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1 Introduction 

The central regulation of arterial blood pressure has been extensively in- 
vestigated in recent decades. The techniques which have been used include the 
following: 

1. Investigations on the effects of  centrally applied agonists and antagonists 
on blood pressure, as well as on blood pressure changes elicited by stimula- 
tion of  distinct brain areas 

2. The identification of  neurons by fluorescence microscopy and immuno- 
chemistry in discrete brain areas involved in blood pressure regulation 

3. Determination of  the levels of  neurotransmitters and neuropeptides and of 
the turnover of  neurotransmitters in brain areas of  normal and hyperten- 
sive animals 

4. Investigations on the effects of selective lesioning or ablation of  brain 
structures on blood pressure 

5. Determination of  the release of  neurotransmitters in distinct brain areas of  
normal and hypertensive animals 

A few years ago, the main bulk of  scientific work on central blood pressure 
regulation concerned mainly neurotransmitters such as catecholamines, 
acetylcholine, histamine, serotonin and GABA (y-aminobutyric acid). The 
discovery of neuropeptides greatly increased the number of  potential en- 
dogenous substances which may be of  importance for cardiovascular control. 
Expansion of  our knowledge, however, has not yet led to a thorough under- 
standing of  the central regulatory mechanisms. Despite an impressive number 
of  separate pieces of  information, the mosaic is far from complete. The coex- 
istence of  neurotransmitters and neuropeptides in several areas involved in 
cardiovascular control, or even their localization in one and the same neuron, 
as well as the possible interactions between neurotransmitter and neuropep- 
tide systems, have blurred rather than clarified the image. For these reasons 
alone, it is essential to consider both the neurotransmitters and the neuropep- 
tides when the mechanisms involved in central blood pressure regulation are 
surveyed. I hope that juggling with the many neurotransmitters and neuro- 
peptides will not make it impossible to see the wood for the trees. 

A brief outline of  the mapping of  neurotransmitters and neuropeptides will 
be presented in each section. Most of the studies concerning the mapping of  
these substances have been carried out in the rat and, to a lesser extent, in the 
mouse, the cat and other animal species. Unless otherwise stated, mapping is 
based on the results obtained in the rat. The distribution and mapping of those 
neurotransmitters and neuropeptides will be described mainly in the areas 
which seem to be involved in central blood pressure regulation. This outline, 
which is by no means complete, may help towards an understanding of  the 
mutual influences of the neurons involved in central blood pressure regulation. 
Further details can be found from the literature quoted in this review. 
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2 Functional Significance of Neuronal Pathways in 
Blood Pressure Regulation 

The most logical and simplest experimental approach for the identification 
of brain areas involved in the central regulation of blood pressure is the study 
of blood pressure changes elicited by electrical stimulation or selective 
destruction of distinct brain structures. Such experimental procedures have 
led to the identification of brain areas which, when stimulated or lesioned, 
alter the arterial blood pressure. The areas which lead to a rise in blood 
pressure when stimulated include the posterior hypothalamus (Karplus and 
Kreidl 1918, 1927), the locus coeruleus (Fallert and Polc 1970; Przuntek and 
Philippu 1973), the area postrema (Ferrario et al. 1979) and the fastigial 
nucleus of the cerebellum (Miura and Reis 1970). A pressor response is also 
elicited by electrical stimulation of the rostral part of the ventrolateral 
medulla (Loeschcke et al. 1970; Trouth et al. 1973; Neumayr et al. 1974), the 
lateral and medial amygdaloid nuclei (Torii and Kawamura 1960; Mogenson 
and Calaresu 1973), the raphe nuclei (Fallert and Polc 1970; Smits et al. 1978; 
Kuhn et al. 1980) and the parabrachial nucleus. The latter nucleus has connec- 
tions with the amygdaloid complex, the hypothalamus, the nucleus of the 
solitary tract, the medullary reticular formation and the nucleus ambiguus 
(Mraovitch et al. 1982). On the other hand, a fall in blood pressure follows 
electrical stimulation of the anterior hypothalamus (Folkow et al. 1959), the 
nucleus of the solitary tract (Seller and Illert 1969), the central amygdaloid 
nucleus (Morin et al. 1951; Torii and Kawamura 1960; Mogenson and 
Calaresu 1973) and the caudal ventrolateral medulla (Blessing and Reis 1982). 
A pressor response accompanied by bradycardia is also induced by stimula- 
tion of the trigeminal complex (Kumada et al. 1975). 

Using this information and that from electrophysiological studies a 
simplified scheme can be drawn which indicates some of the areas and the 
relationship between the various structures involved in blood pressure regula- 
tion (Fig. 1). The nucleus of the solitary tract is the primary site of termina- 
tion of the buffer nerve fibres (carotid sinus nerve and aortic depressor nerve) 
which arise in the carotid sinus and the aortic arch. In some animal species 
the nucleus of the solitary tract projects directly to the central amygdaloid 
nucleus, which in turn projects to the nucleus of the solitary tract and to the 
dorsal motor nucleus of the vagus (for review see Spyer 1981; Calaresu et al. 
1984). The central amygdaloid nucleus receives a projection from the anterior 
hypothalamus (Conrad and Pfaff 1976). A bidirectional cardiovascular 
pathway exists between the ventrolateral medulla and the nucleus of the 
solitary tract (Ciriello and Caverson 1986). The medullary neurons of the 
rostral ventrolateral medulla are under the inhibitory influence of the nucleus 
of the solitary tract and of the caudal ventrolateral medulla. This focal 
pressor area of the rostral ventrolateral medulla may be the "vasomotor 
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Fig. 1. A schematic representation of 
the interconnections between the 
main brain areas involved in blood 
pressure regulation. CSN, carotid 
sinus nerve; ADN, aortic depressor 
nerve; NTS, nucleus of the solitary 
tract; AHY,, anterior hypothalamus; 
PHY, posterior hypothalamus; AMY, 
amygdaloid complex; LC, locus 
coeruleus; DP, descending pathways; 
RVLM, rostral ventrolateral medulla; 
CVLM, caudal ventrolateral medulla. 
The rostral ventrolateral medulla cor- 
responds to the lateral reticular 
nucleus (see Sect. 2.2). (+), Ex- 
citatory influence; ( - ) ,  inhibitory in- 
fluence; (R), rostral; (C), caudal; 
(D), dorsal; (V), ventral 

csN,...._ 
ADN ~-"~D) 

AMY 

(R) 

NTS 

DP 

~HY 

) RVLM 
(4 
'(~VLM 

DP 

(C) 

(v) 

centre" (Dittmar 1870; Alexander 1946; Dampney 1981; Ross et al. 1984) 
whose existence has been often questioned (for review see Hilton and Spyer 
1980). The anterior hypothalamus inhibits, while the posterior hypothalamus 
excites cardiovascular neurons of the rostral ventrolateral medulla (Ciriello 
and Calaresu 1977). The neurotransmitters involved in these neurophysiologi- 
cal events will be discussed in the following chapters. 

3 Catecholamines 

3.1 Mapping of Catecholamine-Containing Neurons 

Fluorescence microscopy and immunochemistry have been widely used for 
identifying neurotransmitters and neuropeptides in the various brain areas. In 
order to map the pathways, neurotransmitters and neuropeptides have been 
determined in intact animals, as well as in animals after selective lesions. 

For detailed mapping of the monoaminergic pathways various experimental 
approaches have been used, such as the selective destruction of nerve ter- 
minals by neurotoxins and the depletion of the monoamine stores by drugs. 
The immunohistochemical identification of catecholamine-containing (dopa- 
mine, noradrenaline, adrenaline) neurons has been made by demonstrating 
the presence of the enzymes tyrosine hydroxylase (TH), dopamine-fl-hydrox- 
ylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT). The 
presence of PNMT indicates that the cells are able to synthesize adrenaline. 
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The presence of TH suggests that the neurons possess dopamine as a neuro- 
transmitter, while the presence of  TH and DBH suggests that the monoamine 
is noradrenaline. 

In this review "noradrenergic" and "adrenergic" refer to noradrenaline-con- 
taining and adrenaline-containing neurons, respectively. 

3.1.1 Brainstem 

Noradrenaline-containing cell bodies are present in the cell groups A I - A 7  
and the adrenergic cell bodies in the cell groups C1 and C2 (DahlstrOm and 
Fuxe 1964; Ungerstedt 1971; HOkfelt et al. 1974; Swanson and Hartman 1975; 
Poitras and Parent 1978) (Fig. 2). 

Ventrolateral Medulla 

Noradrenergic and adrenergic cell bodies are found in the A1 and C1 cell 
groups, respectively. The cell bodies form a column in which the ratio of nor- 
adrenaline/adrenaline-containing cell bodies varies; the noradrenaline-con- 
taining cell bodies are mainly located in the caudal, the adrenaline-containing 
cell bodies in the rostral part of  the column (for review see HOkfelt et al. 
1984a). The noradrenergic neurons of the A1 cell group project to structures 
of  the forebrain such as the paraventricular nucleus and the supraoptic 
nucleus (Swanson and Hartman 1975; Palkovits et al. 1980; Sawchenko and 
Swanson 1982; Saper et al. 1983). The cell bodies of the A1 cell group are 

7 .... 

C0 .......... 

Fig. 2. Schematic representation of noradrenergic and adrenergic pathways which may play a 
role in blood pressure regulation. Filled circles, noradrenaline-containing cell bodies; open 
circles, adrenaline-containing cell bodies; solid lines, ascending pathways; broken lines, des- 
cending pathways; dotted lines, connections between noradrenergic (A l - A 7 )  and adrenergic 
(C1 and C2) cell groups; HIP, hippocampus; CO, cortex; THA, thalamus; HYP, hypothala- 
mus; ILC, intermediolateral column of the spinal cord 
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connected with the noradrenergic cell bodies of the A2 cell group of the dor- 
somedial medulla (DahlstrOm and Fuxe 1964; Palkovits and Jacobowitz 
1974), the adrenergic cell bodies of  the C1 cell group (Granata et al. 1985a) 
(Fig. 2) and the noradrenergic cell bodies of the A6 cell group (Sawchenko 
and Swanson 1982). In rats (Dahlstr/Sm and Fuxe i965), cats (Fleetwood- 
Walker and Coote 1981) and chickens (Smolen et al. 1979), neurons of the A1 
cell group project to the intermediolateral column of  the spinal cord. How- 
ever, in the rat an abundant innervation of the spinal cord by neurons of  the 
A1 cell group has been questioned (Ross et al. 1981 a; Westlund et al. 1981) 
(Fig. 2). The adrenergic cell bodies of the C1 cell group project to the hypo- 
thalamic median preoptic nucleus (Saper et al. 1983), the dorsal motor 
nucleus of the vagus, the nucleus of the solitary tract, the paraventricular 
nucleus and the arcuate nucleus (Fuxe et al. 1975). Moreover, cell bodies of  
the C1 cell group project to the spinal cord (intermediolateral column) (Ross 
et al. 1981 a, 1983; Saper et al. 1983; Goodchild et al. 1984). 

Dorsomedial Medulla and Pons 

Noradrenergic and Adrenergic Neurons. Noradrenaline-containing cell bodies 
form the A 2 - A 7  cell groups, adrenaline-containing cell bodies the C2 cell 
group. The A2 and C2 cell groups lie within the nucleus of the solitary tract 
and the dorsal motor nucleus of the vagus. The noradrenergic cell bodies are 
mainly found in the caudal part of the dorsal vagal complex, while the 
adrenergic cell bodies are mainly located in the rostral part (Koda and Bloom 
1983; for review see HOkfelt et al. 1984a). The medial rostral part of  the 
adrenergic cell group C2 has been named C3 (Howe et al. 1980). The cell 
bodies of  the nucleus of the solitary tract (but not those of  the A2 cell group) 
project to the noradrenergic A1 cell group of the ventrolateral medulla 
(Sawchenko and Swanson 1982). 

In the area postrema small cell bodies are present which contain noradrena- 
line or adrenaline (Armstrong et al. 1982a). Interestingly, adrenergic cell 
bodies were not found in the guinea-pig brain (Cumming et al. 1986). 

The noradrenaline-containing A5 cell group is located among the fibres of 
the rubrospinal tract mainly at the level of  the superior olive of the pons 
(DahlstrOm and Fuxe 1964; Blessing et al. 1978). 

Dopamine-Containing Neurons. Dopamine-containing cell bodies seem to 
form a separate celt group in the medial part of  the dorsal motor nucleus of  
the vagus, as well as in the area postrema (Armstrong et al. 1982 a). Dopami- 
nergic cell bodies and nerve terminals are also present in the locus coeruleus 
(McRae-Degueurce and Milon 1983; Westerink and De Vries 1985). The do- 
paminergic nerve terminals probably originate from cell bodies located in the 
ventral mesencephalic tegmental regions (McRae-Degueurce and Milon 
1983). 
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Noradrenergic Pathways 

From the noradrenaline-containing cell bodies of the ventrolateral and dor- 
somedial medulla two noradrenergic pathways emerge, namely the dorsal and 
the ventral bundles. 

The dorsal noradrenergic pathway arises from the A6 cell group which is 
identical with the locus coeruleus (Dahlstrtim and Fuxe 1964; Ungerstedt 
197i) and the locus subcoeruleus which lies ventral to the locus coeruleus 
(Maeda and Shimizu 1972; Olson and Fuxe 1972; Chu and Bloom t974). The 
noradrenergic neurons of this complex (Fig. 2) mainly project to the frontal 
cortex, the hippocampus (And6n et al. t966; Fuxe et al. 1968; Ungerstedt 
i971; Jones and Moore 1977; Ader et al. 1980; Nagai et al. 1981), the amygda- 
loid complex (Jones and Moore 1977; Fallon et al. 1978), the thalamus 
(Maeda and Shimizu 1972; Kobayashi et al. 1974; Jones and Moore 1977), the 
cerebellum (Bloom et al. i 97 i; Bloom and Battenberg 1976; Nagai et al. 198 i) 
and several hypothalamic nuclei and areas, such as the lateral hypothalamic 
area and the periventricular, supraoptic and paraventricular nuclei (Fuxe 
1965; Ungerstedt i971; Lindvall and BjOrklund 1974; Jones and Moore 1977; 
Sawchenko and Swanson 1982). Within the supraoptic nucleus, the 
noradrenergic nerve endings terminate preferentially in those regions which 
contain vasopressin (McNeill and Sladek 1980). Some of the ascending axons 
cross over to terminate in the contralateral hypothalamus (Philippu et al. 
1979a). Noradrenergic nerve terminals that originate from the locus coeruleus 
are also found in the dorsal raphe nucleus (Fuxe 1965; Loizou 1969; Sakai et 
al. 1977 a, b). 

The ventral pathway arises mainly from the cell bodies of the A1, A2, A5 
and A7 cell groups. The ventral noradrenergic pathway innervates the preop- 
tic area, various hypothalamic nuclei, structures of the limbic system and the 
nucleus of the solitary tract (Ungerstedt 1971). In particular, the cell bodies 
of the areas A1 and A2 project to the paraventricular nucleus, the cell bodies 
of the area AI to the supraoptic nucleus (Sawchenko and Swanson 1982), and 
those of the A5 cell group to the nucleus of the solitary tract, the dorsal motor 
nucleus of the vagus and the spinal cord (Satoh et al. 1977; Loewy et al. 
1979a; Blessing et al. 1981 a; Westlund et al. 1981). In the cat, the ventral bun- 
dle innervates the hypothalamus and the cerebral cortex (Maeda and Shimizu 
1972; Maeda et al. 1973). 

The external layer of the ventral medulla oblongata is densely innervated 
with catecholaminergic terminals (Smialowska et al. 1985). Descending 
noradrenergic pathways to the rat spinal cord originate from the A4-A6 cell 
groups (Ader et al. i979; Loewy et al. 1979a; Loewy and Nell 1981; Blessing 
et al. i981 a; Nagai et al. 1981; Westlund et al. 1983). In the cat, neurons from 
the A2 and A6, but not the A5 cell group, innervate the spinal cord (Fleet- 
wood-Walker and Coote 1981). 
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Adrenergic Pathways 

Adrenergic nerve terminals originating from the adrenergic cell bodies are 
present in the dorsal motor nucleus of the vagus, the nucleus of the solitary 
tract, the locus coeruleus and the raphe nuclei, as well as in the hypothalamus 
(arcuate nucleus, dorsomedial hypothalamus, paraventricular hypothalamus) 
(HOkfelt et al. 1974; Fuxe et al. 1975; Van der Gugten et al. 1976). 

3.1.2 Hypothalamus 

Dopamine-containing cell groups exist in the dorsal and posterior hypothala- 
mus. These cell bodies seem to project into the limbic system and the cortex. 
It seems likely that nerve terminals of  the dopaminergic perikarya also lie 
within the hypothalamus (Fuxe et al. 1974). 

3.2 Cardiovascular Effects of  Catecholamines and Related Drugs 

3.2.1 Cerebroventricular System 

The intracerebroventricular administration of noradrenaline leads to a fall in 
blood pressure and bradycardia. However, the opposite cardiovascular effects 
have also been reported. Central administration of a plethora of drugs that 
either stimulate or block a- or fl-adrenoreceptors also led to conflicting results 
(for review see Philippu 1980). For example, it has been reported that the cen- 
tral administration of the a-adrenoreceptor blocking agent phentolamine 
either does not affect blood pressure (Heise and Kroneberg 1973), leads to a 
fall in blood pressure and bradycardia (Vollmer and Buckley 1977), or leads 
to a pressor response and tachycardia (Day and Roach 1974). Probably, the 
cardiovascular response may be influenced by several factors, such as anaes- 
thesia, species differences and the site of  injection and thus the site of drug 
action. 

Since the site of  drug injection may qualitatively influence the car- 
diovascular response, blood pressure and heart rate changes elicited by a drug 
injected into the ventricular system of the brain is the sum of  possibly op- 
posite effects of  the drug on different brain structures. Hence, investigation 
of these overall changes in blood pressure and heart rate is of  limited impor- 
tance. To get an idea of the importance of various brain structures in blood 
pressure regulation, the effects of  drugs applied to distinct brain areas should 
be investigated. 

Anaesthetics may also interfere with the cardiovascular effects of  centrally 
applied drugs (for review see Philippu 1980). Toda et al. (1969) demonstrated 
that in anaesthetized rabbits the intracerebroventricular injection of  
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adrenaline lowers blood pressure and heart rate, while in conscious rabbits the 
amine leads to a rise in blood pressure and bradycardia. More recently, it has 
been shown that the intracerebroventricular administration of  noradrenaline 
lowers blood pressure in anaesthetized rats, but increases it in unanaesthetized 
animals (Corr~a et al. 1985). Central administration of noradrenaline also in- 
creases the release of vasopressin (Bhargava et al. 1972; Kuhn 1974; Milton 
and Paterson 1974). The pressor response to noradrenaline is inhibited by 
H1- and Hz-receptor antagonists (Corr~a et al. 1985). On the other hand, 
noradrenaline and other a-receptor agonists are ineffective in hypophysec- 
tomized and in Brattleboro rats which are deprived of vasopressin (Corr~a et 
al. 1985; Hiwatari and Johnston 1985). Since the central administration of 
histamine also elevates plasma vasopressin (Blackmore and Cherry 1955; 
Bhargava et al. 1973; Dogterom et al. 1976; Tuomisto et al. 1980), it seems 
probable that noradrenaline releases histamine, which in turn releases vaso- 
pressin thus leading to the rise in blood pressure (Corr~a et al. 1985). On the 
other hand, in anaesthetized dogs the fall in blood pressure elicited by nor- 
adrenaline is associated with a decrease in the release of vasopressin. Central 
administration of the a-adrenoreceptor blocking drug phenoxybenzamine 
abolishes the fall in blood pressure elicited by noradrenaline and attenuates 
the inhibition of the vasopressin release (Kimura et al. 1981). These findings 
indicate that the central cardiovascular effects of  noradrenaline are partly 
mediated by hypophyseal vasopressin. 

If catecholaminergic neurons were indeed involved in cardiovascular regu- 
lation, then chemical sympathectomy with 6-hydroxydopamine (6-OHDA) 
would be expected to affect blood pressure. 6-OHDA causes a short-term 
release of catecholamines which is followed by a long-term depletion. As ear- 
ly as 1972 it was shown that the central administration of this neurotoxin to 
rats (Haeusler et al. ! 972 a) and conscious rabbits (Chalmers and Reid 1972) 
elicits an immediate fall in blood pressure and bradycardia. These car- 
diovascular effects have been attributed to the destruction of catecholaminer- 
gic nerve terminals and release of  catecholamines. However, Korner et al. 
(1978) reported that in both conscious and anaesthetized rabbits, the in- 
tracisternal injection of 6-OHDA leads to hypertension and bradycardia 
which are inhibited by centrally administered phentolamine. The pressor 
response to the intracisternal injection of 6-OHDA resembles that observed 
on electrical stimulation of the hypothalamus (Feigl 1964; Forsyth 1970) and 
which has been attributed to release of catecholamines from hypothalamic 
nerve terminals (Philippu et al. 1973a) (see Sect. 3.2.3). A pressor response 
to 6-OHDA immediately after its central administration to conscious animals 
has also been reported (Lewis et al. 1974; Elliot et al. 1985a). Once more it 
seems likely that the conflicting results might be due partly to differences in 
the distribution of the neurotoxin when injected into the intracerebroven- 
tricular system. This view is supported by the finding that intracisternal ad- 
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ministration of 6-OHDA to pontine decerebrate preparations elicits an acute 
fall in blood pressure (Korner et al. 1978). 

In spinal rats, the intracerebroventricular injection of 6-OHDA inhibits the 
pressor response to carotid occlusion, thus indicating the involvement of cen- 
tral catecholaminergic mechanisms (Kubo et al. 1985 a). Since the central ad- 
ministration of noradrenaline enhances the release of vasopressin (see above), 
the increased release of this peptide might be the reason for the pressor 
response (see Sect. 8.2). 

The reason why the pattern of  the cardiovascular response depends on the 
site of  drug administration is difficult to understand. Recently, it was reported 
that the fall in blood pressure elicited by the intracisternal administration of 
noradrenaline is reversed to a pressor response by the a2-adrenoreceptor 
blocking drug yohimbine. This rise in blood pressure is prevented by an in- 
tracisternal injection of the arreceptor  antagonist prazosin. These findings 
have been interpreted as indicating that a2-receptors mediate a depressor 
response, while stimulation of the al-receptors leads to a rise in blood 
pressure (Bousquet and Schwartz 1983). Different densities of al- and a2-re- 
ceptors in various brain structures may explain the significance of  the site of  
drug administration for the cardiovascular response. However, the inhibition 
of the central hypotensive effect of  clonidine by the arreceptor  antagonist 
prazosin (see Sect. 3.4) does not support this idea. 

3.2.2 Brainstem 

Ventrolateral Medulla 

The first suggestion concerning the involvement of the ventrolateral medulla 
in cardiovascular control was made by Loeschcke and Koepchen (1958), who 
observed that procaine applied to the cat medulla leads to a fall in blood 
pressure. Feldberg and Guertzenstein (1972) found that pentobarbital locally 
applied to the ventral surface of  the cat medulla causes a fall in blood 
pressure, thus confirming the observation of Loeschcke and Koepchen (1958). 
In rabbits (Fallert and Bucher 1966) and rats (Granata et al. 1983) electrolytic 
lesions of this area also result in irreversible hypotension, while electrical 
stimulation of  the ventrolateral medulla of the cat elicits a pressor response. 
However, in the dog, electrolytic lesions change neither the blood pressure nor 
the sympathetic discharges (Laubie and Schmitt 1983). 

The pressor area of the ventrolateral medulla was found to correspond to 
the reticular nuclei (Loeschcke et al. t970; Trouth et al. 1973). Because of  its 
localization, the area has been called nucleus reticularis lateralis (Meessen 
and Olszewski 1949; Palkovits and Zaborszky 1977; Bousquet et al. 1980), but 
other terms have also been used, such as the ventrolateral reticular nucleus, 
the rostral ventrolateral medulla, the pressor area of the lateral reticular for- 
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Fig. 3. Frontal section of the cat brain; P 13.5 mm posterior to the zero point which corresponds 
to the imaginary interaural line. V4, fourth ventricle; AP, area postrema; SM, medial nucleus 
of the solitary tract; S, solitary tract; SL, lateral nucleus of the solitary tract; DMV, dorsal 
motor nucleus of the vagus; AMB, nucleus ambiguus; NRL-L lateral reticular nucleus (internal 
division); NRL-E, lateral reticular nucleus (external division) 

mation and the lateral medullary pressor area. Structures adjacent to the 
lateral reticular nucleus may also participate in the stimulation-induced 
pressor response (Willette et al. 1983). The localization of the lateral reticular 
nucleus is shown in Fig. 3. 

The rostral ventrolateral medulla is included in the baroreflex pathway 
(Ciriello and Calaresu 1977; Bousquet et al. 1980; Dampney 1981; McAllen 
et al. 1982; Yamada et al. 1984). Within the region of  the pressor area are 
located neurons of  the adrenergic C1 cell group, which project to the spinal 
cord (Ross et al. 1981 a, 1983; Goodchild et al. 1984). The C1 cell group ap- 
pears to be included in the baroreceptor pathway. Hence, it has been 
postulated that the adrenergic CI cell group is responsible for tonic vasomotor 
control (Dampney 1981; Ross et al. 1983, 1984; Reis et al. 1984). 

The idea that adrenaline neurons of  the C1 cell group belong to the 
vasomotor neurons of  the rostral ventrolateral medulla has been recently ques- 
tioned, because pretreatment of  rats with the PNMT inhibitor LY 134046 
(8,9-dichloro-2,3,4,5-tetrahydro-lH-2-benzazepine) does not influence either 
the pressor response or the tachycardia to electrical stimulation of the rostral 
ventrolateral medulla. Moreover, intrathecal injections of phentolamine or pro- 
pranolol in doses which do not block peripheral a- or fl-receptors do not affect 
the stimulation-induced cardiovascular effects (Connor and Drew 1987). 

The adrenergic sympathoexcitatory neurons from the rostral ventrolateral 
medulla are under the inhibitory influence of  the nucleus of  the solitary tract 
(Granata et al. 1983, 1985a). 

This area of  the ventrolateral medulla seems to mediate vasodepressor 
responses elicited in the nucleus of  the solitary tract, because bilateral electro- 
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lytic lesions of the rostral ventrolateral area abolish the fall in blood pressure 
and the bradycardia caused by electrical stimulation of the vagus, or by 
distension of the carotid sinus. The rostral ventrolateral medulla also 
mediates the depressor response to stimulation of the caudal ventrolateral 
medulla, since tetrodotoxin or 6-OHDA injected into the C1 cell group of the 
rostral ventrolateral medulla abolish the pressor response to kainic acid in- 
jected into the caudal ventrolateral medulla (Granata et al. 1985b, 1986). 

In cats, clonidine applied to the "chemosensitive area S" of the ventral sur- 
face of the brainstem (Schl~ifke and Loeschcke 1967) through Perspex rings 
leads to a fall in blood pressure (Bousquet and Guertzenstein t973; Dhawan 
et al. 1975). The area S is situated at the rostral ventrolateral medulla. A fall 
in blood pressure is also observed when the rostral ventrolateral medulla is 
superfused with clonidine through a push-pull cannula (Sinha et al. 1975). 
When injected into this area, clonidine elicits a hypotensive effect at lower 
doses (50-100 ng) than those required when the drug is injected into other 
brain areas, such as the nucleus of the solitary tract (see Sect. 3.2.2.3) (Bous- 
quet et at. 1981 a; Bousquet and Schwartz 1983; Sinha et al. 1985). Moreover, 
bilateral lesions of the "chemosensitive area S" abolishes the fall in blood 
pressure elicited by intravenous injection of clonidine (Bousquet et al. 1975). 
Laubie and Schmitt (1977) were, however, unable to confirm this finding. This 
discrepancy might be due to the positioning of the electrolytic lesions. The 
high sensitivity of the "chemosensitive area S" to clonidine might indicate 
that this structure of the ventrolateral medulla is the main site of the drug ac- 
tion. This is supported by the recent finding that the hypotensive effect of in- 
travenously administered clonidine is inhibited when the a2-receptor an- 
tagonist idasoxan is microinjected into the rostral part of the lateral ven- 
tricular nucleus (Gatti et al. 1988) (see Sect. 3.4). 

The affinity of noradrenaline for al-adrenoreceptors is approximately 
equal to that for a2-receptors (Starke et al. 1974). Microinjections of nor- 
adrenaline into the rostral ventrolateral medulla are also effective, although 
the lowest dose necessary to decrease blood pressure is approximately 200 
times higher than that of clonidine. On the other hand, the al-adrenorecep- 
tor agonist phenylephrine was found to be ineffective. As might be expected, 
the depressor response to clonidine is inhibited by the selective a2-adrenore- 
ceptor antagonists idazoxan and piperoxan, but not by prazosin which blocks 
aradrenoreceptors (Sinha et al. 1985). Thus, in this area a~-adrenoreceptors 
do not seem to be involved in the hypotensive action of clonidine, although 
prazosin inhibits the fall in blood pressure when clonidine is intracerebroven- 
tricularly administered (see Sect. 3.4). 

As already mentioned (see Chap. 2), electrical stimulation of the caudal 
ventrolateral medulla lowers blood pressure. The depressor response is fre- 
quency-dependent and whereas electrical stimulation at a low frequency 
(20 Hz) leads to a fall in blood pressure, stimulation at a high frequency 
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(100 Hz) elicits a pressor response (Blessing and Reis 1982). In the rabbit, the 
depressor area lies I mm posterior to the rostral border of the area postrema. 
The area possesses two vasodepressor regions; one is located in the nucleus 
of the trigeminal nerve while the other seems to coincide with the noradrener- 
gic A1 cell group of the ventrolateral medulla (Blessing and Reis 1982). 

Day et al. (1983) stimulated electrically the caudal ventrolateral medulla in 
the rat by using extremely thin electrodes. They also found that stimulation 
of this area at various frequencies either decreases (low frequency) or in- 
creases (high frequency) blood pressure. However, the area which lowered 
blood pressure when stimulated did not coincide with the noradrenergic A1 
cell group, but with a segment of the nucleus ambiguus lying adjacent to the 
rostral third of the A1 cell group. Electrical stimulation of the A1 cell group 
never decreased blood pressure. Thus, direct involvement of noradrenergic 
neurons of the A1 cell group in the blood pressure changes evoked by stimula- 
tion or lesion of the caudal ventrolateral medulla seems to be doubtful. 

From the A1 cell group of the caudal ventrolateral medulla originate 
ascending catecholaminergic pathways (see Sect. 3.1.1.1) which terminate in 
the paraventricular nucleus. Interruption of the primary afferents to the 
nucleus of the solitary tract by bilateral lesions increases blood pressure and 
catecholamine levels in the paraventricular nucleus. The latter finding has 
been interpreted as indicating decreased neuronal activity in this area due to 
a reduced catecholamine release. In turn, the reduced release of catechol- 
amines enhances the release of vasopressin, thus leading to the rise in blood 
pressure (Zukowska-Grojec et al. 1983, 1985). The involvement of vasopressin 
is supported by the finding that the pressor response to bilateral lesions is 
abolished (Barnes et al. 1984; Kubo and Amano 1986) by d(CHz)sq2vr(Me)ar- 
ginine vasopressin (TMAV; Kruszynski et al. 1980), which blocks the vascular 
vasopressin V~-receptors. It seems that impulses from the nucleus of the 
solitary tract and the caudal ventrolateral medulla inhibit the release of vaso- 
pressin in the hypothalamus, thus decreasing blood pressure. Consistent with 
this view is the observation that electrolytic destruction of A1 cell group 
neurons increases blood pressure and plasma vasopressin (Blessing et al. 
•982). 

However, different results exist concerning the role of noradrenaline in the 
release of vasopressin. Electrophysiological studies have shown that increases 
in blood pressure elicited by electrical stimulation of the caudal ventrolateral 
medulla are accompanied by enhanced activity of the vasopressin-secreting 
supraoptic neurons. Since the injection of the neurotoxin 6-OHDA into the 
supraoptic nucleus abolishes the facilitatory effect of electrical stimulation 
without changing the basal activity pattern, it has been concluded that 
noradrenergic afferents facilitate the activity of vasopressin neurons (Day and 
Renaud 1984). Furthermore, injection of noradrenaline into the third ventri- 
cle, into the supraoptic nucleus or into the paraventricular hypothalamic 
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nucleus increases circulating vasopressin (Bhargava et al. 1972; Kuhn 1974; 
Milton and Paterson 1974; Bridges et al. 1976; Benetos et al. 1986) (see Sect. 
3.2.1). 

The noradrenaline-containing A5 cell group of the pons has also been im- 
plicated in the central regulation of blood pressure. In rats (Loewy et al. 
1979b) and rabbits (Woodruff et al. 1986), electrical stimulation of this cell 
group increases blood pressure and decreases heart rate. The pressor response 
to electrical stimulation is eliminated by microinjections of 6-OHDA into this 
area (Loewy et al. 1979b; Woodruff et al. 1986). The decrease in heart rate 
is abolished by bilateral vagotomy (Loewy et al. 1979b; Woodruff et al. 1986) 
or by destruction of the nucleus of the solitary tract (Woodruff et al. 1986), 
thereby indicating that bradycardia is due to activation of the baroreceptor 
reflex. 

The importance of this area for cardiovascular control has been confirmed 
by the observations that increases in blood pressure elicited by peripheral ad- 
ministration of noradrenaline (Andrade and Aghajanian 1982; Guyenet 
1984), angiotensin II or vasopressin (Guyenet 1984) reduce the firing rate of 
A5 neurons, while the fall in blood pressure caused by nitroprusside increases 
the rate of firing in this area (Andrade and Aghajanian 1982). Since transec- 
tions of pathways to the hypothalamus and to the nucleus of the solitary tract, 
as well as bilateral vagotomy, do not affect the pressor response elicited by 
electrical stimulation of the A5 cell group, it seems that projections of the 
area to the intermediolateral cell column excite preganglionic sympathetic 
neurons to elicit the rise in blood pressure (Loewy et al. 1979b; Woodruff et 
al. 1986). 

Nucleus of the Solitary Tract 

As mentioned in Chap. 2, the afferent neurons arising from the carotid sinus 
and aortic arch terminate in the nucleus of the solitary tract. Electrical 
stimulation of the nucleus lowers the arterial blood pressure (Seller and Illert 
1969), while bilateral electrolytic lesions abolish the baroreceptor reflex and 
lead to an acute, fulminating neurogenic hypertension. This hypertension is 
mediated by a-receptors, because it is inhibited by the intravenous injection 
of the a-adrenoreceptor blocking drug phentolamine (Doba and Reis 1973). 
Interruption of the primary afferents by bilateral transections lateral to the 
nucleus of the solitary tract also leads to hypertension which is associated 
with tachycardia (De Jong and Palkovits 1976; Zukowska-Grojec et al. 1983, 
1985). 

The occurrence of catecholaminergic neurons in the nucleus of the solitary 
tract (see Sect. 3.1.1.2) led to a thorough investigation of the importance of 
catecholaminergic systems of this nucleus for the baroreflex. It was found 
that bilateral injections of the neurotoxin 6-OHDA into the nucleus of the 
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solitary tract increase the arterial blood pressure for approximately 48 h. 
Moreover, 6-OHDA leads to a long-lasting (2 weeks) lability of the blood 
pressure (Snyder et al. 1978). Similar effects are elicited by selective elec- 
trolytic lesion of the noradrenergic A2 cell group (Talman et al. 1980a). 

These findings are difficult to interpret, because more than one catechol- 
amine is present as a neurotransmitter in the nucleus of the solitary tract (see 
Sect. 3.1.1). The acute effects of  6-OHDA might be due to the release of nor- 
adrenaline or adrenaline from damaged nerve terminals, since adrenaline 
nerve endings do not seem to be resistant to 6-OHDA as postulated earlier 
(Jonsson et al. 1976). This view was based on the observation that centrally 
applied 6-OHDA did not affect PNMT activity. However, determination of 
hypothalamic adrenaline levels revealed that 6-OHDA depletes adrenaline 
nerve terminals (Tessel et al. 1978). Fety and Renaud (1983) and Fety et al. 
(1984) also came to the conclusion that adrenaline-containing neurons might 
be sensitive to 6-OHDA, because central administration of the neurotoxin 
decreased DBH activity in the C2 adrenergic region, indicating that un- 
changed PNMT activity does not necessarily prove the functional integrity of 
adrenaline neurons. 

Nevertheless, the lability of blood pressure after catecholamine depletion 
by 6-OHDA or electrolytic lesion suggests that catecholaminergic neurons of 
the nucleus of the solitary tract group modulate the baroreceptor reflex. Local 
administration of various sympathomimetics and sympatholytics also provid- 
ed evidence for the involvement of  catechotamines and the baroreflex control. 

In anaesthetized animals, injections of noradrenaline into the nucleus of 
the solitary tract decrease blood pressure and heart rate (De Jong 1974; 
Struyker-Boudier et al. 1975; Sinha et al. 1975; Kubo and Misu 1981 a). The 
cardiovascular response to noradrenaline seems to be dose dependent, 
because low doses of the amine lower heart rate without influencing blood 
pressure (Gurtu et al. 1982). Several sympathomimetics have been monolater- 
ally injected into the nucleus of the solitary tract to characterize the type of 
a-adrenoreceptors involved in the cardiovascular effects of  noradrenaline. The 
most potent agonist was found to be adrenaline, followed by noradrenaline, 
a-methylnoradrenaline, clonidine and tyramine (Zandberg et al. 1979; Kubo 
and Misu 198t a). The antagonism by yohimbine of the cardiovascular effects 
of  these sympathomimetics (Zandberg et al. 1979; Rockhold and Caldwell 
1980; Kubo and Misu 1981 a; Kubo et al. 1987) might suggest the involvement 
of a2-receptors in the depressor response. Since central administration of 
6-OHDA blocked the cardiovascular effects of  tyramine without influencing 
those of noradrenaline or clonidine, the a2-adrenoreceptors in this area seem 
to be postsynaptically located (Kubo and Misu 1981 a). Decreases in blood 
pressure elicited by noradrenaline (Kubo and Misu 1981a) or a- 
methylnoradrenaline (De Jong and Petty 1982) are also inhibited by the 
a~-receptor blocking agent prazosin, but the monolateral injection of the 



Regulation of Blood Pressure by Central Neurotransmitters and Neuropeptides t7 

al-receptor agonist phenylephrine into the nucleus of the solitary tract was 
found to be ineffective (Kubo and Misu 1981 a). Very recently, it was reported 
that bilateral injections of the al-receptor agonists methoxamine, 
phenylephrine or St 587 (2-(chloro-5-trifluoromethylphenylimino)imidazoli- 
dine) increase blood pressure and heart rate. These effects are inhibited by 
prazosin (Kubo et al. 1987). In the nucleus of the solitary tract, it seems that 
stimulation of postsynaptically located a2-receptors decreases blood 
pressure, while stimulation of al-adrenoreceptors increases blood pressure 
and heart rate. However, the inhibition by prazosin of the depressor responses 
to noradrenaline and a-methylnoradrenaline injected monolaterally (see 
above) is still puzzling. 

In cats, superfusion of the nucleus of the solitary tract with clonidine 
through a push-pull cannula did not affect the arterial blood pressure (Philip- 
pu et al. 1973a). Schoener and Pitts (1985) found that in rats superfusion of  
the nucleus of the solitary tract with low concentrations of  clonidine 
decreases blood pressure and heart rate. The negative results obtained in cats 
might be due to the unfavourable relationship between the size of the nucleus 
of the solitary tract on the one hand and the size of the push-pull cannula 
on the other. Nonetheless, superfusion of the nucleus of the solitary tract with 
clonidine attenuates, while superfusion with the a-adrenoreceptor blocking 
agent tolazoline increases the pressor response to electrical stimulation of the 
posterior hypothalamus (Philippu et al. 1973a, 1974). The findings indicate 
that the hypothalamic influence of the baroreceptor reflex is mediated 
through a-adrenoreceptors of  the nucleus of the solitary tract. 

Clonidine treatment and withdrawal from clonidine treatment affect DBH 
and PNMT activities in the A1/C 1 cell groups of the ventrolateral medulla (see 
Sect. 3.4). In the A2/C2 cell groups which correspond to the nucleus of the 
solitary tract, treatment with clonidine for 7 days does not influence DBH and 
PNMT activities, but DBH activity is reduced during clonidine withdrawal 
(Atkinson et al. 1986). Hence, the cardiovascular effects of  clonidine are not 
associated with turnover changes of noradrenaline and adrenaline in the 
nucleus of the solitary tract. Different results have been reported by Fuxe et al. 
(1979b), who investigated the effects of  clonidine on the turnover of noradren- 
aline and adrenaline in the dorsal midline area of  the caudal medulla oblon- 
gata. This area is not homogeneous; among other structures, the area contains 
the nucleus of the solitary tract, the dorsal motor nucleus of the vagus, the 
commissural nucleus and the nucleus of the hypoglossal nerve (Fuxe et al. 
1979a, b). Injection of clonidine into the dorsal midline area of the caudal 
medulla oblongata decreases the adrenaline turnover, while the noradrenaline 
turnover is not influenced. However, the change in the adrenaline turnover does 
not seem to be causally related to the clonidine-induced fall in blood pressure, 
because intraperitoneal administration of the drug also decreases the 
adrenaline turnover but blood pressure is not influenced (Fuxe et al. 1980a). 
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The results obtained with the various sympathomimetics and sympatholy- 
tics suggest that stimulation of  a2-receptors of  the nucleus of  the solitary 
tract decreases blood pressure and heart rate. However, Vlahakos et al. (1985) 
reported that the pattern of cardiovascular response to locally applied nor- 
adrenaline greatly depends on anaesthesia. In conscious rats, administration 
of  noradrenaline into the nucleus of  the solitary tract (the drug was given 
either by microinjection, or the nucleus superfused with noradrenaline 
through a push-pull cannula) leads to a rise in blood pressure and bradycar- 
dia. Microinjection of  clonidine into the nucleus of the solitary tract also in- 
creases blood pressure (see Sect. 3.4). Ether, pentobarbital or urethane abolish 
or reverse the pressor response to noradrenaline. 

Based on the foregoing findings, it may be suggested that stimulation of  
a-receptors located in the nucleus of  the solitary tract modulates the 
baroreflex. In this nucleus, serial synapses have been described and ex- 
periments with 6-OHDA revealed that some of these synapses are catechol- 
aminergic (Chiba and Kato 1978). Thus, a non-catecholaminergic baroreflex 
(see later) might be influenced by catecholaminergic neurons, the postsynap- 
tic a-receptors being located on the non-catecholaminergic neurons of  the 
baroreflex arc. In this connection, it is of  interest to note that subnuclear 
regions of  the nucleus of  the solitary tract associated with the inputs from the 
carotid sinus baroreceptors show a high density of  a2-adrenoreceptors (Un- 
nerstall et al. 1984; Robertson and Leslie 1985). A high density of  these recep- 
tors is also present in the dorsal motor nucleus of the vagus (Robertson and 
Leslie 1985). 

Acute sinoaortic denervation elicits a rise in blood pressure, which is asso- 
ciated with a decreased noradrenaline level and an increased noradrenaline 
and adrenaline turnover on the dorsal midline area of  the caudal medulla. All 
these changes disappear 4 weeks after denervation. The adrenaline turnover 
was also found to be reduced in the caudal medulla of  spontaneously 
hypertensive rats (SHR). The results have been interpreted as indicating that 
the hypertension may be due to the increased release of  noradrenaline, while 
the adrenaline release is enhanced so as to counteract the rise in blood 
pressure (Fuxe et al. 1979c, 1983a; Yukimura et al. 198t). 

Very recently, the effects of  experimentally induced blood pressure changes 
on the release of catecholamines of  the nucleus of  the solitary tract have been 
investigated. Determination of the release of  endogenous catecholamines 
revealed that moderate increases in blood pressure reduce the rate of  release 
of  adrenaline, while pronounced pressor responses additionally diminish the 
rate of  release of noradrenaline in superfusates of  the nucleus of  the solitary 
tract (Fig. 4). Supposing that the release of noradrenaline and adrenaline is 
inhibited so as to countertact the rise in blood pressure, it would seem that 
noradrenergic and adrenergic neurons possess a hypertensive function in the 
nucleus of  the solitary tract of  the cat. There are no indications that endo- 
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Fig. 4. Effects of a rise in blood 
pressure on the release rates of nor- 
adrenaline and adrenaline in the 
nucleus of the solitary tract of the cat. 
The nucleus was superfused with ar- 
tificial CSF through a push-pull can- 
nula at a rate of 150 til/min and the 
catecholamines were radioenzymatical- 
ly determined in the superfusate. To 
elicit a pressor response, blood 
(7 ml/kg) was intravenously infused. 
The rates of release of catecholamines 
in the sample before blood infusion 
were taken as 1. NA, noradrenaline; 
A, adrenaline; BP, mean arterial blood 
pressure. Means of 7-9  experiments 
+SEM. *P<0.05, **P<0.01, 
***P<O.001 (Kobilansky et al. 1988) 
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genous adrenaline or noradrenal ine exert a hypotensive action on this area 
(Kobilansky et al. 1988). A qualitative change in the pat tern o f  catecholamine 
response to the rise in b lood pressure as a result o f  anaesthesia is improbable, 
because anaesthetics only quanti tat ively influence the release o f  endogenous 
catecholamines (see Sect. 3.2.3). Since noradrenal ine applied to the nucleus 
o f  the solitary tract  o f  conscious rats increases b lood pressure (Vlahakos et 
al. 1985), it is intriguing to speculate that  in the conscious cat exogenous cate- 

cholamines would also lead to a pressor response when administered to this 
nucleus. 

There  are conflict ing results concerning the cardiovascular effects o f  dopa-  
mine. Microinject ion o f  this amine into the nucleus o f  the solitary tract o f  
anaesthetized rats was found either to lower (Zandberg et al. 1979) or to in- 
crease b lood  pressure (Granata  and Woodru f f  1982). There is no  plausible ex- 
p lanat ion for this discrepancy. In the cat, experimentally induced decreases 
in b lood pressure reduce the rate o f  dopamine  release in the nucleus o f  the 
solitary tract, indicating that  dopamine  may possess a hypotensive action in 
this area (Kobilansky et al. 1988). 

Locus Coeruleus 

Fluorescence microscopy and immunochemis t ry  have shown that  the 
noradrenergic nerve terminals o f  the hypothalamus originate in cell bodies 
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located in the loci coeruleus and subcoeruleus (see Sect. 3.1.1.3). The course 
of the ascending catecholaminergic pathways has been confirmed by stimula- 
tion experiments. Monolateral electrical stimulation of the locus coeruleus in- 
creases the release of endogenous noradrenaline and adrenaline in the ip- 
silateral posterior hypothalamus. Catecholamine release is also enhanced in 
the contralateral hypothalamus, although to only one-third of the extent 
found in the ipsilateral hypothalamus. Probably, one-third of the ascending 
axons cross over to terminate at the contralateral hypothalamus (Philippu et 
al. 1979a). 

In addition to the release of catecholamines in the hypothalamus, electrical 
stimulation of the locus coeruleus leads to a rise in blood pressure (Przuntek 
and Philippu 1973), which is inhibited by central administration of 6-OHDA 
(Ogawa 1978). The pressor response appears to be due partly to stimulation 
of the hypothalamus by ascending catecholaminergic pathways, because elec- 
trolytic or chemical lesions of the hypothalamus attenuate the rise in blood 
pressure elicited by stimulation of the locus coeruleus (Przuntek and Philip- 
pu 1973; Maruyama 1981). Moreover, the pressor response to stimulation of 
the locus coeruleus is inhibited when a2-adrenoreceptor stimulating agents 
are applied to the hypothalamus (Maruyama 1981). These findings were con- 
firmed by Gurtu et al. (1984), who also observed that, in cats, electrical 
stimulation of the locus subcoeruleus leads to a rise in blood pressure and 
heart rate. Microinjections of guanethidine into the posterior hypothalamus 
abolish the cardiovascular response to stimulation of the locus coeruleus, 
while the response elicited by stimulation of the locus subcoeruleus is not af- 
fected by this drug. The cardiovascular response to electrical stimulation of 
the locus coeruleus seems to be due to activation of the descending hypothala- 
moadrenal pathway, because such stimulation is ineffective in adrenalec- 
tomized animals (Gurtu et al. 1984). In rats, stimulation of the locus 
coeruleus elicits a biphasic pressor response; the first phase is prevented by 
peripheral administration of 6-OHDA but not by adrenalectomy, while the 
second phase is abolished by adrenalectomy, as well as by central or 
peripheral administration of the neurotoxin (Gauthier 1981; Drolet and 
Gauthier t985). 

These findings suggest the involvement of noradrenaline neurons of the 
locus coeruleus in blood pressure regulation (Przuntek and Philippu 1973). Ad- 
ditional evidence for this view is given by the observations that experimentally 
induced blood pressure changes alter the activity of noradrenaline neurons in 
the locus coeruleus; increases in blood pressure depress, while decreases in 
blood pressure enhance the activity of the noradrenaline neurons (Svensson 
and Thor6n 1979; Ward et al. 1980; Elam et al. 1985; Olpe et al. t985). In- 
creases in blood pressure in the carotid sinus also inhibit the activity of the va- 
sopressin neurons of the supraoptic nucleus, an effect which is abolished by in- 
jection of 6-OHDA into the locus coeruleus (Banks and Harris 1984). 
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Fig. 5. Effects of blood pressure changes on the activities 
of noradrenaline-containing and vasopressin-containing 
neurons of the locus coeruleus and the supraoptic 
nucleus, respectively. BP, blood pressure; LC, locus 
coeruleus; SON, supraoptic nucleus; +, increased neuro- 
nal activity; -, decreased neuronal activity; NA, nor- 
adrenaline; VP, vasopressin 
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The activation of  the noradrenergic pathway from the locus coeruleus 

seems to increase blood pressure by stimulating the release of  vasopressin in 
the supraoptic nucleus (see Sect. 8.2) (Fig. 5). These findings are in agreement 
with the observation that the pressor response to stimulation of the locus 
coeruleus is greater in deoxycorticosterone acetate (DOCA)-salt hypertensive 
rats than in normotensive rats. Since the enhanced pressor response is also 
found in prehypertensive DOCA-salt-treated rats, it seems that the locus 
coeruleus is involved in the development, rather than in the maintenance, of  
hypertension (Chida et al. 1983). Moreover, the activity of  the noradrenaline 
neurons is found to be reduced in DOCA-salt hypertensive rats and SHR 
(Olpe et al. 1985). Finally, injection of  the al-adrenoreceptor agonist 
phenylephrine into the locus coeruleus leads to a fall in blood pressure, which 
has been attributed to activation of  somatic and/or dentritic receptors leading 
to feedback inhibition of  the noradrenaline release (Sinha et al. 1984). It 
should be kept in mind that the last-mentioned results were obtained in 
anaesthetized animals; experiments with conscious animals might help to 
clarify the pattern of  the cardiovascular response to catecholamines. 

Results different from those obtained in DOCA-salt hypertensive rats were 
obtained in SHR. The concentrations of  dopamine and its metabolite 
DOPAC (3,4-dihydroxyphenylacetic acid), as well as the rate of  DOPA ac- 
cumulation after DOPA-decarboxylase inhibition, were found to be increased 
in 4-week old SHR, thus indicating an increased activity of  noradrenergic 
neurons of  the locus coeruleus in SHR (Koulu et al. t986a). Indeed, it has 
been shown that the rate of DOPAC formation in the locus coeruleus cor- 
relates well with the noradrenergic activity in this brain region (Buda et al. 
1983; Gonon et al. 1983). These findings were interpreted as indicating an 
enhanced catecholaminergic activity in the locus coeruleus of  SHR during the 
early stage of  hypertension so as to counteract the increasing blood pressure. 
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Since the activity of the noradrenergic neurons has been found to be de- 
creased in experimentally induced hypertension (Svensson and Thor6n 1979; 
Ward et al. 1980; Elam et al. 1984a; Otpe et al. 1985), it cannot be excluded 
that the enhanced catecholaminergic activity observed by Koulu et al. (1986 a) 
mainly reflects activities of dopaminergic or adrenergic cell bodies and nerve 
terminals (see Sects. 3.1.1.2 and 3.1.1.4) of the locus coeruleus. Another possi- 
ble explanation is the involvement of the ascending noradrenergic pathway in 
the genesis of the hypertension rather than in counteracting the rise in blood 
pressure. Nonetheless, the locus coeruleus seems to play a key position in reg- 
ulation of blood pressure and also in experimentally induced hypertension 
(see also Sect. 3.4). This idea is supported by alterations in the dentritic ar- 
chitecture in SHR. In these animals the locus coeruleus possesses increased 
number and length of dendritic branches, as well as an increase in the number 
of secondary branch points (Felten et al. 1984). 

Other changes of the catecholamine metabolism in SHR will be presented 
in Section 3.3. 

3.2.3 Hypothalamus 

Electrical stimulation of the hypothalamus either increases or decreases the 
arterial blood pressure, the pattern of response depending on the area 
stimulated: thus, stimulation of the posterior part of the hypothalamus leads 
to a pressor response (Karplus and Kreidl 1918, 1927), while stimulation of 
the preoptic region lowers blood pressure (Kabat et al. 1935). The sympatho- 
inhibitory depressor hypothalamic area has been precisely characterized by 
Folkow et al. (1959). Stimulation of this area leads to reproducible and cons- 
tant decreases in blood pressure in both rats (Folkow et al. 1959, 1964) and 
cats (Phillippu and Schartner 1976) (Fig. 6). 
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Fig. 6. Effects of voltage and frequency 
on the depressor response to electrical 
stimulation of the anterior hypothalarnic 
area. The cat hypothalamus was 
stimulated for 60 s with 40, 60 or 80 Hz. 
Mean values of  5 - 2 0  experiments +SEM 
(modified from Philippu and Schartner 
1976) 
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Hypothalamic stimulation has been widely used for studying effects of 
drugs on blood pressure changes. Superfusion of the cat hypothalamus 
through the third ventricle with desipramine, which inhibits the neuronal 
reuptake of catecholamines, enhances the pressor response to stimulation of 
the posterior hypothalamus (Przuntek et al. 1971). On the other hand, in- 
tracerebroventricular injection of 6-OHDA leads to pronounced depletion of 
the noradrenaline stores in the hypothalamus and decreases the rise in blood 
pressure elicited by electrical stimulation of the posterior hypothalamus 
(Przuntek et al. 1971; Gupta et al. 1972; Haeusler 1975). The findings indicate 
that the pressor response to electrical stimulation of the posterior hypothala- 
mus might be due to release of catecholamines from the hypothalamic cate- 
cholaminergic nerve terminals (Przuntek et al. 1971). This view has been sup- 
ported by experiments in which the posterior hypothalamus was superfused 
with drugs through a push-pull cannula and electrically stimulated with the 
non-insulated tip of a cannula. It has been shown that hypothalamic superfu- 
sion with a- or fl-adrenoreceptor agonists enhances (Philippu and Kittel 1977; 
Philippu and Stroehl 1978; Philippu et al. 1979b; Philippu 1984), while super- 
fusion with a- or fl-adrenoreceptor antagonists inhibits (Philippu et al. 1973 a, 
1974; Philippu and Kittel 1977; Philippu and Stroehl 1978) the pressor 
response to hypothalamic stimulation (Table 1). Involvement of hypothalamic 
adrenoreceptors in the pressor response is also supported by the observation 
that microinjection of adrenaline or noradrenaline in the posterior hypothala- 
mus increases blood pressure and heart rate (Struyker-Boudier et al. 1974, 
1975; Borkowski and Finch 1978; Zawoiski 1980). 

The question whether as- or az-receptors of the posterior hypothalamus 
are involved in the pressor response cannot be answered with certainty, 
because this response is enhanced by hypothalamic superfusion with 
tramazoline (az-receptor agonist) and phenylephrine (al-receptor agonist). 
Moreover, the pressor response is inhibited by both yohimbine (a2-receptor 
antagonist) and prazosin (arreceptor antagonist) (K. Wiedemann and A. 
Philippu, unpublished observations). On the other hand, fl~-receptors seem 
to be predominantly involved in the pressor response. Although the pressor 
response is inhibited by fl~- and P2-adrenoreceptor blocking agents (Table 1), 
enhancement of the pressor responses by the fl~- and fl2-receptor agonist 
isoprenaline is abolished by the selective flrantagonist atenolol, but it is only 
slightly inhibited by the/~2-receptor antagonist butoxamine. Moreover, the 
fl2-adrenoreceptor stimulating drugs terbutaline and salbutamol are ineffec- 
tive, while the flrreceptor agonist tazolol enhances the pressor response to 
hypothalamic stimulation (Philippu and Stroehl 1978). 

In addition to adrenoreceptors, dopamine receptors also seem to be in- 
volved in the pressor response, because hypothalamic superfusion with dopa- 
mine, apomorphine or bromocriptine greatly enhances the rise in blood 
pressure elicited by hypothalamic stimulation (Philippu 1984). Furthermore, 
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Table 1. Effects of hypothalamic superfusion with drugs affecting a-, fl-adrenoreceptors or do- 
pamine receptors on blood pressure changes elicited by electrical stimulation of the 
hypothalamus, the involved receptors are stated in parentheses 

Hypothalamus 
Posterior Anterior 

Response to electrical stimulation Pressor Depressor 

Agonists 
Noradrenaline (a) I 
Adrenaline (a, ,6) 1 
Isoprenaline (ill, ,82) I Ne 
Orciprenaline till, P2) I 
Tazolol (ill) I 
Terbutaline (f12) Ne 
Salbutamol (f12) Ne 
Dopamine I 
Bromocriptine I 

Antagonists 
Phentolamine (al, az) D D 
Tolazoline (al, az) D D 
Prazosin (a~) D 
Yohimbine (a2) D D 
Piperoxan (a2) D D 
Propranolol (ill, 1/2) D Ne 
Sotalol (ill, f12) D 
Practolol (,81) D 
Metoprolol (ill) D 
Atenolol (ill) D Ne 
Butoxamine (f12) D Ne 

Effects on blood pressure: I,  increase; D, decrease; Ne, no effect (for references see text) 

the enhancing effect of dopamine is inhibited by the dopamine receptor anta- 
gonist haloperidol (Fig. 7). 

The importance of the posterior hypothalamus as a pressor area is 
underlined by the results obtained in SHR where electrical stimulation of the 
posterior hypothalamus leads to a pressor response which is greater than that 
in normotensive rats (Juskevich et al. 1978; Bufiag and Takeda 1979). The in- 
creased pressor response in SHR might be due to changes in the hypothalamic 
adrenoreceptors, because binding studies revealed an increased density of 
al-adrenoreceptors in the hypothalamus of the hypertensive rats (Yamada et 
al. 1985). Moreover, the noradrenaline release from slices of the posterior 
hypothalamus by yohimbine is decreased in SHR, which suggests a dimini- 
shed a2-mediated auto-inhibition of the noradrenergic neurotransmission 
(Kubo et al. 1986a). 

Injection of noradrenaline into the paraventricular nucleus of the hypotha- 
lamus also leads to a pressor response associated with an increased plasma 
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Fig. 7. Effects of dopamine agonists and 
haloperidol on the pressor response to elec- 
trical stimulation of the posterior 
hypothalamus of the cat. DA, dopamine 
(t0 -3 tool/l); BR, bromocriptine 
(10 -5 tool/l); AP, apomorphine 
(10 5 tool/l); HA, haloperidoI (10 -s tool/l). 
The hypothalamus was superfused with 
drugs through a push-pull cannula and elec- 
trically stimulated with the non-insulated 
tip of the cannula. The pressor response in 
control animals (hypothalamic superfusion 
with artificial CSF) was taken as 100%. 
Mean values of 6 experiments +SEM (K. 
Wiedemann and A. Philippu, unpublished 
results) 

161) 

140 

T 

o ~ 120 F 

ol 
DA 

+ 

T 

" t - -  

[ 
AP DA 

level of arginine-vasopressin. The rise in blood pressure is prevented by sys- 
temic administration of the Vl-receptor antagonist TMAV. It seems that nor- 
adrenaline injected into the paraventricular nucleus enhances the release of 
vasopressin which in turn induces the pressor response (Benetos et al. 1986). 

The fall in blood pressure caused by stimulation of the anterior hypothala- 
mic area is strongly dependent on frequency and voltage (Fig. 6). Increases 
in frequency and/or voltage often result in a rise rather than in a fall in blood 
pressure. When appropriate stimulation parameters are used, it is possible to 
obtain reproducible and constant depressor responses. By using this ex- 
perimental set-up it was shown that superfusion of the anterior hypothalamic 
area with a-receptor antagonists through a push-pull cannula leads to a con- 
centration-dependent inhibition of the depressor response (Philippu and 
Schartner 1976), while superfusion with #-agonists or #-antagonists is inef- 
fective (Iijima and Philippu 1980). Thus, in the anterior hypothalamus, in 
contrast to the posterior hypothalamus, a- but not #-receptors seem to be in- 
volved in the blood pressure change elicited by electrical stimulation. 

The following observations underline the specificity of the effects obtained 
by superfusing the hypothalamus with a- or fl-adrenoreceptor agonists and 
antagonists: 

1. Superfusion with agonists or antagonists enhances the response to hypo- 
thalamic stimulation without influencing the "resting" blood pressure, 
thus excluding leakage into the circulation. 



26 A. Philippu 

2. The effects of the agonists are inhibited by superfusion with the corres- 
ponding antagonists and vice versa. Furthermore, the inhibitory effect of 
fl-adrenoreceptor antagonists cannot be attributed to their local 
anaesthetic property, because (a) equianaesthetic concentrations of local 
anaesthetics are ineffective, and (b) the pressor response to hypothalamic 
stimulation is inhibited by (-)-propranolol but not by (+)-propranolol, 
which is equipotent as a local anaesthetic but does not virtually block fl- 
receptors. 

3. The pressor response is also inhibited by fl-adrenoreceptor blocking agents 
deprived of local anaesthetic activity. Finally, fl-adrenoreceptor blocking 
agents inhibit the pressor response to stimulation of the posterior hypotha- 
lamus but they do not influence the depressor response elicited by elec- 
trical stimulation of the anterior hypothalamus (for references see above). 

Clonidine applied to the anterior hypothalamic/preoptic area through a 
push-pull cannula decreases blood pressure and heart rate, as does electrical 
stimulation. The fall in blood pressure is antagonized by yohimbine but not 
by prazosin, indicating the involvement of a2-receptors. In contrast, the de- 
crease in heart rate is inhibited by prazosin but not by yohimbine, suggesting 
involvement of al-receptors in the bradycardic effect of clonidine (Pitts et al. 
1986). Injections of noradrenaline or adrenaline into the anterior 
hypothalamus also lower blood pressure and heart rate (Struyker-Boudier et 
al. 1974; Borkowski and Finch 1978; Zawoiski 1980), thus underlining the 
vasodepressor property of the catecholaminergic systems in this area. 

Taken together, the findings indicate that catecholamine systems in the two 
hypothalamic regions exert opposite effects on the cardiovascular system: 
release of catecholamines in the posterior hypothalamus increases, while 
release in the anterior hypothalamus decreases blood pressure, thus con- 
tributing to the homoeostasis of the arterial blood pressure. If this is indeed 
so, a change in the arterial blood pressure should alter the release of catechol- 
amines in the two hypothalamic areas, so as to counteract the blood pressure 
change. 

To prove the involvement of the hypothalamus in the homoeostasis of 
blood pressure, the posterior and anterior hypothalamic areas have been 
superfused with artificial CSF through push-pull cannulae and the release of 
endogenous catecholamines determined in the superfusates. Several pro- 
cedures may be used to induce blood pressure changes experimentally, such 
as (a) intravenous injection of drugs which either increase or decrease blood 
pressure, (b) controlled bleeding, (c) electrical stimulation of the splanchnic 
nerve, and (d) transection of the spinal cord. Continuous collection of the 
superfusates at short time intervals (90, 60 or even 10 s) made possible the 
close correlation of blood pressure changes with alterations in the rates of 
release of catecholamines in the hypothalamus. 



Regulation of Blood Pressure by Central Neurotransmitters and Neuropeptides 27 

Table 2. Effects of blood pressure changes on the release of catecholamines in the hypothala- 
mus of anaesthetized cats and conscious rabbits 

Change Species Post hypoth. Ant. hypoth. References 
in BP release of release of 

DA NA A DA NA A 

Bleeding Fall Cat I I I Ne Ne Ne [1] 
Nitroprusside Fall Cat I I I Ne Ne Ne [1] 
Nitroprusside Fall Rabbit I 1 I D D D [2, 3] 
Chlorisondamine Fall Cat I 1 I D D D [4] 
Chlorisondamine Fall Rabbit D D D [3] 
Noradrenaline Rise Rabbit Ne Ne Ne I I I [2, 3] 
Tramazoline Rise Rabbit I I I [3] 
Tramazoline Rise Cat D D D I I I [4] 
Splanchnic nerve stimulation Rise Cat Ne Ne Ne I I I [5] 
Spinal transection Rise Cat D D D I I I [4] 
Spinal transection Fall Cat I I I D D D [4] 

Catecholamines were determined in the superfusate. 
Rate of release: I, increase; D, decrease; Ne, no effect; Post. hypoth., posterior hypothalamus; 
Ant. hypoth., anterior hypothalamus; DA, dopamine; NA, noradrenaline; A, adrenaline. 
References: [1] Sinha et al. (1980); [2] Philippu et al. (1981); [3] Robinson et al. (1983); [4] Dietl 
et al. (1981); [5] Philippu et al. (1980) 

In anaesthetized cats, a fall in blood pressure elicited by intravenous injec- 
tion of nitroprusside, or by controlled bleeding, enhances the release of dopa- 
mine, noradrenaline and adrenaline in the posterior hypothalamus (Table 2). 
Transection of the brain caudal to the hypothalamus strongly reduces the 
resting release of catecholamines in this hypothalamic area and abolishes the 
increased catecholamine release due to the fall in blood pressure (Sinha et al. 
1980). A pronounced and sustained hypotension elicited by spinal transection 
at C l /C2 additionally increases the release of the three catecholamines in the 
anterior hypothalamus. A similar effect is elicited by intravenous injection of 
the ganglionic blocking agent chlorisondamine, which also leads to pro- 
nounced and long-lasting hypotension (Dietl et al. 198 i). On the other hand, 
a rise in blood pressure elicited by electrical stimulation of the peripheral 
trunk of the dissected splanchnic nerve increases the release of the catechol- 
amines in the anterior hypothalamic area (Philippu et al. 1980). A pro- 
nounced long-lasting rise in blood pressure caused by tramazoline also 
enhances the release of catecholamines in the anterior hypothalamus and 
decreases the rates of release of the catecholamines in the posterior 
hypothalamus. The pronounced pressor response observed immediately after 
spinal transection affects the release of catecholamines in a similar way (Dietl 
et al. 1981). It is probable that even moderate increases and decreases in blood 
pressure enhance the rates of release of the catecholamines in the anterior and 
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Table 3. Alterations in the release of catecholamines in the hypothalamus as a consequence of 
experimentally induced blood pressure changes 

Blood pressure Release of catecholamines (DA, NA, A) 
in the hypothalamus 

Anterior Posterior 

Moderate fall No effect Increase 
Pronounced fall Decrease Increase 
Moderate rise Increase No effect 
Pronounced rise Increase Decrease 

DA, Dopamine; NA, noradrenaline; A, adrenaline (for references see legend to Table 2) 

posterior hypothalamic areas, respectively. Moreover, a pronounced rise in 
blood pressure additionally reduces the rates of the catecholamine release in 
the posterior hypothalamus, while a pronounced fall in blood pressure also 
decreases the release of the catecholamines in the anterior hypothalamus 
(Table 2). The results are summarized in Table 3. It is interesting to note that 
the beginning and duration of the blood pressure changes coincide with the 
start and duration of the altered catecholamine release. Moreover, chlorison- 
damine and spinal transection elicit relatively long-lasting decreases in blood 
pressure which are associated with long-lasting changes in the rates of cate- 
cholamine release in the two hypothalamic areas. 

Since anaesthetics might interfere with the release of catecholamines in the 
hypothalamus, the experiments have been repeated in conscious, unrestrained 
rabbits (Table 2). Although the pattern of catecholamine release was found 
to be the same as that in anaesthetized cats, alterations in the release of cate- 
cholamines by experimentally induced blood pressure changes were much 
more pronounced in conscious than in anaesthetized animals (Philippu et al. 
1981; Robinson et al. 1983). It seems that pentobarbital anaesthesia reduces 
the responsiveness of  hypothalamic neurons to blood pressure changes. This 
is in agreement with the observation that lower doses of drugs are needed to 
affect blood pressure in anaesthetized than in conscious animals. However, it 
cannot be excluded that species differences are involved here. 

Very recently, the vasopressor effect of noradrenaline in the posterior 
hypothalamus was confirmed by Kubo et al. (1988) who found that the 
hydralazine induced fall in blood pressure increases the MOPEG (3-methoxy- 
4-hydroxyphenylethylene glycol) level in this area. The vasopressor effect of 
adrenaline is in agreement with results obtained by intracerebral dialysis of 
the posterior hypothalamus. Electrical stimulation of the C~ area of the 
rostral ventrolateral medulla elicits a pressor response associated with an in- 
creased release of adrenaline in the posterior hypothalamus, while the release 
rate of noradrenaline is not influenced. It seems that stimulation of  an adren- 
ergic pathway originating from the rostral ventrolateral medulla increases the 



Regulation of Blood Pressure by Central Neurotransmitters and Neuropeptides 29 

adrenaline release in the posterior hypothalamus thus leading to the rise in 
blood pressure (Routledge and Marsden 1988). 

The vasodepressor function of catecholamines in the anterior hypothala- 
mus has also been demonstrated in rats with sinoaortic denervation. The 
arterial blood pressure had returned to normal 4 weeks after denervation but 
the adrenaline turnover was found to be increased in the anterior 
hypothalamus. It appears that the hypertension due to sinoaortic denervation 
activates a compensatory, adrenergic mechanism in the anterior hypothala- 
mus thus contributing to the normalization of blood pressure (Fuxe et al. 
1983 a). However, no adrenaline changes were found in hypothalamic nuclei 
by Saavedra (1979a, b) (see Sect. 3.3). 

Although the results suggest that catecholamines released from their nerve 
terminals in the two hypothalamic areas exert opposite effects on blood 
pressure, it is not clear how this occurs. It has been proposed that noradrena- 
line acts on a-adrenoreceptors thus leading to a rise in blood pressure, while 
adrenaline lowers blood pressure by stimulating separate "adrenaline"recep- 
tors (Bolme et al. 1974). The existence of "adrenaline'receptors has not been 
confirmed (Wilkening et al. 1980). A probable explanation is the location of 
postsynaptic adrenoreceptors at ascending non-catecholaminergic neurons 
which mediate either a rise (posterior hypothalamus) or a fall (anterior 
hypothalamus) in blood pressure. 

3.3 Catecholamines in Experimental and Genetic Hypertension 

Long-term changes in blood pressure are of particular interest in studying 
central cardiovascular mechanisms involved in the homoeostasis of blood 
pressure. For this purpose several models of hypertension have been 
developed. There is no doubt that the introduction of genetically hypertensive 
rat strains together with the genetically similar but normotensive Wistar- 
Kyoto rats (WKY) (Okamoto 1969) greatly contributed to clarifying the cen- 
tral mechanisms involved in cardiovascular control. In the meantime, at least 
six types of hypertensive rat strains have been developed (for review see 
Festing 1984) and used together with other models of experimentally induced 
hypertension (see below). 

Central administration of 6-OHDA to prehypertensive young SHR at- 
tenuates the development of hypertension (Haeusler et al. 1972b). In- 
tracerebroventricular injection of the neurotoxin also prevents the develop- 
ment of DOCA-salt hypertension (Okuno et al. 1983). These effects of 
6-OHDA suggest the involvement of noradrenaline neurons of the brain in 
genetic and experimental hypertension. This idea has been supported by 
changes in catecholamine metabolism. Indeed, since 1970 several changes in 
activities of enzymes involved in the synthesis of catecholamines, as well as 
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in levels and turnover rates of  catecholamines, have been described in brain 
regions and brain nuclei of  animals with various forms of hypertension. It 
should be remembered, however, that these biochemical changes might be sec- 
ondary to alterations in other neurotransmitters or neuropeptides primarily 
related to the hypertension. Moreover, in most cases, biochemical changes 
might be either the reason for the development of hypertension or its conse- 
quence, and this means that diametrically opposite interpretations of the 
findings are possible. Finally, conflicting results have been reported which 
render interpretation particularly difficult. 

The approaches used for the investigation of possible changes in the 
biosynthesis of  catecholamines should be critically evaluated. The mere deter- 
mination of  catecholamine levels is insufficient, because level changes might 
reflect alterations in the rate of synthesis, in the rate of degradation and/or 
in the rate of release. This uncertainty is lessened when the activity of the cor- 
responding synthesizing enzyme is determined. Turnover determinations are 
of  course very useful, but turnover is usually determined by the rate of disap- 
pearance of the amine after inhibition of its biosynthetic enzyme(s). Com- 
pounds used as enzymatic inhibitors of biosynthesis might exert additional 
effects on other neurotransmitters or neuropeptides. Thus, it cannot be ex- 
cluded that these compounds may indirectly influence the level or the disap- 
pearance rate of the amine (Philippu 1984). As already mentioned, deter- 
mination of neurotransmitter levels or turnover rates in the whole hypothala- 
mus or in the whole medulla oblongata might also lead to erroneous conclu- 
sions, because separate structures in these anatomical entities might exert op- 
posite effects on blood pressure regulation. The direct determination of the 
rate of release in distinct brain areas by microdialysis, voltammetry or push- 
pull cannulae (for reviews see Hamberger et al. 1985; Knott et al. 1985; Philip- 
pu 1985) avoids these disadvantages. 

Biosynthetic alterations of catecholamines in hypertension are summarized 
in Tables 4 -  7. The reason for the extreme variability of the results is not quite 
obvious. It might be argued that some of the conflicting findings are due to 
the existence of genetically different SHR and WKY rats at various laborato- 
ries (Festing 1984; Kurtz and Morris Jr. 1987), but conflicting results have 
also been reported concerning biochemical changes in DOCA-salt hyperten- 
sive rats. Pronounced differences in catecholamine levels were found between 
male and female SHR and WKY rats (Howes et al. 1983, 1984). Whatever the 
reason(s) may be, the following general conclusions can be drawn: 

1. Biochemical changes are found in hypothalamic nuclei and in nuclei of  the 
brainstem. 

2. Biochemical changes are not limited to the first weeks of life. 
3. Biochemical changes are also observed in DOCA-salt and renal hyperten- 

sion. Hence, changes in genetically hypertensive rats are not necessarily the 
reason for the development of the hypertension. 
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The attenuation of the development of hypertension in SHR by in- 
tracerebroventricularly applied 6-OHDA has been attributed to the noradren- 
aline depletion in the brain (Haeusler et al. 1972b). Forebrain noradrenergic 
innervation does not seem to play a major role in the development of 
hypertension in SHR, because lesions by 6-OHDA of the ascending 
noradrenergic bundles do not affect the rise in blood pressure (Van den Buuse 
et al. 1984a). Moreover, Van den Buuse et al. (1984b, t986) reported that 
desipramine, which inhibits neuronal noradrenaline uptake does not influence 
the effect of 6-OHDA on the development of hypertension. On the other 
hand, pretreatment with the inhibitor of dopamine uptake GBR-12909 (l(2- 
(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine) (Heikkila 
and Manzino 1984) inhibits the effect of 6-OHDA on blood pressure and do- 
pamine depletion. Moreover, electrolytic lesions of the substantia nigra delay 
the rise in blood pressure in SHR, indicating that dopamine systems of the 
striatum might be involved in the development of hypertension in SHR (Van 
den Buuse et al. 1986). However, injection of dopamine into the caudate 
nucleus does not affect blood pressure, while the drug carbachol either in- 
creases or decreases blood pressure according to the region of the nucleus into 
which it is injected (Pazo and Medina 1983). 

Since the dopamine depletion by 6-OHDA attenuates the development of 
hypertension, and while pretreatment with the inhibitor of dopamine uptake 
GBR-12909 abolishes the effects of the neurotoxin on blood pressure and do- 
pamine depletion, dopamine seems to possess a hypertensive function. In this 
connection, it is noteworthy that superfusion of the posterior hypothalamus 
with dopamine or dopamine receptor agonists greatly enhances the pressor 
response to hypothatamic stimulation (see Sect. 4.2.2). Furthermore, in SHR 
the rate of release of dopamine in the posterior hypothalamus is higher, while 
the release rates of noradrenaline and adrenaline are lower than those in WKY 
rats. These findings have been interpreted as indicating that the increased rate 
of release of dopamine in the hypothalamus is the reason, or one of the 
reasons, for the development of hypertension, while the rates of release of 
noradrenaline and adrenaline are reduced so as to counteract the rise in blood 
pressure (Tuomisto et al. 1983). On the other hand, dopamine released in the 
nucleus of the solitary tract seems to lower blood pressure (see Sect. 3.2.2.2). 

3.4 Possible Mechanisms of Clonidine Action 

The intravenous injection of clonidine (for review of the pharmacological 
properties of clonidine see Kobinger 1978) elicits an initial rise in blood 
pressure that is followed by a sustained hypotension and bradycardia, while 
in anaesthetized animals intracisternal administration immediately lowers 
blood pressure (Kobinger 1967; Kobinger and Walland 1967; Schmitt et al. 
1968; Onesti et al. 1971). Transections of the brain at various levels have 
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shown that the main site of action of clonidine is the medulla oblongata (Satt- 
ler and van Zwieten 1967; Hukuhara et al. 1968; Schmitt and Schmitt 1969). 
Schmitt et al. (1971) and Haeusler (1973) put forward the view that clonidine 
may act by stimulating a noradrenergic link in the nucleus of the solitary 
tract. In the rabbit, clonidine seems indeed to elicit a cardiovascular response 
by acting on the nucleus of the solitary tract, because bilateral destruction of 
the nucleus attenuated the fall in blood pressure elicited by the drug (Lipski 
et al. 1976). However, in anaesthetized dogs and cats (Laubie et al. 1976; An- 
tonaccio and Halley 1977), as well as in conscious rats (Rockhold and 
Caldwell 1979), bilateral electrolytic lesions of the nucleus of the solitary tract 
abolish the bradycardia without influencing the hypotensive effect of 
clonidine. On the other hand, there is good evidence that the main site of the 
hypotensive action of the drug is situated in the lateral reticular nucleus of 
the ventrolateral medulla (see Sect. 3.2.2.i). 

Binding studies and experiments on isolated organs revealed that the affini- 
ty of clonidine for a2-receptors is about ten times higher than for al-recep- 
tors (Starke et al. 1974; U'Prichard et al. 1977; for review see Starke 1981). 
Clonidine decreases the noradrenaline turnover (And6n et al. 1976), and the 
release of noradrenaline from brain slices (Farnebo and Hamberger 1971; 
Starke and Montel 1973). The drug also decelerates the noradrenaline turn- 
over in the locus coeruleus, as well as in the intermediolateral column of the 
spinal cord and the nucleus of the solitary tract, but the noradrenaline turn- 
over in the cell bodies of the A 1 and A2 cell groups is not influenced. This 
shows that the drug focally inhibits the release of noradrenaline through 
presynaptic a2-receptors (Lorez et al. 1983). Hence, the hypotensive effect of 
clonidine may be attributed to an impaired release of endogenous noradrena- 
line via a presynaptic site of action. Indeed, central administration of yohim- 
bine and piperoxan which preferentially block a2-adrenoreceptors (Starke et 
al. 1975 a, b; Drew 1976) inhibits the central hypotensive action of clonidine 
(for review see Philippu 1980). However, depletion of catecholamines by 
pretreatment with reserpine and the tyrosine hydroxylase inhibitor a-me- 
thyl-p-tyrosine does not appreciably affect the cardiovascular effects of 
clonidine. The latter finding suggests that the hypotension elicited by 
clonidine may be due to stimulation of postsynaptic al-adrenoreceptors rath- 
er than to stimulation of prejunctional a2-receptors (Haeusler 1974; Ko- 
binger and Pichler 1975, 1976). This idea is supported by the finding that cen- 
tral injection of the neurotoxin 6-OHDA does not influence the hypotensive 
effect of clonidine (Finch 1975; Warnke and Hoefke 1977; Reynoldson et al. 
1979; Kubo and Misu 1981 a). However, Dollery and Reid (1973) observed 
that pretreatment of anaesthetized rabbits with 6-OHDA virtually abolishes 
the cardiovascular effects of intracisternally applied clonidine. Similar results 
were recently obtained by Head et al. (1983) who reported that the central car- 
diovascular effects of clonidine and a-methyldopa are markedly reduced two 
weeks after treatment with 6-OHDA. 
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The idea that central postsynaptic al-adrenoreceptors are involved in the 
hypotension elicited by clonidine is also supported by the finding that the cen- 
tral hypotensive effect of this drug is diminished by central injection of the 
specific a~-antagonist prazosin (Cavero et al. 1977; Timmermans et al. 1979; 
Hamilton and Longman 1982). However, the use of yohimbine and its 
stereoisomers rauwolscine (a-yohimbine) and corynanthine as a-adrenorecep- 
tor blocking agents led to conflicting results. Of these compounds, yohimbine 
and rauwolscine are specific az-receptor blocking agents, while corynanthine 
preferentially blocks al-adrenoreceptors (Starke et al. 1975b; Weitzell et al. 
1979). In anaesthetized rats, the central hypotensive effect of clonidine is not 
only diminished by the al-receptor blocking drug prazosin, but also by 
yohimbine (Hamilton and Longman 1982). Similar results were obtained in 
conscious, renal hypertensive cats (Beckett and Finch 1982). On the other 
hand, in anaesthetized cats, the order of antagonistic potency to the central 
hypotensive effect of clonidine was found to be rauwolscine>yohim- 
bine > corynanthine, indicating that the action of clonidine is mediated by 
az-receptors (Timmermans et al. 1981). 

Taken together, the findings indicate that the central cardiovascular effects 
of clonidine are mediated by a~- and a2-receptors. The a2-adrenoreceptors 
might be postsynaptically located. However, a presynaptic location of az-re- 
ceptors on catecholaminergic neurons cannot be definitively ruled out (see 
above). Finally, the possibility exists that prejunctional az-receptors are also 
located on non-catecholaminergic neurons. Stimulation by clonidine of these 
a2-receptors could inhibit the release of a still unknown neurotransmitter, 
thus lowering arterial blood pressure. 

In SHR clonidine lowers blood pressure and decreases DBH and PNMT ac- 
tivity in the A 1/C 1 cell groups of the ventrolateral medulla. Withdrawal of 
the clonidine treatment increases blood pressure and heart rate and nor- 
malizes the PNMT activity, while DBH activity remains reduced (Atkinson 
et al. 1986). These results, together with the finding that chronic clonidine 
treatment reduced the adrenaline level in the hindbrain, may indicate that the 
hypotensive action of cionidine is due to a decreased synthesis of adrenaline 
in the C t region. 

Some of the difficulties concerning the type(s) of adrenoreceptors which 
mediate the central cardiovascular effects of clonidine would be eliminated if 
clonidine would bind to a site separate from adrenoreceptors. It is indeed sur- 
prising that very high doses of noradrenaline have to be injected into the 
rostral ventrolateral medulla in order to obtain a depressor response, although 
the amine possesses high affinities for both a~- and a2-receptors (see Sect. 
3.2.2.1). Particularly astonishing is the observation that the az-adrenorecep- 
tor agonist a-methylnoradrenaline is almost ineffective when injected into this 
region. On the other hand, injections of the potent a~-agonists cirazoline or 
ST 587 (2-(2-chloro-5-trifluoromethylphenylamino)-imidazoline) elicit a fall 
in blood pressure. These compounds are, like clonidine, imidazolines. These 
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observations led to the view that clonidine and clonidine-like substances 
might act on "imidazoline-preferring" sites within the lateral reticular nucleus 
of the rostral ventrolateral medulla (Bousquet et al. 1984a). On the other 
hand, a "clonidine displacing substance" (CDS) has been isolated from calf 
brain. CDS binds specifically to a2-receptors but neither to at- nor to fl-re- 
ceptors (Atlas and Burstein 1984a, b). More recently, CDS was isolated from 
the rat medulla. It was found that CDS displaces [3Hlpara-aminoclonidine 
(Meeley et al. 1986) which binds to the same membrane sites as [3H]cloni- 
dine, but with a greater specific/nonspecific ratio than clonidine (Rouot and 
Snyder 1979). Clonidine, phentolamine and CDS appear to bind preferential- 
ly to a subpopulation of membrane receptors isolated from the ventrolateral 
medulla. The receptors do not seem to be adrenoreceptors or histamine recep- 
tors. The binding sites may be "imidazoline-preferring", because clonidine 
and phentolamine bind to them with high affinities (Meeley et al. 1986; Ern- 
sberger et al. 1987). The chemical structure of the endogenous ligand CDS 
is still unknown. 

Contrasting results already exist concerning the central cardiovascular ef- 
fects of the compound. According to Meeley et al. (1986), microinjections of 
CDS into the lateral reticular nucleus lead to a fall in blood pressure, while 
a pressor response was observed by Bousquet et al. (1986). Although different 
effects of CDS on blood pressure have been reported, the existence of an "im- 
idazoline-preferring" binding site may throw new light on the mechanisms in- 
volved in the central cardiovascular effects of clonidine and other drugs. 

Nevertheless, it should be kept in mind that the following non-catechol- 
aminergic transmitters of the brain also seem to be implicated in the central 
cardiovascular effects of clonidine: 

1. Histamine. In rats, infusion of the Hz-receptor antagonist metiamide into 
the lateral ventricle attenuates the hypotensive effect of intravenously ad- 
ministered clonidine (Karppanen et al. 1976; Finch et al. 1978). Similarly, 
cimetidine, which also blocks Hz-receptors, diminishes the antihyperten- 
sive effect of clonidine in SHR (Frisk-Holmberg 1980). 

2. Acetyleholine. Clonidine inhibits the physostigmine-induced increase in 
blood pressure and diminishes the acetylcholine turnover in the hypothala- 
mus, the pons-medulla and the midbrain. The findings also indicate that 
the a-adrenoreceptors which mediate the hypotensive effect of clonidine 
are located on hypothalamic and/or medullary cholinergic neurons (Buc- 
cafusco et al. 1980). 

3. Vasopressin. Plasma vasopressin is increased in rats rendered hypertensive 
by bilateral electrolytic lesions of the nucleus of the solitary tract. 
Clonidine inhibits both hypertension and high vasopressin levels. The drug 
also antagonizes the fall in blood pressure evoked by a vasopressin an- 
tagonist. It seems likely that the antihypertensive effect of clonidine is 
partly due to inhibition of the vasopressin release (Sved 1985). 
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4. Serotonin. In rabbits pretreated with the neurotoxins 6-OHDA or 
5,6-dihydroxytryptamine (5,6-DHT) to destroy catecholaminergic or sero- 
toninergic nerve terminals, respectively, the clonidine-induced fall in blood 
pressure and bradycardia are attenuated. Catecholaminergic and 
serotoninergic pathways seem to be involved in the central cardiovascular 
effects of clonidine (Head et al. 1983). 

5. Opioids. In SHR, the cardiovascular effects of intravenously or centrally 
injected clonidine or a-methyldopa are inhibited or even reversed by 
peripheral or central injections of naloxone (Farsang and Kunos 1979; Far- 
sang et al. 1980), fl-endorphin antiserum (Ramirez-Gonzales et al. 1983), 
dynorphin antiserum (Xie et al. 1986) or naltrexone (Mosqueda-Garcia et 
al. 1986). Similar results have been obtained in normotensive rats, in which 
naloxone inhibits the fall in blood pressure elicited by low, but not high 
clonidine doses (Eriksson and Tuomisto I983). Naloxone also attenuates 
the fall in blood pressure elicited by clonidine microinjection into the 
nucleus of the solitary tract of SHR (Mosqueda-Garcia et al. 1986) and an- 
tagonizes the effect of clonidine in hypertensive patients (Farsang et al. 
t982). Most interestingly, the perfusion of the spinal subarachnoid space 
with clonidine enhances the release of immunoreactive dynorphin in the 
perfusate. Since intrathecal administration of dynorphin lowers blood 
pressure and heart rate, the release of dynorphin in the spinal cord may 
contribute to the depressor effects of clonidine (Xie et al. 1986). 

These findings were not confirmed, however, by other authors; in anaes- 
thetized cats, naloxone did not influence the clonidine-induced changes in 
blood pressure and heart rate (Shropshire and Wendt 1983; Head and de Jong 
1984). Naloxone also failed to affect the clonidine-induced cardiovascular 
changes in normotensive rats (Conway et al. 1984; Mosqueda-Garcia et al. 
1986) and SHR (Conway et al. 1984), in normotensive volunteers (Watkins et 
al. 1980) and in hypertensive patients (Rogers and Cubeddu t 983). The reason 
for the conflicting results is not clear. 

In this connection it is of interest to mention that the fall in blood pressure 
elicited by injections of a-methytnoradrenaline into the nucleus of the solitary 
tract (De Jong and Nijkamp 1976) is prevented by the local injection of phen- 
tolamine or naloxone, which blocks opioid receptors. Phentolamine also 
diminishes the fall in blood pressure caused by microinjection of fl-endorphin 
into the nucleus of the solitary tract. It seems that in the nucleus of the 
solitary tract, the a-methylnoradrenaline-induced fall in blood pressure in- 
volves fl-endorphin or a fl-endorphin-like peptide (Petty and De Jong 1984). 

The central cardiovascular effects of clonidine also depend on anaesthesia. 
In conscious rats, the intracerebroventricular injection of clonidine increases 
blood pressure (Kawasaki and Takasaki 1986; Imai et al. 1983). This pressor 
response to clonidine has been attributed to stimulation of suprabulbar cen- 
tres (Trolin 1975; Kawasaki and Takasaki 1986). Indeed, superfusion of the 
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posterior hypothalamus with clonidine affects the pressor response to elec- 
trical stimulation of the superfused area in a dual way; the pressor response 
is inhibited by high concentrations of clonidine, while hypothalamic superfu- 
sion with low clonidine concentrations enhances it. The attenuation of the 
stimulation-induced rise in blood pressure has been attributed to a decreased 
release of noradrenaline via stimulation of presynaptic a-adrenoreceptors, 
and the enhancement of the pressor response by low clonidine concentrations 
to stimulation of postsynaptic a-receptors (Philippou et al. 1974). The in- 
volvement of suprabulbar receptors in the pressor response to centrally ad- 
ministered clonidine is also supported by the finding that transection of the 
brain caudal to the hypothalamus abolishes the initial rise in blood pressure 
observed on intravenous injection of the drug (Trolin 1975; Henning et al. 
1976). However, it was recently reported that in conscious rats microinjection 
of clonidine into the nucleus of the solitary tract also increases blood pressure 
and decreases heart rate. Only the lowest dose of clonidine used (20 nmol) led 
to a subsequent fall in blood pressure (Vlahakos et al. 1985). As mentioned 
in Sect. 3.2.2.2, noradrenaline applied to the nucleus of the solitary tract of 
conscious rats also leads to a pressor response. The results demonstrate that 
in conscious rats stimulation of a-receptors of bulbar and suprabulbar centres 
increases blood pressure. Since in anaesthetized animals injections of 
adrenoreceptor agonists into the posterior hypothalamus also increase blood 
pressure (see Sect. 3.2.3), anaesthesia seems to reverse the response of bulbar 
receptors to clonidine and other a-mimetics, without influencing the pattern 
of response of hypothalamic a-adrenoreceptors. 

4 Serotonin 

4.1 Mapping of Serotonin-Containing Neurons 

The serotonin-containing B 1 - B 9  cell groups are located in various nuclei of 
the raphe region (Dahlstr6m and Fuxe 1964). Ascending fibres from the 
mesencephalic and rostral pontine raphe nuclei lie within or outside the 
medial forebrain bundle innervating the suprachiasmatic nucleus and the 
hypothalamus, as well as the limbic and cortical areas (Dahlstr6m and Fuxe 
1964; Palkovits et al. 1977; Azmitia and SegaI 1978; Moore et al. 1978; Stein- 
busch 1981). Serotoninergic neurons which descend to the intermediolateral 
cell column of the spinal cord are located in the B 1-B3 cell groups 
(DahlstrOm and Fuxe 1964; Basbaum et al. 1978; Loewy and McKellar 1981; 
Steinbusch 1981). 

Small cell bodies which contain serotonin are present in the area postrema 
of the rat (DahlstrOm and Fuxe 1964; Newton et al. 1983) and the hamster 
(Yoshida et al. 1982). In the cat, cell bodies immunoreactive for serotonin 
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were found in the nucleus of the solitary tract (Maley and Elde 1982), but not 
in the area postrema (Newton et al. 1983). Cell bodies and nerve terminals are 
also present in the external layer of the ventral medulla oblongata (Smialows- 
ka et al. 1985). 

The locus coeruleus contains serotonin cell bodies (Sladek and Walker 
1977; L6ger et al. 1979; Steinbusch 1981), as well as serotonin nerve terminals 
originating from the cell bodies of  the raphe nuclei (Conrad et al. 1974; 
Bobillier et al. 1976). It is of interest to note that the dorsal raphe nucleus 
(B7) also contains noradrenergic nerve terminals arising from the locus 
coeruleus (Fuxe 1965; Loizou 1969; Sakai et al. 1977 a, b). 

4.2 Cardiovascular Effects of  Serotonin and Related Drugs 

4.2.1 Cerebroventricular System 

It has been repeatedly shown in cats and dogs that intracerebroventricular ad- 
ministration of serotonin or its precursor 5-hydroxytryptophan (5-HTP) 
lowers blood pressure and heart rate (Bogdanski et al. 1958; McCubbin et al. 
1960; Dunkley et al. t972). The cardiovascular effects of  serotonin seem to 
be mediated by 5-HT2-receptors, because the fall in blood pressure and 
bradycardia are abolished by ketanserin and ritanserin which preferentially 
block 5-HT2-receptors, while antagonists of  5-HT~-receptors are ineffective 
(Shvaloff and Laguzzi 1986). 

Coote et al. (1985) reported that in the anaesthetized cat injections of low 
serotonin doses into the lateral ventricle increase blood pressure, while high 
doses lead to a depressor response. The fall in blood pressure does not occur 
when access of the drug to the fourth ventricle is prevented, thus indicating 
that in the cat the depressor response to serotonin is due to its action on sites 
of  the brainstem. Indeed, serotonin applied to the nucleus of the solitary tract 
decreases blood pressure and heart rate (Coote et al. 1985; Shvaloff and 
Laguzzi 1986). On the other hand, the pressor response to serotonin might be 
due to its action on the hypothalamus since in the anaesthetized rat it has 
been shown that injection of serotonin into the anterior hypothalamus/preop- 
tic area leads to a pressor response (Smits and Struyker-Boudier 1976; Robin- 
son 1982; Sukamoto et al. 1984), while the neurotoxin 5,7-DHT lowers blood 
pressure (Benarroch et al. 1983). At least one part of the serotonin nerve ter- 
minals of  the anterior hypothalamus/preoptic area seem to originate from 
cell bodies located in the dorsal raphe nucleus, because the pressor response 
to electrical stimulation of the latter nucleus is attenuated by the serotonin 
antagonist metergoline injected into the anterior hypothalamus/preoptic area 
(Robinson 1984). Moreover, it seems that a cholinergic link in the posterior 
hypothalamus is needed for the rise in blood pressure elicited by serotonin ad- 
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ministered to the anterior hypothalamus, since microinjections of atropine or 
hemicholinium-3 into the posterior hypothalamus of the rat inhibit the 
pressor response to serotonin injected into the anterior hypothalamus (Robin- 
son 1982). 

Parachlorophenylalanine (PCPA) inhibits the serotonin-synthesizing en- 
zyme tryptophan hydroxylase and depletes the stores of serotoninergic 
neurons. In the rat, peripheral or central administration of PCPA increases 
blood pressure (Ito and Schanberg 1972; De Jong et al. 1975), while intracere- 
broventricular injection of the serotonin precursor 5-HTP leads to a fall in 
blood pressure (Krsti6 and Djurkovi6 1980). These findings seem to suggest 
that, in the rat, serotonin lowers blood pressure. However, intracerebroven- 
tricular administration of serotonin itself in conscious or anaesthetized rats 
elicits a pressor response (Lambert et al. 1976; Krsti6 and Djurkovi6 1976; 
Sukamoto et al. 1984). Very recently, Dalton (1986) also reported that in con- 
scious normotensive or hypertensive rats the intracerebroventricular injection 
of serotonin increases blood pressure and decreases heart rate. However, when 
high doses of 5-HTP or serotonin are intraventricularly injected in rats, mark- 
ed and prolonged depressor effects are observed (Krsti6 and Djurkovi6 1981; 
Dalton 1986). As in cats and dogs, it is possible that high doses of these com- 
pounds, when injected intraventricularly, reach the brainstem, thus lowering 
blood pressure. It is not clear, however, whether the brainstem structure 
responsible for the hypotensive action of serotonin is the nucleus of the 
solitary tract, because it was found that serotonin applied to this structure 
either decreases blood pressure and heart rate (Laguzzi et al. 1984), or in- 
creases (Wolf et al. 1981) blood pressure. 

4.2.2 Raphe Nuclei 

Electrical stimulation of several serotonin raphe cell groups also leads to a 
pressor response which is attenuated by central administration of PCPA or 
5,7-DHT (Smits et al. 1978; Kuhn et al. 1980; Howe et al. 1983a, Robinson 
et al. 1985). Similarly, serotonin microinjected into the dorsal raphe nucleus 
increases blood pressure and heart rate. The cardiovascular effects are blocked 
by the serotonin antagonist methysergide (Saxena et al. 1985). These findings 
suggest the involvement of serotoninergic neurons in the pressor response to 
electrical stimulation. Moreover, the results confirm the existence of a 
bulbospinal serotoninergic pressor pathway (Ross et al. 1981 b; Loewy and 
McKellar 1981). The existence of this pathway has been directly demonstrated 
by in vivo dialysis of the spinal cord; in the rat, chemical stimulation of the 
cell group B 3 enhances the release of serotonin in the thoracic spinal cord and 
increases blood pressure (Pilowsky et al. 1986a). 

The role of serotonin as a neurotransmitter in the dorsal raphe nucleus has 
been directly demonstrated by Echizen and Freed (1984) who studied the 
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release of the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA). 
They found that experimentally induced increases in blood pressure are asso- 
ciated with an increase in the release of 5-HIAA, while decreases in blood 
pressure do not affect the release of  the metabolite. Since the increased release 
of  5-HIAA apparently reflects increased activity of serotoninergic neurons so 
as to counteract the experimentally induced rise in blood pressure, a depressor 
function has been ascribed to the dorsal raphe nucleus. This idea is in contrast 
to the pressor response to injection of serotonin into this nucleus or to its elec- 
trical stimulation. Nevertheless, sinoaortic denervation abolishes the effect of  
the pressor response on the release of the serotonin metabolite, suggesting 
that serotonin neurons of the dorsal raphe nucleus are responding to in- 
creased blood pressure in baroreceptor areas (Echizen and Freed 1984; Freed 
et al. 1985). 

4.3 Serotonin in Drug-Induced Hypotension, and in Experimental and 
Genetic Hypertension 

The hypotensive response to intraperitoneally injected a-methyldopa is at- 
tenuated by the intracerebroventricular administration of  5,7-DHT. The 
neurotoxin also inhibits the fall in blood pressure elicited by a-methyldopa in- 
jected into the cell group B3, suggesting that central serotoninergic neurons 
might contribute to the hypotensive action of this antihypertensive drug 
(Choy and Chalmers 1984; Minson et al. 1984; Macrae et al. 1986). 

Several findings support the idea that central serotoninergic neurons are 
also involved in hypertension. Intracerebroventricularly injected 5,7-DHT 
retards the development of hypertension in 6-week-old SHR (Buckingham et 
al. 1976), but injection of the neurotoxin into the nucleus of  the solitary tract 
enhances their hypertension (Howe et al. 1983 b). Furthermore, the accumula- 
tion of  5-HTP has been found to be increased in the whole hypothalamus 
(Smith et al. 1979) and in the periventricular and paraventricular hypothala- 
mic nuclei (Koulu et al. 1986 b), indicating an increased synthesis rate of sero- 
tonin in the hypothalamus of  SHR. The serotonin levels were also found to 
be increased in hypothalamic nuclei of  young SHR. Increases in the 5-HTP 
accumulation have also been reported in caudally located raphe nuclei, the 
cell groups A 1 - C  1, the nucleus of the solitary tract and the locus coeruleus 
(Koulu et al. 1986b, c). 

Interesting differences have also been observed in hypertensive animals 
when serotonin was administered intracerebroventricularly. In conscious 
DOCA-salt hypertensive rats and SHR the pressor and bradycardic responses 
to serotonin are much more pronounced than in normotensive animals (Kuru- 
matani et al. 1982; Dalton 1986). 
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Taken together, these results suggest the involvement of serotonin neurons 
in a-methyldopa-induced hypotension, as well as in genetic and experimental- 
ly induced hypertension. 

5 Histamine 

5.1 Mapping of Histamine-Containing Neurons 

The development of antisera against histamine (Wilcox and Seybold 1982) or 
histamine decarboxylase (Watanabe et al. 1983) made possible the identifica- 
tion of histamine cell bodies and fibres in various brain structures. In the rat, 
cell bodies were found in the lateral hypothalamus (Wilcox and Seybold 1982; 
Watanabe et al. 1983, 1984) and in various nuclei (posterior nucleus and the 
magnocellular nucleus) of the posterior hypothalamus (Watanabe et al. 1984), 
the median eminence (Wilcox and Seybold 1982), the arcuate nucleus, the 
raphe nuclei, the locus coeruleus (Watanabe et al. 1983, 1984) and the cerebral 
cortex (Wilcox and Seybold 1982; Watanabe et al. 1983, 1984). Hisntitamine- 
containing fibres have been identified in the hypothalamus, the cerebral cor- 
tex, the medial area of the amygdaloid complex and the mamillary nuclei 
(Wilcox and Seybold 1982; Watanabe 1984). It is of interest to note that the 
dorsal raphe nucleus and the nucleus of the solitary tract also contain 
histamine fibres, but no cell bodies were identified in the latter nucleus. 
Therefore, histamine-containing cell bodies are found exclusively in the 
hypothalamus and project to various brain structures (Watanabe et al. 1984; 
Steinbusch et al. 1986). A very similar distribution of histaminergic neurons 
has been found previously by lesion studies (for review see Schwartz et al. 
1987). Recently, a descending pathway to the spinal cord has been described 
(Wahlestedt et al. 1985). 

In the cat, cell bodies have been found in the posterior hypothalamus and 
in the supra-, peri- and premamillary regions. Histamine immunoreactive 
fibres have been detected in the posterior and anterior hypothalamus, as well 
as in the cortex and the amygdaloid complex (Lin et al. 1986). 

5.2 Cardiovascular Effects of Centrally Administered Histamine 

In anaesthetized cats, the intracerebroventricular injection of histamine elicits 
a pronounced rise in blood pressure and heart rate (Trendelenburg 1957; 
White 1961; Sinha et al. 1969). The histamine-induced cardiovascular effects 
have been attributed to stimulation of central sympathetic centres which in- 
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creases the outflow of sympathetic impulses to the cardiovascular system 
(Trendelenburg 1957; White 1961). Similar results were obtained in 
anaesthetized rats when histamine was centrally injected (Brezenoff and 
Jenden 1969; Finch and Hicks 1976a, b). 

Although the central administration of histamine increases blood pressure 
in all anaesthetized and conscious animal species studied, the effect of the 
amine on heart rate depends on anaesthesia and animal species. In conscious 
rats, the central administration of histamine lowers heart rate (Hoffman and 
Schmid 1978; Klein and Gertner 1981). In conscious cats, histamine does not 
influence heart rate (Finch and Hicks 1976b), but, in contrast, the pressor 
response is accompanied by variable effects on heart rate in the conscious 
goat (Tuomisto and Eriksson 1980). In conscious rats, inhibition by SKF 
91488 (S[4-N(N, N-dimethylamino)-butyl]isothiourea) of histamine-N-me- 
thyltransferase also increases blood pressure and lowers heart rate (Klein and 
Gertner 1981). These results, together with the existence of histaminergic 
neurons in the brain (see Sect. 5.1), support the view that histaminergic 
pathways of the CNS may be involved in blood pressure regulation. 

The question arises as to which histamine receptors of the brain mediate 
the central cardiovascular effects of histamine. In anaesthetized rats, the 
pressor response and tachycardia following central administration of 
histamine are antagonized by intracerebroventricular pretreatment with the 
specific Hi-receptor blockers mepyramine and diphenylpyraline, while the 
H2-antagonist metiamide is ineffective. In conscious cats, the pressor 
response to histamine is also inhibited by mepyramine but not by metiamide. 
These results were interpreted as indicating that central Hrreceptors mediate 
the cardiovascular effects of histamine (Finch and Hicks 1976a, b). However, 
different results were obtained when the effects of HI- and H2-agonists and 
antagonists were more carefully investigated. Such investigations revealed that 
the selective H2-receptor agonists dimaprit and 4-methylhistamine, as well as 
the selective Hi-receptor agonist 2-methylhistamine, increased blood pressure 
and heart rate. The cardiovascular effects of the H2-agonists were antagon- 
ized by the H2-antagonist metiamide, but not by the Hrantagonist 
mepyramine. Mepyramine inhibited the effects of the Hl-agonist without in- 
fluencing those of the H2-agonists. Hence, H~- and H2-receptors of the brain 
seem to be involved in the central cardiovascular effects of histamine (Hicks 
t978). 

In anaesthetized rats, the pressor response to histamine, but not its tachy- 
cardic effect, is antagonized by the intracerebroventricular injection of the a- 
adrenoreceptor blocking agent phentolamine, and also by 6-OHDA. The 8- 
adrenoreceptor blocking drug propranolol is ineffective. On the other hand, 
the tachycardic response to histamine is abolished by atropine. Thus, (nor)ad- 
renergic and cholinergic systems of the brain seem to be involved in the central 
cardiovascular effects of histamine (Finch and Hicks 1976a). 
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The central administration of histamine not only increases blood pressure; 
when the posterior hypothalamus is superfused with histamine through a 
push-pull cannula, the amine also greatly enhances the pressor response to 
electrical stimulation of the posterior hypothalamus. Hypothalamic superfu- 
sion with the H2-agonist dimaprit also enhances the pressor response, while 
the Hl-agonist 2-methylhistamine is ineffective. Hence, H 2- rather than 
Hi-receptors of the hypothalamus seem to be involved in the enhancement 
of the pressor response to histamine. This effect of histamine is abolished by 
hypothalamic superfusion with a-adrenoreceptor blocking drugs. The effect 
of histamine is also inhibited by propranolol concentrations which elicit a 
specific blockade of fl-receptors (Philippu and Wiedemann 1981). The inhibi- 
tion of the histamine-induced increase in the pressor response by a- and p- 
adrenoreceptor blocking agents demonstrates the involvement of catechol- 
aminergic systems of the hypothalamus. This view is supported by the obser- 
vation that hypothalamic superfusion with histamine agonists enhances the 
release of endogenous catecholamines by acting on histamine receptors 
localized on catecholaminergic neurons of the hypothalamus. Experiments 
with various histamine agonists and antagonists have revealed that dopami- 
nergic neurons of the hypothalamus probably possess only Hi-receptors, 
while noradrenergic and adrenergic nerve terminals possess H1- and H2-re- 
ceptors (Philippu et al. 1984). 

The H2-antagonists metiamide and cimetidine applied centrally also in- 
crease blood pressure (Finch and Hicks 1976b; Karppanen et al. 1977; 
Dadkar et al. 1984) and enhance the pressor response to hypothalamic 
stimulation (Philippu and Wiedemann 1981). The effects of the antagonists 
seem to be mediated by catecholaminergic systems, because the pressor 
response to metiamide is inhibited by a-adrenoreceptor blocking agents and 
6-OHDA (Dadkar et al. 1984). Moreover, it has been shown that metiamide 
increases the release of endogenous catecholamines in the hypothalamus by 
a calcium-dependent process (Philippu et al. 1984). It is not certain whether 
the effects of the antagonist are due to a specific blockade of H2-receptors, 
because the H2-antagonist ranitidine does not influence the release rates of 
catecholamines in the hypothalamus (Philippu et al. 1984). 

Other transmitters also seem to be involved in the cardiovascular effects of 
histamine. Histamine is a potent releaser of vasopressin (Blackmore and 
Cherry 1955; Bhargava et al. 1973; Dogterom et al. 1976; Tuomisto et al. 
i980) and pretreatment of rats with the specific vasopressin antagonist [1-(fl- 
mercapto-fl,/~-cyclopentamethylenepropionic acid), 2-(O-methyl)tyrosine] 
arginine-vasopressin reduces the pressor response to centrally administered 
histamine. Hence, the rise in blood pressure elicited by histamine seems to be 
due partly to release of vasopressin (Gatti and Gertner 1983). 

Further evidence for the involvement of the histaminergic neurons of the 
brain in blood pressure regulation was provided by the observation that ex- 
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perimentally induced blood pressure changes influence the rate of release of 
endogenous histamine in the cat hypothalamus (Philippu et al. 1983). In con- 
trast to catecholamines (see Sect. 3.2.3), both increases and decreases in 
arterial blood pressure enhance the rate of release of endogenous histamine 
in the posterior hypothalamus. Another difference in the patterns of response 
between catecholaminergic and histaminergic neurons concerns the duration 
of the changes in the release rates. A short-lasting increase in blood pressure 
elicited by the intravenous injection of noradrenaline or the pressor response 
immediately after transection of the spinal cord at C t /C2 lead to an en- 
hanced release of histamine which coincides in time with the blood pressure 
change. Similarly, short-lasting decreases in blood pressure by nitroprusside 
or by controlled bleeding enhance the release of histamine for approximately 
the same time period. On the other hand, a long-lasting pressor response to 
the intravenous injection of tramazoline or long-lasting decreases in blood 
pressure (by the intravenous injection of chlorisondamine or permanent 
hypotension after transection of the spinal cord) elicit a rise in the rate of 
histamine release which is shorter than these blood pressure changes. It seems 
likely that the short-lasting elevation of the release of histamine represents a 
first signal for activating or inhibiting the release of other neurotransmitter(s) 
and/or hormone(s), thus initiating counteracting mechanisms (Philippu et al. 
1983). 

5.3 Histamine in Genetic Hypertension 

Since the central administration of histamine increases blood pressure, the 
possible involvement of the amine in the development of genetic hypertension 
has been investigated. 

Chalmers et al. (1979a) found no significant differences in the histamine 
levels of various brain areas between SHR and normotensive WKY rats. On 
the other hand, the histamine concentration was found to be greatly increased 
in the median eminence of 4-week-old SHR. In 12-week-old SHR, the 
histamine levels were also elevated in hypothalamic nuclei such as the 
suprachiasmatic nucleus, the arcuate nucleus, and the ventral premamillary 
nucleus, while the histamine concentration in brainstem areas was not 
changed (Corr~a and Saavedra 1981). These findings were largely confirmed 
by Oishi et al. (i 985) who reported increased histamine levels in the telenceph- 
alon, hypothalamus and brainstem of SHR. A detailed determination in 
various nuclei was not attempted by these authors, but the turnover of 
histamine was estimated by determining the accumulation of tele-methyl- 
histamine after inhibition of monoamine oxidase (MAO) with pargyline, as 
proposed by Hough et al. (1982, 1984). Surprisingly, the histamine turnover 
was found to be decreased in those areas in which histamine levels were 
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elevated (Oishi et al. 1985). Tele-methylhistamine levels were also found to be 
reduced in the brainstem and the hypothalamus of 5-week-old SHR, in- 
dicating that the methylation rate of histamine may be decreased. The de- 
creased tele-methylhistamine concentrations may be due also to the increased 
MAO activity observed in brain areas of SHR (Yasuhara et al. 1983). Since 
catabolism and biosynthesis rates of catecholamines are disturbed in SHR 
(see also Sect. 3.3), it would be of  interest to determine the histamine turnover 
by another method. On the other hand, in SHR the rate of histamine release 
was found to be increased in superfusates of  the posterior hypothalamus 
(Tuomisto et al. 1983). The causal relationship of the above-mentioned fin- 
dings with the development and/or  maintenance of hypertension is far from 
established. 

6 GABA and Other Neuroinhibitory and Neuroexcitatory Amino Acids 

6.1 Mapping of Amino Acid-Containing Neurons 

GABA and its synthesizing enzyme glutamic acid decarboxylase (GAD) are 
present in all brain areas. High GAD activity is found in the hypothalamus, 
the amygdaloid nuclei and the limbic system (olfactory tubercle, hippocam- 
pus, singulate cortex, dentate gyrus) (Fonnum et al. 1974, 1977; Tappaz et al. 
! 976). In the hippocampus, GABA immunoreactivity is present in cell bodies, 
dendrites and nerve terminals (Gamrani et al. 1986). In the hypothalamus, 
GAD-activity is present in short interneurons which seem to connect the 
lateral and posterior hypothalamus, as well as medial-basal hypothalamic 
nuclei (Tappaz and Brownstein 1977). 

Recently, GABA neurons have been identified in the ventrolateral medulla. 
Rostrally, the GABA neurons coincide with and extend beyond the adrenaline 
C 1 cell group. Dual labelling for GAD and PNMT revealed that GABAergic 
terminals form synapses with PNMT-containing cell bodies and dendrites. 
Caudally, the GABAergic neurons partially overlap the noradrenaline A 1 cell 
group. Furthermore, GABA-containing cells are present in the parvocellular 
reticular nucleus and the raphe region (Ruggiero et al. 1985; Meeley et al. 
1985; Milner et al. 1987). GABA neurons have also been identified in the 
nucleus of the solitary tract (Hwang and Wu 1984; Maley and Newton 1985; 
Meeley et al. 1985). However, the inhibitory neurotransmitter of  the afferent 
projection from the nucleus of  the solitary tract to the rostral ventrolateral 
medulla does not seem to be GABA, because lesions of the nucleus of the 
solitary tract do not alter GABA or GAD activity in the rostral ventrolateral 
medulla (Meeley et al. 1985). 
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6.2 Cardiovascular Effects of Amino Acids and Related Drugs 

6.2.1 Cerebroventricular System 

In dogs (Elliot and Hobbiger 1959; Bhargava et al. 1964), cats (Philippu et 
al. 1973b; Antonaccio and Taylor 1977; Williford et al. 1980) and rats 
(Persson and Henning 1980; Yang and Lin 1983), the intracerebroventricular 
injection of the inhibitory amino acid GABA leads to a decrease in blood 
pressure and heart rate. Injection of GABA into the third ventricle also in- 
hibits the pressor response to electrical stimulation of the posterior 
hypothalamus (Philippu et al. 1973b). The cardiovascular effects of GABA 
and the GABA agonist muscimol are inhibited by bicuculline (Persson 1980), 
an antagonist of GABA receptors (Curtis et al. 1970, 1971). More recently, 
it was shown that bicuculline is a specific antagonist of GABAA-receptors 
(Bowery et al. 1980; Hill and Bowery 1981). 

Bucuculline inhibits not only the cardiovascular effects of GABA because, 
when given alone, it leads to a rise in blood pressure and enhances the 
splanchnic and renal sympathetic nerve discharges, thus showing that the rise 
in blood pressure is due to increased sympathetic activity (Antonaccio et al. 
1978). The inhibition by intraventricularly applied GABA of the pressor 
response to hypothalamic stimulation (Philippu et al. 1973 b) also indicates 
the involvement of catecholaminergic systems in the central cardiovascular ef- 
fects of GABA agonists and antagonists (see Sect. 3.2.3). 

Experiments with the lipophilic GABA derivative baclofen (p-chlor- 
phenyl-GABA) have shown that the cardiovascular effects of this compound 
depend on the anaesthetic. In conscious rats, intracerebroventricular ad- 
ministration of baclofen increases blood pressure and heart rate (Persson and 
Henning 1980), but in anaesthetized cats this compound leads to a fall in 
blood pressure and bradycardia (Bousquet et al. 1981 b). The central car- 
diovascular effects of baclofen are not inhibited by the GABAa-receptor 
blocking agent bicuculline. The ineffectiveness of bicuculline may indicate 
that the cardiovascular effects of baclofen are due to stimulation of GABAs- 
receptors, which are insensitive to bicuculline (Bowery et al. 1980; Hill and 
Bowery 1981). Since stimulation of GABAB-receptors inhibits the release of 
the neuroexcitatory amino acid glutamate (Potashner 1979; Johnston et al. 
1980), the baclofen-induced fall in blood pressure has been attributed to in- 
hibition of the glutamate release via stimulation of GABAB-receptors (Bous- 
quet et al. 1981 b). 

To further characterize the receptors involved in the central cardiovascular 
effects of GABA agonists, analogues of this amino acid have been given by 
intracerebroventricular injection to anaesthetized rats. The decrease in blood 
pressure elicited by muscimol or kojic amine (Atkinson et al. 1979; Sweet et 
al. 1979, 1980; Bousquet et al. 1984b) is reduced by bicuculline (Bousquet et 
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al. 1984b), indicating the involvement of GABA A- and perhaps of GABA B- 
receptors in the depressor response. On the other hand, the bradycardic effect 
of muscimol is virtually abolished by bicuculline, suggesting that GABAB-re- 
ceptors are not involved in the decrease in heart rate elicited by this GABA 
agonist (Bousquet et al. 1984b). Development of specific GABAB-receptor 
antagonists may help to confirm these conclusions. 

Like GABA, other neuroinhibitory amino acids such as glycine (Persson 
1980; Bousquet et al. 1981 b; Yang and Lin 1983) and taurine (Bousquet et 
al. 1981d; Yang and Lin 1983) also decrease blood pressure and heart rate 
when administered centrally. Since the central administration of these three 
amino acids enhances the adrenaline-induced bradycardia (Yang and Lin 
1983), it seems likely that the bradycardic effects of GABA agonists are due 
to fascilitation of reflex bradycardia mediated through the vagus (Yang and 
Lin 1983). The inhibition by atropine of the central cardiovascular effects of 
GABA agonists supports this view (Bousquet et al. 1984b). As might be ex- 
pected, the intracerebroventricular injection of the excitatory amino acid 
L-glutamate increases blood pressure and heart rate (Chelly et al. 1979; Bous- 
quet et al. 1981 b). 

6.2.2 Brainstem 

GABA or glycine applied to the exposed ventral surface of the cat medulla 
cause a fall in blood pressure (Guertzenstein 1973; Guertzenstein and Silver 
1974; Yamada et al. 1982). Microinjection of GABA (Ross et al. 1984) or of 
the GABA agonist muscimol into the rostral ventrolateral medulla (lateral 
reticular nucleus) also lowers blood pressure. The hypotensive action of 
muscimol is reversed by the GABAA-receptor antagonist bicuculline (Bous- 
quet et al. 1981 c), suggesting the involvement of GABAA-receptors in the 
central cardiovascular effect of muscimol (Bousquet et al. 1985). 

The results suggest the involvement of GABAergic neurons of this area in 
baroreceptor modulation. This view is supported by the finding that GABA 
or glycine applied to the exposed rostral part of the ventral surface of the 
medulla attenuate the pressor response to carotid occlusion (Feldberg and 
Rocha e Silva Jr. 1981; Yamada et al. 1984). In this connection it is of interest 
to note that the depressor response to GABA injected into the rostral ven- 
trolateral medulla was found to be attenuated in SHR (Kubo et al. 1986b). 
Determination of diffusion of locally applied [3H]bicuculline revealed that 
the GABAergic synapse involved in baroreceptor modulation lies within the 
first 2 mm of the rostral ventrolateral medulla (Yamada et al. I984). 

As might be expected, microinjection of the antagonist bicuculline into the 
rostral ventrolateral medulla increases blood pressure and heart rate (Ross et 
al. 1984; Willette et al. 1984a) and enhances the pressor response to carotid 
occlusion (Willette et al. 1984a). 
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On the other hand, microinjections of muscimol, glycine, or GABA into the 
caudal ventrolateral medulla increase blood pressure and heart rate (Blessing 
and Reis 1983; Willette et al. 1983), while bicuculline leads to a fall in blood 
pressure and bradycardia (Willette et al. 1984a). It seems that GABA neurons 
in the rostral and caudal ventrolateral medulla exert opposing effects on the 
homoeostasis of blood pressure and heart rate. Probably, most of these 
GABAergic neurons belong to an intrinsic neuronal population (see Sect. 6.1). 
It has been proposed that the pressor response to microinjections of in- 
hibitory amino acids into the caudal ventrolateral medulla is due to inhibition 
of the noradrenergic sympathoinhibitory A 1 cell group of this area (Blessing 
and Reis 1983). 

Opposite cardiovascular effects have also been described for the neuroex- 
citatory amino acid L-glutamate (Table 8). Injection of this amino acid into 
the rostral ventrolateral medulla increases blood pressure and heart rate 
(Dampney 1981; Willette et al. 1984a; Kubo et al. 1985 b), while injection into 
the caudal ventrolateral medulla elicits a fall in blood pressure and bradycar- 
dia (Blessing and Reis 1982; Willette et al. 1984a). 

As in the caudal ventrolateral medulla, microinjections of GABA or 
muscimol into the nucleus of the solitary tract lead to hypertension and 
tachycardia, while the antagonist bicuculline lowers blood pressure and heart 
rate and inhibits the cardiovascular effects of muscimol (Bousquet et al. 
1982). On the other hand, microinjection of the neuroexcitatory amino acids 
L-glutamate (Talman et al. 1980b, 1984; Kubo and Kihara 1988) or N-methyl- 
D-aspartate (Kubo and Kihara 1988) into the nucleus of the solitary tract 
causes dose-dependent decreases in blood pressure and heart rate (Table 8). 
The cardiovascular effects of glutamate and N-methyl-D-aspartate are 
abolished by the receptor antagonists glutamate diethyl ester (Talman et al. 
1984) and 2-amino-5-phosphonovalerate (Kubo and Kihara 1988), respective- 
ly. Moreover, vagal stimulation enhances the release of tritium in a push-pull 
cannula inserted into the nucleus of the solitary tract after preloading the 

Table 8. Effects of locally applied neuroinhibitory and neuroexcitatory amino acids on blood 
pressure and heart rate 

Blood pressure and heart rate 

IA EA 

RVLM Decrease Increase 
CVLM Increase Decrease 
NTS Increase Decrease 

R VLM, rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; NTS, nucleus of 
the solitary tract; IA, neuroinhibitory amino acids (GABA, glycine, taurine); EA, neuroex- 
citatory amino acid (glutamate, aspartate). For references see text 
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nucleus with L[3H]-glutamate (Talman et al. 1984). It appears that glutamat- 
ergic neurons within or projecting into the nucleus of the solitary tract par- 
ticipate in the baroreceptor reflex. This postulate should be confirmed by 
determining the release of endogenous glutamate, because the mere deter- 
mination of tritium release is far from convincing. Kubo and Kihara (1988) 
reported that it is possible to determine glutamate and aspartate in perfusates 
of  the nucleus of the solitary tract perfused through a push-pull cannula. 

Release by Amino Acids o f  Vasopressin in the Hypothalamus 

The release of vasopressin is inhibited by afferent inputs from the atrial recep- 
tors (Gauer and Henry 1963; Shade and Share 1975) and from carotid and 
aortic baroreceptors (Share and Levy 1962; Clark and Rocha e Silva Jr. 1967). 
Attenuation by carotid occlusion of  this inhibitory mechanism leads to vaso- 
pressin release. 

Applied to a caudal region B of  the ventrolateral medulla (situated at the 
transition between spinal cord and medulla), the inhibitory amino acids 
GABA and glycine have virtually no effect on blood pressure (Feldberg and 
Guertzenstein 1976; Feldberg and Rocha e Silva Jr. 1981). This area does not 
seem to correspond totally to the caudal ventrolateral medulla of the rat, 
because inhibitory amino acids applied to the latter area increase blood 
pressure (see Sect. 6.2.2). When applied to this region B, both amino acids 
greatly reduce the release of vasopressin. When applied to a region A situated 
rostral to the region B, the amino acids decrease blood pressure and pressor 
response to carotid occlusion without influencing the vasopressin release 
(Feldberg and Rocha e Silva Jr. 1981). 

Vasopressin may be responsible for the pressor response to the microinjec- 
tion of  the excitatory amino acid L-glutamate into the rostral ventrolateral 
medulla, because L-glutamate increases the release of the peptide. Moreover, 
the pressor response to the amino acid is abolished by the vasopressin an- 
tagonist TMAV which blocks V1 receptors (Kubo et al. 1985 b). Similarly, the 
depressor response to glutamate injection into the caudal ventrolateral 
medulla increases the release of vasopressin so as to counteract the fall in 
blood pressure (Blessing and Willoughby I985). 

From these findings, and from those described in the preceding sections, 
the following picture emerges (Fig. 8). The afferent fibres to the nucleus of 
the solitary tract and/or neurons within the nucleus seem to be glutamatergic. 
Stimulation of baroreceptors of the aortic arc and carotid sinus by a rise in 
blood pressure increases the release of the excitatory amino acid, which in 
turn increases the release of  an inhibitory neurotransmitter. The inhibitory 
neurotransmitter, which does not seem to be GABA (see Sect. 6.2.1), inhibits 
the sympathoexcitatory neurons in the rostral ventrolateral medulla, leading 
to a fall in blood pressure. The inhibitory neurotransmitter also inhibits the 
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Fig. 8. Effects of a rise in blood pressure in the carotid sinus on the release of neurotransmitters 
in the brainstem. The rise in blood pressure (BP) increases the release of an excitatory amino 
acid (EA) in the region B of the caudal ventrolateral medulla (CVLM), thus leading to de- 
creased neuronal activities of the ascending pathways and to decreased release of vasopressin 
(VP). Release of the inhibitor amino acid (IA) in the rostral region A of the ventrolateral 
medulla (RVLM) decreases the sympathetic tone to blood vessels and heart. The sym- 
pathoinhibitory influence of the caudal ventrolateral medulla is mediated through 
noradrenergic neurons to the rostral ventrolateral medulla. The excitatory amino acid seems to 
be glutamic acid (Glu). NTS, nucleus of the solitary tract; SON, supraoptic nucleus; +, increas- 
ed neuronal activity; - ,  decreased neuronal activity 

neurons of the caudally located region B and consequently the release of va- 
sopressin. The activity of the neurons of the rostral ventrolateral medulla may 
also be reduced by the caudal ventrolateral medulla, presumably through 
noradrenergic neurons of the A1 cell group. Carotid occlusion decreases the 
release of the inhibitory neurotransmitter(s) thus enhancing the release of va- 
sopressin and increasing the neuronal activity in the excitatory rostral ven- 
trolateral medulla. The activity of the neurons of the two areas of the ven- 
trolateral medulla is influenced by intrinsic GABAergic neurons. However, the 
importance of adrenergic and noradrenergic neurons of the rostral and caudal 
ventrolateral medulla, respectively, needs to be confirmed. 

6.2.3 Hypothalamus 

In conscious rats, the GABA agonist muscimol decreases blood pressure and 
heart rate when applied to the hypothalamus. The GABA-receptor an- 
tagonists bicuculline and picrotoxin injected elicit a rise in blood pressure and 
tachycardia and increase sympathetic nerve activity indicating that the sym- 
pathoexcitatory system of the hypothalamus is modulated by its GABAergic 
neurons (Wible et al. 1988). This is in accordance with the observation that 
in cats intracerebroventricular injection of GABA decreases the pressor 
response elicited by hypothalamic stimulation (Philippu et al. 1973b). Sur- 
prisingly, superfusion of the posterior hypothalamus with high GABA con- 
centrations through a push-pull cannula gradually increases the release of 
[3H]noradrenaline in the superfusate and the pressor response to hypothala- 
mic stimulation (Philippu et al. 1973b). 
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6.3 GABA in Genetic Hypertension 

In 75-day-old SHR, but not in 30-day-old hypertensive rats, the hypothalamic 
GABA level is decreased and the muscimol binding sites are reduced 
(Hambley et al. 1984). The release rate of GABA in hypothalamic super- 
fusates of 60-day-old SHR is not changed (Tuomisto et al. 1983). Thus, 
GABA changes seem to be established in rats older than 8 -10  weeks. 

7 Acetylcholine 

7.1 Mapping of Acetylcholine-Containing Neurons 

Acetylcholinesterase is present in neurons of the hypothalamus and of the 
ventral thalamus. It is of interest to note that no cholinergic perikarya are pre- 
sent in the cerebral cortex, the hippocampus and the amygdala, but acetylcho- 
linesterase-containing cell bodies are found in the raphe nuclei and in the cen- 
tral part of the gigantocellular reticular nucleus (Satoh et al. 1983). 

Acetylcholine is also found in neuronal and non-neuronal (blood vessel 
walls) elements of the nucleus of the solitary tract (Lewis and Shute 1967; 
Gwyn and Wolstencroft ! 968). However, no acetylcholinesterase activity was 
found in the nucleus of the solitary tract by Palkovits and Jacobowitz (1974). 
There are also conflicting results concerning the presence of the synthesizing 
enzyme choline acetyltransferase in this nucleus. While Kobayashi et al. 
(1975) and Helke et al. (1983), using radioimmunoassay, found enzyme activi- 
ty in this brain structure, Armstrong et al. (1983), using immunocytochemis- 
try, demonstrated the presence of the enzyme in the dorsal vagal complex, but 
not in the nucleus of the solitary tract. Acetylcholinesterase-stained cells are 
present in the locus coeruleus. In this area, most of the perikarya seem to con- 
tain noradrenaline and acetylcholinesterase (Palkovits and Jacobowitz 1974). 

7.2 Cardiovascular Effects of Acetylcholine and Related Drugs 

Z2.1 Cerebroventricular System 

Species differences and anaesthesia influence the cardiovascular effects of 
acetylcholine and related compounds (for review see Philippu 1981). 

In conscious and anaesthetized rats, the intracerebroventricular administra- 
tion of acetylcholine elicits a pressor response which is inhibited by atropine 
(Krsti6 and Djurkovi6 1978). Inhibition of the acetylcholine degradation by 
physostigmine also increases blood pressure (Dirnhuber and Cullumbine 
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1955; Varagi6 1955). Most important, the pressor response to physostigmine 
is abolished by hemicholinium-3 (Varagi6 and Vojvodi6 1962), which, by 
preventing the uptake of choline into the nerve terminals, leads to 
acetylcholine depletion (Mclntosh et al. 1956; for review see Schueler 1960). 
The findings with physostigmine and hemicholinium-3 are of particular in- 
terest; they show that acetylcholine released from cholinergic nerve terminals 
of the brain influences the cardiovascular system, thus demonstrating the im- 
portance of central cholinergic neurons in cardiovascular control. 

In the anaesthetized cat, intracerebroventricular injections of carbachol 
elicit a fall in blood pressure and bradycardia (Armitage and Hall 1967; In- 
genito et al. 1972), which have been attributed to an action of the drug on 
"the ventral brainstem" (Armitage and Hall 1967). In the conscious cat, 
acetylcholine and carbachol increase blood pressure and lower heart rate by 
an action on muscarinic receptors, because the pressor response is inhibited 
by central administration of atropine (Sinha et al. 1967; Lang and Rush 1973; 
Day and Roach 1977). However, the central administration of various 
muscarinic or nicotinic receptor antagonists revealed that nicotinic receptors, 
as well as muscarinic receptors, are involved in the central cardiovascular ef- 
fects of acetylcholine (Armitage and Hall 1967; Armitage et al. 1967; Day and 
Roach 1977). Acetylcholine also increases blood pressure in conscious (Lang 
and Rush 1973) and anaesthetized dogs (Bhawe 1958; Sinha et al. 1967). 
Hence, in rats, dogs and conscious cats acetylcholine elicits a rise in blood 
pressure when applied centrally, while in anaesthetized cats it lowers blood 
pressure. 

The effect on cardiovascular function of acetylcholine and other choliner- 
gic agonists and antagonists depends on the integrity of the catecholaminer- 
gic system of the brain. Intracerebroventricular injections of 6-OHDA deplete 
the brain catecholamines and inhibit the pressor response to centrally applied 
carbachol (Gordon et al. 1979). The rise in blood pressure effected by car- 
bachol is also inhibited by the central administration of guanethidine or 
bethanidine (Ozawa and Uematsu 1976; Hoffman 1979) and a- and ~- 
adrenoreceptor blocking agents (Ozawa and Uematsu 1976; Day and Roach 
1977; Hoffman 1979), and is enhanced by desipramine (Ozawa and Uematsu 
1976), which inhibits the reuptake of catecholamines into the nerve terminals, 
thus increasing their concentrations at the receptor sites. Moreover, perfusion 
of the cat hypothalamus through the third ventricle with the nicotinic agonist 
DMPP (dimethyl-4-phenytpiperazinium) enhances the release of [3H]nor- 
adrenaline in the perfusate in a calcium-dependent way. The catecholamine 
release is also increased by the muscarinic antagonist atropine (Philippu 1970; 
Philippu et al. 1970). The results suggest that, as in the peripheral sym- 
pathetic system (for review see Muscholl 1979), the release of catecholamines 
in the CNS is modulated by acetylcholine receptors; stimulation of nicotinic 
and blockade of muscarinic receptors enhance the release of noradrenaline. 
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Hence, the cardiovascular effects of  the central cholinergic neurons seem to 
be mediated at least partly by acetylcholine receptors localized presynaptical- 
ly on catecholaminergic nerve endings. 

Z2.2 Brainstem 

Ventrolateral Medulla 

Carbachol applied to the ventral surface of  the anaesthetized cat medulla 
lowers blood pressure. The same effect is elicited when physostigmine is local- 
ly applied, while atropine elicits a pressor response (Guertzenstein 1973; 
Feldberg and Guertzenstein 1976), thus underpinning the view that centrally 
applied acetylcholine affects blood pressure by acting on the brainstem. 

Like carbachol, nicotine applied to the ventral surface of  the cat medulla 
leads to a fall in blood pressure. The depressor response is associated with an 
increased level of  vasopressin in the blood. The effect has been attributed to 
activation by nicotine of  central projections to the supraoptic and paraven- 
tricular nuclei, so as to counteract the fall in blood pressure (Bisset et al. 
1975). 

In the rat, where central administration of acetylcholine increases blood 
pressure, microinjections of carbachol or physostigmine into the rostral ven- 
trolateral medulla also increase blood pressure and heart rate, while atropine 
leads to a fall in blood pressure and bradycardia (Willette et al. 1984 c). In this 
connection it is interesting that, in rats, the rise in blood pressure elicited by 
intravenous injection of physostigmine is abolished when tetrodotoxin, local 
anaesthetics or the muscarinic receptor antagonist scopolamine are injected 
into the rostral ventrolateral medulla (Punnen et al. 1986). It seems that this 
area mediates the pressor response to peripherally administered physostig- 
mine. Carbachol also lowers blood pressure and heart rate when microin- 
jected into the rostral raphe nucleus, thus demonstrating the presence of 
muscarinic receptors in the nucleus (Saxena et al. 1983). 

Area Postrema and Nucleus of  the Solitary Tract 

Fall in blood pressure and bradycardia are also elicited when physostigmine, 
choline or nicotine are given by microinjection into the rat area postrema. The 
cardiovascular effects seem to be mediated by nicotinic receptors, because 
they are abolished by hexamethonium but not by atropine. Intracerebroven- 
tricular administration of 6-OHDA diminishes the hypertensive response to 
physostigmine and choline. Moreover, the cardiovascular effects of these 
drugs are attenuated by phentolamine injected into the nucleus of  the solitary 
tract, suggesting that the cardiovascular effects of  acetylcholine released from 
cholinergic nerve terminals are mediated by nicotinic receptors localized on 
catecholaminergic neurons (Kubo and Misu 1981b, c). However, the fall in 
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blood pressure and bradycardia elicited by microinjections of acetylcholine or 
carbachol into the nucleus of the solitary tract of the rat seem to be due to 
activation of muscarinic receptors, since the effects are abolished by atropine 
but not by hexamethonium. Atropine given alone elicits a moderate rise in 
blood pressure. The muscarinic antagonist decreases, while physostigmine in- 
creases the bradycardia elicited by an experimentally induced rise in blood 
pressure. The results seem to indicate that cholinergic mechanisms in the 
nucleus of the solitary tract modulate the baroreceptor reflex (Criscione et al. 
1983). However, it was shown very recently that carbachol microinjected into 
the nucleus of  the solitary tract of  cats is ineffective, while microinjections of 
the drug into the nucleus ambiguus or the dorsal motor nucleus of the vagus 
lower heart rate without influencing blood pressure (Gurtu et al. t986). It is 
possible that, in the rat, carbachol injected into the nucleus of the solitary 
tract may easily reach adjacent structures, thus eliciting cardiovascular ef- 
fects. 

7.2.3 Hypothalamus 

It is now well established (for review see Phillippu 1981) that injections of 
acetylcholine receptor agonists into the posterior hypothalamus of rats lead 
to a rise in blood pressure and to variable effects on heart rate (Cho et al. 
1962; Hoffman and Phillips 1976). The cardiovascular effects seem to be due 
predominantly to activation of  muscarinic receptors, because atropine 
abolishes the pressor response to cholinergic agonists, while mecamylamine 
is ineffective (Buccafusco and Brezenoff 1979). Microinjections of the cholin- 
esterase inhibitors neostigmine or physostigmine into the posterior hypothala- 
mic nucleus of conscious or anaesthetized rats also increase blood pressure 
and decrease heart rate. Similar effects are elicited by the intrahypothalamic 
injection of d-tubocurarine (Fletscher and Pradhan 1969; Brezenoff 1972; 
Buccafusco and Brezenoff 1979). 

Although these results suggest that release of acetylcholine in the brain in- 
fluences the cardiovascular system, depletion of the acetylcholine pools by the 
intrahypothalamic injection of hemicholinium-3 does not affect blood 
pressure. It seems that the cholinergic system is quiescent under resting condi- 
tions, but that it is activated when the concentration of acetylcholine is in- 
creased at the receptor sites, as for example on administration of  cholinester- 
ase inhibitors. A similar effect is elicited when acetylcholine receptor agonists 
are microinjected (Buccafusco and Brezenoff 1978; Brezenoff and Caputi 
1980). Nevertheless, the cardiovascular effects of intravenously applied cho- 
linesterase inhibitors are not due to their action on the hypothalamus, because 
decerebration (Varagi6 t955) or transection of the brain caudal to the 
hypothalamus does not modify the pressor effects. The rise in blood pressure 
elicited by intravenous injection of physostigmine is abolished when the brain 
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is transected at the rostral pons, indicating that the site of action of cholines- 
terase inhibitors is localized caudal to the midbrain (Brezenoff and Rusin 
1974). 

The rise in blood pressure caused by muscarinic agents and cholinesterase 
inhibitors is not due to release of catecholamines from the adrenal medulla, 
because adrenalectomy does not affect the pressor response to these drugs 
(Dirnhuber und Cullumbine 1955; Varagi6 1955; Henning and Trolin 1975). 
Likewise, bretylium and 2,6-xylyl ether bromide almost abolish the pressor 
response to cholinesterase inhibitors. These drugs block the peripheral norad- 
renergic neurons without influencing the release of catecholamines from the 
suprarenals (Lesi6 and Varagi6 1961). 

In the cat, superfusion of the posterior hypothalamus through a push-pull 
cannula with acetylcholine, carbachol or nicotine increases blood pressure, 
while superfusion with the muscarinic agonists pilocarpine or oxotremorine 
is ineffective (Bhargava et al. 1978). Superfusion of the posterior hypothala- 
mus with the nicotinic agent DMPP or nicotine also enhances the pressor 
response elicited by electrical stimulation of the superfused area (Philippu et 
al. 1974; P. Schartner and A. Philippu, unpublished observations). The 
muscarinic and nicotinic agonist arecoline (Feldberg and Vartiainen 1935; 
Von Euler and Domeij 1945) also enhances the rise in blood pressure on hypo- 
thalamic stimulation, but the increase in the pressor response is converted to 
an inhibition of  the pressor response after hypothalamic superfusion with 
hexamethonium to block nicotinic receptors. Moreover, hypothalamic super- 
fusion with muscarine or the muscarinic agonists oxotremorine or AHR 602 
(N-benzyl-3-pyrolidyl-acetate methobromide) also reduces the pressor 
response to hypothalamic stimulation (Philippu and Bohuschke 1976). 
Thus, in the cat, nicotinic and muscarinic receptors are present in the 
posterior hypothalamus. Stimulation of nicotinic receptors increases blood 
pressure and enhances the pressor response to hypothalamic stimulation, 
while activation of muscarinic receptors reduces the rise in blood pressure 
elicited by hypothalamic stimulation. As may be expected (see Sect. 7.2.1), hy- 
pothalamic superfusion with fl-adrenoreceptor blocking drugs abolishes the 
rise in blood pressure elicited by hypothalamic superfusion with acetylcho- 
line, suggesting the involvement of catecholaminergic systems (Bhargava et al. 
1978). 

The significance of hypothalamic acetylcholine for blood pressure regula- 
tion is underlined by the observation that injections of physostigmine or 
neostigmine into the posterior hypothalamic nucleus enhance the pressor 
response to bilateral carotid occlusion. The effect of the cholinesterase in- 
hibitors is suppressed by the intrahypothalamic injection of atropine. It seems 
that acetylcholine in the posterior hypothalamus is implicated in the modula- 
tion of the baroreceptor reflex (Brezenoff et al. 1982). 
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7.3 Acetylcholine in Drug-Induced Hypotension and in Experimental and 
Genetic Hypertension 

As already mentioned (see Sect. 3.4), clonidine inhibits the pressor response 
to physostigmine and reduces the turnover of acetylcholine in various brain 
regions. The antihypertensive effect of clonidine is also reduced in rats 
pretreated intracerebroventricularly with hemicholinium-3 (Squadrito et al. 
1985), suggesting that the antihypertensive effect of clonidine depends par- 
tially on the integrity of central cholinergic neurons. In contrast, the hypoten- 
sive effect of intravenously administered a-methyldopa is potentiated by the 
intracerebroventricular injection of hemicholinium-3, a-Methyldopa also in- 
hibits the pressor response to the intracerebroventricularly applied cholines- 
terase inhibitor echothiophate, while the hypertensive effect of the directly ac- 
ting agonist carbachol is not affected. This difference may indicate that the 
antihypertensive drug a-methyldopa interferes with the release of acetylcho- 
line (Buccafusco 1984). 

Remarkable differences are seen in the central cardiovascular effects of 
acetylcholine-receptor agonists and antagonists between normotensive and 
hypertensive rats. The pressor response to intravenously injected physostig- 
mine is much more pronounced in 5- to 10-month-old SHR than in nor- 
motensive WKY rats (Kubo and Tatsumi 1979). Similarly, the pressor 
response to systemic administration of physostigmine is greater in Dahl- 
salt-sensitive rats than in Dahl-salt-resistant animals (McCaughran et al. 
1983). Since no differences exist in the increases in blood pressure between 
normal rats, on the one hand, and renal hypertensive or DOCA-salt-sensitive 
rats, on the other hand, the enhanced pressor response to physostigmine in 
SHR and Dahl-salt-sensitive rats seems to be specific to the genetic hyperten- 
sion. 

As mentioned above, intracerebroventricular administration of hemicholi- 
nium-3 does not influence blood pressure. However, central injection of 
hemicholinium-3 lowers blood pressure in SHR (Brezerioff and Caputi 1980). 
Moreover, in conscious rats, the intravenous injection of atropine decreases 
blood pressure in 11- to 20-week-old SHR, but not in normotensive WKY rats 
(Caputi et al. 1980). 

The findings obtained with physostigmine and hemicholinium-3 suggest an 
increased activity of cholinergic neurons in the brain of SHR. This idea is 
confirmed by the observations that the activities of choline acetyltransferase 
and acetylcholinesterase are increased in the brainstem of young (40-day-old) 
SHR, while the activity of acetylcholinesterase is additionally elevated in 
brainstems of old (3- to 6-month-old) SHR (Yamori et al. 1972). Choline 
acetyltransferase activity and acetylcholine level are also increased in the 
locus coeruleus but decreased in hypothalamic nuclei of SHR. Furthermore, 
the activity of this enzyme was found to be increased in the nucleus of the 
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solitary tract, but to be decreased in the dorsal hypothalamic nucleus of 
DOCA-salt hypertensive rats (Helke et al. 1980a, b). 

8 Vasopressin 

8.1 Mapping of Vasopressin-Containing Neurons 

The magnocellular and parvocellular neurons of the paraventricular and 
supraoptic nuclei synthesize vasopressin and oxytocin (Sofroniew and Weindl 
1978; Sofroniew 1980; Sofroniew et al. 1981; for review see Swanson and 
Sawchenko 1983; Silvermann and Zimmerman 1983). Vasopressin-immuno- 
staining cell bodies have also been identified in accessory nuclei of the 
hypothalamus (Buijs 1978; Sofroniew 1983), as well as in the medial 
amygdaloid nucleus and the locus coeruleus (Sofroniew 1983; Buijs et al. 
1983). Peptide-containing fibres have been identified in the locus coeruleus, 
the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and 
the dorsal raphe nucleus (Buijs and Swaab 1979; Sofroniew 1983; Voorn and 
Buijs 1983). A descending vasopressinergic pathway extends from the para- 
ventricular and supraoptic nuclei to brainstem structures involved in car- 
diovascular control. In the locus coeruleus, vasopressin seems to be present 
in noradrenaline cell bodies (Caff6 et al. 1985). 

8.2 Cardiovascular Effects of Vasopressin and Related Drugs 

8.2.1 Cerebroventricular System 

The intracerebroventricular or intrathecal administration of arginine-vaso- 
pressin to conscious or anaesthetized rats and rabbits increases blood pressure 
(Matsuguchi et al. 1982; Pittman et al. 1982; Feuerstein et al. 1984; Martin 
et al. 1985; Riphagen and Pittman 1986), while the heart rate is either in- 
creased (low doses) or decreased (high doses) (Feuerstein et al. 1984; 
Riphagen and Pittman 1986). These cardiovascular effects are elicited by 
doses lower than those needed when vasopressin is injected intravenously. 
Hence, an action of centrally applied vasopressin on peripheral receptors is 
unlikely. 

However, contrasting results have been reported by Versteeg et al. (1982), 
who found that the intracerebroventricular administration of vasopressin 
does not affect the cardiovascular system of anaesthetized rats. The authors 
further observed that vasopressin administered intracerebroventricularly in- 
hibits the pressor response elicited by electrical stimulation of the mesenceph- 
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alic reticular formation (De Jong et al. 1984). In the anaesthetized dog, in- 
tracisternal administration of lysine-vasopressin decreases blood pressure 
without changing heart rate, while oxytocin leads to a pressor response (Tran 
et al. 1982). The latter finding might indicate that action of vasopressin on 
brainstem structures decreases blood pressure. 

Haemorrhage is a potent stimulus for vasopressin release to restore arterial 
blood pressure (Ginsburg and Brown 1956; Baratz and Ingraham 1960; 
Beleslin et al. 1967; Rocha e Silva Jr. and Rosenberg 1969; Laycock et al. 
1979; Cowley et al. 1980; Schwartz and Reid 1981; Zerbe et al. t982). 
Haemorrhage and osmotic stimulation also enhance the release of vasopres- 
sin in perfusates of the lateral ventricle and septum (Demotes-Mainard et al. 
1986). Hence, vasopressin seems to play a predominant role in blood pressure 
regulation. 

The influence of vasopressin on the baroreceptor reflex is equally well 
established, although contrasting results have been reported as to whether va- 
sopressin stimulates or inhibits this reflex. Determination of the baroreflex 
activity by plotting changes in pulse interval against changes in blood 
pressure after intravenously administered phenylephrine (Smyth et al. 1969) 
revealed that in rats and rabbits central administration of vasopressin in- 
creases baroreflex sensitivity (Izdebska et al. 1982; Imai et al. 1983; Schmid 
et al. 1985). Furthermore, in Brattleboro rats with diabetes insipidus and a 
complete lack of endogenous vasopressin, baroreflex sensitivity to phenyl- 
ephrine is greatly reduced in comparison with that in normal Long-Evans rats 
(Imai et al. 1983). On the other hand, it has been reported that in dogs in- 
tracisternally applied vasopressin attenuates the fall in blood pressure elicited 
by stimulation of the carotid sinus (Brattstr0m and Kalkoff 1970). Similarly, 
blockade of vascular vasopressin receptors by the intracerebroventricular ad- 
ministration of the V~-receptor antagonist TMAV sensitizes the baroreceptor 
reflex (Unger et al. 1986). Species differences and variation in routes of ad- 
ministration and/or stimulation of various vasopressin receptors by vasopres- 
sin (see below) may explain the diversity of the results. 

8.2.2 Brainstem 

Blessing et al. (1981 b, 1982) reported that in the rabbit electrolytic lesions of 
the caudal ventrolateral medulla elicited hypertension and increased plasma 
vasopressin. Similar results were obtained more recently by Elliott et al. 
(1985 b), but Sved et al. (1985) were not able to confirm their earlier results 
(Blessing et al. 1981 b, 1982); the electrolytic lesion did not increase blood 
pressure and only slightly increased plasma vasopressin. It is likely that slight 
differences in the position of electrodes greatly influence the cardiovascular 
response (Sved et al. 1985). 
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The rise in blood pressure elicited by bilateral lesions of the nucleus of the 
solitary tract is also associated with an enhanced release of vasopressin in the 
hypothalamus (see Sect. 3.2.2). In animals with bilateral lesions of  the nucleus 
of  the solitary tract, administration of TMAV, a Vl-receptor antagonist, 
which blocks the vascular effects of  vasopressin, inhibits hypertension and in- 
creases heart rate (Barnes et al. 1984; Kubo and Amano 1986). Similarly, elec- 
trical stimulation of the nucleus of the solitary tract of  rats with spinal 
transection at C1 leads to a rise in blood pressure which seems to be due to 
release of vasopressin, because stimulation of  this nucleus is ineffective in 
Brattleboro rats (Nakai et al. 1982). Microinjections of vasopressin into the 
nucleus of the solitary tract of  the rat also increase blood pressure and heart 
rate (Vallejo et al. 1984; Casto and Phillips 1985). These cardiovascular effects 
are abolished by the Vl-receptor antagonist TMAV, while the V2-receptor an- 
tagonist 1-desamino-8-D-arginine-vasopressin (DDAV) or oxytocin are inef- 
fective (Vallejo et al. 1984). DDAV possesses a potent antidiuretic activity, but 
a minimum vascular action (Sawyer et al. 1974). Taken together, the results 
provide evidence that vasopressin plays a role in cardiovascular control in the 
nucleus of the solitary tract and that this effect of  vasopressin is mediated by 
V~- rather than by V2-receptors. 

In other areas of the brainstem vasopressin also seems to be involved in car- 
diovascular regulation. The pressor response to electrical stimulation of the 
locus coeruleus in Brattleboro rats is less pronounced than that in Long-Evans 
rats, indicating involvement of  vasopressin (Berecek et al. 1984; Berecek and 
Mitchum 1986) (see Sect. 3.2.2). Furthermore, vasopressin is also implicated 
in the pressor response to electrical stimulation of the fastigial nucleus ob- 
served after chemosympathectomy with 6-OHDA, since the rise in blood 
pressure is antagonized by the Vl-receptor antagonist TMAV (Del Bo et al. 
1983). Finally, ablation of the area postrema prevents intravenously ad- 
ministered arginine-vasopressin from enhancing the inhibitory influence of 
the baroreceptor reflex (Undesser et al. 1985) and increases the pressor 
response to vasopressin administered to the vertebral artery (Michelini et al. 
1986). It seems that vasopressin acts on the area postrema or the tissue sur- 
rounding it so as to enhance baroreflex activity (Undesser et al. 1985). 

8.2.3 Hypothalamus 

Microinjections of arginine-vasotocin or arginine-vasopressin into the medial 
preoptic nucleus of  the hypothalamus increase blood pressure and heart rate, 
while oxytocin is ineffective. The cardiovascular effects are associated with 
elevated noradrenaline and adrenaline plasma levels (Feuerstein et al. 1984). 
In rats with intact baroreceptor reflex electrical stimulation of  magnocellular 
or parvocellular regions of the paraventricular nucleus of the hypothalamus 
has virtually no effect on the cardiovascular system. However, following sino- 



66 A. Philippu 

aortic denervation, stimulation of parvocellular cells increases blood 
pressure, but stimulation of magnoceUular cells is still ineffective. Thus, the 
baroreceptor reflex buffers the effects of parvocellular cell activation (Porter 
and Brody 1986). 

8.3 Vasopressin in Experimental and Genetic Hypertension 

Under normal conditions, vasopressin levels in various brain nuclei have been 
found to be similar in SHR and normotensive rats, but acute stress seems to 
increase vasopressin in SHR (Negro-Vilar and Saavedra 1980). In contrast to 
these results, hypothalamic vasopressin was found to be decreased in SHR 
(Morris et al. 1981). On the other hand, injections of the vasopressin-receptor 
inhibitors TMAV and DDAV do not alter either blood pressure or heart rate 
in SHR, although both antagonists almost completely abolish the pressor 
response to exogenous arginine-vasopressin (Filep and Fejes-T6th 1986). 

In DOCA-salt hypertensive rats no changes in the hypothalamic level of va- 
sopressin have been found (Morris et al. 1981), suggesting that vasopressin is 
not involved in DOCA-salt hypertension. The same conclusion was drawn by 
Okuno et al. (1983), who observed that in DOCA-salt hypertensive rats 
pretreatment with 6-OHDA lowers blood pressure without decreasing vaso- 
pressin levels. Furthermore, TMAV and DDAV do not alter blood pressure 
and heart rate in malignant two-kidney one-clip Goldblatt hypertension 
(Filep et al. 1985). The findings demonstrate that vasopressin is not involved 
in the development of genetic or experimental hypertension. 

9 Angiotensin 

9.1 Mapping of Angiotensin-Containing Neurons 

Angiotensin II-like immunoreactivity has been demonstrated in cell bodies 
located in the supraoptic and paraventricular nuclei, as well as in the dor- 
somedial hypothalamic nucleus, the perifornical area and the ventrolateral 
part of the lateral hypothalamus (Fuxe et al. t981). 

Angiotensin II-like immunoreactivity is present in numerous axons and 
nerve terminals of the median eminence and the lateral column of the spinal 
cord. The dorsomedial hypothalamic nucleus, the ventral hypothalamus, the 
central amygdaloid nucleus and the locus coeruleus possess a moderate densi- 
ty of angiotensin II-like immunoreactivity, while the density is low in the 
thalamus, the periventricular hypothalamus, the preoptic region, and the sub- 
thalamus, as well as in the locus coeruleus, the nucleus of the solitary tract 
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and the dorsal motor nucleus of the vagus. Single nerve terminals are present 
in all levels of  the brain (Fuxe et al. 1976). 

9.2 Cardiovascular Effects of  Angiotensin and Related Drugs 

9.2.1 Cerebroventricular System 

In many animals species, the intracerebroventricular administration of 
angiotensin II produces a pressor response (Halliday and Buckley 1962; 
Smookler et al. 1966; Severs et al. 1966; Hoffman and Phillips 1977), which 
is inhibited by the angiotensin antagonist saralasin (Hoffman and Phillips 
1977). Angiotensin III has the same pressor activity as angiotensin II when 
administered intracerebroventricularly. Moreover, chronic infusion of angio- 
tensin II or III into the lateral ventricle leads to severe hypertension (Fink and 
Bruner 1985). 

The central cardiovascular effects of  angiotensin II seem to be mediated 
partly by the sympathetic system, because adrenalectomy and peripheral ad- 
ministrations of 6-OHDA (Falcon et al. 1978), phenoxybenzamine, pro- 
nethalol (Severs et al. 1966) or prazosin attenuate the rise in blood pressure 
elicited by the intracerebroventricular injection of angiotensin II. The V2-re- 
ceptor antagonist DDAV also reduces the angiotensin-induced pressor 
response, but the rise in blood pressure is abolished by a combined pretreat- 
ment with DDAV and prazosin (Unger et al. 1981). Hence, stimulation of the 
sympathetic system and release of  vasopressin seem to contribute to the rise 
in blood pressure elicited by central administration of angiotensin II. 

A similar interaction exists between angiotensin II and GABA. In- 
tracerebroventricular injection of GABA or of the GABA-receptor agonist 
muscimol reduces the pressor response to central administration of angioten- 
sin II (Unger et al. 1983; Brennan et al. 1984). The inhibitory effect of  GABA 
seems to be due to decreased vasopressin release by angiotensin, because 
GABA inhibits the vasopressin-dependent pressor response to the peptide 
(Brennan et al. 1984). This observation is in agreement with the interaction 
between GABA and vasopressin described in Section 6.2.2. 

9.2.2 Brainstem 

The area postrema has been proposed as a site of  angiotensin action. Elec- 
trical stimulation of this area leads to a rise in blood pressure and tachycar- 
dia. In the dog, ablation of the area postrema lowers blood pressure and heart 
rate (Ferrario et al. 1979), but in the rat ablation of this region is either inef- 
fective (Zandberg et al. 1977), or it leads to chronic labile hypertension 
(Ylitalo et al. 1974). It is possible that the contrasting results are due to the 
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anatomical proximity of the area postrema and the nucleus of the solitary 
tract, since it is difficult to lesion one of these two regions without damaging 
the other. In the dog the pressor response to intravenously applied angiotensin 
II is blunted after ablation of the area postrema (Gildenberg et al. 1973; Fer- 
ratio et al. 1979); this attenuation of  the pressor response to angiotensin lasts 
several weeks (Joy and Lowe 1970), becoming normal again 4 - 7  weeks after 
ablation (Otsuka et al. 1986). 

It seems that the area postrema is not the sole region of the brainstem 
responsible for the central cardiovascular effects of  angiotensin. In 
anaesthetized rats, microinjection of low doses (1 ng) of angiotensin II into 
the nucleus of the solitary tract decreases blood pressure and heart rate, while 
the angiotensin-receptor antagonist saralasin exerts opposite effects. However, 
moderate doses of  angiotensin II (I0 ng) lead to biphasic blood pressure 
changes (Rettig et al. 1986) and high doses (50-500ng)  increase blood 
pressure without changing heart rate (Casto and Phillips 1984; Rettig et al. 
1986). The bradycardic response to low doses of  angiotensin II seems to be 
mediated by cholinergic fibres, because it is abolished by atropine injected in- 
travenously (Rettig et al. 1986). The pressor response to high doses of  
angiotensin II is reduced by ganglionic blockade with hexamethonium, in- 
dicating the involvement of descending sympathetic fibres (Casto and Phillips 
1984). 

9.2.3 Hypothalamus 

Microinjections of  angiotension II into the lateral ventricle or into the 
anterior hypothalamic/preoptic area increase blood pressure (Phillips and 
Hoffman 1977; Benarroch et al. 1981; Jones 1984). The pressor response to 
angiotensin is inhibited by central administration of 6-OHDA (Hoffman et 
al. 1977a; Benarroch et al. 1981) or phentolamine (Phillips and Hoffman 
1977; Jones 1984), suggesting the involvement of  catecholaminergic systems. 
This is in apparent contrast to the depressor response to noradrenaline in- 
jected into the anterior hypothalamic/preoptic area (see Sect. 3.2.3). On the 
other hand, treatment with 5,7-DHT also abolishes the rise in blood pressure 
elicited by angiotensin II applied to the anterior hypothalamic/preoptic area. 
It has been argued that the pressor response to angiotensin II is mediated by 
an increased release of serotonin which in turn inhibits the release of nor- 
adrenaline (Benarroch et al. 1981). Hence, inhibition of the pressor response 
to angiotensin II by a-adrenoreceptor blocking agents or by the neurotoxin 
6-OHDA may be attributed to blockade of the depressor effect of noradrena- 
line. Additional experiments may help to confirm the interactions between 
angiotensin, serotonin and noradrenaline in the anterior hypothalamic/pre- 
optic area. 



Regulation of Blood Pressure by Central Neurotransmitters and Neuropeptides 69 

9.3 Angiotensin in Experimental and Genetic Hypertension 

There is substantial evidence indicating the involvement of  angiotensin in 
hypertension. In SHR, intracerebroventricular administration of angiotensin 
II (Hoffman et al. 1977b), or its injection into the nucleus of the solitary tract 
(Casto and Phillips 1985) leads to a pressor response which is more pro- 
nounced than that observed in normotensive WKY rats. Moreover, in- 
tracerebroventricular administration of the angiotensin-receptor antagonist 
saralasin, or of  the inhibitor of  the converting enzyme, captopril, decreases 
blood pressure in SHR and renal hypertensive rats (Suzuki et al. 1981, 1986). 
In DOCA-salt hypertensive rats, centrally applied captopril seems to decrease 
blood pressure (Basso et al. 1985; Itaya et al. 1986), although an increase has 
also been reported (Suzuki et al. 1981). The fall in blood pressure caused by 
saralasin and captopril is in agreement with the elevated receptor sensitivity 
of  septal neurons to angiotensin II in stroke-prone SHR (Felix and Schelling 
1982), as well as with the increased angiotensin II fibre staining in hypothala- 
mic areas of  SHR (Weyhenmeyer and Phillips 1982). Likewise, increased 
angiotensin II binding affinity but no change in the binding sites has been 
found in the nucleus of  the solitary tract of  SHR (Plunkett and Saavedra 
1985). 

In the subfornical organ of  young and adult SHR the binding sites for 
angiotensin II are increased, while the binding affinity is decreased (Saavedra 
et al. 1986). In this connection it is of  interest to note that a very low dose 
(0.1 pg) of angiotensin II injected into this structure (Mangiapane and Simp- 
son 1980) or its electrical stimulation (Ishibashi and Nicolaidis 1981) lead to 
a pressor response. 

Taken together, all these findings point increased activity to the angiotensin 
II system in the brain of SHR. 

I00pioids 

10.1 Mapping of Opioid-Containing Neurons 

Enkephalins are widely distributed in almost all areas of the CNS. Met-en- 
kephalin and Leu-enkephalin are found in fibres in the dorsal motor nucleus 
of the vagus and the nucleus ambiguus and in fibres and cell bodies in the 
nucleus of  the solitary tract (Elde et al. 1976; H6kfelt et al. 1977; Simantov 
et al. 1977; Watson et al. 1977; Sar et al. 1978). Met-enkephalin has also been 
identified in cell bodies and fibres of  the area postrema (Newton et al. 1983), 
dynorphin A and B in the nucleus of the solitary tract (Watson et al. 1977). 
Dynorphin B immunoreactive cell bodies are present in the central 
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amygdaloid nucleus and the dorsomedial, lateral and anterior nuclei of the 
hypothalamus (Weber and Barchas 1983). In the raphe nuclei, enkephalin-like 
immunoreactivity is found in cell bodies which contain serotonin. The highest 
density of cell bodies that were immunoreactive for enkephalins and serotonin 
are present in the raphe nuclei pallidus and obscurus, followed by the nucleus 
magnus (L6ger et al. 1986). 

10.2 Cardiovascular Effects of Opioids and Related Drugs 

10.2.1 Cerebroventricular System 

In several animal species, intravenous injections of opiates lower blood 
pressure and heart rate. These cardiovascular effects have been attributed to 
a centrally mediated activation of vagal tone and attenuation of sympathetic 
activity (Evans et al. t952; Laubie et al. 1973, 1974). The central administra- 
tion of opiates and endogenous opioids has also been reported to affect blood 
pressure and heart rate, but the cardiovascular effects of these agents much 
depend on several factors, such as properties and dosage of the compound, 
kind of respiration and anaesthesia (Laubie et al. 1973, 1974, 1977 a, b; Florez 
and Mediavilla 1977; Bolme et al. 1978; Schaz et al. 1980; Lang et al. 1982). 

In the anaesthetized dog, the intracisternal injection of opiates leads to a 
fall in blood pressure and bradycardia (Laubie et al. 1974), while fl-endorphin 
(a selective agonist of/2- and ~-opioid receptors) elicits a biphasic effect; an 
initial rise in blood pressure and heart rate is followed by hypotension and 
bradycardia (Laubie et al. t977b). In anaesthetized rats, fl-endorphin, mor- 
phine or the fi-receptor agonist (D-Ala2-Me:)-enkephalinamide (DAME) 
lower blood pressure and heart rate, but Leu-enkephalin, Met-enkephalin and 
a-endorphin lead to vasopressor effects (Bolme et al. 1978). On the other 
hand, in anaesthetized and spontaneously breathing rats low doses of mor- 
phine and DAME have been found to increase blood pressure and heart rate, 
but when high doses of these compounds are applied, the pressor response 
is followed by hypotension and bradycardia. The cardiovascular response 
seems to be dependent on the action of these compounds on respiration, 
because in artificially ventilated rats even high doses of DAME increase blood 
pressure (Bellet et al. 1980). Anaesthesia seems also to interfere with the car- 
diovascular response to centrally applied opioid peptides, because injection of 
DAME into the lateral ventricle of anaesthetized rats lowers blood pressure, 
while in conscious rats the same dose of this enkephalin analogue increases 
blood pressure (Lang et al. 1982). 

The varying cardiovascular effects of opioid-receptor agonists according to 
agent and/or experimental conditions may be due to stimulation of different 
opioid receptors by the various compounds. Indeed, naloxone (affinity to p- 
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receptors/fi-receptors = I0/1) inhibits the pressor response to intraventricular 
injection of the opioid peptide DAME in conscious animals. On the other 
hand, the antagonist diprenorphine (equal affinity to p- and ~-receptors) 
diminishes the depressor response to this analogue in anaesthetized animals, 
while naloxone is ineffective (Schaz et al. 1980; Lang et al. 1982). It seems that 
different receptors mediate the cardiovascular effects of the agonists in 
anaesthetized and conscious animals. 

Laurent and Schmitt (1983) found that stimulation of x-receptors by in- 
tracisternal administration of ethylketocyclazocine or dynorphin lowers blood 
pressure and heart rate in anaesthetized rats. In contrast, stimulation of p- 
(intracisternal injection of fentanyl or ~-endorphin), /t- (intracisternal injec- 
tion of DAME or fl-endorphin) or e- (intracisternal injection of fl-endorphin) 
receptors leads to hypertension and tachycardia. The existence of multiple 
opioid receptors in the medulla oblongata (HOkfelt et al. 1977; Atweh and 
Kuhar 1979) together with the above-mentioned results suggest the involve- 
ment of two opioid systems in cardiovascular control; a depressor system 
which seems to be activated by x-receptor agonists and a pressor system which 
is stimulated by p-, ~, and/or e-receptor agonists. Because of the low selectivi- 
ty of some of the compounds (Paterson et al. 1983), experiments with specific 
opiate receptor agonists and antagonists are necessary for the further 
characterization of the cardiovascular effects mediated by the various recep- 
tor subtypes. 

The baroreceptor reflex is inhibited by opiates. This effect seems to be 
mediated by p-receptors, because baroreceptor sensitivity is reduced by in- 
tracisternal administration of the p-receptor agonists Ty-D-AIa-Gly-MePhe- 
NH(CH2)2NME2 (Petty and Reid 1982a) or D-Ala2-MePhe-Gly(ol) 5 (DAGO) 
(Gordon 1986). Intracisternal administration of the antagonist naloxone was 
found to either increase the baroreceptor reflex sensitivity (Petty and Reid 
1981, 1982a), or to be ineffective (Gordon 1986). Thus, it is still doubtful 
whether endogenous opioids are involved in baroreflex control. Opioids seem 
to be involved in the pathophysiology of shock, because naloxone reduces the 
hypotensive effect of acute haemorrhage (Faden and Holaday 1978; Vargish 
et al. 1980; Schadt and York 1981; Gurll et al. 1982) and reverses the hypoten- 
sion induced by endotoxin (Holaday and Faden 1978; Reynolds et al. 1980) 
or spinal shock (Holaday and Faden 1980). These results are in agreement 
with the observation that controlled bleeding is associated with a rise in Leu- 
enkephalin-like immunoreactivity in the CSF, while the levels of noradrena- 
line and dopamine are decreased (Elam et al. 1984b). More recently, it was 
shown that naloxone does not antagonize either the fall in blood pressure or 
the increase in plasma vasopressin level elicited by stepwise haemorrhage. It 
is probable that naloxone-sensitive opiate receptors are implicated in blood 
pressure maintenance only in profound shock situations (Rockhold et al. 
1986). 
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In anaesthetized, spontaneously breathing rats, the hypertensive effects of 
centrally applied morphine or DAME are abolished by bilateral adrenalec- 
tomy or pentamethonium (Bellet et al. 1980). On the other hand, it has been 
shown that enkephalin in vitro inhibits the release of catecholamines by a 
presynaptic mechanism (Taube et al. 1976). Since injection of noradrenaline 
into the nucleus of the solitary tract lowers blood pressure (however, see Sect. 
3.1.1) it has been proposed that the hypertensive effect of opioids is due to 
a decreased release of noradrenaline in the medullary cardiovascular sites 
(Bellet et al. 1980). 

A localization of the site of action of opiates has been attempted by the 
intravenous injection of fentanyl in intact dogs, as well as after lesion of the 
lateral reticular nucleus of the ventrolateral medulla. The lesion abolishes the 
fall in blood pressure and heart rate elicited by fentanyl. Likewise, the car- 
diovascular effects of fentanyl are reduced on microinfusion of naloxone into 
the lateral reticular nucleus (Laubie and Schmitt 1983). 

Similar results have been obtained by Wong et al. (1984) with centrally ap- 
plied DAME. In anaesthetized rats, intracerebroventricular injection of 
DAME elicits a fall in blood pressure which is antagonized by naloxone. The 
vasodepressor response to DAME is also diminished by bilateral lesions of the 
gigantocellular reticular nucleus. At high doses (approximately ten times 
higher than those needed to elicit a fall in blood pressure), DAME leads to 
a consistent hypertension which is not affected either by naloxone or by le- 
sions of the gigantocellular reticular nucleus (Wong et al. 1984). These find- 
ings, together with those of Laubie and Schmitt (1983), indicate that struc- 
tures of the ventral medulla are important for the cardiovascular effects of 
opiates and opioids. 

10.2.2 Brainstem 

To investigate the role of the various opioid receptors in cardiovascular 
regulation, specific agonists of p- (DAGO), 5- (D-Ala2-D-LeuS-enkephalin; 
DADLE) and so-receptors (MRZ 2549; 5,9-dimethyl-2-hydroxy-2-(2-methoxy- 
propyl)-6,7-benzomorphan) were used. 

In order to avoid respiratory depression that might interfere with the car- 
diovascular effects of opioid receptor agonists, anaesthetized rats were ar- 
tificially ventilated. Injections of these agonists into the nucleus of the 
solitary tract or the nucleus ambiguus revealed that in both nuclei p- and 5- 
receptors mediate pressor responses and tachycardia. K-Receptors mediate 
cardioacceleration in the nucleus of the solitary tract, but decrease blood 
pressure in the nucleus ambiguus (Hassen et al. 1983). In spontaneously 
respiring rats low doses of opioids are ineffective, while high doses lower 
blood pressure without influencing heart rate (Hassen et al. 1984). Injection 
of the p- and 5-opiate receptor agonist fl-endorphin into the nucleus of the 
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solitary tract of anaesthetized, non-ventilated rats also lowers blood pressure 
and heart rate (De Jong et al. 1983), while injection of the selective x-opiate 
receptor agonist trans-3,4-dichloro-N-methyl-N-[2-(l-pyrrolidinyl)-cyclohex- 
yl]-benzeneacetamide (U 50488H) leads to a rise in blood pressure and mild 
bradycardia (Carter and Lightman 1985). Hence, in the brainstem several fac- 
tors also influence the cardiovascular effects of opioids. 

Injection of the 5-receptor agonists DADLE or DAME into the caudal ven- 
trolateral medulla also increases blood pressure and heart rate. Atropine in- 
jected into the rostral ventrolateral medulla decreases blood pressure and 
abolishes these cardiovascular effects, suggesting that they are mediated by 
cholinergic mechanisms located in the rostral ventrolateral medulla. The car- 
diovascular effects due to stimulation of 5-receptors of the caudal ven- 
trolateral medulla are inhibited by intravenous injection of phentolamine; this 
indicates activation of the sympathetic outflow (Willette et al. 1984b; Punnen 
and Sapru 1985). In contrast to this, stimulation by DAME of 5-receptors of 
the rostral ventrolateral medulla lowers blood pressure and heart rate (Laubie 
and Schmitt 1983; Punnen et al. 1984) and reduces the pressor response to 
carotid occlusion (Punnen et al. 1984). Hence, stimulation of 5-receptors of 
the caudal ventrolateral medulla increases blood pressure and heart rate and 
enhances the pressor response to carotid occlusion, while stimulation of 5-re- 
ceptors of the rostral ventrolateral medulla exerts the opposite effects. 

10.2.3 Hypothalamus 

In anaesthetized rats, microinjection of the p-opiate receptor agonist DAGO 
into the medial preoptic area of the hypothalamus leads to a fall in blood 
pressure and tachycardia. The 5-receptor agonist DADLE also lowers blood 
pressure and increases heart rate but at much higher doses than those of 
DAGO. Thus, p- rather than 5-receptors of the hypothalamus mediate the 
cardiovascular effects of opioids (Faden and Feuerstein 1983). In this area the 
pattern of the cardiovascular changes to stimulation of opioid receptors 
seems also to depend on anaesthesia because in conscious rats the opposite 
effects have been observed (Pfeiffer et al. 1983 a, b); the intrahypothalamic 
administration of DAGO increases blood pressure and decreases heart rate. 
The hypothalamus seems to possess abundant p-binding sites (Goodman et 
al. 1980; Duka et al. 1981; Moskowitz and Goodman 1984), but extremely low 
densities of binding sites have also been reported (Quirion et al. 1983; Man- 
sour et al. 1986). The cardiovascular effects of the p-receptor agonist DAGO 
in conscious animals are associated with increases in the plasma levels of cate- 
cholamines which suggest involvement of sympathoadrenomedullary path- 
ways (Pfeiffer et al. 1983b; Appel et al. 1986; Kiritsy-Roy et al. 1986). It seems 
that stimulation of p-receptors activates the sympathetic system, thus leading 
to changes in blood pressure and heart rate. 
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10.30pioids in Genetic Hypertension 

Dynorphin-(1- 13)-like immunoreactivity is decreased in the hypothalamus 
and pituitary gland of SHR (Kouchich et al. t984), while enkephalin levels 
and Met-enkephalin binding sites seem to be reduced in the lateral reticular 
nucleus of 4-week-old SHR (Nakamura et al. 1984). On the other hand, a 
selective increase of x-opioid receptors in the hypothalamus of SHR was 
recently reported (Bhargava and Das 1986). x-Binding sites are present in 
various hypothalamic nuclei (Morris and Herz 1986). 

In this connection interactions between opioids and vasopressin are 
noteworthy. Several investigators have observed that in normotensive animals 
the release of vasopressin is inhibited by opioid peptides (Van Wimersma et 
al. 1979; Knepel et al. 1980, 1982a, b; Summy-Long et al. 1981). In adult 
(17-week-old) SHR, but not in normotensive WKY rats, naloxone increases 
the vasopressin level in plasma. Thus, endogenous opioids seem to decrease 
the release of vasopressin in SHR (Rosella-Dampman et al. 1985). 

11 Substance P 

11.1 Mapping of Substance P-Containing Neurons 

Substance P-like immunoreactivity is present in cell bodies and fibres located 
in the amygdaloid complex, in various hypothalamic areas (anterior, medial 
and posterior hypothalamus) and the thalamus. In the medulla oblongata, 
cell bodies and fibres which contain substance P immunoreactivity are pre- 
sent in various raphe nuclei and the lateral reticular nucleus (Ljungdahl et al. 
1978; Cuello and Kanazawa 1978). 

Substance P-like immunoreactivity has also been found in the dorsal vagal 
complex and in the area postrema (Armstrong et al. 1982b), as well as in the 
nucleus of the solitary tract (Ljungdahl et al. 1978; Cuello and Kanazawa 
1978; Gillis et al. 1980; Helke et al. 1980c; Veening et al. 1984). In the latter 
nucleus, the dorsal and dorso-lateral subnuclei which receive baroreceptor 
and chemoreceptor afferents possess substance P-immunoreactive nerve ter- 
minals. 

The innervation of the nucleus of the solitary tract with substance P ter- 
minals derives partially from primary afferent fibres in the glossopharyngeal 
and vagus nerves (Gillis et al. 1980; Helke et al. 1980c; Kalia et al. 1984). In 
the caudal part of the nucleus of the solitary tract, synaptic contacts of sub- 
stance P-immunoreactive axon terminals with catecholaminergic neurons of 
the cell group A1 were observed (Kubota et al. 1985). Substance P was also 
detected in the ventrolateral medulla and in at least some of the PNMT- 
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immunoreactive cell bodies of the adrenaline-containing C1 cell group of this 
area (Lorenz et al. 1985; Pilowsky et al. 1986b). Substance P cell bodies from 
the ventral medulla project to the intermediolateral cell columns of the spinal 
cord (Helke et al. 1982). 

11.2 Cardiovascular Effects of Substance P and Related Drugs 

11.2.1 Cerebroventricular System 

Intravenous injection of substance P lowers blood pressure. In anaesthetized 
and conscious rats administration of substance P to the lateral ventricle in- 
creases blood pressure (Haeusler and Osterwalder 1980, Fuxe et al. 1980b; 
Petty and Reid 1981; Unger et al. 1981) and heart rate (Haeusler and Oster- 
walder 1980; Fuxe et al. 1980b), while the pressor response is associated with 
bradycardia when substance P is injected into the cisterna magna of 
anaesthetized rabbits (Petty and Reid 1981, 1982b). The pressor response to 
substance P is reversed to a fall in blood pressure after blockade of peripheral 
a~-adrenoreceptors by prazosin, while the antagonist of vasopressin receptors 
[1-(fl-mercapto-fl, fl-cyclopentamethylenepropionic acid), 4-valine-D-arginine] 
(DVAP) is ineffective. Moreover, centrally applied substance P increases nor- 
adrenaline and adrenaline levels in the plasma without influencing the plasma 
level of arginine-vasopressin. Hence, the pressor response to substance P 
seems to be mediated by the sympathetic nervous system without participa- 
tion of vasopressin (Unger et al. 1981). Central cholinergic pathways also 
seem to be of importance for the pressor response to substance P, because in- 
tracerebroventricular administration of hemicholinium-3, hexamethonium or 
atropine attenuates the rise in blood pressure elicited by the peptide (Trimar- 
chi et al. 1986). 

The pressor response, but not the tachycardia elicited by substance P is 
diminished by intracerebroventricular administration of the GABA-receptor 
agonist muscimol (Unger et al. 1986). A similar dissociation of the two car- 
diovascular effects of substance P has been previously described by Fuxe et 
al. (1982b), who observed that the substance P-receptor antagonist [D- 
Pro2,D-PheT,D-Trp9]Sp inhibits the rise in blood pressure caused by sub- 
stance P without affecting its tachycardic effect. 

1L2.2 Brainstem 

Injections of kainic acid into the ventrolateral medulla of the rat lead to a rise 
in blood pressure which is associated with an increased release of substance 
P in the superfused spinal cord (Takano et al. 1984). Capsaicin releases sub- 
stance P from terminals of primary sensory neurons (Gamse et al. 1979). 
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Applied to the exposed ventral surface of the rat medulla, capsaicin also in- 
creases blood pressure without influencing the heart rate. The area more sen- 
sitive to capsaicin seems to be the "chemosensitive area S" of the rostral ven- 
trolateral medulla (Jancs6 and Such 1985). It should be remembered that sub- 
stance P may not be specific. Subcutaneous injections of capsaicin not only 
diminish the concentration of substance P in the spinal cord, but also increase 
noradrenaline and serotonin levels (Virus et al. 1983). 

Since the nucleus of the solitary tract is densely innervated with substance 
P-immunoreactive nerve terminals which originate from primary afferent 
fibres in the glossopharyngeal and vagus nerves (see Sect. 1 I. 1), it seems likely 
that, in this nucleus, the peptide is involved in transmission of the barorecep- 
tor reflex. Unfortunately, the existing results are rather conflicting. It was 
found that in rats and cats substance P applied to the nucleus of the solitary 
tract lowers blood pressure and heart rate, while the vehicle is ineffective 
(Haeusler and Osterwalder 1980). Moreover, capsaicin elicits cardiovascular 
effects identical with those of substance P (Haeuster and Osterwalder 1980). 
These results suggest the neuromodulatory role of substance P at the first 
synapse of the baroreceptor reflex in the nucleus of the solitary tract. On the 
other hand, Talman and Reis (1981), as well as Carter and Lightman (1983), 
found substance P to be ineffective when microinjected into the nucleus of 
the solitary tract in untreated rats, while the peptide increased blood pressure 
in animals pretreated with capsaicin. The latter finding has been interpreted 
as indicating the involvement of substance P of this region in cardiovascular 
control (Carter and Lightman 1983), but destruction by capsaicin of primary 
spinal and medullary substance P afferents neither changes blood pressure, 
nor influences baroreflex function (Lorez et al. 1983). It is still doubtful 
whether substance P neurons are implicated in central cardiovascular regula- 
tion. 

12 Neuropeptide Y 

12.1 Mapping of Neuropeptide Y-Containing Neurons 

The neuropeptide Y is widely distributed in the brain. Neuropeptide Y-like im- 
munoreactivity is found in fibres and cell bodies located in the hypothalamus, 
the cortex, the hippocampus, the preoptic region and in various amygdaloid 
nuclei (Vincent et al. 1982; Chronwall et al. 1984; Allen et al. 1984; Nakagawa 
et al. 1985; Bai et al. 1985; Gray and Morley 1986; Ueda et al. 1986). The 
hypothalamus contains a high concentration of neuropeptide Y. 

In the dorsal medulla, neuropeptide Y-like immunoreactivity has been 
shown in the nucleus of the solitary tract (Uhl et al. 1977; Jennes et al. 1982; 
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Kalia et al. t984). Almost all adrenaline-containing neurons of the medial 
part of the nucleus of the solitary tract also contain neuropeptide Y-like im- 
munoreactivity, while the noradrenergic cell bodies (A2) do not. Several neu- 
ropeptide-immunoreactive cell bodies are also present which do not contain 
catecholamines. Neuropeptide Y-like immunoreactivity is also found in the 
noradrenaline cell bodies of the locus coeruleus (A6), but neither in the sub- 
coeruleus group, nor in the noradrenergic cell bodies of the groups A 5 and 
A7. 

In the ventrolateral medulla oblongata, neuropeptide Y-like immunoreac- 
tivity is present in most catecholamine-containing bodies of the A 1 and C2 
cell groups (Everitt et al. 1984). Neuropeptide Y-immunoreactive fibres are 
also present within the dorsal motor nucleus of the vagus and the nucleus of 
the solitary tract. The nerve terminals of the nucleus of the solitary tract 
originate partly from cell bodies located in the dorsomedial region of the 
hypothalamus (Gray and Morley 1986), while neuropeptide-containing neu- 
rons of the nucleus of the solitary tract innervate the parabrachial nucleus 
(Mantyh and Hunt 1984). In the rat, an arcuatoparaventricular system of neu- 
ropeptide Y neurons exists, which seems to lack noradrenaline (Bai et al. 
1985). 

12.2 Cardiovascular Effects of Centrally Applied Neuropeptide Y 

In rats, neuropeptide Y injected intracisternally lowers blood pressure without 
influencing heart rate (Fuxe et al. 1983b). The cardiovascular effects of in- 
tracisternally applied neuropeptide Y are not influenced by central ad- 
ministration of the a2-adrenoreceptor antagonist idasoxan (H~irfstrand et al. 
1984). 

Injection of the peptide into the nucleus of the solitary tract changes blood 
pressure in a dose-dependent way; a low dose (470 fmol) increases blood 
pressure, while a dose ten times higher elicits a depressor response. Further- 
more, an ineffective dose of neuropeptide Y reverses the hypotensive effect of 
a low dose (20 nmol) of noradrenaline injected into this nucleus, thus eliciting 
a pressor response similar to that caused by a high dose (100 nmol) of the 
amine (Carter et al. 1985). In this nucleus, a high density of neuropeptide Y 
binding sites has been demonstrated (H~irfstrand et al. 1986). 

Injection of neuropeptide Y into the third ventricle, however, leads to a rise 
in blood pressure and heart rate. 

Neuropeptide Y is still able to increase blood pressure in rats pretreated 
with 6-OHDA. Apparently, release of catecholamines is not essential for the 
activity of the peptide. However, 6-OHDA prolongs the rise in blood pressure 
elicited by neuropeptide Y. It seems possible that the prolonged duration of 
the peptide action after 6-OHDA treatment is due to the denervation super- 
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sensitivity of adrenoreceptors (Vallejo and Lightman 1986). Indeed, in vitro 
experiments revealed that neuropeptide Y increases the number of 
az-adrenoreceptors in the CNS (Agnati et al. ! 983). Nevertheless, other neu- 
rotransmitters are also involved in the cardiovascular effects elicited by central 
application of neuropeptide Y. Injection of the peptide into the posterior hy- 
pothalamic nucleus of rats leads to a dose-dependent pressor response which 
is inhibited by the H l-receptor antagonist chlorpheniramine, but not by the 
H 2-antagonist cimetidine. The pressor response is also decreased by atropine 
injected into the posterior hypothalamic nucleus, indicating that histaminer- 
gic (H l-mediated) and cholinergic neuronal pathways are involved in the rise 
in blood pressure caused by neuropeptide Y (Martin et al. 1988). 

12.3 Neuropeptide Y in Experimental and Genetic Hypertension 

Renal hypertension does not seem to influence the neuropeptide Y level in the 
brainstem of rats (Allen et al. 1986), but differences have been observed in 
brain areas of SHR. In most hypothalamic areas, increased neuropeptide Y 
levels have been found but not in the lateral preoptic area, in which the neuro- 
peptide Y concentration is decreased. Similarly, the level of neuropeptide Y 
is decreased in the locus coeruleus (Maccarrone et al. 1986). 

13 Neurotensin 

13.1 Mapping of Neurotensin-Containing Neurons 

Neurotensin immunofluorescence is present throughout the CNS of the rat. 
Cell bodies with intense fluorescence occur in several hypothalamic areas, the 
amygdaloid complex, the locus coeruleus and the dorsal raphe nucleus. Fibres 
with dense fluorescence are present in the ventral surface of the hypothalamus 
and the preoptic area (Uhl et al. 1977, 1979). In the arcuate nucleus, dopamine 
neurons show neurotensin immunoreactivity. Neurotensin-like immunoreactivi- 
ty has also been described in adrenaline and noradrenaline cell bodies of the 
nucleus of the solitary tract (H6kfelt et al. 1984b). Neurotensin-containing 
fibres are present throughout the nucleus, while some fibres are located in the 
dorsal motor nucleus of the vagus (Uhl et al. 1977; HOkfelt et al. 1984b). 

13.2 Cardiovascular Effects of Centrally Applied Neurotensin 

In conscious rats, the intracerebroventricular injection of neurotensin in- 
creases blood pressure (Sumners et al. 1982). In anaesthetized and conscious 
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rats decreases in blood pressure have also been reported, but the volumes in- 
jected intracerebroventricularly were too large for this animal species (Rioux 
et al. 1981). The neurotensin-induced rise in blood pressure is diminished by 
al-(prazosin) or aa-adrenoreceptor (yohimbine) antagonists, suggesting the 
involvement of central catecholamine neurons (Sumners et al. 1982). 

14 Atrial Natriuretic Factor 

14.1 Mapping of Atrial Natriuretic Factor-Containing Neurons 

Immunoreactive atrial natriuretic factor-positive cell bodies have been iden- 
tified in the central and medial amygdaloid nuclei, the base of the 
hypothalamus, the mamillary body and the ventral parabrachial nucleus, A 
few cell bodies have been observed in the nucleus of the solitary tract. Nerve 
fibres are present in those areas in which cell bodies are found. A high density 
of nerve fibres is present in the anterior-ventral third ventricle (Skofitsch et 
al. 1985). The concentration of  the atrial natriuretic factor in the rat hypotha- 
lamus in roughly one-tenth of that in rat atria (Tanaka et al. 1984). 

14.2 Cardiovascular Effects of  Centrally Applied Atrial Natriuretic Factor; 
Atrial Natriuretic Factor in Genetic Hypertension 

When synthetic a-human natriuretic peptide is injected into the cerebroven- 
tricular system of rats, it affects neither blood pressure nor heart rate (Lappe 
et al. 1986; Shimizu et al. 1986), but does attenuate the pressor response to 
centrally administered angiotensin II. Atrial natriuretic factor also enhances 
the depressor response to intracerebroventricular injection of the angiotensin- 
receptor antagonist saralasin (Shimizu et al. 1986). It seems, therefore, that 
an antagonism exists between angiotensin and the atrial natriuretic factor in 
the brain. Indeed, is has been found that the subfornical organ possesses 
binding sites for the atrial natriuretic factor (Quirion et al. 1984); the number 
of binding sites for atrial natriuretic factor (McCarty and Plunkett 1986) and 
rat atrial natriuretic peptide, which closely resembles atrial natriuretic factor 
(Saavedra et al. 1986), is decreased in the subfornical organ of young and 
adult SHR, while the binding sites for angiotensin II are increased in this 
structure (see Sect. 9.3). Recently, it has been reported that the level of  atrial 
natriuretic factor is increased in the hypothalamus and ports of  SHR (Imada 
et al. 1985). 



80 

15 General Conclusions 

A. Philippu 

The main bulk of  information concerning central cardiovascular effects of  
drugs has been obtained from anaesthetized animals. Since anaesthesia 
reverses the cardiovascular effects of  many centrally applied neurotransmit- 
ters and drugs, it is difficult to evaluate the pattern of blood pressure changes 
which are elicited by endogenously released neurotransmitters in conscious 
animals. For example in the conscious rat, noradrenaline and adrenaline in- 
crease blood pressure when applied centrally, as do drugs which stimulate 
a-adrenoreceptors. Even clonidine, which may also act on separate im- 
idazoline-receptors, elicits a pressor response when centrally administered in 
the rat. A re-examination of  the cardiovascular effects of  agonists and an- 
tagonists of various neurotransmitter and neuropeptide receptors in con-  

sc ious  animals is necessary for a precise idea of  the functions of  the released 
substances. 

15.1 Brainstem 

There is no doubt that catecholaminergic neurons play a predominant role in 
the brainstem. Furthermore, central cardiovascular effects of  several neuro- 
transmitters and neuropeptides are mediated through catecholaminergic 
neurons. However, the involvement of  catecholaminergic neurons of  the ven- 
trolateral medulla in cardiovascular control is not certain. Although 
glutamatergic and GABAergic neurons seem to be involved in the barorecep- 
tor reflex, the nature of  the inhibitory neurotransmitter of  neurons connect- 
ing the nucleus of  the solitary tract with the ventrolateral medulla remains to 
be clarified. Catecholaminergic neurons of  the nucleus of  the solitary tract 
also seem to be implicated in the baroreceptor reflex. Direct determination of  
the release rates of  catecholamines revealed that noradrenaline and adrenaline 
may lead to pressor responses when released in this area. 

Changes in blood pressure also alter the activity of catecholaminergic 
neurons of  the locus coeruleus, which influence the release of  angiotensin in 
the hypothalamus. Serotoninergic neurons of the raphe nuclei also seem to be 
involved in cardiovascular regulation, because the release of  the serotonin 
metabolite 5-HIAA in the dorsal raphe nucleus is altered by experimentally 
induced blood pressure changes. 

The cardiovascular effects of  angiotensin applied to the nucleus of  the 
solitary tract seem to be mediated by cholinergic neurons. Neurons containing 
neuropeptides, as well as receptors of  several neuropeptides are present in the 
brainstem. The co-localization of neurotransmitters and neuropeptides in 
brainstem neurons which are involved in cardiovascular regulation is indirect 
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evidence for the importance of neuropeptides in central cardiovascular con- 
trol. It remains to be clarified whether the release of endogenous peptides in- 
fluences the cardiovascular system. 

15.2 Hypothalamus 

Catecholaminergic neurons of the hypothalamus seem to be responsible for 
pressor and depressor responses elicited by the posterior and anterior 
hypothalamus, respectively. Moreover, experimentally induced blood pressure 
changes alter the release rates of catecholamines, thus demonstrating the 
homoeostatic function of catecholaminergic neurons. The pressor response to 
release of catecholamines may be mediated by angiotensin. Histaminergic 
neurons may also be involved, although their role in cardiovascular control 
is still obscure. 

Serotoninergic nerve terminals of the anterior hypothalamus/preoptic area 
originate from cell bodies located in raphe nuclei. Release of serotonin in the 
hypothalamus increases blood pressure, probably by inhibiting the release of 
catecholamines in this area. Endogenously released acetylcholine or 
acetylcholine exogenously applied to the hypothalamus increase blood 
pressure, enhance the pressor response to hypothalamic stimulation and in- 
crease the rise in blood pressure elicited by carotid occlusion. The car- 
diovascular effects of acetylcholine are mediated through central catechol- 
aminergic pathways, because they are inhibited by fl-adrenoreceptor blocking 
agents. However, GABAergic systems of the hypothalamus lower blood 
pressure and suppress vagal reflex bradycardia. As in the brainstem, several 
neuronal transmitters and peptides in the hypothalamus are involved in the 
homoeostasis of blood pressure. 

15.3 Hypertension 

Although remarkable changes in catecholamine concentrations and/or turn- 
over rates have been described in genetic and experimental hypertension, the 
results greatly differ from each other, thus rendering difficult clear-cut con- 
clusions. 

Besides these alterations in catecholaminergic neurons, concentration 
changes of several other neurotransmitters and neuropeptides in brain areas 
of SHR have been reported in recent years. Results are summarized in Table 9. 
It is of interest to note that in the hypothalamus of hypertensive animals, con- 
centrations are increased of mainly those neurotransmitters and neuropep- 
tides which, when exogenously administered to this brain region, increase 
blood pressure. An exception to this seems to be acetylcholine which is de- 
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Table 9. Neurotransmitter and neuropeptide changes in brain areas of spontaneously hyperten- 
sive rats 

Transmitter Brain area Concentration Turnover Release References 
or peptide 

Serotonin Hypothalamus Increase Koulu et al. (1986b, c) 
Histamine Hypothalamus Increase Decrease Corr~a and Saavedra 

(1981), Oishi et al. 
(t985) 

Histamine Posterior 
hypothalamus Increase Tuomisto et al. (t983) 

GABA Hypothalamus Decrease Hambley et al. (1984) 
Posterior 
hypothalamus No change Tuomisto et al. (1983) 

Acetyl- Hypothalamus Decrease Helke et al. (1980a) 
choline LC Increase 
Angiotensin Hypothalamus Increase Weyhenmeyer and 

Phillips (1982) 
Dynorphin Hypothalamus Decrease Kouchich et al. (1984) 
Enkephalin LRN Decrease Nakamura et al. 

(1984) 
Neuropep- Hypothalamus Increase Maccarrone et al. 
tide Y LPA, LC Decrease (1986) 
ANF Hypothalamus, Increase Imada et al. (1985) 

ports 

LC, Locus coeruleus; LRN, lateral reticular nucleus; LPA, lateral preoptic area; ANF, atrial 
natriuretic factor 

creased in the hypothalamus of  SHR. The concentration of GABA, which 
lowers blood pressure, is decreased, at least in adult animals. 

Changes in the concentration of  neurotransmitters and neuropeptides are 
mediocre criteria for what really happens in neurons and their biophases, 
because concentration changes may be the result of  altered biosynthesis, 
release, uptake or inactivation rates. Thus, the only possible conclusion is that 
in areas which are involved in central cardiovascular regulation profound 
changes in the activities of many neurotransmitters and neuropeptides occur. 
The reason for the concentration alterations, as well as the causal relation- 
ships between changed neuronal activities on the one hand, and development 
and/or maintenance of  hypertension on the other hand, remain to be clari- 
fied. 
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1 Introduction 

Activation of the sympathetic nervous system leads to the release of 
epinephrine and norepinephrine from the adrenal medulla into the blood 
stream and of norepinephrine from adrenergic nerve endings throughout the 
body. The effects of these catecholamines are widespread and are mediated 
by four subtypes of adrenergic receptors. Two of these receptor subtypes (ill 
and f12) are stimulatory to adenylate cyclase, and the physiological responses 
resulting from their activation are generally attributable to an increase in 
cellular cAMP and phosphorylation of specific proteins by cAMP-dependent 
protein kinase (Fig. 1). The other two receptors (al and a2) mediate quite dif- 
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Fig. 1. Mechanisms by which a z- 
and/~-adrenergic agonists produce 
their physiological responses. 
a 2 R, a2-adrenergic receptor; 
fl R, fl~- or/~2-adrenergic recep- 
tor; G i, the inhibitory G-protein 
of adenylate cyclase; 
Gs, the stimulatory G-protein of 
adenylate cyclase; A d  Cycl, the 
catalytic moiety of adenylate 
cyclase; R, the regulatory subunit 
dimer of cAMP-dependent protein 
kinase; C, the catalytic subunit of 
cAMP-dependent protein kinase 
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ferent responses, a2-Adrenergic receptors are located pre- and post-junc- 
tionally, i.e., on the terminal noradrenergic axon and also on some of the ef- 
fector cells which are the targets for the released norepinephrine. The function 
of the presynaptic az-adrenergic receptors is to mediate feedback inhibition 
of  norepinephrine release, whereas the postsynaptic az-adrenergic receptors 
mediate such catecholamine responses as platelet aggregation and inhibition 
of  pancreatic insulin secretion and of adipose tissue lipolysis. Activation of 
postsynaptie az-adrenergic receptors results in inhibition of adenytate cyclase 
(Fig. 1), although it is likely that other mechanisms are involved, since not all 
of  the responses can be attributed to a decline in cAME For example, in 
platelets, there is evidence for activation of phospholipase A2, and in neuro- 
blastoma-glioma hybrid cells, there is stimulation of N a + / H  + exchange. 

Activation of a~-adrenergic receptors is linked to an increase in the activity 
of a phospholipase C that catalyzes the breakdown of polyphosphoinositides 
in the plasma membrane with the generation of two intracellular messages, 
namely myoinositol 1,4,5-P3 (IP3) and 1,2-diacylglycerol (DAG) (Fig. 2). The 
function of IP3 is to release C a  2+ from intracellular stores, which are proba- 
bly located in the endoplasmic reticulum, thereby raising cytosolic Ca 2+ and 
altering the activity of Ca2+-calmodulin-dependent protein kinases and 
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Fig. 2. Mechanisms by which 
aradrenergic and other 
caa÷-mobilizing agonists produce 
their physiological responses. 
P I P  2, phosphatidylinositol 4,5-P2; 
DAG, 1,2-diacylglycerol; 
IP  3, myoinositol 1,4,5-P3; 
ER, endoplasmic reticulum; 
Cam, calmodulin 

other proteins (Fig. 2), whereas the function of DAG is to activate a 
Ca2+-phospholipid-dependent protein kinase (protein kinase C). Although 
activation of phospholipase C is the major response of most cells to 
al-adrenergic stimulation, some cells also exhibit activation of phospholi- 
pase Aa with production of eicosanoids from the arachidonic acid released. 
In some tissues, stimulation of aradrenergic receptors also leads to changes 
in cyclic nucleotides, but the mechanism(s) involved are unclear. 

The coupling of fl- and a2-adrenergic receptors to adenylate cyclase in- 
volves guanine nucleotide-binding regulatory proteins or G-proteins, termed 
G~ and Gi, which have a heterotrimeric (apy) subunit structure and are 
stimulatory and inhibitory to adenylate cyclase respectively (Fig. 1). The 
coupling of al-adrenergic receptors and other receptors for Ca2÷-mobilizing 
agonists to the phospholipase C catalyzing polyphosphoinositide breakdown 
also involves a G-protein (Fig. 2). This is designated Gp, although it has not 
yet been identified. 

a~-Adrenergic receptors are located in many tissues throughout the body 
and mediate many responses to catecholamines (Table 1). An important 
a~-adrenergic response is the contraction of smooth muscle in blood vessels 
and other tissues such as the uterus, the ureter, and the iris. Other effects are 
the relaxation of gastrointestinal smooth muscle, secretion of watery saliva, 
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Table 1. al-Adrenergic target tissues and responses 

121 

Tissue Response 

Smooth muscle (vascular, iris, pilomotor, Contraction 
uterus, ureter, trigone, gastrointestinal 
and bladder sphincters) 

Smooth muscle (gastrointestinal) 
Liver 

Heart 
Salivary glands 
Adipose tissue (brown) 
Sweat glands (localized) 
Kidney (proximal tubule) 
Brain 

Relaxation 
Glycogenolysis, gluconeogenesis, 

ureogenesis, K + fluxes 
Increased force, glycolysis 
Secretion (K +, H20 ) 
Thermogenesis 
Secretion 
Gluconeogenesis, Na + reabsorption 
Neurotransmission 

and neurotransmission in certain parts of the central nervous system. Activa- 
tion of al-adrenergic receptors can also increase glycogen breakdown and 
gluconeogenesis in liver and the force of contraction in heart, although these 
responses can atso be elicited by activation of fl-adrenergic receptors. 

Synthetic analogues of the natural catecholamines such as phenylephrine 
and methoxamine are able to activate al-adrenergic receptors, and the activa- 
tion of these receptors can be blocked by ergot alkaloids and synthetic an- 
tagonists such as prazosin, phentolamine, phenoxybenzamine, and tolazoline, 
the most specific of which is prazosin. These and other agonists and an- 
tagonists are used to define whether or not a given catecholamine response 
is mediated by aradrenergic receptors. When radioactively labeled, the 
agonists and antagonists can also be employed to identify and characterize 
these receptors. Since many aradrenergic agonists and antagonists are non- 
selective, e.g., epinephrine and dihydroergocryptine, they are usually used in 
combination with antagonists to other adrenergic receptors in order to 
enhance specificity. 

2 The arAdrenergic Receptor 

2.1 Characterization and Purification of al-Adrenergic Receptors 

Radioactive ligands employed to identify the al-adrenergic receptor include 
[3H]prazosin, epinephrine, norepinephrine, dihydroergocryptine, phenoxy- 
benzamine, and WB-4101, and some analogues of prazosin, namely 
[mI]HEAT (also called BE-2254), CP65,526, CP63,789, A55453, and 
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ADPQ. Using these ligands, al-adrenergic receptors have been identified in 
brain (cerebral cortex, hippocampus, corpus striatum, hypothalamus, thala- 
mus, caudate nucleus, pons), lung, liver, kidney, heart, uterus, iris, adipose 
tissue, vas deferens, salivary glands, and certain blood vessels (Bylund and 
U'Prichard 1983; Graham and Lanier 1986). Studies in a variety of tissues 
have indicated that a~-adrenergic receptors differ in their pharmacological 
properties (for references, see Flavahan and Vanhoutte 1986; Morrow and 
Creese 1986; Johnson and Minneman 1987), and it has been proposed that 
there are receptor subtypes, termed a~A and alB (Morrow and Creese 1986). 
Both bind [3H]prazosin and catecholamines with equal affinity, but one 
(aln) has a higher affinity for phentolamine and phenylephrine. This type 
binds [3H]WB4101 in the subnanomolar range, whereas the other (a~B) has 
an affinity for this ligand in the micromolar range and is therefore not usually 
detected (Morrow and Creese 1986). There is a wide variation in the ratios be- 
tween the two subtypes in various tissues, and some tissues appear to have on- 
ly one of the subtypes. Similar findings have been reported by Han et al. 
(1987) using [I25I]BE 2254. As described in Sec. 3.4, it has been proposed 
that the a~A receptor subtype mediates Ca z+ influx into cells, whereas the am 
subtype mediates mobilization of internal Ca 2+ . 

Molecular studies of the a~-adrenergic receptor have been largely confined 
to rat liver and smooth muscle cells. Using [~25I]ADPQ as a photoaffinity 
probe to specifically label the al-adrenergic receptor of rat liver plasma 
membranes, a binding subunit of  Mr 78000-85000 has been identified 
(Leeb-Lundberg et al. 1984). In the absence of protease inhibitors, this bind- 
ing subunit becomes less prominent and lower M r species are observed. 
Photoaffinity labeling with another prazosin analogue ([~25I]CP65, 526) also 
identifies a 78-K labeled protein in rat liver membranes which can be similarly 
degraded by endogenous proteases (Seidman et al. 1984; Lynch et al. t986a). 
On the other hand, incubation of the membranes with low concentrations 
(0.5-1 nM) of [3H]phenoxybenzamine has yielded labeled proteins of 80 
and 58 K (Kunos et al. 1983) or 45 K (Guellaen et al. 1982). However, no 
specific precautions were taken to limit proteolysis in these experiments. 
Although evidence was presented that the ligand selectively labeled 
aradrenergic receptors, it is known to interact with other monoaminergic re- 
ceptors. [~25I]ADPQ has been used to label the a~-adrenergic receptor in 
other tissues, e.g., spleen, lung, brain, and aortic smooth muscle cells (Leeb- 
Lundberg et al. 1984). In all cases a 78- to 79-K protein is labeled, but in 
spleen a smaller Mr species is also observed. Radiation inactivation analysis 
carried out in rat liver membranes indicates that the receptor exists as a dimer 
with subunits of  approximately 85 K (Venter et al. 1984b). In summary, these 
observations indicate that the native ligand-binding subunit of  the a~-adren- 
ergic receptor has an Mr of approximately 80000 but is very susceptible to 
proteolysis by endogenous proteases. 
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Several efforts have been made to purify the a~-adrenergic receptor from 
different tissues. Using a prazosin analogue (CP57, 609) linked to agarose, the 
72000-fold purification of a protein which selectively binds [3H]prazosin has 
been achieved in rat liver (Graham et al. 1982). However, this has an Mr of 
only 59000, suggesting proteolytic degradation. Leeb-Lundberg et al. (1985) 
have purified the a~-adrenergic receptor from DDT~MF-2 cells, which are 
derived from vas deferens smooth muscle, using another prazosin analogue, 
A55414, linked to Affi-Gel. The purification was approximately 300-fold and 
the resulting binding subunit had an Mr of 80000. Lomasney et al. (1986) 
have taken the purification further using the prazosin analogue A55453 link- 
ed to Sepharose, followed by chromatography on wheat germ agglutinin- 
agarose and high-performance steric exclusion ligand chromatography. The 
binding subunit again had an Mr of 80000 and a single ligand-binding site. 

Although some studies with monoclonal antibodies have suggested the ex- 
istence of common structure determinants in a~-adrenergic, az-adrenergic, 
and muscarinic cholinergic receptors (Venter et al. 1984a; Shreeve et al. 1985), 
peptide maps of at- and a2-adrenergic receptors reveal little, if any, structural 
homology (Lomasney et al. 1986). a~-Adrenergic receptors adsorb to wheat 
germ lectin-Sepharose and are eluted by N-acetylglucosamine (Meier et al. 
1984; Lomasney et al. 1986) indicating that they contain N-acetylneuraminic 
acid and/or N-acetylglucosamine residues. 

2.2 Regulation of al-Adrenergic Receptors by Guanine Nucleotides 

It is now accepted that al-adrenergic receptors can exist in more than one 
agonist-affinity state and that guanine nucleotides influence the equilibrium 
between these states. There was initially some controversy about this, with 
some workers reporting that agonist binding to these receptors was unaffected 
by GTP and its analogues (Hoffman et al. 1980; Stiles et al. 1983). However, 
many other groups have now observed guanine nucleotide effects of varying 
magnitude in liver, heart, smooth muscle, and kidney (EI-Refai et al. 1979; 
Yamada et al. 1980; Geynet et al. 1980; Snavely and Insel 1982; Goodhardt et 
al. 1982; Boyer et al. 1984; Lynch et al. 1985b; Schwartz et al. 1986a; Terman 
et al. 1987). The probable reason for the discrepancy is provided by the obser- 
vation that addition of proteases, or omission of metal ion chelators or of pro- 
tease inhibitors, leads to extensive proteolysis of the at-adrenergic receptor in 
liver plasma membranes and to an associated loss of guanine nucleotide effects 
on agonist binding (Geynet et al. 1980; Lynch et al. 1985 b, 1986a). Thus, vary- 
ing degrees of proteolytic modification may account for the differences in the 
magnitude of nucleotide effects observed by various groups. 

When endogenous proteases are inhibited, al-adrenergic receptors of rat 
liver plasma membrane exist mainly in a form with high affinity for agonists 
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Fig. 3. Effects of  a GTP analogue (GppNHp) and treatment with islet-activating protein (lAP) 
on binding of epinephrine to aradrenergic receptors in rat liver plasma membranes. 
Epinephrine displacement of  1 nM [3H]prazosin was assayed without (open symbols) or with 
(closed symbols) 0.5 m M  GppNHp (guanyl-5'-yl imidodiphosphate). Treatment with lAP in- 
volved injecting rats with 25 Ixg IAP/100 g body weight 24 h prior to preparation of membranes. 
Triangles refer to IAP-treated rats and circles refer to control rats 

-- K d for (-)epinephrine or (-)norepinephrine of 20 -30  n M -  (Lynch et 
al. 1985b, 1986a). As illustrated in Fig. 3, addition of micromolar or higher 
concentrations of  GTP and its nonhydrolyzable analogues causes the recep- 
tors to change to a form with low agonist affinity - Kd for (-)epinephrine 
or (-)norepinephrine greater than 1/~M. These data are similar to those ob- 
tained with receptors linked positively or negatively to adenylate cyclase, e.g., 
fl- and a2-adrenergic receptors, and provide some of the evidence that a r ad -  
renergic receptors couple to a G-protein. 

In addition to being regulated by guanine nucleotides through a G-protein, 
aradrenergic receptors can be induced to change their agonist affinities by 
temperature shifts. Thus, the aradrenergic agonist affinity of  liver plasma 
membranes or the solubilized receptors is increased approximately 100-fold 
by lowering the temperature from 25 ° or 37°C to 2 ° or 4°C (Schwartz et al. 
1986a, b; Lynch et al. i985b). This is thought to involve a change in the re- 
ceptor per se and may account for some discrepancies between agonist bind- 
ing to liver plasma membranes and intact hepatocytes (Schwartz et al. 1986 b). 

2.3 al-Adrenergic Effects on Cyclic Nucleotides 

Although al-adrenergic receptors are linked to C a  2+ mobilization in most 
tissues, they are also coupled to cAMP accumulation in some tissues. For ex- 
ample, in the livers of aging rats, fl2-adrenergic-mediated cAMP accumula- 
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tion declines whereas al-adrenergic receptor-induced cAMP elevation ap- 
pears (Blair et al. 1979; Morgan et al. 1983a). The al-adrenergic receptor 
responsible for the cAMP response shows much similarity to that mediating 
Ca 2÷ mobilization, but it is more sensitive to phentolamine and WB4101 
(Morgan et al. 1983e) and therefore appears to be of the alA subtype (Mor- 
row and Creese 1986). Calcium depletion of hepatocytes enhances the cAMP 
accumulation elicited by al-adrenergic stimulation (Chan and Exton 1977; 
Morgan et al. 1983a), but the mechanism of the enhancement is unknown. 
The elevation of cAMP induced by al-adrenergic agonists in liver is not 
large, but it probably accounts for reports that these agonists have two 
mechanisms of action in this tissue (Hernandez-Sotomayor et al. 1984; 
Pushpendran et al. 1984; Corvera et al. 1984; Garcia-Sainz and Hernandez- 
Sotomayor 1985). Other CaZ÷-mobilizing agonists do not induce cAMP ac- 
cumulation in calcium-depleted hepatocytes or hepatocytes from aging rats 
(Morgan et al. 1983a). 

Elevation of cAMP in response to a~-adrenergic stimulation has also been 
reported in brain and spinal cord (Perkins and Moore 1973; Schultz and Daly 
1973; Davis et al. 1978; Jones and McKenna 1980; Johnson and Minneman 
1986, 1987). However, there is clear evidence that the a~-receptors linked to 
cAMP accumulation in the brain are different from those coupled to 
phosphoinositide breakdown (Johnson and Minneman 1986, 1987). For ex- 
ample, the alkylating agent chlorethylclonidine inactivates only some of the 
a~-adrenergic binding sites and partially blocks the increases in cAMP 
elicited by norepinephrine, but it does not affect the increases in inositol 
phosphates (Johnson and Minneman 1987). There are also differences be- 
tween the two responses in different regions of the brain. Interestingly, in 
pinealocytes, al-adrenergic stimulation alone does not alter cAMP or cGMP 
levels, but it markedly potentiates fl-adrenergic stimulation of the accumula- 
tion of both nucleotides (Vanacek et al. 1985; Sugden et al. 1986). There is 
evidence that protein kinase C is involved in this potentiation (Sugden et al. 
t985; Ho et al. 1987). 

As noted above, activation of a~-adrenergic receptors leads to an increase 
in cAMP in certain tissues, due apparently to activation of adenylate cyclase. 
There is also evidence that aradrenergic and other Ca 2÷-mobilizing agonists 
can decrease cAMP in liver or heart (Assimacopoulos-Jeannet et al. 1982; 
Morgan et al. 1983 c, d; Buxton and Brunton 1985). Since these agonists also 
inhibit the actions of exogenous cAMP (Assimacopoulos-Jeannet et al. 1982) 
and antagonize forskolin (Morgan et al. 1983d), and since inhibitors of cyclic 
nucleotide phosphodiesterase eliminate the effect in cardiac myocytes (Bux- 
ton and Brunton 1985), the effect appears to be due to activation of cAMP 
phosphodiesterase. A similar action of muscarinic cholinergic agonists has 
been reported (Meeker and Harden 1982; Evans et al. 1985; A.R. Hughes et 
al. 1984; Masters et al. 1984; Erneaux et al. 1985). It has been proposed that 
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the mechanism by which cAMP is decreased by Ca2+-mobilizing agonists 
could involve, in part at least, CaZ÷-calmodulin-activated cyclic nucleotide 
phosphodiesterase (Erneux et al. 1985). 

2.4 a~-Adrenergic Activation of Phospholipase A 2 

Although there is much evidence that a~-adrenergic receptors are linked to a 
polyphosphoinositide phospholipase C (see Sect. 4), an interesting new devel- 
opment is that these receptors can also stimulate arachidonic acid and 
eicosanoid release in pineal glands and in some thyroid and kidney cell lines 
due to the activation of phospholipase A2 (Levine and Moskowitz 1979; 
Burch et al. 1986a, b; Meier et al. 1985; Slivka and Insel 1987; Ho and Klein 
1987). The Madin-Darby cloned renal epithelial (MDCK) cell line expresses 
both a~- and fl-adrenergic receptors, and activation of the a-receptors leads 
to both phosphoinositide breakdown and prostaglandin E2 production 
(Meier et al. 1983, 1985; Slivka and Insel 1987). Likewise, in the FRTL-5 
thyroid cell line, stimulation of a~-adrenergic receptors causes the release of 
arachidonic acid which is metabolized mainly to prostaglandin E2 (Burch et 
al. 1986 a, b). In both cell lines, there is strong evidence that the al-receptors 
are coupled in parallel to both phospholipase C and phospholipase A2 
(Burch et al. 1986a, b; Slivka and Insel 1987). It is clear in the case of the 
FRTL-5 cells that the responses are mediated by different G-proteins, but 
whether or not two receptor subtypes are involved is not yet known. In some 
cells phospholipase A2 activity can be stimulated by phorbol esters via ac- 
tivation of protein kinase C (Parker et al. 1987), but it is not known whether 
this mechanism is involved in agonist stimulation of the phospholipase. 

2.5 Long-term Regulation of a~-Adrenergic Receptors and Responses 

In addition to being altered by aging, aradrenergic responses are influenced 
in the liver and other tissues by thyroid hormones, glucocorticoids, hepatec- 
tomy, cell culture, gender, and chronic exposure to agonists. In the liver, 
thyroidectomy decreases aradrenergic responses but increases fl-adrenergic 
responses (Malbon et al. 1978; Preiksaitis and Kunos 1979; Preiksaitis et al. 
1982; Storm et al. 1984). These alterations are accompanied by corresponding 
changes in the density of a~- and fl-adrenergic receptors (Malbon 1980; 
Preiksaitis et al. 1982; cf. Malbon and Lo Presti 1981). In contrast, hypothy- 
roidism decreases p-adrenergic responses in adipose tissue (Malbon et al. 
1978), apparently because of impaired coupling of the fl-adrenergic receptor 
to Gs (Malbon et al. 1984). However, it does not affect a-adrenergic re- 
sponses in this tissue (Garcia-Sainz and Fain 1980; Garcia-Sainz et al. 1981). 
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Adrenalectomy also alters a- and B-adrenergic responses in liver. There is 
an enhancement of fl-responses which can be attributed to an increased num- 
ber of  fl-adrenergic receptors (Chan et al. 1979; Wolfe et al. 1976; Guellaen 
et al. 1978; Studer and Borle 1984; E1-Refai and Chan 1986). On the other 
hand, a~-adrenergic responses are diminished (Chan et al. 1979; Studer and 
Borle 1984) due to the loss of  high-affinity al-adrenergic receptors (E1-Refai 
and Chan 1986). Interestingly, adrenalectomy also causes an increase in 
a2-adrenergic binding sites (EI-Refai and Chan 1986). 

Hepatectomy causes a marked decrease in aradrenergic responsiveness in 
the liver and an increase in fl-adrenergic responsiveness. This is associated 
with an increase in fl-adrenergic receptors but apparently no change in 
aradrenergic receptors (Huerta-Bahena et al. 1983). There is also a loss of  
responsiveness to vasopressin, angiotensin II, and ionophore A23187, 
although phosphatidylinositol turnover is apparently unchanged (Huerta- 
Bahena and Garcia-Sainz 1983, 1984). These findings suggest that hepatec- 
tomy causes a more general defect in intracellular Ca 2÷ action. 

Primary culture of  rat hepatocytes leads to a gradual loss of a~-adrenergic 
responses and to enhancement of fl2-adrenergic responses (Okajima and Ui 
1982; Itoh et al. 1984; Kunos et al. 1984). These changes are associated with 
a progressive decrease in the ADP-ribosylation of  a 41-K membrane protein 
by islet-activating protein, a Bordetella pertussis toxin (Itoh et al. 1984). The 
changes in this protein, assuming it is Gi, could explain the observed increase 
in fl-adrenergic receptor-mediated cAMP accumulation, but its relationship to 
the loss of al-adrenergic responses is uncertain. Kunos et al. (1984) have ob- 
served no changes in at- and fl-adrenergic receptors during hepatocyte 
culture for 4 h and believe that the altered adrenergic responses are due to in- 
creased phospholipase A2 activity. This conclusion is based on studies with 
two phospholipase-A2 inhibitors (melittin and lipomodulin); however, these 
agents have rather nonspecific effects. 

Livers of female rats display greater fl-adrenergic responses than those of 
male rats (Studer and Borle 1982, 1983; Morgan et al. 1983b) and also show 
different cellular Ca 2÷ responses to epinephrine (Studer and Borle 1982, 
1983). However, the differences in Ca 2÷ fluxes may be partly due to the dif- 
ference in the levels of  cAMP induced by the catecholamine (Morgan et al. 
1983b). 

There have been few studies of the effects of  chronic agonist exposure on 
a~-adrenergic receptors. Incubation of Madin-Darby MDCK-D-1 or aortic 
smooth muscle cells with high concentrations of  epinephrine or norepineph- 
rine for I - 2  days caused an 80% loss of al-adrenergic receptors (Meier et 
al. 1985; Colucci and Alexander 1986). The loss occurred more slowly than 
that of  fl2-adrenergic receptors and was due to a decrease in Bmax without 
change in Kd for epinephrine or norepinephrine. In the case of the smooth 
muscle ceils, there was a complete loss of norepinephrine-stimulated 45Ca2+ 
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efflux, implying an additional postreceptor change (Colucci and Alexander 
1986). Other in vivo studies of the effects of chemical sympathectomy, 
epinephrine treatment, or pheochromocytoma have also given evidence of 
down-regulation of a~-adrenergic receptors (Colucci et al. 1981; Snavely et 
al. 1983). In contrast to the situation with fl-adrenergic receptors, the 
mechanisms by which a~-adrenergic receptors are down-regulated have 
received little attention. In the DDT~MF-2 smooth muscle line, continuous 
exposure to norepinephrine leads to desensitization of phosphoinositide 
hydrolysis (Leeb-Lundberg et al. 1987). This is associated with the loss of cell 
surface a~-adrenergic receptors due to sequestration (Fratelli and DeBlasi 
1987) and phosphorylation of the 80-K binding subunit of the receptor (Leeb- 
Lundberg et al. 1987). A similar phosphorylation is induced by phorbol esters 
and another Ca 2÷ mobilizing agonist (Leeb-Lundberg et al. 1987). The 
phosphorylation is probably mediated by protein kinase C, since this can 
phosphorylate the purified aradrenergic receptor, and the phosphorylation 
is specifically enhanced by agonist occupancy of the receptor (Bouvier et al. 
1987). 

3 Changes in Cell Ca 2÷ Induced by al-Adrenergic and Other Agonists 

3.1 Effects of arAdrenergic and Other Agonists on Cell C a  2+ Fluxes 

During the 1970s, evidence began to accumulate that epinephrine and norepi- 
nephrine did not always exert their effects by increasing cAMP and that their 
cAMP-independent actions were mediated by a-adrenergic receptors (e.g., 
Tolbert et al. 1973; Hutson et al. 1976). It also became clear that a-adrenergic 
receptors were comprised of al- and a2-subtypes (Langer 1974, 1977; Starke 
i977; Berthelson and Pettinger 1977). Subsequent work demonstrated that 
these subtypes were functionally distinct, and that activation of a2-receptors 
decreased cAMP, whereas the stimulation of al-receptors altered cellular 
Ca 2÷ fluxes (reviewed by Exton 1980, 1981, 1985). 

3.2 Mobilization of Intracellular C a  2+ 

The initial demonstrations of the effects of aradrenergic agonists on Ca 2+ 
fluxes utilized 45CaZ+ and were performed in liver and smooth muscle. Both 
cellular influx and efflux of 45Ca2+ were stimulated (reviewed by Bolton 
1979; Exton 1980, 1981; Williamson et al. 1981; Reinhart et al. 1984 c, d). The 
stimulation of 45Ca 2+ influx led to the view that the agonists opened plasma 
membrane Ca 2÷ channels. However, studies of agonist-induced cellular 
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Fig. 4. Effects of  the 
al-adrenergic agonist phenyl- 
ephrine (Phe) on phosphorylase 
activation and Ca 2÷ mobilization 
in isolated rat hepatocytes. 
Hepatocytes were incubated with 
10-~6M phenylephrine and the 
phosphorylase a and Ca content 
were measured at the times 
shown. Phenoxy, 10 5 M phen- 
oxybenzamine. (From Blackmore 
et al. (1982) by permission of  the 
authors and publisher) 
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responses known to involve Ca 2÷ - e.g., liver glycogen breakdown, in- 
creased K ÷ permeability in parotid gland, and tonic smooth muscle contrac- 
tion - showed that they were initially unimpaired by depletion of  ex- 
traceUular Ca 2+ or by inhibition of  its entry (Deth and Van Breemen 1974; 
Putney 1976; Assimacopolous-Jeannet et al. 1977; Weiss and Putney 1978; 
Blackmore et al. 1978; Parod and Putney 1978; Casteels and Raeymaekers 
1979; Blackmore et al. 1982; Reinhart et al. 1984a). These findings indicated 
that a functionally important initial change in cell Ca 2+ induced by 
aradrenergic agonists was the mobilization of  Ca 2+ from intracellular 
stores, although they did not exclude a role for Ca 2+ influx. The mobiliza- 
tion of  internal Ca 2+ was confirmed by measurements of  Ca (using atomic 
absorption spectroscopy or a Ca 2+ electrode) which showed that the agonists 
caused a rapid loss of  Ca 2+ from hepatocytes or perfused livers (Fig. 4; 
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Blackmore et al. 1978, 1979, 1982, 1983a; Studer and Borle 1983; Reinhart 
et al. 1982). It was also supported by observations that 45Ca2+ previously ac- 
cumulated into the internal stores of  liver, smooth muscle, and other tissues 
was rapidly released by al-adrenergic agonists (Assimacopoulos-Jeannet et 
al. 1977; Casteels and Raeymaekers 1979; Chen et al. 1978; Deth and Casteels 
1977; Blackmore et al. 1978; Haylett 1976; Jenkinson et al. 1978; Smith et al. 
1984; Ambler et al. 1984; Parod and Putney 1979; Haddas et al. 1979; Miller 
and Nelson 1977; R.D. Brown et al. 1984; Amitai et al. 1984; Colucci and 
Alexander 1986). More direct proof of internal mobilization came when mea- 
surements of the Ca content of  liver subcellular fractions revealed that some 
of  these showed large decreases in response to a~-adrenergic and other 
caa+-mobilizing agonists (Blackmore et al. 1979; Babcock et al. 1979; Mur- 
phy et al. 1980; Reinhart et al. 1982). 

The concept that Ca2+-mobilizing agonists released Ca 2÷ from an in- 
tracellular pool was supported by other studies in which livers were perfused 
with 45Ca2+ and the 45Ca 2+ content of  subcellular fractions was measured 
(Barritt et al. 1981; Kimura et al. 1982; Studer and Bode 1983) or in which 
chlortetracycline fluorescence was measured in hepatocytes (Babcock et al. 
1979). Although early studies suggested that mitochondria represented the 
major pool from which Ca 2+ was mobilized (Blackmore et al. 1979; Bab- 
cock et al. 1979; Murphy et al. 1980; Barritt et al. 1981; Studer and Borle 
1983; Reinhart et al. 1982), more recent investigations indicate that the source 
is nonmitochondrial (Althaus-Salzmann et al. 1980; Poggioli et al. 1980; Ber- 
thon et al. 1981; Kimura et al. 1982; Shears and Kirk 1984 a, b; Kleineke and 
Soling 1985). It is most likely the endoplasmic reticulum or an associated 
organelle, as shown by subcellular fractionation (Berthon et al. 1981; Joseph 
and Williamson 1983) and electron-probe X-ray microanalysis (Bond et al. 
1984; Somylo et al. 1985 a). Dantrolene, which is an inhibitor of Ca 2+ release 
from sarcoplasmic reticulum, has also been reported to inhibit Ca 2+ 
mobilization induced by the a~-adrenergic agonist phenylephrine in isolated 
hepatocytes and the perfused rat liver (Mine et al. 1987). Several studies have 
indicated that only a functionally discrete portion of the total endoplasmic 
reticulum is involved (Dawson and Irvine 1984; Joseph et al. 1984b; Prentki 
et al. 1984b). 

The intracellular Ca 2÷ pool that is mobilized by agonists does not refill 
until the agonists are removed or antagonists are added (Fig. 4; Putney 1977; 
Morgan et al. 1982; Breant et al. 1981; Aub et al. 1982; Dewitt and Putney 
1983; Reinhart et al. 1984b; Joseph et al. 1985). However, refilling does not 
occur if extracellular Ca 2+ is absent or its entry is blocked (Marier et al. 
1978; Aub et al. 1982; Putney 1976; Weiss and Putney 1978; Reynolds and 
Dubyak 1985; Joseph et al. 1985). As discussed in Sect. 7, the refilling of the 
pool is apparently prevented by continuing production of IP3 (Prentki et al. 
i985). When this compound declines after agonist removal, Ca 2÷ reac- 
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cumulates into the stores and readdition of agonists produces further 
responses (Putney 1977; DenHertog 1981; Parod and Putney 1978; Joseph et 
al. 1985). During the reaccumulation phase, cytosolic Ca 2÷ levels and the as- 
sociated physiological responses decline (Fig. 4; Charest et al. 1983; Joseph 
et al. 1985; Morgan et al. 1982; Poggioli and Putney 1982; Blackmore et al. 
1982; Casteels and Droogmans 1981). This suggests that the rate of reuptake 
of Ca 2÷ by internal organelles exceeds the rate of net Ca 2÷ influx. Alter- 
natively, the internal pool may fill directly from the extracellular space or it 
may be located sufficiently close to the plasma membrane that incoming 
Ca 2+ ions are immediately taken up, and there is no general increase in 
cy toso l ic  C a  2+ (Putney 1986). 

3.3 Elevation of  Cytosolic C a  2+ 

With the introduction of the fluorescent Ca 2÷ probes Quin-2 and Fura-2 by 
Tsien and co-workers (Tsien 1980; Tsien et al. 1982, 1984), measurements of 
cytosolic Ca z÷ have been carried out in many cells. These show a rise in 
cytosolic Ca z÷ within a few seconds or less in response to al-adrenergic and 
other Ca2+-mobilizing agonists in many cells (Fig. 5; Pozzan et al. 1982; 
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Fig. 5. Elevation of cytosolic Ca 2+ induced by vasopressin (VASO) in rat hepatocytes suspend- 
ed in media of varying Ca 2+ concentrations. Hepatocytes were loaded with the fluorescent 
Ca 2÷ indicator Quin-2 and resuspended in media containing 30, 250, or 500 ~tM Ca 2÷. At 
1 min, 10-7M vasopressin was added and the increases in cytosolic Ca 2+ were measured 
fluorimetrically. (From Charest et al. (1985) by permission of the authors and publisher) 
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Charest et al. 1983; Hesketh et al. 1983; Tsien et al. 1984; Korchak et al. 1984; 
Capponi et al. 1985; Nabika et al. 1985; Berthon et al. 1984; Smith et al. 1984; 
Reynolds and Dubyak 1985; Sage and Rink 1986; Rink and Sage 1985; Mer- 
ritt and Rink 1987). 

The reports cited above refer to studies utilizing cell suspensions. When 
single hepatocytes have been studied, oscillations in cytosolic C a  2+ have 
been observed in response to al-adrenergic and other CaZ+-mobilizing 
agonists (Woods et al. 1986, 1987). These have been found in cells microin- 
jected with the photoprotein aequorin, but have not been reported in cells 
loaded with Quin-2 or Fura-2, perhaps because of the Ca 2+-buffering prop- 
erties of these compounds. The frequency of  the oscillations, but not the 
shape or size, was a function of the agonist concentrations. Graf et al. (1987) 
also observed sustained oscillations in extracellular Ca 2+ when rat livers were 
perfused with Ca2+-mobitizing agonists and low medium Ca 2+ (10pM). The 
molecular basis of  the oscillations is unknown, but it has been hypothesized 
that it involves negative feedback via DAG and protein kinase C acting on the 
receptor or G-protein (Woods et al. 1987). 

In confirmation of earlier predictions, the initial increase in cytosolic 
C a  2+ induced by agonists in most cells is largely, but not entirely, indepen- 
dent of  extracellular C a  2+, but at later times the increase declines unless 
C a  2+ is present in the medium (Fig. 5; Charest et al. 1985; Joseph et al. 
1985; cf. Berthon et al. 1984; Binet et al. 1985). In contrast, in pinealocytes, 
the removal of extracellular C a  2+ completely eliminates the increase in cyto- 
solic Ca 2+ in response to al-adrenergic stimulation, indicating its total de- 
pendence on Ca 2+ inflow (Sugden et al. 1987). 

It should be pointed out that most studies of the relative roles of internal 
Ca 2+ mobilization and Ca 2+ influx in the elevation of cytosolic Ca 2+ induc- 
ed by agonists have employed standard fluorimeters. More recent fluorescence 
measurements using platelets or parotid acinar cells and stopped-flow tech- 
niques with millisecond resolution have shown that the increase in cytosolic 
C a  2+ after addition of platelet-activating agents or carbachol occurs more 
rapidly if C a  2+ is present in the medium than if it is absent (Rink and Sage 
1985; Sage and Rink 1987; Merritt and Rink 1987). These findings indicate 
that, in these cells, these agonists induce an extremely rapid influx of C a  2+ , 

which occurs before the mobilization of internal Ca 2+ and may therefore not 
involve IP 3 formation. 

3.4 Regulation of C a  2+ Influx and C a  2+ Channels 

The intracellular stores of C a  2÷ in most cells are limited and rapidly become 
depleted with agonist stimulation (Exton 1985; Charest et al. 1985; Joseph et 
al. 1985). Calcium released from the stores into the cytosol is extruded from 
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the cell by the plasma membrane Ca 2+ pump or the Na+/Ca  2+ exchanger, or 
is taken up by organelles not sensitive to IP3. In the absence of  extracellular 
Ca 2+, this results in a rapid decline in cytosolic Ca 2+ and of any 
Ca2+-dependent physiological responses (Charest et al. 1985; Joseph et al. 
1985; Binet et al. 1985). However, in the presence of  normal levels of  ex- 
tracellular Ca 2+ , agonists cause a persisting increase in cytosolic Ca 2+ (Fig 5; 
Charest et al. 1985; Binet et al. 1985) and continuing physiological responses 
(Exton 1985; Joseph et al. 1985). This implies that al-adrenergic and other 
Ca 2+-mobilizing agonists also affect a process(es) by which Ca 2÷ is transfer- 
red across the plasma membrane. 

There have been several reports of  agonist effects on both Ca 2÷ uptake 
and efflux at the level of  the plasma membrane in several tissues. Evidence 
for a stimulation of Ca 2+ entry is based on measurements of 45Ca 2+ uptake 
into hepatocytes measured 15-105 s after agonist addition (Mauger et al. 
1984, 1985; Poggioli et al. 1985, 1986a; Combettes et al. 1986). Although it 
is very likely that Ca 2~ influx is stimulated in such studies, part of  the ob- 
served increase in cell 45Ca2+ could be secondary to the mobilization of in- 
ternal unlabeled Ca 2+ , which occurs within a few seconds (Williamson et al. 
1981; Blackmore et al. 1982). A more detailed analysis of  45Ca2+ fluxes in 
hepatocytes has been carried out by Barritt and co-workers (Barritt et al. 
1981; Parker et al. 1983). These investigators concluded that epinephrine 
causes both a mobilization of  Ca 2+ from an intracellular compartment and 
a stimulation of Ca 2÷ influx into the cell. 

Additional evidence for agonist stimulation of Ca 2+ entry in liver comes 
from studies using Ca2+-depleted cells and Quin-2 to measure the influx of  
extracellular Ca 2÷ into the cytosol (Joseph et al. 1985; unpublished studies 
by R. Charest, P.F. Blackmore, and J. H. Exton). In addition, high concentra- 
tions of Ca 2÷-channel blockers such as diltiazem, nifedipine, and verapamil 
can block the influx of Ca 2÷ observed in the presence of agonists and ac- 
celerate the decline in phosphorylase activity (Joseph et al. ! 985; Hughes et 
al. 1986; unpublished studies by R. Charest, P.F. Blackmore, and J.H. Ex- 
ton). The molecular mechanisms by which Ca2÷-mobilizing agonists stimu- 
late the influx of Ca 2÷ into cells are presently unknown, but they appear to 
involve a G-protein since the influx can be stimulated by AIF~-, which ac- 
tivates these proteins (Hughes and Barritt 1987; P.F. Blackmore and J. H. Ex- 
ton, unpublished observations). 

There have been numerous other reports of  agonist-induced Ca 2÷ influx 
in other tissues (Reuter 1983). Some of these, as in liver, involve voltage-in- 
dependent Ca 2÷ channels, e.g., muscarinic cholinergic effects on PC12 
pheochromocytoma cells (Pozzan et al. 1986) and ATP effects on arterial 
smooth muscle (Benham and Tsien 1987), whereas others partly involve 
voltage-dependent Ca 2÷ channels, e.g., thyrotropin-releasing hormone action 
on GH4C I pituitary cells (Geras and Gershengorn 1982; Albert and Tashjian 
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1984; Tan and Tashjian 1984). It has been suggested that this latter effect is 
due to the elevation of DAG and activation of protein kinase C (Albert et al. 
1987). This would be in accord with observations that phorbol esters cause 
an influx of Ca 2+ into neutrophils, suspended in Na÷-free medium, via a 
pertussis toxin-sensitive process presumably involving a G-protein (Nasmith 
and Grinstein 1987), and stimulate Ca 2÷ entry into vascular smooth muscle 
(Gleason and Flaim 1986; Sperti and Colucci 1987). These esters also induce 
vascular smooth muscle contraction dependent upon extracellular Ca 2÷ 
(Danthuluri and Deth 1984). 

The possibility that inositol polyphosphates could control the plasma 
membrane Ca 2÷ channel has been raised by many workers. Irvine and Moor 
(1986) noted that myoinositol 1,3,4,5-P 4 (IP4) activated sea urchin eggs when 
coinjected with myoinositol 2,4,5-P3, provided external Ca 2÷ was present. In 
contrast, Crossley et al. (1988) found that the effects were independent of ex- 
ternal Ca 2+ and that IP3 was 100-fold more potent than IP  4 in activating the 
eggs. There have also been reports that IP 3 activates transmembrane Ca 2+ 
channels in T-lymphocytes (Kuno and Gardner 1987) and Xenopus oocytes 
(Parker and Miledi 1987). However, there is now much evidence that Ca ~÷ 
channels, like K + channels, are controlled more directly by G-proteins. This 
is discussed in detail in Sect. 5.3. 

Based on the relative potencies of the a-adrenergic antagonists WB4101 
and benoxathian to block contraction and/or inositol phosphate formation in 
vas deferens, cerebral cortex, and hippocampus in response to norepineph- 
rine, Han et al. (t987) have proposed that only the a~B-subtype of adrenergic 
receptors is linked to inositol phospholipid hydrolysis (see Sect. 4). They also 
observed that the addition of  the Ca2+-channel blocker nifedipine or the 
removal of extracellular Ca 2÷ markedly reduced norepinephrine-stimulated 
contractions of the vas deferens, but not of the spleen, and that in the 
presence of nifedipine, the potency of WB4101 in blocking the contraction of 
the vas deferens was greatly decreased. Based on these findings, Han et al. 
(1987) have further proposed that the a~A-SUbtype of adrenergic receptor 
(with high affinity for WB4101 and benoxathian) is coupled to Ca 2+ influx. 
This intriguing proposal clearly requires additional experimental support. 

3.5 Regulation of  Ca 2÷ Efflux and C a  2+ Pump 

The efflux of C a  2+ caused initially by Ca2+mobilizing agonists in the liver 
and other tissues is transient (Fig. 6), because the mobilizable intracellular 
Ca 2÷ pool is limited and there is also a stimulation of  Ca 2÷ influx. The in- 
creased influx of Ca 2÷ due to the opening of Ca 2÷ channels is sustained, but 
it becomes balanced by increased efflux of Ca 2÷ since the cytosolic Ca 2÷ 
concentration stabilizes after a few minutes and there is no net uptake of 
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Fig. 6. Effects of epinephrine on glucose release and Ca 2+ fluxes in the isolated perfused rat 
liver. Livers from fed rats were perfused with nonrecirculating medium containing 1 mM Ca 2÷ 
for 10 min before the commencement of an infusion of epinephrine to give a final concentration 
of 1 fxM. This was continued for 25 min, then withdrawn for 10min, then recommenced for 
5 min, and then withdrawn again. Changes (from pre-epinephrine values) of glucose and 
calcium in the perfusate leaving the liver are shown. The fraction numbers refer to the samples, 
which were collected every 18 s. (From Morgan et al. (1982) by permission of the authors and 
publisher) 

Ca 2+ by the liver as a whole or  by its intracellular  organelles until agonists  
are removed (Fig. 6; Morgan  et al. 1982; Chares t  et al. 1983). The increased 
C a  2+ eff lux m a y  be s imply a t t r ibutable  to s t imula t ion  o f  the p l a sma  m e m -  
brane  Ca  2+ p u m p  resulting f rom the elevated concentra t ion of  cytosolic 
C a  2+ . This  would cause increased bidirectional  flux o f  C a  2+ across the 

p l a sma  m e m b r a n e  in the presence of  agonists.  Reinhart  et al. (1984b) have 
presented some studies o f  45Ca2+ uptake by perfused rat livers which suggest 

such increased cycling. 
Ano the r  means  o f  producing  a sustained increase in cytosolic Ca 2+ is tO 

alter the kinetics o f  the p l a sma  m e m b r a n e  Ca 2+ pump.  Evidence for  inhibi- 
t ion of  the p l a sma  m e m b r a n e  Ca  2+ p u m p  by several agonists  in liver has 
been presented by Prpic  et al. (1984). In  addit ion,  there have been reports  o f  
a delay in the release o f  Ca  2+ f rom hepatocytes  ( Joseph and  Wil l iamson 
1983) and  o f  an inhibi t ion o f  the p lasma  m e m b r a n e  (Ca 2+ +Mg2+)-ATPase  
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of liver by vasopressin and phenylephrine (Lin et al. 1983) and of 
myometrium by oxytocin (Soloff and Sweet 1982). The mechanism by which 
Ca2÷-mobilizing agonists inhibit the plasma membrane Ca 2÷ pump is un- 
known, but the inhibition could be due to the changes in phosphoinositides 
produced by these agonists (Buckley and Hawthorne 1972; Penniston 1983; 
Prpic et al. 1984; Charest et al. 1985). 

3.6 Comparison of  Effects of al-Adrenergic Agonists with Those of Other 
Ca 2÷-Mobilizing Agonists 

There have been some reports that the effects of al-adrenergic agonists on 
cytosolic Ca 2÷ in hepatocytes differ from those of  vasopressin and angioten- 
sin II (Mine et al. 1987; Kleineke and Soling 1987). However, we and others 
have been unable to confirm these findings using Quin-2 or Fura-2 to measure 
the cytosolic Ca 2÷ (Lynch et al. 1985a, c; Binet et al. 1985; P.E Blackmore 
and J.H. Exton, unpublished observations). It has also been reported by one 
group that al-adrenergic agonists produce Ca 2÷ flux responses in perfused 
rat liver that differ from those induced by vasopressin and angiotensin II 
(Altin and Bygrafe 1985). For example, the al-adrenergic agonist phenyleph- 
rine was reported to induce Ca 2+ efflux, but not influx, in the presence of 
1.3 mM Ca 2+ in the medium, whereas the other agonists induced Ca 2÷ ef- 
flux followed by influx. In contrast, Kleineke and Soling (i987) reported that 
Ca 2÷ influx can occur with phenylephrine under these conditions. Irrespec- 
tive of this discrepancy, the possibility exists that these agents could affect 
Ca 2÷ fluxes secondarily in such a perfusion system because of  effects on 
blood flow and on other cell types. Clearly, more work is required to establish 
whether or not al-adrenergic agonists differ from vasopressin or angiotensin 
II in their actions on hepatocyte Ca 2÷ fluxes. 

4 Role of Phosphoinositide Changes 

4.1 Historical Background 

Expanding on the pioneering studies of Hokin and Hokin (1953), Michell 
0975, 1979) emphasized the association between the changes in Ca 2÷ induc- 
ed by certain hormones and neurotransmitters and the turnover of  
phosphoinositides in a variety of  tissues. In particular, this was pointed out 
for a-adrenergic agonists in brain, parotid, pineal, iris, liver, vas deferens, aor- 
ta, and submaxillary gland (Jones and Michell 1978). Initially, it was demon- 
strated that these agonists increased both the synthesis and breakdown of  
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phosphatidylinositol (PI) in labeling studies with 32p i (Jones and Michell 
1978). These observations were confirmed using [3H]myoinositol (Tolbert et 
al. 1980; Prpic et al. 1982). However, it was observed that the turnover of PI 
induced by al-adrenergic agonists or other CaE+-mobilizing agents was not 
fast enough to be responsible for the physiological responses, which occurred 
within seconds (Canessa de Scarnatti and Lapetina 1974; Kirk et al. 1977, 
1981; Billah and Michell 1979; Uchida et al. 1982; Prpic et al. 1982). 

4.2 Phosphatidylinositol 4,5-P2 Breakdown and Myoinositol 1,4,5-P3 
Formation 

Early observations by Schacht and Agranoff (1972) and Abdel-Latif et al. 
(1977) indicated that Ca2+-mobilizing agonists stimulated the phosphodi- 
esteratic breakdown of phosphatidylinositol 4,5-P2 (PIP2) in addition to that 
of PI in neural and smooth muscle tissue. The group of Kirk and Michell then 
demonstrated that the breakdown of this polyphosphoinositide induced by 
these agonists in liver occurred much more rapidly than that of PI (Kirk et 
al. 1981; Michell et al. 1981; Creba et al. 1983). This was later confirmed by 
others in liver (Rhodes et al. 1983; Thomas et al. 1983; Litosch et al. 1983), 
parotid (Weiss et al. 1982; Downes and Wusteman 1983), platelets (Billah and 
Lapetina 1982; Agranoff et al. t983; Mauco et al. 1983), kidney cortex (Wir- 
thensohn et al. 1984), exocrine pancreas (Putney et al. 1983), neutrophils 
(Volpi et al. 1983; Yano et al. 1983; Dougherty et al. 1984), and pituitary 
(Martin 1983; Rebecchi and Gershengorn 1983; MacPhee and Drummond 
1984). 

The significance of the enhanced breakdown of PIP2 was recognized by 
Berridge and associates (Berridge 1984; Berridge and Irvine 1984) when they 
measured the changes in the concentration of one of the products, 
myoinositol 1,4,5-P3 (IP3) , in various tissues stimulated with agonists (Ber- 
ridge 1983; Berridge et al. 1983) and when Streb et al. (1983) showed that this 
compound released Ca 2+ from internal stores in permeabilized pancreatic 
acinar ceils. Since then, al-adrenergic and other Ca2÷-mobilizing agonists 
have been shown to rapidly increase IP3 in many tissues, including liver (Fig. 
7; Thomas et al. 1984; Charest et al. 1985), brain (Berridge et al. 1983), 
platelets (Agranoff et al. 1983; Vickers et al. 1984; Rittenhouse and Sasson 
1985), salivary glands (Berridge et al. 1983; Berridge 1983; Downes and 
Wustemann 1983; Aub and Putney 1984, 1985; Irvine et al. 1984c, 1985), 
pituitary (Martin 1983; Rebecchi and Gershengorn 1983; Enjalbert et al. 
1986; Morgan et al. 1987), exocrine pancreas (Rubin et al. 1984), endocrine 
pancreas (Morgan et al. 1985), Swiss 3T3 cells (Berridge et al. 1984), adrenal 
cortex (Gallo-Payet et al. 1986), endothelial ceils (Lambert et al. 1986), 
smooth muscle cells (Akhtar and Abdel-Latif 1984; Smith et al. 1984), heart 
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Fig. 7. Effects of vasopressin on in- 
ositol phosphates in isolated rat 
hepatocytes. Hepatocytes were in- 
cubated for 2 h with [3H]myoinosi- 
tol to label the inositol phospholip- 
ids. They were then washed and in- 
cubated with 0.1 IxM vasopressin. 
Samples were removed and depro- 
teinized at the times indicated for 
measurement of the radioactive 
inositol phosphates by high- 
pressure liquid chromatography 
(Irvine et al. 1985). I P  1, myoino- 
sitol monophosphate(s); 
I I ,4P2,  myoinositol  1,4-P2; 
I P  2, isomer, probably myoinositol 
3,4-P2; I I ,4 ,5P 3, myoinositol 
1,4,5-P3; I1,3,4P 3, myoinositol 
1,3,4-P3; I P  4, myoinositol 
1,3,4,5-P 4. (Unpublished findings 
by P. E Blackmore, S.B. Bocckino, 
H. Jiang, V. Prpic, and J .H.  Ex- 
ton) 

(Poggioli et al. 1986b; Marc et al. 1986), lymphocytes (Imboden and Stobo 
1985), gastric mucosal cells (Baudiere et al. 1986; Chew and Brown 1986), 
astrocytoma cells (Masters et al. 1985b), PC12-pheochromocytoma cells 
(Vincentini et al. 1985a), and adipocytes (Nanberg and Putney 1986). 

The increase in IP3 with agonists is detectable within a few seconds and 
generally precedes or is coincident with the rise in cytosolic Ca 2+ (Thomas et 
al. 1984; Charest et al. 1985; Lew et al. 1986; Trimble et al. 1987; Tilly et al. 
1987; Pribluda and Metzger 1987). However, there have been some reports in 
which an IP3 increase is not detectable early at times when cytosolic Ca 2+ is 
elevated by certain agonists (Merritt et al. 1986b; Tashjian et al. 1987; Merritt 
and Rink 1987). As discussed in Sect. 3.3, this suggests the existence of a very 
early stimulation of  Ca 2+ influx unrelated to IP 3. 

The concentrations of  agonists which produce half-maximal changes in 
PIP2 or IP3 are similar to their Kds for binding to their receptors in plasma 
membranes (Creba et al. 1983; Lynch et al. 1985 a). In addition, the maximum 
generation of  IP3 by agonists is proportional to the number of  their plasma 
membrane binding sites (Lynch et al. 1985a). These findings suggest a close 
relationship between receptor occupancy and phosphoinositide breakdown. 
However, because of the presence of  spare receptors in most cells, the concen- 
trations of  agonists required to half-maximally elevate cytosolic Ca z+ and 
elicit physiological responses are usually lower than those that half-maximally 



The Roles of Calcium and Phosphoinositides 139 

[ ~  Agonist 

[ ~ ] Rece~or 

IP 3 f Prot Pro1 - P 

PLASMA MEMBRANE 

ATP ADP ATP ADP 

I IP IP 2 

P P , 

C DP- DAG PA 

PP CTP 

Ca z+ 

'I 
ENDOPLASMIC RETICULUM 

CYTOSOL 

PA 

Fig. 8. Pathways of cellular phosphoinositide metabolism (with the IP 3 kinase and associated 
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increase IP 3 or decrease PIP z. Thus, small increases in IP3 can elicit large 
physiological responses in most systems (Lynch et al. 1985a; Creba et al. 
1983; Rhodes et al. 1983; Charest et al. 1985; Thomas et al. 1984; Aub and 
Putney 1985; cf. Vincentini et al. 1985a). 

As depicted in Fig. 8, it is generally agreed that the reaction primarily 
stimulated by a~-adrenergic agonists and other Ca 2+-mobilizing agents is the 
breakdown of PIP2 to IP 3 and DAG, catalyzed by a Ca2÷-dependent 
phosphodiesterase commonly termed phospholipase C. There are several 
forms of  phosphoinositide phospholipase C in most cells (Irvine et al. 1984b; 
Wilson et al. 1984; Rittenhouse 1983; Nakanishi et al. 1985; Low et al. 1986; 
Deckmyn et al. 1986; Baldassare and Fisher 1986a; Cockcroft 1986; Banno 
et al. 1986a, b; Ebstein et al. 1987; Manne and Fung 1987; Taylor and Exton 
1987; Rock and Jackowski 1987; Ryu et al. 1987a; Bennett and Crooke 1987). 
However, it is not clear which forms are under hormonal control. As dis- 
cussed later (Sect. 6), the hormone-sensitive enzyme may also affect phospha- 
tidylinositol 4-P (PIP) but is poorly active or inactive on PI (Uhing et al. 
1985, 1986; Aub and Putney 1984; Downes and Wustemann 1983; Martin 
1983; "Paylor and Exton 1987; Rebecchi and Rosen 1987b). The loss of PI that 
is observed in most experiments may be due to the accelerated conversion of 
PI to PIP and then PIP2 to replace PIP2 broken down by PIP2 phospholi- 
pase. Alternatively, there may be activation of a PI phospholipase C in some 
cells (Griendling et al. 1986). 
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Two different kinases catalyze the conversion of PI to PIP and PIP to 
PIP2 (Fig. 7). These are located in the plasma membrane and are very active, 
as are the phosphomonoesterases which reverse their actions (Berridge 1984). 
The increased conversion of PI to PIP2 induced by agonists which stimulate 
PIP2 breakdown is thought to be due to the fact that both kinases show pro- 
duct inhibition (Lundberg et al. 1986). However, the possibility that 
Ca2÷-mobilizing agonists control PIP2 synthesis by other mechanisms 
should not be discounted. In this regard, treatment of A431 cells with epider- 
mal growth factor has been shown to cause a rapid increase in membrane PI 
kinase activity (Walker and Pike 1987) and an increase in PIP in the cells (Pike 
and Eakes 1987). In chick embryo fibroblast cells transformed by a virus car- 
rying the erb B oncogene (which enclodes a truncated form of the epidermal 
growth factor receptor), the activities of the kinases for PI, PIP, and DAG 
were also found to be enhanced (Kato et al. 1987). Slower increases in the 
kinases for PI and PIP have also been observed in Swiss 3T3 cells stimulated 
by platelet-derived growth factor (MacDonald et al. 1987). Despite earlier 
reports, it is now believed that the tyrosine kinases associated with certain 
growth factor receptors and proto-oncogene products do not possess PI 
kinase activity (for reference, see Walker and Pike 1987). Thus, the effects of 
growth factors on PI kinase must be indirect. 

4.3 Metabolism of Myoinositol t,4,5-P3 

Myoinositol 1,4,5-P3 generated from PIP2 is released into the cytosol, where 
it releases Ca 2÷ from internal stores (Fig. 8). Unless it is continuously 
generated, its action is short-lived because it is rapidly metabolized. As shown 
in Figs. 7 and 8, a major pathway of IP 3 metabolism is its rapid degradation 
to myoinositol 1,4-P2 (IP2) by a specific 5-phosphomonoesterase found in 
the plasma membrane and soluble phase (Downes et al. 1982; Seyfred et al. 
1984; Storey et al. 1984; Joseph and Williams 1985; Connolly et al. 1985, 
1987; Shears et al. 1987 a). IP 2 is then sequentially degraded to myoinositol 
4-P and myoinositol by other soluble phosphomonoesterases (Joseph and 
Williams 1985; Storey et al. 1984; Dean and Moyer 1987; Balla et al. 1986; 
Morgan et al. 1987; Ackermann et al. 1987; Delvaux et al. i987; Inhorn et al. 
1987). The phosphatase that converts myoinositol 1,4-P 2 to myoinositol 4-P 
has been purified and has an Mr of 45000 (Inhorn and Majerus 1987). It is 
inhibited by Li ÷ and has been called "inositol polyphosphate 1-phospha- 
tase" (Inhorn and Majerus 1987; Inhorn et al. t987). 

Myoinositol can be reincorporated into PI through the action of CDP- 
diacylglycerol: inositol transferase in the endoplasmic reticulum (Fig. 8). Syn- 
thesized PI is then transferred to the plasma membrane by a specific 
phospholipid carrier protein (Michell 1975). However, Imai and Gershengorn 
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(1987) have recently obtained evidence that PI resynthesis can occur in the 
plasma membrane of GH 3 pituitary ceils as well as in the endoplasmic 
reticulum. If this is true for other cells it could account for reports of multiple 
cellular pools of inositol phospholipids (Monaco and Woods 1983; King et 
al. 1987), although other explanations can be proposed. 

The other main route of metabolism of IP3 is its conversion to myoinositol 
1,3,4,5-P4 (IP4) by a 3-kinase (Irvine et al. 1986a; Hansen et al. 1986; 
Downes et al. 1986; Stewart et al. 1986; Biden and Wollheim 1986; Connolly 
et al. 1987). IP  4 is subsequently converted to myoinositol 1,3,4-P 3 by the 
same 5-phosphomonoesterase that acts on IP3 (Connolly et al. 1987; Erneux 
et al. 1987). This accounts for the accumulation of these two compounds in 
response to agonists in several tissues (Fig. 7; Irvine et al. 1984c, 1985, 1986a; 
Batty et al. 1985; Heslop et al. 1985, 1986; Hawkins et al. 1986; Biden et al. 
1987; Downes et al. 1986; Hansen et al. 1986; Dean and Moyer 1987; Balla 
et al. 1986; Stewart et al. 1986; Morgan et al. 1987; Trimble et al. 1987; Tilly 
et al. 1987; Merritt et al. 1986b). Myoinositol 1,3,4-P 3 can be rephosphory- 
lated to an IP4 isomer (Balla et al. 1987; Shears et al. 1987) which has been 
shown to be myoinositol 1,3,4,6-P4 (Shears et al. 1987b). Inositol pen- 
takisphosphate and hexakisphosphate have also been found in mammalian 
cells, but usually they do not change with agonist stimulation (Heslop et al. 
1985; Tilly et al. 1987; Stewart et al. 1987; cf. Morgan et al. 1987). 
Myoinositol 1,3,4-P 3 is further hydrolyzed to myoinositoI 3,4-P 2 by inositol 
polyphosphate 1-phosphatase in brain (Inhorn et al. 1987; Inhorn and Ma- 
jerus 1987; Erneux et al. 1987), liver (Shears et al. 1987), and polymor- 
phonuclear leukocytes (Dillon et al. 1987). As noted above, this phosphatase 
also acts on myoinositol 1,4-P 2 (Inhorn et al. 1987; Inhorn and Majerus 
1987; Erneux et al. 1987). However, the breakdown of myoinositol 1,3,4-P 3 is 
probably more complex, since myoinositol 1,3-P2 is also found in certain 
cells stimulated with agonists (Irvine et al. 1987). The conversion of 
myoinositol 1,3,4-P 3 to myoinositol 1,3-P2 and then to myoinositol 1-P by 
brain extracts has been reported by Bansal et al. (1987), but this probably rep- 
resents a minor pathway. The 4-phosphatase involved can also degrade 
myoinositol 3,4-P2 to myoinositol 3-P. The myoinositol l-P, myoinositol 4-P, 
and myoinositol 3-P formed during myoinositol 1,4,5-P3 and myoinositol 
t,3,4-P3 breakdown are apparently converted to myoinositol by the same in- 
ositol monophosphate phosphatase (Ackermann et al. 1987; Delvaux et al. 
1987). 

The 3-kinase that converts IP3 to IP4 is stimulated by Ca 2+ in complex 
with calmodulin (Biden and Wollheim 1986; Ryu et al. 1987 b). This may ex- 
plain the transiency of agonist-stimulated IP3 formation and the delay in 
myoinositol 1,3,4-P3 formation seen in most systems (Lew et al. 1986). The 
5-phosphomonoesterase that degrades IP3 and IP4 has also been reported to 
be phosphorylated and activated by protein kinase C (Connolly et al. 1986a, 
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1987). This would explain why activators of  this kinase stimulate the conver- 
sion of IP 3 to IPz in permeabilized platelets (Molina y Vedia and Lapetina 
1986). However, this has not been seen in some other cells (Orellana et al. 
1987). Based on the Kms of  the 3-kinase and 5-phosphomonoesterase for IP3 
and IP4, the preferential metabolism of IP3 to IP4 with subsequent 
dephosphorylation to myoinositol 1,3,4-P3 observed in most tissues can be 
explained (Irvine et al. t986a; Connolly et al. 1987). 

The functions, if any, of  IP4 and myoinositol 1,3,4-P 3 remain unclear. IP 4 
has been reported to activate sea urchin eggs in the presence of external 
Ca 2+ , provided it is coinjected with myoinositol 2,4,5-P3 (Irvine and Moor 
1986), but critical aspects of  these results have not been confirmed (Crossley 
et al. 1988) and there have been no reports of similar findings in mammalian 
systems. 

Wilson et al. (1985) first pointed out that myoinositol 1,2-cyclic 4,5-P3 
(clP3) can be formed together with IP3 during the action of phospholipase 
C from sheep seminal vesicles of PIP2 in vitro. This is analogous to early 
studies which showed that brain phospholipase C formed myoinositol 
1,2-cyclic P and myoinositol I-P from PI (Dawson et al. 1971). The formation 
of clP 3 during agonist stimulation of platelets and pancreas has been report- 
ed (Ishii et al. 1986; Sekar et al. 1987), but this compound rises much more 
slowly than IP 3 in pancreatic lobules (Dixon and Hokin 1987) and platelets 
(Tauven et al. 1987) and could not be detected in parotid glands stimulated 
with carbachol, although IP3 was formed and clP2 added to the extracts was 
quantitatively recovered (Hawkins et al. 1987). 

clP 3 has been reported to have equal or slightly greater potency than IP3 
in eliciting responses in several systems (Wilson et al. 1985). It is degraded se- 
quentially to myoinositol 1,2-cyclic P by the same enzymes involved in the 
hydrolysis of  IP3, and then to myoinositol 1-P by a cyclic hydrolase (Connol- 
ly et al. 1986b, 1987). Compared with IP3, its rate of degradation by 
5-phosphomonoesterase is very slow (Connolly et al. 1987; Hawkins et al. 
1987); this has implications for its postulated role as an intracellular signal. 
It is also not a substrate for the 3-kinase that acts on IP 3 (Connolly et al. 
1987). 

The major postulated physiological role of  DAG, the other product of  
PIP2 breakdown, is activation of protein kinase C at or in the plasma mem- 
brane (Fig. 8). Compared with the metabolism of IP3, that of  DAG has 
received little attention. The conventional view is that it is mainly converted 
to phosphatidic acid (PA) through the action of 1,2-diacylglycerol kinase (Fig. 
8). The PA is then transferred to the endoplasmic reticulum to be used for the 
synthesis of  PI, other phospholipids, and triacytglycerol. However, there is 
some evidence that PI resynthesis can occur in the plasma membrane (Imai 
and Gershengorn 1987), suggesting that the DAG and PA generated by PIP 2 
breakdown may not enter the general cellular pools. 
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The metabolism of DAG is discussed in detail in Sect. 8, where it is shown 
that Ca2+-mobilizing agonists generate DAG from sources other than the in- 
ositol phospholipids, and that PA is not derived solely from the phosphoryla- 
tion of DAG or by de novo synthesis. 

5 Role of Guanine Nucleotide-Binding Regulatory Proteins 

5.1 Evidence for a Role of Guanine Nucleotide-Binding Regulatory 
Proteins in Agonist Regulation of Phosphatidylinositol 4,5-P2 Breakdown 

As described in Sect. 2.2, the ability of GTP and its nonhydrolyzable 
analogues to alter the agonist affinity of the al-adrenergic receptor and 
other receptors for Ca2÷-mobilizing agonists implies that these receptors 
couple to guanine nucleotide-binding regulatory proteins or G-proteins 
analogous to those involved in the regulation of adenylate cyclase. Further 
evidence for the involvement of G-proteins in the actions of these agonists 
comes from a variety of studies. For example, in permeabilized mast cells and 
platelets, nonhydrolyzable analogues of GTP elicit Ca2+-dependent ex- 
ocytotic secretion (Gomperts 1983; Haslam and Davidson 1984a, b), and 
some Ca2÷-mobilizing agonists stimulate a low K m membrane GTPase activi- 
ty (Hinkle and Phillips 1984; Fain et al. 1985; Fitzgerald et al. 1986; Grandt 
et al. 1986; Higashida et al. 1986; Houslay et al. 1986) or the binding/ex- 
change of a GTP analogue to membranes (Lad et al. 1985). In liver and other 
cells, NaF stimulates the breakdown of PIP2 to IP3 and DAG with resultant 
increases in cytosolic Ca 2+ and responses (Blackmore et al. 1985; Martin et 
al. 1986a; Hepler and Harden 1986; Guillon et al. 1986; Brass et al. 1986; 
Strnad et ai. 1986; Paris and Pouyssegur 1987; Kienast et al. 1987). These ef- 
fects are potentiated by A1C13, implying that AIF£ is the active molecule. 
AIF4 is known to modulate the activity of other G-proteins (Sternweis and 
Gilman 1982; Katada et al. 1984; Kanaho et al. 1985). 

More direct evidence for a role of a G-protein in the regulation of PIP2 
hydrolysis is provided by studies showing that GTP and its analogues 
stimulate the breakdown of endogenous or exogenous PIP2 or PIP in 
isolated plasma membranes or permeabilized cells from liver (Uhing et al. 
1985, 1986; Wallace and Fain 1985; Taylor and Exton 1987), polymor- 
phonuclear leukocytes (Cockcroft and Gomperts 1985), salivary glands 
(Litosch et al. 1985), GH3 or 7315c pituitary cells (Lucas et al. 1985; Martin 
et al. 1986a, b; Straub and Gershengorn 1986; Aub et ai. 1987), astrocytoma 
cells (Hepler and Harden 1986; Orellano et al. 1987), pancreatic acinar cells 
(Merritt et al. 1986 a), platelets (Baldassare and Fisher 1986 a, b, Hrbolich et 
al. 1987), islets (Dunlop and Larkins 1986), Jurkat T cells (Sasaki and Hase- 
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Fig. 9. Stimulatory effects of GTP and its analogues on PIP 2 breakdown in rat liver plasma 
membranes. Liver plasma membranes prepared from rats injected 18-20h earlier with 
[3H]myoinositol were incubated for 5 rain with 100-~M concentrations of the nucleotides 
shown and the release of radioactive inositides (free myoinositol plus myoinositot tris-, bis-, and 
monophosphates) was measured. The inositide released initially was IP 3 and the inositol 
phospholipid broken down was P|P2. GTPyS, guanosine 5'-0-(thiotriphosphate); GMPPNP, 
guanyl-5'-yl imidodiphosphate; GMPPCP, guanyl-5'-yl-(fl, y-methytene)diphosphonate. (From 
Uhing et al. (1985) by permission of the authors and publisher) 

gawa-Sasaki 1987), neutrophils (Cockcroft 1986; Smith et al. 1987), 
fibroblasts (Rebecchi and Rosen 1987a; Magnaldo et al. 1987), and brain 
(Litosch 1987). The effect is greater with the nonhydrolyzable analogues of  
GTP and is mimicked by NaF (Hepler and Harden 1986; Martin et al. 1986a; 
Rock and Jackowski 1987; Sasaki and Hasegawa-Sasaki 1987; Litosch 1987), 
but it is not seen with other nucleoside triphosphates or with GDP or GMP 
(Fig. 9; Uhing et al. 1985; Wallace and Fain 1985; Cockcroft and Gomperts 
1985; Litosch et al. 1985; Aub et al. 1987). GTP and its analogues are effective 
at micromolar concentrations, and their effects are Mg 2+-dependent and in- 
hibited by GDPpS (Uhing et al. 1986; Martin et al. 1986a; Cockcroft 1986; 
Baldassare and Fisher 1986a; Litosch 1987; Taylor and Exton 1987; Rebecchi 
and Rosen 1987a; Aub et al. 1987; Hrbolich et al. 1987). In most tissues, the 
breakdown of PIP z is associated with some hydrolysis of PIP, but not of  PI, 
and requires the presence of  100 n M  or higher free Ca 2+ (Uhing et al. t 985, 
1986; Cockcroft and Gomperts 1985; Rebecchi and Rosen 1987a; Litosch 
1987; Taylor and Extort 1987; cf. Wallace and Fain t985; Melin et al. 1986). 
Likewise, IP3 is the major product formed initially but is degraded to IP z by 
the IP3 phosphatase activity of  the membranes (Uhing et al. 1985; Wallace 
and Fain 1985). However, in platelets, PIP breakdown may predominate 
(Hrbolich et al. 1987). 

Recently, direct effects of Ca 2+-mobilizing agonists on the breakdown of 
polyphosphoinositides in membranes from liver, salivary glands, GH 3 
pituitary cells, platelets, WRK1 mammary tumor cells; astrocytoma cells, 
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Fig. 10. Stimulation of PIP  2 
breakdown in rat liver plasma 
membranes induced by vaso- 
pressin ( 1 0 - 1 ° M  - 1 0 - 6 M )  in 
the presence of a low concentra- 
tion (l  t iM) of GTP analogue. 
Experimental details are given 
in the legend to Fig. 9. (From 
Uhing et al. (1986) by permis- 
sion of the authors and 
publisher) 
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fibroblasts, polymorphonuclear leukocytes, and pancreatic islets have been 
reported (Lucas et al. 1985; C.D. Smith et al. 1985, 1987; Litosch et al. 1985; 
Uhing et al. 1986; Baldassare and Fisher 1985 a, b; Bradford and Rubin 1986; 
Guillon et al. 1986; Martin et al. 1986a; Hepler and Harden 1986; Magnaldo 
et al. 1987; Dunlop and Larkins 1986; Orellano et al. 1987; Rebecchi and 
Rosen 1987a; Hrbolich et al. 1987; Aub et al. 1987). In all these cases, the 
effect is dependent upon or is amplified by GTP or its analogues (Fig. 10; cf. 
Rock and Jackowski t987). The major inositol phosphate formed initially is 
IP 3 (Uhing et al. 1985; Guillon et al. 1986; Baldassare and Fisher 1986a, b; 
cf. Hrbolich et al. 1987), and its rate of formation is maximal within 1 min 
(Uhing et al. 1986). The concentration dependence for agonist-induced in- 
ositide formation in liver or salivary gland membranes is similar to that for 
IP3 formation in the intact tissue or for agonist receptor binding (Uhing et 
al. 1986; Litosch et al. 1985; Guillon et al. t986; Martin et al. 1986a; Straub 
and Gershengorn 1986). These observations differ from reports of direct ef- 
fects of catecholamines, vasopressin, and thrombin on phosphoinositide 
breakdown in isolated plasma membranes which have been observed in the 
absence of guanine nucleotides (Lin and Fain 1981; Wallace et al. 1982, 1983; 
Harrington and Eichberg 1983; Seyfred and Wells 1984; Rock and Jackowski 
1987). 

The physical association of a CaZ+-mobilizing receptor with a G-protein 
has been demonstrated by incubating liver plasma membranes with [3H]va- 
sopressin and then subjecting the detergent-solubilized extract to sucrose den- 
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sity gradient centrifugation, gel filtration, or chromatography on wheat germ 
agglutinin-agarose (Fitzgerald et al. 1986; Bojanic and Fain 1986). These ex- 
periments show the presence of a high-Mr (>  200000) complex which binds 
[3H]vasopressin in a guanine nucleotide-sensitive manner (Fitzgerald et al. 
1986; Bojanic and Fain 1986) and which exhibits GTPase and [a-32p]GDP 
binding activity (Fitzgerald et al. 1986). The presence in the complex of a 
35-K fl subunit common to several other G-proteins has also been demonstrat- 
ed (Fitzgerald et al. 1986). 

5.2 Effects of  Pertussis and Cholera Toxins 

It is clear that there is more than one type of  G-protein involved in polyphos- 
phoinositide breakdown and Ca a÷ mobilization. In neutrophils, mast cells, 
mesangial cells, HL-60 leukemic cells, fibroblasts, platelets, and cardiac 
myocytes, the breakdown of PIP2 and the associated physiological events in- 
duced by 48/80, chemotactic peptide, thrombin, angiotensin II, or 
al-adrenergic agonists are inhibited by islet-activating protein-pertussis toxin 
(Okajima et al. t985; Volpi et al. 1985; Verghese et al. 1985; Nakamura and 
Ui 1983, 1985; Bokoch and Gilman 1984; Okajima and Ui 1984; Bradford and 
Rubin 1986; Pfeilschifter and Bauer 1986; Paris and Pouyssegur 1987; Brass 
et al. 1986; Houslay et al. 1986; Kikuchi et al. 1986; Bruns and Marme 1987; 
Steinberg et al. 1987). In addition to ADP-ribosylating and inactivating Gi, 
the toxin can act on transducin, a protein involved in coupling rhodopsin to 
cGMP phosphodiesterase in retinal rod outer segments, and on Go, a G-pro- 
tein of unknown function isolated from brain and certain other tissues (Man- 
ning et al. 1984; Van Dop et al. 1984; Watkins et al. 1984; Sternweis and 
Robishaw 1984). Thus, the inhibitory effects of  the toxin on the above-men- 
tioned cells may be due to the involvement of  one of these G-proteins or to 
a novel G-protein which is also a substrate for the toxin. 

In liver, islet-activating protein is without effect on the stimulation of  
PIP2 breakdown, Ca 2÷ mobilization, and phosphorylase activation induced 
by agonists in either intact hepatocytes or isolated liver plasma membranes, 
under conditions in which Gi is ADP-ribosylated and its functions are 
blocked (Fig. 11; Uhing et al. t986; Lynch et al. 1986b). Furthermore, the 
ability of GTP analogues to decrease high-affinity binding of  epinephrine, va- 
sopressin, or angiotensin II to liver plasma membranes is unaffected by treat- 
ment with the toxin (Fig. 3; Lynch et al. 1986b). Likewise, the toxin does not 
affect muscarinic cholinergic effects on phosphoinositide hydrolysis in car- 
diac myocytes, pancreatic acinar cells, or Flow 9000 pituitary cells (Masters 
et al. 1985 a; Merritt et al. 1986 a; Lo and Hughes 1987 a), bradykinin stimula- 
tion of IP 3 formation in aortic endothelial cells (Lambert et al. 1986), 
thrombin action on inositol release in 3T3 fibroblasts (Murayama and Ui 
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Fig. 11. Failure of islet-activating pertussis toxin to inhibit the activation of phosphorylase by 
angiotensin II and vasopressin in isolated rat hepatocytes. Rats were injected with 25 ~tg per- 
tussis toxin per 100 g body weight and hepatocytes were prepared 24 h later. Hepatocytes from 
normal and pertussis toxin-treated rats were incubated for 5 rain with the concentrations of the 
agonists shown, and phosphorylase a was then assayed. (From Lynch et al. (1986b) by permis- 
sion of the authors and publisher) 

1985), thyrotropin elevation of  cytosolic Ca z+ in FRTL-5 thyroid cells (Cor- 
da and Kohn 1986), angiotensin II stimulation of IP3 formation in adrenal 
glomerulosa cells (Kojima et al. 1986), thyrotropin-releasing hormone action 
on GH3 pituitary or 7315c cells (Martin et al. 1986b; Aub et al. 1986), 
al-adrenergic agonist binding to membranes from kidney cortex or cloned 
kidney or smooth muscle cell lines (Boyer et al. 1984; Terman et al. 1987), car- 
bachol binding to 1321NI astrocytoma cells (Martin et al. 1985), or 
al-adrenergic agonist stimulation of respiration in brown adipocytes (Schim- 
mel et al. 1985) and of inositol phosphate production in FRTL-5 thyroid cells 
and heart (Burch et al. 1986a; Schmitz et al. 1987). It also does not inhibit 
agonist-stimulated PIP z hydrolysis in plasma membranes from GH 3 pituitary 
cells (Martin et al. 1986a), astrocytoma cells (Hepler and Harden 1986), and 
islet cells (Dunlop and Larkins 1986), or inhibit bradykinin-stimulated 
GTPase or phosphoinositide hydrolysis in neuroblastoma-glioma hybrid cells 
(Grandt et al. 1986; Hepler et al. 1987). 

To make the situation even more confusing, there have been some reports 
that cholera toxin inhibits the IP 3 response to agonist stimulation in some 
cell lines, e.g., Jurkat malignant human T cells (Imboden et al. 1986), Flow 
9000 pituitary cells (Lo and Hughes 1987b), and A10 smooth muscle cells, 
in which the response is also inhibited by pertussis toxin (Xuan et al. 1987). 
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Another interesting point is that pertussis toxin blocks the PI response to 
aradrenergic agonists in cardiac myocytes but not to muscarinic cholinergic 
agonists in these cells (Steinberg et al. 1987; Masters et al. 1985 a). However, 
the inhibition of  the a~-adrenergic response is incomplete (Steinberg et al. 
1987) and has not been observed in vivo (Schmitz et al. 1987). Other examples 
of  the differential effects of  the toxin on agonist responses apparently 
mediated by the same signaling system include the blockade of the 
phospholipase A2 response to norepinephrine, but not to thyrotropin, in 
FRT~5 thyroid cells (Corda and Kohn 1986) and the different effects of the 
toxin on angiotensin II and platelet-activating factor responses in mesangial 
cells (Schlondorff et al. 1986) and on the actions of thrombin and thrombox- 
ane analogue in platelets (Brass et al. 1987). One explanation for these data 
is that different G-proteins mediate the same response in a given cell type and 
that these are differentially affected by pertussis toxin. Alternatively, the same 
G-protein may be involved, but the ADP ribosylation induced by the toxin 
may affect its interaction with different receptors to different extents. This ex- 
planation seems less likely, since it implies that different receptors interact at 
different sites on the protein. 

As alluded to in Sect. 2.4, pertussis toxin blocks norepinephrine stimula- 
tion of arachidonic acid release, but not inositol phosphate formation in 
FRTL-5 thyroid cells (Burch et al. 1986 a). A similar dissociation between the 
toxin effects on actions mediated by phospholipase Az and phospholipase C 
is seen in platelets (Fuse and Tai 1987). There is also evidence that separate 
G-proteins mediate these actions in Madin-Darby kidney cells (Slivka and In- 
sel 1987) and in 3T3 fibroblasts (Murayama and Ui 1985). An interesting 
question relating to these data is whether the same receptor can be coupled 
to different G-proteins, or whether different receptor subtypes are involved. 
Similar considerations apply to the effects of  muscarinic cholinergic agonists, 
Pz-purinergic agonists, thrombin, and angiotensin II on phosphoinositide 
metabolism and adenylate cyclase in several cell types (Lynch et al. 1986b; 
Houslay et al. 1986; Murayama and Ui 1985; Masters et al. 1985a; Okajima 
et al. 1987; Hepler et al. 1987). 

These findings indicate that at least three different types of  G-protein are 
involved in the actions of agonists on PIP2 breakdown. Since none of these 
proteins has been unequivocally identified or purified, the molecular basis for 
the differences remains unknown. The site of  ADP ribosylation induced by 
islet-activating protein in the a-subunit of  transducin is a cysteine located in 
a nonspecific sequence at the carboxyl terminus (Hurley et al. 1984; West et 
al. 1985), and a highly homologous sequence is present in Gi (Nukada et al. 
1986; Michel et al. 1986; Itoh et al. t986) and in Go (Itoh et al. 1986). It 
therefore seems likely that the a-subunits of  the G-proteins involved in 
regulating PIPa phospholipase C have different sequences at their carboxyl 
termini. 
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As described in Sect. 6.4, G i and Go have been effectively reconstituted 
with a platelet polyphosphoinositide phospholipase C (Banno et al. 1987), 
but other Gp candidates were not tested and the selectivity of the two G-pro- 
teins was not great. Some other potential Gps have been isolated from 
various tissues. Molecular cloning studies have revealed a G-protein in the 
U937 monocyte line with an a-subunit with marked homology (90%) to Gia , 

but with a different pertussis toxin ADP-ribosylation site (Didsbury and 
Snyderman 1987). Differentiation of U937 ceils to monocyte-like cells is asso- 
ciated with increased transcription of mRNA for this protein as well as with 
increased Gp activity. Neurophils also contain high levels of a G-protein with 
a 40-K pertussis toxin substrate (Gierschik et al. 1987; Dickey et al. 1987). 
This is immunologically distinct from Gi and Go (Gierschik et al. 1986, 
1987). A similar protein has been identified in brain (Katada et al. 1987). 
Human leukemic (HL-60) cells also have a G-protein that is a pertussis toxin 
substrate (Oinuma et al. 1987; Uhing et al. 1987). This has a 40-K a-subunit 
and a 36- or 35-K fl-subunit, and it can be distinguished from G i and Go im- 
munologically and also on the basis of GTP analogue binding and partial 
chymotryptic proteolysis. Another GTP-binding, pertussis toxin substrate 
with an a-subunit of 43 K has been found in membranes from erythrocytes, 
brain, GH4C1 pituitary cells, and liver (Iyengar et al. 1987). 

Brain also contains a G-protein which is not ADP-ribosylated by pertussis 
or cholera toxins (Waldo et al. 1987). However, the GTP-binding subunit has 
an Mr of only 25 000 and appears to be similar to a GTP-binding protein in 
placenta and platelets (Evans et al. 1986). 

5.3 Role of Guanine Nucleotide-Binding Regulatory Proteins in 
Agonist Regulation of Ion Channels 

As noted in Sect. 3.4, there is much evidence that G-proteins are involved in 
the regulation of plasma membrane ion channels (Rosenthal and Schultz 
1987). For example, there have been several recent reports indicating that G- 
proteins mediate the stimulatory and inhibitory effects of muscarinic cholin- 
ergic and other agonists on K ÷ channels in atrial cells (for references see 
Rosenthal and Schultz 1987; Birnbaumer 1987; Logothetis et al. 1987; Yatani 
et al. 1987) and in Aplysia ganglion cells (Sasaki and Sato 1987) and GH3 
pituitary cells (Codina et al. 1987). There is also evidence that G-proteins 
mediate the inhibitory effects of norepinephrine and y-aminobutyric acid on 
voltage-dependent Ca 2÷ channels in dorsal root ganglion neurons (Holz et 
al. 1986; Scott and Dolphin 1986), and of somatostatin and opiate peptides 
on these channels in AT-20 pituitary cells (Lewis et al. 1986) and 
neuroblastoma-glioma cells (Hescheler et al. 1987 a, b). For example, the ef- 
fects were mimicked by application of G-proteins or GTP analogues and were 
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blocked by pertussis toxin or a GDP analogue. The stimulatory effects of  
angiotensin II on a slowly inactivating Ca 2+ current in Y1 adrenal cortical 
cells (Hescheler et al. 1987c; Rosenthal and Schultz 1987) likewise probably 
involve a G-protein, since they are inhibited by pertussis toxin and are unaf- 
fected by either cAMP or cGMP. However, it must be recognized that, in all 
these instances, the putative G-proteins might not couple directly to the ion 
channels, but may act through another protein or factor. 

5.4 Effects of  ras Proto-oncogene Products on Phosphoinositide 
Metabolism 

The 21-K proteins encoded by the ras proto-oncogenes, which are the cellular 
counterparts of the transforming genes of certain murine sarcoma viruses, 
possess certain similarities to G-proteins, e.g., GTP-binding and GTPase ac- 
tivities and the ability to activate adenylate cyclase in yeast but not in mam- 
malian cells (for references see Berridge 1986; Lacal et al. 1987). Evidence is 
accumulating that certain ras proteins exert a stimulatory control on PIP2 
breakdown to IP3 and DAG. Examples are the increased ability of 
acetylcholine to stimulate IP 3 formation in BALB/3T3 cells transformed 
with Ha-ras (Chiarugi et al. 1985), the increased inositol phosphate response 
to growth factors in NIH 3T3 cells containing high levels of  p21 N-ras protein 
(Wakelam et al. 1986), and the increased turnover of phosphoinositides or in- 
creased levels of  DAG in various cells chronically transformed with Ki-ras or 
Ha-ras  (Fleischman et al. 1986; Preiss et al. 1986; Wolfman and Macara 
1987). More direct proof for a role of the ras p21 proteins in the regulation 
of phosphoinositide metabolism has come from recent studies involving the 
injection of the Ha-ras  p21 product into X e n o p u s  oocytes (Lacal et al. 1987). 
Injection of transforming ras p21 protein caused rapid increases in inositol 
phosphates and DAG and also changes in the inositol phospholipids, whereas 
the normal ras p21 protein was without effect. These findings indicate that 
an early effect of  ras p21 protein is the activation of a phospholipase C acting 
on inositol phospholipids. There is evidence that the p2t oncogene product 
can also activate a phospholipase C selective for phosphatidylcholine and 
phosphatidylethanolamine (Lacal et al. 1987 b). 

6 Role of Polyphosphoinositide Phospholipase C 

6.1 Phospholipases C Active on Phosphoinositides 

Mammalian tissues contain a variety of phospholipase C activities with dif- 
ferent substrate specificities. Several phospholipases C active on phosphoino- 
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sitides have been described in soluble and particulate fractions from various 
tissues. The first of these were assayed using PI as a substrate (for references 
see Shukla 1982), but it is now clear that the phospholipases C involved in 
the actions of Ca 2+-mobilizing agonists hydrolyze PIP2 and PIP rather than 
PI. Phospholipases C active on the polyphosphoinositides have been found 
in both the soluble and plasma membrane fractions of a variety of cells and 
tissues. Soluble activities have been reported in platelets (Rittenhouse 1983; 
Low et al. 1986; Deckmyn et al. 1986; Baldassare and Fisher 1986a; Banno 
et al. t986a; Manne and Kung 1987; Ebstein et al. 1987), brain (Irvine et al. 
1984b; Nakanishi et al. 1985; Deckmyn et al. 1986; Kozawa et al. 1987; Rebec- 
chi and Rosen 1987b; Ryu et al. 1987a), seminal vesicles (Wilson et al. 1984), 
lymphocytes (Carter and Smith 1987), coronary artery smooth muscle 
(Sasaguri et al. 1985), and uterus (Bennett and Crooke 1987). Some of these 
reports have shown that the activities can be resolved into several forms 
(Wilson et al. 1984; Low et al. 1986; Banno et al. 1986a, b; Nakanishi et al. 
1985; Carter and Smith 1987; Ebstein et al. 1987; Ryu et al. 1987a; Rebecchi 
and Rosen 1987b; Bennett and Crooke 1987). Some of these are im- 
munologically distinct, but some may have arisen through proteolysis (Low 
et al. 1984, 1986). The relationship of the soluble polyphosphoinositide 
phospholipases C to their membrane counterparts remains unclear, although 
it is likely that some forms are identical. There has been one report of the 
stimulation of a soluble enzyme from platelets by guanine nucleotides, 
presumably via a G-protein (Deckmyn et al. 1986), but it is not known 
whether other soluble forms can be regulated by this mechanism. 

6.2 Guanine Nucleotide Regulation of Phosphoinositide Phospholipases C 

As alluded to in Sect. 5, there have been many reports of the regulation of 
membrane-associated polyphosphoinositide phosphotipase C by GTP 
analogues. Polyphosphoinositide phospholipase C activities have been re- 
ported in the particulate fraction or plasma membranes of iris smooth muscle 
(Akhtar and Abdel-Latif 1978), erythrocytes (Allan and Michell 1978; 
Downes and Michell 1981; Harden et al. 1987), liver (Wallace and Fain 1985; 
Uhing et al. 1985, 1986; Melin et al. 1986; Guillon et al. 1986a; Taylor and 
Exton 1987), platelets (Baldassare and Fisher 1986a, b; Rock and Jackowski 
1987; Hrbolich et al. 1987), brain (Kozawa et al. 1987; Litosch 1987), parotid 
(Taylor et al. 1986), lymphocytes or a T-cell line (Carter and Smith 1987; 
Sasaki and Hasegawa-Sasaki 1987), neutrophils or polymorphonuclear 
leukocytes (Cockcroft et al. 1984; C.D. Smith et al. 1985; Cockcroft and 
Gomperts 1985; Cockcroft 1986; Volpi et al. 1985), islet cells (Dunlop and 
Larkins 1986; pituitary (Lucas et al. 1985; Martin et al. 1986a; Straub and 
Gershengorn t986; Aub et al. t987), fibroblasts (Magnaldo et al. 1987; 



152 J.H. Exton 

15' 
t- 

O 
f_ 
Q 

E 

E 

0 
E 

m 
~ 5 
m 

0 
f. 
U 

n 

I I I I I 

~ I ,  s i t  

II , , , , , 

0 - 8  - 7  -6  - 5  -4  

log  [Ca2÷l. M 

Fig. 12. Effect of a GTP 
analogue on the Ca 2+ sensitivity 
of the PIP 2 phospholipase C of 
rat liver plasma membranes. 
Membranes were assayed with 
0.2 m M  [3H]PIP2, presented as 
a mixture with phosphatidyl- 
ethanolamine and phosphatidyl- 
serine in a molar ratio of 1 :2 :2 .  
The concentration of  free Ca 2+ 
was varied between 0 and IO-4M 
using Ca2+/EGTA buffers. 
GTPyS, when present, was 10 ~tM. 
The product o f  the assay was 
shown to be [3H]IP3. (From 
Taylor and Exton (1987) by per- 
mission of  the authors and 
publisher) 

Rebecchi and Rosen 1987a), WRKI cells (Guillon et al. 1986b), and 
astrocytoma cells (Hepler and Harden 1986; Orellano et al. 1987). Most of 
these activities have been shown to be stimulated by guanine nucleotides. An 
important exception is the mammalian erythrocyte, which, in contrast to the 
turkey erythrocyte, contains a polyphosphoinositide phospholipase C which 
is stimulated by Ca 2÷ but not by GTPyS or NaF (Harden et al. 1987). 

In almost all cases, the membrane-associated phospholipase hydrolyzing 
PIP2 and PIP is completely dependent on Ca 2÷ (0.1/~M- 1 mM) for activity. 
GTP analogues activate the enzyme by increasing its sensitivity to Ca 2÷ and 
also by enhancing its activity at high Ca 2÷ (1 ¢tM) (Fig. 12, Lucas et al. 
1985; Taylor and Exton 1987; Uhing et al. 1985, 1986; Rebecchi and Rosen 
1987a; Magnaldo et al. 1987; Litosch 1987; Smith et al. 1987; cf. Cockcroft 
1986). In contrast, these nucleotides have little or no effect on the membrane 
enzyme that hydrolyzes PI, which generally requires higher Ca 2÷ (Taylor and 
Exton 1987; Litosch 1987). Deckmyn et al. (1986) found similar results for 
the soluble platelet phospholipases C acting on PIP2 and PI. 

6.3 Agonist Regulation of  Phosphoinositide Phospholipases C 

Hormonal or agonist activation of  membrane polyphosphoinositide 
phospholipase C has been reported for a number of  tissues. These are listed 
under Sect. 5. In almost all cases, the effect is dependent upon or amplified 
by GTP or its analogues, and the primary product is IP3 (Uhing et al. 1986; 
Guillon et al. t986; Baldassare and Fisher 1986 a; Rebecchi and Rosen 1987 a; 
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Fig. 13. Enhancement by vaso- 
pressin of the stimulatory effect 
of GTPyS on the PIP 2 
phospholipase C of rat liver 
plasma membranes. Experimental 
details are given in the legend to 
Fig. 12. Vasopressin was 100nM. 
(From Taylor and Exton (1987) 
by permission of the authors and 
publisher) 
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Jackowski et al. 1986; Taylor and Exton 1987; Magnaldo et al. 1987), 
although there is evidence that it is IP 2 in platelets (Hrbolich et al. 1987). 
The action of the agonists is to decrease the concentration of  GTP or its 
analogue required for activation of the enzyme (Fig. 13; Litosch and Fain 
1985; Litosch et al. 1985; Uhing et al. 1986; Baldassare and Fisher 1986b; 
Straub and Gershengorn 1986; Taylor and Exton 1987; Rebecchi and Rosen 
1986a; Hepler and Harden 1986; Aub et al. 1987). This is presumably because 
the agonists enhance the binding of these nucleotides to the putative G-prote- 
in involved. As expected from these results, the combination of an agonist 
with GTP or its analogues increases the Ca 2+ sensitivity of the enzyme more 
than the nucleotides do alone (Martin et al. 1986a; Taylor and Exton 1987; 
Magnaldo et al. 1987; Rebecchi and Rosen 1987a; Aub et al. 1987). In vitro 
and in vivo findings indicate that, in the presence of cytosolic Mg 2+ concen- 
trations and in the absence of  agonists or guanine nucleotides, the enzyme 
shows little or no activity at basal cytosolic Ca z÷ concentrations 
(100-200riM),  and a maximal increase in cytosolic Ca 2+ produces little 
stimulation (Uhing et al. 1986; Taylor and Exton 1987; Renard et al. 1987; 
Litosch 1987; Smith et al. 1987). However, when activated by agonists and/or 
guanine nucleotides, the enzyme shows a very large increase in activity at 
resting Ca 2÷ concentrations (Uhing et al. 1986; Taylor and Exton 1987; 
Renard et at. 1987; Litosch 1987; Smith et al. 1987). 
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6.4 Purification of Multiple Phosphoinositide Phospholipases C 

Several reports of the partial or complete purification of phospholipases C 
active on polyphosphoinositides have appeared. In most cases, multiple 
forms have been identified or isolated (Hofmann and Majerus 1982; Wilson 
et al. 1984; Nakanishi et al. 1985; Banno et al. 1986a; Low et al. 1986; Ebstein 
et al. 1987; Carter and Smith 1987; Rebecchi and Rosen 1987b; Ryu et al. 
1987 a; Bennett and Crooke 1987). Some forms are active toward PI, but these 
generally require higher than micromolar Ca 2÷ (Nakanishi et al. t985; Ban- 
no et al. 1986a; Deckmyn et al. 1986; Kozawa et al. 1987; Manne and Kung 
1987; Bennett and Crooke 1987) and are not regulated by guanine nucleotides 
(Deckmyn et al. 1986; Taylor and Exton 1987) or are activated equally well 
by GTP and ATP (Ryu et al. 1987a). The most highly purified forms have 
been isolated from seminal vesicles (Wilson et al. 1984), platelets (Low et al. 
1986; Banno et al. 1986a; Manne and Kung 1987), brain (Nakanishi et al. 
1985; Ryu et al. ! 987 a; Rebecchi and Rosen 1987 b), lymphocytes (Carter and 
Smith 1987), and uterus (Bennett and Crooke 1987). As stated above, the 
purifications generally yield more than one activity. The purified forms are 
able to hydrolyze all three phosphoinositides. The enzymes from seminal vesi- 
cle and uterus have affinities in the order P I > P I P > P I P  2 and maximal 
hydrolysis rates in the order PIP2 > PIP > PI (Wilson et al. 1984; Bennett and 
Crooke 1987). The hydrolysis of all three phosphoinositides is stimulated by 
micromolar Ca 2÷ . There is no activity against phosphatidylcholine, phos- 
phatidylserine, or phosphatidylethanolamine (Hofmann and Majerus 1982; 
Rebecchi and Rosen 1987 b; Bennett and Crooke 1987). As found for other 
phosphoinositide phospholipases C, phosphatidylethanolamine, phosphati- 
dylserine, and DAG are stimulatory to PI hydrolysis, whereas phosphatidyl- 
choline is inhibitory (Hofmann and Majerus 1982). Studies with unilamellar 
vesicles indicate that these effects are probably due to a combination of ef- 
fects, e.g., phosphatidylchotine inhibiting PI interaction with the enzyme, 
phosphatidylserine increasing the negative charge at the vesicle surface, and 
phosphatidylserine promoting lateral-phase separation of phosphatidylcho- 
line and PI (Hofmann and Majerus 1982). 

Two forms of phosphoinositide phospholipase C have been identified in 
seminal vesicles by Hofmann and Majerus (1982) and in uterus by Bennett 
and Crooke (1987). These are immunologically distinct and are unevenly dis- 
tributed among various tissues, e.g., liver contains almost entirely one form 
and brain and platelets the other (Hofmann and Majerus 1982). One form has 
a subunit Mr of 62000 and 65 000 by SDS polyacrylamide gel electrophoresis 
and of 70000 by gel filtration. This is present in both cytosol and membranes 
of  uterus (Bennett and Crooke 1987). The other form has not been purified 
to homogeneity but contains a protein with an M r of  85 000-90000 which is 
comparable to an Mr 88000 form found in brain by Rebecchi and Rosen 
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(1987b). Other workers have purified polyphosphoinositide phospholipases 
C from platetet cytosol (Banno et al. 1986a; Low et al. 1986; Manne and Kung 
1987). There are three different forms with subunit Mrs ranging between 
67000 and 140000. All forms are Ca 2÷ dependent, and hydrolysis of  PI re- 
quires higher Ca 2+ concentrations than does hydrolysis of P I P  2. Two forms 
have been purified from brain and liver cytosol (Nakanishi et al. 1985). These 
differ in their activities towards the different phosphoinositides depending on 
the Ca E+ concentration. One form is most active against PIP E and 
hydrolyzes PI only at millimolar Ca 2+ , whereas the other is most active 
against PIP. Lymphocytes also contain two forms of the enzyme, one of 
which is inactive against PIPE (Carter and Smith 1987). 

There has been one report that a polyphosphoinositide phospholipase C 
partially purified from platelet membranes is stimulated by Go, Gi, and 
another G-protein isolated from brain (Banno et al. 1987). There is also a 
report of  a partially purified soluble platelet phospholipase that responds to 
GTP analogues (Deckmyn et al. 1986). However, these studies have not tested 
Gp, the G-protein specifically involved in signal transduction for CaZ+-mobi - 
lizing agonists in platelets and other cells. The successful reconstitution of  
pure preparations of this G-protein with a purified PIP 2 phospholipase C re- 
mains a major goal in this research area. 

7 Role of Myoinositoi Trisphosphate and Ca 2+ Release 

7.1 Specificity of Myoinositol 1,4,5-P3 in Releasing Intracellular Ca 2+ 

As described in Sect. 4.2, the increase in IP  3 induced by agonists in a variety 
of  cells is sufficiently rapid to account for the mobilization of internal 
calcium. However, the hypothesis rests largely on the demonstration that IP 3 
causes the release of Ca 2+ from a nonmitochondrial store in permeabilized 
cells. This was originally shown in saponin-treated pancreatic acinar cells by 
Streb et aL (1983). Since that time, IP 3 has been shown to release internal 
C a  E+ in permeabilized liver cells (Fig. 14; Burgess et al. 1984a, b; Joseph et 
al. 1984a), insulin-secreting cells (Joseph et al. 1984b; Biden et al. 1984; 
Prentki et al. 1985; B.A. Wolf et al. 1985), smooth muscle cells (Suematsu et 
al. 1984; Somlyo et al. 1985b), vesicles from platelets (O'Rourke et al. 1985; 
Authi and Crawford 1985; Brass and Joseph 1985), neutrophils (Prentki et al. 
t984b),~ 3T3 fibroblasts (Irvine et al. 1984a), macrophages (Hirata et al. 
1985), pituitary cells (Gershengorn et al. 1984; Biden et al. 1986), leukocytes 
(Burgess et al. 1984c), N1E-I15 neuronal cells (Chueh and Gill 1986), 
adipocytes (Delfert et al. 1986), kidney cortex cells (Thevenod et al. 1986), and 
adrenal chromaffin and glomerulosa cells (Stoehr et al. 1986; Rossier et al. 
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Fig. 14. Release of  Ca 2+ 
from intracellular stores in- 
duced by IP 3 in permeabiliz- 
ed hepatocytes. Boluses of  
IP 3 of  increasing concentra- 
tions were added to 
digitonin-permeabilized 
hepatocytes and the release 
of  internal Ca 2+ was 
monitored by Quin-2 
fluorescence. (Unpublished 
data of P. Thiyagarajah, R. 
Charest, P.F. Blackmore, 
and J.H. Exton) 

1987). The action of IP 3 is extremely rapid and is observed with submicro- 
molar concentrations (Fig. 14). This is the range calculated or measured to 
exist intracellularly (Charest et al. 1985; Thomas et al. 1984; Rittenhouse and 
Sasson 1985). The effect is transient, due to the rapid metabolism of IP 3 
(Streb et al. 1985; Prentki et al. 1985). Both rapid action and rapid removal 
are desirable properties for a molecule involved in the regulation of in- 
tracellular Ca 2÷ . Myoinositol 2,4,5-P2 and myoinositol 4,5-P2 also release in- 
tracellular Ca 2÷ but are, respectively, approximately 10 and 100 times less 
potent than IP3. Myoinositol 1,4-P2 and myoinositol I-P are ineffective 
(Burgess et al. 1984b; Streb et al. 1983; Irvine et al. 1984a; B.A. Wolf et al. 
1985). clP3 has a potency similar to that of IP3, whereas myoinositol 
1,3,4-P 3 is about 30 times less potent and myoinositol 1,3,4,5-P4 is ineffective 
(Irvine et al. 1986b). Although myoinositol 1,3,4,5-P4 is ineffective by itself, 
it does prolong the effect of  IP 3 (Joseph et al. 1987) by blocking its break- 
down (Joseph et al. 1987; Connolly et al. 1987). It is possible that myoinositol 
1,3,4-P 3 may sometimes reach concentrations sufficient to mobilize Ca 2÷ 
(Daniel et al. 1987). 

7.2 Site and Mechanism of Action of Myoinositol 1,4,5:P3 

The intracellular pool from which Ca 2÷ is released by IP 3 cosediments with 
mitochondria and microsomes during centrifugation of tissue homogenates 
(Dawson and Irvine 1984; Prentki et al. 1984b; Streb et al. 1984; Delfert et 
al. 1986). However, there is much evidence that it is not mitochondrial (Streb 
et al. 1983, 1984; Gershengorn et al. 1984; Joseph et al. 1984a, b; Thevenod 
et al. 1986; Biden et al. 1986; Rossier et al. 1987). It is probably a component 
of  the endoplasmic reticulum, based on studies with uncouplers and other in- 
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hibitors of mitochondrial energy production and with ruthenium red, an in- 
hibitor of  mitochondrial Ca 2+ transport (Streb et al. 1983; Dawson and Ir- 
vine 1984; Gershengorn et al. 1984; Joseph et al. 1984a, b; Somlyo et al. 
1985 b). Enzyme measurements in subcellular fractions of rat exocrine pan- 
creas and platelets indicate codistribution of  NADPH cytochrome C reduc- 
tase and RNA with the IP3-sensitive pool (Streb et al. 1984; Authi and 
Crawford 1985), which is consistent with its location in the rough en- 
doplasmic reticulum. However, several studies have shown that only a fraction 
of the endoplasmic reticulum responds to IP 3 (Prentki et al. 1984a; Joseph 
et al. 1984b; Dawson and Irvine 1984; Taylor and Putney 1985; Biden et al. 
1986). It has been proposed that the IP3-sensitive pool is contained in a 
novel organelle termed a "calciosome" (Volpe et al. 1988). 

Addition of IP3 to microsomal fractions isolated from insulinoma cells or 
liver rapidly releases Ca 2+ (Prentki et al. 1984a; Dawson and Irvine 1984; 
Muallem et al. 1985; Joseph et al. 1984b). Similar effects are obtained with 
membrane vesicles from platelets thought to correspond to the endoplasmic 
reticulum (O'Rourke et al. 1985; Authi and Crawford 1985). The action of 
IP 3 appears to be exerted o n  C a  24 efflux rather than o n  C a  2+ uptake, but the 
mechanism remains unknown. It is relatively insensitive to temperature (J. B. 
Smith et al. 1985; Chueh and Gill 1986; Henne and Soling 1986; Joseph and 
Williamson 1986), suggesting that it involves a Ca 2÷ channel rather than a 
carrier. It requires the countermovement of K ÷ or another monovalent ca- 
tion (Muallem et al. 1985; Joseph and Williamson 1986) and is inhibited by 
high concentrations of anions. These findings indicate that the release process 
is electrogenic. It is unlikely to involve anion exchange or cation/anion 
cotransport since it is not inhibited by DIDS or furosemide (Joseph and 
Williamson 1986). It is also unaffected by dantrolene, TMB-8, or agonists or 
antagonists of  voltage-dependent Ca 2÷ channels (Biden et al. 1984; Henne 
and Soling 1986; Rossier et al. 1987). 

There have been recent reports of  IP3 binding to subcellular fractions in 
liver, adrenal cortex, anterior pituitary, and brain (Baukal et al. 1985; Spat et 
al. 1986a, b; Guillemette et al. 1987; Worley et al. 1987). Some of these bind- 
ing sites are of  very high affinity (Kd, 1 -- 10 riM) and a low capacity, and it 
has not been convincingly demonstrated that they mediate Ca 2÷ mobiliza- 
tion. Others in brain membranes have a Ka of 40 nM, are more abundant, 
and are very selective for IP 3 (Worley et al. 1987). 

7.3 Comparison with Effects of  GTP 

In general, the effects of  IP 3 on isolated organelles are small relative to those 
observed in permeabilized cells or require higher concentrations (see, e.g., 
Joseph et al. 1984b). Dawson (1985) has reported that GTP enhances the ef- 
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fect of IP 3 on Ca 2+ release from liver microsomes, but the enhancement 
depends upon the presence of  polyethylene glycol. Other workers have ob- 
served GTP stimulation of  intracellular Ca 2+ release in a variety of cell types 
(Chueh and Gill 1986; Henne and Soling 1986; Ueda et al. 1986; Jean and 
Klee 1986; Wolf et al. t987; Chueh et al. 1987; Mullaney et al. 1987). These 
effects of the nucleotide are not observed with its nonhydrolyzable analogues, 
which suggests that they are not mediated by a typical G-protein. In general, 
the effects of GTP are slower than those of IP3, are more temperature 
dependent, and are more influenced by the concentration of  Ca 2÷ (Chueh 
and Gill 1986; Henne and Soling 1986; Jean and Klee 1986). There is also 
evidence that GTP can act on another Ca 2÷ pool in addition to that affected 
by IP 3 (Henne et al. 1987; Chueh et al. 1987). From these observations, and 
based on the fact that IP3 does not require polyethylene glycol, it has been 
concluded that GTP and IP3 release Ca 2÷ by different mechanisms. The 
physiological significance, if any, of  the GTP effect remains unresolved at pre- 
sent. Based on an analysis of the effects of GTP in the presence and absence 
of  oxalate, Mullaney et al. (1987) have proposed that the nucleotide promotes 
the movement of  Ca 2+ across intracellular membranes and between organ- 
elles, i.e., from an oxalate-impermeable pool to one which is permeable to ox- 
alate and releasable by IP3. 

7.4 Other Effects of  Myoinositol 1,4,5-P3 

In addition to mediating the effects of  certain hormones and neurotransmit- 
ters, IP3 has been postulated to act as a chemical messenger between 
transverse (T)-tubular membrane depolarization and Ca 2÷ release from sar- 
coplasmic reticulum in skeletal muscle (Vergara et al. 1985; Volpe et al. 1985; 
Nosek et al. 1986; Thieleczek and Heilmeyer 1986). However, much more 
work is needed to establish this. There is also evidence that it is involved in 
light-induced excitation and adaptation in Limulus or Loligo photoreceptors 
(Fein et al. 1984; J.E. Brown et al. 1984, 1987; Brown and Rubin 1984; 
Vandenberg and Montal 1984; Szuts et al. 1986) and in fertilization in sea ur- 
chins and Xenopus (Whitaker and Irvine 1984; Oron et al. 1985; Busa et al. 
1985; Slack et al. 1986; Nadler et al. 1986; Ciapa and Whitaker 1986). Patch- 
clamp studies with T-lymphocytes have also provided evidence that IP3 ac- 
tivates a voltage-insensitive transmembrane Ca 2÷ channel (Kuno and 
Gardner 1987). 
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8 Role of Diacylglycerol and Protein Kinase C 

8.1 Regulation and Cloning of Protein Kinase C 

With the discovery of  the Ca 2+ phospholipid-dependent protein kinase now 
commonly known as protein kinase C (for references see Nishizuka 1984), a 
second mechanism of intracellular signaling for al-adrenergic and other 
Ca2+-mobilizing agonists was revealed. This enzyme has a requirement for 
Ca 2÷ and a phospholipid for activity (Fig. 15). Phosphatidylserine is the most 
effective phospholipid, but phosphatidylinositol, phosphatdylethanolamine, 
and phosphatidic acid are also active, whereas phosphatidylcholine is inactive 
by itself and inhibitory in the presence of phosphatidylserine (Takai et al. 
1979a; Kaibuchi et al. 198I). The enzyme is present in several isozymic forms 
in the particulate and soluble fractions of all tissues examined. It is widely dis- 
tributed but is highest in brain, spleen, platelets, and lymphocytes (Kikkawa et 
al. 1982; Kuo et al. 1980). As will be discussed later, the distribution of the en- 
zyme between membrane and cytosol phases is apparently under the control of  
Ca 2÷ and diacylglycerol and of  hormones which alter their concentrations. 

Protein kinase C cDNA from rat, bovine, rabbit, and human brain has been 
cloned (Ono et al. 1986, 1988; Parker et al. 1986; Coussens et al. 1986; Knopf 
et al. 1986; Ohno et al. 1987). Sequencing of  these clones has revealed the ex- 
istence of  seven isozymic forms of  the enzyme. This conclusion has been rein- 
forced by the detection of  two mRNA species in rat brain using a cDNA clone 
partially encoding the enzyme (Makowske et al. 1986) and by the observation 
that three mRNAs complementary to three cDNA sequences for the enzyme 

Fig. 15. Regulation of protein 
kinase C by Ca 2+, phospholipids 
(PL), diolein, and phorbol ester 
(TPA). Protein kinase C was 
assayed by measuring the incor- 
poration of 32p from [y-32plATP 
into H 1 historic in the presence 
of 20 ~g/ml of bovine brain 
phospholipids, 10 ~tM Ca 2+, and 
the indicated concentrations of 
diolein and TPA (12-O-tetradeca- 
noylphorbol- 13 -acetate, also 
known as PMA). (From Castagna 
et al. (1982) by permission of the 
authors and publisher) 
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are differentially expressed in different rat tissues (Brandt et al. 1987). Fur- 
thermore, immunological and other evidence for three forms of protein 
kinase (approx. 80-K) in rat brain has been presented (Huang et al. 1986; 
Woodgett and Hunter 1987a, b), and three types of the enzyme have been 
purified from rabbit brain utilizing hydroxylapatite chromatography (Jaken 
and Kiley 1987). Two of these can also be distinguished using polyclonal an- 
tibodies, and the three forms show different degrees of stimulation by Ca 2÷ . 
It remains to be determined whether or not the various forms of protein 
kinase C have different roles in signal transduction. 

8.2 Control by Diacylglycerols and Sphingosine 

Protein kinase C is activated by sn-l,2-diacylglycerols (DAGs) (Fig. 15), the 
forms containing at least one unsaturated fatty acid being more effective than 
the saturated forms unless the latter contain symmetrically two C6-CI0 
saturated fatty acids (Takai et al. 1979a, b; Kishimoto et al. 1980; Mori et al. 
1982; Lapetina et al. 1985). The sn-l,3- and sn-2,3-DAG isomers are inactive 
(Boni and Rando 1985). The naturally occurring DAGs can be replaced by 
synthetic DAGs or by tumor-promoting phorbol esters (Fig. 15), which have 
a structure similar to that of  DAG (Castagna et al. 1982; Davis et al. 1985; 
Ebeling et al. 1985; Niedel et al. 1983). The phorbol esters appear to bind to 
the same "receptor" on protein kinase C as the DAGs (Kikkawa et al. 1983; 
Ebeling et al. 1985; Sharkey et al. 1984). DAGs and phorbol esters increase 
the activity of  protein kinase C at maximal Ca > concentrations but, more 
importantly, decrease the concentration of Ca 2÷ for half-maximal activity 
down to the submicromolar range found in the cytosol (Takai et al. 1979b; 
Kishimoto et al. 1980; Kuo et al. 1980). In the absence of phospholipid, DAGs 
and phorbol esters have little effect (Fig. 15). Although it is often assumed 
that protein kinase C is the sole cellular target of  DAGs and phorbol esters, 
other possible mechanisms of action should be kept in mind (see, e.g., Gon- 
zatti-Haces and Traugh 1986) and it should be noted that DAGs and phorbol 
esters do not always produce the same results (Kolesnick and Paley 1987; 
Ways et al. 1987). In addition, there is evidence that the priming of  the 
neutrophil respiratory burst by l-oleoyl-2-acetylglycerol (OAG) does not in- 
volve protein kinase C (Bass et al. t 987). This is based on the failure of  a pro- 
tein kinase C inhibitor to alter this effect of  OAG, and also on the inability 
of  OAG to induce protein kinase C translocation at concentrations effective 
in priming. 

Using a mixed micellar assay, it has been shown that a single molecule of 
1,2-dioleoylglycerol and of Ca 2+ and four molecules of phosphatidylserine 
are required to activate monomeric protein kinase C (Hannun et al. 1986a; 
Ganong et al. 1986; Hannun and Bell 1986). The four phospholipid molecules 
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are believed to bind Ca z÷ through the four carboxyt groups in the serine 
headgroups, and protein kinase C binds to this surface structure but is inac- 
tive (Hannun et al. 1985; Ganong et al. 1986). The complex then binds active 
phorbol esters or DAGs, resulting in activation of the kinase (Hannun et al. 
1985; Ganong et al. t986). The DAG or phorbol ester is thought to have at 
least three attachment points to the complex including the kinase and Ca 2÷ 
(Ganong et al. 1986; Hannun and Bell 1986). This model also explains the 
translocation of the enzyme to membranes induced by phorbol esters and 
Ca 2÷ . The lipid-binding, regulatory domain of the enzyme has been shown 
to be contained entirely in a 32-K tryptic fragment (Lee and Bell 1986). The 
catalytic domain is in a 50-K fragment (Inoue et al. 1977) that is located at 
the carboxyl terminal on the basis of sequence homology with other protein 
kinases (Parker et al. 1986). 

Sphingosine, a component of ceramide from which sphingomyelin and 
sphingoglycolipids are synthesized, is a potent inhibitor of protein kinase C 
in vitro (Hannun et al. 1986b). It also blocks thrombin-induced secretion, 
second-phase aggregation, and phosphorylation of a 40-K protein in platelets 
(Hannun et al. 1986b; 1987). Sphingosine and sphinganine also block the ef- 
fects of phorbol esters on the adherence and growth of human promyelocytic 
leukemia (HL-60) cells (Merrill et al. 1986) and inhibit the effects of 
chemotactic peptide, DAG, and phorbol ester on the oxidative burst of 
neutrophils (Wilson et al. 1986). Sphingosine apparently acts to prevent the 
formation of an active protein kinase-lipid complex by displacing the ac- 
tivator (DAG or phorbol ester) from the complex (Hannun et al. 1986b). The 
possibility that sphingolipids play a role in the regulation of the enzyme in 
vivo is under active investigation. 

Since the phosphoinositides contain predominantly stearic acid at the sn-1 
position of glycerol and arachidonic acid at the sn-2 position (Holub and 
Kuksis 1978), their hydrolysis by phospholipase C yields stearoyl arachidon- 
oylglycerol, which would activate protein kinase C. Thus, PIP2 breakdown 
induced by Ca2+-mobilizing agonists is associated with protein kinase C ac- 
tivation (Nishizuka 1984). However, all the major phospholipids contain 
some unsaturated fatty acids, predominantly in the sn-2 position of glycerol 
(Holub and Kuksis 1978), and their breakdown by phospholipase C could 
therefore yield DAGs capable of activating protein kinase C. 

8.3 Agonist Effects on Diacylglycerol Accumulation 

al-Adrenergic and other Ca2+-mobilizing agonists have been shown to in- 
crease DAG in liver, platelets, exocrine pancreas, vascular smooth muscle 
cells, and HL-60 promyelocytic cells (Fig. 16; Rittenhouse-Simmons 1979; 
Bocckino et al. 1985; Banschbach et al. 1981; B.P. Hughes et al. 1984; Kawa- 
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Fig. 16. Time course of the effects of epinephrine on 1,2-diacylglycerol accumulation and 
phosphorylase activation in isolated rat hepatocytes. Hepatocytes were incubated with 10 tiM 
epinephrine and samples taken at the times shown for measurement of phosphorylase a and 
1,2-diacylglycerol. (From Bocckino et al. (1985) by permission of the authors and publisher) 

hara et al. 1980; Rink et al. 1983; Thomas et al. 1983; Haslam and Davidson 
1984a; Preiss et al. 1986, 1987; Griendling et al. 1986; Pandol and Schoeffield 
1986). In platelets labeled with [3H]arachidonic acid, the increase in 
[3H]DAG in response to activating factors is very rapid and transient 
(Kawahara et al. 1980; Rink et at. 1983; Rittenhouse-Simmons t979), but 
chemical measurements of DAG in hepatocytes and other cells show a slower 
and more stable increase (Fig. 16; Bocckino et al. 1985; Griendling et al. 1986; 
Preiss et al. 1986, 1987). The time course of DAG generation in hepatocytes, 
vascular smooth muscle cells, HL-60 cells, and pancreatic acini differs 
markedly from that for IP 3 and associated physiological responses (Fig. 16; 
Bocckino et al. 1985; Griendling et al. 1986; Preiss et al. 1986; Pandol and 
Schoeffield 1986), consistent with the idea that DAG is formed from other 
sources besides PIP2. 

8.4 Sources of Diacylglycerol 

High-pressure liquid chromatographic analysis of  the DAG generated by 
stimulation of hepatocytes by Ca2+-mobilizing agonists indicates that there 
are at least two fractions (Fig. 17; Bocckino et al. 1985). One is enriched in 
stearic and arachidonic acids, suggesting that it is derived from inositol 
phospholipids, while the other is composed predominantly of palmitic, 
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Fig. 17. High-pressure liquid 8 . 0 0  
chromatographic (HPLC) analysis 
of  the 1,2-diacylglycerol species 
generated by incubation of 
isolated rat hepatocytes with in- 6 . 2 0  
creasing concentrations of  vaso- 
pressin. Hepatocytes were in- 
cubated for 8 min with 
0.1 - 100 nM vasopressin and ~n 
neutral lipid extracts were then > E 4 . 4 0  
prepared for analysis by HPLC. 
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stearic, oleic, linoleic, and arachidonic acids, suggesting another origin. A 
similar conclusion was reached earlier by Banschbach et al. (1981), who mea- 
sured the fatty acid composition of the DAG accumulated in pancreas in 
response to cholinergic stimulation. Isotopic studies using various labeled fat- 
ty acids also indicate other precursors for DAG in vasopressin-stimulated 
hepatocytes (Pickford et al. 1987). A further indication that DAG comes from 
another source besides inositol phospholipids in this system is the observation 
that the accumulation of DAG is at least one order of magnitude greater than 
that of the myoinositol phosphates and myoinositol (Bocckino et al. t985; 
Preiss et al. 1986; Charest et al. 1983; Prpic et al. 1982). 

A likely source of the additional DAG in stimulated cells is phosphatidyl- 
choline (Irving and Exton 1987; Ragab-Thomas et al. 1987; Besterman et al. 
1986a). This has a high content of palmitic, stearic, oleic, linoleic, and 
arachidonic acids (Holub and Kuksis 1978) and thus resembles the second 
DAG fraction generated by agonists in liver (Bocckino et al. 1985). Other 
evidence for DAG formation by phospholipase C cleavage of phosphatidyl- 
choline comes from measurements of the 14C/3H ratio in the lipids of endo- 
thelial cells prelabeled with [3H]palmitic acid and [tnC]arachidonic acid and 
then exposed to thrombin (Ragab-Thomas et al. 1987). More direct proof 
comes from experiments in which incubation of liver plasma membranes with 
GTP analogues and P2-purinergic agonists causes breakdown of phospha- 
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tidylcholine with the appearance of DAG, P-choline, and choline (Irving and 
Exton 1987). These studies indicate that some receptors can couple to a 
phosphatidylcholine phospholipase C through a G-protein. 

Whole-cell studies indicate that activation of phosphatidylcholine 
phospholipase C can also occur through a mechanism involving protein 
kinase C. For example, treatment of  liver, 3T3-L1, HL-60, Swiss 3T3, uterine 
decidua, REF52 and Madin-Darby kidney cells with phorbol esters causes a 
large increase in DAG (Bocckino et al. 1985; Daniel et al. 1986; Besterman 
et al. 1986a; Takuwa et al. 1987; Schrey et al. t987; Cabot et al. 1988). This 
occurs without a detectable change in inositol phosphates (Lynch et al. 1985 c; 
Takuwa et al. 1987) and is accompanied by generation of choline or P-choline 
(Daniel et al. 1986; Besterman et al. 1986a; Schrey et al. 1987; Cabot et al. 
1988). The involvement of protein kinase C is suggested by the fact that down- 
regulation of the enzyme by phorbol esters greatly inhibits the response 
(Besterman et al. 1986a). In vascular smooth muscle, angiotensin II induces 
a transient increase in DAG, followed within 5 s by a sustained increase 
(Griendling et al. 1986). Changes in phospholipids indicate that the first 
phase involves breakdown of PIP2 and PIP and release of IP3 and IP2, 
whereas the second is associated with a decrease in PI and a sustained in- 
crease in IPI. Phorbol esters diminish the first phase changes, but do not sig- 
nificantly alter the second phase. 

8.5 Sources of Phosphatidate 

DAG produced in the plasma membrane is believed to be further metabolized 
to phosphatidic acid due to the action of diacylglyglycerol kinase, since phos- 
phatidic acid rises rapidly following phosphoinositide breakdown. Transloca- 
tion of  diacylglycerol kinase from the cytosol to the membrane has been report- 
ed to be induced by DAG, but not by Ca 2+, in brain and liver homogenates 
(Besterman et al. 1986b). A similar translocation is induced by TPA, DAG, and 
chemotactic peptide in neutrophils (Ishitoya et al. 1987). Other possible routes 
of DAG metabolism are hydrolysis by diacylglycerol and monoglycerol lipases. 
Diacylglycerol lipase is present in the plasma membrane of some cells (Mauco 
et al. 1984; Authi et al. 1985), but it is unclear to what extent membrane-asso- 
ciated DAG is metabolized by this enzyme. Phosphatidic acid can be 
reconverted to DAG by phosphatidate phosphohydrolase, but it is not known 
whether this enzyme is present in the plasma membrane. The major fate of 
phosphatidic acid generated in the plasma membrane is considered to be its 
transfer to the endoplasmic reticulum for phospholipid and triacylglycerol syn- 
thesis. This transfer involves a phospholipid exchange protein. 

Phosphatidic acid rises more rapidly than DAG in hepatocytes stimulated 
by CaZ+-mobilizing agonists (Fig. 18; Bocckino et al. 1987; Pickford et al. 



The Roles of Calcium and Phosphoinositides 165 

Fig. 18. Changes in phosphati- 800-  
date and 1,2-diacylglycerol in- 
duced by vasopressin in isolated 
rat hepatocytes. Hepatocytes were 
incubated with 10 -8 M vasopres- ~ BOO- 
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1987), and a two- to threefold increase is observed at early stages, when no 
increase in DAG can be detected. Changes in the fatty acid composition of 
phosphatidate also precede those in DAG (Bocckino et al. 1987). These obser- 
vations are not consistent with the view that most of the phosphatidate ac- 
cumulating in response to agonists is formed from DAG in this tissue. 

Incubation of washed liver plasma membranes with GTP analogues in the 
presence and absence of agonists causes an increase in phosphatidate in the 
absence of ATP (Bocckino et al. 1987). This provides evidence for the forma- 
tion of phosphatidate by mechanisms not involving diacylglycerol kinase. A 
probable major source of the phosphatidate is phosphatidylcholine, since this 
is the only phospholipid that decreases significantly during incubation of the 
membranes with GTP analogues. Furthermore, there is an associated release 
of choline and P-choline, reported by Bocckino et al. (1987), in agreement 
with Irving and Exton (1987). The fatty acid composition of the phosphati- 
date that is produced during incubation of hepatocytes with vasopressin also 
resembles that of phosphatidylcholine (Bocckino et al. 1987). These results 
suggest that a major mechanism by which phosphatidate is produced during 
Ca2+-mobilizing agonist action in liver is by the G-protein-mediated activa- 
tion of a phospholipase D, the major substrate of which is phosphatidylcho- 
line. There is also evidence for a phorbol ester-stimulated breakdown of 
phosphatidylcholine to choline in NG108-15 cells, which may also be due to 
activation of a phospholipase D (Liscovitch et al. 1987). It remains to be seen 
whether similar mechanisms operate in other cell types and whether the large 
amount of phosphatidate produced has biological functions. 
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8.6 Activation and Translocation of Protein Kinase C 

There have been no direct demonstrations that Ca2+-mobilizing agonists ac- 
tivate protein kinase C in cells. However, there have been several reports show- 
ing that these agonists increase the phosphorylation of several substrates in 
platelets, liver cells, and mast cells which are also selectively affected by active 
phorbol esters or synthetic DAGs (Kaibuchi et al. 1983; Katakami et al. 1984; 
Haslam and Davidson 1984a; Garrison et al. 1984). Some of  these substrates 
have been shown to be phosphorylated by protein kinase C in vitro (Kawahara 
et al. 1980; Sano et al. 1983; Cooper et al. 1984). 

There have been reports showing that phorbol esters or Ca2÷-mobilizing 
agonists induce the translocation of protein kinase C from the soluble phase 
to the plasma membrane in many cells (e.g., Kraft and Anderson 1983; Kraft 
et al. 1982; Drust and Martin 1985; Wooten and Wrenn 1984). The data in- 
dicate that protein kinase C present in the soluble phase is inactive due to the 
absence of lipid. However, it is postulated that when agonists induce a rise 
in DAG in the plasma membrane and in cytosolic Ca 2+ , the enzyme becomes 
associated with the membrane, where it becomes activated by the ac- 
cumulated DAG (M. Wolf et al. 1985; May et al. 1985). Phorbol ester-induced 
binding of protein kinase C to isolated membranes differs from that induced 
by Ca z÷ in that it is stable, temperature dependent, saturable, and relatively 
selective for plasma membranes and requires the presence of membrane prote- 
in(s) and phospholipid micelles (Gopalakrishna et al. 1986). Translocation 
has been demonstrated in intact GH3 pituitary and Swiss 3T3 cells treated 
with phorbol ester, using either [35S]methionine-labeled protein kinase C and 
antisera to the enzyme (Ballester and Rosen 1985) or digitonin-induced 
release of cytoplasmic proteins (Pelech et al. t986). The observations on 
translocation suggest that soluble protein substrates for protein kinase C can 
be phosphorylated only at the plasma membrane or at other membranes 
where there is a rise in DAG. 

8.7 Substrates of Protein Kinase C 

Protein kinase C has been shown to phosphorylate a large number of proteins 
in vitro, but it is unclear to what extent these serve as substrates in intact cells. 
Addition of active phorbol esters to liver cells increases the phosphorylation 
of several soluble proteins of unknown function (Garrison et al. 1984; Cooper 
et al. 1984). It also causes inactivation of glycogen synthase in these cells (Fig. 
19; Roach and Goldman 1983; Blackmore et al. 1986; Bouscarel et al. 1988). 
The inactivation of this enzyme caused by Ca 2÷-mobilizing agonists is better 
correlated with changes in DAG than in cytosolic Ca 2+ (Bouscarel and Exton 
1986) and is also seen in the absence of changes in cell Ca 2÷ (Blackmore et 
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Fig. 19. Effects of down-regulation of protein kinase C on the inactivation of glycogen synthase 
by vasopressin, A23187 ionophore, and phorbol ester (TPA) in cultured rat hepatocytes. Rat 
hepatocytes in primary culture were incubated with 1% dimethylsulfoxide (untreated, open 
bars) or with TPA (12-0-tetradecanoylphorbol-13-acetate) (treated, shaded bars) for 18 h to 
reduce protein kinase C activity to approximately 10% of untreated. The treated or untreated 
hepatocytes were then incubated for 15 min with 50 mM glucose to activate glycogen synthase. 
They were then incubated for 15 min with 100 nMvasopressin, 1 ~tMA23187, or 1 ~MTPA and 
the glycogen synthase activity ratio (-Glc6-P/+ 10 mMGlc6-P) was measured. (From Bouscarel 
et al. (1988) by permission of the authors and publisher) 

al. 1986). Furthermore, in cultured liver cells in which protein kinase C has 
been down-regulated by prolonged treatment with phorbol esters, the ability 
o f  CaZ+-mobilizing agonists to inactivate glycogen synthase is significantly 
inhibited (Fig. 19; Bouscarel et al. 1988). However, it seems that  the inactiva- 
t ion is due to a mechanism(s) other than a direct effect of  protein kinase C 
on the enzyme (Imazu et al. 1984; Nakabayashi et al. 1987). Phorbol  esters 
and synthetic DAGs induce the phosphorylat ion of  a 40- to 47-K protein in 
platelets (Kawahara et al. 1980; Sano et al. 1983; Kaibuchi et al. 1983). This 
protein appears to be the same as that  phosphorylated in response to platelet- 
activating factors. 

Protein kinase C phosphorylates a large number of  neuronal and muscle 
proteins in vitro. These include tyrosine hydroxylase, GABA-modulin,  myelin 
basic protein, MAP-2, an 87-K protein that  is widely distributed in brain, a 
48-K brain membrane protein, phospholamban,  t roponin T, and smooth mus- 
cle myosin light chains (Nairn et al. 1985 b). Some of  these phosphorylat ions 
are associated with functional changes, e.g., activation of  tyrosine hydrox- 
ylase, and some can be observed after depolarization in intact tissue, e.g., 
87-K protein (Nairn et al. 1985b). As described below, there is also indirect 
evidence for the control o f  ion channels by protein kinase C. Protein kinase 
C can also inactivate myosin light chain kinase in vitro (Nishikawa et al. 1985; 
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Ikebe et al. 1985), but it is not known whether this is a regulatory mechanism 
for smooth muscle contraction in vivo. 

8.8 Actions of Protein Kinase C on Receptors and Certain Other Cell 
Responses 

There is evidence that phorbol esters induce phosphorylation and/or alter the 
function of several plasma membrane receptors, including al-adrenergic re- 
ceptors (Corvera and Garcia-Sainz 1984; Labarca et al. 1984; Danthuluri and 
Deth 1984; Lynch et al. 1985c; Cooper et al. 1985; Baraban et al. 1985a; Van 
de Werve et al. 1985; Leeb-Lundberg et al. t985; Corvera et al. 1986), epider- 
mal growth factor receptors (Lee and Weinstein 1978, 1979; Shoyab et al. 
1979; Moon et al. 1984; Davis and Dzech 1984; Davis et al. 1985; Cochet et 
al. 1984; Beguinot et al. 1985), insulin receptors (Jacobs et al. 1983; 
Thomopoulos et al. t982; Grunberger and Gorden t982), somatostatin recep- 
tors (Matozaki et al. 1986), and transferrin receptors (May et al. 1984). Inhibi- 
tion by phorbol esters of the actions of other agonists has been reported, e.g., 
the chemotactic peptide fMet-Leu-Phe in neutrophils (White et al. 1984; Nac- 
cache et al. 1985), thyrotropin-releasing hormone in pituitary cells (Albert 
and Tashjian 1985), muscarinic cholinergic agonists in hippocampus, 
astrocytoma, and pheochromocytoma cells (Labarca et al. 1984; Orellana et 
al. 1985; Vincentini et al. 1985b), and several activating factors in platelets 
(Maclntyre et al. 1985). Although phosphorylation of membrane receptors 
probably underlies the inhibitory effects of phorbol esters in most cases, there 
is also evidence that they may affect G-proteins (Blackmore and Exton 1986; 
Jakobs et al. 1985; Katada et al. 1985). 

Prolonged exposure of hepatocytes to phorbol esters, vasopressin, and 
angiotensin II induces refractoriness to al-adrenergic agonists (Garcia-Sainz 
et al. 1986). Evidence that this effect involves protein kinase C is suggested 
by the fact that it is blocked by inhibitors of the enzyme, namely W-7 and H-7 
(Garcia-Sainz and Hernandez-Sotomayor 1987). Further support comes from 
the observations that the orders of potency and efficacy of phorbol esters for 
inhibiting al-adrenergic actions parallel those for activating protein kinase C 
(Corvera and Garcia-Sainz 1984; Corvera et al. 1986). 

In addition to their inhibitory actions on some agonist responses, evidence 
is accumulating that phorbol esters can increase the responses to other ago- 
nists. For example, they increase fl-adrenergic or adenosine responses in brain, 
$49 lymphoma cells, and pinealocytes (Hollingsworth et al. t985; Bell et al. 
1985; Sugden et al. 1985). The effects of the esters may be exerted at the level 
of  G-proteins (Bell et al. 1985). This may also be true in part for the receptor 
systems which are inhibited by DAG and its analogues (Blackmore and Exton 
1986). 
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Phorbol esters and synthetic DAGs have been shown to have effects on cells 
which are not directly related to the modification of receptor functions. For 
example, they can alter ion channels and pumps in various cell types, as 
discussed below. They can also induce serotonin secretion in platelets 
(Yamanishi et al. 1983; Rink et al. 1983), stimulate amylase secretion in pan- 
creatic acini (Wooten and Wrenn 1984), induce superoxide generation or O2 
consumption in neutrophils (Dale and Penfield 1984; De Virgilio et al. 1984; 
Sha'afi et al. 1983), stimulate protein secretion in parotid gland (Putney et al. 
1984), stimulate insulin release from islets (Hutton et al. 1984; Malaisse et al. 
t985; Zawalich et al. 1983), stimulate prolactin release by pituitary cells 
(Osborne and Tashjian 1981; Delbeke et al. 1984), induce contraction in cer- 
tain smooth muscles (Baraban et al. 1985 a; Rasmussen et al. 1984), stimulate 
the N a + / H  + antiporter in several cells (Besterman and Cuatrecasas 1984; 
Volpi et al. 1985), cause histamine release from mast cells (Katakami et al. 
1984), and increase the phosphorylation and activity of tyrosine hydroxylase 
and catecholamine secretion in adrenal chromaffin cells (Pocotte et al. 1985; 
Pocotte and Holz 1986). These observations and others support the view that 
the effects of  CaZ+-mobilizing agonists on these various cellular processes 
are mediated partly or wholly through activation of  protein kinase C. 

8.9 Actions of Protein Kinase C on Ion Channels and Pumps 

Several recent reports suggest that activation of protein kinase C can regulate 
Ca 2+ and other ion channels in several cell types (Kaczmarek 1987). In the 
bag cell neurons of  the abdominal ganglion of Aplysia, the addition of active 
phorbol esters or synthetic DAGs or the microinjection of protein kinase C 
causes a striking enhancement of Ca 2+ action potentials evoked by 
depolarization (De Riemer et al. 1985). This occurs through recruitment of 
covert Ca 2+ channels (Strong et al. 1987). Phorbol esters and/or  DAGs also 
evoke an increase in Ca 2+ influx in aorta (Gleason and Flaim 1986), ATr 5 
vascular smooth muscle cells (Sperti and Colucci 1987), neutrophils (Nasmith 
and Grinstein 1987), pituitary cells (Albert et al. 1987), and UMR-106 
osteosarcoma cells (Yamaguchi et al. 1987) and in a voltage-dependent C a  2+ 

current in Hermissenda photoreceptors (Farley and Auerbach 1986). In the 
latter, there are also decreases in a transient voltage-dependent K + current 
and a Ca2+-activated K + current (Farley and Auerbach 1986; Alkon et al. 
1986). However, in some systems, phorbol esters and DAGs decrease voltage- 
dependent Ca 2+ influx, e.g., aortic smooth muscle (Galizzi et al. 1987) and 
PC-12 pheochromocytoma cells (Harris et al. 1986). Furthermore, in hip- 
pocampal pyramidal neurons, phorbol esters have little or no effect on Ca 2+ 
action potentials or the voltage-dependent K + current, although they abolish 
the Ca2+-associated K + current and associated late hyperpolarization 
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Fig. 2Oa, b. Activation of the hepatic Na + pump by norepinephrine (a) and phorbol ester 
(PMA) (b). Ouabain-sensitive 86Rb+ uptake during 5 min was used as a measure of N a + / K  + 
ATPase-pump activity in isolated rat hepatocytes. The uptake was measured in the presence of 
the shown concentrations of  norepinephrine and PMA (4fl-phorbol 12B-myristate 13a-acetate, 
also known as TPA). (From Lynch et al. (1986c) by permission of  the authors and publisher) 

(Malenka et al. 1986; Baraban et al. 1985b). The different effects of protein 
kinase C activators on the ion channels of  these various cells presumably 
relate to functional and regulatory differences. 

In addition to effects on ion channels, activation of protein kinase C may 
exert actions on ion pumps, al-Adrenergic agonists and other Ca2+-mobiliz - 
ing agonists activate the Na+/K+-ATPase-mediated transport of  K + in 
hepatocytes (Fig. 20; for references see Lynch et al. 1986c). This effect is 
mimicked by the addition of  phorbol esters and other activators of  protein 
kinase C (Fig. 20) and cannot be attributed to the increase in cytosolic C a  2+ 

(Lynch et al. 1986c). The effect is transient due to rapid heterologous desen- 
sitization of  the pump, also apparently mediated by protein kinase C (Lynch 
et al. 1987). The possibility that phorbot esters and thrombin stimulate Ca 2+ 
effiux from platelets, perhaps via protein kinase C stimulation of  a plasma 
membrane Ca 2+ pump, has also been raised (Pollock et al. 1987). This is 
based on changes in cytosolic Ca 2+ induced by phorbol ester and thrombin 
in the presence of  ionomycin (which blocks the reuptake of  Ca 2+ by internal 
organelles). 
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8.10 Effects of  Protein Kinase C on Proto-oncogene Expression 

The c-myc and c-fos genes are the cellular counterparts of  the transforming 
genes of  the avian myelocytomatosis and the FBJ murine osteosarcoma 
viruses. The proteins they encode are located in the nucleus and are believed 
to be important in the regulation of  the cell cycle, although this is controver- 
sial. In several cell types (e.g., several 3T3 fibroblast cell lines, A431 epidermal 
carcinoma cells, lymphocytes, and 1321-N1 astrocytoma cells) certain growth 
factors (e.g., platelet-derived growth factor, fibroblast growth factor, epider- 
mal growth factor) can activate the induction of  c-myc and c-fos mRNA (for 
references see Berridge 1986; Moore et al. 1986; Blackshear et al. 1987). This 
response can also be elicited by phorbol esters or DAGs, either alone or in 
combination with A23187 Ca 2÷ ionophore (Kelly et al. 1983; Greenberg and 
Ziff 1984; Kruijer et al. 1984; Coughlin et al. 1985; Moore et al. 1986; 
Kaibuchi et al. 1986; Stumpo and Blackshear 1986; Blackshear et al. 1987). 
Since the growth factors can elicit inositol phospholipid turnover and the ac- 
tivation of  protein kinase C in some of the cell lines in which they induce c- 
myc and c-fos (for references see Berridge 1986; Blackshear et al. 1987), it 
seems likely that their effects on the expression of these proto-oncogenes are 
mediated in part through the kinase. However, the induction is still seen in 
cells in which protein kinase C has been down-regulated (Kaibuchi et al. 1986; 
Coughlin et al. 1985; Stumpo and Blackshear 1986; Blackshear et al. 1987) 
or in which the growth factors fail to increase IP 3 or to activate the kinase 
(Magnaldo et al. 1986; Blackshear et al. 1987). This indicates that protein 
kinase C-independent pathways must also be involved. This conclusion is sup- 
ported by the fact that addition of  phorbol esters or down-regulation of  pro- 
tein kinase C affects the transcription of only some (c-myc and c-fos, but not 
JE and KC) of  the genes stimulated by platelet-derived growth factor in 
BALB/c/3T3 cells (Hall and Stiles 1987). 

8.11 Interactions Between the Ca 2+- and DAG-Signaling Systems 

In many cases, the effects of  the DAG analogues on cellular processes are 
synergistic with those of  Ca 2÷ ionophores, and the addition of  both types of  
agent is necessary to completely mimic the effects of  natural agonists 
(Nishizuka 1984). However, some agonist effects are mediated by an increase 
in Ca 2÷ or DAG alone (Blackmore et al. 1986; Lynch et al. 1986c; Cooper 
et al. 1985; cf. Fain et al. 1984; Kimura et al. 1984). Although synergistic in- 
teractions of  Ca 2÷ and DAG are frequently observed, the molecular mechan- 
isms involved have not been defined. They could be due to the effects of  these 
agents on protein kinase C per se, but this explanation seems inadequate in 
some cases. Alternative explanations are that some responses require the 
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phosphorylation of  a single protein by both DAG- and Ca 2÷-sensitive prote- 
in kinases, that some processes require the separate phosphorylation of  two 
or more proteins by these kinases, and that some effects involve a 
phosphorylation cascade in which protein kinase C phosphorylates a 
Ca2+-dependent protein kinase or vice versa. 

9 Role of Ca2+-Calmodulin-Regulated Enzymes and Other Proteins 

9.1 Properties of  Calmodulin 

An important aspect of the mechanism of action of al-adrenergic and other 
Ca2+-mobilizing agonists is the definition of  the intracellular targets of  the 
mobilized Ca 2÷ ions. Although troponin C has been known for a long time 
as the Ca2+-responsive protein involved in skeletal muscle contraction, most 
of  the proteins involved in other Ca 2+ actions were unknown until the 
discovery of  the 17-K Ca2+-dependent regulatory protein calmodulin by 
Kakiuchi, Cheung, Wang and their associates (for reviews see Cheung 1980; 
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Klee and Vanaman 1982). This protein was soon shown to be involved in a 
large number of Ca2+-mediated cellular responses (Fig. 21) and to be distrib- 
uted widely in various tissues from animal and plant species as well as in pro- 
tozoa. 

Vertebrate calmodulin is a 148-residue protein that is homologous to 
troponin C and has four nonidentical, but homologous, Ca2+-binding sites 
of high affinity (Kd between 10 -7 and 10 -5 M). The molecule has a dumb- 
bell-like structure with two calcium-binding domains at each end connected 
by a region of a-helical structure. A rise in cytosolic Ca 2+ within the physio- 
logical range leads to increased formation of  Ca2+-calmodulin complexes 
(Fig. 21). Binding of Ca 2÷ results in a conformational change in calmodulin 
which increases its reversible interaction with certain target proteins, thereby 
altering their activities. These proteins include a form of cyclic nucleotide 
phosphodiesterase, a form of adenylate cyclase, a plasma membrane Ca 2÷- 
ATPase, and a specific phosphoprotein phosphatase termed "calcineurin" 
(Klee and Vanaman 1982). In addition to these proteins, the Ca2+-calmodu- 
lin complex activates certain specific and multisubstrate protein kinases, 
leading to the phosphorylation of diverse proteins (Fig. 21; Stull et al. 1986). 

9.2 Myosin Light-Chain Kinase and Phosphorylase b Kinase 

A major target of  Ca 2+-calmodulin in smooth muscle and platelets is myosin 
light-chain kinase. The smooth muscle form of this enzyme has an Mr of 
130000-160000 and phosphorylates the regulatory 20-K light chains of  
myosin. This increases the actin-stimulated myosin ATPase activity and the 
increased cross-bridge cycling associated with contraction in smooth muscle 
(Chacko et al. 1977; Dabrowska et al. 1978; Adelstein and Eisenberg 1980; 
Driska et al. 1981; Ruegg 1982) or shape change in platelets (Adelstein and 
Conti 1975; Daniel et al. 1981, 1984). The enzyme has a very high substrate 
specificity and is also present in brain, heart, and skeletal muscle. In the last- 
mentioned tissue, it does not play a role in the initiation of  contraction but 
augments force generation (Stull et al. 1980). The calmodulin-binding do- 
main of the enzyme lies distal to the catalytic domain and represents the car- 
boxyl terminus (Stull et al. 1986). 

Another Ca2+-dependent protein kinase with high substrate specificity is 
phosphorylase b kinase. This differs from other calmodulin-responsive en- 
zymes in that it contains calmodulin as a subunit (Cohen et al. 1978; Chan 
and Graves 1984). It has an Mr of approximately 1.3 million and consists of 
a tetramer of a or a', fl, y, and d subunits (Chan and Graves 1984). The a and 
fl subunits are regulatory and undergo autophosphorylation or can be 
phosphorylated by cAMP-dependent protein kinase, whereas the y subunit 
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Fig. 22. Effects of epinephrine on phosphorylase activation and glycogenolysis in isolated rat 
hepatocytes. Hepatocytes from fed male rats were incubated with epinephrine at the concentra- 
tions shown. Phosphorytase a was measured at 1 rain and glucose output over 15 min. Under 
these conditions, epinephrine acts primarily through al-adrenergic receptors. (Unpublished 
data of N.J. Hutson, E T. Brumley, and J.H. Exton) 

contains the catalytic domain. The a/fl subunits are inhibitory to the y 
subunit, and the inhibition is less when the subunits are phosphorylated 
(Paudel and Carlson 1987). The 6 subunit is virtually identical with calmodu- 
lin, which means that Ca 2÷ interacts directly with the enzyme (Shenolikar et 
al. 1979). In addition, the a and fl-subunits of  most forms of  the enzyme can 
bind additional Ca2+-calmodulin, leading to increased activity (Picton et al. 
1980; Cohen 1980). Thus, a common response to a rise in cytosolic Ca 2÷ in- 
duced by al-adrenergic agonists and other hormones or neurotransmitters in 
many tissues is activation of phosphorylase b kinase. This leads to 
phosphorylation of  phosphorylase b, converting it to the more active form, 
phosphorylase a (Fig. 22). Since this enzyme is rate limiting for glycogen 
breakdown, its activation leads to enhanced formation of glucose-6-P for 
energy production via glycolysis in most tissues. In the case of  liver, there is 
also production of  glucose (Fig. 22) due to the presence of glucose 
6-phosphatase. Phosphorylase b kinase has also been shown to phosphorylate 
and inactivate liver and muscle glycogen synthase (Roach et al. 1978), but it 
is unclear whether this is important in the inhibition of hepatic glycogen syn- 
thase by Ca2+-mobilizing agonists (Strickland et al. 1983). 
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9.3 Ca2+-Calmodulin-Dependent Protein Kinases 

Another protein kinase of major importance in the actions of Ca2+-mobiliz- 
ing agonists is the multifunctional Ca2+-calmodulin-dependent protein 
kinase, which is found widely distributed in mammalian tissues. This kinase 
is not as selective in its substrate specificity as myosin light-chain kinase or 
phosphorylase b kinase, and it exists in several isozymic forms exhibiting dif- 
ferent structural, immunological, and enzymatic properties (Shenolikar et al. 
1986). The enzyme was originally discovered as a Ca2+-dependent protein 
kinase in brain (Schulman and Greengard 1978a, b) and as a glycogen syn- 
thase kinase in liver (Payne and Soderling 1980), and it has now also been 
purified from skeletal muscle (Campbell and MacLennan 1982; Woodgett et 
al. 1983). There is evidence that it is present in adipose tissue (Landt and 
McDonald 1984), Torpedo electric organ (Palfrey et al. 1983), Aplysia 
neurons (DeRiemer et al. 1984), pancreatic islets (Landt et al. 1982), and 
mammary gland (Brooks and Landt 1985). The kinases from various tissues 
are composed of either two subunits (50- to 55-K and 60- to 75-K) or the 
single lower Mr subunit (Stull et al. 1986). The relative subunit compositions 
and, hence, the MrS of the native enzymes are quite variable. 

The Ca2+calmodulin-dependent protein kinases of brain have been sub- 
divided into three isozymic forms. Type I is found mainly in the cytosolic frac- 
tion of brain and other tissues and phosphorylates two neuron-specific pro- 
teins called synapsin 1 and Protein III (Kennedy and Greengard 1981; Nairn 
et al. 1985b). Its activity toward other substrates is very low, and it 
phosphorylates synapsin 1 on a single site (I) which is also a site for cAMP- 
dependent protein kinase (Nairn et al. 1985b). Protein III is also phosphory- 
lated by both enzymes at a single site. 

Type-II Ca2+-calmodulin-dependent protein kinase exists in several 
isozymic forms and is more abundant than type I. It has a wider substrate 
specificity and is present in both soluble and particulate functions of the 
brain (Nairn et al. 1985b). It is very rich and widely distributed in brain, 
representing as much as 0.4o7o of total brain protein (Bennett et al. t983; 
McGuinness et al. 1983). Its major substrate in brain is synapsin 1, which it 
phosphorylates on site II, located in the tail region. This phosphorylation 
reduces the binding of synapsin 1 to synaptic vesicles and may be involved in 
neurotransmitter release (Llinas et al. 1985). The principal type-II isozyme 
from brain is closely related to, but not identical with, the Ca2+-calmodulin- 
dependent glycogen synthase kinase of skeletal muscle (McGuinness et al. 
1983; Woodgett et al. 1984; Yamauchi and Fujisawa 1986) and liver (Schworer 
and Soderling 1983). It is a 550- to 650-K polymer containing both 50- and 
60-K subunits which undergo autophosphorylation (Bennett et al. 1983; 
McGuinness et al. t985; Kuret and Shulman 1984; Nairn et al. 1985b). The 
isozymes from various tissues and different regions of the brain contain dif- 
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ferent ratios of  the subunits (McGuinness et al. 1983, 1985). Consequently, 
they show significant differences in M r. Type-Ill Ca2+-calmodulin-depen- 
dent protein kinase was purified first from pancreas, utilizing its specific 
100-k substrate (Nairn et al. 1985 a). It and its substrate are present in many 
other tissues, including skeletal muscle, adrenal, brain, and liver. Other pro- 
teins are poor substrates for this enzyme (Nairn et al. 1985a). 

9.4 Substrates of Ca2+-Calmodulin-Dependent Protein Kinases 

A large number of  in vitro substrates of type-II Ca z+-calmodulin-dependent 
protein kinase have been identified. These include glycogen synthase, synap- 
sin 1, microtubule-associated protein 2 (MAP-2), tau-protein, myelin basic 
protein, myosin light chains, tyrosine hydroxylase, phenylalanine hydroxylase, 
t ryptophan hydroxylase, ATP-citrate lyase, acetyl-CoA carboxylase, and 
pyruvate kinase (Schworer and Soderling 1983; McGuinness et al. 1983; 
Woodgett et al. 1983, 1984; Doskeland et al. 1984; Vuillet et al. 1984; Schul- 
man 1984 a, b; Nairn et al. 1985 b). Many of these proteins are phosphorylated 
when neuronal and other cells are stimulated by nervous or hormonal  signals 
which increase cytosolic Ca 2+ (Nestler et al. 1984; Exton 1987; Nestler and 
Greengard 1983; Schulman 1984a, b; Garrison and Wagner 1982; Blackmore 
and Exton 1985; Garrison et al. 1984; Nairn et al. 1985b). However, although 
it is likely that a Ca2+-calmodulin-dependent protein kinase is responsible 
for most of these in vivo phosphorylations, this has not been clearly establish- 
ed, because many of the proteins are also substrates for protein kinase C 
and/or  cAMP-dependent protein kinase. 

Phosphorylation of the synaptic vesicle-associated protein synapsin 1 in- 
duces neurotransmitter release in the giant squid synapse, and there is 
evidence that it produces a similar effect in the mammalian nervous system 
(Nestler et al. 1984). Tyrosine hydroxylase converts tyrosine to dihydroxyphe- 
nylalanine (dopa) and is rate controlling for epinephrine and norepinephrine 
synthesis in adrenal medulla and presumably brain. Phosphorylation of this 
enzyme increases its activity when assayed in the presence of  an "activator 
protein" (Yamauchi et al. 1981). Type-II CaZ+-calmodulin-dependent protein 
kinase phosphorylates MAP-2, a- and fl-tubulin, and r factor from brain 
(Burke and Lorenzo 1981; Yamamoto et al. 1983; Schulman 1984a, b). This 
suggests that microtubule function (state of  polymerization, treadmilling, or 
interaction with other cell components) may be regulated by Ca2+-mobiliz- 
ing agonists through this enzyme. 

Glycogen synthase was utilized initially to identify Ca2+-calmodulin-de - 
pendent protein kinase in liver (Payne and Soderling 1980; Ahmad et al. 1982; 
Payne et al. 1983). The kinase phosphorylates this enzyme on site 2, which 
is serine 7 near the amino terminus, and also on site I b toward the carboxyl 
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terminus (Payne et al. 1983; Juhl et al. 1983). Site 2 is also phosphorylated 
by cAMP-dependent protein kinase and phosphorylase b kinase (Juhl et al. 
1983) and is associated with inactivation of the enzyme. Although 
Ca2+-calmodulin-dependent protein kinase is a good candidate for 
mediating the inhibitory effects of CaZ+-mobilizing agonists on glycogen 
synthase in liver (Fig. 23; Strickland et al. 1980), the synthase is also a 
substrate for phosphorylase b kinase and protein kinase C (Imazu et al. 1984; 
Ahmad et al. 1984), which are also involved in the actions of these agonists 
(see Sect. 8). 

There is much evidence that at-adrenergic agonists and other Ca2+-mobi - 
lizing hormones induce phosphorylation and inactivation of pyruvate kinase 
in liver and that this contributes to the stimulation of gluconeogenesis by 
these agents (Chan and Exton 1978; Garrison et al. 1979; Nagano et al. 1980). 
The kinase involved is not phosphorylase b kinase, since the phosphorylation 
occurs in animals lacking this enzyme, or protein kinase C, since phorbol 
esters do not induce phosphorylation of pyruvate kinase (Garrison et al. 
1984). It is probably type-II Ca2+-calmodulin-dependent protein kinase, 
since this can phosphorylate and inactivate the enzyme in vitro (Schworer et 
al. 1985) and produces the same phosphopeptide pattern as seen with 
Ca2+-mobilizing agonists in vivo (Connelly et al. 1987). Phenylalanine 
hydroxylase converts phenylalanine to tyrosine and is controlled by both 
cAMP- and CaZ+-dependent stimuli in liver (Fisher and Pogson 1984; Fisher 
et al. 1984). Phosphorylation and activation of the enzyme occurs in 
hepatocytes exposed to CaZ+-mobilizing agonists (Garrison and Wagner 
1982; Garrison et al. 1984; Fisher et al. 1984), and there is evidence that 
neither phosphorylase b kinase nor protein kinase C is involved (Garrison et 
al. 1984). On the other hand, the enzyme is phosphorylated and activated in 
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vitro by type-II Ca 2÷-calmodulin-dependent protein kinase (Doskeland et al. 
1984). 

9.5 Other Targets of  Ca2+-Calmodulin and Ca 2+ 

Although the focus of the preceding paragraphs has been on the specific and 
multifunctional Ca2÷-calmodulin-dependent protein kinases, other proteins 
are sensitive to Ca2÷-calmodulin. Microtubules, which are key cytoskeletal 
elements associated with cell movement, flagellar and ciliary motility, chro- 
mosome movement, and axonal transport, are targets of Ca2÷-calmodulin 
(Means and Dedman 1980). Polymerization of a~ tubulin to form 
microtubules is inhibited by Ca2÷-calmodulin (Marcum et al. 1978; Kamagai 
and Nishida 1979), and there is evidence that nucleation rather than elonga- 
tion may be inhibited (Berkowitz and Wolff 1981). In addition to its direct ef- 
fects, Ca2÷-calmodulin also influences microtubule assembly/disassembly 
through phosphorylation of microtubule components by type-II Ca2÷-cal- 
modulin-dependent protein kinase, as noted above. 

Ca 2÷-calmodulin can activate a form of cyclic nucleotide phosphodiester- 
ase found in brain, heart, liver, and most other tissues (Klee and Vanaman 
1982). Ca2÷-calmodulin binds stoichiometrically to a specific site on the en- 
zyme to form a complex which hydrolyzes cGMP with a low Km ( 5 - 1 0 # M )  
and cAMP with a high K m (approximately 100/~M). Despite the well-demon- 
strated effects of Ca2+-calmodulin on this enzyme in vitro, there are no 
clear-cut examples of Ca 2÷ regulation of  cAMP or cGMP concentrations by 
this mechanism in intact cells. This may relate to the high Kms of  the enzyme 
for its two substrates relative to their cellular concentrations. 

Ca2÷-calmodulin activates a form of adenylate cyclase present in brain, 
pancreatic islets, adrenal medulla, and kidney cells (Klee and Vanaman ! 982). 
The effect does not involve a G-protein and is exerted directly on the catalytic 
subunit of the enzyme (Coussen et al. 1985). There are presently no unequivo- 
cal examples of regulation of the enzyme under physiological conditions, 
although this would be difficult to demonstrate in the intact brain. 

The plasma membrane Ca 2÷-pump ATPase is calmodulin sensitive in most 
tissues, with the exception of  the liver (Carafoli 1984). This pump is responsi- 
ble for most of  the Ca 2÷ extruded from nonexcitable cells and from excitable 
cells during rest. In the latter, the lower-affinity Na+/Ca 2÷ exchanger is 
responsible for most of  the Ca 2÷ ejected during excitation. Addition of  
Ca 2÷-calmodulin to the ATPase lowers its K m for Ca 2÷ and increases its Vmax 
(Niggli et al. 1979; Waisman et al. 1981). As found for other calmodulin- 
responsive proteins, the 138-K ATPase has a specific Ca2÷-calmodulin-bind- 
ing domain which is approximately 25 K in size, as defined by proteolytic 
fragmentation (Zurini et al. 1984). 
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In contrast to th,. plasma membrane Ca2÷-pump ATPase, that of the en- 
doplasmic (sarcoplasmic) reticulum is not directly controlled by Ca2+-cal- 
modulin. In heart, this Ca 2+-ATPase is regulated by phospholamban, a 22-K 
proteolipid which can be phosphorylated by both cAMP-dependent and 
Ca2+-calmodulin-dependent protein kinases, leading to increased uptake of 
Ca 2÷ by the sarcoplasmic reticulum (Tada et al. 1979; LePeuch et al. 1979; 
Tada and Katz 1982; Davis et al. 1983). Ca2+-calmodulin-dependent 
phosphorylation of phospholamban increases the maximum rate of Ca 2+ 
transport by isolated cardiac sarcoplasmic reticulum vesicles, with a small de- 
crease in K m for Ca 2+ (Davis et al. 1983). However, efforts to demonstrate 
that physiological increases in cytosolic Ca 2+ increase phospholamban 
phosphorylation in intact myocardium have not been successful. 
Ca2+-calmodulin-dependent protein kinase and phosphorylase b kinase 
phosphorylate several proteins in skeletal muscle sarcoplasmic reticulum (Var- 
sanyi and Heilmeyer 1981; Campbell and MacLennan 1982). The functional 
significance of these phosphorylations is uncertain, but it has been suggested 
that the phosphorylation/dephosphorylation cycle of a 60-K protein may 
control the Ca2+-release channel of sarcoplasmic reticulum (Campbell and 
MacLennan 1982). 

Ca 2+ ions also regulate cellular processes by interacting with proteins 
other than calmodulin. As alluded to above, troponin C is a major target in 
skeletal and cardiac muscle. Other Ca 2+ targets are a group of proteins 
which alter aspects of actin filament assembly and severance, and thus may 
be important in cell architecture, cytoplasmic flow, and exocytosis (Stossel 
1984). These include gelsolin, profilin, villin, and fragmin, which act on actin 
in various ways, e.g., by sequestering actin monomers and by nucleating, end- 
blocking, and severing actin filaments. Ca 2+ binds to gelsolin with high af- 
finity and this causes shortening of actin filaments, contributing to the col- 
lapse of their three-dimensional lattice (Yin and Stossel 1982). This gel-sol 
transformation may be involved in the regulation of cell motility. Other 
gelsolin-related proteins bind Ca 2+ and may contribute to the changes in ac- 
tin filament assembly/disassembly. 

10 Role of Mitochondrial Changes 

10.1 Ca 2+ Activation of Mitochondrial Dehydrogenases 

Denton, McCormack, and others (reviewed by Denton and McCormack 1981, 
1985; Hansford 1985) have identified another group of hormonally con- 
trolled, Ca2÷-responsive, but calmodulin-independent enzymes in liver, 
heart, and adipose tissue. These are all located in mitochondria and include 
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pyruvate dehydrogenase phosphate phosphatase, a-oxoglutarate dehydrogen- 
ase, and NAD ÷-isocitrate dehydrogenase. The pyruvate dehydrogenase com- 
plex is under elaborate control by allosteric effectors and phosphorylation/ 
dephosphorylation mechanisms. Phosphorylation of a specific serine residue 
in the a-subunit of the pyruvate decarboxylase moiety by pyruvate 
dehydrogenase kinase causes inactivation, whereas dephosphorylation by 
pyruvate dehydrogenase phosphate phosphatase leads to activation. Low con- 
centrations (0 .1-10pM) of Ca 2÷ stimulate the phosphatase (Denton et al. 
1972; McCormack i985a) and activate pyruvate dehydrogenase in isolated 
mitochondria (McCormack et al. 1982; McCormack and Denton 1984). 
Thus, Ca 2÷ has been implicated in the stimulatory effects of al-adrenergic 
agonists, glucagon, angiotensin II, vasopressin, and A23187 ionophore on 
pyruvate dehydrogenase in liver (Hems et al. 1978; Assimacopoulos-Jeannet 
et al. 1983, 1986; McCormack 1985b, c) and of inotropic agents on the en- 
zyme in heart (McCormack and Denton 1981 a, 1984; McCormack et al. 
1982). These stimulatory effects can be observed in tissue extracts 
(Assimacopoulos-Jeannet et al. 1983; Blackmore et al. 1983 b; Sies et al. 1983; 
Oviasu and Whitton 1984; McCormack and Denton 198 ! a) or in mitochon- 
dria isolated from livers or hearts exposed to the agonists (McCormack 
1985 b, c; McCormack and Denton 1984). 

There is some controversy regarding the effects of Ca2÷-mobilizing 
agonists on pyruvate dehydrogenase activity in intact liver when this is 
assayed indirectly by measuring CO2 production from isotopically labeled 
pyruvate. However, this approach is complicated by intracellular changes in 
precursor specific radioactivity (due to glycogen breakdown) and by entry of 
the label into the citric acid cycle via pyruvate carboxylation. Thus, some 
workers have reported that al-adrenergic agonists and vasopressin decrease 
the production of 14CO2 from [l-~4C]pyruvate in isolated hepatocytes or the 
perfused rat liver (Sies et al. 1983; Fisher et al. 1985). 

Increased a-oxoglutarate dehydrogenase activity has been observed in liver 
mitochondria from rats treated with epinephrine or glucagon (McCormack 
1985b, c). It has also been deduced from measurements of 14CO2 and 
[*4C]glucose production from labeled glutamine, glutamate, or proline. It is 
also consistent with the decrease in a-oxoglutarate levels in livers perfused 
with glucagon (Ui et al. 1973) or aradrenergic agonists (Haussinger and Sies 
1984; Ochs 1984), or in hepatocytes incubated with vasopressin (Staddon and 
McGivan 1985). Evidence that the increase in enzyme activity is due to in- 
creased intramitochondrial Ca 2÷ has been presented by McCormack 
(1985a, b,c). Thus, when Ca 2÷ influx into mitochondria is prevented during 
their isolation, and when Ca 2÷ efflux is minimized by the use of Na÷-free 
media, the hormone effect is preserved (McCormack 1985 b, c). Furthermore, 
manipulation of the extramitochondrial Ca 2÷ concentration and examina- 
tion of the effects of ruthenium red (an inhibitor of mitochondrial Ca 2÷ up- 
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take) and of Na ÷ and diltiazem (an inhibitor of  Na÷-induced mitochondrial 
Ca 2÷ efflux) strongly implicate intramitochondrial Ca 2÷ as a major regula- 
tor of  both pyruvate and a-oxoglutarate dehydrogenases in liver (McCormack 
1985a). There is strong evidence of a similar regulation in heart (Denton et 
al. 1980; McCormack and Denton 1981b, 1984). 

Activation of  the three mitochondrial dehydrogenases is probably largely 
responsible for the stimulation of respiration induced by a~-adrenergic 
agonists, vasopressin, and angiotensin II in perfused rat liver or isolated 
hepatocytes (Jakob and Diem 1975; Sugano et al. 1980; Dehaye et al. 1981; 
Reinhart et al. 1982; Taylor et al. 1983; Blackmore et al. 1983a) and the in- 
creased reduction state of NAD(P) (Fig. 24; Sugano et al. 1980; Balaban and 
Blum 1982; Buxton et al. 1982; Blackmore et al. 1983 a). Their activation may 
also account for the stimulation of fatty acid oxidation to CO z and inhibi- 
tion of  ketogenesis exerted by CaZ+-mobilizing agonists in hepatocytes 
(Sugden et al. 1980; Williamson et al. 1980; Sugden and Watts 1983), since 
both effects can be attributed to increased citric acid cycle activity. 

10.2 Agonist Regulation of Mitochondrial Ca 2+ 

The hypothesis that a rise in intramitochondrial Ca 2÷ is responsible for the 
effects of  at-adrenergic agonists, vasopressin, and angiotensin II on pyruvate 
dehydrogenase and a-oxoglutarate dehydrogenase was initially not compati- 
ble with observations that these agonists caused a loss of  Ca 2÷ from 
mitochondria-enriched subcellular fractions of liver (for references see 
Williamson et al. 1981; Exton 1981; Reinhart et al. 1984a, b). However, recent 
work indicates that Ca 2÷ is mobilized from components of  the endoplasmic 
reticulum rather than mitochondria (see Sects. 3.2 and 7.2). Thus, it is now 
accepted that mitochondria take up Ca 2÷ in response to the elevation of 
cytosolic Ca 2÷ induced by Ca~+-mobilizing agonists (Fig. 21) and are not the 
site from which Ca 2÷ is released, in contrast to what was originally 
postulated (Extort 1980, 1981; Williamson et al. 1981; Reinhart et al. 
1984a, b). Furthermore, the idea that the mitochondrial Ca z+ cycle controls 
the concentration of cytosolic Ca 2÷ within the physiological range (Nicholls 
1978; Nicholls and Akerman 1982) is unlikely, now that it is known that the 
cytosolic Ca 2÷ level in unstimulated cells is approximately 0.2 pM (Charest et 
al. 1983, 1985; Murphy et al. 1980; Joseph et al. 1985) and that the mitochon- 
drial Ca 2÷ content is low in situ (Bond et al. 1984; Somlyo et al. 1985a; 
Hansford 1985). The function of the mitochondria in regulating cell Ca 2÷ 
now appears to be to take up cytosolic Ca 2÷ when this rises above 0.5 p M  
and thus to help protect the cell from damage. 

Consistent with the view that mitochondria take up Ca 2÷ in response to 
Ca2÷-mobilizing agonists in liver are the observations that the increases in 
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Fig. 24. Effects of vasopressin (Vaso, 10 -s M), epinephrine (Epi, 10 -6 M), and phenylephrine 
(Phenyl, 10 -5 M) on the reduction of NAD(P) in isolated rat hepatocytes. The reduction of 
NAD(P) was followed fluorimetrically after addition of saline (Sal) or the agonists shown. 
(From Blackmore et al. (1983a) by permission of the authors and publisher) 

respiration, NAD(P) reduction state, and pyruvate dehydrogenase activity in- 
duced by these agonists lag significantly (5-20  s) behind the increase in 
cytosolic Ca 2÷ and associated activation of  phosphorylase and initiation of  
Ca 2÷ efflux (Fig. 24; Blackmore et al. 1983a, b; Charest et al. 1983, 1985). 
Stable increases in Ca 2÷ uptake by mitochondria isolated from livers per- 
fused with al-adrenergic agonists or glucagon have been reported (Taylor et 
al. 1980), and similar effects have been observed with mitochondria from 
hearts exposed to al-adrenergic agonists (Kessar and Crompton 1981). How- 
ever, it is unclear whether or not these stable changes occur in the intact cell. 

11 Future Directions for Research 

Although the foregoing account indicates that much is now known about the 
biochemical reactions underlying al-adrenergic phenomena, it should be 
noted that the molecular bases of  many of  the effects of al-adrenergic stim- 
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ulation remain to be defined. These include the increase in plasma membrane 
K ÷ permeability and other ion fluxes in salivary and lacrimal glands, the in- 
crease in K ÷ efflux and thermogenesis in brown adipose tissue, the stimula- 
tion of K ÷ fluxes, ureogenesis, and pyruvate carboxylation in liver, the 
stimulation of gluconeogenesis in kidney, the alterations in contractility and 
glycolysis in heart, and the hyperpolarization and relaxation of gastrointesti- 
nal muscle (Exton 1985). In each case, the specific enzymes or other proteins 
that are the targets of Ca 2÷ or Ca2÷-calmodulin, or of the specific or 
multisubstrate Ca2÷-calmodulin-dependent protein kinases or protein kinase 
C need to be defined. 

In addition to this lack of knowledge concerning the enzymes and other 
proteins involved in these specific responses, there is still much to be learned 
concerning the general mechanisms by which al-adrenergic and other 
Ca2÷-mobilizing agonists raise cytosolic Ca 2÷ and elevate DAG in their 
target cells. The at-adrenergic receptor has been purified but it has not been 
sequenced, nor have its physicochemical characteristics been defined. This is 
also true for other receptors for Ca2÷-mobilizing agonists. The G-proteins 
involved in signal transduction for the a~-adrenergic and other Ca2÷-mobi - 
lizing receptors have not been identified unequivocally, and the molecular 
bases for their interaction with the receptors and the PIP2-specific 
phospholipase have not been defined. The G-protein-activated phospholipase 
has also not been identified unequivocally and its physicochemical character- 
istics have not been determined. The precise intracellular target of IP3 also 
has not been defined, and the mechanism by which it releases Ca 2÷ remains 
unclear. The possible function of the various products of IP3 metabolism, in 
particular IP4, need to be defined. 

The origins of the DAG and phosphatidic acid that accumulate in response 
to agonists in cells and the mechanisms involved in their formation need to 
be clarified. There is much evidence that they arise from other phospholipids 
besides PIP2, in particular phosphatidylcholine, through activation of novel 
phospholipases. The further metabolism and possible functions of DAG and 
phosphatidate also need to be explored, in view of the fact that they can 
achieve very high cellular concentrations during agonist stimulation. 

Another area of ignorance relates to the plasma membrane Ca 2÷ chan- 
nel(s) regulated by Ca 2÷-mobilizing agonists. The physicochemical nature of 
this channel is completely unknown and the mechanism by which it is 
regulated is obscure. There is some evidence that a G-protein is involved, but 
this may be coupled directly to the channel or indirectly via a second messen- 
ger or another protein. 

Finally, the roles of the changes in phosphoinositides and other phospholi- 
pids and of protein kinase C in the actions of growth factors and other 
agonists regulating cell growth remain obscure. There is evidence that inositol 
phospholipid turnover and protein kinase C activation play some part in the 
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actions or induction of certain proto-oncogenes, but the relationship of these 
changes to mitogenesis is unclear. 

12 Summary 

al-Adrenergic receptors mediate many actions of epinephrine and norepi- 
nephrine, which are the transmitters of information in the sympathetic ner- 
vous system. Some important aradrenergic responses are the contraction of 
smooth muscle in vascular and other tissues, the secretion of certain glands, 
alterations in carbohydrate metabolism in certain tissues, and neurotransmis- 
sion. al-Adrenergic receptors have a ligand-binding subunit of approximately 
80 K and can exist in low and high agonist-affinity states. The interconversion 
between these states is controlled by GTP and its analogues, implying that the 
receptors are coupled to a guanine nucleotide-binding regulatory protein (G- 
protein). 

As illustrated in Fig. 14, the primary effect of al-adrenergic receptor ac- 
tivation is the breakdown of phosphatidylinositol 4,5-bisphosphate (PIPE) in 
the plasma membrane to yield myoinositol 1,4,5-trisphosphate (IP3) and 
1,2-diacylglycerol (DAG). There is much additional evidence that the coupling 
of the receptor to the phospholipase C (or phosphodiesterase) responsible for 
the breakdown involves a G-protein. For example, the stimulation of PIP2 
breakdown and formation of IP 3 by aradrenergic and other Ca2+-mobiliz - 
ing agonists in isolated plasma membranes is dependent upon GTP and its 
nonhydrolyzable analogues, and micromolar concentrations of GTP ana- 
logues can stimulate IP3 formation in an Mg 2÷-dependent manner. In addi- 
tion, A1F4, which activates several G-proteins, stimulates the breakdown of 
PIP2 to IP3 in intact cells and plasma membranes. Islet-activating protein (a 
pertussis toxin), which ADP-ribosylates several G-proteins, can inhibit 
agonist-induced PIPE breakdown in some tissues but not others. The G-pro- 
teins specifically involved in the regulation of PIP2 phospholipase C have 
not yet been identified for certain. 

The formation of IP 3 in response to Ca2÷-mobilizing agonists occurs 
within a few seconds and is proportional to receptor occupancy. IP3 rapidly 
releases Ca z÷ from nonmitochondrial stores in permeabilized cells and from 
microsomal preparations (Fig. 14). It appears to act by stimulating Ca 2÷ ef- 
flux from a component of the endoplasmic reticulum, and not by inhibiting 
Ca 2÷ uptake. IP3 is rapidly metabolized to myoinositol 1,3,4,5-tetrakisphos- 
phate by a 3-kinase and is hydrolyzed to other myoinositol phosphates and 
eventually to myoinositol by phosphomonoesterases present in the soluble 
phase or plasma membrane. This leads to a cessation of Ca z÷ efflux from 
the endoplasmic reticulum unless IP3 generation continues. Another isomer 
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of  IP3 (myoinositol 1,3,4-trisphosphate) is slowly formed from myoinositol 
1,3,4,5-tetrakisphosphate by phosphomonoesterase action, but its function is 
unclear. IP 3 is almost certainly the intracellular messenger responsible for 
Ca 2÷ mobilization. 

The formation of DAG in response to Ca2+-mobilizing agonists is of  
slower onset and greater magnitude than that of  IP3. This is because DAG is 
also formed by the breakdown of phosphatidylcholine and perhaps other 
phospholipids. The accumulation of DAG appears to cause the translocation 
of  the Ca2÷-phospholipid-dependent protein kinase C from the cytosol to 
the plasma membrane. There it is activated by unsaturated DAG (Fig. 14), 
which reduces its Ca 2+ requirement for activity to the cytosolic range. Prote- 
in kinase C is presumed to be the cellular target of  tumor-promoting phorbol 
esters, which activate the enzyme in a manner analogous to that of  DAG. 
Although many enzymes and other proteins have been shown to be 
phosphorylated by protein kinase C in vitro, few of the intracellular targets 
of  the enzyme have been characterized. Protein kinase C phosphorylates the 
al-adrenergic receptor and certain other membrane receptors, thereby in- 
hibiting agonist binding. This may be involved in some forms of agonist 
desensitization. 

In addition to promoting the release of  intracellular Ca 2÷ through IP3 
generation, aradrenergic agonists stimulate Ca 2÷ influx and inhibit Ca 2÷ ef- 
flux across the plasma membrane. These effects are responsible for maintain- 
ing the elevation of cytosolic Ca 2÷ and thereby prolonging the physiological 
responses to these agonists. This is because the intracellular Ca 2÷ stores are 
limited and rapidly become depleted by agonists. The stimulation of Ca 2÷ 
influx is presumably due to the opening of Ca 2÷ channels, and the inhibition 
of  Ca 2÷ efflux is due to altered kinetics of the plasma membrane Ca 2÷-ATP- 
ase/pump. The molecular mechanisms responsible for these changes are un- 
known, but there is evidence that the Ca 2÷ channels are regulated directly or 
indirectly by G-proteins. 

The Ca2+-dependent regulatory protein calmodulin is a major target of in- 
tracellular Ca 2÷ (Fig. 14) and is involved in many physiological responses. It 
has four high-affinity binding sites for Ca 2÷ and is present in all mammalian 
tissues. It is a subunit of phosphorylase b kinase and mediates the stimulatory 
effects of increased cytosolic Ca 2÷ on the enzyme. This leads to enhanced 
glycogen breakdown through the phosphorylation and activation of glycogen 
phosphorylase. More commonly, calmodulin exists in a free form, i.e., not as 
the subunit of  an enzyme. As a result of  an increase in cytosolic Ca 2÷ , there 
is increased binding of Ca 2÷ to calmodulin. This leads to a conformational 
change in the protein, which increases its binding to a variety of enzymes and 
other proteins, thereby altering their function. Ca2+-calmodulin interacts 
with myosin light-chain kinase, leading to increased phosphorylation of the 
regulatory 20-K light chains of myosin in smooth muscles and platelets. This 
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promotes actin-stimulated myosin ATPase and increased cross-bridge cycling 
between the two proteins, resulting in contraction and shape change of the 
cells. 

Another major target of Ca2+-calmodulin is a calmodulin-dependent pro- 
tein kinase which exists in isozymic forms. One isozyme is distributed widely 
and acts on many substrates (Fig. 14), and thus is importantly involved in 
many Ca 2÷-mediated physiological responses. Its substrates include glycogen 
synthase, synapsin 1, tubulin, microtubule-associated proteins, tyrosine hy- 
droxylase, phenylalanine hydroxylase, and pyruvate kinase. The phosphoryla- 
tion of these proteins probably controls such functions as synaptic neuro- 
transmitter release, motility, chromosome movement and axonal transport, 
catecholamine synthesis, and gluconeogenesis. 

Cells contain many other targets of Ca 2÷-calmodulin which are not prote- 
in kinases but may be involved in the actions of al-adrenergic and other 
Ca 2÷-mobilizing agonists. These include microtubules, whose assembly is in- 
hibited by Ca2÷-calmodulin. 

Ca 2÷ can regulate cellular processes by binding to other proteins. It can 
interact directly with troponin C to initiate contraction in skeletal and cardiac 
muscle, and with gelsolin and other proteins which alter actin filament 
assembly/disassembly and thus affect cell architecture, cytoplasmic flow, and 
perhaps exocytosis. An increase in cytosolic Ca 2÷ also leads to an increase in 
mitochondrial Ca 2÷ in liver, heart, and probably other tissues (Fig. 14). This 
results in stimulation of the citric acid cycle and respiration because of in- 
creased activity of a-oxoglutarate dehydrogenase and NAD÷-isocitrate dehy- 
drogenase, and activation of pyruvate dehydrogenase due to stimulation of its 
phosphatase. 

Other al-adrenergic responses have been shown to be Ca 2÷ dependent, but 
the mechanisms involved are obscure. These include (a) altered plasma mem- 
brane fluxes of K ÷ and other ions and related membrane potential changes 
in salivary and lacrimal glands, liver, and brown adipose tissue, (b) stimula- 
tion of gluconeogenesis in liver and kidney, (c) alterations in contractility, 
glucose uptake, and glycolysis in heart, and (d) hyperpolarization and relaxa- 
tion of gastrointestinal muscle. 

It is clear that many details of the mechanisms by which a~-adrenergic 
agonists generate their intracellular signals (IP 3 and DAG) are unclear. This 
is also true for the mobilization of intracellular Ca 2÷ and the regulation of 
Ca 2÷ fluxes across the plasma membrane. The specific enzymes and other 
proteins involved in many of the physiological responses mediated by Ca 2÷ 
and DAG also remain obscure. All of these areas provide many fruitful 
research topics. 
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