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Preface

Generalized estimating equations (GEE) were introduced by Liang and Zeger
in a series of papers (see, e.g., Liang and Zeger, 1986; Zeger et al., 1985; Zeger
and Liang, 1986) about 25 years ago. They have become increasingly pop-
ular in biometrical, econometrical, and psychometrical applications because
they overcome the classical assumptions of statistics, i.e., independence and
normality, which are too restrictive for many problems. The assumption of
normality is, for example, violated if dichotomous data, e.g., positive or neg-
ative outcome, are considered, while the assumption of independence is not
fulfilled in family studies or studies with repeated measurements. The de-
velopment of more complex statistical methods like GEE is closely related
to the progress in computer technology, because many modern regression
approaches are based on iterative algorithms.

Originally, GEE have been proposed and further developed without con-
sidering them as special cases of quite general statistical methods. The main
goal of this monograph therefore is to give a systematic presentation of the
original GEE and some of its further developments. Subsequently, the empha-
sis is put on the unification of various GEE approaches. This is done by the
use of two different estimation techniques, the pseudo maximum likelihood
(PML) method and the generalized method of moments (GMM).

The PML approach was proposed by Gourieroux et al. in 1984b and further
explained in additional work (Gourieroux and Monfort, 1993; Gourieroux
et al., 1984a). The theory has been widely recognized by econometricians
(see, e.g., Laroque and Salanie, 1989; Foncel et al., 2004) but to a lower
extent by biostatisticians. A concise treatment of the PML theory has been
given in Gourieroux and Monfort (1995a).

GMM was introduced by Hansen in 1982. It is very popular among econo-
metricians because it provides a unified framework for the analysis of many
well-known estimators, including least squares, instrumental variables (IV),
maximum likelihood (ML), and PML. Several excellent book chapters and
textbooks have been published (Hall, 1993; Ogaki, 1993), where readers may
find many various introductory examples. As already indicated, the theory
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of GMM is very rich, see, e.g., the two special issues on GMM published in
J Bus Econ Stat (1996, Vol. 14, Issue 3; 2002, Vol. 20, Issue 4), much richer
than the part of the theory required for deriving GEE. For example, one
important part of GMM theory is IV estimation (Baum et al., 2003; Stock
et al., 2002), which is of no interest in GEE. As a result, for GEE only, “just
identified” GMM models (Hall, 1993) are relevant. However, if only just iden-
tified models are of prime importance, other aspects of GMM theory, such as
choice of the weight matrix, or 1-step, 2-step, or simultaneous GMM estima-
tion do not play a role. For this short book, it was therefore difficult to decide
whether GMM should be described comprehensively or whether the treatise
should be concise and focus only on the aspects relevant for deriving GEE.
The decision was to restrict the description of GMM to essential elements so
that GEE remains the focus. For detailed descriptions of GMM, the reader
may refer to the literature (Hall, 2005; Mátyás, 1999).

To increase readability, regularity conditions and technical details are not
given, and many proofs are only sketched. Instead, references to the relevant
literature discussing technical details are given for the interested reader. GEE
have been proposed as methods for large samples. Therefore, only asymptotic
properties will be considered throughout this book for both PML and GMM
estimation.

The main aim of this monograph is the statistical foundation of the GEE
approach using more general estimation techniques. This book could therefore
be used as a basis for a course for graduate students in statistics, biostatistics,
or econometrics. Knowledge of ML estimation is required at a level as usually
imparted in undergraduate courses.

Organization of the Book

Several estimation techniques provide a quite general framework and include
the GEE as a special case. An appealing approach is to embed the GEE into
the framework of PML estimation (Gourieroux et al., 1984b; Gourieroux and
Monfort, 1993). If the GEE are embedded into the PML approach, they can
be interpreted as score equations derived from a specific likelihood model.
The major advantage of this approach is that ML estimation is familiar to
almost every statistician.

The PML approach is based on the exponential family. Chapts. 1 and 2
therefore deal with the linear and quadratic exponential family, respectively.
The GEE method has been derived by Liang and Zeger (1986) as a general-
ization of the generalized linear model (GLM; McCullagh and Nelder, 1989),
and Chapter 3 therefore deals with both univariate and multivariate GLM.

Because PML estimation can be considered a generalization of the ML
approach, ML estimation is discussed in some detail in Chapt. 4. A crucial
assumption of the ML method is the correct specification of the likelihood
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function. If it is misspecified, ML estimation may lead to invalid conclusions.
The interpretation of ML estimators under misspecification and a test for
detecting misspecifications are also considered in Chapt. 4.

Chapt. 5 deals with the PML method using the linear exponential family.
It allows consistent estimation of the mean structure, even if the pre-specified
covariance matrix is misspecified. Because the mean structure is consistently
estimated, the approach is termed PML1. However, there is no free lunch,
and a price has to be paid in terms of efficiency. Thus, a different covariance
matrix, termed the robust covariance matrix, has to be used instead of the
model-based covariance matrix, i.e., the Fisher information matrix. It can be
shown that the robust covariance matrix always leads to an increased covari-
ance matrix compared with the covariance matrix of the correctly specified
model. Examples for the PML1 approach include the independence estimat-
ing equations (IEE) with covariance matrix equal to the identity matrix.
Efficiency for estimating the mean structure may be improved if observations
are weighted with fixed weights according to their degree of dependency.
This approach results in the GEE for the mean structure (GEE1) with fixed
covariance matrix.

Instead of using fixed weights, the weights might be estimated from the
data. This results in increased power if the estimated covariance matrix is
“closer” to the true covariance matrix than the pre-specified covariance ma-
trix. This idea leads to the quasi generalized PML (QGPML) approach, which
will be discussed in Chapt. 6. An important aspect is that under suitable reg-
ularity conditions, no adjustments have to be made for the extra variability,
that is introduced by estimating the possibly misspecified covariance matrix.
Even more, the QGPML estimator is efficient for the mean structure in the
sense of Rao-Cramér if both the mean structure and the association structure,
e.g., the covariance structure, are correctly specified. The likelihood function
might thus be misspecified. Examples of QGPML estimation include the IEE
with estimated variances, the GEE1 with estimated working covariance ma-
trix, and the well-known GEE1 with estimated working correlation matrix.
Examples for common weight matrices, i.e., working covariance and working
correlation structures, are discussed as well as time dependent parameters
and models for ordinal dependent variables.

Chapt. 7 deals with the consistent estimation of both the mean and the
association structure using the PML approach. It is based on the quadratic
exponential family and therefore termed the PML2 method. Special cases
include the GEE2 for the mean and the correlation coefficient as the inter-
pretable measure of association and, for dichotomous dependent variables,
the GEE2 for the mean and the log odds ratio as the interpretable measure
of association. In the first special case, the estimating equations are formu-
lated in the second centered moments, while the second ordinary moments
are used as the measure of association in the second special case.

The two GEE2 approaches considered in Chapt. 7 require the simultaneous
solution of the estimating equations for the mean structure and the associa-
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tion structure. This has three disadvantages. First, the computational effort
is substantially larger when both estimating equations are solved jointly. Sec-
ond, if the association structure is misspecified, the parameter estimates of
the mean structure are still estimated consistently if the estimating equations
are solved separately, i.e., in a two-stage approach. The simultaneous estima-
tion of the estimating equations for the mean and the association structure
may lead to biased parameter estimates if the mean structure is correctly
specified but the association structure is misspecified. Therefore, one aim is
to separate the estimating equations into a two-step approach. Third, GEE2
using the second standardized moments, i.e., the correlation coefficient as the
measure of association, cannot be derived using the PML2 method.

All three disadvantages can be overcome by estimating equations that can
be derived using GMM (Chapt. 8). Specifically, GMM allow the formulation
of GEE2 using the correlation as the measure of association in two separate
estimating equations. Similarly, the alternating logistic regression (ALR) that
uses the log odds ratio through the ordinary second moments as the measure
of association can be formulated as a special case of GMM. Therefore, GMM
will be considered in the last chapter. The use of GMM is illustrated with
the linear regression model as the introductory example. Second, the IEE are
derived within the GMM framework. Third, the GEE2 using the correlation
as the measure of association is considered. Finally, the ALR are derived as
a special case of GMM. Again, we stress that only a small portion of the rich
theory of GMM is required for deriving the GEE2 models, and we restrict
the discussion of GMM to the needs in this monograph. Specifically, we do
not consider IV estimation, and we focus on “just identified” models.
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Chapter 1

The linear exponential family

Several estimating equations belonging to the class of generalized estimating
equations for the mean structure, termed GEE1, can be derived as special
cases of the pseudo maximum likelihood 1 (PML1) method. PML1 estima-
tion is based on the linear exponential family, and this class of distributions is
therefore discussed in this chapter. In Sect. 1.1, the linear exponential family
is defined in the canonical form with a natural parameter. Moments of the
exponential family can be easily obtained by differentiation (Sect. 1.2), which
can in turn be used for parameterizing the exponential family in the mean
structure (Sect. 1.3). Some properties of the linear exponential family are re-
quired for PML1 estimation in Chapt. 5, and they are presented in Sect. 1.4.
In Sects. 1.5 and 1.6, several examples for univariate and multivariate distri-
butions belonging to the linear exponential family are given to illustrate the
broad applicability of the linear exponential family. Finally, the relationship
to the parameterization in generalized linear models is established in Sect.
1.7.

1.1 Definition

Some general notation is given at the very beginning. All vectors are con-
sidered to be column vectors. Vectors and matrices are given in bold, and ′

indicates transposition of vectors and matrices. For count indices, ′ is also
used. It can be distinguished from the transposition easily because it stands
with a non-bold letter. True parameters of an underlying distribution will be
denoted by “||” throughout.

We start off with a T -dimensional random vector y. y will be directly con-
nected with a parameter ϑ of the same size via ϑ′y, leading to the canonical
or natural form of the linear exponential family. The distribution may be
parameterized in an additional matrix of fixed nuisance parameters Ψ .

1A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_1, © Springer Science+Business Media, LLC 2011  



2 1 The linear exponential family

Definition 1.1 (Simple linear exponential family). Let y ∈ IRT be a
random vector, ϑ ∈ Θ ⊂ IRT be the parameter vector of interest, Ψ ∈ IRT×T

be a positive definite matrix of fixed nuisance parameters, b : IRT×IRT×T → IR,
and d : IRT×IRT×T → IR some functions. A T -dimensional distribution belongs
to the T -dimensional simple linear exponential family, if its density (meant
to include probability mass functions for discrete data) is given by

f(y||ϑ, Ψ ) = exp
(
ϑ′y + b(y, Ψ)− d(ϑ, Ψ)

)
. (1.1)

ϑ is termed the natural parameter, and Θ is the natural parameter space.
———

Therefore, Θ is the set of all ϑ ∈ IRT for which

0 < exp {d(ϑ, Ψ)} =
∫

IRT

exp
{
ϑ′y + b(y, Ψ)

}
dy < ∞ (1.2)

holds. d(ϑ, Ψ) can be considered a normalization constant. In Theorem 1.2, it
will be shown that d(ϑ, Ψ) is the cumulant generating function of f(y||ϑ, Ψ),
i.e., the logarithm of the moment-generating function (see, e.g., Lehmann and
Casella, 1998, p. 28, Theorem 5.10).

1.2 Moments

Theorem 1.2. The random vector y is assumed to have a density belonging
to the T -dimensional simple linear exponential family.
1. If φ(y) is an integrable function with values in IR, then all higher order

derivatives of ∫

IRT

φ(y)exp
{
ϑ′y + b(y,Ψ )

}
dy (1.3)

with respect to ϑ exist, and differentiation and integration can be ex-
changed.

2.

IE (y) = µ =
∂d(ϑ, Ψ)

∂ϑ
, (1.4)

Var(y) = Σ =
∂2d(ϑ, Ψ)

∂ϑ∂ϑ′
. (1.5)

3. If Σ > 0, then ln f(y||ϑ, Ψ) is strongly concave in ϑ, i.e., ln f is concave.
———

The domain of µ is denoted by ∆,∆ ⊂ IRT .
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Proof. 1. and 2. are standard results (see, e.g., Lehmann and Casella, 1998,
p. 27, Theorem 5.8).
We only sketch the proof of 3.: ln f(y||ϑ, Ψ) is strongly concave because

−∂2 ln f(y||ϑ, Ψ )
∂ϑ∂ϑ′

=
∂2d(ϑ, Ψ)

∂ϑ∂ϑ′
= Σ = Var(y) > 0 .

ut

1.3 Parameterization in the mean

Throughout the following, Σ > 0 is assumed, i.e., distributions are not degen-
erated. In PML1 estimation (Chapt. 5), the mean structure parameterization
is used instead of the parameterization in the natural parameter vector. Be-
cause Σ is positive definite, and Ψ is a matrix of fixed nuisance parameters,
the corresponding function to µ = ∂d(ϑ,Ψ )

/
∂ϑ from Θ to ∆ is bijective.

Therefore, a one-to-one inverse mapping c from ∆ to Θ exists such that

c−1(ϑ, Ψ) =
∂d(ϑ, Ψ)

∂ϑ
= µ, ϑ = c(µ,Ψ) . (1.6)

Equation 1.1 can subsequently be rewritten as

f̃(y||µ, Ψ) = exp {c(µ, Ψ)′y + a(µ,Ψ) + b(y,Ψ )} , (1.7)

where a(µ,Ψ ) = −d
(
c(µ,Ψ), Ψ

)
. Examples for the functions c, a, and b are

given in Sects. 1.5 and 1.6.

1.4 Selected properties

In the following sections and chapters, several properties of the linear expo-
nential family are required, and they are derived in this section. The proper-
ties are formulated first, and their proofs are given at the end of this section.
For a different formulation of the properties, the reader may refer to Gourier-
oux et al. (1984b).

Property 1.3.

Σ−1 =
∂c(µ,Ψ)′

∂µ
=

∂c(µ,Ψ )
∂µ′

= h(µ,Ψ ) . (1.8)

h is termed the variance function.

Property 1.4.
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(
∂a(µ, Ψ)

∂µ
+

∂c(µ,Ψ )′

∂µ
y

)
=

(
−∂c(µ, Ψ)′

∂µ
µ +

∂c(µ,Ψ )′

∂µ
y

)
. (1.9)

Property 1.5.

∂2a(µ, Ψ)
∂µ∂µ′

+
T∑

l=1

∂2cl(µ, Ψ)
∂µ∂µ′

yl =
T∑

l=1

∂2cl(µ, Ψ)
∂µ∂µ′

(yl−µl)− ∂c′(µ, Ψ)
∂µ

, (1.10)

where yl, cl(µ,Ψ ), and µl are the lth component of y, c(µ, Ψ), and µ, respec-
tively.

Property 1.6. For any µ ∈ ∆ and for fixed µ0 ∈ ∆, the following is true:

a(µ, Ψ) + c(µ, Ψ)′µ0 ≤ a(µ0, Ψ) + c(µ0, Ψ)′µ0 . (1.11)

The equality holds if and only if µ = µ0.

Proof (Property 1.3). Property 1.3 directly follows from Eq. 1.5 using Eq.
1.6. ut
Proof (Property 1.4). By using the chain rule, we obtain from Eq. (1.4):

µ =
∂d(ϑ, Ψ)
∂c(µ,Ψ )

= − ∂µ′

∂c(µ,Ψ)
· ∂a(µ, Ψ)

∂µ
. (1.12)

With Σ > 0, property 1.4 follows from Eq. 1.12 by adding
∂c(µ, Ψ)′

∂µ
y

because of Eq. 1.8. ut
Proof (Property 1.5). In the first step, we obtain

∂c(µ,Ψ)′

∂µ
µ +

∂a(µ, Ψ)
∂µ

= 0 (1.13)

from Eqs. 1.8 and 1.12. In the second step, the derivative of Eq. 1.13 is taken
with respect to µ′. Property 1.5 now follows in the third step by adding
T∑

l=1

∂2cl(µ,Ψ)
∂µ∂µ′

yl on both sides of the resulting equation. ut

Proof (Property 1.6). The proof uses the Kullback-Leibler information cri-
terion, which will be discussed in some detail in Chapt. 4. The Kullback-
Leibler information is a distance and therefore non-negative. Subsequently,
Kullback’s inequality (see, e.g., Rao, 1973, p. 59, ii) for arbitrary densities
f(y) and g(y) is given by

∫ (
ln

f(y)
g(y)

)
f(y)dy ≥ 0 .
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Equality holds almost surely (a.s.) if and only if f(y) = g(y). Let f(y) =
f̃(y||µ0, Ψ) and g(y) = f̃(y||µ, Ψ). It follows

∫ (
ln

f̃(y||µ0, Ψ)
f̃(y||µ, Ψ)

)
f̃(y||µ0,Ψ)dy ≥ 0 .

After cancelling b(y, Ψ) and solving the logarithm, we obtain
∫

(c(µ0, Ψ)′y + a(µ0,Ψ )) f̃(y||µ0, Ψ)dy ≥
∫

(c(µ, Ψ)′y + a(µ,Ψ )) f̃(y||µ0, Ψ)dy .

Property 1.6 follows from solving the integral and by noting that f̃(y||µ0,Ψ )
is a density with expectation µ0. ut

1.5 Examples for univariate linear exponential families

In this section, we give several examples for the univariate linear exponential
family. The Poisson, the binomial, and the negative binomial distributions
are discrete distributions, while the univariate normal and the gamma distri-
bution are continuous. Other examples for the linear exponential family are
the beta, the Dirichlet, and the geometric distribution. The Weibull distri-
butions and the Cauchy distributions do not belong to the class of the linear
exponential family.

In the examples, three different notations are used to characterize different
parameterizations. ≈ denotes the standard parameterization of a distribution,
i.e., the parameterization that is usually taught in basic statistics courses. In
contrast,˜stands for the mean parameterization, and, finally, no tilde is used
for the parameterization in the natural parameter.

Example 1.7 (Poisson distribution). The probability function of the discrete
Poisson distribution, denoted by Po(λ), is given by

≈
f (y||λ) = λye−λ/y! = exp

(
(ln λ) y − ln y!− λ

)
(1.14)

for λ > 0 and y ∈ IN0. The density is independent of Ψ , thus Ψ = 1. The
natural parameter is ϑ = ln λ. The simple form of the linear exponential
family is therefore given by

f(y||ϑ) =
≈
f (y||λ ≡ eϑ) = exp

(
ϑ y − ln y!− eϑ

)
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with b(y) = − ln y! and d(ϑ) = eϑ. Using Eqs. 1.4 and 1.5, we obtain µ =
∂d(ϑ)

∂ϑ = eϑ = λ, ∆ = IR+ and Var(y) = ∂2d(ϑ)
∂ϑ2 = eϑ = λ. The mean

parameterization of the Poisson distribution is therefore given by

f̃(y||µ) = exp
(
(ln µ) y − µ− ln y!

)

with c(µ) = ln µ and a(µ) = −µ.

Example 1.8 (Binomial distribution). The probability function of the discrete
binomial distribution, denoted by B(n, p), for fixed n and p ∈]0, 1[ is given
by

≈
f (y||n, p) =

(
n
y

)
py(1− p)n−y = exp

(
logit(p) · y + ln

(
n
y

)
+n ln(1− p)

)
(1.15)

for y = 0, . . . , n and logit(x) = ln x
1−x . The natural parameter is ϑ = logit(p),

and one obtains

f(y||ϑ) = exp
(
ϑy + ln

(
n
y

)− n ln(1 + eϑ)
)

with Ψ = 1, b(y) = ln
(
n
y

)
, and d(ϑ) = −n ln(1+eϑ) because of p = eϑ/(1+eϑ)

and 1− p = 1/(1 + eϑ). Note that Ψ = 1.
Furthermore, we obtain µ = IE(y) = n eϑ

/(
1 + eϑ

)
= np and Var(y) =

neϑ
/(

1+ eϑ
)2 = np (1− p) by differentiating d with respect to θ. In addition,

∆ = [0, n]. Finally, the mean parameterization of the binomial distribution
is given by

f̃(y||µ) = exp
(

ln
(

µ
n−µ

)
y + n ln

(
n−µ

n

)
+ ln

(
n
y

))

with c(µ) = ln
(

µ
n−µ

)
, a(µ) = n ln

(
n−µ

n

)
, and b(y) = ln

(
n
y

)
.

Example 1.9 (Negative binomial distribution – Pascal distribution). The prob-
ability function of the (discrete) NB(Ψ, p) distribution with 0 < p < 1 is given
by

≈
f (y|p, Ψ) =

(
Ψ+y−1

y

)
pΨ (1− p)y

for y and Ψ ∈ IN0. The natural parameter is ϑ = ln(1− p), thus p = 1− eϑ,
and the parameterization in ϑ is

f(y||ϑ) = exp
(
ϑy + ln

(
Ψ+y−1

y

)
+ Ψ ln(1− eϑ)

)

with b(y, Ψ) = ln
(
Ψ+y−1

y

)
and d(ϑ, Ψ) = −Ψ ln(1− eϑ). Correspondingly, the

parameterization in the mean µ = IE(y) = Ψ 1−p
p is given by

f̃(y||µ, Ψ) = exp
(
c(µ, Ψ)y + Ψ ln( Ψ

µ+Ψ ) + ln
(
Ψ+y−1

y

))
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with c(µ, Ψ) = ln
(

µ
Ψ+µ

)
, a(µ, Ψ) = Ψ ln( Ψ

µ+Ψ ), and b(y, Ψ) = ln
(
Ψ+y−1

y

)
.

Finally, Var(y) = Ψ 1−p
p2 = µ

p .

Example 1.10 (Univariate normal distribution). The density of the univariate
normal distribution N(µ, Ψ) is given by

≈
f (y||µ, Ψ) = f̃(y||µ, Ψ) =

1√
2πΨ

exp
(
−1

2
(y − µ)2

Ψ

)
(1.16)

for y ∈ IR, µ ∈ ∆ ⊂ IR, and Ψ ∈ IR+. The parameterization of Eq. 1.16 is thus
identical to the parameterization in the mean. Here, a(µ, Ψ) = −µ2/(2Ψ),
b(y, Ψ) = − 1

2 ln(2πΨ)− y2/(2Ψ), and d(ϑ, Ψ) = ϑ2Ψ/2. We obtain IE(y) = µ
and Var(y) = Ψ . The natural parameter is ϑ = µ/Ψ = c(µ, Ψ), and the
density in the natural parameter is given by

f(y||ϑ, Ψ) = exp
(
θy − 1

2
ln(2πΨ)− y2/(2Ψ)− ϑ2Ψ/2

)
.

Example 1.11 (Gamma distribution). The density of the G(α, Ψ) distribution
is given by

≈
f (y|α, Ψ) = αΨyΨ−1e−αy/Γ (Ψ)

for y ∈ IR+, α ∈ IR+, and Ψ ∈ IR+, where Γ (Ψ) denotes the Gamma function.
The natural parameter is ϑ = −α. Mean and variance are given by µ =
IE(y) = Ψ/α = −Ψ/ϑ, and Var(y) = Ψ/α2, respectively. As a result, the
parameterizations in the natural parameter and in the mean are given by

f(y||θ, Ψ) = exp
(
θy + (Ψ − 1) ln y − ln Γ (Ψ) + Ψ ln(−ϑ)

)
, and

f̃(y||µ, Ψ) = exp
(
− Ψ

µ y + Ψ ln
(

Ψ
µ

)
+ (Ψ − 1) ln y − ln Γ (Ψ)

)
,

respectively, with b(y, Ψ) = (Ψ − 1) ln y − ln Γ (Ψ), d(ϑ, Ψ) = −Ψ ln(−ϑ),
c(µ, Ψ) = −Ψ/µ, and a(µ, Ψ) = Ψ ln

(
Ψ/µ

)
.

The Gamma distribution belongs to the two-parameter linear exponential
family, and therefore Ψ 6= 1, in general. For Ψ = 1, one obtains the exponential
distribution.

The nuisance parameter Ψ equals 1 for the Poisson and the binomial distri-
bution. In the other examples, Ψ is a differentiable function and functionally
dependent on µ and Σ. For the normal distribution, the variance depends on
the nuisance parameter Ψ but not on the mean µ. Finally, for the Gamma
distribution, Ψ is the inverse of the squared coefficient of variation.
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1.6 Examples for multivariate linear exponential families

In this section, we consider the two most popular multivariate linear expo-
nential families, i.e., the continuous multivariate normal distribution and the
discrete multinomial distribution.

Example 1.12 (Multivariate normal distribution). The density of the multi-
variate normal distribution NT (µ,Ψ ) is given by

f̃(y||µ, Ψ) =
≈
f (y||µ,Ψ) = (2π)−

T
2 det(Ψ )−

1
2 exp

(
− 1

2 (y − µ)′Ψ−1(y − µ)
)

(1.17)
for y ∈ IRT , µ ∈ ∆ ⊂ IRT , and a positive definite T × T matrix Ψ . The
natural parameter is ϑ = c(µ, Ψ) = Ψ−1µ. d(ϑ, Ψ) = 1

2ϑ′Ψϑ can be used
for determining the first two moments, which are given by µ = IE(y) and Σ =
Var(y) = Ψ . Furthermore, b(y, Ψ) = −T

2 ln(2π)− 1
2y′Ψ−1y − 1

2 ln(det (Ψ )),
and a(µ, Ψ) = −1

2µ′Ψ−1µ. Subsequently, the parameterization in the natural
parameter ϑ can be shown to be

f(y||ϑ, Ψ) = exp
(
ϑ′y − T

2 ln(2π)− 1
2y′Ψ−1y − 1

2 ln(det (Ψ ))− 1
2ϑ′Ψϑ

)
.

Example 1.13 (Multinomial distribution). We consider the multinomial dis-
tribution MuT (n, π) for y = (y1, . . . , yT+1)′, yt ∈ IN0 and

∑T+1
t=1 yt = n.

The parameters π = (π1, . . . , πT )′, πT+1 = 1 − ∑T
t=1 πt, are interpreted as

probabilities in analogy to the binomial distribution. Note that yT+1 can be
neglected as long as n is fixed.

The probability function of the MuT (n, π) distribution is given by

≈
f (y||π) = C(y)

T∏
t=1

(πyt

t )
(

1−
∑T

t=1
πt

)n−∑T
t=1 yt

,

where C(y) = n!/
∏T+1

t=1 yt! is the coefficient of the multinomial distribution.
The density is independent of Ψ , thus Ψ = IT , where IT denotes the T -
dimensional identity matrix.

The natural parameter is given by

ϑt = ln
(
πt

/(
1−

∑T

t′=1
πt′

))

for t = 1, . . . , T. This is equivalent to

πt =
eϑt

1 +
∑T

t′=1 eϑt′
and πT+1 = 1−

T∑
t=1

πt =
1

1 +
∑T

t=1 eϑt

.

For t 6= t′, mean, variance, and covariance are given by
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µt = IE(yt) = nπt, Var(yt) = nπt(1− πt), Cov (yt, yt′) = −nπtπt′ .

With b(y) = ln C(y) and d(ϑ) = n ln(1 +
∑T

l=1 eϑl) ≡ −n ln(1 − ∑T
l=1 πl),

the parameterization in the natural parameter ϑ is given by

f(y||ϑ) = exp
(
ϑ′y + ln C(y) + n ln(1−

∑T

l=1
πl)

)
.

Finally, we obtain the parameterization in the mean vector µ by using the
functions a(µ) = 0 and c(µ) =

(
ln µ1

n , . . . , ln µT

n

)′ as

f̃(y||µ) = exp
((

ln µ1
n , . . . , ln µT

n

)′
y + ln C(y)

)
.

1.7 Relationship to the parameterization in univariate
generalized linear models

In their excellent textbook on generalized linear models (GLM), McCullagh
and Nelder (1989) used a definition for the univariate linear exponential fam-
ily that slightly differs from Eq. 1.1 of definition 1.1. Specifically, they gave
the density as

f(y||ϑ̃, Ψ) = exp
((

ϑ̃y − b?(ϑ̃)
)
/a?(Ψ) + c?(y, Ψ)

)
. (1.18)

Here, the parameter ϑ̃ is proportional to the natural parameter ϑ, and Ψ is,
as before, the nuisance parameter. The symbols a?, b?, and c? were chosen
both to resemble the notation of McCullagh and Nelder (1989) and to avoid
double notation with the previous sections.

In most applications, a?(Ψ) is simplified to a?(Ψ) = a? ·Ψ with known
weight a?. If specifically a?(Ψ) = Ψ, Eqs. 1.18 and 1.7 can be connected by

ϑ̃ = c(µ, Ψ) · Ψ , b?(ϑ̃) = −a(µ, Ψ) · Ψ , and c?(y, Ψ) = b(y, Ψ) .

Correspondingly, the relationship between Eqs. 1.1 and 1.18 is given by

ϑ̃ = ϑ · Ψ , b?(ϑ̃) = d(ϑ, Ψ) · Ψ , and c?(y, Ψ) = b(y, Ψ) .

Mean and variance can be obtained by

µ(θ) = µ = IE(y) =
∂b?(ϑ̃)

∂ϑ̃
, and Σ = Ψ · ∂2b?(ϑ̃)

∂ϑ̃2
= Ψ · ∂µ

∂ϑ̃
= Ψ · h(µ) .

In this parameterization, the variance Σ is a product of the nuisance param-
eter Ψ and the function h(µ). Ψ is termed the dispersion parameter, and h
is termed the variance function. In the more general case, Ψ is replaced by
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a?(Ψ) and called the weight function. A detailed discussion of GLM can be
found in Chapt. 3.



Chapter 2

The quadratic exponential family

Various generalized estimating equations of order 2 (GEE2) to simultaneously
estimate the mean and the association structure can be obtained from the
pseudo maximum likelihood 2 (PML2) method. PML2 estimation has been
introduced by Gourieroux et al. (1984b), and it is based on the quadratic
exponential family. In the first section of this chapter, the quadratic expo-
nential family is introduced with a vectorized form of the association pa-
rameters. This representation allows the properties of the linear exponential
family to transfer to the quadratic exponential family. It also permits a sim-
ple derivation and formulation of the GEE2 (Chapt. 7). Selected properties of
the quadratic exponential family are derived in Sect. 2.2. Examples illustrate
the applicability of the quadratic exponential family (Sect. 2.3). In the final
section of this chapter, we discuss the formulation of the joint distribution
of dichotomous variables because of its complexity and its importance for
applications.

2.1 Definition

Several GEE2 can be derived from PML2 estimation, and the latter is based
on the quadratic exponential family. The important difference between the
definitions of the linear exponential family (Chapt. 1) and the quadratic ex-
ponential family is that some nuisance parameters Ψ are used in the definition
of the linear exponential family, while the covariance matrix Σ is used for
the quadratic exponential family.

Definition 2.1 (Quadratic exponential family). Let y ∈ IRT be a ran-
dom vector and w = (y2

1 , y1y2, . . . , y1yT , y2
2 , y2y3, . . . , y

2
T )′, let µ ∈ ∆ ⊂ IRT

be the corresponding mean vector, and let Σ be the respective positive def-
inite T × T covariance matrix. Furthermore, let a : IRT × IRT×T → IR,
b : IRT → IR, c : IRT × IRT×T → IRT , and j : IRT × IRT×T → IRT (T+1)/2

11A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_2, © Springer Science+Business Media, LLC 2011  
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be (measurable) functions. The T -dimensional quadratic exponential family
with mean µ and covariance matrix Σ is given by the set of distributions
with density functions

f(y||µ, Σ) = exp
(
c(µ, Σ)′y + a(µ, Σ) + b(y) + j(µ, Σ)′w

)
. (2.1)

By letting ϑ = c(µ, Σ) and λ = j(µ,Σ) as in Sect. 1.3, this density may be
rewritten as

f(y||ϑ, λ) = exp
(
ϑ′y − d(ϑ, λ) + b(y) + λ′w

)
. (2.2)

Remark 2.2.
• The representation of the quadratic exponential family in Eq. 2.2 does not

immediately open up the term quadratic. However, the function j(µ, Σ)′w
can also be represented by the quadratic form y′Dy for a symmetric ma-
trix D(µ, Σ) because

y′Dy =
T∑

t=1

T∑

t′=1

ytyt′ [D]tt′ =
T∑

t=1

y2
t [D]tt + 2

∑

t′>t

ytyt′ [D]tt′ = j′w ,

and j = ([D]11, 2[D]12, . . . , 2[D]1T , [D]22, 2[D]23, . . . , [D]TT )′. Therefore,
the exponential family is quadratic because the exponent can be formu-
lated quadratic in y with coefficient matrix D(µ, Σ). This quadratic form
of the quadratic exponential family has been used by Gourieroux et al.
(1984b). However, the vectorized version is more convenient for deriving
some properties of the quadratic exponential family (see next section).

• In contrast to the linear exponential family (Definition 1.1), where second-
order moments were treated as nuisance, these are of interest in the
quadratic exponential family. Moments of order three and higher are, how-
ever, ignored and set to 0. This is important for the definition of the joint
distribution of a T -variate dichotomous random vector (Sect. 2.4). If read-
ers are interested in higher order exponential families, they may refer, e.g.,
to Holly et al. (2008).

• We can define the vector ν = (ν11, ν12, . . . , ν22, . . .)′ in analogy to λ with
νtt′ = σtt′ + µtµt′ , where νtt′ = IE(ytyt′) denotes the second ordinary
moment, and σtt′ = [Σ]tt′ is the tt′th element of the covariance matrix
Σ. ν will be used below to formulate GEE using the second ordinary
moments, which are also termed product moments.
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2.2 Selected properties

By condensing ϑ and λ to one column vector and y and w to another col-
umn vector, the properties of Theorem 1.2 for the linear exponential family
can be extended to the quadratic exponential family. For example, mean
and variance of the quadratic exponential family with vectorized association
parameter λ are given by

IE
(
(y′,w′)′

)
=

∂d(ϑ, λ)
∂(ϑ′, λ′)′

=
(

µ

ν

)
, and

Var
(
(y′,w′)′

)
=

(
Var(y) Cov(y,w)
Cov(w,y) Var(w)

)
=

∂(µ′,ν ′)
∂(ϑ′, λ′)′

=




∂µ

∂ϑ′
∂ν

∂ϑ′
∂µ

∂λ′
∂ν

∂λ′


.(2.3)

Similarly, Property 1.6, which has been given for the linear exponential
family, can be generalized to the quadratic exponential family.

Property 2.3. For any µ, µ0 ∈ ∆ and for all positive definite T ×T covariance
matrices Σ and Σ0,

c(µ,Σ)′µ0 + a(µ,Σ) + j(µ, Σ)′ν0

≤ c(µ0, Σ0)′µ0 + a(µ0,Σ0) + j(µ0,Σ0)′ν0 .
(2.4)

Equality holds, if and only if µ = µ0 and Σ = Σ0.

Proof. Analogously to Property 1.6, Property 2.3 is a direct consequence of
Kullback’s inequality. ut

2.3 Examples for quadratic exponential families

In this section, we give three examples for quadratic exponential families. We
start with the univariate normal distribution because the normal distribution
is of great importance for PML2 estimation. It is followed by the multivariate
normal distribution, and the last example of this section is one given by
Gourieroux et al. (1984b). In the next section, two further examples are
given. The reader should note that some standard distributions that belong
to two-parameter linear exponential families (see, e.g., Example 1.11) do not
belong to the class of quadratic exponential families. A typical example is
the Gamma distribution.

Example 2.4 (Univariate normal distribution). The density of the univariate
normal distribution has been given in Example 1.10. If Ψ is replaced by
Σ = σ2, one obtains b(y) = 0 as well as
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c(µ,Σ) =
µ

Σ
, a(µ, Σ) = −1

2
µ2

Σ
− 1

2 ln(2πΣ) , and j(µ,Σ) = −1
2

1
Σ

.

Example 2.5 (Multivariate normal distribution). The classical example for
a distribution belonging to the quadratic exponential family is the T -
dimensional normal distribution. Its density has been given in Example 1.12.
By replacing Ψ with Σ, we obtain b(y) = 0,

j(µ, Σ) = −1
2

(
[Σ−1]11, 2[Σ−1]12, . . . , 2[Σ−1]1T , [Σ−1]22, . . . , [Σ−1]TT

)
,

a(µ, Σ) = −1
2µ′Σ−1µ− T

2 ln(2π)− 1
2 ln

(
det(Σ)

)
, and c(µ,Σ) = Σ−1µ .

Example 2.6 (Discrete distribution on {-1, 0, 1}). Consider a discrete distri-
bution on {−1, 0, 1} with probabilities p−1, p0, and p1. Its density is given
by

≈
f (y||p−1, p0, p1) = p

y(y−1)/2
−1 p

(1−y2)
0 p

y(1+y)/2
1 ,

subject to p−1 +p0 +p1 = 1, p1−p−1 = µ, and p−1 +p1 = Σ +µ2. We obtain

f(y||µ,Σ) = exp
(

y

2
ln

(Σ + µ2 + µ

Σ + µ2 − µ

)
+

y2

2
ln

( (Σ + µ2 + µ)(Σ + µ2 − µ)
4 · (1−Σ − µ2)2

)

+ ln
(
1−Σ − µ2

) )
.

We complete the example by noting that a(µ, Σ) = ln
(
1−Σ − µ2

)
, b(y) = 0,

c(µ,Σ) = 1
2 ln

Σ + µ2 + µ

Σ + µ2 − µ
, and j(µ,Σ) = 1

2 ln
(Σ + µ2 + µ)(Σ + µ2 − µ)

4 · (1−Σ − µ2)2
.

2.4 The joint distribution of dichotomous random
variables

Several representations of the joint distribution of T dichotomous random
variables have been given in the literature, and their pros and cons have
been extensively discussed (Kauermann, 1997; Liang et al., 1992; Prentice,
1988). In this section, we first consider the joint distribution of two dichoto-
mous random variables and show that this distribution is a member of the
quadratic exponential family. Furthermore, we consider the joint distribution
of T dichotomous random variables and embed a specific version of it into
the quadratic exponential family. In this version, all moments of order three
and above are set to 0.
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2.4.1 The joint distribution of two dichotomous
random variables

The joint distribution of two dichotomous items is often used in applications.
The standard parameter to measure the association between the responses
is the odds ratio (OR). We therefore define the OR first and next give the
definition of the joint distribution. Desirable properties and interpretations
of the OR and other measures of association for pairs of binary responses
have been described in detail, e.g., by Bishop et al. (1975).

The starting point is the 2×2 Table 2.1, which displays a bivariate random
vector y = (y1, y2)′, where πtt′ = IP(y1 = t, y2 = t′). The means are given by
µ1 = π1 = IP(y1 = 1) and µ2 = π2 = IP(y2 = 1). For simplicity, we assume
that all probabilities are > 0 and < 1.

Table 2.1 2× 2 table for y1 and y2

y2

0 1

0 π00 π01 1− π1
y1

1 π10 π11 π1

1− π2 π2 1

Definition 2.7 (Odds, odds ratio).
1. The odds of column 1 is O1 = π00

π10
, and the odds of column 2 is O2 = π01

π11
.

2. The odds ratio (OR) τ , also termed cross product ratio, is the ratio of the
two odds

τ12 = OR12 = OR(y1, y2) =
O1

O2
=

π00 π11

π01 π10
.

Definition 2.8 (Joint distribution of two dichotomous random vari-
ables). The joint distribution of two dichotomous items y1 and y2 is given
by

IP(y) = IP(y1, y2) = exp
(
y1y2 ln π11 + y1(1− y2) ln π10 (2.5)

+ (1− y1)y2 ln π01 + (1− y1)(1− y2) ln π00

)
.

Remark 2.9. Equation 2.5 can be rewritten as

IP(y) = exp
(
y1y2[ln(π11π00)− ln(π10π01)]

+ y1[ln π10 − ln π00] + y2[ln π01 − ln π00] + ln π00

)
,



16 2 The quadratic exponential family

and it can therefore be seen that the joint distribution of two dichotomous
random variables belongs to the quadratic exponential family. The natural
parameters have a loglinear representation and are given by

ϑ1 = logit{IP(y1 = 1|y2 = 0)} = ln π10 − ln π00 ,

ϑ2 = logit{IP(y2 = 1|y1 = 0)} = ln π01 − ln π00 , and (2.6)
λ12 = log OR(y1, y2) = ln(π11π00)− ln(π10π01) .

The natural parameters ϑt are conditional probabilities, and λ12 is an un-
conditional log OR. The normalization constant is d(ϑ, λ) = − ln π00, and
b(y) = 0. The parameters λ11 and λ22 of y2

1 and y2
2 are identical to 0 because

the variances are completely specified by the means.
Finally, in Eq. 2.6 the joint distribution is formulated using conditional log-

its. In the next section, a representation in the marginal moments (π1, π2, λ12)′

will be considered.
———

To derive GEE for dichotomous items using the quadratic exponential
family, we require the following functional relationship between the second
ordinary moments π11 = IE(y1y2) and the OR τ12 in Chapt. 7. This functional
relationship has been given, e.g., by Bishop et al. (1975):

IE(y1y2) = π11 =





f12 −
√

f2
12 − 4τ12(τ12 − 1)π1π2

2(τ12 − 1)
if τ12 6= 1 ,

τ12π1π2 if τ12 = 1 ,

(2.7)

where f12 =
(
1− (1− τ12)(π1 + π2)

)
. By using

τ12 =
π11(1− π1 − π2 + π11)
(π1 − π11)(π2 − π11)

and % =
π11 − π1π2√

π1(1− π1)π2(1− π2)
,

a one-to-one functional relation between the OR τ and the correlation co-
efficient % = Corr(y1, y2) can also be established. As a result, the OR can
therefore also be written as a function of the means and the correlation co-
efficient, and the correlation coefficient can be written as a function of the
means and the OR.

2.4.2 The joint distribution of T dichotomous random
variables

The joint distribution of two binary random variables can be extended easily
to T dichotomous random variables. Under the restrictive assumptions that
all third and higher order moments equal 0, this distribution also belongs to
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the quadratic exponential family. Three different parameterizations are often
used in practice for this model, the loglinear parameterization, the marginal
parameterization using contrasts of odds ratios, and the marginal parame-
terization using the correlation coefficient as the measure of association.

Definition 2.10. Consider T dichotomous random variables y1, . . . , yT ,
which are summarized to a vector y. The joint distribution in the loglin-
ear parameterization is given by

IP(y) = exp
( T∑

t=1

ytϑt +
∑

t<t′
ytyt′λtt′

+
∑

t<t′<t′′
ytyt′yt′′ζtt′t′′+ . . . + y1y2 · · · yT ζ1...T − d(ϑ, λ, ζ)

)
, (2.8)

for ζ′ = (ζtt′t′′ , . . . , ζ1...T ) with ϑt being logits of conditional probabilities

ϑt = logit{IP(yt = 1|yt′ = 0, t 6= t′} = ln
IP(yt = 1|yt′ = 0, t 6= t′)
IP(yt = 0|yt′ = 0, t 6= t′)

.

The second-order moments are conditional log ORs

λtt′ = log OR(yt, yt′ |yt′′ = 0)

= ln
IP(yt = 1, yt′ = 1|yt′′ = 0)
IP(yt = 0, yt′ = 1|yt′′ = 0)

− ln
IP(yt = 1, yt′ = 0|yt′′ = 0)
IP(yt = 0, yt′ = 0|yt′′ = 0)

with t′′ 6= t, t′.

Remark 2.11.
• In Definition 2.10, second-order moments are conditional log ORs, while

they were unconditional in Eq. 2.6.
• If all parameters of order three and above are set to 0, thus ζ = 0, the

joint distribution of T binary random variables belongs to the quadratic
exponential family.

———

An alternative parameterization of the joint distribution of T dichotomous
items is in terms of marginal rather than fully conditional distributions. In
applications, the first two moments are of primary interest, and these are
initially specified by

IP(yt = 1) = µt, and OR(yt, yt′) = τtt′ . (2.9)

The parameterization of the full joint distribution can be completed in several
ways, e.g., in terms of contrasts of conditional ORs (Liang et al., 1992):
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ζtt′t′′ = lnOR(yt, yt′ |yt′′ = 1)− ln OR(yt, yt′ |yt′′ = 0) , (2.10)

ζrr′tt′ = lnOR(yt, yt′ |yr = 1, yr′ = 1)− lnOR(yt, yt′ |yr = 1, yr′ = 0)
− lnOR(yt, yt′ |yr = 0, yr′ = 1) + ln OR(yt, yt′ |yr = 0, yr′ = 0) ,

ζt1...tS =
∑

(−1)
∑S

s=3 yts+S−2 ln OR(yt1 , yt2 |yt3 , . . . , ytS ) .

Here, the sum is taken over the 2S−2 possible combinations of (yt3 , . . . , ytS ).
Another completion of the joint distribution uses the following higher order
moments:

ςtt′t′′ = ln
π111 π000 π100 π010

π101 π011 π110 π000
, (2.11)

ςrr′tt′ = ln
π1111 π0011 π1100 π0000 π1010 π0110 π1001 π0101

π1110 π1101 π1011 π0111 π1000 π0100 π0010 π0001
, (2.12)

ςt1...tS
= (−1)S ln

∏
{(t1,...,tS):

∑S
s=1 ts=2n, n∈IN} πt1...tS

+ (2.13)

(−1)S+1 ln
∏
{(t1,...,tS):

∑S
s=1 ts=2n+1, n∈IN} πt1...tS .

Kauermann (1997) has shown that the loglinear and the marginal parameter-
ization have a 1:1 correspondence, although higher order marginal and log-
linear parameters differ. The most important difference between the loglinear
and marginal parameters is in the interpretation of the first two moments. In
the loglinear parameterization, they can be interpreted as conditional prob-
abilities of yt given yt′ , or as conditional log ORs of yt, yt′ given yt′′ .

The pros and cons of both parameterizations have been discussed by Liang
et al. (1992). The major advantage of the marginal model over the loglinear
model is its reproducibility. Thus, if y satisfies a marginal model, then any
subset of y also does. Hence, the interpretation of the marginal parameters is
independent of the length T of y. One drawback of the marginal parameteri-
zation is that extensive computations are required for parameter estimation,
see, e.g., Fitzmaurice and Laird (1993). Even more important, the parame-
ter space is restricted (see next section), and this restriction has immediate
consequences for choosing the weight matrices for GEEs with dichotomous
dependent variables (see Sect. 7.3.4).

Another formulation of the joint distribution is based on correlations.
Specifically, Bahadur (1961) has shown that the joint distribution of T di-
chotomous random variables can be written as

IP(y1, . . . , yT ) =
T∏

t=1

(
πyt

t (1− πt)1−yt

)(
1 +

∑

t<t′
%tt′ztzt′ (2.14)

+
∑

t<t′<t′′
%tt′t′′ztzt′zt′′ + · · ·+ %1...T z1z2 . . . zT

)
,
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where zi = (yi − µi)/σi is the standardized variable with σi =
√

µi(1− µi),
%tt′ = Corr(yt, yt′) = IE(ztzt′), %tt′t′′ = IE(ztzt′zt′′), etc. The Bahadur repre-
sentation is similar to the representation in the marginal OR, and the corre-
sponding parameter space is restricted, too.

2.4.3 Restriction of the parameter space in marginal
models

When using the parameterization in the correlation coefficient, the parameter
space is restricted for T ≥ 2. Consider the 2× 2 Table 2.1 with means π1 =
π10 + π11 and π2 = π01 + π11. Then, the probability π11 is restricted to

max(0, π1 + π2 − 1) ≤ π11 ≤ min(π1, π2) .

Because the correlation coefficient

% =
π11 − π1π2√

π1(1− π1) · π2(1− π2)

directly depends on the restricted π11, % is also restricted. Specifically, % is
constrained by (Prentice, 1988)

max
{
−

√
π1π2

$1$2
,−

√
$1$2

π1π2

}
≤ % ≤ min

{√
π1$2

$1π2
,

√
$1π2

π1$2

}
, (2.15)

where $t = 1−πt. Similar restrictions hold for moments %t1...ts of order three
and above.

Examples for the restrictions are given in Table 2.2. Extreme restrictions
occur when one probability is approaching the boundary of the parameter
space, while the other is approximately 0.5. For example, if π1 = 0.01 and
π2 = 0.5, % is bounded by ± 0.1. It is bounded by ± 0.03 if π1 is 0.001.

Table 2.2 Restrictions of the correlation coefficient in a 2× 2 setting given the marginal
means π1 and π2

π2

0.1 0.3 0.5

0.1 -0.11;1.00 -0.22;0.51 -0.33;0.33
π1 0.3 -0.43;1.00 -0.65;0.65

0.5 -1.00;1.00

Marginal moments other than the correlation coefficient are also restricted.
Specifically, the OR is restricted for binary dependent variables if T ≥ 3. For
example, let the parameters (π1, π2, π3, τ12, τ13) be fixed, and T = 3. IE(y1y2)
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and IE(y1y3) can be determined through these parameters. For example, the
domain of IE(y2y3) is restricted to

max
{
0, IE(y1y2) + IE(y1y3)− π1

} ≤ IE(y2y3) ≤ min
{
π2, π3

}
. (2.16)

As a result, the domain of τ23 is also restricted because

τ23 =
IE(y2y3)

(
1− π2 − π3 + IE(y2y3)

)
(
π2 − IE(y2y3)

)(
π3 − IE(y2y3)

) .

Analogous restrictions exist for moments of order greater than three.
In summary, the OR parameterization can be used without any constraints

for two dichotomous random variables, while the parameter space of the cor-
relation coefficient is already restricted in this case. If more than two dichoto-
mous random variables are considered, the parameter space is restricted in
all marginal parameterizations. For greater flexibility in the parameter space,
higher order moments should be added to analyze correlated dichotomous
random variables.

As a last example for the restriction of the parameter space, consider the
joint distribution of T binary responses y = (y1, . . . , yT )′ in the Bahadur
representation (Eq. 2.14) with all moments %t1...ts of three and above being
set to 0:

IP(y) =
T∏

t=1

(
πyt

t (1− πt)1−yt

)(
1+

∑

t<t′
%tt′

(yt − πt)√
πt(1− πt)

(yt′ − πt′)√
πt′(1− πt′)

)
.

For simplicity, let πt = π > 0, %tt′ = %, T = 2k, k ∈ IN. Then, a sequence of
m zeros and m ones has probability (Prentice, 1988)

πm(1− π)m
(
1 + %

(
1
2m(m− 1) 1−π

π + 1
2m(m− 1) π

1−π −m2
))

,

yielding % ≤ |m2− 1
2m(m−1)1−π

π − 1
2m(m−1) π

1−π |−1. For example, % ≤ | 1
m |

if π = 1
2 . Thus, the impact of the restrictions increases with the number of

observations T per cluster.
A summary of the permissible ranges of dependent dichotomous variables

has been given by Chaganty and Deng (2007). The effect of ignoring the
bounds has been nicely illustrated by Sabo and Chaganty (2010). A detailed
discussion how these restrictions may be overcome can be found in Ziegler
and Vens (2010); also see Shults (2011).



Chapter 3

Generalized linear models

In this chapter, the class of generalized linear models (GLM) will be in-
troduced as required for understanding the idea of generalized estimating
equations (GEE). Univariate GLMs are considered first, followed by multi-
variate GLMs. For an in-depth discussion of GLM, the reader may refer to
the literature (Fahrmeir and Tutz, 2001; Hardin and Hilbe, 2007; McCullagh
and Nelder, 1989).

3.1 Univariate generalized linear models

3.1.1 Definition

Definition 3.1. Let y = (y1, . . . , yn)′ be an n dimensional random vector,
let X = (x1, . . . , xn)′ be an n×p matrix of fixed and/or stochastic regressors,
β = (β1, . . . , βp)′ a p dimensional parameter vector, and ε = (ε1, . . . , εn)′ an
n dimensional random vector of errors. We assume that the pairs (yi, xi) are
independent and that yi|xi are identically distributed for all i = 1, . . . , n. The
p×p matrix 1

nX ′X is assumed to converge (almost surely) to a non-stochastic
regular matrix Q as n →∞.

In GLMs, the vector of observations y is additively decomposed into a
systematic component µ and an error term ε,

y = µ + ε ,

where ε and X are assumed to be stochastically independent, i.e., IE(ε|X) =
0, and µ = (µ1, . . . , µn)′ is the vector of conditional means IE(yi|xi) = µi of
yi given xi.

In a univariate GLM, the conditional density f(yi||ϑi) = fyi|xi
(yi||ϑi)

belongs to the univariate linear exponential family with natural parameter

21A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_3, © Springer Science+Business Media, LLC 2011  
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ϑi. Furthermore, the conditional mean µi = IE(yi|xi) is related to the linear
predictor ηi = x′iβ by a one to one link function g : IR → IR, which is assumed
to be sufficiently often continuously differentiable: g(µi) = ηi = x′iβ. The
inverse g−1 of the link function g is termed response function. For simplicity,
the following vector and matrix notation is used: η = (η1, . . . , ηn)′, g(µ) =
(g(µ1), . . . , g(µn))′, and g(µ) = η = Xβ.
———

The term generalized linear model is used because the explanatory vari-
ables xi are linearly connected with the parameter of interest β to the linear
predictor ηi. However, the linear predictor ηi can be connected with the de-
pendent variable yi in a more general way than through the identity function.
Therefore, one often writes µi = µi(ηi) = µi(x′iβ) because the conditional
mean µi of yi given xi depends on ηi. For interpretations of the link func-
tion, the reader may refer to the literature (Dobson, 2001; Fahrmeir and Tutz,
2001).

3.1.2 Parameterization and natural link function

In Definition 3.1, a functional relationship between the parameters ϑi, i =
1, . . . , n, from the linear exponential family and the parameter of interest β
has not been established. By use of Eq. 1.6, i.e., ϑi = c(µi,Ψ ), ϑi can be
written as a function of β, i.e., ϑi = c

(
g−1(ηi),Ψ

)
= c

(
µi(ηi), Ψ

)
.

In the special case of ϑi = ηi, the GLM is called GLM with natural link
function. In this case, we have a linear model for β, i.e., ϑ = Xβ, and the
link function g is identical to the function c of the mean structure parame-
terization from Sect. 1.3.

3.1.3 Examples

Example 3.2 (GLM for continuous data). If yi|xi follows a univariate normal
distribution with variance σ2, the classical linear model with stochastic re-
gressors is obtained by choosing the natural link function g = ident, yielding
IE(yi|xi) = µi = g−1(µi) = ηi = x′iβ.

In various applications, a nonlinear relationship g(µi) = ηi = x′iβ is more
appropriate, e.g., if variance stabilization is of interest. A flexible way to
model the response function g−1(µi) = ηi = x′iβ is the Box–Cox or power
transformation (Box and Cox, 1964)

ηi =
µλ

i − 1
λ

= g(µi) , yielding µi = g−1(ηi) = λ
√

ληi + 1
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for λ ∈ ZZ\0. If λ = 0, the loglinear function ηi = ln µi is obtained by use of
l’Hospitals rule.

More generally, Pregibon (1980) proposed power transformations with a
shift parameter ηi = (µi+λ2)

λ1−1
λ1

. With λ1 = 1 and λ2 = 1, one obtains the
identity link function.

Alternatively, folded power transformations ηi = µλ
i −(1−µi)

λ

λ can be used.
Choosing λ = 0 gives the logit link.

Example 3.3 (Models for dichotomous data). A simple choice for dichotomous
dependent variables is the identity link, i.e., IE(yi|xi) = µi = πi = ηi = x′iβ.
Although this model has a simple interpretation and although parameter
estimates can be obtained without relying on iterative algorithms, it has a
substantial drawback. The conditional mean µi is a probability πi, and x′iβ
therefore needs to be bounded to the interval [0; 1] for any vector xi.

This can be achieved by using a strictly monotone distribution function
F as response function so that µi = F (ηi) = g−1(ηi). The most intuitive
approach is to choose the distribution function Φ from the standard normal
distribution as response function. The resulting model

IE(yi|xi) = IP(yi = 1xi) = µi = πi = Φ(x′iβ)

is termed the probit model, and the linear predictor ηi = x′iβ is called probit.
The link function is the inverse distribution function of the normal distribu-
tion, i.e., g(µi) = Φ−1(µi).

Although the probit model is the most intuitive and often employed in
econometrics, the most common choice in biomedical applications is the logit
or the logistic regression model. It is obtained by choosing the logit function
as link function, which is the natural link function. Specifically,

ϑi = logit(µi) = logit
(
IP(yi = 1|xi)

)
= ln

IP(yi = 1|xi)
IP(yi = 0|xi)

= ηi = x′iβ . (3.1)

Equation 3.1 shows that the logistic model is a linear model for the log odds of
the response yi = 1. The linear predictor ηi of this model is therefore termed
logit. The response function is the expit function, having the distribution
function of the logistic distribution:

F (x) = expit(x) = exp(x)
/(

1 + exp(x)
)

=
(
1 + exp(−x)

)−1
.

Further examples can be found, e.g., in Fahrmeir and Tutz (2001), Hardin
and Hilbe (2007), and McCullagh and Nelder (1989). GLMs for binary depen-
dent data can also be derived using threshold models. This will be considered
in Sect. 3.1.4.

Example 3.4 (Models for count data). Count data are an important class of
dependent variables. In this situation, the mean is restricted to positive real
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numbers. Therefore, a linear model for the linear predictor µi = x′iβ leads
to restrictions on β. Like for dichotomous data, these can be avoided by
choosing a nonlinear link function.

If yi given xi is assumed to be Poisson distributed with mean µi, the log-
link ηi = g(µi) = ln(µi) is the natural link function, and the exponential
function is the response function µi = exp(ηi). The corresponding models
are termed loglinear models.

A second common choice is the square root linear model with ηi = g(µi) =
2
√

µi and inverse µi =
(
ηi/2

)2 =
(
x′iβ/2

)2. Note that the quadratic response
function is not injective. The square root link, however, stabilizes the variance
of the square root

√
y of a Poisson distributed random variable y. This can be

seen by a first-order Taylor series around µ, which yields 2
√

y ≈ 2
√

µ+ 1√
µ (y−

µ). The mean of
√

y is approximately
√

µ, and its variance is approximately
1/4.

3.1.4 Threshold model for dichotomous dependent data

The GLM for dichotomous dependent data has been introduced in Example
3.3. A distribution function was used as the response function to overcome
the range restriction of the conditional mean of the dependent variable. The
GLM for dichotomous dependent variables can also be derived as threshold
models, and they are valuable for interpreting results of regression models
for longitudinal binary dependent data.

Consider a linear model for a latent continuous variable y?
i :

y?
i = x′iβ + σδi = β1 + x?′

i β? ,

where σ is a scale parameter, and δi is distributed according to F (·). A
common choice is the distribution function of the standard normal distribu-
tion, i.e., F = Φ. Furthermore, the model includes a regression constant, i.e.,
xi1 = 1 for all i.

The dichotomous variable yi is observable, and it is connected to the latent
variable y?

i by a simple threshold relation:

yi =

{
0, if y?

i ≤ τ

1, if y?
i > τ

.

One therefore obtains

IP(yi = 1|xi) = F

(
τ − β0 − x?′

i β?

σ

)
.
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The parameters τ, β0, β?, and σ are identifiable only when two restrictions
are introduced. Usually, τ = 0 and σ2 = 1 are chosen. This means that the
regression parameters are identified up to a scale parameter σ. Furthermore,
the regression constant cannot be identified if the threshold parameter is
unknown. With these restrictions, we obtain

IP(yi = 1|xi) = F (β0 + x?′
i β?) = µi .

Thus, µi = F (β0 + x?′
i β?) is the mean of yi given xi if the error of the linear

model for the latent variable is distributed according to F (·), and the model
on the observable level therefore is yi = µi + εi.

3.2 Multivariate generalized linear models

3.2.1 Definition

Definition 3.5. Consider n stochastic vectors y1, . . . , yn of length T × 1.
X1, . . . , Xn are the corresponding T × p fixed or stochastic matrices of re-
gressors. Let (yi, Xi) be independently identically distributed (i.i.d.), and

IE(εi|Xj) = 0 for all i, j. Finally, assume that the matrix 1
n

n∑
i=1

X ′
iXi con-

verges to a non-stochastic regular matrix Q as n → ∞. A T -dimensional
generalized linear model or multivariate generalized linear model is given if
1. the conditional density f(yi||ϑi) = fyi|Xi

(yi||ϑi) follows a simple T -
dimensional linear exponential family with natural parameter ϑi, and

2. the conditional mean µi = IE(yi|Xi) of yi given Xi is connected to the
linear predictor through a one to one and sufficiently often continuously
differentiable link function g : IRT → IRT : g(µi) = ηi = Xiβ, where gj

might differ from gj′ for j, j′ ∈ 1, . . . , T .
The link function g is termed natural link function, if g(µi) = ηi = ϑi for
i = 1, . . . , n.
———

In analogy to the univariate case, µi = µi(ηi) = µi(Xi,β) = g−1(ηi) is a
function of β. Furthermore, each component gj of g is related to one and only
one vector of explanatory variables xij and has the same parameter vector
β. Thus, gj(µi) = x′ijβ, where xij is the jth column of X ′

i. In practice, a
parameterization is preferred, where each component j has a separate pa-
rameter vector βj , but components have the same regression vector xi such
that gj(µi) = x′iβj . Finally, if different components gj and gj′ are chosen,
the entire function g needs to be considered component-wise. Thus, it is not
a “general” function in this case.
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3.2.2 Examples

Example 3.6 (Normal distribution — multivariate regression). For all n in-
dividuals i = 1, . . . , n let xi be a p × 1 vector of fixed and/or stochas-
tic independent variables. Furthermore, let the T dimensional dependent
variable yi given xi be T dimensionally normally distributed, specifically,
yi|xi ∼ NT (µi, Σ). If the identity function, i.e., g = id, is chosen as the
link function and if B = (β1, . . . , βT ) ∈ IRp×T is the matrix comprising the
parameters of interest, one obtains the multivariate linear regression model
by letting µi = ηi = B′xi. This model can also be formulated in standard
notation by letting Xi = x′i ⊗ IT , which is of dimension T × Tp, and the
Tp × 1 parameter vector β = (β′1, . . . , β

′
p)
′. Here, ⊗ denotes the Kronecker

product, and Ip is the p× p identity matrix.

Example 3.7 (Multinomial distribution — logistic regression). Consider n in-
dividuals and assume that the dependent variable of subject i given the co-
variates Xi follows a T -dimensional multinomial distribution MuT (1, πi) for
all i = 1, . . . , n. Let et = (0, . . . , 0, 1, 0 . . . , 0)′ denote the tth T -dimensional
unit vector. Then, we have for all yi = (yi1, . . . , yiT )′

IP(yi = et|Xi) = πit , for t = 1, . . . , T ,

IP(yi,T+1 = 1|Xi) = 1−
T∑

t=1

πit , and

µi = IE(yi|Xi) = πi .

The linear predictor η̃it is given by gt(µi) = η̃it = β0t + xi1β1 + . . . + xirβr

so that β and xit are defined as

β = (β01, . . . , β0,t−1, β0t, . . . , β0T , β1, . . . , βr)′ and
xit = (0, . . . , 0, 1, 0, . . . , xi1, . . . , xir)′ ,

respectively. Finally, using the natural link function g(πi) = ϑi one obtains
the logistic regression model for the multinomial distribution

πit =
exp(x′itβ)

1 +
∑T

t=1 exp(x′itβ)
.

An in-depth discussion of this model can be found in the literature (see, e.g.,
Arminger, 1995).

Example 3.8 (Multinomial distribution — cumulative logistic regression). The
cumulative logistic model is an extremely popular approach for the analysis
of ordered categorical data. It has been proposed by Snell (1964) and ex-
tended in several ways, (see, e.g., Fahrmeir and Tutz, 2001, pp. 75). Let the
ordered categorical response of all individuals be coded as 1, . . . , C so that
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C − 1 variables are needed for a complete description of the categories. The
ordered categorical response zi of subject i is extended to a response vector
yi of length C − 1 according to

yic =

{
1, if zi ≤ c ,

0, otherwise .

The cumulative logistic model can then be derived as follows: Assume that
the ordered categorical response z is connected through a threshold relation
to an unobservable continuous stochastic variable z?:

z = c ⇐⇒ ϑc < z? ≤ ϑc , c = 1, . . . , C ,

where −∞ = ϑ0 < ϑ1 < . . . < ϑC = +∞. Furthermore, connect the latent
variable z? with the regressor variables x for all individuals i by the linear
model

z? = −x′β̃ + ε? ,

where β̃, as before, is the vector of regression parameters, and ε? is a latent
random error variable with distribution function F .

Then, the observable variable z is determined by

IP(z ≤ c|x) = F (ϑc + x′β̃) . (3.2)

This model is termed a cumulative model with distribution function F , be-
cause the left side of Eq. 3.2 is a sum of probabilities. The choice of the
logistic function yields the cumulative logistic regression model

IP(z ≤ c|x) =
exp(ϑc + x′β̃)

1 + exp(ϑc + x′β̃)
(3.3)

for c = 1, . . . , C − 1. Equation 3.3 can equivalently be written as

ln
{

IP(z ≤ c|x)
IP(z > c|x)

}
= ϑc + x′β̃ ,

and it is seen that the regression lines x′β̃ are parallel. The model is therefore
also termed the proportional odds model.

If the model includes a regression constant, C − 2 dummy variables are
needed for threshold modeling. This can be seen easily from the matrix no-
tation of the model:
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Xi =




1 x′i
1 x′i

. . .
1 x′i

0 0 0 0 x′i




, and β = (ϑ1, . . . , ϑC−2, β̃
′
)′ .

The matrix Xi thus is of dimension (C − 1)× (C − 2 + p).



Chapter 4

Maximum likelihood method

The most popular estimation approach is the maximum likelihood (ML)
method. In this chapter, the ML estimator is defined first, and important
asymptotic properties of the ML estimator are formulated in Sect. 4.2. Trans-
formations of estimators, not only ML estimators, are discussed in Sect. 4.3.
To illustrate the ML approach, we consider the ML method in the linear
exponential family (Sect. 4.4) and in univariate GLM (Sect. 4.5). A crucial
assumption of ML estimation is the correct specification of the underlying
statistical model. Therefore, we discuss the consequences of using the ML
method in misspecified models in Sect. 4.6. Even if the model is misspecified,
it is based on a likelihood, and the resulting estimator is therefore called a
quasi maximum likelihood (QML) estimator (for an in-depth discussion, see
White, 1982, 1994). The reader should note that QML estimation is different
from quasi likelihood (QL) estimation. The latter approach is a generalization
of the generalized linear model (McCullagh and Nelder, 1989; Wedderburn,
1974) and requires the correct specification of the first two moments.

4.1 Definition

To define an ML estimator, we do not require many assumptions. However,
important properties of the ML estimator can be derived only under specific
regularity assumptions. These aspects are discussed in some detail below. We
start with some notation.

Let yi be a T × 1 stochastic vector and Xi a T × p stochastic and/or
fixed matrix. The pairs (yi,Xi) are assumed to be independent, and yi|Xi

are assumed to be identically distributed for all i = 1, . . . , n. The true con-
ditional density (or probability mass function for discrete random vectors)
f?(yi|Xi||β) of yi given Xi depends on a parameter vector β ∈ Θ ⊂ IRp.
Furthermore, we assume for both continuous and discrete distributions that
f? is correctly specified. The aim is to estimate the unknown p-dimensional

29A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_4, © Springer Science+Business Media, LLC 2011  
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parameter vector β. Before we can introduce the ML estimator, we have to
consider the joint distribution of yi and Xi. Specifically, we assume that the
marginal density m(Xi) is independent of β. As a result, the joint density f
of yi and Xi is given by

f(yi, Xi||β) = f?(yi|Xi||β)m(Xi) .

For probability calculations, we assume that all parameters are known and
that the data yi are unknown, i.e., unobserved. For parameter estimation,
we pretend as if the observations were known. Subsequently, we consider
the individual likelihood function Li(β||yi, Xi) = Li(β) for β given the
data (yi,Xi). Because we assume that the data are given, we do distinguish
between random vectors and their realizations.

The pairs (yi, Xi) are assumed to be independent so that the (global)
likelihood function, i.e., the joint density of all clusters, is the product of the
individual likelihood functions L(β) =

∏n
i=1 Li(β).

Definition 4.1 (Maximum likelihood estimator). A maximum likeli-
hood estimator (MLE) of β is a solution to the maximization problem

max
β∈Θ⊂IRp

L(β||yi,Xi) .

———

In many applications, the logarithm of the likelihood function is consid-
ered, and

l̃(β) =
1
n

ln L(β) =
1
n

n∑

i=1

ln Li(β) =
1
n

n∑

i=1

(
ln f?(yi|Xi||β) + ln m(Xi)

)

is called the normed loglikelihood function. The logarithm is a strictly isotone
function so that the solution to the maximization problem is not altered.

The maximization problem using the normed loglikelihood function is in-
dependent of the marginal density m, and m is irrelevant for the maximiza-
tion. One therefore considers the kernel of the normed loglikelihood function
for maximization. The kernel only contains the parts of the normed loglike-
lihood function that are relevant for maximization, and the kernel of the
normed likelihood function is therefore given by

l(β) =
1
n

n∑

i=1

li(β) =
1
n

n∑

i=1

ln f?(yi|Xi||β) . (4.1)

For this reason, the maximization problem for stochastic and fixed regressors
is identical. However, the asymptotic properties are different; for details see,
e.g., Greene (2007).
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One problem related to ML estimation is that a modification of the density
on a set of points having zero probability may alter the resulting estimator
(see, e.g., Gourieroux and Monfort, 1995a). Therefore, whenever possible, one
assumes that densities are continuous in yi or, at least, piecewise continu-
ous. The second aspect is related to the existence of parameter estimates.
In fact, nonexistence may occur if the parameter space Θ is open or if the
loglikelihood function is not continuous. Therefore, to guarantee existence of
parameter estimates, one assumes that the parameter space Θ is compact and
that the likelihood function is continuous on Θ. These assumptions have been
summarized, e.g., by White (1982, assumptions A1 and A2). Finally, even if
there is a maximum likelihood estimator, it need not be unique. A sufficient
condition for its uniqueness is the strict concavity of the likelihood function
in a bijective transformation of the parameter β. Because the uniqueness
cannot be guaranteed, one generally tries to find local maxima of the kernel
of the normed likelihood function from Eq. 4.1.

Often, likelihood functions are considered that are at least two times con-
tinuously differentiable. ML estimators are then obtained by differentiating
the kernel of the normed likelihood function with respect to β, i.e.,

u(β) =
∂l(β)
∂β

=
1
n

n∑

i=1

ui(β) =
1
n

n∑

i=1

∂li(β)
∂β

. (4.2)

An ML estimator β̂ is the root of Eq. 4.2, which is termed the score function.
Thus, one aims to find the solution of u(β̂) = 0, and this equation is called
the maximum likelihood equation (MLE).

To obtain local maxima, the Hessian matrix, i.e., the matrix of second
derivatives,

W (β) =
∂2l(β)
∂β∂β′

=
1
n

n∑

i=1

Wi(β) =
1
n

n∑

i=1

∂2li(β)
∂β∂β′

, (4.3)

has to be negative definite.

4.2 Asymptotic properties

We assume that the usual maximum likelihood regularity conditions A1–A7
as given, e.g., by White (1982), are fulfilled. They can be sketched as follows
(for the exact formulations, see White, 1982):
• The independent random vectors yi have a distribution with some Radon-

Nikodym density (termed g by White), and the parametric family of dis-
tribution functions all have densities f(y||β).

• f(y||β) and ∂ ln f
/
∂β are measurable in y and continuous in β.
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• ∂2 ln f
/
∂βjβj′ , ∂ ln f

/
∂βj · ∂ ln f

/
∂βj′ and ∂(∂f/∂βj · f)

/
∂βj′ are domi-

nated by functions integrable in β.
• The parameter space is compact.
• IE| ln g| < ∞, | ln f | is bounded uniformly in β.
• The Kullback-Leibler information criterion (for the definition, see Eq. 4.21)

IE ln
(
g
/
f
)

has a unique maximum at the true parameter value β0.
• β0 is in the interior of the parameter space, the outer product gradient is

regular (for the definition, see Theorem 4.2), and the rank of the Fisher
information matrix (for the definition, see Theorem 4.2) is constant in a
neighborhood of β0.

• The minimal support of f(y||β) does not depend on β.
Then, one can show the following statements.

Theorem 4.2 (Properties of ML estimators).
1. There asymptotically exists an ML estimator β̂ for the true parameter

vector β0.

2. The ML estimator β̂ converges almost surely to the true parameter β0.

3. The ML estimator β̂ for β0 is asymptotically normal. More specifically,
with a∼ denoting “asymptotically distributed as,” we get

√
n(β̂ − β0)

a∼ N
(
0, B(β0)

−1
)
, (4.4)

where B(β) = IEX
(
IEy−ui(β)ui(β)′

)
is the outer product of the score

vector and therefore termed the outer product gradient (OPG). It is also
termed the outer product of the Fisher information matrix.

4. Because the likelihood is assumed to be correctly specified, the OPG equals
the Fisher information matrix. Thus, it is equal to the expectation of the
negative Hessian matrix of subject i: A(β) = IEX

(
IEy−Wi(β)

)
. Therefore,

we also have √
n(β̂ − β0)

a∼ N
(
0, A(β0)

−1
)
.

5. A (strongly) consistent estimator of the Fisher information matrix A(β0)
is, e.g., given by Â(β̂), which is the Fisher information matrix evaluated
at β̂. Â(β̂) is termed the observed Fisher information matrix. Alternative
(strongly) consistent estimators for A(β0) include

−Ŵ (β̂) = − 1
n

∂2l(β̂)
∂β∂β′

and − 1
n

n∑

i=1

∂2li(β̂)
∂β∂β′

.

6. Strongly consistent estimators B̂(β̂) of the OPG are, e.g., given Bf(β0)
by
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1
n

∂l(β̂)
∂β

∂l(β̂)
∂β′

, or by
1
n

n∑

i=1

ûi(β̂)ûi(β̂)′ =
1
n

n∑

i=1

∂li(β̂)
∂β

∂li(β̂)
∂β′

.

B̂(β̂) is the termed estimated OPG or estimated outer product of the Fisher
information matrix.

7. The ML estimator β̂ is asymptotically efficient and thus reaches the Rao–
Cramér bound (Rao, 1973, p. 350).

———

Before we prove this theorem, we make several remarks.

Remark 4.3.
• An estimator with Properties 1., 2., 3., and 7. of the theorem is called a

best asymptotically normally (BAN) distributed estimator.
• The OPG and the Fisher information matrix need not be equal; for an

example, see Sect. 4.6.1.
• If a nuisance parameter Ψ is added, such as the variance matrix Σ for

the normal distribution, the results of Theorem 4.2 can be extended in the
following sense: One replaces the nuisance parameter Ψ by a (strongly)√

n consistent estimator Ψ̂ for the true nuisance parameter Ψ0. Note
that Ψ̂ is strongly

√
n consistent if

√
n(Ψ̂ − Ψ) is bounded with prob-

ability 1. The estimator β̂ maximizing the normed loglikelihood function
1
n

∑n
i=1 ln f(yi, Xi||β, Ψ̂) has the same properties as the estimator β̂ of

Theorem 4.2 (see, e.g., Gourieroux et al., 1984b, p. 682).
• The results given of Theorem 4.2 are large sample results only. To give

an example, the ML estimator is asymptotically unbiased but it may be
biased in finite samples. A simple example is the ML estimator of the
variance σ2 in the case of a normal distribution with unknown mean µ.
The ML estimator is σ̂2 = 1

n

∑n
i=1

∑n
i=1(xi − x̄)2, which has expected

value n−1
n σ2.

Proof. Here, we sketch the proof of statement 3. and show statement 4. be-
cause the result on the asymptotic distribution will be used in subsequent
chapters. References are given for the other statements.
1.: See, e.g., White (1982, Theorem 2.1).
2.: See, e.g., White (1982, Theorem 2.2).
5.: See, e.g., White (1982, Theorem 3.2); also see, e.g., Gourieroux and Mon-
fort (1995a, p. 186).
6.: See, e.g., White (1982, Theorem 3.3).
7.: See, e.g., Gourieroux and Monfort (1995a, p. 184).
3.: For simplicity, we drop the index i. The derivatives ui(β) and Wi(β) are
denoted by s(β) and S(β), respectively.

In the first step, the ML estimator of Eq. 4.2 is approximated by a first-
order Taylor expansion around β0:
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0 a.s.= u(β0) + W (β∗)(β̂ − β0) =
1
n

n∑

i=1

ui(β0) +
(

1
n

n∑

i=1

Wi(β∗)
)

(β̂ − β0) ,

with a.s. denoting almost surely, and β∗ lying on the line segment between
β̂ and β0, i.e., |β∗ − β0| ≤ |β̂ − β0|.

Application of a theorem by Cramér-Slutsky (see, e.g., Rohatgi and Saleh,
2001, p. 270, Theorem 15 (c)) and pre-multiplication by

√
n yields

√
n(β̂ − β0)

a.s.=
(
− 1

n

n∑

i=1

Wi(β∗)
)−1( 1√

n

n∑

i=1

ui(β0)
)

. (4.5)

By a strong law of large numbers (White, 1981, Lemma 3.1),− 1
n

∑n
i=1 Wi(β∗)

converges to the Fisher information matrix IEX
(
IEyS(β0)

)
= A(β0).

According to the regularity conditions, differentiation and integration may
be interchanged so that the expectation of the score vector is 0:

IEXIEy

(
1√
n

n∑

i=1

ui(β0)

)
=
√

n IEXIEy
(
u(β0)

)

=
√

n IEX

(∫
∂ ln f(y|X||β0)

∂β
f(y|X||β0) dy

)

=
√

n IEX

(
∂

∂β

∫
f(y|X||β0) dy

)
= 0 .

Here, ∂ ln f(y|X, β0)/∂β denotes the evaluation of the first derivative of
ln f(y|X, β0) at β0.

The covariance matrix of the score vector can be obtained by using the
i.i.d. assumption and IE(u) = 0:

Var
(

1√
n

n∑

i=1

ui(β0)
)

=
1
n

n∑

i=1

Var(ui(β0)) = IEXIEy
(
s(β0)s(β0)

′
)

= B(β0) .

The asymptotic distribution is obtained by using the multivariate central
limit theorem (see, e.g., Lehmann and Casella, 1998, p. 61, Theorem 8.21)

1√
n

n∑

i=1

ui(β0)
a∼ N

(
(0,B(β0)

)
. (4.6)

Equation 4.5, Cramér-Slutsky’s theorem (see, e.g., Rohatgi and Saleh,
2001, p. 269, Theorem 14 together with p. 270, Theorem 15 (c)), and the
convergence of the Hessian matrix to the Fisher information matrix give the
asymptotic distribution of

√
n(β̂ − β0):

√
n(β̂ − β0)

a∼ N
(
0, [A(β0)]

−1B(β0)[A(β0)]
−1

)
. (4.7)
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This formulation of the asymptotic distribution of
√

n(β̂−β0) involves the
OPG as well as the Fisher information matrix. The matrix C = A−1BA−1 is
termed the “sandwich matrix” with −A being the “bread” and B being the
“butter.” It is also named the robust covariance matrix. The interpretation
of the latter term is discussed in detail in the next chapter.

4.: Statement 4. remains to be shown, i.e., A(β0) = B(β0) for completion
of statement 3. This equality of the OPG and the Fisher information matrix
can be shown under the assumption that the likelihood function is correctly
specified.

For simplicity, we omit integration over X in the following. By using the
chain rule and the differentiation rules for quotients and logarithms, we get

∂2 lnf(y|X||β0)
∂β∂β′

=

∂2f(y|X||β0)
∂β∂β′

f(y|X||β0)
−

(
∂f(y|X||β0)

∂β

)(
∂f(y|X||β0)

∂β

)′

f(y|X||β0)2
.

The equality A = B can now be shown easily:

IEyS(β0) =
∫

∂2 ln f(y|X||β0)
∂β∂β′

f(y|X||β0) dy

=
∂2

∂β∂β′

∫
f(y|X||β0) dy

−
∫ (

∂ ln f(y|X||β0)
∂β

)(
∂ ln f(y|X||β0)

∂β

)′
f(y|X||β0) dy

= −IEy
(
s(β0)s(β0)

′) .

In summary, Eq. 4.7 reduces to the simple form
√

n(β̂ − β0)
a∼ N

(
0, [A(β0)]

−1
)

= N
(
0, [B(β0)]

−1
)

, (4.8)

and the proof of both 3. and 4. is completed. ut

4.3 Transformations

In this section, we investigate the behavior of ML estimators under transfor-
mations. First, we consider the ML estimator of a bijective transformation.

Theorem 4.4 (Invariance principle for ML estimators). Consider a
likelihood function with parameter vector β and a bijective function v from
Θ on to a set Λ. If β̂ is the ML estimator of β, then ξ̂ = v(β̂) is the ML
estimator of ξ ∈ Ξ = v(Θ) – corresponding to the likelihood function defined
on Ξ.

Proof. See, e.g., Gourieroux and Monfort (1995a, p. 175). ut
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Remark 4.5. The result formulated in Theorem 4.4 is important for applica-
tions. For example, we are often interested in estimating the standard devia-
tion of a normally distributed random variable. In this case, an estimator of
the variance can be derived easily using the ML method. However, an esti-
mator for the standard deviation is not ready at hand. Therefore, it is good
to know that one only needs to take the square root of the ML estimator of
the variance to obtain the ML estimator of the standard deviation.
———

The next theorem states that a transformed estimator is asymptotically
normally distributed if the original estimator is asymptotically normal and if
the transformation function is continuously differentiable.

Theorem 4.6 (Multivariate delta method). Consider an estimator β̂ for
β0 that is asymptotically normally distributed, in detail, β̂

a∼ N(β0,Var(β0)).
We assume that a transformation function ξ = v(β) of β is continuously
differentiable with respect to β in a neighborhood of β0. The estimator ξ̂ =
v(β̂) of ξ0 = v(β0) is asymptotically normal, precisely:

ξ̂
a∼ N

(
ξ0,

∂ξ(β0)
∂β′

Var(β0)
∂ξ(β0)′

∂β

)
.

The covariance matrix of ξ is estimated by replacing β0 with β̂.

Proof. If we admit that v(β) can be expanded in a Taylor series around
v(β0), we obtain

√
n
(
v(β̂)− v(β0)

) a.s.=
(
∂v(β0)

/
∂β′

)√
n
(
β̂ − β0

)
. The left

side thus is asymptotically equivalent to a linear function of a random vec-
tor of which we know its asymptotic normal distribution, and the covariance
matrix can be obtained using standard calculation rules for covariance ma-
trices. ut

The inversion of the idea of the multivariate delta method leads to the
minimum distance estimation (MDE) approach. Specifically, we consider the
case that β = β(κ) is some function of a parameter vector κ ∈ K ⊂ IRq,
q ≤ p. Regularity conditions (for details, see Küsters, 1987) include that κ

is first-order identifiable, i.e., β(κ1) = β(κ2) ⇒ κ1
a.s.= κ2, and that the

number of restrictions does not exceed the dimension of β.

Definition 4.7 (Minimum distance estimator). The minimum distance
estimator κ̂ of κ is the minimum over all κ, precisely, the minimum of the
Mahalanobis distance Q(κ):

min
κ∈K⊂IRq

Q(κ) = n
(
β̂ − β(κ)

)′(
Var

(
β̂

))−1
(
β̂ − β(κ)

)
(4.9)

Theorem 4.8 (Minimum distance estimation). The minimum distance
estimator κ̂ of κ0 is asymptotically normally distributed:
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√
n(κ̂− κ0)

a∼ N

(
0,

[
∂β(κ0)′

∂κ
Var

(√
nβ̂

)−1 ∂β(κ0)
∂κ′

]−1
)

. (4.10)

The covariance matrix of κ̂ is estimated by replacing κ0 with κ̂.
Under the null hypothesis H0 : β = β(κ), the Mahalanobis distance of Q(κ)

of Eq. 4.9 is asymptotically χ2 distributed with the number of free parameters
being the degrees of freedom.

Proof. The proof has been given, e.g., by Arminger (1995); technical details
including regularity conditions can be found in Küsters (1987). The proof is
based on a first-order Taylor series from which the first statement follows.
The second statement about the asymptotic χ2 distribution is a direct con-
sequence of the quadratic form. ut

We now give several examples for parameter reparameterizations that are
often used in applications.

Example 4.9 (Common parameter reparameterizations).
• Equality restrictions βi = βj are obtained by setting βi = κk and βj = κk.

• Linear restrictions of the form
∑J

j=1 ajβj = d with aj and d as known con-
stants may be written as functions of unrestricted parameters κ1, . . . , κJ−1

via βj = κj , for j = 1, . . . , J − 1, and βJ =
(
d−∑J−1

j=1 κj

)/
cJ .

• Domain restrictions of the form βj ∈]aj , bj [ can be eliminated by expit
transformations with unrestricted κj : βj = aj + (bj − aj)expit

(
κj

)
.

• Inequality restrictions of the form 0 ≤ β1 ≤ β2 ≤ . . . ≤ βJ can be repa-
rameterized via β1 = κ2

1, β2 = κ2
1 + κ2

2, up to βK =
∑J

j=1 κ2
j .

4.4 Maximum likelihood estimation in linear
exponential families

ML estimation is a very general approach, and it is simplified substantially
in linear exponential families. We consider n independently but not neces-
sarily identically distributed T -dimensional random vectors y1, . . . , yn with
densities (or probability mass functions for discrete distributions) belonging
to the simple linear exponential family

f(yi||ϑ, Ψ) = exp
(
ϑ′yi + bi(yi,Ψ )− di(ϑ, Ψ)

)
.

If the specific distribution includes a nuisance parameter, we assume that the
nuisance parameter is either known or can be replaced by a

√
n consistent

estimator.
The kernel of the normed loglikelihood function is given by l(ϑ) =

1
n

∑n
i=1

(
ϑ′yi−di(ϑ, Ψ)

)
. By use of Theorem 1.2, i.e., ∂di(ϑ, Ψ)

/
∂ϑ = IE(yi),
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we obtain the score vector as u(ϑ) = 1
n

∑n
i=1

(
yi−IE(yi)

)
. The ML equations

for the parameter ϑ are therefore given by

u(ϑ̂) =
1
n

n∑

i=1

(
yi − IE(yi)

)
= 0 ,

and they are thus identical to

1
n

n∑

i=1

yi = IE
( 1

n

n∑

i=1

yi

)
. (4.11)

Furthermore, as shown in the proof of Theorem 4.2, B(β0) = Var(ui(β0)).
Using the assumption of independence and Theorem 1.2, the matrix of

second derivatives is given by

W (ϑ) = − 1
n

n∑

i=1

∂2di(ϑ)
∂ϑ∂ϑ′

= − 1
n

n∑

i=1

Var(yi) = −nVar
( 1

n

n∑

i=1

yi

)
.

For linear exponential families, the Hessian matrix of the natural parameter is
identical to the negative Fisher information matrix. However, this is generally
not true for the original parameter of distributions belonging to the linear
exponential family, and this fact is illustrated in the next example.

Example 4.10 (Poisson distribution). Consider the Poisson distribution from
Example 1.7. For n independently and identically Po(λ) distributed random
variables yi, we have IE(yi) = λ = eϑ. The ML equations are therefore given
by 1

n

∑n
i=1 yi = eϑ̂. Hence, ln ȳ is the ML estimator of ϑ, and, using the

invariance principle of Theorem 4.4, λ̂ = 1
n

∑n
i=1 yi = ȳ is the ML estimator

of λ.
Ai(ϑ) = −Var(yi) = −eϑ and Bi(ϑ) = IE(ui(ϑ)2) = IE

(
(yi − IE(yi))2

)
=

eϑ are scalars. Analogously, Ai(λ) and Bi(λ) are scalars, and they can be
obtained as follows. First- and second-order derivatives of the loglikelihood
with respect to λ are given by

ui(λ) =
∂li(λ)

∂λ
=

yi

λ
− 1 and Wi(λ) =

∂2li(λ)
∂λ2

= − yi

λ2
, (4.12)

respectively, yielding IE(ui) = 0. Finally, the Fisher information is Ai(λ) =
−IE

(
Wi(λ)

)
= 1

λ . The negative Hessian matrix using the parameterization in
λ thus is different from the Fisher information.

Example 4.11 (Binomial distribution). ϑ = logit(π) is the natural parameter
of the binomial distribution (Example 1.8), and IE(y) = nπ if y ∼ B(n, π).
The ML equations are therefore given by y = nπ̂. Hence, π̂ = y

/
n is the ML

estimator of π, and ϑ̂ = ln(y/(n− y) is the ML estimator of ϑ.
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Example 4.12 (Gamma distribution). Consider n independently identically
G(α, Ψ) distributed random variables yi with α > 0 and fixed Ψ > 0 (Ex-
ample 1.11). The natural parameter is ϑ = −α, and IE(yi) = −Ψ

ϑ . The ML
equations for ϑ are therefore given by 1

n

∑n
i=1 yi = −Ψ

/
ϑ̂. Subsequently, the

ML estimators of ϑ and α are given by ϑ̂ = −Ψ/ȳ and α̂ = Ψ/ȳ, respectively.

Example 4.13 (Mean parameter of the multivariate normal distribution). Con-
sider n independently identically multivariate normally distributed random
variables yi, i = 1, . . . , n, with mean vector µ (Example 1.12). The ML
equations for µ are given by 1

n

∑n
i=1 yi = µ̂, and ȳ is the ML estimator of µ.

In the final example of this section, we derive the ML estimator for the
variance of the univariate normal distribution. Here, the parameter of interest
is not a function of the natural parameter from the simple linear exponential
family. We therefore take the first derivative of the loglikelihood function to
derive the ML estimator.

Example 4.14 (Variance of the univariate normal distribution). Consider n
independently identically distributed random variables yi ∼ N(µ, σ2) with
σ2 > 0. Then, the individual loglikelihood and the first derivative of the
individual loglikelihood with respect to σ2 are given by (Example 1.10)

li(µ, σ2) = − 1
2 ln(2π)− 1

2 ln(σ2)− 1
2σ2

(yi − µ)2 ,

∂li
∂σ2

= − 1
2σ2

+
1

2σ4
(yi − µ)2 . (4.13)

Subsequently, the ML equations are given by 1
σ̂2 = 1

σ̂4
1
n

∑n
i=1(yi − µ)2, and

the ML estimator for σ2 is

σ̂2 =
1
n

n∑

i=1

(yi − µ)2 .

In almost all applications, the mean parameter µ is unknown, and it is there-
fore replaced by its estimator ȳ.

4.5 Maximum likelihood estimation in generalized linear
models

In this section, we derive ML estimators for univariate and multivariate GLM.
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4.5.1 Maximum likelihood estimation in univariate
generalized linear models

As before, β = (β1, . . . , βp)′ is the p dimensional parameter vector of in-
terest, the dependent variables y1, . . . , yn are collected in a vector y, and,
similarly, X = (x1, . . . , xn)′. Because observations are independent, the con-
ditional covariance matrix of y given X is diagonal, i.e., Σ = Var(y|X) =
diag

(
Var(yi|xi)

)
. Furthermore, the n× n Jacobian of the link function g(µ)

is a diagonal matrix, i.e., ∂g′
/
∂µ = ∂g(µ)′

/
∂µ = diag

(
∂g(µi)

/
∂µi

)
. Note

that µ = µ(β) is a function of β, and g(µ) = η.

Theorem 4.15. Using the notations from above, the score vector of a uni-
variate GLM is given by

u(β) =
∂l(β)
∂β

=
1
n

D′Σ−1(y − µ) , (4.14)

where D =
∂µ

∂β′
=

∂µ

∂η′
∂η

∂β′
=

∂µ

∂g(µ)′
X is the matrix of first derivatives of

µ with respect to β. The Hessian matrix and the Fisher information matrix
are given by

W (β)=
∂u(β)
∂β′

= − 1
n

X ′
(

∂µ

∂g(µ)′
Σ−1 ∂µ

∂g(µ)′
+ diag

(
(yi − µi)

∂2ϑ(ηi)
∂η2

))
X ,

and A(β) = IEXIEy(−W (β)) = IEX

(
1
n

D′Σ−1D

)
, (4.15)

respectively. If the natural link function is used, the expressions simplify to

u(β) =
1
n

X ′(y−µ) and A(β) = IEX
(−W (β)

)
= IEX

(
1
n

X ′Σ−1X

)
. (4.16)

The functional relation between µ and β is nonlinear, in general, so that β̂
cannot be calculated directly but has to be computed iteratively. Algorithms
for this purpose, including the well-known Newton-Raphson and Fisher scor-
ing algorithms, are described in detail, e.g., by Antoniou and Lu (2007).

Proof. Without loss of generality, we ignore the nuisance parameter Ψ in the
proof. Then, l(ϑi) = ϑiyi − d(ϑi) is the kernel of the individual loglikelihood
function. With

∂li(β)
∂ϑi

= yi−∂d(ϑi)
∂ϑ

= yi−µi ,
∂ϑi

∂µi
= Var(yi|xi) , and

∂µi

∂ηi
=

(
∂g(µi)

∂µ

)−1

,

we obtain
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∂li(β)
∂βj

=
∂li(β)
∂ϑi

∂ϑi

∂µi

∂µi

∂ηi
xij = (yi−µi)

(
Var(yi|xi)

)−1
(

∂g(µi)
∂µ

)−1

xij (4.17)

by use of the chain rule for j = 1, . . . , p. The matrix representation directly
follows by summation. The matrix of second derivatives and the Fisher in-
formation matrix can be obtained similarly by noting that IEyi(yi − µi) = 0.
The second term of the Hessian matrix thus equals 0 when the expected value
is taken over y. For natural link functions, θi = ηi, thus ∂ϑi/∂ηi = 1 and
∂2ϑi/∂η2

i = 0. ut

4.5.2 Maximum likelihood estimation in multivariate
generalized linear models

The dependent variables y1, . . . , yn are collected in an nT × 1 vector y, and
Xi are stacked to a matrix X = (X ′

1,X
′
2, . . . , X

′
n)′ of full rank. By writing

g(µ) = (g(µ1)′, . . . , g(µn)′)′, we obtain g(µ) = Xβ. Finally, a block diagonal
nT × nT covariance matrix Σ is defined comprising the covariance matrices
Σi of the n independent clusters. Note that the covariance matrices Σi and
the Jacobians ∂g′/∂µi are generally not diagonal in the multivariate case.

Theorem 4.16. With the notations from above, the score equations of a mul-
tivariate GLM are given by

u(β) =
∂l(β)
∂β

=
1
n

D′Σ−1(y − µ) ,

where D = ∂µ
/
∂β′ = X

(
∂µ′

/
∂η

)
is the matrix of first derivatives. The

Fisher information matrix is given by

A(β) = IEX [IEy(−W (β)) = IEX

(
1
n

D′Σ−1D

)
.

In case of natural link functions, expressions simplify to

u(β) =
1
n

X ′(y − µ) and A(β) = IEX

(
1
n

X ′Σ−1X

)
. (4.18)

Proof. See, e.g., Fahrmeir and Tutz (2001, p. 105). ut
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4.6 Maximum likelihood estimation under misspecified
models

In Sect. 4.2, we have seen that the correct specification of the model is the
crucial assumption for Properties 3. and 4. of Theorem 4.2 to hold. Specifi-
cally, we have shown that the Fisher information matrix A needs to be equal
to the OPG B. This assumption is not necessarily fulfilled, as will be shown
in the following example.

4.6.1 An example for model misspecification

In this section, we show that −A(β) need not equal B(β). We consider the
estimation of both the mean and the variance of n independently identically
random variables distributed as yi ∼ N(µ, σ2) with σ2 > 0. This corresponds
to a linear regression model for yi with xi = 1 for all i. The individual
loglikelihood and its derivatives therefore are (see Examples 1.10 and 4.14)

li(µ, σ2) = li
(
β = (µ, σ2)

)
= −1

2 ln(2π)− 1
2 ln(σ2)− 1

2σ2
(yi − µ)2 , (4.19)

∂li
∂µ

=
1
σ2

(yi − µ) ,
∂li
∂σ2

= − 1
2σ2

+
1

2σ4
(yi − µ)2 ,

∂2li
∂µ2

= − 1
σ2

,
∂2li

∂(σ2)2
=

1
2σ4

− 1
σ6

(yi − µ)2 ,
∂2li

∂µ∂σ2
= − 1

σ4
(yi − µ) ,

so that the Fisher information matrix and the OPG are given by

Ai(µ, σ2) =
(

1/σ2 0
0 1/2σ4

)
, and Bi(µ, σ2) =

(
1/σ2 γ/2σ3

γ/2σ3 (δ + 2)/4σ4

)
,

respectively. Here, γ = IE
(
(x−µ)3

)/
σ3 denotes the skewness coefficient, and

δ =
(
IE

(
(x − µ)4

)/
σ4

) − 3 is the degree of excess. The sandwich matrix
Ci = A−1

i BiA
−1
i of subject i is given by

Ci(µ, σ2) =
(

σ2 γ σ3

γ σ3 (δ + 2)σ4

)
.

A necessary and sufficient condition for A = B is γ = 0 and δ = 0. This con-
dition is fulfilled if the random variables are normally distributed. However,
presence of skewness and/or kurtosis may lead to serious errors in inference.

In this example, we have seen that the model may easily be misspeci-
fied. Two questions now arise. First, what are the consequences of model
misspecification? More specifically, how are inferences affected by model mis-
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specification? This will be discussed in the next section. And second, are
we able to detect model misspecification, e.g., by investigating differences
between the Fisher information matrix A and the OPG B? This will lead
to the information matrix test, which will be introduced in Sect. 4.6.3. We
start by giving an answer to the first question on the consequences of model
misspecification.

4.6.2 Quasi maximum likelihood estimation

The key assumption of the previous sections was the correct specification of
the true conditional density f?(yi|Xi||β) of yi given Xi, with β being the
unknown parameter of interest. We will now study the effect of model mis-
specification. The basic theory for model misspecification, when the model is
partly misspecified, was developed by Huber (1967), and it has been extended
by White (1981; 1982) in his seminal papers (also see White, 1994).

By model misspecification we mean that there is no vector β0 such that
the assumed density f is identical to the true density f?. More precisely,
there is no vector β0 such that f(yi|Xi) = f?(yi|Xi||β0). Even more, it
might even be impossible to parameterize the true conditional density f? in
a parameter vector β. As a consequence, the conditional moments of yi given
Xi under f? generally do not coincide with the conditional moments of yi

given Xi under f if the model is misspecified.
This definition of model misspecification is very general, and it includes

the misspecification of the entire distribution. For example, the true distri-
bution might be a Cauchy distribution, while the one used in the statisti-
cal model is a normal distribution. In various settings, more specific defi-
nitions of misspecification have been used. For example, in GLM, over- or
underdispersion is often encountered. Here, the mean structure might be
correctly specified but the variance may be misspecified in the way that
Varf (yi|xi||β0) 6= Varf?(yi|xi||β0). A standard biometrical example with
overdispersion is the number of boys born to each family. It should follow
a binomial distribution but each family seems to skew the sex ratio of their
children in favor of either boys or girls. There are not enough families close
to the population 51:49 boy-to-girl mean ratio, and this yields an estimated
variance that is larger than the one expected by the binomial model.

An even more specific type of misspecification in GLM is the misspeci-
fication of the link function (Li and Duan, 1989). Here, the true link func-
tion might be g−1, while a different link function g?−1

is used in the model.
Other types of misspecification are related to the independent variables (Hall,
1999). For example, the distribution and the link function might have been
correctly specified but some relevant independent variables have been omit-
ted (Schmoor and Schumacher, 1997; Zhu et al., 2009) or the functional form
of the independent variable might be wrong (Lin et al., 2002).
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The key assumption of ML estimation is the correct specification of the
true conditional density f?(yi|Xi)||β0) in the parameter of interest β0. This
assumption includes that the link function, the functional form of the inde-
pendent variables and the independent variables, are all correctly specified.
If the distribution f? is misspecified, we can still apply the standard ML
approach. Under mild regularity conditions, there exists an ML estimator
β̂

?
even under the misspecified model, which is termed a quasi ML (QML)

estimator because quasi is an ML estimator. More specifically, the sequence
of maximized normed kernels of loglikelihood functions l(β̂) converges to the
maximum of

IEX
g

(
IEy

f? ln f(y|X||β)
)

=
∫

X

∫

Y
ln f(y|X||β)f?(y|X)dy g(X)dX (4.20)

for all β. This maximum is a function of β, and the integration is taken over
the true conditional density f? rather than over the distribution f assumed
by the researcher. Again, we stress that the true distribution f? need not be
parameterized in β.

To interpret this maximum β?, we utilize the Kullback-Leibler information
criterion (KLIC; see, e.g., Arminger, 1995; Kullback and Leibler, 1951; White,
1994). It is given by

I
(
f?(y|X), f(y|X||β)

)
= IEX

g

(
IEy

f? lnf?(y|X)
)
−IEX

g

(
IEy

f? ln f(y|X||β)
)

(4.21)

and measures the average discrepancy between the true density f? and the
assumed density f for the parameter β. With the use of Jensen’s inequality
(see, e.g., Rao, 1973, p. 59), it can be shown that I(f, f?) ≥ 0 for any two
densities f and f?. The KLIC equals 0 if and only if f = f? almost surely.
The first term on the right side of the KLIC from Eq. 4.21 is constant so that
the KLIC is minimized if the second term is maximized. The QML estimator
β̂

?
, i.e., the global unique maximum of the ML approach based on the density

f , converges to β?, the parameter value that minimizes the KLIC.
The QML estimator β̂

?
is therefore still interpretable, even if the assumed

density f is misspecified: It minimizes the discrepancy of the assumed density
f and the true density f?. Because it minimally ignores the true structure,
it has been called a “minimum ignorance estimator” (White, 1982, p. 4). In
other words, in the sense of the KLIC, β? is the best possible approximation
of the assumed density f? to the true density f .

If the probability model is correctly specified, i.e., if the assumed density f
and the true density f? are equal for some value β0, then the KLIC I(f, f?)
attains its unique minimum at β? = β0, so that β̂ is a consistent estimator for
the true parameter vector β0. In this case, QML estimation is identical to ML
estimation. Even if the assumed distribution f is misspecified, the asymptotic
properties ML estimation of Theorem 4.2 can be adapted to QML estimation.
For example, the QML estimator is asymptotically normally distributed with
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mean β?. However, the Fisher information matrix A is no longer identical to
the OPG B. Specifically,

√
n(β̂ − β?) a∼ N

(
0, [A(β?)]−1B(β?)[A(β?)]−1

)
. (4.22)

An important consequence of White’s (1982) findings is that estimation
techniques are required that require less restricted assumptions about the
model misspecification. In the next chapter, we will therefore consider an
estimation approach where only the first moments, i.e., the mean structure
are assumed to be correctly specified. Furthermore, in Chapts. 7 and 8, we
will discuss models for the mean and the association structure, i.e., the first
two moments, which require a correct specification of the first two moments
only.

4.6.3 The information matrix test

In Sect. 4.6.1, we have seen that the crucial assumption of ML estimation
is the equality of the Fisher information matrix A and the OPG B. One
approach for detecting model misspecification is therefore based on measuring
the magnitude of the difference between A and B. This difference may then
serve as a basis for a formal statistical test. Because this test is based on
the information matrix, it is termed the information matrix (IM) test for
misspecification. The basic idea of the IM test was given by White (1982), and
his work has been extended in several ways (see, e.g., Dhaene and Hoorelbeke,
2003; Hall, 1987; Horowitz, 1994; Lancaster, 1984; Orme, 1990; Stomberg and
White, 2000; Zhang, 2001).

We start by considering the parametric model, where l(β) denotes the
joint loglikelihood function, and β is the p × 1 parameter vector of interest.
Furthermore, β0 maximizes IEXIEy

(
l(β)

)
with respect to β. Finally, [ui]l =

[ui(β)]l and [ui]m denote the lth and mth components of the score vector
of individual i, respectively, and [Wi]lm = [Wi(β)]lm is the lmth element of
the Hessian matrix of subject i. The null hypothesis underlying all IM tests
is H0: A−B = 0, which is identical to

H0: IEXIEy
(
[u]l[u]m + [W ]lm

)
= 0 for l,m = 1, . . . , p .

Given a sample of observations yi,Xi, we define the indicators

si,lm = [ui]l[ui]m + [Wi]lm , and slm = 1
n

∑n

i=1
si,lm ,

which are based on the elements of the Hessian matrix and the outer product
of the score vector.
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IM tests rely on the idea that the estimated indicators ŝlm will be jointly
asymptotically normally distributed with mean 0 under the null hypothesis of
no model misspecification under the regularity conditions for ML estimation.
After derivation of the IM test statistic, it will be clear that some indicators
automatically equal 0 in many applications, while others may be linear com-
binations of others (White, 1982). If we appropriately select a q × 1 vector
s = s(β) of linearly independent indicators slm, we can construct a quadratic
form n ŝ′V̂

−1
ŝ, with V̂ being a regular estimate of the covariance matrix of

s under H0. The quadratic form then has an asymptotic χ2 distribution with
q degrees of freedom (d.f.). This leads to the following theorem:

Theorem 4.17. Under H0, the statistic
√

nŝ is asymptotically normally dis-
tributed with mean 0 and covariance matrix

V(β0)= IEXIEy
((

s(β0)−E(β0)A(β0)
−1u(β0)

)

(
s(β0)−E(β0)A(β0)

−1u(β0)
)′)

,

where

E(β0) = IEXIEy
(∂s(β0)

∂β′
)

.

The IM test can be carried out using the Wald statistic

ÎM = n ŝ(β̂)′V̂(β̂)−1ŝ(β̂) ,

where V̂(β̂) is a consistent estimator of V(β0). ÎM is asymptotically centrally
χ2 distributed with q d.f. under H0. The hypothesis of a correctly specified
model is rejected for large values of ÎM . V(β0) can be estimated consistently
by explicitly calculating the expected value of V(β0) and then replacing β with
its estimator. Alternatively, V(β0) may be estimated by

V̂(β̂) =
1
n

n∑

i=1

((
ŝ(β̂)− Ê(β̂)Â(β̂)−1û(β̂)

)(
ŝ(β̂)− Ê(β̂)Â(β̂)−1û(β̂)

)′)
.

(4.23)

Remark 4.18. Because the convergence to the asymptotic distribution is
rather slow, the use of jack-knife or bootstrap procedures has been proposed
for estimating the covariance matrix V(β0) (see, e.g., Stomberg and White,
2000; Dhaene and Hoorelbeke, 2003).

Proof. The first proof has been given by White (1982, Theorem 4.1), and
detailed proofs can be found, e.g., in White (1994) or in Gourieroux and
Monfort (1995b). The idea of all proofs is to use a first-order Taylor series of√

nŝ(β̂) around β0 in a first step and to employ the central limit theorem in
the second. ut
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The presented IM test is based on a first-order Taylor series. Therefore,
both the approximation of the IM test to its finite sample distribution and
its power may be improved by using a second-order IM test that relies on a
second-order Taylor series.

At the end of this chapter, we give three examples for the IM test.

Example 4.19 (Information matrix test for the Poisson distribution). When
considering data that might follow a Poisson distribution, we usually compare
the empirical mean and the empirical variance because they should be very
similar. If the variance is substantially larger or smaller than the mean, we
call the model overdispersed and underdispersed, respectively. With the IM
test, we are able to formally test the hypothesis of a misspecified Poisson
model.

Consider a sample of n independently and identically Po(λ) distributed
random variables. The kernel of the individual loglikelihood function is given
by li(λ) = yi ln(λ) − λ (Example 4.10). The score vector and the Hessian
matrix are scalars, and they are given by ui(λ) = yi

λ − 1 and Wi(λ) = − yi

λ2 ,
respectively (Eq. 4.12), yielding

si(λ) =
y2

i

λ2
− yi

λ2
− 2yi

λ
+ 1 and s(λ) =

y2

λ2
− ȳ

λ2
− 2ȳ

λ
+ 1 . (4.24)

If the ML estimator λ̂ = ȳ of λ is used for estimating s(λ), Eq. 4.24 reduces
to

ŝ(λ̂) =
y2

ȳ2
− 1

ȳ
− 1 =

y2 − ȳ2 − ȳ

ȳ2
.

Because y2 − ȳ2 is an estimator of the variance, and ȳ is an estimator of
the mean, ŝ(λ̂) measures whether the variance equals the mean. With the
denominator ȳ2, ŝ is independent of dimensions. It is used for standardization,
analogously to the arithmetic mean in the coefficient of variation.

The IM test statistic ÎM is easily computed from s and the expression for
E(s(λ0)). In fact, E(s(λ0)) = 0 because ∂si(λ)

∂λ = 2λ−2(−y2
i λ−1 +yiλ

−1 +yi),
IE(yi) = λ, and IE(y2

i ) = λ2 + λ.
Subsequently, ÎM reduces to n ŝ2

/
1
n

∑n
i=1ŝi

2 = n
(

1
n

∑n
i=1 ŝi

)2/( 1
n

∑n
i=1ŝi

2
)

if V (λ) is estimated by Eq. 4.23, and ÎM is asymptotically χ2 distributed
with 1 d.f. under H0.

A simpler alternative for the IM test statistic is ÎM = n ŝ2 ȳ2/2, which
can be obtained using Var(λ0) = IE(s2

i ) = 2/λ2
0 because of IE((yi − λ)3) = λ,

and IE((yi − λ)4) = 3λ2 + λ. This test statistic is also asymptotically χ2

distributed with 1 d.f. under H0.

Example 4.20 (Information matrix test for the mean model). Consider the
simple linear regression model yi = µ + εi, where the errors εi are indepen-
dently and identically normally distributed with variance σ2. The kernel of
the individual loglikelihood function as well as the individual score vector and
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Hessian matrix have been given in Eq. 4.19. With ξ = (µ, σ2)′, we obtain

si(ξ) =
1
σ2




1
σ2

(yi − µ)2 − 1

−1
2 (yi − µ) +

1
2σ2

(yi − µ)3 − 1
σ2

(yi − µ)

1
4σ2

+
1

4σ6
(yi − µ)4 − 1

2σ4
(yi − µ)2 +

1
2σ2

− 1
σ4

(yi − µ)2




and

ŝ(ξ̂) =
1
σ̂2




0

1
2σ̂2

∑n
i=1(yi − µ̂)3

− 3
4σ̂2

+
1

4σ̂6

∑n
i=1(yi − µ̂)4




.

Because the first component of ŝ(β̂) equals 0, the IM test statistic does not
measure differences between mean and variance. Instead, it tests whether the
skewness IE((yi−µ)3)/σ3 and the coefficient of kurtosis

(
IE((yi−µ)4)/σ4

)−3
equal 0, which should be true for the normal distribution.

Example 4.21 (Information matrix test for the linear regression model). Con-
sider the linear regression model yi|xi ∼ N(x′iβ, σ2) for all i, i.e., the observa-
tions are independent, and the conditional distribution of yi given xi follows
a normal distribution with homoscedastic errors σ2. Let the parameter vector
of interest be ξ = (β′, σ2)′.

With the kernel of the individual loglikelihood function given by l
(
ξ
)

=

− 1
2 ln σ2 − (yi−x′iβ)2

2σ2 , we obtain

ui

(
ξ
)

=




xiεi

σ2

− 1
2σ2

+
ε2

i

2σ4


 and Wi(ξ) =



−xix

′
i

σ2
−xiεi

σ4

−εix
′
i

σ4

1
2σ4

− ε2
i

σ6




after some algebra. Here, εi = yi − x′iβ denotes the ordinary residual.
The QML estimator is obtained by setting the average of the normed score

vector to 0 and solving for both β and σ2. The QML estimator of β is the
ordinary least squares estimator, i.e., β̂ =

( ∑n
i=1 xix

′
i

)−1 ∑n
i=1 x′iyi, and the

QML estimator of σ2 is the average of the ordinary least squares residuals,
i.e., σ̂2 = 1

n

∑n
i=1(yi − x′iβ̂)2 = 1

n

∑n
i=1 ε̂2

i .
The outer product is given by

ui(ξ)ui(ξ)′ =




ε2
i xix

′
i

σ4
−xiεi

2σ4
+

xiε
3
i

2σ6

−εix
′
i

2σ4
+

ε3
i x
′
i

2σ6

1
4σ4

− ε2
i

2σ6
+

ε4
i

4σ8


 ,
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and the IM test statistic therefore consists of three relevant matrix blocks.
While the top left block contains p(p + 1)/2 different elements, yielding a
p(p + 1)/2 × 1 vector of indicators, the top right and bottom right block
consist of p and 1 elements, respectively.

A typical top left component of the vector of indicators is given by

si,lm(ξ) = [ui1]l[ui1]m + [W i11]lm = xilxim
ε2
i − σ2

σ4
,

resulting in ŝlm(ξ̂) = 1
n

∑n
i=1 xilxim(ε̂2

i − σ̂2)
/
σ̂4. Similarly, one obtains

si,m(ξ) = ximε3
i

2σ6 − 3
2

ximεi

σ4 for the top right block, and this gives ŝm(ξ̂) =
1
n

∑n
i=1 ximε̂3

i

/
(2σ̂6) because X ′ε̂ = 0. Finally, for the low right block we

have si(ξ) = 3
4σ4− 6ε2

i

4σ4 + ε4
4σ8 , which results in ŝ(ξ̂) = 1

n

∑n
i=1(ε̂

4
i−3σ̂4)

/
(4σ̂8).

Subsequent calculations show (see, e.g., Hall, 1987, 1989) that the IM test
statistic for the linear model is asymptotically equivalent to the sum of the
three test statistics

T1 =
(∑n

i=1(ε̂
2
i − σ̂2)ς ′i

)
1q

(
1′q

∑n
i=1(ςiς

′
i)1q

)−1

1′q
(∑n

i=1(ε̂
2
i − σ̂2)ςi

)/
(2σ̂4) ,

T2 =
(∑n

i=1ε̂
3
i x
′
i

)
1p

(
1′p

∑n
i=1xix

′
i1
′
p

)−1
1′p

(∑n
i=1ε̂

3
i xi

) /
(6ε̂6

i ) ,

T3 = 1
n

(∑n
i=1(ε̂

4
i − 3σ̂4)

)2 /
(24σ̂8) ,

where 1k = (1, . . . , 1)′ denotes the 1-vector of length k, q = p(p + 1)/2,
and ςi is a p(p + 1)/2 vector consisting of the lower triangular elements of
xix

′
i− 1

n

∑n
i=1 xix

′
i. Under H0 of no model misspecification, the test statistic

ÎM =
∑3

j=1 Tj is asymptotically χ2 distributed with (p2(p + 1))/(2 + p + 1)
d.f.

The first test statistic T1 is a test for heteroscedasticity because it measures
differences between the residuals εi and the common variance σ2 (see, e.g.,
Hall, 1987; White, 1980). The second and third statistics have flavors of test
statistics for skewness and kurtosis, respectively, in the linear model with the
assumption of normality as seen, e.g., in the previous example. The IM tests
T2 and T3 are therefore asymptotically equivalent to a series of other tests
if the matrix of explanatory variables only consists of a regression constant.
These connections have been described in detail by Hall (1987, 1989).

It is interesting to see that T1 to T3 are sensitive to deviations from the
normal distribution, but none of them is sensitive to serial correlation. If the
aim is to detect serial correlation, Hausman-type tests of misspecification
could be employed (Hausman, 1978; Holly, 1982).



Chapter 5

Pseudo maximum likelihood method
based on the linear exponential family

In the previous chapter, we discussed the classical ML approach, its asymp-
totic properties, and the effect of model misspecification. In this chapter, we
consider a generalization of the ML method that explicitly allows for partial
model misspecification. Here, the idea of ML estimation is still employed, but
the ML technique is applied to a probably misspecified density from the lin-
ear exponential family. Therefore, this estimation approach is termed pseudo
maximum likelihood (PML) estimation. PML estimation was introduced by
Gourieroux et al. in their seminal papers (1984a, 1984b), it has been reviewed,
e.g., in Arminger (1995) and Gourieroux and Monfort (1993, 1995a), and it
has been generalized in several ways; see, e.g., Broze and Gourieroux (1998)
or Magnus (2007).

In this chapter, we consider PML estimation, where only the mean struc-
ture needs to be correctly specified, and it is subsequently termed PML1
estimation. We show that under mild regularity conditions, the parameter
vector of the mean structure can be consistently estimated. Furthermore,
we show that it is asymptotically normally distributed. Although PML1 es-
timation has the advantage of guaranteeing consistent parameter estimates
even if the model is partly misspecified, it has the disadvantage of being less
efficient than ML estimation when the model is correctly specified. The ro-
bust variance estimator is of the sandwich type, and it therefore includes the
product of three terms with the Fisher information being the bread and the
OPG being the butter. Because of the multiplication, the robust variance
is biased, and it is less stable–Kauermann and Carroll (2001) call it extra
variability–than the standard ML variance estimator, which is the inverse
Fisher information. Therefore, small sample properties and adjustments for
improvement need to be discussed in some detail.

The chapter is organized as follows. We first define the PML1 estimator,
and second, derive its asymptotic properties (Sect. 5.2). We next illustrate
the PML1 approach in a series of examples (Sect. 5.3). Specifically, we con-
sider the linear regression model with heteroscedastic errors, the indepen-
dence estimating equations (IEE) with the covariance matrix being equal to
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the identity matrix, and the generalized estimating equations (GEE1) with
fixed covariance matrix. In Sect. 5.4, we finally compare the efficiency of the
PML1 method with the ML approach, consider bias corrections of the ro-
bust variance estimator, and discuss small sample adjustments for the robust
variance estimator.

5.1 Definition

Consider a sample of n independently distributed T -dimensional random vec-
tors yi, and Xi is the T × p matrix of stochastic and/or fixed explanatory
variables of subject i. The true but unknown density (or probability mass
function for discrete random vectors) of yi given Xi is denoted by f?(yi|Xi)
with conditional expectation IEf?(yi|Xi) and conditional covariance matrix
Varf?(yi|Xi) = Ω?(Xi).

The true density f? may be different from the assumed or pseudo density f
specified by the researcher. More specifically, the assumed conditional density
f of yi given Xi is parameterized in the p × 1 parameter vector β so that
the conditional mean of yi given Xi depends on β, i.e., IEf (yi|Xi||β). If a
vector β0 exists such that the mean of the true distribution equals the mean
of the assumed distribution, i.e., if

IEf?(yi|Xi) = IEf (yi|Xi||β0) , (5.1)

then f? is partially parameterized in β0.
Throughout this chapter we assume that Eq. 5.1 holds. However, the true

conditional variance matrix Ω?(Xi) of yi given Xi need not be parame-
terized in β. The stochastic model of yi given Xi under the true model
f?(yi|Xi||β0) is therefore given by

yi = µ(Xi, β0) + ε?
i with IE(ε?

i |Xi) = 0 ,

IEf?(yi|Xi) = IEf (yi|Xi) = µ(Xi, β0) = µi ,

Varf?(yi|Xi) = Var(ε?
i |Xi) = Ω(Xi) .

Again, we stress that the true conditional density f? possibly depends on the
parameter vector β0 only through the mean structure µ(Xi, β0). In GEE,
the mean structure is commonly chosen by using a link function from the
generalized linear model. Specifically, if we use the notation of Definition 3.5,
this choice gives µ(Xi, β) = g(ηi) = g(Xiβ). Furthermore, we assume the
existence of the variance matrix Ω(Xi), but the correct specification of the
covariance matrix is not required for PML1 estimation.

Furthermore, we assume that the pseudo distribution belongs to the linear
exponential family with fixed nuisance parameter. The stochastic model of
yi given Xi under the assumed model f(yi|Xi||β0) is thus given by
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yi = µ(Xi, β0) + εi with IE(εi|Xi) = 0 ,

IEf?(yi|Xi) = IEf (yi|Xi) = µ(Xi,β0) = µi ,

Varf (yi|Xi) = Var(εi|Xi) = Σ(Xi, β,Ψ i) .

Because the assumed density belongs to the linear exponential family, the
kernel of the normed loglikelihood function of the assumed distribution is
given by

l(β) =
1
n

n∑

i=1

(
a
(
µ(Xi, β), Ψ i

)
+ c

(
µ(Xi, β), Ψ i

)′
yi

)
. (5.2)

Estimation is based on the assumed density, i.e., the pseudo density, and l(β)
is therefore usually termed normed pseudo loglikelihood function.

Additionally, we assume first-order identifiability of the parameter vector
β, i.e., if µ(X, β1) = µ(X,β2) implies β1 = β2 almost surely. Another
important assumption is related to the domain of the conditional expectations
of the true density and the pseudo density. Specifically, the domain of the
conditional expectation of the true density IEf?(yi|Xi||β0) needs to be a
subset of the domain of the conditional expectation IEf (yi|Xi||β0) of the
pseudo density.

The need for this assumption is best explained by examples: If the uni-
variate dependent random variable yi can take negative values so that
IEf?(yi|xi) < 0 is possible, no pseudo distribution with the restriction µ > 0
should be chosen. As a result, the normal distribution is generally used as
pseudo distribution in this case. The normal distribution can also be used
for any continuous or discrete dependent variables. In contrast, the Poisson
distribution might be chosen as pseudo distribution if yi > 0 throughout.
The Poisson distribution can be used as pseudo distribution in this case even
if yi is a continuous random variable. To repeat, the important restriction in
this example is that IEf?(yi|Xi) is positive for any yi. To give another exam-
ple, the Poisson distribution might be used as pseudo distribution if the true
distribution is binomial. However, the binomial distribution is not a valid
choice if the true distribution is Poisson because the mean of the binomial
distribution is restricted to the interval [0; 1], but the intensity parameter of
the Poisson distribution can take any positive real value.

Now we can define the PML1 estimator using the kernel of the normed
pseudo loglikelihood from Eq. 5.2:

Definition 5.1 (PML1 estimator). A pseudo maximum likelihood esti-
mator for the mean structure or, briefly, PML1 estimator of β is any value
β̂ maximizing the kernel of the normed pseudo loglikelihood function

l(β) =
1
n

n∑

i=1

(
a
(
µ(Xi, β), Ψ i

)
+ c

(
µ(Xi, β), Ψ i

)′
yi

)
.
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5.2 Asymptotic properties

Let Di = ∂µi/∂β′ denote the matrix of first partial derivatives of the mean
with respect to β. Under the assumptions of the previous section and the
standard ML regularity conditions (see, e.g., Gourieroux et al., 1984b; White,
1982), we can show the following asymptotic statements for PML1 estimation.

Theorem 5.2 (Properties of PML1 estimators).
1. There asymptotically exists a PML1 estimator β̂ for the true parameter

vector β0.

2. The PML1 estimator β̂ converges almost surely to the true parameter β0.
3. The score vector for β is given by

u(β) =
n∑

i=1

D′
iΣ

−1
i (yi − µi) = D′Σ−1(y − µ) ,

where D is the stacked matrix of the Di, Σ is the block diagonal matrix
of the Σi, and y and µ are the stacked vectors yi and µi, respectively.

4. The PML1 estimator β̂ for β0 is asymptotically normal. More specifically,

√
n(β̂ − β0)

a∼ N
(
0,A(β0)

−1B(β0)A(β0)
−1

)
= N

(
0,C(β0)

−1
)

, (5.3)

where A(β) = IEX
(
IEy

f?−Wi(β)
)

= IEX(D′
iΣ

−1
i Di) is the Fisher informa-

tion matrix and B(β) = IEXIEy(ui(β)ui(β)′) = IEX(D′
iΣ

−1
i ΩiΣ

−1
i Di)

is the OPG.
5. The Fisher information matrix A(β0) and the OPG B(β0) can be strongly

consistently estimated by

Â(β̂) =
1
n

n∑

i=1

Âi =
1
n

n∑

i=1

(
D̂
′
iΣ̂

−1

i D̂i

)
and

B̂(β̂) =
1
n

n∑

i=1

B̂i =
1
n

n∑

i=1

(
D̂
′
iΣ̂

−1

i Ω̂iΣ̂
−1

i D̂i

)
,

where D̂i, µ̂i = µ(Xi, β̂), and Σ̂i = Σ(Xi, β̂,Ψ i) are the estimators of
Di, µi, and Σi, respectively, and Ω̂i =

(
yi − µ̂i

)(
yi − µ̂i

)′.
6. Necessary for the strong consistency of a PML1 estimator associated with

a family of assumed distributions f(yi|Xi||β) for any parameter space,
parameter vector β, mean structure, and true distribution f? is that the
assumed distribution belongs to the linear exponential family.

7. The set of asymptotic covariance matrices of the PML1 estimator β̂
of β based on a linear exponential family has lower bound Υ−1(β) =(
IEX(D′

iΩ
−1
i Di)

)−1.
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Remark 5.3.
• For the strong consistency of the PML1 estimator, the true and the as-

sumed density need not be equal. As a result, PML1 estimators are consis-
tent but generally not efficient, if only the mean structure is correctly spec-
ified. The result on consistency holds true even if no further assumptions
on the true conditional variance matrix Ω(Xi) or any other properties of
the true distribution are introduced.

• The PML1 estimator is asymptotically normally distributed but the con-
sistency of the estimated asymptotic covariance matrix of β̂ can be guar-
anteed only if the robust covariance matrix is used. Neither the OPG nor
the Fisher information matrix is sufficient for consistent estimation of the
asymptotic covariance matrix of β̂.

• Properties 5. and 6. of the theorem impose that the PML1 estimator is
asymptotically equivalent to the ML estimator if the true family of dis-
tributions belongs to the linear exponential family and if the covariance
matrix of the assumed distribution is correctly specified. Because the ML
estimator is the best asymptotically unbiased and normally distributed
(BAN) estimator, the PML1 estimator also is BAN in this special case.

• PML1 estimators are asymptotically efficient if the conditional covariance
matrix of the assumed distribution Σ(Xi, β,Ψ i) equals the true condi-
tional covariance matrix Ω(Xi). In this case, the covariance matrix of the
true distribution has to be partially parameterized in β0, if the assumed
conditional covariance matrix Σ(Xi, β, Ψ i) is partially parameterized in
β0.

• The covariance matrix of Eq. 5.3 is termed a sandwich covariance matrix
or robust covariance matrix, because it is robust to model misspecifica-
tion in the sense discussed above. Its estimator is also sometimes called
an empirical-based covariance estimator or Huber estimator. In contrast,
the Fisher information matrix is often termed a model-based covariance
matrix.

• The ideas underlying the proof to Property 6. of the theorem can be used to
show that C(β0)−A(β0) is positive semidefinite. However, in applications,
it is conceivable that robust standard errors of single components of the
parameter vector β based on C(β0) are smaller than model-based standard
errors using A(β0).

• In most applications, the assumed covariance matrix Σi is estimated dur-
ing the estimation process of β because it generally depends on β. Note
that PML1 estimation does not allow estimation of the nuisance parame-
ter α. This generalization of the PML approach is considered in the next
chapter.

• In general, Ω̂i = (yi−µ̂i)(yi−µ̂i)′ is only a replacement but not a consis-
tent estimator of Ω(Xi). The important result therefore is that the entire
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expression B(β) can be consistently estimated although its component Ω
generally cannot be consistently estimated.

• The PML1 estimator is often obtained by a Fisher scoring algorithm us-
ing the Fisher information matrix of the assumed distribution. Because
the algorithm is based on the assumed distribution, and not on the true
distribution, it is termed modified Fisher scoring.

• The estimator of the OPG is biased (see Theorem 5.4), and several im-
provements to the estimator have been proposed (Sect. 5.4.2).

Proof.
1.: The proof is identical to the proof on existence of the ML estimator,
and the reader may therefore refer to the literature (see, e.g., White, 1982,
Theorem 2.1).
2.: A detailed proof of the strong consistency can be found, e.g., in Gourieroux
and Monfort (1995a, p. 239). To prove the strong consistency, we have to
show that the expected value of the kernel of the loglikelihood has a unique
maximum at β0. This is true because

IEXIEy
β0

(
l(β)

)
= a

(
µi0, Ψ i

)
+ c

(
µi0,Ψ i

)′IEXIEy
β0

(
yi

)

= a
(
µi0, Ψ i

)
+ c

(
µi0,Ψ i

)′
µi0 ,

where µi0 = µ(Xi, β0). The result now follows from Property 1.6 and the
first-order identifiability of β.
3.: The score vector is derived as a byproduct below.
4.: The proof follows the same lines as the proof of statement 3. from Theorem
4.2. We therefore derive only the OPG and the Fisher information matrix. In
the following, we omit the index i for simplicity, and we use the abbreviations
a = a(µ, Ψ) and c = c(µ, Ψ). The individual score vector is given by

u(β) =
∂

∂β
(a+c′y)

(?)
=

∂µ′

∂β

(
∂a

∂µ
+

∂c′

∂µ
y

)
(??)
=

∂µ′

∂β

∂c′

∂µ
(y−µ) =D′Σ−1(y−µ) ,

with the chain rule being applied at (?) and Property 1.4 at (??). The overall
score vector is then obtained by summation and multiplication with n− 1.

Subsequently, the OPG B(β0) can be derived as

B(β0) = IEXIEy
(
(u(β0)u(β0)

′
)
= IEX

(
∂µ′

∂β

∂c′

∂µ

(
IEy(y − µ)(y − µ)′

) ∂c

∂µ′
∂µ

∂β′

)

= IEX
(
D′Σ−1Ω(X)Σ−1D

)
.

The Fisher information matrix is obtained as follows:
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W (β) =
∂2

∂β∂β′
(
a + c′y

)

=
∂

∂β

(
∂(a + c′y)

∂µ′
∂µ

∂β′

)
=

∂

∂β

(
q∑

l=1

∂µl

∂β′

(
∂a

∂µl
+

∂c′

∂µl
y

))

(?) =
q∑

l=1

∂2µl

∂β∂β′

(
∂a

∂µl
+

∂c′

∂µl
y

)

+
q∑

j=1

q∑

l=1

(
∂µj∂µl

∂β∂β′
∂2a

∂µj∂µl
+

∂µj∂µl

∂β∂β′
∂2c′y
∂µj∂µl

)

(??) =
q∑

l=1

∂2µl

∂β∂β′
∂c′

∂µl
(y − µ) +

∂µ′

∂β

(
∂2a

∂µ∂µ′
+

q∑

l=1

∂2cl

∂µ∂µ′
yl

)
∂µ

∂β′

(???) =
q∑

l=1

∂2µl

∂β∂β′
∂c′

∂µl
(y − µ) +

∂µ′

∂β

(
q∑

l=1

∂2cl

∂µ∂µ′
(yl − µl)− ∂c′

∂µ

)
∂µ

∂β′
.

At (?) we use the chain rule, at (??) Property 1.4 and simple matrix manip-
ulations. Finally, (???) results from Property 1.5.

The expected value of the first two terms of the last equation are 0 because
IEy(y − µ) = 0. The Fisher information matrix is therefore given by

A(β0) = IEXIEy
f?

(−W (β0)
)

= IEX

(
∂µ′

∂β

∂c′

∂µ

∂µ

∂β′

)
= IEX

(
D′Σ−1D

)
.

5.: See, e.g., White (1981, Theorem 3.3).
6.: See, e.g., Gourieroux et al. (1984b, Appendix 2).
7.: Let Σ1/2 denote a root of the covariance matrix Σ fulfilling Σi =
Σ

1/2
i Σ

1/2′

i . It can be obtained, e.g., by performing an eigendecomposition
of Σ and subsequent multiplication of the square root of the diagonal matrix
of eigenvalues with the matrix of eigenvectors. Alternative square roots can
be obtained from appropriate decompositions, such as the Cholesky decom-
position.

The lower bound of the PML1 estimator is Υ−1 because

A−1BA−1 − Υ−1 = IEX
((

ΥD′Ω−1Σ1/2 −A−1D′Σ−1/2
)

Σ−1/2ΩΣ−1/2

(
Σ1/2Ω−1DΥ −Σ−1/2DA−1

)) ≥ 0 .

ut
In the following theorem, we show that B̂i is a biased estimator of the

OPG. This theorem also forms one basis for the bias corrections and small
sample improvements of the robust covariance matrix, which are discussed
in Sect. 5.4.2.



58 5 Pseudo maximum likelihood method based on the linear exponential family

Theorem 5.4.
1. The expected valued of the individual OPG IEXIEy(B̂i) = IEXIEy(ûiû

′
i)

can be approximated by

IEXIEy(ûiû
′
i) ≈

(
I−AiA

−1
)
B i

(
I−AiA

−1
)′+

∑

j 6=i

A′
iA

−1BjA
−1Ai , (5.4)

where Ai = Ai(β0) = D′
iΣ

−1
i Di.

2. The expected value of the outer product of the individual estimated ordinary
residual can be approximated by

IEXIEy(ε̂iε̂
′
i) ≈

(
I −Hii

)
Ωi

(
I −Hii

)′ +
∑

j 6=i

HijΩjH
′
ij , (5.5)

where Hij = DiA
−1D′

jΣ
−1
j .

Remark 5.5.
• The first part of Theorem 5.4 provides an approximation to the OPG,

while Eq. 5.5 approximates the inner term of the OPG.
• Part 2. of the theorem shows that IEXIEy(ε̂iε̂

′
i) differs from Var(yi) = Ωi.

The robust variance estimator thus is biased.
• Both approximations can be used for bias corrections, which will be con-

sidered in detail in Sect. 5.4.2. To give an example, Mancl and DeRouen
(2001) assumed that the last term of Eq. 5.5 is negligible. They argued
that all elements of Hij are between 0 and 1, and they are usually close
to 0. Thus, “it may be reasonable to assume that the summation makes
only a small contribution to the bias.” This argument is substantiated by
noting that Hii is closely related to the leverage of subject i (see, e.g.,
Preisser and Qaqish, 1996; Ziegler and Arminger, 1996). Subsequently,
they proposed to replace ε̂i in the OPG with ˆ̃εi = ε̂i/(1 − hii)1/2, where
hij = [X(X ′X)−1X ′]ij denotes the ijth element of the hat matrix H.

Proof.
1.: For simplicity, we ignore the expectation over X in the proof. The ap-
proximation to the bias can be derived from a first order Taylor series of the
individual score vector ui(β̂) around β0:

ûi(β̂) a.s.= ui(β0) + Wi(β∗)
(
β̂ − β0

)
, (5.6)

for |β∗ − β0| ≤ |β̂ − β0|. This Taylor series is analogous to the Taylor series
of Eq. 4.5, which was used in the proof to Theorem 4.2. Wi(β∗) converges
to −Ai(β). If we take the outer product of Eq. 5.6 and the expected value
with respect to y, we obtain
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IEy(ûiû
′
i) ≈ IEy(uiu

′
i)− IEy

(
ui(β̂ − β0)

′
)
Ai −AiIEy

(
(β̂ − β0)u

′
i

)

+AiIEy
(
(β̂ − β0)(β̂ − β0)

′
)
Ai . (5.7)

Next, we use the first-order Taylor series expansion for β̂ − β0 from Eq.
4.5, i.e., (β̂ − β0)

a.s.=
( − ∑n

i=1 Wi(β∗)
)−1

( ∑n
i=1 ui(β0)

)
. As before,

−∑n
i=1 Wi(β∗) is replaced by its expected value A(β0) = A, and we note

that IEy(uiu
′
j) = 0 for i 6= j. Therefore, we can rewrite Eq. 5.7 as

IEy(ûiû
′
i) ≈ Bi − IEy

(
ui

(∑
ui

)′)
AAi −AiAIEy

((∑
ui

)
u′i

)

+AiA IEy
((∑

ui

)(∑
ui

)′)
AAi

= Bi −BiAAi −AiABi + AiA
n∑

j=1

BjAAi ,

which completes the proof.
2.: The proof is carried out analogously to the proof of 1. with the exception
that a Taylor series expansion of ε̂i around β0 is used. ut

5.3 Examples

In this section, we derive several PML1 estimators and their robust variance
and covariance matrix, respectively. We begin with two simple models based
on the Poisson and the binomial distribution, where no further covariates
are available. Subsequently, the normal distribution is considered in various
examples. It includes the two-sample situation with known variances. Third,
we consider the linear regression model with heteroscedastic errors. This is
followed by the logistic regression model with assumed variance 1. The last
two examples are two specific GEE models. One is the IEE with the covari-
ance matrix being identical to the identity matrix, and the final example is
a GEE1 model with fixed covariance matrix.

5.3.1 Simple pseudo maximum likelihood 1 models

In this section, we consider two simple PML1 models without covariates. We
start by estimating the mean from an assumed Poisson distribution, followed
by the problem of estimating a proportion based on an assumed binomial
distribution.
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Example 5.6 (Poisson mean). Consider n independently and identically dis-
tributed positive integer valued random variables y1, . . . , yn with positive real
valued mean λ = β > 0. The true distribution might be any distribution with
mean λ = µ > 0 and finite variance σ2 < ∞. However, in many applications,
the Poisson distribution is chosen for statistical testing or confidence interval
estimation.

In terms of Sect. 5.1, this means that the assumed distribution is given
by f(yi||λ) = λy

i e−λ/yi. We furthermore assume that the mean is correctly
specified, i.e., IEf?(yi||λ) = IEf (yi||λ) = λ. With an assumed Poisson distri-
bution, we already have Var(yi) = λ. This Poisson model need not be true.
For example, there might be some over- or underdispersion so that the true
variance could be Varf?(yi) = Φλ for some Φ > 0. However, Var(yi) might
be any other function or value, possibly independent of λ.

If the Poisson model were correct,
√

n
(
λ̂ − λ

)
=
√

n
(
ȳ − λ

)
would be

asymptotically normal with mean 0 and variance given by the inverse Fisher
information. The Fisher information can be deduced from the second deriva-
tive (see Example 4.19). With Ai(λ) = 1/λ, we obtain Âi(λ̂) = 1/λ̂. V̂ar(λ̂)
can therefore be estimated by λ̂/n so that an asymptotic confidence interval
for λ at confidence level 1− α would be given by

λ̂± z1−α/2

√
λ̂
/
n .

Here, z1−α/2 denotes the 1− α
2 quantile of the standard normal distribution

function.
If the simple Poisson model has to be doubted, one might prefer using

the assumed distribution f together with the robust variance rather than
the model-based variance. Because D̂ = 1n, Σ̂

−1
= diag(1/λ̂) and Ω̂ =

diag(ε̂2
i ) = diag

(
(yi − λ̂)2

)
, we obtain B̂(λ̂) = 1

n

∑n
i=1

(
(yi − λ̂)2/λ̂2

)
. The

robust variance estimator of
√

λ̂ based on the assumed Poisson distribution
f is therefore given by

Ĉ(λ̂) = Â−1(λ̂) B̂(λ̂) Â−1(λ̂) = λ̂
(

1
n

∑n

i=1

(yi−λ̂)2

λ̂2

)
λ̂ = 1

n

∑n

i=1
(yi − λ̂)2 .

A robust 1 − α/2 confidence interval of λ̂ based on the assumed Poisson
distribution is

λ̂± z1−α/2

√
Ĉ(λ̂)

/
n = λ̂± z1−α/2

√∑n
i=1(yi − λ̂)2

/
n2 .

Again, we want to stress that this confidence interval is asymptotically valid
even if the true distribution is not Poisson. For example, the data might come
from a binomial distribution. The point estimator π̂ = x̄ is the appropriate
PML1 estimator, and the robust variance estimator adequately adjusts for
the misspecification of the variance.
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If, however, the Poisson model is true, the asymptotic relative efficiency of
the robust variance is reduced compared with the model-based variance, i.e.,
the Fisher information. This is discussed to some extent in the last section
of this chapter.

Example 5.7 (Probability of a binomial model). Consider n dichotomous in-
dependently and identically distributed random variables yi, and let yi ∼
B(m, π) be the assumed distribution, where n and m are fixed. Both the
ML and the PML1 estimators of π = β are π̂ = ȳ/m. The estimators of the
model-based and the robust variance of π̂ are given by (see, e.g., Royall, 1986,
p. 223)

Â(π̂) =

(
ȳ/m

)(
1− (ȳ/m)

)

mn
and Ĉ(π̂) =

∑n
i=1(yi − ȳ)2

m2n2
, (5.8)

respectively, where subscripts are used to denote the estimators. In many
applications, the binomial model is inadequate, and yi might show some over-
or underdispersion, in analogy to the Poisson model. Alternatively, the true
distribution of yi might be the hypergeometric distribution. The variance of
the joint distribution of n hypergeometric distributed random variables is
given by VarHG(π̂) = π(1−π)

m
N−m
N−1 . While the robust variance estimator is

strongly consistent for Var(π̂) thus converges to VarHG(π̂) as n tends to ∞,
the ML variance estimator, i.e., the Fisher information, does not.

5.3.2 Linear regression with heteroscedasticity

In this section, PML1 estimation of the mean based on an assumed normal
distribution is considered in several examples. In the first example, we as-
sume the variance to be equal to 1, and in the second, it is assumed to be
fixed and equal to σ2. The examples illustrate that PML1 estimation can
be employed even if the assumed distribution obviously is misspecified. The
sandwich estimator maintains consistent but generally not efficient estima-
tion of the variance. The third example considers estimation of the mean
from a normal distribution with two random variances. This example illus-
trates differences between different variance estimators, especially between
those based on the expected and observed Fisher information and the robust
variance estimator.

In the final example, we estimate the linear regression from an assumed
homoscedastic regression model with fixed variance. With the PML1 method,
consistent estimation of the parameter vector β and its variance is feasible
even if the errors are heteroscedastic. One limitation of PML1 estimation is
that it does not allow estimating a nuisance parameter from an assumed dis-
tribution, such as the normal distribution. The nuisance parameter is assumed
to be known instead. A generalization to estimating the nuisance parameter
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in addition to the parameter of interest requires the quasi generalized PML
(QGPML) method (Chapt. 6).

Example 5.8 (The simple mean model with variance 1). Consider the simple
linear regression model yi = µ + εi, where the errors εi are independently
and identically normally distributed. For the assumed distribution, we use
σ2 = 1.

The PML1 estimator is identical to the OLS estimator and given by µ̂ =
x̄. The individual Fisher information is Ai(µ) = 1, thus Â = Â(µ̂) = 1.
With D̂ = 1n, Σ̂ = diag(1), and Ω̂ = diag(ε̂2

i ) = diag
(
(yi − µ̂)2

)
, we

obtain B̂(µ̂) = 1
n

∑n
i=1(yi−µ̂)2, and the sandwich estimator of

√
n µ̂ becomes

Ĉ(µ̂) =
∑n

i=1(yi − µ̂)2/n. Subsequently, the robust variance of µ̂ is given by∑n
i=1

(
yi − µ̂

)2/
n2.

Example 5.9 (Simple mean model with variance σ2). Consider the same
model as in Example 5.8 with the difference that the errors εi of the assumed
distribution are now assumed to be independently and identically normally
distributed with variance σ2. Because Ai(µ) = 1/σ2 and Σ̂ = diag(σ2) cancel
out each other in the calculation of the robust variance, the robust variance
estimator is identical to the one from the previous example.

Example 5.10 (Simple mean model with subject specific variances σ2
i ). Con-

sider the same model as in the two previous examples 5.8 with the difference
that the errors εi of the assumed distribution are assumed to be independently
and identically normally distributed with known variances σ2

i , σ2
i 6= σ2

j for at
least one pair (i, j) of indices i, j = 1, . . . , n, i 6= j. The variances therefore
are different for at least two subjects.

The PML1 estimator µ̂ for µ is µ̂ = ȳ. The individual Fisher information is
given by Ai(µ) = 1/σ2

i , and we therefore obtain Â(µ̂) = 1
n

∑n
i=1 σ−2

i . Further-
more, we derive D̂ = 1n, Σ̂ = diag(σ2

i ), and Ω̂ = diag(ε̂2
i ) = diag

(
(yi − µ̂)2

)

so that B̂(µ̂) = 1
n

∑n
i=1

(
(yi−µ̂)2/σ4

i

)
. The robust variance estimator of

√
n µ̂

is therefore given by Ĉ(µ̂) = n
( ∑n

i=1(yi− µ̂)2/σ4
i

)/( ∑n
i=1 σ−2

i

)2. In this ex-
ample, subject specific variances do not cancel out, and the robust variance
therefore differs from the robust variance in the two previous examples.

Example 5.11 (Normal mean with random variance). The differences between
variance estimates using the observed Fisher information matrix, the ex-
pected Fisher information matrix, and the robust variance matrix are illus-
trated in this example. We aim at estimating the general mean µ and use the
normal distribution with variances determined by a fair coin toss as assumed
distribution. If tail appears on toss number i, yi ∼ N(µ, σ2

1). If head appears,
then yi ∼ N(µ, σ2

2). The variances σ2
1 and σ2

2 are assumed to be known with
σ2

1 6= σ2
2 . Furthermore, we assume that this experiment leads to n1 observa-

tions related to distribution 1 and n2 observations related to 2, and we let
n = n1 + n2.
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The kernel of the joint normed pseudo loglikelihood is proportional to

l(µ) ∝ −1
2

n1∑

i=1

(yi − µ)2

σ2
1

− 1
2

n2∑

i=1

(yi − µ)2

σ2
2

.

The ML estimator for µ is obtained as

µ̂ =
(n1ȳ1/σ2

1) + (n2ȳ2/σ2
2)

(n1/σ2
1) + (n2/σ2

2)
,

and the second derivative of the loglikelihood with respect to (w.r.t.) µ is
given by

W (µ) = −n1

σ2
1

− n2

σ2
2

. (5.9)

Because the coin tossing is fair, the Fisher information is

A(µ) =
n/2
σ2

1

+
n/2
σ2

2

, (5.10)

and we similarly obtain

B(µ) =
1
n

(∑n1
i=1(y1 − µ)2

σ4
1

+
∑n2

i=1(y1 − µ)2

σ4
2

)
(5.11)

as OPG. Equation 5.9, 5.10, and 5.11 can be used to obtain three differ-
ent estimators for Var(µ̂). If the expected Fisher information is used, the
asymptotic variance of µ̂ is

2
σ2

1σ2
2

σ2
1 + σ2

2

.

The variance based on the observed Fisher information is given by

n
σ2

1σ2
2

n1σ2
1 + n2σ2

2

,

and, finally, the robust variance estimator of µ̂ is

1
n

(
n1

σ2
1

+
n2

σ2
2

)2 (∑n1
i=1(yi − µ̂)2

σ4
1

+
∑n2

i=1(yi − µ̂)2

σ4
2

)
.

The expected Fisher information ignores the actual number of observations
from the two different distributions, thus the possible imbalance. In contrast,
the observed Fisher information is properly conditioned and takes into ac-
count the imbalance (Efron and Hinkley, 1978). Finally, the robust variance
estimator is properly conditioned and also protects against possible errors in
the assumed variances σ2

1 and σ2
2 (Royall, 1986).
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Example 5.12 (Linear regression with heteroscedastic variance). Consider the
classical multiple linear regression model with heteroscedasticity as the true
model:

yi = x′iβ + εi , IE(εi|xi) = 0 , Var(εi|xi) = σ2
i , i = 1, . . . , n ,

where xi, β ∈ IRp. We collect elements in vectors and vectors in matrices:
y = (y1, . . . , yn)′, ε = (ε1, . . . , εn)′, and X = (x1, . . . , xn)′.

For estimation, we choose as assumed distribution for yi given xi the
normal distribution with mean µi = x′iβ and variance σ2

i = 1. The density
of the assumed distribution is f(yi|xi||β, Ψ) = ϕ(yi|µi = x′iβ, σ2 = 1), with
ϕ denoting the density of the normal distribution. The kernel of the normed
pseudo loglikelihood is given by

l(β) =
1
n

n∑

i=1

−1
2
(yi − x′iβ)2 ,

which needs to be maximized w.r.t. β. This maximization problem is equiv-
alent to the ordinary least squares (OLS) problem, and differentiation w.r.t.
β yields

∂ ln f(yi|xi||β, 1)
∂β

= xi(yi − x′iβ) and
∂2 ln f(yi|xi||β, 1)

∂β∂β′
= −xix

′
i .

The MLE are therefore given by

1
n

n∑

i=1

xi(yi − x′iβ̂) = 1
nX ′(y −Xβ̂) = 0 ,

the PML1 estimator is
β̂ =

(
X ′X

)−1
X ′y ,

and the robust variance Var
(√

nβ̂
)

of
√

nβ̂ can be estimated consistently by

V̂ar
(√

nβ̂
)

=
(

1
nX ′X

)−1( 1
nX ′DX

)(
1
nX ′X

)−1
,

where D = diag(ε̂2
i ). The robust variance Var

(
β̂

)
of β̂ is therefore given

by
(
X ′X

)−1(
X ′DX

)(
X ′X

)−1 and deviates from the usual model-based
variance estimator σ2(X ′X)−1 for a common homoscedastic variance σ2.
This variance estimator is robust under any type of heteroscedasticity, and
it is essentially the weighted jack-knife estimator of Hinkley (1977). An even
stronger result can be deduced: The robust variance estimator for β̂ is asymp-
totically equivalent to a jack-knife estimator under any GEE model (Lipsitz
et al., 1994a).
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Further simple examples for deriving the robust variance estimator have
been given by Royall (1986). Nice applications can be found in Binder (1983).
He specifically derived the robust variance estimator for the coefficient of
determination R2.

5.3.3 Logistic regression with variance equal to 1

In this section, we consider two examples for logistic regression models. The
first example is the standard logistic regression model, but we use the robust
covariance matrix instead of the model-based covariance matrix. In the second
example, we consider a model in which the true distribution is a logistic
distribution, but we use the normal distribution with variance 1 as assumed
distribution.

Example 5.13 (Logistic regression for dichotomous dependent variables with
robust variance). We consider the univariate GLM of Sect. 3.1.3. We assume
that yi, i = 1, . . . , n are dichotomous independent random variables, and xi

is the vector of independent variables. The logit link is chosen as the link
function so that

yi = µ(xi, β) + εi with µi = µ(xi,β) =
exp(ηi)

1 + exp(ηi)
=

exp(x′iβ)
1 + exp(x′iβ)

is the correctly specified mean structure, i.e., IEf (yi) = IEf?(yi) = µi. The
true covariance need not be specified Varf?(yi|xi) = Ω(xi). We assume,
however, that yi|xi is independent and distributed as B(1, µi). The resulting
PML1 estimating equations are identical to the estimating equations from
the standard univariate GLM with natural link function and given by (Sect.
4.4)

0 = u(β̂) = 1
nX ′(y − µ̂) .

The robust covariance matrix of β̂ is given by

V̂ar(β̂) =
(
X ′Σ̂

−1
X

)−1 (
X ′Ω̂X

)(
X ′Σ̂

−1
X

)−1

(5.12)

with Σ̂ = diag
(
µ̂i(1− µ̂i)

)
and Ω̂ = diag

(
(yi − µ̂i)2

)
.

The robust covariance matrix in Eq. 5.12 has a different form from the
robust covariance matrix of Theorem 5.2 because Σ−1 cancels out in the
OPG. The reason is that ∂li(β)/∂βj = (yi − µi)xij holds for natural link
functions as shown in Eq. 4.17.

The interesting aspect of this example is that the robust covariance matrix
yields consistent parameter estimates even if the variances are misspecified,
e.g., when there is some over- or underdispersion.
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Example 5.14 (Logistic regression for dichotomous dependent variables and
variance 1). We consider the situation of the previous example, but we now
use the normal distribution as assumed or “working” distribution. This as-
sumption is undoubtedly incorrect if the dependent variable is dichotomous
or – in our case – a sum of dichotomous random variables. With PML1 es-
timation, one can still obtain consistent parameter estimates for the mean
structure and the variance of the parameter estimator if the mean structure
is correctly specified.

Specifically, we assume that the assumed distribution is the normal distri-
bution with mean µi = µ(xi,β) and variance 1 so that the working density
is given by

f(yi|xi ||β, Ψ) = ϕ(yi ||µ(xi, β), σ2 = 1) .

With l(β) = 1
n

∑n
i=1

(− 1
2 (yi − µi)2

)
being the kernel of the normed pseudo

log likelihood, we obtain the PML1 estimating equations

1
n

n∑

i=1

∂µ̂i

∂β
(yi − µ̂i) =

1
n

n∑

i=1

eη̂i

(1 + eη̂i)2
xi

(
yi − eη̂i

1 + eη̂i

)
= 0 ,

which can be summarized to 1
nD̂

′
(y − µ̂) = 0 in matrix notation with

D = ∂µ/∂β′ = diag
(
eηi/(1 + eηi)2

)
X ′. The covariance matrix of β̂ can be

estimated in this partly misspecified model by the robust covariance matrix

V̂ar(β̂) =
1
n

Â
−1

B̂Â
−1

=
(
D̂
′
D̂

)−1(
D̂
′
Ω̂D̂

)−1(
D̂
′
D̂

)−1

with Ω̂ = diag
(
(yi − µ̂i)2

)
. The elements of Â and B̂ are given by

Âi =
(

eη̂i

(1 + eη̂i)2

)2

xix
′
i and B̂i =

(
eη̂i

(1 + eη̂i)2

)2

xi(yi − µ̂i)2x′i .

5.3.4 Independence estimating equations with
covariance matrix equal to identity matrix

In this example, we derive a special set of IEE using the PML1 method. These
IEE are different from the commonly used IEE that were introduced by Liang
and Zeger in a series of papers (see, e.g., Zeger et al., 1985; Liang and Zeger,
1986; Zeger and Liang, 1986; for a discussion, see Ziegler and Vens, 2010). The
well-known IEE require the quasi generalized pseudo likelihood estimation
approach which is discussed in the next chapter. Throughout this section we
use the normal distribution as assumed distribution, and we assume that the
mean structure is correctly specified. The identity matrix is specifically chosen
as assumed covariance matrix. Again, although this estimation approach is
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not efficient in many instances, the parameter vector β and its variance can
be consistently estimated.

We consider the T -dimensional random vector yi = (yi1, . . . , yiT )′, and
its associated matrix of explanatory variables Xi = (xi1, . . . , xiT )′, for i =
1, . . . , n. The pairs (yi, Xi) are assumed to be independent and identically
distributed. The mean structure is given by

IE(yi|Xi||β0) = g(Xiβ0) , (5.13)

where the response function g is defined element-wise as in multivariate GLM.
One important assumption of Eq. 5.13 is that the parameter vector β of in-
terest is constant across t, a property termed time independence. The second
relevant assumption is that the mean of yi is correctly specified given the
matrix of independent variables Xi. This assumption is stricter than the as-
sumption of standard GLM, where yit is modeled as a function of xit only.
Equation 5.13 permits that elements of the vector of independent variables
xit observed at time t may have an effect, e.g., on yi,t+1. It is fulfilled, e.g.,
if only independent variables are used that do not vary over time. It may,
however, be violated in several applications, and a few biometrical examples
are as follows (Ziegler and Vens, 2010):
• In family studies, the stress level of the parents may have an effect on the

health status of the offspring. Similarly, the stress level of the offspring,
e.g., because of examinations at school, may also affect the health status
of their parents.

• In school studies, the exposure of other children may affect the health
status of a particular child.

• In dental studies, the exposure level at a neighboring tooth may affect a
particular tooth.

The consequences of this assumption are discussed in detail, e.g., in Pepe and
Anderson (1994), Pan et al. (2002), and Schildcrout and Heagerty (2005).

No restrictions about the true covariance structure Ω(Xi) are imposed,
and we only assume the existence of the true conditional variance matrix of
yi given Xi for all i = 1, . . . , n.

The assumed distribution of yi given Xi is the normal distribution with
mean structure g(X ′

iβ0) and covariance matrix I = IT×T , i.e., yi|Xi ∼
N

(
g(Xiβ0), I

)
. Although this distributional assumption is most likely in-

correct, we use it to illustrate the idea of PML1 estimation. The kernel of the
individual pseudo loglikelihood function is given by

li(yi|Xi||β, I) = − 1
2

(
yi − g(Xiβ)

)′(
yi − g(Xiβ)

)
.

Differentiation with respect to β yields the score vector

u(β) =
1
n

n∑

i=1

D′
iεi ,
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and the estimating equations

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iε̂i = 0 ,

where Di = ∂µi/∂β′ is the matrix of first derivatives, and εi = yi − µi =
yi−g(Xiβ) is the first-order residual. These estimating equations are termed
IEE with identity covariance matrix.

According to Theorem 5.2, the resulting estimator β̂ is asymptotically
normally distributed. The Fisher information matrix A and the OPG B can
be estimated (strongly) consistently by Â and B̂ with components Âi =
D̂
′
iD̂i and B̂ = D̂

′
iΩ̂iD̂i, where Ω̂i = ε̂iε̂

′
i is the outer product of the

estimated individual first order residuals.
Estimation using the identity matrix as assumed covariance matrix is in-

efficient in most applications because the identity matrix will be dissimilar to
the true underlying covariance matrix. Estimation may therefore be improved
by using a fixed covariance matrix that is “closer” to the true covariance ma-
trix. This idea will be considered in the next section. However, instead of
using a fixed covariance matrix, one might wish to estimate it from the data.
In this case, the nuisance parameter from the linear exponential family has
to be estimated, and it requires the quasi generalized pseudo maximum like-
lihood approach, which will be discussed in the next chapter.

5.3.5 Generalized estimating equations 1 with fixed
covariance matrix

We consider the same model as in the previous section, but we use an arbi-
trary fixed covariance matrix Σi instead of the identity matrix. The starting
point thus is the assumed distribution yi|Xi ∼ N

(
g(Xiβ0),Σi

)
. Differenti-

ation of the loglikelihood with respect to β yields the score vector

u(β) =
1
n

n∑

i=1

D′
iΣ

−1
i εi

and the estimating equations

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iΣ

−1
i ε̂i = 0 .

The Fisher information matrix A and the OPG B can be (strongly) consis-
tently estimated by
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Â =
1
n

n∑

i=1

D̂
′
iΣ

−1
i D̂i and B̂ =

1
n

n∑

i=1

D̂
′
iΣ

−1
i Ω̂iΣ

−1
i D̂i

with Ω̂i = ε̂iε̂
′
i.

5.4 Efficiency and bias of the robust variance estimator

Several examples in the last section have illustrated the broad applicability
of the PML1 estimation approach. However, PML1 estimation is not efficient
as the classical ML approach if the assumed distribution equals the true
distribution, i.e., if the model is correctly specified. The use of the robust
covariance matrix will lead to a loss in efficiency. The efficiency of the PML1
approach will be discussed in the next section. Although the robust variance
estimator yields consistent estimates under suitable regularity conditions if
the mean structure is correctly specified, its small sample properties have
been criticized. For example, the robust covariance estimator is biased in
finite samples. Therefore, bias corrections and other approaches for improving
the small sample properties of the robust covariance estimator are discussed
in the final section of this chapter.

5.4.1 Efficiency considerations

PML1 estimation yields consistent but not necessarily efficient estimates.
Basically, two questions arise: First, if we use the robust covariance matrix
instead of the Fisher information matrix, is there always a loss in efficiency?
Or are there situations in which the robust covariance matrix is more efficient
than its model-based counterpart? Second, since there is no free lunch and
since we lose efficiency for the extra robustness because we work with partly
misspecified models, can we quantify the loss in efficiency? Analytical answers
to both questions will be provided below. Although efficiency considerations
are warranted, we want to stress that PML1 estimation yields consistent
estimates even if second-order moments are misspecified. The ML approach
requires, however, the correct model specification. Therefore, PML1 and ML
can be compared with respect to efficiency only when the mean structure and
the covariance matrix are correctly specified.

An answer to the first question, whether there always is a loss in efficiency,
can be obtained by noting that the variance matrix of an asymptotically
unbiased estimator is bounded by the Rao-Cramér bound, which is given by
the inverse of the Fisher information matrix (see, e.g., Lehmann and Casella,
1998). We therefore do not expect that the robust variance matrix can be
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smaller than the model-based variance matrix, and this can also be shown
without making use of the Rao-Cramér bound:

Theorem 5.15. We consider the same situation as in Theorem 5.2. Then,
the difference between the robust variance and the model-based variance ma-
trix is non-negative, i.e., C(β0)−A(β0) ≥ 0.
———

Thus, the robust variance is always larger than the model-based variance;
thus, the robust variance cannot be more efficient.

Proof. The following elegant statistical proof of this statement is due to Dr.
Rao Chaganty (personal communication). We first show that for a positive
definite nT × nT matrix Ω and an nT × p matrix N of rank p, nT ≥ p, we
have

Ω −N(N ′Ω−1N)−1N ′ ≥ 0 . (5.14)

It is valid because we can verify Cov(ŷ,y) = Var(ŷ) = N(N ′Ω−1N)−1N ′

for a random vector y with Var(y) = Ω and ŷ = N(N ′Ω−1N)−1N ′Ω−1y.
Thus, Var(y − ŷ) = Var(y)− Var(ŷ) = Ω − (N ′Ω−1N)−1N ′.

In the next step, we pre- and post-multiply Eq. 5.14 by nT × p matrices
M ′ and M of full rank p, yielding M ′ΩM − M ′N(N ′Ω−1N)−1N ′M ≥
0. We now pre- and post-multiply with the inverses of M ′N and N ′M ,
respectively, and obtain a matrix version of the Cauchy-Schwarz inequality

(M ′N)−1M ′ΩM(N ′M)−1 − (N ′Ω−1N)−1 ≥ 0 .

The proof is completed by letting M = (M ′
1, . . . , M

′
n)′ with M i = Σ−1

i Di,
N = D = (D′

1, . . . , D
′
n)′, and Ω = diag(Ωi), i = 1, . . . , n. ut

The second question, which deals with the quantification of the loss in
efficiency, has been considered in many different papers (Efron, 1986; Breslow,
1990; Firth, 1992; McCullagh, 1992; Carroll et al., 1998; Kauermann and
Carroll, 2001). Unfortunately, the formulation and presentation of the general
results are cumbersome, and the reader may refer to Kauermann and Carroll
(2001) for these. However, it is possible to get an intuitive understanding on
the possible loss of efficiency in simple models. We therefore first consider
the simple Poisson model and the simple exponential model. Furthermore,
we give the result for the heteroscedastic linear model and illustrate it using
the design of a parallel group controlled clinical trial.

Theorem 5.16 (Efficiency of the sandwich estimator for a true Pois-
son model). Consider a sample of n independently identically Po(λ) dis-
tributed random variables y1, . . . , yn with mean λ. The model-based variance
of λ̂ is estimated by Â(λ̂) = ȳ/n, and the robust variance estimator is given
by Ĉ(λ̂) = s2 = 1

n

∑n
i=1(yi − ȳ)2. If the Poisson model is true, the relative

efficiency of the sandwich estimator, i.e., the ratio of the variances of the
model-based and the robust variance estimator, is only
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Var
(
Â

)

Var
(
Ĉ

) =
n2

(n− 1)2
1

1 + 2 n
n−1λ

,

and the asymptotic relative efficiency is

lim
n→∞

Var
(
Â

)

Var
(
Ĉ

) =
1

1 + 2λ
.

———

For large λ, the asymptotic efficiency tends to 0 even if the sample size
tends to infinity.

Proof. We first note that the variance Var(s2) of the sampling variance s2 is
given by (see, e.g., Kendall and Stuart, 1969, p. 244, Exercise 10.13)

Var(s2) = (n−1)2

n3 (µ4 − µ2
2) + 2(n−1)

n3 µ2
2 = (n−1)2

n3

(
µ4 − n−3

n−1µ2
2

)
, (5.15)

where µ4 and µ2 = σ2 denote the second and fourth central moments, re-
spectively.

For the Poisson distribution, the fourth central moment µ4 is given by
λ(1 + 3λ) (Kendall and Stuart, 1969, p. 89, Exercise 3.1), and σ4 = λ2.
With Var

(
Â

)
= Var(ȳ) = λ/n and Var

(
Ĉ

)
= Var(s2) = (n−1)2

n3 (λ + 2n
n−1λ2),

we complete the proof. Finally, note that the formula for Var(s2) from the
Poisson distribution slightly deviates from the one given by Mattner (1996,
p. 1270). ut
Theorem 5.17 (Efficiency of the sandwich estimator for a true expo-
nential model). Consider a sample of n independently identically Expo(λ)
distributed random variables y1, . . . , yn with parameter λ. The model-based
variance of λ̂ is estimated by Â(λ̂) = ȳ2/n, and the robust variance estimator
is given by Ĉ(λ̂) = s2 = 1

n

∑n
i=1(yi− ȳ)2. If the exponential model is true, the

relative efficiency of the sandwich estimator, i.e., the ratio of the variances
of the model-based and the robust variance estimator, is

Var
(
Â

)

Var
(
Ĉ

) =
n2

(n− 1)2
· 2λ2

9− n−3
n−1

,

and the asymptotic relative efficiency is

lim
n→∞

Var
(
Â

)

Var
(
Ĉ

) =
λ2

4
.

Proof. Mean and variance of the exponential distribution are 1/λ and 1/λ2,
respectively. The ML estimator of the exponential model is λ̂ = 1/ȳ, and
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with D̂ = 1n, Σ̂
−1

= diag(λ̂2), and Ω̂ = diag(ε̂2
i ) = diag

(
(yi − 1/λ̂)2

)
, one

obtains Â(λ̂) = 1/λ̂2, B̂(λ̂) = 1
n

∑n
i=1

(
(yi − 1/λ̂)2/λ̂4

)
. The robust variance

estimator of λ̂2 based on the assumed exponential distribution. Therefore,
the robust covariance is given by

Ĉ(λ̂) = Â−1(λ̂) B̂(λ̂) Â−1(λ̂) = λ̂2
(

1
n

∑n

i=1

(yi−1/λ̂)2

λ̂4

)
λ̂2

= 1
n

∑n

i=1
(yi − 1/λ̂)2 = 1

n

∑n

i=1
(yi − ȳ)2 .

With Var(s2) from Eq. 5.15, m2 = 2/λ2, µ2 = 1/λ2, and µ4 = 9/λ4, we
obtain Var

(
Â

)
= Var

(
ȳ2

)
= m2/n = 2/(nλ2) and

Var
(
Ĉ(λ̂)

)
= Var(s2) = (n−1)2

n3

(
9
λ4 − n−3

n−1
1
λ4

)
.

This completes the proof. ut
Next, we consider the classical linear model as discussed by Carroll et al.

(1998) and Kauermann and Carroll (2001). Assume that the classical ho-
moscedastic multiple linear regression model

yi = x′iβ + εi , with εi ∼ N(0, σ2)

with non-stochastic covariates xi ∈ IRp and β ∈ IRp for i = 1, . . . , n is the
true model, and without loss of generality assume that σ2 is known. The
assumed model is the heteroscedastic regression model

yi = x′iβ + εi , with εi ∼ N(0, σ2
i ) .

We are interested in the relative efficiency of the Mancl and DeRouen (2001)
bias corrected robust variance estimator compared with the model-based
variance estimator for linear combinations c′β of the parameter vector β
for c ∈ IRp. In the bias correction, ˆ̃εi = ε̂i/(1 − hii)1/2 replaces ε̂i in
the OPG of the robust variance estimator (see Remark 5.5). Finally, let
ai = c′(X ′X)−1xi.

Theorem 5.18 (Linear regression with heteroscedastic variance).
The relative efficiency of the model-based variance estimator of the linear
combination c′β̂ compared with the corresponding bias corrected robust vari-
ance estimator is given by

Var
(
Â

(
c′β̂

))

Var
(
ĈMD

(
c′β̂

)) =
(

1
n

∑n

i=1
a2

i

)2/(
1
n

(∑n

i=1
a4

i +
∑

i6=j
a2

i a
2
j h̃ij

))
. (5.16)

Remark 5.19. Equation 5.16 can be simplified by using an analogous argu-
ment as Mancl and DeRouen (2001) in their approximation for obtaining the
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bias correction (Remark 5.5). First, we note that H is an orthogonal projec-
tion matrix of rank p, thus tr(H) = p. Ideally, all observations have the same
leverage, and the off-diagonal elements of H might therefore be negligible.
In this case, the last term can be omitted, and Eq. (5.16) reduces to

Var
(
Â

(
c′β̂

))

Var
(
ĈMD

(
c′β̂

)) ≈
(

1
n

∑n

i=1
a2

i

)2/(
1
n

∑n

i=1
a4

i

)
. (5.17)

In any case, the variability of the robust variance estimator is greater than
the variability of the model based variance estimator, and this finding can be
generalized to the generalized linear model (Kauermann and Carroll, 2001).

Proof. The model-based and robust variance estimators of β̂ have been given
in Example 5.12. By using the bias correction of Mancl and DeRouen (2001,
see Remark 5.5), we obtain the bias corrected robust variance estimator
ĈMD(β̂) = (X ′X)−1

( ∑n
i=1 xix

′
i
ˆ̃ε 2
i

)
(X ′X)−1 with ˆ̃εi = ε̂i/(1− hii)1/2.

Using the normality assumption, we obtain

Var
(
Â(c′β̂)

)
= 2σ4

(
c′(X ′X)−1c

)2
/n = 2σ4

( n∑

i=1

a2
i

)2
/n , (5.18)

with ai = c′(X ′X)−1xi. Because Var
( ˆ̃ε 2

i

)
= 2σ4 and Cov

( ˆ̃εi, ˆ̃εj

)
= 2h̃ij σ4

for i 6= j and h̃ij = hij

/√
(1− hii)(1− hjj), we similarly derive

Var
(
ĈMD

(
c′β̂

))
=

n∑

i=1

a4
iVar

( ˆ̃ε 2
i

)
+

∑

i6=j

a2
i a

2
jCov

( ˆ̃εi, ˆ̃εj

)

= 2σ4
( n∑

i=1

a4
i +

∑

i 6=j

a2
i a

2
j h̃ij

)
,

which completes the proof. ut
Theorem 5.18 is illustrated in a simple example using a parallel group

controlled clinical trial with 1:1 randomization.

Example 5.20. Consider a parallel group controlled clinical trial where half of
the patients are randomized to a new treatment xT = 1, and the other half
receive the standard treatment xS = 0. For simplicity, we assume that n is
even. The n× 2 design matrix X is given by

X =
(

1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1

)′
.

We are interested in testing the treatment effect so that c = (0 1)′. With
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(X ′X)−1 =

(
2
n − 2

n

− 2
n

4
n

)
and

aS = c′(X ′X)−1(1 xS)′ = − 2
n

aT = c′(X ′X)−1(1 xT )′ = 2
n

we obtain
∑n

i=1 a2
i = 4/n and

∑n
i=1 a4

i = 16/n3. The hat matrix H =
X(X ′X)−1X ′ is a block diagonal matrix with block length n/2 and block
entries 2/n. Subsequently, H̃, the matrix consisting of elements h̃ij , is a block
diagonal matrix with the same block length and block entries 1/(n/2 − 1),
and

∑
i6=j a2

i a
2
j h̃ij = 2 · n

2

(
n
2 − 1

)
4

n2 · 4
n2

1
n/2−1 = 16

n3 .

Because
(

1
n

∑n
i=1 a2

i

)2 = 16/n4 and 1
n

(∑n
i=1 a4

i +
∑

i 6=j a2
i a

2
j h̃ij

)
= 1

n

(
16
n3 +

16
n3

)
= 32

n4 , the relative efficiency of the robust variance estimator compared
with the model-based variance estimator is only 1/2 = 50%.

Note that the approximation to the relative efficiency from Remark 5.19
gives a relative efficiency of 100% because the term h̃ij is neglected.

5.4.2 Bias corrections and small sample adjustments

The small sample properties of the robust variance estimator were investi-
gated in a series of papers around 1990 in Monte-Carlo simulations (see, e.g.,
Emrich and Piedmonte, 1992; Gunsolley et al., 1995; Paik, 1988; Sharples and
Breslow, 1992). Indeed, the robust variance estimator tends to underestimate
the variance of the regression coefficients, especially in the case of small sam-
ples (Mancl and DeRouen, 2001). Basically, four different approaches have
been considered for improving the small sample performance of the robust
variance estimator. First, jack-knife estimators (Lipsitz et al., 1994a, see The-
orem 5.21) and bootstrap estimators (Lancaster, 2003) are alternatives to the
robust variance estimator, and they keep the nominal test level of 5% well
if the sample size is not smaller than 20 (Mancl and DeRouen, 2001). Sec-
ond, in the previous section, we have seen that the sandwich estimator has
increased variability compared with the model-based variance estimator (see
Theorem 5.18 and Remark 5.19), and one may account for this extra variabil-
ity (see, e.g., Kauermann and Carroll, 2001; Pan and Wall, 2002; for a brief
overview, see, e.g., Dahmen and Ziegler, 2004). Third, for statistical testing
and the construction of confidence intervals, the use of the t distribution or
the F distribution has been proposed (Fay et al., 1998; Pan and Wall, 2002).
Finally, as already seen above (Theorem 5.4), the robust variance estimator
is biased, and the small sample properties of the sandwich estimator can be
improved by bias corrections.

Theorem 5.21 (Bias correction of the robust covariance matrix).
Using the notations and assumptions from above, the following estimators of
the robust covariance matrix are less biased than the estimator of the robust
covariance matrix from Theorem 5.2, 4.:
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1. The bias corrected robust covariance matrix estimator according to Mancl
and DeRouen (2001) is given by

ĈMD(β) = Â(β)−1B̂MD(β)Â(β)−1 ,

where B̂MD(β) is given by

B̂MD(β) =
1
n

n∑

i=1

D̂
′
iΣ

−1
i (I − Ĥii)−1Ω̂i(I − Ĥii)−1Σ−1

i D̂i ,

and Ĥii = D̂iÂ
−1

D̂
′
iΣ

−1
i .

2. The modified Fay and Graubard bias corrected robust covariance matrix
estimator is given by

ĈmFG(β) = Â(β)−1B̂mFG(β)Â(β)−1 ,

where B̂mFG(β) is given by

BmFG(β) =
1
n

n∑

i=1

H̃iD̂
′
iΣ

−1
i Ω̂iΣ

−1
i D̂iH̃

′
i ,

and H̃i = (I − ÂiÂ
−1

)−1/2.

Remark 5.22. The modified Fay and Graubard version of the bias correction
can be used if I −AiA

−1 is positive definite, and it differs from the original
version of Fay and Graubard (2001). First, these authors specifically used
the Hessian matrices W i and W in the approximation instead of the Fisher
information matrices Ai and A, and they pointed out that their equivalent
of H̃i is not necessarily symmetric (Fay and Graubard, 2001, p. 1199). They
therefore suggested the replacement of H̃i by a diagonal matrix with the
jjth element being estimated by (1−min(b, [ÂiÂ

−1
]jj))−1/2. This bound b

is a practical necessity to prevent from extreme adjustments when [ÂiÂ
−1

]jj

is close to 1, and Fay and Graubard (2001) arbitrarily used b = 0.75 in
their Monte-Carlo simulations. Interestingly, when they considered GEE as a
special case, they replaced the Hessian matrices with the Fisher information
matrices (Fay and Graubard, 2001, p. 1200).

———

For other modifications to the robust variance estimator the reader may
refer to the literature (see, e.g., Lu et al., 2007; Morel et al., 2003; Pan, 2001;
Wang and Long, 2011); for a review, see Dahmen and Ziegler (2004).

Proof.
1.: Mancl and DeRouen (2001) assumed that the last term of Eq. 5.5 is
negligible. With the arguments of the last bullet point in Remark 5.5, the
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proof is completed.
2.: This bias correction is based on the first part of Theorem 5.4. Specifically,
Fay and Graubard (2001) argued that the elements of the second term of Eq.
5.4 could well be different from 0 so that this term should not be neglected.
To derive a tractable expression, Fay and Graubard (2001) assumed that the
Fisher information matrix Ai is within a scale factor of Ωi, i.e., Ai ≈ cΩi for
all i and some constant c. As pointed out by Dahmen and Ziegler (2004), this
proportionality assumption is unrealistic for misspecified variance structures.
However, it leads to a substantial simplification, and Eq. 5.4 may be rewritten
as

IEXIEy(B̂i) = IEXIEy(ûiû
′
i) ≈

(
I −AiA

−1
)
Bi

because the product A−1B cancels out. Both Ai and A are symmetric so that
B̂ i can be bias corrected by B̂FG,i = H̃iB̂ iH̃

′
i with H̃i = (I−ÂiÂ

−1
)−1/2.

This completes the proof. ut
Theorem 5.23 (Asymptotic equivalence of the one-step jack-knife
estimator of covariance and the robust covariance estimator). Let
β̂ be the PML estimator, and let β̂(i) be the PML estimator after deleting
cluster i and performing one step of the modified Fisher scoring step. The
update step is given by

β̂
(i)

= β̂ +

(
n∑

i=1

D̂
′
(i)Σ

−1
(i) D̂(i)

)−1 (
n∑

i=1

D̂
′
(i)Σ

−1
(i) ε̂(i)

)
. (5.19)

The one-step jack-knife estimator of covariance

n− p

n

(
β̂(i) − β̂

)(
β̂(i) − β̂

)′

is asymptotically equivalent to Ĉ, the estimator of the robust covariance ma-
trix.

Proof. First, we note that
∑n

i=1D̂
′
(i)Σ

−1
(i) D̂(i) = −D̂

′
iΣ

−1
i D̂i because û

(
β̂

)
=

0 at β̂. Therefore, Eq. 5.19 can be written as

β̂
(i) − β̂ = −

( n∑

i=1

D̂
′
(i)Σ

−1
(i) D̂(i)

)−1

D̂
′
iΣ

−1
i ε̂i , (5.20)

and we obtain
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(
β̂

(i) − β̂
)(

β̂
(i) − β̂

)′
=

n∑

i=1

(( n∑

i=1

D̂
′
(i)Σ

−1
(i) D̂(i)

)−1

(
D̂
′
iΣ

−1
i ε̂iε̂

′
iΣ

−1
i D̂

′
i

)

( n∑

i=1

D̂
′
(i)Σ

−1
(i) D̂(i)

)−1
)

.

By noting that
∑n

i=1 D̂
′
(i)Σ

−1
(i) D̂(i) is asymptotically equivalent to D̂

′
Σ−1D̂,

the proof is complete. ut
Remark 5.24.
• An alternative approach for updating parameter estimates is the modi-

fied Iteratively (Re–) Weighted Least Squares (IWLS) algorithm, which
is equivalent to the modified Fisher scoring. Indeed, pre-multiplication of
β̂ by

( ∑n
i=1 D̂

′
(i)Σ

−1
(i) D̂(i)

)−1(∑n
i=1 D̂

′
(i)Σ

−1
(i) D̂(i)

)
yields the update for-

mula of the modified IWLS algorithm:

β̂
(i)

=

(
n∑

i=1

D̂
′
(i)Σ

−1
(i) D̂(i)

)−1 ( n∑

i=1

D̂
′
(i)Σ

−1
(i)

(
D̂(i)β̂ + ε̂(i)

))
.

• A disadvantage of Eq. (5.19) is that it involves the calculation of deletion
statistics, e.g., D̂(i) which are typically computed using all available data.

An alternative representation of
(
β̂

(i)− β̂
)

not involving deletion statistics
is

Â
−1

Ẑ
′
iK̂iΣ

−1/2
i ε̂i with K̂i = I +

(
I − ẐiÂ

−1
Ẑ
′
i

)−1
ẐiÂ

−1
Ẑ
′
i ,

with Ẑi = Σ
−1/2
i D̂i, where Σ

1/2
i is a root of Σi as in the proof of Theorem

5.2.

Proof (Second bullet point of Remark 5.24). Using the notation from above,
Eq. 5.20 can be written as

β̂
(i) − β̂ = −Â

−1

(i) Ẑ
′
iΣ

−1/2
i ε̂i .

Application of the update formula for symmetric matrices (Cook and Weis-
berg, 1982, Appendix, Eq. A.2.1) yields

Â
−1

(i) =(Ẑ
′
(i)Ẑ(i))−1 = (Ẑ

′
Ẑ)−1+(Ẑ

′
Ẑ)−1Ẑ

′
i(I−Ẑi(Ẑ

′
Ẑ)−1Ẑ

′
i)
−1Ẑi(Ẑ

′
Ẑ)−1 .

Appropriate matrix multiplications complete the proof. ut



Chapter 6

Quasi generalized pseudo maximum
likelihood method based on the linear
exponential family

PML1 allows estimation of the correctly specified mean structure either when
the assumed distribution includes no nuisance parameter or when an addi-
tional nuisance parameter, such as the covariance matrix from the normal
distribution, is fixed. For applications, this assumption might be unrealistic
because the a priori guess for the nuisance parameter is rarely good. Fur-
thermore, the more similar the chosen nuisance parameter is to the optimal
nuisance parameter, the more efficient the estimator will be. This leads to the
idea that the user specifies a specific structure for the nuisance parameter Ψ .
The nuisance parameter Ψ̂ is estimated in the first step, and the parameter of
interest β is estimated in the second given the estimated nuisance parameter
Ψ̂ . Again, we stress that the parameter Ψ , typically determining the covari-
ance of correlated observations or an additional variance parameter, such as
in overdispersed models, is considered to be nuisance. Models that aim at
estimating both the mean and the association parameters as the parameter
of interest are discussed in the next two chapters. The extension of PML1
estimation considered in this chapter allows for nuisance parameters; it is a
quasi generalization of the PML1 approach and therefore termed the quasi
generalized pseudo maximum likelihood (QGPML) method.

An important aspect of this approach is how a consistent estimator of the
parameter vector β of the mean structure and its variance can be obtained
although additional variability is introduced through the estimation of a pos-
sibly misspecified nuisance parameter Ψ . The surprising result is that under
suitable regularity conditions, one need not account for the extra variability
introduced by estimating the nuisance parameter. The QGPML approach
can be considered an extension of the work by Burguete et al. (1982), and it
has been discussed in detail by Gourieroux et al. (1984b). However, Gourier-
oux and colleagues (Gourieroux et al., 1984b; Gourieroux and Monfort, 1993,
1995a) did not discuss a possible misspecification of the nuisance parame-
ter in their work although they already formulated more general results in a
different context.
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This chapter is organized as follows. We first define the QGPML estimator,
and second derive its asymptotic properties (Sect. 6.2). We next illustrate the
QGPML approach in a series of examples (Sect. 6.3). Specifically, we consider
generalized estimating equations of order 1 (GEE1) with estimated work-
ing covariance matrix and estimated working correlation matrix. Finally, we
briefly discuss extensions to time dependent parameters and ordinal response
variables (Sect. 6.4).

6.1 Definition

Consider a sample of n independently distributed T -dimensional random vec-
tors yi, i = 1, . . . , n, and Xi is the T × p matrix of stochastic and/or fixed
explanatory variables of subject i. The true but unknown density (or proba-
bility mass function for discrete random vectors) of yi given Xi is denoted
by f?(yi|Xi) with conditional expectation µi = IEf?(yi|Xi||β0) = g(Xiβ)
and conditional covariance matrix Varf?(yi|Xi) = Ω?(Xi).

The true density f? may differ from the assumed density f . The assumed
conditional pseudo density f of yi given Xi is parameterized in the p ×
1 parameter vector β so that IEf (yi|Xi||β). The mean is assumed to be
correctly specified, i.e.,

IEf?(yi|Xi) = IEf (yi|Xi||β0) .

Estimation is based on a pseudo density from the linear exponential family
with nuisance parameter Ψ , and the assumed density of cluster i is

f(yi|Xi||µi,Ψ i) = exp
(
a(µi, Ψ i) + b(yi, Ψ i) + c(µi,Ψ i)′yi

)
,

with a possibly cluster specific nuisance parameter Ψ i. According to Property
1.3, the inverse variance matrix of cluster i is given by Σ−1

i = ∂c(µi,Ψ i)′/∂µ
for the assumed density. For many univariate and multivariate distributions
belonging to the linear exponential family, the nuisance parameter Ψ i can be
written as a differentiable function G of µi and Σi according to the implicit
function theorem Ψ i = G(µi,Σi). In most applications, Σi is chosen as a
function of the explanatory variables Xi, the parameter vector of interest β,
and an additional q × 1 parameter vector α, so that Ψ i may also be written
as Ψ i = G

(
µ(Xi, β0),Σ(Xi, β0, α0)

)
.

Estimation may now proceed in two steps: In the first step, estimates β̃
and α̃ of β0 and α0 are obtained. In practice, β̃ and α̃ are often obtained
by simple method of moments or least squares estimators yielding consistent
but possibly inefficient estimates. Based on estimates α̃ and β̃, the nuisance
parameter Ψ i is fixed:

Ψ̃ i = G
(
µ(Xi, β̃),Σ(Xi, β̃, α̃)

)
.
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In the second step, the QGPML estimator β̂ for β0 is computed using the
estimate Ψ̃ i for Ψ i. This two-step procedure is a generalization of the method
proposed by Cochrane and Orcutt (1949) to compute the least squares esti-
mator in an autoregressive linear model.

In summary, the stochastic model of yi given Xi under the true model
f?(yi|Xi||β0) is given by

yi = µ(Xi, β0) + ε?
i with IE(ε?

i |Xi) = 0 ,

IEf?(yi|Xi) = IEf (yi|Xi) = µ(Xi, β0) = µi ,

Varf?(yi|Xi) = Var(ε?
i |Xi) = Ω(Xi) .

The stochastic model of yi given Xi under the assumed modelf(yi|Xi||β0)
is given by

yi = µ(Xi, β0) + εi with IE(εi|Xi) = 0 ,

IEf?(yi|Xi) = IEf (yi|Xi) = µ(Xi,β0) = µi ,

Varf (yi|Xi) = Var(εi|Xi) = Σ̃(Xi, β̃, Ψ̃ i) ,

where the assumed density belongs to the linear exponential family.

Definition 6.1 (QGPML estimator). A quasi generalized pseudo max-
imum likelihood estimator for the mean, or, briefly, QGPML estimator of
β, is any value β̂ maximizing the kernel of the normed pseudo loglikelihood
function

l(β, α̃) =
1
n

n∑

i=1

ln f(yi|Xi||β, α̃) =
1
n

n∑

i=1

ln f
(
yi||µ(Xi, β), Ψ̃ i

)

=
1
n

n∑

i=1

ln f
(
yi||µ(Xi,β),G

(
µ(Xi, β̃),Σ(Xi, β̃, α̃)

))
.

6.2 Asymptotic properties

The following theorem summarizes the properties of the QGPML estima-
tor. The required regularity conditions and detailed proofs can be found in
Gourieroux et al. (1984b, pp. 682, 687, 692). To repeat, a fundamental as-
sumption is that the assumed distribution belongs to the linear exponential
family.

Theorem 6.2 (Properties of QGPML estimators).
1. There asymptotically exists a QGPML estimator β̂ for β0.

2. The QGPML estimator β̂ converges almost surely to the true parameter
vector β0.
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3. The score vector for β is given by

u(β) =
n∑

i=1

D′
iΣ̃

−1

i (yi − µi) = D′Σ̃
−1

(y − µ) ,

where D is the stacked matrix of the Di, Σ̃ is the block diagonal matrix
of the Σ̃i, and y and µ are the stacked vectors yi and µi, respectively.
Σ̃i = Σ̃i(Xi, β̃, Ψ̃ i) is the working covariance matrix fixed at β̃ and Ψ̃ i.

4. The QGPML estimator β̂ for β0 is asymptotically normal. More specifi-
cally,

√
n(β̂ − β0)

a∼ N
(
0, A(β0,α0)−1B(β0,α0)A(β0, α0)−1

)
, (6.1)

where A(β,α) = IEX
(
IEy

f?−Wi

)
= IEX(D′

iΣ
−1
i Di) is the Fisher informa-

tion matrix and B(β, α) = IEXIEy
f?(ui(β)ui(β)′) = IEX(D′

iΣ
−1
i ΩiΣ

−1
i Di)

is the outer product gradient (OPG).
5. Strongly consistent estimators of A(β0,α0) and B(β0, α0) are given by

Â =
1
n

n∑

i=1

(
D̂
′
iΣ̂

−1

i D̂i

)
and B̂ =

1
n

n∑

i=1

(
D̂
′
iΣ̂

−1

i Ω̂iΣ̂
−1

i D̂i

)
,

where D̂i = ∂µ̂i

/
∂β′ is the estimated matrix of first derivatives of the

mean with respect to the parameter vector, Σ̂i = Σ(Xi, β̂, Ψ̃ i) is the es-
timator of the covariance matrix of the assumed distribution, and Ωi is
replaced by Ω̂i =

(
yi − µ̂i

)(
yi − µ̂i

)′.
6. The set of asymptotic covariance matrices of the QGPML estimator β̂

of β based on a linear exponential family has lower bound Υ−1(β) =(
IEX(D′

iΩ
−1
i Di)

)−1.

Proof.
1.: Existence: See White (1981, Theorem 2.1).
2.: Consistency: See Gourieroux et al. (1984b, Theorem 4).
3.: Score equations: Analogously to the proof of Theorem 5.2 with Σ̃i being
the replacement of Σi.
5.: Estimation: See White (1982, Theorem 3.2).
6.: Analogously to the proof of Theorem 5.2, 7.
4. Here, we prove the asymptotic normality along the lines of Gourieroux
and Monfort (1995a, pp. 215-216, 250). The proof proceeds in three steps.
In the first step, we consider a Taylor expansion of the score equations in a
neighborhood of (β′0,α′0)

′. In the second step, we formulate a condition for
which the extra variability introduced by the estimator α̃ can be neglected.
In the final step, we show that the QGPML estimator fulfills this condition.

Step 1: Given the score equations



6.2 Asymptotic properties 83

u
(
β̂, α̃

)
=

1
n

n∑

i=1

∂l(β̂, α̃)
∂β

= 0 ,

we obtain

0 a.s.=
1√
n

n∑

i=1

∂li(β0, α0)
∂β

+
1√
n

n∑

i=1

∂2li(β∗, α0)
∂β∂β′

(
β̂ − β0

)
+

1√
n

n∑

i=1

∂2li(β0, α
∗)

∂β∂α′
(
α̃−α0

)

with a.s. denoting almost surely, and β∗ and α∗ lying on the line segment
between β̂ and β0 and α̂ and α, respectively (see proof of Theorem 4.2). By
a strong law of large numbers (White, 1981, Lemma 3.1), we get

0 a.s.=
1√
n

n∑

i=1

∂l(β0, α0)
∂β

+ IEXIEy
(∂2li(β0, α0)

∂β∂β′
)(

β̂ − β0

)
+ IEXIEy

(∂2li(β0, α0)
∂β∂α′

)(
α̃−α0

)
.

This results in

√
n
(
β̂ − β0

) a.s.= A−1
( 1√

n

n∑

i=1

∂li(β0, α0)
∂β

+ J
√

n
(
α̃−α0

))

where

A−1 = A−1(β0, α0) = IEXIEy
(
− ∂2li(β0, α0)

∂β∂β′
)

and

J = J(β0, α0) = IEXIEy
(∂2li(β0, α0)

∂β∂α′

)
.

Application of the multivariate central limit theorem (Lehmann and Casella,
1998, p. 61, Theorem 8.21) gives that the vector




1√
n

∑n
i=1

∂li(β0, α0)
∂β

√
n
(
α̃−α0

)




is asymptotically normally distributed with mean vector 0 and covariance
matrix (

B B0α

Bα0 Bαα

)
.

Here, the index α indicates the nuisance parameter α.
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Subsequently, the QGPML estimator β̂ is asymptotically normally dis-
tributed as √

n
(
β̂ − β0

) a∼ N
(
0,V

)
,

where

V = A−1

(
(
Ip×p,J

) (
B B0α

Bα0 Bαα

)(
Ip×p

J ′

) )
A−1 . (6.2)

Equation 6.2 shows that the covariance matrix of β̂ generally differs from the
covariance matrix of the PML1 estimator.

In the second step of the proof, we therefore formulate a condition that re-
duces the covariance matrix to the common robust covariance matrix. Specif-
ically, if

J = J(β0,α0) = IEXIEy
(∂2li(β0,α0)

∂β∂α′

)
= 0 , (6.3)

then the QGPML estimator β̂ is asymptotically normally distributed, more
precisely: √

n
(
β̂ − β0

) a∼ N
(
0,C

)
,

with

C = C(β0, α0) = A−1(β0,α0)B(β0, α0)A−1(β0, α0) ,

A = A(β0,α0) = IEXIEy
(
− ∂2li(β0, α0)

∂β∂β′
)

,

B = B(β0,α0) = IEXIEy
(∂li(β0, α0)

∂β

∂li(β0, α0)
∂β′

)
.

In the final step, we need to show that Eq. 6.3 holds for QGPML estima-
tors. This can be done using the formulation of the linear exponential family
of Eq. 1.7, the vectorization of the nuisance parameter vec(Ψ ), and Property
1.4:

IEy
(∂2f(y|X||µ, Ψ )

∂µ ∂vec(Ψ )′
)

= IEy
(∂2c(µ, Ψ)′y + a(µ,Ψ ) + b(y,Ψ )

∂µ ∂vec(Ψ)′
)

= IEy
( ∂

∂vec(Ψ)′
(c(µ,Ψ )′y

∂µ
+

∂a(µ,Ψ)
∂µ

+
∂b(y,Ψ )

∂µ

))

(?)
=

∂

∂vec(Ψ )′
IEy

(c(µ, Ψ)′y
∂µ

+
∂a(µ,Ψ )

∂µ

)

=
∂

∂vec(Ψ)′
(c(µ, Ψ)′µ

∂µ
+

∂a(µ, Ψ)
∂µ

)

(??)
=

∂

∂vec(Ψ)′
= 0
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where the interchange of differentiation and integration is used at (?), and
Property 1.4 at (??). As a consequence, we have shown that Eq. 6.3 is satis-
fied, and this completes the proof. ut
Remark 6.3.
1. Equation 6.3 implies that the extra variability of the nuisance parameter

α, i.e., the asymptotic distribution of the nuisance parameter estimator
α̃, need not be taken into account.

2. So far, we have considered the two-step procedure in the following way. In
the first step, the nuisance parameter vector α0 is estimated by α̃ given
an initial guess of β̃. In the second step, the parameter vector β0 is esti-
mated given α̃ and β̃. In applications, one should return to step 1 after
step 2 and repeat the estimation of α̃ given β̂ from step 2. This alternat-
ing two-step procedure is preferable over the simple two-step approach as
shown, e.g., by Carroll and Ruppert (1988). They specifically considered
a heteroscedastic linear regression model and demonstrated that several
alternating estimation steps were required before the asymptotic covari-
ance matrix of β̂ stabilized. It can be assumed that similar results hold for
general mean structures, and therefore, the two-step procedure sketched
above should be iterated until convergence of both α̃ and β̂.

———

In Theorem 6.2, we assumed that the true covariance matrix Ωi may
be misspecified. In the following, we formulate properties of the QGPML
estimator for the case that the true covariance matrix Ωi and the assumed
covariance matrix Σi are identical. We emphasize that we still do not assume
the correct specification of the complete multivariate distribution. Only the
correct specification of the first two moments is assumed.

Theorem 6.4 (Asymptotic equivalence of QGPML and ML estima-
tion). We assume that

Varf?(yi|Xi||β0) = Varf (yi|Xi||β0,α0) = Ω(Xi||β0, α0)

for all i = 1, . . . , n. Then, the following properties hold:
1. The Fisher information matrix A equals the outer product gradient B as

in the ML situation. Subsequently, β̂ is distributed as

√
n(β̂ − β0)

a∼ N
(
0,

(
A(β0, α0)

)−1) = N(0,B(β0,α0)−1
)
.

2. If both the true and the assumed distribution belong to the linear exponen-
tial family, then the QGPML estimator of β0 is asymptotically equivalent
to the ML estimator of β0 obtained by maximizing the true log likelihood
with respect to β and α.

Proof.
1.: This is a direct consequence of the proof to Theorem 6.2.
2.: See Gourieroux et al. (1984b, Theorem 5). ut
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Remark 6.5. Theorem 6.4 states that the QGPML estimator asymptotically
reaches the lower (Rao–Cramér) bound if both the mean structure and the co-
variance matrix are correctly specified. The QGPML estimator thus is asymp-
totically efficient in this case.

6.3 Examples

In this section, a series of different examples for QGPML estimation is given.
First, we consider an example for univariate QGPML estimation, i.e., T = 1.
It has been used in an applied problem on estimating the tree volume of red
oak trees (Ziegler et al., 1997), and it is similar to the theoretical example
given by Gourieroux et al. (1984b).

Example 6.6 (Estimation of tree volume from breast height diameter). A stan-
dard problem of scientific forestry is to provide a prognostic model for tree
volumes for wood based on simple measurable quantities. An often used quan-
tity for predicting the tree volume (Vol) is the breast height diameter (BHD),
which is the diameter of a tree at a height of 130 cm. In the models, the trees
are usually assumed to be independent.

The volume is positive, and therefore, the square root link and the log
link are reasonable choices. As an alternative, a linear model for the log
tree volume (lnVol) is sometimes considered. A standard feature of tree vol-
ume data is that the dispersion increases with BHD. Hence, the choice of
a Poisson model for Vol seems to be adequate. However, standard tests
for normality typically reject the assumption of normality for lnVol. Sum-
ming up, the choice of the loglink function for Vol seems to be justified
and preferable over the identity link function for lnVol so that we assume
µi = IEf?(yi|xi) = IEf (yi|xi) = exp(x′iβ).

In many applications, a quadratic variance function plus overdispersion
is used for the loglink, i.e., vi = Var(yi|xi) = Φ exp2(x′iβ), where Φ is the
dispersion parameter, and h(µi) = µ2

i = exp2(x′iβ) is the variance function.
This choice can be justified by the observation that the variance of the BHD
approximately follows a quadratic function of the mean. However, the true
conditional variance Ωi = Ω(xi) need not be correctly specified.

In the first step, an initial guess of the parameter β is obtained by mini-
mizing the normed sum

∑n
i=1

(
yi − µ(x′iβ)

)2 with respect to β. The corre-
sponding estimating equations are

n∑

i=1

(
yi − exp(x′iβ̃)

)∂ exp(x′iβ̃)
∂β̃

=
n∑

i=1

(
yi − exp(x′iβ̃)

)
exp(x′iβ̃)xi = 0 .

This estimating equation is a standard problem of nonlinear optimization
(Antoniou and Lu, 2007). With the initial guess β̃, a strongly consistent
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estimator Φ̃ for Φ can be obtained:

Φ̃ =
1
n

n∑

i=1

(
yi − exp(x′iβ̃)

)2

exp2(x′iβ̃)
.

In the second step, a pseudo likelihood function needs to be specified. For
illustration, we first choose the normal distribution. Below, we also illustrate
the use of the gamma distribution. To repeat, both the assumed normal
distribution and the assumed gamma distribution yield consistent estimates
of the parameter vector β if the mean structure is correctly specified and if the
domain of the mean structure parameter of the true distribution is a subset
of the domain of the mean structure parameter of the assumed distribution.

In the first part of this example, the conditional assumed distribution of
yi given xi is the normal distribution with conditional mean µ(x′iβ) and
fixed conditional variance ṽi. The kernel of the normed pseudo loglikelihood
is given by

l(β) =
1
n

n∑

i=1

−1
2

(
yi − exp(x′iβ)

)2

Φ̃ exp2(x′iβ̃)
=

1
n

n∑

i=1

−1
2

(
yi − exp(x′iβ)

)2

ṽi
,

which has to be maximized with respect to β. Alternatively, the negative of
this expression is minimized with respect to β. The first and second deriva-
tives of the kernel of the negative individual pseudo loglikelihood are given
by

ui(β) =
∂

∂β

(
(yi − exp(x′iβ)

)2

2 ṽi
= − 1

ṽi
µi(yi − µi)xi = −µi

ṽi
(yi − µi)xi

and

W i(β) =
∂ui(β)

∂β′
= − 1

ṽi
µi(yi − 2µi)xix

′
i .

For non-stochastic explanatory variables, the expected values of the individ-
ual OPG and the individual Fisher information matrix are

IE(uiu
′
i) =

µ2
i

v2
i

Ωixix
′
i and IE(W i) =

µ2
i

vi
xix

′
i .

The individual OPG equals the individual Fisher information matrix if Ωi =
vi, i.e., if the assumed variance vi equals the true variance Ωi. With the
quantities derived, β̂ can be estimated by a modified Fisher scoring algorithm
with fixed ṽi. For stabilization of parameter estimates, both steps are iterated
until convergence.

After convergence, the variance of β̂ is estimated by

V̂ar(β̂) =
(
X ′diag

( µ̂2
i

ṽi

)
X

)−1(
X ′diag

( µ̂2
i (yi − µ̂i)2

ṽ2
i

)
X

)(
X ′diag

( µ̂2
i

ṽi

)
X

)−1

.
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In the second part of this example, the conditional assumed distribution of
yi given xi is the gamma distribution. The kernel of the normed loglikelihood
function of the gamma distribution is given by (see Example 1.11)

l(β) =
1
n

n∑

i=1

(
Ψi ln

Ψi

µi
− Ψi

µi
yi

)
.

The term Ψi ln Ψi is irrelevant for maximization, and given an estimate Ψ̃i,
the kernel can be written either as

1
n

n∑

i=1

−Ψ̃i

(
ln exp(x′iβ) +

yi

exp(x′iβ)

)

or equivalently as

1
n

n∑

i=1

− exp2(x′iβ̃)
Φ̃ exp2(xiβ̃)

(
ln exp(x′iβ) +

yi

exp(x′iβ)

)
=

1
n

n∑

i=1

− 1
Φ̃

(
ln exp(x′iβ) +

yi

exp(x′iβ)

)
.

The first and second derivatives of the kernel of the negative individual
pseudo loglikelihood are given by

ui(β) =
1
Φ̃

( 1
exp(x′iβ)

− yi

exp2(x′iβ)

)
xi = − 1

Φ̃

yi − µi

µ2
i

xi

and
W i(β) = − 1

Φ̃

( 1
µ2

i

− 2yi

µ3
i

)
xix

′
i =

1
Φ̃

2yi − µi

µ3
i

xix
′
i .

For non-stochastic explanatory variables, the expected values of the individ-
ual OPG and the individual Fisher information matrix are

IE(uiu
′
i) =

1
Φ2µ4

i

Ωixix
′
i and IE(W i) =

1
Φµ2

i

xix
′
i .

The individual OPG equals the individual Fisher information matrix if Ωi =
Φµ2

i = vi, i.e., if the assumed variance vi equals the true variance Ωi. The
maximization problems can be solved by a modified Fisher scoring algorithm
with fixed Φ̃. For stabilization of parameter estimates, both steps are iterated
until convergence.

After convergence, the variance of β̂ is estimated by

V̂ar(β̂) =
(
X ′diag

( 1
Φ̃µ̂2

i

)
X

)−1(
X ′diag

( (yi − µ̂i)2

Φ̃2µ̂4
i

)
X

)(
X ′diag

( 1
Φ̃µ̂2

i

)
X

)−1

.
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To repeat, the QGPML estimators based on the normal distribution and
the gamma distribution are asymptotically equivalent.

In all following examples, we consider clustered data, more specifically,
we consider n independently distributed T -dimensional random vectors yi,
i = 1, . . . , n, and Xi is the T × p matrix of fixed explanatory variables of
subject i.

6.3.1 Generalized estimating equations 1 with
estimated working covariance matrix

In Sect. 5.3.5, we considered the GEE1 with a fixed covariance matrix using
PML1 estimation. In this section, we generalize the results from Sect. 5.3.5
and allow for an estimated working covariance matrix. This generalization has
one obvious advantage. In most applications, no a priori information is avail-
able, how specific values of the covariance matrix should be chosen, although
information on a reasonable covariance structure might be available. With
the QGPML approach, efficiency of parameter estimates might be improved
by first assuming a reasonable working covariance structure, second, estimat-
ing this working covariance structure, and finally, estimating the parameters
of interest of the mean structure.

For illustration, we consider the exchangeable covariance structure Σi =
Σ with entries

Var(yit) = σ(1) and Cov(yit, yit′) = σ(12) ,

for t, t′ = 1, . . . , T and i = 1, . . . , n. Application of QGPML estimation pro-
ceeds as follows:
1. An estimate β̃ of β is obtained, e.g., using the assumption of independence,

i.e., by minimizing 1
n

∑n
i=1(yi−µi)′(yi−µi). As a result, the time-point-

specific variances σ2
t can be estimated by

σ̃2
t =

1
n

n∑

i=1

(yit − µ̃it)2 ,

and the time-point-specific covariances σtt′ are estimated by

σ̃tt′ =
1
n

n∑

i=1

(yit − µ̃it)(yit′ − µ̃it′) ,

where µ̃it = g(x′itβ̃) as in GLM.
Using the structure of the covariance matrix, estimates of σ(1) and σ(12)

can be obtained by
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σ̃(1) =
1
T

T∑
t=1

σ̃2 and σ̃(12) =
2

T (T − 1)

∑

t>t′
σ̃tt′ .

2. Σ̃ is considered fixed and used as the conditional variance matrix of the
assumed distribution. The distributional assumption for PML1 estimation
with fixed Σ̃ is yi|Xi ∼ N(µi, Σ̃).
The kernel of the individual pseudo loglikelihood function is given by

li(β|Σ̃) = −1
2
(
yi − µi

)′
Σ̃
−1(

yi − µi

)

after the addition of −1
2y′iΣ̃

−1
yi. The resulting estimating equations are

given by

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iΣ̃

−1
ε̂i = 0 .

These estimating equations are similar to those of Section 5.3.5. However,
Σ̃ is used instead of Σ.

6.3.2 Independence estimating equations

A disadvantage of the estimating equations considered in the previous sec-
tion is that information of the variance function h(µit) from GLM is ignored.
In this section, we consider estimating equations, where this specific func-
tional relationship between the mean and the variance is taken into account.
The starting point for these estimating equations, which are termed indepen-
dence estimating equations (IEE), is the mean structure model from a GLM
assuming independence:

IE(yit|xit) = IE(yit|Xi) = g(x′itβ) .

Similarly, we use the variance from a GLM:

Var(yit|xit) = vit = Ψ h(µit) .

For simplicity, we assume that yit and yit′ are pairwise uncorrelated so that
Cov(yit, yit′) = 0 if t 6= t′. As before, the true covariance matrix is Ωi.
For estimation, we use the normal distribution as assumed distribution, i.e.,
yi ∼ N(µi, Σi), where µi = (µi1, . . . , µiT )′ and Σi = diag(vit).

In the first step, we estimate β̃ from 1
n

∑n
i=1(yi − µi)′(yi − µi) using

nonlinear optimization. Given β̃ we fix h(µ̃it). Next, we estimate the scale
parameter Ψ through
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Ψ̃ =
1

nT

n∑

i=1

T∑
t=1

(yit − µ̃it)2

h(µ̃it)
.

Given ṽit = Ψ̃ h(µ̃it), we consider Σ̃i = diag(ṽit) fixed and use the normal
distribution yi|Xi ∼ N(µi, Σ̃i) as assumed distribution.

The kernel of the individual pseudo loglikelihood function is given by

li(β|Σ̃) = −1
2
(
yi − µi

)′
Σ̃
−1

i

(
yi − µi

)
= −1

2
(
yi − µi

)′diag(ṽ−1
it )

(
yi − µi

)
,

and one can solve the IEE using nonlinear optimization in the second step of
QGPML estimation through

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iΣ̃

−1

i ε̂i =
1
n

n∑

i=1

D̂
′
idiag(ṽ−1

it )ε̂i = 0 ,

with Σ̃i = diag
(
ṽit

)
.

6.3.3 Generalized estimating equations 1 with
estimated working correlation matrix

In the last section, the IEE were considered using estimated working vari-
ances. They were originally proposed by Zeger et al. (1985), and they can be
considered the precursor of the GEE1, which were published 1 year later in
two different well-recognized articles (Liang and Zeger, 1986; Zeger and Liang,
1986). The fundamental idea of Liang and Zeger was to overcome the possible
inefficiency of the IEE. Indeed, for the IEE, Cov(yit, yit′) = Corr(yit, yit′) = 0
for t 6= t′ is assumed, which can lead to a substantial loss of efficiency if the
true correlation matrix is different from a diagonal matrix.

Liang and Zeger combined the functional structure from GLM with an
assumed correlation matrix. In detail, they used the mean structure and
variance function from a GLM:

IE(yit|xit) = IE(yit|Xi) = g(x′itβ) and Var(yit|xit) = vit = Ψ h(µit) .

With the functional relationship

Σi(β, α, Ψ) = Σi = V
1/2
i Ri(α)V 1/2

i

given V i = V i(β, Ψ) = diag(vit), they introduced a working correlation ma-
trix Ri(α), which may depend on a q dimensional nuisance parameter vector
α but which is independent of the mean structure parameter β, i.e., orthog-
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onal to β (Cox and Reid, 1987). Specific choices of the working correlation
matrix are considered in the next section.

Generally, the index i is omitted, and a single working correlation ma-
trix R(α) = Ri(α) is used for all clusters i. In this case, Σi(β, α) =
V

1/2
i (β, Ψ)R(α)V 1/2

i (β, Ψ) is the working variance matrix.
As for all QGPML approaches, estimation proceeds in two steps. First,

an initial guess of β̃ is obtained. This can be done, e.g., by employing a
standard GLM, where the correlation between observations within a cluster
is neglected. This approach can also be used for obtaining Ψ̃ , an estimate
of Ψ . Second, the structural parameter vector α̃ of the working correlation
structure is estimated.

The estimates α̃, β̃, and Ψ̃ determine the working covariance matrices Σ̃i

for all i, which is considered fixed for the second step of QGPML estimation.
A multivariate normal distribution is chosen as assumed distribution for yi

given Xi:
yi|Xi ∼ N(µi, Σ̃i) .

The kernel of an individual (pseudo) loglikelihood function is given by

li(β|Σ̃i) = −1
2
(
yi − µi

)
Σ̃
−1

i

(
yi − µi

)
.

The resulting estimating equations are obtained by differentiating the
normed pseudo loglikelihood function with respect to β. They are termed
generalized estimating equations of order 1, and they are given by

u(β̂) =
1
n

n∑

i=1

D̂
′
iΣ̃

−1

i ε̂i = 0 . (6.4)

These estimating equations slightly differ from the GEE proposed by Liang
and Zeger (1986). Specifically, Liang and Zeger (1986) did not fix the complete
working covariance matrix in their estimating equations using α̃, β̃, and Ψ̃ .
Instead, they fixed only α̃ and Ψ̃ . Subsequently, they allowed β to vary in the
variance function h(µit). This difference is negligible for applications because
the two steps from QGPML estimation are repeated until convergence.

A remark has to be made about the correct specification of the mean
structure at this point. The specification of the mean structure consists of
two parts, the choice of the link function g and linear combination of the
independent variables x′iβ. For GEE, the assumption that the mean struc-
ture needs to be correctly specified can be weakened as shown by Park and
Weisberg (1998). They showed that under common circumstances, consistent
estimates of regression coefficients are obtained even if the link function in
the generalized linear model is misspecified. The misspecification of the link
function can be tested using a goodness-of-link test as described by Molefe
and Hosmane (2007).
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6.3.4 Examples for working covariance and correlation
structures

In this section, we consider common choices for working correlation matrices.
Let the working correlation between subjects t and t′ of cluster i be %itt′ =
Corr(yit, yit′). The elements %itt′ are summarized to Ri = Corr(yi|Xi).
Finally, we note that the assumption of independence of clusters implies
Corr(yit, yjt′) = 0 for i 6= j.

Standard choices for working correlation matrices in standard software
packages are (Ziegler, 2012)
• fixed,
• independent,
• exchangeable,
• m-dependent,
• autoregressive, and
• unstructured.
Below, we also consider several non-standard working correlation structures.

Example 6.7 (Fixed working correlation structure). A simple but rarely used
working correlation structure is the fixed working correlation structure, which
is also termed the user-defined working correlation structure (common abbre-
viations: FIX, FIXED, USER). Here, the researcher pre-specifies not only the
structure of the working correlation matrix but also all values of the working
correlation matrix.

If the fixed working correlation structure is used and if no scale parameter
Ψ of the variance vit is included in the model, the estimating equations can be
solved by PML1 estimation, and they do not require QGPML (Sect. 5.3.5).

Example 6.8 (Independent working correlation structure). The IEE from Sect.
6.3.2 represent a special case of the more general GEE1 (Eq. 6.4) by let-
ting Ri(α) equal the identity matrix. The working correlation structure is
the independent working correlation structure (common abbreviations: IND,
INDE, INDEP). Here,

Corr(yit, yit′) =

{
1, if t = t′ ,
0, if t 6= t′ .

No correlation parameter needs to be estimated in this case.

Example 6.9 (Exchangeable working correlation structure). The exchangeable
working correlation structure, also termed the compound symmetry working
correlation structure, is a natural choice in family studies and household
studies, i.e., in the case of cluster sampling (common abbreviations: EX,
EXCH, CS). It is given by
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Corr(yit, yit′) =

{
1, if t = t′ ,
%, if t 6= t′ .

The number of parameters to be estimated is 1.
Although this working correlation structure assumes that the correlation

between all observations within a cluster is equal, it generally is a good choice
even if the true correlation differs slightly between observations in a cluster. It
is often also appropriate if the correlation varies between clusters, e.g., if two
different treatments, say treat1 and treat2, are applied, leading to correlations
%1 and %2.

Example 6.10 (Stationary working correlation structure). A working corre-
lation structure that might be of interest for use with longitudinal data is
the stationary working correlation structure (common abbreviations: STA,
STAT). Here, all measurements with a specific distance in time have equal
correlations, and the general definition of the stationary working correlation
is

Corr(yit, yit′) =

{
1, if t = t′ ,
%|t−t′|, if t 6= t′ .

The number of parameters to be estimated is T − 1.

Example 6.11 (m-dependent stationary working correlation structure).
The m-dependent stationary working correlation structure is a simplifica-

tion of the stationary working correlation structure (common abbreviation:
MDEP(m), where m is a number for the depth). The assumption is that
there is a band of stationary correlations such that all correlations are trun-
cated to zero after the mth band. This does not adequately reflect biological
structures over time, and it therefore is not often used in applications. The
definition of the m-dependent correlation is

Corr(yit, yit′) =





1, if t = t′ ,
%t−t′ , if t 6= t′ and |t− t′| ≤ m,

0, if |t− t′| > m .

The number of parameters to be estimated equals the band width m. If
m = T − 1, the m-dependent stationary working correlation structure equals
the stationary working correlation structure.

Example 6.12 (m-dependent non-stationary working correlation struc-
ture). A generalization of the m-dependent working correlation structure is
the m-dependent non-stationary working correlation structure, which is given
by

Corr(yit, yi,t′) =





1 if t = t′ ,
%t,s if |t− t′| = s ≤ m,

0 if |t− t′| > m .
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The number of parameters to be estimated equals
∑m

l=1(T − l) and depends
on both the band width and the cluster size.

This working correlation structure is rarely used in applications because
it does not adequately reflect the biological nature of the data.

Example 6.13 (Autoregressive working correlation structure). A more reason-
able working correlation structure for repeated measurements than the m-
dependent working correlation structures is the autoregressive working cor-
relation of order 1 (common abbreviations: AR, AR(1)). It is given by

Corr(yit, yit′) =

{
1, if t = t′ ,
%|t−t′|, if t 6= t′ .

The number of parameters to be estimated is 1.
This working correlation structure is often used in applications. It reflects

that all observations are correlated but with an exponential decay of the
correlation over time.

Example 6.14 (m-dependent autoregressive working correlation struc-
ture). In the m-dependent autoregressive working correlation, a band is in-
troduced in analogy to the m-dependent stationary working correlation struc-
ture. It is given by

Corr(yit, yit′) =





1, if t = t′ ,
%|t−t′|, if t 6= t′ and |t− t′| ≤ m,

0, if |t− t′| > m .

The number of parameters to be estimated is 1. The m-dependent autoregres-
sive working correlation structure equals the AR(1) structure if m = T − 1.

It is not often used in applications because it does not reflect the biological
nature of the data.

Example 6.15 (Combination of exchangeable and AR(1) working correlation
structure). In econometric applications, the working structure sometimes is a
combination of the exchangeable and the AR(1) structure, and the variances
and covariances of this combination are

σtt′ =





σ2
α + σ2

γ

1−%2 if t = t′ ,

σ2
α + σ2

γ

1−%2 %|t−t′| if t 6= t′ .

Here, σ2
α is the variance of a random effects model, % is the correlation of yit

and yit′ , and σ2
γ reflects the variance of an AR(1) process. As a result, the

following working correlation structure is obtained for t 6= t′:

%tt′ = α1 + α2%
|t−t′| .
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Estimation of this working correlation structure requires nonlinear optimiza-
tion. This working correlation structure is therefore not available as a stan-
dard option in common GEE software packages.

Example 6.16 (Unstructured working correlation). The final common working
correlation does not make any assumption on a specific structure, and it
is therefore called the unstructured working correlation structure (common
abbreviations: UN, UNSTR). It is defined as

Corr(yit, yit′) =

{
1, if t = t′ ,
%tt′ , if t 6= t′ .

The number of parameters to be estimated is T (T−1)/2, and it may therefore
suffer from instability (for a recent example, see, Ziegler and Vens, 2010).
It is generally useful only if there is a natural ordering of the observations
within a cluster. Furthermore, cluster sizes should be similar because it is
not reasonable to estimate a correlation coefficient from one or two pairs of
observations.

Example 6.17 (Spatial correlation structure). In most applications, correla-
tions between sampling units are positive (see, e.g., Ziegler, 2012). Examples
of negative correlations are uncommon but they deserve special attention. In
forest damage surveys, the state of a tree, e.g., the degree of defoliation, is
measured. A typical survey uses a grid with rectangular meshes over a map
in the survey area. For each grid point, the damage is measured for a fixed
number of trees next to the grid point. In this example, a spatial periodic
variation can be observed (Baradat et al., 1996), and in some examples, it
might be described by simple sine curves (Cochran, 1963, pp. 218-219). As a
result, a reasonable working correlation structure in this case could be

Corr(yit, yit′) =

{
1, if t = t′ ,
(−1)t−t′%|t−t′|, if t 6= t′ ,

or

Corr(yit, yit′) =





1, if t = t′ ,

(−1)t−t′
sin

(
2π |t−t′|

T−1

)

2π |t−t′|
T−1

, if t 6= t′ .

The latter example is only reasonable for larger sine waves, say T ≥ 10, while
the first example is also reasonable for shorter waves, i.e., T ≤ 5.

The choice of the working correlation matrix has been discussed in several
articles, and the reader may refer to the literature (Hin and Wang, 2009;
Molenberghs, 2010; Sabo and Chaganty, 2010; Shults et al., 2009; Shults,
2011; Ziegler and Vens, 2010).
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6.4 Generalizations

In this section, two generalizations of QGPML are considered that are of
great importance for GEE1. First, we discuss the analysis of time depen-
dent parameters, and second, we extend the QGPML approach to ordinal
dependent variables.

6.4.1 Time dependent parameters

In all previous sections, we implicitly assumed that the parameter vector of
interest is constant over the different time points t. The extension to time-
varying parameters has been discussed in several articles (see, e.g., Davis,
1991; Schildcrout and Heagerty, 2005; Stram et al., 1988; Wei and Stram,
1988).

We start by considering the mean and variance of yit given xit:

E(yit|xit) = µit = g(x′itβt) and Var(yit|xit) = Ψt h(µit) .

This generalization implies that the first column vectors xi1, . . . , xiT are
not stacked to a T × p matrix Xi = (x′i1, . . . , x

′
iT )′ for the analysis of time-

varying parameters. One forms the p T× matrix

X∗
i =




x′i1 0 · · · 0

0 x′i2
. . .

...
...

. . . . . . 0
0 · · · 0 x′iT




= Xi ⊗ IT ,

and the p T dimensional parameter vector β = (β′1, . . . , β
′
T )′ instead. Here,

⊗ is the Kronecker product and IT denotes the T × T identity matrix. As a
result,

Xiβ =




x′i1β1
...

x′iT βT


 .

Because time-point-specific measurements are independent, time-point-
specific estimating equations are given by

u(β̂t) =
1
n

n∑

i=1

∂µ̂it

∂βt

ṽ−1
it

(
yit − µ̂it

)
= 0 .

For the sake of simplicity, an independence working correlation matrix is used
for different time points. The vector β̂ = (β̂

′
1, . . . , β̂

′
T )′ is jointly asymptot-
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ically normally distributed, and the estimator of the covariance matrix has
been given, e.g., by Wei and Stram (1988).

The use of this extension in one of the standard GEE programs is sim-
ple. They require only specification of the design matrix X and the vector
of dependent variables y. The vector of dependent variables is not altered.
Finally, X∗

i is obtained by using the Kronecker product as described above.
In many studies with repeated measurements, it is of interest whether pa-

rameters are time dependent or constant over time. Such restrictions can be
tested using, e.g., the minimum distance estimation (MDE) approach (Sect.
4.3). It is, however, important to note that for dichotomous dependent vari-
ables, only proportionality of parameters can be tested, and not the equality
of parameters.

This phenomenon is best explained using the univariate threshold model of
Sect. 3.1.4. We have already seen that two restrictions had to be introduced
for guaranteeing identifiability of parameters. Specifically, the threshold pa-
rameter τ and the variance σ2 were set to 0 and 1, respectively. As a result,
the parameter β is identifiable only up to scale, and only the latent param-
eters β∗t = βt

/
σt are identified in the longitudinal setting. Therefore, the

equality hypothesis
H0 : β1 = . . . = βT

cannot be tested but the hypothesis of proportionality can, i.e.,

H∗
0 : β∗1 = . . . = β∗T .

Finally, we note that equality can be tested for count data with an assumed
Poisson distribution.

6.4.2 Ordinal dependent variables

The extension of QGPML to correlated nominal and ordered categorical de-
pendent variables has been discussed, by Miller et al. (1993) and Lipsitz
et al. (1994b), respectively. Here, we consider the case of correlated ordinal
dependent variables. Let the ordered categorical response of all individuals
be coded as 1, . . . , C. C − 1 dummy variables are required to specify all cat-
egories. Therefore, the response yit is extended to a response vector yit of
length C − 1, where

yitc =

{
1, if yit ≤ c ,

0, otherwise .

As a result, the response vector yi of cluster i is of length T · (C−1), and the
matrix of independent variables has to be increased accordingly. Specifically,
each row x′it of Xi has to be repeated C−1 times. Finally, the resulting matrix
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of independent variables is increased by C − 2 columns of dummy variables.
These are required to model the threshold ϑ of the different categories.

With these specifications, estimation can proceed as before. However, the
investigator should check whether the threshold values θ are increasing.

For illustration, we consider the following example.

Example 6.18. We assume that yit has four categories so that three thresholds
θ are required. Subsequently, two additional dummy variables are needed. The
resulting matrix of independent variables is given by

X ′
i =




1 0 0 1 0 0 . . . 1 0 0
0 1 0 0 1 0 . . . 0 1 0

xi1 xi1 xi1 xi2 xi2 xi2 . . . xiT xiT xiT


 ,

where xit is the vector of independent variables of observation t at cluster i.

The working correlation matrix should make use of the covariance struc-
ture of the ordered categorical responses. If the covariance structure of the
multinomial distribution is ignored, one can use any working correlation ma-
trix of Sect. 6.3. If the multinomial structure of the data is taken into account,
a reasonable working correlation is

Ri(α) =





1 if t = t′, c = c′ ,

−µitcµitc′√
µitc(1− µitc)µitc′(1− µitc′)

if t = t′, c 6= c′ ,

Corr(yitc, yit′c′) if t 6= t′, c, c′ arbitrary .

A simplification of this working correlation structure is obtained by assuming
that the correlation between different time points of an individual equals 0
so that Corr(yitc, yit′c′) = 0, and the working correlation matrix of a cluster
is block diagonal.



Chapter 7

Pseudo maximum likelihood
estimation based on the quadratic
exponential family

In the last two chapters, we considered approaches for estimating the mean
structure, and the association structure was nuisance. Specifically, in Chapt.
5 the covariance matrix was considered fixed, while it was estimated in a
two-step procedure in the previous chapter. In many applications, the associ-
ation structure is, however, of primary interest. Here, we therefore extend the
pseudo maximum likelihood (PML) approach to the simultaneous consistent
estimation of the mean and the association structure. Because the first two
moments are of primary interest, the approach is termed the PML2 method.

This chapter is organized as follows. We define the PML2 estimator in
Sect. 7.1 and derive its asymptotic properties in Sect. 7.2. Illustrations of
PML2 estimation are provided in Sect. 7.3. Here, four different examples are
provided. In the first three examples, we use the second centered moments as
the measure of association. Specifically, we first consider the generalized es-
timating equations of order 2 (GEE2) with an assumed normal distribution.
Second, we deal with the special case of dichotomous dependent variables or
count data. Third, we use a general quadratic exponential family. Finally,
we derive the GEE2 for dichotomous dependent variables using the second
ordinary moments as the measure of association. All of these GEE2 have the
disadvantage that the set of estimating equations for the mean structure and
the association needs to be solved simultaneously. Therefore, a simplification
of the GEE2 is desirable, allowing one to separately solve the two estimat-
ing equations. The simplification based on the second ordinary moments as
the measure of association is termed alternating logistic regression (ALR).
The disadvantage of these GEE2 is that they cannot be derived from PML2
estimation although they are a straightforward simplification of the fourth
example. However, they can be derived using the generalized method of mo-
ments (GMM); see the next chapter. We finally note that GEE2 using the
second standardized moments as the measure of association have been pro-
posed in the literature, and they cannot be derived from the PML2 approach
but GMM estimation. They are therefore considered in the next chapter.

101A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_7, © Springer Science+Business Media, LLC 2011  
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7.1 Definition

Consider a sample of n independently distributed T -dimensional random vec-
tors yi, and Xi is the T × p matrix of stochastic and/or fixed explanatory
variables of subject i. The true but unknown density (or probability mass
function for discrete random vectors) of yi given Xi is denoted by f?(yi|Xi)
with conditional expectation µi = IEf?(yi|Xi||β0) and conditional covari-
ance matrix Varf?(yi|Xi||β0, α0) = Ω?

i .
The true density f? may differ from the assumed density f . The assumed

conditional pseudo density f of yi given Xi is parameterized in the p × 1
parameter vector β and the q × 1 parameter vector α. It is assumed that
both the mean structure and the covariance matrix are correctly specified so
that µi = IEf?(yi|Xi) = IEf (yi|Xi||β0) and Ω?

i = Varf?(yi|Xi||β0, α0) =
Varf (yi|Xi||β0, α0) = Σi.

Estimation is based on a pseudo density from the quadratic exponential
family, and the assumed density of cluster i is

f(yi|Xi||ϑi,λi) = exp
(
ϑ′iyi − di(ϑi, λi) + bi(yi) + λ′iwi

)

= f(yi|Xi||µi, Σi) = exp
(
c(µi, Σi)′yi − d

(
c(µi, Σi), j(µi, Σi)

)

+ b(yi) + j(µi, Σi)′wi

)
.

Second-order identifiability guarantees the existence of a global maximum
at ξ0 = (β′0, α

′
0)
′. This means that µ(Xi, β0) = µ(Xi, β1) ⇒ β0 = β1

and Σ(Xi, β0,α0) = Σ(Xi, β0,α1) ⇒ α0 = α1 are required to hold. As a
result, the matrix of second derivatives of the pseudo likelihood function is
positive definite in a neighborhood of α0.

In summary, PML2 estimation is based on the stochastic model

yi = µ(Xi, β0) + εi with IEf (εi|Xi) = 0

µ(Xi,β0) = IEf?(yi|Xi) = IEf (yi|Xi)
Σi = Varf?(yi|Xi||β0,α0) = Varf (yi|Xi||β0,α0) ,

where the assumed conditional density f belongs to the quadratic exponential
family.

Definition 7.1 (PML2 estimator). A pseudo maximum likelihood estima-
tor for the mean and the association structure or, briefly, PML2 estimator of
ξ = (β′, α′)′ is any value ξ̂ = (β̂

′
, α̂′)′ maximizing the kernel of the normed

pseudo loglikelihood function

l(β, α) =
1
n

n∑

i=1

ln exp
(
ϑ′iyi − di(ϑi, λi) + bi(yi) + λ′iwi

)
.
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7.2 Asymptotic properties

In this section, the asymptotic properties of PML2 estimators are formu-
lated. The required regularity conditions and detailed proofs can be found in
Gourieroux et al. (1984b, pp. 682, 687, 692). To repeat, a fundamental as-
sumption is that the assumed distribution belongs to the linear exponential
family.

Theorem 7.2 (Properties of PML2 estimators).
1. There asymptotically exists a PML2 estimator ξ̂ for ξ0.

2. The PML2 estimator ξ̂ converges almost surely to the true parameter vec-
tor ξ0.

3. Using the second ordinary moments, the score vector of ξ is given by

u(ξ) = u

(
β
α

)
=

n∑

i=1

M̃
′
iṼ

−1

i m̃i ,

where

M̃ i =




∂µi

∂β′
0

∂νi

∂β′
∂νi

∂α′


, Ṽ i =

(
Σi Cov(yi, wi)

Cov(wi,yi) Var(wi)

)
, m̃i =

(
yi − µi

wi − νi

)

with νitt′ = IEf (yityit′ |Xi), νi = (νi11, νi12, . . . , νiTT )′, and wi = (y2
i1,

yi1yi2, . . . , yi1yiT , y2
i2, yi2yi3, . . . , y

2
iT )′. Ṽ i is the working covariance matrix

consisting of the correctly specified second-order moments Σi and possibly
misspecified third- and fourth-order moments.

4. The PML2 estimator ξ̂ = (β̂
′
α̂)′ for ξ0 = (β′0, α

′
0)
′ using the second

ordinary moments is asymptotically normal. More specifically,

√
n(ξ̂ − ξ0)

a∼ N
(
0,

(
A(ξ0)

)−1
B(ξ0)

(
A(ξ0)

)−1
)

,

where

A(ξ) = IEX(
IEy

f? −Wi(ξ)
)

= IEX(
M̃

′
iṼ

−1

i M̃ i

)

and

B(ξ0) = IEX
(
IEy

f?(ui(ξ)ui(ξ)′
))

= IEX(
M̃

′
iṼ

−1

i Γ̃ iṼ
−1

i M̃ i

)

are the Fisher information matrix of ξ and the outer product gradient
(OPG), respectively. Γ̃ denotes the covariance matrix Varf

(
(y′i, w

′
i)
′) of

(y′i,w
′
i)
′ under the true distribution f .
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5. Strongly consistent estimators of A(β0, α0) and B(β0, α0) using the sec-
ond ordinary moments are given by

Â
(
ξ̂
)

= Â

(
β̂
α̂

)
=

1
n

n∑

i=1

(
ˆ̃M
′
i
ˆ̃V
−1

i
ˆ̃M i

)

and

B̂
(
ξ̂
)

= B̂

(
β̂
α̂

)
=

1
n

n∑

i=1

(
ˆ̃M
′
i
ˆ̃V
−1

i
ˆ̃Γ i

ˆ̃V
−1

i
ˆ̃M i

)
,

where ˆ̃M i is the estimated matrix of first derivatives of the mean and
the association structure with respect to the parameter vector, ˆ̃V i is the
estimator of the covariance matrix of the assumed distribution, and Γ̃ i is

replaced by ˆ̃Γ i = ˆ̃mi
ˆ̃m
′
i =

(yi−µ̂i

wi−ν̂i

)(yi−µ̂i

wi−ν̂i

)′
with ν̂i = ν(Xi, β̂, α̂).

6. Using the second central moments, the score vector for ξ is given by

u(ξ) = u

(
β
α

)
=

n∑

i=1

M ′
iV

−1
i mi ,

where

M i =




∂µi

∂β′
0

∂σi

∂β′
∂σi

∂α′


, V i =

(
Σi Cov(yi, si)

Cov(si, yi) Var(si)

)
,mi =

(
yi − µi

si − σi

)

with si = (si11, si12, . . . , siTT )′, σi = (σi11, σi12, . . . , σiTT )′, sitt′ = (yit −
µit)(yit′−µit′), and σitt′ = νitt′−µitµit′ . V i is the working covariance ma-
trix consisting of correctly specified second-order moments Σi and possibly
misspecified third- and fourth-order moments.

7. The PML2 estimator ξ̂ = (β̂
′
α̂)′ for ξ0 = (β′0, α′0)

′ using the second
central moments is asymptotically normal. More specifically,

√
n(ξ̂ − ξ0)

a∼ N
(
0,

(
A(β0, α0)

)−1
B(β0,α0)

(
A(β0,α0)

)−1
)

,

where

A(ξ) = IEX(
IEy

f? −Wi(ξ)
)

= IEX(
M ′

iV
−1
i M i

)

and

B(ξ0) = IEX
(
IEy

f?(ui(ξ)ui(ξ)′
))

= IEX(
M ′

iV
−1
i Γ iV

−1
i M i

)
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are the Fisher information matrix of ξ and the OPG, respectively, and Γ
denotes the covariance matrix Varf

(
(y′i, s

′
i)
′) of (y′i, s

′
i)
′ under the true

distribution f .
8. Strongly consistent estimators of A(β0, α0) and B(β0, α0) using the sec-

ond central moments are given by

Â
(
ξ̂
)

= Â

(
β̂
α̂

)
=

1
n

n∑

i=1

(
M̂

′
iV̂

−1

i M̂ i

)

and

B̂
(
ξ̂
)

= B̂

(
β̂
α̂

)
=

1
n

n∑

i=1

(
M̂

′
iV̂

−1

i Γ̂ iV̂
−1

i M̂ i

)
,

where M̂ i is the estimated matrix of first derivatives of the mean and
the association structure with respect to the parameter vector, V̂ i is the
estimator of the covariance matrix of the assumed distribution, and Γ i is

replaced by Γ̂ i = m̂im̂
′
i =

(
yi − µ̂i

si − σ̂i

)(
yi − µ̂i

si − σ̂i

)′
with σ̂i = σ(Xi, β̂, α̂).

9. Necessary for the strong consistency of a PML2 estimator associated with
a family of assumed distributions f(yi|Xi||β, α) for any parameter space,
parameter vector ξ = (β′,α′)′, mean structure, association structure,
and true distribution f? is that the assumed distribution belongs to the
quadratic exponential family.

Remark 7.3.
• One assumption in the estimating equations is ∂µi/∂α′ = 0. In fact, the

mean structure µi should depend only on the mean structure parameter
β, but it should be independent of the parameter α characterizing the
association structure. However, the association structures νi and σi may
depend on the mean structure parameter. For example, the variance vit in
GLM generally is a function of the mean µit.

• The estimating equations generally need to be solved jointly, i.e., in a one-
step procedure. A separation in one set of estimating equations for β and
another one for α is only possible under specific assumptions, which will
be discussed below.

• If investigators assume the independence of the association structure and
the mean structure parameter, i.e., if they assume, e.g., ∂σi/∂β′ = 0, the
matrix of first derivatives M i is block diagonal. As a result, the estimating
equations reduce to

0 = û

(
β

α

)
=

n∑

i=1




∂µ̂′i
∂β

0

0
∂σ̂′i
∂α




(
Σ̂i Ĉov(yi, si)

Ĉov(si, yi) V̂ar(si)

)−1 (
yi − µ̂i

si − σ̂i

)
.
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These estimating equations can be separated, and one obtains for the first
set of estimating equations

0 =
n∑

i=1

(
∂µ̂′i
∂β

Σ̂
−1

i (yi − µ̂i) +
∂µ̂′i
∂β

Ĉov(yi, si)−1(si − σ̂i)
)

.

Thus, the parameters need to be orthogonal for consistent estimation of
β. This means that the covariance matrix Var

(
(y′i, s

′
i)
′) needs to be block

diagonal. Using the orthogonality condition, the estimating equations can
be rewritten as

0 =
n∑

i=1




∂µ̂′i
∂β

0

0
∂σ̂′i
∂α




(
V̂ar(yi) 0

0 V̂ar(si)

)−1 (
yi − µ̂i

si − σ̂i

)
.

These estimating equations are generally termed “ad hoc estimating equa-
tions” in the literature.
If parameters are indeed orthogonal, these estimating equations yield con-
sistent and jointly asymptotically normally distributed parameter estima-
tors β̂ and α̂. If these estimating equations are used when ∂σ′i/∂β = 0
does not hold, β̂ will remain consistent for β, but α̂ will not be a consistent
estimator for α, in general.
In most applications, this will be the case since α is not defined via σi

but internally using a “working correlation matrix” (cf. Section 5.1) and
a transformation from the second standardized to the second central mo-
ments.

Proof. The proof follows the lines as the proof of the asymptotic properties
for PML1 estimation (Theorem 5.2) because the quadratic exponential family
can be embedded in the framework of the linear exponential family. In detail,
1.: Existence: See White (1981, Theorem 2.1).
2.: Consistency: The proof is carried out analogously to the proof of the
consistency of Theorem 5.2 for which a detailed proof has been given, e.g.,
by Gourieroux et al. (1984b, Theorem 4). To prove the strong consistency,
we have to show that the expected value of the kernel of the loglikelihood
has a unique maximum at ξ0 = (β′0, α

′
0)
′. This is true because

IEXIEy
ξ0

(
l(ξ)

)
= c(µi0, Σi0)′IEXIEy

ξ0
(yi) + a(µi0,Σi0) + j(µi0,Σi0)′IEXIEy

ξ0
(wi)

= c(µi0, Σi0)′µi0 + a(µi0, Σi0) + j(µi0, Σi0)′νi0 ,

where µi0 = µ(Xi, β0) and νi0 is defined analogously. The result now follows
from Property 2.3 and the second-order identifiability of β and α.
3.: Score equations using the second ordinary moments: Differentiation of the
kernel of the individual pseudo loglikelihood function based on the quadratic
exponential family li(β,α) = ϑ′iyi − d(ϑi, λi) + λ′iwi with respect to β and
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α yields

u(ξ) = u

(
β
α

)
=

∂li

∂

(
β
α

) =
∂(µ′i, ν

′
i)

∂

(
β
α

) · ∂(ϑ′i, λ
′
i)

∂

(
µ
ν

) · ∂li

∂

(
ϑi

λi

)

=




∂µi

∂β′
∂µi

∂α′

∂νi

∂β′
∂νi

∂α′




′


∂ϑi

∂µ′
∂ϑi

∂ν′

∂λi

∂µ′
∂λi

∂ν′







∂li
∂ϑ

∂li
∂λ


 = M̃

′
iṼ

−1

i m̃i .

(7.1)

Summation yields the required result since ∂µi/∂α′ = 0.
4.: The asymptotic normality can be shown analogously to the asymptotic
normality of Theorem 5.2.
5.: Estimation: See White (1982, Theorem 3.2) using the argument that the
properties of the linear exponential family can be carried over to the linear
exponential family.
6.: Score equations using the second central moments: For a transformation
to the second central moments νitt′ = σitt′ + µitµit′ , a block matrix Qi is
used in order to write m̃i = Qimi, Ṽ i = QiV iQ

′
i and M̃ i = QiM i. The

block matrix Qi yielding the desired result is given by

Qi =
(

IT 0
Li IT (T+1)/2

)
,

where IT is the T × T identity matrix and L′i = (L′i1, . . . , L
′
iT ) is defined by

Li1 =




2µi1 0
µi2 µi1

...
. . .

...
µiT 0 µi1


 , T × T ,

Li2 =




0 2µi2 0
0 µi3 µi2

...
...

. . .
...

0 µiT 0 µi2


 , (T − 1)× T ,

...

mailto:@�4.:
mailto:@�4.:
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Lit =




0 · · · 0 2µit 0
0 0 µi,t+1 µit

...
...

...
. . .

0 · · · 0 µiT 0 µit


 , (T − t)× T ,

︸ ︷︷ ︸
t−1

...

Li,T−1 =
(

0 · · · 0 2µi,T−1 0
0 · · · 0 µiT µi,T−1

)
, (2× T ) ,

LiT = (0, . . . , 0, 2µiT ) , (1× T ) .

As a result, Eq. 7.1 can be rewritten as

ui

(
β′, α′

)′ = M ′
iV

−1
i mi = M̃

′
iL
′
iL
′−1
i Ṽ

−1

i L′iL
′−1
i m̃i = M̃

′
iṼ

−1

i m̃i .

The modified Fisher information matrix and the OPG can be obtained as
before using the transformation matrix U i.
8.: Estimation: See White (1982, Theorem 3.2).
9.: Necessary condition for strong consistency: See Gourieroux et al. (1984b,
Appendix 3). ut

In the following, we give a simple example for PML2 estimation. More
complex examples, including several GEE2, are provided in the following
sections.

Example 7.4 (Difference between two means with common variance). Con-
sider the simple two-sample scenario, where y11, . . . , y1n1 and y21, . . . , y2n2

are independently identically distributed, y2i have mean µ1 and y2i have
mean µ2, and there is a common variance σ2 (Royall, 1986). The normal
distribution is chosen as assumed distribution.

The loglikelihood of all n1 + n2 observations is given by

l(µ1, µ2, σ
2) =− 1

2 (n1 + n2) ln σ2 − 1
2
(n1 + n2) ln(2π)

− 1
2

n1∑

i=1

(y1i − µ1)2

σ2
− 1

2

n2∑

i=1

(y2i − µ2)2

σ2
.

In this example, β = (µ1, µ2)′, and α = σ2. The regression matrix Xi of
individual i is either the vector (1, 0)′, if i belongs to the first group, or the
vector (0, 1)′, if i belongs to the second group of observations. For g = 1, 2
denoting the group, first- and second-order derivatives are given by
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∂l

∂µg
=

1
σ2

ng∑

i=1

(ygi − µg) ,
∂2l

∂µ2
g

= −ng

σ2
,

∂2l

∂µ1∂µ2
=

∂2l

∂µ2∂µ1
= 0 ,

∂l

∂σ2
= −1

2
n1 + n2

σ2
+

1
2

n1∑

i=1

(y1i − µ1)2

σ4
+

1
2

n2∑

i=1

(y2i − µ2)2

σ4
,

∂2l

∂(σ2)2
=

1
2

n1 + n2

σ4
−

n1∑

i=1

(y1i − µ1)2

σ6
−

n2∑

i=1

(y2i − µ2)2

σ6
,

∂2l

∂µg∂σ2
=

∂2l

∂σ2∂µg
= − 1

σ4

ng∑

i=1

(ygi − µg) .

The estimating equations for β = (µ1, µ2)′ and the parameter of association
α = σ2 are given by




µ̂1

µ̂2

σ̂2


 =




ȳ1

ȳ2

n1

∑n1
i=1(y1i − µ̂1)2 + n2

∑n2
i=1(y2i − µ̂2)2

n1 + n2


 =




ȳ1

ȳ2

n1σ̂
2
1 + n2σ̂

2
2

n1 + n2


 .

As a result, the expected Fisher information matrix, i.e., the model-based
covariance matrix, is diagonal, while the OPG is not diagonal. The Fisher
information matrix can be estimated by

Â




µ̂
ν̂
σ̂2


 = diag

(
n1

σ̂2
,
n2

σ̂2
,
1
2

n1 + n2

σ̂4

)
.

The robust covariance matrix can be estimated by

Ĉ =




σ̂2
1

n1
0

∑n1
i=1(y1i − ȳ1)3

n1(n1 + n2)

0
σ̂2

2

n2

∑n2
i=1(y2i − ȳ1)3

n2(n1 + n2)∑n1
i=1(y1i − ȳ1)3

n1(n1 + n2)

∑n2
i=1(y2i − ȳ1)3

n2(n1 + n2)
[Ĉ]33




with

[Ĉ]33 =
1

(n1 + n2)2
( n1∑

i=1

(
(y1i − ȳ1)2 − σ̂2

)2 +
n2∑

i=1

(
(y2i − ȳ2)2 − σ̂2

)2
)

.

Thus, robust confidence intervals for µ1 ± µ2 would replace the common
maximum likelihood variance estimator (n1+n2)σ̂2

/
(n1n2) by σ̂2

1/n1+σ̂2
2/n2.
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Furthermore, [Ĉ]33 can be used to derive a robust confidence interval for σ̂2

that is still valid, if the assumption of normality fails.

7.3 Examples

In this section, four examples for GEE are given, and we start with gen-
eral GEE2 using an assumed normal distribution and the second centered
moments as the measure of association.

7.3.1 Generalized estimating equations 2 with an
assumed normal distribution using the second
centered moments

For continuous dependent variables, the domain of µit needs to be the real
line. Furthermore, σ2

it needs to be specified because it possibly is independent
of the mean µit. If the normal distribution is used as assumed distribution
for GEE2 estimation, the first two moments specify all higher order mo-
ments. Thus, a working covariance or working correlation matrix for third-
and fourth-order moments cannot be chosen, but it is fixed after specification
of the first two moments. At the same time, the advantage is that they need
not be estimated separately.

The assumed distribution of yi given Xi is the normal distribution with
mean from a generalized linear model (GLM), i.e., µi = µi1, . . . , µiT )′,
IE(yit|xit) = µit = g(x′itβ0) for which we write g(X ′

iβ0) as in the previ-
ous chapters. Furthermore, the covariance matrix is Σi, which is a function
of β0 and α0 so that

yi|Xi ∼ N
(
g(X ′

iβ0), Σi(Xi, β0,α0)
)
.

The GEE2 using the second centered moments as the measure of associa-
tion are given by

0 = u
(
ξ̂
)

= u

(
β̂

α̂

)
=

n∑

i=1

M̂
′
iΣ̂

−1

i m̂i .

Because the normal distribution is chosen as assumed distribution, third-
order moments are given by Cov(yi, si) = 0, and fourth-order moments are
(Anderson, 1984, p. 49)
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Cov(si,tt′ , si,rr′) = IE
(
(yit − µit)(yit′ − µit′)(yir − µir)(yir′ − µir′)

)

− σi,tt′σi,rr′

= σi,trσi,t′r′ + σi,tr′σi,t′r .

This completes the specification of the working covariance matrix.
We stress that although third- and fourth-order moments may be mis-

specified, both first- and second-order moments need to be correctly specified
for consistent estimation of both β0 and α0. We have already assumed the
specification of the mean structure through a link function from the GLM.
However, the association function, i.e., σitt′ = Cov(yit, yit′), also needs to be
specified as a function of β and α and the matrix of explanatory variables
Xi of subject i.

To model σitt′ , Prentice and Zhao (1991) used the transformation

σitt′ =
Corr(yit, yit′)√

σ2
itσ

2
it′

,=
k(xit, xit′)T αtt′

σitσit′

and they established a functional relationship between σitt′ and α using the
correlation coefficient:

Corr(yit, yit′) = k(xit, xit′)′αtt′ .

Here, k(xit,xit′) is a pre-specified function of xit and xit′ , which is a linear
function of α. Because the correlation coefficient is restricted to the interval
[−1; 1], Fisher’s z transformation is generally used as an association link
function:

Corr(yit, yit′) =
exp

(
k(xit, xit′)′α)

)− 1
exp

(
k(xit, xit′)′α)

)
+ 1

.

Finally, the variance σ2
it needs to be specified. For most dependent vari-

ables, the variance function from a GLM can be used. For continuous data,
the log link to guarantee positivity,

σ2
it = exp(x′itα) , (7.2)

is often used. This completes the model specification. This variance is as-
sumed to be independent of β. In the literature, the association parameter
for the variance function (7.2) is often denoted by φ, and a set of three es-
timating equations, i.e., for the mean structure, the variance function, and
the correlation coefficient, is constructed (see, e.g., Yan and Fine, 2004). By
considering the GEE2 as a special case of PML2 estimation, this distinction
is not required.

The asymptotic normality of the resulting estimator ξ̂ =
(
β̂
′
, α̂′

)′ follows
from Theorem 7.2. Estimation based on the normal distribution chosen as
assumed distribution is reasonable, if the true distribution is close to the
normal distribution. Furthermore, implementation in a computer package is



112 7 PML estimation based on the quadratic exponential family

convenient. Computation time needed for estimation is low, because moments
of order three are 0, and fourth-order moments are calculated from lower
order moments. This is especially important for applications with categorical
dependent variables. For example, if yi can take three different values and
if T = 4, estimation of third- and fourth-order moments requires summation
over 33 = 27 and 34 = 81 terms (Prentice and Zhao, 1991, p. 830). Estimation
of these moments has to be repeated during the iterations. Therefore, it is
common to express third- and fourth-order moments as functions of first- and
second-order moments.

7.3.2 Generalized estimating equations 2 for binary
data or count data with an assumed normal
distribution using the second centered moments

In this short section, we specifically consider the case of dichotomous depen-
dent variables. To this end, we assume that yi is a vector of binary random
variables. The mean structure is assumed to be defined by IE(yit|xit) = µit =
F (x′itβ0) for some cumulative distribution function F . The variance function
from the binomial distribution is chosen so that σ2

it = µit(1 − µit). Finally,
we use σitt′ = Corr(yit, yit′)

/(
σitσit′

)
to model the relationship between the

covariance σitt′ and α. As in the previous section, we choose Fisher’s z as an
association link:

Corr(yit, yit′) =
exp

(
k(xit, xit′)′α)

)− 1
exp

(
k(xit, xit′)′α)

)
+ 1

.

In some cases, estimation using the normal distribution as assumed distri-
bution is not very efficient because higher order moments are neglected in the
quadratic exponential family. Nevertheless, the GEE2 with assumed normal
distribution may be applied, and it yields consistent parameter estimates of
both the mean and the association structure if first- and second-order mo-
ments are correctly specified.

The use of the assumed normal distribution for dichotomous dependent
variables allows the following simplification. PML2 estimation includes a
function for the conditional variances σ2

it = Var(yit|Xi) because these need
not be completely specified by the conditional mean IE(yit|Xi). With the as-
sumption of the binomial distribution, the conditional variance is a function
of the mean, and the variances can be omitted from estimation.

The number of parameters of the covariance matrix to be estimated is
reduced to T (T−1)

2 from T (T+1)
2 . Correspondingly, the number of parameters

of the working covariance matrix is reduced to T
8 (T + 1)(T 2 + T + 2) from

T
8 (T + 1)(T 2 + 5T + 6). The algorithm for parameter estimation is, however,
not substantially changed because fourth-order moments are calculated from
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first- and second-order moments. The asymptotic properties of this special
case of PML2 estimation can be obtained by applying the continuous mapping
theorem to the results of Theorem 7.2.

The same principle for estimation can be used for count data. Here, the
log link yielding IE(yit|xit) = µit = exp(x′itβ0) is the natural choice. Using
the assumption σ2

it = µit and the model for the correlation coefficient from
above, specification of both first- and second-order moments is complete.

Again, we stress that the correct specification of first- and second-order
moments is required for consistent estimation of β and α. Subsequently, if
over- or underdispersion is present, the simple functional relation between
the mean and the variance does not hold anymore. σ2

it = vit = φh(µit)
is often used in these cases instead. In applications, φ is estimated either by
simple method of moments or by a third set of estimating equations (compare
previous section).

7.3.3 Generalized estimating equations 2 with an
arbitrary quadratic exponential family using the
second centered moments

In Sects. 7.3.1 and 7.3.2 the working covariance matrix was automatically
fixed by the normal distribution. Third-order moments were 0, and fourth-
order moments were products and sums of second-order moments. This has
two specific disadvantages for applications. First, if the variances are esti-
mated to be close to zero, the product of these may be even closer to zero,
and inversion of the working covariance matrix could be numerically unstable.
This, in turn, can lead to substantial convergence problems of the algorithm
for solving the GEE2.

Second, investigators might wish to choose specific structures for the work-
ing covariance structure to improve efficiency when the true underlying dis-
tribution is not close to the normal distribution. To overcome these problems,
Prentice and Zhao (1991) proposed to consider an arbitrary quadratic expo-
nential family using the second centered moments as the measure of associ-
ation. Specifically, the mean structure may be chosen as in Sect. 7.3.1, i.e.,
IE(yit|xit) = µit = g(x′itβ0). Furthermore, the variance is modeled using Eq.
7.2, i.e., Var(yit|Xi) = σ2

it = exp(x′itα). Finally, the covariances are modeled
via σitt′ = Corr(yit, yit′)

/(
σitσit′

)
, and Fisher’s z association link is chosen:

Corr(yit, yit′) =
exp

(
k(xit, xit′)′α)

)− 1
exp

(
k(xit, xit′)′α)

)
+ 1

.

This completes specification of the first two moments.
For estimation, the PML2 estimating equations based on the score vector

from Theorem 7.2, 6. are used. Therefore, we finally have to choose a spe-
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cific working covariance matrix for third- and fourth-order moments. Below,
several working covariance structures are given.

Example 7.5 (Independence working covariance matrix). A simple choice
is to assume independence of observations yi (Prentice and Zhao, 1991).
Then, Cov(yi, si) = 0, and Var(si) is diagonal with elements Var(si,tt′) =
Var

(
(yit − µit)2(yit′ − µit′)2

)
= σ2

itσ
2
it′ for i 6= j. By using the value from

the normal distribution for Var(si,tt) = Var
(
(yit−µit)4

)
= 2σ2

it, the working
covariance matrix is completely specified.
———

This independence working covariance matrix should be chosen only if
there is only a weak dependence between yit and yit′ . Furthermore, a sub-
stantial weakness of the independence working covariance matrix is that it
my be close to singularity if some values σ2

it are close to zero. We therefore
prefer the working covariance matrix for applications over the independence
covariance matrix. This working covariance structure has the flavor of the
working covariance matrix from Sect. 5.3.4.

Example 7.6 (Working covariance matrix for applications). The simplest
choice of the working variance matrix is (Ziegler et al., 1998)

Cov(yi, si) = 0 , and Var(si) = I .

This working covariance matrix has two advantages. First, it guarantees reg-
ularity of the lower part of the working covariance matrix. It thus avoids
convergence problems of GEE2 algorithms. Second, third- and fourth-order
moments need not be estimated, which increases the speed of the GEE2 al-
gorithm.

Example 7.7 (Common working correlation of third- and fourth-order mo-
ments). This working covariance matrix is a natural generalization of the
working covariance matrix under normality. Let

Cov(yit, si,rr′) = IE
(
(yit − µit)(yir − µir)(yir′ − µir′)

)
= γtrr′(σ2

itσ
2
irσ

2
ir′)

1/2

Cov(si,tt′ , si,rr′) = IE
(
(yit − µit)(yit′ − µit′)(yir − µir)(yir′ − µir′)

)

−σi,tt′σi,rr′ ,

= σi,trσi,t′r′ + σi,tr′σi,t′r + δtt′rr′

√
σ2

itσ
2
it′σ

2
irσ

2
ir′ ,

with additional parameters γtrr′ and δtt′rr′ , which can be estimated consis-
tently using means.
———

This working covariance matrix can be used to account for skewness and
kurtosis of the true distribution, which may deviate from the normal dis-
tribution. Hence, this working covariance structure will have good efficiency
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properties. However, convergence problems generally arise because of sparse-
ness of the data. A simpler version of this covariance matrix can be obtained
by equating specific parameters γtrr′ and δtt′rr′ . This is plausible, if some
elements of yi follow an exchangeable structure.

For dichotomous dependent variables, Prentice and Zhao (1991) proposed
the following generalization of the independence working covariance struc-
ture.

Example 7.8 (Independence with structural non zeros).

Cov(yit, si,tt′) = (1− 2µit)σi,tt′ ,

Var(si,tt′) = σ2
itσ

2
it′ − σ2

i,tt′ + (1− 2µit)(1− 2µit′)σi,tt′ ,

Cov(si,tt′ , si,tr) = σ2
itσit′r − σi,tt′σi,tr .

The major concern against the use of this working covariance structure in
applications is that it may result in a singular working covariance matrix for
two reasons. First, both Var(si,tt′) and Cov(si,tt′ , si,tr) include the product
of two variances, and this product can be close to 0. Second, one term is
subtracted for both Var(si,tt′) and Cov(si,tt′ , si,tr). This can again lead to
values close to 0. Furthermore, because of numeric instability, estimates of
Var(si,tt′) can be negative.

As a consequence, we have generally used the working covariance matrix
for applications in our own analyses.

7.3.4 Generalized estimating equations 2 for binary
data using the second ordinary moments

In the last three sections, the covariance was used as the measure of asso-
ciation. However, the functional relationship between the second centered
moments and the association parameter vector was established through a
transformation to the correlation coefficient. Specifically, the correlation co-
efficient was defined as a function of the association parameter α, but the
covariance σitt′ turned out to be a function of both β and α. An alternative
approach is to use the second ordinary moments and the odds ratio (OR)
as measure of association. This idea was proposed by Lipsitz et al. (1991),
who introduced ad hoc estimating equations, in which the possible depen-
dency of the association structure on β was ignored. The approach of Lipsitz
et al. (1991) has been extended by Liang et al. (1992) and Qaqish and Liang
(1992) to a full GEE2 approach. The OR as the measure of association has
two advantages over the correlation coefficient as the measure of association.
The association link function can be established in a more natural way. Fur-
thermore, for T = 2, the parameter space of the OR is not restricted, and
higher order restrictions are less severe than the restriction of the parameter
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space of the correlation coefficient. We stress, however, that all moments of
order three and above are set to 0 in the quadratic exponential family.

If the (log) OR is used as the measure of association, the estimating equa-
tions considered of Theorem 7.2, 3. are used to formulate the GEE2 with
the simplification that, in analogy to Sect. 7.3.4, the variances are not mod-
eled. The mean structure is chosen using a link function from the GLM, i.e.,
IE(yit|xit) = µit = F (x′itβ0), and the variance is modeled using the binomial
distribution, i.e., Var(yit|Xi) = σ2

it = µit(1− µit).
The second ordinary moments νitt′ = IE(yityit′ |Xi) are connected with

the OR τitt′ using Eq. 2.7. Therefore, the association link function can be
established by defining α as a linear function of the log odds ratio ln(τitt′):

ln(τitt′) = k(xit, xit′)′α .

As before, k is a function that correctly specifies the influence of the inde-
pendent variables on the log OR. This completes specification of the first two
moments.

Because νitt′ is a function of the OR and the marginal means µit and µit′ ,
νitt′ depends on both β and α. Subsequently, ∂νi/∂β 6= 0 so that the GEE2
from Theorem 7.2, 3. have to be solved simultaneously.

To complete specification of the GEE2, the working covariance matrix
needs to be chosen.

Example 7.9 (Working covariance matrix using properties for dichotomous
random variables). Because yit and witt′ are both dichotomous random vari-
ables with mean πit = µit and νitt′ , third-order moments are given by

Cov(yis, witt′) = IP(yis = yit = yit′ = 1)− µisνitt′ ,

and fourth-order moments are given by

Var(witt′) = νitt′(1− νitt′)
Cov(witt′ , wiss′) = IP(yis = yis′ = yit = yit′ = 1)− νitt′νiss′ .

For estimating µi,stt′ = IP(yis = yit = yit′ = 1) and µi,ss′tt′ = IP(yis =
yis′ = yit = yit′ = 1), either an iterative proportional fitting algorithm (IPF;
Heagerty and Zeger, 1996) or a Newton-Raphson type algorithm (Agresti,
1990, p. 188) can be used.
———

It is questionable whether the effort for estimating µi,stt′ and µi,ss′tt′

through CPU time-intensive algorithms is worthwhile because third- and
fourth-order moments are nuisance. Simplified working covariance matrices
might therefore be preferable in applications.

Example 7.10 (Diagonal working covariance matrix). To increase stability of
the working covariance matrix, third-order moments, i.e., the lower left block
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of the working covariance matrix, are often set to 0. Furthermore, the lower
right block is chosen to be diagonal with elements νitt′(1− νitt′).
———

A disadvantage of choosing νitt′(1 − νitt′) as diagonal elements is that
these can be close to 0 so that the working covariance matrix is close to
singularity. To avoid convergence problems of the algorithm, the working
covariance matrix for applications is a reasonable choice for GEE2 with the
second centered moments as the measure of association. This choice also has
the additional advantage that no further estimations are required.

Example 7.11 (Matrix for applications). Third-order moments are set to 0 for
the working covariance matrix for applications. The lower right block of the
working covariance matrix representing fourth-order moments is the identity
matrix.
———

Further choices of the working covariance matrix are possible. Their value
is, however, questionable.



Chapter 8

Generalized method of moment
estimation

The generalized method of moments (GMM) was introduced by Hansen in
1982. It is of great importance in econometrics because it provides a uni-
fied framework for the analysis of many well-known estimators, such as least
squares, instrumental variables (IV), and maximum likelihood (ML). Several
excellent book chapters and textbooks are available (Hall, 1993; Ogaki, 1993).
Here, we restrict our attention to the elements of GMM theory essential for
deriving the generalized estimating equations (GEE).

Therefore, some properties of GMM are derived first, and, second, some
special GMM estimators are derived that are equivalent to different GEE2
estimators. In the next section, the GMM estimator as required here is de-
fined.

8.1 Definition

In the previous chapters, we have considered likelihoods – either true or
assumed. GMM is not based on likelihoods at all but on moment conditions.
To give a simple example, we consider the simple linear model y = Xβ + ε,
where y is the n × 1 vector of dependent variables, X is the n × p matrix
of fixed or stochastic independent variables, β0 is the true p × 1 parameter
vector of interest, and ε is the n× 1 vector of errors.

The estimator β̂ is obtained by solving the normal equations X ′Xβ̂ =
X ′y, which can also be written as X ′(Xβ̂−y) = X ′ε̂ = 0. This means that
the estimated error ε̂ is orthogonal to the vector space spanned by the design
matrix X. This property characterizes the linear model, and it can be made
an essential moment condition: IEX IEy(

X ′ε
)

= 0.
For the general linear model with weight matrix Σ, this moment condition

can be generalized to IEX IEy(
X ′Σ−1ε

)
= 0, and for the generalized linear

model (GLM), it is IEX IEy(
D′Σ−1ε

)
= 0, where D = ∂µ

/
∂β′.

119A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6_8, © Springer Science+Business Media, LLC 2011  
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For the general case, we consider the T×1 vector yi of dependent variables,
the T × p matrix Xi of independent variables, and an r × 1 parameter of
interest ξ0. Note that we consider ξ, which generally is the stacked vector of
(β′, α′)′, where β is the p× 1 vector for the mean structure and α the q × 1
vector of the association structure.

We assume that for i = 1, . . . , n, moment conditions can be established
and written as

IEX IEy(
ψ(yi, Xi, ξ0)

)
= 0

for some continuous r × 1 function ψ. Note that we restrict our attention to
just identified models so that the parameter vector ξ has r components, and
the number of moment conditions is r, too. As before, the pairs (yi, Xi) are
assumed to be independently identically distributed. With this notation, we
can define the GMM estimator.

Definition 8.1. A GMM estimator is any value ξ̂ minimizing
(

1
n

n∑

i=1

ψ(yi, Xi, ξ)

)′(
1
n

n∑

i=1

ψ(yi,Xi, ξ)

)
= ψ(ξ)′ψ(ξ) . (8.1)

———

The reader should note that the GMM estimator is defined in a simple
way in Definition 8.1. Specifically, no positive definite weight matrix W is
involved that would give ψ(ξ)′Wψ(ξ) because we consider only just identified
models. For the general case, the reader may refer to the literature (see, e.g.,
Hall, 1993; Ogaki, 1993). Furthermore, we already note that the function ψ
is identical to the score vector from the previous chapters.

8.2 Asymptotic properties

In this section, the asymptotic properties of GMM estimators are formulated.
The required regularity conditions and detailed proofs can be found, e.g., in
Gourieroux and Monfort (1995a, p. 313) and Hansen (1982). To simplify
notation, ∂f(ξ̂)

/
∂ξ means that the first derivative of f(ξ) is taken with

respect to ξ, and the functional is then evaluated at ξ̂.

Theorem 8.2.
1. There exists a GMM estimator ξ̂ for ξ0.

2. The GMM estimator ξ̂ converges almost surely to the true parameter vector
ξ0.

3. The GMM estimator ξ̂ can be obtained by solving the first-order conditions
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u(ξ̂) =
1
n

n∑

i=1

ui(ξ̂) =
1
n

n∑

i=1

ψi(ξ̂) =
1
n

n∑

i=1

ψ(yi, Xi, ξ̂) = 0 .

4. The GMM estimator ξ̂ for ξ0 is asymptotically normal. More specifically,

√
n(ξ̂ − ξ0)

a∼ N
(
0,

(
A(ξ0)

)−1
B(ξ0)

(
A(ξ0)

′)−1
)

,

where

A(ξ0) =IEX
(
IEy ∂ui(ξ)

∂ξ′
)

and B(ξ0) = IEX
(
IEy(ui(ξ)ui(ξ)′

))

are the matrices for formulating the sandwich estimator of variance.
5. Strongly consistent estimators A(ξ0) and B(ξ0) are obtained by replacing

ξ0 with its estimator.
6. There exists a best GMM estimator. It is obtained when A(ξ0) = Var(ψi).

Remark 8.3. The formulation of the covariance matrix of the GMM estimator
in Theorem 8.2 seems to be different from the covariance matrix in the PML
framework. Specifically, the GMM covariance estimator is of a sandwich form,
the matrix A may, however, be non-symmetric. Despite the difference in form,
the covariance matrices for GEE estimators derived from PML or GMM are
identical, and the matrix A is symmetric in all examples considered here.
Therefore, the covariance matrix of the estimators will not be derived in this
chapter.

Proof.
1.: Existence: See Hansen (1982, Theorem 2.1).
2.: Consistency: See Hansen (1982, Theorem 2.1).
3.: First-order condition: This is a direct consequence by derivating Eq. 8.1
with respect to ξ.
4.: Asymptotic normality: The proof is straightforward. We use the first-
order conditions and take a Taylor series expansion around ξ0. We solve for√

n(ξ̂ − ξ0), and replace estimated averages with their probability limits.
Finally, Cramér’s theorem is applied to

√
n(ξ̂ − ξ0), which completes the

proof.
In detail, we have

1√
n

n∑

i=1

ûi(ξ̂) = 0 ,

implying
1√
n

n∑

i=1

ui(ξ0) +
1
n

n∑

i=1

∂ui(ξ0)
∂ξ′

√
n
(
ξ̂ − ξ0

) a.s.= 0 .

Thus,
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√
n
(
ξ̂ − ξ0

) a.s.= −IEX IEy
(∂ui(ξ0)

∂ξ

′) 1√
n

n∑

i=1

ui(ξ0) .

Finally, Cramér’s theorem allows us to deduce the desired result.
5.: Estimation: See Hansen (1982, Lemmata 3.2 and 3.3).
6.: Efficiency: This is a direct consequence of Hansen (1982, Theorem 3.2),
although Hansen considers the more general case of overidentified GMM with
some weight matrix W . ut

8.3 Examples

To illustrate the strength of the GMM, we consider some examples. A series
of applications can be found in the econometric literature, and the broad
variety of applications has been nicely summarized in different papers and
book chapters (see, e.g., Hall, 2005; Hansen and West, 2002; Jagannathan
et al., 2002). The task in GMM is to find the moments that define the function
ψ(yi, Xi, ξ). Therefore, emphasis is on the derivation of the minimand and
the first-order conditions.

8.3.1 Linear regression

First of all, we consider the classical univariate linear model. The model
equation is given by yi = x′iβ + εi for i = 1, . . . , n, where xi is the p dimen-
sional vector of independent variables, yi is the dependent variable, εi is the
residual, and β is the parameter of interest.

The well-known ordinary least squares estimation can be embedded into
the GMM framework by choosing

ψ(yi, Xi, ξ) = xi(yi − x′iβ) ,

where ξ = β. The moment conditions fulfill the orthogonality conditions
IE(xiεi) = 0, and the GMM estimator minimizes

( 1
n

n∑

i=1

xi(yi − x′iβ)
)′( 1

n

n∑

i=1

xi(yi − x′iβ)
)

,

which is formally different from the ordinary least squares estimator that
minimizes 1

n

∑n
i=1(yi − x′iβ)2. Of course, the resulting estimator coincides

with the GMM estimator in this case.
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8.3.2 Independence estimating equations with
covariance matrix equal to identity matrix

We reconsider the example from Sect. 5.3.4. Specifically, we formulate the
independence estimating equations (IEE) with identity covariance matrix
using the GMM method.

We consider the T -dimensional random vector yi = (yi1, . . . , yiT )′, and
its associated matrix of explanatory variables Xi = (xi1, . . . , xiT )′, for
i = 1, . . . , n. The pairs (yi, Xi) are assumed to be independent and iden-
tically distributed with mean structure IE(yi|Xi||β0) = g(Xiβ0) for a re-
sponse function g, which is defined element-wise as in multivariate GLM. We
furthermore consider a covariance matrix I = IT×T , i.e., Var(yi|Xi) = I.

A natural choice therefore is

ψ(yi, Xi, ξ) = D′
i

(
yi − g(Xiβ)

)
= D′

iεi ,

where ξ = β, Di = ∂µi/∂β′ is the matrix of first derivatives, and εi =
yi − µi = yi − g(Xiβ) is the first-order residual.

The GMM estimator minimizes

( 1
n

n∑

i=1

D′
iεi

)′( 1
n

n∑

i=1

D′
iεi

)
,

yielding the IEE with identity covariance matrix

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iε̂i = 0 ,

where Di = ∂µi/∂β′ is the matrix of first derivatives, and εi = yi − µi =
yi−g(Xiβ) is the first-order residual. These estimating equations are termed
IEE with identity covariance matrix.

According to Theorem 8.2, the resulting estimator β̂ is asymptotically
normally distributed. The Fisher information matrix A and the OPG B can
be estimated (strongly) consistently as described in Sect. 5.3.4.

8.3.3 Generalized estimating equations 1 with fixed
working covariance matrix

Now, we reconsider the example from Sect. 5.3.5 for generalized estimating
equations 1 (GEE1) with a fixed covariance matrix. The model is identical
to the one in the previous section, but we use an arbitrary fixed covariance
matrix Σi instead of the identity matrix.

For ξ = β, the function ψ is defined by
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ψ(yi, Xi, ξ) = D′
iΣ

−1
i

(
yi − g(Xiβ)

)
= D′

iΣ
−1
i εi ,

and the GMM estimator minimizes

( 1
n

n∑

i=1

D′
iΣ

−1
i εi

)′( 1
n

n∑

i=1

D′
iΣ

−1
i εi

)
,

yielding the GEE with fixed covariance matrix

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iΣ

−1
i ε̂i = 0 .

8.3.4 Generalized estimating equations 1 for
dichotomous dependent variables with fixed
working correlation matrix

In this example, we consider GEE for dependent dichotomous variables and a
fixed working correlation structure. The model is identical to the one in Sect.
8.3.2, but we specifically assume that a cumulative distribution function F
is used as response function g, and the variance is from the Bernoulli distri-
bution Var(yit|xit) = vit = h(µit) = µit(1 − µit). The conditional variance
of yit given xit therefore is independent of an additional nuisance parame-
ter Ψ (compare Sect. 6.3.2). We furthermore partition the covariance matrix
Σi in the diagonal matrix of variances V i = diag(vit) and a fixed working
correlation matrix Ri.

For ξ = β, the function ψ is therefore defined by

ψ(yi, Xi, ξ) = D′
iV

−1/2
i R−1

i V
−1/2
i

(
yi− g(Xiβ)

)
= D′

iV
−1/2
i R−1

i V
−1/2
i εi ,

and the GMM estimator minimizes

( 1
n

n∑

i=1

D′
iV

−1/2
i R−1

i V
−1/2
i εi

)′( 1
n

n∑

i=1

D′
iV

−1/2
i R−1

i V
−1/2
i εi

)
,

yielding the GEE1 with fixed working correlation matrix

u
(
β̂

)
=

1
n

n∑

i=1

D̂
′
iV̂

−1/2

i R−1
i V̂

−1/2

i ε̂i = 0 . (8.2)

The important aspect of these GEE is that the variance depends only
on the parameter of interest β, and it is independent of additional nuisance
parameters α. The estimating equations therefore involve only β and the
pre-specified, i.e., fixed working correlation matrix, Ri.



8.3 Examples 125

The estimating equations (8.2) can be solved using GMM because no nui-
sance parameter needs to be estimated. However, the GEE1 with an esti-
mated working correlation matrix (see Sect. 6.3.3) cannot be embedded into
the framework of GMM. Specifically, Breitung and Lechner (1995) embed
GEE into GMM, but they only allow the weight matrix Σi to depend on
the mean structure parameter β. The weight matrix may not depend on an
additional nuisance parameter α.

8.3.5 Generalized estimating equations 2 for binary
data using the second ordinary moments

PML2 estimation can be embedded into the framework of GMM estimation,
see, e.g., Ziegler (1995). To this end, we explicitly consider the case ξ =
(β′α′)′, and we use the notation from the previous chapter. To formulate the
GEE2 using the second ordinary moments, we define the function ψ as

ψ(yi, Xi, ξ) = M ′
iV

−1
i mi ,

where M i, V i, and mi are defined as in Theorem 7.2, i.e.,

M̃ i =




∂µi

∂β′
0

∂νi

∂β′
∂νi

∂α′


, Ṽ i =

(
Σi Cov(yi, wi)

Cov(wi,yi) Var(wi)

)
, m̃i =

(
yi − µi

wi − νi

)
,

with si = (si11, si12, . . . , siTT )′, σi = (σi11, σi12, . . . , σiTT )′, sitt′ = (yit −
µit)(yit′ − µit′), and σitt′ = νitt′ − µitµit′ . V i is the working covariance ma-
trix consisting of correctly specified second-order moments Σi and possibly
misspecified thir- and fourth-order moments.

The GMM estimator minimizes

( 1
n

n∑

i=1

M ′
iV

−1
i mi

)′( 1
n

n∑

i=1

M ′
iV

−1
i mi

)
,

yielding the GEE2 using the second ordinary moments

u
(
ξ̂
)

=
1
n

n∑

i=1

M̂
′
iV̂

−1

i m̂i = 0 .
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8.3.6 Generalized estimating equations 2 using the
second centered moments

Similarly, we can derive the GEE2 using the second centered moments. Here,
the function ψ is given by

ψ(yi, Xi, ξ) = M̃
′
iṼ

−1

i m̃i ,

where

M̃ i =




∂µi

∂β′
0

∂νi

∂β′
∂νi

∂α′


, Ṽ i =

(
Σi Cov(yi, wi)

Cov(wi,yi) Var(wi)

)
, m̃i =

(
yi − µi

wi − νi

)
,

with νitt′ = IE(yityit′ |Xi), νi = (νi11, νi12, . . . , νiTT )′, and wi = (y2
i1,

yi1yi2, . . . , yi1yiT , y2
i2, yi2yi3, . . . , y

2
iT )′. Ṽ i is the working covariance matrix

consisting of the correctly specified second-order moments Σi and possibly
misspecified third- and fourth-order moments.

The GMM estimator is obtained by minimizing
(

1
n

n∑

i=1

M̃
′
iṼ

−1

i m̃i

)′(
1
n

n∑

i=1

M̃
′
iṼ

−1

i m̃i

)
,

and the first-order conditions

u
(
ξ̂
)

=
1
n

n∑

i=1

ˆ̃M
′
i
ˆ̃V
−1

i
ˆ̃mi = 0

are the GEE2 using the second centered moments as the measure of associ-
ation.

8.3.7 Generalized estimating equations 2 using the
second standardized moments

GMM estimation has one advantage compared with PML2 estimation. It is
possible to formulate GEE2 using the second standardized moments as the
measure of association as shown by Prentice (1988). To this end, we introduce
additional notation. Let

zitt′ =
(yit − µit)

σit

(yit′ − µit′)
σit′
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be the sample correlation coefficient (Prentice, 1988) and %itt′ its expected
value. Collect all values to vectors, i.e., zi = (zi11, . . . , ziTT )′ and %i =
(%i11, . . . , %iTT )′.

Now, we define ˜̃M i,
˜̃V i, and ˜̃mi as follows:

˜̃M i =




∂µi

∂β′
0

0
∂%i

∂α′


, ˜̃V i =

(
Σi 0
0 Var(zi)

)
, ˜̃mi =

(
yi − µi

zi − %i

)
.

The function ψ is given by

ψ(yi, Xi, ξ) = ˜̃M
′
i
˜̃V
−1

i
˜̃mi ,

yielding (
1
n

n∑

i=1

˜̃M
′
i
˜̃V
−1

i
˜̃mi

)′(
1
n

n∑

i=1

˜̃M
′
i
˜̃V
−1

i
˜̃mi

)

as minimand. The GEE2 using the second standardized moments are ob-
tained as first-order conditions:

u
(
ξ̂
)

=
1
n

n∑

i=1

ˆ̃̃
M

′
i

ˆ̃̃
V
−1

i
ˆ̃̃mi = 0 .

These GEE2 have a substantial advantage over the GEE2 in the second
ordinary moments and the GEE2 in the second centered moments. The ma-
trices ˜̃M i and ˜̃V i are block diagonal so that the estimating equations can be
solved separately. As a result, the numerical complexity reduces substantially
because β̂ and α̂ can be estimated using an alternating algorithm. Given an
initial set of values for β, β̂ is first estimated using a standard algorithm
from the generalized linear model (GLM) neglecting the correlation. Next, α̂

is estimated using the estimate β̂. α̂ is then used to update β̂, etc. Another
advantage of separating the estimating equations is that the estimator β̂ of
β0 remains consistent even if the second-order moments %i are misspecified.

The relevant aspect for this important simplification is that the correla-
tion function %i is independent of the mean structure parameter β so that
∂%i

/
∂β′ = 0. This can be established as follows. First, the link function is

chosen as in GLM, i.e., IE(yit|xit) = µit = g(x′itβ0).
The variance is also modeled using GLM, i.e., Var(yit|Xi) = σ2

it = ϕh(µit),
and it is important to note that a nuisance parameter ϕ needs to be estimated
in several models although it is identical to 1 in standard binomial and Pois-
son models. This nuisance parameter ϕ either is estimated using simple mo-
ment estimators or may be formulated as a function of independent variables
Xi; compare Sect. 7.3.1.

The correlation is modeled using Fisher’s z association link
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Corr(yit, yit′) =
exp

(
k(xit, xit′)′α)

)− 1
exp

(
k(xit, xit′)′α)

)
+ 1

,

and this function is independent of β, yielding ∂%i

/
∂β′ = 0.

To complete the specification of the first two moments, the covariances are
obtained via σitt′ = Corr(yit, yit′)

/(
σitσit′

)
.

Finally, since third-order moments of the working covariance matrix equal
0, a working covariance matrix Var(zi) needs to be chosen for zi. Here,
standard choices are those described in Sect. 7.3 in the context of other
GEE2 models.

8.3.8 Alternating logistic regression

As discussed in the previous section, parameter estimates of the mean struc-
ture may be biased if the estimating equations of both the mean and the
association structure are solved simultaneously. The computational burden
is also higher in this case. Therefore, estimating equations for the mean and
the association structures that can be solved separately are desirable. One
such set of estimating equations has been introduced in the previous section.

It is important to note that the estimating equations can be separated if
the matrix of first-order derivatives M̃ i is block diagonal because the working
covariance matrix V i needs to be block diagonal in this case. Specifically, if
∂%i

/
∂β′ = 0 but V i12 = Cov(yi,zi) 6= 0, the score vector for β is

1
n

n∑

i=1

D′
iΣ

−1
i (yi − µi) +

1
n

n∑

i=1

D′
iV i12(zi − %i) ,

so that V i12 needs to be 0 to guarantee consistency of β̂. In summary, the
estimating equations can be solved separately if the function of the association
parameter used in the estimating equation is defined independently of the
mean structure parameter.

For dichotomous dependent variables, the standard measure of association
is the odds ratio (OR), which has several advantages over the correlation
coefficient (Sect. 2.4.3). The idea to form two separate sets of estimating
equations using the OR as the measure of association was proposed by Carey
et al. (1993), and their idea has first been mentioned in the discussion of the
paper of Liang et al. (1992) by Diggle (1992) and Firth (1992). The approach
is termed alternating logistic regression (ALR) because one logistic regression
is performed for the mean structure, and another one is carried out for the
association structure.

ALR is based on the following theorem, which was given by Diggle (1992):
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Theorem 8.4. Let τitt′ be the OR between yit and yit′ , µit = IP(yit = 1) and
νitt′ = IE(witt′) = IP(yit = yit′ = 1). Then,

logit
(
IP(yit = 1|yit′)

) ≈ yit′ ln τitt′ + ln
( µit − νitt′

1− µit − µit′ + νitt′

)
. (8.3)

Proof. Using the definition of the OR

τitt′ =
IP(yit = yit′ = 1) IP(yit = yit′ = 0)

IP(yit = 0, yit′ = 1) IP(yit = 1, yit′ = 0)
,

we obtain

ln τitt′ = ln
IP(yit = 1|yit′ = 1) IP(yit′ = 1) IP(yit = yit′ = 0)

IP(yit = 1|yit′ = 1) IP(yit′ = 1) IP(yit = 1, yit′ = 0)

= logit IP(yit = 1|yit′ = 1) + ln
(

1− µit − µit′ + νitt′

µit − νitt′

)
(8.4)

for the log OR after simple algebra.
Solving the last expression with respect to τitt′ yields the desired result

for yit′ = 1. The case yit′ = 0 is proven analogously. ut
Equation 8.3 forms the basis for ALR, and it can be interpreted as follows

(Carey et al., 1993). Suppose that α = ln τitt′ and consider the second term
on the right side of Eq. 8.3 as fixed, i.e., as an offset. Of course, this is a
simplification because the offset depends on the current values of β and α.
Then, the pairwise log OR α is the regression coefficient of a logistic regression
of yit on yit′ .

Now, we define the log OR in a more general way as a linear function
of α. Again, we fix the right side of Eq. 8.3. Then, ln τitt′ = k(xit,xit′)′α
for some fixed function k. This representation allows estimation of α by a
logistic regression of yit on yit′k(xit, xit′).

Therefore, the function ψ(yi,Xi, ξ) consists of two parts. The estimating
equations for β are given by

0 =
n∑

i=1

D̂
′
iΣ̂

−1

i

(
yi − µ̂i

)
,

and the second set of estimating equations for α is now given by

0 =
n∑

i=1

(
∂ς̂i

∂α′

)′
V̂ar

(
ε̂i

)−1
ε̂i ,

where εi = (εi,12, . . . , εi,(T−1)T )′ is the T (T−1)
2 vector of residuals εi,tt′ =

yit − ςitt′ .
Thus, the function ψ is given by



130 8 Generalized method of moment estimation

ψ(yi, Xi, ξ) =




D′
iΣ

−1
i

(
yi − µi

)
∂ςi

∂α′

′
Var(εi)−1εi


 .

From this, the minimand can be derived, and the first-order conditions have
already been formulated.

An important aspect is the specification of the working covariance ma-
trix Var

(
ε̂i

)
. It can be specified using the variance function of the binomial

distribution because εitt′ is a centered dichotomous random variable. Specifi-
cally, the identity working covariance matrix or a diagonal working covariance
matrix with elements ςitt′(1− ςitt′) might be chosen.

The asymptotic properties of the resulting estimator ξ̂ =
(
β̂
′
, α̂′

)′ can be
established using Theorem 8.2. Hence, ξ̂ is a consistent estimator of ξ and
asymptotically normally distributed.

Again, the separation of the GEE2 in a set of two independent estimating
equations results in a substantial speed-up of the algorithm (Carey et al.,
1993). The second substantial advantage of ALR is that the parameter es-
timates of the mean structure β̂ are consistent for β even if the association
structure is misspecified. This is in contrast to the GEE2 approach from the
previous chapter, which yields consistent parameter estimates β̂ of β only if
both the mean and the association structure are correctly specified. Finally,
Kuk (2004) has shown that ALR is invariant to permutations of the depen-
dent variables within clusters. He also presents a symmetrized version of the
estimating equations so that the standard is also permutation-invariant.

A different approach using similar ideas is that of Firth (1992). He sug-
gested the following algorithm to guarantee consistency of β̂ even if the

second-order moments νi(α) are misspecified. In the first step, estimate β̂
(0)

from GEE1 or from IEE. In the second step, use GEE2 with β fixed at β̂
(0)

to obtain α̂. In the third step, use the upper left block for GEE1 with α
fixed at α̂ to obtain β̂. This algorithm follows the idea of QGPML esti-
mation (Chapter 6). However, asymptotic properties of the joint parameter
vector estimator ξ̂ can be obtained from GMM estimation, where sequential
estimation is applied. The suggestion of Firth (1992) has not been used in
applications because of its great computational effort. In contrast, ALR is
implemented in several software packages and regularly used in GEE2 appli-
cations.

8.4 Final remarks

In the last three chapters, we have derived many popular GEE for the mean
structure and GEE for both the mean and the association structure. Several
other extensions have been proposed for making the GEE more efficient. For
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example, three estimating equations have been considered in some articles
(Lee et al., 2008; Yan and Fine, 2004). Alternative formulations of the esti-
mating equations have also been proposed (see, e.g., Hall and Severini, 1998;
also see Sutradhar and Kumar, 2001).

Extensions of GEE have been proposed in many different directions, and
they include approaches for dealing with missing data (for an overview, see,
e.g., Ziegler et al., 2003), approaches for sample size calculations (reviewed in
Dahmen and Ziegler, 2004), regression diagnostics (Preisser and Qaqish, 1996;
Venezuela et al., 2007; Vens and Ziegler, 2011), and goodness-of-fit tests (see,
e.g., Evans and Hosmer, 2004; Horton et al., 1999). Other methodological
questions that have been addressed include hypothesis testing (Rotnitzky
and Jewell, 1990) and specific models, such as zero-inflated models for count
data (Lee et al., 2011).



References

Agresti, A. Categorical Data Analysis. Wiley, New York, 1990.
Anderson, T. An Introduction to Multivariate Statistical Analysis, Second

Edition. Wiley, New York, 1984.
Antoniou, A., & Lu, W.-S. Practical Optimization: Algorithms and Engineer-

ing Applications. Springer, New York, 2007.
Arminger, G. Specification and estimation of mean structures. In Arminger,

G., Clogg, C., & Sobel, M., editors, Handbook of Statistical Modeling for
the Behavioral Sciences, pp. 77–183. Plenum, New York, 1995.

Bahadur, R. A representation of the joint distribution of responses to n di-
chotomous items. In Solomon, H., editor, Studies in Item Analysis and
Prediction, pp. 158–168. Stanford University Press, Stanford, 1961.

Baradat, P., Maillart, M., Marpeau, A., Slak, M. F., Yani, A., & Pastiszka,
P. Utility of terpenes to assess population structure and mating patterns
in conifers. In Philippe, B., Thomas, A. W., & Müller-Starck, G., editors,
Population Genetics and Genetic Conservation of Forest Trees, pp. 5–27.
Academic Publishing, Amsterdam, 1996.

Baum, C. F., Schaffer, M. E., & Stillman, S. Instrumental variables and
GMM: Estimation and testing. Stata J , 3:1–31, 2003.

Binder, D. On the variances of asymptotically normal estimators from com-
plex surveys. Int Stat Rev , 51:279–292, 1983.

Bishop, Y., Fienberg, S., & Holland, P. Discrete Multivariate Analysis: The-
ory and Practice. MIT Press, Cambridge, 1975.

Box, G., & Cox, D. R. An analysis of transformations. J R Stat Soc B , 26:
211–252, 1964.

Breitung, J., & Lechner, M. GMM-estimation of nonlinear models on
panel data. Technical report, SFB Discussion Paper, Humboldt-Universität
Berlin, 1995.

Breslow, N. Test of hypotheses in overdispersion regression and other quasi-
likelihood models. J Am Stat Assoc, 85:565–571, 1990.

133A. Ziegler, Generalized Estimating Equations, Lecture Notes in Statistics 204,  
DOI 10.1007/978-1-4614-0499-6, © Springer Science+Business Media, LLC 2011  



134 References

Broze, L., & Gourieroux, C. Pseudo-maximum likelihood method, adjusted
pseudo-maximum likelihood method and covariance estimators. J Econo-
metrics, 85:75–98, 1998. doi:10.1016/S0304-4076(97)00095-X

Burguete, J., Gallant, R., & Souza, G. On unification of the asymptotic
theory of nonlinear econometric models. Economet Rev , 2:150–190, 1982.
doi:10.1080/07311768208800012

Carey, V., Zeger, S. L., & Diggle, P. Modelling multivariate binary
data with alternating logistic regression. Biometrika, 80:517–526, 1993.
doi:10.1093/biomet/80.3.517

Carroll, R., & Ruppert, D. Transformation and Weighting in Regression.
Chapman and Hall, New York, 1988.

Carroll, R. J., Wang, S., Simpson, D. G., Stromberg, A. J., & Ruppert,
D. The sandwich (robust covariance matrix) estimator. Technical report,
Department of Statistics, Texas A&M University, 1998.

Chaganty, N. R., & Deng, Y. Ranges of measures of association for fa-
milial binary variables. Commun Stat – Theor M , 36:587–598, 2007.
doi:10.1080/03610920601001808

Cochran, W. G. Sampling Techniques, Second Edition. Wiley, New York,
1963.

Cochrane, D., & Orcutt, G. Application of least squares regression to re-
lationships containing autocorrelated terms. J Am Stat Assoc, 44:32–61,
1949.

Cook, R. D., & Weisberg, S. Residuals and Influence in Regression. Chapman
and Hall, New York, 1982.

Cox, D. R., & Reid, N. Parameter orthogonality and approximate conditional
inference. J R Stat Soc B , 49:1–39, 1987.

Dahmen, G., & Ziegler, A. Generalized estimating equations in con-
trolled clinical trials: Hypotheses testing. Biom J , 46:214–232, 2004.
doi:10.1002/bimj.200310018

Davis, C. S. Semi-parametric and non-parametric methods for the analysis of
repeated measurements with applications to clinical trials. Stat Med , 10:
1959–1980, 1991. doi:10.1002/sim.4780101210

Dhaene, G., & Hoorelbeke, D. The information matrix test with bootstrap-
based covariance matrix estimation. Econom Lett , 82:341–347, 2003.
doi:10.1016/j.econlet.2003.09.002

Diggle, P. Discussion of “Multivariate regression analysis for categorical
data.” J R Stat Soc B , 54:28–29, 1992.

Dobson, A. J. Introduction to Generalized Linear Models, Second Edition.
Chapman and Hall, London, 2001.

Efron, B. Discussion of “Jackknife, bootstrap and other resampling methods
in statistics.” Ann Stat , 14:1301–1304, 1986. doi:10.1214/aos/1176350145

Efron, B., & Hinkley, D. Assessing the accuracy of the maximum likelihood
estimation: Observed versus expected information. Biometrika, 65:457–
482, 1978. doi:10.1093/biomet/65.3.457



References 135

Emrich, L. J., & Piedmonte, M. R. On some small sample prop-
erties of generalized estimating equation estimates for multivari-
ate dichotomous outcomes. J Stat Comput Sim, 41:19–29, 1992.
doi:10.1080/00949659208811388

Evans, S. R., & Hosmer, D. W. Goodness of fit tests for logistic GEE
models: Simulation results. Commun Stat – Simul C , 33:247–258, 2004.
doi:10.1081/SAC-120028443

Fahrmeir, L., & Tutz, G. Multivariate Statistical Modelling Based on Gener-
alized Linear Models, Second Edition. Springer, New York, 2001.

Fay, M. P., & Graubard, B. I. Small-sample adjustments for Wald-
type tests using sandwich estimators. Biometrics, 57:1198–1206, 2001.
doi:10.1111/j.0006-341X.2001.01198.x

Fay, M. P., Graubard, B. I., Freedman, L. S., & Midthune, D. N. Condi-
tional logistic regression with sandwich estimators: Application to a meta-
analysis. Biometrics, 54:195–208, 1998.

Firth, D. Discussion of “Multivariate regression analysis for categorical data.”
J R Stat Soc B , 54:24–26, 1992.

Fitzmaurice, G. M., & Laird, N. M. A likelihood-based method for
analysing longitudinal binary responses. Biometrika, 80:141–151, 1993.
doi:10.1093/biomet/80.1.141

Foncel, J., Hristache, M., & Patilea, V. Semiparametric single-index Poisson
regression model with unobserved heterogeneity. Working paper 2004–04,
Institut National de la Statistique et de Etudes Economiques, Série des
Documents de Travail du CREST, 2004.

Gourieroux, C., & Monfort, A. Pseudo-likelihood methods. In Maddala, G.,
Rao, C., & Vinod, H., editors, Handbook of Statistics, Vol. 11, pp. 335–362.
Elsevier, Amsterdam, 1993.

Gourieroux, C., & Monfort, A. Statistics and Econometric Models, Vol. 1.
Cambridge University Press, Cambridge, 1995a.

Gourieroux, C., & Monfort, A. Statistics and Econometric Models, Vol. 2.
Cambridge University Press, Cambridge, 1995b.

Gourieroux, C., Monfort, A., & Trognon, A. Pseudo maximum likelihood
methods: Applications to Poisson models. Econometrica, 52:701–720,
1984a.

Gourieroux, C., Monfort, A., & Trognon, A. Pseudo maximum likelihood
methods: Theory. Econometrica, 52:681–700, 1984b.

Greene, W. H. Econometric Analysis, Sixth Edition. Prentice Hall, New York,
2007.

Gunsolley, J. C., Getchell, C., & Chinchilli, V. M. Small sample character-
istics of generalized estimating equations. Commun Stat – Simul C , 24:
869–878, 1995. doi:10.1080/03610919508813280

Hall, A. The information matrix test for the linear model. Rev Econom Stud ,
54:257–263, 1987.



136 References

Hall, A. On the calulation of the information matrix test in the normal
linear regression model. Econom Lett , 29:31–35, 1989. doi:10.1016/0165-
1765(89)90169-9

Hall, A. R. Some aspects of generalized method of moment estimation. In
Maddala, G. S., Rao, C. R., & Vinod, H. D., editors, Handbook of Statistics,
Vol. 11, pp. 393–417. Elsevier, Amsterdam, 1993.

Hall, A. R. Generalized Method of Moments. Oxford University Press, New
York, 2005.

Hall, D. B. On GEE-based regression estimates under first mo-
ment misspecification. Commun Stat – Theor M , 28:1021–1042, 1999.
doi:10.1080/03610929908832341

Hall, D. B., & Severini, T. A. Extended generalized estimating equations for
clustered data. J Am Stat Assoc, 93:1365–1375, 1998.

Hansen, B. E., & West, K. D. Generalized method of mo-
ments and macroeconomics. J Bus Econ Stat , 20:460–469, 2002.
doi:10.1198/073500102288618603

Hansen, L. P. Large sample properties of generalized method of moments
estimators. Econometrica, 50:1029–1054, 1982.

Hardin, J. W., & Hilbe, J. M. Generalized Linear Models and Extensions,
Second Edition. Stata Press, College Station, 2007.

Hausman, J. A. Specification tests in econometrics. Econometrica, 46:1251–
1271, 1978.

Heagerty, P. J., & Zeger, S. L. Marginal regression models for clustered or-
dinal measurements. J Am Stat Assoc, 91:1024–1036, 1996.

Hin, L. Y., & Wang, Y. G. Working-correlation-structure identifica-
tion in generalized estimating equations. Stat Med , 28:642–658, 2009.
doi:10.1002/sim.3489

Hinkley, D. Jackknifing in unbalanced situations. Technometrics, 19:285–292,
1977.

Holly, A. A remark on Hausman’s specification test. Econometrica, 50:749–
759, 1982.

Holly, A., Monfort, A., & Rockinger, M. Fourth order pseudo maximum likeli-
hood methods. Research Paper Series 09–23, Swiss Finance Institute, 2008.

Horowitz, J. L. Bootstrap-based critical values for the information matrix
test. J Economet , 61:395–411, 1994. doi:10.1016/0304-4076(94)90092-2

Horton, N. J., Bebchuk, J. D., Jones, C. L., Lipsitz, S. R., Catalano, P. J.,
Zahner, G. E., & Fitzmaurice, G. M. Goodness-of-fit for GEE: An ex-
ample with mental health service utilization. Stat Med , 18:213–222, 1999.
doi:10.1002/(SICI)1097-0258(19990130)18:2¡213::AID-SIM999¿3.0.CO;2-E

Huber, P. J. The behavior of maximum likelihood estimates under nonstan-
dard conditions, Vol. 1, pp. 221–233.University of California Press, Berke-
ley, 1967.

Jagannathan, R., Skoulakis, G., & Wang, Z. Generalized method of mo-
ments: Applications in finance. J Bus Econ Stat , 20:470–481, 2002.
doi:10.1198/073500102288618612



References 137

Kauermann, G. A note on multivariate logistic models for contingency tables.
Aust NZ J Stat , 39:261–276, 1997. doi:10.1111/j.1467-842X.1997.tb00691.x

Kauermann, G., & Carroll, R. J. A note on the efficiency of sandwich covari-
ance matrix estimation. J Am Stat Assoc, 96:1387–1396, 2001.

Kendall, M., & Stuart, A. The Advanced Theory of Statistics, Vol. 1, Third
Edition. Charles Griffin, London, 1969.

Kuk, A. Y. C. Permutation invariance of alternating logistic re-
gression for multivariate binary data. Biometrika, 91:758–761, 2004.
doi:10.1093/biomet/91.3.758

Kullback, S., & Leibler, R. On information and sufficiency. Ann Math Stat ,
22:79–86, 1951.
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