basis for model B3
(as well as B4). Strong simplifications, however, have been made for this purpose.
One of them is the replacement of a solution of the diffusion problem of drying by
simplified formulae for the mean pore humidity in the cross section. It is nevertheless
not difficult to program a numerical integration of the diffusion equation for drying,
and its computer solutionwould not be very demanding—certainly not in comparison
to the overall design effort for a large creep-sensitive structure.

The experimental verification of the theory is still limited. Better calibration of
its parameters is needed, especially in regard to multidecade predictions. Inverse
analysis of the observed long-time deflection of creep-sensitive structures, such as
prestressed box girders, would be helpful. Nevertheless, the fact that phenomena
as diverse as the long-term aging, drying creep and transitional thermal creep can
all be explained by one and the same model lends credence to the validity of the
microprestress-solidification theory. Aside from long-time deflections, shortening
of tall building columns, and redistribution of internal forces due to creep, the uni-
fication provided by the microprestress-solidification theory may be expected to
provide a more realistic common basis for the analysis of many practically impor-
tant problems involving thermal effects—nuclear containments, response to various
hypothetical extremenuclear reactor accidents, long-termeffects of radioactivewaste
disposal [150], ablation of contaminated surface layer concrete by microwave blast
[213], behavior of chemical technology vessels, effects of hydration heat in massive
structures, and effects of environmental variations on structures.

Since the microprestress-solidification theory is relatively complex, it may be
useful to summarize the main points:

1. In the solidification theory for basic creep, formulated in Chap. 9, the aging is
explained by volume growth of a nonaging viscoelastic material (the cement gel)
into the pores. Although this theory, supplemented by the flow term, agrees with
the available test data as well as one might hope in view of inevitable random
scatter, it has, from the physical viewpoint, two shortcomings:

• The effect of age at loading on the creep compliance remains strong even after
many years, whereas the volume growth of the hydration products slows down
markedly after about one year.

• The drying creep (Pickett effect) and the transitional thermal creep are not
explained by the theory, and their modeling requires separate assumptions.

The microprestress-solidification theory removes these shortcomings and brings
about simplification and unification; see the schematic overview in Table 10.3.
ModelB3 in the context of the sectional approach is described inChap.3 andused
in the first part of this book. The material approach to model B3 (also applicable
to B4), based on the concept of stress-induced shrinkage, is briefly sketched in
Appendix C.3. The microprestress-solidification theory (MPS), discussed in the
present chapter, uses exclusively the material approach.

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Table 10.3 Representation of different components of creep according to models B3/B4 and
microprestress-solidification theory (MPS)

Model Short-term Creep Long-term Creep Drying Creep and Shrinkage

B3/B4 solidifying logarithmic sectional approach

Kelvin flow term material approach

MPS chain microprestress theory

2. The long-term aging, which cannot be fully accounted for by the volume growth
of hydration products, can be explained by relaxation of a tensile microprestress
in the bonds or bridges across the nanopores in hardened cement gel filled by
hindered adsorbed water. The microprestress represents a reaction to the disjoin-
ing pressure exerted on the nanopore walls by hindered adsorbed water, and its
initial buildup is caused by high local shrinkage and crystal growth pressure at
locations close to the nanopore.

3. The long-term creep, deviatoric as well as volumetric, is considered to originate
from viscous shear slips between the opposite walls of the nanopores in which
the bonds or bridges that cross the nanopores and carry the microprestress break
and reform, in a manner similar to the movement of dislocations through a
crystal lattice. The shear has the property that bonds can restore and thus the
macroscopic stiffness of concrete does not get reduced (tensile breaks do not
allow bond restorations; rather they lead to cracks and reduced macroscopic
stiffness, which characterizes the nonlinear creep above the service stress range).

4. Due to creep in the direction transverse to the slip plane, the tensilemicroprestress
undergoes relaxation. This relaxation reduces the effective viscosity of the shear
slips and thus brings about long-term aging associated with the flow term in the
creep model.

5. Since the tensile microprestress S is the reaction to the disjoining pressure, it
changes with the disjoining pressure, which in turn changes almost instanta-
neously with the changes in the relative humidity h in the adjacent capillary
pore in the hardened cement paste. This is the cause of the Pickett effect (drying
creep or stress-induced shrinkage).

6. Analysis of the available test data confirms that the microprestress relaxation
needs to be introduced only for the viscous flow term. The solidifying part
of the model need not be considered to be affected by any microprestress. Its
viscosity varies only as a consequence of volume growth. On the other hand, the
volume growth does not affect the flow term. This separation of solidification
and microprestress greatly simplifies the mathematical formulation.

7. The microprestress theory has been formulated in a way that does not require
a change in the solidification theory for typical creep and shrinkage tests, for
which extensive test data exist. For drying creep, the results of themicroprestress-
solidification theory are different, but not significantly different, from those of
the previous combination of solidification theory with stress-induced shrinkage
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[117, 120, 201], described in Sect. 13.3.3.2 and Appendix C.3. This is not sur-
prising, because the microprestress-solidification theory can be regarded as a
refinement of these previous formulations.

8. For generalization for the effect of temperature (not exceeding 100 ◦C), the rates
of creep and of volume growth can be characterized by three transformed time
variables based on the activation energies.

9. The concept of microprestress achieves a grand unification of theory which
simultaneously captures three seemingly disparate basic phenomena:

• The creep decrease with increasing age at loading after the growth of the
volume fraction of hydrated cement has slowed down markedly;

• the drying creep, i.e., the transient creep increase due to drying (Pickett
effect) which overpowers the effect of steady-state moisture content (i.e., less
moisture—lesser creep); and

• the transitional thermal creep, i.e., the transient creep increase due to temper-
ature change.

10. To reduce the number of parameters, the microprestress can be eliminated from
the formulation, albeit at the cost of losing contact with the physical theory,
which makes sense only in terms of microprestress relaxation. The differential
equation for microprestress relaxation is then reformulated in terms of viscosity
of the flow unit. Apart from standard parameters q1, q2, q3, and q4, which control
the elastic response and basic creep, only one additional parameter μS needs to
be introduced in order to capture drying creep.

11. For computations, an efficient integration algorithm is available. A satisfactory
agreement with some of the test data can be achieved. However, certain dis-
crepancies between experimental data and predictions of the MPS theory arise.
For instance, simulations based on MPS lead to a delay of the drying creep
behind shrinkage, to a reversed size effect on drying creep, and to excessive
creep under multiple temperature cycles. Besides, the possible role of multiyear
autogenous shrinkage and self-desiccation needs to be explored and understood.
These phenomena are the subject of new ongoing research (it appears they could
be captured by taking into account the viscosity dependence on other variables,
as suggested by MD simulations, particularly the humidity rate and the micro-
prestress).

12. The microprestress-solidification theory is a general (pointwise) constitutive
model. For continuum modeling of concrete structures exposed to drying and
temperature changes, it may be supplemented by a model for distributed tensile
damage and its localization.

http://dx.doi.org/10.1007/978-94-024-1138-6_13


Chapter 11
Physical and Statistical Justifications
of Models B3 and B4 and Comparisons
to Other Models

Abstract In structural engineering, it is necessary to design structures with incom-
plete knowledge of the creep and shrinkage characteristics of the concrete to be
used. Therefore, prediction based on concrete strength and composition is required.
After summarizing the criteria for a sound prediction model, we discuss in detail
the theoretical justification of model B3, including the thermodynamic restrictions,
reasons for using power functions, consequences of microprestress relaxation and of
activation energy, problems of characterizing aging by strength gain, consequences
of diffusion of pore water for size and shape effects on shrinkage and drying creep
and their asymptotics, and separation of cracking effects. Then, we focus on unbi-
ased fitting of the existing worldwide database, which is characterized by limited
range and complicated by variable data density. We present a statistical evaluation of
models B3 and B4 and their statistical comparisons to other prediction models, and
we describe the procedure that was used for calibration of the constitutive parame-
ters by fitting a combined database of several thousand laboratory curves of limited
time range and of about seventy histories of excessive multidecade deflections of
large-span prestressed bridges. Finally, we briefly mention analytical methods for
prediction of creep and shrinkage via homogenization.

A good creep prediction model is of paramount importance for realistic assessment
of creep and shrinkage effects over the design lifetime of structures. Development
of such a model requires: (a) anchoring the creep and shrinkage equations in the
physical theory of the mechanism of creep, shrinkage, and pore water diffusion; (b)
developing approximate formulae for estimating the parameters of these equations
from the concrete strength, composition, environmental conditions, and curing; and
(c) calibrating this formulation by extensive test data collected worldwide for various
concretes, paying attention not only to laboratory tests but also to creep observations
on structures. In its entirety, this is a formidable problem. Considerable progress has
nevertheless been achieved and is expounded in this broad chapter.

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
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11.1 Main Criteria of Evaluation

The traditional approach in which a creep and shrinkage model is validated and
calibrated by comparisons with only a few subjectively selected data sets is not
only insufficient but also no longer inevitable. Science progressed and computers
have made statistical comparisons to the complete existing database and some of
the evidence from structures quite easy. The criteria of optimum model selection are
now discussed in detail.

1. Themathematical formof themodel should conform to aphysically based theory
and to principles of mechanics.

2. The model should achieve the lowest possible coefficients of variation of the
deviations of its predictions (root-mean-square error divided by the mean of data)
from a comprehensive database that includes all the relevant test data from
literature, except those that are suspect for some objective reason. The bias in
the distribution of data points, due to the crowding of data into short-time and
small-size ranges and to unsystematic sampling of measurement times, needs
to be counteracted by proper weighting of data in the least-square evaluation of
errors and in calibration of model parameters by optimal multivariate regression
of the database.

3. To verify the form of model equations, it is necessary to check how closely they
can fit individual test curves for one and the same concrete. Such curves have
far less scatter than the database in which data for many different concretes and
environmental conditions are mixed. Preference should be given to long-term
tests, which are more indicative of the general trends.

4. Due to the scarcity of long-term data from laboratory experiments, it is very
useful to consider statistics of errors in the predicted deflections and prestress
losses compared to in-situ measurements on creep-sensitive structures such
as large-span bridges or tall buildings. Such comparisons can provide valuable
hints on the accuracy of extrapolations from the range of available laboratory
data.

5. The model should have a form that allows updating of the model parameters by
short-time small-size test data for the given concrete and gives realistic extra-
polations to long times and large sizes. A form for which the updating can be
carried out easily (preferably by linear regression) is preferred.

Criterion 1 will be thoroughly discussed in Sect. 11.2. Criterion 2, introduced in
Bažant and Panula [175] after the compilation of the first comprehensive creep and
shrinkage database, has become almost the only validation method used in the com-
mittees developing the standard design recommendations and codes. Nevertheless,
criterion 3, which has often been ignored, is equally important because the huge
scatter in a database involving many different concretes obscures the shape of creep
and shrinkage curves.
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In view of the acute scarcity of multidecade laboratory tests, criterion 4, which
has been discussed in Chap.7, is essential for calibrating and validating the long-
time prediction capability. There have been many instances of excessive multidecade
deflections and cracking, as well as a few of collapses due to long-time buckling, but
precise data are usually not published and are hard to obtain. A salient example, the
deflections of the bridge in Palau, has been discussed in Chap.7. Even if long-time
data from measurements on structures are available, the interpretation faces several
difficulties:

1. Aside from creep and shrinkage, there may be many other factors that contributed
to poor long-time performance, and it might not be easy to sort them out.

2. Often many factors and many of the data needed for evaluation have not been
recorded.

3. Data for many similar structures, which would be needed for statistical evalua-
tions, are not available.

Nonetheless, partial multidecade deflection data have recently been obtained for 69
long-span prestressed box-girder bridges, many of them deflecting excessively. The
data made it possible to determine the ratio of 20-year deflection to 3-year deflection,
which is very useful for calibrating the parameters of model B3 (and B4) that control
long-term creep. In the laboratory database, the information on long-term creep is
almost nonexistent.

Finally, criterion 5 is important for practical applicability of the model. For
designer’s convenience, a low number of influencing factors in the model is con-
sidered highly desirable. So is a low number of parameters (or coefficients) in the
equations. However, since the computer evaluation of any prediction model nowa-
days takes only a fraction of a second, it appears inappropriate to omit any significant
parameter or factor expressly for this reason.

It is nevertheless important to keep low the number of those free parameters that
the user may wish to update by fitting of the limited data he might have. If one tries
to identify too many parameters from limited data, the least-square optimization
problem becomes ill-conditioned. The updating procedure recommended for model
B3 and described in Sect. 3.8 and Appendix H satisfies this limitation—it involves
only two free parameters for creep and two for shrinkage.

11.2 Theoretically Based Physical Justifications of Model
B3∗

Before calibration of any model by fitting available test data is attempted, it should
be made sure that the model is theoretically sound and physically justified to the
maximum possible extent.

http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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11.2.1 Overview of Mechanisms and Phenomena∗

The current understanding of creep and shrinkage of concrete does not suffice for
deriving the constitutive laws mathematically. However, the laboratory test data are
quite incomplete and cover only a small part of the range of interest. Particularly, the
data for modern concrete compositions, diverse environmental and curing histories,
multidecade behavior, and large cross-sectional sizes are scant and hard to obtain.
Yet it is useless to initiate a 100-year test of a new type of concrete that we need to
use now. This situation is very different from other aspects of concrete design, such
as the beam strength dependence on the steel ratio or shear span, the range of which
can be fully covered by experiments, thus obviating any need for a theory. To succeed
in formulating the constitutive law for creep and shrinkage, it is thus important that
various features of the constitutive law be justified as much as possible theoretically,
from physical phenomena that are reasonably well understood. Since most of the
phenomena have already been discussed in the preceding chapters, we will merely
summarize them, to portray the overall picture.

Currently, a number of physical requirements and mechanisms are already under-
stood sufficiently well to base on them the prediction model. There are essentially
seven physical mechanisms related to creep and shrinkage:

1. Solidification as a mechanism of aging, particularly at early times.
2. Microprestress relaxation as a mechanism of long-time aging.
3. Bond ruptures caused by stress-influenced thermal excitations controlled by acti-

vation energy.
4. Transport of pore water in various forms, including liquid and vapor phases and

surface diffusion.
5. Surface tension on nanoscale globules of C-S-H, capillarity, hindered adsorption,

and disjoining pressure in nanopores.
6. Cracking caused by self-equilibrated stresses and applied load.
7. Expansion of C-S-H during hydration (which can extend over many years due to

diffusion barriers) and the counteracting pore humidity changes causing autoge-
nous shrinkage. The importance of this mechanism is made clear in Bažant et al.
[125].

These mechanisms allow making inferences for the proper mathematical form of
the creep and shrinkage prediction model:

1. The drying shrinkage and drying creep are, according to many experiments,
approximately proportional to thewater loss from the specimen (Sect. 8.6),which
also implies boundedness of the drying shrinkage and of the drying part of creep.

2. The curves of water loss, drying shrinkage, and drying creep ought to begin as a
square root of time of drying, i.e., as

√
t − t0, and approach their final value as a

decaying exponential of a power function of time. It follows that approximations
of these curves can be obtained by asymptoticmatching of these asymptotic laws;
see Fig. 3.15.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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3. The halftimes of water loss, drying shrinkage, and drying creep should be pro-
portional to the square of the cross-sectional size (or effective thickness D); see
Sect. 8.3.5.

4. The dependence of effective thickness D on the cross-sectional shape ought to
follow the diffusion theory.

5. The penetration depths of cyclic environmental humidity and of cyclic temper-
ature ought to follow the diffusion theory.

6. The difference in cracking of compressed creep specimens and companion
shrinkage specimens explains that adsorption phenomena and microprestress
cannot be the sole source of drying creep (Pickett effect).

7. The requirement of nonnegative energy dissipation during the creep and shrink-
age process (Sect. 9.6 and Appendix G) restricts the form of rate-type creep laws
[84, 126, 139, 199].

8. Nonmonotonic creep recovery (i.e., a reversal of recovery, Sect. 9.6) and stress
relaxation to opposite sign (Sect. 9.7) should be avoided.

9. The absence of characteristic times for various processes is the reason for using
power functions (Sect. 9.4).

10. Microprestress relaxation is one phenomenon which can explain gradual multi-
year decrease of creep (Chaps. 3 and 9) even if the hydration becomes within
one year very small.

11. The rates of creep, shrinkage, and aging are controlled by Arrhenius-type tem-
perature dependence of the rate processes (Sect. 10.6.1).

11.2.2 Thermodynamic Restrictions∗

It suffices to summarize the main points, most of which have been covered by the
detailed exposition in Chap. 9:

1. The compliance function J (t, t ′) must be such that when it is approximated by
a Kelvin chain, its moduli Eμ(t ′) and viscosities ημ(t ′) are positive and nonde-
creasing functions of time.

2. Because the newly solidified material on the pore walls and the newly formed
bonds are stress-free when they form, the elastic moduli Eμ(t ′) must relate the
rates of the stress and strain, and not their values [84, 199].

3. Divergence of compliance curves for different t ′, which leads to nonmonotonic
recovery, is thermodynamically impossible for the Kelvin chain model. However,
an aging Maxwell chain that is thermodynamically admissible yet exhibits a
divergence of the compliance curves can be constructed (Example 9.2).

4. The stress relaxation curves should not reach into the opposite sign of stress. For
aging Maxwell chain, this is thermodynamically inadmissible.

All these properties are satisfied by the compliance functions of the solidification
theory and models B3 and B4, but some of them are violated by those of ACI, CEB,
fib, GL, and JSCE. For instance, as shown in Chap. 9, all these models under certain

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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circumstances exhibit divergence of creep curves (which leads to nonmonotonic
recovery), and the ACI and CEB models in some cases give stress relaxation into
opposite sign.

11.2.3 Microprestress Relaxation and the Question
of Characterizing Creep Aging by Strength Gain∗

As already explained in Chap.9, the age effect on the strength of concrete depends on
the evolution of hydration, which in turn depends on the global drying process and on
self-desiccation. Thus, the strength gain may terminate within one year (Fig. 9.2a),
or may proceed for many years, as documented for the concrete in the KB Bridge in
Palau. On the other hand, creep at fixed load duration always decreases with age for
many years.

Consequently, it is unrealistic to characterize the decrease of creep with age by the
strength gain function, as done in the GZ model [408]. The long-time aging cannot
be captured in such a manner, which is one basic objection to the GZ model.

A physical explanation of the long-term aging in creep is, at least partly, provided
by the relaxation ofmicroprestress produced in themicrostructure by unequal volume
changes of various constituents during the initial hydration [132] and further buildup
of microprestress caused by changes of moisture content; see Chap.10. However,
multiyear hydration (due to reduction of hydration rate by diffusion barriers around
cement grains) can also cause multiyear aging. More research is needed.

11.2.4 Activation Energy, Power Laws, and Lack of Bounds∗

If a physical process has no characteristic time, then its dependence on time must
be described by a power function, as follows from the scaling rule explained in
detail in Sect. 9.4. Unlike, e.g., drying, no characteristic times are known for the
physical process in concrete creep (slip due to bond breaks and restorations), and so
the function J (t, t ′) should be built from power functions. But any transition from a
power function for one process to another one for another process, of course, sets a
characteristic time.

The characteristic time must be distinguished from the setting of the unit to time,
the choice of which is arbitrary. However, the fact that Eq. (3.12) of model B3 needs
no time constant if it is writtenwith times given in days does imply that 1 day happens
to be a characteristic time (the same for λ0 set as 1 day in Eq. (9.18)). Were the times
given in years or in hours, a time constant representing a characteristic time would
have to be introduced in these equations.

The rate of creep as well as the rates of hydration and microprestress relaxation
are governed by the dominant activation energy for the breakage and restoration

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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of interatomic bonds. In this theory, called the rate process theory, the temperature
dependence is generally given by the Arrhenius formula of the type exp(−Q/RT ) in
which Q is the activation energy, T is the absolute temperature, and R is the universal
gas constant. The creep and the hydration are physically different processes, and so
they are governed by different activation energies.

The activation energy underlies, in model B3, the definition of the equivalent age,
also called the maturity (or equivalent hydration period). However, deeper inferences
can be made from the activation energy theory. AsWittmann argued [871, 873, 874],
under certain simplifying assumptions the activation energy theory suggests that the
short-time creep curves ought to be power curves.

Power laws exhibit no bounded asymptotic value. Many previous creep models
assumed that creep curves are bounded, but this is not confirmed by long-term exper-
iments. Particularly in the logarithmic scale, basic creep curves always end with a
straight line of significant slope, and there is no physical reason why this should
change for still longer load durations. The multidecade deflections of bridges evolve
logarithmically, but this could not be so if the compliance curve had a bound. It is
therefore safe to assume that basic creep has no bound.1

A long held hypothesis has been that a bound must exist for drying shrinkage and
drying creep, because they are driven by water loss and the amount of water to be lost
is finite. Since the amount of reactants (calcium silicates, calcium aluminates, and
calcium aluminoferrites) is finite, the autogenous shrinkage must have a bound, but
the bound might be reachable only after decades or centuries (depending on water
diffusion through the C-S-H barrier shells surrounding the remnants of unhydrated
cement grains and on water supply to the pores).

Remark on Shrinkage Asymptotics: Ongoing research, however, suggests a more
complicated picture. The changes in porewater stresses during drying (i.e., in disjoin-
ing pressure, solid surface tension and capillary water tension) must be equilibrated
by compressive stress changes in the solid skeleton of the hardened cement paste. The
drying shrinkage is the elastic volumetric compression of the solid skeleton caused
by these stress changes. However, it is inconceivable that these stresses would pro-
duce no nanoscale compressive volumetric creep. They must.

Were this creep the same as the creep due to external loading, the shrinkage would
be unbounded, terminating with a logarithmic growth in time. But the nanoscale vol-
umetric creep due to pore water stress changes has probablymuch smaller magnitude
and duration than the macroscale creep due to external hydrostatic pressure, for three
reasons: 1) The mechanism of creep in concrete, including volumetric creep, must
consist of the sliding of adjacent parallel C-S-H sheets, but it is doubtful that volumet-
ric pore water stresses, applied on these nanoscale sheets, could cause much sliding;

1This conclusion is reinforced by a comparison with rocks, which all creep on the geologic scale.
All the creep of concrete treated in this book is the primary creep, which, after a time called
the Maxwell time, always gradually transits into the secondary creep, characterized by a constant
rate. The Maxwell time could be thousands of years. A nanoscale mechanism explaining why this
transition is necessary for shale was proposed in [305]. It may also apply to concrete.
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2) the pore water stress changes act over only a portion of the cross section, defined
by a certain porosity factor that is probably significantly smaller than 1; and 3)
the nanoscale creep, unlike the usual, macroscale, creep, may be short-time and
bounded, i.e., have a retardation spectrum of limited breadth.

The last point may explain why the few long-time tests of drying shrinkage that
exist nevertheless suggest the existence of a final asymptotic bound, while the pres-
ence of at least some nanoscale creep due to pore water stresses can explain why
the approach to the final asymptotic value appears to be slower than the exponential
approach indicated by the diffusion theory.

The creep effect on shrinkage due to pore water stresses is ignored in this book
because it appears to be small, and because it has not been adequately researched.

11.2.5 Diffusion Theory for Pore Water∗

Several characteristic features, validated by experiments, can be inferred by applying
the diffusion theory to the migration of pore water. This is in spite of the fact that the
diffusion of water in concrete is highly nonlinear (because the diffusion coefficient
strongly decreases with a decreasing relative humidity in the pores).

11.2.5.1 Final Asymptotic Form and Boundedness of Drying Shrinkage
Curve∗

The drying shrinkage is caused by the loss of free porewater to the environment.After
all the moisture needed to restore thermodynamic equilibrium with the environment
has evaporated, the drying shrinkage must stop. So, because the water loss is finite,
the drying shrinkage should have a finite asymptotic value (if the creep due to pore
water stresses is bounded). This condition has been violated by some models, e.g.,
by a steep terminal slope in the original GZ model [408]. Tests by Wittmann et al.
[878] confirm that drying shrinkage does not terminate with a rising straight line of
significant slope in the semilogarithmic scale.

Further note that a part of shrinkage, called the autogenous shrinkage, is due to
chemical reactions causing self-desiccation. These reactions must eventually also
come to a stop once all the reacting constituents have reacted fully. But recent obser-
vations indicate that an asymptotic bound could be reached only after many decades.

Only few careful and statistically significant measurements had a long enough
duration to give information on the approach to the final drying shrinkage value; see
the data points in Fig. 3.3 [878] which have a high statistical significance because
they represent the average of 36 identical, precisely controlled shrinkage tests. On the
other hand, the existence of a final drying shrinkage value has been well documented
for hardened cement paste; thanks to the fact that the specimens can be made thin
enough to dry to an equilibrium water content within a short enough time, e.g.,
Wittmann [874]. Since the shrinkage of cement paste is what causes the shrinkage of



11.2 Theoretically Based Physical Justifications of Model B3∗ 507

concrete, it follows that the drying shrinkage of concrete, too, cannot be unbounded.
When the hardened cement paste in concrete stops shrinking, the concrete stops
shrinking.

11.2.5.2 Asymptotics of Shrinkage and Drying Creep Curves∗

As shown in Sect. 8.4.5.1, the diffusion theory implies that the shrinkage curve must
initially evolve as

√
t − t0 and must approach its asymptotic value as a decaying

exponential of the drying time [146]. These properties were supposed to be disturbed
by finiteness ofmoisture emissivity at the surface, by initial hairline shrinkage cracks,
and by possible deviation of local shrinkage rate from proportionality to the pore
humidity rate. Since the finiteness of emissivity is roughly equivalent to adding a
layer of 1mm thickness to the specimen surface, it does matter for thin cement
paste wafers. But experiments on concrete, especially those of Wittmann [874] and
Wittmann et al. [878], verify the initial square-root-time evolution very closely; see
Fig. 3.14. Models B3 and B4 satisfy these properties, while the ACI model and some
others do not.

According to ongoing research [125], the self-desiccation may significantly alter
the long-time asymptotics of shrinkage. For instance, multidecade self-desiccation
may prevent total shrinkage from approaching a final horizontal asymptote.

11.2.5.3 Shape Effect on Shrinkage∗

The diffusion theory makes it also possible to determine theoretically the factor ks
that gives the correction to the drying shrinkage halftime depending on the shape of
the cross section. Its theoretically calculated values (based on the plots in Bažant and
Najjar [166]) provide a good agreement with test data. They were adopted for models
B3 and B4 (and previously for model BP). A refinement that takes into account the
dependence of the shape factor on ambient humidity has recently been proposed by
Donmez and Bažant [356].

11.2.5.4 Drying Creep, Flow, and Aging or Nonaging Viscoelasticity∗

The diffusion source of drying creep further indicates that the additional creep due
to drying should be related to the drying shrinkage function, as formulated in models
B3 and B4 (in a manner that satisfies the nondivergence condition; see Sect. 9.6).
The initial and final shapes of the drying creep curves, as well as the effect of cross-
sectional thickness, should therefore be similar to the drying shrinkage curve shape.
This feature is reflected in models B3 and B4.

Furthermore, it is advantageous to separate in the creep formula the additive
components of creep having different physical origins and meanings, as will be
shown in Eq. (11.3).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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11.2.5.5 Effect of Environmental Humidity and Thickness∗

Since the environmental humidity represents a boundary condition for the diffu-
sion equation, and the solutions of the diffusion equation scale down if the value
of boundary humidity is reduced, the diffusion theory indicates that the influence
of environmental humidity should get manifested as a multiplicative factor in the
formula of the shrinkage curve (except for possible strong autogenous shrinkage).
Thus, a change in the environmental humidity should result in vertical scaling of the
shrinkage curve and of the drying creep curve.

Such scaling, which is verified by test results, contrasts with the effect of cross-
sectional thickness, which is manifested, in the semilogarithmic plot, by horizontal
shifts of the shrinkage curve and of the part of the creep curve attributed to drying.

11.2.6 Effect of Cracking∗

The tensile stresses caused by nonuniformity of drying throughout the cross section
are known to produce tensile cracking. The cracking causes the observed shrinkage
of specimens to be less than the true shrinkage of the material. This difference is one
cause of the drying creep effect (Pickett effect).

Although generally the effects of cracking seem hard to quantify by simple for-
mulas, they have to be taken into account in finite element analysis. Since cracking
contributes an additional deformation, the drying creep should properly be taken into
account as an additive term rather than a multiplicative term. This is what is done in
models B3 and B4.

11.3 Statistical Aspects of Model Calibration
and Validation

11.3.1 Unbiased Statistical Verification of Model

Criterion 2 postulated in Sect. 11.1 means that comparisons should not be restricted
to a limited set of test data. Unless the test data used for comparison are chosen truly
randomly (e.g., by casting dice, or by a random number generator), the statistics can
get blatantly slanted by using a selected data set. This was demonstrated by examples
in Bažant and Panula [177]. They showed that:

• when 25 most favorable data sets among 36 data sets for shrinkage (available in
the literature by 1980) were selected, the coefficient of variation of the model
errors (defined as the root-mean-square error divided by the mean of all data) was
reduced from 31.6 to 21.5%, and when 8 most favorable data sets were selected,
it was reduced to 8.7%;
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• when 8 most favorable data sets among 12 available data sets for creep were
selected, the coefficient of variation was reduced from 52.2 to 20.7%. Yet 8 data
sets in a paper would impress most readers as plentiful.

These huge changes in error statistics clearly show the danger of making a subjective
selection of the data sets to which a model should be compared. Unfortunately, such
bias is often found in the literature. Most often this bias is unintended, but sometimes
it is too tempting to say that “something must have gone wrong” with the tests that
do not agree with a proposed formula.

For more detail and the choice of statistical indicators, see Sects. 11.4 and 11.5
and Appendix K.

11.3.2 Importance of Validating Model Form by Individual
Tests on Many Different Concretes∗

Comparisons with the complete database can serve only as a partial validation of a
model. The reason is that there are large random differences among data for different
concretes from different laboratories. When they are all mixed in one and the same
database, the scatter band is inevitably very wide. The scatter due to differences
among concretes overwhelms the scatter of creep per se. One consequence is that a
reasonable curve such as A in Fig. 11.1a does not give an appreciably lower coefficient
of variation of the deviations from the test data than a totally unreasonable curve such
as B.

Comparisons with the complete database are insufficient to validate the shape
of the curves of the model. It is necessary to check that the shape of the curves of
a proposed model can fit closely the experimental curves from various individual
tests, for which a much narrower scatter band is achievable (Fig. 11.1b).

A physical justification of the mathematical formula of the model is important
because its practical use inescapably implies extrapolations far out of the range of
the main existing evidence. One serious deficiency of the existing databases is that
most of the data points pertain to relatively short creep durations. For the NU 2014
database [488], the number of tests is plotted against the duration they reach or exceed
in Fig. 11.2. Only 5.2% of all creep tests exceed 6years in duration, only 3.5% attain
12years, and only 1.8% attain 18years while large bridges and other large structures
are supposed to have the lifetimes of at least 100years. The data of Brooks [267]
cover 30years of creep, but some of his creep and shrinkage curves suddenly change
slope or exhibit jumps and oscillations after about 6years of loading or drying and
thus are not totally trustworthy. In his paper, Brooks admits that “after five years the
air conditioning began to malfunction and was eventually replaced after ten years.”
The article of Browne and Bamforth [272] has “12 1/2years” in the title, but it is
only an abstract, with no data.

Consequently, blind statistics based on the comprehensive database imply
improper weighting of the data, with a far greater weight put on the data for short
times, short ages, and small thicknesses than for long times (Fig. 11.1c), high ages,
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Fig. 11.1 (a) Due to a very high scatter band width when all the existing data are combined,
reasonable (A) and unreasonable (B) curves have about the same coefficient of variation of errors,
(b) a narrow scatter band width achievable only for individual tests, (c) the majority of existing test
data is concentrated at short times (short creep durations and low ages at loading)
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and large thicknesses, while the latter is what is most important. One way to mitigate
it is to conduct multivariate regression (linear or nonlinear) with bias-countering
weights. But this requires introducing a theoretically well-founded mathematical
model, which may be questioned or distrusted by some. Another way, which requires
no model, is to consider subsequent decades of time and assign each data point a
weight inversely proportional to the number of points in that decade, as presented for
several models in Sect. 11.5.2. However, if one evaluates the averages of secondary
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Fig. 11.3 Residuals (errors) ofACImodel normalized byweightedmean, compared to all the data in
the NU database: (a) shrinkage, original model, (b) shrinkage, perturbedmodel with α = 90×10−6,
(c) creep, original model, (d) creep, perturbed model with α′ = 13.0 × 10−6/MPa

parameters such as the strength, humidity, thickness, or age at loading in subsequent
decades of load duration, one finds that they vary significantly from one decade to the
next. Therefore, the database should better be filtered to extract data subbases such
that the averages of the secondary parameters be the same in each time decade (this
has not yet been done for creep or shrinkage, but has been successful in revealing
purely statistically the trend of size effect on structural strength).

To make it blatantly conspicuous how the scatter due to differences among dif-
ferent concretes covers up the underlying statistical trends of creep or shrinkage,
Figs. 11.3 and 11.4 present an artificial example (of an obviously erroneous model),
used by Bažant, Wendner, Boumakis and Hubler [195] to invalidate one researcher’s
claim that the 1971 ACI-209 model was still the best. Figure11.3 compares the
residuals (or errors) of the ACI-209 shrinkage curves and compliance curves when
these curves either are, or are not, perturbed by large (nonsensical) vertical sinusoidal
oscillations with random horizontal shifts (Fig. 11.4). All the residuals (i.e., errors,
predictions minus the measurements) are normalized by the weighted mean of the
experimental curve. Weights inversely proportional to the number of data points in
subsequent constant intervals of log(t − t ′) are used, to compensate for the data
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Fig. 11.4 Typical plots of (a) shrinkage strains and (b) creep compliance as predicted by the ACI
model, with perturbations (dashed lines) and without them (solid lines)

density bias. The perturbations are

Δεsh(t) = α sin[2π(log t − s)] (11.1)

ΔJ (t, t ′) = α′ sin[2π(log t − s)] (11.2)

Computations have been run using α = 90 × 10−6 for shrinkage and α′ =
13.0 × 10−6/MPa for creep, with t in days. The random phase shift s, with uni-
form distribution in (−0.5, 0.5), prevents bias due to the location of inflexion points.

The errors (or residuals) of the curves compared to the points of the NU 2014
database [488] are computed and then plotted in Fig. 11.3a,c as a function of logarith-
mic time for all the data sets contained within the database. Ditto for the perturbed
curves in Fig. 11.3b,d. The perturbation is found to change the coefficients of vari-
ation (C.o.V.) of the errors (root-mean-square error divided by the data mean) only
marginally, for shrinkage from 0.63 to 0.66 and for creep from 0.60 to 0.64. Obvi-
ously, the overall statistics of the database cannot distinguish a nonsensical model
from a realistic one. How could it then be trusted for comparing various models?

The ACI-209 model cannot be used for extrapolation of short-time tests to long
times, to larger thicknesses, to higher ages at loading, and to higher temperatures, and
especially not for modern high-performance concretes. If used in design for lifetimes
exceeding 20years, it is likely to lead to structural damage.

11.3.3 Need for Short-Time Data Extrapolation by Linear
Regression

The need to keep the extrapolation of short-time test data simply means that all or
most of the free (adjustable) parameters of the model should be involved linearly,
so as to allow linear regression. This is the only foolproof, unambiguous method of
data fitting, a method that always works and a method that always gives a unique
answer.
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Model B3, as well as B4, has been constructed so that all its 5 free (adjustable)
parameters governing the basic creep and the drying creep (parameters q1, q2, q3, q4
and q5) be involved linearly. Its compliance function has the general form

J (t, t ′) = q1
︸︷︷︸

asymptotic elastic

+ q2 Q(t, t ′)
︸ ︷︷ ︸

aging viscoelastic

+ q3 ln[1 + (t − t ′)n]
︸ ︷︷ ︸

nonaging viscoelastic

+ q4 ln(t/t ′)
︸ ︷︷ ︸

aging flow

+ q5 F(t, t ′; t0, henv, D)
︸ ︷︷ ︸

drying creep

(11.3)

where the individual terms represent physicallywell-identifiable distinct components
of creep, and the functions multiplying individual parameters qi are fixed and do not
have to be changed in fitting the test data for any concrete, probably not even high-
strength or lightweight concrete. Recall that t is the current time, t ′ is the age at the
application of sustained stress, Q(t, t ′) is a fixed function given by (3.12), n = 0.1,
and F is a function that depends on factors influencing the drying process, such as
the time at the onset of drying, t0, environmental humidity, henv, and the effective
thickness of the concrete part, D.

By contrast, the ACI, CEB, and GL models have the basic form

J (t, t ′) = p1E28/E(t ′)
︸ ︷︷ ︸

conventional elastic

+ p2 G(t, t ′; t0, henv, D, p3, p4...)
︸ ︷︷ ︸

all creep

(11.4)

in which p1 and p2 are parameters of the model, G is a nonlinear function, E28 =
chosen reference value (for age t ′ = 28 days) of the elastic modulus, and E(t ′) =
assumed static modulus of elasticity, which corresponds (according to ACI formula
(3.5) for estimating the elastic modulus from strength) to the loading duration of
about 0.01day and has a given dependence on age t ′ of concrete; p1 in this case
represents the value of the conventional elastic compliance at the age of 28days
giving the best fit of the given creep data. Specific forms of function G for individual
models can be deduced from the description and equations inAppendix E. In theACI,
CEB and other models, there are, of course, further parameters (in (11.4) denoted
by the general symbols p3, p4) which could be modified, but they would require
nonlinear regression. None of these models has five parameters identifiable by linear
regression.

An experimentally proven feature of models B3 and B4, which simplifies the
formulation but is not exploited to advantage in the ACI, CEB, fib and GL models,
is the fact that if the curves of J (t, t ′) for various ages t ′ at loading, plotted as
functions of (t − t ′)n , are extrapolated leftward, they all meet approximately at one
point corresponding to q1 (see Fig. 3.5 in Chap.3). The load duration at which this
value gets approached is too short to have any practical meaning. It corresponds to
a hypothetical, truly instantaneous elastic compliance, whose inverse is called the
asymptotic modulus.

The physical explanation is that the creep process has been found to possess no
characteristic time below which the creep would cease to exist (in other words, the

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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retardation spectrum is continuous and nonzero into the shortest durations). By virtue
of this fact, the term with q1 in (11.3) is constant. But the term with p1 in (11.4)
is not, which unnecessarily increases the number of parameters (and also makes it
impossible to capture creep for very short times, although this is not of concern to
engineers interested in long-life design).

In (11.4), only one elastic parameter, p1, and only one creep parameter, namely
the overall multiplying factor p2, are involved linearly, while the others are not. This
nonlinearity, and the lack of separation of the compliance function into its additive
components of different physical meanings, is an impediment to using the ACI, CEB,
or GL model for extrapolating given short-time data and for updating the model by
fitting it to the given limited data for the given particular concrete. However, in
the final version of the fib Model Code 2010, the basic and drying creep are split
additively, i.e., linearly superposed.

In passing, it may be noted that a linear regression has three potent advantages
over a nonlinear one:

1. it is much easier to carry out;
2. a solution is always obtained and is unique, while nonlinear regression might not

converge or might converge to a solution corresponding to a local rather than
global minimum of the error; and

3. the statistics such as the correlation coefficient or the coefficient of variation of
errors are clear and easily obtained.

Figures3.21 and H.2–H.3 show examples of extrapolation exercises in which it
was pretended that only the initial data points from long-range measurements were
known. For creep they are successful, but for shrinkage only sometimes. The reason
probably is that separation of the drying shrinkage from the autogenous shrinkage
in the specimen core before it dries needs to be better understood and would require
a more refined experimental approach.

11.4 Statistical Methods Applied to Model Evaluation

FollowingmostlyBažant andLi [161], this section addresses the problemof selecting
the most realistic creep and shrinkage prediction model solely on the basis of a large
experimental database. In Sect. 11.5.2, comparisons with individual experimental
curves, which have relatively low scatter, are used to validate the shape of the creep
and shrinkage curves of models B3 and B4.

The statistical evaluation based on an experimental database [160] should follow a
well-known standardmethod [224, 229, 330, 398], whose outcome should be almost
unique. However, much confusion has been caused by the use of various nonstandard
statistical methods [14, 407, 408, 641]. The result was that a model rated as superior
according to one statistical method was rated as inferior according to another.

Are all the statistical methods used in various creep and shrinkage studies correct?
Most of them are not. In the case of creep and shrinkage, in which one deals with

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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central-range statistics of errors (and not with the far-out distribution tail which mat-
ters for structural safety), it is actually clear what is the correct statistical approach.
It is the method of least squares—the standard method which, as shown by Gauss
[411], maximizes the likelihood function and is consistent with the central limit
theorem of the theory of probability [248, 285, 384]. There are, of course, many
debatable points, but they concern only the details such as the sampling and weight-
ing of data, transformation of random variables, or the relevance and admissibility of
data, rather than the least-square statistical indicator per se. This chapter will present
correct statistical comparisons of the main prediction models for creep and shrinkage
of concrete, and explain why various nonstandard statistical indicators have led to
dubious conclusions. Five models will be considered:

1. Model B3, which was approved as the international RILEM Recommendation
[104] and later slightly updated [107]. This model is a refinement of model BP
[175] and of its improvement known as model BP-KX [148, 151] and is featured
in 2008 ACI Guide [14].

2. ACI model [11], based on 1960s research [253, 254], which was reapproved in
2008 [14].

3. Model of Comité Euro-International du Béton, labelled CEB, which is based on
the work of Müller and Hilsdorf [641]. It was adopted in 1990 by CEB [322]
and updated in 1999 by fib [390], was co-opted in 2002 for Eurocode 2, and is
featured in 2008 ACI Guide [14].

4. Gardner and Lockman’s model, labelledGL [407], which is featured in 2008 ACI
Guide [14].

5. Gardner’s earlier model, labelled GZ [408].

Sakata’s model [748, 749] will be omitted from consideration. Also omitted will be
the oversimplified old models of Dischinger, Illston, Nielsen, Rüsch and Jungwirth,
Mörsch, Maslov, Arutyunyan, Aleksandrovskii, Ulickii, Gvozdev, Prokopovich, and
others, conceived during 1935–1970 [66, 80, 87, 126].

The first comprehensive database, comprising about 400 creep tests and about 300
shrinkage tests, was compiled at Northwestern University in 1978 [175], mostly from
American and European tests. In collaboration with CEB, begun at the 1980 Rüsch
Workshop [323], this database was slightly expanded by an ACI-209 subcommittee
chaired by L. Panula. A further slight expansion was undertaken in a subcommittee
of RILEMTC-107, chaired by H.Müller. It led to what became known as the RILEM
database [638, 640, 641], which contained 518 creep tests and 426 shrinkage tests.
A reduced database, consisting of 166 creep tests and 106 shrinkage tests extracted
from the RILEM database, was used in Gardner’s studies [405–407]. Subsequently,
an enlarged database, namedNU-ITI database [160] and consisting of 621 creep tests
and 490 shrinkage tests, was assembled in the Infrastructure Technology Institute of
Northwestern University by adding some Japanese and Czech data. After an addi-
tional major expansion, the new NU database contains 1403 creep curves and 1809
shrinkage curves and covers also the effect of various kinds of admixtures [488].
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Fig. 11.5 Scatter plots of the measured versus predicted values of (a) creep and (b) shrinkage
(dashed lines are regression lines and ρ is the correlation coefficient)

Among concrete researchers, twomethods to validate amodel have gained wide
popularity:

1. In one method, the measured values yk (k = 1, 2, . . . n) from an experimental
database are plotted against the corresponding model predictions Yk (Fig. 11.5).

2. In the other, the errors ek = yk − Yk are plotted against the independent variable,
in this case the time [25, 26, 616].

If the model were perfect and the tests scatter-free, the first method would give
a straight line of slope 1, and the second a horizontal line of ordinate 0. Figure11.5
shows examples of plots based on the first method for some of the aforementioned
models and the NU-ITI database. One immediately notes that, in this kind of com-
parison, there is relatively little difference among the prediction models examined,
even among those which are known to give very different long-time predictions (e.g.,
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Fig. 11.6 Distribution of creep input parameters in the NU database

ACI and B3).2 These plots demonstrate the spread of scatter, but are not effective for
our purpose. Several shortcomings have been pointed out:

1. The statistical trends in time, age, thickness, etc., are not reflected in such plots.
2. The statistics are dominated by the data for short times t−t ′, low ages t ′ at loading,

and small specimen sizes D, while predictions for long times are of main interest
for practice. This is due to highly nonuniform data distributions evident from the

2The same is true for a variant of the second method, popular with concrete researchers, where the
ratio rk = yk/Yk is plotted versus time, for which, if the model were perfect and the tests scatter-
free, one would ideally get a horizontal plot rk = 1 (see Fig. 11.9a). For problems with such kind
of statistics, see the comments on Eqs. (K.8)–(K.9) in Appendix K. Although the plots of residuals
reduced to population statistics (Fig. 11.9a) have been popular in the literature, the plots showing
the data trend, as in Fig. 11.9b, are far more informative.
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Fig. 11.7 Distribution of shrinkage input parameters in the NU database

histograms in Figs. 11.6 and 11.7. Note that, while in the top left histogram in
Fig. 11.6, the actual t of each particular data point is considered; in the bottom
left, all the tests running at least until t are included. This could make a false
impression of having many very short tests, but actually the first column reflects
all the tests, including long ones.

3. Because of their longer test durations and high creep and shrinkage, the statistics
are also dominated by the data for old low-strength concretes not in use any more.
Long-duration tests of modern high-strength concretes, which creep little, are still
rare, as documented by Fig. 11.6.

4. The variability of concrete composition and other parameters in the database
causes enormous scatter masking the scatter of creep and shrinkage evolution.

If the worldwide testing in the past could have been planned centrally, so as
to follow the proper statistical design of experiments, the chosen sampling of the
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relevant parameters and reading times of creep and shrinkage tests would have been
completely different than found in the databases. One must compensate for these
deficiencies.

If the time, age, and specimen size are transformed to variables that make the
trends uniform and the data set almost homoscedastic [37], and if these variables are
subdivided into intervals of equal importance, the number of tests and the number of
data points within each interval should ideally be about the same. However, this is
far from true for every existing database (Figs. 11.6 and 11.7). There is nonetheless
no choice but to extract the best information possible from the imperfect database
that exists.

11.4.1 Suppressing Database Bias Due to Nonuniform
Sampling of Parameter Ranges

FromFigs. 11.6 and11.7, showing the histogramsof the existing data fromworldwide
testing, it is seen that their distribution in the existing database is highly nonuniform.
This nonuniformity is not an objective property but a result of human choice. It thus
leads to a bias in data evaluation.

Fig. 11.8 Sketches explaining subdivision of database variables into (a) one-dimensional intervals
and (b) two-dimensional boxes of equal importance; figure originally published in ACI Materials
Journal, Nov-Dec 2008

This bias must be counteracted by proper weighting of the data. To this end, one
may first subdivide the load duration t−t ′, age at loading t ′, effective specimen thick-
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Fig. 11.9 Sketches explaining the difference between (a) ensemble (or population) statistics and
(b) regression statistics

ness D, and environmental humidity henv into intervals of roughly equal importance,
which ought to have approximately the same weight in the statistical evaluation (in
shrinkage tests, the age at loading, t ′, is replaced by the age at the start of drying, t0).
This is achieved by subdividing log(t − t ′) into equal intervals in the logarithmic
scale (Fig. 11.8a), which means that the subdivisions of t − t ′ form a geometric
progression. The reason for this kind of subdivision into intervals is twofold:

1. One reason, already invoked, is that the least-square statistical regression gives
best resultswhen conducted in variables inwhich the data appear as approximately
homoscedastic, i.e., have an approximately uniform conditional variance about
the regression line [36, 285]. Plotting the creep or shrinkage data in terms of the
load duration t − t ′ or drying duration t − t0, one finds the data to be markedly
heteroscedastic, with a variance rapidly decreasing in time. To make them nearly
homoscedastic, transformation of the variables is the standard approach [37]. As
is generally the case when the relative, rather than absolute, changes of response
matter, this transformation happens to be achieved by taking a logarithm of the
random variable.

2. Because shrinkage and creep at constant load are decaying processes, a time
increment of, say, 10daysmakesmuch differencewhen the test duration is 10days
but little difference when it is 1000days. In other words, intervals forming an
arithmetic progression cannot have equal importance. By contrast, tripling the
duration is about equally important in both cases, and this corresponds to intervals
of equal length, log 3, in the logarithmic scale.

A similar argument can be made in regard to the effective thickness (or size)
D of the cross section, defined as D = 2V/Se = 2× volume/surface ratio of the
specimen. Since a uniform coverage of the shrinkage halftimes is desirable, and since
τsh ∝ D2, the proper coordinate transformation is from D to D2. This transformation
is indicated by the diffusion theory (Chap.8), which shows that the halftime of drying
(or shrinkage) is proportional to D2. As for the environmental humidity henv, no
transformation seems necessary, although small uniform intervals of henv are not
possible because of gaps in the distribution of henv in the database.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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For creep, there are four independent variables which need to be subdivided into
intervals of equal statistical weight: t − t ′, t ′, D, and henv; for shrinkage, also four:
t − t0, t0, D, and henv.

Ideally, all these subdivisions should be introduced simultaneously, which creates
manymultidimensional subdomains (or hypercubes), henceforth called ‘boxes’.With
four independent variables, the boxes are four-dimensional. Their use, however, runs
into a difficulty: For the database that exists, it appears that the number of data
points in many of the four-dimensional boxes is 0. No statistics can be taken for such
boxes, and so these boxes have to be deleted. But deletion of different boxes from
the evaluations of different data sets implies the relative weights of various data sets
to be unequal. Since boxes of lesser dimensions have a lesser chance of containing
no points or too few points, two-dimensional boxes of log(t − t ′) and henv for creep
(Fig. 11.8b), and log(t − t0) and D2 for shrinkage appear to be preferable over three-
or four-dimensional boxes.

Should differences inweights be also considered for data sets obtained on different
concretes and in different laboratories? Maybe they should, but this would be a
subjective judgment exposed to criticism. Besides, such differences inweights would
certainly be much smaller than an order of magnitude. This makes introduction of
such weights unimportant in comparison with the weights wi for the data boxes,
which must differ by more than one order of magnitude in order to compensate for
the huge differences in the number of data points in different boxes.

Another debatable point is whether the boxes for long creep or shrinkage durations
should not actually receive a greater weight than those for short durations. Probably
they should, since accuracy of multidecade prediction is most important.

11.4.2 Reducing Anti-High-Strength Bias

The tests of old types of concretes with high water-cement ratios, lacking modern
admixtures, dominate the database. Of little relevance though such concretes are
today, these tests cannot be ignored because they supply most of the information on
very long creep and shrinkage durations. Besides, these tests are not irrelevant for
our purpose because the time curves for low- and high-strength concretes are known
to have similar shapes. This is not surprising since, in both, the sole cause of creep
is the calcium silicate hydrate. The difference resides mainly in the scaling of creep
and shrinkage magnitudes. This scaling depends strongly on the water-cement ratio
and admixtures, in a way that is not yet predictable mathematically.

Therefore, the data for old kinds of concrete must be used. But their bias must be
counteracted. Since the overall magnitude of creep and shrinkage strains is roughly
proportional to the elastic compliance, and since the elastic modulus is roughly
proportional to the square root of strength, we can reduce the bias by scaling all the
measured compliances and shrinkage strains y in inverse proportion to

√

f̄c where
f̄c is the cylindrical compressive strength. The measured compliance and shrinkage
data y may thus be replaced by the adjusted values
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ỹ = y

√

f 0c
f̄c

(11.5)

where f 0c = 5000 psi = 34.5MPa is a reference strength introduced to retain con-
venient dimensions.

11.4.3 Standard Least-Square Regression Statistics
of the Database

Based on the subdivision into boxes of equal importance, the weighted standard
error s of the prediction model (representing the standard error of regression) is
defined as [36, 285, 446]

s =
√

√

√

√

N

N − p

1

n

n
∑

i=1

1

mi

mi
∑

j=1

(

yi j − Yi j
)2

(11.6)

where n = number of boxes; mi = number of data points in box number i ; N =
∑n

i=1 mi = number of all the data points in the database; p = number of input
parameters of the model (p ≤ 12 for model B3); yi j = measured creep or shrinkage
data of which the database is comprised; Yi j = corresponding model predictions;
and yi j − Yi j = ei j = errors of the predictions.

Since N � p, the multiplier N/(N − p) in (11.6) is very close to 1 and could thus
be dropped. This multiplier serves to eliminate a different kind of bias, namely, to
prevent the variance of regression errors of the databasewith a finite number N of data
points from being systematically smaller than the variance of a theoretical database
with N → ∞ [36, 446]. Another reason why this multiplier is mathematically
necessary is that p points can in theory be fitted exactly, so that only the remaining
N − p points contribute to s. To counteract the human bias in sampling, the statistical
weights 1/mi of the individual data points in each box are chosen as inversely
proportional to the number mi of data points in that box.

To compare variousmodels, it is convenient to use dimensionless statistical indica-
tors of scatter, e.g., the coefficient of variation (C.o.V.) of regression errors, defined as

ω = s

ȳ
(11.7)

where

ȳ = 1

n

n
∑

i=1

1

mi

mi
∑

j=1

yi j (11.8)

is the weighted mean of all the measured values yi j in the database. The coefficient of
variation, ω, which should be minimized, characterizes the ratio of the scatter band
width to the data mean. For a model that gives predictions in perfect agreement with
the measured data, it would be equal to zero.
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11.4.4 Bias Due to Different Density of Readings

It should be mentioned that another type of bias arises from differences in the density
of readings in time. For instance, one over-diligent experimenter might crowd 1000
readings into the time interval from 1000 to 2000days and another experimenter
might be satisfied with only 3 readings in that same interval. Obviously, 3 readings
suffice and 1000 readings are superfluous. If not compensated, the data with 1000
readings will dominate the statistical comparisons and the data with 3 readings will
be rendered almost irrelevant. To compensate for this kind of bias, Bažant and Panula
[175] smoothed (by hand) each experimental time curve and placed on it two data
points per decade in the logarithmic scale. The hand smoothing, admittedly, reduced
the C.o.V., though only slightly (especially compared to differences among different
concretes) and introduced a certain subjective bias (this bias could have been avoided
by fitting local groups of points by a polynomial, but the gain in the accuracy of C.o.V.
would have been negligible).

Consider that the experimental curves labelled as j = 1, 2, . . . Ni within interval
i contain very different numbers of data points. The corresponding bias may be
suppressed by redefining the formulae for weighted averaging as follows:

ȳ = 1

n

n
∑

i=1

1

Ni

Ni
∑

j=1

1

li j

li j
∑

k=1

yi jk (11.9)
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√

√

√

√
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1
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(yi jk − Yi jk)2 (11.10)

Here, subscripts i refer to the interval or box, j to the test (author), and k to the
data point, and li j is the number of data points on curve number j within interval i .
However, in the statistics reported in Bažant and Li [161] and here, this correction
was not carried out. The reason is that the differences were not large, and thus, the
potential gain in accuracy of comparisons seemed to be quite small.

11.5 Statistical Comparison of Creep and Shrinkage
Models

11.5.1 Model Evaluation by Standard Regression Statistics

Although a new greatly expanded database [488] has been compiled by the time
of publication, it will suffice to illustrate the procedure using the previous NU-ITI
database [160]. Bažant and Li [161] used this database to evaluate the coefficients
of variation ω of the five aforementioned prediction models. Their results are sum-
marized in Table11.1, with all values of ω expressed as percentage.



524 11 Physical and Statistical Justifications of Models B3 and B4 …

The comparison in Table11.1 is based on one-dimensional boxes (intervals), two-
dimensional boxes, and three-dimensional boxes (cubes). Four-dimensional boxes,
which numbered 1400 for compliance and 1120 for shrinkage, have also been tried
but found statistically useless becausemore than half of themwere empty. In addition
to the actual compliance and shrinkage, the evaluation has been done for their relative
values, defined as J (t, t ′)/Jref and εsh(t, t0)/εsh,ref where Jref is the compliance for
t − t ′ = 3 days and εsh,ref is the shrinkage for 28days of drying. The table presents
results without the adjustment removing the strength bias. The adjustment turns out
to have a relatively weak influence on the results and does not affect the ranking
of individual models. For instance, for two-dimensional boxes, the coefficients of
variation of the error in compliance prediction before and after strength bias removal
would be 27.3% versus 27.0% for B3, 42.6% versus 42.3% for ACI, 31.0% versus
31.8% for CEB, 30.2% versus 28.8% for GL, and 41.9% versus 39.6% for GZ.

Table 11.1 Coefficients of variation of errors (expressed as percentage) of various prediction
models

Compliance Relative compliance

B3 ACI CEB GL GZ B3 ACI CEB GL GZ

5 intervals, log(t − t ′) 26.2 41.9 29.7 28.5 43.8 26.4 66.0 33.0 29.8 32.9

4 intervals, log t ′ 27.4 37.1 29.9 28.8 48.2 26.9 74.3 33.3 30.5 33.0

10 intervals, henv 24.4 44.2 29.0 30.7 44.6 21.0 52.6 28.0 25.4 28.6

50 boxes, log(t − t ′), henv 27.3 42.6 31.0 30.2 41.9 23.8 55.0 30.2 27.6 31.8

200 cubes, log(t − t ′),
log t ′, henv

28.3 38.8 30.6 28.5 39.5 24.4 59.0 29.3 27.3 35.7

Shrinkage Relative shrinkage

B3 ACI CEB GL GZ B3 ACI CEB GL GZ

4 intervals, log(t − t0) 29.4 40.8 48.0 37.7 49.3 34.5 49.5 46.0 43.3 54.7

4 intervals, log t0 42.8 48.6 56.0 53.9 64.2 44.9 52.8 57.6 54.0 64.7

10 intervals, henv 38.4 52.0 46.9 54.4 46.6 41.6 55.6 43.0 41.9 45.6

In all these comparisons,model B3 is seen to be the best, except for one casewhere
it is one of two equal best. As the second best comes out Gardner’s newer model GL
[407], which modifies his original model GZ [408] by co-opting two key aspects of
model BP [175], namely the shrinkage function and the quadratic dependence on the
size or volume–surface ratio. Considerably worse but the third best overall is seen
to be the CEB model. The current ACI-209 model [11], established on the basis of
1960s research and reapproved in 2008 [14], comes out as the worst in creep and
second worst in shrinkage, which is not surprising since it is the oldest.

11.5.2 Statistical Justification of Model B3

The original statistical justification and calibration of the B3 model [105] used the
same least-square statistics as just described with one exception in weighting (and so
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did, to a large extent, the justification of the BP model by Bažant and Panula [176]).
The C.o.V. of regression errors was evaluated separately, with proper weights, for
the data of each author and was denoted ωr for author number r . Assuming the
distribution of errors to be approximately Gaussian when the concrete type is varied,
one should combine the individual ωr values to get the overall C.o.V. according to
the root-mean-square rule

ωall =
√

√

√

√
1

Nr

Nr
∑

r=1

ωr
2 (11.11)

where Nr is the total number of authors. This definition of C.o.V. is more egalitarian,
since it ascribes the same weight to each author’s data set. On the other hand, defi-
nition (11.6)–(11.7) used by Bažant and Li [161] ascribes the same weight to each
test curve, which means that the author who conducted more tests receives greater
weight. But the difference between these two definitions seems to have only a minor
effect on the statistics. Another difference of the original statistics of Bažant and

Table 11.2 Example fromBažant and Baweja [105] of coefficients of variation of errors (expressed
as percentage) of shrinkage predictions for three classical models, evaluated separately for test data
sets of 21 authors, and coefficients of variation implying the same weight for each data set

B3 ACI CEB

1. Hummel et al. [498] 27.0 30.0 58.7

2. Rüsch [744] 31.1 35.2 44.8

3. Wesche et al. [862] 38.4 24.0 36.1

4. Rüsch et al. [746] 34.7 13.7 27.8

5. Wischers and Dahms [869] 20.5 27.3 35.9

6. Hansen and Mattock [453] 16.5 52.9 81.5

7. Keeton [538] 28.9 120.6 48.3

8. Troxell et al. [817] 34.1 36.8 47.4

9. Aschl and Stökl [41] 57.2 61.3 44.2

10. Stökl [790] 33.0 19.5 29.6

11. L’Hermite et al. [580] 66.7 123.1 69.4

12. York et al. [887] 30.6 42.8 8.9

13. Hilsdorf [482] 11.7 24.7 29.6

14. L’Hermite and Mamillan [576–579] 46.1 58.7 45.5

15. Wallo et al. [848] 22.0 33.0 55.6

16. Lambotte and Mommens [563] 39.1 30.7 31.3

17. Weigler and Karl [855] 31.3 29.6 21.3

18. Wittmann et al. [878] 23.7 65.4 40.0

19. Ngab et al. [655] 20.4 45.3 64.6

20. McDonald [617] 5.1 68.8 21.4

21. Russell and Burg [747] 38.5 51.0 58.1

ωall = √∑

r ω2
r /Nr 34.3 55.3 46.3
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Panula [176] and of Bažant and Baweja [105] is that they were conducted on smaller
databases.

Bažant and Baweja’s [105] statistics of the errors of model B3 for shrinkage
compared to the test data sets in the RILEM database are presented in Table11.2
separately for each author (a similar table with fewer data was published by Bažant
and Panula [175] for the BP model). For comparison, the statistics of errors of the
ACI model and the CEB model are also included. Analogous tables can be found
in Bažant and Baweja [105] for basic creep, creep at drying, and creep at elevated
temperature. The overall coefficients of variation are summarized in Table11.3.

Table 11.3 Overall coefficients of variation of errors (expressed as percentage) of creep predictions
evaluated for three classical models by Bažant and Baweja [105]

BP ACI CEB

Basic creep 23.6 58.1 35.0

Creep at drying 23.0 44.5 32.4

Creep at elevated temperature 28.1 − −

The scatter of shrinkage (and drying creep) data is generally higher than the scatter
of basic creep. One cause is the differences in the method of measuring shrinkage,
which was not reported for many data. Some measurements were made along the
axis of the cylinder, others on the surface, and the gage length sometimes reached
close to the ends of the specimen, sometimes not [20]. In many tests, the ends of
cylinders or prisms were not sealed, which caused shrinkage warping at the ends,
and the specimens were not long enough, and gauge points are not far enough from
the specimen ends. Thus, the complex deformation of specimen ends contaminated
the results in an undocumented way. Another problem was the microcracking. It is
very random and is more pronounced in shrinkage specimens than in compressed
creep specimens. Unknown vertical shifts of the shrinkage curves were caused when
the experimenters started measuring shrinkage with some undocumented delay after
the stripping of the mold.

Table 11.4 Example from Bažant and Baweja [105] of statistics of errors of ACI model for basic
creep and creep at drying, calculated separately for subsequent constant intervals of log t ′, with t ′
in days (similar tables were calculated for other classical models and for intervals of log(t − t ′))
ACI model t ′ ≤ 10 10 < t ′ ≤ 100 100 < t ′ ≤ 1000 t ′ > 1000

t − t ′ ≤ 10 60.3 30.7 33.3

10 < t − t ′ ≤ 100 45.7 36.7 49.9 97.1

100 < t − t ′ ≤ 1000 34.6 39.9 51.7 93.9

t − t ′ > 1000 36.8 39.9 40.9

According to Table11.4, the coefficients of variation of model B3 as well as B4
remain low even for the last interval of the age at loading (over 1,000 days), while for
some other models they become very large for that range. Correct representation of
creep for loading ages over 1,000days is important for calculating from the principle
of superposition the long-time stress relaxation and the shrinkage stresses of thick
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members, as well as for calculating the stress variation in structures over long periods
of time.

It must be emphasized that the largest deviations from the data points seen in
the figures are caused by errors in the prediction of model parameters from the
composition and strength of the concrete. If the model parameters are adjusted, all
these data can be fitted very closely, but then one is not evaluating the prediction
capability of the model. The figures showing most of the data from the database
were presented in Bažant et al. [151] and Bažant and Kim [148] along with the basic
information on the tests.

Some creep and shrinkage models have been justified by a limited selection of
the existing data sets. Such a selection can easily be misleading. To give an example,
consider that among the 21 data sets in Table11.2 only the 12 most favorable data
sets are used (which might seem like plenty for justifying a model). But theωall value
drops from 34.3 to 23.7%. Likewise, if among the 17 available data sets for basic
creep, only the 7 most favorable data sets are selected, the ωall value drops from 23.6
to 10.7%. These observations, and similar ones already mentioned [177], document
the deception that could be hidden in a selective use of test data. Justifying some
model by 12 or 7 data sets may look like plenty, yet it can be deceptive (with the
possible exception of randomly chosen data).

If no weights are used in the regression statistics, a smaller coefficient of variation
of errors can be achieved because short-time data are much more plentiful, and
most models are better for short times. However, what matters most is long-time
predictions.

Another visual perception of the degree of scatter can be obtained from the plots of
themeasuredvalue yk versus correspondingpredicted valuesYk of creepor shrinkage;
see Fig. 11.5. If the models were perfect and no scatter existed, these plots would be
straight lines of slope 1 passing through the origin. Thus, deviations from this line
represent errors of the model predictions plus inevitable scatter of the measurements.
The errors of model B3 are seen to be smaller than those for the previous ACI 209
model and the CEB model, especially for large creep strains (corresponding to long
times), which are most important. Generally, however, as emphasized before, this
kind of plot is not very useful when the scatter is large.

The correlation coefficientρ (aka coefficient of determination) of the populationof
the measured values yi and the corresponding model predictions Yi , i = 1, 2, . . . N ,
is given in each figure. It has been calculated according to the standard formula

ρ =

N
∑

i=1

(yi − ȳ)(Yi − Ȳ )

√

√

√

√

N
∑

i=1
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N

∑

i=1

(Yi − Ȳ )2

(11.12)

where ȳ and Ȳ are the mean values of the measured data and model predictions, resp.
Note that ρ characterizes only the grouping of the data about the regression lines of
the plots, which are drawn as the dashed lines in Fig. 11.5. The regression lines do
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not have slope 1 and do not pass through the origin, which represents a measure of
how well the data trend is captured by the model and represents another kind of error
that is not reflected in the value of ρ. We can see from these plots that, in the case
of model B3, the regression line for creep is close to the line of slope 1 through the
origin, and also the correlation coefficient (ρ = 0.915 for creep and ρ = 0.932 for
shrinkage) is quite close to its maximum possible value 1.

11.6 Statistical Justification of RILEMModel B4

The new 2015 RILEM Model B4 [136] uses the same general form of the creep
compliance function (C.1) and shrinkage function (3.15) as model B3, but provides
improved empirical formulae for the estimation of parameters, which are presented in
detail in Appendix D and will be often referred to in the present section. Calibration
of the model was based on an enlarged creep and shrinkage database, combined
with a simplified inverse analysis of data of multidecade deflections of 69 large-
span prestressed concrete bridges, which are the only source of information for
durations approaching the design lifetimes (often100years ormore) and for structural
members of large thicknesses with very long diffusion halftimes. A simplified variant
of the model, denoted as B4s, uses the mean compressive strength f̄c as the only
input parameter.

The method of statistical justification of the B4 model used by Hubler, Wendner,
and Bažant [489] and Wendner, Hubler and Bažant [860] was, for the most part,
similar as that already described for model B3. Therefore, only the differences and
improvements need to be discussed.

11.6.1 Shrinkage

Figure11.10 presents the B4 predictions of the total shrinkage and the autogenous
part of shrinkage for a typical concrete composition as function of size D, ambient
humidity henv, temperature T , and cement type.3 In each diagram of the figure, the
parameters that are not varied are set to c = 400kg/m3, w/c = 0.35, a/c = 4,
f̄c = 40MPa, D = 150mm, T = 20 ◦C, henv = 65%, and cement type R.
Because of the huge scatter due to differences among various concretes, the shape

of these functions cannot be verified by fitting the entire database. Same as B3, model
B4 could be verified by the ability to fit only individual shrinkage curves of a duration
long enough to cover the initial phase and the terminal phase of decreasing slope

3The European classification of cements is selected for model B4 since it is directly related to the
reaction rate of the cement instead of the type of application, which is the basis of other classification
systems. It should be noted, though, that the class labels used by B4 (RS = rapid hardening, R =
normal, and SL = slow hardening) are somewhat different from the class labels used in Eurocode
2 (R = rapid hardening, N = normal, and S = slow hardening) and in CEB Model Code 1990 (RS
= rapidly hardening high-strength concrete, R = rapid hardening, N = normal, and SL = slow
hardening).

http://dx.doi.org/10.1007/978-94-024-1138-6_3


11.6 Statistical Justification of RILEM Model B4 529

Fig. 11.10 Typical shrinkage curves given by model B4, showing the effect of (a) specimen size,
(b) temperature, (c) ambient humidity, and (d) cement type

in log-time. The shrinkage data from Wischers and Dahms [869] and Keeton [538]
are the only data that reveal both phases. The initial phase, with εsh proportional to√
t − t0, is dictated by diffusion theory andmay be verified by L’Hermite et al. [580],

Wittmann et al. [878] and Wallo et al. [848]. To verify the effect of environmental
humidity, the most useful data are Troxell, Raphael, and Davis [817], L’Hermite et
al. [580], Keeton [538], Mamillan [599, 600], and Pentala and Rautanen[674]; for
ambient temperature England and Ross [371], Ayano and Sakata [45] and Jensen
and Hansen [515]; for specimen sizeWittmann et al. [878] and Shritharan [777]; and
for the age at exposure to environment Wischers and Dahms [869], Yang, Sato and
Kawai [885] and Wallo et al. [848].

11.6.1.1 Decomposition of Shrinkage into Autogenous and Drying

Unlike B3, the development of B4 required an extensive study of the effect of var-
ious additives and admixtures. While some admixtures such as silica fume and air-
entraining agents primarily affect the microstructure of concrete, and thus can be
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captured by a recalibration of the basic diffusion-based formulation, others lead to
self-desiccation, which is especially pronounced in high-strength concretes. The pore
humidity decrease during self-desiccation directly causes shrinkage but also reduces
the pore humidity gradient, which retards further the rates of drying and of drying
shrinkage. Complications arise from the diverse admixtures and reactive additives
used in modern concretes (e.g., superplasticizer, water reducer, and silica fume),
which have interdependent opposing or attenuating effects.

B4 also takes into account the aggregate-type effect which, as some studies show
[30], can change the 28-day shrinkage by as much as 400×10−6. The density of rock
aggregate appears to have the greatest effect on the shrinkage halftime, the elastic
modulus, and the final shrinkage, which can be explained by a parallel coupling
model. The aggregate density also affects the effective permeability of concrete. The
magnitude of shrinkage is roughly proportional to the material compliance (inverse
of stiffness) and, in consequence, also to the contributing aggregate compliance.
This dependence is captured in B4 through empirically obtained correction factors
kτa and kεa, which scale the shrinkage halftime, τsh, and the final shrinkage, ε∞

s ; see
Table D.2 in Appendix D.

The parameters of the B4 shrinkage model were statistically calibrated by opti-
mizing the fit of the full 2014 NU database [488], which contains 1217 shrinkage
curves of specimens exposed to drying (more than twice as many curves as the
RILEM database used for B3). They represent the total shrinkage, i.e., the sum of
drying shrinkage and autogenous shrinkage. The database also contains 417 curves
of autogenous shrinkage, observed on sealed specimens. Among these data, there
are 177 shrinkage tests in which both the total and autogenous shrinkages were mea-
sured. Their difference yields the ‘pure’ drying shrinkage, but was not used in data
fitting because possible cross effects between the drying and autogenous parts were
not clear at the time of fitting.

There is a lack of consensus on the effect of many admixtures or additives. This is
largely because the market is continuously evolving and no testing standard exists.
There are important exceptions, though. One is the tests of Brooks [266, 269, 271],
which consistently show the superplasticizer to reduce short-term shrinkage, and in
particular its autogenous component. Based on Brooks [265, 266] and Wei, Hansen,
Biernacki, andSchlangen [853], theblast furnace slag increases the long-termshrink-
age, especially in the case of a high w/c ratio. Silica fume increases both the short-
term and long-term shrinkage, and in particular the long-term slope of the shrinkage
curve in log-time [242, 266, 457, 503, 514, 677, 804]. Tests by Buil and Acker
[283], as well as de Larrard and Bostvironnois [342], indicate the long-term auto-
genous shrinkage to be twice as large as it is for normal concrete. Low doses of fly
ash show no effect on shrinkage [265], but a replacement of between 25–50% of the
cement results in an increase of autogenous shrinkage, while a replacement above
50% reduces autogenous shrinkage compared to normal concrete [807]. The viscos-
ity agents are consistently seen to increase shrinkage [15]. But the water reducers
and retarders, which are the most popular admixtures, show no consistent trends
[15, 266].
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To systematize the effects of admixtures, a classification system was introduced.
Studies of correlation between the admixture contents and the observed shrinkage
revealed the magnitude and functional form of these effects, as compared to normal
concrete. Subsets were then created relating the admixture dosages or combinations,
or both. The number of subsets with low or high admixture dosages were determined
by the data availability and the overall fit quality.

After an approximate formula for the composition effects on autogenous shrinkage
has been identified from the database, the tests of shrinkage in a drying environment
have been fitted assuming a contribution, whether major or minor, of the autogenous
shrinkage as predicted by the formula. In this aspect, model B4 differs from B3, in
which the autogenous shrinkage contribution in drying shrinkage tests has not been
separated.

Formulas for autogenous shrinkage, all of exponential decay form, were pro-
posed by Jonasson and Hedlund [524], Tazawa and Miyazawa [804] and Miyazawa
and Tazawa [634] and recommended by RILEM [726] and CEB-FIP [389]. The
key similarities among these equations is their dependence on the water-cement or
water–binder ratio, cement type, and compressive strength of the concrete. Since the
mechanism causing autogenous shrinkage, comprising a multitude of chemical reac-
tions, is a microscale mechanism still not sufficiently clarified, the goal is a simple
conservative estimate with the fewest parameters. Because the amount of reactants is
finite, autogenous shrinkage must eventually approach a final asymptotic value, but
ongoing studies indicate that this value might be approached only after many years
of even decades because diffusion barriers can slow down the chemical processes
enormously.

Sensitivity studies using the 2014 NU database revealed the strongest effects to
be those of the water-cement and aggregate–cement ratios of each mix. Autogenous
shrinkage begins right after mixing but what is of interest for mechanics is only
the autogenous shrinkage after the moment of set. It is important to realize that
the autogenous shrinkage continues in the core of drying specimens until the front
of the external drying arrives, which can take even years, depending on specimen
size. Optimizing the fits with Eq. (D.17), empirical formulae (D.19)–(D.20) for the
parameters of the final autogenous shrinkage and autogenous shrinkage halftime
have been identified [489].

Parameters dependent on the cement type are given in Table D.4. Exponents−4.5
in (D.17), −0.75 in (D.19) and 3 in (D.20) were also optimized but since their value
turned out to be independent of the cement type, they are represented in the final
formulae as fixed numbers. The effect of admixtures and reactive additives is taken
into account by correction factors that scale the basic values of parameters and are
presented in Table D.6.

When the mold is stripped and drying begins, some autogenous shrinkage and
self-desiccation (i.e., a reduction of pore humidity) has already taken place. Thus,
the humidity difference between the specimen and the environment is reduced. This
tends to reduce the apparent shrinkage of high-strength concretes, compared to nor-
mal concretes. Therefore, in the drying shrinkage tests, of high-strength concretes in
particular, one must measure the autogenous shrinkage before the drying exposure
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and, of course, also afterward, on companion specimens for the entire duration of
creep and shrinkage tests. Unfortunately, most data in the database miss this infor-
mation.

In formulating model B4, it was not clear whether the autogenous shrinkage was
caused (a) directly by volume changes during the chemical reactions of hydration
or (b) indirectly by the pore humidity drop during self-desiccation. Were the former
dominant, the total shrinkagewould be the sum of drying and autogenous shrinkages,
and if the latter were, the total shrinkage would approximately be the maximum of
drying and autogenous shrinkages. Regrettably, there are no data to decide (however,
theoreretical studies under way at the time of proof unequivocally show that (b) is
true, and a revised prediction model for autogenous shrinkage is in preparation).

Most tests in the database that were aimed at drying shrinkage actually measured
only the total (drying plus autogenous) shrinkage in drying environment and did not
include separate tests of the autogenous shrinkage alone. Such tests are indispensable
for determining the separate contribution of drying shrinkage, since the autogenous
shrinkage continues even after stripping the mold and, in the specimen core, is unaf-
fected by drying for a long time (months, years or decades, depending on thickness),
until the moment at which the drying front penetrates to a point at the boundary of
the self-desiccation zone in the core. After that, the external drying begins decreasing
the pore humidity at that point even more than by self-desiccation alone. The time
to reach this point obviously depends on the specimen size.

Since the database does not suffice to distinguish between the aforementioned
formulations, the additive formula (D.15) has been adopted for B4, as it is more
conservative and simpler to use. The tests of shrinkage in a drying environment
have been fitted taking into account a contribution of the autogenous shrinkage as
predicted from this formula.

11.6.1.2 Parameter Identification and Optimization

The general optimization algorithm and strategy used to calibrate model B4 are
described in Wendner, Hubler, and Bažant [859]. Compared to the calibration of
creep, theminimumof the sumof squared errors in shrinkage that is to beminimized is
less sharp (or flatter), pushing the optimization problem closer to ill-posedness [203].
This is because most shrinkage data do not satisfy the following three requirements:

1. To be able to identify the shrinkage halftime and the final value, the time range
of the shrinkage test must be long enough for the logarithmic scale plot to flatten
off and show an approach to the final bound;

2. to avoid the initial offset, i.e., the strain and time shift of the entire shrinkage curve,
the first reading must be taken right after the stripping of the mold, preferably
within a few seconds; and

3. the prior and concurrent autogenous shrinkage must be measured, too.
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A step-by-step approach, based on the fact that the shrinkage curve must initially
evolve as the square root of time, was used to make corrections to the reported data
for the initial offset. Furthermore, a multidimensional weighting scheme was used
to counteract various kinds of bias that exist in the database, as detailed in Wendner
et al. [859].

The first step in developing B4 was to study the sensitivity of various aspects of
shrinkage to the main composition parameters (w/c, c, a/c, ...). Once the strongest
dependencies were identified and introduced into the formulae, parameters were
assigned to scale their effects. To obtain the optimummodel for the common concrete
compositions, first the complete parameter set was optimized using only data sets for
normal Portland cement with no admixtures, and for temperature cca 20 ◦C. At the
same time, the data subsets that cover the full time range were used to tune variables
characterizing the shrinkage rate. The long-term data that show the full S-shaped
curve in log-time were identified and assigned higher weights in the optimization
phase dedicated to finding the predictor equations and scaling factors related to the
final shrinkage value. Once the final parameter set for the average mix composition
was determined, a different set of scaling parameters was introduced and optimized
for each deviation from the average composition (e.g., for different cement types or
admixtures). Factors whose effect on the quality of fit turned out to be within the
inevitable range of scatter for one concrete were considered as constant.

The shrinkage dependence on the aggregate type may serve as an example. Most
data in the NU database do not specify the aggregate type. The portion of the tests
that does was subdivided into categories with at least 5 tests. The typical values and
ranges of Young’s modulus, density, porosity, and moisture expansion of each aggre-
gate type were found in the literature [30, 397, 429, 439, 653, 894]. Theoretically,
the aggregate stiffness must have a restraining effect on shrinkage and the density
may affect the overall permeability. A sensitivity study indicated that the shrinkage
halftime was most correlated to the aggregate density and the final shrinkage value
to the elastic modulus of aggregate. Factors could then be introduced on these two
parameters for optimization. The halftime factor was optimized to fit the S-shaped
test curves of full time range, and the final value factor to fit the long-time curves.
For the optimized aggregate scaling factors, see Table D.2.

To quantify the effect of various admixtures, by themselves and in combination,
the sensitivity of the C.o.V. of errors to the model parameters has been studied. As
expected, the admixtures influence primarily the autogenous shrinkage. The only
detectable effect is that of cement type factor, τcem, on the drying shrinkage halftime.

For admixture classes with insufficient data, marked in Table D.6 by asterisk, the
correction factors have been obtained by linear interpolation of calibrated neighbor-
ing values. Table D.3 lists the cement-type parameters in the drying and autogenous
shrinkage models. The rapid hardening (RS) cements reveal a substantial decrease
of the shrinkage halftime, explained by accelerated hydration of the material which
leads to a decreased gradient of pore humidity. The RS-type cements are seen to
lead to higher shrinkage. The slow hardening (SL) cements do not have a significant
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influence on autogenous shrinkage. However, the SL cements alter the dependence
on the composition parameters associated with the shrinkage rate.

A quantification of model parameter uncertainty has been obtained by individu-
ally refitting all the shrinkage curves, with parameters τsh, ε

∞
sh , τau and ε∞

au considered
as freely adjustable. The ratio between the optimal value of a parameter for a given
test and the value predicted from an empirical formula of the B4 model is called the
correction factor, ψ . As discussed by Wendner et al. [859], such correction factors
primarily characterize the intrinsic material uncertainty, biased by random errors
associated with the testing. They may serve as input for long-term performance pre-
dictions and lifetime analyses [791, 792, 861]. To estimate the 5 and 95% confidence
limits, Hubler et al. [489] constructed histograms of the correction factors from the
database and found that they are closer to the log-normal than normal distribution; see
Fig. 11.11. The confidence intervals based on log-normal distribution were [0.5, 2.5]
for the scaling factor of τsh, [0.5, 3.1] for the scaling factor of ε∞

sh , [0.6, 4.6] for the
scaling factor of τau, and [0.6, 5.7] for the scaling factor of ε∞

au .

Fig. 11.11 Histogramsof correction factorsψ for individual shrinkage parameters and their approx-
imation by log-normal distribution

The scatter plots of predicted versusmeasured values, popular in the past, were not
used because they are dominated by short-timedata and the scatter due to composition
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Table 11.5 Quality of fit (each shrinkage curve scaled separately) and quality of prediction char-
acterized by the coefficients of variation: (a) fit of 7 selected sets with sufficient data in initial
asymptotic part of curve, (b) fit of 32 selected sets with sufficient data in final part of curve, (c) pre-
diction for all concrete compositions in the NU database, (d) prediction for concrete compositions
without admixtures

Model (a) Fit, initial part (b) Fit, final part (c) Prediction, all
concretes

(d) Prediction, no
admixtures

B4 0.104 0.040 0.309 0.316

B4s 0.157 0.035 0.399 0.326

B3 0.188 0.053 0.422 0.410

fib MC10 0.169 0.038 0.510 0.408

CEB MC99 0.169 0.038 0.517 0.415

GL 2000 0.198 0.057 0.363 0.330

ACI92 0.120 0.058 0.435 0.377

variability completely masks the errors in the shape of time evolution curves. More
meaningful comparisons are presented in Table11.5, which shows the C.o.V.s for
models B4, B4s, B3, fib MC10, CEB MC99, GL 2000, and ACI92.

The comparison in column (a) of Table11.5 is based on 7 selected data sets that
include the initial phase and reach into the final phase of decreasing slope in log-time,
and the comparison in column (b) is based on 32 selected data sets that all give some
information on the final phase but only some for the initial phase. For each model,
parameters that allow horizontal and vertical scaling (in semilogarithmic scale) were
identified, and these parameters were adjusted for each measured curve individually,
to get the best possible fit with the given form of the shrinkage evolution function.
Table11.6 summarizes the time functions used by the compared models. It also gives
the number of intrinsic parameters and the number of fitted (scaling) parameters for
each model. The linear (shape-preserving) transformation of the curve by vertical
and horizontal scalings is necessary to isolate the errors in the curve shape from
the overall errors. The quality of optimum fit of data achievable by the vertical and
horizontal scalings is what reveals how realistic the curve shape is. Figures11.12 and
11.13 present examples of fits obtained with model B4 and, for comparison, with the
ACI92 model.

After verification of the functional form, the overall calibration quality of the
models was evaluated by comparing their predictions (based on composition and test
conditions, without a priori knowledge of the measured values) with the shrinkage
curves in the database. Table11.5 specifies the corresponding C.o.V.s, computed
first for the entirety of all concretes (column (c) in the table) and then only for
the concretes without admixtures (column (d)). The graphs in Fig. 11.14 give the
evolution of C.o.V. computed separately for each mid-decade in log(t − t0). The data
sets giving insufficient information on the input parameters of even one model had
to be omitted for all the models.

From the statistical comparisons in columns (c) and (d) of Table11.5, note that
both B4 and GL00, the two models that have been calibrated by experiments includ-
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Fig. 11.12 Examples of fits of selected shrinkage test curves obtained with B4

Table 11.6 Summary of time functions and parameters of various shrinkage models and the cor-
responding number of intrinsic parameters and fitted parameters used for the model comparisons

Model Time function Autogenous time
function

Intrinsic
parameters

Fitted
parameters

B4 tanh

√

t̂

τsh

[

1 +
( τau

t

)α]−rt
4 4

B4s tanh

√

t̂

τsh
− 3 2

B3 tanh

√

t̂

τsh
− 4 2

MC10

√

t̂

τsh + t̂
1 − exp

(

−
√

t

τau

)

2 4

MC99

√

t̂

τsh + t̂
1 − exp

(

−
√

t

τau

)

2 4

GL00

√

t̂

τsh + t̂
− 2 2

ACI92
t̂

f + t̂
− 2 2
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Fig. 11.13 Examples of fits of selected shrinkage test curves obtained with ACI92

Fig. 11.14 Quality of prediction according to various shrinkagemodels: development of coefficient
of variation with drying time for (a) all concrete compositions, (b) concrete compositions without
admixtures
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ing modern concretes, give lower C.o.V.’s in comparison with the full database.
Model GL00, however, cannot capture well the shrinkage evolution in time, mainly
because it lacks a separate function for autogenous shrinkage; see column (b) in
Table11.5. This function introduces important additional parameters, which allow a
more accurate representation of the shrinkage curve and, of course, reflect the shrink-
age mechanism more realistically. As a result, model B4 shows the lowest C.o.V. of
errors in the comparisons with the data covering both long and short times (columns
(a) and (b)), and the best overall quality of prediction over the longest time range
(columns (c) and (d) and Fig. 11.14). Inclusion of the autogenous shrinkage and the
parameters for admixtures and aggregate type is crucial for predicting the shrinkage
of high-strength concretes.

The ACI92 model shows the most inconsistent behavior. In the beginning, the
shrinkage is underestimated, between 30 and 1000days it is overestimated, and ulti-
mately tends to underestimations again. The resulting scatter band is very wide.
Model B4 is not the best in each statistics but is best overall. It is interesting that
model B4s, which considers the compression strength instead of the composition,
performs almost as well as B4. However, it cannot predict the influence of composi-
tion in presence of admixtures, which is important in selecting the concrete mix.

11.6.2 Creep

11.6.2.1 Overview and Explanations of B4 and Compliance Functions
to Be Compared

The compliance function used by model B4 has the same form as in model B3
[104, 179], with two exceptions. One is that minor improvements are made in the
equivalent times introducing the temperature effect. The second is that, unlike B3, the
drying creep part of the B4 compliance is related only to the drying part of shrinkage,
rather than to the total shrinkage, since in model B4 the drying and autogenous parts
of shrinkage are split into separate functions. This is a refinement that is important
primarily for high-strength concretes for which, in contrast to normal concretes, the
autogenous shrinkage is not a negligible part of total shrinkage.

The functions defining the relations of the basic parameters of the compliance
function to the composition and strength of concrete and to the environmental con-
ditions have been identified and optimized with the help of a new large laboratory
database featuring about 1400 creep tests, and another database featuring multi-
decade deflections of 69 bridge spans, both assembled at Northwestern University
[138, 488]. Note that all the creep tests used for calibration were conducted under
centric uniaxial compression. Therefore, the available models including B4 can have
large errors in the case of bending or highly eccentric loads. The reason is that the
microcracking distribution and the interaction of stress distribution with pore humid-
ity are different. However, this is not a problem for bridge box girders when the walls
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are subdivided through the thickness into finite elements because the eccentricity of
the compression resultant in each such element is always minor.

11.6.2.2 Effects of Temperature, Cement Type, and Admixtures

Model B4 [136] introduces equivalent times based on Arrhenius-type equations for
the temperature effects on the creep rate, aging (or hydration) rate, and drying shrink-
age rate. In principle, their activation energies can be different but, because of data
ambiguity, the activation energy Q of each is considered the same (Q/R ≈ 4000K,
with R = gas constant), as formulated in [175] and roughly supported by several
experimental studies [698, 849]. This temperature dependence does not apply above
75 ◦C, because of phase changes and because different activation energies dominate
in different temperature ranges.

In basic creep, the activation energies of creep rate and of hydration compete
with each other, the former accelerating and the latter decelerating the creep as
temperature rises. The effect of the latter disappears once hydration is complete
(which often occurs after about one year but can take much longer, especially in
modern concretes). The drying part of creep also depends on the activation energy
of drying (or diffusion process), which leads to an acceleration of the drying creep
term when the temperature is raised. These effects are captured in model B4 by a
series of scaling parameters.

Admixtures have a smaller effect on creep than on shrinkage. The effects of water-
reducers, retarders, superplasticizers, air-entraining agents, accelerators, shrinkage-
reducing agents, and mineral admixtures have been studied for creep. Many test data
on the effects of cement type and of admixture type and amount exist, but they are
so scattered that no systematic trends can be detected.

The differences in the effects on the rate and the magnitude of total creep attribut-
able to admixtures depend on their diverse effects on evolution of microstructure.
There is no consensus on the contribution of water-reducers and superplasticizers,
as the data lie in the range of experimental uncertainty. While the analysis of the full
laboratory database shows that the addition of accelerators and the fly ash replace-
ment exceeding 15% systematically cause some increase of creep, generally the
air-entraining agents, shrinkage reducing admixtures, and low amounts of fly ash
replacement are found to have no consistent, systematic and statistically verifiable
effect on creep.

The high-strength concrete has been shown by various researchers [27, 633, 730]
to have a creep coefficient about 1.8–2.4 times smaller (in spite of that, the creep
effects on the structural scale can be important because the structures made of high-
strength concrete, typically prestressed, are more slender and more flexible). The
creep reduction is due to the lower w/c ratio and the addition of silica fume or fly
ash. The self-consolidating concrete has similar a creep as the normal concrete [678].

What is clear at present is that the effects of admixtures are highly variable statis-
tically and no unique time functions exist. For the mean behavior, it seems sufficient
to introduce empirical coefficients that scale only the creep magnitude. As for the
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effect on multidecade creep in particular, no data exist. Recalibrations should be
performed in the future as new data become available.

Similar studies were made for the effect of cement type on the basic and dry-
ing creep. Calibrated parameters capturing the cement type dependence exist in all
models for creep. Predictions are complicated by the fact that cement classifications
as well as cement products and production standards have changed over time and
various cement replacements have been introduced. This engenders a large scatter
and uncertainty in the model calibration. The type of cement used shows a strong
correlation to the observed basic and drying creep when using the data in the NU
database. On the other hand, contrary to shrinkage, there is little correlation to the
aggregate type classes. Even though an effect of the aggregate type is perceived to
exist [30], there is a lack of consistent and repeated test data. For each type of aggre-
gate, there exist only few curves, in the current NU database at most 6, which is not
enough for statistical inferences.

11.6.2.3 Optimization of Fit of Combined Laboratory and Bridge
Databases

Large bridges and other creep-sensitive structures are generally designed for service
lives of 50–150years. However, 95% of the laboratory creep tests available in the
largest worldwide laboratory database [488] with 1370 creep curves do not exceed 6
years in duration.Only 3%of the data sets,many of themwith questionable reliability
of long-term measurements, exceed 12years.

Consequently, the laboratory data used for calibration of a creep model must be
supplemented by inverse inference from multidecade structural observations. Most
informative for that purpose are the data on deflections of large-span prestressed
concrete segmental box girder bridges, provided that the deflections are excessive
(if they are not, it means that a large gravity deflection is offset by a large upward
deflection due to prestress, which is a small difference of two large random numbers
and is too scattered to be useful). Data on multidecade shortening of prestressed
bridge girders would be useful even if the deflections are small, but such data are
unavailable. Data on multidecade shortening of columns of tall buildings would also
be useful but are unavailable as well.

The most useful bridge paradigm is the Koror–Babeldaob bridge in Palau,
described in detail in Sect. 7.2. As explained in Sect. 7.7.1, Bažant et al. [210] found
that the creep equations in the standard recommendations or design codes of engi-
neering societies severely underestimated the midspan deflections. Their predictions
amounted to 31–43% of the measured values.

The new Northwestern University (NU) [488] database, which more than doubles
the size of the previous laboratory database [638], includes also the data on relative
multidecade deflection histories of 69 large bridge spans from nine countries and four
continents [138]. These data are used in statistical inverse analysis and are crucial for
calibrating the terminal trend of creep. A complete inverse analysiswas unfortunately

http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_7
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impossible due to a lack of information on the concrete composition and strength,
structural geometry, and prestressing for most of the bridges.

Instead, based on the method formulated by Bažant et al. [138], the mean terminal
deflection development was transformed into an approximate terminal compliance
evolution based on estimating likely average properties of these bridges and their
concretes. These estimated properties included: the required design strength, which
was converted to the mean strength of concrete, the average effective cross-sectional
thickness, the environmental humidity (based on the bridge location), and the cement
composition. Errors stemming from these simplifying assumptions mostly compen-
sate each other in a statistical sense, and so themean relative compliance development
deduced from all the 69 bridge spans is probably roughly correct even though the
absolute residuals are, of course, rendered meaningless by these estimations.

The analysis of bridge data showed a systematic underestimation of the terminal
trend of creep and led to an adjustment of the compliance function that minimizes the
error in matching the terminal deflections of these 69 bridges. In the optimization,
the transformed bridge deflection data were considered to have 1/3 of the total weight
(and the laboratory database 2/3). The terminal bridge deflections were introduced
only for optimizing the parameters that control the terminal slope of the compliance
function in the logarithmic time scale. Since the database mostly contains data of
much shorter durations (<6 years), only the scaling parameters (and not the formulas
for the intrinsic and extrinsic influences) were optimized for the bridges. Thus, the
optimization of the effects of concrete composition and environment was not biased
by the incompleteness of bridge data.

11.6.2.4 Parameter Identification and Optimization Method

While the initial goal of the update of the creepmodelwas solely a recalibration (keep-
ing the functional form and theoretical foundation of model B3), several assumptions
in the model were re-examined before proceeding with the optimization process.

The first is the initial elastic modulus for static load application. As mentioned in
ModelB3RILEMRecommendation 107-GCS [104], the inverse of the 28-day elastic
modulus given by the ACI empirical equation (3.6) corresponds to the compliance
for 5–20min after load application. However, a better agreement can be reached
between standard 28-daymodulus and total compliance after roughly 1–2min (Δts =
0.001 days). This conclusion is the basis of the calibration ofmodel B4 aswell as B4s.
Figure11.15 shows the histograms of ratios between the strength-based estimate of
conventionalmodulus, E (s)

28 , and the value of E
(c)
28 = J (28+Δts, 28)with compliance

function J determined using the B4 and B4s predictions.
It is not surprising that the simplified model B4s leads to a better agreement

between the values of elastic modulus determined from creep compliance and those
estimated from strength. B4s uses the compressive strength f̄c as the only input
parameter, and thus, both E (c)

28 and E (s)
28 are unique functions of f̄c. One could even

introduce a constraint E (c)
28 = E (s)

28 into the calibration procedure and enforce both

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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values to match exactly, as discussed in Appendix D.8.2 and reflected by formula
(D.66). However, it remains to be checked whether reduction of the number of free
parameters does not lead to a deterioration of other aspects of the model behavior,
such as the long-time response.

Fig. 11.15 Histograms of the ratio between creep compliance after Δts = 0.001 days and elastic
compliance 1/E (s)

28 and their approximation by log-normal distribution for (a) model B4, (b) model
B4s

Second, the exponents n and m of the load duration and age were calibrated by
short to medium range data from the NU database as well as nanoindentation creep
data for cement paste obtained by Vandamme et al. [834]. Only the basic creep tests
of normal concrete, unaffected by drying and autogenous shrinkage, were used in
this analysis. Unbiased optimizations with different starting points confirmed that,
in an average sense, the previously assumed parameters n = 0.1 and m = 0.5
[105] still provide the best and, more importantly, consistently good, fits. For certain
compositions, the prediction quality could be improved by varying n between 0.08
and 0.12. However, no consistent trend or dependency on composition parameters
or cement type could be identified.

Third, the calibration of the creep model was in general highly sensitive to the
value of the initial elastic strain. So, exponent p1 in the estimation (D.4) of the
instantaneous compliance in terms of the conventional elastic modulus had to be
optimized first and then prescribed for all the subsequent optimization steps. Two
approaches were pursued and turned out to yield similar results: optimization of the
full formulation of model B4 (with fixed average long-term parameters) and a linear
fit in power-law scale of the short-term test data with at least 3 measured data points
within the first minutes to hours of measurement, depending on the age of concrete
at load application (e.g., up to 4 hours for concretes loaded at 7days). The limit is
based on an empirical formulation that is derived for the functional form of model
B4 based on sensitivity studies.
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Fourth, recent important test data from M.I.T. on nanoindentation creep [834]
have also been analyzed, for validation purposes. Since the tests were made on
hardened cement paste, the compliance magnitude cannot be compared with the
tests on concrete, but the exponent n of the load duration must be about the same.
Figure11.16 shows the measurement data for durations t − t ′ from 0.1 s to 200s,
compared to the best fits by a logarithmic time function, by a power lawwith exponent
n = 0.1, and a power law with optimum exponent. Sampling bias toward later ages
with denser point spacing was removed through a weighting scheme with equal
weights for each mid-decade in the log-scale.

The overall fit in Fig. 11.16 clearly shows that an exponent n = 0.10 is a good
approximation. The best fit, with a coefficient of determination greater than 0.99,
is attained for n = 0.089. The logarithmic function is a fair approximation but by
no means an optimum. Figure11.16b shows the fit to the first measurements for
durations <1s and its extrapolations to longer times. Again n = 0.10 works well.
The optimum fit within [0.1 s, 1 s] leads to exponent n = 0.577, but the reason is that
inserting the indenter took much longer than 0.1 s.

Fig. 11.16 Best fit of nanoindentation test data by Vandamme et al. [834] by logarithmic time
function, power law with exponent n = 0.1, and power law with optimum exponent: (a) fit of the
full data range, optimum n = 0.089, (b) fit of the first second only, optimum n = 0.577

The next stage required re-evaluating the form of the dependence of material
parameters on concrete composition. The existing model (B3) depended on both
the mix characteristics (i.e., the water-cement ratio, aggregate–cement ratio, and
cement content) and the mean mechanical characteristics (i.e., the 28-day strength
and the Young’s modulus). It is well known that water-cement ratio, compressive
strength, and Young’s modulus are highly correlated. With decreasing w/c, both the
strength and the elastic modulus increase. As a consequence of this high correlation,
a simultaneous use of the strength and w/c brings about little gain and in fact makes
the optimization problem ill-conditioned, yielding arbitrary and nonunique results.
Furthermore, the compressive strength typically only serves as convenient indicator
for other material properties.
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Therefore, two sets of predictor equations, for two versions of model B4, have
been formulated and calibrated, one using the mix proportions only (named B4), and
one using the mean compressive strength only (named B4s). The B4s version for
initial design, having fewer parameters, was expected to be inferior but, surprisingly,
turned out to be on average almost as good as the B4 version that allows more refined
predictions if the mix design is known. Young’s modulus is used in both versions
since it is the most important characteristic for the instantaneous deformation, but, if
it is unknown, it can be estimated from compressive strength using the ACI empirical
formula (3.6).

All the effects of composition and strength enter the material parameters in the
form of products of power functions. This has the advantage of a linear relation
between the logarithms of the input and response and thus helps convergence of the
optimization (another reason for power functions is that they are self-similar, which
is appropriate when no characteristic value is known). To keep the input values
dimensionless, these functions have all been normalized by their typical values. This
avoids most dimensional inputs, which also minimizes the chance of user’s error in
dimensions.

Thewater-cement ratiowas found to be themost important input parameter for the
magnitude of all the components of the compliance function. This is consistent with
other studies and agrees with the creep mechanisms considered in the microprestress
solidification theory (Chap. 10). The second most important is the aggregate–cement
ratio, which affects the nonaging viscoelastic creep, the flow, and the drying creep
terms of the compliance function.

The individual influencing parameters were identified by a step-by-step procedure
using various statistical approaches. At first, the potential influencing parameters
were selected as those reported by most experimenters. The objective was to identify
the relations of these parameters to the basic parameters q1 to q5 of the B4 compliance
function, as well as to the scaling factors for temperature, various admixtures and
the cement type. For each unknown relation, for example, the effect of water-cement
ratio on the scaling factor of the nonaging viscoelastic creep term, one could identify
on the creep curve the time range of maximum sensitivity (one or a few decades in
the logarithmic time scale).

Subsequently, the relations of model parameters to input material parameters
affecting this time range were optimized, so as to minimize the C.o.V. of the differ-
ences between the predicted curve and the data points in this time range (relative to the
mean of data, not of the differences) [859]. The optimization also yielded an R2 error
measure, a full Jacobian matrix for sensitivity analysis, and the fit of each curve for
visual shape analysis. The evaluation of the Jacobian matrix revealed correlations
between the model parameters and the input properties, as well as between both
groups. This process allowed adjusting the formulation and a converged selection
of input material parameters of the creep model (for normal concrete under stan-
dard conditions). Further scaling parameters were introduced to capture the effects
of temperature, admixtures and cement type. The general optimization algorithm,

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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strategy, and process used to develop the full model B4 are described in Wendner et
al. [859]. The exponents p1 and p2 of the scaling factors in basic creep, and p5 in
drying creep, showed the strongest dependence on the cement type; see Table D.1.
The effects of admixtures were best described by scaling the exponents p2, p3, and
p4 for basic creep and p5 for drying creep; see Table D.5.

Fig. 11.17 Typical creep curves given by model B4, showing the effect of (a) water-cement ratio,
(b) ambient humidity, (c) temperature, and (d) cement type

The changes in functional formof theB4 creep formula are illustrated in Fig. 11.17
by compliance curves that correspond to D = 150mm, c = 400kg/m3, a/c = 4,
and f̄c = 40MPa. In each diagram of the figure, the parameters that are not varied
are set to w/c = 0.35, T = 20 ◦C, henv = 65% and cement type R. For standard
conditions, an increase in w/c increases the creep rate as well as the vertical scaling
factor of the creep curve (Fig. 11.17a). A decrease in the relative humidity of the
environment (Fig. 11.17b) increases the vertical scaling factor but has no significant
effect on the characteristic time of the creep function, which gives the horizontal
scaling in a linear time plot (or a horizontal shift in log-time plot). An increase in
temperature (Fig. 11.17c) generally engenders in the database concretes an increased
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rate and magnitude of creep (except possibly for very young concretes for which the
hydration acceleration, which reduces creep, may prevail). The last diagram in the
figure shows the change in the creep curve shape due to a change of cement type
(Fig. 11.17d).

11.6.2.5 Verification of the Shape of Predicted Individual Curves

As described in Sect. 11.6.1, a separate statistical analysis aimed at verifying the
shape of model B4 creep and shrinkage curves was performed at the outset. If the
shape of the individual curves of some model is not realistic, it makes no sense
to optimize that model by the database. However, by comparisons with the entire
database it is impossible to check whether or not the shape of the creep or shrinkage
curves is correct because the database scatters due to concrete type, composition,
and admixtures dwarfs and obscures any strange features in the curve shape.

Fig. 11.18 Examples of fits of selected creep test curves obtained with B4
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Fig. 11.19 Examples of fits of selected creep test curves obtained with ACI92

Figure11.18 shows such comparisons of the model B4 curves with individual
measured curves, using only the data from the tests whose duration range was long
enough for the comparison to be meaningful. Figure11.19 shows similar individual
comparisons for the curves of the ACI92 model. To examine the capability of the
general form of the models, the composition-dependent horizontal and vertical scal-
ing parameters have been optimized, consistently for all the curves of each concrete
batch.

These graphical comparisons are followed by statistical comparisons in terms of
coefficients of variation documenting the capability of the form of each model to
capture the shape of the individual creep curves (Table11.8) as a function of load
duration t − t ′ and their dependence on the age t ′ at loading. Similar indicators are
also used to compare the predictions obtained with the model for the full database
(Table11.9). A detailed study of the development of residuals gives insight into the
model calibration.

Example fits in the top row of Fig. 11.18 show the capability of model B4 to fit
tests of long durations or a broad range of ages at loading, selected from the NU
database. The bottom row shows that test series with broad variations of environ-
mental conditions (temperature and humidity) and specimen size can also be fitted
well. The trends in the experiments on the same concrete could be recreated with a
C.o.V. of less than 10% even though only the free scaling parameters were adapted,
consistently, of course, for all curves of the same series (and thus the same concrete).
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None of the parameters influencing the dependence on t ′, T , D ≡ 2V/Se, and henv
were changed. Depending on the particular form of each model, the number of free
parameters varied between two (i.e., the initial deformation plus the multiplier of
the creep part of compliance) for ACI and other models, and five (i.e., q1 to q5) for
model B4. The dependence on the investigated parameter was not changed in any
case.

Table 11.7 Summary of time functions and parameters of various creep models and the corre-
sponding number of intrinsic parameters and fitted parameters used for the model comparisons
(times in days)

Model Creep time function Intrinsic
parameters

Fitted
parameters

B4 Q(t, t ′), ln[1 + (t − t ′)0.1], ln ( t
t ′
)

,
√

〈

e−g(t−t0) − e−g(〈t ′−t0〉)〉
4 5

B4s Q(t, t ′), ln[1 + (t − t ′)0.1], ln ( t
t ′
)

, (D.3) 3 5

B3 (D.2), (D.3) 4 5

fib MC10 ln(1 + ct),

(

t

β + t

)γ

2 3

CEB MC99

(

t

β + t

)0.3

2 2

GL 2000
t0.3

14 + t0.3
,

(

t

7 + t

)0.5

,

(

t

γ + t

)0.5

2 2

ACI92
tψ

d + tψ
2 2

Table11.7 defines the creep time function, the number of intrinsic parameters (as
a gauge of function flexibility), and the number of fitted parameters used for each
model. Intrinsic parameters are herein defined as those parameters that describe the
concrete composition, such as w/c, a/c, c, but also the strength and elastic modulus.
In addition to a visual evaluation of the capability of themodel to capture the shape of
the creep curves, shape statistics are also calculated using a selection of curves with
sufficient data in the initial and final range. The resulting coefficients of variation
based on the laboratory data are presented in Table11.8. A number of inferences can
be made from this comparison.

If only data sets with the influence of drying are analyzed (column (a) in
Table11.8), model B4 based on concrete composition outperforms the other models,
followed by B4s. The reason is that it can separate the drying shrinkage from the
autogenous shrinkage and thus realistically describes the influence of drying creep
in the presence of admixtures. Models without this split in autogenous and drying
shrinkage (GL00 and ACI92) perform worst for total creep, even though the quality
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Table 11.8 Quality of fit (each creep curve scaled separately) characterized by the coefficients of
variation of errors for (a) 38 selected sets with data on total creep, (b) 43 selected sets with data on
basic creep, and (c) 81 sets combined

Model (a) Total creep (b) Basic creep (c) Combined

B4 0.131 0.106 0.118

B4s 0.155 0.126 0.140

B3 0.183 0.166 0.174

fib MC10 0.187 0.177 0.182

CEB MC99 0.178 0.147 0.162

GL 2000 0.257 0.186 0.222

ACI92 0.237 0.198 0.217

of fit for basic creep (no influence of drying) is only slightly inferior (column (b)
in Table11.8). It is interesting to note that the now replaced MC99 outperforms all
other models except B4 and B4s with regard to short-term basic creep. The combined
set of comparisons is presented in column (c) of Table11.8 and follows the ranking
governed by the influence of drying creep.

After evaluating, for various models, the functional form of compliance, i.e., the
shape of the time curve, the next step is to investigate and compare their capability to
predict the dependence on the age at loading. This step is omitted here for the sake
of brevity; the findings are detailed in Wendner et al. [859].

The third step is to investigate and compare the overall prediction quality, consid-
ering the full NU database. To distinguish the quality of fit in early and later stages of
creep, we first separately consider the laboratory data (mostly <6 year in duration)
and the multidecade bridge data. Columns (a) and (b) in Table11.9 show the quality
of fit of different models for the laboratory data only, and column (c) shows the
same for the multidecade relative bridge deflections. The combination of long-term
laboratory data (longer than 1000days) and relative bridge deflections is given in
column (d).

The C.o.V. of residuals for short-term laboratory creep test data is found to be
the lowest for the B4 and GL models. Their near equivalence may be due to the
similar flexibility of the time function used and the fact that the GL model was
empirically based on a carefully handpicked selection of creep tests that showed
a clear trend in time rather than the complete data set, as has been done with the
B3 and B4 models. In terms of global statistics MC10 outperforms its predecessor
MC99 for short-term creep and reaches a close tie for long-term laboratory data
even though the individual shape statistics of Table11.8 show the opposite trend.
The reason likely lies in a better overall calibration of the model (note that Table11.8
illustrates the potential of the formulation, not its calibration).Model B3 suffers from
the missing split in autogenous and drying shrinkage. This compromises the long-
term prediction, due to the distortion of the drying creep component, in spite of its
correct functional form as revealed in column (c) of Table11.9. A wrong functional
form (horizontal asymptote) as formulated for MC99, and ACI92 is clearly revealed
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Table 11.9 Quality of fit of the new B4 and B4s creep models as compared to existing creep
models using the coefficient of variations of errors as the quantifier: (a) short-term laboratory
creep data (t − t ′ ≤ 1000 days), (b) long-term laboratory creep data (t − t ′ > 1000 days), (c)
relative bridge deflection data, (d) bridge and long-term laboratory creep data combined, with

ωcomb =
√

ω2
lab + ω2

bridge

Model Fitted
parameters

(a) Short-term
lab

(b) Long-term
lab

(c) Bridges (d) Combined

B4 5 0.150 0.147 0.230 0.273

B4s 5 0.201 0.247 0.199 0.317

B3 5 0.192 0.299 0.211 0.366

fib MC10 3 0.332 0.216 0.264 0.341

CEB MC99 2 0.416 0.204 0.424 0.470

GL 2000 2 0.170 0.300 0.210 0.366

ACI92 2 0.220 0.395 0.403 0.565

in the statistics of multidecade structural evidence. The GL00 model is an exception
as its functional form corresponds to MC99 but is calibrated in such a way that it
approaches a horizontal asymptote only far beyond the longest measurement times
and thus mimics a terminal slope of the creep compliance in logarithmic time.

This fact underscores the need for a separate investigation of the functional form,
and in particular its asymptotics, see column (c) in Table11.9. Clearly all the models
that can capture the correct asymptotics (B3, B4, MC10) or that approach it (GL00)
outperform models that do not (ACI92, MC99).

If the long-term laboratory creep test data are combined with the bridge deflec-
tion information, a more balanced perspective of the long-term prediction quality
is obtained. As expected, models B4 and B4s show the lowest C.o.V., followed by
B3, MC10, GL00. The MC99 model cannot catch up with the competitors but still
exceeds the prediction quality of ACI92 by far.

In future studies, in which not only the relative but also actual deflections of
bridges should be used for calibration, it will be important to use a realistic model
for steel relaxation as affected by temperature and strain variation; see Sect. 4.3.4.1.

To give a more detailed insight into the development of the prediction quality,
Fig. 11.20 shows the residuals of all models plotted against log(t − t ′). The residuals
(or errors) are defined as the differences J − Ĵ between the predicted compliances J
and the measured compliances Ĵ . Model B4, and also the simplified strength-based
model B4s, consistently show a very small mean value of the residuals. The scatter
band given by the 5 and 95% percentiles is largely symmetric, which confirms no
bias toward over- or underestimation. The ACI92 and GL00, on the other hand, tend
to underestimate creep for long times, as seen in the mean value trend and especially
the scatter band. The scatter of MC10, interestingly, is symmetric. But it exceeds
the scatter of all the other models in the range between 10 and 1000days while
decreasing for long times.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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To reduce the scatter for long times, information on the concrete composition
must accompany future structural measurements. So must the information on the
bridge dimensions, prestress and environment.

Fig. 11.20 Development of residuals with log(t − t ′) according to prediction model (the thick line
corresponds to the mean and the dashed lines to 5 and 95% confidence limits)

A quantification of model parameter uncertainty was obtained by individually
refitting all the creep curves with parameters q1 to q5 considered as uncertain and
evaluating the correction factors, denoted as ψqi . Their distribution is shown in
Fig. 11.21, and the corresponding intervals between 5 and 95% confidence limits are
[0.6, 1.8] for ψq1, [0.4, 3.3] for ψq2 and ψq3, [0.4, 2.7] for ψq4, and [0.4, 3.1] for
ψq5.

11.7 Analytical Methods for Predicting Concrete Creep
from Its Composition∗

Although models B3 and B4 rest on many theoretical concepts (Sect. 11.2), the
heterogeneity of the microstructure, e.g., the effect of cement-aggregate ratio, is still
taken into account in an empirical way and some effects, such as that of grading
of the aggregate (i.e., the grain size distribution) are not considered explicitly at
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Fig. 11.21 Histograms of correction factors ψqi for individual creep parameters and their approx-
imation by log-normal distribution

all. By contrast, the homogenization theories of fiber composites, other particulate
composites, and metals can now provide good predictions of the macrocontinuum
properties from the heterogeneous mesostructure (e.g., Hashin [464], Hill [478],
Mori and Tanaka [637], Dvorak [362]) and thus facilitate optimization of material
composition. But concrete is a much more complex material, for which the effects
of heterogeneity must still be handled empirically. Nevertheless, some progress in
this direction has been achieved and is briefly reviewed next.

11.7.1 Predicting Creep and Shrinkage from Heterogenous
Microstructure Using Homogenization Theory∗

At the mesoscale of mineral aggregates and cement mortar, the problem is essen-
tially mechanical, while the chemical, thermal, and diffusional aspects can be cast
aside. Numerous studies have been devoted to this problem; for elastic modulus, see
Hansen [451], Dougill [358] and Counto [327]; for creep see Popovics [699], de
Larrard and Roy [343], Nilsen and Monteiro [659], Bernard, Ulm, and Lemarchand
[236], Šmilauer and Bittnar [845], and Pichler and Lackner [689]. In recent years,
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interest in applying homogenization theories to concrete creep surged and various
homogenization methods have been extended to creep [260, 361, 565, 752, 753,
756, 773, 774, 809, 815, 832, 833, 844, 891, 892].

Baweja, Dvorak, and Bažant [215] approached the problemwithin the framework
of Dvorak’s transformation field theory [363, 364], which is an advanced version of
the homogenization theory initiated by Hashin [464] and Hill [478]. Baweja et al.
[215] simplified concrete as a two-phase composite, consisting of mineral aggregate
and cement mortar. They made predictions on the basis of the volume fractions
of aggregate and mortar, elastic constants of aggregate, and aging creep properties
of mortar. The creep was treated in a simplified way by the age-adjusted effective
modulus method. This eliminated time from the creep problem, making it quasi-
elastic. The analysis led to explicit expressions for the aging creep properties of
concrete. The model was calibrated and validated by test data of Ward, Neville, and
Singh [851] and Counto [327] and a close match was achieved.

A simplermodel, inwhich a combination of series and parallel couplingswas used
insteadof the transformationfield theory,was presentedbyGranger andBažant [432].
Themodel also fitted the aforementioned test data well but, unlike the transformation
field theory, its triaxial behavior did not capture properly the tensorial aspects.

The use of homogenization theory, however, faces multiple obstacles. For exam-
ple, the mortar itself is a composite, and several levels of homogenization are needed.
The grain shape and roughness can have a large effect. The closest gaps separating
the aggregate pieces play a bigger role, as suggested by the fact that the prepacked
concrete, which is made by infiltrating dry aggregate mass with a cement slurry and
thus has aggregate pieces in contact, has a greatly reduced creep. The interface transi-
tion zone, which probably creeps much more than the rest of cement paste, should be
modeled separately. The porosity of aggregates and ingress of water would need to be
taken into account. Various levels of porosity, with disjoining pressure in nanopores,
solid surface tension on C-S-H nanoglobules and capillary tension in micropores,
would have to be part of the homogenization process for creep and shrinkage, and an
analytical model of long-term hydration and self-desiccation (completed at the time
of proof) would have to be introduced, etc. It was because of these obstacles that the
homogenization theory was eschewed in developing models B3 and B4.

11.7.2 Extracting Creep Properties of C-S-H via Cement
Paste Homogenization∗

Inverse analysis with homogenization techniques can also be used to identify the
properties of components hard to isolate in bulk. To identify the creep properties of
calcium silicate hydrates (C-S-H) in the hardened cement paste from its heteroge-
neous composition, Šmilauer and Bažant [844] formulated a powerful and robust
cement paste homogenization method using the spectral approach based on fast
Fourier transform (FFT). Their identification was contingent upon the linearity of
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the creep lawofC-S-H.To characterize the cement pastemicrostructure, they adopted
the model developed by Bentz [233] at the National Institute of Standards and Tech-
nology (NIST), which has the resolution of 1µm. The basic form of model B3 (or
B4) was assumed to be valid for the creep of C-S-H in cement paste.

The exponential algorithm for creep (Sect. 5.2) was extended to a heterogeneous
viscoelastic composite. The numerical homogenization techniques relied on replac-
ing the real microstructure by a representative volume element (RVE) of the material.
The RVE must be statistically representative, i.e., must be large enough to contain
sufficient information aboutmorphology, and the RVE responsemust be independent
of the type of imposed boundary conditions. The periodic boundary conditions were
used since they were shown [535] to yield the smallest dependence of the elastic
homogenized stiffness on the RVE size.

The RVE of cement paste was approximated by Bentz’s [233] discrete hydration
model (CEMHYD3D), which has the resolution of 1µm. Therefore, the periodic
microstructure of cement paste was simulated on a grid of voxels 1×1×1µm in size.
Bentz’s hydration model captured the main chemical phases and reactions occurring
during cement hydration and was previously shown by Šmilauer and Bittnar [845]
to yield excellent results for elastic homogenization of hardened cement pastes with
periodic boundary conditions.

Experiments were conducted on cement pastes 2 and 30years old, having the
water-cement ratio of 0.5. The viscoelastic properties of C-S-H were identified at the
resolution of 1µm. The inverse homogenization by FFT showed that close fitting of
the homogenized properties of cement paste required increasing the exponent of the
short-time power-law asymptote of the compliance function J (t, t ′) from n ≈ 0.10
to n ≈ 0.35. The exponent increase means that the attenuation of creep rate with time
is slower in cement paste than it is in concrete. This difference could be explained
by differences in stress redistribution among the components. In cement pastes, the
stress is gradually transferred from the creeping to the noncreeping components, such
as the CaOH crystals, while in concrete the stress is also transferred to the aggregate.

http://dx.doi.org/10.1007/978-94-024-1138-6_5


Chapter 12
Effect of Cracking and Fracture Mechanics
Aspects of Creep and Shrinkage Analysis

Abstract The nonuniformity of drying shrinkage and drying creep, as well as the
stress redistributions due to nonuniform creep, typically cause distributed cracking
and continuous fractures, which lead to ingress of corrosive agents into concrete and
compromise durability. In this chapter, we present an analysis of these phenomena
from the viewpoint of fracture mechanics. We explain the crack band model, which
is a simple and effective way of avoiding spurious mesh sensitivity in finite element
simulations. We analyze the role that cracking plays in drying creep. The creep
and rate effects influence the crack propagation, which we describe in terms of
the cohesive crack model. We also explain the origin of the rate effect in cohesive
fracture, which lies in the fracture kinetics on the atomic scale. Further, we point
out that cracking is also a partial cause of the irreversibility of shrinkage and creep,
and causes nonlinear stress dependence of drying creep. Finally, we discuss material
models combining damage and creep.

Nonuniform shrinkage and thermal strains, aswell as redistributions of internal forces
caused by creep, produce significant stresses, which typically lead to distributed
cracking. If the cracks are large, they may endanger durability, providing conduits
for the ingress of various corrosive agents. If the cracking remains distributed, i.e.,
does not localize, it can be described by stress–strain relations with strain softening,
provided that there are sufficient constraints (e.g., by reinforcement, or an adjacent
zone under compression) to prevent the localization instability. In some respects,
distributed cracking may be beneficial; for example, similar to plasticity, it may
cause favorable stress redistribution with a reduction of stress peaks.

If the constraints of the cracking zone are insufficient, the distributed cracking
is unstable and will localize into much larger distinct cracks [115, Sects. 12.5 and
13.2]. Proper treatment of such cracks, as well as the problem of crack spacing, calls
for fracture mechanics, a theory in which the failure is characterized by energy per
unit crack surface, called the fracture energy Gf (dimension J/m2 or N/m), usually
in conjunction with the tensile strength, f̄t (dimension N/m2). A fracture theory in
which bothGf and f̄t play a role is the cohesive crackmodel, introduced byBarenblatt
[49], finalized by Rice [723], and in concrete engineering pioneered by Hillerborg,
Modéer and Peterson [481], or the crack band model [168, 178].
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As shown by Irwin [507], a failure criterion involving both Gf and f̄t implies the
existence of the material characteristic length l0 = EGf/ f̄ 2t , which approximately
represents the length of the fracture process zone (or cohesive zone) in front of a crack
(E = Young’s modulus of elasticity). If l0 is much smaller than the characteristic
dimension of the cross section, D, the fracture process zone can be treated as a
point. The limit case of a vanishing l0, which theoretically corresponds to f̄t →
∞, corresponds to the classical linear elastic fracture mechanics (LEFM), whose
foundation was laid down by Griffith [438]; see, e.g., Bažant and Planas [178].

A non-negligible ratio l0/D, which is a typical situation in concrete engineering,
inevitably leads to nonstatistical (deterministic) size effect in structural response
[100, 178]. This size effect must also intervene in creep response of structures, but in
most cases probably to a negligible extent except in the rare case of structural failure
resulting from creep (such as creep buckling of concrete columns or shells, or loads
much higher than the service loads).

12.1 Limitations of Simplistic Nonlinear Models
for Concrete Creep

There havebeen repeated efforts to generalize linear agingviscoelasticity to nonlinear
behavior [28, 29, 731, 754], generally restricted to the uniaxial setting. For instance,
dσ(t ′) in the integrand of the superposition integral (2.14) for uniaxial stress was
replaced by d f (σ (t ′)), or σ(t ′) in the impulse memory integral (2.21) was replaced
by f (σ (t ′)), where f is some nonlinear function. Also, the nonlinearity modeled
as multiple time integrals was tried. However, such approaches can describe only a
limited range of test data for the initial deviations from linearity. They turned out to
be unrealistic, mainly for two reasons:

1. the complex triaxial tensorial nature of nonlinear behavior of concrete and
2. the effect of distributed microcracking.

The triaxial aspect of nonlinearity of creepmust properly be approached as a time-
dependent generalization of nonlinear triaxial models for time-independent behavior
of concrete. This is a vast subject, which will be briefly touched in Sect. 12.8.

As it eventually transpired, microcracking can explain a major part of the non-
linearity of creep, or deviations from the principle of superposition (an exception
where creep nonlinearity is dominant is the case of high triaxial confining pressure,
where the behavior is viscoplastic). As one demonstration, Fig. 12.1 shows the creep
isochrones (i.e., lines connecting strains reached at the same time under different
stresses) measured by Mamillan [599, 600] and their fits computed by finite ele-
ments with a linear creep law and distributed cracking modeled as strain softening
under triaxial stress [119].

The microcracking, or fracturing, brings about a second physical source of time
dependence, due to breakage of the interatomic bonds. One can distinguish two
distinct sources of nonlinearity:

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Fig. 12.1 Fits of creep
isochrones measured by
Mamillan [599, 600] for
concrete loaded at age
t ′ = 28 days; solid lines –
with nonlinearity, dashed
lines – without nonlinearity,
t − t ′ specified in days st
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1. development of microcracks, which is properly described by nonlinear triaxial
models, combined with linear aging viscoelastic behavior of the material between
the microcracks and

2. the growth of microcracks or microfractures in time due to the separation of inter-
atomic bonds as a rate process governed by the activation energy of interatomic
bonds [96, 101, 112, 128, 129, 162].

The second source operates even in materials that do not creep, e.g., granite [103].
It appears, though, that the importance of this source lies almost exclusively in
very rapid deformations, and particularly in the extrapolation of static short-time
laboratory tests (of 1–60min. duration) to the loading by impact, shock, explosion,
or earthquake [140, 162, 548, 582, 632, 719, 720, 735, 877].

It is self-evident and needs no elaboration that effects of inertia must be included
in problems of impact, explosions, shock waves, earthquake, etc. However, the time-
dependent forces do not belong into the constitutive equation, except for impact
comminution of material when the release of kinetic energy of strain rate field in
forming particles exceeds the maximum possible strain energy that can be stored in
the material [218].

12.2 Fracture Mechanics Aspects and Crack Band Model

A typical situation in concrete and reinforced concrete is a system of parallel cracks.
The cracks may be so thin (e.g., <0.1mm) that they are undetectable to naked eye,
but can also localize into wide cracks (>0.5mm) that endanger durability. The cracks
can be caused by shrinkage due to drying, or by cooling. In massive structures such
as nuclear containments, parallel crack systems are caused by thermal stress due to
hydration heat. Thin parallel cracks also form on the tensile side of reinforced beams
or slabs subject to bending.
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For concrete and other quasi-brittle materials, the formation of a macroscopic
stress-free crack is preceded by the development of a fracture process zone, i.e., of
a region characterized by a highly localized strain and by the initiation and growth
of microcracks or other defects, which reduce the cohesion of the material and lead
to softening. Cohesive models lump the inelastic effects and replace the process
zone by a discontinuity surface, across which the displacement field has a jump.
The displacement jump, which represents the cumulative contributions of all the
microdefects summed over the thickness of the process zone, can be physically
interpreted as the opening of a cohesive crack. The stress transmitted by the cohesive
crack depends on the crack opening and vanishes when the opening attains a critical
level. Models of this type originated in the pioneering work of Barenblatt [49, 50].
They have been developed for metals and composites under the name of cohesive
zone models [649, 819] and for concrete under the name of fictitious crack models
[481], also called cohesive crackmodels.A related early pioneeringmodel ofDugdale
[360] considered a plastic zone as a segment on the crack extension line and, instead
of a cohesive law, determined the length of plastic segment by solving the elasticity
problem of infinite space.

According to the cohesive crack model, the cohesive (crack-bridging) stress σ is
linked to the crack opening wc by the cohesive stress-crack opening law

σ = fcr(wc) (12.1)

Function fcr characterizes the fracture properties of the material (in a uniaxial-stress
simplification), and typically has a convex graph with a relatively long tail. It is often
taken as bilinear, as shown in Fig. 12.2a, or exponential (a linear softening was also
used, but is not realistic). The area under the cohesive stress-crack opening curve
corresponds to the fracture energy, Gf , i.e., to the energy dissipated per unit area of
the final macroscopic stress-free crack. Aging can be taken into account by making
the parameters of the cohesive law, such as the tensile strength f̄t or crack opening
at full fracture wf , depend on the current age, as indicated in Fig. 12.2b.

Since the cohesive crack does not always open monotonically, it is also nec-
essary to define the rules for unloading and reloading. An idealized simple rule
used by Bažant et al. [150] is shown graphically in Fig. 12.3. More realistic (but also
more complicated) nonlinear unloading–reloading ruleswere proposed byReinhardt,
Cornelissen and Hordijk [721]. Another more realistic rule was used in the drying
creep studies of Bažant and Chern [117, 119].
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Fig. 12.2 (a) Bilinear softening curve of cohesive stress σ versus crack opening displacement wc
for cohesive crack model, (b) upward shift of this curve due to strength gain with age
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uncracked virgin
cracking
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Fig. 12.3 Idealized rules for cohesive crack response—uncracked, virgin cracking (softening),
unloading and reloading

A cohesive crack actually represents the cumulative effects of cracking in a frac-
ture process zone of a certain width hc, and so the spacing sc between neighboring
parallel cohesive cracks must not be smaller than hc; see Fig. 12.4a. According to
the crack band model [81, 85, 168], the crack band width hc is considered to be a
material property, best defined as the minimum possible spacing of continuous par-
allel cracks. As a crude estimate, hc ≈ 2da to 3da where da = maximum aggregate
size.

Parallel thermal or shrinkage cracks in unreinforced or lightly reinforced concrete
grow as the penetration front of cooling or drying advances deeper into the concrete
mass. When they become too long, every other crack stops growing and then grad-
ually closes (Fig. 12.4b) while the remaining cracks compensate for the closing of
their neighbors by significantly increasing their width. The doubling of spacing gets
repeated whenever the ratio of the length a of the dominant cracks to their spacing sc
exceeds a certain critical value. This is a phenomenon of bifurcation of equilibrium
path of a system of interacting cracks. Stability analysis of such systems [170, 171,
184, 190, 191], summarized by Bažant and Cedolin [115, Chap.12], showed that the
spacing of the dominant (open) cracks increases roughly as

sc = φ a (12.2)
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Fig. 12.4 (a) Parallel
shrinkage or thermal cracks
at their closest possible
spacing given by the width
of the crack band (width of
the fracture process zone,
dependent on maximum
aggregate size); (b) cracks at
doubled spacing, with a
closed initial crack in
between each pair

sc1
sc2

hc hc

hh

wc

a1 a2

(a) (b)

where φ ≈ 0.69 is a dimensionless coefficient. However, the crack spacing cannot
be less than the effective width of the crack band in the crack band model, hc. Thus,
the general rule for the dominant crack spacing may be approximately written as

sc = max(hc, φa) (12.3)

The value φ = 0.69 applies only for unreinforced or weakly reinforced walls,
and it needs to be reduced if the wall has a load-bearing reinforcement. Stability
analysis showed that a reduction ofφ is requiredwhen the reinforcement ratio exceeds
about 0.2% [191]. This value happens to correspond to the minimum shrinkage and
temperature reinforcement empirically introduced in the ACI-318 design code1 [16].

If a sufficiently heavy and dense three-dimensional reinforcing mesh prevents
the cracks from localizing, then sc ≈ 3da = constant, for any crack length. This is
equivalent to setting φ = 0 and hc ≈ 3da in (12.3). If we consider a wall of thickness
D, such as a massive nuclear containment wall subjected to significant hydration
heat, the parallel cracks propagating symmetrically from both opposite faces cannot
get longer than D/2. So the maximum possible crack spacing is

sc,max ≈ 1

2
φ D (12.4)

In numerical simulations, the cohesive crack model can be used directly only
if it is combined with a spatial discretization technique that represents individual
cracks as discontinuities in the displacement field. This can be achieved, e.g., by
inserting special cohesive interface elements between neighboring finite elements
that discretize the bulk material, or by discontinuous enrichments of the standard
finite element shape functions (see, e.g., [517, 793] for overviews of such enrichment

1In fact, preventing a localization instability of the crack system, and thus an increase of the crack
width, is the theoretical reason imposing the requirement for minimum reinforcement.
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techniques). In practical simulations, it is often more convenient to stick to standard
techniques based on continuous displacement interpolations. In that case, opening of
the cohesive crack must be replaced by an equivalent inelastic strain, smeared over
a certain distance.

The problem is that the distance hs overwhich the crack opening is smeared should
in theory correspond to the thickness hc of the physical cracking band represented
by the cohesive crack. On the other hand, in numerical simulations cracking can
localize into bands of a different thickness, which is strongly dependent on the size
of finite elements and on other factors, e.g., on the angle between the crack band
direction and the preferred directions of the finite element mesh. If all parameters
of the stress–strain law are considered as fixed material properties, simulations of
localized cracking suffer by pathological sensitivity to the size of finite elements. The
reason is that the thickness of the computationally resolved band tends to zero as the
mesh is refined while the dissipated energy per unit volume (i.e., the area under the
stress–strain diagram) remains constant. Consequently, the total dissipated energy
tends to zero and the computed structural response becomes extremely brittle as the
mesh is refined.

The energy dissipated in the fracture process zone and the global structural
response can properly be reproduced by a smeared crack model if the cohesive
crack opening is smeared over the actual width of the numerically resolved crack
band, which is typically formed by one layer of finite elements. Graphically, this
idea is illustrated in Fig. 12.5. The cohesive law, i.e., the dependence of the cohesive
stress on the crack opening, is considered as the primary characteristic of the inelas-
tic material behavior (Fig. 12.5a). Uniform smearing of the crack opening over the
crack band width hs leads to the smeared cracking strain εsc = wc/hs . The cohesive
law (12.1) is transformed into a relation between the stress and the cracking strain
(Fig. 12.5c) and, in combination with the elastic stress–strain law that describes the

+ =
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(b) (c) (d)

wcwf

σ σ σ

σ

f̄tf̄t

f̄t

εe εfεf εsc

εsc = wc/hs

εf = wf/hs

ε

Fig. 12.5 Stress-strain diagram derived from a cohesive stress-crack opening law
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bulk material without cracks (Fig. 12.5b), it provides the overall stress–strain law
with a softening branch (Fig. 12.5d).

As already explained, the computational band width hs is closely related to the
element size and, therefore, the softening part of the stress–strain curve constructed
by the aforementioned transformation of the cohesive law is not a true material
property. In fact, the area under the stress–strain curve is equal to Gf/hs where Gf

is the fracture energy (material property) and hs is the band width, dependent on the
finite element mesh. As the mesh is refined, the area under the stress–strain curve
increases but its product with the decreasing band width hs remains constant and the
pathological sensitivity of the numerical results to the size of finite elements is thus
eliminated. This technique was in 1981 developed for shear softening in plasticity
by Pietrusczak and Mroz [692] and in 1982 formulated for mode-I softening under
the name of the crack band model [85, 168].

The effective value of the numerical crack bandwidth hs must be deduced from the
mesh characteristics. In the one-dimensional setting, cracking localizes into a single
element, and so hs is equal to the length of that element.2 In multiple dimensions, the
cracking strain in general localizes into a band of elements running across the mesh.
Usually, this band is the smallest possible pattern that still allows separation of nodes
on its opposite sides. The average thickness of the band is affected not only by the
sizes of finite elements but also by their shapes and by the inclination of the crack
band with respect to the mesh lines. This is illustrated in Fig. 12.6b, which explains
why the correct value of hs for a zigzag band propagating along the diagonals of
a regular square mesh is

√
2 times larger than for a straight band aligned with the

element sides (Fig. 12.6a).
Based on similar considerations, Bažant [91] proposed the basic rules for esti-

mation of the band width, hs , and later Rots [738] refined them for a number of
special situations on the basis of extensive numerical studies. A sophisticated gen-
eral approach was developed by Oliver [664]. In practical simulations, it seems to
be reasonable to compute hs as the size of the element projected onto the crack
normal; see Fig. 12.6c. Jirásek and Bauer [520] compared a number of techniques
that provide estimates of hs and demonstrated the role of additional factors such as
the element shape, order of interpolation, and integration scheme.

The approach described above is based on an adjustment of the softening branch
of the stress–strain diagram, motivated by smearing of the cohesive crack opening
across the width of the band of cracking finite elements. This technique removes

2For two-node elements with linear displacement interpolation, the strain is constant over the whole
element and localization of strain into shorter intervals is impossible. For higher-order elements,
this is no longer true. For instance, for a one-dimensional element with a quadratic displacement
interpolation, there exist solutions with cracking localized into 1 out of 2 Gauss integration points,
or into 2 out of 3 Gauss integration points; see Jirásek and Bauer [520] for a detailed discus-
sion. Such solutions satisfy equilibrium equations in the weak sense, but the corresponding stress
fields are nonuniform and can become quite irregular, especially in multiple dimensions for crack
bands inclined with respect to the mesh lines. Therefore, higher-order elements are not suited for
simulations of localized failure based on the smeared crack approach.
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Fig. 12.6 (a) Straight crack band parallel to element sides, (b) zigzag crack band along element
diagonals, (c) crack bandwidth estimated by projecting a cracking element of an arbitrary shape onto
the direction perpendicular to the expected crack direction (estimated, e.g., based on the principal
directions of strain)

pathological sensitivity of the numerical results to the element size only if cracking
indeed localizes into narrow bands. On the other hand, if cracking remains distrib-
uted in many elements, the transformation from cohesive crack opening to smeared
cracking strain should be done using a constant, mesh-independent smearing dis-
tance. In some cases, it is known in advance whether diffuse or localized cracking
can be expected, and the appropriate technique can be adopted. However, in general a
concrete structure can exhibit diffuse cracking in some regions and localized fracture
in other regions, or the cracking process can evolve from diffuse to localized. It is
then hard to select an approach that would guarantee objective results on arbitrary
finite element meshes.

A more fundamental modification of the material model, potentially leading to
objective results and proper energy dissipation for both diffuse and localized crack-
ing, can be based on an enhancement of the constitutive equations by a special term
that supplies the missing information on the intrinsic material length and acts as a
localization limiter, i.e., prevents localization of cracking or other inelastic processes
into arbitrarily thin bands. In concrete mechanics, such enhancements often incor-
porate weighted spatial averages of certain internal variables, or gradients of internal
variables. Such advanced techniques are described in specialized literature; see, e.g.,
Bažant and Planas [178, Chap.13], Jirásek and Bažant [521, Chap.26] and Bažant
and Jirásek [141].

The fracturing of concrete is promoted by a compressive stress parallel to the
crack (if this stress is high enough, it alone can cause splitting). This effect cannot
be captured by the standard cohesive crack model. It requires a triaxial inelastic
constitutive model, such as the microplane model; see Sect. 12.8 in this book, or
Chap.14 in Bažant and Planas [178].
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Pure damage models, which reduce stiffness but do not incorporate permanent
strains, are not very realistic for concrete under compression because they lead to
unloading branches of the stress–strain diagram that return to the origin and do not
capture permanent strains observed in experiments. Permanent strains can be added
as enhancements to pure damage models, but they can also be incorporated by for-
mulating the constitutive law within the framework of plasticity. To give an example,
a model based on multisurface chemo-plasticity and accounting for creep, microc-
racking, chemical shrinkage, and aging was applied to analysis of a shotcrete tunnel
shell by Lackner, Hellmich and Mang [562]. This model was formulated using the
framework of thermo-chemo-plasticity [824, 825]. Models for concrete combining
the concepts of damage mechanics and plasticity were developed among others by
Grassl and Jirásek [433] and Grassl, Xenos, Nystrom, Rempling and Gylltoft [434].
Recently, the damage-plastic model of Grassl and Jirásek [433] has been enriched
by aging, creep, and shrinkage and applied to shotcrete by Neuner, Gamnitzer and
Hofstetter [651]. Amodel for concrete at high temperatures, incorporating the effects
of mechanical and thermal damage, plasticity, and transitional thermal creep, was
proposed by Nechnech, Meftah and Reynouard [648].

12.3 Role of Cracking and Irreversibility in Shrinkage

The development of internal stresses due to shrinkage was schematically explained
in Fig. 8.48, which is reproduced in an expanded form as Fig. 12.7; see Bažant and
Wittmann [196] and Bažant and Chern [117]. If a prismatic specimen were sliced as
shown in the figure, the slices would shrink differently, as shown in the second row
(free shrinkage). But in a long enough prism, plane cross sections will be preserved,
which requires development of shrinkage stress, typically large enough to cause
microcracking, as shown in the third row.

The shrinkage stresses are relaxed by creep. The relaxation is stronger (and crack-
ing milder) in thicker specimens since the drying process is slower and allows for
more creep. The change of behavior in the presence of an axial compressive or ten-
sile force and in the presence of a bending moment is sketched in the bottom half of
Fig. 12.7.

Figure12.7 also explains the consequence of irreversibility of microcracking, i.e.,
of the impossibility of opened microcracks to close fully upon unloading. After
the surface layers have dried up, they resist the shrinking of the core because the
previously formed microcracks cannot fully close. This causes a reversal of the
stress profile. Initially, the surface layers are in tension, balanced by compression in
the core. Later, the shrinking core tries to close the surface microcracks, but since
it cannot, the surface layers revert into compression while the core gets into tension
and suffers microcracking, too.

The effect of creep irreversibility due to aging is similar to the effect of micro-
cracking irreversibility, but is milder. It gets manifested more in thicker specimens
since their slower drying allows for more aging. If irreversibility of both the micro-

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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cracking and creep were absent, the terminal stress profile would be uniform, i.e., the
residual stresses would eventually vanish (see the rightmost column in Fig. 12.7).
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Fig. 12.7 Evolution of humidity, shrinkage, stress and strain in various layers of a cross section,
with induced cracking; reproduced with permission from [90]

The schematic sketches in Fig. 12.7 illustrate the origin of cracking due to stresses
that are needed to restore compatibility between material “layers” drying at different
rates. Additional self-equilibrated stresses are generated by the nonuniformity of
drying and shrinkage within the mesostructure of concrete; see, e.g., the analysis
performed by Havlásek and Jirásek [474] and its summary in Sect. 8.6.

The cracking and irreversibility also explain Domone’s paradox [355], which
consists in the fact that the sum of swelling at no load in water and of creep without
moisture intake (sealed conditions) is significantly less than the creep with moisture
intake. The explanation is analogous to that of drying creep; see the next section.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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12.4 Role of Cracking in Drying Creep (Pickett Effect)

The drying creep, or Pickett effect [690, 691], is the excess of total creep of drying
specimens over the sum of basic creep and shrinkage; see Fig. 12.8. Its nanoscale
mechanism involving disjoining pressure in hindered adsorbed water layers can be
explained andmodeled by themicroprestress theory, as alreadydiscussed inChap. 12.
More fundamentally, it can be explained by molecular dynamics simulations of the
effect of a moving layer of water molecules in a slit nanopore on the rate of shear
across the nanopore [779]. However, not all of the drying creep can be explained that
way [117, 198, 874]. The cracking must be taken into account, too.

measured total deformation

creep

creep

total

basic creep

drying

true drying creep

material shrinkage (at σ = 0)
effect of cracking

measured shrinkage

log(t− t )

−ε

Fig. 12.8 Influencing factors for drying creep

The cracking, however, is not a real creep mechanism. It is an apparent mecha-
nism, caused by the fact that in compressed creep specimens the deformation due to
cracking is either absent or much smaller than it is in the load-free companion spec-
imens that measure shrinkage cracking. Thus, the difference, which normally used
to be defined as the creep deformation of loaded specimens, actually includes the
cracking deformation of load-free shrinkage specimens. The strain observed on these
specimens does not give the true drying shrinkage. Rather, the observed shrinkage is
smaller in magnitude than the true drying shrinkage, being reduced by the cracking
strain [117, 198, 874]. So, the overall increase of creep during drying has two causes:

1. the so-called true drying creep, which is a true mechanism residing only in the
creep specimen and is caused, on the nanoscale, by increased microprestress
(Chap. 10) and by the acceleration of shear slip by flow of water molecules along
nanopores, and

2. the additional apparent contribution due to microcracking in the companion
shrinkage specimen.

Because of these effects, the creep at drying is always larger than the sum of the
observed basic creep and shrinkage.

The only way to directly observe true shrinkage, as well as true drying creep, is
to place very thin hardened cement paste specimens into a chamber in which the

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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environmental humidity can be lowered at a controlled rate [102]. The rate must be
so low that the pore humidity difference between the surface and the specimen core
would not exceed about 0.03. For standard concrete specimens, the drying would
need to be extremely slow; see the analytical estimates and numerical examples in
Sect. 8.6.

The tests of Bažant et al. [102] used hardened cement paste tubes of thickness
0.71mm, for which the admissible rate of environmental humidity was about 2% per
hour. Calculations show [184] that for the standard concrete test cylinders it would be
about 2% per month. This makes it virtually impossible to observe true shrinkage of
concrete. The true shrinkage characteristics can only be extracted by inverse analysis
of shrinkage and creep tests.
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Fig. 12.9 Experimental plan for (a) small and (b) large eccentricity of loading

The contribution of cracking to drying creep can nevertheless be observed directly.
It can be done under flexural or torsional loading because no deformation of any
companion specimen needs to be subtracted, as drying shrinkage alone causes no
curvature and no twisting. Flexural tests were carried out by Bažant and Xi [201]; see
also Bažant and Xi [200]. Curvature creep of beams subjected to the same bending
moment M was observed under different axial forces that either prevent or allow
cracking.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Figure12.9 shows prismatic specimens subjected to different sustained axial com-
pressive loads P1 and P2 with different eccentricities. The loading was chosen so
that, for a linear stress distribution, the opposite face stresses would be σ = −0.2 f̄c
and −0.4 f̄c for load P1, and σ = 0.2 f̄t and 0.2 f̄t −0.2 f̄c for load P2 (with f̄c and f̄t
denoting the compressive and tensile strengths of concrete). Of course, the stresses
generated by the applied load must be superposed with self-equilibrated stresses
induced by nonuniform shrinkage. Load P1 sufficed to prevent any cracking, while
load P2 allowed cracking to occur at one face.

For each loading case, there were 2 groups of specimens, sealed and unsealed. The
growthof curvatureκ(t) in the fully compressed specimens (under load P1) represents
the basic creep when sealed, and basic creep with the true part of drying creep when
unsealed. The growth of curvature κ(t) in the partly compressed specimens (under
load P2) represents again the basic creepwhen sealed, butwhenunsealed, it represents
the basic creep with the total drying creep (true plus apparent). So, by comparisons,
one can separate the curvature growths due to (i) the true nanoscale mechanism
of drying creep and (ii) microcracking, which is an apparent mechanism of drying
creep.

The results of these experiments are plotted in Fig. 12.10. The curves represent
the averaged compliance function J̄ (t, t ′), calculated as Iκ(t)/M where I is the
centroidalmoment of inertia of the cross section. Figure12.10a shows the compliance
functions obtained for the four measured cases presented in Fig. 12.9. The difference
between the top and bottom curves (large eccentricity dryingminus large eccentricity
sealed) corresponds to the total drying creep, and the difference between the two
curves in the middle (small eccentricity drying minus small eccentricity sealed)
corresponds to the true drying creep; see Fig. 12.10b. The difference between the
two curves in Fig. 12.10b, plotted in Fig. 12.10c, corresponds to the apparent drying
creep (microcracking effect).

Note that the microcracking effect initially dominates but later disappears. For
the prisms of side 4 in. (10.16cm), the dominance terminates in about 10days and
microcracking disappears in about 200days; the scaling of these times should vary
roughly quadratically with the specimen size.

The true drying creep was also measured in another set of experiments, performed
on specimens made of a different batch of concrete and using small eccentricity
only (Fig. 12.10d). Bažant and Xi [201] showed that the observed deformations can
be closely matched by finite element analysis based on the solidification theory
combinedwith amodel for stress-induced shrinkage and taking into account cracking
with its irreversibility.

Fits of themost important data on the drying influence on creep, collected from the
literature [270, 455, 601, 602, 690, 817, 850], are reproduced fromBažant andChern
[117]. They include shrinkage (Fig. 12.11), basic creep and drying creep in com-
pression (Figs. 12.12–12.13), tension (Figs. 12.14–12.15), and bending (Fig. 12.16).
The comparison in Fig. 12.15a documents that the drying creep effect is stronger in
tension than it is in compression, which is explained by a greater contribution from
microcracking.
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Fig. 12.10 (a) Averaged compliance functions, (b) decomposition of different drying creep mech-
anisms, (c) effect of microcracking on drying creep, (d) averaged compliance functions in another
set of experiments (small eccentricity only)

Figure12.16 presents the fits of Pickett’s bending tests obtained by Bažant and
Chern [117], who modeled the true drying creep as stress-induced shrinkage using
an early version of the approach described in Sect. 13.3.3.2. Figure12.16a shows
the deflection of a simply supported concrete beam loaded by a concentrated force
at midspan. The experiments and simulations cover the cases of loading combined
with drying (LD), loading without drying (L) and drying at no load (D). The effect
of parameter r , which controls the sensitivity of the shrinkage coefficient to the
stress according to formula (13.103), is illustrated in Fig. 12.16b. Parameter r ′ was
set to zero in all simulations. For r = 0, the effect of stress on shrinkage would be

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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Fig. 12.11 Fits of shrinkage data: (a) Troxell, Raphael and Davis [817], (b) L’Hermite, Mamillan
and Lefèvre [580], (c) McDonald [617], (d) Hansen and Mattock [453], (e) Brooks and Neville
[270], (f) Ward and Cook [850]
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Fig. 12.12 Fits of basic creep data for compression: (a) Troxell, Raphael and Davis [817],
(b) L’Hermite and Mamillan [576, 580], (c) McDonald [617]
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Fig. 12.13 Fits of drying creep data for compression: (a) Troxell, Raphael and Davis [817],
(b) L’Hermite and Mamillan [576, 580], (c) McDonald [617], (d) Hansen and Mattock [453]
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Fig. 12.14 Fits of basic creep data for tension: (a) Brooks and Neville [270], (b) Ward and Cook
[850]
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Fig. 12.15 Fits of drying creep data for tension: (a) Brooks and Neville [270], (b) Ward and Cook
[850]
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Fig. 12.16 Fits of drying creep data for bending [690]: (a) experimental data and numerical results
for combined loading and drying (LD), loading without drying (L), and drying at no load (D),
(b) effect of parameter r on the numerical results for the case of combined loading and drying

completely suppressed, and the deflection growth would be underestimated; see the
bottom curve in Fig. 12.16b. Good results were obtained with r = 0.3/ f̄t .

Further evidence that the drying creep is caused by an intrinsic nanoscale mech-
anism, in addition to microcracking, has been provided by the tensile creep experi-
ments of Altoubat and Lange [34]. In a recent study, Sinko et al. [779] have analyzed
the Pickett effect by coarse-grained molecular dynamics simulations. They have
examined how relative creep deformations across a slit pore subjected longitudinally
to shear loading get accelerated by the motion of water along the pore due to dry-
ing forces. The drying that drives water flow along the nanopores lowers both the
activation energy of pore walls sliding past one another and the apparent viscosity



12.4 Role of Cracking in Drying Creep (Pickett Effect) 573

of water molecules confined in the pore. This lowering can be captured with an ana-
lytical Arrhenius relationship accounting for the role of water flow in overcoming
the energy barriers. These findings have established the scaling relationships that
explain how the creep driving force, drying force, and fluid properties are related. It
has been shown that the movement of the molecular layer within the pore accelerates
the relative shear creep displacement across the pore. In this way, Sinko et al. [779]
have established the nanoscale origin of the Pickett effect and provided strategies
for minimizing the additional displacements arising from this effect. They have also
found that the drying creep strain at the nanopore level is not linearly dependent on
the applied creep stress.

12.5 Role of Creep in Cohesive Fracture and Size Effect
on Structural Strength

If the material is elastic, plastic hardening, viscoelastic, or viscoplastic, and if the
material strength is not random, the maximum stress σmax at failure of a structure
without notches or macroscopic cracks is independent of the structure size when
geometrically similar structures are considered. The size independence then also
holds for the nominal strength, defined as the maximum load Pmax divided by a
characteristic area of the structure. In the general case of three-dimensional scaling,
the characteristic area is proportional to the square of a characteristic size of the
structure, D. For instance, for pullout of a headed stud from amassive concrete block
(theoretically an infinite half-space), the characteristic size would be the embedment
depth. For prismatic beams with a rectangular cross section, it is natural to set the
characteristic area equal to the cross-sectional area bD where D is the depth and b
is the width of the section. This definition covers not only the full three-dimensional
scaling, when all dimensions are scaled proportionally, and thus, bD is proportional
to D2, but also the case of two-dimensional scaling, with b fixed and only the depth
and span scaled proportionally.

Of course, if the nominal strength is evaluated simply as σN = Pmax/bD, it
does not have a direct physical meaning, except under uniaxial tension or com-
pression. For a simply supported beam of span L , loaded by a concentrated force
P at midspan, the maximum stress according to the elastic beam theory would be
σmax = (PL/4)/(bD2/6) = 1.5PL/(bD2), which equals to P/bD multiplied by
the dimensionless factor 1.5L/D. For geometrically similar beams, this shape factor
is constant, and thus, the nominal stress P/bD is proportional to the maximum elas-
tically evaluated stress. If the failure is controlled exclusively by strength, and if the
randomness of material properties is neglected, the nominal strength turns out to be
independent of the characteristic structure size, D (which can be defined arbitrarily
since only relative sizes matter). Any deviation from this behavior is called the size
effect (on strength).
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Since the work of Mariotte in the seventeenth century, it was believed that any
observed size effect must be of statistical origin. In 1939, Weibull provided exper-
imental demonstration and mathematical formulation of the statistical size effect,
in terms of what became known as the Weibull distribution. However, in the early
1980s it was shown at Northwestern University that, in concrete and other quasi-
brittle materials, a major size effect is caused by energy release associated with
stress redistribution due to a large fracture process zone (type-1 size effect) or to a
large cohesive crackwith a large fracture process zone (type-2 size effect). In normal-
size concrete structures, this energetic size effect totally dominates. An exception,
rare for concrete structures, occurs if the structure is very large and has a geometry
for which the failure occurs right at the initiation of macrofracture from a smooth
surface. Only in this case the statistical (or Weibull) size effect takes place [90, 100,
178].

The type-2 size effect is described by Bažant’s [90] size effect law

σN = σ0√
1 + D

D0

(12.5)

where D0 is the transitional size andσ0 is the asymptotic value of nominal strength for
very small specimens. These two parameters can be extracted from experimentally
determined values of nominal strength for specimens of different sizes, and they can
also be deduced from certain characteristics of the material and specimen geometry.
The formulae derived by Bažant and Kazemi [143] read

D0 = c f g′

g
, σ0 =

√
EGf

c f g′ (12.6)

where Gf is the fracture energy, c f is the material length representing about a half
of the length of a fully developed fracture process zone, g is a dimensionless energy
release function of linear elastic fracture mechanics, characterizing the geometry of
the specimen, and g′ is the derivative of g with respect to the relative crack length
(the values of g and g′ to be substituted into (12.6) are those that correspond to the
initial relative crack length). As usual, E denotes the elastic modulus. In linear elastic
fracture mechanics, the product EGf is equal to the square of the fracture toughness
Kc, which represents the critical value of the stress intensity factor, needed for crack
propagation.

The size effect law (12.5) is plotted in the logarithmic scale in Fig. 12.17a. With
increasing size D, this law represents a smooth transition from quasi-plastic behav-
ior with no size effect to perfectly brittle behavior that corresponds to LEFM. For
sizes much smaller than D0, the size effect curve approaches a horizontal asymp-
tote σN = σ0, while for size much larger than D0 it approaches the asymptote
σN = σ0(D0/D)1/2 = (EGf/gD)1/2, which characterizes the size effect of linear
elastic fracture mechanics and in the logarithmic plot is represented by an inclined
straight line of slope −1/2. The ratio β = D/D0 is called the brittleness number.
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For β � 1, the behavior is brittle, with a strong size effect, and for β � 1 it is
ductile, with almost no size effect. This is why D0 is called the transitional size—it
is at the center of the transition between ductile and brittle behavior if the size of the
specimen or structure is varied.

Fig. 12.17 (a) Size effect law (12.5) in terms of dimensionless variables, (b) change in brittleness
with loading rate revealed by experimental data of Bažant and Gettu [128]

What is the effect of creep on the energetic size effect? This question was investi-
gated by Bažant andGettu [128]. It turns out that a decrease of the loading rate causes
the corresponding points on the size effect curve (plotted in terms of dimensionless
variables D/D0 and σN/σ0, with D0 and σ0 determined for each rate separately) to
move to the right, i.e., to higher brittleness or stronger size effect. This is supported
by the test data from Bažant and Gettu [128] reproduced in Fig. 12.17b, which gives
the nominal strengths of similar notched three-point bend beams of three different
sizes scaled in the ratio 1 : 2 : 4, tested at four different rates for which the average
times to peak load were 1.4 s, 8.33min, 3.79h, and 2.93days. Note that the slower
the loading, the stronger the size effect, and the higher the brittleness.

At first the increase of brittleness seems counterintuitive, but it may be explained
by a decrease of c f with decreasing loading rate. This means that relaxation of
stresses around the fracture process zone, engendered by creep, leads to a shortening
of the fracture process zone.

There is, however, another rate effect in fracture that has nothing to do with
creep, and is of the same kind as in other materials, even those which do not creep
(e.g., granite). As found by Bažant et al. [129], Tandon, Faber, Bažant and Li [800],
and Bažant [100], the relation between the crack-bridging stress σ and the crack
opening (or separation) wc can be considered as unique only if the loading rate is
approximately constant. If the rate varies significantly, then this relation needs to be
generalized. In [129, 162, 800], and [100, Sect. 7.1], an approximate rate-dependent
cohesive crack model was formulated and verified by fracture tests with loading rate
changes. However, the derivation of this model was oversimplified.
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Closely following the exposition by Bažant, Le and Bazant [159] based on atom-
istic fracture mechanics, the next section presents a more rigorous derivation, which
leads to the relation

σ = ϕ(ẇc) = CeQ0/nkBT ẇc
1/n (12.7)

where ẇc is the crack opening rate, Q0 is the activation energy of separation of
interatomic bonds, kB is the Boltzmann constant,3 T is the absolute temperature, and
C and n are constants that must be considered empirical at present. The value of n is
the same as in the empirical power law for the subcritical crack growth velocity vc
[178, 183, 307, 375, 376, 814], called the creep growth law or Charles-Evans law,
which reads

vc = Ae−Q0/kBT K n (12.8)

Here, vc is the velocity of macrocrack growth, A and n are positive empirical con-
stants, and K is the stress intensity factor at macroscale, which must be proportional
to cohesive stresses σ in the macrocrack. Experiments show n to range from 10 to
30.

Formula (12.7) has been derived from the frequency of state jumps over the
activation energy barriers on the potential surface of an atomic lattice block; for a
simplified derivation, see Bažant [96] and Bažant and Li [162]. A more rigorous
derivation [159], outlined in Sect. 12.6, gives a different stress dependence than that
in the previous papers, but the previous fitting of test data remains unaffected since
the tests were conducted at only one stress level.

Equation (12.7) needs to be combined with the softening law σ = fcr(wc) for
very slow opening of cohesive crack (ẇc → 0). This can be done in a similar spirit
as in viscoplasticity, where the yield stress corresponding to a rate-independent yield
condition is increased by a viscous overstress that depends on the plastic strain rate;
see, e.g., Sluys [780] and Chap.27 in Jirásek and Bažant [521]. For a rate-dependent
cohesive crack model, the generalized stress-separation law at any point of the crack
is written as

σ = fcr(wc) + C eQ0/nkBT ẇc
1/n (12.9)

This can further be improved by considering C as a function of wc that tends to zero
for very large wc.

The importance of ẇc was evidenced by the discovery of a reversal of softening
to hardening when the loading rate of a notched specimen was increased suddenly—
1000-times for the test results in Fig. 12.18a, b [100, 129, 162, 800]. It turned out
that this reversal cannot be modeled merely by considering creep in the material
around the fracture process zone. Creep can cause a decrease of softening slope, but
never a reversal of softening to hardening.

3Sincewework here at the atomistic scale, it is appropriate to use the Boltzmann constant kB instead
of the universal gas constant R. The activation energy Q0 then refers to one bond instead of one
mole (as it would if R was used in the denominator).
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Fig. 12.18 (a) Experimental and predicted load versus crackmouth opening displacement (CMOD)
response of a medium-size, high-strength concrete beam for a 1000-fold rate increase, (b) experi-
mental and predicted load versus CMOD response of a large-size, high-strength concrete beam for
a 1000-fold rate increase, (c) experimental load versus CMOD response of a large-size, normal-
strength concrete beam for a tenfold rate decrease after a load drop to 70%

On the other hand, Eq. (12.7) cannot explain another phenomenon—load relax-
ation when the rate of a controlled growth of load-point displacement is suddenly
decreased (Fig. 12.18c). In the extremecasewhen thedisplacement growth is stopped,
the load remains constant if there is no creep. This is evidenced by testing notched
specimens of granite [103], which does not creep. For concrete, which creeps, the
load gradually relaxes.

These phenomena are sure to occur also for microcracks. Hence, to obtain a
realistic constitutive model for nonlinear creep of concrete, a smeared continuum
version of (12.7) (with strain = wc/microcrack spacing), or its generalization for a
broad range of rates, would need to be added to the aging linear viscoelastic model
for concrete creep.

It should also be pointed out that the crack growth rate is important for relating the
statistics of short-time material strength to the statistics of lifetime under sustained
stress [157–159, 569, 750].
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12.6 Derivation of Crack Opening Rate Effect from
Fracture Kinetics at Atomic Scale∗

The fracture begins on the atomic scale, and the atomic scale is where the rate
effects originate. For the sake of clarity, imagine fracture in a nanoscale size atomic
lattice block (Fig. 12.19a), although generalization to a disordered nanostructure of
hardened cement gel poses no problems. The separation wc between the opposite
atoms across the crack gradually increases by small increments as the distance from
the crack front grows. The work of the force Fb transmitted across each pair of
opposite atoms on their relative displacement wc defines a certain local potential
Π1(wc), which is a part of the overall potential function Π (or free energy) of the
atomic lattice block. The equilibrium states of these atomic pairs (bonds) are marked
on the local potential curves Π1(wc) by circles.

As the fracture separation grows from one atomic pair to the next, the statemarked
by the circle moves on the curve Π1(wc) up and right (Fig. 12.19b). The same states
are also marked on the corresponding curves of bond force Fb(wc) = dΠ1/dwc

between the opposite atoms in each pair (Fig. 12.19c). The local bond failure begins
when the peak point of the curve Fb(wc) is reached. This point corresponds to the
point of maximum slope of the curve Π1(wc) (state 3 in Fig. 12.19b) and represents
the tip of the cohesive crack. The real crack tip is located at the pair where the bond
force is reduced to 0 (state 1 in Fig. 12.19b). The cohesive zone (or fracture process
zone, FPZ) roughly spans between state 1 and state 3, which lie many atoms apart.

If the lattice were treated as a continuum, the diagram P(u) of load P = ∂Π/∂u
applied on the atomic lattice block, versus the associated displacement u caused
by elasticity of lattice and by fracture growth, would have the usual shape shown
in Fig. 12.19d (note that the curvature of the rising portion is caused by finiteness
of the length of growing FPZ). A continuum, though, the nanoscale lattice is not.
The fracture advances by random jumps over the activation energy barriers Q on
the surface of the state potential Π (free energy) of the atomic lattice block. These
barriers superpose undulation on the diagrams of Π(u) and P(u); see Fig. 12.19e
top.

The jumps of the propagating interatomic crack are equal to the initial atomic
spacing δa . During each jump, one barrier on the potential Π as a function of u must
be overcome (see the undulating potential profile in Fig. 12.19f). After each jump, at
each new crack length, there is a small decrease (Fig. 12.19e bottom) of the overall
potential Π of the atomic lattice block, corresponding to a small advance along the
descending load-deflection curve P(u) (Fig. 12.19e top). A point to note is that the
separation of opposite atoms (in their equilibrium positions) increases during each
jump by only a small fraction of their initial distance δa .

Due to thermal activation, the states of the atomic lattice block fluctuate and can
jump over the activation energy barrier in either direction (forward of backward,
Fig. 12.19e, f), though not with the same frequency. When crack length a (defined
by the location of state 3 in Fig. 12.19a) jumps by one atomic spacing, i.e., from ai
to ai + δa , i = 1, 2, 3,…), the activation energy barrier Q changes by only a small
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Fig. 12.19 Nanoscale fracture: (a–c) fracture of atomic lattice, (d–f) load-displacement curve of
atomic lattice block; reproduced from Bažant, Le and Bazant [569]; in parts (e) and (f), ΔQ marks
the vertical distance between the subsequent minima of the wavy curve

amount ΔQ which corresponds to the energy release by fracture (Fig. 12.19e, f)
associated with the equilibrium load drop P .

To calculateΔQ, consider planar three-dimensional cracks that grow in an affine,
or self-similar, manner (e.g., expanding concentric circles or squares). The effect
of the FPZ may be approximated according to the equivalent linear elastic fracture
mechanics (LEFM) in which the tip of an equivalent sharp LEFM crack is considered
to lie roughly in the middle of the FPZ. The LEFM stress intensity factor (of mode I,
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mode II, or mode III) is generally expressed as Ka = τ
√
la ka(α) where α = a/ la =

relative crack length, ka(α) = dimensionless stress intensity factor, τ = cσ = remote
stress applied on the nanoscale on the atomic lattice block of size la (Fig. 12.19a); c
is a nano-macrostress concentration factor; and σ = macroscale stress in the RVE.
For a circular (or penny-shaped) crack of radius a loaded in mode I by a remote
stress, ka(α) = √

4α/π .
The energy release rate of the crack (with respect to crack length rather than time),

per unit length of crack perimeter, is Ga(α) = K 2
a/E1 = k2a(α)laτ 2/E1. Here, E1

= Young’s (elastic) modulus for a continuum approximation of the lattice (which
is larger than the macroscopic Young modulus E); k2a(α) represents the dimension-
less energy release rate function of LEFM for continuous bodies, characterizing the
geometry of fracture and of the atomic lattice block [178] (if the block boundaries are
distant, k2a(α) ∝ γα). Let γ1 be a geometry constant such that γ1a = γ1αla = crack
perimeter, the crack being assumed to grow radially in an affine manner (γ1 = 2π
for a circular crack of radius a = αla , and γ1 = 8 for a square crack). Similar to the
expression in Bažant et al. [158, 159] and Bažant and Le [157] (derived by assuming
two- rather than three-dimensional cracks), the increment of energy that is released
when the crack advances by δa along its entire perimeter of length γ1αla is

ΔQ = δa
∂Π∗(P, a)

∂a
= δaγ1αlaGa = Va(α)

τ 2

E1
(12.10)

Here, Π∗ is the complementary energy potential (Gibbs free energy) of the atomic
lattice block, and Va(α) = δaγ1αl2ak

2
a(α) is an activation volume (note that if

the stress tensor is written as τ s where τ = stress parameter, one may write Va =
s : va where va = activation volume tensor, as in the atomistic theories of phase
transformations in crystals [46]).

Since the cohesive crack is much longer than δa , the separation wc changes very
little during each crack jump by one atomic spacing δa , and so the activation energy
barrier for a forward jump, Q0 −ΔQ/2, differs very little from the activation energy
barrier for a backward jump, Q0 + ΔQ/2 (Q0 = activation energy at no stress);
Fig. 12.19e. Note that multiple activation energy barriers Q0 = Q1, Q2, . . . are
always present, however, the lowest one always dominates.4

The jumps from onemetastable state to the next on the surface of the atomic lattice
block potential Π∗ must be happening in both forward and backward directions,
although at slightly different frequencies. According to the transition rate theory
[537, 687], the first-passage time for each transition (in the limit of a large free-
energy barrier, Q0 � kBT ) is given by Kramer’s formula [728]. Thus, the net
frequency of crack length jumps is (see Eq.2 in [158]; also [157, 159])

4The reason why the lowest barrier Q1 dominates is that the factor e−Q1/kBT is very small, typically
10−12. For instance, if Q2/Q1 = 1.2 or 2, then e−Q2/kBT = 0.004 e−Q1/kBT or 10−12e−Q1/kBT

and thus makes a negligible contribution, and if Q2/Q1 = 1.02, then Q1 and Q2 can be replaced
by a single activation energy Q0 = 1.01Q1.
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f1 = νT
[
e(−Q0+ΔQ/2)/kBT − e(−Q0−ΔQ/2)/kBT

] = 2νT e
−Q0/kBT sinh[Va(α)/VT ]

(12.11)

where VT = 2E1kBT/τ 2; νT is a characteristic attempt frequency for the reversible
transition, given by νT = kBT/h where h = 6.626 · 10−34 Js is the Planck constant
(i.e., the ratio between the energy of a photon and the frequency of its electromagnetic
wave); T is the absolute temperature, and kB = 1.381 · 10−23 J/K is the Boltzmann
constant. Since δa is of the order of 0.1nm, Va ∼ 10−26 m3. Volume VT depends
on τ = cσ where c is expected to be >10. For example, in the nanostructure of
hardened Portland cement gel, the nanoscale remote stress may perhaps be τ ≈
20MPa, which gives VT ∼ 10−25 m3, and so Va/VT � 1. Therefore, Eq. (12.11)
becomes f1 ≈ e−Q0/kBT [νT Va(α)/kBT ] τ 2/E1. The velocity of advance of the FPZ
through the atomic lattice may thus be written as

vFPZ = ν1 e
−Q0/kBT τ 2, ν1 = δ2aγ1αla/E1h (12.12)

Now, we note that this equation is analogous to Eq. (12.8) for the macrocrack growth
rate, but exponent n, which equals about 10–30, is much larger than 2. Why?

This discrepancy has been explained [158, 159] using the condition that the energy
dissipation power of the macroscale crack a must be equal to the combined energy
dissipation power of all the active nanocracks ai (i = 1, . . . N ) in the FPZ of the
macroscale crack, i.e., (∂Π∗/∂a)ȧ = ∑

i (∂Π∗/∂ai )ȧi , or

G ȧ =
N∑
i=1

Gi ȧi (12.13)

where G and Gi denote the energy release rates with respect to a and ai . The increase
of the exponent was explained by a power-law increase in the number of cracks when
zooming from the macroscales through the subsequent finer scales to the nanoscale
[159].

Equation (12.8) gives the velocity of FPZ as a whole. In the cohesive crack model,
the rates of separation ẇc(x) at various points x must, on the average, be proportional
to macroscopic crack growth rate vc. Also, the cohesive stresses σ(x) must, on the
average, be proportional to K . This leads to the relation

ẇc = e−Q0/kBT (σ/C)n (12.14)

where C is a constant. Relation (12.14) has the form of the Charles-Evans law. By
inversion, (12.7) ensues.
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12.7 Models Combining Damage and Creep

Smeared crack models are well suited for the description of nonlinearities caused by
tensile stresses. However, compressive loadingmay also lead to significant deviations
from the principle of superposition. A direct extension of the concept of smeared
cracking to such cases would be quite artificial and inaccurate. To capture the non-
linear time-dependent behavior of concrete under general triaxial stress states, one
needs to develop general tensorial stress–strain laws that combine linear viscoelastic-
ity with modeling techniques originally developed for rate-independent inelasticity,
for instance those based on continuum damage mechanics or plasticity theory. A
detailed coverage of all relevant models of this kind is out of scope of the present
book. The following presentation is limited to a fewbasic observations and comments
on the features of selected models.

Traditional approaches formulated within the framework of damage mechanics
take into account the degradation of stiffness caused by growing defects in the mate-
rial microstructure. For quasi-brittle materials, such defects are typically distributed
cracks, and their propagation and coalescence lead to a reduction of the effective
area, i.e., the area that is still able to transmit stresses. Simple isotropic damage
models consider a reduction of all material stiffness coefficients by the same factor
1−ωwhereω is a scalar damage variable evolving from0 for the virgin (undamaged)
material to 1 for the fully damagedmaterial. Evolution of the damage variable is often
linked to the so-called equivalent strain, ε̃, which plays the role of a scalar measure
of the strain level. To emphasize the prominent role of tension, the frequently used
Mazars definition of equivalent strain [613],

ε̃ =
√√√√ 3∑

I=1

〈εI 〉2 (12.15)

is based on the positive parts of principal strains. Here, εI , I = 1, 2, 3, are the
principal strains, and the positive part 〈εI 〉 is equal to εI if εI > 0; otherwise, it is
set to zero.

The stress–strain law used by rate-independent isotropic damage models with one
scalar damage variable reads

σ = (1 − ω)Deε (12.16)

where σ is the column matrix of stress components, ε is the column matrix of strain
components, and De is the elastic material stiffness matrix. Equation (12.16) can be
interpreted as Hooke’s law linking the strain to the effective stress,

σ = σ

1 − ω
(12.17)

which represents the stress transmitted by the undamaged contiguous solid material
between the defects. The presence of defects leads to stress amplification, reflected
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by the factor 1/(1 − ω), which grows from 1 to ∞ as the damage variable ω grows
from 0 to 1.

In a similar spirit, one can construct a stress–strain law that combines damage
with viscoelasticity and reads

σ(t) = (1 − ω(t))R{ε(t)} (12.18)

or, equivalently,

ε(t) = J

{
σ(t)

1 − ω(t)

}
(12.19)

The reason why the relaxation operator in (12.18) is applied to the strain history and
the factor 1− ω(t) is kept outside is that the viscoelastic law is supposed to link the
strain history, ε(t), to the history of the effective stress, σ(t) = σ(t)/(1 − ω(t)), as
becomes clear from (12.19).

In the one-dimensional setting, a rate-independent damage model can be moti-
vated by the idea of a bundle of parallel elastic-brittle fibers that are all subjected
to the same strain (see, e.g., [518, 519] for a detailed discussion). The fibers break
when they attain a critical strain level, which is different for each infinitesimal fiber.
Consequently, the overall growth of damage is continuous and themacroscopicmate-
rial stiffness is reduced gradually. The yet unbroken fibers carry the effective stress,
which is linked to the strain by Hooke’s law. For a model combining damage with
creep, each fiber is considered as viscoelastic, and multiplication of the current strain
by the elastic modulus is replaced by application of the relaxation operator to the
strain history. The output is then interpreted as the effective stress history, and its
multiplication by 1 − ω(t) leads to the nominal stress history.

For loading at low levels, before the damage threshold is attained, the damage
variable remains equal to zero and the response described by (12.18)–(12.19) is
purely viscoelastic. On the other hand, if the damage threshold is exceeded and
the loading process takes place on the time scale of conventional short-term tests,
the delayed viscous strain has no time to develop. The stress–strain response then
corresponds to a pure damage model, provided that the damage variable is linked to
the strain in the same way as in the original rate-independent damage formulation.
The key question is which variable should drive the evolution of damage in a general
case of long-term loading at moderate and high stress levels, when the response is
affected simultaneously by damage growth and by viscous processes.

The simplest choice would be to make the damage depend again on the total
(equivalent) strain. However, such assumption would lead to a response that does not
match experimental observations. This is illustrated in Fig. 12.20a, which shows the
strain histories corresponding to basic creeps tests performed under uniaxial com-
pression at three stress levels, namely |σ̂ | = 14.5, 22.0 and 29.3MPa, for concrete
with standard compression strength f̄c = 45.4MPa loaded at the age of 90days.
The isolated points represent real data measured by Komendant et al. [551], and
the continuous curves are obtained from the strain history measured at the low-
est stress level (i.e., 14.5MPa) by vertical scaling using the stress ratios 22.0/14.5
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Fig. 12.20 Strain history in basic creep tests at various stress levels [551]: (a) measured strains
at three stress levels (points) and proportional scalings of the curve corresponding to the lowest
stress, (b) measured strains at the highest stress (points) and proportional scalings of the curve
corresponding to the lowest stress amplified by factors 1/(1 − ω) with ω = 0.1 and 0.2

and 29.3/14.5 as scaling factors. The curves characterize the behavior according
to linear viscoelasticity, with the compliance function determined from the test at
the lowest stress level. For the medium stress level, the deviation from linearity is
almost negligible, which confirms that the test performed at the lowest stress level
can be considered as unaffected by damage. On the other hand, the test at the high-
est stress level exhibits a significant deviation from the prediction based on linear
viscoelasticity. After about 1day of loading, the strain magnitude in this test attains
10−3; see point A in Fig. 12.20a. The deviation from linearity at this point is well
pronounced. In the test at the medium stress level, the strain magnitude of 10−3 is
attained after about 200days of loading; see point B in Fig. 12.20a. In this case, the
deviation from linearity is still very small. Consequently, it is obvious that damage
cannot be uniquely linked to the total strain.

States A and B in Fig. 12.20a correspond to the same values of total strain, but
the contributions of the instantaneous (elastic) strain and the delayed (creep) strain
are different. In state A, the instantaneous strain is larger and the delayed strain is
smaller than in state B. Since the damage in state A is seen to be higher, it appears
logical to relate damage to the sum of the full value of instantaneous strain and the
value of delayed strain reduced by a factor smaller than 1. Such an approach was
used, e.g., by Mazzotti and Savoia [614] and adopted by other authors. A rather low
value of the reduction factor was recommended, typically around 0.1 or 0.2. Even if
this factor is kept small, the approach predicts a continuous growth of damage during
a creep test at elevated constant stress, because the delayed strain keeps growing.

It is not straightforward to compute the strain history in a creep test at variable
damage because the effective stress becomes variable, too, even at constant nominal
(applied) stress.However, one can easily obtain strain histories thatwould correspond
to constant nonzero damage (thought of, e.g., as the damage induced at the beginning
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of the test by the instantaneous strain). In the case of constant damageω and constant
applied stress σ̂ , formula (12.19) gives

ε(t) = J

{
σ̂H(t − t ′)

1 − ω

}
= σ̂

1 − ω
J (t, t ′) (12.20)

This means that the corresponding strain curve is obtained from the strain curve
that corresponds to linear viscoelasticity by an additional vertical scaling, using a
constant amplification factor 1/(1−ω). In Fig. 12.20b, such scaled curves are plotted
for two fixed values of damage,ω = 0.1 and 0.2, alongwith the points that represents
the measured response at the highest stress level. It is seen that with ω = 0.1 one
would obtain a good prediction of the “instantaneous” strain (load duration of 0.01
day) but, during the first day of loading, the measured strain grows somewhat faster
than it would at constant damage. On the other hand, for load durations longer than
1day the measured evolution of strain follows the curve that would be obtained with
damage set to 0.2 and kept constant during the whole test. If damage kept growing
after 1day of loading, the points would have to climb above the curve obtained by
vertical scaling of the linear viscoelastic response.

The foregoing analysis of one particular series of experiments reported byKomen-
dant et al. [551] indicates that damage may remain constant even during a test with
growing strain, far beyond the range of linear viscoelasticity. In theory, this could
be an exception, but similar trends are found for other creep experiments performed
at elevated stress levels. Figure12.21 presents the dimensionless compliance ampli-
fication factors constructed as the ratios between the actual strain measured in the
creep test and the strain that would be predicted by linear viscoelasticity, with the
compliance function deduced from the creep test for the same concrete at the lowest
reported stress level. At constant damage ω, such amplification factors correspond
to 1/(1 − ω) because (12.20) can be rewritten as

1

1 − ω
= ε(t)

σ̂ J (t, t ′)
= ε(t)

εlve(t)
(12.21)

where ε is the actual strain and εlve denotes the strain predicted by linear viscoelas-
ticity. In Fig. 12.21a–c, the fraction on the right-hand side of (12.21) is plotted as
a function of the load duration. In Fig. 12.21d, a similar fraction is used, with the
total strain values replaced by the delayed part of strain (e.g., with the instantaneous
strains subtracted).

The experimental data presented in Fig. 12.21 have been extracted from Komen-
dant et al. [551], Weil [856] and Roll [731]. For each case, the ratio between the
applied stress σ̂ and the standard compression strength f̄c is reported. The test per-
formed at the lowest stress level always serves as a reference for determination of
the compliance function, and so the corresponding ratio ε(t)/εlve(t) is identically
equal to 1. For higher stress levels, these ratios are typically larger than 1 and, in
most cases, are found to fluctuate without a clear indication of a growth in time.
The only notable exception is the test at the highest stress level, |σ̂ | = 0.64 f̄c, in
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Fig. 12.21b, but here the values for load durations between 1 and 10days could be
questioned (because they are too close to the values for stress |σ̂ | = 0.57 f̄c) and, if
they are omitted, the growth of the amplification factor appears to be relatively mild.
The data presented in Fig. 12.21d have been adapted based on Fig. 10 fromMazzotti
and Savoia [614]. Only the creep (delayed) strains were reported in that source, and
so the amplification factor is evaluated as εc(t)/εc,lve(t) where εc is the measured
creep strain and εc,lve is its prediction based on linear viscoelasticity. The results
corresponding to |σ̂ | = 0.35 f̄c have been included only for completeness, but they
cannot be trusted since three out of five measurements lead to εc(t) < εc,lve(t).
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Fig. 12.21 Dimensionless compliance amplification factors for creep tests at various stress levels,
based on the data of (a) Komendant et al. [551], f̄c = 45.4MPa, basic creep, (b) Weil [856],
f̄c = 31.2MPa, drying creep at henv = 65%, (c) Weil [856], f̄c = 50.8MPa, drying creep at
henv = 65%, (d) Roll [731], f̄c = 42MPa
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The graphs in Fig. 12.21 clearly show that, at least in the range of load durations
longer than 1day, reasonable fits of the measured strain by a model combining
viscoelasticity and creep could be obtained with the damage variable considered
as constant during each creep test. Since, in each test, the total (mechanical) strain
increases and the creep strain (after subtraction of the instantaneous strain) increases
as well, neither of these strains can be used as the damage-driving variable. On the
other hand, each test was performed at constant stress and also at a constant value of
the instantaneous strain. It is therefore reasonable to consider the damage variable
as dependent either on the instantaneous strain, or on the (nominal) stress. The first
option is consistent with standard rate-independent damage models that link damage
to the equivalent strain, and the second option would correspond to stress-based
damage models, which are slightly less convenient from the computational point of
view but can have other advantages.

A simple stress-based damage model can be described by loading–unloading
conditions in the form

ω̇ ≥ 0, fω(σ, ω) ≤ 0, ω̇ fω(σ, ω) = 0 (12.22)

in which fω is a suitable function constructed such that condition fω(σ, ω) < 0
characterizes those states in which damage does not grow, condition fω(σ, ω) = 0
corresponds to those states in which damage does grow, and condition fω(σ, ω) >

0 characterizes inadmissible states that cannot occur. Damage plays here the role
of a hardening-softening variable. For a fixed value of ω, condition fω(σ, ω) ≤
0 describes the set of stress states that can be attained without inducing further
damage growth. For instance, for ω = 0, condition fω(σ, 0) ≤ 0 describes the initial
elastic domain in which the material keeps its virgin stiffness. With growing ω, the
admissible domain in the stress space can expand, which corresponds to hardening
(an ascending branch of the stress–strain diagram), but it may also shrink, which
corresponds to softening (a descending branch of the stress–strain diagram). In the
hardening range, function fω can be presented in the form

fω(σ, ω) = gω(σ ) − ω (12.23)

where function gω assigns to each (admissible) stress state the value of damage that
would be induced by monotonic loading up to the given stress level.

To provide an illustrative example, consider again the tests of Komendant et al.
[551], performed on sealed concrete with f̄c = 45.4MPa, loaded at the age of
90days. Since the reported value of f̄c refers to the standard 28-day strength, it is
good to estimate the current strength at loading, f̃c, and relate the stress levels to this
modified strength value. Based on the fib formula
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f̃c(t) = f̄c exp
(
s[1 − √

28/t]
)

(12.24)

with parameter s = 0.25, we obtain f̃c(90) ≈ 50.7MPa. The tests were performed at
stress levels |σ̂ | = 14.5, 22.0 and 29.3MPa, which correspond to ratios |σ̂ |/ f̃c(90)
equal to 0.286, 0.434 and 0.578, respectively. From Fig. 12.21a, we can estimate the
amplification factors 1/(1−ω) to be around 1.05 at themedium stress level (0.434 f̃c)
and around 1.25 at the high stress level (0.578 f̃c). This corresponds to damage values
ω = 0.048 and 0.2, respectively. As a rough approximation, one can consider the
amplification factor to be a linear function5 of the stress level (of course, in the range
above the initial damage threshold, which is assumed to be located between the low
and the medium stress levels). Such a linear function is described by

1

1 − ω
= 1.388

|σ |
f̃c

+ 0.448, (12.25)

and thus, as a rough approximation, one can consider function gω from (12.23) in
the form

gω(σ ) =
〈
1 − 1

1.388|σ |/ f̃c + 0.448

〉
≈ 〈|σ | − 0.40 f̃c〉

|σ | + 0.32 f̃c
(12.26)

The positive-part brackets (Macauley brackets) have been added to make sure that
damage is set to zero (and not no negative values) for states below the damage thresh-
old, i.e., for |σ | < 0.4 f̃c. The lowest stress at which the creep test was performed,
|σ̂ | = 0.286 f̃c, was indeed in this range.

The basic creep compliance function can be determined from the strain history
measured in the test at the lowest stress level, |σ̂ | = 14.5MPa = 0.286 f̃c. The
B3 model with parameters estimated in Example 3.1 from the mix composition and
concrete strength would, in this case, provide a very good “blind” prediction, with
slightly overestimated compliance values for short load durations. An almost perfect
fit is obtained with adjusted parameters q1 = 16, q2 = 165, q3 = 1, and q4 = 7.7,
all in 10−6/MPa; see the lowest solid curve in Fig. 12.22a.

5Based on the tests of Komendant et al. [551], it is not possible to determine whether the assumed
linear dependence of the amplification factor on the stress level is reasonable because the experi-
mental data cover only two stress levels exceeding the damage threshold. The tests of Weil [856]
reported in Fig. 12.21b cover three stress levels exceeding the damage threshold and the linear
interpolation is found to be acceptable, too. Of course, for stress levels above the range covered by
experiments, the law would no doubt require appropriate modifications based on additional data.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. 12.22 Strain history in creep tests at various stress levels: data by Komendant et al. [551] and
theoretical curves (a) without tertiary creep, (b) with tertiary creep (and with additional hypothetical
tests at higher stress levels)

The dashed curves in Fig. 12.22a represent the strain histories calculated for the
medium and high stress levels using a damage model based on loading–unloading
conditions (12.22), with function fω in the form given by (12.23) and function gω

specified in (12.26). In this simplest version of the model, damage is assumed to
directly depend on the stress level and, therefore, it increases instantaneously at load
application and afterward remains constant during the creep test. The resulting strain
histories are obtained from (12.20), with ω = gω(σ̂ ) being constant in time.

The agreement with experimental data is good, except for the early response at
the high stress level, |σ̂ | = 29.3MPa. For load durations below 1day, the computed
strains are higher than the actually measured ones. In terms of the present modeling
approach, this indicates that damage does not attain the value corresponding to the
given stress level instantaneously. The damage value after the conventional delay of
0.01day is found to be about 50% of the “terminal” value that is closely approached
for load durations above 1day. If this short-term damage growth is considered as
important, the model can be refined by assuming that damage needs some time to
develop, which motivates a modified damage law in the rate form

ω̇ = 〈g̃ω(σ/ f̃c) − ω〉
τω

(12.27)

where τω is a characteristic time of the damage development process and g̃ω is a
function that corresponds to the original function gω from (12.26) but is considered
as function of the dimensionless stress σ/ f̃c; its formal definition reads

g̃ω(s) = 〈σ̃ − 0.40〉
σ̃ + 0.32

(12.28)
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where σ̃ = σ/ f̃c represents the dimensionless stress-to-strength ratio. Since the
current strength f̃c grows in time (due to aging), the ratio σ/ f̃c is variable even at
constant stress.

In general, one should deal with the whole spectrum of characteristic times of
damage evolution, similar to what is done for creep. However, in the present case
there is novisible damagegrowth for loaddurations above5days, and so it is sufficient
to consider one characteristic time τω,1 in the order of 1day and another characteristic
time τω,0 which is much shorter than the conventional delay (0.01day), and thus, the
corresponding damage growth is almost instantaneous. The refined damage law then
has the form

ω̇ = 〈g̃ω,0(σ/ f̃c) − ω〉
τω,0

+ 〈g̃ω(σ/ f̃c) − ω〉
τω,1

(12.29)

The present example deals with a creep test in which the stress is applied abruptly
at t1 = 90 days. The corresponding damage quickly grows to ω1 = g̃ω,0(σ̂ / f̃c(t1)).
There is no need to integrate the damage law during the extremely short initial period
numerically. Instead, one can directly set ω(t1) = ω1 as the initial value. Afterward,
the first term on the right-hand side of (12.29) becomes inactive (because the value
inside Macauley brackets ceases to be positive) and the damage law can be rewritten
in the form of the differential equation

τω,1ω̇(t) + ω(t) = g̃ω

(
σ̂

f̃c(t)

)
(12.30)

If the aging effect on strength is neglected (i.e., f̃c is treated as a constant), Eq. (12.30)
with initial condition ω(t1) = ω1 has the analytical solution

ω(t) = ω∞ − (ω∞ − ω1) exp

(
− t − t1

τω,1

)
(12.31)

where

ω∞ = g̃ω

(
σ̂

f̃c

)
(12.32)

is the asymptotically approached terminal value of damage. If the aging effect is
included, Eq. (12.30) can be solved numerically, e.g., using the exponential algo-
rithm; see Sects. 5.2.2–5.2.3. Simultaneously, one can determine the strain evolu-
tion by a numerical application of the compliance operator to the effective stress
σ(t)/(1 − ω(t)) (see the right-hand side of (12.19)), or by a step-by-step solution
of the corresponding rate-form equations, resulting from an approximation of the
compliance function by Dirichlet series.

The numerically computed strain histories for amodel based on (12.29) combined
with (12.19) are plotted as solid curves in Fig. 12.22a. The difference compared to
the simpler model with instantaneous damage is clearly seen for the high stress level.

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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Function g̃ω,0 is taken here simply as g̃ω,0(σ̃ ) = 0.5g̃ω(σ̃ ), the precise value of τω,0

is irrelevant (as long as it is much smaller than 0.01day) and τω,1 = 0.5 day.
It is clear that a direct extrapolation of the approach based on (12.29) to very

high stress levels would not lead to realistic results, especially because such a simple
model does not take into account the effects of tertiary creep (i.e., accelerated creep
leading to material failure). It is well known that failure can occur even at sustained
stresses smaller than the short-term strength if the load duration is sufficiently long.
Experiments indicate that the dependence of the time to failure on the sustained
load level can be approximated by inverse proportionality to a high power, with an
exponent in the range of 20 to 30 [632, 893]. This can be taken into account by a
modification inspired by the original damage model of Kachanov [530]. A damage
law in the form

ω̇ = 1

τ f

( |σ |
(1 − ω) f̃c

)n f

(12.33)

with parameters τ f and n f leads to an acceleration of damage growth when the
state of failure, characterized by ω = 1, is approached. For σ and f̃c considered as
constant and for initial condition ω(t1) = ω1, Eq. (12.33) can be solved analytically
and the resulting damage evolution can be described by

ω(t) = 1 −
[
(1 − ω1)

n f +1 − (n f + 1)

( |σ |
f̃c

)n f t − t1
τ f

]1/(n f +1)

(12.34)

The resulting time to failure, determined from condition ω(t f ) = 1, is then given by

t f − t1 = (1 − ω1)
n f +1τ f

n f + 1

(
f̃c

|σ |

)n f

(12.35)

and is inversely proportional to |σ |n f .
Since the exponent n f is typically around 20, the damage rates computed from

(12.33) at low damage and stress levels are negligible. Therefore, a combined model
can easily be constructed by summing the right-hand sides of (12.33) and (12.29).
The damage rate is then given by

ω̇ = 〈g̃ω,0(σ/ f̃c) − ω〉
τω,0

+ 〈g̃ω(σ/ f̃c) − ω〉
τω,1

+ 1

τ f

( |σ |
(1 − ω) f̃c

)n f

(12.36)

With an appropriate choice of parameters, the first term on the right-hand side of
(12.36) controls instantaneous damage, the second term controls short-term damage,
and the third term controls tertiary creep leading to failure under sustained load. For
concrete, it is natural to consider f̃c at the age-dependent current strength.

For illustration, Fig. 12.22b shows the evolution of strain in creep tests, computed
with parameters τ f = 10, 000 days, n f = 20, and all other parameters set to the same
values as before: τω,0 � 0.01 day, τω,1 = 0.5 day, t1 = 90 days, g̃ω given by (12.28),
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g̃ω,0 set to 0.5g̃ω, and f̃c determined from (12.24) with f̄c = 45.4MPa and s = 0.25.
In addition to three stress levels actually used in the experiments of Komendant et al.
[551], two hypothetical tests at stress levels |σ̂ | = 37 and 44MPa are presented. As
shown in the figure, the added term that reflects tertiary creep has almost no influence
on the strain growth for the two lowest stress levels, even when the simulated test
duration is extended to 50,000days. For |σ̂ | = 29.3MPa, the strain blows up after
approximately 15,300days of loading. For the hypothetical tests at still higher stress
levels, the times to failure would be about 130 and 2days, respectively. It should be
emphasized that parameters τ f and n f , which control tertiary creep, have not been
calibrated by real experimental data for the same concrete. The calculated curves
merely illustrate the trend that can be obtained with the present type of model and
should not be considered as realistic predictions.

Note that the foregoing depiction of tertiary creep is only a crude approximation.
In reality, the tertiary creep is a manifestation of structural instability and depends
on the rate of release of strain energy from the entire structure. In finite element
programs with a rate-dependent progressive damage law and a proper localization
limiter, the tertiary creep develops spontaneously as part of structural analysis. This
analysis, however, demands a realistic triaxial damage constitutive law, such as the
microplane model, to be discussed in Sect. 12.8.

Let us conclude this section by a brief comment on the effects of damage onmois-
ture transport, extending the discussion started already in Sect. 8.3.6. It is clear that
cracking leads not only to a reduction of material stiffness, but also to an increase of
the space accessible to pore fluids and to formation of additional paths for the flow of
water and vapor or wet air. This is reflected by an increase of permeability, which can
become quite dramatic if the loading induces severe damage. For instance, Picandet,
Khelidj and Bastian [688] found that the intrinsic permeability6 of concrete loaded
to 90% of uniaxial compression strength and then unloaded was by an order of mag-
nitude higher than in the original intact state. Choinska, Khelidj, Chatzigeorgiou and
Pijaudier-Cabot [312] measured the intrinsic permeability of concrete subjected to
compressive loading at various temperatures. They found that, at room temperature,
low and moderate levels of the applied compressive stress lead to a slight decrease
of permeability, due to the compaction effect. However, at peak stress, the perme-
ability increased five times at room temperature and by an order of magnitude at
105 and 150 ◦C. In these conditions, the permeability measured during loading was
found to be larger than after unloading. Extensive experimental data acquired within
the HITECO project at temperatures up to 700 ◦C were presented and analyzed by
Gawin, Alonso, Andrade, Majorana and Pesavento [413].

Refined theoretical models formulated within the framework of damage mechan-
ics describe the effect of cracking on moisture transport by explicit formulae relating
the intrinsic permeability to the damage variable, ω, or, in applications to coupled
hygro-thermo-mechanical problems, to temperature and to pore pressure. The sim-

6Recall that the intrinsic permeability, K0, is supposed to characterize the transport properties of
the pore space independently of the type of pore fluid and is linked to the hydraulic permeability
by formula (8.70).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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plest version of such a law has traditionally been written in the form

K0 = K0,ref10
Aωω (12.37)

where K0,ref is the intrinsic permeability in a reference undamaged state and Aω is a
parameter, but the same relation could equivalently be written as

K0 = K0,ref exp (Cωω) (12.38)

whereCω = Aω ln 10 is a conveniently transformed version of the original parameter
Aω. Equation (12.37) or (12.38) is often attributed to Bary [58], even though Bary
himself referred in his dissertation to the original idea of Bourdarot [250]. Typically
it is used with Aω = 4, which means that complete damage increases the intrinsic
permeability by four orders of magnitude. A slightly generalized expression

K0 =
{
K0,ref if ω ≤ ω0

K0,ref10Aω(ω−ω0) if ω > ω0
(12.39)

was used for granite by Souley, Homand, Pepa and Hoxha [784] and for concrete by
Jason, Pijaudier-Cabot, Ghavamian and Huerta [511], with parameters Aω = 8.67
and ω0 = 0.035. Another generalized expression

K0 = K0,ref exp (Cωωγω) (12.40)

was adopted, e.g., by Picandet et al. [688]with parametersCω = 11.3 and γω = 1.64.
A general expression that covers (12.39) and (12.40) as special cases can be found in
Bary [58]. It is worth noting that Bary emphasized the anisotropic character of crack-
induced permeability increase and adopted a tensorial description of permeability.

In some studies, the intrinsic permeability was expressed as a function of temper-
ature and pore gas pressure. For instance, Gawin et al. [414] suggested to use

K0 = K0,ref10
AT (T−T0)

(
pg
patm

)Ap

(12.41)

where AT and Ap are parameters, T0 is the reference (room) temperature, pg is the
gas pressure, and patm is the atmospheric pressure. Later, Gawin, Pesavento and
Schrefler [416] added the effect of load-induced damage and generalized (12.41) to

K0 = K0,ref10
AT (T−T0)

(
pg
patm

)Ap

10Aωω (12.42)

which includes (12.37) as a special case. Formula (12.41) was used with parameters
AT = 0.005 and Ap = 0.368 while the extended formula (12.42) was used with
parameters AT = 0.0025, Ap = 0.368, and Aω = 2.
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Clearly, all these formulae are empirical in nature and the parameter values have
been derived by fitting of experimental data for a specific concrete. The proposed
expressions must be used with care and, ideally, they should be recalibrated for
each new application. A comparative study and critical assessment was published by
Davie, Pearce and Bićanić [340]. Interestingly, they obtained a very good agreement
with the experimental data ofKalifa,Menneteau andQuenard [533] using the intrinsic
permeability given by the simplest formula (12.37).

12.8 Microplane Modeling of Cracking Damage with Creep

12.8.1 Basic Ideas of Microplane Modeling

Models that combine tensorial description of inelastic behavior and crackingwith the
aging and moisture-dependent creep represent the traditional approach, which has a
limited modeling potential. For such models, it is difficult to realistically reproduce
the damage due to cracking, always combined with frictional microslips, which has
an oriented character. The induced anisotropy can be best captured by the vector-
based microplane modeling concept.

Its history is long. It began in 1938 with G I. Taylor’s idea to formulate the
constitutive relation in terms of the stress and strain vectors acting on a generic plane
within the material [801]. Initially, the stress vector was assumed to be the projection
of the stress tensor on this plane. This was a static constraint, which led to Batdorf
and Budianski’s slip theory of plasticity [60] and culminated with the success of the
Taylor models for plastic hardening of polycrystals (e.g. [39, 619]).

In 1984, it was shown that for quasi-brittle materials, which exhibit softening
damage, the static constraint must be replaced, for reasons of stability (as well as
explicitness of computations), by a kinematic constraint [89, 127]. In that constraint,
the strain (rather than stress) vector on a generic plane in the material microstructure
(for which the term “microplane” was coined) is a projection of the continuum strain
tensor, while the stress vector is calculated from the strain vector by the microplane
constitutive law.

Furthermore, it was shown that, in the case of softening damage, the simple
superposition of the plastic strain vectors used in Taylor models must be replaced by
virtual work (variational) equivalence between the stress tensor and the microplane
stress vectors, and that, in contrast to Taylor model, the elasticity, too, must be
included in the microplane constitutive law rather than on the tensorial macrolevel.
For isotropic randomly heterogeneous materials, the microplanes may be regarded
as the tangent planes of a unit sphere surrounding every material point. By tracing
the history of internal variables on individual microplanes, the anisotropy induced
by inelastic processes such as cracking or frictional slip can be taken into account in
a simple and elegant manner.
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The microplane model has been progressively improved for concrete through ver-
sionsM1,M2,…M7[113, 169, 181, 205, 217, 289, 290] andhas beenwidely applied
in finite element analysis (e.g. [100, 293]). It has also been adapted to other isotropic
randomly heterogeneous quasi-brittle materials, particularly rocks [214, 308] and
clays [182, 220], including a generalization to orthotropic gas shale [581]. The ther-
modynamic restrictions of microplane modelM7 have been elucidated in Bažant and
Caner [219]. The microplane model for concrete is now embedded in various com-
mercial softwares (e.g., ATENA, DIANA), open-source codes (e.g., OOFEM), and
large wavecodes (e.g., EPIC, PRONTO,MARS). For slip in jointed rock mass [309],
it is featured as a user subroutine in ANSYS. Initially, the microplane model was
too demanding computationally. But the inexorable rise of computer power removed
this obstacle after the advent of the twenty-first century.

To avoid model instability in post-peak softening and facilitate explicit step-by-
step integration, a kinematic constraint must be used instead of a static one [89, 169].
Thus, the strain vector on each microplane is the projection of the macroscopic strain
tensor, i.e.,7

εN = εi j Ni j , εM = εi j Mi j , εL = εi j Li j (12.43)

where εN , εM , and εL are the normal and tangential components of the strain vector
corresponding to the microplane characterized by a unit normal vector n with com-
ponents ni , and Ni j = nin j , Mi j = (nim j + min j )/2, and Li j = (ni l j + li n j )/2
(i, j = 1, 2, 3) are the components of auxiliary second-order tensors. Here, mi and
li are the components of two mutually orthogonal vectors m and l that are tangential
to the microplane. This means that each microplane is equipped with three vectors
n, m and l that form a local orthonormal basis.

The kinematic constraint combined with the principle of virtual work provides
a tool for conversion of the stresses on the microplanes (σN , σM , and σL ) into the
components of the macroscopic stress tensor σi j . The virtual work equality can be
understood as a statement of equivalence between the microscopic and macroscopic
stresses. The resulting stress evaluation formula reads [113]

σi j = 3

2π

∫
Ω

(Ni jσN + Mi jσM + Li jσL) dΩ (12.44)

where Ω is the unit hemisphere.
In practical computations, the integration is carried out numerically, by special

integration rules designed for the hemisphere. The microplane stresses are tracked
at a finite number of selected microplanes, and formula (12.44) is approximately
replaced by

σi j = 6
Nm∑

μ=1

wμ

(
Ni jσN + Mi jσM + Li jσL

)
μ

(12.45)

7In the present section, tensorial notation is used and the summation convention is adopted. In
product-like terms, a sum over all indices that appear twice is implied. For instance, εi j Ni j actually
corresponds to a double sum over i and j running from 1 to 3 (number of spatial dimensions).
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The sum is taken over all microplanes that correspond to the integration points of a
quadrature formula for integration over the unit hemisphere. Nm is the number of such
microplanes, and subscript μ refers to microplane number μ, with μ = 1, 2, . . . Nm.
The integrationweight associatedwithmicroplane numberμ is denoted aswμ and the
subscript μ after the expression in parentheses in (12.45) means that the expression
is evaluated onmicroplane numberμ. The integration weights are normalized so that
[169]

Nm∑
μ=1

wμ = 1

2
(12.46)

The kinematic constraint (12.43) and the stress evaluation formula (12.44) link
the macroscopic quantities (second-order tensors) to their microplane counterparts
(vectors). The core component of a microplane model is a microplane-level consti-
tutive law that relates, on each microplane, the strain vector with components εN ,
εM , and εL to the stress vector with components σN , σM and σL . Microplane model
M7 [290] uses an explicit procedure that incrementally calculates the microplane
stresses from the microplane strains. To model inelastic behavior, M7 uses the so-
called stress–strain boundaries (or strain-dependent strength limits) within which
the behavior is elastic or damaged-elastic.

The main idea is schematically illustrated in Fig. 12.23, in which ε represents a
certain microplane strain component and σ is the corresponding microplane stress
component. Point A corresponds to the state at the beginning of a computational step
number k, and point B to the trial state at the end of the step, with the trial stress
increment computed from the given strain increment using an elastic law (taking into
account possible degradation of the elastic stiffness). If the trial state is beyond the
stress–strain boundary (thick curve in Fig. 12.23), the stress value is reduced and the
state point drops at constant strain to the boundary (point C), with the drop interpreted
as an inelastic stress increment, Δσ ′′.

σ

ε

σ (tr)

σ (k+1)

σ (k)

ε (k) ε (k+1)

B

C

A

ΔσEΔε

Δσ

Δε

Fig. 12.23 Stress evaluation based on the concept of stress–strain boundaries

Microplane stress–strain laws based on the concept of stress–strain boundaries
have traditionally been written in terms of finite computational increments, but they
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can be reformulated in terms of stress and strain rates, in order to separate the actual
constitutive model from its numerical approximation. To illustrate the basic for-
malism, consider the relation between the normal microplane strain εN and normal
microplane stress σN as a typical example. Suppose that the stress–strain boundary
is described by the relation σN = σNb(εN ) where σNb is a given function. In analogy
with plasticity and damage mechanics, it is useful to introduce a loading function

fN (σN , εN ) = σN − σNb(εN ) (12.47)

All admissible combinations of stress and strain must satisfy the condition σN ≤
σNb(εN ), which is equivalent to fN (σN , εN ) ≤ 0. From this point of view, function
fN plays a similar role to the yield function in plasticity; however, the current “yield
stress” σNb(εN ) is evaluated from the total strain and not from an internal variable
such as the accumulated plastic strain.

If the current state satisfies condition fN (σN , εN ) < 0, the corresponding point is
below the bounding curve and the rate formof the stress–strain law reads σ̇N = EN ε̇N
where EN is the microplane-level normal stiffness, to be specified later. On the other
hand, if the current state satisfies condition fN (σN , εN ) = 0 and the stress rate
evaluated as σ̇N = EN ε̇N would lead to states that are located above the bounding
curve, the actual responsemust follow that curve and the stress–strain law is described
simply by σN = σNb(εN ). To cover both above-mentioned cases by one unified set
of conditions, we can write the rate form of the stress–strain law in the general form

σ̇N = EN ε̇N − σ̇ ′′
N (12.48)

and impose conditions

σ̇ ′′
N ≥ 0, fN (σN , εN ) ≤ 0, σ̇ ′′

N fN (σN , εN ) = 0 (12.49)

Here, σ̇ ′′
N is the inelastic stress rate, defined as the difference between the elasti-

cally computed stress rate EN ε̇N and the actual stress rate σ̇N . Note that conditions
(12.49) have the same formal structure as conditions (12.22) used by the simple
damage model presented in Sect. 12.7, and also as the standard loading–unloading
conditions used in the flow theory of plasticity (see, e.g., Sect. 15.2.2 in [521]). From
the mathematical point of view, these are the famous Karush–Kuhn–Tucker condi-
tions [536, 555].

The microplane stiffness EN is in general variable and reflects the degradation
of material stiffness due to damage. Its initial value, valid for an intact material, is
given by

EN0 = E

1 − 2ν
(12.50)

where E is the macroscopic elastic modulus and ν is the Poisson ratio of the material.
Note that EN0 is in fact equal to three times the macroscopic bulk modulus. The
evolution of the microplane stiffness must be described by an additional law that
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depends on the particular version of microplane model. Model M7 uses a relatively
complicated formula dependent on σN , σV , εN , and the sign of ε̇N , and also on
three internal variables, which are denoted as ζ , εNmax and εNmin. All these internal
variables can be evaluated directly from the strain history. Variable ζ is obtained by
integration of the positive parts of volumetric strain increments, and variables εNmax

and εNmin (in the original paper denoted as ε0+N and ε0−N ) represent the maximum and
minimum normal strains reached so far on the given microplane. For future use, it is
convenient to write the formula for normal microplane stiffness in the general form

EN = EN0 βN (σN , σV , εN , sgn(ε̇N ), ζ, εNmax, εNmin) (12.51)

where βN is a dimensionless function. The specific expression for βN can be deduced
from the rules given by Caner and Bažant [290].

To keep the presentation simple, we have so far discussed only one bounding
curve, considered as a curve that limits the tensile normal microplane stresses. To
capture the complex behavior of concrete under general triaxial loading, model M7
uses a combination of bounding curves that limit the components of the microplane
stress vector in various ways. In addition, the bounding stresses are not defined as
unique functions of one component of microplane strain but they are affected by
additional variables that characterize the state of the material on the macroscopic
scale. These variables include the volumetric strain8 εV , volumetric (mean) stress
σV , and maximum and minimum principal strains, ε1 and ε3. The following stress
bounding functions are used:

1. The tensile normal bounding function σNb(εN , σV ), which captures progressive
tensile fracturing.

2. The compressive volumetric bounding function σVb(εV , σV , ε1, ε3), which sim-
ulates pore collapse under extreme pressures.

3. The compressive deviatoric bounding function σDb(εN , εV ), which simulates
compression softening at low confinement. Primarily, σDb was designed as a
function of the deviatoric microplane stress, defined as εD = εN − εV , with an
additional dependence on εV . Formally, it can be rewritten as a function of εN
and εV.

4. The shear bounding function σTb(σN , εV ), which simulates frictional shear slip
and contributes to the description of compression softening at low confinement.

The specific form of functions σNb, σVb, σDb, and σTb is rather complicated; it can
be found in Caner and Bažant [290].

The normal microplane stress, σN , is bounded from above by σNb and from below,
i.e., in compression, by σVb + σDb (this bounding stress is always negative). To
describe such rules formally, we need to consider σ̇ ′′

N from (12.48)–(12.49) as the

8Inmicroplane theory, it is customary to consider the volumetric strain εV as themean normal strain,
i.e., one-third of the sum of principal strains. This definition is respected in the present section and
differs from the definition used in Sect. 13.2.3, where εV denotes the relative change of volume,
i.e., the sum of principal strains.

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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tensile part of the inelastic normal stress rate, further denoted as σ̇ ′′+
N , and intro-

duce another, compressive part of the inelastic normal stress rate, denoted as σ̇ ′′−
N .

Equations (12.48)–(12.49) are then extended to

σ̇N = EN ε̇N − σ̇ ′′+
N + σ̇ ′′−

N (12.52)

σ̇ ′′+
N ≥ 0, fN (σN , εN , σV ) ≤ 0, σ̇ ′′+

N fN (σN , εN , σV ) = 0 (12.53)

σ̇ ′′−
N ≥ 0, fV D(σN , εN , εV , σV , ε1, ε3) ≤ 0, σ̇ ′′−

N fV D(σN , εN , εV , σV , ε1, ε3) = 0
(12.54)

in which

fN (σN , εN , σV ) = σN − σNb(εN , σV ) (12.55)

fV D(σN , εN , εV , σV , ε1, ε3) = −σN + σVb(εV , σV , ε1, ε3) + σDb(εN , εV )

(12.56)

The volumetric stress, σV , corresponds to the mean macroscopic stress (one-third
of the sum of principal macroscopic stresses) and can be obtained by averaging of
normal stressesσN over allmicroplanes.At the same time,σV is needed for evaluation
of σN because it is one of the arguments of functions fN and fVD. To keep the stress
evaluation procedure explicit, the numerical algorithm uses the already known value
of σV at the beginning of the step for evaluation of σN at the end of the step.

Once the normal microplane stresses have been computed, the bounding value
of the shear microplane stress is determined by evaluating function σTb(σN , εV ).
This value is then imposed as a limit on the norm of the microplane shear stresses,

defined as σT =
√

σ 2
M + σ 2

L . If the trial value of this norm exceeds the limit, the trial
values of shear microplane stresses are scaled proportionally, to satisfy the condition
σT = σTb. The corresponding rate form of the constitutive equation can be written
as

σ̇M = ET ε̇M − λ̇
∂ fT (σM , σL , σN , εV )

∂σM
= ET ε̇M − λ̇σM√

σ 2
M + σ 2

L

(12.57)

σ̇L = ET ε̇L − λ̇
∂ fT (σM , σL , σN , εV )

∂σL
= ET ε̇L − λ̇σL√

σ 2
M + σ 2

L

(12.58)

λ̇ ≥ 0, fT (σM , σL , σN , εV ) ≤ 0, λ̇ fT (σM , σL , σN , εV ) = 0 (12.59)

in which λ̇ is an auxiliary multiplier,

ET = (1 − 4ν)EN0

1 + ν
= (1 − 4ν)E

(1 + ν)(1 − 2ν)
(12.60)
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is the microplane shear stiffness, and

fT (σM , σL , σN , εV ) =
√

σ 2
M + σ 2

L − σTb(σN , εV ) (12.61)

is the loading function for shear, similar to the yield function in plasticity of cohesive-
frictionalmaterials. Note that, unlike themicroplane normal stiffness, themicroplane
shear stiffness ET is considered as constant, unaffected by damage.

In combination with suitable localization limiters taking into account the material
characteristic length, microplane model M7 has been proven to give rather realistic
predictions of the constitutive and fracturing behavior of quasi-brittle materials over
a broad range of loading scenarios, including uniaxial, biaxial, and triaxial loadings
with post-peak softening, compression-tension load cycles, opening andmixedmode
fractures, compression-shear failure and axial compression followed by torsion (or
vertex effect) [290, 291]. The model has also been extended to fatigue loading of
concrete up to several thousands of cycles [547].

12.8.2 Incorporation of Creep with Aging and Shrinkage
into Microplane Constitutive Laws

The combination of creep with microplane inelasticity has recently been formulated
in detail for the purpose of simulating the damage due to expansive alkali–silica
reaction (ASR) [185, 714], as an extension of rate-dependent microplane damage
constitutive model M7 [290, 291] and rate-dependent microplane model for dynam-
ics [101]. In this model, linear viscoelastic aging creep is considered to occur in the
undamaged concrete, which is between the cracks, while a rate-dependent fracturing
(or damage) strain represents smeared cracks. Therefore, the creep strain is additive
to the other types of strain.

The main idea of the approach used in 2017 by Bažant and Rahimi-Aghdam
[185] is that the creep strain is subtracted from the mechanical strain at the macro-
scopic level. Recall that the mechanical strain is obtained by subtracting the thermal
and shrinkage strains from the total strain. The difference between the mechani-
cal strain and the creep strain, considered as the elastic strain, is then projected on
individual microplanes and used as the microplane strain vector that drives the evo-
lution of microplane stresses. On the other hand, the bounding stress and the reduced
microplane stiffness are still computed from the mechanical strain, which includes
the creep strain. The stress–strain boundary can thus be attained and inelastic effects
can arise even during creep at constant stress, because the growth of mechanical
strain may lead to a reduction of the bounding stress.

To incorporate the above idea into the microplane framework presented in the
previous section, we first need to split the mechanical strain rate into the elastic
and creep parts. In standard linear viscoelasticity, the relation between the rates of
macroscopic strain and macroscopic stress is described by Eq. (2.26), which can be

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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rewritten as9
σ̇ (t)

E(t)
= ε̇σ (t) + 1

E(t)

∫ t

0
Ṙ(t, t ′) dεσ (t ′) (12.62)

Realizing that the expression on the left-hand side corresponds to the elastic strain
rate, ε̇e(t), we can identify the creep strain rate

ε̇c(t) = ε̇σ (t) − ε̇e(t) = − 1

E(t)

∫ t

0
Ṙ(t, t ′) dεσ (t ′) (12.63)

An alternative expression for the creep strain rate, based on Eq. (2.17), would be

ε̇c(t) =
∫ t

0
J̇ (t, t ′) dσ(t ′) (12.64)

Both foregoing definitions of ε̇c(t) are equivalent. Formula (12.63) clearly shows
that the creep strain rate is uniquely determined by the history of the mechanical
strain, and formula (12.64) links the creep strain rate to the stress history.

In numerical simulations, rates are replaced by increments over finite time steps.
In a generic step number k, Eq. (12.62) is replaced by

Δσk

Ēk
= Δεσ,k − Δε′′

k (12.65)

where Ēk is the incremental modulus and Δε′′
k is the creep strain increment. An

efficient implementation, based on an approximation of the compliance function by
Dirichlet series, makes it possible to determine Ēk and Δε′′

k from a limited number
of internal variables that are updated in each step. The corresponding formulae were
derived in Sect. 5.2.

The foregoing equations describe pure viscoelasticity and, after a straightforward
generalization to multiaxial states, permit evaluation of the tensorial components of
the elastic strain rate, ε̇e,i j . As alreadymentioned, Bažant and Rahimi-Aghdam [185]
substituted the microplane counterparts of the elastic strain rate into the modified
microplane laws, as a replacement of the total strain rates that were used by the
original rate-independent microplane model. This idea leads to a modified form of
Eqs. (12.52) and (12.57)–(12.58), now written as

σ̇N = EN ε̇Ne − σ̇ ′′+
N + σ̇ ′′−

N (12.66)

σ̇M = ET ε̇Me − λ̇σM√
σ 2
M + σ 2

L

(12.67)

9Note that ε in (2.26) was actually meant to be the mechanical strain. To emphasize that, we denote
this strain in (12.62) as εσ .

http://dx.doi.org/10.1007/978-94-024-1138-6_2
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_2
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σ̇L = ET ε̇Le − λ̇σL√
σ 2
M + σ 2

L

(12.68)

where

ε̇Ne = ε̇e,i j Ni j (12.69)

ε̇Me = ε̇e,i j Mi j (12.70)

ε̇Le = ε̇e,i j Li j (12.71)

are the normal and shear components of the elastic microplane strain rate vector. The
microplane stiffnesses must also be adjusted as compared to the original model M7,
because they should reflect not only degradation by damage but also the effects of
aging. Therefore, the normal and shear microplane stiffnesses are expressed as

EN (t) = E(t)

1 − 2ν
βN (σN , σV , εNσ , sgn(ε̇Nσ ), ζσ , εNσ max, εNσ min) (12.72)

ET (t) = (1 − 4ν)E(t)

(1 + ν)(1 − 2ν)
(12.73)

where E(t) represents the age-dependent elastic modulus and βN is a dimensionless
factor evaluated in the same way as in the rate-independent version of the microplane
model, but with all strain variables determined from the mechanical strain (this
is indicated in (12.72) by additional subscripts σ ). Loading–unloading conditions
(12.53)–(12.54) and (12.59) are also kept in the same form as in the original model
M7, again with all strain variables derived from the mechanical strain and denoted
as εNσ , εVσ , εσ,1, and εσ,3.

Based on the postulated constitutive equations of microplane model M7 extended
by creep, shrinkage, and thermal expansion, computational procedures dealing with
finite increments can be developed. The main steps of the stress evaluation algorithm
that processes a generic time step number k are summarized below. The purpose of
the algorithm is to compute the stresses σ

(k+1)
i j at the end of a time step during which

the strains increase from ε
(k)
i j to ε

(k+1)
i j = ε

(k)
i j + Δεi j . Superscripts k and k + 1 are

used to distinguish between values at the beginning of the current step and at its end
(i.e., at the beginning of the next step). For simplicity, we do not use such superscripts
if no confusion can arise (e.g., for increments of various quantities).

Algorithm 12.1

1. Subtract the increments of shrinkage and thermal strains from the normal com-
ponents of total strain increments, to get the increments of mechanical strain

Δεσ,i j =
{

Δεi j − αTΔT − Δεsh for i = j
Δεi j for i �= j

(12.74)
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2. Using a standard algorithm for rate-type creep models, evaluate the incremental
effectivemodulus Ē and the creep strain incrementsΔε′′

i j . In general, the compli-
ance function of an aging viscoelastic model can be approximated by Dirichlet
series corresponding to the compliance function of an aging Kelvin chain, and
then formulae (5.92) and (5.92) can be used for evaluation of Ē and Δε′′

i j . Of
course, thismeans that certain creep history variablesmust be stored and updated
in each step; see Algorithm 5.4 for details.

3. Subtract the creep strain increments from the mechanical strain increments to
get the elastic strain increments

Δεe,i j = Δεσ,i j − Δε′′
i j . (12.75)

4. Based on the mechanical strain at the end of the step, ε(k+1)
σ,i j , evaluate variables

that will later be used on all microplanes. These include the volumetric strain

ε
(k+1)
Vσ = 1

3

(
ε

(k+1)
σ,11 + ε

(k+1)
σ,22 + ε

(k+1)
σ,33

)
(12.76)

the history variable

ζ (k+1)
σ = ζ (k)

σ + 1

3

〈
Δε

(k+1)
σ,11 + Δε

(k+1)
σ,22 + Δε

(k+1)
σ,33

〉
(12.77)

and the maximum and minimum principal mechanical strains, ε(k+1)
σ,1 and ε

(k+1)
σ,3 .

5. In a loop over all microplanes (used as integration points), do the following:

a. Project the mechanical strains at the end of the step, ε
(k+1)
σ,i j , and the elastic

strain increments, Δεe,i j , on the given microplane, to get their microplane
counterparts

ε
(k+1)
Nσ = ε

(k+1)
σ,i j Ni j (12.78)

ΔεNe = Δεe,i j Ni j (12.79)

ΔεMe = Δεe,i j Mi j (12.80)

ΔεLe = Δεe,i j Li j (12.81)

b. Update the maximum and minimum microplane normal strains reached so
far:

ε
(k+1)
Nσ max = max

(
ε

(k+1)
Nσ , ε

(k)
Nσ max

)
(12.82)

ε
(k+1)
Nσ min = min

(
ε

(k+1)
Nσ , ε

(k)
Nσ min

)
(12.83)

c. Determine the stiffness modification factor

http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
http://dx.doi.org/10.1007/978-94-024-1138-6_5
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β = βN

(
σ

(k)
N , σ

(k)
V , ε

(k+1)
Ne , sgn(ΔεNe), ζ

(k+1)
σ , ε

(k+1)
Nσ max, ε

(k+1)
Nσ min

)
(12.84)

and the incremental normal microplane stiffness

EN = β Ē

1 − 2ν
(12.85)

and evaluate the trial normal microplane stress

σ
(tr)
N = σ

(k)
N + EN ΔεNe (12.86)

d. Evaluate the bounding stresses

σ
(k+1)
Nb = σNb

(
ε

(k+1)
Nσ , σ

(k)
V

)
(12.87)

σ
(k+1)
Vb = σVb

(
ε

(k+1)
Nσ , σ

(k)
V , ε

(k+1)
σ,1 , ε

(k+1)
σ,3

)
(12.88)

σ
(k+1)
Db = σDb

(
ε

(k+1)
Nσ , ε

(k+1)
Vσ

)
(12.89)

e. Checkwhether the trial normalmicroplane stress exceeds the bounding values
and determine the final normal microplane stress:

if σ
(tr)
N > σ

(k+1)
Nb then σ

(k+1)
N = σ

(k+1)
Nb (12.90)

else if σ
(tr)
N < σ

(k+1)
Vb + σ

(k+1)
Db then σ

(k+1)
N = σ

(k+1)
Vb + σ

(k+1)
Db (12.91)

else σ
(k+1)
N = σ

(tr)
N (12.92)

f. Determine the shear microplane stiffness

ET = (1 − 4ν)Ē

(1 + ν)(1 − 2ν)
(12.93)

and evaluate the trial shear microplane stresses

σ
(tr)
M = σ

(k)
M + ET ΔεMe (12.94)

σ
(tr)
L = σ

(k)
L + ET ΔεLe (12.95)

and their norm

σ
(tr)
T =

√(
σ

(tr)
M

)2 +
(
σ

(tr)
L

)2
(12.96)

g. Evaluate the bounding shear stress

σ
(k+1)
Tb = σTb

(
σ

(k+1)
N , ε

(k+1)
Vσ

)
(12.97)
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h. Check whether the norm of trial shear microplane stresses exceeds the bound-
ing value and determine the final shear microplane stresses:

if σ
(tr)
T ≤ σ

(k+1)
Tb then σ

(k+1)
M = σ

(tr)
M , σ

(k+1)
L = σ

(tr)
L (12.98)

else σ
(k+1)
M = σ

(k+1)
Tb

σ
(tr)
T

σ
(tr)
M , σ

(k+1)
L = σ

(k+1)
Tb

σ
(tr)
T

σ
(tr)
L (12.99)

6. Evaluate the final tensorial stress components by summing the contributions of
individual microplanes based on the numerical quadrature formula (12.45):

σ
(k+1)
i j = 6

Nm∑
μ=1

wμ

(
Ni jσ

(k+1)
N + Mi jσ

(k+1)
M + Li jσ

(k+1)
L

)
μ

(12.100)

7. Evaluate the volumetric stress

σ
(k+1)
V = 1

3

(
σ

(k+1)
11 + σ

(k+1)
22 + σ

(k+1)
33

)
(12.101)

8. Store the volumetric stress σ
(k+1)
V , the macroscopic history variable ζ (k+1)

σ

and, for all microplanes, microplane stresses σ
(k+1)
N , σ

(k+1)
M , and σ

(k+1)
L , and

microplane history variables ε
(k+1)
Nσ max and ε

(k+1)
Nσ min, all of which will be needed in

the next incremental step.

As an example ofmicroplane creep analysis of the cracking caused by alkali–silica
reaction, Fig. 8.59 shows some of the results obtained in 2017 by Rahimi-Aghdam
et al. [714]. The microplane model made it possible to show the development of
cracking of different orientations for an unconfined load-free specimen, radially con-
fined load-free specimen, unconfined axially loaded specimen, and radially confined
axially loaded specimen.

As seen from this example, the microplane approach can simulate the oriented
character of damage depending on the triaxial stress state. Comparison with the solu-
tion for no creep shows that creep has a major effect. It relaxes the self-equilibrated
internal stresses caused by the ASR. Another major effect in these simulations of
ASR (Fig. 8.59) is the stress relaxation due to diffusion of expanding silica gel into
the pores of cement and concrete. The gel diffusion occurs slowly, over many years,
and has a strong delayed stress mitigating effect, similar to creep.

Microplane-based models for concrete with incorporated creep and shrinkage
effects were also developed by other authors. For instance, Di Luzio and Cusatis
[351] combined an updated version of the M4 microplane model [350] with the
microprestress-solidification theory and proposed a model that can capture the early-
age behavior of concrete. Their approach is somewhat different from the one used by
Bažant and Rahimi-Aghdam [185]. It is based on an additive split of the macroscopic
strain into parts that correspond to instantaneous elasticity, creep, damage (crack-
ing), shrinkage, and thermal expansion. Elasticity and creep are described within the
framework of the microprestress-solidification theory, in the spirit of the B3 model.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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The additional damage strain is computed using a microplane model subjected to
the same stress as the other units of the rheological chain. Since the elastic strain
is already accounted for by the creep model, the microplane model uses a fictitious
elastic stiffness and the corresponding elastic strain is subtracted on the macroscopic
level. Thismakes sure that, as long as the response on all microplanes remains elastic,
the resulting damage strain vanishes.

Yet another approach was used by Ožbolt and Reinhardt [666, 667], who incorpo-
rated creep and rate effects into the specific version of microplane model previously
developed by Ožbolt, Li and Kožar [665].

12.8.3 The Lattice Discrete Particle Model Generalized
for Creep

The lattice discrete particle model (LDPM), progressively developed by Cusatis et
al. in a series of papers [332, 333], is able to resolve the ASR effect locally, in the
aggregate mesostructure. The gel diffusion has not been included in an earlier model
of ASR by Alnaggar et al. [33] based on lattice particle model, although the creep
was. In this model, the inelastic behavior, creep, and shrinkage are introduced in the
contact plates of adjacent simulated particles, using a vectorial constitutive law on
these planes that is analogous to the constitutive law on the microplanes. The LDPM
is very realistic in reproducing the local small-scale behavior concrete, including
creep, but its computational demands are prohibitive for real concrete structures.

The LDPM has been extended to ASR [33] by including the ASR gel expansion
on the contact planes of adjacent particles, although the ASR gel diffusion into the
nanopores has not been included.

12.9 Why Creep Rate at Low Stress Depends on Stress
Linearly

At low stress, no microcracks form (or else E-modulus would decrease). So,
[∂Π/∂wc]wc=0 = 0, and the rate of energy release from the structure is zero. But
imagine wc replaced by x in Fig. 12.19f. Because the applied local shear stress
τ = ∂Π/∂x , the valleys of potential Π decrease with distance x of the interatomic
slip that causes creep. Their decrease, ΔΠ = ΔQ, per atomic spacing Δx is very
small. So, similar to Eq. (12.11), we must substitute ΔQ ∝ τΔx into the left part of
Eq. (12.11). Hence, the frequency of interatomic bond breaks and restorations, deter-
mining the creep rate, is f1 ∝ sinh(CτΔx) ∝ τ ∝ σ (whereC = stress-independent
coefficient). This explains why, at low stress, the stress dependence of concrete creep
rate must be (and is) linear, even though the interatomic bond breakages and restora-
tions are a highly nonlinear phenomenon. This fact provides one refutation of recent
claims that the transition from compressive to tensile creep is nonlinear (the apparent
nonlinearity must be explained differently—probably by forgetting to measure and
subtract non-negligible autogenous shrinkage).



Chapter 13
Temperature Effect on Water Diffusion,
Hydration Rate, Creep and Shrinkage

Abstract Temperature and heat transfer have a large effect on concrete creep as
well as on the moisture transport. Great advances in this regard have been made in
research motivated by concrete nuclear power plant structures, and more recently
by tall building fires and tunnel fires. First we review the mathematical modeling
of heat transfer in concrete, including the effect of heat on cement hydration and
the heating caused by early-age hydration. Then we turn attention to combined heat
and moisture transfer and hygrothermal effects in heated concrete. To model the
strains and stresses at high temperature, we discuss the combined thermal and hygral
volume changes, the extension of creep models to high temperatures, and explain
the phenomena of explosive thermal spalling in fire and surface layer ablation by
means of microwave heating. We emphasize the efficacy and necessity of using the
finite volume method for the moisture and heat transfer in concrete in the case of
a moving dry–wet interface. Finally, we discuss the mass, momentum, and energy
balance laws, which provide the theoretical basis for the modeling of hygrothermal
processes in multiphase media.

In regular service, concrete structures are normally subjected to temperatures below
50 ◦C. In fire, however, concrete is exposed to temperatures of at least several hun-
dred degree Celsius and often up to 1000 ◦C. Similar temperatures can be produced in
concrete by amicrowave blast used to ablate a thin surface layer of contaminated con-
crete. Still higher temperatures would occur in nuclear containments and prestressed
concrete pressure vessels as a consequence of hypothetical nuclear accidents. It was
this application of concrete that stimulated, during 1965–1985, the greatest advance
in the modeling of high temperature exposure. Further, significant progress was
made in response to a series of tunnel fires, which occured in the Channel Tunnel in
1996, Mont Blanc Tunnel in 1999, Gotthard Tunnel in 2001, or Storebaelt Tunnel in
2006; see Ulm, Coussy and Bažant [826], Ulm, Acker and Lévy [823], Vuilleumier,
Weatherill and Crausaz [847], Abraham and Dérobert [7], Voeltzel and Dix [837].

Special refractory concretes, used in coal gasification and liquefaction vessels
and other chemical technology vessels, have to serve at temperatures from about
500 ◦C to almost 2000 ◦C. Moderately elevated temperatures can also be produced
in concrete by various heat machines, pipes, and chemical process vessels.

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6_13

607



608 13 Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage

Since creep and delayed volume changes get intensified by high temperatures,
they are an important consideration in all these engineering applications, even for
short time periods of a few hours or minutes.

A detailed exposition of the thermal effects on concrete is found in Bažant and
Kaplan’s (1996) book. This chapter presents a brief summary, with updates for later
advances. A definite mathematical model, however, is impossible at present since the
existing experimental information on the multitude of phenomena at high tempera-
ture is still very limited. Instead of the current, theoretically unguided, phenomeno-
logical approach to testing, special experiments aimed to prove or disprove various
conceivable theories are urgently needed.

13.1 Heat Transfer in Concrete

At temperatures much below 100 ◦C, the heat gets transferred solely by conduction.
The diffusivity of heat in concrete at room temperature is about 3–4 orders of mag-
nitude greater than the diffusivity of moisture (see the quantitative comparison in
Sect. 13.1.2). Consequently, compared to the moisture diffusion, the halftimes of the
heat conduction process are also 3–4 orders of magnitude shorter, and so, at compa-
rable times, the penetration depths of heat are 30–100 times larger. For computations,
this has the pleasant consequence that the initial-boundary value problems of heat
and moisture diffusion are essentially decoupled, and the heat transfer problem can
be solved prior to that of moisture diffusion (here it is of course assumed that the
cracking is so fine that it can increase the effective permeability of moisture only by
less than an order of magnitude).

With increasing temperature, the moisture transfer gets accelerated. The major
acceleration comes after exceeding 100 ◦C. On passing from about 95–105 ◦C, the
moisture permeability jumps up by two orders of magnitude. Aside from conduction,
the heat may also be transferred by convection in diffusing pore water, and the
transfers of heat and water through concrete become two-way coupled.

13.1.1 Heat Equation

In problems with simultaneous mass and heat transfer, the mass conservation equa-
tion already discussed in Chap.8 must be supplemented by an appropriate energy
conservation equation. In its primary form, energy conservation corresponds to the
first law of thermodynamics, according to which the increase in total energy is equal
to the sum of supplied work and heat. The total energy is the sum of kinetic energy
and internal energy. Since a consistent derivation of the energy balance equation
for a multiphase medium is relatively lengthy and complicated, it is postponed to
Sect. 13.5, in which a theoretically inclined reader can find all the details, with an

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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in-depth discussion of the origin and meaning of individual terms within the frame-
work of continuum thermodynamics.

For practical calculations, it is sufficient to know that, after certain transformations
and simplifications described in Sects. 13.5.4–13.5.5, the energy balance equation
can be converted into the heat equation. A rather general form of the heat equation
for concrete considered as a multiphase medium consisting of a solid skeleton with
pores filled by liquid water and gas (wet air) reads

ρCpṪ + (Cps js +Cpl jl +Cpgjg) ·∇T = ρr −∇ ·q− ṁdehΔhws,l − ṁevΔhwl,g (13.1)

where ρ is the mass density and Cp is the effective specific heat capacity of concrete
(per unit mass); T is the temperature and ∇T is its gradient; Cps , Cpl , and Cpg are
the specific heat capacities of the solid skeleton, liquid water and pore gas; js , jl ,
and jg are the mass fluxes (per unit total area) of the solid skeleton, liquid water,
and pore gas; r is the effective distributed heat source (per unit mass); q is the
conductive heat flux (per unit total area) and ∇ · q is its divergence; mdeh and mev are
the contents of water released by dehydration and of evaporated water (masses per
unit volume); and Δhws,l and Δhwl,g are the specific enthalpies of dehydration and of
vaporization. A detailed derivation of Eq. (13.1), along with an in-depth discussion
of related theoretical aspects, is provided in Sect. 13.5; see Eq. (13.186).

Let us now elucidate the physicalmeaning of individual terms in the heat equation.
The whole equation can be interpreted as expressing the balance of supplied and con-
sumed heat per unit time, written for an infinitesimal control volume fixed in space.
The first term on the left-hand side of (13.1) corresponds to the heat consumed by
temperature increase, per unit volume and unit time. Aswill be shown in Sect. 13.5.5,
the specific heat capacity of a pure substance (e.g., of water) is formally defined as the
partial derivative of specific enthalpy with respect to temperature, taken at constant
pressure; see formula (13.173). The specific enthalpy is a thermodynamic potential
obtained from the specific internal energy by Legendre transformation (13.166), and
it is linked to the specific Gibbs free energy by another Legendre transformation
(13.169). Enthalpy can be thought of as the energy stored in the material (i.e., the
internal energy) plus the work of pressure on the volume occupied by the material.

The effective specific heat capacity of concrete,

Cp = 1

ρ

[
(1 − np)ρsCps + npSlρlCpl + np(1 − Sl)ρgCpg

]
(13.2)

is obtained byweighted averaging of the specific heat capacities of the solid skeleton,
liquid water, and pore gas, withmass fractions playing the role of weight coefficients.
Recall that np denotes the porosity, Sl is the saturation degree, and ρs , ρl , and ρg

are the intrinsic mass densities of the solid skeleton, liquid water, and pore gas. The
product npSl is thus the volume fraction occupied by liquid water, and npSlρl is the
mass of liquid water per unit volume of concrete. The mass density of concrete can
be expressed as

ρ = (1 − np)ρs + npSlρl + np(1 − Sl)ρg (13.3)
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and npSlρl/ρ is the mass fraction of liquid water.
The second term on the left-hand side of the heat equation (13.1) reflects the

effect of heat convection. When liquid water flows through an infinitesimal control
volume and the temperature is not uniform, water that flows into the control volume
through a part of its boundary has a slightly different temperature from the water
that flows out through the complementary part of the boundary. If cold water flows
in and warm water flows out, some heat must be spent to keep the temperature of
the material in the control volume constant. Mathematically, this heat (per unit time
and unit volume) is described by the product Cpl jl · ∇T where Cpl is the specific
heat capacity of liquid water, jl is the flux of liquid water, and ∇T is the temperature
gradient. An analogous effect arises due to the flow of pore gas and is reflected by
the product Cpgjg · ∇T . In theory, one should also include the product Cps js · ∇T
that reflects the effect of the “flow” of the solid skeleton. Of course, the skeleton
does not flow in the same sense as pore fluids, but in general it deforms and since
the control volume is fixed in space, solid particles also cross the boundary of the
control volume. The solid mass flux, js , is generally very small compared to the flux
of liquid water, jl , because the motion of material particles of the solid skeleton is
much slower than themotion of liquidwater particles. Gas particles canmove fast but
the gas mass flux is usually also small, because of the low mass density of the pore
gas. Nevertheless, Eq. (13.1) displays all the convective terms, for completeness.

The first term on the right-hand side of (13.1), ρr , represents the heat supplied
by a distributed heat source to a unit volume of concrete per unit time, and the sec-
ond term, −∇ · q, is the net rate of heat supplied by conduction. Note the analogy
with a similar term, −∇ · jw, which appears in the mass balance equation (8.76) and
represents the net influx of mass. The last two terms on the right-hand side, with-
out the minus signs, correspond to the rates of heat consumed by the processes of
dehydration and vaporization. Vaporization is a typical example of a phase change.
When liquid water attains the boiling point, it can be converted into vapor if a suffi-
cient amount of energy is supplied. This energy is the latent heat of vaporization (or
enthalpy of vaporization). When taken per unit mass, it corresponds to the difference

Δhwl,g = hwg − hwl (13.4)

between the specific enthalpy of water vapor, hwg , and the specific enthalpy of liquid
water, hwl . In (13.1), the specific enthalpy of vaporization Δhwl,g is multiplied by the
time derivative of the mass of evaporated water per unit volume. The process of
evaporation “consumes heat,” which is why the product ṁevΔhwl,g appears on the
right-hand side of (13.1) with a negative sign.

The processes of hydration and dehydration are not pure phase changes because
they involve chemical reactions. Despite that, the heat consumed by dehydration at
temperatures above 100 ◦C is conveniently included in the heat equation in a manner
analogous to the heat of vaporization, using the specific enthalpy (or specific latent
heat) of dehydration,

Δhws,l = hwl − hws (13.5)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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where hws is the specific enthalpy of water in hydrates that form a part of the solid
skeleton. In (13.1), the specific enthalpy of dehydrationΔhws,l ismultiplied by the time
derivative of the mass of dehydrated water per unit volume. On the other hand, when
hydration takes place at temperatures below 100 ◦C, the heat released by hydration
reactions is usually considered as part of the distributed heat source, ρr , even though
it could be reflected by a term analogous to the dehydration term, with a negative
value of latent heat.

In theory, the conductive heat flux q in concrete could be composed of fluxes in
the solid skeleton, liquid water, and pore gas; see Eq. (13.189). However, it is more
convenient to deal directly with the total heat flux and simply adjust the heat transport
properties depending, e.g., on the degree of hydration or on the moisture content.

It is important to realize that (13.1) represents just one possible form of the heat
equation for concrete, derived from certain assumptions. Concrete is considered as
a multiphase medium consisting of a solid skeleton with pores filled by two fluid
phases, namely liquid water and gas (wet air). Two types of mass exchanges between
the phases are accounted for, namely evaporation (also covering condensation as the
reverse process) and dehydration. Depending on the intended application (and also
on the choices made by particular researchers), certain terms in the heat equation
can be neglected and other terms can be added. In fact, in Sect. 13.5.5, it will be
shown that a fully consistent heat equation would contain two kinds of additional
terms, reflecting the contribution of mechanical dissipation and the effect of variable
pressure; see Eq. (13.164), derived for a one-phase material. However, it will also be
demonstrated that, in the context of hygrothermal modeling of concrete, such terms
are negligible.

13.1.2 Characteristic Times of Heating and Drying

In general, heat transfer in concrete is coupled with moisture transport, and the heat
equation (13.1) needs to be combined with one or more mass balance equations,
depending on the modeling assumptions and the choice of primary unknown vari-
ables. Such coupled hygrothermal models will be treated in Sect. 13.2. They play an
important role in analyses of extreme loading scenarios, such as an exposure of a
concrete structure to fire. On the other hand, under normal conditions, heat transfer
and moisture transport can usually be treated separately because they take place on
different time scales. This statement can be supported by an analysis of the dominant
terms in the heat equation.

Let us start from the simplest case, in which convective terms, distributed heat
sources, phase changes, and chemical reactions are neglected. Heat conduction is
then the only mechanism of energy transfer, and Eq. (13.1) is reduced to

ρCpṪ = −∇ · q (13.6)
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Conductive heat flux is driven by the temperature gradient and, for isotropicmaterials,
it is natural to describe their relation by the isotropic Fourier law

q = −kT∇T (13.7)

where kT is the thermal conductivity. Substituting (13.7) into (13.6), we obtain the
classical heat conduction equation

ρCpṪ = ∇ · (kT∇T ) (13.8)

which is a partial differential equation of a parabolic type, with temperature T as the
unknown field. The thermal conductivity kT as well as the volumetric heat capacity
ρCp may depend on temperature, but if these coefficients are considered as constant,
equation (13.8) can further be simplified and rewritten as

Ṫ = DT∇2T (13.9)

where ∇2 is the Laplace operator and

DT = kT
ρCp

(13.10)

is the thermal diffusivity [m/s2].
For the purpose of a comparative analysis, it is useful to note the formal equiva-

lence between the equations describing heat transfer and moisture transport (in their
simplest form). Equations (13.8)–(13.9) havemathematically exactly the same struc-
ture as equations (8.86) and (8.91), with relative humidity h replaced by temperature
T , moisture capacity 1/k replaced by volumetric heat capacity ρCp, moisture perme-
ability cp replaced by thermal conductivity kT , and moisture diffusivity C replaced
by thermal diffusivity DT . Therefore, all the results previously obtained for the linear
diffusion equation (8.91) apply to the linear heat equation (13.9) as well. The thermal
diffusivity has the same units [m2/s] as the moisture diffusivity, and so their values
can be directly compared.

As explained in Chap.8, the typical value of moisture diffusivity C in saturated
mature concrete is about 20mm2/day, which corresponds to 2.3 · 10−10 m2/s. In
concrete only 1week old, it can be roughly 10× larger, and in dry concrete it can be
10× smaller. It also decreases significantly with age of concrete.

The thermal conductivity kT can range from 1.4 to 3.6 W/(m·K). Its tempera-
ture dependence is only mild and may be neglected. The mass density ρ is around
2300 kg/m3, and the specific heat capacity Cp can range from 840 to 1170 J/(kg·K).
For more details, see Neville [653], p. 491, or Bažant and Kaplan [142], pages 60,
65 and 212. For the typical values kT = 2.3 W/(m·K) and Cp = 1000 J/(kg·K),
one gets the thermal diffusivity DT = kT /ρCp = 1 mm2/s = 10−6 m2/s, which is
4 orders of magnitude larger than the typical moisture diffusivity.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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http://dx.doi.org/10.1007/978-94-024-1138-6_8
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For constant diffusivities, the problem of linear heat conduction in a wall with a
prescribed temperature evolution on its surfaces is mathematically equivalent to the
problem of linear moisture diffusion with a prescribed evolution of relative humidity
on the surfaces (provided that the boundary conditions are, for both problems, of the
same type, e.g., of the Dirichlet type). As discussed in Chap. 8, the time for a front
of drying to penetrate from the surface to a given depth is inversely proportional to
the diffusivity; see formula (8.195). For a typical reactor containment of thickness
D = 0.9 m, the time needed to reach the core of the wall can be estimated as1

tch,w = (D/2)2

12C
= 0.452

12 × 2.3 · 10−10

m2

m2/s
≈ 7.34 · 107 s ≈ 850 days (13.11)

An analogous formula is valid for heat conduction, and the time for a heat front to
propagate from a heated face to the core is estimated as

tch,T = (D/2)2

12 DT
= 0.452

12 × 1 · 10−6

m2

m2/s
= 16875 s ≈ 4.7 h (13.12)

In young concrete heated by hydration, elevated temperatures may persist for several
weeks.

Now note that 4.7h, as well as the period of several weeks, is much less than
850days. Therefore, heat conduction and moisture diffusion are essentially decou-
pled. For much thicker bodies, though, e.g., gravity dams, the elevated temperatures
persist far longer and the heat transfer is coupled with moisture diffusion because
heat produced by hydration causes water migration. In fire problems, the coupling
between heat conduction and water and vapor diffusion is always important [188,
189].

Changes in moisture content produce shrinkage and drying creep, but creep has
no effect on moisture diffusion or heat conduction. Therefore, the evolution of tem-
perature and humidity can be solved first, and the mechanical analysis can follow.
However, cracking could accelerate overall moisture diffusion enough to influence
the heating of a containment wall. According to Bažant et al. [122, 150], the accel-
eration is less than an order of magnitude for normal crack width. This is not enough
to make the moisture and heat transfer problems coupled.

13.1.3 Boundary Conditions for Heat Transfer

Heat gets transferred at the surface to or from the surrounding environment. Phys-
ically accurate modeling of the conditions near the surface, which would call for

1The actual time at which the drying front reaches the corewould be evenmuch longer than 850days
because the estimate in (13.11) is valid for a linear diffusion problem while in reality the moisture
diffusivity strongly decreases with decreasing pore relative humidity; see (8.11).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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nonlinear hydrodynamics, is not necessary. For heat transfer, it suffices to use
Newton’s law of cooling (e.g., Chapman [306])

q · n = BT (T − Tenv) (13.13)

where BT is the surface heat transfer coefficient, n is the unit outward normal of the
boundary surface, Tenv is the ambient temperature, and T is the surface temperature.
In the case of free convection of air near the surface, BT is in the range of 5–25
W/(m2·K) (e.g., Chapman [306]). A perfectly insulated surface with a Neumann-
type boundary condition

q · n = 0 (13.14)

is a limiting case of (13.13) for BT = 0, and perfect heat transmission characterized
by a Dirichlet-type boundary condition

T = Tenv (13.15)

is a limiting case of (13.13) for BT → ∞.
When a heated solid is placed in vacuum, it still releases heat. It does so by

radiation. This is described by Stefan’s radiation law [245, 789]

qr · n = γeσSB(T 4 − T 4
env) (13.16)

where qr is the radiation heat flux, σSB = 5.67 × 10−8 W/(m2·K4) is the Stefan-
Boltzmann constant, and γe is the surface heat emissivity, which varies in the range
[0, 1]. For a perfectly black surface, γe = 1; for brick, γe = 0.9 [525]. The same
emissivity as for brick is assumed for concrete. In absence of vacuum, both the surface
heat transfer and the radiation take place simultaneously, and the total heat flux at
the boundary is equal to the sum of the right-hand sides of (13.13) and (13.16).

13.1.4 Role of Heat Convection∗

The linear diffusion equation formulated for a half-space (i.e., an “infinitely thick”
wall) can be reduced to one spatial dimension and solved analytically; see formula
(8.181) derived in Chap.8. An analogous analytical solution of the linear heat equa-
tion (13.9) can be exploited for an assessment of the relative importance of the
convective terms that were initially present in (13.1) but later were neglected.

Contributionof the solid skeleton to heat convection is certainly negligible because
the solid mass flux is much smaller than the mass fluxes of pore fluids. In the spirit
of the Bažant–Najjar model (see Sect. 8.3.4.2), let us describe the transport of all
phases of water by one single moisture flux, jw, which combines the fluxes of liquid
water (including adsorbed water) and of water vapor because these fluxes cannot be
distinguished as the capillaries are usually discontinuous. The linear heat equation

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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enhanced by the convective term would read

ρCpṪ = kT∇2T − Cpwjw · ∇T (13.17)

where Cpw is the specific heat of moisture. The convective term Cpwjw ·∇T replaces
the sum of Cpl jl · ∇T and Cpgjg · ∇T from (13.1), and Cpw should in theory depend
on the relative contributions of the liquid water flux and vapor flux (the contribution
of the dry air flux to heat convection being negligible, due to the low density of air).
For the present purpose, it is sufficient to know that Cpw is a weighted average of the
specific heats of liquid water, Cpl , and of water vapor, Cpv. At temperatures between
0 and 100 ◦C, Cpl ranges from 4178 to 4219 J/(kg·K) while Cpv ranges from 1859
to 1890 J/(kg·K). The maximum possible value of Cpw is thus 4219 J/(kg·K).

Consider a massive concrete wall at initial temperature Tin and initial pore relative
humidity hin = 1, exposed at time t0 to an environment of constant temperature Tenv
and constant relative humidity henv. For a half-space, the one-dimensional form of
the linear moisture diffusion equation (8.91) with the Dirichlet boundary condition
(8.97) has an analytical solution given by

h(x, t̂) = henv + (1 − henv) erf

(
x

2
√
Ct̂

)
(13.18)

where C = kcp is the moisture diffusivity and t̂ = t − t0 is the time of drying.
When the linear heat equation is considered in the simple form (13.9), i.e., without
the convective term, and is combined with the Dirichlet boundary condition (13.15),
it has a formally similar analytical solution

T (x, t̂) = Tenv + (Tin − Tenv) erf

(
x

2
√
DT t̂

)

(13.19)

Recall that erf is the so-called error function, defined by the formula

erf(x) = 2√
π

∫ x

0
e−z2 dz (13.20)

Now we would like to estimate whether the solution of (13.9) changes substan-
tially if the equation is enhanced by the convective term. For this purpose, let us
substitute the analytical solutions (13.18) and (13.19) into the right-hand side of
the one-dimensional form of Eq. (13.17) and compare the relative importance of the
conductive term, kT T ′′, and the convective term, −Cpw jwT ′ (primes denote here
derivatives with respect to the spatial coordinate x). It would not be a good idea to
compare these terms pointwise, because if one of them is zero at a certain point, the
other appears to be “infinitely more important” even if it is very small. Therefore,
let us first integrate the terms with respect to the spatial coordinate, x . Physically,
this makes very good sense because the first term corresponds to minus the spatial

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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derivative of the conductive heat flux (see (13.6)). By integrating the first term and
taking into account that the heat flux q tends to zero as x → ∞, we obtain the heat
flux on the boundary:

∫ ∞

0
kT T

′′(x, t̂) dx = −
∫ ∞

0
q ′(x, t̂) dx = − [

q(x, t̂)
]x=∞
x=0 = q(0, t̂) (13.21)

The result corresponds to the energy supplied to the wall by heat conduction, per
unit time and unit area of the boundary.

The second (convective) term on the right-hand side of (13.17) could be thought
of as a fictitious heat source or sink due to moisture transport in the presence of a
temperature gradient. For instance, if Tenv > Tin, the temperature is a decreasing
function of x and the moisture is transported in the direction of growing temperature
(“to the left”). Consider a small control volume, fixed in space. Cold water enters
this volume through its right boundary, heats up (by an exchange of energy with the
skeleton), and then leaves in a warmer state through the left boundary. This process
has a cooling effect on the skeleton and is equivalent to a distributed heat sink. By
integrating the convective term with respect to the spatial variable, we obtain the
energy extracted from the wall, per unit time and unit area of the wall boundary. This
energy can be expressed as

qconv(t̂) = −
∫ ∞

0
Cpw jw(x, t̂)T ′(x, t̂) dx =

∫ ∞

0
Cpwcph

′(x, t̂)T ′(x, t̂) dx

(13.22)
Note that the flux jw has been replaced by −cph′, based on the one-dimensional
version of the Bažant–Najjar transport law (8.84).

For the humidity and temperature histories given by (13.18)–(13.19), we obtain

h′(x, t̂) = 1 − henv√
πCt̂

exp

(
− x2

4Ct̂

)
(13.23)

T ′(x, t̂) = Tin − Tenv√
πDT t̂

exp

(
− x2

4DT t̂

)
(13.24)

q(0, t̂) = −kT T
′(0, t̂) = kT (Tenv − Tin)√

πDT t̂
(13.25)

qconv(t̂) =
∫ ∞

0
Cpwcph

′(x, t̂)T ′(x, t̂) dx =

= Cpwcp
1 − henv√

πCt̂

Tin − Tenv√
πDT t̂

∫ ∞

0
exp

(
− x2

4Ct̂

)
exp

(
− x2

4DT t̂

)
dx =

= Cpwcp√
π(C + DT )t̂

(1 − henv)(Tin − Tenv) (13.26)

The relative importance of the convective heat flux is given by the ratio between the
absolute values of qconv(t̂) and q(0, t̂). This dimensionless ratio,
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εq = |qconv(t̂)|
|q(0, t̂)| = Cpwcp

kT

√
DT

C + DT
(1 − henv) (13.27)

turns out to be independent of the duration of exposure and can be bounded from
above by Cpwcp/kT , because the fraction under the square root in (13.27) is always
smaller than 1, and the same holds for the factor 1− henv. Substituting typical values
Cpw = 4200 J/(kg·K), cp = 2.3 · 10−8 kg/(m·s), and kT = 2.3 W/(m·K), we get

εq <
Cpwcp
kT

≈ 4200 × 2.3 · 10−8

2.3
= 4.2 · 10−5 (13.28)

This rough estimate clearly shows that the effect of heat convection is at least by four
orders of magnitude less important than the effect of heat conduction and thus can
be safely neglected.

The foregoing estimate has been obtained for a half-space, but the analytical
solution characterizes the initial asymptotics of the drying and heating processes for
a finite body of an arbitrary shape. It has also been assumed that the temperature
remains below 100 ◦C. A comparative numerical study of Gawin, Pesavento, and
Schrefler [422] revealed that, in concrete heated to temperatures above 100 ◦C, the
convective flux can grow to the same order of magnitude as the conductive flux.
Despite that, the effect of convective flux on the evolution of temperature and pore
pressure in representative examples that covered slow and fast heating turned out to
be negligible [423].

13.1.5 Hydration Heat

Hydration of cement is an exothermic chemical reaction (or rather a group of reac-
tions), which means that it releases heat. This effect can be reflected by a distributed
heat source on the right-hand side of the heat equation. Such a term was present in
the general heat equation (13.1) but later neglected in Sects. 13.1.2–13.1.4, devoted
to the analysis of a wall heated from the surface. In the presence of a heat source,
Eq. (13.8) must be rewritten in a generalized form

ρCpṪ = ∇ · (kT∇T ) + ρr (13.29)

where r is the specific power of the heat source [W/kg]. In the present context, the
term ρr corresponds to the mass of reacted cement per unit time and unit volume of
concrete, multiplied by the difference between specific enthalpies (of cement plus
the corresponding amount of water) before and after the reaction.

If the hydration process is dominated by a single reaction (which is a reason-
able assumption for ordinary Portland cement, typically containing about 70% of
alite), the mass of reacted material is proportional to the degree of hydration and can



618 13 Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage

be expressed as a unique function of the equivalent age. The concept of equivalent
age was already introduced in Sect. 10.6.1. If the hydration process takes place at
room temperature and near saturation, the equivalent age is equal to the time elapsed
from the onset of hydration. In a test, the temperature can be kept constant if all
the heat generated by chemical reactions is almost instantaneously extracted from
the hydrating specimen. Such procedure is used by isothermal calorimetry, which
provides the dependence of hydration heat on equivalent time. Another extreme case
is an adiabatic test, in which the temperature growth is measured in a thermally insu-
lated sample. At elevated temperature, the hydration process is accelerated, which is
reflected by a faster evolution of the equivalent age. In real concrete members and
structures, especially massive ones, the heat released by hydration is evacuated by
conduction, with a certain delay. The temperature distribution becomes nonuniform,
and the temperature rise is smaller than in an adiabatic test.

Table 13.1 Typical composition of silicate clinker and potential hydration heat of its chemical
components

Chemical component Mass fraction [%] (min –
average – max)

Hmax [kJ/kg]

C3S (tricalcium silicate) 45–63–80 517

C2S (dicalcium silicate) 5–20–32 262

C3A (tricalcium aluminate) 4–8–16 1144

C4AF (tetracalcium
aluminoferrite)

3–7– 12 725

Free CaO (calcium oxide) 0.1–1–3 1150

Free MgO (magnesium oxide) 0.5–1.5–4.5 840

Table 13.2 Potential hydration heat of various types of cement

Cement type Hmax [kJ/kg]

Generic Portland cement 375–525

Blast furnace slag cement 355–440

Sulfate-resistant cement 350–440

Pozzolanic cement 315–420

High alumina cement 545–585

The total amount of heat released by complete hydration of a unit mass of cement,
called the potential hydration heat and denoted as Hmax, depends on composition.
Typical values of Hmax for themain chemical components found in cement clinker are
given in Table13.1, and the ranges of Hmax for various types of cement are specified
in Table13.2. The data are taken from Czernin [334], Taylor [802], and Bentz [235].

Hydration kinetics can be described by the dependence of the hydration heat
released up to the current time, Hc, on the equivalent age, te. Equivalently, one
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can use the dimensionless ratio ξ = Hc/Hmax, called the hydration degree.2 The
dependence of the hydration degree or hydration heat on the equivalent age can be
described either in the total form, by specifying ξ or Hc directly as functions of te,
or in the rate form, by linking the rate of hydration to the current hydration degree.

The total formwas used, e.g., byBažant et al. [150],who suggested to approximate
the hydration heat (per unit mass of cement) by a function that can be presented in
the form

Hc(te) =

⎧
⎪⎨

⎪⎩

0 for te ≤ td
H∞

1+
( tc
te − td

)n for te > td (13.30)

where H∞ is the ultimate hydration heat (per unit mass of cement), td is the delay
time for the onset of hydration, tc is a certain characteristic time of hydration, and n is
a dimensionless exponent. The ultimate hydration heat H∞ is equal to the potential
hydration heat Hmax only if the hydration process asymptotically approaches the
state of complete hydration. In general, H∞ = ξ∞Hmax where ξ∞ is the ultimate
hydration degree. If Hc is replaced by ξ and H∞ by ξ∞, formula (13.30) can be used
for evaluation of the hydration degree. For illustration, Fig. 13.1a shows experimental
data presented by Bažant et al. [150] for cement pastes with water-cement ratio
w/c = 0.4 at a constant temperature of 20 ◦C, and their fits by formula (13.30) with
parameters H∞ = 455 kJ/kg, td = 0.16 day, tc = 1.18 day and n = 0.78 for type-I
cement, and H∞ = 435 kJ/kg, td = 0.35 day, tc = 1.27 day, and n = 0.81 for
type-V cement.

Fig. 13.1 (a) Test data on evolution of hydration heat for cements of type I and V measured under
isothermal conditions and their fit by formula (13.30), (b) test data on evolution of hydration degree
for cement CEM I measured under isothermal conditions and their fits by the affinity hydration
model (13.31)–(13.32) and by the CEMHYD3D model

2According to its primary definition, the hydration degree is the mass of already hydrated cement
divided by the total mass of cement. If the hydration process is dominated by one chemical reaction,
the released hydration heat is proportional to the hydration degree, and one can use an alternative
definition, ξ = Hc/Hmax.
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In the rate form, evolution of the hydration degree is described implicitly, as the
solution of the differential equation

dξ

dte
= A(ξ) (13.31)

where A is a generalized thermodynamic force that drives the hydration process,
called the affinity. Jendele, Šmilauer and Červenka [512] proposed to approximate
the dependence of affinity on the current hydration degree by a function of the form

A(ξ) = B1

(
B2

ξ∞
+ ξ

)
(ξ∞ − ξ) exp

(
− ηξ

ξ∞

)
(13.32)

where ξ∞ is the ultimate hydration degree and B1, B2, and η are additional parame-
ters. The dependence of ξ on te can be established by numerical integration. Using
parameters B1 = 30.4/day, B2 = 8 · 10−6, η = 7.4, and ξ∞ = 0.85, Jendele et al.
[512] obtained a good agreement with calorimetric experimental data, and also with
the development of hydration heat obtained by a sophisticated discrete hydration
model called CEMHYD3D [233]. Their fit is plotted in Fig. 13.1b.

Equations (13.30) and (13.31) are formulated in terms of the equivalent age, te.
Acceleration of the hydration reaction under increased temperature can be taken
into account by an Arrhenius-type factor. On the other hand, low relative humidity
reduces the rate of hydration. As already discussed in Sect. 10.6.1, these considera-
tions motivate the definition of the equivalent age by the rate equation

dte
dt

= βeT (T )βeh(h) (13.33)

in which

βeT (T ) = exp

(
Qe

RT0
− Qe

RT

)
(13.34)

βeh(h) = 1

1 + [αe(1 − h)]4 (13.35)

Here, Qe is the activation energy of hydration, R is the universal gas constant, T0 is
the room temperature, T is the current temperature, and h is the current pore relative
humidity. For concrete with ordinary Portland cement classified as CEM I 42.5 R
(according to the European standards), Kada-Benameur, Wirquin, and Duthoit [532]
performed isothermal tests at different temperatures and obtained optimal values of
Qe/R ranging between 3850 and 5500K. The B4 model sets Qe/R = 4000 K.
Parameter αe used in (13.35) is typically in the order of 10.

The heat source term ρr , included on the right-hand side of (13.29), describes the
rate of heat released by hydration, per unit volume of concrete. Since the hydration
heat Hc represents the cumulative value (heat released up to the current time) and is

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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taken per unit mass of cement, the corresponding heat source term is evaluated as

ρr = c
dHc

dt
= c

dHc

dte
βeT (T )βeh(h) (13.36)

where c is the mass of cement per unit volume of concrete.
For a model working with the hydration degree, ξ , it suffices to replace Hc by

ξHmax where Hmax is the potential hydration heat for the given type of cement (heat
that would be obtained by complete hydration of a unit mass of cement). If the
hydration process is described by the rate equation (13.31), relation (13.36) can be
rewritten as

ρr = cHmax
dξ

dte
βeT (T )βeh(h) = cHmaxA(ξ)βeT (T )βeh(h) (13.37)

The models for cement hydration developed prior to finishing this book (2017)
have some significant limitations. They do not take into account the complete range of
variation of pore relative humidity and temperature, the best (such as CEMHYD3D)
are computationally too intensive for use in finite element programs, and apply over
durations limited from up to a few months to about a year. However, recent tests
of autogenous shrinkage and swelling in water (reported in Bažant et al. [125])
imply that the hydration degree may grow, roughly logarithmically, for decades, even
centuries, provided that a not too low relative humidity (above cca 0.65) persists in the
pores for a long time, as expected for the cores of thick concrete structural members.
Therefore, and because design lifetimes of over hundred years are required for large
concrete structures, a new hydration model for a hundred year lifespan has been
developed [715], by extending and refining a preliminary version from ConCreep-10
conference [125].

This new model considers that, after the first day of hydration, the remnants of
anhydrous cement grains, gradually consumed by hydration, are enveloped by con-
tiguous, gradually thickening, spherical barrier shells of calcium silicate hydrate
(C-S-H). The hydration progress is controlled by diffusion of water from capillary
pores through the barrier shells toward the interface with anhydrous cement. The
diffusion is driven by a difference of humidity, defined by equivalence with the dif-
ference in chemical potential of water. Although, during the first 4–24h, the C-S-H
forms discontinuous nanoglobules around each cement grain, an equivalent barrier
shell control was formulated for ease and effectiveness of calculation. The entire
model was calibrated and validated by published test data on the evolution of hydra-
tion degree and hydration heat for various cement types, particle size distributions,
water-cement ratios and temperatures. Computationally, this model is sufficiently
effective for calculating the evolution of hydration degree (or aging) at every inte-
gration point of every finite element in a large structure.
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13.1.6 Temperature Increase Induced by Hydration

Example 13.1. Hydration of a thick wall (simple model)

For illustration, let us analyze the development of temperature caused by hydration
in a wall of thickness D = 1 m. Concrete properties are the same as in the analysis
of a segment of Opárno Bridge by Jendele et al. [512]. The content of Portland
cement CEM I 42.5 R is set to c = 410 kg/m3, and the potential hydration heat is
considered as Hmax = 510 kJ/kg, which gives cHmax = 209.1 MJ/m3. Hydration is
decribed by the affinity model (13.31) and (13.32) with parameters B1 = 23.4/day,
B2 = 7 · 10−4, η = 6.7, and ξ∞ = 0.85. The effect of temperature on the rate of
hydration is reflected by factor βeT evaluated from (13.34) with Qe/R = 4600 K,
and the effect of pore humidity is neglected.

Table 13.3 Composition of concrete mix and evaluation of effective heat capacity

ηαρα [kg/m3] Cpα [kJ/(kg·K)] ηαραCpα [kJ/(m3K]

Water 178 4.18 744

Cement 410 0.79 324

Aggregates 1785 0.84 1499

Filler 86 1.00 86

Concrete 2459 2653

In the first simple analysis, the volumetric heat capacity and the thermal conduc-
tivity kT = 1.44 W/(m·K) are considered as constant. The effective value of heat
capacity, ρCp = 2.653 MJ/(m3·K), is determined for the given composition of con-
crete mix by summing the contributions of cement, water, aggregates, and filler; see
Table13.3. Note that the volumetric heat capacity of the concrete mix is calculated as
a weighted average of the volumetric heat capacity of individual constituents, which
can be formally written as ρCp = ∑

α ηαραCpα . The products ηαρα correspond to
masses of individual constituents per unit volume of concrete, i.e., to the water con-
tent, w, cement content, c, aggregate content, a, and filler content, f . The effective
value of thermal conductivity, kT = 1.44 W/(m·K), is obtained using an analytical
multilevel homogenization procedure, following the procedure described in Jendele
et al. [512].

Evolution of temperature T and hydration degree ξ is computed by numerically
solving the one-dimensional heat equation

ρCpṪ = kT T
′′ + cHmaxξ̇ (13.38)

combined with the hydration equation

ξ̇ = A(ξ)βeT (T ) (13.39)
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Initial conditions are set to ξ(x, 0) = 0 and T (x, 0) = T0 = 293 K (20◦C), and
boundary condition (13.13) is rewritten as

kT T
′(0, t) = BT (T (0, t) − Tenv) (13.40)

where the surface heat transfer coefficient is given by BT = 4 W/(m2K) and the
ambient temperature Tenv is set to T0. The selected value of BT corresponds to a
20-mm-thick layer of plywood used as formwork, combined with the effect of air
convection.3 Owing to symmetry, the problem can be solved on the interval [0, D/2],
with a zero-flux boundary condition

T ′(D/2, t) = 0 (13.41)

imposed at the plane of symmetry.
Differential equations (13.38)–(13.39) can be approximated by finite differences

using similar numerical schemes as for the moisture diffusion equation in Sect. 8.4.2.
For instance, the forward Euler approach leads to the explicit update formulae

Δξi = A
(
ξ

(k)
i

)
βeT

(
T (k)
i

)
Δt (13.42)

ΔTi = kT
ρCp

Δt

(Δx)2

(
T (k)
i+1 − 2T (k)

i + T (k)
i−1

)
+ cHmax

ρCp
Δξi (13.43)

ξ
(k+1)
i = ξ

(k)
i + Δξi (13.44)

T (k+1)
i = T (k)

i + ΔTi (13.45)

where Δt is the time step, Δx is the spacing of grid points, and ξ
(k)
i and T (k)

i are
numerical approximations of the hydration degree and temperature at point x = xi ≡
i Δx and time t = tk ≡ k Δx .

It can be shown that, in analogy to formula (8.124) derived in Sect. 8.4.2 for the
moisture diffusion equation, a safe estimate of the critical time step is given by

Δt∗crit = (Δx)2

2 DT
(13.46)

where DT = kT /(ρCp) is the thermal diffusivity. For the present set of parameters,
DT = 0.543 · 10−6 m2/s. If the interval [0, D/2] is divided into 100 equally sized
segments, we have Δx = 5 · 10−3 m and the estimated critical time step is Δt∗crit ≈

3A standard value of the surface heat transfer coefficient for a boundary in direct contact with the
atmosphere would be BT 1 = 10 W/(m2K). This value already includes, in an approximate way,
the effect of radiation. A layer of plywood, characterized by thermal conductivity 0.13 W/(m·K)
and thickness 20mm, would alone lead to BT 2 = (0.13/0.02) W/(m2K)= 6.5 W/(m2K). Due to
serial coupling (fluxes are equal, temperature differences are summed), the reciprocal values of BT
are additive, which leads to BT = 1/(1/BT 1 + 1/BT 2) = 3.94 W/(m2K) ≈ 4 W/(m2K).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. 13.2 Simple analysis of a wall heated by hydration: profiles of (a) hydration degree and
(b) temperature at selected times

Fig. 13.3 Simple analysis of a wall heated by hydration: evolution of (a) hydration degree and
(b) temperature at selected points

23 s. To guarantee numerical stability, the actual time step must be shorter, e.g.,
Δt = 10 s.

The computed profiles of hydration degree and temperature at selected times are
plotted in Fig. 13.2. In an initial period of several hours, hydration is slow and the tem-
perature increases only slightly. Afterward, the hydration reaction speeds up, which
results into a fast temperature growth. In boundary layers, the temperature is partially
reduced by heat conduction, and the temperature profiles become nonuniform. Due
to thermal activation, the hydration process develops faster in the core than near the
boudaries, and the distribution of hydration degree becomes nonuniform, too. After
about 1 day, the hydration degree in the core reaches 0.61 and the reaction slows
down. The temperature attains its maximum and starts decreasing. For the sake of
clarity, the profiles of temperature are plotted in Fig. 13.2b only up to 24h. The over-
all evolution of temperature is documented in Fig. 13.3b. In this plot, we can identify
the maximum temperature of 71◦C, attained in the core after 40h of hydration. At
the surface, the maximum temperature is only 51◦C and is reached already after 31h.
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Fig. 13.4 Influence of wall thickness on the evolution of (a) hydration degree and (b) temperature
in the core

Figure13.3a shows the evolution of the hydration degree at selected points. Asymp-
totically, the hydration degree approaches the same ultimate value, ξ∞ = 0.85, at all
points.

Figure13.4 illustrates the influence ofwall thickness on the evolution of the hydra-
tion degree and temperature in the core (i.e., at the plane of symmetry). For com-
parison, the graphs also contain curves that correspond to adiabatic conditions and
to isothermal conditions, which can be considered as the limit cases of an infinitely
thick wall and a zero-thickness wall. Under adiabatic conditions, the temperature
would increase from the initial value of 20◦C up to 87◦C. This is in agreement with
the theoretical ultimate temperature increase under adiabatic conditions,

ΔTmax = ξ∞cHmax

ρCp
= 0.85 × 410 × 510 · 103

2.653 · 106 K = 67 K (13.47)

evaluated as the ultimate hydration heat per unit volume, ξ∞cHmax, divided by the
volumetric heat capacity, ρCp. �

In Example 13.1, we have considered the heat capacity and thermal conductivity
as constant. However, these properties are affected by the current temperature and
moisture content (or pore relative humidity), and they also vary in the course of
hydration. The dependence on temperature and humidity will be discussed later
in the context of complex models for heat and moisture transfer under extreme
conditions such as fire; see Sects. 13.2.5–13.2.6. For young hydrating concrete, it is
more important to take into account the variation due to changes in microstructure.

Some experimentalmeasurements indicate that hydration leads to a gradual reduc-
tion of thermal conductivity. According to Ruiz, Schindler, Rasmussen, Kim, and
Chang [743], the dependence on the degree of hydration can be described by the
linear function

kT (ξ) = (1 − 0.248ξ) kT 0 (13.48)
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where kT 0 is the thermal conductivity of fresh concrete. On the other hand, Bentz
[234] found the thermal conductivity of hydrating cement pastes to exhibit no sys-
tematic dependence on the degree of hydration, within the experimental error.

Heat capacity of concrete can be evaluated by combining the contributions of
individual constituents. Formula (13.2) is applicable to mature concrete, considered
as a multiphase material consisting of a solid skeleton and pore fluids. In a similar
spirit, for fresh concrete, one should combine the contributions of water, cement,
and aggregates (plus other additives and admixtures, if present). The corresponding
formula reads

ρCp0 = a Cpag + wCpl + c Cpc (13.49)

where Cp0, Cpag , Cpl , and Cpc are the specific heat capacities of fresh concrete,
aggregates, liquid water, and cement, and a, w, and c are the masses of aggregates,
water and cement per unit volume of concrete. Of course, if the coarse and fine
aggregates have different specific heat capacities, the term a Cpag should be replaced
by acCpag,c + afCpag,f .

At room temperature, the specific heat capacities of water and cement are Cpl =
4180 J/(kg·K) and Cpc = 790 J/(kg·K). Hydration converts cement and water into
hardened cement paste, and the heat capacity of the hydration products is smaller
than the combined heat capacity of the reactants. Based on the results of Bentz [234],
this effect can be taken into account by setting

ρCp(ξ) = a Cpag + (
wCpl + c Cpc

) [
1 − 0.26

(
1 − e−2.9ξ

)]
(13.50)

The reduction factor in the square brackets was obtained from experiments on cement
pastes in sealed conditions. The effect of water loss due to drying (or of water gain
due to imbibition into concrete cured under water) needs to be taken into account
separately.

Example 13.2. Hydration of a thick wall (refined model)

Let us analyze the same problem as in Example 13.1, but this time accounting for
the effects of hydration on heat capacity and thermal conductivity. The values kT0 =
1.44 W/(m·K) and ρCp0 = 2.653 MJ/(m3·K) are now considered as characterizing
fresh concrete, and the dependence of thermal properties on the hydration degree
is described by Eqs. (13.48) and (13.50). Based on the values from Table13.3, the
contribution of aggregates (and filler) to the volumetric heat capacity is taken as
a Cpag + f Cpf = 1.499 + 0.086 = 1.585 [MJ/(m3·K)], and the contribution of
water and cement as wCpl + c Cpc = 0.744 + 0.324 = 1.068 [MJ/(m3·K)].
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Fig. 13.5 Influence of model choice on the computed evolution of the core temperature (heat
capacity and thermal conductivity are considered either as constant, or as decreasing functions of
the hydration degree)

The dependence of kT and ρCp on ξ is easily incorporated into the computational
procedure, e.g., into formula (13.43) of the explicit scheme. The computed evolution
of the core temperature is plotted in Fig. 13.5. The dash-dotted curve corresponds to
the results from Example 13.1, where the effects of hydration on thermal properties
(capacity and conductivity) were neglected and themaximum temperature was found
to be 71 ◦C. The solid curve presents the results of a refined analysis with the effects
of hydration included. The hydration-induced reduction of both capacity and con-
ductivity leads to higher temperatures, with a peak value of 78 ◦C. To provide more
insight, the graph also contains curves that correspond to one property considered
as variable and the other as constant. The dashed curve shows that the reduction of
heat capacity is responsible for an increase in the peak temperature, and the dotted
curve shows that the reduction of thermal conductivity is responsible for a slower
decay of temperature after the peak.

To complete the picture, let us also investigate the sensitivity of the results to the
boundary condition, in particular to the value of the surface heat transfer coefficient,
BT . The choice of BT = 4 W/(m2·K) in Example 13.1 was supposed to correspond
to a boundary covered by a 20-mm-thick layer of plywood. In the absence of such
a layer, a realistic choice could be BT = 10 W/(m2·K), or even BT = 25 W/(m2·K)
if the concrete surface is ventilated. Figure13.6 shows the temperature evolution
in the core that corresponds to different values of the surface heat transfer coeffi-
cient. In all the cases, the refined model with variable heat capacity and thermal
conductivity is used. With increasing BT , heat flows through the boundary “more
easily,” and the peak temperature in the core is reduced. The lowest peak is obtained
with the Dirichlet boundary condition (13.15), which corresponds to the limit of BT

approaching infinity. �

It isworth noting that da Silva and Šmilauer [335] developed an easy-to-use nomo-
gram for a quick prediction of themaximum temperature attained during hydration of
mass concrete. The nomogram calculations have been embedded in amobile applica-
tion, called “Mass Concrete App,” which is available for free download from the App
Store. The temperature nomogram accounts for the cement type, total binder content,
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Fig. 13.6 Influence of the surface heat transfer coefficient, BT , on the computed evolution of the
core temperature

effective percentage of supplementary cementitious materials, member thickness,
initial temperature, and average ambient temperature. Field validations indicated a
prediction error of less than 4 ◦C.

13.2 Heat and Moisture Transfer, and Hygrothermal
Effects in Heated Concrete

The previous section was devoted to analyses of heat transfer, uncoupled from the
transport of moisture. Suchmodeling is appropriate, e.g., for evaluation of the effects
of hydration heat on a sealed specimen or a structure protected against moisture loss.
Also, moderate heating or cooling of mature concrete caused by climatic variations
of ambient temperature can be treated separately from long-term drying processes
because of the huge difference in characteristic times of heat conduction andmoisture
transport, as discussed in Sect. 13.1.2. On the other hand, rapid heating of concrete
caused by fire or microwave irradiation calls for coupled hygrothermal modeling.

Many models of hygrothermal effects in porous materials have been proposed
in the literature; they range from rather general models developed for applications
in building physics [444, 508, 553, 556, 587, 672] to specialized models focusing
explicitly on the behavior of structural concrete. An excellent overview of the latter
class of approaches can be found in the comparative study of Gawin et al. [423], who
summarized themain features of themodels proposed byAbdel-Rahman andAhmed
[5], Bažant and Thonguthai [188, 189], Ichikawa and England [501], Tenchev, Li
and Purkiss [806], Tenchev and Purnell [805], Davie, Pearce and Bićanić [339], Con-
solazio, McVay and Rish III [324], Chung, Consolazio and McVay [315], Dwaikat
and Kodur [365], Ulm et al. [823, 826], and of the family of multiphase models
developed over the years by Gawin, Schrefler, Pesavento and coworkers [414, 415,
417, 418, 421, 767].

A detailed presentation and discussion of all competing formulations from the
literature is out of scope of the present book. We will focus our attention on the
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model proposed by Bažant and Thonguthai [188, 189] and later slightly modified
by Bažant and Zi [213], which will be referred to as the BT model. For comparison,
the main ideas of a family of multiphase models developed by Gawin, Schrefler,
Pesavento, and coworkers will be outlined in Sect. 13.6.

13.2.1 Structure of Bažant–Thonguthai Model

Models of hygrothermal effects in porous materials usually start from suitably
selected mass and energy balance equations. The specific choice of such equations
is closely related to the choice of primary unknown variables. As will be explained
in Sect. 13.5.6, the balance equations can be written separately for individual phases,
or even for individual components of a phase (such as dry air and water vapor as
components of the pore gas). But they can also be combined such that certain inter-
action terms are canceled. This combination is equivalent and simpler, making the
phase separation an unnecessary complication.

Bažant and Thonguthai [188, 189] argued that for concrete it is not realistic to
consider separate flows of liquid (capillary) water, water vapor, and adsorbed water
because the capillaries in hardened cement paste are not continuous [325]. Toget from
one capillary pore to the next, water molecules must pass through nanopores while
they are in the adsorbed state, held by surface forces of the C-S-H. The resistance to
flow in the capillary portions of the flow channel is orders ofmagnitude smaller than it
is in the nanopore portions, and thus irrelevant. So the flow of adsorbed water is what
controls the moisture transport. The evaporation–condensation of water molecules
does not affect the overall moisture transport. Vaporized water molecules cannot pass
through nanopores because their mean free path is an order of magnitude greater than
the nanopore width (80nm vs. 1–20nm at 25 ◦C).

In their analysis of concrete exposed to elevated temperatures, Bažant and
Thonguthai [188, 189] neglected the contribution of dry air, and they considered
vapor combined with liquid water as moisture, characterized by the evaporable water
contentwe, and by the moisture flux, jw = jl + jg . Consequently, the governing equa-
tions of the BT model are based on the mass balance of moisture and on a simplified
form of the heat equation (which originates from the energy balance equation).

The moisture mass balance equation (8.76) was derived by intuitive arguments in
Sect. 8.3.3, and for the present purpose, it is written as

ẇe + ẇn = −∇ · jw (13.51)

where ẇe and ẇn are the (spatial) rates of the evaporable and nonevaporable water
contents, and ∇ · jw is the divergence of the moisture mass flux. Equation (13.51)
can also be interpreted as the sum of the balance equations written separately for
liquid water and for water vapor, i.e., of Eqs. (13.179) and (13.180) with the pore gas
corresponding exclusively to water vapor (note that npSlρl +np(1− Sl)ρg = we and
ṁdeh = −ẇn).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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The energy balance equation, transformed into the heat equation (13.1), was ini-
tially postulated by Bažant and Thonguthai [188] in a somewhat modified form.
However, in the actual computations, many terms were neglected [142, 189] and the
heat equation was reduced to its simple form

ρCpṪ = ρr − ∇ · q (13.52)

In fact, Bažant and Thonguthai did not use the distributed heat source term, ρr , but
later Bažant and Zi [213] applied the model to concrete heated by microwaves and
added this term.

The mass and energy balance equations (13.51) and (13.52) represent the starting
point for the development of a complete moisture and heat transport model. The
fluxes must now be described by appropriate equations that reflect various transport
mechanisms, and the equations must be converted into a set of two partial differential
equations with two primary unknown fields. One of them will obviously be the
temperature, T , but the choice of the other primary variable is ambiguous. This
has already been amply discussed in Chap.8, in the context of moisture transport
modeling at constant temperature. Bažant and Thonguthai [188] decided to select
the pore vapor pressure, pv, as the second primary variable. Recall that the vapor
pressure is closely related to the pore relative humidity,

h = pv
psat

(13.53)

which was used as the primary variable of the Bažant–Najjar model in Sect. 8.3.4.2.
The formulation presented here can be considered as an extension of the Bažant–

Najjar model to the saturated case and to high temperatures. In Chap. 8, we treated
only the cases when h ≤ 1, i.e., pv ≤ psat, considering the case of h = 1 as
fully saturated concrete. However, this was just a simplification. Perfect saturation
is probably never achieved in practice. Several attempts were made to measure the
water pressure in sealed or massive concrete specimens heated to several hundred
◦C. But the pressure measured was always several orders of magnitude lower than
that predicted by the steam and water tables for a rigid container filled before heating
by liquid water [895].

When the vapor pressure pv reaches the temperature-dependent saturation pres-
sure psat, it does not mean that all vapor condenses into liquid water. At thermo-
dynamic equilibrium with pv = psat, the capillary pressure pc evaluated from the
Kelvin equation (8.34) for h = 1 vanishes and, according to the Laplace equation
(8.12), the mean curvature of the liquid–gas interfaces is zero. But even for vapor
pressures exceeding psat, when the mean curvature of the interfaces becomes neg-
ative, vapor can still coexist in equilibrium with liquid water. If, at saturation, all
pores were perfectly filled with liquid water and their volume was fixed, the proper-
ties of liquid water (e.g., from ASTM tables) would predict an imperceptibly small
increase of specific water content beyond the saturation point, even if the liquid
water is brought to high pressures. However, the actually observed increase of we is

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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several orders of magnitude higher. The logical explanation is that a nonnegligible
part of pore volume still contains vapor, even for pv > psat. This implies the exis-
tence of menisci whose total (Gaussian) curvature is zero at saturation and negative
beyond, the menisci surfaces being anticlastic in connected vapor-filled pore space;
see Appendix I.1.

Since vapor can indeed exist above the saturation point, it is possible to extend
the definition of relative humidity to that range and admit values of h > 1. In a
more fundamental approach, the chemical potential of water could be selected as
the primary variable, because it can be defined for any phase of water. But since its
physical meaning is not so straightforward (which is also true of relative humidity
above saturation), the choice here is to base the general formulation on the vapor
pressure, pv.

The balance equations (13.51)–(13.52) now have to be rewritten in terms of the
primary variables, T and pv. All other variables must be expressed as functions of
the primary variables, or at least linked to their rates or gradients. This is done as
follows:

• The evaporable water content,

we = φ(h, T ) (13.54)

is expressed as a function of the pore relative humidity and temperature, based
on the concept of sorption isotherms (extended to the saturated range, as will be
discussed in Sect. 13.2.3). Note that, in Sect. 8.2.5, function φ was considered as
dependent on the pore relative humidity and equivalent age, because the tempera-
ture was assumed to remain constant. In the present section we aim at describing
mature concrete subjected to variable temperature, and the effect of aging (i.e.,
the dependence of the pore structure on equivalent age) is neglected. This is fully
justified in applications to extreme events of a short duration, such as fire.

• Thenonevaporablewater content,wn , does not need to be specifiedby its value—
it suffices to express the rate of its change, ẇn. Here, the nonevaporable water
content is considered to be reduced by dehydration at high temperatures. Approx-
imately, one can consider the mass of water released by dehydration (per unit
volume of concrete) to be a unique function of temperature, denoted as wd(T ).4

The rate of nonevaporable water content is thus expressed as

ẇn = −ṁdeh = −dwd

dT
Ṫ (13.55)

where the negative sign means that an increase in the amount of water released by
dehydration corresponds to a decrease in the nonevaporable (chemically bound)
water content. The specific form of function wd will be provided in Sect. 13.2.2.

4For consistencywith the notation used byBažant andThonguthai in their original papers,we denote
here the content of water released by dehydration as wd , but it is essentially the same quantity as
mdeh in Sects. 13.5–13.6 and Eq. (13.1).

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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• The saturatedvaporpressure, psat , is a unique functionof temperature, described,
e.g., by the Antoine equation (8.19).

• The moisture flux,
jw = −a

g
∇ pv (13.56)

is assumed to be proportional to the gradient of vapor pressure. This relation,
resembling the Darcy law, will be discussed in detail in Sect. 13.2.4. Coefficient a
is the permeability,5 strongly dependent on pore humidity and temperature, and
g is the gravity acceleration.

• Finally, the heat flux is governed by the isotropic Fourier law (13.7), and the dis-
tributed heat sourceρr reflects external heating effects that are specified depending
on the given application.

Based on (13.53)–(13.54), the rates of pore relative humidity and of evaporable
water content can be linked to the rates of primary variables:

ḣ = ∂

∂t

(
pv
psat

)
= ṗv

psat
− pv

p2sat

dpsat
dT

Ṫ (13.57)

ẇe = ∂φ

∂h
ḣ + ∂φ

∂T
Ṫ = 1

psat

∂φ

∂h
ṗv +

(
∂φ

∂T
− pv

p2sat

dpsat
dT

∂φ

∂h

)
Ṫ (13.58)

Substituting (13.58), (13.55)–(13.56), and (13.7) in the balance equations (13.51)–
(13.52), we obtain the final set of governing equations

1

psat

∂φ

∂h
ṗv +

(
∂φ

∂T
− pv

p2sat

dpsat
dT

∂φ

∂h
− dwd

dT

)
Ṫ = 1

g
∇ · (a ∇ pv) (13.59)

ρCpṪ = ρr + ∇ · (kT∇T ) (13.60)

This is a parabolic system of two partial differential equations, which can be solved,
e.g., by the finite element method (or, on simple domains, by the finite difference
method). The equations are of the first order in time and of the second order in
space. Initial conditions specify the initial distribution of temperature and vapor
pressure (which can be deduced from the temperature and pore relative humidity by
using (13.53)). Boundary conditions for temperature have the same structure as for
the uncoupled heat equation discussed in Sect. 13.1.6. Boundary conditions for the
vapor pressure can be obtained from boundary conditions (8.94) or (8.95), again by
exploiting (13.53).

Having clarified the choice of primary variables and the structure of governing
equations, we can proceed to details specific to the BT model. The dependence of

5Coefficient a used in (13.56) has the same physical dimension [m/s] as the hydraulic permeability
Kh , introduced in Sect. 8.3.2 in connection with the Darcy law. Here it is called simply the “per-
meability”, to be consistent with the nomenclature used by Bažant and Thonguthai in their original
papers. Permeability a should not be confused with the moisture permeability, cp , which is used by
the Bažant–Najjar model and has a different physical dimension [kg/(m · s)]; see Sect. 8.3.4.2.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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the saturation vapor pressure on the temperature is given by the Antoine equation
(8.19), but the form of functions φ(h, T ) and wd(T ), as well as the dependence of
permeability a, volumetric heat capacity Cp, and thermal conductivity kT on the
temperature and vapor pressure (or pore relative humidity), still need to be specified.
This will be done next.

13.2.2 Distributed Source of Water

Hydration reactions consume free water and convert it into chemically bound water.
This effect, which can be described by a positive rate ẇn , is important mainly at early
ages, although it probably evolves logarithmically and proceeds at a decaying rate
for many years and even for a century [125, 715]. On the other hand, when mature
concrete is heated high enough, the chemically boundwater is freed and gets released
into the pores. Such dehydration is reflected by a negative term, ẇn = −ẇd < 0, in
the mass balance equation (13.51). Recall that wn denotes the content of chemically
bound water, which increases during hydration and decreases during dehydration.

The dehydration of cement paste is strong and causes a significant strength reduc-
tion above cca 400 ◦C [121, 142, p. 282]. Below 400 ◦C, the strength loss due to
dehydration is only mild (apparently, the first dehydration sites are those not impor-
tant for strength). If temperatures fall below 100 ◦C, the dehydrationmay get reversed
by rehydration of cement.

The amount of dehydrated water is obtained experimentally, by weight loss mea-
surements. However, the escape of gas from some aggregates (e.g., CO2 from lime-
stone) should be subtracted from the measured mass loss.

Fig. 13.7 Examples of mass loss measured at elevated temperatures for (a) cement paste, (b)
concrete (gases other than water vapor included)

Graphs of the mass loss at elevated temperatures, determined for various materi-
als by thermogravimetric tests, were summarized in the report of Harmathy [462].
Figure13.7a shows such plots for Portland cement pastes, and Fig. 13.7b for several

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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types of concrete. The mass loss at temperatures below 100 ◦C must be solely the
loss of evaporable water, and this could also be a significant part of the mass loss
seen below 200 ◦C. Up to about 400 ◦C for cement paste and 500 ◦C for concrete, the
mass loss (not necessarily of water only) is seen to be approximately proportional
to the change of temperature. The behavior of concrete at higher temperatures is
strongly affected by the type of aggregates. The solid curves in Fig. 13.7b corre-
spond to concretes with dolomitic aggregates; for the other concretes, the type of
aggregate was not specified. As discussed by Harmathy and Allen [463], aggregates
with predominantly siliceous constituents are, under elevated temperatures, in gen-
eral more stable than calcareous aggregates (such as dolomite). The highest degree
of stability is exhibited by lightweight aggregates, expanded slag, shale, and clay.

Dwaikat and Kodur [365] suggested to estimate the mass of water released by
dehydration by a piecewise linear function of temperature, e.g., of the form

wd(TC) =
⎧
⎨

⎩

0 for TC ≤ 100 ◦C
4 · 10−4 c (TC − 100) for 100 ◦C < TC ≤ 700 ◦C
0.24 c for 700 ◦C < TC

(13.61)

where c is the mass of cement per unit volume of concrete and TC is the temperature
in ◦C. To illustrate the correspondence with experimental data for certain concretes,
the curves from Fig. 13.7b are replotted in terms of the dimensionless ratiowd/c. The
thick dash-dotted line in Fig. 13.8 corresponds to formula (13.61). However, it must
be emphasized that equations such as (13.61) may be quite different for concretes
with different aggregates, different w/c and different types of cement, and that the
data may be distorted by unrecorded escape of gases other than water vapor (e.g.,
of CO2). For accurate analysis, it is important to make measurements on the given
concrete.

Gawin et al. [414] considered wd as a linear function of T , with dwd/dT between
0.04 and 0.08kg/(m3K). Tenchev et al. [806] used a piecewise linear function

wd(TC) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for TC ≤ 200 ◦C
7 · 10−4 c (TC − 200) for 200 ◦C < TC ≤ 300 ◦C
0.07 c + 0.4 · 10−4 c (TC − 300) for 300 ◦C < TC ≤ 800 ◦C
0.09 c for 800 ◦C < TC

(13.62)
Referring to the experimental data of Schneider and Herbst [765], Gawin et al.

[422] suggested to describe the mass of dehydrated water per unit volume by a cubic
function of temperature, given by

wd(TC) = fsξc
[
a1〈TC − 105〉 + a2〈TC − 105〉2 + a3〈TC − 105〉3] (13.63)

where TC is again the temperature substituted in ◦C, fs = 0.32 is a stoichiometric
coefficient, ξ is the hydration degree, and c is the cement content. In comparative
calculations presented in Gawin et al. [423], the coefficients of the cubic polynomial
were set to a1 = 1.715 · 10−3, a2 = −4 · 10−7, and a3 = −2.95 · 10−10, the



13.2 Heat and Moisture Transfer, and Hygrothermal Effects in Heated Concrete 635

Fig. 13.8 Dimensionless mass loss for concrete at elevated temperatures (mass loss divided by
mass of cement): (a) experimental data possibly containing contributions of other gases than water
vapor, (b) theoretical functions used by various authors

hydration degree was ξ = 0.65 and the cement content was c = 510 kg/m3. For
these parameters, the initial value of dwd/dT was equal to fsξca1 = 0.182 kg/(m3K).

In a private communication, Pesavento [681] stated that the calculations in Gawin
et al. [418] were based on the formula

wd(TC) = wd∞
2

[
1 + sin

(π

2

(
1 − 2e−0.004〈TC−105〉)

)]
(13.64)

where wd∞ is the asymptotically approached final value of dehydrated water content
and TC has the same meaning as above.

In detailed models, the dehydration process is sometimes described by a separate
differential equation which links the rate of dehydration to the difference between the
current hydration degree and the equilibriumvalue of hydration degree corresponding
to the current temperature. At fixed temperature, the hydration degree asymptotically
approaches the equilibrium value. Ulm et al. [826] estimated the characteristic time
of the transition to equilibrium as roughly 5min at 20 ◦C, 0.1 second at 300 ◦C,
and 0.001s at 700 ◦C. This means that the dehydration process is very fast with
respect to the typical time scale of the heating process (e.g., in fire), and so one can
simplify the description and assume that the hydration degree always corresponds to
the equilibrium value and is a unique function of temperature. In contrast to that, Dal
Pont and Ehrlacher [336] used a characteristic time of 10,800s, and described the
dehydrated water content at equilibrium by an exponential function of temperature:

wd(T ) = 0.075meq
(
1 − e−0.005〈TC−105〉) (13.65)

The same formula was also used by Feraille-Fresnet, Tamagny, Ehrlacher, and
Sercombe [386], who referred to the experimental data of Feraille-Fresnet [385]. In
Feraille-Fresnet et al. [386], meq was described as the “equilibrium mass” at 378 K
(105 ◦C). From the context, one can infer that what is meant is the mass of cement
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paste. Therefore, in applications to concrete, meq should be set equal to c + fsξc
where the first term is themass of cement (per unit volume of concrete) and the second
represents the mass of water in hydrates. For instance, for fs = 0.32 and ξ = 0.65,
one would get meq = 1.208 c, and the asymptotically approached limit value of wd

would be 0.0906 c, which is very close to the limit value of 0.09 c considered by
Tenchev et al. [806] but much lower than the values attained at high temperatures by
the expressions in (13.61) and (13.63)–(13.64); see Fig. 13.8b.

13.2.3 Isotherms at High Temperatures

Except for temperatures above the critical point of water (374 ◦C), one must distin-
guish the vapor from the liquid water in the pores of concrete. These two phases of
water can be assumed to be locally (within themicropores) always in thermodynamic
equilibrium. The BT model based on this hypothesis was shown to give acceptable
match of the few pertinent test data that existed [188, 189]. One important component
of themodel is the specific form of function φ that links the evaporable water content,
we, to the pore relative humidity, h, and temperature, T . At fixed temperature, the
graph of we as function of h is called the isotherm.

In theory, one might prefer to deduce the isotherms completely from the mor-
phology of the pore space and from the known thermodynamic properties of water,
as defined in the ASME steam tables [626] or in the IAPWS-95 water and steam
tables [500]. However, the complexity of the pore system, and especially the role of
water adsorbed in the nanopores of hydrated cement paste, prevent that. Therefore,
the formulation of the isotherms must be semiempirical.

An abrupt transition between an unsaturated region and a saturated region implies
a jump in the sorption isotherms, which causes computational difficulties. To cir-
cumvent this problem, a linear transition in the sorption isotherm was introduced
between relative humidities h = 0.96 and 1.04 [188]. Such gradual transition is, in
fact, logical because of the necessary existence of anticlastic surfaces, as discussed
in Appendix I.1.

Based on certain thermodynamic considerations for capillary water, Bažant and
Thonguthai [188] proposed to describe the sorption isotherms of concrete below
saturation by the power law

we = φ(h, T ) = c
(w1

c
h
)1/m(T )

for h ≤ 0.96 (13.66)

in which c is the (initial) mass of cement per unit volume of concrete [kg/m3], w1 is
a parameter representing the evaporable water content [kg/m3] in saturated concrete
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at 25 ◦C, and the reciprocal value of the exponent is given by the empirical function6

m(T ) = 0.04 + 1

1 + (T − 263)2/27370
(13.67)

with the absolute temperature T substituted in K. Note that 1/m = 1 at T = 297
K (24 ◦C) and 1/m = 2.12 at T = 453 K (180 ◦C). At temperatures close to the
room temperature, the shape of the isotherm in the humidity range below 96% is
almost linear; see the top curve in the left part of the diagram in Fig. 13.9. With
increasing temperature, parameter m decreases, exponent 1/m increases, and the
isotherms become convex.

Fig. 13.9 Isotherms for a wide range of temperatures according to a simplified version of the BT
model

For saturated concrete, Bažant and Thonguthai [188] proposed to describe the
isotherms by

we = φ(h, T ) = (1 + εV ) ρl(h, T ) np(h, T ) for h ≥ 1.04 (13.68)

where εV = εx + εy + εz is the relative volume change, np is the porosity accessible
to water, and ρl is the specific mass of liquid water, evaluated for the given relative
humidity and temperature based on the equation of state for water.

The volumetric strain εV is typically much smaller than one and is not so easy
to evaluate. In a rigorous approach, one would need to take into account not only

6The original formula proposed by [188] was m = 1.04− T ′/(22.34+ T ′), in which T ′ = [(TC +
10)/35]2 and TC = temperature substituted in ◦C. Formula (13.67) is an equivalent expression in
terms of the absolute temperature.
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the dependence of εV on temperature but also on the stress arising in the material,
which would introduce a coupling between themechanical problem and the transport
problem. The error introduced by omitting the factor 1 + εV from formula (13.68)
is certainly smaller than the error associated with the approximate dependence of
porosity np on the relative humidity and temperature. Davie, Pearce, and Bićanić
[338] used (13.68) in the simplified form

we = φ(h, T ) = ρl(h, T ) np(h, T ) for h ≥ 1 (13.69)

over an extended range of relative humidities ≥ 1 (instead of ≥ 1.04).
The density of liquid water, ρl , is linked to the temperature, T , and pressure

(of liquid water), pl , by the state equation. For sufficiently small changes, the state
equation can be linearized around a reference point and written as

ρl = ρl0

[
1 − αvT (T − T0) + pl − pl0

Kl

]
(13.70)

where ρl0 is the density at the reference temperature T0 and reference pressure pl0,
αvT is the volumetric coefficient of thermal expansion (corresponding to three times
the linear coefficient of thermal expansion, which is typically used for solids) and Kl

is the bulk modulus of water (about 2.2 GPa at standard conditions). Due to the low
compressibility of liquid water, the effect of pressure on density is often negligible
and water can be considered as incompressible; see, e.g., the derivation of Kelvin’s
equation in Sect. 8.2.4. The effect of temperature is stronger and, for temperature
variations of several hundred degrees, it becomes markedly nonlinear. Therefore,
to cover a wider range of temperatures, up to the critical point, it is better to use a
nonlinear form of the empirical equation of state.

Furbish [401] fitted experimental data by a fifth-order polynomial function of tem-
perature, with coefficients considered as linear functions of pressure. The resulting
equation can be presented in the form

ρl =
5∑

k=0

(Ak + ak pl)T
k
C (13.71)

where TC is the temperature substituted in ◦C. Coefficients Ak and ak , obtained
by optimum fitting to experimental data [401, Section4.10.2], are summarized in
Table13.4. Their units are adjusted such that formula (13.71) gives the density in
kg/m3 if TC is substituted in ◦C and pl in Pa.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Table 13.4 Coefficients used in Furbish’s empirical state equation for liquid water, Eq. (13.71),
and in its simplified version, Eq. (13.72)

k Ak ak Ck

0 1011.5 4.8863 · 10−7 1016.4

1 −0.74071 −1.6528 · 10−9 –0.75724

2 0.0087324 1.8621 · 10−12 0.0087510

3 −9.6971 · 10−5 2.4266 · 10−13 −9.4545 · 10−5

4 3.6733 · 10−7 −1.5996 · 10−15 3.5134 · 10−7

5 −5.0775 · 10−10 3.3703 · 10−18 −4.7404 · 10−10

Fig. 13.10 Dependence of liquid water density on temperature at various pressures, according to
Furbish’s empirical state equation (13.71); each curve terminates at the boiling point corresponding
to the given pressure

Formula (13.71) provides a good approximation for pressures between the
atmospheric pressure and the critical pressure, and for temperatures between the
room temperature and the critical temperature. As demonstrated in Fig. 13.10, the
sensitivity to pressure is, in this range, relatively weak. Gawin et al. [415] neglected
the dependence on pressure and expressed the density as a polynomial function of
temperature,

ρl =
5∑

k=0

CkT
k
C (13.72)

where coefficients Ck = Ak + ak p1 are obtained from (13.71) with pl set to p1 =
107 Pa, which is near the middle of the range from 0.1 to 20 MPa. For convenience,
the values of coefficients Ck are provided in the last column of Table13.4.

The actual slope of the isotherm is significantly higher than the slope that would
be predicted by (13.68) if the porosity np were assumed constant. The original
partial explanation was that nanopores inaccessible to water at small pressures (see
the discussion of ink-bottle pore geometries in Appendix I.1) become gradually



640 13 Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage

accessible at increasing pressures. But the main reason probably is the existence of
reverse menisci with pressurized liquid water that does not fill the pores completely.
In view of this phenomenon, sometimes called the “pore space inflation,” the porosity
(relative pore volume accessible to water), estimated from considerations of weight
loss, may be expressed as [188]

np(h, T ) =
(
np0 + wd(T )

ρl0

)
[1 + 0.12(h − 1.04)] for h ≥ 1.04 (13.73)

where np0 is the capillary porosity at the reference temperature, ρl0 is the water
density at the reference temperature and atmospheric pressure, and wd(T ) is the
amount of free water released into the pores by dehydration if the temperature is
increased from the reference temperature T0 to T . The dependence of wd on T can
be obtained from thermogravimetric measurements [463]; see Sect. 13.2.2.

Isotherms corresponding to formulae (13.66) for h ≤ 0.96 and (13.69) for h ≥
1.04, with linear interpolation in between, are plotted in Fig. 13.9 for temperatures
ranging from 20 to 360 ◦C. Porosity np is evaluated from (13.73), with mass of
dehydrated water approximated by (13.61), and liquid water density is considered
as a function of temperature given by (13.72). Parameters c = 300 kg/m3 and w1 =
100 kg/m3 are the same as in Bažant and Thonguthai [188], and the corresponding
initial porosity is np0 = w1/ρl0 = 0.1.

It must be emphasized that equations (13.69), (13.73), and (13.61) leading to the
right part of the diagram in Fig. 13.9 are merely very crude estimates. Theoretical
inferences from the pore structure and its chemical change run into extreme (and
unwarranted) complexity. More, and better controlled, experiments are needed.

Certain authors evaluate porosity using even simpler expressions than (13.73).
For instance, based on the experimental data of Schneider and Herbst [765], Gawin
et al. [414] considered porosity as a linear function of temperature, i.e., they set

np(T ) = np0 + An(T − T0) (13.74)

wherenp0 is the porosity at reference temperature T0, and An is a parameter dependent
on the type of concrete. For concretes tested by Schneider and Herbst [765], the
optimal values of parameter An were 195 × 10−6/K for silicate concrete, 163 ×
10−6/K for limestone concrete and 170 × 10−6/K for basalt concrete. The porosity
at room temperature, np0, varied between 0.06 and 0.087.

Exploiting the results of Feraille–Fresnet [385], Feraille-Fresnet et al. [386] pos-
tulated a linear relation between porosity and dehydrated water content, which would
lead to

np(T ) = np0 + (0.72 · 10−3m3/kg)wd(T ) (13.75)

where the dependence of wd on T is given by (13.65).
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13.2.4 Permeability at High Temperatures

In some transport models for multiphase pore water, the water transport is assumed
to be controlled by the flow of liquid (or capillary) water and to involve evaporation
and condensation at gas-liquid interfaces. However, such models are not realistic for
concrete, because the capillaries in good quality concretes are discontinuous, and
water molecules must pass through the nanopores in the hardened cement paste.

As already mentioned in Sect. 13.2.1, the width of nanopores (from 0.3 to about
20nm) is, at room temperature, much smaller than the mean free path of water
molecules in vapor (about 80nm at 25 ◦C). Therefore, the molecules of vapor in the
nanopores bounce most of the time randomly from the rough pore walls, or, more
likely, linger at the surfaces in the form of adsorbed water. Since the molecules rarely
impact each other, they cannot transmit vapor pressure along the nanopore. Conse-
quently, the water molecules cannot pass through the nanopores in a vaporized state.
Rather, they must become adsorbed on the pore walls and migrate along adsorp-
tion layers. This migration is very slow, far slower than the water flow through the
capillary pores [78, 80], which are approximately those larger than 0.1–1 µm (the
transition is not sharp). Physically, the main driving force for moisture diffusion in
concrete is probably the spreading pressure, which is proportional to the logarithm
of pore relative humidity. This argument supports the Bažant–Najjar transport law
(8.84), widely used in Chap.8 for analysis of moisture diffusion at isothermal con-
ditions. Since, at constant temperature, the vapor pressure pv is proportional to the
relative humidity h, a fully equivalent formulationwould be obtainedwith a transport
law based on the gradient of pv.

The gradient of h is problematic as a driving force when the temperature changes,
especially if it increases above 100 ◦C. At high temperatures, the capillaries become
continuous (i.e., percolating), and then it is appropriate to use the gradient of pv as
the driving force.7 It was for this reason that Bažant and Thonguthai [188] wrote the
equation governing the moisture flux as8

jw = −a

g
∇ pv (13.78)

7Here it should be noted that, because of the existence of anticlastic meniscus surfaces of negative
total curvature, vapor still exists in the pores even if pv > psat(T ).
8Some models for water and heat transfer through porous media use the moisture content we and
the temperature T as primary variables. The fluxes are then described by the coupled equations

jw = −aww∇we − awT∇T (13.76)

q = −aTw∇we − aT T∇T (13.77)

in which coefficients aww, awT , aTw and aTT depend on we and T . Note that awT �= aTw because
∇we and ∇T are not the thermodynamic driving forces associated with jw and q [341, 584, 585,
858]. In (13.76), the first and second terms are sometimes called the Fick flux and Soret flux, and
in (13.77), the first and second terms are called the Dufour flux and Fourier flux.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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where a is called simply the permeability [m/s]. If the pore space was really filled
exclusively by vapor, a would be the hydraulic permeability of concrete to vapor (in
Chap.8 denoted as Kh), and (13.78) would be the Darcy law (8.72) written for vapor
instead of for gas.At constant temperature, one can compare (13.78)with theBažant–
Najjar equation (8.84), where h corresponds to pv/psat. This leads to the relation
a = cpg/psat, which makes it possible to estimate the order of magnitude of a. A
typical value of moisture permeability can be obtained from the relation cp = C/k
whereC is themoisture diffusivity and k is the inversemoisture capacity; see formula
(8.88). Substituting typical values of C ≈ 20 mm2/day = 2.3 · 10−10 m2/s and
1/k ≈ 100 kg/m3, we get cp ≈ 2.3 × 10−8 kg/(m·s). For gravity acceleration
g ≈ 10 m/s2 and saturated vapor pressure psat = 2.33 kPa (at 20 ◦C), we then
obtain a = cpg/psat ≈ 10−10 m/s. This correspondence would be exact only under
constant (or at least uniform) temperature, otherwise the expressions differ by a
term containing the temperature gradient. Also, the substituted value of moisture
diffusivity refers to a state near saturation. At low relative humidities, it is by an
order of magnitude smaller. For comparison, the value of permeability a used by
Bažant and Thonguthai [188] for cement paste of age 40dayswas 10−12 m/s, and they
stated that the permeability of mature cement pastes is between 10−10 and 10−14 m/s.
For concrete, it is not necessarily smaller, because concrete (unlike cement paste)
contains interfacial transition zones around aggregates, and these zones are probably
much more permeable than the rest of cement paste.

The question now is whether the transport law based on the gradient of vapor
pressure can be applied above the saturation point. The most logical answer is that
it can. The permeability may, of course, continuously change beyond the saturation
point. The alternatives would be to assume the water flux to be proportional to the
gradient of pressure pl in the liquid water, or to the gradient of evaporable water
content we. But at all temperatures below the critical one (374 ◦C), there exists a
one-to-one relation between the liquid and vapor pressures. So this is really a moot
point.

From the thermodynamic viewpoint, a fundamental approach would be to use the
gradient of chemical potential of water (at thermodynamic equilibrium, the chemical
potential of liquid water has the same value as the chemical potential of vapor, so it
is uniquely defined). This would work even for the perfectly saturated concrete in
which all the evaporable water would be liquid or adsorbed.

The fact that permeability is completely controlled by migration of adsorbed
water molecules along the nanopores explains the extremely low values of concrete
permeability at normal temperatures. However, when the temperature is increased
above 100 ◦C, the permeability jumps sharply up. This has been explained by heat-
induced changes in the structure of the smallest pores. Two kinds of changes were
hypothesized:

1. Initially, Bažant and Thonguthai [188] suggested that, because of the tendency to
minimize the free energy of pore surfaces (or maximize their entropy), the pore
walls reduce their surface and get smoother, which eliminates the narrowest necks
of nanometer dimensions that control water migration along the passages through

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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the hardened cement gel. It is not clear, however, whether this mechanism plays
a significant role.

2. The calcium silicate hydrates (C-S-H) produced by hydration are of two kinds:
high-density gel,which surrounds the unhydrousPortland cement grains, and low-
density gel.As shownbyDeJong andUlm [346] and Jennings, Thomas,Gevrenov,
Constantinides and Ulm [513], high temperature converts the low-density C-S-H
gel to high-density gel. It was suggested that this conversion produces new cap-
illary channels, which can explain the permeability jump.

No information apparently exists to show whether concrete cooled down after
heating to 100 ◦C is much more permeable than concrete never heated. If it is not,
then the foregoing two phenomena would become questionable since they ought to
be irreversible on cooling. Further research is needed.

Based on the fitting of older test data, the permeability of concrete heated above
100 ◦C was inferred to jump up about 200 times [188]. Such a dramatic increase
of permeability by two orders of magnitude was confirmed for high-performance
concrete by Schneider [764]. These observations are supported by the fact that a
15-cm-diameter cylinder of concrete takes at room temperature more than ten years
to dry to a nearly uniform pore humidity while, in an oven of 105 ◦, the near uniform
drying can be achieved in a few days. A suitable permeability function, used in
computations by Bažant and Thonguthai [188], has the form

a(h, T ) =
{
a0 f1(h, T ) f2(T ) for T ≤ Ttr
a0 f2(Ttr) f3(T ) for T > Ttr

(13.79)

where a0 is the reference value of permeability at saturation and room temperature
(here considered as 25 ◦C), and Ttr is the temperature at the beginning of the transition
to high permeability. Function

f1(h, T ) = α(T ) + 1 − α(T )

1 + 256〈1 − h〉4 (13.80)

has the same form as the Bažant–Najjar formula (8.89) for moisture diffusivity, with
hc = 0.75, and with a temperature-dependent parameter α. At room temperature, α
is quite low, while at Ttr it is set to 1 and then function f1 is equal to 1 for arbitrary
h, which assures a continuous transition to the high-temperature range.

The temperature dependence of permeability below Ttr is given by an Arrhenius-
type equation,

f2(T ) = exp

[
Qw

R

(
1

T0
− 1

T

)]
(13.81)

where T and T0 = 298K are substituted in the absolute scale [K], Qw is the activation
energy for water migration at low temperature, and R is the universal gas constant.
Based on data fitting, the value Qw/R = 2700 K was recommended [166].

Function f3(T ), which describes the abrupt increase of permeability near 100 ◦C,
was initially proposed in the form

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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f3(T ) = exp

(
T − Ttr

0.881 + 0.214(T − Ttr)

)
(13.82)

where Ttr = 368 K (95◦C) was chosen to represent the beginning of the transition
[188]. This was combined with a linear dependence of parameter α on temperature
below Ttr , described by

α(T ) = 0.05 + 0.95
T − T0
Ttr − T0

(13.83)

The resulting dependence of permeability on temperature is shown in Fig. 13.11a.

Fig. 13.11 Dependence of permeability (normalized by permeability at 25 ◦C and 100% humidity)
on temperature for various relative humidities, according to (a) Bažant and Thonguthai [188],
(b) Bažant and Zi [213]

Later, Bažant, and Zi [213] noticed that the fit of their data would improve by
considering that the permeability may jump up, upon passing 100 ◦C, only about 5–
10 times. It is unclear whether the difference in jump magnitude could be attributed
to differences among different concretes. Bažant and Zi [213] decided to start the
transition at Ttr = 373 K (100◦C). They revised function f3 as

f3(T ) = 11

1 + exp [−0.455(T − Ttr)]
− 4.5 (13.84)

and combined it with

α(T ) = 1

1 + 0.253(Ttr − T )
(13.85)

The resulting dependence of permeability on temperature is shown in Fig. 13.11b.
Based on this updated formulation, reasonable fits of experimental data were
obtained, see Fig. 13.12.

It should be noted that the reference permeability, a0, is strongly influenced by the
hydration degree (or age). Bažant and Thonguthai [188] fitted the experimental data
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Fig. 13.12 Fits of (a–b) Bažant and Thonguthai’s [188] experiments, (c) England and Ross’ (1970)
experiments, and (d) Zhukov and Shevchenko’s [895] experiments by the model proposed in Bažant
and Zi [213]; symbols represent experimental data and curves correspond to simulations

of Powers and Brownyard [705], valid for a type-I cement paste with w/c = 0.7, by
the function

a0(te) = 10
√
40/te × 10−13 m/s (13.86)

where te is the equivalent age in days.

13.2.5 Thermal Conductivity

The thermal conductivity of cement paste varies with the changes of temperature
and moisture content appreciably, though far less than the permeability (discussed in
the previous section). For concrete, the thermal conductivity is much less sensitive
to temperature and moisture changes than it is for the hardened cement paste. The
reason for this difference is that the mineral aggregates, which represent most of the
volume of concrete and usually are chemically stable [461], conduct heat no less
than the cement paste but do not transfer moisture significantly. Thus, the thermal
conductivity depends on the volume fraction of aggregate and its type [653]. Typical
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values are in the range between 0.75 and 1.75 W/(m·K) for concrete and between
0.25 and 1.0 W/(m·K) for cement paste.

According to Perre and Degiovanni [675] and Gawin et al. [414], the depen-
dence of the effective thermal conductivity of concrete on pore relative humidity and
temperature can be expressed as

kT (h, T ) = k(dry)
T (T )

(
1 + 4np(T )ρl(T )Sl(h, T )

(1 − np(T ))ρs(T )

)
(13.87)

where

k(dry)
T (T ) = k(dry,0)

T [1 + Aλ(T − T0)] (13.88)

is the effective thermal conductivity of dry concrete, Sl is the saturation degree, ρl is
the density of liquid water, and ρs is the density of the solid skeleton. The dependence
of porosity np on temperature is given by the linear function (13.74). Densities ρl and
ρs are treated as temperature-dependent but their dependence on relative humidity
(or pore pressure) is considered as negligible. In (13.88), parameter k(dry,0)

T is the
effective thermal conductivity of dry concrete at room temperature T0, and a typical
value of coefficient Aλ is−5 ·10−4 K−1 (note that the thermal conductivity decreases
with increasing temperature).

In a somewhat different context (simulation of early-age behavior), Jendele et al.
[512] demonstrated that the effective thermal conductivity of concrete can be esti-
mated from the thermal conductivities of individual constituents (unreacted cement,
water, filler, air, and aggregates) by a four-step homogenization procedure exploit-
ing the Mori-Tanaka scheme and Hashin–Shtrikman bounds. This approach was
exploited (without detailing its partial steps) for determination of kT in Example 13.1.

13.2.6 Heat Capacity

In general, the effective specific heat capacity of a composite material is obtained
by weighted averaging of the specific heat capacities of individual constituents,
with weight factors that correspond to mass fractions. For concrete, considered as
consisting of a solid skeleton, liquid water and pore gas, this rule of mixture leads
to formula (13.2). In theory, one could even further decompose the pore gas into dry
air and water vapor, as done, e.g., by Gawin et al. [414]. However, the mass fraction
of pore gas in concrete is always negligible, because of very low mass densities of
both air and vapor. The mass fraction of water in concrete rarely exceeds 6%, even
at saturation. The effect of water content on the heat capacity of concrete is stronger
than that, because the specific heat of water at room temperature is more than four
times higher than the specific heat of the skeleton and, at high temperatures, the
specific heats of liquid water and of water vapor increase dramatically. Still, the
specific heat capacity of oven-dried concrete can be used as a crude approximation
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forCp, as suggested by Bažant and Thonguthai [188]. For structural concrete, typical
values of Cp are between 800 and 1170 J/(kg·K) [380].

The heat capacity can be considered as constant within a limited range of tem-
peratures, but in general it is variable. According to BRITE Euram III BRPR-CT95
HITECO [258], the specific heat capacity of the solid skeleton (i.e., of dry concrete)
can be approximated by a linear function of temperature,

Cps(T ) = Cps0[1 + Ac(T − T0)] (13.89)

whereCps0 is the value ofCps at the reference temperature T0, and Ac is a parameter.
Typical values for concrete C60 are Cps0 = 855 J/(kg·K) at T0 = 293 K, and
Ac = 0.226 K−1 [681].

Davie et al. [339] described the specific heat capacity of the solid skeleton by a
nonlinear function

Cps(T ) = 900 + 80
T − 273.15

120
− 4

(
T − 273.15

120

)2

(13.90)

in which T is substituted in K and Cps is obtained in J/(kg·K). For liquid water, the
same authors suggested to use

Cpl(T ) = 2.4768 T + 3368.2 +
(
1.0854 T

513.15

)31.44

, for T < Tcr (13.91)

againwith T substituted inK andCpl obtained in J/(kg·K). Recall that Tcr = 647.3K
is the temperature at the critical point of water.

For specific heat capacities of water vapor and of dry air, Davie et al. [339]
recommended expressions

Cpv(T ) =
⎧
⎨

⎩
7.14 T − 443 +

(
1.1377 T

513.15

)29.4435

for T < Tcr

45800 for T ≥ Tcr

(13.92)

Cpa(T ) = 1012.5 − 0.1216 T + 3.564 · 10−4 T 2 − 9.9 · 10−8 T 3 (13.93)

with T substituted in K, and Cpv and Cpa obtained in J/(kg·K). At T0 = 293 K,
the capacities are Cpv(T0) = 1649 J/(kg·K) and Cpa(T0) = 1005 J/(kg·K). The
specific heat capacity of vapor increases dramatically as the critical temperature
is approached, but the specific heat capacity of dry air increases only slightly, to
Cpa(Tcr) = 1056 J/(kg·K). Consequently, the contribution of dry air to the heat
capacity of concrete is totally negligible, because of the extremely low mass of air
contained in concrete. Even for fully dry concrete with porosity as high as 15%, the
mass of dry air contained in the pores at atmospheric pressure and room temperature
would be as low as 0.18 kg, and the contribution of dry air to the volumetric heat
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capacitywould be 180 J/(m3K)while the typical volumetric heat capacity of concrete
exceeds 2 MJ/(m3K); see Example 13.1.

In contrast to the contribution of dry air, which is always negligible, the contri-
bution of water vapor to the heat capacity of concrete may play some role as the
temperature is increased. For instance, let us assume that the pores are filled by
vapor at temperature Tcr = 647.3 K and pressure pv = 2 MPa, which can indeed
happen, as will be illustrated by an example in Sect. 13.3.4. The corresponding mass
density calculated from the state equation of ideal gas is ρv = 6.7 kg/m3 (the actual
mass density being even somewhat higher), and the porosity at this temperature
can easily reach 15%, which gives the mass content of vapor around 1kg per cubic
meter of concrete. The contribution of vapor to the volumetric heat capacity is then
45.8 kJ/(m3K).

For young concrete, the specific heat capacity is affected by the hardening process.
As already mentioned in Sect. 13.1.6, experimental data of Bentz [234] indicate that
the specific heat capacity of hardening cement paste can be estimated as a function of
the hydration degree using formula (13.50).Weighted averagingwith the specific heat
capacity of aggregates then provides the effective specific heat capacity of concrete.

13.2.7 Latent Heat

According to Gawin et al. [414], the latent heat of vaporization can be evaluated
using the Watson [852] formula

Δhwl,g(T ) = 2.672 · 105(Tcr − T )0.38, for T < Tcr (13.94)

with T substituted in K and Δhwl,g obtained in J/kg. Above the critical temperature of
water, Tcr = 647.3 K, the latent heat is zero (there is no liquid–gas phase transition in
this range). At T = 373.15 K (100 ◦C), formula (13.94) gives Δhwl,g = 2.256 MJ/kg.

The latent heat of dehydration, Δhws,l, can be considered as constant, equal to
2.4MJ/kg [339]. Since the specific heat of concrete is about 1 kJ/(kg·K), dehydration
that releases 1kg of hydrate water consumes an amount of energy that could heat
2400kg of concrete by 1 degree. In fact, if the mass of water released by dehydration
is considered as a unique function of temperature, we can express the third term on
the right-hand side of the heat equation (13.1) as ṁdehΔhws,l = (dwd/dT )Ṫ Δhws,l and
combine it with the first term on the left-hand side, which is also proportional to the
temperature rate. This means that (13.1) can be rewritten as

(
ρCp + dwd

dT
Δhws,l

)
Ṫ + (Cps js +Cpl jl +Cpg jg) · ∇T = ρr − ∇ · q − ṁevΔhwl,g

(13.95)

Thus, instead of including the heat consumed by dehydration as a separate term
in the heat equation, we can simply increase the effective specific heat capacity
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by (dwd/dT )Δhws,l. Of course, this adjustment should be used only in the range of
temperatures in which dehydration takes place (and, strictly speaking, only as long
as the temperature keeps increasing).

To get an idea about the relative importance of the corrective term (dwd/dT )Δhws,l,
let us estimate the derivative dwd/dT according to (13.61) as 4 · 10−4c. For cement
content c = 350 kg/m3, we get

dwd

dT
Δhws,l ≈ 4 · 10−4 × 350 × 2.4 · 106 J

m3
= 336

kJ

m3
(13.96)

This corresponds to 14% of a typical value of ρCp, taken as 2400 J/m3.

13.3 Strains and Stresses at High Temperature

In the preceding sections, we analyzed coupled heat and mass transport, without
paying attention to mechanical aspects of the problem. Now we will complete the
picture by adding the laws that govern the evolution of strains and stresses at high
temperature.

13.3.1 Thermal and Hygral Volume Changes

The normal strain rates due to thermal expansion are expressed by the standard
formula

ε̇T x = ε̇T y = ε̇T z = αT Ṫ (13.97)

where αT is the (linear9) thermal expansion coefficient. For cement mortar, αT

changes appreciably with temperature, which means that the relation between ther-
mal strain and temperature is nonlinear. This is caused by moisture effects. For
concrete, however, the change of αT with temperature is much less pronounced,
which is explained by the restraining effect of aggregates on the cement paste [142,
461, 653]. As an approximation, the thermal expansion coefficient αT of concrete
may simply be taken as constant.

9Note that the thermal expansion coefficient αT used for solids is the “linear” expansion coefficient,
in the sense that it describes the relative change of “linear dimensions” (length). In contrast to that,
the volumetric thermal expansion coefficient αvT used for fluids describes the relative change of
volume; see (13.70) or (13.172).
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The thermal expansion coefficient of hardened cement paste (measured over inter-
vals not allowing significant water escape) varies significantly with the water content
and averages about αT ≈ 25 · 10−6/K. For most aggregates, αT ≈ 5–8 ·10−6/K.
For concretes, depending on the water content and the mineralogical type of aggre-
gate, αT ≈ 5–16 ·10−6/K, with the average value of about 10 · 10−6/K (for more
information, see Bažant and Kaplan [142]).

A linear thermal expansion law with a constant value of the thermal expansion
coefficient αT can be used as an approximation only within a limited range. Over a
wide range of temperatures, the law becomes nonlinear, which means that αT must
be considered as temperature-dependent. For instance, according to Sect. 3.3.1 of
Part 1-2 of Eurocode 2 [374], the thermal expansion coefficient can be evaluated as

αT =
{
9 · 10−6 + 6.9 · 10−11T 2 for concrete with siliceous aggregates
6 · 10−6 + 4.2 · 10−11T 2 for concrete with calcareous aggregates

(13.98)

where T is the temperature in Kelvin and αT is obtained in K−1. At room temperature
(20 ◦C), the Eurocode formula gives 14.9·10−6 K−1 and 9.6·10−6 K−1 (concrete with
siliceous or calcareous aggregates, respectively). At 100 ◦C, these values increase
to 18.6 · 10−6 K−1 and 11.8 · 10−6 K−1, and at 400 ◦C to 40.3 · 10−6 K−1 and
25.0 · 10−6 K−1.

A part of the thermal strains is irreversible. Gawin et al. [418] used the thermal
expansion law (13.97) for the description of reversible thermal strains,which are to be
added to the thermo-chemical strains, dependent on an irreversible thermo-chemical
damage variable.

The modeling of shrinkage has already been discussed in detail in Chap.8, in
particular in Sect. 8.6. The ultimate shrinkage strain of hardened cement paste varies
with environmental humidity and cement type, and averages roughly ε∞

sh ≈ 4 · 10−3.
For concrete, it is about an order of magnitude less, due to the restraining effect of
the aggregates, which do not shrink and are relatively stiffer.

The behavior becomes quite complex when the environmental humidity and tem-
perature vary simultaneously. As shown in Fig. 13.13, the heating drives out evap-
orable water and the resulting shrinkage of cement paste overpowers the thermal
expansion and produces large contraction [763]. Also shown is the effect of water
loss during heating of concrete,which ismuch less, because of the aggregate restraint.

Generally, the hygrothermal deformations cannot be predicted realistically with-
out a finite element program for heat and water transfer with creep and cracking or
damage.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. 13.13 Temperature dependence of strain due to thermal expansion and of total eigenstrain due
to thermal expansion and drying shrinkage in cement paste and concrete (at no load)

13.3.2 Mechanical Properties at High Temperature

Thedehydrationprocesses at high temperatures have a strong effect on themicrostruc-
ture of concrete and, consequently, also on themechanical properties such as stiffness
or strength. To give a picture of the experimentally observed behavior, Fig. 13.14a-c
shows the aggregated data ofAnderberg and Thelandersson [35], Purkiss andDougill
[711], Schneider [762] and Furamura [400] used for empirical input to the compu-
tations, including the dependence of the conventional elastic modulus (Fig. 13.14a),
uniaxial compressive strength (Fig. 13.14b) and ultimate strain (Fig. 13.14c) on the
temperature. This is complemented by Thelandersson’s data [810] on the split-
cylinder (Brazilian) tensile strength in Fig. 13.14d.

The effect of high temperatures on compression strength and elastic modulus was
experimentally investigated also by Phan and Carino [684] and Neuenschwander,
Knobloch andFontana [650] for normal-strength concrete, Castillo andDurrani [299]
for high-strength concrete, and Khaliq and Kodur [540], Bamonte and Gambarova
[48] and Persson [680] for self-compacting concrete. Behnood andGhandehari [225]
measured the compression strength and tensile splitting strength of high-strength con-
cretes after exposure to high temperatures. Envelopes of the dependencies of strength
and elastic modulus on temperature based on experimental data were constructed by
Phan and Carino [686].

The compressive stress–strain curves at various temperatures and constant strain
rate measured by Schneider [762] are shown in Fig. 13.15a. Their fitting [120]
revealed that the post-peak softening was caused by both invisible microcracking
and stress relaxation.
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Fig. 13.14 Effects of temperature on (a) static elastic modulus, (b) compressive strength, (c) ulti-
mate strain, measured on heated unstressed specimens, (d) split-cylinder tensile strength in hot state
and after cooling (normal concrete)

Fig. 13.15 Schneider’s [762] tests of basalt concrete and their fits by Bažant and Chern [120]: (a)
stress–strain curves at constant strain rate and various temperatures, (b) creep curves before and
after heating to 300 ◦C for loading by stress σ = 0.3 f̄c (the label “loaded before heating” means
that right after loading the temperature started rising; it did so at the rate of 2 ◦C/min up to 300 ◦C,
which must have induced transitional thermal creep)
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13.3.3 Extension of Creep Models to High Temperature

High-temperature creep depends strongly on the water content. Unlike at room tem-
perature, concrete above 100 ◦C dries quickly and, like at room temperature, this
reduces its creep by about one order of magnitude (see the dashed curves labeled as
“wet” and “dry” in Fig. 13.16). The rapid escape of water after 100 ◦C is exceeded
causes the creep rate curve to cross over from the curve for wet concrete to the curve
for dry concrete; see the solid curves in Fig. 13.16.

Fig. 13.16 Strain rates (at fixed load duration) of wet and dry concrete and of initially wet concrete
that dries out, at two uniaxial stress levels (the strain rates have been normalized by the reference
strain rate, ε̇0, considered as the rate in dry concrete at approximately 200 ◦C)

The Poisson ratio, ν, which is essential for multiaxial generalization, seems to
increase with temperature, which suggests that the deviatoric creep is accelerated by
temperature rise more than the volumetric creep. This effect appears to be strong for
the hardened cement paste, for which ν rises up to 0.46 at 200 ◦C [154]. Due to the
aggregates, the Poisson ratio for concrete remains nearly constant (see Eq. (13) in
Bažant [88]).

The graphs in Fig. 13.15b, showing the creep of 8-cm-diameter cylinders loaded
before or after heating, demonstrate a phenomenon that is called the transitional
thermal creep. Note that the graphs show only themechanical strain, with the thermal
strain (measured at zero load) subtracted. The specimen loaded before heating (i.e.,
heated after the application of the load) exhibits much larger strain than the specimen
that was first heated and then loaded. This means that the combined effects of stress
and variable temperature cannot be expressed simply as the sum of the effects of
(i) variable temperature under zero stress and (ii) stress under constant temperature.
This is analogous to the well-known drying creep, resulting from combined effects
of stress and variable humidity.

The fact that a change in temperature of concrete during its creep under load causes
a significant transient increase of creep was documented by the experimental studies
of Wallo et al. [848], Hansen and Eriksson [452], Fahmi et al. [378], Illston and
Sanders [504], and Schneider [761]. Recall that the drying creep can alternatively be
considered as stress-induced shrinkage (Sect. 10.1). In a similar spirit, the transitional

http://dx.doi.org/10.1007/978-94-024-1138-6_10
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thermal creep is often interpreted as the load-induced thermal strain, or LITS [543].
These two possible points of view are also reflected by two alternative modeling
approaches, discussed next.

13.3.3.1 Microprestress Solidification Theory

The effects of variable temperature and humidity on creep have already been
described in the context of the microprestress solidification (MPS) theory in
Sect. 10.6.1. Recall that MPS theory takes these effects into account in differential
equation (10.45) that describes the evolution of microprestress, which in turn affects
the viscosity that controls the creep flow rate; see (10.3) and (10.5). This modeling
framework incorporates the concept of transformed times that reflect the accelera-
tion or deceleration of physical processes such as hydration, creep, or microprestress
relaxation. All these processes are considered as thermally activated and the effect
of temperature is introduced through Arrhenius-type expressions (10.31)–(10.33),
each of which contains a certain activation energy.

In a more refined formulation, one might need to consider that there are multi-
ple activation energies and different ranges of temperature are usually dominated
by different activation energies. Above 100 ◦C, water evaporates from normal test
specimens (h → 0) and then the hydration stops, which is captured by βeh approach-
ing zero10 and makes βeT from (10.31) irrelevant. From 200 ◦C to about 400 ◦C, the
evaporable water is absent and there is a mild dehydration of concrete, with almost
no loss of strength but appreciable loss of weakly held hydrate water. Above 400 ◦C,
the dehydration of normal Portland cement concrete becomes more pronounced and
a significant strength reduction begins.

13.3.3.2 Stress-Induced Thermal Expansion and Shrinkage

The numerical results presented in Figs. 13.15, 13.17 and 13.18 were obtained by
Bažant and Chern [120] with an older creep model, which included the transitional
thermal creep and the drying creep in the form of mathematically equivalent stress-
induced thermal expansion and stress-induced shrinkage. In this approach, the effect
of stress on thermal strains is taken into account by making the thermal expan-
sion coefficient depend on the current stress. Since the stress state is in general not
isotropic (i.e., not purely hydrostatic), the scalar thermal expansion coefficient αT is
generalized to a tensor with components11

10More precisely, as h tends to zero, βeh evaluated from (10.31) tends to 1/(1+α4
e ). Since parameter

αe is typically in the order of 10, the rate of hydration is reduced by four orders of magnitude and
becomes negligible.
11Unlike (13.99), Eq. (14) in Bažant and Chern [120] contained a negative sign in front of the
stress-dependent term, but this misprint was corrected in Eq. (2.58) in Bažant [94].

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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αT,i j = αT [δi j + (ρσi j + ρ ′σmδi j ) sgn (ḣ + aT Ṫ )] (13.99)

which is then used in the rate form of the thermal expansion law,

ε̇T,i j = αT,i j Ṫ (13.100)

Note that this is a generalized form of the isotropic thermal expansion law (13.97),
which could be written in the tensorial notation as

ε̇T,i j = αT δi j Ṫ (13.101)

In equation (13.99), αT , ρ, ρ ′, and aT are constant parameters, δi j is the Kronecker
delta (equal to 1 if i = j and to 0 otherwise), and σm is the mean stress. Parameter αT

corresponds to the standard thermal expansion coefficient, which is valid for thermal
expansion at zero stress (and potentially depends on the pore relative humidity).
Parameters ρ and ρ ′ control the influence of the total stress and its hydrostatic part
on the stress-induced thermal strains. Based on their calculations, Bažant and Chern
[120] decided to set ρ ′ = 0, which simplifies the model. The factor sgn (ḣ + aT Ṫ )

controls the sign of the stress-induced thermal strains. At constant pore relative
humidity (ḣ = 0) and with ρ ′ = 0, Eqs. (13.99) and (13.100) can be combined into

ε̇T,i j = αT δi j Ṫ + ραTσi j |Ṫ | (13.102)

Thus, according to the present model, both heating and cooling generate addi-
tional stress-induced thermal strains that have the same signs as the corresponding
stresses and therefore increase the creep effects; see Fig. 13.18b for experimental
confirmation.

Simultaneously with stress-induced thermal strains, the model of Bažant and
Chern [120] treats stress-induced shrinkage bymaking the shrinkage ratio k∗

sh depend
on the stress. Again, the scalar coefficient is replaced by a tensor with components

k∗
sh,i j = −ε∞

s gsh(te)
dkh(h)

dh
[δi j + (rσi j + r ′σmδi j ) sgn (ḣ + aT Ṫ )] (13.103)

This tensor is then used in the rate form of the shrinkage law,

ε̇sh,i j = k∗
sh,i j ḣ (13.104)

Parameter ε∞
s is positive and corresponds to the theoretical value of free ultimate

shrinkage at zero stress extrapolated to zero humidity. Parameter r needs to be deter-
mined from experiments, and parameter r ′ is usually set to zero. Function gsh usually
defined as

gsh(te) = E(t0)

E(te)
(13.105)
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characterizes the reduction in shrinkage due to hardening and depends on the equiva-
lent age, te. Function kh describes the dependence of the normalized shrinkage strain
at zero stress on the pore relative humidity and is usually defined as kh(h) = 1− h3.
The derivative of kh with respect to h is negative and, because of the negative sign
on the right-hand side of (13.103), the resulting value of k∗

sh,i j is positive.

Fig. 13.17 Measured total strain at variable temperature and several compressive stress levels
(solid curves), and dependences calculated by Bažant and Chern [120] (dashed curves) with the
stress-induced thermal strain (a) ignored, (b) taken into account

The major importance of transitional thermal creep (or delayed stress-induced
thermal expansion) is demonstrated in Fig. 13.17, in which Anderberg and The-
landersson’s [35] data on total strain at constant rate of loading at various compressive
stress-strength ratios σ/ f̄c and increasing temperature applied before loading are fit-
ted with this phenomenon ignored (Fig. 13.17a) and taken into account (Fig. 13.17b).

Figure13.18a shows Hansen and Ericksson’s [452] data on deflections of beams
immersed in water (<100◦C) and loaded before or after heating at different heating
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Fig. 13.18 Fits of test data by (a) Hansen and Ericksson [452], (b) Wallo et al. [848]
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rates (2 ◦Cperminute or per hour). The responses for loading before and after heating,
respectively, include or exclude the transitional thermal creep. The data ofWallo et al.
[848] in Fig. 13.18b demonstrate that not only heating but also cooling produces
additional transitional thermal creep.

The additional strains resulting from a combination of loading and heating are
often referred to as the load-induced thermal strains (LITS). Their existence was
experimentally discovered by Hansen and Eriksson [452] and confirmed by many
others. An extensive experimental campaign byKhoury, Grainger, and Sullivan [544]
indicated that the dependence of LITS on the load level is approximately linear in the
range between 10 and 60% of the maximum load. This is reflected by simple models
that approximate LITS by a product of the normalized stress level and a suitable
function of temperature. For instance, the model of Thelandersson [811] is based on
the relation

εL I T S(T, σ ) = σ

f̄c
βεT 0(T ) (13.106)

where εL I T S is the load-induced thermal strain at stress level σ and temperature T , f̄c
is the compression strength, β is a model parameter, and εT 0(T ) is the usual thermal
strain at temperature T measured in the absence of loading. Equation (13.106) can be
obtained as a special case from Eqs. (13.99)–(13.100) that describe the model used
by Bažant and Chern [120]. Indeed, at constant humidity, monotonically increasing
temperature and uniaxial compression, Eq. (13.99) written for i = j = 1 reduces to

αT,11 = αT

[
1 +

(
ρ + ρ ′

3

)
σ11

]
(13.107)

where σ11 is the axial stress. Substituting (13.107) into (13.100) and integrating
from the initial state at reference temperature to the current state at temperature T ,
we obtain

εT,11(T, σ11) = εT 0(T ) + εT 0(T )

(
ρ + ρ ′

3

)
σ11 (13.108)

Note that εT,11 represents here the total thermally induced axial strain, which consists
of (i) the standard thermal strain εT 0 (at zero stress), obtained by integrating the rate
equation ε̇T = αT Ṫ , and (ii) the additional stress-induced thermal strain, analogous
to εL I T S from (13.106). If we set the parameter of the Thelandersson model to

β =
(

ρ + ρ ′

3

)
f̄c (13.109)

then the right-hand side of (13.106) coincides with the second term on the right-hand
side of (13.108).

The Thelandersson model was implemented by Khennane and Baker [542] and
extended to tensorial form by Nechnech, Meftah, and Reynouard [648]. Slight mod-
ifications were proposed by Terro [808] and Nielsen, Pearce, and Bicanic [657], who
approximated the dependence of LITS on temperature by a function independent
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of the function εT 0(T ) that describes the standard thermal strain. Terro [808] used
a fourth- or fifth-order polynomial while Nielsen et al. [657] adopted a piecewise
quadratic function. Furthermore, Terro [808] replaced the proportionality of LITS to
the stress level by proportionality to k + σ/ f̄c where k is an additional parameter.
This improves the fitting of experimental data by Khoury et al. [544] in the medium
stress range but themodel would give inconsistent results in the limit of zero stress. A
comparative study by Robson, Davie, and Gosling [729] revealed that all LITS mod-
els based on a universal temperature function become inaccurate for temperatures
exceeding 500 ◦C.

13.3.4 Application Example: Explosive Thermal Spalling
Due to Microwave Heating

A fundamental, still debated, problem is the explosive thermal spalling of concrete
walls or slabs subjected to intense rapid heating. Fires have produced such spalling in
tunnels, and some spalling observed in tall buildings after fire is attributable to rapid
heating. The results of simulations of microwave blast effects presented by Bažant
and Zi [213] illuminate this problem.

In nuclear facilities, concrete gets slightly contaminated by radionuclides in thin
surface layers, only 1–10mm thick. To guarantee a safe long-timework environment,
the contaminated layers need to be removed and properly disposed of as nuclear
waste. One of possible decontamination techniques is based on rapid heating gen-
erated by microwaves emitted from a powerful applicator. Such treatment allows a
fast removal of the contaminated layer, within only about 10 s [864].

The model used by Bažant and Zi [213] is a slightly modified version of the
BT model, with temperature and vapor pressure as two primary unknowns. The
governing equations are based on the moisture mass balance equation (13.51) and
heat equation (13.52).

In the moisture mass balance equation, the rate of nonevaporable water content is
expressed as ẇn = ẇh − ẇd , which is an extended version of (13.55). The additional
term ẇh reflects hydration at temperatures below 100 ◦C; the hydrate water content
wh is considered as a function of equivalent hydration period te, given by wh(te) =
0.21c[te/(τe + te)]1/3, with parameter τe = 23 days. The moisture flux is assumed
to be controlled by the transport law (13.78), with permeability given by (13.79)–
(13.81) and (13.84) and (13.85). The isotherm linking the evaporablewater content to
the pore relative humidity and temperature is described by equations (13.66)–(13.68)
and (13.73).

In the heat equation, the heat capacity ρCp is considered as constant. The heat
flux is governed by the Fourier law (13.7) with constant thermal conductivity. The
distributed heat source is calculated on the basis of the standing wave normally
incident to the concrete wall. Since the microwave time period is much shorter than
the time a heating front takes to propagate over the length of a microwave, and since
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concrete is heterogeneous, the ohmic power dissipation rate is averaged over both
the time period and the wavelength.

The hygrothermal analysis is followed by a mechanical analysis, taking into
account the strains induced by changes of temperature and pore humidity. Ther-
mal strains are estimated using a simple linear law (13.97) with a constant thermal
expansion coefficient, and shrinkage strains are obtained from a similar linear law
(8.252) with a constant shrinkage ratio. The three-dimensional stress–strain relation
is described by the M4 microplane model [113, 288]. To prevent spurious mesh sen-
sitivity, the crack band approach (see Sect. 12.2) is used to analyze tensile softening
due to distributed cracking in an axisymmetric situation.

Figure13.19 shows the profiles of pore vapor pressure and temperature after 5,
10 and 15s of heating of a concrete wall by blasts of microwaves having the same
initial power of 1.1MW/m2 but different frequencies ( f = 2.45, 10.6 and 18.0GHz),
which produce different rates of heating, because the dissipation ofmicrowave energy
increases with its frequency. Maximum temperature is typically found on the surface
while the peaks of pore pressure are located somewhat deeper inside. The maximum
pore pressure found in Fig. 13.19 is about 3MPa. If this pore pressure acted on an
unrestrained element of concrete, it would have to be balanced in the solid framework
of concrete by the tensile stress of approximately 0.1 MPa × 3.0 = 0.3MPa where
the value 0.1 is adopted for the typical porosity of concrete. This stress is only
about 10% of the tensile strength of ordinary concrete, typically f̄t ≈ 3–4MPa.
The concrete subjected to the peak pressure is at temperatures near 250 ◦C, and so

Fig. 13.19 Effect of different microwave frequencies on pore pressure and temperature profiles;
after Bažant and Zi [213]

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_12
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its tensile strength is reduced, but not substantially; see Fig. 13.14d. So, although
the effect of pore pressure is not entirely negligible, it cannot be the main cause of
spalling.

Fig. 13.20 Contour plots of water content [kg/m3], pore pressure [MPa], and temperature [◦C]
after 10 s of microwave heating; after Bažant and Zi [213], reproduced with permission from ASCE

Figure13.20 shows the contour plots of water content, pore pressure, and
temperature that develop after 10 seconds of microwave heating at frequency
f = 18.0 GHz and power input 1.1 MW/m2. The heated zone is seen to be very
localized and located near the heated surface. Figure13.21 depicts the deformed
finite element mesh (displacements exaggerated 100 times) and the contour plots of
the computed strain field; it shows the radial mechanical strain, i.e., the total strain
minus the hygrothermal strain (produced by changes of temperature and water con-
tent). It is found that the maximum principal mechanical strain in the surface layer
exceeds 5 ·10−3 in tension and the stress state is essentially biaxial. This strain value

Fig. 13.21 Deformed finite element mesh and mechanical strain after 10 s of microwave heating;
after Bažant and Zi [213], reproduced with permission from ASCE
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is much higher than the typical strain at peak in uniaxial tension (which is about
0.2 · 10−3). Therefore, it was concluded that the concrete must suffer disintegration
by cracking [213].

Is the explosive spalling triggeredbyporepressure, orby compressive stresses
that develop in directions parallel to the surface due to confined thermal expan-
sion?This question has been debated since the 1960s.One school of thought, initiated
byHarmathy [460, 461], holds that because the pore water cannot escape fast enough
(which is a phenomenon called the “moisture clog”), the vapor pressures that must
develop in the pores are so high that they cannot be balanced by the tensile strength
of concrete [304, 509, 534, 685]. Another school of thought holds that the thermal
expansion of the saturated heated zone, resisted by the cold concrete mass that sur-
rounds the heated zone, leads in the surface layer to very high compressive stresses
parallel to surface which either crush concrete or cause the compressed surface layer
to split off and buckle.

The relative significance of these two mechanisms must of course depend on the
type of problem, and can be different for microwave heating in the bulk of concrete
and for conductive heating by fire. In the microwave heating problem, the highest
pore pressure calculated has the value of 3 MPa, which causes in concrete a tension
of about 0.3 MPa. This does not suffice to spall concrete. Besides, as soon as a crack
starts to open, the volume available to pore water vapor increases by several orders of
magnitude. This must cause a sudden drop of pore pressure since further water can
be transferred into the open crack from the surrounding pores only with a significant
delay [97, 213].

So it appears that the main cause of explosive thermal spalling must be the com-
pressive stresses parallel to the surface, caused by restrained thermal expansion,
rather than the pore pressure. These stresses, engendered by the resistance of cold
concrete to the thermal expansion of the heated zone, reach values as high as about
50 MPa in the microwave blast problem.

The fact that explosive thermal spalling is predominantly caused by biaxial com-
pressive thermal stresses parallel to surface was also proven by Ulm et al. [823],
who presented a sophisticated finite element analysis of chemoplastic softening due
to dehydration in the Channel Tunnel fire. Experimentally, the role of these stresses
was documented by Hertz [477]. For completeness, let us also mention proposals
of alternative explanations of the spaling phenomenon based on the boiling liquid
expanding vapor explosion theory [4] or on high hydraulic pressures due to pore
saturation [256].

13.4 Finite Volume Method for Problems with Moving
Interfaces∗

In the case of rapid heating, for example in the case of a wall exposed to fire (or a
containment exposed to a hypothetical nuclear accident), a sharp moving interface
between oversaturated and dried concrete typically develops. Such a situation cannot
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be handled by the finite element method in its normal form, but it can be handled
by the finite volume method [377, 592, 593]. The reason is that the finite element
method normally does not ensure exact mass balance while the finite volumemethod
always does.

In the finite volume method, the domain is divided into discrete control volumes
(Fig. 13.22). The interfaces (or boundaries) of a control volume are placed midway
between adjacent representative points, which is generally accomplished by Voronoi
tessellation, although such tessellation is not needed when regular meshes can be
used.

Due to severe nonlinearity of the problem, modified Picard’s iteration [303], in
which the coefficients of the fluxes are taken as constants during each iteration,
is often adopted. To simplify the calculation of the fluxes at the control volume
interfaces, linear distributions of the state variables between the representative points
are assumed. Since the flux through the common boundary of two adjacent control
volumes is computed in the same way for both control volumes, the condition of
mass balance is satisfied for each control volume exactly (even if the fluxes are
only approximate). This is a fundamental advantage of the finite volume method,
important for avoiding spurious wild oscillations in highly nonlinear problems with
high local gradients and sharp fronts. For detailed formulation, see Bažant and Zi
[213].

Fig. 13.22 (a) Two-dimensional discretization of finite volume where W, E, S, and N are labels
for West, East, South, and North; shaded rectangle represents control volume; and (b) difference in
pressure approximations implied by finite element and finite volume methods

The advantage of the finite volume method for the analysis of moisture transfer in
concretewas recognized alreadybyEymard et al. [377] andwas explored byMainguy
and Coussy [592] in the problem of calcium leaching from concrete, although in the
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absence of heat transfer. Mainguy et al. [593] showed an effective application of the
finite volume method to drying of porous materials.

In the standard finite element method, by contrast, the local mass balance cannot
be satisfied exactly. For example, if finite elements with linear shape functions are
used (Fig. 13.22b), then the flux at thewest boundary of a control volume surrounding
a node of the FE mesh is generally different from the flux at the east boundary of
the adjacent control volume lying to the west; note the different slopes adjoining
the element interface in Fig. 13.22b. Identical results with the finite element method
can nevertheless be achieved with the lowest-order finite elements and implicit time
integration, which leads to pressure interpolation imitating the finite volume method
[594].

13.5 Mass, Momentum and Energy Balance Laws∗

As shown in the previous sections and illustrated by a number of examples, modeling
of heat transfer is based on the so-called heat equation, which originates from the
energy balance law. The heat equation can be presented in various forms, depending
on the specific problem and on the level of simplification. In Sect. 13.1.1, it was
simply postulated as Eq. (13.1), and the physical meaning of individual terms was
briefly described. The present section provides a rigorous derivation of the heat
equation and a detailed discussion of related theoretical aspects.

Before we proceed to the form of the heat equation applicable to concrete and
similar multiphasematerials, it is useful to revisit themass conservation equation and
develop a systematic procedure that can then be extended to other balance laws. Also,
the momentum balance equation needs to be derived, because it will be exploited
when converting the original form of the energy balance equation into a simpler form
that serves as the governing equation in the description of heat, possibly coupled with
moisture transport.

13.5.1 Mass Conservation∗

Consider first the motion of a body of single-phase material (solid or fluid) in free
space. If V (t) is the spatial domain occupied by the body at time t and ρ(x, t) is the
density as a function of spatial coordinates x and time t , the total mass of the body
is expressed as

M(t) =
∫

V (t)
ρ(x, t) dV (13.110)

In the absence of mass sources or sinks, mass conservation requires that M(t) =
const. Since the integral in (13.110) is taken over a domain that varies in time, the
time derivative of the integral is evaluated as
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Ṁ(t) = d

dt

∫

V (t)
ρ(x, t) dV =

∫

V (t)

∂ρ(x, t)

∂t
dV +

∫

S(t)
ρ(x, t)vn(x, t) dS

(13.111)
where S(t) is the boundary of V (t) and vn is the velocity of boundary points in the
direction normal to the boundary, given by vn = v · n, in which v is the velocity
vector and n is the unit vector normal to the boundary. Using the Gauss theorem, the
boundary integral can be converted to a volume integral:

∫

S(t)
ρ(x, t)vn(x, t) dS =

∫

V (t)
∇ · (ρ(x, t)v(x, t)) dV =

∫

V (t)
∇ · j(x, t) dV

(13.112)

Here, j = ρv is the mass flux and ∇ · j is its divergence (evaluated based on partial
derivatives with respect to the spatial coordinates x).

Based on (13.111) and (13.112), the mass conservation condition Ṁ(t) = 0 can
be written as ∫

V (t)

(
∂ρ(x, t)

∂t
+ ∇ · j(x, t)

)
dV = 0 (13.113)

Conservation ofmassmust hold not only for the whole body of interest but also for its
arbitrarily small part, which means that the integral in (13.113) vanishes even if the
integration domain V (t) is replaced by its arbitrarily small subdomain. Consequently,
the integrand must vanish (mathematically speaking, almost everywhere) and we
obtain the local form of the mass conservation equation,

∂ρ(x, t)

∂t
= −∇ · j(x, t) (13.114)

This is in principle the same equation as (8.76), which was derived (in a slightly
different notation) by tracing the mass that enters an elementary control volume
through its boundaries.

On the left-hand side of (13.114),ρ is themass per unit current volume (at position
x and time t) and the derivative with respect to t is taken at constant x, i.e., at a fixed
spatial location. The “mass-carrying” material particles flow through the space and
the derivative ∂ρ(x, t)/∂t corresponds to the rate atwhich themass density changes at
a fixed location in space (given by x). Alternatively, we could imagine an elementary
control volume that follows the motion of a selected material particle, characterized
by its initial12 position X. The motion is in general described by x = ξ(X, t) where
ξ is a vector-valued function that specifies the spatial position x occupied at time t
by the material particle that was initially at position X.

Mathematically speaking, function ρ̃ that describes the dependence of density on
X and t is different from function ρ that describes the dependence of density on x
and t , but both functions refer to the same physical field (current mass density) and

12By “initial” position we mean the position in a reference state, which can be selected arbitrarily.
For solids, it is usually considered as the initial “undeformed” state of the body.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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are directly linked by the relation ρ̃(X, t) = ρ(ξ(X, t), t). If the objective is to find
the rate at which the density changes if the observer follows the motion of a particle
that was initially at X, function ρ̃ must be differentiated with respect to t at fixed X.
Making use of the chain rule of differentiation, we obtain

∂ρ̃(X, t)

∂t
= d

dt
ρ(ξ(X, t), t) = ∂ρ(ξ(X, t), t)

∂x
∂ξ(X, t)

∂t
+ ∂ρ(ξ(X, t), t)

∂t
(13.115)

The first “fraction” on the right-hand side of (13.115) is the spatial gradient of
density,∇ρ = ∂ρ/∂x, and the second “fraction” is the time derivative of the position
of the particle that was initially at X, i.e., the velocity considered as a function of
X and, in a rigorous notation, denoted as ṽ. The last term on the right-hand side
of (13.115) is the rate of density at a fixed point in space, ∂ρ(x, t)/∂t , evaluated at
x = ξ(X, t).

From (13.115), it is clear that the time derivative computed at fixed x is in general
different from the time derivative computed at fixed X. The derivative with respect
to t at fixed x is called the spatial time derivative and, for simplicity, we will futher
denote it by a superposed dot. The derivative with respect to t at fixed X is called
the material time derivative, and we will denote it by Dt preceding the symbol of
the differentiated function. To further simplify the notation, we will usually omit the
arguments (such as X, x and t) and also leave out the superposed tilde when referring
to a function that describes a certain physical quantity as a function of X and t . With
all these conventions in mind, we can rewrite (13.115) as

Dtρ = ρ̇ + v · ∇ρ (13.116)

Material and spatial time derivatives are seen to differ by the term v · ∇ρ, which
represents the convective flow of mass. Note again that the operator ∇ refers here to
differentiation with respect to the spatial coordinates x and in a more precise notation
it would be denoted as ∇x, to avoid confusion with the operator ∇X that corresponds
to differentiation with respect to the material coordinates, X.

Relation (13.116) between the material time derivative and the spatial time deriv-
ative has a general validity and applies not only to the density but to any other field,
because it was obtained in (13.115) by applying mathematical rules of differentia-
tion, with no reference to the physical meaning of function ρ. It is therefore possible
to replace ρ by any other symbol denoting a scalar field, or even a tensorial field,
and the relation remains valid. The convective term, i.e., the difference between the
material time derivative and the spatial time derivative, is given by the dot product
(contraction) of the velocity field and the gradient of the field for which the time
derivatives are computed. Physically, ρ̇ describes the change that occurs at a fixed
position in space. If we want to evaluate the rate by which the density varies as we
follow the trajectory of a moving material particle, we must consider that in a time
interval dt the particle is displaced by v dt and such a change of spatial location
results into an additional change in ρ given by the scalar product of v dt with the
spatial gradient of ρ.



666 13 Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage

Formula (13.116) permits transformations between material time derivatives and
spatial time derivatives. For instance, expression (13.114) for the spatial time deriv-
ative of density, rewritten as

ρ̇ = −∇ · j = −∇ · (ρv) = −(∇ρ) · v − ρ∇ · v (13.117)

can be transformed into the corresponding material time derivative of density,

Dtρ = ρ̇ + v · ∇ρ = −ρ∇ · v (13.118)

The physical interpretation of this result becomes apparent if the density is replaced
by the specific volume, v = 1/ρ. The material time derivative obeys the standard
rules of differentiation, and so

Dtv = Dt

(
1

ρ

)
= −Dtρ

ρ2
= ∇ · v

ρ
= v∇ · v (13.119)

The resulting relation (Dtv)/v = ∇ ·v means that when we follow amaterial particle,
the relative change of volume per unit time is equal to the divergence of the velocity
field. This is the rate form of the standard relation between the volumetric strain and
the divergence of the displacement field.

Derivation of the mass conservation equation (13.114) based on differentiation
of an integral over a domain that evolves in time may seem to be unnecessarily
complicated because essentially the same equation was derived in Sect. 8.3.3 in a
simpler way, by looking at the mass flux that crosses the boundary of an elementary
control volume. The main advantage of the approach used here is that it is relatively
easily extensible to more complicated conservation or balance laws.

13.5.2 Momentum Balance∗

The balance of momentum represents the continuum version of Newton’s second
law, roughly stated as “the time derivative of the momentum of a mass point is equal
to the resultant force acting on that point.” The momentum is the product of mass
and velocity and, for a continuous body with distributed mass, can be obtained by
integrating the mass density multiplied by velocity. The external force acting on
the body is the resultant of body forces with intensity b (per unit mass) and surface
forceswith intensity t (per unit current area of the boundary). Themomentumbalance
equation thus reads

d

dt

∫

V (t)
ρv dV =

∫

V (t)
ρb dV +

∫

S(t)
t dS (13.120)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Expanding the time derivative of the integral over a time-dependent domain on the
left-hand side and making use of the relation t = n · σ between the surface forces t
and the Cauchy stress tensor σ in the last term on the right-hand side, we can rewrite
(13.120) as

∫

V (t)
(ρ̇v + ρv̇) dV +

∫

S(t)
ρv(v · n) dS =

∫

V (t)
ρb dV +

∫

S(t)
n · σ dS (13.121)

Using the Gauss theorem, we then convert both surface integrals to volume inte-
grals, and by the same reasoning as before (namely that V (t) can be replaced by its
arbitrarily small subdomain) we arrive at the local form of momentum balance,

ρ̇v + ρv̇ + ∇ · (ρv ⊗ v) = ρb + ∇ · σ (13.122)

On the right-hand side of (13.122), we recognize the terms known from the stan-
dard static equilibrium equations (Cauchy equations), ∇ · σ + ρb = 0. For a body
in motion, we expect an additional term that corresponds to inertia forces. At first
one may wonder why the left-hand side of (13.122) contains not only the term ρv̇
(density times “acceleration”) but also two other terms. The reason is that v̇ is not
really the acceleration, because the dot denotes here the spatial time derivative while
the true acceleration of a mass point corresponds to the material time derivative of
velocity. Indeed, taking into account (13.117), the third term on the left-hand side of
(13.122) can be worked out as follows:

∇ · (ρv ⊗ v) = [∇ · (ρv)] v + ρv · ∇v = −ρ̇v + ρv · ∇v (13.123)

Consequently, the left-hand side of (13.122) can be rewritten as ρv̇ +ρv · ∇v, which
corresponds to ρDtv, i.e., to the product of the current density and the material time
derivative of velocity. This product is the true inertia force (per unit current volume).
One of possible forms of the momentum balance equation thus is

ρDtv = ρb + ∇ · σ (13.124)

To facilitate future manipulations with time derivatives of integrals over time-
dependent domains, it is useful to develop an alternative approach. The main idea
is that the integral is transformed to a fixed (time-independent) domain, the differ-
entiation with respect to time is then simply applied to the transformed integrand,
and the result is transformed back to the original time-dependent domain. The time-
independent reference domain V0 corresponds to the domain occupied by the body
in its reference state at time t0, when the spatial positions of individual particles, x,
coincide with their “material coordinates”, X, i.e., when ξ(X, t0) = X. Transforma-
tion from V (t) to V0 requires a replacement of the differential volume dV by the
expression J dV0 where dV0 is a differential volume in the reference domain and
J = dV/ dV0 is the Jacobian of the mapping ξ , i.e., the determinant of the deforma-
tion gradient ∂ξ/∂X. The product Jρ is equal to the mass density in the reference
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state, ρ0, i.e., to the mass per unit volume in the reference state (this statement fol-
lows from the identity ρ dV = ρ0 dV0 = mass of the material that initially occupies
volume dV0 and, at time t , occupies volume dV ). Consequently, we can write

d

dt

∫

V (t)
ρv dV = d

dt

∫

V0

ρvJ dV0 = d

dt

∫

V0

ρ0v dV0 (13.125)

Now, since the reference domain V0 and the initial density ρ0 are time-independent,
differentiationwith respect to time applies exclusively to the velocity, v. In the integral
over V0, the velocity is considered as a function of X and t and the derivative is taken
at constant X, which means that it is the material time derivative, denoted as Dtv.
Finally, the integral is transformed back to V (t), using identities dV0 = dV/J and
ρ0/J = ρ:

d

dt

∫

V0

ρ0v dV0 =
∫

V0

ρ0Dtv dV0 =
∫

V (t)
ρ0DtvJ−1 dV =

∫

V (t)
ρDtv dV (13.126)

Combining (13.125) and (13.126), we obtain a very simple rule for differentiation
of time-dependent integrals. For the present case, it is written as

d

dt

∫

V (t)
ρv dV =

∫

V (t)
ρDtv dV (13.127)

but the velocity vector field v can be replaced by any other field, even a tensorial one.
An important point is that the integrand must contain the considered field multiplied
by the mass density, in other words, that the field must represent a specific quantity
(i.e., a quantity taken per unit mass). In fact, the velocity can be interpreted as the
specific momentum, because it corresponds to the momentum per unit mass.

13.5.3 Energy Balance∗

Now we can proceed to the energy balance equation, which, in a modified form,
will serve as the governing equation for heat transfer (possibly coupled with mass
transfer). According to the first law of thermodynamics, the increase in the total
energy of a body is equal to the sum of the work done on the body by external forces
and the heat supplied to the body. In the rate form, this statement can be written as

d

dt

(∫

V (t)
ρu dV +

∫

V (t)

1
2ρv · v dV

)
=

∫

V (t)
ρb · v dV +

∫

S(t)
t · v dS +

+
∫

V (t)
ρr dV −

∫

S(t)
qn dS (13.128)
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where u is the specific internal energy (per unit mass), r is the specific heat source
(heat supplied by sources distributed in the body, per unit time and unit mass), and
qn is the (conductive) heat flux in the direction normal to the boundary, which can
be expressed as n · q where q is the heat flux vector. The surface integral of qn is
preceded by a negative sign because n is the outward unit normal and if qn = n · q is
positive, heat is transferred from the body to its environment and the heat supplied to
the body is thus negative. The distributed heat source term on the right-hand side of
(13.128) can originate, e.g., from microwave heating, which is of interest for curing
of concrete, and also for the technique of ablating a contaminated surface layer by a
microwave blast [213]; see Sect. 13.3.4.

Equation (13.128) can be converted to the local form using the procedure that has
already been explained in detail in the context of mass conservation and momentum
balance. Based on formula (13.127), which remains valid if v is replaced on both
sides by u + v · v/2, the left-hand side of (13.128) can be rewritten as the integral of
ρDt(u+ v · v/2). On the right-hand side, we use the relations t = n ·σ and qn = n ·q
and transform the surface integrals into volume integrals using the Gauss theorem.
The resulting local form of the energy balance equation is then

ρDtu + 1
2ρDt (v · v) = ρb · v + ∇ · (σ · v) + ρr − ∇ · q (13.129)

Making use of the rules of differentiation and of formula (13.124), we can express
the second term on the left-hand side as

1
2ρDt (v · v) = ρv · Dtv = (ρDtv) · v = ρb · v + (∇ · σ ) · v (13.130)

After substitution into (13.129) we find that the term ρb ·v cancels with the first term
on the right-hand side, and the term (∇ · σ ) · v cancels with a part of the second term
on the right-hand side, because

∇ · (σ · v) = (∇ · σ ) · v + σ : ∇v (13.131)

where the “:” operator stands for the double contraction of tensors, and ∇v is the
spatial gradient of velocity. The described adjustments lead to a shorter and more
convenient form of the energy balance equation,

ρDtu = σ : ∇v + ρr − ∇ · q (13.132)

The first term on the right-hand side of (13.132) represents the stress power
density (work done by stress, per unit time and unit current volume). In the small-
strain theory, it would reduce to σ : ε̇, i.e., to the double contraction of the stress
tensor and the rate of the small-strain tensor. In the general case, σ is the Cauchy
stress (true stress, force per unit current area) and ∇v is the spatial velocity gradient.
Since σ is symmetric,∇v could be replaced by its symmetric part, which is also called
the rate-of-deformation tensor. The second term on the right-hand side of (13.132)
corresponds to the heat supplied to the control volume by a distributed heat source
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and the third term to the heat supplied by conductive heat flux through the boundary
of the control volume.

If the material time derivative of specific internal energy, Dtu, is transformed into
the spatial time derivative, u̇ = Dtu − v · ∇u, then the energy balance equation
(13.132) reads

ρu̇ = σ : ∇v + ρr − ∇ · q − ρv · ∇u (13.133)

Note the additional term on the right-hand side, in which ρv = j corresponds to
the mass flux and the whole term, −j · ∇u, represents the net internal energy that
is brought into the control volume (fixed in space) by the flux of matter through the
boundary of the control volume, i.e., by convection.

13.5.4 Entropy Balance∗

The concept of entropy is closely related to the second law of thermodynamics,
which states that there exists a certain state variable, called entropy, with the fol-
lowing property: In a closed system (i.e., in a system that does not exchange mass
with its environment), the rate of entropy increase is never smaller than the rate of
externally supplied entropy, defined as the rate of heat supply divided by the absolute
temperature. For a thermally insulated system, this means that the total entropy can
never decrease.

The difference between the rate of entropy increase and the rate of external entropy
supply is the rate of internal entropy production, and this quantity must always be
nonnegative. Processes that result into no internal entropy production are reversible,
because when the signs of all rates are reverted, the internal entropy production is
still zero and the reverse process is admissible. Processes that result into a positive
internal entropy production are irreversible, because when the signs of all rates are
reverted, the internal entropy production becomes negative, which is not admissible.

For a continuous medium, one can define the specific entropy, s, as the entropy
per unit mass, and the total entropy of a body is obtained by integrating ρs over the
corresponding spatial domain. Entropy can be supplied to the body (or extracted from
it) by exchanges of heat. For a body with a uniform temperature distribution, the rate
of supplied entropy is defined as the rate of heat supply divided by the absolute tem-
perature. Under nonuniform temperature, one needs to apply this definition locally at
each elementary volume and elementary surface segment and integrate. The second
law of thermodynamics can then be written as the inequality

d

dt

∫

V (t)
ρs dV ≥

∫

V (t)

ρr

T
dV −

∫

S(t)

qn
T

dS (13.134)

in which the left-hand side represents the rate of total entropy and the right-hand side
is the rate of supplied entropy.
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As usual, the surface integral in (13.134) can be converted to a volume integral,
making use of the fact that qn = n · q. The inequality must hold for an arbitrarily
small domain and thus can be converted into the local condition

ρDts ≥ ρr

T
− ∇ ·

( q
T

)
(13.135)

which is sometimes called the “entropy imbalance,” because of the inequality sign.
However, one can also introduce the auxiliary notion of specific entropy production,
s∗, defined by the relation

ρs∗ = ρDts − ρr

T
+ ∇ ·

( q
T

)
(13.136)

which is equivalent to

ρDts = ρr

T
− ∇ ·

( q
T

)
+ ρs∗ (13.137)

Inequality (13.135), which originates from the second law of thermodynamics, can
then be rewritten simply as the condition of nonnegative entropy production,

s∗ ≥ 0 (13.138)

and Eq. (13.137) can be considered as the entropy balance equation.
Expanding the divergence of q/T as ∇ · (q/T ) = (∇ · q)/T − q · (∇T )/T 2 and

multiplying both sides of (13.137) by T , we obtain

ρTDts = ρr − ∇ · q + 1

T
q · ∇T + ρT s∗ (13.139)

The last term on the right-hand side is called the dissipation (more precisely, the
dissipation density rate, i.e., the dissipated energy per unit volume and unit time).

Equation (13.139) contains the terms ρr − ∇ · q, which correspond to the rate
of heat supply per unit volume, and the same terms are found in the energy balance
Eq. (13.132). Combining both equations such that the heat supply be eliminated, we
obtain

ρDtu = σ : ∇v + ρTDts − 1

T
q · ∇T − ρT s∗ (13.140)

13.5.4.1 Fluids∗

For fluids, the internal state can be uniquely characterized by two state variables,
e.g., by the pressure and temperature. In the present context, it is better to select the
specific volume, v, and the specific entropy, s, as the independent state variables,
and consider all the other state variables (e.g., the pressure, temperature, and specific
internal energy) as functions of v and s. Furthermore, the stress state in a fluid at
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equilibrium is hydrostatic, given by σ = −p1 where p is the pressure and 1 is
the unit second-order tensor (spherical tensor). The negative sign reflects the sign
convention: a positive normal stress means tension while a positive pressure means
compression. For a fluid in motion, an additional deviatoric stress σ D can arise due
to viscous effects. This part of stress is related to the deviatoric part of the rate-
of-deformation tensor (i.e., of the symmetric part of the velocity gradient, ∇v) and
vanishes if ∇v = 0.

Setting σ = −p1 + σ D , we can rewrite the first term on the right-hand side of
(13.140) as σ : ∇v = −p1 : ∇v + σ D : ∇v = −p∇ · v + σ D : ∇v. Substituting this
expression into (13.140),multiplying thewhole equation by v = 1/ρ and recognizing
the term v∇ · v as the material time derivative of the specific volume (as stated in
Eq. (13.119)), we obtain

Dtu = −pDtv + vσ D : ∇v + TDts − v

T
q · ∇T − T s∗ (13.141)

If the internal energy is considered as a function of specific volume and specific
enthalpy, its rate on the left-hand side of (13.141) can be expressed in terms of the
rates of v and s, which leads to13

∂u

∂v

∣∣
∣∣
s

Dtv + ∂u

∂s

∣∣
∣∣
v

Dts = −pDtv + vσ D : ∇v + TDts − v

T
q · ∇T − T s∗ (13.142)

This equality must hold for an arbitrary combination of rates Dtv and Dts, which is
possible only if

p = −∂u

∂v

∣∣∣∣
s

(13.143)

T = ∂u

∂s

∣∣∣∣
v

(13.144)

ρT s∗ = σ D : ∇v − 1

T
q · ∇T (13.145)

Equations (13.143)–(13.144) are state laws that link the pressure and temperature
to the derivatives of the specific internal energywith respect to the specific volumeand
specific entropy. Equation (13.145) provides a recipe for evaluation of the dissipation,
which is extremely useful, because the dissipation (or the closely related entropy
production rate) is now linked to the actual processes in the material. Such a link can
be exploited in two ways.

13A vertical bar with a subscript which follows a partial derivative specifies which variable is kept
constant when the derivative is taken. For instance, (∂u/∂v)|s means the partial derivative of u
with respect to v at constant s. This notation removes possible ambiguity, because in principle we
can consider the internal energy density as a function of various pairs of internal variables, not
necessarily of v and s. If u was considered as a function of v and T , its partial derivative with
respect to v (at constant T ) would have a different meaning.
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First, inequality (13.138), which reflects the second law of thermodynamics, can
be rewritten as

σ D : ∇v − 1

T
q · ∇T ≥ 0 (13.146)

The left-hand side should be nonnegative for all admissible processes. The first
term, σ D : ∇v, represents the mechanical part of dissipation, and the second term,
−q · (∇T )/T , is the thermal part of dissipation. The second law states only that the
sum of these terms must be nonnegative. This must hold for all admissible processes,
including (i) those in which the temperature is uniform, i.e., in which ∇T = 0 and
the second term vanishes, and (ii) those in which the material particles are at rest, i.e.,
in which v = 0 and the first term vanishes. It is therefore reasonable to stipulate that
each termbe nonnegative evenwhen considered separately,which leads to conditions

σ D : ∇v ≥ 0 (13.147)

q · ∇T ≤ 0 (13.148)

These conditions play the role of constraints on the constitutive equations that com-
plement the balance laws and describe the behavior of the given material. In the
simplest case, the constitutive equations could be postulated as

σ D = ηf(∇sv)D (13.149)

q = −kT∇T (13.150)

where ηf is the dynamic viscosity of the fluid, (∇sv)D is the deviatoric part of the
symmetric velocity gradient, and kT is the thermal conductivity. For such linear
isotropic laws, conditions (13.147)–(13.148) are satisfied if the dynamic viscosity
and thermal conductivity are both nonnegative, which is a very natural requirement.
Equation (13.150) is the isotropic form of the Fourier law, widely used by models
of heat conduction.

Formula (13.145) can also be exploited for elimination of the entropy production
rate from equations (13.139) and (13.141). The resulting equations

ρTDts = ρr − ∇ · q + σ D : ∇v (13.151)

Dtu = −pDtv + TDts (13.152)

are much simpler than the original ones. In fact, Eq. (13.152) directly follows from
the rules of differentiation of u as a function of v and s, combined with the state laws
(13.143) and (13.144).
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13.5.4.2 Solids∗

For solids, it is not sufficient to characterize the internal state by two scalar variables.
Even for an elastic solid, the specific internal energy is not a unique function of the
specific volume and specific entropy. The specific volume is related to the volumetric
part of strain but, for solids, the deviatoric part of strain stores energy, too. Moreover,
if the solid is inelastic, its behavior may depend not only on the current state but
also on the previous history. This dependence is conveniently incorporated through
internal state variables.

Since the focus here is on concrete, it is sufficient to restrict attention to a simplified
formulation based on the assumption of small displacements and small displacement
gradients (which implies small strains and small rotations). Within this theory, it is
not necessary to distinguish between the material and spatial coordinates, between
the material and spatial rates, and between the initial and current density. A detailed
discussion of the thermodynamic approach to constitutivemodeling of inelastic solids
is available in Chap.23 of Jirásek andBažant [521]. Herewe just summarize themain
equations analogous to those derived in the previous section for fluids.

Equation (13.140) is replaced by

ρu̇ = σ : ε̇ + ρT ṡ − 1

T
q · ∇T − ρT s∗ (13.153)

and the specific energy u is considered as a function of the strain, ε, specific entropy,
s, and a set of internal variables that depend on the choice of material model (vis-
coelasticity, plasticity, damage mechanics, etc.). In the general setting, the internal
variables are collectively denoted by the symbol α. If the time derivative on the
left-hand side of (13.153) is expanded using the chain rule, we obtain an equation
analogous to (13.142) multiplied by ρ:

ρ
∂u

∂ε

∣∣∣
∣
s,α

: ε̇ +ρ
∂u

∂s

∣∣∣
∣
ε,α

ṡ+ρ
∂u

∂α

∣∣∣
∣
ε,s

· α̇ = σ : ε̇ +ρT ṡ− 1

T
q ·∇T −ρT s∗ (13.154)

The state laws analogous to (13.143) and (13.144) now read

σ Q = ρ
∂u

∂ε

∣∣∣∣
s,α

(13.155)

T = ∂u

∂s

∣∣∣∣
ε,α

(13.156)

βQ = ρ
∂u

∂α

∣∣∣
∣
ε,s

(13.157)

where σ Q is the so-called quasi-conservative stress [896], and βQ are the quasi-
conservative thermodynamic forces conjugate to the internal variables α.
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As a generalization of (13.145), the expression for the dissipation rate that follows
from (13.154)–(13.157) is given by

ρT s∗ = (
σ − σ Q

) : ε̇ − βQ · α̇ − 1

T
q · ∇T (13.158)

The last term on the right-hand side of (13.158) is the thermal dissipation, given
by the same expression as for fluids. The first two terms constitute the mechanical
part of dissipation, which vanishes if the solid is elastic. For an inelastic solid, the
difference σ − σ Q = σ D is identified as the dissipative stress,14 and −βQ = βD

can be considered as the dissipative thermodynamic forces. The dissipative stress
and dissipative thermodynamic forces are linked to the state variables and their rates
by special laws that describe the inelastic part of the model and must be constructed
such that the mechanical dissipation would not become negative in any admissible
process. Finally, substituting (13.158) into (13.139) andmaking use of the definitions
of σ D and βD , we obtain

ρT ṡ = ρr − ∇ · q + σ D : ε̇ + βD · α̇ (13.159)

which is a generalized version of (13.151).
Extension of the description of inelastic solids to the case of large strains is not

needed for the present purpose; interested readers can find the main ideas in Chap.24
of Jirásek and Bažant [521].

13.5.5 Heat Equation∗

Equation (13.151) (or its modified form (13.159), valid for solids under small strains)
forms the basis of the governing equation that is used in thermal analysis, possibly
coupled with stress analysis and mass transport analysis. In thermal analysis, the
fundamental unknown field is typically the temperature, and the other state variable
needed to characterize the internal state of a fluid is usually taken as the pressure. It
is therefore useful to rewrite (13.151) in terms of the pressure and temperature rates.
If we consider the specific entropy s as a function of pressure, p, and temperature,
T , the material time derivative of s can be expressed as

Dts = ∂s

∂p

∣∣∣
∣
T

Dt p + ∂s

∂T

∣∣∣
∣
p

DtT (13.160)

Later it will be shown that the partial derivatives of specific entropy with respect
to pressure and temperature can be transformed into equivalent expressions with a

14In Sect. 13.5.4.1, devoted to fluids, symbol σ D was used for the deviatoric part of stress. Since
deviatoric stresses in fluids do not have any quasi-conservative part, the interpretation of σ D as the
dissipative stress applies to the case of fluids, too.
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direct physical meaning, which will explain the motivation behind the definition of
the isobaric specific heat capacity15 (or simply the specific heat)

Cp = T
∂s

∂T

∣∣∣∣
p

(13.161)

and of the isobaric volumetric coefficient of thermal expansion

αvT = −ρ
∂s

∂p

∣∣∣∣
T

(13.162)

The left-hand side of (13.151) can now be written as

ρTDts = −TαvTDt p + ρCpDtT (13.163)

and (13.151) is replaced by

ρCpDtT = ρr − ∇ · q + σ D : ∇v + TαvTDt p (13.164)

This is the heat equation in its general form (sometimes also called the enthalpy
balance equation).

If a material sample is kept at constant pressure and its temperature is slowly
varied such that it expands or shrinks uniformly, with no changes in shape, the last
two terms on the right-hand side of (13.164) vanish (because Dt p = 0 and σ D = 0)
and the equation simplifies to

ρCpDtT = ρr − ∇ · q (13.165)

In this reduced form, the heat equation permits an easy interpretation of coefficient
Cp, which represents the heat per unit mass that needs to be supplied to thematerial at
constant pressure in order to increase its temperature by 1 degree (Kelvin or Celsius).
This explains the term “isobaric specific heat”. Multiplication by the mass density,
ρ, converts Cp into the heat per unit volume (and per unit temperature increase).

The interpretation of αvT defined in (13.162) as a thermal expansion coefficient is
less straightforward. It requires a conversion of (13.162) into an alternative formula,
based on the notion of enthalpy, which is one of the modified thermodynamic poten-
tials that can be obtained from the internal energy u by Legendre transformations.

15The specific heat capacity is defined as the heat capacity per unit mass. When multiplied by
the density, it is converted into the volumetric heat capacity, taken per unit volume. The adjective
isobaric means that the derivative in (13.161) is taken at constant pressure. One could also define
the isochoric heat capacity, at constant volume. For solids, the difference between the isobaric and
isochoric heat capacities is negligible, for liquids it is small, but for gases it is substantial.
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For fluids, the specific enthalpy (i.e., enthalpy per unit mass) is defined as16

h∗ = u + pv (13.166)

where p is the pressure and v is the specific volume. The specific enthalpy plays
the role of a potential when it is considered as a function of pressure and specific
entropy. Taking the derivatives and making use of state equations (13.143)–(13.144),
we obtain

∂h∗

∂p

∣∣∣∣
s

= ∂u

∂v

∣∣∣∣
s

∂v

∂p

∣∣∣∣
s

+ v + p
∂v

∂p

∣∣∣∣
s

= v (13.167)

∂h∗

∂s

∣∣∣∣
p

= ∂u

∂v

∣∣∣∣
s

∂v

∂s

∣∣∣∣
p

+ ∂u

∂s

∣∣∣∣
v

+ p
∂v

∂s

∣∣∣∣
p

= T (13.168)

In a similar fashion, we can define the specific Gibbs free energy

μ = h∗ − T s (13.169)

which serves as a potentialwhen considered as a functionof pressure and temperature,
because

∂μ

∂p

∣
∣∣∣
T

= ∂h∗

∂p

∣
∣∣∣
s

+ ∂h∗

∂s

∣
∣∣∣
p

∂s

∂p

∣
∣∣∣
T

− T
∂s

∂p

∣
∣∣∣
T

= v (13.170)

∂μ

∂T

∣∣
∣∣
p

= ∂h∗

∂s

∣∣
∣∣
p

∂s

∂T

∣∣
∣∣
p

− s − T
∂s

∂T

∣∣
∣∣
p

= −s (13.171)

With the state law (13.171) for specific entropy at hand, definition (13.162) can
be rewritten as

αvT = −ρ
∂s

∂p

∣∣∣
∣
T

= ρ
∂2μ

∂p∂T
= ρ

∂v

∂T

∣∣∣
∣
p

= 1

v

∂v

∂T

∣∣∣
∣
p

(13.172)

The last expression presentsαvT as the relative change of volume per unit temperature
increase at constant pressure, which explains the meaning of αvT as the isobaric
coefficient of thermal expansion, considered in the volumetric sense (not in the usual
linear sense as for solids). One could also exploit (13.171) and (13.169) to convert
(13.161) into an alternative definition of the isobaric specific heat:

Cp = T
∂s

∂T

∣∣∣∣
p

= T
∂s

∂T

∣∣∣∣
p

+ s + ∂μ

∂T

∣∣∣∣
p

= ∂ (T s + μ)

∂T

∣∣∣∣
p

= ∂h∗

∂T

∣∣∣∣
p

(13.173)

16The standard symbol for specific enthalpy would be h but here we use h∗, to avoid confusion
with the pore relative humidity. The asterisk is omitted when we refer to the specific enthalpy of a
given substance, e.g., to the specific enthalpy of liquid water, denoted as hwl .
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The last expression corresponds to the change of specific enthalpy per unit temper-
ature increase at constant pressure.

Strictly speaking, the simplified form (13.165) of the heat equation is valid only
under constant pressure and in the absence of mechanical dissipation (represented by
the third term on the right-hand side of (13.164)). However, the simplified form can
be used as a convenient approximation even under more general conditions, because
the last two terms on the right-hand side of (13.164) are usually negligible. To get
an idea about their relative importance, let us assess these terms separately.

For liquid water at atmospheric pressure and room temperature (20 ◦C), the iso-
baric specific heat is Cp = 4181.8 J/(kg·K), the isobaric volumetric coefficient of
thermal expansion is αvT = 2.07·10−4/K, and themass density is ρ = 998.2kg/m3.
At constant pressure and under adiabatic conditions (no heat supply), the only
nonzero term on the right-hand side of (13.164) is the third one, σ D : ∇v. Sup-
pose that a layer of water is subjected to shearing at a constant velocity, leading to
a constant shear strain rate γ̇xy . According to the linear law (13.149), the generated
stress is proportional to the deviatoric part of the strain rate, with proportionality
coefficient ηl = 1.002 · 10−3 Pa·s = dynamic viscosity of water at room tempera-
ture. In this case, the product σ D : ∇v reduces to τxy γ̇xy = ηlγ̇

2
xy , and the temperature

rate evaluated from (13.164) is

DtT = ηl

ρCp
γ̇ 2
xy = 2.4 · 10−10 K · s γ̇ 2

xy (13.174)

At a shear strain rate of 1/s (which is high), the temperature would increase by 1 ◦C in
about 4.2 ·109 s, i.e., in 132years (provided that the water layer is perfectly thermally
insulated, so that no heat is lost by conduction through the boundary). It is obvious
that the effect of the third term on the right-hand side of (13.164) is, for water at
room temperature and atmospheric pressure, totally negligible. It might play a role
for highly viscous fluids under extreme deviatoric strain rates.

If the water layer is uniformly compressed under adiabatic conditions, the first
three terms on the right-hand side of (13.164) vanish and the relation between the
rates of temperature and pressure is given by

DtT = TαvT

ρCp
Dt p = 1.45 · 10−8 K

Pa
Dt p (13.175)

If the pressure is increased from the atmospheric pressure to its double (i.e., is
increased by 0.1 MPa), the temperature rises only by 0.00145 K. Again, this effect
is totally negligible.

Of course, coefficients Cp and αvT are not constants—they strongly depend on
the internal state. So there can be certain extreme conditions under which the terms
discussed above play an important role, and then the full form of the heat equation
(13.164) should be preferred to the reduced form (13.165).

For completeness, let us also derive an expression for the rate of specific enthalpy.
Making use of the state laws (13.167)–(13.168) and of formula (13.151) for the rate
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of specific entropy, we get

ρDth
∗ = ρ

∂h∗

∂p

∣
∣∣∣
s

Dt p+ρ
∂h∗

∂s

∣
∣∣∣
p

Dts = ρvDt p+ρTDts = Dt p+ρr−∇·q+σ D : ∇v

(13.176)
This relation is sometimes called the enthalpy balance equation, even though it is
not really an independent balance law—it has been deduced by combining the laws
of energy conservation and entropy balance.

13.5.6 Balance Laws for Multiphase Media∗

So far we have been dealing with the motion of a “material body” consisting of
one single phase of a material (solid, liquid, gas) that completely fills the available
space. The main balance equations are summarized in Table13.5. The next step is to
proceed to multiphase systems, such as a porous solid body with pores filled by one
or more fluids.

Table 13.5 Overview of balance laws and related equations for a single-phase medium (operator
∇ refers to differentiation with respect to the spatial coordinates x)

Material time derivative Spatial time derivative

Mass Dtρ = −ρ∇ · v ρ̇ = −∇ · (ρv)

Dtv = v∇ · v v̇ = v2∇ · (v/v)
Momentum ρDtv = ρb + ∇ · σ ρv̇ = ρb + ∇ · σ − ρv · ∇v

Energy ρDtu = σ : ∇v + ρr − ∇ · q ρu̇ = σ : ∇v + ρr − ∇ · q − ρv · ∇u

Entropy† ρTDts = ρr − ∇ · q + σ D : ∇v ρT ṡ = ρr−∇·q+σ D : ∇v−ρT v·∇s

Enthalpy† ρDth∗ = Dt p + ρr − ∇ · q + σ D : ∇v
ρḣ∗ = Dt p + ρr − ∇ · q + σ D : ∇v

−ρv · ∇h∗

†... written in a form valid for fluids

A fully general and rigorous derivation of balance laws for multiphase media is
quite a tedious and cumbersome procedure, for multiple reasons. Equations derived
for a single phase apply at the microscopic scale, with the part of space occupied
by each phase characterized by the specific shape of the spatial domain, resolved in
detail. On the other hand, structural problems are solved at the macroscopic scale,
at which individual phases are treated as “overlaid” and the description of the part
of space they occupy is reduced to the volume fraction. To obtain the quantities
that characterize the state of each phase at the macroscopic scale, one needs to apply
suitable averaging procedures to themicroscopic quantities, and such procedures give
rise to additional terms in the balance equations. Also, one needs to take into account
interactions among the phases, i.e., internal exchanges of mass, momentum, energy,
etc. The description is further complicated by the fact that individual phases can
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consist of several components, e.g., the gas phase consists of dry air and water vapor.
Additional difficulties arise when the contributions of several components or phases
have to be combined, because the material time derivatives in individual equations
do not have the same meaning—they refer to motions of individual components or
phases, characterized by different velocity vectors. It is thus necessary to convert
them to spatial time derivatives, but then the sum of convection terms containing
different velocity vectors is not always equivalent to one simple convection term for
an effective medium.

A systematic treatment of the complex problem mentioned in the previous para-
graph can be found, e.g., in theworks ofHassanizadeh andGray [467, 468], Gray and
Hassanizadeh [435], and Lewis and Schrefler [572]. Another level of complexity is
added if one considers not only the thermodynamic variables associatedwith the bulk
material (distributed in volume) but also additional terms associated with interfaces,
such as the surface energy [10, 437, 465]. Such developments have a high theoretical
value and provide insight into the structure of the fundamental equations. However,
they lead to models with extremely high numbers of parameters, which are often
hard to identify. For practical applications, simplified models with a limited number
of parameters are needed. In fact, many terms that appear in a detailed description
accounting for a multitude of phenomena either turn out to be negligible, or can be
combined with other terms in order to reduce the number of parameters.

For the present purpose, it is sufficient to use the simplified form of the heat
equation (13.165), in which the contributions of mechanical dissipation and pressure
changes have already been neglected. When the equation is written for a specific
phase within a multiphase medium, an extra term that represents the energy received
by the given phase from all other phases must be added. Also, when phase changes
are accounted for, another term that represents the enthalpy contained in the “newly
received material” must be added to the heat equation, and the mass balance equation
must also be modified accordingly.

To be specific, let us describe a model that represents concrete as a solid skeleton
with pores filled by water as the liquid phase and by a mixture of dry air and water
vapor as the gas phase. Phase changes that will be taken into account are evaporation
and dehydration (strictly speaking, dehydration is a chemical reaction; considering
it as a phase change is a convenient simplification). Evaporation is a transition from
liquid water to water vapor, and dehydration is a transition from chemically bound
water in the solid skeleton to evaporable liquid water. The rates of evaporation and
dehydration are, respectively, denoted as ṁev and ṁdeh and defined as the masses
of evaporated and dehydrated water per unit volume of concrete17 and unit time.
A negative rate of evaporation corresponds to condensation, and a negative rate of
dehydration corresponds to hydration.

17By “concrete” we mean here the multiphase material, in contrast to the “solid skeleton,” which is
just the solid part, without pore fluids. Therefore, masses “per unit volume of concrete” are taken
per unit total volume, which also includes the pore volume.
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All balance equations will be written in terms of spatial time derivatives, because
such derivatives are taken at constant spatial coordinates x, which are the same for all
phases. In contrast to that, material time derivatives reflect the motion of particles,
which is different for different phases. When working with such derivatives, one
would need to define special rate symbols, such as Dl

t for the liquid and Dg
t for

the gas. On the other hand, if the balance laws are written in terms of spatial time
derivatives, the velocity of each particular phase is reflected in the convective terms,
and the time derivatives have the same meaning for all phases and can be summed,
if needed.

At themacroscopic level,18 themass balance equation for a generic phase denoted
by subscript α can be written as

∂

∂t

(
η∗

αρα

) = −∇ · (ραvα) +
∑

β

ṁβ,α (13.177)

where the derivative ∂/∂t is taken at constant x, i.e., it is the spatial time derivative,
η∗

α is the volume fraction of phase α and ṁβ,α is the rate of phase change from phase
β to phase α, expressed as mass per unit volume of concrete and unit time. The sum
in the last term on the right-hand side of (13.177) represents the net increase of mass
of phase α per unit volume of concrete and unit time. Since Eq. (13.177) contains
such a mass “source” term, it is more appropriate to call it the mass balance equation
rather than the mass conservation equation. Conservation of mass is reflected by the
fact that ṁβ,α = −ṁα,β for all α and β.

Setting subscript α, respectively, to s, l and g, we obtain from (13.177) the mass
balance equations for the solid, liquid, and gas phases. However, for an easier inter-
pretation, it is better to adjust the notation and rename certain variables. For instance,
the volume fraction of the solid skeleton, η∗

s , corresponds to 1 − np where np is the
porosity. The volume fraction of the liquid phase, η∗

l , can be expressed as npSl
where Sl is the liquid saturation degree, and the volume fraction of the gas, η∗

g , is
then given by np(1 − Sl). The product ραvα corresponds to the mass flux of phase
α (per unit total area), denoted as jα . Finally, the mass source terms correspond-
ing to evaporation/condensation and dehydration/hydration are respectively given
by ṁl,g = −ṁg,l = ṁev and ṁs,l = −ṁl,s = ṁdeh while the other ṁβ,α terms are
zero. After these formal changes, the resulting mass balance equations read

18It is important to note that equations written at themacroscopic level deal with quantities taken per
unit total volume and per unit total area, and not per unit volume or area of the respective phase. For
instance, the velocity of the liquid phase, vl , is not the “true” velocity at which the liquid particles
move through the pores, but it is the volume flux (also called the filtration velocity), which is equal
to the volume of liquid per unit total area and unit time; see the discussion of the Darcy law in
Sect. 8.3.2. In the notation used in this book, ρα has the meaning of intrinsic density of phase α, i.e.,
of mass per unit volume occupied by that phase. Multiplication by the volume fraction η∗

α converts
ρα into the partial (or apparent) density, defined as the mass of phase α per unit total volume.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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∂

∂t

[
(1 − np)ρs

] = −∇ · js − ṁdeh (13.178)

∂

∂t

[
npSlρl

] = −∇ · jl + ṁdeh − ṁev (13.179)

∂

∂t

[
np(1 − Sl)ρg

] = −∇ · jg + ṁev (13.180)

The solid mass flux js (due to deformation of the skeleton) is usually neglected but
we include it for completeness.

Taking the sum of Eqs. (13.178)–(13.180), we cancel the internal mass exchange
terms and arrive at the total mass conservation equation,

ρ̇ = −∇ · (js + jl + jg) (13.181)

in which

ρ = (1 − np)ρs + npSlρl + np(1 − Sl)ρg (13.182)

is the density of (partially wet) concrete and js + jl + jg is the total mass flux. The
first term on the right-hand side of (13.182) is dominant—it represents the density
of dry concrete, ρd = (1 − np)ρs . The second term corresponds to the increase of
density due to the presence of liquid water in the pores. The last term is negligible
because the density of pore gas, ρg , is by three orders of magnitude smaller than the
densities of liquid water and solid skeleton, ρl and ρs .

Equation (13.181) is not used directly but its derivation illustrates how the internal
exchange terms cancel and how the effective density of the multiphase medium is
assembled from the partial densities of individual phases. In a similar spirit, one can
construct the heat equation for concrete as a multiphase material. The assumption of
local thermal equilibrium [466, 469] implies that the temperature of each phase is
the same (at the same macroscopic point) and thus can be denoted simply as T . In
analogy to (13.165), the heat equations for individual phases read19

19At a first glance, it may seem strange why the terms containing the rates of evaporation and
dehydration in equations (13.183)–(13.185) have signs that are opposite to the signs of analogous
terms in (13.178)–(13.180). The reason is that these terms describe just the effects of “pure mass
exchange” while energy exchange is described separately by terms eα,β . For instance, the negative
term −ṁev in (13.179) corresponds to the mass of liquid water lost in evaporation (per unit volume
and unit time), while the positive term ṁevhwl in (13.184) corresponds to the enthalpy “liberated”
from this mass and contributing to the enthalpy of the remaining liquid water. Of course, in reality
this enthalpy does not really stay in the liquid phase, but the transfer of energy from the liquid phase
to the gas phase is described by other terms, namely eg,l in (13.184) and el,g in (13.185).



13.5 Mass, Momentum and Energy Balance Laws∗ 683

(1 − n p)ρsCps Ṫ + Cps js · ∇T = (1 − n p)ρsrs − ∇ · qs + el,s + eg,s + ṁdehh
w
s

(13.183)
n pSlρlCpl Ṫ + Cpl jl · ∇T = n pSlρl rl − ∇ · ql + es,l + eg,l + (ṁev − ṁdeh)h

w
l

(13.184)
n p(1 − Sl )ρgCpg Ṫ + Cpg jg · ∇T = n p(1 − Sl )ρgrg − ∇ · qg + es,g + el,g − ṁevh

w
g

(13.185)

Here,Cps ,Cpl , andCpg are the isobaric specific heat capacities of the solid skeleton,
liquid water, and gas (wet air); rs , rl , and rg are the distributed heat sources for these
three phases (per unit mass of the respective phase); qs , ql , and qg are the conductive
heat fluxes in the three phases (per unit total area); eβ,α is the energy transferred from
phase β to phase α (per unit volume of concrete and unit time), including mechanical
interaction and excluding enthalpy exchange associated with mass exchange (phase
changes); and hws , h

w
l , and hwg are the specific enthalpies of water chemically bound

in the solid skeleton, of liquid water and of water vapor. The second terms on the
left-hand sides of equations (13.183)–(13.185) correspond to heat convection. The
contribution of convection due to deformation of the solid skeleton, i.e., the term
Cps js · ∇T in (13.183), is often neglected.

The terms eβ,α that describe energy exchange between the phases cancel when
Eqs. (13.183)–(13.185) are summed, because eβ,α = −eα,β for all α and β. On
the other hand, the terms that reflect the phase changes (i.e., the last terms on the
right-hand side of these equations) do not cancel because the enthalpies of water in
different forms (hydrates in the skeleton, liquid phase, vapor) are not the same. Their
differences correspond to the latent heat associated with phase changes. Summing
Eqs. (13.183)–(13.185), we obtain

ρCpṪ +(Cps js+Cpl jl+Cpgjg)·∇T = ρr−∇·q−ṁdehΔhws,l−ṁevΔhwl,g (13.186)

where

Cp = 1

ρ

[
(1 − np)ρsCps + npSlρlCpl + np(1 − Sl)ρgCpg

]
(13.187)

is the effective specific heat capacity of concrete (per unit mass of partially wet
concrete),

r = 1

ρ

[
(1 − np)ρsrs + npSlρlrl + np(1 − Sl)ρgrg

]
(13.188)

is the effective distributed heat source (per unit mass of concrete),

q = qs + ql + qg (13.189)
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is the total conductive heat flux (per unit total area),

Δhws,l = hwl − hws (13.190)

is the specific enthalpy (specific latent heat) of dehydration, and

Δhwl,g = hwg − hwl (13.191)

is the specific enthalpy (specific latent heat) of vaporization. For water at 100 ◦C, the
specific latent heat of vaporization is 2.257 MJ/kg, and at 20 ◦C it is 2.454 MJ/kg.
The latent heat of vaporization decreases with increasing temperature and tends to
zero as the temperature approaches the critical point.

Note that the effective specific heat capacity Cp defined in (13.187) is obtained
from the specific heat capacities of individual phases by weighted averaging, with
weights proportional to the relative mass of each phase. An analogous rule applies
to the effective distributed heat source r defined in (13.188). On the other hand, the
total fluxes are obtained by simple summation, because each partial flux is already
expressed per unit total area (and not per unit area of the respective phase). This
applies to mass fluxes as well as heat fluxes; see Eqs. (13.181) and (13.189).

13.6 Comments on Multiphase Modeling of Hygrothermal
Processes and Creep

Gawin, Schrefler, Pesavento, and coworkers have developed a family of rather general
and sophisticated models for creep and shrinkage in a porous hygroscopic reactive
solid, such as concrete, containing a multiphase system of pore fluids and react-
ing solids [414, 415, 417–421, 424, 682, 766]. These models are based on the
hybrid mixture theory [467, 468, 572, 766] and take into account a large num-
ber of phenomena, including various mass and energy transport mechanisms, phase
changes and chemical reactions, load-free and load-induced thermal strains, shrink-
age, creep, cracking and thermo-chemical degradation of concrete. Their scope has
been extended to temperatures above the critical point of water [415], to early-age
behavior [419, 420], and to high-strength concrete [418, 767].

One version of themodel developed in previous paperswas summarized byGawin
et al. [422] andwill be briefly described here. Four primary unknown fields (displace-
ment, gas pressure, capillary pressure, temperature) are calculated by solving four
governing equations, which originate from the balance of linear momentum, mass
balances of water and air, and enthalpy (energy) balance. In addition to the primary
state variables, three internal variables (the degree of dehydration, chemical dam-
age variable, and mechanical damage variable) characterize the state of the material.
Their growth is determined by three evolution equations. Of course, the model also
exploits a number of auxiliary variables that are functions of the primary and internal
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variables. For instance, the degree of saturation by liquid water is linked to the cap-
illary pressure and temperature by the sorption isotherm.

An overview of the complete set of equations is available in Gawin et al. [422]
and their detailed derivation was provided in Gawin et al. [417]. It makes little sense
to reproduce the complete model here. Nevertheless, to conclude the present chapter,
it might be useful to describe the part of the model related to thermal effects. Yet
another multiphase model for the hygrothermal behavior of concrete at elevated
temperatures, proposed by Beneš and Štefan [228], is presented in Appendix J.7.

Leaving aside formal differences in notation, it can be stated that the heat equa-
tion (or enthalpy balance equation) used in Gawin et al. [422] has the same form
as (13.186), with the convective term originating from the “solid flux” neglected
and with the external distributed heat source excluded. In the present notation, the
equation would read

ρCpṪ + (Cpl jl + Cpgjg) · ∇T = −∇ · q − ṁdehΔhws,l − ṁevΔhwl,g (13.192)

For clarity, the processing of individual terms in (13.192)will be discussed separately
and their physical meaning will be specified:

• Heat accumulation, ρCpṪ .
The effective heat capacity of concrete, ρCp, is determined using a refined version
of formula (13.187), with ρgCpg replaced by ρaCpa + ρvCpv where ρa and ρv are
the mass densities of dry air and water vapor and Cpa and Cpv are the specific heat
capacities of these two components of the pore gas. The heat capacity of the solid
skeleton, Cps , to be substituted into the modified form of (13.187), is taken as a
linear function of temperature, given by (13.89).

• Heat loss by convective flow, (Cpl jl + Cpgjg) · ∇T .
The mass fluxes, jl and jg , are evaluated from appropriate transport laws, which
reflect the diffusive and advective flow of air and vapor and the advective flow of
liquid water.

• Heat loss by conductive flow, ∇ · q.
Heat conduction is described by the isotropic Fourier law (13.150), with the effec-
tive thermal conductivity, kT , evaluated from (13.87)–(13.88).

• Heat needed for dehydration, ṁdehΔhws,l.
The water content released by dehydration, mdeh, is treated as proportional to the
dehydration degree, which is a dimensionless variable dependent on the maximum
temperature reached so far and described by a cubic function.

• Heat needed for vaporization, ṁevΔhwl,g.
The rate of vaporization, ṁev, is determined from the water mass conservation
equation; this approach leads to a rather lengthy expression consisting of seven
terms. The latent heat of vaporization, Δhwl,g, is a function of temperature given
by the Watson formula (13.94).

The models mentioned above are certainly highly sophisticated and theoretically
appealing. Their practical applicability still remains limited, because of a high com-
plexity of the model equations, as well as because of difficulties associated with



686 13 Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage

proper calibration of numerous parameters and potential problems with numeri-
cal fragility of large-scale simulations of coupled multiphysics systems. Also, even
though these models cover a multitude of phenomena, they neglect certain other
effects that may play an equally important role. For instance, it may seem nec-
essary to also take into account the evolution of the capillary menisci, geometry
of the liquid-vapor interface, hysteresis and irreversibility of sorption–desorption
isotherms, nanoscale changes in pore surface morphology caused by drying and wet-
ting, transport of various solute ions with their associated electro-chemical effects
and electric potential gradients, crystallization and dissolution of calcium hydroxide
and other species [83].

It should be noted that the path dependence of the sorption–desorption process
is not mathematically represented by the models considered here. This appears to
be acceptable as long as only desorption (decreasing pore humidity) occurs in the
entire pore system. However, omission of the path dependence of the isotherms
would be amajor drawback of refined general models intended for arbitrary variation
of humidity and temperature if they were applied to problems with nonmonotonic
changes of humidity. The benefit of introducing various secondary refinements while
ignoring some other, possibly more important, effects is questionable.

The complexity ofmoisture–temperature interactions in a hydrophilic nanoporous
material such as concrete could probably be alleviated by nanoscale modeling. The
recent modeling studies at the Cement Sustainability Hub at MIT (led by F.-J. Ulm)
and in the CEE Department at Northwestern University might eventually lead to
progress in this direction. So far, these studies, based on molecular dynamics sim-
ulations of C-S-H or simplified atomic arrangements [610, 611, 778, 779, 830],
were confined to constant temperature. However, these models include activation
energy barriers and thermal transition rates, which is what controls the temperature
effects. In this way, they open an avenue to more fundamental analysis of combined
moisture–temperature effects.



Appendix A
Viscoelastic Rheologic Models

Development of constitutive equations for inelastic materials can be inspired by
rheologic models, representing idealized schemes of deformation processes in the
material microstructure. For viscoelasticity, such models combine two basic types
of rheologic units—elastic springs and viscous dashpots, as shown in Fig. 2.4. The
stress transmitted by a linear elastic spring, σe, is related to the strain in that spring,
εe, by Hooke’s law

σe = E εe (A.1)

where E is the elastic modulus. The stress transmitted by a linear viscous dashpot,

σv = η ε̇v (A.2)

is proportional to the strain rate in that dashpot, ε̇v, and the proportionality factor η

is called the viscosity.

(a) (b)

E η
σσ

εe εv

ε

σσ

ε

E

η

Fig. A.1 Basic rheologic models: (a) Maxwell model, (b) Kelvin model
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A.1 Maxwell Model

The Maxwell model [612] is obtained by serial coupling of a spring and a dashpot
(Fig. A.1a). Two units coupled in series transmit the same stress, and the total strain is
obtained by summing the partial strains in individual units, which can be interpreted
as the elastic strain and the viscous strain:

σ = σv = σe (A.3)

ε = εe + εv (A.4)

In addition to the total stress σ and total strain ε, which are of main interest,
Eqs. (A.1)–(A.4) contain certain partial stresses and strains in individual units, which
play the role of internal variables. By a suitable manipulation of the basic equations,
the internal variables can be eliminated and the direct stress–strain relation can be
deduced. To this end, we differentiate (A.4) with respect to time and express the
partial strain rates ε̇e and ε̇v using (A.1) and (A.2), with partial stresses σe and σv

replaced by σ according to (A.3). This leads to the differential equation

ε̇(t) = σ̇ (t)

E
+ σ(t)

η
(A.5)

in which we have explicitly indicated that ε and σ are functions of time, while E and
η are at first considered as fixed model parameters.

A.1.1 Compliance Function

For a given stress history, the corresponding strain history is obtained easily, by
integrating the right-hand side of (A.5). In a creep test starting at time t = 0, the
stress history is given by

σ(t) = σ̂ H(t) (A.6)

where H is the Heaviside step function, defined in (2.3). Since H(t) = 1 for t ≥ 0,
the stress rate vanishes for all nonnegative times t ,1 and the right-hand side of (A.5)
is constant. Integrating the relation

ε̇(t) = σ̂

η
(A.7)

1Strictly speaking, the stress is not differentiable at t = 0, but it has at least the derivative from the
right, which is sufficient for the present purpose. The jump in stress at t = 0 will be reflected by
the initial condition.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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we obtain the strain history

ε(t) = ε0 + σ̂

η
t (A.8)

where ε0 is an integration constant that has the meaning of the initial strain at t = 0
and must be determined from an initial condition. That condition reflects the state of
the model at time t = 0, just after the application of stress σ̂ . It is easy to see that the
strain in the dashpot cannot change by a jump (as long as the stress remains finite),
and so εv(0) = 0, while the spring responds instantaneously and its strain jumps to
εe(0) = σ̂ /E . Since ε = εe + εv, the appropriate initial condition is ε(0) = σ̂ /E ,
from which ε0 = σ̂ /E and

ε(t) = σ̂

E
+ σ̂

η
t (A.9)

Formula (A.9) describes the strain history in a creep test at stress level σ̂ started at
t ′ = 0. According to the definition of the compliance function of a nonaging material
(Sect. 2.1), we get

J0(t) = ε(t)

σ̂
= 1

E
+ t

η
= 1

E

(
1 + t

τ

)
(A.10)

where τ = η/E is a parameter introduced for convenience and called the relaxation
time. The foregoing derivation is valid for all t ≥ 0, while for t < 0, the value of J0
is by definition zero. To obtain an expression valid at all times, including negative
ones, we can write

J0(t) = 1

E

(
1 + t

τ

)
H(t) (A.11)

The graph of the compliance function is plotted in Fig. A.2a, which shows the mean-
ing of parameters E and η. Parameter E is the reciprocal value of the instantaneous
compliance J0(0), and parameterη is the inverse slope of the straight line representing
the compliance function of this simple model.

The compliance function (A.11) can be interpreted as the sum of the compliance
function of the elastic spring, (1/E)H(t), and the compliance function of the viscous
dashpot, (t/η)H(t). For units coupled in series, the total strain is the sum of partial
strains, and so the total compliance is the sum of partial compliances (this general
rule will also be applied to the Kelvin chain in Sect.A.3.1). The relaxation time
τ = η/E is the duration of loading after which the contributions of the elastic spring
and of the viscous dashpot to the total compliance are the same. It sets a certain
intrinsic time scale of the model. Loadings applied over time intervals much shorter
than τ lead to viscous strain that is negligible compared to the elastic strain, and
the model response is close to an elastic spring. Under loadings applied over time
intervals much longer than τ , the viscous strain dominates and the model response
is close to a viscous dashpot. A truly viscoelastic response is obtained only at time
scales comparable to τ .

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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Due to the nonaging character of the model, the compliance function has been
considered as dependent on one argument—the duration of loading. The compliance
function with two arguments, which represent the current time, t , and the time at
load application, t ′, is easily constructed as J (t, t ′) = J0(t − t ′), where the time lag
t − t ′ corresponds to the load duration.

(a) (b)

1/E

J0

0 t

1
η

E

R0

0 tτ

Fig. A.2 Maxwell model: (a) compliance function, (b) relaxation function

A.1.2 Relaxation Function

Recall that the differential stress–strain equation (A.5) is valid for theMaxwell model
under general loading. In a relaxation test starting at time t = 0, the strain history is
given by

ε(t) = ε̂H(t) (A.12)

and, for t ≥ 0, the strain rate ε̇ vanishes. From (A.5), we obtain the differential
equation

σ̇ (t)

E
+ σ(t)

η
= 0 (A.13)

which can be rewritten as
τ σ̇ (t) + σ(t) = 0 (A.14)

where, as before, τ = η/E is the relaxation time. Since τ is constant, the general
solution of (A.14) is

σ(t) = Ce−t/τ (A.15)

and the integration constant C can be determined from the initial condition σ(0) =
E ε̂, which follows from an analysis of the instantaneous response after sudden appli-
cation of the strain. SubstitutingC = E ε̂ into (A.15),weobtain the particular solution
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σ(t) = E ε̂e−t/τ (A.16)

and the corresponding relaxation function

R0(t) = Ee−t/τ H(t) (A.17)

The graph of this function is plotted in Fig. A.2b. Relaxation of the stress transmitted
by the Maxwell model is an exponentially decaying process, and its time scale is set
by the relaxation time τ . After load duration τ , the stress relaxes to the 1/e multiple
of its initial value. A more direct interpretation is that if the initial rate of relaxation
remained constant, the stress would relax to zero after time τ . Again, at time scales
much shorter than τ , the model responds almost as an elastic spring (relaxation is
negligible), and at time scales much longer than τ , it responds almost as a viscous
dashpot (stress is completely relaxed). It is clear that such a simple model could
approximate the complex viscoelastic behavior of concrete only roughly, over a very
limited range of times.

A.2 Kelvin Model

The Kelvin model (also called the Voigt model) is obtained by parallel coupling of
a spring and a dashpot (Fig. A.1b). Two units coupled in parallel share the same
strain, and the total stress is obtained by summing the partial stresses transmitted by
individual units, which can be interpreted as the elastic stress and the viscous stress:

ε = εe = εv (A.18)

σ = σe + σv (A.19)

Combining this with Eqs. (A.1) and (A.2) and eliminating the partial strains and
stresses, we obtain the differential stress–strain equation

σ(t) = Eε(t) + ηε̇(t) (A.20)

first proposed by Meyer [627] and reintroduced by Voigt [838]. Nevertheless, the
model will be referred to as the Kelvin model, after Lord Kelvin, formerlyW. Thom-
son, who contributed significantly to the understanding of viscous phenomena [813].

A.2.1 Compliance Function

For the stress history (A.6) prescribed in a creep test, the corresponding strain history
for t ≥ 0 is obtained by solving the differential equation
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Eε(t) + ηε̇(t) = σ̂ (A.21)

with initial condition ε(0) = 0. The resulting particular solution is

ε(t) = σ̂

E

(
1 − e−t/τ

)
(A.22)

where parameter τ = η/E is in this context called the retardation time. The compli-
ance function of the Kelvin model is thus given by

J0(t) = 1

E

(
1 − e−t/τ

)
H(t) (A.23)

and its graph is shown in Fig. A.3a. Since the strain in the dashpot must evolve
continuously and is equal to the total strain, the model cannot capture any instanta-
neous effects and the compliance grows continuously from zero to the asymptotic
value 1/E . The retardation time sets the time scale for the delayed response of the
model—if the initial strain rate remained constant, the final strain would be attained
after time τ . For load durations much shorter than τ , the model behaves almost like a
lone dashpot (the elastic stress is negligible because the strain does not have enough
time to develop), while for load durations much longer than τ , it behaves almost like
an elastic spring (the viscous stress is negligible because the strain remains almost
constant). This is exactly the opposite of the behavior of the Maxwell model.

(a) (b)

1/E

J0

tτ0

E

R0

t

η δ(t)

0

Fig. A.3 Kelvin model: (a) compliance function, (b) relaxation function

A.2.2 Relaxation Function

At a first glance, determination of the relaxation function for the Kelvin model
seems to be an easy task, because for a prescribed strain history, the corresponding
stress history should be obtained simply by evaluating the right-hand side of (A.20).
However, the problem is that the strain history in a relaxation test is not differentiable
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at the time instant t ′ = 0 when the strain is suddenly applied. If we ignore this fact
and simply consider ε(t) = ε̂ = constant, substitution into (A.20) leads to the stress
history given by σ(t) = E ε̂, which represents the response of the elastic spring,
without any dashpot attached to it. It would obviously be wrong to set R0(t) =
E H(t), because the presence of the dashpot would be totally ignored.

At finite stress, the evolution of strain in the Kelvin model must be continuous,
because the strain rate in the viscous dashpot (equal to the total strain rate) must
remain finite. A jump in the strain generates an infinite stress, acting over an infini-
tesimal time interval. Formal mathematical description of such singular phenomena
can be based on the concept of distributions (generalized functions); cf. Schwartz
[769]. In this generalized sense, the derivative of the unit step function H(t) is the
so-called Dirac distribution, δ(t), which physically represents a unit impulse at time
t = 0. Substituting ε(t) = ε̂H(t) into the right-hand side of (A.20), we obtain
σ(t) = E ε̂H(t) + ηε̂δ(t), and so the relaxation “function” (more rigorously, distri-
bution) of Kelvin’s model is

R0(t) = E H(t) + ηδ(t) (A.24)

This is schematically shown in Fig. A.3b, where the singular part of the distribution
is represented by a vertical arrow.

The concept of distributions is handy because it permits a unified treatment of
the basic relations describing the mechanical behavior of simple rheologic models.
For instance, due to the parallel coupling of two units in the Kelvin model, the
resulting relaxation function can be expected to be the sum of the relaxation functions
of individual units. Indeed, E H(t) is the relaxation function of the elastic spring
and ηδ(t) can be interpreted as the relaxation distribution of the viscous dashpot.
Nevertheless, in this book, we do not really need to exploit such formalism, because
all rheologic models that are actually used for concrete must be capable of reflecting
instantaneous elasticity. Therefore, the Kelvin model is never used directly in its
elementary form. It is rather exploited as a building block of a chain arranged such
that the jump in strain could be accommodated at finite stress levels and thus no
singularity would arise in the relaxation function.

A.3 Rheologic Chains

Rheologic models obtained by serial or parallel coupling of an elastic spring and a
viscous dashpot are too simple to approximate viscoelastic behavior of real materials
in a realistic manner. The deficiencies of such simple models are obvious: Maxwell
model leads to a constant creep rate if the stress is kept constant, while the actual
creep process slows down in time. Kelvin model cannot capture any instantaneous
elastic strain and does not exhibit gradual relaxation of stress under constant strain.
Each of these models has a certain intrinsic time scale and on much shorter or much
longer time scales does not behave as a truly viscoelastic model but degenerates
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Fig. A.4 (a)Compliance functionofKelvinmodel (in semilogarithmic scale), (b) actual compliance
function of concrete (for a fixed age at the onset of loading) approximated by two different Kelvin
chains

either into a spring or into a dashpot, as already discussed before. This becomes
clear if we plot the compliance function in the semilogarithmic scale (compliance
against the logarithm of load duration). The real compliance function of concrete is
shown by the solid curve in Fig. A.4b. The creep process obviously takes place over
many orders of magnitude in the time domain. The Kelvin model can approximate
the real behavior only over a limited range of times, comparable to its retardation
time τ . As shown in Fig. A.4a, the value J0(t) of the compliance function of Kelvin’s
model is close to zero for t � τ and close to the asymptotic limit 1/E for t � τ .
An appreciable variation of J0 takes place over less than two orders of magnitude of
the load durations t , roughly from 0.05τ to 3τ . Within this range, J0 grows from 5%
to 95% of its final value.

A.3.1 Kelvin Chain

Since serial coupling of rheologic models corresponds to summing the strains of
individual models and thus also their compliances, it is a good idea to link in series
several Kelvin models (furthermore called Kelvin units) and construct the so-called
Kelvin chain. Each unit in the chain can describe the creep process over a specific
range of times, and by combining unitswith different retardation times,we can extend
the range of times over which the rheologic chain approximates the real compliance
function. Moreover, if one of the units in the chain is a lone spring without a parallel
dashpot, the chain can also capture instantaneous strain and the relaxation function
becomes regular.

A general scheme of the Kelvin chain is shown in Fig. A.5. The chain consists of
an elastic spring characterized by stiffness E0 and of M Kelvin units characterized
by stiffnesses Eμ and viscosities ημ, μ = 1, 2, . . . , M . Instead of the viscosities,
we can use the retardation times τμ = ημ/Eμ as the primary parameters. The zeroth
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unit has a vanishing retardation time, which means that its response is instantaneous.
The compliance function of the Kelvin chain,

J0(t) =
⎡
⎣ 1

E0
+

M∑
μ=1

1

Eμ

(
1 − e−t/τμ

)⎤⎦ H(t) (A.25)

is easily obtained as the sum of compliance functions of individual units. In math-
ematical literature, an infinite series of the form f (t) = ∑∞

j=1 a je−λ j t is called the
Dirichlet series (or sometimes Prony series). The expression in the square brackets
in (A.25) is thus a special case of a finite Dirichlet series.

σσ

ε

E0

ε0

E1

η1

ε1

E2

η2

ε2

EM

ηM

εM

Fig. A.5 Kelvin chain

Good approximation properties of the Dirichlet series (A.25) are obtained if the
retardation times τμ are sufficiently separated but not too far apart in the logarithmic
scale. It is recommended to select them in a geometric progression with quotient
10. A Kelvin chain with M Kelvin units and a spring can then approximate the real
compliance function over M orders of magnitude in the space of load durations t − t ′.
This is documented in Fig. A.4b for two different chains with parameters given in
Table A.1.

Table A.1 Parameters of Dirichlet series approximating the compliance function of concrete on
two different intervals

μ

Chain A Chain B

tmin = 5 min tmax = 6 months tmin = 1 day tmax = 100 years

Eμ [GPa] τμ [day] Eμ [GPa] τμ [day]

0 29.956 0 24.078 0

1 312.99 10− 2 188.38 2 · 100

2 264.92 10− 1 160.37 2 · 101

3 216.44 100 131.89 2 · 102

4 173.42 101 106.41 2 · 103

5 107.12 102 66.610 2 · 104
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Each chain consists of a spring and M = 5Kelvin units. Chain A, with retardation
times ranging from τ1 = 10−2 days to τ5 = 100 days, provides a good approximation
of the real compliance function for load durations between 5 min and 6 months (in
this range, the dashed curve in Fig. A.4b overlaps with the solid one). Chain B,
with retardation times from τ1 = 2 days to τ5 = 20,000 days, provides a good
approximation for load durations between 1 day and 100 years. In general, it is
advised to select the retardation times such that τ1 ≤ 3 tmin and τM ≥ 0.5 tmax, where
tmin is the shortest and tmax the longest load duration of interest.

A.3.2 Maxwell Chain

In a similar spirit, one can construct a Maxwell chain, consisting of several Maxwell
units coupled in parallel; see Fig. A.6. This time, the total stress (not strain) is the sum
of the stresses in individual units, and thus, the relaxation function (not compliance
function) is the sum of the relaxation functions of individual units. Each unit is
a Maxwell model with relaxation function of the form (A.17), and so the relaxation
function of the chain is given by

R0(t) =
⎛
⎝ M∑

μ=1

Eμ e−t/τμ

⎞
⎠ H(t) (A.26)

where Eμ and τμ, μ = 1, 2, . . . , M , are the stiffnesses and relaxation times of
individual units. The expression in the parentheses on the right-hand side of (A.26)
is again a special case of Dirichlet series. If all the relaxation times are finite, the
relaxation function tends to zero as t approaches infinity. To obtain a positive limit,
one could add a constant term corresponding to a spring without a dashpot. From
the practical point of view, it is sufficient to make sure that the relaxation times
of individual Maxwell units cover a sufficiently wide range, with the maximum
relaxation time exceeding the maximum time of interest (e.g., expected lifetime of
the structure).

σσ

E1 η1

E2 η2

EM ηM

Fig. A.6 Maxwell chain
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For nonaging chains, it is possible to prove that every Maxwell chain is exactly
equivalent to a certain conjugate Kelvin chain and vice versa [32]. Since the vis-
coelastic properties of concrete are usually determined by creep tests (and not by
relaxation tests), the compliance function is considered as the primary characteris-
tic and Kelvin chains are much more widely used in concrete creep models than
Maxwell chains.

A.4 Aging Rheologic Chains

With the exception of very old concrete or short-term loading, aging is an impor-
tant phenomenon that needs to be taken into account in practical applications. The
rheologic models covered so far do not change their properties in time, and their
compliance and relaxation functions depend only on the duration of loading. To cap-
ture the aging effects, it is necessary to use a generalized form of rheologic chains,
with properties of individual units varying in time.

If the properties of basic rheologic units evolve in time, parameters E and η in
(A.1) and (A.2) can no longer be considered as constants. Equation (A.2) describing
the dashpot can keep its original form, however, with viscosity η dependent on the
current time. To emphasize that, we rewrite (A.2) as

σv(t) = η(t) ε̇v(t) (A.27)

Generalization of the elastic law (A.1) is more tricky. It would be wrong to replace
the constant modulus E by a function of time and otherwise keep the law in the same
form, linking the stress to the strain. This would mean that if, e.g., the strain remains
constant and the modulus increases, the stress increases as well. It can be shown that
such behavior is inadmissible and violates the fundamental laws of thermodynamics
[82, 84]. The increase of stiffness due to hydration can be reflected only by the
increments of stress and strain and cannot affect their values accumulated in the
past. Therefore, the stress–strain law for an aging elastic spring must be written in
the rate (incremental) form,

σ̇e(t) = E(t) ε̇e(t) (A.28)

Note that, on the other hand, for a disintegrating or melting material, such as
dehydrating concrete at high temperature, the thermodynamically correct relation
is σe(t) = E(t)εe(t).

A.4.1 Aging Maxwell Chain

The modification of the equations for basic units must be reflected in the differential
equations describing the composite rheologic models. For the Maxwell model, it is
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sufficient to consider E and η in (A.5) as functions of time. The aging Maxwell
model is thus described by the first-order differential equation

ε̇(t) = σ̇ (t)

E(t)
+ σ(t)

η(t)
(A.29)

Note that the first fraction on the right-hand side represents the elastic strain rate,
which is consistent with (A.28).

Since theMaxwellmodelwill later be used as a building block of aMaxwell chain,
the main interest is in the evaluation of the relaxation function (for the compliance
function, there is no simple rule that could be used for a chain with units coupled
in parallel). So we need to solve Eq. (A.29) with ε̇(t) = 0 and σ(t) considered as
unknown. For a general evolution of stiffness E(t) and viscosity η(t), this differential
equation has variable coefficients and its solution can be constructed by separation
of variables.2 In the special case when both parameters evolve proportionally and
their ratio η(t)/E(t) = τ remains constant, the relaxation problem is described by
the same differential equation (A.14) as in the nonaging case, and the influence of
aging enters only through the initial condition. In a relaxation test started at time t ′,
the initial condition is σ(t ′) = E(t ′)ε̂, and the stress evolution for t ≥ t ′ is given by

σ(t) = E(t ′)ε̂e−(t−t ′)/τ (A.31)

The resulting relaxation function of an aging Maxwell model is then

R(t, t ′) = E(t ′)e−(t−t ′)/τ H(t − t ′) (A.32)

where multiplication by the Heaviside function of the load duration ensures that
R(t, t ′) = 0 for t < t ′. Note that, in contrast to the case of a nonaging model, the
right-hand side of (A.32) cannot be written as a function of a single variable, the
load duration t − t ′.

Summing the contributions of individual units, it is now easy to construct the
relaxation function of an aging Maxwell chain,

R(t, t ′) =
⎛
⎝ M∑

μ=1

Eμ(t ′) e−(t−t ′)/τμ

⎞
⎠ H(t − t ′) (A.33)

which represents a generalized form of the Dirichlet series (A.26).

2The resulting formula for the relaxation function of an aging Maxwell model with a general
evolution of parameters E and η reads

R(t, t ′) = E(t ′) exp
(

−
∫ t

t ′
E(s)

η(s)
ds

)
H(t − t ′) (A.30)

In the special case when E(s)/η(s) = 1/τ =const., the integral can be evaluated analytically and
(A.30) simplifies to (A.32).
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A.4.2 Aging Kelvin Chain

For the Kelvin model, generalization to the case of aging is less straightforward, but
still possible. Differential equation (A.20) for the nonaging Kelvin model originates
from the stress equivalence relation, σ = σe +σv. As already explained, for an aging
spring, we cannot link the elastic stress to the current value of the elastic strain, and
we must deal with their rates; cf. (A.28). Therefore, the stress equivalence relation
must also be written in the rate form, σ̇ = σ̇e+ σ̇v, so that the partial stress rates could
be expressed in terms of the strain rate. For σ̇e, we directly substitute from (A.28),
with ε̇e = ε̇, but the rate of the viscous stress must be obtained by differentiation of
(A.27), with ε̇v = ε̇. The resulting differential equation

σ̇ (t) = E(t)ε̇(t) + d

dt
[η(t)ε̇(t)] (A.34)

is then of the second order. It can be rewritten as

σ̇ (t) = D(t)ε̇(t) + η(t)ε̈(t) (A.35)

where D(t) = E(t) + η̇(t) is a modified age-dependent modulus, introduced for
convenience.

For a creep test with σ̇ (t) = 0, (A.35) becomes a homogeneous second-order
differential equation with variable coefficients. The solution is easy if the ratio
η(t)/D(t) = τ is assumed to remain constant. In that case, (A.35) reduces to an
equation with constant coefficients,

ε̇(t) + τ ε̈(t) = 0 (A.36)

which has the general solution

ε(t) = C1 + C2e
−t/τ (A.37)

The integration constants C1 and C2 must be determined from two initial conditions.
For a Kelvin model, the strain cannot change by a jump, even if the stress suddenly
rises from 0 to σ̂ at time t ′. One initial condition thus is ε(t ′) = 0. The other
conditions follow from the fact that the initial stress in the spring is zero, and the
applied stress σ̂ must be, after its application, fully equilibrated by the viscous stress
in the dashpot, σv(t ′). Since σv(t ′) = η(t ′)ε̇(t ′) = τ D(t ′)ε̇(t ′), the second initial
condition is ε̇(t ′) = σ̂ /[τ D(t ′)]. After the evaluation of the integration constants,
we obtain the particular solution

ε(t) = σ̂

D(t ′)

[
1 − e−(t−t ′)/τ

]
(A.38)
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and the compliance function of the aging Kelvin model,

J (t, t ′) = 1 − e−(t−t ′)/τ

D(t ′)
H(t − t ′) (A.39)

Finally, the compliance function of an aging Kelvin chain (with an added aging
elastic spring),

J (t, t ′) =
⎡
⎣ 1

E0(t ′)
+

M∑
μ=1

1 − e−(t−t ′)/τμ

Dμ(t ′)

⎤
⎦ H(t − t ′) (A.40)

is a generalized form of the Dirichlet series (A.25). The added spring reflects the
instantaneous compliance, and its stiffness is generally considered to be a func-
tion of t ′.

Recall that formula (A.39) has been derived for the special case when the ratio
between the time-dependent coefficients D(t) and η(t) in (A.35) is constant. In a
general case, the compliance function of an agingKelvinmodel derived directly from
(A.34) can be presented in the integral form

J (t, t ′) =
∫ t

t ′
exp

(
−
∫ s

t ′

E(r)

η(r)
dr

)
ds

η(s)
H(t − t ′) (A.41)

For the discussion of the nondivergence condition (9.32) in Sect. 9.6, it is useful to
work out the expression for the mixed second derivative of the compliance function.
Differentiation of (A.41) leads to the following formulae valid for t > t ′:

∂ J (t, t ′)
∂t

= 1

η(t)
exp

(
−
∫ t

t ′

E(r)

η(r)
dr

)
(A.42)

∂2 J (t, t ′)
∂t ∂t ′ = E(t ′)

η(t)η(t ′)
exp

(
−
∫ t

t ′

E(r)

η(r)
dr

)
(A.43)

Note that if the modulus E is nonnegative and the viscosity η is positive, the
mixed second derivative (A.43) cannot be negative. This means that an aging Kelvin
chain with positive moduli and viscosities always satisfies the nondivergence condi-
tion (9.32).

A.5 Solidifying Rheologic Chains

A.5.1 Solidifying Kelvin Chain

To obtain the closed-form expression (A.39) for the compliance function of the aging
Kelvin model, we had to make the assumption that the ratio D(t)/η(t) remains
constant. However, D(t) is not equal to the incremental stiffness of the aging spring,

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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E(t); it is also affected by the evolution of the viscosity, according to the formula
D(t) = E(t)+ η̇(t). So the assumption that D(t) grows proportionally to η(t) seems
to be quite artificial. Indeed, it is hard to imagine a physical reason why the evolution
of stiffness and viscosity should satisfy the relation E(t) = η(t)/τ − η̇(t) with
τ = const. On the other hand, the assumption used in the derivation of relaxation
function for an aging Maxwell model in Sect.A.4.1, namely that the stiffness grows
proportionally to the viscosity, ismuchmore natural. It can be justified by the concept
of solidification, thoroughly discussed in Chap. 9.

According to the solidification theory, the changes of apparent rheological prop-
erties are due to solidification of a nonaging constituent, e.g., due to the hydration
reaction in concrete, which leads to the formation of cement gel. If v(t) is a function
describing the growth of the relative volume of the solidified material, starting from
v(0) = 0 and approaching a limit value v(∞) as t → ∞, it is logical to expect that the
elastic stiffness and the viscosity are both proportional to v(t), and thus, their ratio
remains constant.

It is interesting to check whether the compliance function of the aging Kelvin
model can be evaluated under the assumption that E(t) = E (∞)v(t) and η(t) =
η(∞)v(t), where E (∞)v(∞) and η(∞)v(∞) represent the final values of elastic stiffness
and viscosity at full solidification. Substituting these expressions into (A.34) and
setting σ̇ (t) = 0 (since we consider the creep test at constant stress level σ̂ ), we
obtain

E (∞)v(t)ε̇(t) + d

dt

[
η(∞)v(t)ε̇(t)

] = 0 (A.44)

In the standard derivation, originally presented by Bažant and Prasannan [179], the
product v(t)ε̇(t) was denoted as a new variable, γ (t), which can be interpreted as
the rate of strain in the nonaging constituent. Here, we will use a somewhat different
notation, with η(∞)v(t)ε̇(t) denoted as σv(t) and interpreted as the stress transmitted
by the viscous dashpot (the difference is only formal, since σv(t) = η(∞)γ (t), where
η(∞) is a constant). The second term in (A.44) can simply bewritten as σ̇v(t). The first
term, E (∞)v(t)ε̇(t), corresponds to the rate of elastic stress and can be expressed as
(E (∞)/η(∞))σv(t). Recognizing E (∞)/η(∞) as the reciprocal value of the retardation
time τ , we can rewrite Eq. (A.44) as

σv(t)

τ
+ σ̇v(t) = 0 (A.45)

This is a first-order differential equation with constant coefficients, which is easy to
solve. Imposing the initial condition σv(t ′) = σ̂ justified by the fact that immediately
after application of stress σ̂ at time t ′, the elastic spring is unstretched and the entire
stress must be transmitted by the viscous dashpot, we obtain the particular solution

σv(t) = σ̂e−(t−t ′)/τ (A.46)

http://dx.doi.org/10.1007/978-94-024-1138-6_9
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So the evolution of viscous stress in the creep test can be expressed in a closed
form, but we still need to evaluate the strain, by integrating the strain rate ε̇(t) =
σv(t)/η(t) = σv(t)/(τ E (∞)v(t)) while taking into account the initial condition
ε(t ′) = 0. Since v(t) is in the present general setting an arbitrary function, the
integration cannot be performed analytically, but we can formally write the result as

ε(t) =
∫ t

t ′

σv(s)

η(s)
ds = σ̂

τ E (∞)

∫ t

t ′

e−(s−t ′)/τ

v(s)
ds (A.47)

The last integral scaled by 1/τ E (∞) obviously represents the compliance function
of the solidifying Kelvin model.3 Instead of specifying the compliance function by
such an integral, it is simpler to provide a formula for the rate of compliance, i.e.,
the derivative of the compliance function with respect to its first argument (current
time). The rate of compliance is equal to the strain rate in the creep test divided by
the stress level σ̂ , and so it is given by

J̇ (t, t ′) = e−(t−t ′)/τ

η(t)
= e−(t−t ′)/τ

τ E (∞)v(t)
, t ≥ t ′ (A.48)

As usual, the compliance of a solidifying Kelvin chain is obtained by summing
the compliances of individual solidifying Kelvin units. It is reasonable to assume
that these units have different retardation times τμ and final moduli E (∞)

μ but that
the evolution of the moduli and viscosities is governed by a single function v(t)
that characterizes the solidification process. The resulting expression for the rate of
compliance is

J̇ (t, t ′) = 1

v(t)

M∑
μ=1

e−(t−t ′)/τμ

τμE (∞)
μ

, t ≥ t ′ (A.49)

If v(t) = 1 for all t ≥ t ′, formula (A.49) must reduce to the rate of compliance of
a nonaging Kelvin chain with partial moduli E (∞)

μ and retardation times τμ. Indeed,
the sum in (A.49) represents the time derivative of a function given by

Φ(t − t ′) =
M∑

μ=1

1 − e−(t−t ′)/τμ

E (∞)
μ

H(t − t ′) (A.50)

which can be interpreted as the compliance function of a Kelvin chain representing
the nonaging constituent. Consequently, the rate of compliance of the solidifying
Kelvin chain can be written as

3The expression for the compliance function that follows from (A.47) can also be derived from
the general formula (A.41) for an aging Kelvin unit if E(r)/η(r) is replaced by 1/τ and η(s) by
τ E (∞)v(s).
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J̇ (t, t ′) = Φ̇(t − t ′)
v(t)

(A.51)

and the compliance function

J (t, t ′) = 1

E0(t ′)
+
∫ t

t ′

Φ̇(s − t ′)
v(s)

ds, t ≥ t ′ (A.52)

is obtained by integration. Note that since the integration is performed with respect
to the first argument, t , the integration “constant” can be a general function of the
second argument, t ′. It is represented by the first term in (A.52), denoted as 1/E0(t ′),
where E0(t ′) has the meaning of (asymptotic) elastic modulus at age t ′. The specific
version of solidification theory incorporated into model B3 considers this term as a
constant, 1/E0, corresponding to a load duration much shorter than any of practical
interest. The constancy of E0 ismotivated by the fitting of experimental data but is not
a physical requirement. In general, the term 1/E0(t ′) corresponds to the compliance
function of an aging spring (e.g., of a Kelvin unit with a dashpot of zero viscosity).

A.5.2 Solidifying Maxwell Chain

Expression (A.33) for the relaxation function of an agingMaxwell chain was derived
in Sect.A.4.1 under the assumption that, for each unit, the ratio between the age-
dependent viscosity and the age-dependent modulus, ημ(t)/Eμ(t) = τμ, remains
constant in time. This assumption is fully consistent with the solidification theory,
which postulates that ημ(t) = η(∞)

μ v(t) and Eμ(t) = E (∞)
μ v(t), where η(∞)

μ and
E (∞)

μ are the time-independent properties of the solidifying constituent and v(t) is a
monotonic function evolving between 0 and v(∞), which characterizes the solidifi-
cation process and is the same for all units of the chain. Replacing Eμ(t ′) in (A.33)
by E (∞)

μ v(t ′), we realize that the relaxation function of a solidifying Maxwell chain
can be written as

R(t, t ′) = v(t ′)Ψ (t − t ′) (A.53)

where

Ψ (t − t ′) =
⎛
⎝ M∑

μ=1

E (∞)
μ e−(t−t ′)/τμ

⎞
⎠ H(t − t ′) (A.54)

is the relaxation function of the nonaging constituent.
It turns out that the solidification theory leads to a simpler expression for the

relaxation function than for the compliance function; cf. Eqs. (A.53) and (A.52).
The reason is that relaxation takes place at constant strain and the newly deposited
solidified material remains unstrained and thus also unstressed. Therefore, in a test
starting at time t ′, relaxation takes place in the material of relative volume v(t ′) and
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follows the curve corresponding to the nonaging constituent, only scaled by v(t ′).
On the other hand, in a creep test, the strain increases and the solidifying material
deposited after the start of the test get gradually activated. An increment of strain at
time t activates stress in the already solidified material occupying relative volume
v(t), and this iswhy the expression for the compliance rate has the simple form (A.51).
The compliance must be obtained by integration, which complicates the resulting
expression (A.52). However, the values of compliance function are not really needed
if the numerical solution is based on the rate-type approach, which leads to efficient
numerical schemes; see Sect. 5.2.

http://dx.doi.org/10.1007/978-94-024-1138-6_5


Appendix B
Historical Note on Old Creep Models

Up to the 1970s, the quest for simplicity led to the formulation of several competing
models based on various simplifications of the compliance function J (t, t ′). The
errors of these simplifications became gradually apparent as data from creep tests of
longer durations became available. Here, we briefly review several oldmodels, which
were all rendered obsolete by the discovery of the age-adjusted effective modulus
method, which is much more accurate than any one of them, yet (with the exception
of the effective modulus method) allows simpler structural creep analysis. Knowing
thesemethods is nevertheless useful for understanding the older literature on concrete
creep. Besides, these methods might still be instructive for clarifying some aspects
of the creep effects, if not their magnitudes.

1. Effective Modulus Method. Proposed by McMillan [622, 623], this was the
first method to calculate creep and shrinkage effect (already mentioned in Chap. 4).
This method uses the elastic analysis with effective modulus Eef = 1/J (t, t1), where
t1 = age at the first loading, which is an approach widely used in practice for vis-
coelasticity of polymers. However, it gives good estimates only for stresses that
change little after the first loading, or for durations less than the age at loading. In the
plot of compliance J versus load duration t − t ′, this methods implies the curves for
various ages t ′ at loading to be identical, which is far from reality and overestimates
the creep for high t ′. The drop of stress in relaxation problems and the reduction of
shrinkage stresses by creep are significantly underestimated.

2. Rate-of-Creep Method (Dischinger and Glanville). To capture the effects
of nonsteady loads, imposed displacements, and changes of structural system intro-
duced at later ages, a simplified creep law in the formof an easily tractable differential
equation was desired. This goal was facilitated by Whitney’s [865] hypothesis that
the curves of compliance J versus current age t for various ages at loading t ′ can
be considered to be approximately parallel and vertically shifted relative to each
other (Fig. B.1). This simplifying hypothesis, which is acceptable only for short load
durations and inevitably implies far too little creep for high t ′, means that

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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J

tt1 t2 t3

J(t,t1)
J(t,t2)

J(t,t3)

1/E(t)

Fig. B.1 Vertically shifted compliance curves

J (t, t ′) = 1

E(t ′)
+ ψ(t) − ψ(t ′)

Eref
(B.1)

where Eref is a chosen reference value of the elastic modulus, usually taken as
E28 (i.e., as E(t ′) for t ′ = 28 days), and ψ is an empirical dimensionless function,
playing the role of a generalized creep coefficient. Substituting (B.1) into the integral
expression (2.17) for the strain rate, one finds that

ε̇(t) = σ̇ (t)

E(t)
+
∫ t

0

ψ̇(t)

Eref
dσ(t ′) = σ̇ (t)

E(t)
+ ψ̇(t)

Eref
σ(t) (B.2)

which may be rewritten as

ε̇ = 1

E
σ̇ + σ

Eref
ψ̇ (B.3)

This ordinary differential equation, known as the theory of aging or Dischinger’s
method, was first proposed by Glanville [426, 427] and was extensively used in
Europe until the 1960s to analyze various structural creep problems, particularly
by Dischinger [353, 354], Glanville and Thomas [428], Sattler [755], Ulickii et al.
[821], Bažant [61–66] and many other European engineers; cf. [66].

The following expressions were used: ψ(t) = ψ∞(1 − e−at ) [353] and

ψ∞
√
1 − e−√

at , where a = constant. Parameter ψ∞ was expressed by Ullickii (and
also in Soviet design standard) as a product of several coefficients taking empiri-
cally into account the type of concrete, the age at loading, the average environmental
humidity, and the thickness of cross section, in a way similar as later introduced
by Branson and Christiason [253] and adopted for the ACI-209 recommendation
(although without a recommendation of the rate-of-creep method).

Note that (B.3) corresponds to modeling creep by a single aging Maxwell unit
with spring constant E(t) and dashpot viscosity η(t) = Eref/ψ̇(t). Obviously, such a
model is incapable of representing creep recovery. The creep due to stress increments
at higher ages is severely underestimated. The loss of stress in relaxation tests is
overestimated, and the shrinkage stress or buckling deflection are underestimated.

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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3. Compromise 1: Using Both Rate-of-Creep Method and Effective Modulus.
The errors of the aforementioned twomethods are usually of opposite signs,mutually
compensating. Thus, a better estimate is obtained by averaging the results for both
methods. A relatively safe approach to design is to solve the structure by both the
effective modulus and the rate-of-creep method and make the design satisfy both
solutions.

4. Compromise 2: Rate-of-Flow Method (Improved Dischinger). Another
compromise was proposed by England and Illston [369], was further refined by
Nielsen [658], Rüsch et al. [746], and Rüsch and Jungwirth [745], cf. Bažant and
Thonguthai [187], and was also used in the CEB Model Code. The creep strain was
subdivided into a reversible part, called delayed elasticity, and an irreversible part,
called flow. The compliance function was assumed in the form

J (t, t ′) = f (t − t ′)
E(t ′)

+ ψ(t) − ψ(t ′)
E28

(B.4)

Thefirst term, representingdelayed elasticity,was assumed tobe short-lived, reaching
within an initial period of a few months the final value of 1/E∗

e f (t
′) = f (∞)/E(t ′),

taken about 40% larger than the initial elastic compliance. It was also assumed that
only the creep effects after the initial period needed to be calculated. Thus, for long-
term analysis of structural creep effects, (B.4) was replaced by

J (t, t ′) = 1

E∗
e f (t

′)
+ ψ(t) − ψ(t ′)

E28
(B.5)

This equation is formally identical to Eq. (B.1) underlying the rate-of-creep method,
and so the structural effects of creep and shrinkagemay again be calculated according
to a first-order differential equation analogous to (B.3). Although the results for
creep over a few years are more realistic than with the rate-of-creep method, the
creep for a fewmonths as well as for more than a few years is not captured. There are
significant deviations from the principle of superposition, much greater than with the
age-adjusted effective modulus method [167]. Optimizations of the fits of various
experimental compliance functions J (t, t ′) according to (B.4) showed that good fits
of test data are unattainable [187]. The errors of the approach were discussed in
Bažant and Osman [172] and three subsequent discussions and replies.

5. Maslov–Arutyunyan’s Method. Proposed by Maslov [609], developed by
Arutyunian [39] for solving structural problems and promulgated by Gvozdev [442,
443], this method is based on assuming the compliance function to be of the form

J (t, t ′) = 1

E(t ′)
+
(

A + C

t ′

)(
1 − e−(t−t ′)/τ1

)
(B.6)

where A, C , and τ1 are empirical constants. In contrast to the rate-of-creep method,
this compliance function can exhibit a nonzero creep for loads applied at very high
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ages and exhibits nonzero recovery. In contrast to the effective modulus method, it
includes the effect of the age at loading t ′. Writing the first and second derivatives
of the superposition integral, one finds the same integral to be repeated in both.
Eliminating it, one finds that (B.6) is equivalent to the following linear ordinary
second-order differential equation with variable coefficients [66, 67]:

E(t)ε̈(t) + a(t)ε̇(t) = σ̈ (t) + b(t)σ̇ (t) (B.7)

An attractive feature of this stress–strain relation was that various simple structural
creep problems with a single unknown variable could be solved analytically in terms
of the incomplete gamma function [39], though not as easily as with the rate-of-creep
method. However, comparisons with long-term creep tests showed poor agreement
when plotted in the logarithmic, rather than linear, time scale. This limitation is due
to the fact that the exponential in (B.6) and the function A+C/t ′ approach a constant
too rapidly. If this function is replaced by another that decays more slowly, analytical
solutions become impossible. This limitation is so severe that, for load durations over
15 years, the Maslov–Arutyunyan method is even worse than the classical effective
modulus method and the rate-of-creep method [167, 187].

6. Trost Method. A major departure from all the classical simplified models,
which went in the right direction and can be regarded as a predecessor of the age-
adjusted effective modulus method, was the Trost method [816]. Like the effective
modulus method, it made it possible to use the compliance function J (t, t ′) as mea-
sured, with no simplifications. The Trost method used a so-called relaxation coeffi-
cient, derived from J (t, t ′) semiempirically. It did not take into account the aging of
elastic modulus E and expressed the incremental Young modulus for the time period
from t ′ to t simply by E ′′ = E28/[1 + ρϕ(t, t ′)], where ϕ(t, t ′) = E28 J (t, t ′) − 1
is the creep coefficient and ρ is Trost’s empirical relaxation coefficient (typically
fixed as 0.8). A simple replacement of E28 by E(t ′) and of ρ by the aging coeffi-
cient χ calculated from J (t, t ′), as proposed by Bažant [76] and presented in (4.55),
ensures exact results according to the principle of superposition for a broad range
of strain histories and provides simple yet accurate approximations for many practi-
cal problems. The reason for changing the name “relaxation” coefficient to “aging”
coefficient was the finding that, in absence of aging, the value of this coefficient
should be close to 1, including the case of stress relaxation.

http://dx.doi.org/10.1007/978-94-024-1138-6_4
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Model B3 [104, 107] covers creep and shrinkage of concrete, including their cou-
pling. The effects of drying (i.e., drying shrinkage and drying creep) can be taken
into account at two different levels of accuracy and sophistication:

1. The “sectional” approach only takes into account the mean effects of drying
averaged over the cross section of a beam or slab. The environmental humidity
must be given, but the time evolution of the pore humidity distribution throughout
the structure is not solved. The influence of the cross-sectional size and shape
on the kinetics of drying is incorporated approximately, through semiempirical
coefficients. The self-equilibrated stresses caused by nonuniform drying cannot
be captured. The sectional approach was calibrated by tests under centric axial
loading and works for such loading better than it does for flexural loading. In
the presence of a large bending moment, this approach is useful only for simple
engineering applications. Note that the flexural moments are always small in the
elements of walls of box girders because the longitudinal stress resultant in these
elements is always nearly centric.

2. The “material” approach takes into account the time evolution of the distribution
of pore humidity throughout the structure, which must be obtained by solving
a nonlinear diffusion equation, with the environmental humidity providing the
boundary conditions. Once the evolution of pore humidity distribution is known,
its effect on the constitutive behavior of the material can be evaluated from a
physical law that links the increments of shrinkage strains to the changes of
pore humidity. This approach is useful for more accurate (and more demanding)
analyses of drying-sensitive structures.

C.1 Sectional Approach

As explained in Chap.3, the sectional approach defines the compliance function of
concrete in the form
© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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J (t, t ′) = q1 + q2Q(t, t ′) + q3 ln[1 + (t − t ′)n] + q4 ln

(
t

t ′

)
+ Jd(t, t ′) (C.1)

where q1 = 1/E0 is the inverse of the asymptotic elastic modulus (cf. Sect. 3.2), the
terms containing q2, q3, and q4 represent the aging viscoelastic compliance, nonaging
viscoelastic compliance, and flow compliance, respectively (Sect. 3.3), and Jd(t, t ′)
is the additional compliance due to drying, which is also influenced by the time t0 at
the beginning of drying (Sect. 3.6).

In the definition of the compliance function (C.1), times t and t ′ must be in days,q1,
q2, q3, and q4 are empirical constitutive parameters that depend on the specific type
of concrete, and function Q(t, t ′) is defined by expression (3.12) in which m = 0.5
and n = 0.1 are empirical parameters whose values can be taken the same for all
normal concretes. The values of Q(t, t ′) can be calculated by numerical evaluation
of the integral in (3.12) or by interpolation from a table given in Bažant and Baweja
[104], or evaluated (for n = 0.1 and m = 0.5 with an error under 1%) using the
approximate explicit formula

Q(t, t ′) = Q f (t
′)

[
1 +

(
Q f (t ′)
Z(t, t ′)

)r(t ′)
]−1/r(t ′)

(C.2)

in which

r(t ′) = 1.7(t ′)0.12 + 8 (C.3)

Z(t, t ′) = (t ′)−m ln[1 + (t − t ′)n] (C.4)

Q f (t
′) = [0.086(t ′)2/9 + 1.21(t ′)4/9]−1 (C.5)

If the sectional approach is used, the average drying shrinkage strain in a cross
section, εsh, is estimated using formulae (3.15)–(3.19) given in Sect. 3.5, and the
drying creep compliance Jd is estimated using formulae (3.20) and (3.23)–(3.24)
given in Sect. 3.6. For the reader’s convenience,we reproduce here themain equations
in a slightly more compact format:

εsh(t) = −ε∞
sh

(
1 − h3

env

)
S(t − t0) (C.6)

Jd(t, t ′) = q5

√
e−g(t−t0) − e−g(t ′−t0) (C.7)

with the auxiliary functions given by

S(t̂) = tanh

√
t̂

τsh
, τsh = kt (ks D)2 (C.8)

g(t̂) = 8
[
1 − (1 − henv)S(t̂)

]
(C.9)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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In the above, henv is the environmental relative humidity, t0 is the age of concrete at
the end of curing, D is the equivalent thickness of the concrete member, and ks is
a correction factor that takes into account the shape of the member (see Table 3.1).
Parameters ε∞

sh , kt , and q5 need to be determined by fitting of experimental data or
estimated from composition.

C.2 Prediction of Model Parameters

Ideally, the material parameters should be determined from long-term creep and
shrinkage tests performed on the specific concrete that will be used in the particular
structure. In practical applications, it is impossible to wait with the analysis until such
tests are finished. The parameters can be crudely estimated from empirical formulae
that have been established by fitting a large experimental database for various types of
concrete and correlating the obtained model parameters to the concrete strength and
composition. The high uncertainties in predicting creep and shrinkage from the basic
characteristics of concrete can be drastically reduced by statistical updating of the
model based on short-time tests of creep and shrinkage [104, 107], as explained in
Sect. 3.8 and Chap.6. The shrinkage tests must be accompanied by themeasurements
of water loss due to drying; see Sect.H.1.

Table C.1 Concrete properties serving as input data

Property Symbol in-lb units SI units

Mean compression strength f̄c psi MPa

Water content w lb/ft3 kg/m3

Cement content c lb/ft3 kg/m3

Aggregate content a lb/ft3 kg/m3

Since the coefficients that appear in the approximate formulae are not dimen-
sionless, their values depend on the choice of the system of units. We present here
alternative formulae valid in inch-pound (in-lb) system units and in SI (metric) units.
The entire parameter evaluation must be done in one selected system of units. The
age of concrete at the onset of drying, t0, is always given in days.

The required input data specifying the strength and composition of concrete are
summarized in Table C.1. The compression strength f̄c should be determined as the
statistical average of test results on cylinders of diameter 15 cm (6 in.) and length 30
cm (12 in.) at age 28 days.4

4Note that design codes deal with a certain “safely estimated” strength value, which is significantly
lower than the mean. The CEB code uses the so-called characteristic strength, fck , while the ACI
code uses the specified design strength, f ′

c ; see Appendix E.1 for details.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_6
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The content ofwater, cement, and aggregates is themass of the component per unit
volume of concretemix. If thewater and cement contents to be used have not yet been
decided, they may be estimated from the empirical correlation of the water/cement
ratio to the required design strength (mean compressive cylinder strength after 28
days) of concrete [653],

w

c
=
(

f̄c

fref
+ 0.535

)−1

(C.10)

where the reference strength fref = 22.8 MPa = 3307 psi corresponds to
w/c = 0.65.

The formulae for predicting the creep and shrinkage parameters are presented in
Table C.2. Knowing that the formulae are empirical and the scatter of the experi-
mental results is quite high, it may seem strange that some coefficients in the table
are specified with a five-digit accuracy. From the practical point of view, truncation
of these coefficients to three or even two valid digits is fully acceptable. Neverthe-
less, using the “exact” values might be useful for comparison of the results during
benchmarking of a certain computational tool and for detection of potential imple-
mentation errors. For instance, the formula for q1 has its origin in the simple relation
between the asymptotic modulus and conventional modulus, E0 = E28/0.6. Since
the conventional modulus is estimated from the compression strength using the ACI
formula (3.5), the resulting relation between parameter q1 (inverse of the asymptotic
modulus) and the compression strength is

q1 = 1

E0
= 0.6

E28
= 0.6

57 ksi

√
1psi

f̄c
(C.11)

If f̄c is substituted in psi and q1 is expected to be evaluated in 10−6/psi, the final
formula is written as

q1 = 103
0.6

57
f̄ −0.5
c = 10.526 f̄ −0.5

c (C.12)

After accurate conversion to SI units, we obtain the coefficient 126.77. This can
be truncated to 127, but if 10.526 is first truncated to 10.5 and then converted to
SI units, it gives 126.45 and after truncation 126. For any practical purpose, the
difference below 1% is of course negligible, but when one compares two design aids
or computational programs for creep and finds a difference in the order of 1% even
though the material parameters (in this case compression strength) are exactly the
same, one may suspect that there is a hidden bug that could lead to larger deviations
in other cases. The “accurate” coefficients permit a reliable comparison even in cases
when the programs work with different systems of units.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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The formula in line 7 of Table C.2 originally comes from

ε∞
sh = ε∞

s
E(7 + 600)

E(t0 + τsh)
(C.13)

The fraction on the right-hand side is a correction for aging, because the final value
of shrinkage depends not only on the material properties, but also on the interplay
between hardening and drying. If the drying process starts later and takes more time,
concrete becomes stiffer and its shrinkage is reduced. To take that into account, a
reference value ε∞

s is defined as the final shrinkage strain exhibited by the given
concrete if drying starts at 7 days and shrinkage halftime is 600 days. This value
is considered as dependent only on material properties and type of curing and is
estimated using the formula in line 6. Under general conditions, it is modified by
the above-mentioned factor, defined as the ratio between the elastic modulus at 607
days (i.e., somewhere “in the middle” of the reference drying process) and the elastic
modulus at t0 + τsh (i.e., somewhere “in the middle” of the actual drying process).
The dependence of elastic modulus on age is then estimated using the adjusted ACI
formula (E.29),

E(t) = E28

√
7t

28 + 6t
(C.14)

which leads to

E(7 + 600)

E(t0 + τsh)
=
√

7 × 607

28 + 6 × 607

√
28 + 6(t0 + τsh)

7(t0 + τsh)
= 0.57514

√
14

t0 + τsh
+ 3

(C.15)

Recall that parameter kt is used in the second part of formula (C.8), which specifies
the shrinkage halftime, τsh. Coefficients α1 and α2 that appear in the formulae for the
reference shrinkage strain ε∞

s in line 6 of Table C.2 are defined as

α1 =
⎧⎨
⎩
1.0 for type I cement
0.85 for type II cement
1.1 for type III cement

(C.16)

α2 =

⎧⎪⎪⎨
⎪⎪⎩

0.75 for steam curing
1.2 for sealed or normal curing in air with initial protection

against drying
1.0 for curing in water or at 100% relative humidity

(C.17)

If the specific information is not available, the following reasonable default values
can be used: type I cement (α1 = 1.0), curing in air with initial protection (α2 = 1.2).
The types of cement are understood here according to the American classification
(ASTM C 150-07: Specification for Portland Cement). Type I is ordinary Portland
cement, type II is modified cement, type III is rapid-hardening Portland cement, type
IV is low-heat Portland cement, and type V is sulfate-resisting Portland cement.
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C.3 Material Approach

Creep-sensitive structures are analyzed by layered beam finite element programs
or by two- and three-dimensional finite element programs. In such programs, the
material properties used at each material point must be the constitutive properties,
independent of the cross-sectional dimensions and shape, as well as of the environ-
mental conditions, which represent the boundary conditions of the partial differential
equations for drying and heat conduction (see Chaps. 8 and 13). At drying, the con-
stitutive properties cannot be measured directly, but they have been identified by
fitting with a finite element program the overall deformation measurements on test
specimens [126, 130]. For this kind of analysis, the compliance function of concrete
has the form

J (t, t ′) = q1 + q2Q(t, t ′) + q3 ln[1 + (t − t ′)n] + q4 ln

(
t

t ′

)
(C.18)

which means that it only includes the instantaneous response and the basic creep.
The additional compliance Jd(t, t ′) that appears in Eq. (C.1) used by the sectional
approach is now deleted, and the effects of drying creep are incorporated either in
the viscous flow strain in the spirit of the microprestress theory [131, 132], or in the
shrinkage strain, εs [117, 120].

The former approach is discussed in detail in Chap.10. According to the latter
approach, presented inSect. 13.3.3.2, the evolution of the pointwise defined shrinkage
strain (which is now different from the average drying shrinkage strain in a cross
section, εsh) is governed by the following three-dimensional rate-type constitutive
relation:

ε̇s,i j = −ε∞
s

E(t0)

E(te)

dkh(h)

dh
[δi j + (rσi j + r ′σmδi j ) sgn (ḣ + aT Ṫ )]ḣ (C.19)

Here, ε∞
s is a positive parameter that corresponds to the theoretical value of free

ultimate shrinkage at zero stress extrapolated to zero humidity, te is the equivalent
age, δi j is Kronecker delta, σi j are the stress components, and σm is the mean stress.
Parameters r and aT need to be determined from experiments, and parameter r ′
is usually set to zero. Function kh(h) = 1 − h3 describes the dependence of the
normalized shrinkage strain at zero stress on the pore relative humidity, h. The
evolution of pore relative humidity, h, and temperature, T , must be obtained by
solving the moisture and heat transport equations. When (C.19) is used, the cracking
or fracture must also be included in the analysis.

The constitutive relation (C.19) is simpler than Eqs. (3.15)–(3.20) which it
replaces. However, at present, the prediction of the values of parameters from the
composition and strength of the concrete is rather uncertain, because of limited data
andmultitude of influencing factors. So, these parametersmust be identified by fitting
the measured data for drying creep and shrinkage.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Finally, it should be pointed out that the research under way at the time of writ-
ing [125] indicates the need for a significant further improvement of the materials
approach, particularly of Eq. (C.19). It will be necessary to include further equations
to distinguish humidity changes due to self-desiccation, resulting from the chemical
process of hydration, and due to moisture transport, caused, e.g., by external drying.
In treating shrinkage, one will need to account separately for intrinsic expansion
of the porous skeleton of cement paste due to hydration (which causes swelling
under water) from the contraction caused by stress changes in capillary water, free
adsorbed layers, and hindered adsorbed layers in nanopores. Such an approach will
make possible a rational separation of the autogenous shrinkage from the observed
total shrinkage, basic creep and drying creep [124, A5].



Appendix D
Estimates of Parameters
Used By RILEM Model B4

ModelB4 [136] is an updated and improvedversion ofmodelB3,which uses the same
general formof the creep compliance function (C.1) and shrinkage function (3.15) but
different empirical formulae for the estimation of parameters based on the concrete
mix composition, member size and shape, curing and environmental conditions. The
main improvement is that model B4 takes into account the autogenous shrinkage,
which was not separated from drying shrinkage in model B3 and was neglected in
the case of no moisture exchange. Another improvement is that the applicability
range of model B4 is much broader, covering modern concretes with admixtures,
high-strength concretes, and durations of many decades, expectably even a century
(which is the desired lifetime of large structures). The extension of applicability
range has been made possible by calibration with multidecade bridge data and with
a broader range of compositions and concrete strengths; see Hubler et al. [488].

The ranges of various parameters for which model B4 has been calibrated are
typical for practice and are as follows:

0.22 ≤ w/c ≤ 0.87, 1.0 ≤ a/c ≤ 13.2
2,070 psi ≤ f̄c ≤ 10,000 psi, 12.5 lb/ft3 ≤ c ≤ 93.6 lb/ft3 (inch-pound system)

15 MPa ≤ f̄c ≤ 70 MPa, 200 kg/m3 ≤ c ≤ 1,500 kg/m3 (SI system)

−25 ◦C ≤ T ≤ 75 ◦C
12 mm ≤ V/Se ≤ 120 mm

As usual, a, c, and w are the mass of aggregates, cement, and water per unit volume
of concrete (see Table C.1), f̄c is the mean 28-day compression strength measured
on cylinders, T is the average temperature of the environment, V is the volume of
the concrete member, and Se is its surface exposed to the ambient humidity henv. The
actual applicability range might be even broader than indicated above. For instance,
the ratio V/Se corresponds to one half of slab or wall thickness. The limit of 240
mm in thickness might seem too small, but the data of Hansen and Mattock [453],
L’Hermite and Mamillan [577], and Wittmann et al. [878] indicate that the effect of
size predicted by diffusion theory and incorporated into model B4 is correct even for
much larger thicknesses.

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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D.1 Creep

Model B4 uses the same type of compliance function as model B3 but estimates
the values of parameters in a different way. The general form of the compliance
function is

J (t, t ′) = q1 + Jb(t, t ′) + Jd(t, t ′) (D.1)

in which q1 is the asymptotic compliance (reciprocal value of the asymptotic mod-
ulus),

Jb(t, t ′) = q2Q(t, t ′) + q3 ln[1 + (t − t ′)n] + q4 ln

(
t

t ′

)
(D.2)

accounts for the basic creep, and

Jd(t, t ′) = q5

√〈
e−g(t−t0) − e−g(〈t ′−t0〉)〉 (D.3)

accounts for the additional creep due to drying.
Recall that the current age t and the age at loading t ′ should be substituted in days,

and the standard value of exponent n is 0.1. The values of function Q(t, t ′) can be
calculated by numerical evaluation of the integral in (3.12), or from the approximate
explicit formulae (C.2)–(C.5), with m = 0.5 and n = 0.1. The angular brackets 〈. . .〉
in (D.3) denote the positive part, as explained in the discussion below Eq. (3.21). The
form of function g will be specified later; see Eq. (D.8) in Sect.D.1.2.

D.1.1 Basic Creep Compliance

According to model B4, the parameters that describe the asymptotic compliance and
basic creep are estimated using the following expressions:

q1 = p1

E28
(D.4)

q2 = p2

1 GPa

(
w/c

0.38

)3

(D.5)

q3 = p3q2

(
a/c

6

)−1.1 ( w/c

0.38

)0.4

(D.6)

q4 = p4

1 GPa

(
a/c

6

)−0.9 ( w/c

0.38

)2.45

(D.7)

The conventional elasticmodulus E28 can be estimated from the compressive strength
f̄c using standard formulae (3.5) or (3.6). Factors pi depend on the cement type; their
values are given in Table D.1 for three types of cement:

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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• R = normal,
• RS = rapid hardening, and
• SL = slow hardening.

The European classification of cements is selected for model B4 since it is directly
related to the reaction rate of the cement instead of the type of application, which
is the basis of other classification systems. It should be noted, though, that the class
labels used by B4 are somewhat different from the class labels used in Eurocode 2 (R
= rapid hardening, N = normal, and S = slow hardening) and in CEB Model Code
1990 (RS = rapidly hardening high-strength concrete, R = rapid hardening, N =
normal, and SL = slow hardening). For cements classified according to ASTM, an
approximate correspondence can be made: ASTM Type I general-purpose Portland
cement may be assumed as type R reactivity. ASTM Type II is a low-heat cement
and may be considered as SL. Type III, high-early-heat cements can be assumed as
RS. Types IV, V, Ia, IIa, and IIIa should be mapped by their reactivity to the present
classification table, and any admixtures which are part of their composition should
be considered based on their proportions. All additives such as fly ash are taken into
account by model B4 separately.

Table D.1 Creep parameters depending on cement type according to model B4 (* denotes an
assumed value, due to lacking data)

Parameter R RS SL

p1 0.70 0.60 0.80

p2 58.6 × 10−3 17.4 × 10−3 40.5 × 10−3

p3 39.3 × 10−3 39.3 × 10−3 39.3 × 10−3

p4 3.4 × 10−3 3.4 × 10−3 3.4 × 10−3

p5 777 × 10−6 94.6 × 10−6 496 × 10−6

p5H 8.00 1.00 8.00*

D.1.2 Additional Compliance Due to Drying

The additional compliance due to drying is given by function Jd specified in (D.3),
which is the same as in model B3, cf. Eq. (C.7). However, the auxiliary function

g(t − t0) = p5H

[
1 − (1 − henv) tanh

√
t − t0
τsh

]
(D.8)

is the same as the B3 function defined in (C.8) and (C.9) only for cement types R
and SL, for which p5H = 8. For cement type RS (rapidly hardening), parameter p5H

is reduced to 1; see the last row of Table D.1. As usual, henv is the environmental
relative humidity and t0 is the age of concrete at the end of curing and at the beginning
of drying exposure.
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Another difference compared to the B3 model is that the shrinkage halftime is
given by an adjusted formula

τsh = τ0 kτa

(
ks

D

1 mm

)2

(D.9)

in which D = 2V/Se is the equivalent thickness of the concrete member. The shape
factor ks is the same as inmodel B3; see Table 3.1. Factor kτa is taken fromTable D.2,
depending on the aggregate type. Its default value, to be used if the type of aggregate
is not known, is kτa = 1. Factor τ0 takes into account the composition and is given by

τ0 = τcem

(
a/c

6

)−0.33 ( w/c

0.38

)pτw
(
6.5 c

ρ

)pτc

(D.10)

where factor τcem and exponents pτw and pτc depend on the cement type and are taken
from Table D.3. The concrete density ρ (total mass of concrete per unit volume) can
be considered by its default value ρ = 2,350 kg/m3.

Parameter q5 controlling the magnitude of drying creep is estimated as

q5 = p5

1 GPa

(
a/c

6

)−1 ( w/c

0.38

)0.78

|khε
∞
sh (t0)|−0.85 (D.11)

where factor p5 depends on the type of cement and is taken from Table D.1. The
effect of the ambient relative humidity henv is reflected in the factor

kh =
{
1 − h3

env if henv ≤ 0.98
12.94 (1 − henv) − 0.2 if 0.98 ≤ henv ≤ 1

(D.12)

For environmental conditions with 100% relative humidity, the amount of potential
water supply must be taken into account. Underwater conditions should be captured
by kh = −0.2, which approximates swelling and is obtained from (D.12) for henv =
1. For concrete exposed to fog (having also 100% humidity), it is better to use
henv = 0.98 since normally fog cannot supply enough water to advance the hydration
that leads to swelling.

The theoretical magnitude of final shrinkage for drying at zero ambient humidity
is estimated as

ε∞
sh (t0) = ε∞

s
E (7 + 600)

E (t0 + τsh)
= ε∞

s × 0.57514

√
14

t0 + τsh
+ 3 (D.13)

where

ε∞
s = kεa εcem

(
a/c

6

)−0.8 ( w/c

0.38

)pεw
(
6.5c

ρ

)0.11

(D.14)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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is the magnitude of the final drying shrinkage for reference conditions, which are
defined as drying from age t0 = 7 days with shrinkage halftime τsh = 600 days.
Factor kεa with default value 1 depends on the type of aggregate and is taken from
Table D.2, while factor εcem and exponent pεw depend on the type of cement and are
taken from Table D.3. The fraction in (D.13) is the shrinkage correction for the effect
of aging on elastic stiffness, and its form is co-opted from model B3, cf. formula
(C.13). Recall that function E(t) describing the dependence of elastic modulus on
age was taken according to the adjusted ACI formula (C.14).

Table D.2 Aggregate-dependent parameter scaling factors for shrinkage for model B4 (* denotes
uncertain fitted parameters)

Aggregate type kτa kεa

Diabase 0.06* 0.76*

Quartzite 0.59 0.71

Limestone 1.80 0.95

Sandstone 2.30 1.60

Granite 4.00 1.05

Quartz Diorite 15.0* 2.20*

Table D.3 Shrinkage parameters depending on cement type for model B4

Parameter R RS SL

τcem [day] 0.016 0.080 0.010

pτw −0.06 −2.40 3.55

pτc −0.10 −2.70 3.80

εcem 360 × 10−6 860 × 10−6 410 × 10−6

pεw 1.10 −0.27 1.00

D.2 Shrinkage

Anovel feature ofmodel B4 (as compared to its predecessor,model B3) is that it takes
into account not only the shrinkage due to drying but also the autogenous shrinkage.
For the sake of consistency with the B3 model, we keep using the symbol εsh for the
drying shrinkage and we introduce new symbols εsh,tot for the total shrinkage and
εau for autogenous shrinkage. Model B4 assumes that both parts of shrinkage are
additive:5.

5By the time of proof it transpired that the hypothesis of additivity is too conservative. A future
update of model B4 will consider that all shrinkage is caused by the decrease of pore humidity,
and that the autogenous shrinkage is driven solely by self-desiccation (as suggested in [125] and
elaborated in more detail in [111]; see also Sec. D.8.2).
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εsh,tot(t, t0) = εsh(t, t0) + εau(t) (D.15)

Here, t is the current age at which the shrinkage is evaluated and t0 is the age at the
onset of drying (end of curing).

D.2.1 Drying Shrinkage

The average drying shrinkage strain in a cross section is estimated as

εsh(t, t0) = −kh ε∞
sh (t0) tanh

√
t − t0
τsh

(D.16)

where kh is a factor reflecting the effect of ambient humidity according to (D.12),
ε∞
sh (t0) is the theoretical final shrinkage for drying at zero ambient humidity, evaluated
from (D.13) and (D.14), and τsh is the shrinkage halftime, given by (D.9) and (D.10).

D.2.2 Autogenous Shrinkage

The autogenous shrinkage is the strain in a stress-free element at constant total water
content and constant temperature. The empirical function describing the autogenous
shrinkage is

εau(t) = −ε∞
au

[
1 +

(τau

t

)α]−4.5
(D.17)

This function approximates the result of a large number of chemical reactions among
the constituents of themix. It gives a good estimate of themagnitude and evolution of
the autogenous shrinkage contribution to the total shrinkage. Note that its definition
does not include the volume change of fresh concrete within the first few hours before
the set, which are not relevant to structural analysis.

Exponent α, the magnitude of the final autogenous shrinkage, and the autogenous
shrinkage halftime are estimated as

α = rα

(
w/c

0.38

)
(D.18)

ε∞
au = εau,cem

(
a/c

6

)−0.75 ( w/c

0.38

)rεw

(D.19)

τau = τau,cem

(
w/c

0.38

)3

(D.20)

Parameters rα , rεw, εau,cem, and τau,cem used in formulae (D.18)–(D.20) depend on
the type of cement and are taken from Table D.4.
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Table D.4 Autogenous shrinkage parameters depending on cement type for model B4

Parameter R RS SL

rα 1.00 1.40 1.00

rεw −3.50 −3.50 −3.50

εau,cem 210 × 10−6 −84.0 × 10−6 0

τau,cem [day] 1.00 41.0 1.00

D.3 Effect of Admixtures

If the concrete contains admixtures, the predictions of creep and shrinkage can
be improved by an appropriate modification of certain parameters. Table D.5 pro-
vides dimensionless correction factors that should multiply creep-related parame-
ters p2 to p5, and Table D.6 provides dimensionless correction factors that should
multiply shrinkage-related parameters τcem, εau,cem, rεw, and rα . Their values have
been obtained by statistical optimization of the fit of the new NU database. Note that
not all the trends of the commercially available admixtures and additives could have
been investigated, because of insufficient data.

Table D.5 Admixture-dependent parameter scaling factors for creep for model B4: Retarder (Re),
Fly Ash (Fly), Superplasticizer (Super), Silica Fume (Silica), Air Entraining Agent (AEA), Water
reducer (WR)

Admixture class (% of c) ×p2 ×p3 ×p4 ×p5

Re (≤0.5),Fly (≤15) 0.31 7.14 1.35 0.48

Re (>0.5),Fly (≤15) 1.43 0.58 0.90 0.46

Fly (>15) 0.37 2.33 0.63 1.60

Super (>0) 0.72 2.19 1.72 0.48

Silica (>0) 1.12 3.11 0.51 0.61

AEA (>0) 0.90 3.17 1.00 0.10

WR (≤2) 1.00 2.10 1.68 0.45

WR (>2,≤3) 1.41 0.72 1.76 0.60

WR (>3) 1.28 2.58 0.73 1.10

D.4 Simplified Strength-Based Model B4s

Even if concrete composition for a given structure has not yet been decided, it is
usually known what the typical concrete composition in a given geographical area
is. Nevertheless, engineers wish to estimate creep and shrinkage solely from the
chosen required (or characteristic) strength f ′

c of concrete to be used in the structure.
Most of the existing creep and shrinkage recommendations of engineering societies
are formulated that way. Therefore, by means of statistical optimization of the fit
of the new NU database, a simplified variant of model B4 using only the mean
compressive strength f̄c has beendeveloped. It should benoted that themean strength,
f̄c, is significantly higher than f ′

c . Typically, f̄c ≈ f ′
c + 8 MPa [639]; see formulae

(E.1)–(E.4) in Appendix E, which use a somewhat different notation.
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Table D.6 Admixture-dependent parameter scaling factors for shrinkage for model B4; Retarder
(Re), Fly Ash (Fly), Superplasticizer (Super), Silica Fume (Silica), Air Entraining Agent (AEA),
Water reducer (WR)

Admixture class (% of c) ×τcem ×εau,cem ×rεw ×rα

Re (≤0.5),Fly (≤15) 6.00 0.58 0.50 2.60

Re (>0.5,≤0.6),Fly (≤15) 2.00 0.43 0.59 3.10

Re (>0.5,≤0.6),Fly (>15,≤30) 2.10 0.72 0.88 3.40

Re (>0.5,≤0.6),Fly (>30) 2.80 0.87 1.60 5.00

Re (>0.6),Fly (≤15) 2.00 0.26 0.22 0.95

Re (>0.6),Fly (>15,≤30) 2.10 1.10 1.10 3.30

Re (>0.6),Fly (>30) 2.10* 1.10 0.97 4.00

Fly (≤15),Super (≤5) 0.32 0.71 0.55 1.71

Fly (≤15),Super (>5) 0.32* 0.55 0.92 2.30

Fly (>15,≤30),Super (≤5) 0.50 0.90 0.82 1.25

Fly (>15,≤30),Super (>5) 0.50* 0.80 0.80 2.81

Fly (>30),Super (≤5) 0.63 1.38 0.00 1.20

Fly (>30),Super (>5) 0.63* 0.95 0.76 3.11

Super (≤5),Silica (≤8) 6.00 2.80 0.29 0.21

Super (≤5),Silica (>8) 3.00 0.96 0.26 0.71

Super (>5),Silica (≤8) 8.00 1.95 0.00 1.00

Silica (≤8) 1.90 0.47 0.00 1.20

Silica (>8) 2.60 0.82 0.00 1.20

Silica (>18) 1.00 1.50 5.00 1.00

AEA (≤0.05) 2.30 1.10 0.28 0.35

AEA (>0.05) 0.44 4.28 0.00 0.36

WR (≤2) 0.50 0.38 0.00 1.90

WR (>2,≤3) 6.00 0.45 1.51 0.30

WR (>3) 2.40 0.40 0.68 1.40

* ... lacking data, assumed.

According to the simplifiedmodel, denoted as B4s, the creep compliance function
is given by (D.1) and (D.2) with parameters

q2 = s2
1 GPa

(
f̄c

40 MPa

)−1.58

(D.21)

q3 = 0.976 q2

(
f̄c

40 MPa

)−1.61

= 0.976
s2

1 GPa

(
f̄c

40 MPa

)−3.19

(D.22)

q4 = 4 × 10−3

1 GPa

(
f̄c

40 MPa

)−1.16

(D.23)

q5 = s5
1 GPa

(
f̄c

40 MPa

)−0.45

|khε
∞
sh |−0.85 (D.24)
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Factors s2 and s5 dependent on the cement type are taken from Table D.7, factor kh

dependent on the ambient humidity is evaluated according to (D.12), and the final
shrinkage ε∞

sh is evaluated according to (D.13), but with the auxiliary formula (D.14)
replaced by

ε∞
s = εs,cem

(
f̄c

40 MPa

)sεf

(D.25)

where factor εs,cem and exponent sεf are taken fromTableD.7. The shrinkage halftime
τsh is evaluated from (D.9) with kτa = 1, but with the auxiliary formula (D.10)
replaced by

τ0 = τs,cem

(
f̄c

40 MPa

)sτ f

(D.26)

where factor τs,cem and exponent sτ f are taken from Table D.7.

Table D.7 Parameters depending on cement type for the B4s model

Parameter R RS SL

s2 14.2 × 10−3 29.9 × 10−3 11.2 × 10−3

s5 1.54 × 10−3 41.8 × 10−6 150 × 10−6

εs,cem 590 × 10−6 830 × 10−6 640 × 10−6

sεf −0.51 −0.84 −0.69

τs,cem [day] 0.027 0.027 0.032

sτ f 0.21 1.55 −1.84

The autogenous shrinkage is given by

εau(t) = −ε∞
au

[
1 +

(τau

t

)1.73]−1.73

(D.27)

in which

ε∞
au = 78.2 × 10−6

(
f̄c

40 MPa

)1.03

(D.28)

τau = 2.26 days ×
(

f̄c

40 MPa

)0.27

(D.29)

D.5 Effect of Temperature

The basic version of the model has been calibrated for reference temperature T0 =
293 K (i.e., 20 ◦C). If the actual temperature is higher (or lower), various physical
and chemical processes are accelerated (or decelerated). The effect of temperature on



726 Appendix D: Estimates of Parameters Used By RILEM Model B4

creep and shrinkage is accounted for by an acceleration of time (horizontal scaling
of the creep and shrinkage curves) combined with vertical scaling of selected terms
(those that describe basic creep).

The concept of time acceleration at higher temperatures has been introduced in
the context of the microprestress-solidification theory in Chap.10. In model B4,
acceleration factors similar to (10.31)–(10.33) are used. The official RILEM recom-
mendation [136] defines three different acceleration factors, denoted as βT h , βT s , and
βT c, which correspond to the processes of hydration, moisture diffusion (drying), and
creep. Since the values of activation energies recommended by Bažant et al. [136]
are the same for all three processes, for practical applications it is fully sufficient to
consider only one common factor, denoted as βT . In analogy to (10.31)–(10.33), its
dependence on temperature is described by an Arrhenius-type law

βT (T ) = exp

[
Q

R

(
1

T0
− 1

T

)]
(D.30)

inwhich T is the ambient temperature (in absolute scale), T0 = 293K is the reference
temperature, Q is the activation energy, and R is the universal gas constant. Only
the ratio Q/R is what matters, and, in the absence of data for the given concrete, it is
recommended to use Q/R = 4000 K. The equivalent time te (for simplicity denoted
by the same symbol as the equivalent age or equivalent hydration period in Chap. 10)
is then defined by its rate

dte
dt

= βT (T ) (D.31)

For a general temperature history, the equivalent time can be obtained by integra-
tion of (D.31), which is formally represented by the formula

te(t) =
∫ t

0
βT (T (t ′)) dt ′ (D.32)

For simplicity, model B4 considers the ambient temperature during curing, Tcur, and
the average temperature during drying and loading, Tdl, to be constant. Then, the
integration leads to

te(t) = te0 + βdl
T (t − t0), for t ≥ t0 (D.33)

where
te0 = te(t0) = βcur

T t0 (D.34)

is the equivalent time at the end of curing (onset of drying), and factors βcur
T and βdl

T
are evaluated from (D.30) for T = Tcur and T = Tdl. Note that the values of te for
t < t0 are usually not needed at all.

If the activation energies associated with hydration, moisture diffusion, and creep
are considered by the same value, Q, incorporation of the temperature effect becomes
very easy because it is sufficient to evaluate the creep compliance function and the

http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
http://dx.doi.org/10.1007/978-94-024-1138-6_10
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shrinkage function from the already presented formulae with the actual times t ,
t ′, and t0 replaced by their equivalent values te(t), te(t ′), and te(t0) ≡ te0. But, in
addition to that, model B4 recommends to increase the basic creep compliance by a
multiplicative factor RT . This factor is computed again from formula (D.30), with
the same default value of activation energy Q/R = 4000 K as for the evaluation of
βT (but potentially with another value, if it can be determined for the given concrete).
If a concrete member is exposed to drying from age t0 and is loaded by constant stress
σ from age t ′, the strain at age t is evaluated as6

ε(t) = σ
[
q1 + RT Jb(te(t), te(t

′)) + Jd(te(t), te(t
′))
]+ εsh,tot(te(t), te0) (D.35)

where
Jd(te, t ′

e) = q5

√〈
e−g(te−te0) − e−g(〈t ′

e−te0〉)〉 (D.36)

Generalization to variable stress leads to the integral formula

ε(t) = σ1 J (te(t), te1) +
∫ t

t1

J
(
te(t), te(t

′)
)
σ̇ (t ′) dt ′ + εsh,tot(te(t), te0) (D.37)

where te1 = te(t1) and

J
(
te, t ′

e

) = q1 + RT Jb(te, t ′
e) + Jd(te, t ′

e) (D.38)

Note that the lower and upper limits of the integral in (D.37), t1 and t , are not affected
by the transformation to equivalent times, because σ̇ is still the derivative of stress
with respect to the actual (untransformed) time and σ̇ (t ′) dt ′ is the infinitesimal
increment of stress during an actual time increment dt ′. This is why the integration
variable, t ′, still sweeps from t1 to t .

D.6 Examples of Compliance Curves

Example D.1. Compliance curves predicted by model B4

Application of the empirical formulae presented in Sect.D.1 is illustrated using the
same input data as inExample 3.1 for theB3model. The concretemix is characterized
bywater contentw = 170 kg/m3, type-I cement content c = 450 kg/m3 and aggregate
content a = 1800 kg/m3. In calculations based on model B4, the cement type is
considered as R (normal), which corresponds to type-I cement according to the
ASTM classification. The standard compression strength is taken as f̄c = 45.4MPa.
The compliance curve is constructed for a concrete slab of thickness D = 200 mm,

6For simplicity, only the mechanical strain and the shrinkage strain are considered in Eq. (D.35).
Of course, the thermal strain would need to be added, but this part of strain is directly computed
from temperature and is not affected by the acceleration of time discussed here.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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cured in air with initial protection against drying until the age t0 = 7 days and
subsequently exposed to an average environmental humidity henv = 70%.

Model parameters that control basic creep are evaluated using formulae (3.6) and
(D.4)–(D.7):

E28 = 4.733 GPa ×
√

f̄c
1 MPa

= 4.733 GPa × √
45.4 = 31.89 GPa (D.39)

q1 = p1

E28
= 0.7

31.89 GPa
= 21.95 × 10−6/MPa (D.40)

q2 = p2

1 GPa

(
w/c

0.38

)3

= 58.6 × 10−3

1 GPa

(
170/450

0.38

)3

= 57.58 × 10−6/MPa

(D.41)

q3 = p3q2

(
a/c

6

)−1.1 ( w/c

0.38

)0.4

=

= 0.0393 × 57.58 × 10−6

1 MPa
×
(
1800/450

6

)−1.1 (170/450
0.38

)0.4

=
= 3.527 × 10−6/MPa (D.42)

q4 = p4

1 GPa

(
a/c

6

)−0.9 ( w/c

0.38

)2.45

=

= 3.4 × 10−3

1 GPa

(
1800/450

6

)−0.9 (170/450
0.38

)2.45

=
= 4.827 × 10−6/MPa (D.43)

To estimate the additional compliance due to drying creep, we first need to deter-
mine the shrinkage halftime and the maximum shrinkage strain, using (D.10), (D.9),
(D.14), and (D.13):

τ0 = τcem

(
a/c

6

)−0.33 ( w/c

0.38

)pτw
(
6.5 c

ρ

)pτc

= (D.44)

= (0.016 day) ×
(
1800/450

6

)−0.33 (170/450
0.38

)−0.06 (6.5 × 450

2350

)−0.1

=
= 0.01790 day

τsh = τ0 kτa

(
ks

D

1 mm

)2

= (D.45)

= 0.01790 day × 1 ×
(
1 × 200 mm

1 mm

)2

= 716 day

ε∞
s = kεa εcem

(
a/c

6

)−0.8 ( w/c

0.38

)pεw
(
6.5c

ρ

)0.11

= (D.46)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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= 1 × 360 × 10−6

(
1800/450

6

)−0.8 (170/450
0.38

)1.1 (6.5 × 450

2350

)0.11

=
= 506.79 × 10−6

ε∞
sh = ε∞

s
E (7 + 600)

E (t0 + τsh)
= ε∞

s × 0.57514

√
14

t0 + τsh
+ 3 =

= 506.79 × 10−6 × 0.57514

√
14

7 + 716
+ 3 = 506.48 × 10−6 (D.47)

We also need the humidity-dependent factor kh , which is according to (D.12) given
by

kh = 1 − h3
env = 1 − 0.73 = 0.657 (D.48)

Based on the above auxiliary values, parameter q5 is estimated from (D.11) as

q5 = p5

1 GPa

(
a/c

6

)−1 ( w/c

0.38

)0.78

|khε
∞
sh |−0.85 =

= 777 × 10−6

1 GPa

(
1800/450

6

)−1 (170/450
0.38

)0.78

|0.657ε∞
sh |−0.85 =

= 1049 × 10−6/ MPa (D.49)

The additional compliance due to drying is then given by (D.3)–(D.8) with q5 =
1049 × 10−6/MPa, p5H = 8, henv = 0.7, and τsh = 716 days.

The total compliance function J (t, t ′) defined in (D.1) is plotted in Fig. D.1 for
four different ages at loading t ′, first in linear scale as a function of the current age t
and then in semilogarithmic scale as a function of the load duration t − t ′. �
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Fig. D.1 Compliance functions predicted by model B4 in Example D.1
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Example D.2. Compliance curves predicted by model B4s

As explained in Sect.D.4, the simplified version of model B4, labeled as B4s, takes
the mean compression strength f̄c as the only parameter characterizing the concrete
properties. For concrete gradesC20 toC60 as defined in the fibModel Code, themean
strength values estimated using (E.1) range from 28 to 68 MPa. The corresponding
model parameters evaluated from (3.6), (D.4) and (D.21)–(D.23) for cement of type
R are listed in Table D.8. Parameter τ0 is specified in a somewhat unusual unit,
10−4 day, because then the value in the table represents the shrinkage halftime of an
infinite slab of thickness 100 mm, expressed in days. The resulting creep compliance
functions for loading at age t ′ = 28 days are plotted in Fig. D.2. �

Table D.8 Creep parameters according to the B4s model for different concrete grades (assuming
cement of type R)

Parameter Unit C20 C30 C40 C50 C60

f̄c [MPa] 28 38 48 58 68

E28 [GPa] 25.04 29.18 32.79 36.05 39.03

q1 [10−6/MPa] 27.95 23.99 21.35 19.42 17.94

q2 [10−6/MPa] 24.95 15.40 10.65 7.895 6.140

q3 [10−6/MPa] 43.24 16.32 7.747 4.236 2.550

q4 [10−6/MPa] 6.050 4.245 3.238 2.599 2.161

ε∞
s [10−6] 707.7 605.6 537.6 488.2 450.1

τ0 [10−4 day] 250.5 267.1 280.5 291.9 301.8
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Fig. D.2 Compliance functions for different concrete grades loaded at t ′ = 28 days, as predicted
by model B4s in Example D.2: (a) at sealed conditions, (b) at 70% ambient humidity

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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D.7 Aging Effects

D.7.1 Aging of Elastic Modulus

According to the testing standards [43], the conventional elastic modulus of concrete
should be evaluated from theunloading slope of the stress–strain diagramafter several
cycles. Based on such experiments, empirical formulae for the estimation of elastic
modulus from compression strength have been developed. One example is the ACI
empirical formula (3.5) or (3.6). If the strength is substituted in MPa and the elastic
modulus is evaluated in GPa, the ACI formula can be written as

E (s,AC I )
28 = 4.733

√
f̄c (D.50)

The elastic modulus can also be expected to be closely related to the “almost
instantaneous” deformation in a creep test. The correlation between the predictions
of conventional elastic modulus from strength and the reciprocal value of the compli-
ance functionwas studied byBažant andBaweja [105]. Using the RILEMcreep data-
base available at that time, they determined moduli E (s,AC I )

28 estimated from (D.50)
based on the measured compression strength and moduli E (c)

28 = 1/J (28+ Δts, 28)
evaluated as the reciprocal values of measured creep compliances, for different val-
ues of time delay Δts . As documented in Fig. D.3b, the ratios E (c)

28 /E (s,AC I )
28 were

found to be around 1 for Δts = 0.01 day, while for Δts = 0.001 day, they were
systematically larger than 1, though not much larger (Fig. D.3a), and for Δts = 0.1
day systematically smaller than 1 (Fig. D.3c).
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Fig. D.3 Ratio of elastic modulus determined from measured compliance, E (c)
28 = 1/J (28 +

Δts , 28), to value E (s,AC I )
28 predicted from compression strength according to the ACI formula

(D.50), plotted against the square root of compression strength, for (a) Δts = 0.001 day, (b)
Δts = 0.01 day, (c) Δts = 0.1 day

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. D.4 Elasticmodulus determined frommeasured compliance versus square root of compression
strength (isolated points correspond to experimental data and the straight lines to formulae (D.50)
and (D.51))

It is apparent from Fig. D.3 that the ratios E (c)
28 /E (s,AC I )

28 are increasing with
increasing strength. Therefore, if the conventional elastic modulus to be used for
calibration of a creep model is estimated from the compression strength, a closer
fit of the reciprocal compliance E (c)

28 = 1/J (28.01, 28) could be achieved with a
modified formula

E (s,mod)
28 = 6

√
f̄c − 8 (D.51)

where f̄c is substituted inMPa and E28 is obtained in GPa. This formula corresponds
to the regression line in Fig. D.4, where the points correspond to measured moduli
E28 plotted against the square root of compression strength. Nevertheless, empirical
formulae for the estimation of parameters of the B3 model were optimized using
estimates of the conventional modulus determined from the original ACI formula
(3.5) or (3.6), which were matched by the reciprocal values of creep compliance
J (28 + Δts, 28), with Δts = 0.01 day. Later, when the scope of the model was
extended tomodern high-strength concretes and concreteswith admixtures, andwhen
more data were obtained also for normal concretes, it appeared thatΔts = 0.001 day
would give a slightly better fit. Therefore, empirical formulae recommended by the
B4 model were optimized with E (c)

28 considered as 1/J (28.001, 28).
The relation between the elastic modulus and short-term creep compliance can

be extended to an arbitrary age at loading, and so it can be used for evaluation of the
elastic modulus at age t ′,

E(t ′) = 1

J (t ′ + Δts, t ′)
(D.52)

with Δts = 0.01 day for the B3 model and Δts = 0.001 day for models B4 and
B4s. Recall that the basic creep compliance of models B3 and B4 is given by (3.10).
Since the conventional delay Δts is always much smaller than the age at loading,

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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t ′, one may replace t in the numerator of the first fraction on the right-hand side of
(3.10) by t ′, and then, integration becomes easy and the basic creep compliance can
be evaluated in closed form. Substituting the result into (3.3) with 1/E0 = q1 =
age-independent asymptotic compliance, m = 0.5 and Jd(t, t ′) = 0 (basic creep
only) yields

J (t, t ′) = q1 +
(

q2√
t ′ + q3

)
ln[1 + (t − t ′)n] + q4 ln

t

t ′ (D.53)

where the last term is negligible for t − t ′ � t ′ (i.e., for t ≈ t ′). This simplification
and substitution into (D.52) lead to a simple expression for the time dependence of
elastic modulus in the form

E(t ′) = 1

A0 + A1/
√

t ′ (D.54)

where, for the B3 model,

A0 = q1 + q3 ln(1 + Δtn
s ) = q1 + q3 ln(1 + 0.010.1) = q1 + 0.489q3 (D.55)

A1 = q2 ln(1 + Δtn
s ) = q2 ln(1 + 0.010.1) = 0.489q2 (D.56)

while for the B4 model,

A0 = q1 + q3 ln(1 + Δtn
s ) = q1 + q3 ln(1 + 0.0010.1) = q1 + 0.406q3 (D.57)

A1 = q2 ln(1 + Δtn
s ) = q2 ln(1 + 0.0010.1) = 0.406q2 (D.58)

As a special case, the conventional modulus (elastic modulus at 28 days) is, for
model B3, given by

E (c,B3)
28 = E(28) = 1

A0 + A1/
√
28

= 1

q1 + 0.0924q2 + 0.489q3
(D.59)

and the limit value of elastic modulus approached asymptotically for high ages is

E (c,B3)
∞ = lim

t ′→∞ E(t ′) = 1

A0
= 1

q1 + 0.489q3
(D.60)

For the set of parameters used in Example 3.1, we obtain E28 = 32.36 GPa and
E∞ = 52.15 GPa, i.e., E∞/E28 = 1.61. It is not clear whether such a dramatic
increase of elastic modulus due to aging is realistic. In general, the ratio is given by

E (c,B3)∞
E (c,B3)
28

≈ q1 + 0.0924q2 + 0.489q3

q1 + 0.489q3
= 1 + 0.0924q2

q1 + 0.489q3
(D.61)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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To obtain a less pronounced aging effect, q2 would need to be reduced and q3

increased.
For model B4, the expressions for A0 and A1 are given by (D.57) and (D.58), and

formulae (D.59) and (D.60) must be replaced by

E (c,B4)
28 = 1

A0 + A1/
√
28

= 1

q1 + 0.0768q2 + 0.406q3
(D.62)

E (c,B4)
∞ = 1

A0
= 1

q1 + 0.406q3
(D.63)

For the set of parameters used in Example D.1 (in which the concrete was assumed
to have the same properties as in Example 3.1), we obtain E28 = 35.97 GPa and
E∞ = 42.77 GPa, and the resulting ratio E∞/E28 = 1.19 is much lower than for
the B3 model. This is caused by a different combination of parameters: Empirical
formulae used by B4 lead to a lower value of q2 and a higher value of q3 than those
used by B3 (at least for this particular concrete); see Table D.9.

Formodel B4s, the delayΔts = 0.001 day is supposed to be the same as for model
B4, and thus, Eqs. (D.62) and (D.63) are applicable. For this simplified version of
model B4, parameters qi depend exclusively on the strength and on the cement type.
Substituting expressions (D.4) and (D.21)–(D.22) into (D.62) and (D.63), we obtain

E(c,B4s)
28 = 1

p1

4.733
√

f̄c
+ 0.0768s2

(
f̄c
40

)−1.58

+ 0.406 × 0.976s2

(
f̄c
40

)−3.19
(D.64)

E(c,B4s)∞ = 1

p1

4.733
√

f̄c
+ 0.406 × 0.976s2

(
f̄c
40

)−3.19 (D.65)

with parameters p1 and s2 dependent on the cement type, as shown in Tables D.1
and D.7.

The dimensionless ratio E (s,AC I )
28 /E (c,B4s)

28 is plotted as a function of compression
strength f̄c in Fig. D.5a, separately for the three cement types. It turns out that the
agreement between E (s,AC I )

28 and E (c,B4s)
28 is acceptable for concretes with strength

between 30 and 40 MPa for R and SL cements, and between 35 and 45 MPa for RS
cement. For lower strengths, the compliance derived from model B4s is too high,
especially for RS cement, and for higher strengths, it is too low. Of course, this
conclusion is valid under the assumption that the ACI formula (D.50) is sufficiently
accurate for high-strength concrete, too.

As explained before (see Fig. D.4), somewhat better estimates of the actual (mea-
sured) elastic moduli can be obtained using a modified formula (D.51). The curves
in Fig. D.5b show the ratio E (s,mod)

28 /E (c,B4s)
28 as a function of f̄c. The agreement is

slightly improved as compared to Fig. D.5a, but still, important deviations of the

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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creep compliance J (28.001, 28) from 1/E (s,mod)
28 are found for concretes of low or

high strengths.
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Fig. D.5 Ratio between the short-term creep compliance of model B4s and the inverse of elastic
modulus estimated from strength: (a) elastic modulus estimated from the ACI formula, E (s,AC I )

28 =
4.733

√
f̄c, (b) elastic modulus estimated from a modified formula, E (s,mod)

28 = 6
√

f̄c − 8

A possible improvement of model B4s would be achieved by calibrating the para-
meters with a constraint that enforces equality of E (c,B4s)

28 and E (s,mod)
28 . For instance,

optimization of the formulae for basic creep could be done just for parameters q2,
q3, and q4, with q1 determined as

q1 = 1000

6
√

f̄c − 8
− 0.0768q2 − 0.406q3 (D.66)

where f̄c is substituted in GPa and qi in 10−6/MPa.
Let us now turn attention to the effect of aging on elastic modulus predicted

by model B4s. Based on (D.64) and (D.65), the ratio between the old-age elastic
modulus and the conventional one is expressed as

E (c,B4s)∞
E (c,B4s)
28

= 1 + 1

0.4351
p1

s2

(
f̄c
40

)1.08

+ 5.1646

(
f̄c
40

)−1.61 (D.67)

For compressive strength in the range from 20 to 100 MPa, this ratio is between
1.017 and 1.039 for cement of type R, between 1.041 and 1.050 for cement of type
RS, and between 1.012 and 1.033 for cement of type SL. Thus, the relative increase
of elastic modulus from the age of 28 days to infinity predicted by B4s is very small,
in the order of a few percent. For the concrete from Examples 3.1 and D.1 with
compressive strength f̄c = 45.4 MPa and cement of type R, model B4s gives an
increase of 3.5%, while model B3 predicts 61% and model B4 predicts 19%. This
large discrepancy is, of course, related to the values of parameters q1, q2, and q3,
which are summarized in Table D.9.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Table D.9 Basic creep parameters for the concrete fromExamples 3.1 andD.1 according tomodels
B3, B4, and B4s (all in 10−6/MPa)

B3 B4 B4s

q1 18.81 21.95 21.95

q2 126.9 57.58 11.63

q3 0.7494 3.527 9.253

q4 7.692 4.827 3.454

nq3 + q4 7.767 5.180 4.379
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Fig. D.6 Dependence of elastic modulus on age, according to (a) models B3, B4, and B4s, (b) for-
mulae used by model GL and by ACI and fib recommendations

The foregoing comparison of ratios E (c)∞ /E (c)
28 for the particular concrete from

Examples 3.1 and D.1 indicates that the effect of aging on elastic modulus is very
strong for model B3, moderate for model B4, and very weak for model B4s. This
is confirmed by Fig. D.6a, which shows the overall dependence of elastic modulus
E (c)(t ′) on age t ′. For the sake of interest, Fig. D.6b shows similar graphs based on
formulae incorporated in design codes. According to the ACI, fib and GL models,
to be presented in detail in Appendix E, the age dependence of the (static) elastic
modulus is, respectively, predicted by empirical relations (E.29), (E.5)–(E.6), and
(E.39)–(E.40), which describe the age dependence of elastic modulus E(t ′) directly,
without reference to the values of creep compliance. These code formulae predict a
ratio E∞/E28 equal to

√
7/6 ≈ 1.08 (ACI) or to

√
es with cement-type-dependent

parameter s between 0.2 and 0.38 (fib), which gives E∞/E28 between 1.11 and
1.21. For ordinary Portland cement and f̄c = 45.4 MPa, the GL model predicts
E28 = 33.82 GPa and E∞ = 39.35 GPa, i.e., E∞/E28 = 1.16. The code formulae
have probably been obtained by fitting of experimental data, but the range of ages at
testing might not have been wide enough, because values of E∞/E28 near 1.1 seem
to be too low.

The comparison in Fig. D.6a was constructed only after the publication of model
B4. Model B3 had been optimized so as to obtain good agreement with the elastic
moduli estimated from strength. On the other hand, model B4 was optimized strictly
from creep test data, with no constraint linking the short-term behavior to the strength
for tests which did not report the measured value of elastic modulus or short-term
deformations. In the future, simultaneous optimization of the databases for creep and
for elastic modulus would be appropriate.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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In the creep database, it is not so easy to find reliable information on the values
of J (t ′ +0.01, t ′) (or of J (t ′ +0.001, t ′)) for the same concrete but different ages t ′.
Dramatic changes of elastic moduli were reported by Brooks [267] in his summary
of 30-year tests. The evaluation of Brooks’ data is not straightforward, because the
elastic modulus at age 14 days was measured at loading, while the elastic modulus
at age 15 years or 30 years was measured at unloading (also, there was a lapse of
environmental control at 7 years). The moduli measured at high ages were substan-
tially larger for specimens stored under wet conditions than for those stored under
dry conditions. For specimens with Stourton aggregates and w/c = 0.40, the mea-
sured ratios7 E∞/E(14) were 1.74 (dry) and 3.23 (wet). For specimens with North
Notts aggregates and w/c = 0.50, these ratios were 1.47 (dry) and 1.83 (wet). For
comparison, the ACI model predicts E∞/E(14) equal to 1.15, the fib Model Code
predicts at most 1.31 (for the largest value of parameter s = 0.38), and the B3 model
predicts 1.86. So it cannot be excluded that the actual growth of elastic modulus due
to aging is much more pronounced than according to the codes. Doubtless it depends
on the long-term supply of water to the pores, which can allow hydration to proceed
for decades. However, as already mentioned, the moduli measured by Brooks do not
have the samemeaning at 14 days (loadingmodulus) and at 15 or 30 years (unloading
modulus, which is always significantly larger than the modulus at first loading). It is
also unclear how much “instantaneous” the measurement was.

Looking at the strength evolution reported by Brooks [267], one finds that the
ratio between the compression strengths at 30 years and at 14 days was closer to
the code formulae than was the case for elastic moduli. For Stourton aggregates and
w/c = 0.40, the strength after 30 years was almost the same for measurements done
on loaded and load-free control specimens and on wet and dry specimens (for some
other cases there were large discrepancies). The measured strength increased from
14 days to 30 years by a factor of 1.51, and so the strength increase was actually
smaller than the increase in elastic modulus. This observation contradicts the usual
assumption that the modulus grows proportionally to the square root of strength. For
strength, the ACI model would predict an increase by a factor of 1.33 and the fib
code by a factor between 1.33 (for s = 0.2) and 1.71 (for s = 0.38).

Valuable information can also be extracted from the study of Shideler [776],
who focused on lightweight concrete but also acquired some data for normal-weight
concrete. The measured ratios between elastic moduli at the age of 1 year and at the
age of 28 dayswere ranging from1.34 to 1.55 forwet conditions (continuouslymoist-
cured specimens) and from 1.09 to 1.17 for dry conditions (7 days of moist curing
followed by storage at 50% relative humidity). Interestingly, the relative increase in
strength was in all cases smaller than the relative increase in elastic modulus (1.19 to
1.27 for wet conditions and 1.05 to 1.11 for dry conditions). Again, this contradicts
the assumed proportionality of the modulus to the square root of strength stipulated
by the ACI code.

According to the ongoing research [125, 715], cement hydrationmay ormight not
continue for years and even decades or centuries, depending on the cement fineness

7The value measured at the high age of 15 or 30 years is taken here as an approximation of the limit
value, E∞.
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and water supply to the micropores in concrete. The growth of E(t ′) as well as f̄c(t ′)
will have to be considered as a function of the degree of hydration, whose evolution
will have to be calculated from differential equations proposed by Bažant et al. [125]
and refined in Eqs. (13)–(23b) in Rahimi-Aghdam et al. [715]. In these equations,
the hydration degree growth from days to centuries is controlled by diffusion of
water toward the anhydrous cement grain remnants through accreting barrier shells
of C-S-H that surround the remnants.

D.7.2 Effect of Aging on Creep

In the previous section, aging effects on elastic modulus predicted by the simplified
model B4s were found to be much weaker than those obtained with the full B4
model. Even though the comparison was done just for one typical concrete, the
conclusion has a general validity and can also be extended to the effects of aging on
creep. In models of the B3/B4 family, short-term creep is controlled by parameters
q2 and q3, with q3 affecting the age-independent part of creep compliance. It is thus
natural that higher values of q2 in general lead to more pronounced aging. For the
particular concrete from Examples 3.1 and D.1, the value of q2 predicted by the
empirical formula used by B4 was 5 times higher than the value estimated from
strength according to B4s; see Table D.9.
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Fig. D.7 Combinations of water-cement ratio and compressive strength that would give the same
value of q2 according to models B4 and B4s (curves), and isolated points corresponding to (a) the
values used in Example 3.1 and in Sect. 7.9, (b)–(d) real values from the database

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_7
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Parameter q2, which controls aging, is evaluated from the water-cement ratio in
model B4 and from the compressive strength in model B4s. The B4 formula (D.5)
and the B4s formula (D.21) would give the same result if the water-cement ratio w/c
and the compressive strength f̄c were linked by the relation

p2

(
w/c

0.38

)3

= s2

(
f̄c
40

)−1.58

(D.68)

with f̄c substituted in MPa and with parameters p2 and s2 dependent on the cement
type.

For three types of cement (R, RS, and SL), Fig. D.7a shows the combinations of
w/c and f̄c that satisfy condition (D.68) (smooth curves) and an isolated point that
correspond to the values used in Examples 3.1 and D.1 (w/c = 0.378 and f̄c = 45.4
MPa). The point is way above the curve that corresponds to cement type R, used in
concrete from the example. For w/c = 0.378, model B4s would give the same value
of q2 as model B4 if the compressive strength was f̄c = 16.5 MPa. Since the actual
compressive strength is much higher, q2 evaluated from the expression on the right-
hand side of (D.68) (which corresponds to the B4s formula (D.21)) is much lower,
due to the negative exponent. This explains why, in this particular case, models B4
and B4s give so different results in terms of aging.

To check whether the same trend can be expected in general, let us plot the
combinations of w/c and f̄c reported for the samples from the NU creep database (of
course, leaving out cases in which one of these properties, typically the strength, is
not reported). This is done in Fig. D.7b–d, separately for the three types of cement.
It turns out that, with the exception of cement RS (Fig. D.7c), all the points that
represent real data are above the curve that corresponds to (D.68). This proves that
model B4s gives systematically much less aging than model B4, for all creep tests
from the database with cements R and SL.

We have shown that higher values of parameter q2 lead to more pronounced aging
of elastic modulus and proven that model B4 always predicts a higher value of this
parameter than model B4s does. As given in Table D.9, the value of q2 predicted by
model B3 for the concrete from Example 3.1 is even higher than the B4 prediction.
For a general comparison of aging effects according to models B3 and B4, it is
convenient to work with the ratio q3/q2, which depends only on the water-cement
and aggregate–cement ratios. Recall that q2 controls the aging part and q3 controls
the nonaging part of the viscoelastic compliancemodeled by the solidification theory.
The formulae in line 3 in Table C.2 and in Eq. (D.6) imply that models B3 and B4
give the same ratio q3/q2 if

0.29 (w/c)4 = 0.0393

(
a/c

6

)−1.1 ( w/c

0.38

)0.4

(D.69)

which is true if
a

c
= 1.3863

(w

c

)−3.27
(D.70)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. D.8 Combinations of water-cement and aggregate–cement ratios corresponding to Exam-
ple 3.1 and to Sect. 7.9 (large filled circles) and to real tests from the creep database (small hollow
circles); the solid curves indicate for which combinations models B3 and B4 predict (a) the same
ratios between parameters q3 and q2, (b) the same values of parameter q4

If the actual aggregate–cement ratio is lower than the right-hand side of (D.70), then
model B3 gives a lower ratio q3/q2 than model B4 does, and stronger aging effects
can be expected for B3 than for B4. FigureD.8a indicates that this is the case for
most (but not all) concrete compositions from the NU creep database and also for
the compositions used in Example 3.1 and in Sect. 7.9. Thus, with the exception of
concretes with high w/c and a/c ratios (i.e., concretes with a low cement content and
low strength),model B4 can be expected to predict less pronounced aging effects than
model B3. This is true not only for the elastic modulus (calculated based on creep
compliance for very short loading) but also for the evolution of creep compliance,
as will be documented in the next example.

Example D.3. Compliance curves predicted by models B3, B4, and B4s for con-
crete from Example 3.1

The basic creep compliance curves predicted by models B3 (solid), B4 (dashed) and
B4s (dotted) for the concrete from Example 3.1 are shown in Fig. D.9a. For each
model, three curves corresponding to the ages of 7, 28, and 365 days are plotted. The
distances between curves that correspond to the same model at different ages are the
largest for B3, smaller for B4, and the smallest for B4s, which confirms what has
already been said about the aging effects.

It is somewhat surprising that even though the calibration of B4 and B4s has been
partially based on the bridge deflection data, which are expected to enhance long-
term creep as compared to B3, the value of the combined parameter nq3 + q4 that
controls the terminal slope of the creep curve in the log-time scale is, for the present
typical concrete, the largest for B3, smaller for B4, and the smallest for B4s; see the
corresponding line in Table D.9. This is reflected by the terminal slope of the basic
creep curves in Fig. D.9a, which is the same as the terminal slope of the total creep
curves in Fig. D.9b.

Model B3 gives much higher long-time values of basic creep compliance than
B4, and B4 gives higher values than B4s, except for the case of loading at the age of

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3


Appendix D: Estimates of Parameters Used By RILEM Model B4 741

1 year (the bottom curves in each triplet). On the other hand, as shown in Fig. D.9c,
model B4 gives a much higher contribution of drying creep than models B3 and
B4s do. Because of that, the long-term total creep compliances of models B3 and
B4, plotted in Fig. D.9b, are comparable for concrete loaded at 7 days, even though
B4 gives substantially less basic creep. For concrete loaded at 28 days or 1 year,
the total creep predicted by B4 is even larger than that predicted by B3, due to the
large contribution of drying creep. But this contribution grows mainly between 10
days and 2000 days of load duration and virtually stops after 3000 days, which is
why for longer load durations the creep rate predicted by B3 is higher. Model B4s
gives rather low values of creep compliance compared to the other models, and the
weakest effect of aging. �
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Fig. D.9 Comparison of creep compliance function at ages 7 days, 28 days, and 365 days for
models B3, B4, and B4s: (a) basic creep, (b) total creep at drying, (c) drying part of creep

The foregoing comparison has been done for one specific concrete mix from
Example 3.1, and not all conclusions are generally valid. Example 3.1 used concrete
composition and strength very close to a real concrete tested by Komendant et al.
[551]. To complete the picture, let us also compare the predictions for another con-

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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crete with properties that were assumed in Sect. 7.9 in the context of extrapolation
of bridge deflections (see, e.g., Fig. 7.16).

Table D.10 Creep parameters for the concrete from Sect. 7.9 according to models B3, B4, and B4s
(qi in 10−6/MPa, τsh in days)

B3 B4 B4s

q1 20.3 23.68 23.68

q2 137.1 133.5 14.78

q3 2.486 8.556 15.02

q4 7.373 9.084 4.119

nq3 + q4 7.62 9.94 5.62

q5 332.8 916.4 246.9

τsh 1819 1091 1679
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Fig. D.10 Total creep compliance functions for concrete from Sect. 7.9: (a) comparison of models,
loaded at 60 days, (b)–(d) aging effect for individual models

http://dx.doi.org/10.1007/978-94-024-1138-6_7
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Example D.4. Compliance curves predicted by models B3, B4, and B4s for con-
crete from Sect. 7.9

The concrete used in Sect. 7.9 was defined by the following characteristics: mean
strength f̄c = 39 MPa, water-cement ratio w/c = 0.5, cement content c = 400
kg/m3, and density ρ = 2300 kg/m3. The effective cross-sectional thickness was set
to D = 0.25 m and the environmental humidity to henv = 65%. The corresponding
estimates of parameters predicted bymodels B3, B4, andB4s are given in TableD.10,
and the creep compliance curves (total creep, including drying creep) for the age of
60 days are shown in Fig. D.10a.

Same as for the concrete from Example 3.1, model B4s gives less creep than B3
and B4 do, and also less aging (Fig. D.10d), because parameter q2 is by an order
of magnitude smaller than for model B3. B4s also gives a less steep terminal slope
(controlled by nq3 + q4). On the other hand, unlike the previous example, model B4
exhibits aging effects comparable to B3 because it predicts almost the same value of
parameter q2 as model B3 does (Fig. D.10b, c). The ratio E (c)∞ /E (c)

28 would be 1.59
for B3, 1.38 for B4, and only 1.038 for B4s.

Drying creep is again much higher for B4 (since parameter q5 is almost three
times higher than for B3, see Table D.10), and so the total creep is now very high for
B4, and even the terminal slope of B4 is higher than for B3. �

Finally, to provide a more general picture, Fig. D.11 shows the ratios between
selected parameters predicted by models B4 and B3 for all concretes from the NU
creep database which used cements of type R and for which the basic parameters f̄c,
w/c, a/c, and c were reported. The parameters have been evaluated using the basic
form of B4 predictions (D.5)–(D.7), with no admixture-dependent adjustments. The
following trends can be identified: In comparison with model B3, model B4 gives
lower values of parameters q2 and q4 for high-strength concretes (Fig. D.11a,c)
and higher values of parameter q3 for all concretes (Fig. D.11b). Furthermore, for
high-strength concretes, model B4 predicts higher ratios q3/q2 (which means less
pronounced aging effects) and lower values of the combined parameter 0.1 q3 + q4

(which means a less steep terminal slope of creep compliance curves).

D.8 Improvements of Model B4

D.8.1 Better Prediction of Drying Creep

According to the original version of the B4 model [136], parameter q5 that controls
the magnitude of drying creep compliance is estimated using formula (D.11), which
can be rewritten as

q5(henv) = |kh(henv)|−0.85q∗
5 (D.71)

where

q∗
5 = p5

1 GPa

(
a/c

6

)−1 ( w/c

0.38

)0.78

|ε∞
sh (t0)|−0.85 (D.72)

http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_7
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. D.11 Ratios between predictions of models B4 and B3 evaluated for: (a) parameter q2, (b)
parameter q3, (c) parameter q4, (d) ratio q3/q2, (e) parameter combination 0.1 q3 + q4
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is a reference value that would be obtained at zero ambient humidity. The effect of
ambient humidity is in (D.71) incorporated via an auxiliary factor

kh(henv) =
{
1 − h3

env if henv ≤ 0.98
12.94 (1 − henv) − 0.2 if 0.98 ≤ henv ≤ 1

(D.73)

Recall that model B3 uses a humidity-independent value of q5, given by formula
(3.24), see also line 8 of Table C.2. The dependence of q5 on ambient humidity is
a new feature of model B4. Unfortunately, for henv close to 1, kh is close to 0 and
formula (D.71) with |kh| raised to a negative power leads to unrealistically high
values of q5. This deficiency results into nonphysical features in the dependence of
drying creep compliance on ambient humidity, as illustrated in Fig. D.12 for the
concrete from Example 3.1.
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Fig. D.12 Original B4model: influence of ambient relative humidity on creep compliance resulting
from formula (D.71)

Normally, in concreteswithout admixtures and strong self-desiccation, one should
get zero (or negligible) drying creep for henv = 0.98 because this value is supposed
to correspond to the sealed conditions, at which all the creep is basic. FigureD.12a
shows that, in the range of henv between 0.5 and 0.9, the additional creep compliance
due to drying decreases with increasing humidity, in agreement with the expected
trend. However, it is somewhat surprising that an increase of henv from 0.8 to 0.9
results only into a mild reduction of drying creep and the total creep compliance
curve at henv = 0.9 is still quite far from the basic creep compliance curve. A
detailed investigation reveals that when henv is increased from 0.9 to 0.94 and further
to 0.98, the natural trend gets reversed and drying creep increases, as documented in
Fig. D.12b. This is clearly a nonphysical phenomenon.

The origin of the problem can be detected by examining the dependence of the
final drying creep on ambient humidity, for a fixed concrete composition and fixed

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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times at the onset of drying and at the onset of loading. The drying creep compliance
function of model B4, given by (D.3), contains an auxiliary function g(t̂), defined in
(D.8). As the drying time t̂ = t − t0 tends to infinity, the value of g(t − t0) approaches
a finite limit, g∞ = p5H henv, while the value of g(t ′−t0) remains constant and can be
expressed as p5H [1 − (1 − henv)S0], where S0 = tanh

√
(t ′ − t0)/τsh (we consider

a typical case with t ′ ≥ t0, i.e., loading after the onset of drying). The asymptotically
approached final value of drying creep compliance is then given by

J∞
d (henv) = |kh(henv)|−0.85q∗

5

√
exp (−p5H henv) − exp (−p5H [1 − (1 − henv)S0])

(D.74)
Since the objective is to analyze the dependence of drying creep on ambient humidity,
we have explicitly marked the dependence of J∞

d and kh on henv.

J∞
d /q∗

5

|kh(henv)|−0.85

ambient humidity, henv

10.80.60.40.20

5

4

3

2

1

0

Fig. D.13 Original B4 model: dependence of factor |kh(henv)|−0.85 and of the final drying creep
J∞
d (normalized by q∗

5 ) on ambient relative humidity

As already mentioned, the origin of the problem is in the negative exponent
−0.85. The square-root expression in (D.74) decreases with increasing humidity,
as expected, and tends to zero as henv tends to 1. But |kh(henv)|−0.85, due to the
negative exponent, increases with humidity increasing up to 0.9845; see the dashed
curve in Fig. D.13. As an unpleasant consequence, the resulting value of J∞

d , which
is proportional to the product of |kh(henv)|−0.85 and the square-root term, does not
decrease monotonically with increasing henv over the entire range of humidities. The
correct trend is obtained for sufficiently low humidities, for which |kh(henv)|−0.85

increases slowly and the decreasing square-root term dominates. On the other hand,
in the range of humidities between 0.85 and 0.95, the two mutually counteracting
influences are roughly balanced and the dependence of J∞

d on henv is weak, with
a local minimum. For humidities approaching 0.98 from below, the final drying
creep increases, and for still higher humidities, it blows up. There is a singularity at
henv = 0.9845, when kh evaluated according to the second line in (D.73) becomes
equal to zero. Finally, for henv between 0.9845 and 1, the final drying creep decreases
fast from infinity to zero. The graph in Fig. D.13 has been constructed as an example
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for S0 = 0.1, which corresponds to t ′−t0 ≈ 0.01τsh. Qualitatively, the same behavior
is found for allmeaningful values of S0 between 0 and 1, as demonstrated in Fig.D.14.
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Fig. D.14 Original B4 model: dependence of the final drying creep J∞
d (normalized by q∗

5 ) on
ambient relative humidity, plotted for various values of parameter S0 = tanh

√
(t ′ − t0)/τsh

Formula (D.11) was calibrated on an extensive set of experimental data, but it
turns out that it does not possess the correct asymptotic properties for henv → 1.
The reason why the problem was not detected during calibration is that the database
contains only a limited number of drying creep tests performed at relatively elevated
humidity levels around 0.8 or 0.9. Most experiments focused either on basic creep, or
on drying creep at lower humidities, at which the increase of compliance as compared
to sealed conditions is well pronounced. An inspection of the NU database reveals
that 620 drying creep tests were run at humidities between 0.5 and 0.7, but only 8
tests at humidities between 0.71 and 0.9.

It is therefore reasonable to suppress the dependence of parameter q5 on the
ambient humidity and replace the humidity-dependent factor |kh(henv)|−0.85 in the
originally suggested formula (D.71) by a constant8 obtained by averaging over the
range 0.5 ≤ henv ≤ 0.7. That constant turns out to be equal to 1.26, and so the B4
formula (D.11) for parameter q5 is better replaced by

q5 = 1.26p5

1 GPa

(
a/c

6

)−1 ( w/c

0.38

)0.78

|ε∞
sh (t0)|−0.85 (D.75)

Note that ε∞
sh (t0) is no longer multiplied by kh . Of course, the factor 1.26 could be

absorbed by parameter p5, but for compatibility with the parameter tables presented

8Alternatively, one could keep using the original formula for humidities up to 0.7 and replace
|kh(henv)|−0.85 by a constant only in the range above 0.7. This modification would work reasonably
well for cement types R and SL but not for cement type RS, for which the original formula gives a
minimum of J∞

b already near henv = 0.7 (due to a much lower value of parameter p5H ).
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in the official RILEM recommendation, it is preferable to keep the value of p5

unchanged and explicitly consider that it should be multiplied by 1.26. When q5 is
evaluated from (D.75), the dependence of the final drying creep J∞

b on the ambient
humidity becomes monotonic over the entire range and the transition to basic creep
is continuous; see Fig. D.15. The creep compliance curves obtained for the concrete
from Example 3.1 at various ambient humidities are shown in Fig. D.16.
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Fig. D.15 Modified formulation with humidity-independent parameter q5 given by (D.75): depen-
dence of the final drying creep J∞

d (normalized by q∗
5 ) on ambient relative humidity for (a) cements

R and SL, (b) cement RS
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Fig. D.16 Modified formulation with humidity-independent parameter q5 given by (D.75): influ-
ence of ambient relative humidity on creep compliance for the concrete from Example 3.1

The general lesson that can be learned from the detected discrepancies is that one
cannot rely on mathematical optimization too much. The development of a sound
model must still involve engineering insight, to fill the gaps where data are missing
or limited.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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D.8.2 Anticipated Future Improvements of Model B4

The analysis presented in Sect. 8.7, based on new experimental evidence for the long-
term processes of hydration, self-desiccation, autogenous shrinkage, and swelling in
water immersion, will doubtless allow major improvements of model B4 and the
microprestress-solidification theory (MPS), with recalibration by a database with
thousands of curves. They will probably take a few years and thus cannot be covered
in this book (they are planned for the second edition). Nevertheless, let us at least
list some of the anticipated developments [124, A5].

1. It has become clear that the drying shrinkage includes autogenous shrinkage
in the core of test specimens and that drying creep tests are also affected by
the autogeneous shrinkage in the core. The thicker the specimen, the longer the
autogenous shrinkage goes on in the core. In the core of thick specimens, it may
proceed for years, even decades. Since autogenous shrinkage has no size effect,
it weakens the size effect on the shrinkage and on the drying part of creep, as
observed on test specimens.

2. When autogenous shrinkage is not negligible, every basic creep test, i.e., creep
of a sealed specimen, would have to be accompanied by a test of autogenous
shrinkage (on a sealed specimen), which would have to be subtracted from the
total strains of the loaded sealed specimen. The companion autogenous shrinkage
test would have to be run for the entire duration of the creep test.

3. The thousands of tests of drying shrinkage and drying creep tests in the NU
database would have to be reanalyzed, splitting the drying effect from the self-
desiccation effect in the specimen core producing the autogenous part of shrink-
age. Then, the thousands of data on the drying part and autogenous part of shrink-
age tests and drying creep tests will have to be refitted with an update of model
B4 (while simultaneously fitting the bridge database).

4. Function tanh for the B4 shrinkage curve will have to be updated. It is based on
diffusion theory, which predicts the moisture content and shrinkage to approach
a finite asymptotic value, i.e., a horizontal asymptote. Since (depending on the
fineness of cement) the autogenous shrinkage may proceed logarithmically for
years and probably even decades, it may cause the shrinkage to approach an
inclined straight line in the logarithmic scale (some test data for small specimens
hint at such an asymptote). The self-desiccation and autogenous shrinkage will
also alter the aging effects in the drying shrinkage functions and drying creep
functions. The total autogenous shrinkage must nevertheless be bounded, since
the amount of reactants is finite. However, it may take decades, perhaps even
centuries, to reach the bound.

5. When the autogenous shrinkage is strong, it also represents part of the strain
measured in creep tests of sealed specimens. This means that not all of the time-
dependent deformation of loaded sealed specimens represents creep. So the auto-
genous shrinkage would have to be separated from what was previously regarded
as the basic creep data.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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6. Since the autogenous shrinkage does not depend on the stress level and the true
creep is proportional to it, the inclusion of autogenous shrinkage must cause the
time-dependent deformation to depend on stress nonproportionally and thus cause
a false impression of nonlinear dependence of the basic creep on stress in the low
stress range. This would have to be taken into account in evaluating test data.



Appendix E
Creep Models Recommended by Design Codes

E.1 General Structure of Creep Design Formulae

This appendix summarizes the main equations and parameters recommended for
creep design calculations by the International Federation for Structural Concrete
(known under the French acronym fib) and its predecessor CEB-FIP, by theAmerican
Concrete Institute (ACI), and by the Japan Society of Civil Engineers (JSCE)

The International Federation for Structural Concrete (in French “fédération inter-
nationale du béton, fib”) was created in 1998 by merging the Euro-International
Committee for Concrete (Comité Euro-International du Béton, CEB) and the Inter-
national Federation for Prestressing (Fédération internationale de la précontrainte,
FIP). The fib Model Code 2010 is a successor of CEB Model Codes 1990 and 1999.
The creep and shrinkage model incorporated into this code will be referred to as the
fib model. The final version published in 2013 substantially differs from the earlier
CEB model.9

The American Concrete Institute (ACI) has had a permanent committee TC 209
Creep andShrinkage inConcrete. The creepmodel adopted by this committee in 1971
[11] was developed in the late 1960s by Branson and coworkers [252–254]. In 1976,
based on Bažant et al. [114], Bažant (as member of ACI TC 209) proposed a model
with a much higher multidecade creep, terminating with a logarithmic asymptote,
which was not adopted. TheACI 1971model was reapproved in the 1982 recommen-
dations [12], which were expanded by the AAEM method (see Sect. 4.2). The most
recent version, labeled as 209R-92, was published in 1992 [13] and again reapproved
(with the sole dissenting vote of the first writer) in 2008. After the recent publication
of bridge deflection data [138, 209–211], a debate on a revision has begun in ACI TC

9Note that the extensive criticism of the bounded nonlogarithmic long-term creep in the Model
Code 2010 offered in Bažant et al. [208] applied only to the 2010 draft and not to the final version
released in 2012.

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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209 by the time of writing. The ACI Guide for Modeling and Calculating Shrinkage
and Creep in Hardened Concrete [14] for the first time presents not only the ACI
model, but also the B3 model, the CEB model (predecessor of the fib model), and
the Canadian GL2000 model proposed by Gardner and Lockman [407] and slightly
modified by Gardner [406]. Model B3 was approved in 1995 as an international
RILEM Recommendation [104], as the sole model recommended by RILEM.

Concrete design codes and recommendations usually classify concrete according
to its strength. The fundamental property is the uniaxial compressive strength mea-
sured on cylinders of diameter 150 mm (6 in.) and height 300 mm (12 in.) at age 28
days. Due to inevitable scatter, the strength does not have a unique value (even for
concrete produced in the same plant from the same mix and the same batch using the
same technological procedure of mixing, casting, and curing). So, the strength needs
to be considered as a random variable. The strength value used in design procedures
for the assessment of the ultimate load-carrying capacity of a structure is not the
mean value but a certain “safe lower bound.”

In creep design, the structure is analyzed in the service state, and themean value of
deflection is of most interest. If the elastic modulus and creep properties of concrete
are estimated from strength, the mean value of strength (rather than the lower bound)
must be used. The codes specify an approximate formula that links the mean strength
to the safe lower bound, called the “characteristic strength” by fib and the “specified
strength” by ACI.

The fib Model Code (as well as the previous CEBModel Codes) uses the charac-
teristic compressive strength, fck , understood as the value below which only 5% of
all possible strength measurements may be expected to fall. The mean compressive
strength, fcm , is estimated as

fcm = fck + 8 MPa (E.1)

For instance, concrete of grade C30 has the characteristic cylinder strength of 30
MPa and the mean strength of 38 MPa. [407] proposed another formula,

fcm = 1.1 fck + 5 MPa (E.2)

which gives exactly the same difference between fcm and fck for concrete of grade
C30 but takes into account an increase of the standard deviation for higher grades.

The ACI recommendations [16] are based on the specified compressive strength,
f ′
c , which should satisfy the following two conditions:

• only 1 out of 100 test results is below a minimum value, defined as f ′
c − 500 psi

for low-strength concrete with f ′
c ≤ 5000 psi and as 0.9 f ′

c for normal-strength
concrete with f ′

c > 5000 psi,
• only 1 out of 100 averages of 3 consecutive test results is below f ′

c .

Here, a “test result” is understood as the average of values measured on two samples
(cylinders). The required average (mean) compressive strength f ′

cr is estimated from
the specified compressive strength f ′

c using the formula
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f ′
cr =

{
max

(
f ′
c + 1.34S, f ′

c + 2.33S − 500 psi
)
if f ′

c ≤ 5000 psi

max
(

f ′
c + 1.34S, 0.9 f ′

c + 2.33S
)

if f ′
c ≤ 5000 psi

(E.3)

where S is the standard deviation of tests (for the specific concrete plant, determined
from the previous tests). If the standard deviation is not available, the required mean
compressive strength is evaluated as

f ′
cr =

⎧⎨
⎩

f ′
c + 1000 psi if f ′

c < 3000 psi
f ′
c + 1200 psi if 3000 psi ≤ f ′

c ≤ 5000 psi
1.1 f ′

c + 700 psi if f ′
c ≥ 5000 psi

(E.4)

Note that 3000 psi = 20.7 MPa and 5000 psi = 34.5 MPa.
To facilitate the comparison among various codes and models, we use a unified

notation for the fundamental constants and variables: t = current time, t ′ = age
at loading, t0 = age at the end of curing (onset of drying), f ′

c = characteristic or
specified strength, f̃c = mean compressive strength (dependent on age), f̄c = mean
compressive strength at age 28 days, E = elastic modulus (dependent on age), E28 =
conventional modulus, i.e., elastic modulus at age 28 days, ϕ = creep coefficient,
ϕ28 = creep coefficient in its alternative definition,10 To avoid ambiguity in structural
analysis, the codes should specify the compliance function, J , which includes the
initial elastic deformation and is the only characteristic that matters. henv = relative
humidity of the environment, V/Se = ratio between the volume V of the concrete
member and surface area Se exposed to drying. These symbols replace the original
ones used in the code specifications (e.g., fcm and Ecm for the mean strength and
modulus, or RH for the relative humidity). On the other hand, the original notation
is kept for parameters that are specific to each individual model. In all the equations
to follow, time and age should be substituted in days.

The design code specifications related to creep assessment usually combine the
following components:

1. Time evolution of the (mean) elasticmodulus, often derived from the time depen-
dence of (mean) compressive strength.

2. Dependence of the creep coefficient on the current time and the age at loading.
3. Definition of the compliance function in terms of the elastic modulus and creep

coefficient.

10The standard definition considers the creep coefficient as the ratio of the creep strain to the elastic
strain induced by the same stress (as the creep strain) at the actual age of loading; see Eq. (3.14).
This standard creep coefficient is used by the ACI model and will be denoted as ϕ. However, the fib
model considers the creep coefficient as the ratio of the (actual) creep strain to the (fictitious) elastic
strain that would be caused by the same stress applied at age 28 days. This alternative type of creep
coefficient will be denoted as ϕ28. It is used by the fib model and also by GL2000. No matter which
specific definition of creep coefficient is used, it should be noted that the very concept of elastic
strain is highly ambiguous, as it depends on the duration within which the load is applied, which
can vary from 0.1 s to 1 h. To avoid ambiguity in structural analysis, the codes should specify the
compliance function, J , which includes the initial elastic deformation and is the only characteristic
that matters.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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4. Set of rules for the estimation of model parameters based on the concrete mix
properties, type of curing, size and shape of concrete member, ambient relative
humidity, and similar factors.

E.2 CEB and fib Model Codes

A design code developed by CEB and FIP was first approved and published in 1991
under the name of “CEB-FIP Model Code: Design Code” and republished in 1993
in CEB Bulletins No. 213 and 214. The creep description embodied in this code was
based on the work of a task group coordinated by Müller and Hilsdorf [641]. CEB
and FIPmerged in 1998 into fib, and an updated version of the code appeared in 1999
in fib Bulletins No. 1–3 and was co-opted in 2002 for Eurocode 2. A new update is
referred to as the “fib Model Code 2010,” and its final version was published in 2013
[381]. In June 2016, the fib Technical Council approved the start of activities on the
development of a new code, under the working title of Model Code 2020.

The CEB and fib codes consider the total strain in concrete as the sum of the
initial strain (in the sense of the instantaneous elastic strain), creep strain, shrinkage
strain, and thermal strain. The cross-sectional approach is used; i.e., the variation
of internal stresses and humidity across the cross section is neglected. Equations
given below refer to the mean sectional behavior of a concrete member moist-cured
at normal temperatures for not more than 14 days. They are intended for ordinary
structural concrete with the mean compressive strength between 20 and 130 MPa,
subjected to compressive stress not exceeding 40% of the mean strength (at loading)
and exposed to an environment with the mean relative humidity between 40% and
100% and mean temperature between 5 and 30 ◦C. The age at loading should be at
least 1 day.

E.2.1 CEB Model

The creep description according to the original CEB model can be summarized by
the following equations:

E28 = 21.5 GPa × αE ×
(

f̄c
10 MPa

)1/3

(E.5)

E(t) = E28

√
exp
(

s[1 −√28/t]
)

(E.6)

ϕ28(t, t ′) = φRHβ f

0.1 + t ′0.2

(
t − t ′

βH + t − t ′

)0.3

(E.7)

J (t, t ′) = 1

E(t ′)
+ ϕ28(t, t ′)

E28
(E.8)
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Equation (E.5) estimates the conventional modulus of elasticity from the mean
compressive strength at age 28 days. Parameter αE reflects the influence of aggregate
type and is set to 1.0 for quartzite aggregates, 1.2 for basalt and dense limestone aggre-
gates, 0.9 for limestone aggregates, and 0.7 for sandstone aggregates. The modulus
of elasticity is understood as the unloading modulus in a static uniaxial compres-
sive test, after previous loading to 40% of the compressive strength. The modulus
obtained from (E.5) is expected to correspond to the reciprocal value of the creep
compliance for a load duration of approximately 1 s, while the modulus used by ACI
and given by (E.28) corresponds to a load duration of about 0.01 day.

Development of the elastic modulus with time (due to aging) is described by
Eq. (E.6), in which s is a parameter equal to 0.38, 0.25, or 0.20, depending on the
strength class of cement and hardening characteristics (e.g., s = 0.25 for normally
hardening cement of strength class 42.5 or for rapidly hardening cement of strength
class 32.5).

According to (E.7), the creep curves (after subtraction of the initial strain) have
the same shape, but their amplitude depends on the age at loading. Parameters φRH

and β f express the influence of relative environmental humidity, henv, and mean
compressive strength at age 28 days, f̄c, and are given by the following expressions:

φRH =
[
1 + 10

1 − henv
3
√
2Ac/u

(
35

f̄c

)0.7
](

35

f̄c

)0.2

(E.9)

β f = 16.8√
f̄c

(E.10)

The ratio 2Ac/u in (E.9) is the notional size of the member (to be substituted in
mm), evaluated from the area of the cross section, Ac, and the perimeter of the
member in contact with the atmosphere, u. The compressive strength, f̄c, has to be
substituted in MPa. Finally, parameter βH in (E.7) again depends on the strength,
relative environmental humidity, and notional member size and is given by

βH = 1.5
2Ac

u

[
1 + (1.2henv)

18
]+ 250

√
35

f̄c
(E.11)

If the right-hand side of (E.11) exceeds 1500
√
35/ f̄c, then βH is set to this value as

a limit value.
The effect of temperature on creep can be incorporated through the factor

βT = exp

(
1500

T
− 5.12

)
(E.12)

where T is the absolute temperature in K. Factor βT multiplies βH in (E.7). It is
equal to 1 for T = 293 K, which corresponds to the reference temperature 20 ◦C.

In summary, the compliance function of the CEB model, obtained by combining
Eqs. (E.6)–(E.8), has the form
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J (t, t ′) = 1

E28
exp

(
− s

2

[
1 −

√
28

t ′

])
+ φRHβ f

E28

1

0.1 + t ′0.2

(
t − t ′

βHβT + t − t ′

)0.3

(E.13)

E.2.2 fib Model

The updated version known as the fib Model Code 2010 reuses Eqs. (E.5), (E.6), and
(E.8) of the original CEB model, but Eq. (E.7) is revised by adopting the separation
of basic and drying creep introduced in models BP [175], BPKX [151], and B3:

ϕ28(t, t ′) = ϕbc(t, t ′) + ϕdc(t, t ′) (E.14)

The basic creep is represented by the unbounded logarithmic function11

ϕbc(t, t ′) = 1.8

f̄ 0.7c

ln

⎡
⎣1 +

(
0.035 + 30

t ′
adj

)2

(t − t ′)

⎤
⎦ (E.15)

and drying creep by the bounded function

ϕdc(t, t ′) = 412

f̄ 1.4c

φRH

0.1 + (t ′
adj)

0.2

(
t − t ′

βH + t − t ′

)γ (t ′
adj)

(E.16)

with the mean compressive strength f̄c substituted in MPa.
In formulae (E.15) and (E.16), t ′

adj is the adjusted age at loading, which reflects
the effect of elevated or reduced temperatures and of the cement type on the maturity
of concrete. For cement strength classes 32.5 R and 42.5 N, the adjusted age t ′

adj is
equal to the temperature-adjusted age t ′

T , defined by the Arrhenius-type rate equation

dt ′
T

dt
= exp

(
QT

RT0
− QT

RT

)
(E.17)

in which QT /R = 4000 K, T0 = 293 K is the reference temperature, and T is
the concrete temperature (mean value over the section), substituted in K. For other
cement strength classes, the temperature-adjusted age t ′

T is transformed into the
adjusted age t ′

adj according to the formula

t ′
adj = t ′

T

(
1 + 9

2 + (t ′
T )1.2

)α

(E.18)

11The decomposition into basic and drying creep and the asymptotic logarithmic character of the
basic creep compliance bring the fib model closer to models B3 and B4. These features were not
present in the first draft of the fib code, published in 2010, which was criticized by Bažant et al.
[208]. They were incorporated into the final version, published in 2013.
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with exponent α = −1 for strength class 32.5 N, α = 0 (leading to t ′
adj = t ′

T ) for
strength classes 32.5 R and 42.5 N, and α = 1 for strength classes 42.5 R, 52.5 N,
and 52.5 R. The code stipulates that t ′

adj ≥ 0.5 days.
Note that the load duration t − t ′ in (E.15) and (E.16) is based on the actual

physical time, not on the adjusted one. The influence of the member size on drying
creep is in (E.16) reflected by parameter

βH = 1.5
2Ac

u
+ 250

√
35

f̄c
(E.19)

Same as for the CEBmodel, the ratio 2Ac/u is the notional size of the member (to be
substituted in mm), and if the right-hand side of (E.19) exceeds 1500

√
35/ f̄c, then

βH is set to this value as a limit value. The influence of environmental humidity is
taken into account by parameter

φRH = 10
1 − henv
3
√
2Ac/u

(E.20)

and the exponent in (E.16) is given by

γ (t ′
adj) = 1

2.3 + 3.5/
√

t ′
adj

(E.21)

with t ′
adj substituted in days, as usual.

The temperature-adjusted age at loading t ′
adj takes into account the effect of tem-

perature prior to loading. The effect of temperature on the development of creep can
be incorporated in the same way as for the CEB model, i.e., using factor βT given
by (E.12), which multiplies parameter βH in (E.16). In addition to that, the basic
creep coefficient ϕbc should be multiplied by φT and the drying creep coefficient ϕdc

should be multiplied by φ1.2
T , with

φT = exp[0.015(T − T0)] (E.22)

where T0 = 293 K is the reference temperature. The code also specified a transient
creep coefficient, to be used if the increase of temperature occurs while the structural
member is under load.

E.3 ACI Model

The empirical model developed by Branson and Christiason [253] was incorporated
into the recommendations of the American Concrete Institute [11] and reapproved in
the later versions [12–14]. The question of a replacement is currently under discus-
sion. The version presented here corresponds to the guide No. 209.2R-08, published
by ACI Committee 209 in 2008.
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The ACI model uses the following equations:

f̃c(t) = t

a + bt
f̄c (E.23)

E(t) = 0.043
√

ρ3 f̃c(t) (E.24)

ϕ(t, t ′) = (t − t ′)ψ

d + (t − t ′)ψ
ϕu(t

′) (E.25)

J (t, t ′) = 1 + ϕ(t, t ′)
E(t ′)

(E.26)

Times t and t ′ have to be substituted in days. Parameters a and b in (E.23) depend on
the type of cement and type of curing. For moist-cured concrete and cement of type
I (ordinary Portland cement), their recommended values are a = 4 and b = 0.85. In
(E.24), ρ denotes the mass density of concrete in kg/m3, the strength f̃c should be
substituted in MPa, and the resulting modulus E is also in MPa. Combining (E.23)
with (E.24), we can describe the evolution of the elastic modulus by

E(t) = E28

√
t

a + bt
(E.27)

where

E28 = 0.043
√

ρ3 f̄c (E.28)

is the elastic modulus at age 28 days. For normal-weight concrete, formula (E.28)
can be replaced by (3.6). If the modulus is measured directly, it is preferable to use
in (E.27) the actually measured (mean) value instead of the estimate (E.28). It could
be somewhat disturbing that if the typical parameters a = 4 and b = 0.85 are used,
the fraction in (E.27) is not exactly equal to 1 for t = 28 days. This is caused by a
truncation error. To get the exact coincidence between E(28) and E28, one should
use b = 6/7 instead of b = 0.85, and Eq. (E.27) then reads

E(t) = E28

√
7t

28 + 6t
(E.29)

The creep coefficient specified in (E.25) has the standardmeaning according to the
definition (3.14). The recommended values of the parameters in (E.25) are d = 10
andψ = 0.6. The ultimate creep coefficient for standard conditions isϕu = 2.35. The
standard conditions in the sense of the code are described by a number of parameters
specifying the concrete composition and curing, member geometry and environment,
and loading. For instance, it is assumed that the load is applied at the end of curing, at
age 7 days formoist-cured concrete or 1–3 days for steam-cured concrete, and that the
ambient relative humidity is henv = 40% and the volume–surface ratio is V/Se = 38
mm. The volume-to-surface ratio of the concrete member V/Se is equivalent to a
half of the notional size 2Ac/u used by the fib Model Code if the ends of prismatic

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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specimens or members are sealed and thus not counted in Se. For instance, for an
infinite slab, V/Se is one half of the notional size.

For other than standard conditions, ϕu is corrected by the product of six factors
that depend on t ′, henv, V/Se, slump, ratio of fine aggregate to total aggregate by
weight, and air content:

ϕu(t
′) = 2.35 γ1γ2γ3γ4γ5γ6 t ′−m (E.30)

where

γ1 =
{
1.25 for moist curing
1.13 for steam curing

(E.31)

γ2 = 1.27 − 0.67 henv (E.32)

γ3 = 2

3

(
1 + 1.13 e−0.0213 V/Se

)
(E.33)

γ4 = 0.82 + 0.00264 ssl (E.34)

γ5 = 0.88 + 0.0024 a f /at (E.35)

γ6 = max(1, 0.46 + 0.09αair ) (E.36)

m =
{
0.118 for moist curing
0.094 for steam curing

(E.37)

In these equations, t ′ is the age at loading in days, henv is the ambient relative humidity,
V/Se is the volume–surface ratio inmm, ssl is the slump inmm,a f is themass fraction
of fine aggregate, at is the mass fraction of total aggregate, and αair is the air content
in percent.

In summary, the compliance function of the ACI model, obtained by combining
Eqs. (E.25)–(E.27) and (E.30) and substituting the recommended values of parame-
ters d = 10 and ψ = 0.6, has the form

J (t, t ′) = 1

E28

√
b + a

t ′

[
1 + 2.35γ

(t ′)m

(t − t ′)0.6

10 + (t − t ′)0.6

]
(E.38)

where γ denotes the product of factors γ1 to γ6, given by (E.31)–(E.36).

E.4 GL2000 Model

The model proposed by Gardner and Lockman [407] and denoted as the GL2000
model is a major modification of the earlier Atlanta97 model (or GZ model) of
Gardner and Zhao [408]. The modification co-opts significant aspects of the 1978
BP model [175], particularly the mathematical form of shrinkage dependence on the
drying time and thickness (or the volume/surface ratio), and the additive separation
of drying creep from basic creep. Minor adjustments are incorporated in the final
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version [406], reproduced in the ACI Guide 209.2R-08 [14]. The model is applicable
to concretes with characteristic strength up to 82 MPa that do not experience self-
desiccation.

The GL2000 model in the form described in the ACI Guide 209.2R-08 can be
summarized by the following equations:

f̃c(t) = f̄c exp
(

s(1 −√28/t)
)

(E.39)

E(t) = 3.5 + 4.3
√

f̃c(t) (E.40)

ϕ28(t, t ′) = Φ

[
2(t − t ′)0.3

(t − t ′)0.3 + 14
+
√

7(t − t ′)
t ′(t − t ′ + 7)

+ ch

√
t − t ′

t − t ′ + 0.12(V/Se)2

]

(E.41)

J (t, t ′) = 1

E(t ′)
+ ϕ28(t, t ′)

E(28)
(E.42)

The strength evolution factor in (E.39) has the same form as in the fib Model
Code, but the relation between the elastic modulus and the strength is different. The
recommended values of the strength development parameter s are 0.335 for cement
of type I (ordinary Portland cement), 0.4 for type II (modified cement), and 0.13 for
type III (rapid-hardening cement). Equation (E.40) is valid in the SI units, with E in
GPa and f̃c in MPa. Combining (E.39) and (E.40), we can express the evolution of
elastic modulus more directly as

E(t) = 3.5 + (E28 − 3.5)

√
exp
(

s(1 −√28/t)
)

(E.43)

where

E28 = E(28) = 3.5 + 4.3
√

f̄c (E.44)

is the conventional modulus.
In expression (E.41) for the creep coefficient, the volume–surface ratio V/Se

needs to be substituted in mm. Parameter

ch = 2.5(1 − 1.086h2
env) (E.45)

depends on the ambient humidity and vanishes for henv = 0.96, which is the value
approximately corresponding to the relative pore humidity under sealed conditions.
Therefore, the last term in the brackets in (E.41) (which contains ch) corresponds to
drying creep, and the first two terms correspond to basic creep. The model also takes
into account the effect of drying before loading. If the member is loaded at the same
time as it is exposed to drying, parameter Φ is equal to 1 (and thus can be omitted
from (E.41)). However, if the first loading occurs at age t1 larger than the age t0 at
the onset of drying, the correction factor is evaluated as
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Φ =
√√√√1 −

√
t1 − t0

t1 − t0 + 0.12(V/Se)2
(E.46)

Note that Φ depends on the age at first loading, t1, which does not need to coincide
with t ′ in the compliance function. Of course, in a standard creep test, the load
is applied at once and t1 = t ′. However, if the material response is evaluated at
variable stress according to the principle of superposition, t ′ in the integral stress–
strain equation sweeps the interval from t1 to t , but the factor Φ to be used in (E.41)
is evaluated from t1 and thus remains constant.

In the original version of GL2000 [407], the constant multiplying (V/Se)2 in
(E.41) and (E.46)was0.15 insteadof 0.12, and the evolutionof strengthwasdescribed
by

f̃c(t) = f̄c
t0.75

a + bt0.75
(E.47)

instead of (E.39).
In summary, the compliance function of the GL2000 model in its final version,

obtained by combining Eqs. (E.41)–(E.43), has the form

J (t, t ′) = 1

3.5 + (E28 − 3.5) exp

(
s

2

[
1 −

√
28

t ′

]) + (E.48)

+ Φ

E28

⎡
⎣ 2(t − t ′)0.3

(t − t ′)0.3 + 14
+
√

7(t − t ′)
t ′(t − t ′ + 7)

+ ch

√
t − t ′

t − t ′ + 0.12(V/Se)2

⎤
⎦

E.5 JSCE Model

The creep model recommended by the Japan Society of Civil Engineers (JSCE) as
a part of the Standard Specifications for Concrete Structures [786] is applicable to
concrete with water/cement ratio between 0.4 and 0.65 and strength up to 55MPa (or
up to 70MPa if the water/cement ratio is reduced to increase the strength), loaded by
stresses not exceeding 40% of the strength, at ambient relative humidities between
45 and 80%, and for volume/surface ratios between 100 and 300 mm.

The JSCE guidelines specify the additional strain due to creep separately from
the elastic strain. The corresponding compliance function can be written as

J (t, t ′) = 1

E(t ′)
+ ΔJ (t ′)

[
1 − exp

(−0.09(t − t ′)0.6
)]

(E.49)
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where E(t ′) is the elastic modulus at age t ′ and

ΔJ (t ′) = 1.5(c + w)2(w/c)2.4(ln t ′)−0.67 × 10−9/MPa + (E.50)

+ 450(c + w)1.4(w/c)4.2
(
ln

V

10 Se

)−2.2

(1 − henv)
0.36 t−0.3

0 × 10−9/MPa

is the final increase of compliance due to creep for concrete loaded at age t ′. The
first term in (E.50) represents the contribution of basic creep, and the second is the
additional compliance due to drying creep. The cement and water contents c and w
should be substituted in kg/m3, volume V in mm3, surface in contact with outside
air Se in mm2, and times t , t ′, and t0 in days.

To take into account the effect of temperature different from 20 ◦C, the actual ages
t , t ′, and t0 should be replaced by temperature-adjusted ages computed in the same
way as according to the fib model; see (E.17).

For high-strength concrete with compressive strength exceeding 55 MPa, a dif-
ferent formula for the compliance function is recommended:

J (t, t ′) = 1

E(t ′)
+ 4w(1 − henv) + 350

12 + fc(t ′)
ln(1 + t − t ′) × 10−6/MPa (E.51)

where fc(t ′) is the compressive strength at the age of loading, substituted in MPa, w
is the water content in kg/m3, and t and t ′ are substituted in days. It is interesting that
compliance function (E.51) for high-strength concrete is logarithmic, in contrast to
the bounded compliance function for normal-strength concrete specified in (E.49).

The JSCE code also approves creep predictions based on the B3 model, ACI
model, or CEB model.

E.6 Comparison of Compliance Functions

For illustration, the graphs of compliance functions will be plotted for the five mod-
els described in this appendix and for the B3 model. The purpose of the figures is
merely to show the shape of the compliance graphs and their main features; a sys-
tematic comparison and evaluation are not attempted here. In addition to creep in an
environment of 70% relative humidity, basic creep will be considered as a special
case.

Parameters of individual models are determined or estimated for a concrete with
the same composition and under the same conditions as in Example 3.1. From the
mean strength f̄c = 45.4 MPa, the conventional modulus is estimated according
to the ACI formula (3.6) as E28 = 31.9 GPa, while the GL formula (E.44) gives
E28 = 32.5 GPa. Assuming limestone aggregates (αE = 0.9), the fib formula (3.7)
gives 32.0 GPa. Since these values are quite close, we set E28 = 32 GPa for all the
models.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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The values of parameters of model B3 are taken from Example 3.1: q1 = 18.81,
q2 = 126.9, q3 = 0.7494, q4 = 7.692, q5 = 327.0, all in 10−6/MPa; τsh = 1121
days, and ε∞

sh = 701.1 × 10−6.
For theCEBmodel, we consider s = 0.25 (normally hardening cement of strength

class 42.5), parameter β f = 2.49 follows from (E.10), and parameters φRH = 1.46
and βH = 376 follow from (E.9) and (E.11) with henv = 0.7 and 2Ac/u = 100
mm. For basic creep, φRH is set to 1, and parameter βH evaluated from (E.11) would
exceed its maximum allowed value, 1500

√
35/ f̄c = 1317, so it is set to that value.

For the fib model, parameters φRH = 0.6463 and βH = 370 follow from (E.20)
and (E.19)with f̄c = 45.4MPa, henv = 0.7, and 2Ac/u = 100mm.The temperature-
adjusted age t ′

adj is considered as equal to the actual age, t ′.
For the ACI model, we consider parameters a = 4, b = 6/7, and m = 0.118

(moist-cured concrete and cement of type I). If we knew themass density ρ, we could
estimate the conventional modulus from (E.28). For instance, for ρ = 2400 kg/m3,
we would get 34.1 GPa, which is not that far from the value of 31.9 GPa obtained
from (3.6). Since the exact mass density is not specified, E28 = 32 GPa will be used,
same as for the other models. It remains to determine parameters γi , i = 1, 2, . . . , 6,
and their product, γ . We set γ1 = 1.25 (moist curing), and for henv = 0.7 and
V/Se = 100 mm, we get γ2 = 0.801 and γ3 = 0.756. Since the slump, fraction of
fine aggregate, and air content are not known, parameters γ4, γ5, and γ6 are set to 1
(default value). The resulting parameter γ is thus γ = 1.25×0.801×0.756 = 0.757.
For basic creep, we take γ2 = 0.627 corresponding to henv = 0.96, and the resulting
value of γ is 0.593. It is somewhat disturbing that parameter γ and thus also the
compliance function is affected by the size of the member even in the absence of
drying (through γ3, which depends on V/Se). Note that the effect of the member size
is incorrectly introduced by vertical scaling of the compliance function rather than
by its horizontal shift in the log-scale.

For the GL2000 model, V/Se is set to 100 (mm) and, for henv = 0.7, formula
(E.45) gives ch = 1.17. According to (E.46), parameterΦ depends on the age at first
loading, t1, and on t0 = 7 (days) and V/Se = 100 (mm). In the present example,
we consider loading at ages t1 = 7, 28, and 365 days, and the corresponding values
of Φ are 1.0, 0.932, and 0.722. In the case of basic creep, ch is set to zero and Φ

is considered as 1, because drying in fact never starts and thus it does not precede
loading.

For the JSCE model, the compliance increase due to creep is determined from the
cement content c = 450 kg/m3, water content w = 170 kg/m3, volume/surface ratio
V/Se = 100 mm, and onset of drying at t0 = 7 days. Formula (E.50) givesΔJ (7) =
35.7× 10−6/MPa, ΔJ (28) = 24.9× 10−6/MPa, and ΔJ (365) = 17.0× 10−6/MPa
for basic creep, and ΔJ (7) = 39.2 × 10−6/MPa, ΔJ (28) = 28.4 × 10−6/MPa, and
ΔJ (365) = 20.5× 10−6/MPa for creep at drying. The evolution of elastic modulus
is estimated using the ACI formula (E.27).

Figure E.1 displays the compliance curves for the six models considered here.
The left column corresponds to basic creep and the right one to drying creep, in each
case for three different ages at loading (from top to bottom, t ′ = 7, 28, and 365 days).

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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Fig. E.1 Compliance functions predicted by various creep models: (a) basic creep, (b) creep at
ambient humidity henv = 70%

One drawback of the code formulae according to CEB, ACI, and JSCE, which is best
shown in Fig. E.1b, is that they lead to bounded creep curves. Long-time experiments
indicate that the creep curves approach straight lines in the semilogarithmic scale,
which means that, for long load durations, the compliance grows as a logarithmic
function and thus is unbounded. This feature is directly incorporated into models
B3 and B4 and into the new fib model (see the solid curves in Fig. E.1) and is also
reasonably well captured by the GL2000 model, which uses a bounded compliance
function, but the finite limit would be approached for load durations by several
orders of magnitude larger than any durations of practical interest. To illustrate that,
the compliance functions for age at loading 28 days (including the effect of drying
creep) are replotted in Fig. E.2 for hypothetical load durations up to 109 days.
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Fig. E.2 Compliance functions at age 28 days and ambient humidity henv = 70% predicted by
various creep models and plotted up to extremely long load durations

Note that the slope of the line approached by the new fib model is substantially
lower than for the B3 model. This is true in general, because the coefficient multi-
plying the logarithmic term is q4 +0.1q3 for the B3 model and 1.8/(E28 f̄ 0.7c ) for the
fib model. In the present example, these coefficients amount to 7.77 × 10−6/MPa
and 3.89 × 10−6/MPa, resp. In general, q4 = 20.3(a/c)−0.7 × 10−6/MPa, which
is for aggregate/cement ratios between 2 and 6 roughly in the range between 6 and
12 × 10−6/MPa, while the coefficient for the fib model is evaluated as

1.8

E28
×
(
1MPa

f̄c

)0.7

= 1

αE

(
1MPa

f̄c

)1.03̄

× 185 × 10−6/MPa (E.52)

which is for limestone aggregates (αE = 0.9) and for strengths between 20 and 45
MPa roughly in the range between 3 and 8 × 10−6/MPa.

For instantaneous visualization of the creep and shrinkage curves predicted by
Model B3 for various input values, K.-T. Kim developed a program described in
[545] and downloadable as “Model B3 Creep Design Aid Program” from the first
author’s website (http://www.civil.northwestern.edu/people/bazant).

http://www.civil.northwestern.edu/people/bazant


Appendix F
Continuous Retardation Spectrum

The concept of a retardation spectrum, to be presented in this section, is very effec-
tive computationally and is also useful for deeper understanding of the behavior of
a viscoelastic material, especially with regard to the time scale at which the viscous
processes take place. One Kelvin unit has a well-defined characteristic time, the
retardation time τ = η/E , which sets the intrinsic time scale of the model and deter-
mines which loading rates are considered as “slow” and which ones as “fast.” The
retardation time τ and the compliance 1/E are parameters of the compliance func-
tion (A.23) and uniquely characterize the model. A Kelvin chain can be described
by the retardation times of the individual units, τμ, and the corresponding compli-
ances, 1/Eμ, μ = 1, 2, . . . , M . It turns out that a general viscoelastic model can be
characterized by a continuous spectrum of retardation times and compliances. From
the mathematical point of view, such a spectrum is related to the inverse Laplace
transform of the compliance function.

In a similar spirit, one could define the relaxation spectrum, which would be
related to the inverse Laplace transform of the relaxation function, and for aMaxwell
chain would be discrete. As already mentioned, models for creep of concrete usually
specify the compliance function and not the relaxation function, and so we will
restrict our attention to the retardation spectrum.

F.1 Relation Between Compliance Function and
Retardation Spectrum

Consider the Dirichlet series in (A.25), representing the compliance function of a
nonaging Kelvin chain. The diagram of the compliances 1/Eμ versus ln τμ is called
the retardation spectrum of the material. For a Kelvin chain model with a finite
number M of Kelvin units, the spectrum is discrete, consisting of a set of vertical
lines (Fig. F.1a). However, it is advantageous to conceive a generalization of equation
(A.25) in which the spectrum is continuous (Fig. F.1b); that is, the chain consists of

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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Fig. F.1 (a) Discrete and (b) continuous retardation spectrum

infinitely many Kelvin units with infinitely small compliances 1/Eμ and with the
retardation times τμ distributed infinitely closely. According to this generalization,
well known from classical viscoelasticity (e.g., [818]), one has, as the limit case of
(A.25),

Φ(t) =
∫ ∞

τ=0
L(τ )

(
1 − e−t/τ

)
d(ln τ), t ≥ 0 (F.1)

in which function L(τ ) characterizes the continuous spectrum, and the compliance
function of the nonaging material is now denoted as Φ instead of J0, just for formal
reasons. It should be noted that if L is a regular function (i.e., with no Dirac-delta-
like terms), Φ(t) is continuous and vanishes at t = 0. Therefore, the instantaneous
(elastic) compliance is not reflected in the spectrum and must be added separately,
which is straightforward.

The continuous spectrum is very useful when a given compliance function (e.g.,
defined by an analytical formula containing power functions and logarithms) is to be
approximated by a Dirichlet series, which is needed for an efficient rate-type numer-
ical approach (Sect. 5.2). Of course, one could try to construct the approximation
directly, by minimizing a suitable measure of the difference between the “exact”
compliance function and the Dirichlet series. This is a somewhat tedious procedure,
which can be circumvented by considering the Dirichlet series (A.25) as a numerical
approximation of the integral in (F.1). If function L(τ ) is known and the discrete
retardation times τμ are selected, determination of the compliances 1/Eμ based on
a suitable numerical quadrature scheme leads to explicit formulae.

An important point is that a good approximation of the continuous spectrum
can be obtained analytically, exploiting the Post-Widder formula [866, 867] for the
inversion of Laplace transform. It can be shown that the sequence of approximations

Lk(τ ) = − (−kτ)k

(k − 1)! Φ(k)(kτ), k = 1, 2, . . . (F.2)

http://dx.doi.org/10.1007/978-94-024-1138-6_5
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converges to the continuous spectrum, i.e.,

L(τ ) = lim
k→∞ Lk(τ ) (F.3)

Here, k is the desired order of approximation, and Φ(k) denotes the kth derivative of
the compliance function. This approach can be used only if the compliance function
Φ(t) is sufficiently smooth. Therefore, scattered test data cannot be used directly but
must be fitted by a smooth compliance function before the spectrum can be approx-
imated by (F.2). Readers who are not interested in the mathematical background of
the Post-Widder formula can skip the remaining part of this section and proceed
directly to Sect. F.2.
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Fig. F.2 (a) Functions fk(τ ) = τ−ke−t/τ for fixed t = 1, (b) functions ψk(η)

Formula (F.2) can be derived by the differentiation of Eq. (F.1). Taking the kth
derivative with respect to t , we obtain

Φ(k)(t) = (−1)k−1
∫ ∞

τ=0
L(τ )τ−ke−t/τ d(ln τ) (F.4)

Now consider the function
fk(τ ) = τ−ke−t/τ (F.5)

that multiplies L(τ ) in the above integral. For a fixed value of t , this function of τ

tends to zero as τ → 0+ and as τ → ∞ and attains its maximum at τ = τ̄k ≡ t/k;
see Fig. F.2a. Therefore, the integral is mainly affected by the value of L near this
point. If we replace L(τ ) by L(t/k), we can take it out of the integral and construct
the approximation

Φ(k)(t) ≈ (−1)k−1L

(
t

k

)∫ ∞

τ=0
τ−ke−t/τd(ln τ) = (−1)k−1L

(
t

k

)
(k − 1)!

t k
(F.6)

Formal replacement of t by kτ then leads to the Post-Widder formula (F.2).
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On purpose, we have presented the derivation in a somewhat sloppy way, to keep
it simple and to emphasize the main idea, namely that the spiky function fk(τ )

multiplying L(τ ) in the integral acts as a filter that samples the value of L near
τ̄k ≡ t/k. A rigorous mathematical proof can be based on a series of functions ψk

that are related to fk and converge to the Dirac distribution, for which the value of
the integral indeed depends exclusively on the value of L at τ̄k . To make sure that
all functions in this series are centered around the same point, we first write them as
functions of a dimensionless time variable ξ = τ/τ̄k . Setting

φk(ξ) = fk(τ̄kξ) (F.7)

we obtain functions that all attain their maximum at ξ = 1. In the next step, we
normalize these functions such that the area under their graphs becomes equal to
unity. Since the integral in (F.4) uses a differential of ln τ , we need to scale the
function by factors

Ik =
∫ ∞

ξ=0
φk(ξ) d(ln ξ) =

∫ ∞

τ=0
fk(τ ) d(ln τ) =

∫ ∞

0
τ−k−1e−t/τ dτ = (k − 1)!

t k

(F.8)
Finally, to facilitate the interpretation of the limit as the Dirac distribution, it is useful
to consider ln ξ as another dimensionless variable, η, which varies from minus to
plus infinity.

Combining all these considerations, we define functions

ψk(η) = 1

Ik
φk(e

η) = 1

Ik
fk(τ̄ke

η) (F.9)

Their graphs are plotted in Fig. F.2b. Each graph has its peak at η = 0 (which
corresponds to ξ = 1 and to τ = τ̄k) and the area under it is equal to unity. It can
be shown that functions ψk tend to the Dirac distribution δ as k → ∞. In terms of
these functions, Eq. (F.4) can be rewritten as

Φ(k)(t) = (−1)k−1
∫ ∞

τ=0
L(τ ) fk(τ ) d(ln τ) = (−1)k−1 Ik

∫ ∞

−∞
L(τ̄ke

η)ψk(η) dη

(F.10)
from which

∫ ∞

−∞
L(τ̄ke

η)ψk(η)dη = (−1)k−1Φ(k)(t)

Ik
= (−1)k−1 t kΦ(k)(t)

(k − 1)! = Lk

(
t

k

)
(F.11)

where Lk is the function defined in (F.2) and representing the kth order approximation
of the retardation spectrum L . As k approaches infinity, the integral on the left-hand
side of (F.11) tends to

L(τ̄ke
0) = L(τ̄k) = L

(
t

k

)
(F.12)
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which proves the Post-Widder formula (F.3).
Finally, it is worth noting that the original Post-Widder formula applies to the

approximate inversion of Laplace transform, and its extension to the approximation
of retardation spectrum is, under certain assumptions, justifiedby splitting the integral
in (F.1) into two parts:

Φ(t) =
∫ ∞

τ=0
L(τ ) d(ln τ) −

∫ ∞

τ=0
L(τ )e−t/τ d(ln τ) (F.13)

Using substitution z = 1/τ , the last integral can be rewritten as

∫ ∞

τ=0
L(τ )e−t/τ d(ln τ) =

∫ ∞

0

1

z
L

(
1

z

)
e−t z dz (F.14)

which corresponds to the Laplace transform of function L∗ defined by the formula
L∗(z) = L(1/z)/z. Since the first integral on the right-hand side of (F.13) is inde-
pendent of t , it can be concluded that the compliance function Φ differs from the
Laplace transform of −L∗ only by a constant and therefore has the same derivatives.
Application of the original Post-Widder formula to−L∗ then leads to (F.2) and (F.3).
However, this reasoning is correct only if the first integral on the right-hand side of
(F.13) is finite. This is the case for the retardation spectra of bounded compliance
functions, such as the functions used by ACI or CEB (to be discussed in Sect. F.3),
or the drying creep compliance function of models B3/B4 (Sect. F.4), but not for
the retardation spectra of unbounded compliance functions, such as the basic creep
function of model B3 (Sect. F.2). For unbounded compliance functions, the integral
in (F.1) is still finite, but it cannot be split as suggested in (F.13) because the inte-
grals on the right-hand side would both be infinite. The derivation presented here in
(F.7)–(F.12), which follows [522], does not make any direct reference to the Laplace
transform and shows that formulae (F.2)–(F.3) are applicable even to models such as
B3 or B4, with a logarithmic growth of the compliance function.

Special treatment would be needed for models with an asymptotically linear com-
pliance growth. For instance, for the simple Maxwell model and for t > 0, the com-
pliance function (A.11) is linear and its second and higher derivatives vanish, which
means that approximations (F.2) of all orders higher than 1 would vanish as well.
Since models with creep rate asymptotically approaching a nonzero limit are not
realistic for concrete, this case does not need to be considered here.

F.2 Spectrum of Log-Power Law

To demonstrate the convergence properties of the Post-Widder formula and to give an
example of a continuous retardation spectrum, we consider the compliance function
given by the log-power law
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Φ0(t) = q3 ln[1 + (t/λ0)
n] (F.15)

in which λ0 = 1 day, and n and q3 are empirical constants. Note that this function
is actually used by the B3 and B4 models (Chap.3) as the compliance function of
the nonaging constituent, in the context of the solidification theory (Chap.9). Since
q3 is just a scaling factor and the standard value of parameter λ0 is 1 day, we focus
attention on the function

Φ(t) = ln(1 + tn) = ln( f (t)) (F.16)

where
f (t) = 1 + tn (F.17)

is an auxiliary function, introduced for convenience.

F.2.1 Straightforward Application of Post-Widder Formula

In terms of the auxiliary function f given by (F.17), the derivatives of Φ can be
expressed in a relatively simple form:

Φ ′ = f ′

f
(F.18)

Φ ′′ = f ′′

f
− f ′2

f 2
(F.19)

Φ ′′′ = f ′′′

f
− 3 f ′ f ′′

f 2
+ 2 f ′3

f 3
(F.20)

Φ I V = f I V

f
− 4 f ′ f ′′′ + 3 f ′′2

f 2
+ 12 f ′′ f ′2

f 3
− 6 f ′4

f 4
(F.21)

For convenience,wehave omitted the argument t , andwehave denoted the derivatives
with respect to t by primes instead of dots. For the fourth and higher derivatives, we
use Roman superscripts I V , V , etc. A general derivative of order k will be denoted
by a superscript in parentheses. The derivatives of function f are given by

f (k) = nktn−k (F.22)

where12

nk =
k−1∏
i=0

(n − i) (F.23)

12Formula (F.23) means that n1 = n, n2 = n(n − 1), n3 = n(n − 1)(n − 2), etc.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_9
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are auxiliary constants introduced for the sake of brevity. Substituting all this into
(F.2), we can construct the first four approximations of L(τ ). Only the first three are
presented here explicitly:

L1(τ ) = τΦ ′(τ ) = nτn

1 + τn (F.24)

L2(τ ) = −4τ2Φ ′′(2τ) = n(2τ)n [1 − n + (2τ)n ]
[1 + (2τ)n ]2 (F.25)

L3(τ ) = 27

2
τ3Φ ′′′(3τ) = n(n − 1)(n − 2)(3τ)n

2[1 + (3τ)n ] − 3n2(n − 1)(3τ)2n

2[1 + (3τ)n ]2 + n3(3τ)3n

[1 + (3τ)n ]3 (F.26)

For higher orders, the complexity of the formulae increases, but they are still man-
ageable.
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Fig. F.3 Approximations of the continuous retardation spectrum of the log-power law by the Post-
Widder formula of various orders for (a) exponent n = 1, (b) exponent n = 0.5, (c)–(d) exponent
n = 0.1

Convergence of the approximations Lk(τ ) to the continuous retardation spectrum
L(τ ) is first examined for the simplest case with exponent n = 1. In this case, the
formulae are greatly simplified (because the derivatives of f of second and higher
orders vanish). It is even possible to give an explicit formula for the approximations
of an arbitrary order,

Lk(τ ) =
(

kτ

1 + kτ

)k

, k = 1, 2, . . . (F.27)
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and find the limit

L(τ ) = lim
k→∞

(
kτ

1 + kτ

)k

= e−1/τ (F.28)

FigureF.3a shows, in semilogarithmic scale, selected approximations up to order 7
and their limit (F.28). The value of L grows monotonically from 0 to 1 as τ varies
from 0 to infinity. The extreme values are captured correctly by all approximations,
but in the intermediate range (τ between 0.1 and 1), the error is considerable even
for k = 7.

Fortunately, the quality of the approximations is much better for smaller values
of exponent n, as shown in Fig. F.3b, c. Here, the exact expression for L(τ ) is not
available, but it is clear that for n = 0.5, the difference between the approximations
of orders 4 and 7 is already very small (Fig. F.3b), and for n = 0.1, which is the
standard value used in the B3 and B4 models, all approximations seem to be almost
identical (Fig. F.3c).Wecan also see that the rangeof values τ overwhich a substantial
variation of L takes place becomes much wider if the exponent n is decreased. Note
that Fig. F.3c covers the range from 10−15 to 1015 while Fig. F.3d shows a close-up
of the range from 0.1 to 10.

Once a good approximation of the continuous retardation spectrum has become
available, we can proceed to discretization of the integral in (F.1) and construct an
approximation of the compliance function by a Dirichlet series. This procedure is
somewhat complicated by the fact that the integration is performed with respect to
ln τ , which spans an infinite domain. The discrete spectrum contains only a finite
number of retardation times τμ, but the part of the integral between τ = 0 and τ = τ1
corresponds to a semi-infinite interval in the space of ln τ . One might think that the
integration can be performed with respect to τ over a finite interval [0, τ1], but if
d(ln τ) is replaced by dτ/τ , then the function to be integrated with respect to τ

tends to infinity as τ → 0+ (provided that n < 1, which is always the case).
Nevertheless, the problem can be overcome if one recalls that the Dirichlet series

is expected to provide a close approximation of the compliance function only in a
certain range of load durations t , which is determined by the choice of the discrete
retardation times. So the numerical evaluation of the integral in (F.1) needs to be
accurate only for t of the same order of magnitude as τ1 or larger. Therefore, for
those load durations t that are of interest and for all values τ � τ1, the term 1−e−t/τ

is very close to 1. This brings us to the idea that the semi-infinite interval with
ln τ ranging from −∞ to ln τ0 (where τ0 will be specified later) can be processed
separately, with 1−e−t/τ set to 1, and the integral of L(τ ) over that interval becomes
a constant, which in fact represents the compliance 1/E0 of the spring considered
as the zeroth unit in the Kelvin chain. The next part of the integral, from τ0 to τM , is
discretized using a simple midpoint rule.

To achieve a good compromise between efficiency and accuracy, the discrete
retardation times are often selected such that they form a geometric progression with
quotient 10, i.e., τμ = 10μ−1τ1,μ = 2, 3 . . . M . Each of these times is representative
of one order of magnitude, covering the interval from τμ/

√
10 to τμ

√
10. It is thus
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natural to set τ0 = τ1/
√
10 and to assign equal integration weights to all times τμ

(this choice corresponds to the midpoint rule). The numerical approximation of (F.1)
is then written as

Φ(t) =
∫ ∞

τ=0
L(τ )

(
1 − e−t/τ

)
d(ln τ) ≈

≈
∫ τ1/

√
10

τ=0
Lk(τ ) d(ln τ) + (ln 10)

M∑
μ=1

Lk(τμ)(1 − e−t/τμ) ≡ Φk(t) (F.29)

This approximation corresponds to the Dirichlet series with

1

E0
=
∫ τ1/

√
10

τ=0
L(τ ) d(ln τ) (F.30)

1

Eμ

= (ln 10) L(τμ), μ = 1, 2, . . . , M (F.31)

The part of the integral from τM to infinity is neglected. The approximation is then
inaccurate for t � τM but still acceptable for t ≤ τM . Note that for t in the order of
τM or smaller and for τ � τM , the value of 1−e−t/τ is very small and the contribution
to the integral can be neglected.

For k = 1 and k = 2, the integral of Lk(τ ) can be evaluated analytically and
the resulting formulae for the zeroth term of the approximation (compliance of the
elastic spring) read

1

E0
= ln(1 + τ n

0 ) for k = 1 (F.32)

1

E0
= ln(1 + (2τ0)

n) − n(2τ0)n

1 + (2τ0)n
for k = 2 (F.33)

where τ0 = τ1/
√
10.
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Fig. F.4 Approximations of the compliance function (log-power law) by a Dirichlet series based
on (a) Post-Widder formulae of orders 1 and 2, (b) Post-Widder formula of order 2 with additional
corrections
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Accuracy of the approximation in (F.29) is illustrated by a specific example with
τ1 = 10−3 day and M = 8. For the Post-Widder formulae of orders k = 1 and
k = 2, approximation (F.29) is graphically shown in Fig. F.4a, along with the exact
compliance function (F.16).

The agreement within the relevant range of times is not bad but, upon closer
examination, the approximation by Dirichlet series is found to be systematically
above the exact values, as if the whole curve were shifted. This is partially due to
the difference between Lk and L , but raising the order of the Post-Widder formula to
k = 3 or 4 brings only a partial improvement. Since the compliance curves are very
close to the exact one, the accuracy is better assessed by looking at the relative error,
defined as [Φk(t) − Φ(t)]/Φ(t), where Φk is the approximation defined in (F.29).

As shown in Fig. F.5, the relative error exhibits oscillations, caused by the finite
spacing of the retardation times, but stays (within the range of interest covered by
the selected retardation times, i.e., from 10−3 day to 104 day) below 6% for the first-
order and below 3% for the second-order approximation. For higher-order approx-
imations, some effort is required to compute 1/E0 based on the integral of Lk(τ ),
because analytical integration would be quite tedious. Therefore, 1/E0 is evaluated
by integrating L analytically from τ = 0 to τ = 10−20 using the exact integral of
L2, and then, the integration of Lk from τ = 10−20 to τ = τ1/

√
10 = 10−3.5 day

is performed numerically, using the Simpson rule. The error further decreases as
compared to k = 2, but not substantially, and the compliance is still systematically
overestimated; see the curve for k = 4 in Fig. F.5, with relative error between 1%
and 1.5%. For the third-order approximation (F.26), adopted by Bažant and Xi [202],
the relative error is around 2%, which can be acceptable for practical applications.
However, the accuracy can be dramatically increased by a modification described in
the next subsection, and then, the simpler second-order formula (F.25) turns out to
be fully sufficient.
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Fig. F.5 Relative error of various approximations of the compliance function (log-power law)
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F.2.2 Improved Technique Based on Shifted Retardation
Times

As shown in Fig. F.5, improving the accuracy by an increase of the approximation
order k is too tedious and not reallyworth the effort. Fortunately, Jirásek andHavlásek
[522] proposed another technique, much easier, albeit somewhat heuristic. If all
retardation times are multiplied by the same correction factor (while leaving the
associated compliances unchanged), the graph of the Dirichlet series approximation
is shifted to the right and the accuracy can be substantially increased. The optimum
value of the correction factor is easily found by a trial-and-error procedure. A more
rigorous approach could be based on nonlinear optimization techniques, but the result
would anyway depend mainly on the choice of the range in which the error (in the
least-square sense) should be minimized. In the present example, if the compliances
1/Eμ are determined based on the Post-Widder formula with k = 2 and then all
retardation times aremultiplied by 1.35, the error oscillates around amean value close
to zero (see the solid curve labeled as “improved” in Fig. F.5), and the approximation
becomes almost optimal within the range of interest, with relative error below 0.3%.

Interestingly, it is possible to introduce yet another improvement, which expands
the range of times over which the approximation is acceptable. The compliance
associated with the longest relaxation time, τM , can be increased such that the times
just above τM are better represented. In fact, since the integral is numerically evaluated
only up to τ = τM

√
10 and the remaining part up to τ = ∞ is neglected, it makes

sense to increase the upper limit at which the integral is truncated, which corresponds
to an increase of the integration weight of the last point and thus of the compliance
1/EM . Howmuch to increase the upper limit is hard to determine theoretically, but it
can be done again by trial and error, looking at the resulting effect on the compliance
function. For the present example, an increase of 1/Eμ by a factor 1.2 has been
found to work best. The final approximation of the compliance function is plotted in
Fig. F.4b, and the corresponding error is shown by the curve labeled as “extended”
in Fig. F.5 (which coincides for times t up to 100 days with the solid curve labeled
as “improved”).

Let us emphasize that the correction factors 1.35 and 1.2, applied to the retarda-
tion times and to the compliance associated with the largest retardation time, were
determined empirically by Jirásek and Havlásek [522], but it can be verified that
they are applicable independently of the choice of the first retardation time τ1 and of
the number M of terms in the Dirichlet series. The relative error after the correction
oscillates around zero and does not exceed ±0.3%. However, all this refers to the
log-power law (F.15), which forms the basis of the solidification part of model B3.
For other types of compliance functions, such factors need to be re-evaluated.

It may seem strange why we apply correction factors to an approximation that
is based on a mathematical formula with proven convergence. The explanation is
that while the standard approximations do converge to the exact solution, they do not
necessarily do so in the optimal way. The reason becomes apparent if one looks at the
graphs in Fig. F.2. Functionsψk shown in Fig. F.2b converge to the Dirac distribution
but are not symmetric. They have been constructed by a certain transformation of the
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original functions fk in Fig. F.2a, based on the condition that the peak value should
always be attained at η = 0. But then the values for positive η are somewhat larger
than for negative η with the same magnitude, and since function L is increasing, the
integral in (F.10) is necessarily larger than the value of L at the sampling point τ̄k . It
is thus logical that the approximations Lk converge to L monotonically from above
and that the corresponding compliances are overestimated. In principle, one could
use another criterion for centering functionsψk around the origin. For instance, using
the center of gravity instead of the maximum point could be regarded as a reasonable
choice. In that case, τ̄k = t/k would be replaced by τ̄ ∗

k = t/ck , where

ck = exp

(
−
∫∞
0 ζ−ke−1/ζ ln ζ d(ln ζ )∫∞

0 ζ−ke−1/ζ d(ln ζ )

)
(F.34)

The integral in the denominator is equal to (k − 1)!, but the integral in the numerator
must be evaluated numerically. If a modified approximation L∗

k is constructed using
the same approach as in (F.7)–(F.12) but with τ̄k replaced by τ̄ ∗

k , the last part of
formula (F.11) needs to be replaced by

L∗
k

(
t

ck

)
= (−1)k−1 t kΦ(k)(t)

(k − 1)! (F.35)

Comparing this expression with the original form of (F.11), we obtain the relation
L∗

k (t/ck) = Lk (t/k), which can also be written as

Lk (τ ) = L∗
k

(
k

ck
τ

)
(F.36)

This means that the compliance evaluated from the standard formula (based on Lk)
for a certain retardation time τμ should, according to the modified approach (based
on L∗

k ), actually refer to retardation time (k/ck)τμ, where k/ck is a certain correction
factor.

For k = 2, the value of the integral in the numerator of (F.34) is close to
−0.4228, and constant c2 is thus equal to e0.4228 = 1.526. The correction factor
2/c2 = 2/1.526 ≈ 1.31 justified by the foregoing considerations is quite close to
the optimal scaling factor 1.35 found by numerical calculations. For higher-order
approximations, similar factors could be derived; their values would be lower and
would tend to 1 with increasing approximation order k. In this sense, the modified
approach converges to the same limit as the standard one, but the convergence is
faster.

A good agreement between the theoretical correction factor 1.31 and the empirical
optimal factor 1.35 is related to the fact that the actual spectrum L of the log-power law
is in a wide range of retardation times an almost linear function of ln τ ; see Fig. F.3d.
Since ln τ differs from ln ξ only by a constant, the dependence of L on η = ln ξ is
also almost linear. In such a case, the choice of functionψ∗

2 with the center of gravity
(instead of the maximum point) placed at the origin of the η-space makes the integral
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of ηψ∗
2 (η) vanish, and the error of the approximation is thus substantially reduced.

However, this is not a universal rule. For compliance functions with a nonnegligible
curvature of the corresponding spectrum, application of a constant correction factor
to all retardation times leads to a partial improvement only, as will be shown in the
next sections.

To summarize the results of our analysis and to provide hints for practical appli-
cations, we can give the following recommendations:

• For approximation of the log-power law (F.15) with n = 0.1 and λ0 = 1 day by
Dirichlet series, the Post-Widder formula with k = 2 is considered as the best
compromise between simplicity and accuracy. If an error in the order of 3% is
deemed negligible from the engineering point of view, the formula can be used
directly. The compliances of theKelvin chain are then given by simple expressions

1

E0
= q3 ln(1 + τ̃0) − q3τ̃0

10(1 + τ̃0)
, τ̃0 =

(
2τ1√
10

)0.1

(F.37)

1

Eμ

= (ln 10)
q3τ̃μ(0.9 + τ̃μ)

10(1 + τ̃μ)2
, τ̃μ = (2τμ

)0.1
, μ = 1, 2, . . . , M (F.38)

where τ1 is the shortest retardation time and τμ = 10μ−1τ1, μ = 2, 3, . . . , M .
• If a high accuracy is desired, the retardation times can be multiplied by the empir-
ical factor 1.35 and the compliance 1/EM associated with the longest retardation
time τM can be multiplied by another empirical factor 1.2. This procedure is much
more efficient than increasing the order of Post-Widder formula, k. It is advisable
to check the accuracy by comparing the approximation to the exact compliance
function and to adjust the empirical factors, if needed.

It is appropriate to stress again the purpose of the developed procedure, since it
may seem that we have started from a compliance function given by a very simple
analytical formula and after a series of steps we end up with its approximation that
has a complicated form and is valid only for a certain range of load durations. True,
but the point is that if the compliance function is converted to the Dirichlet series
that corresponds to a Kelvin chain, the stress–strain relation can be described by
a set of differential equations (governing individual units of the chain) instead of
an integral expression. This is inevitable when pore humidity or temperature vary,
and has tremendous advantages for numerical solutions covering general loading
conditions, as explained in detail in Sect. 5.2.

F.3 Spectra of ACI and CEB Models

Let us now explore the retardation spectra of the creep models recommended by
ACI or CEB. These models take into account aging, and their compliance functions
depend on two arguments, t and t ′. According to both codes, the compliance functions
have the general form

http://dx.doi.org/10.1007/978-94-024-1138-6_5
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J (t, t ′) = 1

E(t ′)
+ c

Φ(t − t ′)
g(t ′)

(F.39)

in which E(t ′) is the aging elastic modulus, c is a positive constant (independent of
t and t ′, but possibly dependent on environmental humidity, concrete composition,
etc.), Φ(t − t ′) is an increasing function describing the shape of the creep curve, and
g(t ′) is an increasing function that reflects aging (creep is reduced if the concrete is
loaded at a higher age). For simplicity, we omit here multiplication by H(t − t ′),
and so the expression in (F.39) is valid for t ≥ t ′ and should be complemented
by J (t, t ′) = 0 for t < t ′. If we approximate function Φ by a Dirichlet series with
constant partial moduli E (Φ)

μ ,μ = 0, 1, 2, . . . , M , the complete compliance function
J can easily be approximated by

J (t, t ′) = 1

E(t ′)
+ c

E (Φ)
0 g(t ′)

+
M∑

μ=1

c

E (Φ)
μ g(t ′)

(
1 − e−(t−t ′)/τμ

)
(F.40)

This is a Dirichlet series for aging materials, with age-dependent partial moduli.
The compliance function of the ACI model is based on formula (E.38) and can

be presented in the form (F.39) with function Φ given by

ΦA(t) = tn

a + tn
= 1 − a

a + tn
= 1 − a

f (t)
(F.41)

where f (t) = a + tn is an auxiliary function that differs from the function defined in
(F.17) only by a constant and thus has the samederivatives, given in (F.22). Parameters
n and a correspond to ψ and d in the ACI notation, and their standard values are
n = ψ = 0.6 and a = d = 10 (with t expressed in days). In terms of the derivatives
of function f , the derivatives of ΦA are conveniently expressed as

Φ ′
A = a

f ′
f 2

(F.42)

Φ ′′
A = a

(
f ′′
f 2

− 2 f ′2
f 3

)
(F.43)

Φ ′′′
A = a

(
f ′′′
f 2

− 6 f ′ f ′′
f 3

+ 6 f ′3
f 4

)
(F.44)

Φ I V
A = a

(
f I V

f 2
− 8 f ′ f ′′′ + 6 f ′′2

f 3
+ 36 f ′2 f ′′

f 4
− 24 f ′4

f 5

)
(F.45)

ΦV
A = a

(
f V

f 2
− 10 f ′ f I V + 20 f ′′ f ′′′

f 3
+ 60 f ′2 f ′′′ + 90 f ′ f ′′2

f 4
− 240 f ′3 f ′′

f 5
+ 120 f ′5

f 6

)

(F.46)

For the CEB model, the compliance function (E.13) can also be expressed in the
form (F.39) with function Φ given by
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ΦC(t) =
(

t

β + t

)n

= [ f (t)]n (F.47)

where n = 0.3 and β (equal to the product βHβT according to the CEB nota-
tion) is a parameter dependent on the compressive strength, environmental humidity,
temperature, and equivalent thickness of the concrete member (typical values of
β range between 250 and 1500 days). The auxiliary function is now defined as
f (t) = t/(β + t), and its kth derivative is

f (k)(t) = (−1)k−1k!β
(β + t)k+1

(F.48)

The derivatives of ΦC are then expressed as

Φ ′
C = n1 f n−1 f ′ (F.49)

Φ ′′
C = n2 f n−2 f ′2 + n1 f n−1 f ′′ (F.50)

Φ ′′′
C = n3 f n−3 f ′3 + 3n2 f n−2 f ′ f ′′ + n1 f n−1 f ′′′ (F.51)

Φ I V
C = n4 f n−4 f ′4 + 6n3 f n−3 f ′2 f ′′ + n2 f n−2(4 f ′ f ′′′ + 3 f ′′2) + n1 f n−1 f I V

(F.52)

ΦV
C = n5 f n−5 f ′5 + n4 f n−4 f ′3 f ′′ + n3 f n−3(15 f ′ f ′′2 + 10 f ′2 f ′′′)

+ n2 f n−2(10 f ′′ f ′′′ + 5 f ′ f I V ) + n1 f n−1 f V (F.53)

where nk are constants related to n and defined in (F.23).
Approximations of the continuous retardation spectrum by the Post-Widder for-

mula of selected orders up to k = 7 are plotted in Fig. F.6. The spectra of both
models have a similar shape, quite different from the spectrum of the log-power law
in Fig. F.3. The most striking difference is that at large retardation times the value
of L tends to zero for the ACI and CEB models, while for the log-power law, it
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Fig. F.6 Approximations of the continuous retardation spectrum by the Post-Widder formula of
various orders for (a) ACI model with n = 0.6 and a = 10, (b) CEB model with n = 0.3 and
β = 750



782 Appendix F: Continuous Retardation Spectrum

(a) (b)

exact
7
4
2

k=1

load duration, t − t [day]

di
m
en
si
on
le
ss

co
m
pl
ia
nc
e,

Φ

10610410210010−210−4

1

0.8

0.6

0.4

0.2

0

exact
7
4
2

k=1

load duration, t − t [day]

di
m
en
si
on
le
ss

co
m
pl
ia
nc
e,

Φ

10610410210010−210−4

1

0.8

0.6

0.4

0.2

0

Fig. F.7 Approximations of the compliance function by Dirichlet series with τ1 = 10−3 day,
M = 10 and with parameters determined from the Post-Widder formula of various orders for (a)
ACI model with n = 0.6 and a = 10, (b) CEB model with n = 0.3 and β = 750

asymptotically approaches a positive limit, equal to the parameter n. This is related
to the fact that the ACI and CEB models assume that creep approaches a finite limit,
while for the log-power law (and the B3 and B4 models based on it), the creep is
unbounded.

It also appears that the approximation basedon thePost-Widder formula converges
quite fast for the log-power law and more slowly for the ACI and CEB models. This
has a detrimental effect on thequality of the approximationof the compliance function
by Dirichlet series, as shown in Fig. F.7. The series consists of M = 10 terms for the
ACI model and M = 9 terms for the CEB model, with the shortest retardation time
τ1 = 10−3 day and with an additional constant term corresponding to the compliance
of a spring (zeroth unit of the Kelvin chain). In contrast to the log-power law, it is
not sufficient to determine the compliance coefficients simply from the values of
the approximated spectrum at individual retardation times τμ, according to formula
(F.31). This approach corresponds to numerical integration using the midpoint rule,
which is sufficiently accurate for the log-power law with almost linear dependence
of L on ln τ but induces an additional error for models with highly curved spectra.
Therefore, the compliance coefficients 1/Eμ are evaluated using two-point Gauss
integration in the interval around each retardation time τμ. In other words, formula
(F.31) is replaced by

1

Eμ

= ln 10

2

(
L(τμ10

−√
3/6) + L(τμ10

√
3/6)
)

, μ = 1, 2, . . . , M (F.54)

Further increase of the integration order does not have any noticeable effect on the
results.

Even with accurate integration, the error induced by approximation of the spec-
trum remains quite high. For the CEB model at load durations up to 10 days, the
relative error oscillates around 15% for the second-order approximation and around
5% for the seventh-order approximation; see Fig. F.8b. Only for longer load dura-
tions, the error decreases and eventually becomes negligible, independently of the
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Fig. F.8 Relative error of approximations of the compliance function by Dirichlet series with
τ1 = 10−3 day, M = 10 and with parameters determined from the Post-Widder formula of various
orders for (a) ACI model, (b) CEB model

approximation order.13 For the ACI model, the results are still worse, especially at
short load durations up to 1 day; see Fig. F.8a. For instance, the fourth-order approx-
imation would overestimate the creep strain at 1 day by 18% and at 10 days by more
than 9%.

The quality of the approximation can be dramatically improved by an additional
adjustment, similar to the shift (in logarithmic scale) of retardation times used for
the log-power law. However, this time, it is not sufficient to multiply the retardation
times of all Kelvin units by the same correction factor. This would reduce the positive
error for short times but induce a negative error at long times.

As shown in Fig. F.8b, the error of the second-order approximation of the CEB
model is quite low for load durations longer than β = 750 days, and the same holds
if another value of β within the reasonable range is used. Therefore, it makes sense
to shift the retardation times only in the lower part of the spectrum. Sensitivity to
the specific choice of the retardation times can be reduced by a smooth transition
from (almost) constant shift for τ � β to (almost) no shift for τ > β. The solid
curve in Fig. F.8b, labeled as “improved,” refers to the adjusted Dirichlet series with
compliances 1/Eμ based on the second-order approximation but with retardation
times τμ multiplied by the factor [522]

13Interestingly, the final value of compliance is captured correctly by all approximations, indepen-
dently of their order. This is not by chance. The limit value of the approximated compliance function
Φk at t → ∞ is

Φ∞
k =

∫ ∞

τ=0
Lk(τ ) d(ln τ) = − (−k)k

(k − 1)!
∫ ∞

0
τ k−1Φ(k)(kτ) dτ (F.55)

For k = 1, this gives

Φ∞
1 =

∫ ∞

0
Φ ′(τ ) dτ = lim

t→∞ Φ(t) (F.56)

because Φ(0) = 0. The result can be extended to higher values of k by mathematical induction.
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αC
μ = 1 + 0.555 exp

(
−4τ 2

μ

β2

)
(F.57)

The resulting relative error remains below 1%, not only for the present choice of
parameters β = 750 days and τ1 = 10−3 day, but also for other reasonable choices.

For the ACI model, the error exhibits less regular behavior, but the construction of
an improved approximation is facilitated by the fact that the compliance functionΦA

defined in (F.39) is always used with the same parameters n = 0.6 and a = 10. Quite
good results, with maximum relative error only slightly above 1%, can be achieved
with the fourth-order approximation, if the retardation times τμ are multiplied by the
factor [522]

αA
μ = 0.95 + 0.48 exp

(
−τ 0.75

μ

23

)
(F.58)

The corresponding error is plotted in Fig. F.8a by the solid curve.

F.4 Spectrum of Drying Creep Compliance
Function of B3 Model

According to models B3 and B4, the basic creep is described by the log-power
law with aging incorporated through the solidification theory and by an additional
logarithmic term that reflects viscous flow and corresponds to a dashpot with age-
dependent viscosity; see Fig. 9.1. Spectrum of the log-power law was analyzed in
Sect. F.2, and the viscous dashpot can be treated directly in the rate form, without
the need to construct a Dirichlet series approximating its compliance function. In
the presence of drying modeled by the sectional approach, an additional compliance
function Jd is used by model B3; its spectrum will be established in the present
section.

Recall that the drying creep compliance function Jd given by formula (3.20)
depends not only on the current age t and the age t ′ at loading, but also on the age
t0 at the end of curing (i.e., at the onset of exposure to the environmental humidity).
Parameters affecting the drying creep compliance include the shrinkage halftime,
τsh, and the environmental relative humidity, henv. In order to reduce the number
of variables and parameters, it is useful to rewrite (3.20) in terms of dimensionless
elapsed times ξ = (t − t ′)/τsh and ξ0 = (t0 − t ′)/τsh. Note that ξ0 is usually negative,
because t ′ > t0. In the exceptional case when the structure is loaded before the onset
of drying, ξ0 should be set to zero.

Taking into account (3.23) and (3.16), we can write (3.20) as

Jd(t, t ′) = q5

e4
ΦD

(
t − t ′

τsh
,

t0 − t ′

τsh

)
(F.59)

http://dx.doi.org/10.1007/978-94-024-1138-6_9
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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where
ΦD(ξ, ξ0) =

√
eb tanh

√
ξ−ξ0 − eb tanh

√−ξ0 (F.60)

is a dimensionless compliance function of dimensionless times ξ and ξ0, and b =
8(1−henv) is a parameter introduced for convenience. For a fixed difference t ′−t0, the
compliance function (F.59) can be considered as a function of the elapsed time t − t ′
and its spectrum can be approximated according to the Post-Widder formula (F.2).
For this purpose, it is sufficient to construct an approximation of the dimensionless
compliance function ΦD , with ξ as the time variable and ξ0 as a fixed parameter.
The spectrum of ΦD is affected by the environmental humidity (through parameter
b) but is independent of the shrinkage halftime.

To approximate the spectrum using formula (F.2), we need to differentiate ΦD

with respect to ξ . For convenience, we will denote (partial) derivatives with respect
to ξ by primes, and we will introduce an auxiliary variable η = √

ξ and auxiliary
functions

T (η) = tanh η (F.61)

S(ξ) = T (
√

ξ) (F.62)

f (ξ) = exp (bS(ξ)) (F.63)

The dimensionless compliance function (F.60) can now be written in the form

ΦD(ξ, ξ0) = √ f (ξ − ξ0) − f (−ξ0) (F.64)

and its derivatives with respect to ξ are expressed as

Φ ′
D = f ′

2ΦD
(F.65)

Φ ′′
D = f ′′

2ΦD
− f ′Φ ′

D

2Φ2
D

(F.66)

Φ ′′′
D = f ′′′

2ΦD
− 2 f ′′Φ ′

D + f ′Φ ′′
D

2Φ2
D

+ f ′Φ ′2
D

Φ3
D

(F.67)

Φ I V
D = f I V

2ΦD
− 3 f ′′′Φ ′

D + 3 f ′′Φ ′′
D + f ′Φ ′′′

D

2Φ2
D

+ 3 f ′′Φ ′2
D + 3 f ′Φ ′

DΦ ′′
D

Φ3
D

− 3 f ′Φ ′3
D

Φ4
D

(F.68)

where

f ′ = b f S′ (F.69)

f ′′ = b( f S′′ + f ′S′) (F.70)

f ′′′ = b( f S′′′ + 2 f ′S′′ + f ′′S′) (F.71)

f I V = b( f S I V + 3 f ′S′′′ + 3 f ′′S′′ + f ′′′S′) (F.72)
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To express the derivatives of function S in a manageable form, we denote the deriv-
atives of function T with respect to its argument η by subscripts 1, 2, . . .:

T1(η) = 1

cosh2 η
(F.73)

T2(η) = −2 sinh η

cosh3 η
(F.74)

T3(η) = 2(2 sinh2 η − 1)

cosh4 η
(F.75)

T4(η) = 8 sinh η(2 − sinh2 η)

cosh5 η
(F.76)

The derivatives of S with respect to ξ are now given by

S′ = 1

2
T1ξ

−1/2 (F.77)

S′′ = 1

4

(
T2ξ

−1 − T1ξ
−3/2) (F.78)

S′′′ = 1

8

(
T3ξ

−3/2 − 3T2ξ
−2 + 3T1ξ

−5/2
)

(F.79)

SI V = 1

16

(
T4ξ

−2 − 6T3ξ
−5/2 + 15T2ξ

−3 − 15T1ξ
−7/2) (F.80)

Combining the above relations, approximations of the spectrum up to order 4
can be constructed. Of course, one needs to substitute the appropriate arguments. To
illustrate the procedure and to clarify the meaning of individual symbols, we present
the full formula for the first-order approximation:

L1(τ ) = τΦ ′
D(τ, ξ0) = τ f ′(τ − ξ0)

2ΦD(τ, ξ0)
= τb f (τ − ξ0)S′(τ − ξ0)

2
√

f (τ − ξ0) − f (−ξ0)
=

= τb exp (bS(τ − ξ0))
1
2 T1(

√
τ − ξ0)(τ − ξ0)

−1/2

2
√
exp (bS(τ − ξ0)) − exp (−a + bS(−ξ0))

=

= τb exp
(
b tanh

√
τ − ξ0

)
4
√

(τ − ξ0)
[
exp
(
b tanh

√
τ − ξ0

)− exp
(
b tanh

√−ξ0
)]
cosh2

√
τ − ξ0

(F.81)

It is clear that such complete formulae for higher-order approximations would be too
complicated, but a recursive evaluation of individual terms is still feasible.

Selected approximations up to order 7 are graphically shown in Fig. F.9 for ξ0 =
−0.1 and henv = 60% (i.e., b = 3.2). Since ΦD has been expressed in terms of
dimensionless time variables, the retardation time τ on the horizontal axis is also
dimensionless and in fact represents the ratio of the actual retardation time and the
shrinkage halftime, τsh. The most important part of the spectrum is concentrated in a
narrow interval near τ = 1 (i.e., actually near the shrinkage halftime), and the spectral
values at τ > 10 are negligible, which is related to the fact that for such times, the
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drying process is almost complete and the drying creep compliance function is almost
constant. Convergence to the exact spectral function with increasing approximation
order k is quite slow, which is documented by the large difference between the
fourth-order and seventh-order approximations. It is also worth noting that, for low
environmental humidities and onset of loading early after exposure to drying, the
spectral values may become negative for a certain limited range of retardation times,
as shown in Fig. F.9b.
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Fig. F.9 Approximations of the continuous retardation spectrum by the Post-Widder formula of
various orders for the drying creep compliance functionofmodelB3with parameters (a)henv = 60%
and ξ0 = −0.1, (b) henv = 35% and ξ0 = −0.001

In view of the slow convergence to the exact spectrum, rather poor accuracy of the
resulting approximation of the compliance function can be expected. Indeed, the
error remains quite large even for high-order approximations, as shown in Fig. F.10.
Moreover, since the core part of the spectrum is concentrated in an interval spanning
not more than two orders of magnitude of retardation times, the Dirichlet series must
be constructed with great care. The standard approach, with neighboring retardation
times in ratio 1:10 and with compliances 1/Eμ determined simply from the values
of Lk(τμ), would result into a dramatic sensitivity to the specific choice of the retar-
dation times and to strange shapes of the compliance curve approximations. This
is documented in Fig. F.10a, which shows such approximations for henv = 60%,
ξ0 = −0.1, k = 4, M = 6, and τ1 set, respectively, to 10−4, 2× 10−4 and 5× 10−4.
If the compliances are determined by numerical integration of Lk(τ ) over the entire
interval represented by τμ using two-point Gauss quadrature, the final value of the
compliance function is captured correctly (Fig. F.10b). The sensitivity to the specific
choice of retardation times is almost removed if the number of terms in Dirichlet
series is increased to M = 11 and a denser set of retardation times is used, with neigh-
boring retardation times in ratio 1:

√
10 (Fig. F.10c). Nevertheless, the intermediate

values exhibit a relative error ranging in this case between 12 and −1.2%; see the
dashed curve in Fig. F.10d. The compliance values for short loading times are over-
estimated and for long times are underestimated. Multiplication of each retardation
time by a correction factor [522]



788 Appendix F: Continuous Retardation Spectrum

αD
μ = 0.9 + 0.37 exp

(
−τ 2

μ

4

)
(F.82)

reduces the overestimation to 1.2% and slightly increases the underestimation to
−1.5%; see the solid curve in Fig. F.10d. This figure refers to the specific case under
consideration, with parameters henv = 60% and ξ0 = −0.1, but it can be verified
that the error remains below 2% for all higher humidities and for arbitrary (of course
negative) values of ξ0, while for humidity henv = 50%, it increases to 3%. Such error
is still acceptable from the practical point of view.
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Fig. F.10 (a)–(c) Approximations of the drying creep compliance function of model B3 and (d)
their relative error

F.5 Spectrum of JSCE Model

The creep model recommended by the Japan Society of Civil Engineers (JSCE)
and described in Appendix E.5 uses a compliance function in the form (F.39) with
function Φ given by
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ΦJ (t) = 1 − exp
(−0.09 t0.6

)
(F.83)

Introducing an auxiliary function

f (t) = ctn (F.84)

with c = −0.09 and n = 0.6, we can write the derivatives of ΦJ as

Φ ′
J = −e f f ′ = (ΦJ − 1) f ′ (F.85)

Φ ′′
J = (ΦJ − 1) f ′′ + Φ ′

J f ′ (F.86)

Φ ′′′
J = (ΦJ − 1) f ′′′ + 2Φ ′

J f ′′ + Φ ′′
J f ′ (F.87)

Φ I V
J = (ΦJ − 1) f I V + 3Φ ′

J f ′′′ + 3Φ ′′
J f ′′ + Φ ′′′

J f ′ (F.88)

ΦV
J = (ΦJ − 1) f V + 4Φ ′

J f I V + 6Φ ′′
J f ′′′ + 4Φ ′′′

J f ′′ + Φ I V
J f ′ (F.89)

where
f (k) = cnktn−k, k = 1, 2, . . . (F.90)

and coefficients nk are given by (F.23).
As shown in Fig. F.11a, the retardation spectrum of the JSCE model has a similar

character to the spectra of the ACI and CEB models, but it is concentrated in an
even more narrow band, with almost zero values for retardation times exceeding 103

days. This is related to the form of function (F.83), which asymptotically approaches
1 and attains the value of 0.999 at time t ≈ 1386 days; its subsequent growth is
negligible. It is also clear that the approximations based on the Post-Widder formula
converge quite slowly, and the same holds for the corresponding approximations of
the compliance function, plotted in Fig. F.11b. It is disturbing that the asymptotic
value for large times, which should be exactly 1, is not captured correctly, not even
with the approximation of order 7. Moreover, it can be shown that the asymptotic
value as well as the entire approximated compliance function are quite sensitive to
the choice of the discrete retardation times.

The relative error of the compliance approximation for different orders k is indi-
cated in Fig. F.11c, which refers to the standard choice of discrete retardation times
in a geometric progression with quotient 10. As already discussed for the drying
creep compliance function of the B3 model in Sect.F.4, more densely spaced retar-
dation times and higher-order integration are needed for compliance functions with
a narrow spectrum. Indeed, the error substantially decreases if the neighboring retar-
dation times are selected in ratio 1:

√
10 and the two-point Gauss quadrature formula

is used; see Fig. F.11d. Still, the relative error of the seventh-order approximation is
up to 10%. It can be substantially reduced by using a correction factor

α J
μ = 1.15 + 0.5 exp

(
− τ 2

μ

1000

)
(F.91)
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applied to the (relatively simple) second-order approximation L2(τ ). The resulting
relative error remains below 2% over the entire range of times; see the solid curve
labeled as “improved” in Fig. F.11d.
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Fig. F.11 JSCE model: (a) Approximations of the continuous retardation spectrum by the Post-
Widder formula of various orders, (b) approximations of the compliance function byDirichlet series,
(c)–(d) relative error of approximations of the compliance function by Dirichlet series

F.6 Spectrum of fib Model

The fib Model Code 2010 uses an additive decomposition of the compliance function
into the basic creep compliance and the drying creep compliance. The basic creep
compliance function is unbounded and has the logarithmic form

J (t, t ′) = 1

E(t ′)
+ a ln

(
1 + t − t ′

g(t ′)

)
(F.92)

in which

g(t ′) =
(
0.035 + 30

t ′

)−2

(F.93)
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For t ′ ≥ 1 day, g is in the range between 1.1 × 10−3 and 816 (in days). For a fixed
value of t ′, the dependence on the load duration t − t ′ is described by the function

Φ f (t) = ln

(
1 + t

g

)
(F.94)

which is similar to the log-power law (F.15) with exponent n = 1. For this case, the
limit of the sequence of approximations Lk(τ ) can be evaluated analytically, in the
same fashion as in (F.28). The retardation spectrum of (F.94) can thus be presented
in the closed form as

L(τ ) = e−g/τ (F.95)

For g = 1 day, the spectrum is shown in Fig. F.3a. For a general g, it would be just
shifted horizontally. The growth of the value of L(τ ) from 0 to 1 takes place essen-
tially in the interval between (0.1 g, 100 g). For such a narrow range, the discrete
retardation times need to be spaced more densely; otherwise, the resulting approxi-
mation of the compliance function would exhibit oscillations and would be sensitive
to the specific choice of times τμ. For good accuracy, the two-point Gauss quadrature
is used and the discrete retardation times are selected in geometric progression with
quotient

√
10. However, this denser spacing is actually needed only in the range in

which L(τ ) varies substantially. For larger retardation times, L(τ ) is almost constant
(equal to 1) and the standard spacing can be used.
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Fig. F.12 Relative error of approximations of the basic creep compliance function of the fib model
for g(t ′) = 1 day (i.e., for age t ′ = 31.1 days) by Dirichlet series with M = 10 and τ1 = 0.05 day,
0.1 day, and 0.2 day

Assuming that g = 1 day, a reasonable choice is to set τ1 = 0.1 day and use the
reduced spacing up to τ5 = 102τ1 = 10 days, followed by τ6 = 100.75τ5 = 56.23 days
and afterward increasing the times by a factor of 10 up to τ10 = 104τ6 = 562, 300
days. The error of the resulting approximation of the compliance function (F.94) by
the Dirichlet series is shown by the dashed curve in Fig. F.12. For comparison, two
additional dashed curves corresponding to τ1 = 0.05 day and τ1 = 0.2 day have
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been plotted. The same relative errors are obtained for a general value of g if all the
discrete retardation times are divided by g.

Note that in this case, the spectrum L(τ ) is known exactly and the error is exclu-
sively due to the approximation of the integral in (F.1) by a finite sum. The relative
error is below 2%, with the exception of very short or very long times. For long
times, the accuracy could be improved by adding more terms to the Dirichlet series.
For short times, an improvement is achieved at no extra cost if the retardation times
are multiplied by the factor

α f
μ = 1 + 0.15 exp(−τ 2

μ) (F.96)

The corresponding relative error is plotted in Fig. F.12 by the solid curves, again
corresponding to g = 1 day and τ1 = 0.05 day, 0.1 day, and 0.2 day, respectively.

The drying creep compliance function of the fib model has the same general form
as the CEB compliance function, with the only difference that the exponent n in
(F.47) is not a fixed constant (equal to 0.3) but depends on the age at loading, t ′. It is
given by

n(t ′) = 1

2.3 + 3.5/
√

t ′ (F.97)

and for t ′ ≥ 1 day, which is a restriction imposed by the code, it is in the range
between 0.172 and 0.435 (note that n(t ′) is denoted as γ (t ′) in the actual code notation
presented in Appendix E.2.2). For the evaluation of the corresponding retardation
spectrum, we can reuse formulae (F.48)–(F.53) and a generalized version of the
corrective formula (F.57), with a coefficient dependent on exponent n:

αC
μ = 1 + (0.255 + n) exp

(
−4τ 2

μ

β2

)
(F.98)

The resulting error for extreme values of parameter n within the range of interest is
shown in Fig. F.13. The solutionmarked as “improved” is based on an approximation
of order k = 2 and corrective formula (F.98). The relative error remains below 1%
over the entire range of interest.

F.7 Summary

The continuous retardation spectrum is a useful tool for the description of viscoelas-
tic materials. It can be exploited for a straightforward and efficient evaluation of
compliance coefficients in Dirichlet series approximating the compliance function.
However, for most of the compliance functions used by various creep codes and rec-
ommendations, the spectrum cannot be expressed in a closed form.Application of the
Post-Widder formula for the inversion of Laplace transform leads to approximations



Appendix F: Continuous Retardation Spectrum 793

(a) (b)

7
4
2

k=1

improved

load duration, t − t [day]

re
la
tiv
e
er
ro
r
[%

]

10610410210010−210−4

20

15

10

5

0

-5

7
4
2

k=1

improved

load duration, t − t [day]

re
la
tiv
e
er
ro
r
[%

]

10610410210010−210−4

20

15

10

5

0

-5

Fig. F.13 Relative error of approximations of the drying creep compliance function of the fib
model by Dirichlet series with τ1 = 10−3 day, M = 10 and with parameters determined from the
Post-Widder formula of various orders, evaluated for exponent (a) n = 0.172, (b) n = 0.435

of various orders, which converge to the exact spectrum as the order tends to infinity.
Since the complexity of the analytical expressions increases with increasing order,
low-order approximations are more convenient for practical applications. However,
one has to be careful about the accuracy.

Inmany cases of practical interest, the convergence is rather slow and even approx-
imations of order 7 lead to relative errors of several percent. Fortunately, the accuracy
canbedramatically increasedby adjustments of the discrete retardation times, applied
after the evaluation of the compliance coefficients. Such adjustments are theoreti-
cally justified, but their optimal form was determined by Jirásek and Havlásek [522]
in a rather heuristic manner. Interestingly, the resulting approximations of the com-
pliance function are sufficiently accurate even for simple expressions derived from a
low-order Post-Widder formula (typically, second-order formulae are sufficient for
this purpose).

The retardation spectra have quite a different character for models with bounded
and unbounded compliance functions. In the former case, represented by the ACI,
CEB, and JSCEmodels and by the drying creep compliance function of the B3 and fib
models, the spectral values are negligible for both very short and very long retardation
times. The approximation byDirichlet series then does not need to include termswith
very long retardation times, for which the creep has almost stopped. On the other
hand, the basic creep compliance functions of the B3 and fib models are unbounded
and have a logarithmic character. The corresponding spectrum approaches a constant
nonzero value for long retardation times, and the contribution to the Dirichlet series
is essential. The choice of the longest discrete retardation time is then related to the
limits of applicability of the approximate compliance function.

Formodels with awide and smoothly varying spectrum, it is sufficient to select the
discrete retardation times in the Dirichlet series in a geometric progression with ratio
10, which is the standard recommendation from the literature, and the compliance
coefficients can be determined simply as the spectral values at individual retarda-
tion times multiplied by the size of the covered interval in logarithmic scale, which
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corresponds to a one-point integration scheme. Special attention is needed if the retar-
dation spectrum is relatively narrow. For the ACI and CEB models, nonnegligible
spectral values are found for retardation times over about 8 orders of magnitude, and
the graph of the spectrum exhibits in certain ranges a high curvature. In such a case,
it is preferable to evaluate the compliance coefficients using a two-point Gaussian
quadrature formula.

The drying creep compliance function of the B3 and B4 models and the total
compliance function of the JSCE model have spectra concentrated to about 4 orders
of magnitude, and the standard choice of discrete retardation times one order of mag-
nitude apart does not provide good approximations of the compliance functions. It
is then preferable to use a denser set of retardation times in a geometric progression
with ratio

√
10, combined with a two-point Gauss quadrature scheme. Such a denser

set is also useful over a certain range of retardation times for the basic creep com-
pliance function of the fib model, to provide a better coverage of the highly curved
part of the spectrum.

In general, the optimized approximations exhibit relative errors below 2%, which
is certainly sufficient from the practical point of view. At the same time, they are
based on low-order formulae, which lead to simple expressions and are thus easy to
handle. Therefore, results reported in this appendix provide a basis for efficient and
accurate computational algorithms.



Appendix G
Free-Energy Potentials for Aging Linear
Viscoelasticity

The free energy per unit volume of a viscoelastic material may be expressed as a
sum of the strain energies in all the springs in Kelvin or Maxwell chain model. Based
on this fact, expressions for the Helmholtz and Gibbs free energy per unit volume
of nonaging viscoelastic materials, formulated in terms of the relaxation function,
have been derived by Staverman and Schwarzl [787, 788]. For aging viscoelastic
materials, the energy of the springs must be modified by the growing volume v(t) of
the solidified material.

The following symmetric expression was deduced by Bažant and Huet [139] to
express, by means of the compliance function and stress history, the negative of the
Gibbs free energy per unit volume of an aging viscoelastic material (in mechanics
called the isothermal complementary energy density):

F ∗(t) = 1

2

∫ t

r=0

∫ t

s=0
max[J (2t − r, s), J (2t − s, r)] dσ(s) dσ(r) (G.1)

The maximum operator is used here only because it permits writing the formula in
a symmetric way (with respect to the integration variables, r and s). Compliances
J (2t − r, s) and J (2t − s, r) correspond to the same load duration, 2t − r − s,
but different ages, s and r . Due to aging, compliance obtained after the same load
duration is higher for younger concrete, which means that the maximum is equal to
J (2t − r, s) if s < r and to J (2t − s, r) if r > s. Therefore, the double integral
presented in (G.1), originally taken over a square in the rs plane (Fig. G.1a), can be
split into a sum of two double integrals over triangular domains (Fig. G.1b), and the
formula can equivalently be written as

F ∗(t) = 1

2

∫ t

r=0

∫ r

s=0
J (2t − r, s) dσ(s) dσ(r) + 1

2

∫ t

s=0

∫ s

r=0
J (2t − s, r) dσ(r) dσ(s)

(G.2)
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Due to symmetry with respect to r and s, both integrals in (G.2) have the same
value. Therefore, the same value of complementary energy density is obtained by
integrating over one triangular domain if the factor 1/2 is dropped:

F ∗(t) =
∫ t

r=0

∫ r

s=0
J (2t − r, s) dσ(s) dσ(r) (G.3)

(a) (b)
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max[J(2t − r,s),J(2t − s,r)]

J(2t − r,s)

J(2t − s,r)

Fig. G.1 Integration domains in the rs plane: (a) square domain used in formula (G.1), (b) decom-
position into two triangular domains used in formula (G.2)

To prove that (G.1) (and thus also (G.2) and (G.3)) plays the role of a viscoelastic
potential from which the stress–strain law can be deduced, let us differentiate the
complementary energy density with respect to the stress value at time t . SinceF ∗ is
not just a function of σ(t) but a functional of the stress history, it is good to explain
in detail what kind of differentiation we mean.

(a) (b)
σ

σ(t̄)

tt̄
0
0

σ

σ(t̄−)

σ(t̄+)

tt̄
0
0

Fig. G.2 Piecewise continuous stress history,with time instant t̄ atwhich the stress is (a) continuous,
(b) discontinuous
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Consider a given stress history σ(t), t ≥ 0, which is supposed to be piecewise
continuous and differentiable, with finite stress jumps occurring at a finite number
of isolated time instants (Fig. G.2). The integral in (G.1) is meant to be a Stieltjes
integral, and so it is properly defined even if the stress history exhibits discontinuities
(leading to singularities in the stress rate). For a fixed time instant t̄ , we can construct
a function ΔF ∗ describing the change of complementary energy densityF ∗(t̄) that
would result from an instantaneous modification of the stress value at time t̄ .

σ(r)

σ(s)

σ(t̄)

σ(t̄) σ(t̄+)

σ(t̄+)

0

0

max[J(2t̄ − r,s),J(2t̄ − s,r)]
J (

t̄,
s)

J(t̄,r) J(t̄ , t̄)Δσ

Δσ

Fig. G.3 Increment of the double integral from (G.1) caused by an instantaneous stress increment
Δσ at time t̄

For simplicity, we start from the regular case in which the actual stress history is
continuous at t̄ , as indicated in Fig. G.2a. The actual complementary energy density
F ∗(t̄) is obtained by evaluating the integral in (G.1) with both upper limits set to t̄ .
In the stress space with axes σ(r) and σ(s), the corresponding integration domain
is represented by the solid square in Fig. G.3. Now suppose that a fictitious change
Δσ is added to the stress σ(t̄), with the time considered as frozen. This corresponds
to an extension of the integration domain in the stress space to a larger square, as
indicated in Fig. G.3 by dashed lines. The additional contribution to the integral
in (G.1) consists of three terms that are represented in Fig. G.3 by two elongated
rectangles and a small square. Formally, they can be derived by considering Δσ as a
jump in stress that occurs at time t̄ and leads to the stress level σ(t̄+) = σ(t̄) + Δσ

reached “just after” time t̄ .
Let us adopt a convention that integrals with t̄ as the upper limit do not take into

account the jump while integrals with t̄+ as the upper limit do. With this notation at
hand, the derivation can proceed as follows14:

14In the first line of (G.4), we should actually integrate the maximum of J (2t̄+ − r, s) and
J (2t̄+ −s, r). Since the compliance function is in general continuous, it is sufficient to write simply
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∫ t̄+

r=0

∫ t̄+

s=0
max[J (2t̄ − r, s), J (2t̄ − s, r)] dσ(s) dσ(r) =

=
∫ t̄

r=0

∫ t̄+

s=0
max[J (2t̄ − r, s), J (2t̄ − s, r)] dσ(s) dσ(r) +

+
∫ t̄+

0
max[J (2t̄ − t̄, s), J (2t̄ − s, t̄)] dσ(s)Δσ =

=
∫ t̄

r=0

∫ t̄

s=0
max[J (2t̄ − r, s), J (2t̄ − s, r)] dσ(s) dσ(r) +

+
∫ t̄

0
J (t̄, r)Δσ dσ(r) +

(∫ t̄

0
J (t̄, s) dσ(s) + J (t̄, t̄)Δσ

)
Δσ (G.4)

Taking into account that the definition ofF ∗ in (G.1) contains a factor of 1/2 in front
of the double integral, we find that the virtual increment of complementary energy
density caused by an instantaneous virtual change of stress at frozen time t̄ is given
by

ΔF ∗
t̄ (Δσ) =

∫ t̄

0
J (t̄, s) dσ(s)Δσ + 1

2
J (t̄, t̄)(Δσ)2 (G.5)

Since the time t̄ and the previous stress history up to time t̄ are considered as fixed,
the virtual increment ΔF ∗

t̄ is a function of Δσ . The derivative of this function,
evaluated at Δσ = 0, provides the constitutive equation

ε(t̄) = dΔF ∗
t̄

dΔσ

∣∣∣∣
Δσ=0

=
∫ t̄

0
J (t̄, s) dσ(s) (G.6)

which, leaving aside formal differences in notation, agrees with (2.14). This result
confirms that (G.1) can be used as a viscoelastic potential.

The foregoing derivation can be extended to the exceptional case of a time instant
at which the actual stress history has a jump. Here, we have to distinguish between
the stress “just before the jump,” σ(t̄−) = limt→t̄− σ(t), and the stress “just after
the jump,” σ(t̄+) = limt→t̄+ σ(t); see Fig. G.2b. The strain can also be expected
to exhibit a jump, and we can use an analogous notation. For the state just before
the jump, all results derived for the continuous case are directly applicable, with
σ(t̄) understood as σ(t̄−) and the upper integration limit t̄ set to t̄−, to emphasize
that the integrals do not take into account the jump that occurs at t̄ . The change of
complementary energy resulting from a modification of σ(t̄−) by Δσ is now given
by

(Footnote 14 continued)
J (2t̄ − r, s) and J (2t̄ − s, r). However, we need to be careful with the interpretation of J (t̄, t̄) in
the last line of (G.4), because the compliance function J (t, t ′) is discontinuous at points, where
t = t ′ (it jumps from zero to the elastic compliance 1/E(t ′)). The proper interpretation of J (t̄, t̄)
in (G.4) is that it corresponds to J (t̄+, t̄), i.e., to the reciprocal value of elastic modulus at age t̄ .

http://dx.doi.org/10.1007/978-94-024-1138-6_2
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ΔF ∗
t̄−(Δσ) =

∫ t̄−

0
J (t̄, s) dσ(s)Δσ + 1

2
J (t̄, t̄)(Δσ)2 (G.7)

and Eq. (G.6) is rewritten as

ε(t̄−) = dΔF ∗
t̄−

dΔσ

∣∣∣∣
Δσ=0

=
∫ t̄−

0
J (t̄, s) dσ(s) (G.8)

An appropriate expression for the strain just after the jump can be derived using
again function (G.7) but differentiating it at a different point. The reason is that if
the fictitious stress state for which we evaluate the complementary energy differs
from σ(t̄−) by Δσ , then the virtual change of σ(t̄+) is just Δσ − Δσ , where Δσ ≡
σ(t̄+) − σ(t̄−) corresponds to the actual stress jump. Therefore, to get the strain
after the jump, the derivative of ΔF ∗

t̄− must be evaluated at Δσ = Δσ . Even though
these arguments may sound somewhat complicated, the final form of the resulting
constitutive equation is fully analogous to the already derived ones:

ε(t̄+) = dΔF ∗
t̄−

dΔσ

∣∣∣∣
Δσ=σ(t̄+)−σ(t̄−)

=
∫ t̄−

0
J (t̄, s) dσ(s) + J (t̄, t̄)(σ (t+) − σ(t−)) =

=
∫ t̄+

0
J (t̄, s) dσ(s) (G.9)

In fact, all the cases discussed so far can be covered by the constitutive law

ε(t) =
∫ t

0
J (t, s) dσ(s) (G.10)

in which the interpretation of the upper integration limit determines which value
of strain is obtained. In all cases, the expression for evaluation of strain at a given
time has been constructed by differentiating the complementary energy density with
respect to the stress value at that time. This confirms that the mutually equivalent
expressions (G.1)–(G.3) for the complementary energy density can be used as vis-
coelastic potentials written in terms of the stress history and of the compliance
function.

In a completely analogous manner, one can define the Helmholtz free energy
density (in mechanics called the isothermal strain energy density) using a symmetric
expression [139]

F (t) = 1

2

∫ t

r=0

∫ t

s=0
min[R(2t − r, s), R(2t − s, r)] dε(s) dε(r) (G.11)

or using an equivalent (simpler but nonsymmetric) expression
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F (t) =
∫ t

r=0

∫ r

s=0
R(2t − r, s) dε(s) dε(r) (G.12)

The change of free-energy density at time t̄ caused by an instantaneous fictitious
strain change Δε can be expressed as

ΔFt̄ (Δε) =
∫ t̄

0
R(t̄, s) dε(s)Δε + 1

2
R(t̄, t̄)(Δε)2 (G.13)

and its differentiation leads to the stress–strain law

σ(t̄) = dΔFt̄

dΔε

∣∣∣∣
Δε=0

=
∫ t̄

0
R(t̄, s) dε(s) (G.14)

It is instructive to link potentials F and F ∗ to the thermodynamic quantities
discussed in Sect. 13.5. Recall that F ∗ corresponds to minus the Gibbs free energy
(i.e., minus the free enthalpy) per unit volume and thus can be expressed as minus
the specific Gibbs free energy μ multiplied by the density ρ. In a similar spirit,
the strain energy density F = ρψ where ψ is the specific Helmholtz free energy.
Since we work here in the context of the small-strain theory, no difference is made
between the initial and current volume and between the initial and current density.
Consequently, the rates are expressed simply as Ḟ = ρψ̇ and Ḟ ∗ = −ρμ̇, with no
need for additional terms containing ρ̇.

The specific Helmholtz free energy ψ is linked to the specific internal energy u
by the partial Legendre transformation

ψ = u − T s (G.15)

in which T is the absolute temperature and s is the specific entropy. Differentiating
(G.15) with respect to time, substituting into Ḟ = ρψ̇ and exploiting Eq. (13.153),
we obtain

Ḟ = ρψ̇ = ρu̇ − ρT ṡ − ρsṪ = σ : ε̇ − 1

T
q · ∇T − ρT s∗ − ρsṪ (G.16)

The first term on the right-hand side of (G.16) is the stress power density (i.e.,
the mechanical work supplied to a unit volume of the material per unit time), the
second term including the negative sign represents the thermal dissipation (again per
unit volume and unit time), and the third term is minus the overall dissipation (sum
of mechanical and thermal dissipations). Under isothermal conditions,15 we have
Ṫ = 0 and the last term on the right-hand side of (G.16) vanishes. Realizing that

15By isothermal conditions, we mean that the temperature remains constant in time at each material
point, but we admit its spatial variability (e.g., a linear temperature distribution in space and constant
heat flux). Of course, if the temperature is uniform in space, the thermal dissipation vanishes and
there is no difference between the mechanical and overall dissipation.

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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the difference between the overall dissipation and the thermal dissipation, DM =
ρT s∗ + (q · ∇T )/T , is the mechanical dissipation, we can rewrite (G.16) under
isothermal conditions as

Ḟ = σ : ε̇ − DM (G.17)

The complementary energy density is linked to the strain energy density F by the
Legendre transformation

F ∗ = σ : ε − F (G.18)

and its rate can be expressed as

Ḟ ∗ = σ̇ : ε + σ : ε̇ − Ḟ = σ̇ : ε + DM (G.19)

where σ̇ : ε is the complementary power density.
Equations (G.17) and (G.19) can now be used to construct two alternative expres-

sions for the mechanical dissipation,

DM = σ : ε̇ − Ḟ = Ḟ ∗ − σ̇ : ε (G.20)

For the present choice of viscoelastic potentials, differentiation of (G.12)with respect
to time yields

Ḟ (t) =
∫ t

0
R(t, s) dε(s)ε̇(t) + 2

∫ t

r=0

∫ r

s=0
Ṙ(2t − r, s) dε(s) dε(r) (G.21)

where Ṙ denotes the derivative of the relaxation function with respect to its first
argument. The first integral in (G.21) is recognized as the stress at time t evaluated
from the constitutive law (G.14), and so the first term on the right-hand side of (G.21)
corresponds to the stress power density, in the one-dimensional setting written as
σ(t)ε̇(t). The second term on the right-hand side of (G.21) thus represents minus
the mechanical dissipation (per unit volume and unit time). The negative sign is
compensated by the fact that Ṙ ≤ 0, which makes the dissipation nonnegative. Since
the inequality Ṙ(2t − r, s) > Ṙ(2t − s, r) holds if and only if s < r , the derived
formula for the mechanical dissipation

DM(t) = −2
∫ t

r=0

∫ r

s=0
Ṙ(2t − r, s) dε(s) dε(r) (G.22)

can be rewritten in a symmetric form as

DM (t) = −
∫ t

r=0

∫ r

s=0
Ṙ(2t − r, s) dε(s) dε(r) −

∫ t

s=0

∫ s

r=0
Ṙ(2t − s, r) dε(r) dε(s) =

= −
∫ t

r=0

∫ t

s=0
max[Ṙ(2t − r, s), Ṙ(2t − s, r)] dε(s) dε(r) (G.23)
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An alternative expression for the mechanical dissipation can be derived from (G.19),
based on formula (G.3) for the complementary energy density. Differentiation of
(G.3) leads to

Ḟ ∗(t) =
∫ t

0
J (t, s) dσ(s) σ̇ (t) + 2

∫ t

r=0

∫ r

s=0
J̇ (2t − r, s) dσ(s) dσ(r) (G.24)

where J̇ denotes the derivative of the compliance function with respect to its first
argument. The first integral in (G.24) is recognized as the strain at time t evaluated
from the constitutive law (G.10), and so the first term on the right-hand side corre-
sponds to the complementary power density, ε(t)σ̇ (t). Therefore, the second term
on the right-hand side of (G.24) represents the mechanical dissipation

DM(t) = 2
∫ t

r=0

∫ r

s=0
J̇ (2t − r, s) dσ(s) dσ(r) (G.25)

which can also be presented in a symmetric form as

DM (t) =
∫ t

r=0

∫ r

s=0
J̇ (2t − r, s) dσ(s) dσ(r) +

∫ t

s=0

∫ s

r=0
J̇ (2t − s, r) dσ(r) dσ(s) =

=
∫ t

r=0

∫ t

s=0
max[ J̇ (2t − r, s), J̇ (2t − s, r)] dσ(s) dσ(r) (G.26)

Example G.1. Maxwell model

To gain more insight, let us consider the specific case of a solidifyingMaxwell model
with a relaxation function in the form

R(t, t ′) = E∞v(t ′) e−(t−t ′)/τ H(t − t ′) (G.27)

where E∞ is the final value of elastic modulus, v(t ′) is an increasing dimensionless
function that describes solidification and tends to 1 as the age t ′ tends to infinity, τ is
the relaxation time, and H is the Heaviside function. For this model, the stress–strain
law (G.14) reads

σ(t) =
∫ t

0
E∞v(s) e−(t−s)/τ dε(s) (G.28)

and the free-energy density (G.12) is given by

F (t) =
∫ t

r=0

∫ r

s=0
E∞v(s) e−(2t−r−s)/τ dε(s) dε(r) =

=
∫ t

r=0
e−2(t−r)/τ

∫ r

s=0
E∞v(s)e−(r−s)/τ dε(s) dε(r) =

=
∫ t

0
e−2(t−r)/τ σ (r) dε(r) (G.29)
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Substituting

Ṙ(t, t ′) = ∂ R(t, t ′)
∂t

= − E∞

τ
v(t ′) e−(t−t ′)/τ (G.30)

into (G.22), we get the mechanical dissipation

DM(t) = 2
∫ t

r=0

∫ r

s=0

E∞

τ
v(s)e−(2t−r−s)/τ dε(s) dε(r) =

= 2

τ

∫ t

0
e−2(t−r)/τ σ (r) dε(r) = 2

τ
F (t) (G.31)

In the last integrals in (G.29) and (G.31), the product σ(r) dε(r) represents the
elementary work (per unit volume) supplied to the material during an infinitesimal
time interval dr . The newly supplied work is first fully converted into an increment
of strain energy and afterward gradually dissipated at a decreasing rate, which is
described by the decaying exponential function e−2(t−r)/τ . However, one needs to be
careful with the interpretation of σ(r) at those isolated time instants at which the
strain history is discontinuous. If, at a certain time instant t̄ , the strain increases by
a jump from ε(t̄−) to ε(t̄+) = ε(t̄−) + Δε, then the stress evaluated according to
(G.28) also jumps from

σ(t̄−) =
∫ t̄−

0
E∞v(s)e−(t̄−s)/τdε(s) (G.32)

to

σ(t̄+) =
∫ t̄+

0
E∞v(s)e−(t̄−s)/τdε(s) = σ(t̄−) + E∞v(t̄)Δε (G.33)

Due to the jump, the contribution of time instant r = t̄ to the integrals in (G.29)
and (G.31) is finite and equal to e−2(t−t̄)/τ σ (t̄)Δε. But which value of σ(t̄) should
be used here, σ(t̄−) or σ(t̄+)? It turns out that it should be the average of the limits
from the left and from the right, (σ (t̄−) + σ(t̄+))/2.

For instance, in a relaxation test that starts at age t1, the strain history is given by
ε(t) = ε̂H(t − t1) and the corresponding stress history is

σ(t) =
∫ t

0
R(t, s) dε(s) = ε̂R(t, t1) = E∞v(t1)ε̂e

−(t−t1)/τ H(t − t1) (G.34)

The free-energy density is according to (G.29) evaluated as

F (t) =
∫ t

0
e−2(t−r)/τ σ (r) dε(r) = e−2(t−t1)/τ σ (t1)ε̂H(t − t1) (G.35)

where σ(t1) needs to be understood as the average between σ(t−
1 ) = 0 and

σ(t+
1 ) = E∞v(t1)ε̂, i.e., σ(t1) = E∞v(t1)ε̂/2. The product σ(t1)ε̂ is then equal



804 Appendix G: Free-Energy Potentials for Aging Linear Viscoelasticity

to E∞v(t1)ε̂2/2, which is the correct value of the strain energy stored in a spring of
stiffness E∞v(t1) subjected to strain ε̂. Consequently, (G.35) can be rewritten as

F (t) = 1

2
E∞v(t1)ε̂

2e−2(t−t1)/τ H(t − t1) (G.36)

The mechanical dissipation is according to (G.31) evaluated as

DM(t) = 2

τ
e−2(t−t1)/τ σ (t1)ε̂H(t − t1) = 1

τ
E∞v(t1)ε̂

2e−2(t−t1)/τ H(t − t1) (G.37)

Recall that DM(t) is the rate at which energy is dissipated (per unit volume). The
cumulative energy dissipation up to time t2 > t1, denoted as D(t2), is obtained by
integrating DM(t) in time:

D(t2) =
∫ t2

0
DM (t) dt = E∞v(t1)ε̂2

τ

∫ t2

t1
e−2(t−t1)/τ dt = E∞v(t1)ε̂2

2

(
1 − e−2(t2−t1)/τ

)
(G.38)

It is interesting to note that as t2 increases, the dissipated energy asymptotically tends
to E∞v(t1)ε̂2/2, which is the energy supplied asmechanical work and initially stored
in the form of elastic strain energy. The dissipated energy approaches its asymptotic
limit exponentially, with characteristic time τ/2, while the stress relaxes to zero also
exponentially but with characteristic time τ .

The reason for the difference between the characteristic times of the stress relax-
ation and energy dissipation becomes clear if one realizes that the rate of dissipation
in a linear viscous dashpot is given by σvε̇v = σ 2

v /η, where σv = ηε̇v is the stress in
the dashpot, εv is the strain in the dashpot, and η is the viscosity. In aMaxwell model,
the dashpot is subjected to the overall stress σ . If the stress relaxes to one half of its
initial value, the rate of dissipation is reduced to one quarter of its initial value. This
reasoning is valid not only for a nonaging Maxwell model with constant viscosity
η, but also for a solidifying Maxwell model relaxing at constant strain. No stress is
generated in the material that is newly deposited after time t1 at which the strain jump
is imposed, and so we have σ(t) = σv(t) = η(t1)ε̇v(t) where η(t1) = τ E∞v(t1).

During a relaxation test at constant strain, no additional energy is supplied to or
extracted from the sample, and so the sum of the strain energy and dissipated energy
remains constant. This directly follows from (G.17) with ε̇ set to zero. Combining the
condition Ḟ (t) + DM(t) = 0 with relation DM(t) = (2/τ)F (t) derived in (G.31),
we obtain a differential equation for the evolution of strain energy in the form

Ḟ (t) + 2

τ
F (t) = 0 (G.39)

Equation (G.39) clearly demonstrates that the characteristic time of the conversion
from stored to dissipated energy is τ/2. The particular solution of (G.39) satisfying
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the initial conditionF (t1) = E∞v(t1)ε̂2/2 is of course given by the already derived
formula (G.36).

For illustration, the evolution of stress σ , strain energyF , and dissipated energy
D is plotted in Fig. G.4a. For easier comparison, the stress is normalized by its initial
value σ(t1) = E∞v(t1)ε̂, energies are normalized by the supplied work F (t1) =
E∞v(t1)ε̂2/2, and elapsed time t − t1 by relaxation time τ1. �
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Fig. G.4 Evolution of normalized stress σ(t)/σ (t1), normalized free energy F (t)/F (t1), and
normalized dissipated energy D(t)/F (t1) in a relaxation test of (a) oneMaxwell unit, (b) aMaxwell
chain consisting of two units with relaxation times τ1 and τ2 = 10τ1

Example G.2. Maxwell chain

The equations from the previous example can be extended to a solidifying Maxwell
chain model consisting of M Maxwell units, which may differ not only by their
elastic moduli E∞

μ and relaxation times τμ but also by their volume growth functions
vμ(t). Stresses and energies corresponding to individual Maxwell units are additive,
and the strain is the same for all units. Based on these rules, it is easy to develop
generalized version of (G.27)–(G.29) and (G.31):

R(t, t ′) =
M∑

μ=1

E∞
μ vμ(t ′)e−(t−t ′)/τμ H(t − t ′) (G.40)

σ(t) =
∫ t

0

M∑
μ=1

E∞
μ vμ(s) e−(t−s)/τμ dε(s) (G.41)

F (t) =
∫ t

0

M∑
μ=1

e−2(t−r)/τμσ (r) dε(r) (G.42)

DM(t) = 2
∫ t

r=0

∫ r

s=0

M∑
μ=1

E∞
μ

τμ

vμ(s)e−(2t−r−s)/τμ dε(s) dε(r) =

=
∫ t

0

M∑
μ=1

2

τμ

e−2(t−r)/τμσ (r) dε(r) (G.43)
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In the particular case of a relaxation test started at age t1, Eqs. (G.34) and (G.36)–
(G.38) are generalized to

σ(t) = ε̂

M∑
μ=1

E∞
μ vμ(t1)e

−(t−t1)/τμ (G.44)

F (t) = ε̂2

2

M∑
μ=1

E∞
μ vμ(t1)e

−2(t−t1)/τμ (G.45)

DM(t) = ε̂2
M∑

μ=1

E∞
μ

τμ

vμ(t1)e
−2(t−t1)/τμ (G.46)

D(t) = ε̂2

2

M∑
μ=1

E∞
μ vμ(t1)

(
1 − e−2(t−t1)/τμ

)
(G.47)

with H(t − t1) omitted and t considered as larger than t1. For comparison with
the case of a single Maxwell unit, the evolution of stress σ , strain energy F , and
dissipated energy D is plotted in Fig. G.4b for a Maxwell chain consisting of M = 2
units with parameters E∞

1 , τ1, E∞
2 = E∞

1 , and τ2 = 10τ1 and with the same volume
growth functions v1(t) = v2(t) = v(t). The stress is normalized by its initial value
σ(t1) = (E∞

1 + E∞
2 )v(t1)ε̂, energies are normalized by the supplied work F (t1) =

(E∞
1 + E∞

2 )v(t1)ε̂2/2, and elapsed time by relaxation time τ1. �

For the sake of simplicity, the viscoelastic potentials have been presented here
in the one-dimensional setting, but generalizations to triaxial stress and strain are
straightforward (at least if the Poisson ratio is considered as fixed). It is also possible
to develop expressions forF (t) in terms of J (t, t ′) and forF ∗(t) in terms of R(t, t ′)
or J (t, t ′).

In principle, these potentials could be useful for establishing error bounds, assess-
ing numerical stability of computational algorithm, proving convergence, determin-
ing approximate bounds on viscoelastic heterogeneous materials, etc., similar to the
theory of elasticity. However, it seems that no such applications have yet been made.
For background developments, see Boltzmann [244], Volterra [839, 841], Roscoe
[733], Biot [241], Coleman [321], Brun [273], Mandel [603, 605, 606], and a series
of papers by Huet [490–496].



Appendix H
Updating Long-Time Shrinkage Predictions
from Short-Time Measurements

H.1 Measuring Water Loss to Update Shrinkage Prediction

The reason why direct fitting of measured short-time shrinkage data and their extrap-
olation to long times does not provide reliable results has already been explained in
Sect. 3.8.2. Let us now discuss how to estimate the shrinkage halftime τsh, which is
imperative to avoid the ill-posedness of the shrinkage updating problem (Fig. 3.23).
The basic idea suggested byBažant and Baweja [104] is that while the final shrinkage
cannot be predicted, the final water loss can.

It has long been known that shrinkage strains (averaged over the cross section) are
approximately proportional to the water loss, denoted asΔw(henv, t̂). For a specimen
of a given shape and size, the water loss depends on the environmental humidity henv

and on the drying duration t̂ = t − t0. At constant environmental humidity henv,
the water loss approaches a limit Δw∞(henv) as t̂ → ∞. The key point is that, by
contrast to shrinkage, the final value of water loss Δw∞(0) at zero environmental
humidity can be estimated easily—by heating the test specimen in an oven to 105 ◦C
right after the short-time test is terminated (the total initial evaporable water content
is then the sum of weight losses during shrinkage and in the oven). From that, one
can figure out the final value of water loss Δw∞(henv) when hygral equilibrium at
the given environmental humidity is reached. So it suffices to correlate the water-loss
history to shrinkage history. This can be accomplished by simultaneous weighing of
the test specimens during their shrinkage.

To estimate the final water loss Δw∞(henv) for the given environmental humidity
henv, we need an approximation for the desorption isotherm, i.e., for the curve of
water content w versus decreasing relative humidity h in concrete pores, at constant
temperature (for further details see Sect. 8.2.5 and Appendix I.1). The problem is
that the shapes of the desorption isotherms of concrete vary considerably [23, 55–57,
226, 382, 454, 705, 706, 883]. As discussed in Sect. 8.2.5, many experiments show
that the desorption isotherm is virtually linear, from 10% to about 95% humidity.
However, the behavior from 95 to 100% is highly varied. This is probably explained

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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Fig. H.1 Normalized desorption isotherm used by Bažant and Baweja [104], plotted in terms of
the relative water content, θ(h) = 1 − Δw∞(h)/Δw∞(0), versus relative pore humidity, h

by the nonuniqueness of water content at saturation, which may be quite pronounced
when the biggest capillary pores occupy a large volume fraction. Depending on the
extent of chemical self-desiccation, these pores can, at h = 100%, be either filled by
liquid water or most of them can still be empty.

Based on an analogy with formula (3.19) for the coefficient kh that represents the
influence of humidity on the final shrinkage, Bažant and Baweja [104] proposed to
estimate the final water loss as

Δw∞(henv) ≈ 0.75

[
1 −

(
henv

0.98

)3
]

Δw∞(0) (H.1)

This cubic formula, intended for the range 0.25 ≤ h ≤ 0.98, is graphically shown
in Fig. H.1. Note that the actual isotherm describes the dependence of specific water
content on the relative humidity in concrete pores, h, which is in general variable
throughout the specimen. Here, we replace h by the relative humidity of the environ-
ment, henv, becausewe are interested in the final water loss,Δw∞, which corresponds
to the equilibrium state with h = henv. Expression (H.1) satisfies the condition that
there is no water loss for h ≈ 0.98, i.e., for a sealed specimen. Recall that for
henv = 1.0, i.e., in water immersion, there is water gain and the concrete is swelling.
For henv < 0.25, expression (H.1) is invalid (Fig. H.1), but sustained environmental
humidities below 25% normally do not occur in practice.

Due to the assumption of proportionality between shrinkage and water loss, the
kinetics of water loss should be approximately described by the same function (3.16)
as the evolution of shrinkage strain, that is,

Δw(henv, t̂)

Δw∞(henv)
= tanh

√
t̂

τw
(H.2)

where τw is the water-loss halftime. Based on some limited tests [430, 454], it
is assumed that the shrinkage halftime τsh is about 25% longer than the water-loss
halftime τw, approximately τsh = 1.25τw. The reason for τsh > τw might be explained

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3


Appendix H: Updating Long-Time Shrinkage Predictions … 809

by the fact that themicrocracking in the surface layer of drying specimens accelerates
water loss but decreases average axial shrinkage in the cross section. Another reason
could be the existence of a certain time lag caused by the local microdiffusion of
water from gel nanopores to capillary pores.

Equation (H.2) can easily be rearranged to a linear form:

t̂ = τwψ with ψ =
(
atanh

Δw(henv, t̂)

Δw∞(henv)

)2

(H.3)

Now consider that, at times ti = t0 + t̂i (i = 1, 2 . . . n) of shrinkage measurements,
the values of water loss Δwi up to times ti have simultaneously been measured and
the corresponding values of ψi have been calculated. The optimum value of τw must
minimize the sum of squared deviations, i.e.

Zw(τw) =
n∑

i=1

(
τwψi − t̂i

)2 = min (H.4)

Since Zw is a convex function, a necessary and sufficient condition of a minimum is
that dZw/dτw = 0. Thus, one gets the linear equation

∑
i

(
τwψi − t̂i

)
ψi = 0, from

which

τw =

n∑
i=1

t̂iψi

n∑
i=1

ψ2
i

(H.5)

The corresponding value of shrinkage halftime τ̄sh = 1.25τw may then be used to
obtain the update of the final shrinkage value.

The updated shrinkage prediction is obtained simply by scaling the model B3
prediction vertically:

ε∗
sh(t, t0) = p3ε̄sh(t, t0) (H.6)

Here, ε̄sh(t, t0) are the values predicted from model B3 based on τ̄sh (i.e., ignoring
the empirical estimate for τsh based on (3.17), with kt determined from the formula
in line 5 of Table C.2), and p3 is the scaling parameter to be calculated. Consider that
values ε′

sh,i at times ti (i = 1, 2, . . . , n) have been measured. The optimum update
should again minimize the sum of squared deviations of the updated model from the
measured data, i.e.

Zsh(p3) =
∑

i

(p3ε̄sh,i − ε′
sh,i )

2 = min (H.7)

where ε̄sh,i = ε̄sh(ti , t0). A necessary (and sufficient) condition of a minimum is that
dZsh/dp3 = 0. This yields the condition

∑
i (p3ε̄sh,i − ε′

sh,i )ε̄sh,i = 0, from which

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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the optimum update parameter is

p3 =

n∑
i=1

ε′
sh,i ε̄sh,i

n∑
i=1

ε̄2sh,i

(H.8)

The shrinkage halftime τ̄sh obtained from the water-loss data should also be used
to improve the drying creep compliance function Jd(t, t ′) (which is a part of func-
tion F(t, t ′) in (3.35)), before the creep update procedure described in Sect. 3.8.1 is
invoked.

A nonnegligible error in shrinkage extrapolation may arise if the first reading is
not taken immediately after the stripping of the mold [151, 580, 878]. The initial
stage of the shrinkage process is very fast, because the average shrinkage strain is
proportional to the square root of the drying time, as predicted by the diffusion theory
(there is an initial deviation from the square root due to finite moisture emissivity at
surface, but this is usually important only for specimens thinner than 1 cm).

Therefore, if the first reading is taken 15 min, or even just 1 min, after the onset of
drying, a nonnegligible part of shrinkage must have been missed. The true values of
shrinkage strainsmay then be determined by optimally fitting to the initial data points
the theoretical relation ε′

sh,i + Δεsh = k
√

t̂i , in which ε′
sh,i are the measured values

of shrinkage after drying times t̂i , and Δεsh and k are constants to be determined
by optimum fitting. Δεsh has the meaning of the missed part of shrinkage strain and
should be added to the measured values ε′

sh,i before they are inserted into (H.8).
An irreparable error occurs if the specimen seals leak moisture during their curing

before shrinkage test.
The water loss should preferably be measured directly on the shrinkage speci-

mens themselves. If it is measured on companion specimens, they must have the
same environmental exposure all the time and must be identical (although random
differences cannot be avoided).

H.2 Procedure of Updating Shrinkage Prediction from
Short-Time Tests

The procedure developed in Bažant and Baweja [104] and explained in the preceding
section can be summarized as follows:

Algorithm H.1

1. Determine the final water loss that would occur at zero relative environmental
humidity, Δw∞(0), obtained when the average final water loss measured upon
heating the specimens (after the drying test) to about 105 ◦C is added to the weight

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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loss during drying at the specified ambient humidity. If such measurements could
not, or have not, been done, the final water loss can be estimated as the total
water content of the concrete mix minus the amount of water consumed by the
hydration reaction (chemically bound water), whose terminal weight is roughly
20% of the weight of cement.

2. Calculate the estimate of the final relative water loss for drying at given relative
environmental humidity henv ∈ (0.25, 0.98) and room temperature,

Δw∞(henv) ≈ 0.75
[
1 − (henv/0.98)

3
]
Δw∞(0) (H.9)

3. On the specimens sealed until time t0 and then stored at ambient relative humidity
henv, measure the values of relative water loss Δwi at times ti = t0 + t̂i (i =
1, 2, . . . , n), which should be spaced approximately uniformly in the scale of
log t̂ .

4. Calculate the auxiliary values

ψi =
(
atanh

Δwi

Δw∞(henv)

)2

, i = 1, 2, . . . , n (H.10)

and evaluate the estimate of water-loss halftime

τw =
∑

i t̂iψi∑
i ψ2

i

(H.11)

Use the improved estimate of shrinkage halftime,

τ̄sh = 1.25τw (H.12)

instead of the rough estimate obtained from (3.17).
5. Denote ε′

sh,i = ε′
sh(ti ) = measured short-time values of shrinkage at times ti .

Also, denote

ε̄sh(t) = −ε∞
sh kh tanh

√
t − t0
τ̄sh

(H.13)

the shrinkage function of model B3 using τ̄sh as the shrinkage halftime in formula
(3.16). Calculate the values ε̄sh,i = ε̄sh(ti ) predicted for the times ti , and evaluate
the scaling parameter

p3 =
∑

i ε′
sh,i ε̄sh,i∑
i ε̄2sh,i

(H.14)

6. The updated values of shrinkage prediction for any time t are

ε∗
sh(t) = p3 ε̄sh(t) (H.15)

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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The times of shrinkagemeasurements and ofwater-lossmeasurements should prefer-
ably coincide, but the procedure is still applicable even if they do not. The sums in
(H.11) and in (H.14) are then taken over two different sets of measurement times,
one for water loss and the other for drying.

Equation (H.15) combined with (H.13) is equivalent to formulae (3.15)–(3.16)
for the shrinkage of the test specimen if ε∞

sh is replaced by ε∞∗
sh = p3ε

∞
sh and τsh

is replaced by τ̄sh. To obtain the updated values of εsh(t) for the real structure for
which t0, D and henv may be different, the formulae for kt and ε∞

s in lines 5 and
6 of Table C.2 are disregarded. Using the updated value τ̄sh (instead of the original
predicted value τsh) for the short-time test specimen, Eq. (3.17) is solved for kt . This
yields the updated value, k∗

t = τ̄sh/(ks D)2, replacing kt .
Next, the expression in line 7 of Table C.2 is used with the updated value ε∞∗

sh for
the specimen (instead of the original value ε∞

sh ) to solve for the updated value

ε∞∗
s = ε∞∗

sh

0.57514
√
3 + 14/(t0 + τ̄sh)

(H.16)

that should replace ε∞
s . With the updated values, k∗

t and ε∞∗
s , and the values of t0, D,

and henv for the structure, formulae (3.15)–(3.17) and line 7 of Table C.2 are used to
obtain the updated values of εsh(t) for the structure.

The updated τ̄sh and ε∞∗
s should also be used in the calculation of the drying

creep compliance Jd, which modifies the function F(t, t ′) in (3.35). This improves
the procedure for creep updating described in Sect. 3.8.1. Recall that Jd is given
by (3.20), with auxiliary functions ĝ and S defined in (3.23) and (3.16), and with
parameter q5 evaluated from (3.24), in which ε∞∗

sh is obtained from ε∞∗
s using the

formula in line 7 of Table C.2.

H.3 Example of Shrinkage Updating

Example H.1. Updating shrinkage prediction

To illustrate the shrinkage updating procedure proposed in Bažant and Baweja [104],
consider the shrinkage and water-loss data for French nuclear containments obtained
by Granger [430]. The shrinkage was measured over a gauge length of 50 cm on
cylinders with a 16 cm diameter and 100 cm length, exposed to an environmental
humidity of 50% at age 28 days. The relative weight loss was measured on cylinders
with a 16 cm diameter and 15 cm length. The ends of both the shrinkage and the
weight-loss specimens were sealed to ensure radial axisymmetric drying.

Granger [430] tested six types of concrete from five sites. The shrinkage updating
procedure will be illustrated for two selected concretes, denoted as Civaux B11 and
Paluel. Their composition is shown inTableH.1; the cylindrical compression strength
was 40.2 MPa for Civaux B11 and 43 MPa for Paluel.

Initial prediction: Based on the given composition, strength, specimen shape,
dimensions, and environmental humidity, the parameters affecting shrinkage can be

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3


Appendix H: Updating Long-Time Shrinkage Predictions … 813

Table H.1 Composition of two concretes used by Granger [430]; all quantities given in kg/m3

Concrete denomination Civaux B11 Paluel

Cement, c 350 375

Water, w 195 180

Fine aggregates 629 709

Coarse aggregates 1100 1048

Filler, f 143 63

Total aggregates, a (incl. filler) 1872 1820

Admixtures 1 2

Air entrainer 3 2

Total 2421 2379

Table H.2 Example of shrinkage calculations: (a) predicting model parameters based on data
available before the test, (b) updatingmodel parameters basedon short-timewater-loss and shrinkage
measurements on a cylindrical specimen, (c) predicting long-time shrinkage of a real structure

Shrinkage specimen – initial prediction

(cylinder, D = 2V/S = 8 cm, t0 = 28 days, henv = 50%)

Parameter Equation Civaux B11 Paluel Unit

(a) f̄c Experiment 40.2 43.0 MPa

kt Line 5 in Table C.2 0.02586 0.02543 day/mm2

τsh (3.17) 218.9 215.2 day

ε∞
s Line 6 in Table C.2 846.2 757.1 10−6

ε∞
sh Line 7 in Table C.2 850.9 761.5 10−6

kh (3.19) 0.875 0.875 –

Shrinkage specimen – update

(cylinder, D = 2V/S = 8 cm, t0 = 28 days, henv = 50%)

Parameter Equation Civaux B11 Paluel Unit

(b) Δw∞(0) w − 0.2(c + f ) 96.4 92.4 kg/m3

Δw∞(0.5) (H.9) 62.7 60.1 kg/m3

Δw∞(0.5)/ρ 2.59 2.53 %

τw (H.11) 243.0 304.2 day

τ̄sh 1.25 × τw 303.8 380.2 day

p3 (H.14) 0.6458 0.7567 –

ε∞∗
sh p3ε∞

sh 549.5 576.2 10−6

k∗
t τ̄sh/(ks D)2 0.03589 0.04492 day/mm2

ε∞∗
s (H.16) 547.8 571.5 10−6

Real structure

(Civaux concrete B11, slab, D = 25 cm, t0 = 10 days, henv = 65%)

Parameter Equation Value Unit

(c) τsh (3.17) with k∗
t 2243 day

ε∞
sh line 7 in Table C.2 with ε∞∗

s 546.3 10−6

kh (3.19) 0.725 –

εsh(1010, 10) (3.15) −231.1 10−6

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3
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estimated using the empirical formulae given in Appendix C. In addition to the mix
composition and compression strength, the following input parameters are needed:
effective thickness D = 2V/S = 80 mm (cylinder radius), shape factor ks = 1.15
(infinite cylinder), parameters α1 = 1 (type-I cement) and α2 = 1.2 (normal curing),
end of curing at t0 = 28 days, and ambient relative humidity henv = 50% = 0.5.
The resulting estimates are summarized in Table H.2a, and the corresponding initial
predictions of the history of shrinkage strain are shown by the dashed curves in
Figs. H.2b and H.3b. The actually measured values, indicated by solid and hollow
circles, are for both concretes substantially overestimated by the model.

(a) (b)

at 50% humidity
estimated final loss

drying time, t − t0 [day]

w
ei
gh
tl
os
s
[%

]

100001000100101

3

2.5

2

1.5

1

0.5

0

updated
composition
predicted from

drying time, t − t0 [day]

sh
ri
nk
ag
e
st
ra
in
,|ε

sh
|[1

0−
6
]

1000010001001010.1

800
700
600
500
400
300
200
100
0

Fig. H.2 Updating shrinkage prediction for Civaux concrete B11 using short-time data: (a) history
of water loss, (b) history of shrinkage strain
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Fig. H.3 Updating shrinkage prediction for Paluel concrete using short-time data: (a) history of
water loss, (b) history of shrinkage strain

Update after 100 days: Pretend now that we know the measured water-loss
data and shrinkage strains only up to 100 days of drying; see the solid circles in
Figs.H.2 andH.3. TableH.2b illustrates the procedure for updatingmodel parameters
on the basis of such short-time tests, described in Algorithm H.1. Unfortunately,
Granger [430] did not measure the final water loss of his samples in a completely dry
environment, Δw∞(0). Therefore, we need to use a rough estimate, e.g., to assume
that the water used up in the hydration reaction is about 20% (by weight) of the



Appendix H: Updating Long-Time Shrinkage Predictions … 815

cement and filler (which is a simplifying assumption since the amount of water
combined with the filler is not well known at present). This simple calculation gives
the values reported in the first line of Table H.2b. Then, the final water loss at relative
environmental humidity 50% is calculated from (H.9) and is divided by the mass
density of concrete to get the relative values (by weight) of 2.59% for Civaux B11
and 2.53% for Paluel. Using these values and the points of the weight-loss data up
to 100 days of drying, we determine the water-loss halftime τw from (H.10) and
(H.11) and then estimate the shrinkage halftime as τ̄sh = 1.25τw from (H.12); see
Table H.3a. The updated values of shrinkage halftime and the drying shrinkage data
up to 100 days duration are used in (H.13)–(H.15) to calculate the updated parameters
ε∞∗
sh ; see Table H.3b. The updated predictions of shrinkage strain evolution, based
on ε∞∗

sh and τ̄sh instead of ε∞
sh and τsh, are shown in Figs. H.2b and H.3b by the solid

curves. A significant improvement is achieved for Civaux B11, but only a partial
improvement for Paluel.

Table H.3 Example of shrinkage calculations for Civaux B11: (a) evaluation of the water-loss
halftime τw according to (H.10)–(H.11), (b) evaluation of scaling parameter p3 according to (H.13)–
(H.15)

(a) (b)

i t̂i Δwi ψi t̂i ψi ψ2
i

[day] [%] [1] [day] [1]
1 12.0 0.666 0.0690 0.8300 0.0048

2 26.6 0.892 0.1285 3.4200 0.0165

3 28.6 0.917 0.1365 3.9061 0.0186

4 34.1 0.989 0.1612 5.4998 0.0260

5 40.4 1.046 0.1828 7.3879 0.0334

6 48.4 1.122 0.2144 10.3773 0.0460

7 55.5 1.171 0.2367 13.1268 0.0560

8 62.1 1.219 0.2601 16.1625 0.0676

9 69.7 1.272 0.2879 20.0529 0.0829

10 76.6 1.308 0.3080 23.6047 0.0949

11 84.0 1.353 0.3347 28.0994 0.1120

12 91.6 1.397 0.3625 33.2122 0.1314

13 98.0 1.425 0.3812 37.3484 0.1453

Σ 203.03 0.8354

τw = 203.03/0.8354 = 243.0 [day]

i t̂i −εsh,i −ε̄sh,i εsh,i ε̄sh,i ε̄2sh,i
[day] [10−6] [10−6] [10−12] [10−12]

1 0.0 1.4 7.1 10 51

2 0.1 3.7 11.4 42 130

3 0.8 9.0 37.0 332 1368

4 2.7 11.2 70.5 792 4973

5 3.8 20.8 83.1 1726 6900

6 5.1 27.1 96.1 2608 9235

7 5.8 31.1 101.9 3170 10373

8 12.7 60.6 149.9 9085 22484

9 23.6 105.3 202.4 21305 40968

10 27.2 122.8 216.4 26574 46816

11 32.1 138.0 233.7 32251 54631

12 37.8 150.7 252.3 38029 63643

13 53.2 191.5 294.5 56376 86711

14 61.2 209.8 313.4 65758 98232

15 69.7 220.2 331.6 73002 109930

16 73.9 235.4 340.0 80020 115600

17 81.1 246.5 353.8 87229 125195

18 90.2 258.5 369.8 95590 136745

19 94.5 268.1 377.0 101066 142128

Σ 694966 1076113

p3 = 694966/1076113 = 0.6458
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Application to a structure: Now consider, for example, that the designer needs
the value of εsh(t, t0) for a slab of thickness D = 25 cm, exposed to environmental
humidity henv = 65% from age t0 = 10 days. Table H.2c shows the evaluation of the
shrinkage halftime τsh and final shrinkage ε∞

sh for such a structure, based on the usual
formulae but with parameters kt and ε∞

s replaced by the updated values k∗
t and ε∞∗

s
determined in the previous step (update). Note that these parameters are the same for
both the specimen and the structure. They are used along with the given values of D,
t0, and henv for the real structure to obtain the updated shrinkage predictions for the
structure. After determining τsh = 2243 days, ε∞

sh = 546.3× 10−6, and kh = 0.725,
we can predict the shrinkage strain after 1000 days of drying (i.e., at age t = 1010
days) according to (3.15) as

εsh(1010) = −546.3 × 10−6 × 0.725 × tanh

√
1000

2243
= −231.1 × 10−6 (H.17)

�

Remark: Updating Based on Diffusion Size Effect and Role of Autogenous
Shrinkage (added in proof).
In view of the aforementioned limitations, it has recently been tried to exploit the
diffusion size effect [124], as described in Sect. 3.8.1. However, similar discrepancies
as with the weight loss method have been found. The inevitable conclusion is that
(1) one must take into account the autogenous shrinkage, which proceeds for a long
time in the core of the standard specimen but quickly becomes negligible in the small
companion specimen, and (2) the compressive volumetric creep of the solid skeleton
of the hardened cement paste, loaded by the stress changes in the liquid and adsorbed
pore water. Both these phenomena prolong the final stage of total shrinkage of drying
specimens. Further studies are in progress.

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_3


Appendix I
Moisture Transport Characteristics

I.1 Sorption Isotherms

The classical Langmuir isotherm [564] describes adsorption in a single molecular
layer and has the form

u = abh

1 + bh
(I.1)

where u is the moisture ratio, i.e., the ratio between the mass of evaporable water and
the mass of the dry sample (also called the water content in mass percent), a is the
moisture ratio corresponding to a complete monolayer, b is a parameter dependent
on temperature, and h is the pore relative humidity,

The isotherm of the BET theory [276] is composed of a series of Langmuir
isotherms representing individual molecular layers. For n molecular layers, the result
is

u = abh
[
1 − (n + 1)hn + nhn+1

]
(1 − h)

[
1 + (b − 1)h − bhn+1

] (I.2)

For n → ∞ this tends to

u = abh

(1 − h) [1 + (b − 1)h]
(I.3)

This equation is suitable for the description of the isotherm at lower humidities, up to
about 50%. Note that it can be deduced from (8.54) by setting u = Γa Sspecρd , where
Sspec is the specific area (surface of pores per unit volume) and ρd is the specific
mass of dry concrete. Parameter a then corresponds to Γ1Sspecρd and parameter b to
C0 exp(Qa/RT ) (see Sect. 8.2.6.1 for the meaning of Γa , Γ1, C0 and Qa).

A simple empirical relation proposed by Lykow [588] for the range of relative
humidities between 10 and 90% reads

© Springer Science+Business Media B.V. 2018
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u = c1h

h − c2
(I.4)

where c1 and c2 are temperature-dependent constants. To obtain a convex isotherm,
parameter c1 must be negative and parameter c2 must be larger than 1. For the range
between 30 and 100%, Lykow recommended the Posnow equation

u = uh

1 − ln h

d

(I.5)

derived from experiments with wood. Parameter uh is the maximum hygroscopic
moisture ratio and d is another temperature-dependent parameter. A generalization
of (I.5) suggested by Hansen [449] reads

u = uh(
1 − ln h

A

)1/n (I.6)

with parameters uh , A, and n. Künzel [556] proposed a simpler formula,

u = (b − 1)uhh

b − h
(I.7)

with only two parameters, uh and b. Some of the isotherms used in building physics
are unbounded (u tends to infinity as h approaches 1), and so they cannot be used
near saturation [499, 549, 725].

An isotherm can also be constructed from the capillary pressure curve (ormoisture
retention curve) linking the capillary pressure pc to the saturation degree Sl , e.g., from
the van Genuchten formula (8.16). Equation (8.48) can be rewritten in terms of the
moisture ratio as

u = we

ρd
= n pρl Sl

ρd
(I.8)

From the van Genuchten equation (8.16) with pentry = 0, the saturation degree can
be expressed as

Sl =
[(

pc

π0

)1/(1−m)

+ 1

]−m

(I.9)

Combining this with theKelvin equation in its simplified form (8.34) and substituting
into (I.8), we obtain

u = n pρl

ρd

[(
pc

π0

)1/(1−m)

+ 1

]−m

= n pρl

ρd

[(
− ρl RT

Mwπ0
ln h

)1/(1−m)

+ 1

]−m

(I.10)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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The resulting isotherm has the form

u = u1
[
(−b ln h)1/(1−m) + 1

]−m
(I.11)

with parameters u1, b, and m.
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Fig. I.1 Adsorption isotherms measured by Baroghel-Bouny [55] and fitted by (a) Langmuir, BET,
and Lykow formulae, (b) Posnow formula (I.5), (c) Freiesleben–Hansen formula (I.6), (d) van
Genuchten formula (I.11)

Most of the above-mentioned isotherms were originally proposed for materials
other than concrete. We will illustrate their applicability by fitting experimental data
reported by Baroghel-Bouny [55] for 1-year-old concrete with w/c = 0.43, which
were presented in the form of desorption and adsorption isotherms in Fig. 8.5. These
data cover the complete range of relative humidities, down to 3%. In the original
paper, the state at h = 3% was considered as the reference “dry” state. Since the
theoretical formulae take zero humidity as the dry state with zero evaporable water
content, the measured data have been shifted vertically by 0.26%, which is the value
determined by fitting the low-humidity data by the Langmuir isotherm. In contrast
to Fig. 8.5, here we plot the values of the moisture ratio u instead of the evaporable
water content we. The fits of the adsorption isotherm are shown in Fig. I.1. They
have been obtained with parameters a = 1.3 and b = 8.7 for the Langmuir isotherm
(I.1), a = 0.68 and b = 28 for the BET isotherm (I.3), c1 = −1.9 and c2 = 1.5 for
the Lykow equation (I.4), uh = 3.74% and d = 0.26 for the Posnow equation (I.5),

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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uh = 3.86%, A = 0.072, and n = 2 for the Freiesleben-Hansen equation (I.6), and
u1 = 3.8%, b = 20.6 and m = 0.3 for the van Genuchten equation (I.11).

For fitting by the Langmuir and BET isotherms (Fig. I.1a), only the measured
data up to 45% humidity have been considered, because these isotherms are not
meant to describe capillary condensation. The Lykow formula is seen to give a fair
fit only for humidities above 40% (Fig. I.1a), and the Posnow formula is slightly
better (Fig. I.1b). A very good fit over the range from 10 to 100%, reproducing
the characteristic sigmoidal shape of the adsorption isotherm, is obtained with the
Freiesleben–Hansen formula (Fig. I.1c) as well as with the van Genuchten formula
(Fig. I.1d).

(a) (b)

Posnow
Lykow

relative humidity, h [%]

m
oi
st
ur
e
ra
tio

,u
[%

]

100806040200

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

van Genuchten
Freiesleben-Hansen

relative humidity, h [%]

m
oi
st
ur
e
ra
tio

,u
[%

]

100806040200

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

Fig. I.2 Adsorption isotherm measured by Ahlgren [22] and fitted by the (a) Lykow and Posnow
formulae, (b) Freiesleben–Hansen and van Genuchten formulae

For comparison,we also present fits of the experimental data recorded for concrete
with w/c = 0.48 by Ahlgren [22] and reported in the database of Hansen [448]. The
optimal fits of the adsorption isotherm are shown in Fig. I.2. As already explained,
the Langmuir isotherm and the BET isotherm are appropriate for low humidities only
and thus are not presented here. The Lykow formula (I.4) with parameters c1 = −3
and c2 = 1.7 is seen to give quite a good fit for humidities above 40%, and the Posnow
formula (I.5) with parameters uh = 4.6% and d = 0.28 gives a good fit over the
entire range covered by experiments (Fig. I.2a). For this concrete, the Freiesleben–
Hansen isotherm (I.6) with parameters uh = 4.6%, A = 0.26, and n = 1.05 does
not give any visible improvement compared to the simpler Posnow formula, because
the optimal value of n turns out to be very close to 1. The van Genuchten isotherm
with parameters u1 = 4.3%, b = 8.3, and m = 0.4 provides a very good fit, too
(Fig. I.2b).

Thedesorption isotherms are often close to a straight line. For the data ofBaroghel-
Bouny [55] shown in Fig. I.3a, this is true in the range above 40% relative humidity,
while for the data of shown in Fig. I.3b, linearity holds over the entire range covered
by experiments (from 20% relative humidity). As illustrated in Fig. I.3a, the van
Genuchten formula with parameters u1 = 4.1%, b = 3.1, and m = 0.48 could
provide a good fit over the entire range of humidities, but it is more convenient to
use a simple linear relation, u = 4.6% × h − 0.4%, which provides the same level
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of accuracy in the range above 30% relative humidity. For the data in Fig. I.3b, the
linear relation u = 4.54%×h +0.052% is even better than the van Genuchten three-
parameter formula. The dry concrete density is in this case ρd = 2300 kg/m3, and
the evaporable water content can be expressed as we = ρdu. The moisture capacity
is thus 1/k = ρd × 4.5% = 104.4 kg/m3, and its reciprocal value is k = 0.00958
m3/kg.
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Fig. I.3 Desorption isothermsmeasured by (a) Baroghel-Bouny [55] and (b) Ahlgren [22], approx-
imated by the van Genuchten formula and by a straight line

A host of attempts have been made to modify the BET equation (I.3) in order
to obtain better agreement with experimental data. Such modifications include the
BDDT model [275], the FHHmodel [447], Hillerborg’s formula [480], and the BSB
model [277], which served as a starting point for the development of prediction
formulae for the adsorption isotherm of cement paste proposed by Xi et al. [883].
The general form of the BSB model is

u(h, T ) = VmCT (T )kT (T )h

[1 − kT (T )h][1 + (CT (T ) − 1)kT (T )h] (I.12)

where T is the absolute temperature, k and Vm are parameters, and

CT (T ) = exp

(
Qa

RT

)
(I.13)

with R = universal gas constant and Qa = net heat of adsorption per mole. Note
that, for kT = 1, formula (I.12) would become equivalent to the BET formula (I.3),
with a ≡ Vm and b ≡ CT .

Xi et al. [883] developed empirical formulae for the prediction of parameters Vm

and kT based on the composition of the paste and its age. They took into account the
type of cement, water-cement ratio w/c, and equivalent age te (in days). Parameter
Vm has the meaning of monolayer capacity and can be estimated as

Vm =
(
0.068 − 0.22

te

)(
0.85 + 0.45

w

c

)
Vct (I.14)
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Fig. I.4 Comparison of predicted adsorption isotherms for various cement pastes with data mea-
sured by (a)–(b) Powers and Brownyard [706], (c) Hagymassy et al. [445], (d) Mikhail et al. [629]

where Vct = 0.9 for cement type I (ordinary Portland cement), 1.0 for type II (mod-
ified cement), 0.85 for type III (rapid-hardening Portland cement), and 0.6 for type
IV (low-heat Portland cement).

Parameter k is linked to the number n of adsorbed layers at the saturation state
and can be expressed as

kT (T ) = (1 − 1/n) CT (T ) − 1

CT (T ) − 1
(I.15)

where

n =
(
2.5 + 15

te

)(
0.33 + 2.2

w

c

)
Nct (I.16)

and Nct = 1.1 for cement type I, 1.0 for type II, 1.15 for type III and 1.5 for type IV.
Parameter Qa is the net heat of adsorption and could be determined from heat of

immersion experiments. For moderate temperatures, Xi et al. [883] suggested to set
Qa/R = 855 K. This simple approach is not applicable at high temperatures. For
temperatures much higher than the room temperature, and especially above 100 ◦C,
further phenomena come into play and a more complex model is needed [188].



Appendix I: Moisture Transport Characteristics 823

(a) (b)

7 days

te = 90 days

pore relative humidity, h [%]

m
oi
st
ur
e
ra
tio

,u
[%

]

100806040200

20

15

10

5

0

type IV

type II cement

pore relative humidity, h [%]

m
oi
st
ur
e
ra
tio

,u
[%

]

100806040200

20

15

10

5

0

(c) (d)

0.3

w/c = 0.6

pore relative humidity, h [%]

m
oi
st
ur
e
ra
tio

,u
[%

]

100806040200

20

15

10

5

0

100◦C

T = 21◦C

pore relative humidity, h [%]

m
oi
st
ur
e
ra
tio

, u
[%

]

100806040200

20

15

10

5

0

Fig. I.5 Adsorption isotherms for cement paste and their dependence of on (a) age, (b) cement
type, (c) water-cement ratio, and (d) temperature

Formulae (I.14) and (I.16) are valid in the range of te > 5 days and 0.3 ≤ w/c ≤
0.7. Outside this range, te or w/c should be replaced by the value of the closest limit
(e.g., if te < 5 days, the formulae should be evaluated for te = 5 days).

Xi et al. [883] demonstrated a very good agreement of the predicted isotherms
with the experimental data of Powers and Brownyard [706], Hagymassy et al. [445],
Odler et al. [663], and Mikhail et al. [629]. Selected examples are shown in Fig. I.4.
Note that these are the adsorption isotherms, valid at increasing humidity.

Based on this prediction model, it is possible to illustrate the effect of age, cement
type, water-cement ratio, and temperature on the adsorption isotherms; see Fig. I.5.
The reference curve, plotted in all parts of the figure by a solid line, corresponds to the
equivalent age te = 28 days, cement type IV, water/cement ratio 0.3, and temperature
T = 294 K (21 ◦C). In Fig. I.5a, the equivalent age is set to 7 days, 14 days, 28 days,
and 90 days (from bottom to top). In Fig. I.5b, the cement types are IV, III, I, and
II (from bottom to top). In Fig. I.5c, the water/cement ratios are 0.3, 0.4, 0.5, and
0.6 (from bottom to top). As shown in Fig. I.5d, the effect of temperature within the
range from 20 to 100 ◦C is very weak, which is consistent with the findings of Radjy
et al. [713] and Monlouis-Bonnaire [635].

Upscaling of the moisture capacity to the level of concrete was treated by Xi [880,
881],whodeveloped a thermodynamically basedmodel for evaluation of the effective
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moisture capacity of a composite material and applied it to concrete, considered as
a two-phase composite consisting of cement paste as the matrix and aggregates as
inclusions.

I.2 Sorption Hysteresis Due to Nonuniqueness of Menisci

For pore relative humidity h ≥ 0.5, the pores contain the vapor (of negligible mass),
the liquid (or capillary)water, and the adsorbedwater (free or hindered). The adsorbed
water dominates for h < 0.75. For h < 0.5, the pores contain virtually no liquid
water because the capillary tension would be close to the nanoscale tensile strength
of water and also because the radius of the capillary menisci would not be much
larger than the size of a few molecules of water; see Sect. 8.2.4.

As already mentioned in Sect. 8.2.5 and documented in Figs. 8.5a and I.6, the
isotherms lie significantly lower for adsorption than for desorption. For pore humidi-
ties h > 0.75, at which capillarywater dominates, such a hysteresismay be explained
by pore geometries idealized in Figs. I.7 and I.8. For instance, the configurations A
(empty) and B (filled) in Fig. I.7a can both exist at the same h. Figure I.8a, b shows
the so-called bottle neck effect, or ink bottle effect [274, 320], which allows the large
pore to be either full or empty at the same h.

we

h= pv/psat

A

B

0.45 1.00

C
D

E

F

Fig. I.6 Illustrative sketch of irreversibility of desorption and adsorption isotherms, and of sorption
reversals

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. I.7 Schematic examples of different equilibrium shapes of capillary menisci between liquid
water (dashed) and vapor (dotted): (a) convex menisci for h < 1, (b) anticlastic meniscus with
r > 0 at h < 1, (c) with r = 0 at h = 1, and (d) with r < 0 at h > 1

(a)

(b)

(c)

(d)

increasing h

increasing we

increasing h
decreasing we

same h
same r
different we

Fig. I.8 Schematic examples of (a)–(b) various degrees of pore filling (in 2D) for the same vapor
pressure, (c)–(d) pore (in 2D) whose filling by liquid with increasing h increases or decreases

Figure I.7b–d shows the evolution of the anticlastic surface of a capillarymeniscus
between two spherical particles. For the meniscus shown in Fig. I.7b, the concave
curvature 1/r1 is smaller in magnitude than the convex curvature 1/r2 (the curvature
radius is considered positive, and the arc convex, if the center of curvature is in the
vapor). Such shapes of cyclohexanemenisci at the periphery of liquid bridges trapped
between two crossed cylindrical mica surfaces were observed in the experimental
study of Fisher and Israelachvili [395], who verified validity of the Kelvin equation
for mean radii of curvature between 4 and 19 nm. At vanishing capillary pressure,
the meniscus must have a zero mean curvature, 1/r = 0. But this condition does not
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mean that the vapor–liquid interface must be planar. As illustrated in Fig. I.7c, the
meniscus can be an anticlastic surface (saddle surface) for which the principal radii of
curvature, r1 and r2, have the same magnitude but opposite signs. Another anticlastic
meniscus geometry, depicted in Fig. I.7d, shows that supersaturated vapor can be
present when the concave curvature 1/r1 of the meniscus between two spherical
particles is larger in magnitude than its convex curvature 1/r2.

Behavior similar to the bottle neck effect (Fig. I.8a, b) can explain the nonunique-
ness and hysteresis observed at low pore humidities at which only the adsorbed water
layers are present. Such phenomena are included in the concept of molecular con-
densation mentioned in Sect. 8.2.6.3. That section also describes other phenomena
that play a role in hysteresis in nanopores.

Ash is decreased, the porewater system tries to accommodate so that thewater loss
be minimized. Thus, the desorption isotherm corresponds to the maximum possible
volume of pore water for a given mean curvature 1/r of the meniscus (Fig. I.6).
As h is increased, the pore water system tries to accommodate so as to achieve the
minimum water intake, and thus, the sorption isotherm corresponds to the minimum
possible volume of pore water for a given mean curvature 1/r of the meniscus.
When desorption is reversed to resorption (path A–B in Fig. I.6), again the minimum
possible water intake for a given decrease of mean curvature 1/r is followed, and
the inverse occurs when sorption is reversed to desorption (C–D in Fig. I.6). Similar
phenomena occur at variable temperature because the temperature changes also cause
changes of the curvature of the meniscus.

The possibility of nonfilled pores at supersaturation, pv > psat, indicates that:

1. the first sorption isotherm for pv increasing above psat should have a much higher
slope than the theoretical slope for completely filled pores;

2. the isotherms cannot be unique even at supersaturation, and hysteresis must exist
as depicted at E–F in Fig. I.6;

3. the isotherm slope should be continuous through h = 1.

As an example, at Northwestern University in 1984 (in connection with nuclear
accident research), a thick hermetically sealed steel vessel filled with concrete was
placed for 1 month in an oven of 350 ◦C. But a piezoelectric gauge in a small cavity
in the concrete filling never registered any pressure. Likewise, many pore pressure
measurements on heated concrete showed surprisingly low pressures of only a few
atmospheres, orders of magnitude less than indicated byASTM steam table for water
at constant volume. One reason probably is that the nanopores were initially empty,
despite saturation of capillary space, and could accommodate water from capillary
pores. Another reason probably is the self-desiccation of cement paste.

Another example (private communication by Roy W. Carlson, 1969) is a 30-year
experiment at UC Berkeley in which a 2-m-long section of a three-story pipe was
filled by concrete.A pressure gauge about 60 cm into the concrete could never register
any pore pressure. The disputed experiments with uplift pressure by Paul Fillunger
at TU Vienna [392–394] probably suffered from the same problem.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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I.3 Permeability

A prediction model for the moisture permeability cp of cement paste was proposed
by Xi et al. [884]. In fact, they worked with a coefficient denoted as Dh , which is, in
the present notation, equal to the ratio cp/ρcp, where ρcp is the mass density of the
paste. In terms of the moisture permeability (as defined in Sect. 8.3.2), the empirical
formula developed by Xi et al. [884] can be rewritten as

cp(h) = ρcpαh + ρcpβh

[
1 − 2−10γh (h−1)

]
(I.17)

where αh , βh and γh are parameters.
To give a specific example, the values obtained by fitting experimental results

for a cement paste with w/c = 0.5 cured for 3 days were αh = 0.0423 cm2/day,
βh = 0.432 cm2/day, and γh = 3.54. The corresponding graph of function (I.17)
normalized by cp(1) is shown inFig. I.9.At lowhumidities, themoisture permeability
is close to cp(0) ≈ ρcpαh , and at saturation, we have cp(1) = ρcp(αh + βh/2). Xi et
al. [884] even proposed empirical formulae for the estimation of parameter values
from the water/cement ratio. However, those formulae were calibrated using data for
pastes with w/c between 0.5 and 0.75, and extrapolation to lower w/c would be very
unreliable (and might even give nonphysical results).
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Fig. I.9 Dependence of normalized moisture permeability on pore relative humidity for concrete
with w/c = 0.5, according to Xi et al. [884]

Studying various kinds of nanoporous gels, Scherer [757–759] proposed an inter-
esting novel method for measuring their permeability, and also applied it to hardened
Portland cement paste. He cast cylinders of 5 mm in diameter, and after 2.75 days
of curing, he submerged them in water and suddenly subjected them to three-point
loading in flexure. He thenmeasured the relaxation of the applied forcewhile holding
the deflection constant. His analysis rested on the hypothesis that the relaxation was
caused not only by viscoelasticity, but also, and mainly, by squeezing the pore water
out of the specimens. To identify the permeability, he used optimum fitting by Biot’s

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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[240] linear theory of consolidation of viscoelastic materials, expressed as a series
of error functions.

It is doubtful, however, that this approach could be used for older cement pastes
or concretes. It may have worked for a very young paste because the capillaries were
still continuous, permeability high, and all the pores filled mostly by liquid water.
In mature concrete, this approach cannot work, for two reasons: (1) Self-desiccation
causes that the pores in concrete always contain some vapor, even if the specimen
is submerged in water, and (2) specimens loaded in compression lose moisture at
the same rate as the companion load-free shrinkage specimens (as shown by Hansen
[451] and Maney [607]). These findings are what defeated the original consolidation
theory of concrete creep mechanism.

I.4 Moisture Diffusivity

I.4.1 Dependence of Diffusivity on Humidity

The standard moisture transport model used in this book (and also adopted by the fib
Model Code 2010) describes the dependence of moisture diffusivity C on the pore
relative humidity h by the Bažant–Najjar formula (8.89). Alternative expressions
proposed in the literature include the formula of Roncero [732],

C(h) = C0 + (C1 − C0)
h

h + eβ(1 − h)
(I.18)

where C0 is the diffusivity at zero humidity, C1 is the diffusivity at saturation, and
β ≥ 0 is a dimensionless shape factor. For β = 0, a linear dependence is obtained.
Positive values of β give a convex curve with a steep slope near saturation; see
Fig. I.10. Note that the shape of this curve is very similar to that obtained with
formula (I.17) for moisture permeability; cf. Fig. I.9. In contrast to the Bažant–
Najjar formula (8.89), the value of diffusivity according to (I.18) decreases with
decreasing humidity already near saturation, and there is no range of high humidities
in which the value would be almost constant. With a diffusivity function of this kind,
one could fit very well the data of Wierig [868] for steady-state permeation in a wall,
discussed in Sect. 8.4.3.3, because the optimal diffusivity function derived from the
experiments and shown in Fig. 8.29b has a similar shape to those in Fig. I.10.

I.4.2 Aging of Diffusivity

Even when exposed to drying environment, the pore humidity in the cores of thick
cross sections remains, for a long time, very high (albeit < 100%, due to self-
desiccation). This causes that hydration continues in thick members for a long time,
even for centuries [715]. Then, the effect of hydration, or aging, on diffusivity C (or

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Fig. I.10 Dependence of normalized moisture diffusivity on pore relative humidity according to
Roncero [732]

permeability cp) and on inverse moisture capacity k (demonstrated by the isotherms
in Fig. I.5a) needs to be taken into account.

Data on the age dependence of diffusivity were reported by Wierig [868]. They
were used by Bažant and Wang [192] in spectral analysis of random environ-
mental effects on a nuclear containment. As seen in Fig. 2 in [192], these data
can be approximately fitted by replacing constant C1 in (8.89) by the function
C1(t) = C1,28(t/tre f )

−0.21 with tre f = 28 days and C1,28 = diffusivity of satu-
rated concrete at the age of 28 days. Using this simple age dependence, Bažant and
Wang [192] reduced the diffusion equation with variable diffusivity C1(t) to one
with constant diffusivity C1,28 by replacing the real age t with a new independent
variable, the transformed time

t∗ =
∫ t

t0

C1(t ′)
C1,28

dt ′ = t0.21re f

0.79

(
t0.79 − t0.790

)
(I.19)

The age dependence shown by Wierig’s data is relatively mild (diffusivity at 1 year
of age reduced to 58% of its value at 28 days). This is doubtless due to the fact that
a decrease of pore humidity arrested the progress of aging in Wierig’s laboratory
specimens because they were too small and thus dried too fast. For real structures,
which can be much larger than Wierig’s specimens, the core of cross section will
remain at high humidity much longer, even for decades. This will doubtless cause
a much greater decrease of diffusivity with age than indicated by the foregoing
equation. In any case, a more realistic time transformation should depend on pore
humidity (as well as temperature).

Generally, the aging effect of hydration may be captured by replacing the actual
time t (age) by the so-called equivalent hydration period te (also called the maturity);
te represents a period of hydration at 25 ◦C of a saturated material element needed
to achieve the same hydration degree as that achieved at variable humidity and
temperature during the actual time period t . Functions C(h, t), k(h, t), and cp(h, t)
are then replaced by functions C(h, te), k(h, te), cp(h, te). For the precise definition
of te and a more detailed discussion, see Sect. 10.6.1.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_10


Appendix J
Moisture Transport in Porous Materials

The fundamentals of moisture transport modeling with emphasis on approaches
applicable to concrete are covered in Chap.8. This appendix contains supplementary
material that provides a broader context, elaborates certain details, and discusses
the links among various models and theories. For comparison and clarification of
conceptual differences, attention is extended to theories applicable to other porous
media, such as soils or building materials, in which the diffusion of water vapor in
the pore gas can play an important role. Some aspects of these theories are relevant
to concrete.

The Fick law suitable for the description of such a transport mechanism is pre-
sented in Sect. J.1. TheDarcy law in it original form described in Sect. 8.3.2 is limited
to fluid flow in a saturated medium, and in Sect. J.2, it is extended to the Darcy–
Buckingham law, which covers the partially saturated case. The Richards model dis-
cussed in Sect. J.3 combines the Darcy–Buckingham lawwith the moisture mass bal-
ance equation and represents the most popular transport model for soils. Section J.4
is devoted to the Coussy model as an example of a sophisticated transport model,
which uses two primary unknown fields and two mass balance equations and consid-
ers multiple transport mechanisms. Potential links between these alternative models
and the Bažant–Najjar model from Sect. 8.3.4.2 are briefly discussed in Sect. J.5.
Section J.6 discusses the Künzel model, which was conceived as a general model for
coupled heat and moisture transport in various building materials. Finally, Sect. J.7
presents the model of Beneš and Štefan [228] for coupled heat andmoisture transport
in concrete, with a numerically solved example showing the evolution of temperature,
vapor pressure, and other relevant quantities in a heated concrete specimen.

J.1 Fick Law

According to the kinetic gas theory, diffusion in a gas mixture is driven by gradients
of molar concentrations [328]. Fick’s law [391] postulates proportionality between
the flux of molar concentration and the negative gradient of molar concentration. For

© Springer Science+Business Media B.V. 2018
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a binary mixture of air and vapor, the molar concentration of vapor is given by

Cv = ρv/Mw

ρv/Mw + ρa/Ma
(J.1)

which is a dimensionless quantity. The ratio ρv/Mw corresponds to the molar density
of vapor and ρa/Ma to the molar density of air [mol/m3]. Fick’s law is then written
as

Cvvv = −Dav∇Cv (J.2)

where vv is the volume flux of vapor (volume of vapor per unit area and unit time),
measured in [m3/m2s = m/s], and Dav is the free air-vapor diffusion coefficient
[m2/s]. In a more explicit notation, Eq. (J.2) could be written as

Cvvvi = −Dav
∂Cv

xi
, i = 1, 2, 3 (J.3)

where vvi is the i th component of vector vv and xi is the i th spatial coordinate.
For a mixture of ideal gases, the molar density of each component is proportional

to its partial pressure. This follows from the state equation of ideal gas, according to
which ρ j/M j = p j/RT , with subscript j = v, a referring to individual components
of the mixture (vapor, air). Consequently, Eq. (J.1) can be rewritten as

Cv = pv

pv + pa
= pv

pg
(J.4)

which means that the molar concentration can be expressed in terms of pressures.
Substituting (J.4) into (J.2), we obtain

pvvv = −Dav pg∇
(

pv

pg

)
(J.5)

To get a law governing the mass flux of vapor, defined as j v = ρvvv [kg/m2s], it is
sufficient to multiply both sides of (J.5) by Mw/RT and exploit the state equation
of vapor (8.7):

j v = ρvvv = Mw pv

RT
vv = − Mw

RT
Dav pg∇

(
pv

pg

)
(J.6)

This equation describes free vapor diffusion in air. The diffusion coefficient Dav

depends on temperature T and gas pressure pg and, according to de Vries and Kruger
[344], can be approximated as

Dav = patm

pg

(
T

T0

)1.88

D0 (J.7)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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where D0 = 2.48 × 10−5 m2/s is the value of the diffusion coefficient at reference
temperature T0 = 293 K and reference gas pressure pg = patm.

For diffusion in a constrainedpore space, the diffusion coefficient has to be reduced
by the product of two factors—porosity n p and tortuosity τ . Multiplication by poros-
ity reflects the reduction of the area across which the diffusing molecules can travel
(note that the flux is always taken per unit total cross-sectional area of the porous
medium, not per unit area of the pores). Multiplication by tortuosity reflects the
constraining effect of the pore walls. In the special case of uniform gas pressure pg

equal to the atmospheric pressure patm and uniform temperature T equal to T0, the
resulting equation for vapor diffusion mass flux reads

j v = −n pτ
Mw D0

RT0
∇ pv (J.8)

The coefficient n pτ Mw D0/RT0 is called the permeability coefficient16 [s]. For dif-
fusion in free space (i.e., for porosity n p = 1 and tortuosity τ = 1), its value would
be

Mw D0

RT0
= 18.02 × 10−3 × 2.17 × 10−5

8.31446 × 273
s = 0.17227 × 10−9 s (J.9)

Porosity n p has a clear meaning, but the tortuosity τ can be deduced only indirectly,
by measuring the actual permeability coefficient and dividing it by n p Mw D0/RT0.
In the presence of liquid pore water, the diffusion of vapor is further constrained. The
volume fraction of the pore space occupied by gas is reduced to (1 − Sl)n p, where
Sl is the liquid saturation degree. Also, the tortuosity factor τ becomes a function of
the saturation degree, which is usually nonlinear. Both effects lead to a reduction of
the permeability coefficient. The tortuosity factor at partial saturation is sometimes
written as the product of the (constant) tortuosity factor at full saturation and a
saturation-dependent reduction factor called the partial tortuosity, which is equal to
1 at full saturation. For simplicity, we deal directly with the resulting saturation-
dependent tortuosity τ(Sl).

J.2 Darcy–Buckingham Law

The original Darcy law presented in Sect. 8.3.2 applies to the flow of a fluid that
completely fills the pore space. Under partially saturated conditions, the flow can
still be considered as driven by the gradient of the total head, but the hydraulic per-
meability needs to be reduced. This was taken into account by Buckingham [279],
who extended Darcy’s approach to the partially saturated case, with hydraulic per-
meability considered as a function of the water content. It is convenient to describe

16The notion of permeability is primarily linked to the Darcy law, see Sect. 8.3.2, but it can be used
in connection with the Fick law, too.

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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the reduction of permeability by a dimensionless factor kr , called the relative per-
meability, which depends on the water content and varies from 1 at full saturation
to 0 at a certain minimum degree of saturation, below which the flow stops. The
Darcy–Buckingham law generalizing Eq. (8.66) is then written as

vl = −kr Kh∇Ht (J.10)

It can also be rewritten in an equivalent form, which generalizes Eq. (8.69) and is
formulated in terms of the mass flux and pressure gradient instead of the volume flux
and total head gradient:

j l = ρlvl = −ρl kr Kh∇
(

pl − patm

ρl g
+ z

)
= −kr Kh

g
∇ pl − ρl kr Khez (J.11)

If the gravity effect is neglected and the hydraulic permeability is expressed in terms
of the intrinsic permeability and fluid properties using formula (8.70), Eq. (J.11) can
be written as

j l = −kr,l K0ρl

ηl
∇ pl (J.12)

for the flow of a liquid (which is indicated by subscripts l). Recall that ηl is the
dynamic shear viscosity of the liquid. An analogous equation

j g = −kr,g K0ρg

ηg
∇ pg (J.13)

can be set up for the flow of pore gas (subscript g). The driving force is now the
gradient of the gas pressure.

The relative permeability to liquid water (or, in general, to the wetting fluid)
depends on the saturation degree, Sl . According to Luckner et al. [583], this depen-
dence can be approximated by a function of the form

kr,l = √Sl

[
1 −

(
1 − S1/m

l

)m]2
(J.14)

where m is a dimensionless parameter (the same as parameter m used by the van
Genuchten retention curve (8.16)). For the flow of gas (or, in general, of the nonwet-
ting fluid), the relative permeability could be approximated by

kr,g = √1 − Sl

(
1 − S1/m

l

)2m
(J.15)

Note that as the liquid saturation Sl increases from 0 to 1, kr,l increases from 0 to
1, while kr,g decreases from 1 to 0. In fact, more refined models consider that the
flow of liquid water stops at some minimum saturation degree, larger than zero. For
instance, formulae

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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kr,l =
(

Sl − Sir

1 − Sir

)Aw

(J.16)

kr,g = 1 −
(

Sl

Scr

)Ag

(J.17)

have been recommended in the literature [221, 396]. Here, Sir is the irreducible
saturation value at which the liquid flow stops, Scr is the critical saturation value
above which there is no gas flow, and exponents Aw and Ag are usually in the range
from 1 to 3.

It must be pointed, however, that Buckingham’s extension of Darcy law to a
separate flow of gas is physically justified only if the pore space occupied by gas
percolates through pores of width > 200 nm (the reason is that this is sufficiently
wider than the mean free path of water molecules in vapor, which is 80 nm at 25 ◦C).
In good-quality concrete at temperatures below 100 ◦C, a percolating pore space of
pores wider than about 200 nm does not exist; in more detail see the remark at the
end of Sect. J.7.

J.3 Richards Model

The classical model for liquid water transport in partially saturated soils, proposed
by Richards [724], is based on the water mass balance equation combined with the
Darcy–Buckingham equation. No chemical reactions are considered, and so there
is no need to distinguish between the total and evaporable water contents. On the
left-hand side of the water mass balance equation (8.77), ẇn is set to zero and the
contribution of vapor to the water mass (i.e., the term ρvn p(1 − Sl)) is neglected.
Traditionally, the Richards equation has been written in terms of the volumetric
water content, w̃, defined as the volume of water per unit volume of the medium
[m3/m3 = 1], which can be interpreted as the relative percentage of volume occupied
by water and varies between 0 and n p (porosity). In fact, w̃ = n p Sl , where Sl is the
saturation degree. As usual, the liquid water density ρl is considered as constant, and
so the left-hand side of (8.77) can be rewritten as ρl ˙̃w. Substituting jw = j l = ρlvl
into the right-hand side and dividing both sides by ρl , we obtain

˙̃w = −∇ · vl (J.18)

This is an alternative form of the water balance equation, valid under the present
assumptions and written in terms of the volumetric water content w̃ and volumetric
water flux vl.

The Richards equation
˙̃w = ∇ · (kr Kh∇Ht ) (J.19)

follows from (J.18) combined with the Darcy–Buckingham equation (J.10). In this
form, it is a second-order partial differential equation with two unknown fields, w̃
and Ht (total head). However, these fields are not independent and one of them can be

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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expressed in terms of the other, using the moisture retention relation. One also needs
to take into account the relative permeability kr as a function of the saturation degree
Sl , which can be linked to the pressure head Hp (rather than to the total head Ht ).
Recall that, according to (8.68), the total head is the sum of the pressure head and the
vertical coordinate z. Consequently, Eq. (J.19) can be converted into an equation with
a single unknown field, either the pressure head, or the volumetric water content.

In its primary form, the moisture retention relation links the capillary pressure pc

(i.e., suction) to the liquid saturation degree Sl ; see Sect. 8.2.3. As alreadymentioned,
the saturation degree multiplied by porosity gives the volumetric water content. The
capillary pressure is the difference between the gas pressure and the liquid pressure,
with the gas pressure usually close to the atmospheric pressure. This means that,
according to (8.67), the capillary pressure pc is proportional to the pressure head
Hp. Therefore, the moisture retention relation can be transformed by simple scaling
into a relation between the volumetric water content and the pressure head, described
by a certain function w̃(Hp). Differentiating this relation, we can rewrite the left-hand
side of (J.19) in terms of the time derivative of the pressure head. The right-hand
side of (J.19) is also easily expressed in terms of Hp, since Ht = Hp + z and
∇Ht = ∇Hp + ez . In this way, the Richards equation is converted into a partial
differential equation with the pressure head as the only unknown field:

dw̃(Hp)

dHp
Ḣp = ∇ · [kr (Hp)Kh∇Hp

]+ dkr (Hp)

dHp
Kh

∂ Hp

∂z
(J.20)

Of course, instead of the pressure head, one could use the liquid water pressure or
the capillary pressure as the primary unknown.

Alternatively, the Richards equation can be rewritten in terms of the volumetric
water content. The moisture retention relation is invertible, and so one can consider
Hp as a function of w̃ and write Ht (w̃) = Hp(w̃) + z. Elimination of Ht from (J.19)
leads to the equation first derived by Klute [550]:

˙̃w = ∇ ·
[

kr (w̃)Kh
dHp(w̃)

dw̃
∇w̃

]
+ dkr (w̃)

dw̃
Kh

∂w̃

∂z
(J.21)

Note that the relative permeability kr has originally been introduced as a function
of the saturation degree Sl . Using the links between the saturation degree and the
pressure head or the volumetric moisture content, the dependence of kr on Sl can be
transformed into a dependence on Hp or w̃, which is then conveniently used in (J.20)
or (J.21).

J.4 Coussy Model

As the first example of a multifield model, we present here the approach summa-
rized by Coussy [328], based on the previous work of Coussy and coworkers. For
simplicity, we restrict attention to the mass transport at constant temperature. The
fundamental equations are the moisture mass balance equation (8.76) and the dry

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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air mass balance equation, which has a similar format to (8.76), with the following
modifications: Themoisture flux jw must be replaced by the air flux ja , and thewater
content wt must be replaced by the mass of dry air per unit volume of the porous
medium, ma , which is equal to the product (1 − Sl)n pρa , where Sl is the saturation
degree, n p is the porosity, and ρa is the air density (per unit volume occupied by the
pore gas). The resulting equation reads

d

dt

[
ρan p(1 − Sl)

] = −∇ · ja (J.22)

The mass balance equations have to be rewritten in terms of two primary
unknowns, e.g., of the vapor pressure pv and the gas pressure pg. The transport
mechanisms include the advective flow of liquid water, advective flow of pore gas,
and diffusion of water vapor in the pore gas.

The mass flux of liquid water, j l , is linked to the gradient of liquid water pressure
by the Darcy–Buckingham law (J.12). For convenience, we rewrite this relation as

j l = −a∗
l ρl ∇ pl (J.23)

where

a∗
l = kr,l K0

ηl
(J.24)

is an auxiliary coefficient, dependent on the saturation degree (it is in fact the per-
meability coefficient for liquid water flow divided by the liquid water density). Note,
however, that application of the Darcy–Buckingham law to the fluxes of various
phases of the same substance (water) has some physically questionable aspects (see
the remark at the end of Sect. J.7).

The fluxes of water vapor, j v, and of dry air, ja , are obtained by summing the
contributions of two simultaneous transport mechanisms—advective flow of the gas
mixture and diffusion of individual gases in the mixture. The advective mass flux of
pore gas, jAg , is linked to the gradient of gas pressure by the Darcy–Buckingam law
for gas, see Eq. (J.13). In analogy to (J.23) and (J.24), we rewrite this relation as

jAg = −a∗
gρg ∇ pg (J.25)

where

a∗
g = kr,g K0

ηg
(J.26)

During advective flow, all the molecules move at the same velocity, and so the
volumetric fluxes of water vapor and dry air are the same, equal to vg = jAg /ρg . The
advective mass fluxes of vapor and air are proportional to the respective densities:

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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jAv = ρvvg = ρv

ρg
jAg = −a∗

gρv ∇ pg (J.27)

jAa = ρavg = ρa

ρg
jAg = −a∗

gρa ∇ pg (J.28)

The diffusion is governed by Fick’s law (J.6), with the diffusion coefficient (J.7)
further multiplied by (1 − Sl)n pτ , to take into account the fact that the diffusion
takes place in a constrained pore space under partially saturated conditions. To make
the resulting relations easier to handle, let us introduce an auxiliary variable

B = (1 − Sl)n pτ
D0 patm

RT0
(J.29)

which depends on the saturation degree. Fick’s law for the diffusive vapor mass flux
at constant temperature T = T0 can then be presented as

jDv = −B Mw∇
(

pv

pg

)
(J.30)

At the same time, the dry air diffuses in gas in the direction opposite to the vapor
diffusion, and its diffusive flux jDa is given by a formula similar to (J.30), but with
pv replaced by pa (partial pressure of dry air) and Mw replaced by Ma (molar mass
of air). Since ∇(pa/pg) = ∇((pg − pv)/pg) = −∇(pv/pg), the resulting diffusive
mass flux of air is

jDa = −B Ma∇
(

pa

pg

)
= B Ma∇

(
pv

pg

)
(J.31)

Note that the net diffusive mass flux of gas, jDv + jDa , is not zero. Pure molecular
diffusion takes place at uniform gas pressure, and thus at uniform molar density, but
not at uniform mass density. Therefore, what vanishes is not the mass flux but the
molar flux (number of moles per unit area and unit time), given by jDv /Mw + jDa /Ma .

Summing the contributions of advective and diffusive transport, we obtain the
resulting mass fluxes of vapor and air:

j v = jAv + jDv = −a∗
gρv ∇ pg − B Mw∇

(
pv

pg

)
(J.32)

ja = jAa + jDa = −a∗
gρa ∇ pg + B Ma∇

(
pv

pg

)
(J.33)

The total moisture flux jw = j l + j v, with the liquid water flux j l given by
(J.12) and the vapor flux j v given by (J.32), is substituted into the moisture balance
equation (8.77). The air flux ja given by (J.33) is substituted into the air balance
equation (J.22). The resulting set of two nonlinear partial differential equations is

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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d

dt

[
ρl n p Sl + ρvn p(1 − Sl )

]+ ẇn = ∇ ·
[

a∗
l ρl∇ pl + a∗

gρv∇ pg + B Mw∇
(

pv
pg

)]
(J.34)

d

dt

[
ρan p(1 − Sl )

] = ∇ ·
[

a∗
gρa∇ pg − B Ma∇

(
pv
pg

)]
(J.35)

It contains six unknown fields (Sl , ρa , ρv, pv, pl , pg), which are linked by four
equations: the state laws (8.6) and (8.7), the Kelvin equation (8.24), and the moisture
retention relation. Therefore, four variables can be eliminated, and the remaining two
(e.g., the vapor pressure pv and the gas pressure pg) then play the role of primary
unknowns.

In the absence of chemical reactions, the rate of the nonevaporable water content
wn vanishes. Otherwise, it would have to be evaluated from an appropriate hydration
model (which is affected by the pore relative humidity, causing the problem to become
coupled). The liquid pressure pl is related to the vapor pressure pv by the Kelvin
equation (8.24). The air density ρa is linked to the air pressure pa = pg − pv by
the state equation (8.6). Combining the Kelvin equation and the moisture retention
relation, we can express the saturation degree as a function of the vapor pressure and
the gas pressure, denoted as Sl(pv, pg). The liquid density ρl is constant, and the
vapor density ρv is related to pv by the state equation (8.7).

For simplicity, wewill nowdisregard the hydration reaction and the corresponding
changes of pore structure, which means that ẇn is set to zero and the porosity n p and
tortuosity τ are treated as constants. Substituting the aforementioned relations into
(J.34) multiplied by RT0/Mw and into (J.35) multiplied by RT0/Ma , we obtain the
governing differential equations written explicitly in terms of the primary unknowns,
pv and pg:

b1 ṗv + b2 ṗg = ∇ ·
[

a∗
l p2

0
∇ pv

pv
+ a∗

g pv∇ pg + RT0B∇
(

pv

pg

)]
(J.36)

b3 ṗv + b4 ṗg = ∇ ·
[

a∗
g(pg − pv)∇ pg − RT0B∇

(
pv

pg

)]
(J.37)

where

b1(pv, pg) = n p

[
1 − Sl(pv, pg) + (p0 − pv)

∂Sl(pv, pg)

∂pv

]
(J.38)

b2(pv, pg) = n p (p0 − pv)
∂Sl(pv, pg)

∂pg
(J.39)

b3(pv, pg) = n p

[
−1 + Sl(pv, pg) + (pv − pg)

∂Sl(pv, pg)

∂pv

]
(J.40)

b4(pv, pg) = n p

[
1 − Sl(pv, pg) + (pv − pg)

∂Sl(pv, pg)

∂pg

]
(J.41)

RT0B(pv, pg) = n p D0 patm
[
1 − Sl(pv, pg)

]
τ
(
Sl(pv, pg)

)
(J.42)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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The set of two second-order differential equations (J.36) and (J.37) must be sup-
plemented by two boundary conditions written in terms of the primary unknowns,
pv and pg. On the impervious part of the boundary, zero normal derivatives of the
vapor pressure and gas pressure are enforced. Note that, in this last case, conditions
∂pv/∂n = 0 and ∂pg/∂n = 0 imply a vanishing normal derivative of pv/pg because

∂

∂n

(
pv

pg

)
= 1

pg

∂pv

∂n
− pv

p2
g

∂pg

∂n
(J.43)

Consequently, the normal components of fluxes j l , j v and ja vanish on the impervi-
ous boundary. At the permeable part of the boundary in contact with the surrounding
atmosphere, the simplest assumption is that the pore gas pressure is equal to the
atmospheric pressure and the vapor pressure in the pores is equal to the ambient
vapor pressure, pv,env.

Let us return to Eqs. (J.34) and (J.35) and discuss their structure and the phys-
ical meaning of individual terms. Equation (J.34) represents the mass balance of
moisture, and the three terms in brackets on the right-hand side correspond to the
contributions of liquid flow, advective gas flow, and vapor diffusion. Equation (J.35)
represents themass balance of dry air, and the two terms in brackets on the right-hand
side correspond to the contributions of the advective gas flow and air diffusion. It
is possible to eliminate the diffusive terms by creating a weighted sum of these two
balance equations, with weights 1/Mw and 1/Ma . Physically, the resulting equation
represents the molar balance law for all the fluids combined. If both sides are multi-
plied by the constant RT0 and the state laws of vapor and air are taken into account,
the equation can be presented in the form

d

dt

[
n p p0Sl + n p pg(1 − Sl)

]+ p0

ρl
ẇn = ∇ · [a∗

l p0∇ pl + a∗
g pg∇ pg

]
(J.44)

where

p0 = ρl RT0

Mw
= 998 kg/m3 × 8.314 J/(K · mol) × 293 K

18.02 × 10−3 kg/mol
= 135 MPa ≈ 1330 patm

(J.45)
is a constant that corresponds to the (fictitious) pressure that would be generated in
vapor compressed to the density of liquid water (if it were still governed by the state
law of vapor). Note that p0 is three orders of magnitude larger than the atmospheric
pressure.

Coussy [328] converted Eqs. (J.34) and (J.44) to a dimensionless form and iden-
tified three characteristic times corresponding to individual transport mechanisms.
He showed that if the intrinsic permeability K0 is sufficiently high compared to
n pτηg D0/patm, the characteristic time of advective gas flow is much shorter than the
characteristic times of molecular diffusion and of liquid water flow.

For this class of materials, called by Coussy [328] “quite permeable,” the advec-
tive gas flow quickly reduces any excess gas pressure, and the gas pressure can be
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considered as constant and equal to the atmospheric pressure (as dictated by the
boundary condition on the permeable part of the boundary). Substituting pg = patm

into the moisture mass balance equation (J.34), we obtain its simplified form

d

dt

[
ρln p Sl + ρvn p(1 − Sl)

]+ ẇn = ∇ ·
[

a∗
l ρl∇ pl + B Mw

patm
∇ pv

]
(J.46)

The expression in the brackets on the left-hand side is, of course, the evaporable
water content, we. The expression in the brackets on the right-hand side is the mass
flux of moisture, expressed as a sum of the contributions of liquid water flow and
vapor diffusion.

Equation (J.46) contains four unknown fields: the liquid pressure pl , the vapor
pressure pv, the vapor density ρv, and the saturation degree Sl . These fields are
linked by three relations: the Kelvin equation, the state equation of vapor, and the
moisture retention relation (assuming that pg = patm and thus pc = patm − pl).
Consequently, only one of the fields is an independent primary unknown, and the
others can be eliminated.Whichfield is selected as the primary unknown is amatter of
convenience and taste (as well as considerations related to the boundary conditions,
numerical discretization, etc.). From the mathematical point of view, the resulting
formulations are fully equivalent.

J.5 Relation to the Bažant–Najjar Model

The moisture transport model proposed by Bažant and Najjar [165] and described in
Sect. 8.3.4.2 directly postulates that, under constant temperature, the total moisture
flux is driven by the gradient of pore relative humidity:

jw = −cp ∇h (J.47)

Under the assumptions that the pore gas pressure remains equal to the atmospheric
pressure, pg = patm and that the temperature remains constant, T = T0, equation
(J.47) can be derived by summing the liquid flux and the vapor flux, respectively
given by Eqs. (J.12) and (J.8) adjusted to the partially saturated case:

jw = j l + j v = −kr,l K0ρl

ηl
∇ pl − n pτ(1 − Sl)

Mw D0

RT0
∇ pv (J.48)

Note that the contribution of advective gas flow to the vapor transport is not consid-
ered, as a consequence of the assumption of constant gas pressure. The vapor pressure
pv can be expressed in terms of the pore relative humidity based on definition (8.1).
The liquid pressure pl is related to the pore relative humidity by the Kelvin equation
(8.25). Taking all this into account, (J.48) can be rewritten as

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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jw = −kr,l K0ρl

ηl

ρl RT0

Mw

∇h

h
− n pτ(1 − Sl)

Mw D0

RT0
psat∇h (J.49)

This corresponds to (J.47), with the moisture permeability given by

cp(h) = kr,l(h)K0ρ
2
l RT0

ηl Mwh
+ n pτ(h)[1 − Sl(h)]Mw D0 psat

RT0
(J.50)

To emphasize that the moisture permeability is variable, we have marked it explicitly
as a function of the pore relative humidity, h. Recall that the tortuosity, τ , and relative
permeability, kr , depend on the saturation degree, Sl . For a given structure of the pore
space, the saturation degree can be expressed in terms of the pore relative humidity
(and temperature); see (8.44). Therefore, τ and kr can be considered as functions of
the pore relative humidity, h, which plays here the role of the primary unknown field.

Formula (J.50) reflects the complex dependence of permeability on various con-
stants and variables. It consists of two additive terms, respectively, related to vapor
diffusion and liquid water flow. In theory, one could perform separate measurements
of vapor and liquid water transport, determine the dependence of tortuosity and
relative permeability on the saturation degree, and then evaluate the moisture per-
meability from (J.50). In practice, it is better to determine the moisture permeability
directly, by measurements of the total moisture transport. In that case, formula (J.50)
is in fact not needed. Nevertheless, separate evaluation of vapor and liquid transport
could be useful for more general models that take into account variable temperature.

J.6 Künzel Model

Another model closely related to the Bažant–Najjar model was proposed by Künzel
[556], who simulated coupled heat and moisture transport in building materials. At
constant temperature, Künzel’s model is based on the water mass balance equation
combined with the following assumptions regardingmoisture transport mechanisms:
The moisture flux is expressed as the sum of the vapor flux, driven by the gradient
of vapor pressure, and the liquid flux, driven by the gradient of capillary pressure.
This can be described by equations

jw = j v + j l (J.51)

j v = −δp∇ pv (J.52)

j l = K1∇ pc (J.53)

In Künzel’s work, K1 was called the permeability coefficient (which is in accordance
with the terminology introduced in Sect. 8.3.2; see Table 8.1), and δp was called the
water vapor permeability, both expressed in [kg/m·s·Pa = s].

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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Künzel [556] started from the assumption that the gradient of capillary pressure is
the fundamental “force” driving the liquid flux, but then he expressed pc in terms of
temperature T and relative humidity h using the approximate Kelvin equation (8.34)
and rewrote (J.53) as

j l = K1∇
(

−ρl RT

Mw
ln h

)
= −K1

ρl R

Mw
ln h ∇T − K1

ρl RT

Mw

∇h

h
(J.54)

Subsequently, he simplified the model by neglecting the term proportional to the
gradient of temperature and presented the resulting equation in the form

j l = −Dh∇h (J.55)

where

Dh = K1
ρl RT

Mwh
(J.56)

Künzel [556] called Dh the liquid conduction coefficient [kg/m·s] but, according to
the terminology introduced in the discussion related to Table 8.1, it would be called
the moisture permeability. More precisely, it is just the part of moisture permeability
related to the flux of liquid water, because the total moisture flux given by (J.51)
contains an additional term j v attributed to the flux of vapor. At uniform temperature
(vanishing temperature gradient), the corresponding transport law (J.52) can also be
rewritten in terms of the humidity gradient (recall that the vapor pressure pv is equal
to the product hpsat, where psat is the temperature-dependent saturation pressure):

j v = −δp∇ pv = −δp∇ (psath) = −δp psat∇h (J.57)

Substituting (J.55) and (J.57) into (J.51), we obtain

jw = −(δp psat + Dh)∇h (J.58)

which exactly corresponds to the Bažant–Najjar law (8.84) with moisture permeabil-
ity given by

cp = δp psat + Dh (J.59)

It should be emphasized again that a full equivalence is valid only at constant
and uniform temperature. In such a case, the Künzel model can be seen as one
specific member of the wide class of models considered by Bažant and Najjar. In
fact, the actual model used in Chap. 8 in Examples 8.6–8.9 and referred to as the
Bažant–Najjar model is another specific member of that class, because it is based on
Eq. (8.87) and deals with the moisture diffusivity described by formula (8.89). It is
therefore applicable under the assumption that the desorption isotherm is linear (i.e.,
that the moisture capacity is constant). In contrast to that, the more general Eq. (8.86)
deals with the moisture permeability and inverse moisture capacity separately and

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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thus allows for a nonlinear isotherm. It is, however, not very clear how the dependence
of moisture permeability on humidity should look if the isotherm is indeed nonlinear.
It may thus be useful if the Künzel model can provide some guidelines regarding the
potential dependence of parameters Dh and δp on relative humidity or another related
variable, such that formula (J.59) can be used to determine themoisture permeability.

The water vapor permeability δp is, according to Künzel [556], given by the
fraction

δp = δ

μ
(J.60)

in which δ is the water vapor diffusion coefficient, approximately expressed as

δ = 2 × 10−7 T 0.81

patm
(J.61)

and μ is a dimensionless parameter μ called the water vapor diffusion resistance
factor. In formula (J.61), the absolute temperature T should be substituted in Kelvin
and the atmospheric pressure patm in Pa; the resulting coefficient δ is then in seconds.
For the standard atmospheric pressure and the room temperature T0 = 293 K, we
get δ = 1.97 × 10−10 s.

Künzel’s formula (J.61) may be linked to Fick’s law presented in Sect. J.1 by
considering that δp = δ/μ should correspond to the coefficient of proportionality
between themass vapor flux and the gradient of vapor pressure implied by (J.6)–(J.8),
which means that

δ = Mw Dav

RT
= Mw

RT

patm

pg

(
T

T0

)1.88

2.48 × 10−5m2/s =

= Mw

RT0

patm

pg

(
T

T0

)0.88

2.48 × 10−5m2/s = patm

pg

(
T

T0

)0.88

1.83 × 10−10s (J.62)

while μ should correspond to 1/(n pτ). This formula gives, at standard conditions,
δ = 1.83 × 10−10 s. The fact that this differs from the aforementioned value of
δ = 1.97 × 10−10 s is probably caused by one-digit truncation of the factor in
Künzel’s formula (J.61). Note that the exponent of 0.88 is also slightly different
from 0.81 used in (J.61).

Parameter μ is the ratio between the diffusion coefficients of water vapor in air
and in the given porous material. Its typical values for concrete are between 210
and 260, and the corresponding water vapor diffusion coefficient δp is thus in the
range from 7.5 to 9.4 × 10−13 s. Künzel [556] admitted that factor μ may depend
on the water content, especially near saturation, but due to the lack of reliable data,
he recommended to ignore this dependence. The saturation pressure psat can be
evaluated from the temperature using, e.g., the Antoine equation (8.19), even though
Künzel [556] recommended a relation having a similar form but different parameters:

psat(T ) = 611 Pa exp

(
17.08(T − 273.15 K)

T + 234.18 − 273.15 K

)
(J.63)

http://dx.doi.org/10.1007/978-94-024-1138-6_8
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While the first term on the right-hand side of (J.59), δp psat, is approximately
treated as constant, the second term, Dh , may vary by several orders of magnitude
as a function of the relative humidity. Künzel [556] linked the liquid conduction
coefficient Dh to the capillary transport coefficient Dw [m2/s]. In the present context,
the formula may be written as

Dh(h) = Dw(φ(h))

k(h)
(J.64)

where φ is the function describing the isotherm and k is its inverse slope (reciprocal
moisture capacity). Evaluation of Dw may depend on the specific transport process,
but the general recommendation of Künzel [556] is to describe it by an exponential
function of the evaporable water content we, e.g., in the form

Dw(we) = 3.8

(
A

w f

)2

1000we/w f −1 (J.65)

where w f is the evaporable water content at free saturation. In the case of sorption,
parameter A is called the water absorption coefficient, for concrete typically in the
range from 0.1 to 1 m−2day−0.5.

Künzel’s model was developed for general moisture and heat transport in building
materials and in its direct application to drying of concrete might be questionable.
However, it is interesting to observe the general structure of the resulting equation.
Substituting (J.58) into the water mass balance equation (8.76) and using relation
(8.52) with the effects of self-desiccation neglected and relation (J.64), one gets

ḣ = k(h)∇ ·
[
δp psat + Dw(φ(h))

k(h)

]
∇h (J.66)

For simulations in which the isotherm is considered as nonlinear (typically with a
steep slope near saturation), it is of advantage to define moisture permeability (i.e.,
the term in brackets) in this form, with a monotonically increasing function Dw.

J.7 Heat and Moisture Transport—Model of Beneš
and Štefan

As an example of a simplified multifield model for coupled transport of heat
and moisture in concrete at elevated temperatures, the approach used by Beneš and
Štefan [228] will be briefly described, and the results of a simulation of a heated
specimen will be presented. Beneš and Štefan [228] started from a rather general
framework but then examined the relative importance of various terms (aiming at
applications to concrete subjected to fire) and simplified the description. In particular,
they neglected the contribution of diffusion to the mass flux of water vapor and the
effects of variations of dry air pressure, and they combined the diffusion of adsorbed

http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_8
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water with liquid water flux into one single flux term. The resulting model uses the
temperature, T , and pore vapor pressure, pv, as two primary unknown fields. The
governing equations are based on moisture mass balance and enthalpy balance in
properly adjusted forms.

The moisture mass balance equation is obtained by combining the mass balance
of liquid water (13.179) with the mass balance of vapor,

∂

∂t

[
n p(1 − Sl)ρv

] = −∇ · j v + ṁev (J.67)

which has the same form as the mass balance of pore gas (13.180), but ρg is replaced
by ρv and j g by j v. Summing (13.179) with (J.67) yields

ẇe = −∇ · ( j l + j v) + ṁdeh (J.68)

where
we = n p Slρl + n p(1 − Sl)ρv (J.69)

is the evaporable water content. Equation (J.68) can also be interpreted as a modified
form of the moisture mass balance equation (13.51), with the moisture mass flux jw
split into the mass fluxes of liquid and adsorbed water, j l , and of vapor, j v, and with
the rate of nonevaporable water content ẇn replaced by −ṁdeh.

In the heat equation (13.192), the convective term related to gas flow is limited
to vapor; i.e., C pg j g is replaced by C pv j v. Furthermore, the rate of evaporation ṁev

is expressed using (J.68) and subsequently eliminated. The resulting form of the
modified heat equation reads

ρC pṪ +(C pl j l +C pv j v) ·∇T = −∇ ·q−ṁdehΔhw
s,l−

(
ṁv + ∇ · j v

)
Δhw

l,g (J.70)

in which
mv = n p(1 − Sl)ρv (J.71)

denotes the mass of vapor per unit volume of concrete.
The transport equations for high temperatures used by Beneš and Štefan [228]

are based on the Darcy–Buckingham law, which was previously used mainly for
soils. This law represents an extension of the Darcy law to unsaturated porous media
and was described in Appendix J.2; see Eqs. (J.12)–(J.13). The water mass flux
(incorporating also the flux of adsorbedwater) is assumed to be driven by the gradient
of liquid water pressure, and the flux corresponding to vapor is included in the
advection driven by the gradient of vapor pressure (see the remark at the end of the
section).

In the spirit of the Darcy–Buckingham law, separate fluxes of liquid water and
vapor are postulated:

j l = −kr,l K0ρl

ηl
∇ pl (J.72)

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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j v = −kr,g K0ρv

ηg
∇ pv (J.73)

where K0 is the intrinsic permeability [m2], kr,l and kr,g are the dimensionless relative
permeabilities to liquid and to gas (dependent on the saturation degree), and ηl and
ηg are the dynamic viscosities of liquid water and of the pore gas. As usual, ρl and
ρv denote the densities of liquid water and vapor.

The intrinsic permeability K0 depends on the geometry of the pore space and,
neglecting the adsorbed water transport, is considered independent of the specific
type of fluid transported in that space. Since the paths in the pore space available for
fluid transport are affected by cracking and other microstructural changes caused by
mechanical and thermal effects, refined models consider the intrinsic permeability
as variable; see a brief overview at the end of Sect. 12.7. Beneš and Štefan [228]
described the increase of intrinsic permeability by the Bary formula [340]

K0 = K0,ref10
4ω (J.74)

in which K0,ref is the initial intrinsic permeability of undamaged material and ω is
a damage variable with initial value 0 and maximum possible value 1. To capture
both the mechanical and thermal effects, the total damage ω is linked to two partial
damage variables ωm and ωT by the relation 1−ω = (1−ωm)(1−ωT), from which

ω = ωm + ωT − ωmωT (J.75)

The mechanical damageωm is evaluated from the stress induced by the pore pressure
and constrained thermal expansion, and the thermal damage ωT is a function of
temperature; see Beneš and Štefan [228] for details.

Since the liquid and fluid phases of water at high temperature are assumed to
be in thermodynamic equilibrium, the pressures pl and pv are linked by the Kelvin
equation (8.25), and so ∇ pl in (J.72) can be expressed in terms of ∇ pv and ∇T .
Afterward, the expressions for fluxes are substituted into the governing equations
(J.68) and (J.70).

The heat conduction is described in a standard way, using the Fourier law (13.7)
with variable thermal conductivity. The dehydration process could be described sim-
ply by making the mass of water released by dehydration depend directly on the
maximum temperature reached so far. In this case, ṁdeh would be linked to the
temperature rate by (13.55), same as for the Bažant–Thonguthai model. However,
Beneš and Štefan [228] decided to take into account a possible delay of the dehydra-
tion process at fast heating and to describe dehydration by the differential equation
suggested by Feraille-Fresnet et al. [386] and Dal Pont and Ehrlacher [336],

ṁdeh = 〈wd(T ) − mdeh〉
τdeh

(J.76)

where wd is a given function of temperature and τdeh is a characteristic time of the
dehydration process. Consequently, mdeh needs to be solved numerically in each

http://dx.doi.org/10.1007/978-94-024-1138-6_12
http://dx.doi.org/10.1007/978-94-024-1138-6_8
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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incremental step. However, it does not play the role of a primary unknown field
because Eq. (J.76) does not contain spatial derivatives and can be solved at each
material point separately. Note that wd(T ) now represents the “equilibrium” value
of dehydrated water content at temperature T , and that mdeh remains close to wd(T )

if the heating process is slow on the time scale determined by τdeh.
The remaining, crucial, component that requires special attention is the link

between the primary unknowns, pv and T , and the liquid water content,wl ≡ n p Slρl .
In the approach of Beneš and Štefan [228], the Bažant–Thonguthai isotherm is used
in amodified sense. The expression proposed byBažant and Thonguthai [188] for the
moisture content is now understood as valid for the liquid water only, and the contri-
bution of vapor is added separately, for the sake of simplicity. Therefore, the relation
we = φ(h, T ) with function φ specified in (13.66) and (13.68) is approximately
replaced by n p Slρl = φ(h, T ), which can be rephrased as

Sl(h, T ) = φ(h, T )

n p(h, T )ρl(h, T )
(J.77)

This is one basic simplifying assumption, which means that the liquid saturation
degree is approximated as a function of the primary unknown variables pv and T
(because h = pv/psat(T )), borrowing an isotherm originally meant to describe the
total water content. The mass of vapor per unit volume, mv, can then be expressed
by substituting (J.77) into (J.71), leading to

mv(h, T ) = (n p(h, T )ρl(h, T ) − φ(h, T )
) ρv(hpsat(T ), T )

ρl(h, T )
(J.78)

where the dependence of ρv on pv and T corresponds to the state law of vapor. The
contribution of vapor to the mass of moisture is, at low temperatures, very small,
but mv is also needed for evaluation of the rate of evaporation, which may have a
significant effect in the heat equation; see (J.68) and the right-hand side of (J.70).

In their simulations, Beneš and Štefan [228] adopted the Bažant–Thonguthai
isotherm (13.66) for pore relative humidities below 0.96 and the simplified isotherm
(13.69) for pore relative humidities above 1, with a cubic spline bridging the transi-
tional range (a smooth transition provided by the cubic spline improves numerical
performance as compared to a linear transition with abrupt changes of slope). In
theory, it would be possible to express the evaporable water content

we = φ(pv/psat(T ), T ) + mv(pv/psat(T ), T ) (J.79)

as a function of pv and T and then substitute the time derivative of we into the
left-hand side of the moisture mass balance equation (J.68). For numerical reasons,
Beneš and Štefan [228] preferred to include we in the set of primary unknowns
and determine it along with T and pv by solving the governing partial differential
equations combined with algebraic equation (J.79).

Regarding the specific forms of various empirical functions, the following choices
were made by Beneš and Štefan [228]:

http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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• Mass density of liquid water: ρl(T ) given by the fifth-order polynomial (13.72),
with coefficients Ck taken from Table 13.4.

• Mass density of water vapor: ρv(pv, T ) determined from the state equation of ideal
gas (8.7).

• Mass density of solid skeleton: considered as constant, even though the effect of
dehydration could be taken into account.

• Porosity of concrete: n p(T ) given by the linear function (13.74).
• Specific enthalpy of evaporation: Δhw

l,g(T ) given by Watson formula (13.94).
• Specific enthalpy of dehydration: constant value, Δhw

s,l = 2.4 MJ/kg.
• Specific heat capacity of solid skeleton: C ps(T ) given by (13.90).
• Specific heat capacity of liquid water: C pl(T ) given by (13.91).
• Specific heat capacity of water vapor: C pv(T ) given by (13.92).
• Effective volumetric heat capacity of concrete: ρC p given by the expression in
square brackets on the right-hand side of (13.2), with ρgC pg replaced by ρvC pv.

• Mass of dehydrated water at equilibrium (per unit volume of concrete): wd(T )

given by (13.65), with additional terms in the range above 400 ◦C (not relevant
to the example to be presented here). The characteristic time in (J.76) was set to
τdeh=10,800 s, which is the value identified by Feraille-Fresnet [385].

• Thermal conductivity of concrete: kT (h, T ) given by (13.87) and (13.88), which
can easily be rewritten as kT (pv, T ).

• Relative permeability to gas: kr,g(Sl, n p) = 10Slψ(n p) − Sl10ψ(n p), whereψ(n p) =
0.05 − 22.5n p; formula experimentally determined by Chung and Consolazio
[314].

• Relative permeability to liquid water: kr,l(Sl, n p) = 10(1−Sl )ψ(n p) −(1−Sl)10ψ(n p)

whereψ(n p) = 0.05−22.5n p; formula experimentally determined by Chung and
Consolazio [314].

• Dynamic viscosity of liquid water: ηl(T ) = 0.6612(T − 229)−1.532, with T sub-
stituted in K; formula recommended by Gawin et al. [414].

• Dynamic viscosity of pore gas:

ηg(pv, T ) = ηv(T ) + (ηa(T ) − ηv(T ))

(
pa

pv + pa

)0.608

(J.80)

where the air pressure pa is set to patm and the dynamic viscosities of vapor and
dry air are evaluated as

ηv(T ) = 8.85 · 10−6 + 3.53 · 10−8(T − T0) (J.81)

ηa(T ) = 17.17 · 10−6 + 4.73 · 10−8(T − T0) + 2.22 · 10−11(T − T0)
2 (J.82)

with T substituted in K and ηg obtained in Pa·s. These formulae are taken from
Gawin [412] and Gawin et al. [414].

Using the model described above, Beneš and Štefan [228] simulated tests of
heated concrete prisms reported by Kalifa et al. [533] and Mindeguia [630], as well
as spalling tests of larger blocks reported by Mindeguia et al. [631]. For illustration,
let us present the results obtained for concrete C60 under unidirectional heating by
a radiant heater at 600 ◦C.

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
http://dx.doi.org/10.1007/978-94-024-1138-6_13
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The specimens were prisms of size 300 × 300 × 120 mm, made of concrete
characterized by standard compression strength f̄c = 61 MPa. They were subjected
to heating by a radiant heater placed near the top face for 5 h. All vertical faces
were insulated by ceramic blocks, so that the transport can be modeled as a one-
dimensional problem. No spalling was observed in the experiments.

Thematerial parameters are summarized inTable J.1.All of themwere determined
from independent basic data measured by Mindeguia [630], except for the intrinsic
permeability, which was calibrated by optimizing the agreement with the simulated
experiments.

Table J.1 Material properties and model parameters used by Beneš and Štefan [228]

Parameter Value Unit

f̄c 61.0 MPa

f̄t 3.76 MPa

c 550 kg/m3

n p0 0.1027 −
An 106 · 10−6 1/K

ρs 2660 kg/m3

k(dry,0)
T 2.015 W/(m·K)

Aλ −985 · 10−6 1/K

K0,ref 4 · 10−20 m2

The initial temperature was set to the room temperature, T0 = 293.15 K (20 ◦C),
which also served as the reference temperature in equations specifying the depen-
dence of porosity and thermal conductivity on temperature. On the other hand, para-
meter w1 used by the Bažant–Thonguthai isotherm (13.66) is supposed to represent
the water content at full saturation and 25 ◦C. It can be determined as the product
of porosity and liquid water density. Based on Eq. (13.74) and parameters n p0 and
An from Table J.1, porosity at 25 ◦C is estimated as n p1 = 0.10323, and the density
of water at 25 ◦C is evaluated from (13.72) as ρl1 = 1001.6 kg/m3. Consequently,
w1 = n p1ρl1 = 103.4 kg/m3. The value of exponent m at 20 ◦C is obtained from
(13.67) as m0 = 1.0082. The initial saturation degree reported by Mindeguia [630]
was Sl0 = 0.78, and the corresponding vapor pressure pv0 can be determined from
the equation

c

(
w1 pv0

cpsat(T0)

)1/m0

= Sl0np0ρl0 (J.83)

which is constructed from (13.66) by substituting pv0/psat(T0) for relative humidity
and Sl0np0ρl0 for the water content, with ρl0 = 1004.1 kg/m3 denoting the mass
density of water at 20 ◦C calculated from (13.72), and with c = 550 kg/m3 and
psat(T0) = 2.33 kPa calculated from (8.19). The resulting initial vapor pressure is
given by

pv0 = cpsat(T0)

w1

(
Sl0np0ρl0

c

)m0

= 1.784 kPa (J.84)
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The boundary conditions for heat transport include the effect of radiation and are
written in the form(

Δhw
l,g jv − kT T ′

)
nx = BT (T − Tenv) + γeσSB(T 4 − T 4

env) (J.85)

where −kT T ′ corresponds to the conductive heat flux expressed using the Fourier
law (13.7); nx is equal to 1 or −1 and specifies orientation of the outward normal
to the boundary in the one-dimensional setting. The surface heat transfer coefficient
BT is set to 20 W/(m2·K) on the exposed face and to 4 W/(m2·K) on the unexposed
face, σSB = 5.67×10−8 W/(m2·K4) is the Stefan–Boltzmann constant, and the value
of the surface heat emissivity is γe = 0.7. The ambient temperature, Tenv, is set to T0

on the unexposed side, and its evolution on the exposed side is described by

Tenv(t) =

⎧⎪⎨
⎪⎩
293.15 + 380

300
t for 0 ≤ t ≤ 300

673.15 + 50

17,700
(t − 300) for 300 ≤ t ≤ 18,000

(J.86)

where t is the time (since the onset of heating) in seconds and the temperature is
obtained in K. The above equation means that the ambient temperature rises from 20
to 400 ◦C during the first 5 min and then slowly increases up to the value of 450 ◦C,
reached after 5 h since the onset of heating.

Boundary conditions for moisture transport are written in the form

( jl + jv)nx = βc(ρv − ρv,env) (J.87)

where the convective mass transfer coefficient βc is set to 0.019 m/s on the
exposed face and 0.009 m/s on the unexposed face, and the ambient vapor pres-
sure ρv0 = 0.0132 kg/m3 (on both sides) is computed from T0 and pv0 via the state
equation of vapor.
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Fig. J.1 Temperature evolution in a heated specimen at 10, 30, 50, and 120 mm from the exposed
face; dashed curves correspond to measurements of Mindeguia [630] and solid curves to numerical
results of Beneš and Štefan [228]

Using their hygrothermal model with parameters and initial and boundary con-
ditions as described above, Beneš and Štefan [228] simulated the transport of heat
and moisture in a heated specimen as a one-dimensional problem. The calculated

http://dx.doi.org/10.1007/978-94-024-1138-6_13
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evolution of temperature and vapor pressure at selected locations (10, 30, 50, and
120 mm from the exposed face) is compared to experimental data in Figs. J.1 and
J.2. The agreement between the computed and measured temperatures is very good;
see Fig. J.1. The overall evolution of vapor pressures is captured properly, with some
deviations at the point closest to the exposed surface (Fig. J.2a). The precise value
of pore pressure is difficult to measure without disturbing the original conditions in
the pores, and the reproducibility of the test is not perfect, as documented by the dif-
ferences between pressures measured at the same location in two tests; see Fig. J.2.
Taking this into account, the results of simulations can be considered as satisfactory.

To gainmore insight into the processes taking place during heating, let us examine
the spatial distribution of various important quantities at times ranging from12min to
5 h of heating. The results provided by Štefan [846] are plotted in Fig. J.3. The origin
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Fig. J.2 Vapor pressure evolution in a heated specimen at (a) 10 mm, (b) 20 mm, (c) 30 mm,
(d) 40 mm, and (e) 50 mm from the exposed face; dashed curves correspond to measurements of
Mindeguia [630] and solid curves to numerical results of Beneš and Štefan [228]
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Fig. J.3 Heated specimen: calculated distribution of (a) temperature, (b)vapor pressure, (c)moisture
content, (d)vapor content, (e) liquidwater content, (f)water released by dehydration per unit volume,
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3 h (dash-dotted curves), and 5 h (solid curves) of heating
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of the spatial coordinate, x = 0, is placed on the exposed surface, and x = 120 mm
corresponds to the opposite (unexposed) surface. During the first 3 h, the vapor
pressure gradually rises up to themaximumvalue of 2.5MPa, attained approximately
at the distance of 45 mm from the exposed surface (Fig. J.3b). The moisture content
is quickly reduced in a thin layer near the exposed boundary and then this dry zone
propagates into the specimen (Fig. J.3c). Later, when the temperature increase is felt
even at the unexposed boundary, another dry zone appears near that boundary. The
graphs in Fig. J.3d,e show separately the contents of vapor and liquid water. The
mass of vapor remains very small, and so the distribution of liquid water (Fig. J.3e)
is almost undistinguishable from the distribution of moisture (Fig. J.3c). Therefore,
the assumption that the Bažant–Thonguthai isotherm refers to liquid water only does
not lead to any significant changes of the resulting model behavior.

The amount of water released by dehydration is depicted in Fig. J.3f. Since dehy-
dration is assumed to be governed by Eq. (J.76), the release of water is delayed as
compared to the increase of temperature. Figure J.3g shows the liquid saturation
degree, which is initially uniform and equal to 0.78 and later is reduced in almost
the same way as the liquid water content. The effect of porosity increase at high
temperatures is only marginal. Finally, Fig. J.3h shows the distribution of pore rel-
ative humidity, which is initially uniform and equal to 0.77. The relative humidity
is seen to decrease near the exposed boundary (and later also near the unexposed
one), but in the core of the specimen, it increases to levels exceeding 0.96, which
is the value at which the isotherms corresponding to high temperatures start rising
steeply. It is interesting to observe that, after 5 h of heating and in the zone between
80 and 100 mm from the exposed surface, the saturation degree is below 0.4 but the
relative humidity is near 0.96, which is related to the high values of vapor pressure
in that zone.

Let us emphasize that the present example has been included for illustrative pur-
poses, to show what kind of choices must be made when a hygrothermal model is
constructed and which model parameters must be calibrated. The model adopted
here gives a reasonable agreement with several sets of experimental data, but it is not
claimed to be a universally applicable and fully reliable model for all potential appli-
cations. The field of coupled heat and mass transfer in porous materials is rapidly
evolving and further development and testing is needed.

Remark: Percolation Limits and Their Implications for Beneš-Štefan Model

TheBeneš-Štefanmodel postulates a separate vapor flux, driven by the vapor pressure
gradient and governed by a separate vapor permeability. But this can be physically
justified only if the vapor phase percolates (i.e., is perfectly contiguous), which could
happen only at high enough temperatures and low enough degrees of saturation.

Below 100 ◦C, neither the vapor phase nor the liquid phase in concrete is contigu-
ous, no matter how low the pore humidity is. To pass from one capillary pore to the
next, an H2O molecule in vapor must: (1) enter the liquid phase, (2) next enter the
adsorbed phase, (3) then pass through a nanopore, creeping at solid surface along
the hindered adsorbed water layer to the next capillary pore, (4) then exit into the
liquid phase, and (5) finally enter the vapor phase again. Obviously, what matters
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for transport of this water molecule is only one permeability, the permeability of the
nanopore. Even at a very low degree of saturation, at which the nanopore is almost
empty, the vapor pressure cannot be transmitted through the near-empty nanopore
and a water molecule must pass through it in an adsorbed state, because the mean
free path of H2O molecule in vapor is longer than the pore width.

A big upward, cca 200-fold, jump in permeability occurs upon exceeding 100 ◦C.
It may be explained by transformation of the low density C-S-H into a high density
C-S-H. This transformation can make the liquid capillary phase percolate. However,
except at low degrees of pore saturation, the vapor will form separate bubbles within
a contiguous liquid phase. In that case, an H2O molecule must still enter and exit the
liquid phase in order to pass from one pore to the next, and then only the permeability
to liquid water matters.

So the hypothesis of separate fluxes and permeabilities of vapor and liquid cannot
be physically valid in general. However, the Beneš-Štefan model circumvents this
limitation by setting the vapor permeability for low temperatures (especially below
100 ◦C) virtually to zero, and the liquid permeability so small that it approximately
corresponds to flow of the adsorbed phase through the nanopores. Thus, at low
temperatures, this model is almost equivalent to the single phase flow and single
permeability, same as the Bažant-Thonguthai model.



Appendix K
Nonstandard Statistics Used in Support of Some
Creep and Shrinkage Models

K.1 Linear Coefficient of Variation (L.C.o.V.)

In Gardner [406], the logarithmic scales of load duration t − t ′ and drying duration
t−t0 are subdivided into decade-long intervals, labeled by subscripts i = 1, 2, . . . , n,
and the individual data points in interval number i are labeled by subscripts j =
1, 2, . . . , mi . The weighted mean of data is obtained using the standard formula
(11.8), giving equal weight to each decade of time. However, the calculation of the
overall coefficient of variation of prediction errors, ωG , is nonstandard:

ωG = sG

ȳ
, sG = 1

n

n∑
i=1

si (K.1)

where

si =
√√√√ 1

mi − 1

mi∑
j=1

(
yi j − Yi j

)2
(K.2)

The bias due to variation of the means of other variables throughout the intervals is
ignored. The bias due to having different numbers mi of points in different intervals
is here compensated by evaluating separately the standard deviation for each interval
according to (K.2), which correctly gives to each time interval the same weight.
However, the expression in (K.1) for the overall standard deviation s̄ of the data
from the model predictions is not statistically correct because, instead of averaging
the variances s2i (squared standard deviations), what is averaged are the standard
deviations si . Correctly, the averaging must be applied to the squared errors; i.e., one
must take the root mean square (RMS).

The linear averaging of standard deviations si is tantamount to denying the validity
of the central limit theorem of the theory of probability, underpinning the Gaussian
distribution (see Sect.K.6). This implicit denial is untenable (it is true that linear
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averaging of errors has been used for some special purposes in financial statistics
[248], but that was in problems of extreme value statistics, to which the central limit
theorem of the theory of probability does not apply).

For the overall error definition used in comparisons of prediction models to be
correct, minimization of the overall error must yield the optimum data fit. In the
special case of a linear model, the statistical method must reduce to linear regression
statistics. This is a simple but fundamental check on the soundness of the statistical
approach to the comparison of prediction models.

In the case of error defined by (K.1) and (K.2), one would have to minimize the
expression

s2G = 1

n2

⎛
⎝ n∑

i=1

√√√√ 1

mi − 1

mi∑
j=1

(yi j − Yi j )2

⎞
⎠

2

(K.3)

In the special case of a linear model, we have Yi j = a +bXi j , where Xi j are the coor-
dinates (e.g., the values of log(t − t ′)) of data points Yi j . The minimizing conditions
∂s2G /∂a = 0 and ∂s2G /∂b = 0 then yield two equations for free parameters a and
b. It is easy to see that these equations are nonlinear and thus might not guarantee a
unique solution, despite linearity of the model. The nonlinearity of these equations
confirms that definition (K.1) is not appropriate.

On the other hand, in the case of the standard error expression (11.6), substitution
of Yi j = a + bXi j yields

s2 = N

N − p

1

n

n∑
i=1

1

mi

mi∑
j=1

[
yi j − (a + bXi j )

]2 = min (K.4)

Here, the minimizing conditions ∂s2/∂a = 0 and ∂s2/∂b = 0 yield linear equations,
whose solution gives the well known expressions for slope b and intercept a of the
regression line.

Another debatable aspect of Gardner’s L.C.o.V. is the expression mi − 1 in the
denominator of (K.2). In population statistics, a similar expression is used to obtain
an unbiased estimate of the variance. However, this is done in a different context.
If we deal with the differences between individual values and their mean, a data set
consisting of n points has only n − 1 degrees of freedom because the remaining
degree of freedom has been removed by subtracting the average computed from the
original values. It is clear that if the data set contains only 1 point, no estimate of
the variance can be constructed. On the other hand, in the present context, we deal
with differences between measured values, yi j , and values predicted by a model, Yi j .
The total number of data points is N = ∑n

i=1 mi , and a model with p parameters
can, in principle, be adjusted such that p values are fitted exactly. So the number
of remaining degrees of freedom is N − p and this is reflected by the expression
in the denominator of the correct error definition (11.6). Gardner’s definition (K.1)
and (K.2) has the peculiar property that intervals that contain only 1 point need to be
excluded, to avoid division by zero, and intervals containing a low number of points
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http://dx.doi.org/10.1007/978-94-024-1138-6_11


Appendix K: Nonstandard Statistics Used in Support … 859

but at least two have a stronger influence than intervals with a high number of points.
Even if mi − 1 in the denominator of (K.2) were replaced by mi , the definition of
sG would still be dubious because of the second part of formula (K.1). Consider a
data set with intervals containing only 1 point each. Then, the modified definition of
sG with mi in the denominator of (K.2) leads to averaging of the absolute values of
individual errors, |yi j − Yi j |, and the parameter optimization problem ceases to have
a unique solution.
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standard = 57%
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y= 0.8x+0.2
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Fig. K.1 (a) Differences in coefficients of variation of errors between standard and nonstandard
statistical methods for examples of linear regression

However, can the difference between the statistical indicators s and sG in (11.6)
and (K.1)–(K.2) be significant? Indeed, it can. To document it, consider again the
fundamental case of a linear model Y = a + bX , for which we know that the
optimum data fit generally accepted as correct is obtained if and only if the least-
square regression is used. Let us consider 2 sets of 3 pairs of data points shown in 2
diagrams in Fig. K.1. For set 1, the data are Y = 0.1 and 0.3 for X = 0, Y = 1.0
and 1.3 for X = 1, and Y = 2.1 and 2.4 for X = 2; and for set 2, the data are
Y = 0.1 and 0.3 for X = 0, Y = 0.2 and 1.8 for X = 1, and Y = 1.7 and 1.9 for
X = 2. In each diagram, the regression line is drawn and the values of the coefficient
of variation obtained according to the least-square linear regression and according
to (K.1) are indicated. For set 1 (left diagram), the correct coefficient of variation
(based on linear regression) is ω = 14% while (K.1) gives ωG = 16%. This is not
a great discrepancy. However, for set 2 (right diagram), the correct coefficient of
variation is ω = 57%; this is much larger than the value given by (K.1), which is
ωG = 47%. Such a discrepancy is not negligible. Note also that for set 1, we get
ω < ωG , while for set 2, the opposite inequality holds. It is then no surprise that the
ranking of models based on Gardner’s inappropriate error measure is different from
that obtained by standard methods.

http://dx.doi.org/10.1007/978-94-024-1138-6_11


860 Appendix K: Nonstandard Statistics Used in Support …

K.2 CEB Coefficient of Variation

In Müller and Hilsdorf [641], Al-Manaseer and Lakshmikanthan [25] and Al-
Manaseer and Lam [26], the coefficient of variation of prediction model errors was
defined as

ωC E B =
√√√√1

n

n∑
i=1

ω2
i , ωi = 1

ȳi

√√√√ 1

mi − 1

mi∑
j=1

(Yi j − yi j )2, ȳi = 1

mi

mi∑
j=1

yi j

(K.5)
Note that mi − 1 again appears in the denominator and is 0 for a box with only one
point, mi = 1. Consequently, not only the empty intervals but also those containing
a single point have to be deleted in calculating this statistic, while intervals with only
a few points (but at least 2) have a stronger influence on the error than those with a
high number of points.

Another debatable aspect is that, compared to the least-square statistical regres-
sion, the short-time data get overemphasized and the long-time data get underem-
phasized. This is caused by the appearance of ȳi (rather than ȳ) in the denominator
of (K.5) before all ωi are combined into one coefficient of variation. An interval
with a very small ȳi gives a very large ωi and thus, incorrectly, dominates the entire
statistics. This is especially serious for shrinkage, which starts from zero, but what
matters most is the final value.

Can the difference from the correct statistical indicator in (11.6) be significant?
It certainly can. To demonstrate it, we consider again the limiting special case of a
linear model and the example of 2 sets of data in Fig. K.1. The coefficient of variation
for set 1 (the left diagram) is found to be 44%, which is more than twice the correct
value of 14% from linear regression. The coefficient of variation for set 2 (the right
diagram) is found to be 77%, which is much larger than the correct value of 57%.

K.3 CEB Mean-Square Relative Error

In Müller and Hilsdorf [641], Al-Manaseer and Lakshmikanthan [25] and Al-
Manaseer and Lam [26], another comparison is made on the basis of the relative
error defined as

SC E B =
√√√√ 1

n

n∑
i=1

Si
2, Si

2 = 1

mi − 1

mi∑
j=1

(
Yi j

yi j
− 1

)2
= 1

mi − 1

mi∑
j=1

wi j
(
Yi j − yi j

)2

(K.6)
where wi j = 1/yi j

2. Unlike the previous case, this definition of error is consistent
with the least-square regression. However, it implies unrealistic weighting of the
data. As shown by the last expression, it means that the weights wi j are inversely
proportional to yi j

2. This causes the errors in the small compliance or shrinkage

http://dx.doi.org/10.1007/978-94-024-1138-6_11
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values to get greatly overemphasized, and the errors in the large values to get greatly
underemphasized. Yet, the long-time predictions are the most important, while the
short-time ones are the least.

K.4 CEB Mean Relative Deviation

Still another indicator, called the mean deviation, was employed to compare models
[25, 26, 641]:

MC E B = 1

n

n∑
i=1

Mi , Mi = 1

mi

mi∑
j=1

Yi j

yi j
(K.7)

This indicator does not correspond to the method of least squares, and for the special
case of a linear model, the minimization of (MC E B − 1)2 does not reduce to linear
regression. So this approach is afflicted by all the previously described problems that
arise for such nonstandard statistics.

K.5 Coefficient of Variation of the Data/Prediction Ratios

Noting that, in a perfect model, the ratios ri j = yi j/Yi j should be as close to 1
as possible, some studies calculate the coefficient of variation of ri j and use it to
compare the prediction models. But this approach to statistics, endemic in concrete
research, is incorrect. To show the problem, let us replace, for the sake of brevity,
the double indices i j by a single index k = 1, 2, . . . , K , where K = ∑n

i=1 mi . The
variance of the population of all rk = yk/Yk is

s2R =
K∑

k=1

wk

(
yk

Yk
− r̄

)2

, r̄ =
K∑

k=1

wk
yk

Yk
(K.8)

where wk are the weights such that
∑K

k=1 wk = 1, and r̄ is the weighted mean
of all rk . Consider now that the prediction formula giving Yk is multiplied by any
constant factor c, i.e., consider the replacementYk ← cYk . Then, the variance changes
from s2R to

s̃2R =
K∑

k=1

wk

(
yk

cYk
−

K∑
m=1

wm
ym

cYm

)2

= 1

c2
s2R (K.9)

So, as we see, the variance of the prediction-data ratios can be made arbitrarily small
by multiplying the prediction formula by a sufficiently large factor c. Since the mean
r̄ is replaced by r̄/c, the coefficient of variationωR = sR/r̄ is found to be independent
of factor c [99].
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Therefore, minimization of s2R cannot be used for the purpose of data fitting.
Another problem is that the differences 1− ri j tend to be the greatest for short times,
which thus dominate the statistics although the long times are of main interest. It
follows that the use of the coefficient of variation ωR in some studies, intended for
statistical comparison of different prediction models, was incorrect and misleading.
Further, it follows that the plots of data/prediction ratios rk versus time (or versus
k) should not be used for visual comparison of the goodness of data fits by various
creep prediction models.

K.6 Why Is the Method of Least Squares the Only Correct
Approach to Central Range Statistics?

The method of least squares was first published by Legendre [571], but its rigorous
derivation is due toGauss [411],who is known to haveused it alreadybefore 1806. For
brevity, let us again replace the double indices i j by a single index k = 1, 2, . . . , K
where K =∑n

i=1 mi . The errors are defined as ek = yk −Yk , where Xk = coordinates
of data points (i.e., influencing parameters such as the load duration, age at loading,
thickness, humidity), Yk = F(Xk) = predicted values, and function F defines the
prediction model. The joint probability density distribution of all the measured data,
also called the likelihood function L [285], is

L = f (y1, y2, . . . , yK ) = [φ1(y1)]W1[φ2(y2)]W2 . . . [φK (yK )]WK (K.10)

where φk(yk) =probability density distribution of measurement yk alone, and expo-
nent Wk means that we imagine a Wk-fold repetition of the kth measurement, which
is equivalent to applying weight Wk to data point k. Let us first assume the errors to
be approximately normally distributed; then,

φk(yk) = 1

sk

√
2π

e−(yk−Yk )
2/2s2k , k = 1, 2, . . . , K (K.11)

where s2k = (conditional) variance of yk , which is a constant known (or knowable) a
priori.

The objective of optimal data fitting is to maximize the likelihood function L
[285]. This is equivalent to minimizing − lnL , i.e.,

− lnL = − ln

[
exp

(
−

K∑
k=1

Wk(yk − Yk)
2

2s2k

)
K∏

k=1

(
sk

√
2π
)−Wk

]
=

=
K∑

k=1

wk(yk − Yk)
2 + C = min (K.12)
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where wk = Wk/2s2k = modified weights and C =∑K
k=1 wk ln(sk

√
2π) = constant.

Equation (K.12) represents minimization of the sum of weighted squared errors and
thus proves validity of the method of least squares.

The histograms of data plotted on the normal probability paper demonstrate that
the distributions or errors ei j in creep and shrinkage are approximately normal,
although small deviations from normality exist.

What if the distributionsφk(yk) of data yk are not normal? In that case, the database
may be subdivided into data groups labeled as r = 1, 2, . . . , Ng , such that each group
r contains a sufficient but not excessive number nr of adjacent data points located so
closely that the statistical trends within each group are negligible (nr ≈ 6 appears
suitable). The mean of each data group is a scaled sum of random variables,17 and
according to the Central Limit Theorem [248, 285], the distribution of this sum, and
thus the group mean, converges to the normal distribution, albeit one with a scaled
standard deviation.Wemay now logically expect that the best fit of yk can be obtained
as the best fit of all the group means, each of which has a Gaussian distribution. The
remaining derivation up to (K.12) is the same and leads to the same conclusion.

To be rigorous, it must be admitted that there exist special problems where the
least-square regression is insufficient or even inappropriate. One example is the
extremevalue statistics, leading toWeibull distribution of strength of brittle structures
[248].Another is the extension of the least-square approach toBayesian optimization,
in which the posterior data are supplemented by some sort of prior information
[37]. A third example is the robust regression [740], used to emphasize the role
of numerous outliers of heavily tailed non-Gaussian distributions. But these special
problems do not arise for the typical regression problems of concrete design equations
discussed here.

K.7 Comparison of Models by Standard and Nonstandard
Statistical Indicators

The standard and nonstandard statistical indicators have been calculated for five
prediction models using the NU-ITI database [160], as well as the RILEM database
and Gardner’s limited database. From the last two databases, it was necessary to
delete a few data sets for which the parameters required to evaluate some of the
prediction models were not known.

The results are shown in Table K.1. According to the standard indicator (11.7),
model B3 appears as the best, while the classical ACI-209 model and the GZ model
are by far the worst.

The five creep and shrinkage prediction models considered here were statistically
compared in a committee report and ACI 2008 Guide, based on the results reported

17The errors at closely spaced times must actually be correlated, but the only way to take this aspect
into account is to treat creep and shrinkage as random processes; this has been done, but is far more
complicated; see, e.g., Çinlar et al. [300] and Sect.K.8.

http://dx.doi.org/10.1007/978-94-024-1138-6_11
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Table K.1 Comparison of standard and nonstandard statistical indicators for various prediction
models, based on NU-ITI database, with 50 boxes of log(t − t ′) and H for creep and 28 boxes of
log(t − t0) and

√
D for shrinkage

Creep compliance Shrinkage

B3 ACI CEB GL GZ B3 ACI CEB GL GZ

Standard indicator [%] 27.3 42.6 31.0 30.2 41.9 28.5 42.3 47.4 31.0 44.4

Gardner’s linear C.o.V.
[%]

21.2 36.0 26.0 25.2 34.7 24.5 35.8 41.1 25.5 35.4

CEB C.o.V. [%] 23.0 37.9 28.6 28.4 37.9 36.5 46.2 46.8 37.9 45.7

CEB mean-square error
[%]

23.5 36.6 29.2 28.4 37.7 36.9 45.8 45.9 38.1 44.5

CEB mean deviation 0.95 0.74 0.94 0.88 0.83 1.06 1.03 0.70 1.12 1.10

by Bažant and Baweja [107], Gardner [406], and Al-Manaseer and Lam [26]. Unfor-
tunately, the nonstandard statistical indicators were considered as equally relevant,
and thus, it is no surprise that each different statistical indicator placed a different
prediction model on top or bottom. This is documented by Table K.2, extracted from
Tables 4.2 and 4.3 in ACI Committee 209 [14], which were reproduced as Table 2
in Bažant and Li [161]. The differences among various models are seen to be minor,
and interestingly, it was not even questioned that in some comparisons the 1972 ACI
model came on top. These comparisons are in gross disagreementwith those obtained
in Bažant and Li [161] by standard weighted regression; see Sect. 11.5. Even greater
is the disagreement with the model rankings in Chap.7, which were based on the
analysis of observed long-time bridge deflections.

Table K.2 Comparison of standard and nonstandard statistical indicators of errors used by various
authors to compare and rank four prediction models, for (a) compliance and (b) shrinkage; extracted
from Tables 4.2 and 4.3 in ACI Guide 2008

(a) Compliance [%] (b) Shrinkage [%]

Indicator ACI B3 CEB GL Indicator ACI B3 CEB GL

Bažant and
Baweja basic
creep

ω 58 24 35 – Bažant and
Baweja

ω 55 34 46 –

Bažant and
Baweja drying
creep

ω 45 23 32 – Al-Manaseer
and Lam

ωC E B 46 41 52 37

Al-Manaseer
and Lam

ωC E B 48 36 36 35 SC E B 83 84 60 84

SC E B 32 35 31 34 MC E B
† 122 107 75 126

MC E B
† 86 93 92 92

Gardner ωG 41 20 – 19

Gardner ωG 30 27 – 22 Gardner
recalculated††

ωG 41 20 44 22

†Note that the ideal value of indicator MC E B is 100%, while for all the other indicators the ideal
value is 0%. The best result according to each criterion is emphasized by bold face.
††The values published byGardner [406]were recalculated byBažant and Li [161], usingGardner’s
database and definition of error.

http://dx.doi.org/10.1007/978-94-024-1138-6_11
http://dx.doi.org/10.1007/978-94-024-1138-6_7
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K.8 Stochastic Process for Extrapolating Concrete Creep

The least-square regression is predicated on the hypothesis of statistically indepen-
dent errors (see Sect.K.6). This hypothesis is doubtless realistic for a large database
in which the errors are dominated by the differences among many different con-
cretes tested in many different laboratories. Not, however, for a single test curve of
one given concrete. If, for instance, the error at 1000 days of creep is positive and
large, it will almost certainly be positive and large at 1001 days. In other words, the
errors at close enough times are, in one and the same test, highly correlated.

To take this correlation properly into account, it is necessary to treat creep (or
shrinkage) curve as a random process [230]. In Çinlar et al. [300], it was shown
that the creep may be realistically modeled as a nonstationary pure jump increasing
stochastic processwith statistically independent (or uncorrelated) random increments
of locally gamma distribution. This process is nonstationary, because of gradual
deceleration of the creep, but it can be transformed to a stationary gamma process.

The gamma distribution is justified by its infinite divisibility, which is a property
required for two reasons: (1) a homogeneously stressed specimen can be split into
smaller ones whose responses are summed, and (2) the responses to a sum of stresses
are additive. There are several infinitely divisible distributions which are statistically
tractable: the Gaussian, gamma, Poisson, and stable distributions (Weibull, Gumbel
and Fréchet). The Gaussian, Gumbel, and Fréchet may be questionable because they
could include negative increments, and the others except gamma for various physical
reasons [300]. It was shown that the gamma process of creep may be characterized
by its Laplace transform as follows:

E{exp[λ(Js − Jr )]} = exp

[
−
∫ s

x=tr

∫ ∞

y=0+
(1 − e−λy)m(dx, dy)

]
(K.13)

for any constant λ > 0. Here, E is the expectation, Jr = J (tr , t ′), t ′ is fixed since the
process simulates an individual creep test, and m(dx, dy) is a measure defined as

m(dx, dy) = a′(x) dx e−b(x)ydy/y (K.14)

where a(x), b(x) = scale and shape functions of the gamma process for the given t ′;
and a′(x) = da(x)/dx > 0.

Monte Carlo simulations were used to demonstrate this process for various long-
time creep tests on the concretes for Dworshak Dam, Canyon Ferry Dam, Ross
Dam, and Shasta Dam, and the concrete of York et al. [887]. An initial group of
data points was assumed to be known and used for calibration. The process was
then simulated from the last point of this group both forward and backward, as
shown for the Dworshak Dam concrete; see Fig. 1 in Çinlar et al. [300]. The band of
random simulations enveloped quite realistically the series of subsequent data points
pretended to be unknown.
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The gamma process represents a more realistic, but more complicated, alternative
to the data extrapolation procedure described in Sect. 3.8.1. In the existing form,
however, this extrapolation does not capture the random variations among different
concretes and among different batches of the same concrete, and the random effects
of environment, curing and microcracking. Neither it includes Bayesian updating
(Sect. 6.4). For further details, see Çinlar et al. [300].

http://dx.doi.org/10.1007/978-94-024-1138-6_3
http://dx.doi.org/10.1007/978-94-024-1138-6_6


Appendix L
Method of Measurement of Creep
and Shrinkage

The basic testing of creep and shrinkage dealswith two simple cases: the casewithout
moisture exchange with the environment, in which the specimen is sealed, and the
case of drying in a stable environment typical of practical situations. The former case
is relevant tomass concrete and also to the core of thicker cross sections, as in nuclear
containments, large bridges, supertall building columns, and, of course, dams. The
latter case typifies the behavior of thin cross sections, but it is also relevant to the
behavior of a surface layer in thick cross sections.

Most of the present exposition is based on the RILEM Recommendation [20];
see also [19, 105, 197, 249, 878]. Some updates are mentioned based on current
research on modern concretes with high autogenous shrinkage.

L.1 Testing Apparatus

The creep test device must apply a centric compressive force and keep it constant
with time, with the accuracy of ±1%. This may be achieved by different systems:

1. the helical spring [44, 239], see Fig. L.1a, b,
2. the hydropneumatic accumulator [573], see Fig. L.1c, or
3. electronic control.

The apparatus must allow measuring the applied force with a known precision,
whose errors should be reported (±1% is reasonable). A calibration process ought
to be established, applied in the tests and information on it also reported.

The strain must be measured with the same system, both in the creep test and
in the companion shrinkage test. It must be measured in the middle portion of the
specimen length, along at least three longitudinal lines spaced evenly around the
circumference, and on a base not shorter than one diameter. The distance between
the strain measurement base and the ends of the specimen must not be smaller than

© Springer Science+Business Media B.V. 2018
Z.P. Bažant and M. Jirásek, Creep and Hygrothermal Effects
in Concrete Structures, Solid Mechanics and Its Applications 225,
https://doi.org/10.1007/978-94-024-1138-6
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1.5 diameters (or 1 diameter if the end faces of the specimens are protected against
drying). To determine the creep Poisson’s ratio, it is useful to measure also the
transverse deformation across the central portion of the specimen.

)c()b()a(

spring

specimen

floating plate

specimen

load cell

floating plate

spring

single stroke pump

loading ram

specimen

Fig. L.1 (a)–(b) Helical spring loading device (classical method), (c) loading device with hydro-
pneumatic accumulator (preferable), after Neville [652]

L.2 Specimens

L.2.1 Form and Dimensions

All the creep and shrinkage specimens should normally be cylinders. A sufficient
number of specimens (at least six) should have the same diameter, with a slenderness
(length/diameter ratio) not less than 4. The specimens are normally cast in molds.
Alternatively, the specimens can be cored from concrete blocks that have lost no
water before coring, which is, for example, suitable for the testing of fiber-reinforced
concrete. Cores are also suitable for the testing of those parts of massive in-situ
structures that have lost no water before the coring, and for diagnostics of a structure
in service (note that the surface layer in cast specimens contains more mortar than in
cored or saw-cut specimens; this “wall effect” causes some differences, which can
be compensated for by calculations).
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The molds should be metallic. Alternatively, they can be lined internally with a
metallic foil or with a sheet of polymer, provided that the total water absorption of
the lining remains, after 24 h, less than 2 grams per liter of capacity of the mold. The
diameter should be at least 5 times the size of the largest aggregate, but for cores, 4
(or even 3) times is acceptable.

L.2.2 Specimen Production

The specimensmust bemanufactured according to the requirements for compression
tests. Casting in a horizontal position is unsuitable as it produces properties with a
transverse gradient and might be risky for long specimens as it promotes buckling.
The age of the specimen is customarily measured from the moment of the filling
of the mold with concrete (although from the moment of set is better for short-time
data).

L.2.3 Curing

Except in special circumstances (whichmay occurwhen the aim is to study the curing
effects or to imitate the specific conditions of a construction site), all the specimens
must be kept after casting in their mold and in a temperature-controlled room at 20
± l ◦C or at 25 ± 1 ◦C (this kind of standardization is needed for comparability of
tests from different labs). When the age at exposure to drying is no more than 3 h
lower than the lowest age at load application, the molds are stripped, all at about the
same time, in the testing room (which must be temperature and moisture controlled).
Immediately after stripping, all the specimens intended for autogenous shrinkage and
basic creep must be protected by a closely adhering jacket consisting of a metallic
(e.g., copper or aluminum) foil. To facilitate evaluation, the end faces of the drying
specimens should be protected against desiccation, immediately after stripping, by
the same procedure. When the age at exposure to drying is planned to coincide with
the first age at loading, all the specimens of the series must be stripped no more than
2 h before applying the load on the first creep specimen, preferably in a wet room
of temperature controlled at 20 ± l ◦C or at 25 ± l ◦C, and protected immediately
after stripping against desiccation by an adhering protective jacket consisting of a
metallic (e.g., copper or aluminum) foil.

L.2.4 Environmental Conditions

Except when the goal is to study the effects of drying or to emulate the drying
conditions of a specific practical application, four types of test, requiring four series
of specimens, are carried out:
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1. Basic creep plus autogenous shrinkage of sealed loaded specimens.
2. Autogenous shrinkage of sealed load-free specimens, starting right after casting

and running for the whole duration of basic creep tests (item 1).
3. Drying shrinkage of exposed load-free specimens,which inevitably includes auto-

genous shrinkage continuing for some time in specimen core (that has not yet been
penetrated by the drying front spreading from the surface).

4. Drying creep of exposed loaded specimens, which inevitably includes drying
shrinkage and autogenous shrinkage in the core.

The autogenous shrinkage and basic creep tests are carried out at 20 ± l ◦C or
at 25 ± l ◦C, on specimens confined by an adhering protective jacket consisting of
a metallic (e.g., copper or aluminum) foil; the specimens are kept in a temperature
controlled room at 20 ± l ◦C or at 25 ± 1 ◦C, preferably in a wet room. They must be
stripped in the same room 2 h before the start of the shrinkage measurements (which
must begin before the first creep test). The surface protection (e.g., coating with a
resin or a copper or aluminum foil, or direct application of a self-adhesive aluminum
foil) must be applied immediately after the stripping or coring of each specimen.

The drying shrinkage and drying creep tests must be carried out in a room of
controlled temperature and humidity, preferably at 20± 1 ◦C and at 50± 5% relative
humidity, or at 25 ± 1 ◦C and at 65 ±3% relative humidity. The shrinkage strain
measurements must start immediately (within 3 min, but better 1 min) after stripping
of the moisture seal. In any case, the specimens must be kept (before, during and
after stripping) in a room in which the temperature is kept constant to within ± 1 ◦C.
Except for special cases, the specimens cored from a structure are always kept sealed
according to the conditions already specified.

In old concretes of high w/c, the self-desiccation and autogenous shrinkage was
small and could be ignored. But in modern concrete, it is big, often even if w/c is
high (because of various admixtures). Thus, for modern concretes, the autogenous
shrinkage must be measured for the entire duration of the creep test and then used in
calculating the actual basic creep.

L.2.5 Companion (or Control) Specimens

These are load-free specimens required to accompany any creep test. They are made
and kept under the same conditions as those for the creep tests and for Young’s
modulus tests.

L.3 Testing Procedure

L.3.1 Preparation of Specimens

The specimens intended for shrinkage measurements must be placed in the creep
test room at least two hours before the start of the shrinkage measurements.
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Measurements of drying shrinkage must begin as quickly as possible after strip-
ping of the mold or the moisture seal (in any case within ≤3 min). Since the placing
of a wet surface in contact with a dry atmosphere causes a drop in temperature of
the surface [552], it is useful to measure temperature both in the core and near the
surface of the specimen, in order to assess this thermal effect.

Immediately after the stripping of specimens intended for creep tests, the two end
faces of each of the creep specimens should be ground flat, in order to have plane
faces perpendicular to the axis of the cylinder, with a precision of 50µ. In cored
specimens, this should be done during the coring.

Immediately after the stripping and, for the creep specimens, after the grinding
of the end faces, the two end sides of all the specimens must be protected against
desiccation. This protection must include a metallic (e.g., copper or aluminum) foil
and must ensure that there are no air pockets between the concrete and the foil.
Immediately after that, the specimen must be weighed (same as in Sect.L.3.4).

All the creep specimens must be weighed just before they are loaded, as well
as just after the end of the test. The specimens intended for measuring the autoge-
nous shrinkage or basic creep must be protected immediately after the stripping or
grinding, over their entire surface, and must be weighed, too (same as in Sect.L.3.4).

The first measurement of drying shrinkage is carried out within at least 3 min
(better 1 min) after exposure. It should be emphasized that a part of shrinkage (the
autogenous shrinkage, as well as a part of the drying shrinkage itself, which begins
immediately after stripping, with a maximal rate) inevitably remains unrecorded.
To determine the total shrinkage, special gauges embedded in concrete need to be
used. If the age at loading of the first creep test coincides with the age at exposure to
drying, a procedure in which the temperature is measured both in the core and near
the surface of the specimen should be used, to make it possible to take into account
the surface cooling due to evaporation [552].

L.3.2 Measurements Prior to Loading

At least three specimens should be used for determining the compressive strength
and the conventional (static) elastic modulus of concrete at the age at which the creep
test begins.

L.3.3 Measurements of Total Strain Under Load

The loading must be applied as quickly as possible. Preference should be given to
reducing the time during which the load is raised (to approach a Heaviside step
function) and to attaining quickly the required load value (a continuous recording,
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graphic or digital, of the applied load allows taking into account in calculations the
actual loading history, in particular, its difference from the step function). The strain
readings ought to be taken at intervals that are spaced uniformly in the logarithmic
time scale (e.g., 0.5, 1, 2, 4 min., …, 1, 2, 4, 8 days, …, 1, 2, 4 years, …), i.e., in a
geometric progression of reading times.

When a hydropneumatic accumulator is used, the loading must be applied as fast
as possible, so that precise measurements of almost instantaneous strain and of the
initial rapid creep be obtained. The recording of strain ought to begin no later than
one second after load application and proceed at constant intervals in the logarithmic
time scale (e.g., ti = 2i−18 day, i = 1, 2, 3, . . .). For at least 1 h after load application,
the pressure in the accumulator, or in the cylinder, must be checked and adjusted (as
the nitrogen cooled by adiabatic expansion returns to ambient temperature).

L.3.4 Measurements of Water Loss

As mentioned in Sect. 3.8.2, simultaneous measurements of water loss by weighing
may be useful for evaluating the tests of shrinkage and creep at drying. At the end
of such tests, the total evaporable water content should be determined by measuring
the water loss at 110 ◦C in an oven or on crushed specimens.

L.3.5 Recommended Test Parameters

The purpose of the recommended values that follow is to make the measurements
from different laboratories easier to compare.

• Cylinder diameters: d = 7.5, 15 and, if possible, 30 cm.
• Cylinder length: L = 4d.
• Ages at exposure to drying: t0 = 1, 7, 28 and, if possible, 150 days (t0 must not
be greater than the age at loading of the corresponding creep test).

• Ages at loading: t ′ = 1, 28, 150 days, 2 years.
• Compressive stress: σ = k f̃c(t ′), where f̃c(t ′) is the strength at the age t ′ at
loading, and k = 0.3 as the reference case, and if possible also 0.5 and 0.7.

• Test duration: As long as possible.

For the purpose of shrinkage extrapolation, it helps to measure also shrinkage on
square prisms of side about 2 cm cut by a saw; see Bažant and Donmez [124].

Remark: Shrinkage Extrapolation via Diffusion Size Effect and on Role of Auto-
genous Shrinkage (added in proof).
In view of the aforementioned limitations of the extrapolation based on water loss, an
investigation of an alternativemethod relying on the diffusion size effect in shrinkage
has recently been completed [124]. In a 5-times thinner companion specimen, the
drying part of shrinkage is accelerated about 125-times, and so the concave part of

http://dx.doi.org/10.1007/978-94-024-1138-6_3
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the drying shrinkage curve on approach to the alleged bound should become evident.
Fitting the 3-month shrinkage data for both specimens by the same diffusion-based
model, one can identify their shrinkage halftimes, and thus extrapolate to infinity.
However, even though this method is no worse than the weight loss method and
clearly better than the traditional extrapolation “by eye,” there is again a significant
underestimation of the terminal shrinkage curve, similar as that for the weight loss
method. The inevitable conclusion is that a successful extrapolation of short-time
shrinkage tests will require considering: (1) the autogenous shrinkage, which pro-
ceeds in the cores of thick specimens for much longer than in the thin ones, and
(2) the compressive volumetric creep of the solid skeleton of cement paste, loaded
by the stress changes in the pore water (both adsorbed and capillary). Simultaneous
tests of autogenous shrinkage will, of course, be required for both methods.

L.3.6 Reporting of Results

The results should be presented in numerical tables indicating, for each specimen,
the age at each reading counted from the end of the casting of concrete into the mold,
and the total strain measured (shrinkage plus elastic deformation plus creep). In the
case of drying, water-loss data should also be tabulated. If, additionally, the J (t, t ′)
values are calculated and reported, the shrinkage strains that need to be subtracted
must be obtained by linear interpolation between the readings in the logarithmic time
scale.

The test report must include: the specimen preparation and geometry, mix com-
position, all environmental conditions, type of sealing, age at loading, applied stress,
stress history during load application, compressive strength at the time of loading,
standard 28-day compressive strength; strain measurement method, the position, and
length of the measurement bases; measured strains in tabular form, weight loss data,
and preferably also Young’s modulus and Poisson’s ratio.

L.4 Ring Test of Restrained Shrinkage
and Cracking and Its Limitations

To check the prediction of shrinkage cracking, a useful tool is the ring test (e.g.,
Grzybowski and Shah [440], Shah et al. [772]). In this test, an annular layer of
concrete is cast around a stiff steel ring, and the subsequent development of radial
cracks in drying environment is observed (Fig. L.2). Up to the start of cracking, the
circumferential strain in concrete is zero, while in the radial and axial directions,
the stress is nearly zero. After radial cracks develop, the circumferential strain in
concrete between the cracks remains nonzero and the stress and strain fields become
complicated. Concrete deforms elastically and creeps.
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Fig. L.2 Ring test; after
Grzybowski and Shah [440],
reproduced with permission
from ACI specimen
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The test is a good indicator of shrinkage cracking potential in restrained concrete
layers of the same dimensions and has been used to demonstrate the suppression of
wide cracks in fiber-reinforced concrete. But it is very difficult to extrapolate this
test to layers of different thicknesses or different restraints (e.g., biaxial).

The ring test can also be used as a check for a comprehensive computer model
for creep and shrinkage, which solves the diffusion equation, the evolution of the
stress field before and after cracking, the formation of cohesive fractures, and damage
localization.
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339. Davie, C. T., Pearce, C. J., & Bićanić, N. (2006). Coupled heat and moisture transport in

concrete at elevated temperatures–effects of capillary pressure and adsorbed water.Numerical
Heat Transfer, 49, 733–763.
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