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   Preface   

    Let us go then, you and I , 
  When the evening is spread out against the sky  
  Like a patient etherized upon a table ; 

 T. S. Elliott 

   Since the term was coined some 22 years ago (Guyatt 1991; Moayyedi 2008), 
evidence-based medicine, or EBM, has taken center stage in the practice of medi-
cine. Adherence to EBM requires medical practitioners to keep abreast of the results 
of medical research as reported in the general and specialty journals. At the heart of 
this research is the science of statistics. It is through statistical techniques that 
researchers are able to discern the patterns in the data that tell a clinical story worth 
reporting. Like the astronomer’s telescope, statistics uncovers a universe that is 
invisible to the naked eye. But if you are one of those souls for whom the statistical 
machinations in the medical literature may as well be cuneiform script, this primer 
is for you. In it, we invite the reader on a stroll through the landscape of statistical 
science. We will, moreover, view that landscape while it is, in Elliott’s words, 
“etherized upon a table”—anesthetized, inert, harmless. 

 This primer is intended for anyone who wishes to have a better grasp of the 
meaning of statistical techniques as they are used in medical research. This includes 
physicians, nurses, nurse practitioners, physician’s assistants, medical students, 
residents, or even laypersons who enjoy reading research reports in medicine. The 
book can also be useful for the physician engaged in medical research who is not 
also a statistician. With the aid of this primer, that researcher will fi nd it easier to 
communicate with the statisticians on his or her research team. Our intention is to 
provide a background in statistics that allows readers to understand the application 
of statistics in journal articles and other research reports in the medical fi eld. It is not 
our intention to teach individuals how to perform statistical analyses of data or to be 
statisticians. We leave that enterprise for the many more voluminous works in medi-
cal statistics that are out there. Rather the goal in this work is to provide a reader- 
friendly introduction to the logic and the tools that underlie statistical science. 
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 In pursuit of this goal we have “cut to the chase” to a considerable degree. 
We felt that it was important to limit attention to the aspects of statistics that the 
reader was most likely to encounter on a routine basis. And we believed that it was 
better to devote more space to a few important topics rather than try to inundate the 
reader with too many different techniques. Thus, we have omitted extensive cover-
age of, say, the different ways of graphically displaying data. Other than examples 
of graphs taken from the medical literature, there is no coverage of histograms, 
stem-leaf plots, box plots, dot plots, or other such techniques. Similarly, we focus 
on only the most basic summary measures of variable distributions and omit cover-
age of, say, the trimmed mean, the harmonic mean, the geometric mean, standard 
scores, etc. Instead, we have dedicated more space to the subjects that we deem 
most critical to an understanding of statistics as the discipline is practiced today: 
causality and causal inference, internal and external validity of statistical results, the 
sampling distribution of a statistic, the  p  value, common bivariate statistical proce-
dures, multivariable modeling and the meaning of statistical control, and measures 
of the predictive effi cacy of statistical models, to cite a few examples. 

 Along with this approach, we have avoided the extensive presentation of statisti-
cal formulas and sophisticated mathematics. Anyone with even a passing grasp of 
high-school algebra should have no trouble reading this primer. A few test-statistic 
formulas are shown to communicate the rationale underlying test statistics. Other 
than that, however, we simply name the tests that are used in different situations. 
Some algebraic formulas, however, are unavoidable. It is simply not possible to 
understand regression modeling in its different incarnations without showing regres-
sion equations. Similarly, growth-curve modeling and fi xed-effects regression mod-
eling are not understandable without their respective equations. Nevertheless, we 
have tried to explain, in the narrative, what these equations are conveying in an 
intuitive sense. And narrative is the operative word. This is not a traditional text-
book; there are no exercises and no tables in the back. To the extent that such could 
be said about a statistics book, our intention was to make it a “good read.” 

 A feature of the book that we think is especially useful is our extensive presenta-
tion of statistical applications from the recent medical literature. Over 30 different 
articles are explicated herein, taken from such journals as  Journal of the American 
Medical Association, Journal of Urology, British Journal of Urology International, 
American Journal of Epidemiology, Journal of Internal Medicine, Alcohol and 
Alcoholism,  and  BMC Neurology . We deemed it important for readers to see how 
the various techniques covered in the primer are employed, displayed, and discussed 
in actual research. In the process we have attempted to “translate into English” some 
of the more recondite terminology used in the literature. Hopefully, this enterprise 
will facilitate the reader’s understanding of statistical applications when he or she 
encounters them in the journals. 

 In the process of writing this primer, many people have been helpful to us. We 
wish, fi rst, to acknowledge the kind guidance and cheerful fl exibility of Marc 
Strauss, our editor at Springer. We also wish to thank Bowling Green State 
University, in particular the Center for Family and Demographic Research, as well 
as the University of Toledo Medical Center, for providing the computer and library 
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support that made this work possible. Also deserving of thanks are Annette Mahoney 
and Kenneth I. Pargament in the Psychology Department at Bowling Green State 
University for collecting the NAPPS data that are drawn on extensively in Chap.   9    . 
And last, but certainly not least, we wish to gratefully acknowledge our wives, 
Gabrielle and Linda, for the loving support and encouragement they provided dur-
ing the writing of this work. And now, let us begin…  

       Bowling Green ,  OH ,  USA       Alfred     DeMaris   
   Toledo ,  OH ,  USA       Steven     H.     Selman      
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                                     What Is Statistics? 

  Question: What’s the difference between accountants and statisticians?  
  Answer: Well, they both work with numbers, but statisticians just don’t have the 
personality to be accountants.  

 Such is the stereotype of statisticians and statistics. Dull, plodding, and con-
cerned with the tedious bean-counting enterprise of compiling numbers and tables 
and graphs on topics nobody much cares about. Nothing could be further from the 
truth. Well, okay, statisticians  are  dull; but statistics is one of the most exciting dis-
ciplines of all. Like astronomy, it’s an investigation of the unknown—and, possibly, 
 unknowable —world that’s largely invisible to the naked eye. But this world is the 
one right under our noses: in terms of the subject of this book, it consists of human 
beings and their health. In this fi rst chapter, we will consider what statistics is and 
why it is essential to the medical enterprise, and to science in general. Here, we 
defi ne the science of statistics and relate it to real-world medical problems. Medical 
research is typically concerned with cause-and-effect relationships. The causes of 
disease or of health problems are important, as are the causal effects of treatments 
on medical outcomes. Therefore, we also discuss in this chapter the notion of a 
causal effect, and we ponder the conditions necessary for inferring causality in 
research. 

    What Statistics Is 

 Statistics is the science of converting data into evidence.  Data  constitute the raw 
material of statistics. They consist of numbers, letters, or special characters repre-
senting measurements of properties made on a collection of cases. Cases are the 
units of analysis in our study. Cases are usually people, but they could be days of 
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the week, organizations, nations or, in meta-analyses, other published studies. 
 Evidence  refers to information pertinent to judging the truth or falsehood of an 
assertion. The heart of statistics is called  inferential  statistics. It’s concerned with 
making inferences about some population of cases. To do that, it uses a sample 
drawn from that population of cases and studies  it  rather than the entire population. 
On the basis of fi ndings from the sample, we estimate some characteristic of a 
population or we judge the plausibility of statements made about the population. 
Let’s take an example.  

    An Example 

 A frequent interest in medical research is HIV transmission and the course of the 
disease for those who are so infected (see, for example, Bendavid et al.  2012 ; Paton 
et al.  2012 ). Suppose a team of medical researchers is interested in the association 
between recreational intravenous drug use (IVDU) and contracting HIV in the USA. 
They believe that needle sharing is the prime means of transmission of this disease 
among the IVDU population. So they want to estimate the proportion of that popu-
lation who is involved in needle sharing, for one thing. Then they want to test the 
hypothesis that needle sharing is a risk factor for becoming HIV positive (HIV+). 
But if they fi nd that needle sharing is, in fact, associated with an elevated risk for 
HIV+, they want to ensure that it is the practice of sharing needles that is the “driver” 
of this association. That is, they need to rule out the possibility that it is some other 
risky behavior associated with sharing needles that is actually causing the associa-
tion. Examples of other risky behaviors possibly associated with both IVDU and 
needle sharing are having unprotected sex, having sex with multiple partners, poor 
hygiene practices, and so forth. 

 This research problem presents several dilemmas. First, the population of inter-
est is  all recreational IV drug users in the USA . Now, what do you think the chances 
are of fi nding that population, let alone studying it? That’s right—zip. Most users 
would not admit to having a drug habit, so we’re unlikely to get very far surveying 
the USA population and asking people to self-identify as recreational IV drug users. 
So our let’s say our team manages to recruit a sample of drug users, perhaps through 
a newspaper or magazine advertisement offering fi nancial remuneration for taking 
part in a study. They fi nd that 50 % of the sample of IV drug users share needles 
with other users. At this point the researchers would like to use this fi gure as their 
estimate of the proportion of all IV drug users in the USA who share needles. How 
should they proceed? Let’s recognize, fi rst, that the population proportion in ques-
tion is a summary measure that statisticians refer to as a  parameter . A parameter is 
just a summary statistic measuring some aspect of a population. Second, the param-
eter is unknown, and, in fact,  unknowable . It’s not possible to measure it directly, 
even though it exists “out there,” somewhere. The best the team can do is to estimate 
it and then fi gure out how that estimate relates to the actual parameter value. We will 
spend much of this fi rst part of the book on how this is accomplished. 

1 Statistics and Causality



3

 Next, in order to test the primary hypothesis about needle sharing being a cause 
of HIV+ status, there has to be a comparison group of non-IV drug users. These 
individuals are much easier to fi nd, since most people don’t engage in IVDU. Let’s 
say the team also recruits a control sample of such individuals, matched with the 
IVDU group on gender, age, race, and education. They then need to measure all the 
relevant variables. This includes the “mechanisms,” aside from needle sharing, that 
they believe might be responsible for the IVDU-HIV+ association, i.e., having 
unprotected sex, having sex with multiple partners, quality of personal hygiene, 
and so forth. In order to fully evaluate the hypothesis, they will conduct a  multi-
variable analysis  (or  multivariate analysis —these terms are used interchangeably). 
HIV+ status will be the primary  study endpoint  (or  response variable ), and needle 
sharing and the other risky behaviors will be the  explanatory variables  (or  regres-
sors, predictors , or  covariates ). The multivariable analysis will allow them to 
examine whether needle sharing is responsible for the (presumed) higher HIV+ rate 
among the IVDU vs. the non-IVDU group. It will also let them assess whether it is 
needle sharing, per se, rather than one of the other risky behaviors that is the driv-
ing factor. We will discuss multivariable statistical techniques in a later section of 
the book. 

 However, there are other complications to be dealt with. Suppose that some of 
the subjects of the study fail to provide answers to some of the questions? This cre-
ates the problem of  missing data . We can simply discard these subjects from the 
study, but then we (a) lose all of the other information that they did provide and (b) 
introduce selection bias into the study because those who don’t answer items are 
usually not just a random subset of the subjects. This means that those left in the 
sample are a select group—perhaps a more compliant type of individuals—and the 
results then will only apply to people of that type. One solution is that the research-
ers can  impute  the missing data and then still include the cases. Imputation is the 
practice of fi lling in the missing data with a value representing our best guess about 
what the missing value would be were it measured. The state of the art in imputation 
techniques is a procedure called  multiple imputation . Multiple imputation will be 
covered later in the book in the chapter on advanced techniques. 

 The last major issue is that it’s always possible that some characteristic that the 
researchers have not measured might be producing the association between needle 
sharing and HIV+ status. That is, it’s not really needle sharing that elevates 
HIV+ risk. It’s some unmeasured characteristic of individuals that also happens to 
be associated with needle sharing. An unmeasured characteristic that may be infl u-
encing one’s results is often referred to as  unmeasured heterogeneity . The term 
refers to the fact that the characteristic exhibits heterogeneity—i.e., variance—
across individuals that is related to the variation in the study endpoint. The fact that 
it is unmeasured means that there is no easy way to control for it in our analyses. We 
will discuss this problem in greater detail later in this chapter. And we will see one 
possible statistical solution to this problem, called  fi xed-effects regression modeling , 
when we get to the advanced techniques chapter. In sum, statistics allows us to 
address research problems of the foregoing nature and provide answers to these 
kinds of complex questions that are posed routinely in research.  

 What Is Statistics?
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    Populations and Samples 

 The population in any study is the  total collection of cases we want to make 
 assertions about . A “case” is the smallest element constituting a single “replica-
tion” of a treatment. Suppose, for example, that you are interested in the effect of 
diet on prostate-specifi c antigen (PSA). You suspect that a diet heavy in red meat 
contains carcinogens that raise the risk for prostate cancer. So you anticipate that a 
red-meat- rich diet will be associated with higher PSA levels. Suppose you have a 
sample of six men from each of two groups: a control group eating a balanced diet 
and a treatment group eating a diet overloaded with red meat. In this case, individual 
men are the cases, since each man eating a particular diet represents a replication of 
the “treatment.” By “treatment,” in this case, we mean diet, of which there are two 
treatment levels: balanced and red-meat rich. Who is the population here? The pop-
ulation we’d ideally like to be talking about is the entire population of adult males 
in the USA. So our 12 men constitute a sample from it.  

    Probability vs. Nonprobability Samples 

 Statisticians distinguish two major classes of samples: probability and nonprobabil-
ity. A  probability sample  is one for which one can specify the probability that any 
member of the population will be selected into it.  Nonprobability samples  do not 
have this property. The best-known probability sample is a simple random sample 
or SRS. An SRS is one in which every member of the population has the same 
chance of being selected into the sample. For example, if the population consists of 
50,000 units and we’re drawing an SRS of 50 units from it, each population member 
has a 50/50,000 = 0.001 chance of being selected. Probability samples provide 
results that can be generalized to the population. Nonprobability samples don’t. In 
our diet study example, if the 12 men were randomly sampled from the population 
of interest, the results could be generalized to that population. Most likely, though, 
the 12 men were recruited via advertisement or by virtue of being part of a patient 
population. If the 12 men weren’t sampled randomly “from” a known population, 
then what kind of population might they represent?  

    Sampling “to” a Population 

 Many samples in science are of the nonprobability type. What can we say about the 
“population” of interest, then? Some statisticians will tell you: nothing. But that 
implies that your sample is so unique, there’s no one else who behaves or responds 
the same way to a treatment. That’s not very realistic. Rather, what we can do with 
nonprobability sample results is use the characteristics of sample participants to 
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suggest a hypothetical population the results might be generalizable to. Much of the 
time in studies of this nature, the sample consists of volunteers responding to a 
newspaper ad announcing a clinical trial. In research involving the human body, one 
could, of course, argue that people are suffi ciently similar biologically that the 12 
men in the example above are representative of men in general. But statistically, at 
least, generalizing to a population requires sampling randomly from it. Another way 
to defi ne the population, however, is to reason in the opposite direction. That is, 
whatever the manner in which the 12 men were recruited for this study, suppose we 
repeat that recruitment strategy and collect 12 men a second time. And suppose we 
repeat it, again, and collect a third group of 12 men. And then suppose we go on and 
on like this, collecting sample after sample of 12 men by repeating the recruitment 
strategy over and over, ad infi nitum. Eventually, the entire collection of men accu-
mulating from all of these samples could be considered the “population.” And our 
original sample of 12 men can then be thought of as a random sample from  this  
population. This has been termed “sampling  to  a population,” as opposed to sam-
pling  from  a population (DeMaris  2004 ), and is one way of defi ning a conceptual 
population that one’s inferences might apply to.  

    Statistics and Causal Inference 

 The scientifi c enterprise is typically concerned with cause and effect. What causes 
elevated PSA levels, for example? Or, what causes prostate cancer? Or, what causes 
prostate cancer to develop sooner rather than later? Statistics can aid in making 
causal inferences. To understand its utility in this arena, however, we fi rst have to 
defi ne what we mean by “cause,” or, more properly, a “causal effect.” The reigning 
defi nition in contemporary science is due to two statisticians, Jerzy Neyman and 
Donald Rubin (West and Thoemmes  2010 ). The Neyman–Rubin causal paradigm is 
simple, mathematically elegant, and intuitive. We normally think of a cause as 
something that changes life’s “trajectory” from what would have transpired were 
the cause not operating. The Neyman–Rubin paradigm simply puts this in mathe-
matical terms.  

    A Mathematical Defi nition of “Causal Effect” 

 Employing, again, the diet-PSA example, suppose a man follows a balanced diet for 
some period of time. His PSA level measured after that period would be denoted 
Yc. And then suppose he were instead to follow a meat-heavy diet for the same 
period. Denote his PSA level after that as Yt. Notice that this scenario is  contrary to 
fact . He can’t follow both diets over the same period; he’s either on one or the other. 
But suspend disbelief for a moment and suppose that’s what he does. The causal 
effect of the steak diet on PSA is defi ned as: Yt − Yc. It is the boost in PSA 
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attributable to the steak diet. So if his PSA is 2.6 on the balanced diet vs. 4.3 on the 
steak diet, the causal effect of diet is 4.3 − 2.6 = 1.7, or the steak diet results in a 
boost in PSA level by 1.7. 

 If we were to apply this regimen to every man in the population and then average 
all of the (Yt − Yc) differences, we would have the  Average Causal Effect , or ACE, 
of the steak diet on PSA. The ACE is often the  parameter  of interest in research. If 
the outcome of interest is a qualitative one, then the true causal effect is defi ned with 
a slightly different measure. So if the man in question has a 30 % chance of develop-
ing prostate cancer on the balanced diet, but a 60 % chance on the steak diet, the 
causal effect of a steak diet on the risk of cancer is 0.60/0.30 = 2. Or, a steak diet 
doubles the risk of cancer for this particular man. The number 2 is called the  relative 
risk  for cancer due to a steak, vs. a balanced, diet.  

    How Do We Estimate the ACE? 

 Because the ACE is contrary-to-fact, and therefore not measurable, how can we 
estimate it? It turns out that the ACE can be estimated in an unbiased fashion as the 
mean difference in PSA levels between men on a balanced vs. a meat diet in a study 
if a particular condition is met. The condition is referred to as the  ignorability  condi-
tion: the treatment assignment mechanism is ignorable if the potential outcomes 
(e.g., PSA levels) are independent of the treatment assignment “mechanism.” What 
this means in practice, using our example, is that there is no a priori tendency for 
those in the steak-diet condition to have higher or lower PSA levels than men in the 
other condition  before the treatments are even applied . The only way to ensure this 
is to  randomly assign  the men to the two diet conditions, and this is the hallmark of 
the clinical trial, or, for that matter, any experimental study. Random assignment to 
treatment groups ensures that,  on average , treatment and control groups are exactly 
the same on all characteristics at the beginning of a study. In this manner, we are 
assured that the treatment effect is a true causal effect and is not an artifact of a 
latent  self-selection factor . It is random assignment to treatment levels that provides 
researchers with the best vehicle for inferring causality.  

    Example of Latent Self-Selection 

 As an example of latent self-selection confounding causal inference in a study, 
regard Fig.  1.1 , below. It shows one possible scenario that could occur in the absence 
of random assignment, such as if we simply study groups of men who have chosen 
each type of diet themselves.

   The negative numbers represent inverse relationships. The “−0.75” on the curved 
arrow connecting health awareness with meat diet is a  correlation coeffi cient . It 
means those with greater health awareness are less likely to be on a meat diet. They 
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are probably men who lead healthy lifestyles that include moderate alcohol intake, 
nonsmoking, plenty of exercise, regular medical checkups, etc. The “−1.5” from 
health awareness to PSA levels is a  causal effect . It means that health awareness 
leads to lower PSA levels. Simply looking at the difference in average PSA between 
the two groups of men while ignoring health awareness confounds the true relation-
ship of diet to PSA. There might be no association of diet with PSA (shown by the 
“0” on that path in the diagram). But if health awareness is not “controlled” in the 
study, then the indirect link from meat diet to PSA level through health awareness 
will manifest itself as a positive “effect” of a meat diet on PSA level. This happens 
because ignoring health awareness is equivalent to multiplying together the two 
negative numbers: (−0.75) × (−1.5) = 1.125, and then adding the result to the path 
from meat diet to PSA level. This makes it appear that meat diet has a positive effect 
on PSA level: the “1.125” would appear to be the average PSA level difference 
between the men in the two groups. The take-home message here is simple: only 
random assignment to treatment conditions lets us confi dently rule out latent selec-
tion factors as accounting for treatment effects in a study. In epidemiological and 
other observational—as opposed to experimental—studies, latent selection factors 
are an ever-present threat. They are typically countered by measuring any such 
selection factors ahead of time, and then statistically controlling for them when 
estimating causal effects. Under the right conditions, we can even eliminate  unmea-
sured  factors, as we shall see in the advanced techniques chapter. And we shall have 
more to say about statistical control, in general, later in this primer.  

    Internal vs. External Validity: A Conundrum 

 At this point, we have discussed the nature of causal effects, the advantages of 
random assignment to treatment conditions, and latent selection factors in 
 nonexperimental studies. It is worth noting, as a fi nal issue, that both experimental 
and nonexperimental studies have particular advantages and drawbacks. And both 
are regularly used in medical research. Statisticians speak of a study having 

meat diet

health
awareness

PSA level
-.75

0

-1.5

  Fig. 1.1    Causal diagram of 
variables affecting PSA level       
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internal vs. external validity.  Internal validity  obtains to the extent that the 
 treatment-group differences observed on a study endpoint strictly represent the 
causal effect of the treatment on the response variable (Singleton and Straits  2010 ). 
 External validity  obtains to the extent that the study’s results can be generalized to 
a larger, known population. As we have noted, experimental studies, in which cases 
are randomly assigned to treatment groups, are ideal for estimating causal effects. 
The gold standard in this genre is the double-blind, placebo-controlled, clinical 
trial. Studies of this nature have a clear advantage in internal validity over nonex-
perimental studies. However, experimental studies may be defi cient in external 
validity. For one thing, it may not be clear what population the study results are 
generalizable to. It is very rare—in fact, unheard of—for researchers to take a ran-
dom sample of a patient population and then randomly assign sample members to 
treatment conditions. Patients are usually a “captive audience”; they are at hand by 
virtue of seeking treatment from a given clinic or hospital. Or they are recruited 
through advertisements for a clinical trial. As they don’t typically represent a prob-
ability sample from a known population, it is not immediately clear what larger 
population they might represent. We can invoke the aforementioned notion of 
“sampling to a population” to justify a kind of generalizability. But the larger pop-
ulation the results might apply to is only hypothetical. A second factor that detracts 
from external validity is that, in actual clinical practice, patients are not randomly 
assigned to treatments. They elect to undergo certain treatments in consultation 
with their physician. Therefore, there is always an element of self-selection operat-
ing in the determination of which patients end up getting which treatments. This 
may lead to a different treatment outcome than if patients were randomly assigned 
to their treatments (Marcus et al.  2012 ). Thus, the pure causal effect observed in a 
clinical trial may not correspond perfectly to the real-world patient setting. 

 Nonexperimental studies often have an advantage in external validity. Many non-
experimental studies are based on probability sampling from a known population. 
Moreover, many follow patients after they have undergone treatments of their own 
choosing—on physician advice, of course. The disadvantage, as noted previously, is 
that nonexperimental study results can always be confounded by unmeasured het-
erogeneity. It is never possible to control for all possible patient characteristics that 
might affect the study results. Hence, nonexperimental studies often suffer from 
questions regarding their internal validity. We shall have much more to say about 
nonexperimental data analysis in subsequent chapters. In the meantime, the next 
chapter introduces techniques for summarizing the main features of a set of data. 
Understanding what your data “look like” is a fi rst step in the research process.        

1 Statistics and Causality
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 Descriptive Statistical Techniques

In this chapter we discuss how to use descriptive statistical techniques, or 
 techniques employed for data description, for summarizing the sample distribu-
tion of a  variable. Interest will primarily revolve around two tasks. The first is 
finding the center of the distribution, which tells us what the typical or average 
score in the distribution is. The most commonly employed measure of center is the 
arithmetic average, or mean, of the distribution. The second task is assessing the 
dispersion, or degree of spread of the values, in the distribution. This indicates 
how much variability there is in the values of the variable of interest. Additionally, 
we will learn about percentiles and another important measure of center: the 
median. Finally, we expand the discussion to considering the characteristics of 
the population distribution on a variable. But first we must distinguish between 
quantitative vs. qualitative variables.

 Quantitative vs. Qualitative Data

Data come in different forms. One basic distinction is whether the data are quantita-
tive or qualitative. Quantitative data are represented by numbers that indicate the 
exact amount of the characteristic present. Alternatively, they may simply indicate 
a “rank order” of units according to the amount of the characteristic present. By 
“rank order” is meant a ranking from lowest to highest on the characteristic of inter-
est. So weight in pounds is a quantitative variable indicating the exact weight of an 
individual. Degree of pain experienced, on a 0–10 scale, is also quantitative. But the 
numbers don’t represent exactly how much pain is present. Rather they represent a 
rank order on pain, so that someone who circles 8 is presumed to be in more pain 
than if they circled 7, and so forth. In statistics, we will typically treat quantitative 
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data the same, regardless of their “exactness,” provided there are enough different 
levels of the variable to work with. Five levels are usually enough if the sample is 
not too small.

Qualitative data, in statistical parlance, refers to data whose values differ only 
qualitatively. That is, the different values of a qualitative variable represent differ-
ences in type only, and bear no quantitative relation to each other. Examples are 
gender, race, region of residence, country of origin, political party preference, blood 
type, eye color, etc. Normally, we use numbers to represent qualitative data, too. But 
in their case, the numbers are just labels and convey no quantitative meaning. So, for 
example, gender can be represented using 1 for males and 2 for females. But it is a 
qualitative variable; the numbers do not indicate either the “amount of gender” pres-
ent or “rank order” on gender. The numbers are just labels; they could just as well 
be letters or smiley faces. (Numbers are most convenient, however, for computer 
manipulation.) Qualitative data call for different statistical techniques, compared to 
quantitative data, as we will see in this primer.

 Describing Data

Table 2.1 presents PSA levels for three groups of men who were randomly assigned 
to follow either a control diet (a diet balanced in meat, vegetables, fruits, etc.), a 
steak diet, or a vegetarian diet for 6 months. At the end of that period, their PSA was 
measured.

 Measuring Center and Spread of a Variable’s Distribution

 The Mean

The distribution of a variable is an enumeration or depiction of all of its values. The 
distribution of PSA in each group is readily apparent in the table. Two important 
features of distributions are the central tendency and dispersion of the variable. 
Central tendency describes where the “center” of the data is. Intuitively, it is a mea-
sure of what the typical value in the distribution is, and is most often captured with 

Table 2.1 PSA levels for 
men in the diet-PSA study

Control Steak Vegetarian

4.6 2.0 1.7
2.3 4.9 2.1
2.7 3.1 1.6
3.0 2.6 4.2
6.0 7.0 3.0
4.0 7.5 4.7

2 Summarizing Data
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the mean or arithmetic average. Most of us are already familiar with the mean. It’s 
just the sum of the values of a variable divided by the total number of values. So the 
mean PSA for the steak-diet group is:

 
Mean PSA( )

( . . . . . . )
. .=

+ + + + +
=

2 0 4 9 3 1 2 6 7 0 7 5

6
4 52

 

The mean is interpreted thus: average PSA in the steak-diet group is 4.52.

 Percentiles and the Median

Another measure of central tendency that is often used is the median. To define this 
measure we first define percentiles: the pth percentile is that value in the distribution 
such that p percent of the values are that value or lower than that value in the distri-
bution, and 1 − p percent are greater than that value. To describe a distribution’s 
percentiles, we have to order the values from smallest to largest. For the steak-diet 
group, the ordered PSA values are 2.0, 2.6, 3.1, 4.9, 7.0, 7.5. There are six unique 
values here, and each one therefore constitutes 1/6 or 16.7 % of the distribution. So 
the 16.7th percentile of the distribution is 2.0. That is, 16.7 % of the PSA values are 
≤2.0. The 33.4th percentile is 2.6, since 33.4 % of the PSA values are ≤2.6 and so 
forth. The median is the 50th percentile of the distribution. That is, it’s the value that 
is in the exact middle of the distribution. With an even number of values, as in this 
case, the median is taken to be the average of the two middle values. So the median 
of the PSA values is (3.1 + 4.9)/2 = 4. It is easy to see that 50 % of the PSA values 
are ≤4 and 50 % of the PSA values are >4. Two other commonly referenced percen-
tiles are the first quartile, which is the score such that 25 % of scores are less than 
or equal to it, and the third quartile, which is the score such that 75 % of the scores 
are less than or equal to it. The median is often used to describe a distribution’s 
center when the distribution is skewed or lopsided. For example, the average income 
for US households is typically described using the median rather than the mean. 
Why? Well, the majority of people have modest incomes. A relatively small propor-
tion have really large incomes, say, several million dollars per year. If we use the 
mean income to describe the typical household, it will be unrealistically large. The 
problem is that the mean is usually “pulled” in the direction of the extreme cases, 
compared to the median. Instead, using the median will give us an income value that 
is closer to what most households earn.

 Dispersion

The other important feature is dispersion or the degree to which the data are spread 
out. Dispersion, or variability, is an extremely important property of data. We can’t 
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find causes for things that don’t vary. For example, we can’t explain why everyone 
eventually dies. There’s no variability, because…well, everybody dies. But we can 
study what affects the timing of death, because there’s variability in that. And we 
can try to understand why people die from this or that condition, because that also 
shows variation.

One way to measure dispersion is via the variable’s range, which is simply the 
maximum value minus the minimum value. For the steak-diet condition, the range 
of PSA is 7.5 − 2 = 5.5. The range is not all that useful, however. Much more useful 
would be a measure that tells how well the mean represents the values in the dataset. 
That is, are most values similar to the mean, or are they very spread out on either 
side of it? The measure statisticians use is approximately the average distance of the 
units from the mean. We say “approximately” because it’s not literally the average 
distance. Why not? Well, suppose we were to calculate the average distance from 
the mean for the PSA values of the steak-diet group. We need to subtract the mean 
from each value and then average the result. We get the following deviations of each 
value from the mean:

2 − 4.52 = −2.52
4.9 − 4.52 = 0.38
3.1 − 4.52 = −1.42
2.6 − 4.52 = −1.92
7.0 − 4.52 = 2.48
7.5 − 4.52 = 2.98

Now if we sum these values so that we can get the average, we have:

 - + + - + - + + = -2 52 0 38 1 42 1 92 2 48 2 98 0 02. . ( . ) ( . ) . . . .  

Notice that the positives and negatives tend to cancel out, so the sum is approxi-
mately zero. In fact, it’s exactly zero if no rounding is used in the mean (the mean is 
actually 4.516666…). And this will always be the case. Hence, to eliminate the 
signs on these deviations from the mean, we square each deviation and then add up 
the squared deviations:

 

Sum of squared deviations = − + + − + −
+
( . ) ( . ) ( . ) ( . )2 52 0 38 1 42 1 922 2 2 2

(( . ) ( . )
. .
2 48 2 98

27 228

2 2+
=  

We then divide by 5 to get, roughly, the “average” squared deviation. Dividing by 
5 instead of 6 gives us an unbiased estimate of the corresponding “population” 
parameter. Unbiasedness is explained below. The result is called the sample 
 variance, and is denoted by “s2”:

 
s2 27 228

5
5 45= =

.
. .
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Finally, we take the square root of the variance to get the measure of dispersion 
we’re after. It’s called the standard deviation and is denoted “s”:

 s = =5 45 2 33. . .  

The standard deviation is interpreted as the average distance from the mean in 
the set of values. So the average man in the steak-diet group is 2.33 PSA units away 
from the mean of 4.52. Knowing the minimum and maximum value, the mean, and 
the standard deviation for a set of values usually gives us a pretty good picture of its 
distribution.

 Data from the General Social Survey

As another example of sample data we consider the 2002 General Social Survey 
(GSS). The GSS is a national probability sample of the USA noninstitutionalized 
adult population that has been conducted approximately every other year since 
1972. The sample size each time has been around 2,000 respondents. To date there 
is a total of around 55,000 respondents who have been surveyed. In 2002 the sample 
size was 2,765 respondents. That year, the GSS asked a few questions about peo-
ple’s attitudes toward physicians (Table 2.2). Here is one of the questions (it’s the 
third question in a series; that’s why it’s preceded by “c.”):

Table 2.2 Distribution of physician stewardship for 2,746 respondents in the 2002 GSS

RELYDOC R RELIES ON DOCTOR'S KNOWLEDGE

Description of the Variable

854. I will read you some statements of beliefs people have.
Please look at the card and decide which answer best applies to
you. c. I prefer to rely on my doctor's knowledge and not try to
find out about my condition on my own.

Percent N Value Label
26.0 1 Strongly disagree
15.0 2 Moderately disagree
14.5 3 Slightly disagree
12.6 4 Slightly agree
16.5 5 Moderately agree
15.3 6 Strongly agree

52,322 0 IAP
14 8 DONT KNOW

5 9 NO ANSWER
100.0  55,087 Total

715
413
399
345
453
421
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Notice that this is a quantitative variable in which the values represent rank order 
on the dimension of interest, which we shall call “physician stewardship.” The 
higher the value, the more the respondent is willing to let the doctor exercise stew-
ardship over his or her medical condition. Three of the codes are not counted toward 
the percent breakdown. “IAP” means “inapplicable.” As this question was only 
asked in the 2002 survey, GSS respondents from other years are given this code.  
A few respondents in 2002, however either said they “don’t know” (code 8) or they 
refused to answer the question (code 9). The “N” column shows how many respon-
dents gave each response. The total number of valid responses (for which a percent 
is given) is 2,746 (not shown). The mean of this variable is 3.24 (not shown), which 
falls about a quarter of the way between “slightly disagree” and “slightly agree.” 
That is, on average, respondents had a slight preference for finding out about their 
condition on their own. The standard deviation is 1.82 (also not shown). The mean 
and standard deviation would be computed in the manner shown above, but involv-
ing 2,746 individual cases. Fortunately, we have let the computer do that work for us.

Although the standard deviation is the preferred measure of spread, it’s not 
always obvious how much spread is indicated by its value. One way to decipher that 
is to realize that the most the standard deviation can be is one-half of the range. In 
this case, that would be 2.5. So the standard deviation of 1.82 is 1.82/2.5 = 0.73 or 
73 % of its maximum value. This suggests quite a bit of spread, as is evident from 
Fig. 2.1. This figure shows a bar graph of the variable’s distribution (the proportion 
of the sample having a particular value is shown by the “Density” on the vertical 
axis). The length of each bar represents the proportion of respondents giving each 
response. The variable’s name, for software purposes, is “relydoc.”
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Fig. 2.1 Bar graph of physician stewardship (Relydoc) for respondents in the 2002 GSS
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Next, Fig. 2.2 shows a bar graph for respondent education, in number of years of 
schooling completed, for the GSS respondents.

The n (number of valid respondents) for this variable is 2,753 (not shown). As is 
evident, the range is 0–20. The mean is 13.36 (not shown) and the standard devia-
tion is 2.97 (not shown). The tallest bar in about the middle of the graph here is for 
12 years of schooling, representing a high-school education. The mean of 13.36 
suggests that, on average, respondents have had about a year and a third of college. 
This distribution is notably skewed to the left. That is, the bulk of the data falls 
between education levels of 10–20, but a few “outliers” have as few years of school-
ing as 0–5.

Figure 2.3 presents a bar graph of the distribution of age for respondents in the 
2002 GSS.

Here, the n is 2,751 (not shown); the mean is 46.28 (not shown), and the standard 
deviation is 17.37 (not shown). The ages range from 18 to 89. In contrast to educa-
tion, the distribution of age is somewhat skewed to the right.

 Describing the Population Distribution

What we are really interested in is not the sample, but the population. The sample is 
just a vehicle for making inferences about the population. A quantitative variable’s 
distribution in the population is of utmost importance. Why? Well, for one thing, it 
determines how likely one is to observe particular values of the variable in a sample. 
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Fig. 2.2 Bar graph of education for respondents in the 2002 GSS
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The population distribution for a variable, “X,” is simply a depiction of all of the 
different values X can take in the population, along with their proportionate repre-
sentation in the distribution. It is just the population analog of the variable’s distri-
bution in the sample. It would be impossible to show all the individual values of X 
in the population, because populations are generally very large. For example, the 
US population is well over 300 million people. Therefore, population distributions 
for quantitative variables are depicted as smooth curves over a horizontal line repre-
senting the range of the variable’s values. The form of the age distribution immedi-
ately above already suggests this kind of representation.

Figure 2.4 depicts a distribution for some variable “X” in a population. As an 
example, the population could be all adult men in the USA, and the variable X could 
be PSA level.

In this figure, the horizontal axis shows the values of X, and the vertical axis 
shows the probability associated with those values. The distribution is again right- 
skewed. This means that most of the X values are in the left half of the figure, say, 
to the left of about 7 on the horizontal axis. But there is an elongated “tail” of the 
distribution on the right with a few extreme values in it. That is, the distribution is 
“skewed” to the right.

The height of the curve corresponds to the proportion of units that have the par-
ticular value of X directly under it. So the proportion that have a value of 5, say, is 
substantially greater than those having a value of 10. Because the total area under 
the curve is equal to 1.0, the proportion of the area corresponding to a range of X 
values, such as the area between “a” and “b” in the figure, is equal to the probability 
of observing those values when you sample one unit from the population. The 
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Fig. 2.3 Bar graph of age for respondents in the 2002 GSS
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probability of observing a value between a and b, denoted “P(a < x < b),” is shown as 
the shaded area to the right. The probability of observing a value less than “x” on the 
horizontal line, denoted “P(X < x),” is the shaded area on the left, and so on.

 The Normal and t Distributions

Frequently in biologic and medical science, data describing the way a variable is 
distributed in the population assume a bell-shaped configuration. This configura-
tion, or distribution, is called the normal distribution. The normal distribution is 
arguably the most important distribution in statistics. The reason is not so much 
because real-world data follow this pattern, but because it characterizes the sam-
pling distribution of many a statistical measure. We shall have much more to say 
about sampling distributions below. In the meantime, Fig. 2.5 depicts the normal 
distribution, along with its close relative, the t distribution.

These distributions are symmetric. This means that exactly 50 % of the distribu-
tion is on either side of the mean, which for both of these distributions is zero in this 
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Fig. 2.4 Population distribution for a variable, X. Reprinted with permission from John Wiley & 
Sons, Publishers, from DeMaris (2004)
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instance. It also means that the area to the right of any value, say 4, is exactly equal 
to the area to the left of the negative of that value, i.e. –4, and so on. The standard 
deviation of the normal distribution shown here is 1. The standard deviation of the t 
distribution is greater; it’s 1.8. And it is clear in the figure that the t distribution is 
somewhat more spread out than the normal. The t distribution has an associated 
degrees of freedom or df (a technical concept that we won’t go into here; just note 
that every t distribution requires a df to fully characterize it). This particular t distri-
bution has 7 df. It turns out that when the df gets large enough, the t distribution 
becomes indistinguishable from the normal distribution. You may have heard of the 
“t test” in statistics. The t test, which is discussed in Chap. 4, is a test of whether two 
groups have the same mean on a study endpoint. That test is so named because it 
relies on the t distribution. In fact, several tests in statistics rely on this useful 
distribution.

A normal distribution is distinguished by the proportions of its values that are 
within certain distances from the mean. For example, approximately 68 % of values 
are within one standard deviation from the mean, approximately 95 % are within 
two standard deviations, and almost all of the values are within three standard devia-
tions. Moreover, we can determine the probability of a value being more than some 
distance from the mean. For example, only 2.5 % of the values are more than 1.96 
standard deviations above the mean. Similarly, only 2.5 % of the values are more 
than 1.96 standard deviations below the mean. And this means that exactly 95 % of 
all values are within 1.96 standard deviations on either side of the mean (1.96 is 

Fig. 2.5 The normal and t distributions
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approximately 2 standard deviations). This type of information will be very useful 
when we discuss confidence intervals (below).

The other reason why population distributions are important is that their param-
eters are often the subject of inference. For example, we often want to know what 
the mean of the distribution is. In general, the population mean is symbolized by μ, 
and is calculated the same way as the sample mean, except using the entire popula-
tion. More to the point, we may want to know if population means for different 
groups are different in value. Remember that in the diet-PSA study we anticipate 
that mean PSA for the population of men exposed to a steak diet is higher than mean 
PSA for the population of men exposed to a balanced diet. In the next chapter, we 
will consider how to test this hypothesis. In the meantime, let’s see how descriptive 
statistics are used to describe the characteristics of samples in actual medical 
studies.

 Applications: Descriptive Statistics in Action

Medical studies typically present a table showing the demographic and medical 
characteristics of the subjects in their sample. Descriptive statistics are presented to 
illuminate the medical/personal profile of the typical sample member. At times fig-
ures are presented to illustrate particular patterns exhibited by the study’s findings. 
In what follows, we offer a sampling of descriptive results from different studies.

 Tarenflurbil Study

A study by Green et al. (2009) that appeared in The Journal of the American Medical 
Association was concerned with the degree of cognitive decline in patients with 
mild Alzheimer disease. In this clinical trial, the researchers tested the ability of 
tarenflurbil, a selective Aβ42-lowering agent, to slow the rate of decline in patients 
with mild Alzheimer disease. Across 133 participating trial sites, patients were ran-
domly assigned either to tarenflurbil or placebo treatment groups for an 18-month 
period. Characteristics of the study subjects were described in Table 1 of the article. 
For example, mean age of subjects in the placebo and tarenflurbil groups was 74.7 
and 74.6, respectively. Standard deviations of age in each group were 8.4 and 8.5, 
respectively, and age ranges were 53–100 in each group. Not surprisingly, random-
ization has created groups with equivalent age distributions. The proportion of 
females, on the other hand, was slightly higher in the placebo group (52.5 %) com-
pared to the tarenflurbil group (49.4 %). This difference however was not “statisti-
cally significant,” a term to be discussed in the next chapter. In fact, none of the 
patient characteristics, including measures of pre-randomization cognitive function-
ing, were meaningfully different between the two groups. Thus, the randomization 
for this study was successfully executed.
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 Hydroxychloroquine Study

Sometimes researchers, in describing the characteristics of the sample, will employ 
the median and the interquartile range (IQR) for describing center and spread of a 
variable’s distribution, rather than the mean and standard deviation. The IQR is sim-
ply the interval from the first to the third quartile. For example, Paton et al. (2012) 
studied whether the agent hydroxychloroquine might be good for decreasing immune 
activation and inflammation and thereby slow the progression of early HIV disease. 
Their study was a randomized clinical trial comparing hydroxychloroquine 400 mg vs 
placebo once daily for 48 weeks. The primary endpoint was the change from baseline 
to week 48 in activation of CD8 cells. In their table of baseline characteristics (Table 
1), they report the median (IQR) for time since HIV diagnosis as 3.0 (1.7 – 5.6) years 
for the hydroxycholoroquine group and 2.5 (1.7 – 3.5) years for the placebo group. 
The median and IQR would be preferred measures of center and spread, respectively, 
when variable distributions were particularly skewed. In this study, it was not clear 
that such was the case, but apparently median and IQR were used anyway.

 RALP Study

Yu et al. (2012) undertook a study of the utilization rates at different hospitals of 
robot-assisted laparoscopic radical prostatectomy (RALP), along with associated 
patterns of care and patient outcomes due to the procedure. They used the nationwide 
inpatient sample (NIS), which is a 20 % stratified probability sample of hospital stays 
consisting of about eight million acute hospital stays annually from more than 1,000 
hospitals in 42 states. During the last quarter of 2008 there were 2,093,300 subjects 
in NIS. A total of 2,348 RALPs are included in the NIS (Yu et al. 2012). RALP surgi-
cal volumes characterizing different hospitals are grouped into categories ranging 
from 1–5 surgeries to a maximum of 166–170 surgeries. Figure 2.6 shows a distribu-
tion of the percent of hospitals falling into each RALP surgical- volume category.

The distribution depicted in Fig. 2.6 is very clearly right-skewed. Most hospitals 
have RALP surgical volumes between 1–5 and 31–35. A few, however, have RALP 
surgical volumes as high as 96–100 and 166–70. For example, the modal (i.e., the 
most common) surgical volume is 11–15 RALPs. 20.9 % of hospitals have this level 
of surgical volume. At the other extreme, only 0.9 % of hospitals perform as many 
as 166–170 RALPs.

 Brachytherapy Study

Emara et al. (2011) employed graphic techniques to describe the effect of treatment 
on the primary study endpoint in their study. Their research evaluated the urinary 
and bowel symptoms, quality of life, and sexual function of men followed for 5–10 
years after treatment with low-dose rate brachytherapy for prostate cancer at their 
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cancer center. Sexual function was assessed with the International Index of Erectile 
Function (IIEF)-5 scale. This measure has scores ranging from 1 to 25, with higher 
scores signifying better erectile function. Men with scores ≥11 were considered 
“potent.” Figure 2.7 shows the distribution of (IIEF)-5 scores for the men prior to 
their cancer treatment (“pre-treatment”) and after treatment at the follow-up 5–10 
years later (“at follow-up”).

Fig. 2.6 Percent distribution of hospitals falling into each RALP surgical-volume category. 
Reprinted with permission of Elsevier Publishers from Yu et al. (2012)

Fig. 2.7 Distribution of (IIEF)-5 scores before vs. after brachytherapy for prostate cancer. 
Reprinted with permission from John Wiley & Sons, Publishers, from Emara et al. (2011)

 Applications: Descriptive Statistics in Action



22

We see from the figure that the IIEF scores are clustered up at the higher end of 
the scale before brachtherapy, with all men classified as potent (the vertical line in 
the middle of the graph represents the potency threshold of 11). After the therapy, 
however the distribution is much more spread out, with only 63 % (39/62) of the 
men potent and the other 37 % being classified as impotent, according to the index. 
Apparently, interference with erectile function is one of the “downsides” of 
brachytherapy.

In the next chapter we begin the study of inferential statistics. This body of tech-
niques is concerned with two issues: testing a hypothesis about a population param-
eter and estimating the value of a population parameter. In the next chapter, we 
define what a hypothesis is and lay out the reasoning that leads to a test of its verac-
ity. We will see that hypotheses are neither proved nor disproved. Rather, we will 
attempt to marshal evidence for the hypotheses that we believe to be true. And to the 
extent that they are continuously supported in ongoing studies, we will tend to 
accept them. To the extent that they are not supported in research, we will tend to 
doubt their veracity. Such is the nature of the scientific process.

2 Summarizing Data
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This chapter introduces the reader to statistical inference, and in particular, the test 
of hypothesis. Inference refers to the idea that we will employ the sample data to 
make inferences about the population. A major means of making inferences is to 
pose a hypothesis about the population and then examine whether it is supported by 
one’s sample data. There is an intricate set of cognitive steps involved in this process. 
Because reasoning is involved that may seem unfamiliar at first, we will proceed 
with caution. We begin with a simple and intuitive example of hypothesis testing to 
show the reader that he or she already employs such reasoning on a regular basis.

 The Test of Hypothesis

The test of hypothesis is one of the major vehicles for assessing the truth or false-
hood of a claim about the population. It is so important to the enterprise of inferen-
tial statistics that we will need to discuss it at length here. But, in fact, you already 
know how to perform a test of hypothesis. It involves reasoning that we all use all 
the time. Here’s a simple, but instructional, example.

 Let’s Roll the Dice

Are you lucky with dice? Let’s assume you are. So let’s gamble with them. You and 
the first author of this primer, Al, will play the game. We each pony up a dollar and 
put it into the pot. Each of us has a die. We will each roll our die. Whoever has the 
highest number wins the pot. If there’s a tie, we ante up again, the pot gets larger, 
and we keep rolling. What do you say?

Okay, here’s how it goes. Al rolls a 6; you roll a 3. Then Al rolls a 6; you roll a 
1. Then Al rolls a 6; you roll a 6. Then Al rolls a 6; you roll a 4. Then Al rolls a 5…

Chapter 3
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wait a minute! By now we’re betting you’re stopping the game. You probably think 
Al’s die is loaded. Why? Because with an honest die, you’re thinking, there’s no 
way Al would be rolling four sixes in a row. There’s your test of hypothesis. You’ve 
already done it and made a decision. Let’s look at the test again, but couched a little 
more formally.

 Testing Whether Al’s Die Is Loaded

What you think at this point is that Al’s die is loaded. If it’s an honest die, then the 
probability of a six coming up each time is at most 1/6 = 0.167. So what you’re say-
ing is: since Al’s die is loaded, the probability of his die showing a six is greater than 
1/6. This is a statement of the research hypothesis. The research hypothesis is what 
you think is the case and what you will try to marshal evidence for. A hypothesis is 
always a statement about a population parameter. In this case, the parameter is the 
probability that Al’s die comes up 6. Let’s denote that with P. The research hypoth-
esis is then expressed as H1: P > 1/6.

Now, you can’t actually see that a die is loaded. So how are you going to show 
that the research hypothesis is right? The only way, really, is to show that the oppo-
site hypothesis—that the die is honest—must be wrong. Because if the die is sup-
posed to be honest, then you can calculate the probability of getting four sixes 
followed by a number that’s not a six. And if that’s very unlikely, then you’ve shown 
that the observed data—i.e., the five outcomes of Al’s die rolls—are simply incon-
sistent with an honest die. That the die is honest is what’s called the null hypothesis. 
The null hypothesis is what we are typically trying to cast doubt upon. In this exam-
ple, it’s H0: P ≤ 1/6.

 Statement of Hypotheses

So, here are the two hypotheses:

H0: P ≤ 1/6
H1: P > 1/6

Notice that the hypotheses are exhaustive. That is, all possible probabilities of a 
six coming up have been listed. And they’re mutually exclusive. If one’s right, the 
other’s wrong, and vice versa.

 Testing the Null Hypothesis

What we will test is the plausibility of the null hypothesis. To do that, we need a 
test statistic. In this case, the test statistic is the number of sixes in Al’s five die rolls. 
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In general, the test statistic is a sample measure whose probability of occurrence 
can be calculated if the null hypothesis is true. Here’s Al’s sequence of roll out-
comes, again.

AL: 6 6 6 6 O

Where the letter “O” here stands for “other than a six.”
Since there are four sixes in 5 rolls, the test statistic is 4. Now we ask: what’s the 

probability of getting 4or more sixes in five die rolls with an honest die? And to give 
Al the greatest benefit of the doubt, we’ll allow that the four sixes don’t have to be 
the first four rolls, even though that’s what his sequence was. But there are five dif-
ferent sequences that would have eventuated in four sixes. They are {6 6 6 6 O} 
(what he actually rolled); {O 6 6 6 6}; {6 O 6 6 6}; {6 6 O 6 6}; and {6 6 6 O 6}. 
Each such sequence has the following probability of occurrence, by the multiplica-
tion rule for probabilities:
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And since there are five such sequences that satisfy the event of getting four 
sixes, we multiply by 5 to get the probability of getting four sixes:
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But we’re not done. What we want is the probability of getting at least four sixes 
in five rolls. The reason is that five sixes is even more dramatic evidence against H0, 
and that possibility has to be included, too. The probability of getting five sixes is:
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In sum, the probability of getting four or more sixes in five tosses of an honest 
die is:

Pr (four or more sixes in five tosses of an honest die) = 0.0032 + 0.00013 =  0.00333.

 Making a Decision

The decision of whether or not to reject the null hypothesis hangs on this probabil-
ity. It’s so important that it’s given a special name and notation in statistics: It’s 
called the p value. (Notice that the lower-case “p” used here is different from the 
upper-case “P” used to represent the probability Al’s die comes up 6.) It’s defined 
as the probability of getting sample results at least as unfavorable to H0 as was 
observed if H0 is true. If it’s too small, that means that the observed result would be 
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too unlikely under the null (“under the null” means if the null hypothesis were true) 
for the null hypothesis to be believable. In this case, it’s pretty small: there’s only 
about a three in a thousand chance of getting at least four sixes in five rolls with an 
honest die. So you are right to reject the null hypothesis and conclude that Al’s die 
is loaded.

Note: you haven’t proved that his die is loaded. Even though unlikely, it is indeed 
possible to get four or more sixes in five tosses of an honest die. In fact, it would 
happen 0.333 % of the time. But which would you rather believe: you’ve just expe-
rienced a very, very rare event, or you’re dealing with someone who’s cheating? 
Knowing how much Al hates to lose money, we’d go with the latter.

 “Statistically Significant” Results

Finally, you might ask: how small does the p value have to be for us to reject H0? 
The answer is:

By convention, when the p value is ≤0.05, we reject the null hypothesis. The 
value of 0.05 is called the alpha-level for the test: it’s the criterion probability we 
use for judging when the sample result is too unlikely to be believable. And when 
we reject H0, we say that the test result is statistically significant. This terminology 
is so central to statistics that we’ll say it again: When you reject the null hypothesis, 
you say, “The test result is statistically significant.” In the dice example, this means 
that the probability of Al’s die coming up 6 is greater than what was specified in the 
null hypothesis. In general, statistically significant results imply that the true value 
of the parameter of interest is different from what the null hypothesis posits.

 What About Your Sequence of Die Rolls?

For comparative purposes let’s consider the probability of your sequence of rolls. 
Now we didn’t find out your last roll, but let’s suppose it wasn’t a 6. So your 
sequence was: 3 1 6 4 O.

With an honest die, you’d expect about one 6 to come up in five rolls. The prob-
ability of getting just one 6 is:
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Or, we might ask: what’s the probability of getting at most one six in five rolls of 
an honest die? Then we have to add the probability of getting no sixes, which is:
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In sum, the probability of getting at most one six in five rolls of an honest die  
is 0.402 + 0.402 = 0.804. At any rate, no one is going to accuse you of having a 
loaded die!

 Large-Sample Test of Hypothesis About a Mean

Now let’s apply what we just learned to understand a real statistical test. Recall the 
distribution of education in the 2002 GSS shown in the previous chapter. Recall 
that the mean is 13.36 and the standard deviation is 2.97. And the sample size is 
2,753. We don’t know what the mean education in the entire U.S. adult population 
was in that year, though. Although 13.36 is a good estimate, it’s only an estimate. 
So suppose a firm was planning on creating a medical Web site in 2002 where 
people could read about health issues. They were planning on pitching it at a 12th-
grade reading level because the company president insisted that the average per-
son in the country had, at most, a high-school education. His vice president 
disagreed; he thought the average person had better than a high-school education. 
So let’s do a test of hypothesis about the population mean of education to see who 
was right.

 Assumptions for the Test

Every test is based on some assumptions or ground rules. If these assumptions are 
not satisfied, the test results may not be valid. For this test, which is called the large- 
sample test of hypothesis about a population mean, the assumptions are:

 1. We have a random sample from the population. (We do, so that’s satisfied.)
 2. The variable in question is quantitative. (It’s education, which is quantitative, so 

that’s satisfied.)
 3. The sample size is at least 30. (It’s 2,753, so that’s satisfied. Below we’ll see why 

this last assumption is important.)

 Statement of Hypotheses

Let μ represent mean education in the 2002 US adult population. Then the hypoth-
eses are:

H0: μ ≤ 12.
H1: μ > 12.

 Large-Sample Test of Hypothesis About a Mean
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 Before Going Further: The Sampling Distribution  
of a Sample Statistic

We must pause here. We need a test statistic that will allow us to find a p value for 
the test. That is, just as in the dice-rolling example above, we need to know the like-
lihood of getting the sample result we’ve observed (i.e., a mean education of 13.36) 
if the null hypothesis (that the population mean is less than or equal to 12) is true. 
However, to understand that test statistic and p value in this case, we need to discuss 
the single most important concept in all of inferential statistics: the sampling distri-
bution of a sample statistic. Recall the dice example. Remember that we marshaled 
evidence for the research hypothesis (Al’s die is loaded) by showing that the sample 
result (four or more sixes in five tosses) was implausible if the null was true.

In the current problem, the sample result is the sample mean, which is our best 
estimate of the population mean. We will marshal evidence for the research hypoth-
esis that the population mean is greater than 12 by showing that, if the null is true 
(that the mean is, at most, 12), it is very unlikely to get a sample mean (13.36) that’s 
at least as large as we’ve gotten. To know the likelihood of a particular sample mean 
when the population mean is a specific value, we use the sampling distribution of the 
sample mean. This is a distribution of all of the sample means that would be found by 
infinite repetition of the sampling scheme. That is, suppose that the GSS took a sec-
ond random sample of 2,753 US adults in 2002, and then a third random sample of 
2,753 adults in 2002, and so on, continuing until all possible nonredundant samples 
had been collected. Two samples are nonredundant provided that they do not contain 
the exact same population members. For each of these samples, mean education 
would be calculated. This (virtually) infinite collection of sample means would be 
the sampling distribution of the sample mean for this problem. If we have knowledge 
of the sampling distribution of the sample mean, we can figure out how likely it 
would be to get a sample mean of 13.36 or greater if the population mean is only 12.

 Simple Example of a Sampling Distribution

To see a simple example of a sampling distribution, regard the following Table 3.1:
What we see first is a very small population consisting of five units, lettered A 

through E. For each unit, the variable Y has been measured and given a value. The 
population mean of Y, or μ (not shown), is 3 (as is easily verified). The population 
variance of Y (also not shown), which is given the symbol σ2, is 2. How is the latter 
calculated? Since it’s the population variance and not the sample estimate of the 
population variance, we divide by N rather than N−1:
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Below that, we see 10 different nonredundant samples of size N = 3 taken from 
this population. This is the total number of nonredundant random samples of size 3 
that can be drawn from this population. Sampling is done here without replacement, 
which means that, for any given sample, once a unit is drawn into the sample, it’s no 
longer available to be drawn again into that same sample.

For each sample, two statistics have been calculated: the sample mean, denoted 
“ y ” (and pronounced “y-bar”), and the sample variance (s2, as before). The 
“Proportion” columns show the proportionate representation of each sample mean 
or variance in the collection. So the sample mean of 2 occurs just once, which is 
10 % of the time, whereas the sample mean of 2.67 occurs twice, or 20 % of the 
time, and so forth.

Table 3.1 The sampling distribution for the sample mean and sample variance, Based on repeated 
sampling of size N = 3 from a population with 5 units

A 

B 

C 

D 

E 

2 

3 

1 

5 

4 

Sampling Distribution (for N = 3): 

Sample Members Y y Proportion s2 Proportion 

1 A,B,C 2,3,1 2 .1 1 .3 

2 A,B,D 2,3,5 3.33 .2 2.33 .4 

3 A,B,E 2,3,4 3 .2 1 .3 

4 A,C,D 2,1,5 2.67 .2 4.33 .2 

5 A,C,E 2,1,4 2.33 .1 2.33 .4 

6 A,D,E 2,5,4 3.67 .1 2.33 .4 

7 B,C,D 3,1,5 3 .2 4 .1 

8 B,C,E 3,1,4 2.67 .2 2.33 .4 

9 B,D,E 3,5,4 4 .1 1 .3 

10 C,D,E 1,5,4 3.33 .2 4.33 .2 

Population Elements: 
Case Y

Reprinted with permission of John Wiley & Sons, Inc., from DeMaris (2004)
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We focus on the sample mean first. Notice that there is some variability in the 
sample means. They range from 2 to 4 in value. That is, they bracket the population 
mean of 3. Sample means that are closer to 3—such as 2.67, 3, and 3.33—are more 
likely to be observed than those that are farther away from it (such as 2, 2.33, 3.67, 
or 4). So even in this very simplified example, you’re more likely to get a sample 
mean that’s close to the population mean than one that’s farther away, when you 
take a random sample.

The column of means and its associated Proportion column together constitute 
the sampling distribution of the sample mean. The sampling distribution of the sam-
ple mean is a probability distribution. It shows all possible sample means that could 
be observed using a given sample size, along with their probabilities of being 
observed. Moreover, this distribution itself has a mean and a standard deviation. 
Let’s find the mean of the sampling distribution of sample means:
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Notice that this is exactly the same as the population mean of Y that we’re trying 
to estimate using the sample mean. This phenomenon is not a coincidence. It turns 
out that the mean of the sampling distribution of sample means is always equal to 
the population mean you’re trying to estimate. For this reason, we say that the sam-
ple mean is an unbiased estimator of the population mean. “Unbiased” simply 
means that the average value of the sample statistic (averaging over its sampling 
distribution) is equal to the population parameter it’s meant to estimate.

We can also calculate the standard deviation of the sample means. First, we cal-
culate the sum of squared deviations of each sample mean from the mean of the 
sample means:
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Now, to get the variance of the sample means, we divide the sum of squares by 
10 (not 9, since it’s not an estimator of the variance of sample means, rather it is the 
variance of the sample means):
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Finally, to get the standard deviation of sample means, we take the square root of 
0.33334 to get 0.577.

The standard deviation of sample means is called the standard error of the mean, 
since it indicates the average amount of error one incurs in using the sample mean 
to estimate the population mean. Finally, we should note that a similar set of 
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operations would also give us the mean and standard error of the sample variances 
from these ten samples. Bottom line: every sample statistic has a sampling 
 distribution, and that distribution has a mean and a standard deviation. The standard 
deviation of a sampling distribution is called a standard error, to distinguish it from 
the ordinary standard deviation of just any variable.

 A More Elaborate Example

The example of sampling distributions above is rudimentary and serves only to 
introduce the idea. Let’s take a look at a slightly more elaborate example to get a 
better sense of what the sampling distribution of the sample mean will look like with 
a larger population.

Johnson’s Island is a tiny atoll in the Pacific Ocean. There is a population of men 
who live on it to maintain critical navigation equipment for transoceanic travel. 
Suppose the population of adult males on Johnson’s Island consists of 29 males.  
A urologist is interested in estimating mean PSA level for this population. So he 
decides to take a random sample of five men, measure their PSA, and then use the 
sample mean as his estimate of the population mean. What does the sampling distri-
bution of the sample mean look like for this population and this sample size?

Let y = the variable “PSA.” First, here is the distribution of y for the 29 men in the 
population (Fig. 3.1):

This is a horizontal bar chart. The values of Y form the rows of the chart. The 
numbers of men with each different value of PSA are represented by the lengths of 

y Cum. Cum.
Freq Freq Percent Percent

0 --------- 1 1 3.45 3.45

1 --------------------- 2 3 6.90 10.34

2 --------------------------------- 3 6 10.34 20.69

3 ------------------------------------------------- 5 11 17.24 37.93

4 ------------------------------------------------------------------------ 7 18 24.14 62.07

5 ------------------------------------------------- 5 23 17.24 79.31

6 --------------------------------- 3 26 10.34 89.66

7 --------------------- 2 28 6.90 96.55

8 --------- 1 29 3.45 100.00

2 4 6 8 10 12 14 16 18 20 22 24

Percentage

Fig. 3.1 Population distribution for the variable Y = PSA of men on Johnson’s Island
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the bars. These numbers are also given in the “Freq” column. For example, one man 
has a PSA of 0, five men have a PSA of 3, seven men have a PSA of 4, and so forth. 
As we can see from the Y values, PSA levels in the population range from 0 to 8. 
Mean PSA in the population is 4 and the standard deviation of PSA for the popula-
tion is σ = 1.875 (not shown). Let’s look at this distribution again, but rotated 90° 
counterclockwise (Fig. 3.2).

This is a vertical bar chart. The values of PSA are on the horizontal axis. The 
heights of the “bars” (represented with layers of dashes) represent the percentages 
of men having each value of PSA. Notice that this distribution somewhat resembles 
a normal distribution, with values bunching up between 3 and 5, and then fewer men 
having values of 0–2 or 6–8.

Next, we present the sampling distribution of the sample mean for this popula-
tion and a sample size of 5. We will see a depiction of all possible sample means we 
could get when sampling from this population. Here sampling is done, again, with-
out replacement. This means that every sample is unique in not having the exact 
same population members as any other sample. This distribution is shown in 
Fig. 3.3.

Here, we see that the sample means range from 1.2 to 6.8. We also see that the 
total number of sample means in the sampling distribution is 118,755 (given at the 
bottom of the “Cum. Freq” column). The “Freq” column shows that very few sam-
ple means are as low as 1.2 or as high as 6.8. In fact, only three samples each have 

Percentage

20

15

10

5

0 1 2 3 4

Y

5 6 7 8

Fig. 3.2 Population distribution for the variable Y = PSA of men on Johnson’s Island: Rotated 
counterclockwise
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means that are this far from the population mean of PSA, which we know is 4. The 
most common sample mean, as shown by the “Freq” column, is the value 4, with a 
“Freq” of 11,889. That is, the most likely value of a sample mean when sampling 
randomly from this population is the value 4, which is the same as the population 
mean of Y. Once again, let’s see this distribution when rotated counterclockwise 
90°. Figure 3.4 shows the result.

Notice that this distribution very much resembles a normal distribution. This is 
not a coincidence, as we will see with the important theorem Central Limit Theorem 
(CLT) presented below. Notice also that the highest “bar” in this distribution is for 
the value 4.0. In fact, the average of all these sample means is 4.0, the same as the 
population mean of Y. The standard deviation of all these sample means is 0.8. This 
is also equal to σ, the population standard deviation of Y, divided by the square root 

of the sample size. That is, 
s
n
= =

1 875

5
0 8

.
. . This is also not a coincidence, as the 

CLT tells us, below.

Distribution of the Sample Mean for n = 5:

Fig. 3.3 Sampling distribution of the sample mean of PSA from the population of PSA values on 
Johnson’s Island for n = 5
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 Sampling Distribution of the Mean for the Large-Sample  
Test of Hypothesis

Okay, back to our test of hypothesis about mean education. We need the sampling 
distribution of the sample mean for that problem, which you recall is based on a 
sample size of 2,753. We certainly don’t want to try to generate all possible samples 
like we did in Table 3.1 or the Johnson’s Island example above! Fortunately, we 
don’t have to. There is a statistical theorem called the CLT that tells us what that 
sampling distribution looks like.

Fig. 3.4 Sampling distribution of the sample mean of PSA from the population of PSA Values on 
Johnson’s Island for n = 5: Rotated counterclockwise
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 The Central Limit Theorem

There are two corollaries to the CLT. The first is that if a variable Y is normally 
distributed in the population, and we are using random sampling, then the sampling 
distribution of the sample mean, y , is a normal distribution, regardless how large 
or small the sample size is. Moreover, the mean of the sampling distribution is μ, the 
population mean of Y. And the standard deviation of the sampling distribution of y  

(i.e., the “standard error” of the sample mean) is equal to 
s
n

, where σ is the stan-

dard deviation of Y in the population. As we saw in the Johnson’s Island example, 
the distribution of the 29 values of Y in the “population” kind of resembled a normal 
distribution, and the resulting sampling distribution of y  looked very much like a 
normal distribution, even with a small sample of size 5.

The second corollary of the CLT is much more important than the first. Typically, 
the distribution of Y in the population is not at all normal. Nevertheless, the CLT 
says that as long as you’re using random sampling, and the sample size is large, the 
sampling distribution of the sample mean is still a normal distribution. The mean of 
that distribution is μ, the population mean that we are trying to test a hypothesis 
about. And the standard error of the mean (i.e., the standard deviation of the sam-

pling distribution of y ) is s
n

. This is really a remarkable result. It means that as 

long as we have a large sample, it does not matter how the variable in question is 
distributed in the population. We know that the sampling distribution of the sample 
mean is normal in shape, centered over the population mean of the variable in ques-

tion, and with a standard deviation that has a simple formula (
s
n

). How large is a 

“large” sample? It turns out that if n is ≥30, that’s large enough.
In the education example, the population mean in question is mean education for 

US adults in 2002. The sample size is 2,753—plenty large. By the CLT, then, we 
know that the sampling distribution of the sample mean of education is normal. 
Moreover, the standard deviation, or standard error, of this sampling distribution is 

equal to s
2753

. Now, we don’t know σ, but we can substitute the sample standard 

deviation of education into this formula in place of it. It turns out that this works just 
as well. The sample standard deviation of education in the GSS is 2.97. Thus, the 
estimate of the standard error of the sample mean is:

 
Standard error of y = =

2 97

2753
0 057

.
. .
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 Test Statistic and P-Value

So here’s the deal: to accomplish our test of hypothesis, we need to find the proba-
bility of getting a sample mean of at least 13.36 if the population mean is 12. Now 
we know that the sample mean has a normal distribution centered over μ. So let’s 
assume μ is 12. The test is always conducted “under the null hypothesis,” meaning, 
by assuming the null hypothesis is true. The reason is that it is the plausibility of H0 
that is actually being tested. To find the p value that determines the test’s outcome, 
we have to find the probability of getting a sample mean of 13.36 or greater when 
sampling from a normal distribution whose mean is 12. Regard the normal distribu-
tion in Fig. 2.5 from the previous chapter again. Imagine that, instead of 0, it’s 
centered over 12. Then 13.36 is way over in the right tail of the distribution. To find 
the probability associated with all values ≥13.36, we have to find the area in that part 
of the tail. And there is a table that lets us do this, which is found in most statistics 
texts. It tells the probability of being a particular number of standard deviations 
away from the mean of a normal distribution. How many standard deviations (of the 
sampling distribution of y ) away from 12 is 13.36? That’s easy, it’s:

 
z =

-
=

13 36 12

0 057
23 9 12

.

.
. .standard deviations above

 

Using the table, we find that the probability of being that far above μ on a normal 
distribution is <0.00001. Therefore, the p value is expressed as “p < 0.00001.”

 Summary

Our test statistic is the “z” calculation above. It converts an observed sample mean 
into its distance from the null-hypothesized population mean. So, like the dice- 
rolling example, it tells us how much of a discrepancy there is between what we’d 
expect to see if the null hypothesis is true—which is a sample mean of 12—from 
what we actually observed—which is a sample mean of 13.36. The p value in this 
case is so small we’re just expressing it as “<0.00001.” But it’s easy to see that we 
will reject the null hypothesis here in favor of the research hypothesis. That is, we 
conclude that the mean education of adults in the US in 2002 was greater than just 
12 years of schooling.

A few closing comments are in order. First, what you’d “expect” to see if the null 
hypothesis is true is statistical lingo. In statistics, the “expected value” of anything 
is its population mean. The expected value of the sample mean is the mean of its 
sampling distribution, and this is what you’d “expect” to see in the sense that it’s the 
average value of the sample mean. So it’s the sample mean you’d get, on average, 
when taking a sample from the population. So if the null were true in this example, 
you’d “expect” the sample mean to be 12. Second, there is a lesson to take away 
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from this test about the construction of a test statistic. All test statistics in statistics 
measure how much of a discrepancy there is between what you actually observe in 
a sample and what you’d expect to see if the null is true. Hypothesis testing is not 
the only way to make inferences about the population. Instead, we can just try to 
estimate the value of the parameter in question. However, this estimate needs to be 
qualified by a “margin of error,” since it is subject to sampling variability. The next 
chapter details this approach, along with additional topics pertinent to statistical 
inference.

Before Going Further: The Sampling Distribution of a Sample Statistic 
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 Confidence Intervals and the T Test

In this chapter we discuss the confidence interval. This is an interval of numbers 
that, we are very confident, contains the parameter of interest. Such intervals are 
very useful when our interest is in what the value of the parameter actually is, rather 
than just whether our hypothesis about it is or is not supported. After that, we revisit 
hypothesis testing with a more elaborate test in which we test whether two means in 
the population are the same. Following this, we consider the issue of statistical 
power in hypothesis testing. Power is a very important consideration, particularly 
when researchers are deciding how large a sample they need to collect in order to 
effectively answer their research questions.

 Confidence Intervals

We continue with the example of testing whether mean education in the USA was 
≤12 years, from the previous chapter. Testing hypotheses is one way to conduct 
inferences. However, it doesn’t really tell us what the actual parameter value is. It 
just tells us we can reject that it is in some range of values (e.g., ≤12) and accept that 
it is in some other range of values (e.g., >12). But this isn’t all that informative. So 
is it, say, 12.1? 12.2? 13? 14? 15? In this example, where our interest centers on a 
single population mean, it’s much more useful to try to pin down its actual value 
with some precision. For this purpose, we typically use a confidence interval. This 
is an interval of numbers that, we are very confident, contains the true parameter 
value. It is based, again, on the sampling distribution of a statistic. Recall that the 
sample mean of education is normally distributed, with a standard error of 0.057. 
And the true population mean is smack in the middle of the distribution. Now, in 
conducting the test of hypothesis, we assumed that μ was 12. For the confidence 
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interval we’re not going to assume anything about μ. Rather, we take advantage of 
the fact that 95 % of all sample means of education are within 1.96 standard errors 
of μ (as noted above). To form a 95 % confidence interval for μ, we simply add and 
subtract 1.96 standard errors from the sample mean. Hence

95 13 36 1 96 0 057 1% . . ( . ) (Confidence interval for mean education = ± = 33 25 13 47. , . ).

We say, then, that we are 95 % confident that mean education of all US noninsti-
tutionalized adults in 2002 was between 13.25 and 13.47 years of schooling. This 
works because 95 % of the time with a random sample of 2,753 cases from this 
population, such an interval will contain the true value of μ. Why does this work? 
Remember that the sample mean is normally distributed. The center of this distribu-
tion is the population mean that we are trying to estimate. Our particular sample 
mean is one of the means in this distribution. We don’t know whether it is above the 
center of the distribution or below the center of the distribution. But if we attach an 
interval of numbers that is equal to 1.96 standard errors of the sample mean to either 
“side” of our sample mean, there is only a 5 % chance that the resulting interval will 
not contain the population mean.

We’ll use an analogy to drive home the point. Suppose you’re in a pitch-dark 
closet. It’s very small. There’s a light switch on the wall, but you don’t know if it’s 
on the wall to your left or on the wall to your right. But you also know that only 
2.5 % of the closet is too far from the switch for it to be reached by hand from any-
where in the closet. Your arm is exactly 1.96 feet long. So if the switch is on the left 
wall, and you reach for it with your left hand, there’s only a 2.5 % chance you won’t 
reach it. And if the switch is on the right wall, and you reach for it with your right 
hand, there’s only a 2.5 % chance that you won’t reach it. So, altogether, if you just 
reach out both hands, there’s only a 5 % chance you won’t reach the light switch.1 
Which means you’re 95 % confident that reaching out both hands will let you turn 
on the light.

In sum, confidence intervals should be seen as a useful supplement to the test of 
hypothesis. In particular, if the result is significant, we may want to follow up with 
a confidence interval to pin down the value of the parameter of interest.

 Testing the Difference Between Two Means: The T Test

Hypothesis tests are typically reserved for analyzing the relationship between at 
least two variables. Recall the diet-study data in Table 2.1. We’re interested in 

1 By rules of probability: For two mutually exclusive events A and B, Pr(A or B) = Pr(A) + Pr(B). So 
let A = you’re to the right of the light switch and too far away, and B = you’re to the left of the light 
switch and too far away. Then Pr(you won’t reach the switch) = Pr(you’re right of the switch and 
too far away or you’re left of the switch and too far away) = Pr(you’re right of the switch and too 
far away) + Pr(you’re left of the switch and too far away) = 0.025 + 0.025 = 0.05. QED.
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whether a treatment variable, diet, affects a response variable (also called a “study 
endpoint”), PSA level. We will use these data to test our hypothesis about the dele-
terious effect of a steak diet on PSA. For the moment we’ll confine our attention to 
the first two columns (we’ll leave the men on a vegetarian diet for a later test). In 
this case, our research hypothesis is a diet rich in red meat results in an elevated 
PSA, compared to a balanced diet. To show support for this, we also tender the 
opposite proposition, the null hypothesis: a diet rich in red meat will, at most, result 
in the same PSA level as a balanced diet (but could also be associated with a lower 
PSA level). As before, the way we will try to marshal support for the research 
hypothesis is to show that the data are inconsistent with the null hypothesis.

 Statement of Hypotheses

Hypotheses refer to what is true in the population. We assume there are two 
 subpopulations: the population of men on the control diet, group 1, and the popula-
tion of men on the steak diet, group 2. Let the mean PSA levels for these two sub-
populations be denoted μ1 and μ2, respectively. The standard deviation of PSA in 
each subpopulation is assumed, for this particular test, to be the same, and is denoted 
σ. The hypotheses are expressed as follows:

Null hypothesis: μ2 ≤ μ1.
Research hypothesis: μ2 > μ1.

But it is more informative to express both hypotheses in terms of one parameter, 
μ2−μ1, the mean difference between the groups. In particular:

Null hypothesis: μ2−μ1 ≤ 0.
Research hypothesis: μ2−μ1 > 0.

 Sample Information and the Sampling Distribution

Now, the sample data in Table 2.1 provide us with evidence about this parameter, 
and, therefore, these hypotheses. The mean PSA for the steak group is 4.52 (as we 
calculated before) and for the control group it’s 3.77. The sample mean difference 
is therefore 4.52 − 3.77 = 0.75. If the null hypothesis is true, then this difference is 
supposed to be zero in the population (this would be the maximum difference that 
would obtain under the null hypothesis).

As before, the CLT tells us what the sampling distribution of mean differences 
looks like. If PSA levels are normally distributed in each subpopulation (control diet 
vs. steak diet), and we are using random sampling, then the sample mean differ-
ences have a normal distribution centered over the parameter of interest—which is 
the population mean difference in question. In particular, if the null hypothesis is 
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true, the mean of the sampling distribution is zero, and it looks like the normal 
 distribution in Fig. 2.5. For this reason, we can figure out how probable it is to get a 
mean difference of 0.75 or more if the population mean difference is, at most, zero.

The probability in question is based on a test called the independent-samples, 
pooled-variance t test for a difference of means. Often it’s just called the “t test” for 
short. The reader should be aware, however, that there is not just one t test, but rather 
several different ones, so named because of their reliance on the t distribution (also 
shown in Fig. 2.5). The assumptions for the independent-samples, pooled-variance 
t test for a difference of means are:

 Assumptions for the T Test

 1. We have a random sample from each subpopulation. (We do.)
 2. The study endpoint is a quantitative variable. (It’s PSA level, so it is.)
 3. The study endpoint is normally distributed in each subpopulation. (Let’s assume 

it is.)
 4. The variance of the study endpoint (i.e., PSA) is the same in each subpopulation. 

It is denoted σ2. (Let’s assume it is the same.)

 Computation of the Test Statistic

The test is computed as follows. Let x1  be the sample mean PSA level for the con-
trol group. Its value is 3.77. Let x2  be the sample mean PSA level for the Steak 
group. Its value is 4.52. Let s1 be the standard deviation of PSA in the control group. 
Its value is 1.38. Let s2 be the standard deviation of PSA in the Steak group. From 
our earlier calculation, its value is 2.33. Let n be sample size in each group (in this 
case, n is 6). Then the formula for the t test statistic is (this form of the formula 
applies only with equal n in each group)

 

t
x x

s
np

=
−2 1

2

 

(4.1)

where sp is the square root of the average of s1
2 and s2

2, and is therefore an estimate 
of the common subpopulation standard deviation of PSA, σ.

In the current problem, sp is

 
sp =

+
=

1 38 2 33

2
1 91

2 2. .
. .
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And, therefore, the calculated test statistic in the diet example is

 

t =
−

=
4 52 3 77

1 91
2
6

0 68
. .

.

. .

 

(4.2)

 Finding the P Value

If the null hypothesis is true, this statistic has a t distribution with, in this case, 10 
degrees of freedom (df). That is, the sampling distribution of “t” here is t shaped, 
rather than normal (see Fig. 2.5 for the difference between the normal and t distribu-
tions). As is always true, the test statistic’s value tells us how much discrepancy 
there is between what we observe in the sample and what we would expect to observe 
if the null hypothesis were true. So the question is: how likely is a discrepancy this 
large or larger? And the answer can be found by looking up the probability of get-
ting a t value of 0.68 or larger in a t distribution with 10 df. This will be the p value 
for the test. A t table is found in most statistics texts. The p value turns out to be 
0.26, which is larger than 0.05. Therefore, we fail to reject the null hypothesis here. 
There is not enough evidence to suggest that a meat diet leads to a higher PSA, on 
average, compared to a balanced diet.

 One-Tailed vs. Two-Tailed Tests

The test we’ve just conducted is called a one-tailed test. The reason is that we look 
up the probability in only one tail of the t distribution (the right tail, in this case). 
That’s because our research hypothesis is directional: if there’s any difference in the 
groups, we’re confident the Steak group will have a higher mean PSA. Most of the 
time, however, we’re not so confident in the direction the results are going to take. 
And we do a two-tailed test. Formally, this means that our research hypothesis is 
bidirectional; that is, we entertain the possibility that the mean difference can be 
either positive or negative. With a two-tailed test, we have to double the p value that 
we’d get if it were one tailed. So if we were doing a two-tailed test in the diet 
example, the p value would be reported as 2(0.26) = 0.52. Note that even though the 
formal research hypothesis might be bidirectional, if the result is significant, we still 
make a directional conclusion. That is, if the diet example were a two-tailed test and 
it had been significant, we would not just conclude that mean PSA levels were dif-
ferent for the groups. We’d conclude that a meat diet raises average PSA, since 
that’s what the sample results are indicating.

 Confidence Intervals and the T Test
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 Summary: Hypothesis Testing

At this point let’s summarize all the steps in the test of hypothesis, using the diet 
study as our example. All tests of hypothesis follow the following format. The five 
steps in a test of hypothesis are as follows:

 1. State assumptions required for the test. All tests rest on some assumptions, or 
ground rules. If these are not satisfied, the validity of the test and its conclusions 
may be in jeopardy. For our test, the assumptions are (a) that we have taken ran-
dom samples of men from each diet “subpopulation,” (b) that PSA is normally 
distributed in each subpopulation, (c) that the variance (or standard deviation) of 
PSA is the same in each subpopulation, and (d) that the study endpoint is quan-
titative. Some commentary is in order. The normal distribution assumption is 
less important if n is large in each group. For example, if n is 30 or more in each 
group, the assumption can be violated without invalidating the test. In the case of 
PSA, sample sizes of 30 or more in each group would be important, because PSA 
values tend to be right skewed rather than normally distributed. The reason why 
large ns are critical is that the CLT tells us that the sampling distribution of the 
mean difference (i.e., x x2 1− ) will be approximately normal if the ns are large 
enough. This means that the test statistic, t, will have the t sampling distribution, 
and the test will still be valid despite the nonnormality of PSA in each group. The 
equal-variance assumption is also unimportant when n is exactly the same in 
each group, as it is in the example. If the test is done as a two-tailed test, it is 
particularly robust. Robust procedures are those that still give valid results even 
when their assumptions are violated. If one is especially concerned about the 
assumptions being satisfied, an alternative is to use a nonparametric test such as 
the Wilcoxon test or the Mann–Whitney test. Nonparameteric tests make no 
assumptions about the distribution of one’s data in the population. They are espe-
cially useful for small samples and 1-sided tests, or cases in which the subpopu-
lation distributions on the variable of interest are highly skewed. Nonparametric 
tests, like all tests, however, involve a test statistic and p value. These are inter-
preted in the same manner as the ones above. (The next chapter illustrates the 
Wilcoxon Rank Sum Test, a nonparametric alternative to the t test shown here.) 
One might ask why we don’t just always use nonparameteric tests, if they don’t 
rely on as many assumptions. The reason is that they are not as powerful as the 
parametric tests we’ve demonstrated here. Power will be discussed below.

 2. State the hypotheses. The hypotheses for the diet example are shown above. 
There will always be a null hypothesis and a research hypothesis.

 3. Compute the test statistic. Recall that a test statistic, in general, tells us how 
much discrepancy there is between what we observe in the sample and what we 
would expect to observe if the null hypothesis were true. And one other thing: it 
has to have a known probability distribution (e.g., normal distribution, t distribu-
tion, etc.) under the null. In the diet example, the formula and computation for 
the independent-samples pooled-variance t test are shown above. And the test 
statistic has a t distribution under the null.

4 Additional Inferential Procedures



45

 4. State the p value. If calculating a test by hand, there are tables available that give 
the probabilities (i.e., the p values) associated with test-statistic values. If using 
software, the p value will be reported in the output.

 5. Make a decision. If p ≤ 0.05, reject the null and accept the research hypothesis. 
If p > 0.05, do not reject the null hypothesis.

 Decision Errors and the Power of the Test

In any test of hypothesis there is a chance that we will make a decision error. For 
example, if we are using an alpha level of 0.05, then there is a 0.05, or 5 %, chance 
that we will reject a true null hypothesis. Why? Because 5 % of the time, when the 
null is true, you can get sample results that are far enough from what you’d expect 
that you’ll end up rejecting the null. This type of error is called a Type I error. The 
chance of a Type I error is equal to the alpha level for the test. If you don’t want to 
take that much of a chance on rejecting a true null, you can pick a lower alpha level 
to use, such as 0.02, 0.01, 0.001, and so forth. On the other hand, there is also a 
chance that you will fail to reject a false null. This is called a Type II error. We can-
not specify ahead of time what its probability is because it depends upon what the 
true value of the parameter is. But whatever this probability, if you subtract it from 
1.0, you have what’s called the power of the test. The power of the test is the prob-
ability that you will reject a false null hypothesis using a particular test with a 
particular sample size. In other words, the power of the test is the probability that, 
if the null hypothesis is wrong, your test will lead you to reject it. And, as with a 
Type II error, it depends on the true value of the parameter. For example, the param-
eter in the t test for the diet study is the mean difference in PSA between steak- and 
balanced-diet groups. All else equal, we want as much power as possible. That is, 
we want to know that if the null hypothesis is really false, our test statistic will lead 
to its rejection. Power values of 0.80 or higher are considered optimum in medical 
research, as the applications below illustrate. Power becomes especially relevant 
when we fail to reject H0. Then the question is: is the null really true, or did we 
simply not have enough power in our analysis to detect that it was false?

 Power of the T Test in the Diet Example

In the diet study, we were not able to reject the null hypothesis of no mean differ-
ence. Most likely this is due to low power. The null may well be false but we just 
don’t have enough power to detect it. Let’s calculate the power of our test in this 
example. However, we will make an assumption to simplify the calculations (since 
power calculations can get quite complicated). Let’s assume that σ, the standard 
deviation of PSA that characterizes both populations of men, is a known quantity. 
Normally that wouldn’t be the case; we’d have to estimate it with sample data. But 
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now let’s just suppose we know its value. Further, we’ll assume that it is equal to 
1.91, the same as sp, its estimated value above. What this means is that, instead of a 
t distribution, our “t” statistic in (4.1) above actually has a normal distribution. And 
the normal distribution is much easier to use for power calculations. To calculate 
power, we first have to specify what the true parameter value is. So let’s say the true 
mean difference in PSA between groups is 2.5. This would be a clinically meaning-
ful difference. So, what is the power of our test if the mean difference in the popula-
tion is really 2.5?

Figure 4.1 depicts the scenario. Recall that every sample statistic has a sampling 
distribution. The sample mean difference between diet groups is also a sample sta-
tistic. Therefore it, too, has a sampling distribution. Under the assumptions for the 

test, it’s a normal distribution. And its standard deviation, or standard error, is the 

denominator of (4.2). That is, it is 1 91
2

6
1 1. .= . What we see in Fig. 4.1 are two 

sampling distributions for the sample mean difference, a top one and a bottom one. 
The top one is the sampling distribution of the sample mean difference if the null 
hypothesis is true. It’s centered over zero. This is the sampling distribution that 
we’re basing our test and our conclusion on. The bottom distribution is the sampling 
distribution of the sample mean difference if the research hypothesis is true, and, in 
particular, if the mean difference is actually 2.5. Notice that this distribution is 
therefore centered over 2.5 and has the same standard error.

Now we ask: what would cause us to reject the null? We will reject the null if our 
p value is 0.05 or less. Using a table for the normal distribution, we find that we 
would need a test statistic value of 1.645 or more to reject the null at a p value of 
0.05. This means that we would need a sample mean difference that is at least 1.645 
standard errors above zero before we could reject the null hypothesis. So we would 

0

2.5

sampling distribution 
implied by the null 
hypothesis

sampling distribution 
implied by a mean 
difference of 2.5

d = 1.81

Fig. 4.1 The power of the T test for a difference of means
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need a sample mean difference of at least (1.645) (1.1) = 1.81. This value is labeled 
“d” in the figure and is indicated by the vertical bar that goes through the right tail 
of the top distribution. The area to the right of that bar is 0.05, which is, incidentally, 
the probability of making a Type I error in this test.

However, the vertical bar goes through the bottom distribution, too, but it’s left 
of the mean of that distribution. That is, a mean difference of 1.81 is below the cen-
ter of that distribution, which is 2.5. To calculate our power, we ask: what is the 
probability of getting a sample mean difference of at least 1.81 if the population 
mean difference is really 2.5? Notice that the bottom sampling distribution is now 
what is determining how large a sample mean difference we would actually observe. 
For a normal distribution with mean 2.5 and standard deviation of 1.1, the probabil-
ity of a sample mean difference of 1.81 or higher is the area to the right of the verti-
cal line in the bottom distribution. Using a table for the normal distribution, we 
would find that it’s 0.73. Hence 0.73 is the power of the test. Power should be at 
least around 0.70 or more to be considered minimally acceptable.

Now, if the true mean difference is 4.0, a very clinically significant amount, then 
our power increases to 0.98. That sounds pretty good. But what if the true mean dif-
ference is only, say, 1.0? Then our power is only 0.22. In this case, the null hypothesis 
would be patently false, but there’s only a 22 % chance that our test will detect it. All 
else equal, power increases with the discrepancy between the true value of the param-
eter and what it is hypothesized to be under the null. And all else equal, power 
increases with sample size. Power considerations are extremely important when seek-
ing external funding for research. In that case, power analyses are used to justify the 
expense of collecting a large enough sample to have adequate power for one’s tests.

 T Tests for the GSS Data

As another example of testing for a mean difference, let’s do a t test using the 2002 
GSS. Gender differences are always of interest. One question is whether men or 
women are higher in physician stewardship. At first glance, you might say women. 
After all, it’s the stuff of standup comedy that men refuse to ask for directions when 
driving, right? So it would be reasonable that they would be more prone to want to 
ferret out health information on their own, rather than just listen to their doctor, 
compared to women. On the other hand, women are more health-conscious than 
men. They are more aware of symptoms of ill health, and they are more likely to 
seek medical attention when ill. Therefore they might be more proactive about 
obtaining their own information about health problems than men are.

Let’s play it safe, then, and do a two-tailed test. This time, let group 0 be males 
and group 1 be females. Then μ0 is mean physician stewardship in the 2002 popula-
tion of US males and μ1 is mean physician stewardship in the population of US 
females. The hypotheses are as follows:

H0: μ0 = μ1.
H1: μ0 ≠ μ1.

 Confidence Intervals and the T Test
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Table 4.1 presents the software output showing the test results, from a popular 
statistical software program called Stata.

In this output, “Obs” is the sample size in each group. The mean for physician 
stewardship for each group (the groups are labeled “0” for males and “1” for 
females) is shown under “Mean,” as is the difference between the means (shown as 
“diff”). The mean difference is 0.433. This is computed by subtracting the female 
mean from the male mean. We see that it is actually males who are higher in physi-
cian stewardship. That is, they are more willing to rely on the physician’s knowl-
edge than women are. Is this a significant difference? At the bottom of the table we 
see that it is. The two-tailed p value is shown as “P(|T| > |t|) = 0.0000.” This doesn’t 
mean that the p value is literally zero. Rather, the p value is <0.00005. If it had been 
0.00005, it would have been rounded up to 0.0001. Notice also that at the far right 
in the “diff” row there is a 95 % confidence interval given for the mean gender 
 difference in physician stewardship. Hence, we can be 95 % confident that the mean 
difference is between about 0.297 and 0.568.

 Comments About Statistical Tests

At this point in the primer, we’ve covered some statistical basics. Topics covered 
include samples and populations, causality and latent selection factors, describing 
variables and their distributions in samples, ways of summarizing data, describing 
population distributions, understanding the sampling distribution, and statistical 
inferences via tests of hypothesis and confidence intervals. There are some addi-
tional nuances that should be mentioned here.

Naming of Tests.  First, we’ve covered a test called the independent-samples, 
pooled-variance t test. This is a very commonly used test. It’s used whenever we 
wish to test whether there is a group difference in the mean of a quantitative variable. 

Table 4.1 Stata output for the test for a gender difference in physician stewardship

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std.Dev. [95% Conf. Interval]

0 1222
1524

3.484452
3.051837

.0511729 1.788855 3.384055 3.584848
1 .0465102 1.815687 2.960606 3.143068

combined 2746 3.244355 .0346596 1.816243 3.176394 3.312317

diff .4326144 .0692644 .2967989 .56843

diff = mean(0) - mean(1) t = 6.2458
Ho: diff = 0 degrees of freedom = 2744

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

4 Additional Inferential Procedures
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The reader should  understand, though, that there are many different “t” tests. Tests 
are named after the sampling distribution of the test statistic. So in addition to the t 
test we covered here, there is a t test for a correlation coefficient, a t test for a 
regression coefficient, a t test for a difference in means of dependent samples, and 
so forth. The reader should not be confused by this.

Statistical vs. Clinical Significance.  When we declare that the result of a test of 
hypothesis is “statistically significant,” all we’re saying is we believe that H0 is 
false. We’re not saying how false it is, however. With a large enough sample size, 
virtually any test of hypothesis will be statistically significant. We must then ask 
ourselves whether the test results appear to be clinically significant. With a large 
enough sample in the diet study, for example, we might find that a difference of 0.03 
in mean PSA between diet groups is statistically significant. But it would not be 
considered of any real clinical consequence. This is one reason why confidence 
intervals are useful. With them, we have a good idea what the true parameter value 
is. Then the subject-matter specialist can make a determination of whether or not it 
represents a clinically significant finding.

De-emphasis on Formulas.  So far in this primer we have only considered the 
formulas for two test statistics for testing hypotheses: the large-sample test about a 
population mean—also called a z test—and the independent-samples, pooled-
variance t test. In both cases, the reader has hopefully seen how the test statistic is 
measuring the discrepancy between what’s actually observed in the sample, and 
what you’d expect to observe if H0 were true. Once you understand what a test 
statistic is measuring, it’s not necessary for us to examine the construction of every 
one. Rather, you know that the larger the test statistic value, the more discrepant 
sample results are from what H0 would predict. The crux of the test is the p value, 
of course. And we have seen how to interpret those.

 P Values, Revisited

Nevertheless, because the p value plays such a huge role in statistics, let’s take 
another look at it in this final section. Once again, we turn to the GSS, but this time 
we use several years of GSS data. What we do is to consider two variables and 
examine whether there is a gender difference in the means of each. The first variable 
is labeled “SATJOB” and is described below (Table 4.2). The second variable is 
labeled “JOBINC” and its description follows the first (Table 4.3).

The sample sizes for the two variables are 38,292 for SATJOB and 19,625 for 
JOBINC. Now, let’s pretend these are actually the populations answering these 
questions instead of just large samples. What we will do is to randomly sample from 
these “populations” and then conduct tests to see if there is a gender difference in 
each variable.

 Confidence Intervals and the T Test
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There is absolutely no gender difference on SATJOB in the “population,” as we 
see here, since the means for males and females are exactly the same—1.71 
(Table 4.4).

But there is a gender difference on JOBINC in “the population,” as the following 
shows (Table 4.5). The means are 2.57 for males and 2.65 for females. Thus, there’s 
a slight tendency for women to rate high income as being of lesser importance in a 
job, compared to males.

Table 4.4 Mean job satisfaction scores for males and females in the GSS

 Confidence Intervals and the T Test
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 Sampling from “The Population”

What we did next was to take a 3 % random sample from each “population.” And 
then we used the independent-samples, pooled-variance t test to test for mean 
 differences in each variable by gender. Here are the results (Table 4.6), using a soft-
ware program called SAS. The means for males and females, respectively, on each 

Table 4.5 Mean importance of high income for males and females in the GSS

4 Additional Inferential Procedures
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variable, are in the column that is in bold and underlined, Males are group 1, and 
females are group 2. (Right after that are the t test results for whether mean differ-
ences by gender are significant.) As you can see, the sample means for both vari-
ables differ by gender. This is the result of sampling variability in the case of 
SATJOB, since, as we saw above, the population means are identical.

What do the t tests have to tell us about whether these mean differences are sig-
nificant? Below the means, under “T-Tests” we have bolded and underlined the t test 
results (the other t test does not assume equal population variances; no matter—it 
gives the same results as the t test we’ve studied). As you can see, the p value for the 
SATJOB test is not significant; p = 0.3161. But the p value for the JOBINC test is 
significant; p = 0.0038. So in both cases, the p values are telling us what the correct 
decision should be: don’t reject the null hypothesis that there’s no gender difference 
on SATJOB, but do reject the null hypothesis that there’s no gender difference in 
JOBINC. And from the sample results for the latter, we’d conclude that women are 
lower on the importance of income in a job. As we’ve seen, this would be correct. 
As a final comment: another way to interpret the p value is that it’s the probability 
the sample results only apply to your particular sample and not to the larger popu-
lation from which your sample was drawn.

Table 4.6 SAS output showing T tests for gender differences in job satisfaction and the importance 
of high income

Confidence Intervals and the T Test
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 Application: T Tests and Statistical Power in Action

 Gender Difference in Physician Salaries

Jagsi et al. (2012) were interested in exploring potential gender inequity in  physician 
salaries. Of interest was whether gender disparities in pay could be explained by 
specialization, work hours, productivity, and other job choices made by men and 
women, as opposed to discrimination based purely on gender. Their sample con-
sisted of 800 physicians awarded National Institutes of Health career development 
awards in 2000–2003 and who continued to work at academic institutions. In Tables 
1 and 2 of the article, they report associations between gender and various charac-
teristics. They show average annual salaries for females and males of $167,669 and 
$200,433, respectively, with a mean difference of $32,764 favoring the males.  
Is this a significant difference? The t test for a difference produced a p value reported 
as “<0.001.” Therefore, this mean salary difference between men and women physi-
cians was quite significant. On the other hand, this is a salary gap that is not adjusted 
for other factors—work hours, productivity, etc.—that might account for the gender 
difference. We will see in Chap. 6 how these other factors can be adjusted for when 
we study multiple regression. In the meantime, we could consider whether there are 
gender differences on some of these other factors. Jagsi et al. use a t test to show that 
there is a significant difference in the average number of publications according to 
gender, with women’s mean number of publications being 26.7 and men’s mean 
being 33.3 (p < 0.001). Similarly, there is a significant gender difference in average 
weekly work hours, with women’s and men’s means being 58.1 and 63.2, respec-
tively (p < 0.001). These findings suggest that, on average, men have more publica-
tions and put in more work hours than women do. In Chap. 6 we will consider to 
what extent these types of characteristics accounted for the gender gap in salary in 
their study.

 Power Considerations in Hydroxychloroquine Study

In the aforementioned Paton and associates (2012) study of hydroxychloroquine vs. 
placebo in slowing the progression of HIV disease, the primary endpoint was  
(p. 356) “the change from baseline to week 48 in activation of CD8 cells, as shown 
by percentage of cells expressing CD38+ and HLA-DR+.” The researchers invoke 
power considerations to explain their choice of sample size (p. 356):

The sample size was estimated for the primary endpoint as follows. We proposed that a 
reduction in CD8 cell activation from 46 % to 35 % (ie, a 25 % reduction) would be a 
 realistic goal of hydroxychloroquine therapy given the magnitude of the changes usually 
seen with antiretroviral therapy. Models indicate that this level of reduction would be 
expected to decrease the relative hazard for disease progression by at least 50 %. The 
 standard deviation for the reduction was estimated as 15 %. With a 2-sided α of .05 and a 
power of 90 %, a total of 80 patients would be required.

4 Additional Inferential Procedures
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We see first that the estimate of a power value of 0.90 (reported as a percent) 
required an estimate of how much of an effect hydroxychloroquine would have, 
compared to placebo, in reducing CD8 cell activation. Under the null hypothesis of 
no effect of treatment, we would expect no reduction in CD8 cell activation, com-
pared to placebo. So a 25 % reduction is posed as the effect of hydroxychloroquine 
that they would like to be able to detect with probability 0.90. Second, the standard 
deviation of the primary endpoint plays a role in power calculation and so also 
required an estimate (15 %). And third, the alpha-level (α) also needed to be speci-
fied, along with whether the test would be one- or two tailed (“-sided”).

 Power in the Arterial Inflammation Study

Subramanian et al. (2012) hypothesized that arterial wall inflammation is increased 
in HIV patients, compared to those not infected with HIV having similar cardiac 
risk factors. To test this hypothesis, they performed two separate comparisons. One 
compared 27 HIV patients without cardiac disease with 27 non-HIV control partici-
pants without atherosclerotic disease and matched to the HIV group on age, sex, and 
Framingham risk score. The other comparison was of the aforementioned 27 HIV 
patients with 27 non-HIV controls with known atherosclerotic disease who were 
matched to the HIV group by sex. The researchers describe the primary endpoint 
thus (p. 380): “The ascending aorta was chosen for measurement. The target-to- 
background ratio (TBR) was calculated by dividing the mean arterial standardized 
uptake value (SUV) by the mean venous SUV.” They describe their power calcula-
tions as follows (p. 381): “With 54 patients in each 2-group comparison, the study 
was powered at 85 % with a 2-sided significance level of 0.05, to detect a 0.83-SD 
difference between the groups.” Here, again, the group difference that they would 
like to be able to detect is stated explicitly: a 0.83-standard deviation (SD) differ-
ence in the TBR between HIV and control group in each comparison.

Next.  At this point, we have covered several basic topics in statistics. This includes 
causality and causal inferences, descriptive uses of statistics, and the logic of 
inferential techniques such as confidence intervals and the test of hypothesis. 
A particularly useful test, the independent-samples pooled-variance t test has been 
discussed. This test is useful whenever we have a binary treatment and a quantitative 
study endpoint. However, there are many other scenarios involving treatment and 
response that remain to be covered. These include having a treatment with more 
than two levels and either a quantitative or qualitative response, as well as having a 
quantitative “treatment” and a quantitative response, or having a quantitative 
treatment and a qualitative response. How all these situations are handled is the 
subject of the next chapter.

 Application: T Tests and Statistical Power in Action
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In the preceding chapters we covered fundamental definitions, concepts, and tests 
in statistics. In this chapter, we will go beyond the basics to explore more advanced 
statistical tools. We begin by revisiting the steak-diet data and discussing a nonpara-
metric alternative to the independent-samples, pooled-variance t test that we 
 covered earlier. We then segue to other types of analyses for comparing groups on a 
study endpoint. These techniques vary according to how both “group” and study 
endpoint are measured. We will also see these statistics “in action” by looking at 
examples taken from the medical literature.

 A Nonparametric Test for the Steak-Diet Example

Recall the steak diet, PSA example from the previous chapter. There we tested 
whether a steak diet results in an elevated PSA level, compared to a balanced diet. We 
used a parametric test, the independent-samples t test for this purpose. And we failed 
to reject the null hypothesis. The t test rests on several assumptions about the data 
that we did not really investigate. Nevertheless, the t test is robust to violations of its 
assumptions provided that the sample sizes in each group are the same, and both are 
over about 30. However, the diet study only had six men in each group—far short of 
the recommended sample size. Therefore, perhaps we should retest the research 
hypothesis using an approach that doesn’t rest on so many assumptions. An ideal 
candidate is the Wilcoxon Rank Sum Test (WRST), a nonparametric test (Ott 1988). 
Nonparametric tests, including the WRST, make no assumptions about how the study 
endpoint is distributed in the respective subpopulations under study (e.g., men on a 
balanced vs. a steak diet). The only assumptions for the WRST are that the endpoint 
is a quantitative variable and that the samples are independent. This contrasts with the 
t test, which additionally assumes that PSA is normally distributed in each subpopu-
lation and that the variance of PSA is also the same for each subpopulation.

Chapter 5
Bivariate Statistical Techniques
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 Computing the WRST

The hypotheses for the WRST are simple:

Null hypothesis: the two subpopulations are identical.
Research hypothesis: subpopulation 2 (steak-diet group) is shifted to the right of 

subpopulation 1 (balanced-diet group).

As is evident here, the WRST doesn’t compare means. Rather, it simply consid-
ers whether the collection of study endpoints for each subpopulation is the same. If 
one collection of endpoints tends to be greater than the other, then we say that it is 
“shifted to the right” of the other. This is what we expect, since we anticipate that 
the collection of PSA values for the steak-diet subpopulation will tend to be greater 
than those for the control subpopulation. The way this is tested is as follows. We 
combine the PSA values from both groups into one sample. We then rank all of 
these values from lowest (1) to highest (12). If there were tied values, they would be 
assigned the same rank. That common rank would be the average of the ranks the 
tied values would have gotten had they been different. So if the fifth and sixth ranked 
values were the same, they would both get the rank 5.5. The next rank assigned 
would be 7, and so forth. Here are the control and steak-diet groups’ PSA values 
again (Table 5.1), with ranks assigned (in parentheses):

The test statistic is simply the sum of the ranks for group 2, the steak-diet group. 
That sum is 42. Now, if the subpopulations have identical endpoint values, then the 
sum of the ranks should be about the same for each group. If the rank sum for one 
of the groups is unusually large, this is evidence that the subpopulations are not the 
same. Under the research hypothesis, we would expect the sum of ranks for the 
steak group to be large. It turns out to be 42. Is this large enough to reject the null? 
For this purpose we have to look the sum up in a special table for the Wilcoxon test 
(such as Table 3 in the Appendix of Ott 1988). It turns out that, given a sample size 
of 6 in each group, we would need the sum of ranks in the group with higher values 
to be at least 52 to reject the null. (The table automatically adjusts the critical value 
needed for rejection of the null when the samples are of different sizes.) So, consis-
tent with what we found using the t test, we fail again to reject the null hypothesis 
here. And once again we conclude there’s not enough evidence to say that PSA 
levels are elevated by a steak diet.

Table 5.1 Control (balanced-diet) and steak-diet groups with values rank-ordered from lowest to 
highest

Control Steak

2.3 (2) 2.0 (1)
2.7 (4) 2.6 (3)
3.0 (5) 3.1 (6)
4.0 (7) 4.9 (9)
4.6 (8) 7.0 (11)
6.0 (10) 7.5 (12)

5 Bivariate Statistical Techniques
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 Bivariate Statistics

To this point, we have used both the t test and the WRST to compare two groups on 
a quantitative study endpoint. Both tests are examples of bivariate statistical tech-
niques. “Bivariate” refers to the fact that there are two variables involved: treatment 
and response. (Sometimes, however, analysts will call this “univariate” analysis 
because there is only one explanatory variable—treatment—involved; nevertheless 
“bivariate” is the correct statistical term.) The treatment in all cases so far has been 
two-valued: steak diet vs. control diet or men vs. women (in the GSS data). The 
treatment in a study is also called the independent variable, the predictor, the 
covariate, or the regressor, depending on the type of analysis used. The response 
variable in the diet study was the PSA level. The response variable in the GSS was 
physician stewardship. Both are quantitative variables. In the diet study, we exam-
ined whether there was a difference in mean PSA between the groups. Another way 
to say this is that we examined whether there was an association (or relationship) 
between diet and PSA level. In the following sections, armed with the terminology 
and rationale behind hypothesis tests, we will look at a variety of bivariate proce-
dures designed to tell us whether an association exists between two variables. The 
type of test used depends on the level of measurement of the two variables. We’ve 
examined the case in which we have a quantitative response and a binary, qualitative 
treatment. There are many other scenarios to consider. Showing association is typi-
cally the first step in marshaling evidence for causality. With random assignment to 
treatment groups, it is often the only step we need. But with nonexperimental stud-
ies there is much more to be done. We will illustrate this latter principle when we 
discuss regression modeling and statistical control in Chap. 6.

 Bivariate Analysis: Other Scenarios

Continuing with bivariate tests, we consider other scenarios. For example, we might 
have a quantitative response and a qualitative treatment with more than two catego-
ries. Or we might have a qualitative response and a qualitative treatment. Or, lastly, 
we could have a quantitative response and a quantitative treatment. We will cover 
each of these situations in turn. In that we know the rationale behind, and general 
interpretation of, a test statistic, we won’t always give the calculations for test sta-
tistics from here on out. In some instances, we’ll simply identify the name of the 
appropriate test statistic. Also, it should be noted that there are three aspects to 
consider in examining bivariate association. First, we wish to know whether the 
association exists in the study population, not just in our particular sample. This is 
the purpose of the test of hypothesis and associated test statistic and p value. The 
null hypothesis typically posits that there is no association. So if we reject it, we 
conclude there is an association in the population. Second, if there is an association, 
we wish to know its direction. This refers to the nature of the association, or how the 
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treatment affects the response. Third, if there is an association, we wish to know 
how strong it is. The strength of association refers to how well knowing the treat-
ment that was applied allows us to predict the value of the response. In the diet study 
above, had the association been significant (i.e., we rejected the null and accepted 
the alternative hypothesis), the direction would have been stated as “a meat diet 
results in a higher average PSA level, compared to a balanced diet,” since that is 
what the sample results suggested. The strength of association when examining the 
association between a qualitative dichotomous treatment and a quantitative response 
is denoted by r2 and its formula is
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Measures of strength of association usually range in absolute value between 0 
and 1.0. Zero represents no association whatsoever and 1.0 represents perfect asso-
ciation—the response is perfectly determined by the treatment. In this case, a value 
of 0.044 represents a pretty weak association. We shall have more to say about r2 
below.

 Qualitative Treatment with More Than Two Levels: ANOVA

Recall that the diet study actually had three treatment levels, consisting of control, 
steak, and vegetarian diets, as shown in Table 2.1. Let’s reconsider the results of the 
study using all three conditions. You might think we could just do three different t 
tests to test the differences between the three pairs of means that result from the 
groups. However, if we do that, we begin to accumulate the probability of a Type I 
error across multiple tests. This means that the chance of making at least one Type 
I error when we do, say, three tests, is greater than if we just do one test. In fact, that 
chance is 0.143 if we do three tests. If we were to do ten tests, which is what we’d 
be doing if there were five treatment groups under study, the probability of making 
at least one Type I error increases to 0.401. The phenomenon of an elevated proba-
bility of rejecting true null hypotheses merely because you’re doing multiple tests is 
called capitalization on chance. To avoid that, we do one test for whether there is 
any difference between the three group means in the population, with a Type I error 
rate of 0.05. The hypotheses are:

Null hypothesis: there is no difference in mean PSA among the three treatment 
groups.

Research hypothesis: at least one mean PSA is different than the others.

5 Bivariate Statistical Techniques
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The analytic procedure we’re using is called analysis of variance or ANOVA for 
short. It’s an extension of the t test we showed above. (In fact, the t test is the spe-
cialized case of an ANOVA with just two groups.) The test statistic here is the F test. 
(With just two groups, F and t are closely related; in fact, t F= .) In the diet study, 
the three group means are 3.77 (balanced diet), 4.52 (meat diet), and 2.88 (vegetar-
ian diet). Although it looks like the means are different, based on the sample, the  
F test statistic is only 1.32 here, with a p value of 0.296. So the results are nonsig-
nificant and we cannot reject the null hypothesis. Were we able to reject the null, the 
next question would be which pairs of means are different? That is, which means are 
different from which others, considered one pair at a time? When each pair of means 
is tested to see if the difference is significant following a significant F test, these 
subsequent tests are referred to as post hoc tests. They would be addressed using a 
multiple-comparison procedure, such as the Tukey, Bonferroni, or Scheffe proce-
dures. All of these techniques allow us to do multiple comparisons of pairs of means 
to see which are significantly different, while holding the overall Type I error rate 
across all comparisons to 0.05. In this case, however, we needn’t bother, since the F 
test was insignificant. For ANOVA, the direction of association is specified by talk-
ing about which means are larger or smaller than others. And the strength of asso-
ciation is again measured using an r2, with a different formula, in this case. For the 
diet study, the r2 for the ANOVA is 0.15, again on a scale from 0 to 1. Although it’s 
larger than the 0.044 with just two groups, we shouldn’t make much of this since (a) 
the association is not significant, and (b) r2 is artificially inflated in value when you 
have more treatment levels and the n is small, as in this case.

 Qualitative Treatment and Qualitative Response: χ 2

When both treatment and response are qualitative, we use the chi-squared test sta-
tistic, denoted χ2, to test the null hypothesis of no association. (A related statistic, 
Fisher’s exact test, is used with very small samples; however, we will not cover this 
technique in this primer.) As an example, suppose we’re interested in determining 
whether aspirin use can improve erectile function when used in conjunction with a 
PDE5 inhibitor. For our study, we randomly assign men to be treated with PDE5 and 
ASA (n1 = 25) or to be treated with PDE5 alone (n2 = 19). The results of the study are 
shown in Table 5.2.

Treatment assignment
Erectile function PDE5 + ASA PDE5 Total

Erection 18 6 24
(72 %) (32 %) (55 %)

Flaccid 7 13 20
(28 %) (68 %) (45 %)

Total 25 19 44

Table 5.2 Crosstabulation  
of erectile function with 
treatment assignment
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This type of table is referred to as a crosstabulation or contingency table. The 
“total” column in the right margin of the table shows the unconditional distribution 
of erectile function for the sample as a whole. Thus, 24 men, or 55 %, have erections 
and 20 men, or 45 %, are flaccid. Each column inside the table shows the distribu-
tion of erectile function conditional on being in a particular treatment group, and 
therefore these are referred to as the conditional distributions on erectile function, 
given treatment group. The sample data show an association between the variables 
whenever the conditional distributions on the response are different from its uncon-
ditional distribution. That is the case here, since fully 72 % of men in the PDE5 + ASA 
group have erections, compared with only 32 % in the PDE5 group. If there were no 
association, you would expect both conditional distributions to be identical to the 
unconditional distribution. That is, there would be a 55–45 % distribution on erec-
tile function in each treatment group, with 55 % of each treatment group having 
experienced erections. That would indicate that the percent having erections was 
unrelated to treatment group. However, there does appear to be an association here. 
Is this association significant? That is, can we reject the null hypothesis of no asso-
ciation between these variables in the “population”? The assumptions for the chi- 
squared test are: first, that we have a random sample from the population, and 
second, that the sample is “large enough.” There are standard rules in statistics text-
books regarding necessary sample size, but these are a bit too restrictive. A better 
rule of thumb is that average cell size should be at least 5 (Agresti 1990). In this case 
the total n is 44 and there are four cells, giving us an average cell size of 44/4 = 11, 
which is adequate. The hypotheses can be stated:

Null hypothesis: there is no association between treatment and response.
Research hypothesis: there is an association between treatment and response.

The test statistic, as mentioned, is χ2, and like the t test it has an associated df, 
which, in this case is 1. Its value for these data is 7.13, with a p value of 0.008. This 
is significant, so we would reject the null and conclude that PDE5 + ASA leads to a 
higher likelihood of an erection, compared to PDE5 alone. (Notice the directional 
conclusion, even though the research hypothesis was nondirectional or two tailed.) 
On the one hand, this is sufficient for our purposes. On the other hand, as the χ2 
statistic is easy to calculate and as its calculation is instructive for illustrating the 
rationale behind a test statistic, let’s delve a little further.

 Calculating the χ 2 Value

Recall that a test statistic measures the discrepancy between what is observed in the 
sample and what you’d expect to observe under the null. To show how the χ2 statistic 
illustrates this principle, let’s calculate the χ2 for this table. What we observe are the 
cell counts in the table, that is, the numbers 18, 6, 7, and 13. What we need to know 
is what we would expect to observe if the null hypothesis were true. If there were no 
relationship between these two variables, then the conditional distributions—the 
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proportions erect vs. flaccid given treatment group—would be identical with the 
55–45 % breakdown observed in the unconditional distribution of Erectile Function. 
That means that we would expect to see 55 % of the 25 men, or 13.75 men (the 
expected count is left in decimal form even though 0.75 % of a man is nonsensical!), 
in the PDE5 + ASA group with erections and 45 %, or 11.25, of them flaccid. Similarly, 
we’d expect to see 55 % of the 19 men, or 10.45 men, in the PDE5 group with erec-
tions and 45 % of them, or 8.55 of them, flaccid. The numbers 13.75, 11.25, 10.45, 
and 8.55 are then the corresponding numbers we would expect to see in the cells of 
the table if the null hypothesis were true. To measure how large of a discrepancy this 
represents, compared to what we actually observe, the χ2 statistic is calculated as
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Hence, we see that χ2 is tapping the discrepancy between observed and expected 
(under the null) cell counts in each cell. The reason for squaring the difference 
between the observed and expected cell count in each case is that the observed–
expected differences are both positive and negative over all the cells. So they would 
tend to cancel each other out in a straight sum.

 Minimum and Maximum Values of χ 2

If all of the observed cell counts were exactly equal to the expected cell counts, χ2 
would equal zero, correctly indicating no discrepancy between observed and 
expected cell counts. This would imply that there is no association between the two 
variables, whatsoever. On the other hand, with the most extreme departure of 
observed from expected cell counts possible, χ2 would equal n, the table total. This 
would indicate a perfect association in which each conditional distribution would 
show a 100–0 % split, except in opposite directions. Table 5.3 demonstrates what 
the erectile function data would look like if the association between treatment and 
erectile function were “perfect”:

Here we note that all of the PDE5 + ASA group have erections and all of the 
PDE5 group are flaccid. So erection status is perfectly predictable knowing treat-
ment group. Or we could say that erection status is perfectly determined by 

Treatment assignment
Erectile function PDE5 + ASA PDE5 Total

Erection 25 0 25
(100 %) (0 %) (57 %)

Flaccid 0 19 19
(0 %) (100 %) (43 %)

Total 25 19 44

Table 5.3 Crosstabulation  
of erectile function with 
treatment assignment under 
perfect association
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treatment- group status, without error. One almost never encounters perfect associa-
tion in real data, however. At any rate, at this point it should be clear how χ2 is tap-
ping the observed vs. expected cell count discrepancy via the way it is calculated. 
Letting O = observed cell count and E = expected cell count, the general formula for 
the χ2 statistic is

 

( )
,

O E

E

−∑
2

cells  

where the “Σ” symbol means to sum over the cells of the table the expression that 
appears to the right of it.

 Measuring the Strength of Association

Finally, how strong is the association in Table 5.2? There is a measure for this that 
is equivalent to r2. It’s denoted Φ2 (phi-squared) and is computed as χ2/n, which, in 
this case, equals 7.13/44 = 0.16. The association is weak to moderate in strength. As 
the χ2 value can range from 0 to n, the Φ2 value can range from 0 to 1.0. Another 
measure of strength of association that is particularly interpretable is the odds ratio 
(Agresti and Finlay 2009). In Table 5.2, the probability of an erection for the 
PDE5 + ASA group is 0.72. The odds of an erection for this group is the ratio of this 
probability to the probability of being flaccid: Odds = 0.72/0.28 = 2.57. (Although it 
may seem grammatically incorrect, the odds is treated as singular.) That is, the prob-
ability of having an erection is over two-and-a-half times as great as the probability 
of remaining flaccid. For the PDE5 group, on the other hand, the probability of an 
erection is 0.32, which means the odds of an erection is 0.32/0.68 = 0.47. So the odds 
of an erection is much greater in the PDE5 + ASA group. To quantify this difference, 
we can compute the ratio of the two odds: Odds Ratio (OR) = 2.57/0.47 = 5.47. This 
is telling us that the odds of an erection for the PDE5 + ASA group is 5.47 times 
greater than the odds for the PDE5 group. The odds ratio is an alternative measure 
of the strength of association between two variables. Its drawback in this regard, 
however, is that it is not bounded by 0 and 1. Therefore, it’s harder to get a sense of 
how strong the relationship is, especially considering that the odds ratio can range 
from 0 to infinity. The odds ratio, however, is ideal for expressing the size of the 
“effect” that one variable has on the other in the technique called “logistic regres-
sion” that will be covered in Chap. 7. Another measure of strength that is related to 
the odds ratio is the relative risk (RR). The relative risk is the ratio of probabilities, 
rather than odds. So the relative risk of an erection for the PDE5 + ASA group, vs. 
the PDE5 group is 0.72/0.32 = 2.25. We would say that an erection is 2.25 times 
more likely for the PDE5 + ASA group than it is for the PDE5 group. Notice that the 
RR is not the same as the OR here. And this is usually the case, unless the probability 
in both groups is very small, say 0.05 or less. In that case, RR and OR are virtually 
the same.
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 Quantitative Treatment and Response: The Correlation 
Coefficient

Finally we come to the situation in which both treatment and response are quantita-
tive. For example, the first three columns of Table 5.4 present data for five men on 
their BMI (body mass index), their PSA, and MIN (the number of minutes they can 
run on a treadmill before their heart rate reaches 125).

Suppose that our research hypotheses are that PSA increases with BMI but falls 
with MIN. That is, we think that being overweight, as indexed by a higher BMI, is 
associated with elevated PSA levels. But we think that keeping fit, as indexed by a 
higher MIN, is associated with lower PSA levels. First, in Fig. 5.1, let’s examine a 
scatterplot of PSA against BMI:

Table 5.4 BMI, PSA, and MIN for a sample of five men

BMI (x) PSA (y) MIN ( )BMI − x ( )PSA − y Crossproduct: ( )( )BMI PSA− −x y

22 2.5 13 −3.8 −0.06  0.228
24 1.5 15 −1.8 −1.06  1.908
25 2.6 14 −0.8  0.04 −0.032
28 2.4 12  2.2 −0.16 −0.352
30 3.8 12  4.2  1.24  5.208

20 22 24 26 28 30 32
1

1.5

2

2.5

3

3.5

4

BMI

P
SA

Fig. 5.1 Scatterplot of PSA (vertical axis) against BMI (horizontal axis)
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A scatterplot shows each man’s pair of BMI and PSA values as a “point” 
 (symbolized by “o”) on a plot. The horizontal axis tabulates BMI values and the 
vertical axis tabulates PSA values. Any given point shows the intersection of a 
given man’s BMI score with his PSA score. For example, the first point on the left 
is for a man with a BMI of 22 (as seen by drawing a line from the point straight 
down to where it intersects the BMI axis) and a PSA of 2.5 (as seen by drawing a 
line parallel to the BMI axis until it intersects the PSA axis). The second point, 
moving right, is for a man with a BMI of 24 and a PSA of 1.5 and so forth. The pat-
tern of points conveys the nature of the association between BMI and PSA. In that 
the points tend to move upward as we go up in BMI, it appears that higher BMI 
values are associated with higher PSA values. Similarly, Fig. 5.2 shows a scatterplot 
of PSA against MIN:

In this case, the points are moving downward as we go up in MIN, indicating that 
longer endurance on the treadmill is associated with lower PSA values. At this  
juncture, the data are consistent with our hypotheses. But we need to subject that 
hypothesis to a formal test. To do that, we need a statistical measure of the associa-
tion between PSA and each other factor. The Pearson Product–Moment Correlation 
Coefficient, or Correlation Coefficient for short, denoted by r, is designed to capture 
the association between two quantitative variables. It tells us how one variable 
“behaves” as the other increases in value. There are four options. It can increase. It 
can decrease. It can alternate between increasing and decreasing. Or it can fluctuate 
randomly. The correlation coefficient can detect either of the first two options or the 

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
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Fig. 5.2 Scatterplot of PSA (vertical axis) against MIN (horizontal axis)
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last option well. It is particularly poor at detecting the third option (see below for an 
example). For the time being, however, let us regard the association between BMI 
and PSA.

Since we think that BMI has a causal impact on PSA level, let us denote BMI as 
x and PSA as y. (It is conventional to label cause and effect as x and y, respectively.) 
To compute the correlation coefficient, first we will calculate the covariance 
between x and y, denoted cov(x, y). This is done as follows. We create deviation 
scores for each x and y value, denoted ( x x− ) and ( y y− ) for x and y, respectively. 
For each variable, deviation scores are computed by subtracting the variable’s mean 
from each of its values. We then multiply these deviation scores together for each 
unit. The result is called the crossproduct. We then sum these crossproducts up and 
divide that sum by n − 1. This gives us the sample covariance. In statistical parlance, 
the formula is

 
cov( , )

( )( )
,x y

x x y y

n
=

− −
−

∑
1  

where “Σ,” once again, indicates summing—in this instance, it is the crossproducts 
that are summed over all the cases.

The key calculations for the correlation between BMI and PSA are shown in 
columns 4, 5, and 6 of Table 5.4. The mean of BMI is 25.8 and the mean of PSA is 
2.56. The sum of the crossproducts for the five men is 6.96, hence cov(x, y) is 6.96/
(5 − 1) = 1.74. That this is positive means that the variables are increasing together. 
That is, higher values of BMI are associated with higher values of PSA, and lower 
values of BMI are associated with lower PSAs. (This is fairly evident in the table.) 
Although this is good information, cov(x, y) isn’t very useful as a descriptive mea-
sure of association because its size depends on the units of measurement. Thus, 
there is no way of judging whether a covariance of 1.74 is a strong association or a 
weak association. For this reason, we “standardize” the covariance by dividing it by 
the product of the respective standard deviations of x and y (denoted, respectively, sx 
and sy). By mathematical theorem, cov(x, y) cannot exceed, in absolute value, the 
product of sx with sy. The resulting measure is the correlation coefficient, and its 
range is from –1.0 to +1.0. Its formula is

 
r

x y

s sx y

=
cov( , )

.

 

The standard deviations are 3.19 for BMI and 0.82 for PSA. Thus, r here is 1.74/
[(3.19)(0.82)] = 0.67. This represents a fairly strong positive association. On the 
other hand, the correlation between MIN and PSA is −0.74 (these calculations are 
not shown in the table), which represents a fairly strong negative association. So, at 
least in the sample, our hunches appear to be supported: an increasing BMI is asso-
ciated with an increasing PSA but an increasing MIN is associated with a 
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decreasing PSA. If a correlation is approximately zero, it can mean one of two 
things. First, it can mean that y is fluctuating randomly as x increases, showing no 
identifiable pattern. This means there is no association between x and y. But a zero 
correlation can also mask a pattern of association between x and y that is not linear. 
Correlation is designed to detect only linear association and will miss nonlinear 
relationships. Finally, if r is –1.0 or +1.0, it means that y is perfectly determined by 
x. This is almost never observed with real data.

One somewhat artificial example of perfect determination, however, is the rela-
tionship between temperature in centigrade and temperature in Fahrenheit. For 
these two temperature measures, the correlation is 1.0. Why? Well, the formula for 
temperature in centigrade (C) as a function of temperature in Fahrenheit (F) is 
C = −17.78 +0.56F. This formula shows that C is a linear function of (or formula 
involving) F. Technically, a linear formula (or function) is a weighted sum, i.e., it’s 
the sum of variables (e.g., F) multiplied by constants (e.g., 0.56) added to poten-
tially other constants (e.g., −17.78). If that formula perfectly determines y, as it does 
in the case of these two temperature measures, then the correlation is 1 in absolute 
value. But what happens if the formula involving x perfectly determines y but is not 
linear? For example, suppose our x values are –2, −1, 0, 1, 2, and the corresponding 
y values are 4, 1, 0, 1, 4. The correlation between x and y is zero in this case (as is 
easily verified). However, x perfectly determines y via the formula y = x2. 
Nevertheless, as this is not a linear formula (since x is raised to a power rather than 
multiplied by a constant), r completely misses the association. The moral of this 
story is simple: if you suspect that x and y are related in a nonlinear fashion, don’t 
rely on the correlation alone to test the association. (More about this when we get to 
regression modeling.)

 Testing the Significance of R

Once we calculate the correlation coefficient, we want to test whether it is signifi-
cant. That is, does a correlation exist in the target population? We denote the popu-
lation correlation coefficient by ρ. Hence, our (two-tailed) hypotheses are as 
follows:

Null hypothesis: ρ is zero.
Research hypothesis: ρ is not zero.

The test statistic is a t statistic, again, calculated as
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If the null hypothesis is true, this statistic has a t distribution with n – 2 df. For 
the BMI, PSA example, we have
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0 67
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A t of 1.56 with 5 − 2 = 3 df corresponds to a one-tailed p value of 0.11. So the 
correlation here is not significant. This isn’t surprising, since the sample is too small 
to afford much power to detect a nonzero correlation in the population.

 The Paired t Test: How Correlation Affects the Standard Error

Recall the t test for a difference of means that we performed in Chap. 4. When we 
have equal n in each group the formula was shown as
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Let’s write this formula slightly differently:
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(5.1)

These two formulas are exactly the same mathematically, but expressed differ-
ently. What’s the point? The point is that there is another t test for a difference of 
means called the paired t test. But it is designed for the case in which the two sets 
of scores are for the same cases. Here are the diet data once again from Chap. 2, but 
just for the control (balanced-diet) and steak-diet conditions (Table 5.5):

Now suppose that instead of separate groups of men, these are the data for the 
same six men. First they are put on a balanced diet for 6 months, after which their 

Table 5.5 PSA levels for 
men in the diet-PSA study

Control Steak

4.6 2.0
2.3 4.9
2.7 3.1
3.0 2.6
6.0 7.0
4.0 7.5
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PSA levels are measured. Then they are put on a steak diet for the next 6 months, 
after which their PSA levels are measured again. Now the question is: is there a 
change in mean PSA from the control diet to the steak diet? In this case, we cannot 
any longer use the independent samples, pooled-variance t test to answer this ques-
tion. Why? The reason is that the two sets of PSA scores are no longer independent. 
That is, they don’t come from two unrelated groups of men; they’re from the same 
men. So they are positively correlated. In fact, the correlation between the “control” 
and “steak” scores in Table 5.5 is 0.41. The two sets of scores are the product of 
dependent sampling: the data come as pairs of values “tied together” by virtue of 
some common source. In this case, the common source is the same man providing 
both sets of scores. In other cases, the common source is not as obvious. For exam-
ple, if we had blood pressure data from husband and wife for several couples, each 
pair of blood pressure values for the same couple would be “tied together” by virtue 
of coming from the same couple. In that couples tend to be similar in their diet and 
their lifestyles, their blood pressure values are also probably positively correlated. 
Bottom line: to test for a mean difference between control and steak PSA values here, 
we have to take account of this positive correlation when calculating the standard 
error of the mean difference. That’s the denominator of the t test statistic. Intuitively, 
if the scores in question are positively correlated, then their means, over repeated 
sampling, would also tend to be positively correlated. And this means that the mean 
differences over repeated sampling will tend to be smaller than they would be if the 
scores were from two unrelated groups of men. The formula for the paired t test is
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where s1 and s2 represent the standard deviations of the control and steak scores, 
respectively, and r represents the correlation between these two sets of scores. 
Compare this test to the one in (5.1). One difference, of course, is that in (5.2) the 
standard deviation of each group of scores is used in the denominator, rather than 
assuming that there is a common standard deviation (i.e., sp) that applies to both sets 
of scores. But the more important difference is that the denominator of (5.2) has an 
extra term involving r that is being subtracted from the sum of the first two terms. 
This is adjusting for the dependence between the two sets of scores and results in a 
smaller denominator—which is the standard error of the mean difference in the 
numerator. This results in a test that is more likely to be significant for a given mean 
difference between the scores.

Recall that s1 = 1.38 and s2 = 2.33. Also, the means for the control and steak 
groups are 3.77 and 4.52, respectively. Thus, the paired t test statistic for these data 
turns out to be
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Under the null hypothesis of no change in the mean PSA, this has a t distribution 
with 5 df. It’s not significant. But notice that it is a larger t value than the t of 0.68 
we found in Chap. 4 for the case in which these two sets of PSA values were 
assumed to be independent—from different men. That’s because the standard error 
is smaller here: the denominator of the test statistic is 0.88, as opposed to 1.1, which 
was the denominator for the test in (5.1) that we found in the last chapter. Bottom 
line: the paired t test adjusts the standard error of the t test for the dependence 
between the two sets of scores in question. Because the scores virtually always 
show a positive correlation, this tends to reduce the standard error, compared to 
what it would be if the two sets of scores were independent. And this makes for a 
more sensitive test, i.e., one that is more likely to detect a significant difference. If 
the men were measured at more than just two times in the diet example, we’d 
employ an extension of the paired t test called repeated-measures ANOVA, which 
we will cover in the next chapter.

 Summary of Bivariate Statistics

At this point, we’ve covered the bivariate statistical techniques necessary for testing 
hypotheses about an association between two variables under three scenarios: a 
qualitative treatment and a quantitative response, a qualitative treatment and a quali-
tative response, and a quantitative treatment and a quantitative response. However, 
we’ve left out one possibility: What should we do if we have a quantitative treat-
ment and a qualitative response? In the bivariate context, it turns out that it makes 
no difference which variable is quantitative and which is qualitative. We use the 
same technique, either the two-sample t test, the paired t test, or ANOVA, depend-
ing on how many groups are represented by the qualitative variable. Thus, at this 
point, we’ve covered the major bivariate techniques you need to know. Periodically, 
you might encounter other bivariate statistics that were not covered here. These may 
include certain nonparametric procedures or procedures that are designed specifi-
cally for quantitative data representing only rank order on the attribute of interest. 
The latter include measures such as Spearman’s rho, gamma, and Kendall’s Tau B. 
In sum, even if one is not familiar with these particular statistics, the interpretation 
of test statistic, p value, direction of relationship, and strength of relationship are all 
by now familiar territory.

 Application: Bivariate Statistics in Action

 ANOVA: GGT and Alcohol Consumption

Tynjala and colleagues (2012) investigated the association between alcohol con-
sumption and gamma-glutamyltransferase (GGT) enzyme in 18,889 respondents 
recruited via three independent cross-sectional surveys in Finland. Serum GGT 

Application: Bivariate Statistics in Action

http://dx.doi.org/10.1007/978-1-4614-7792-1_4


72

activities are used as a biomarker of excessive alcohol consumption and liver 
 dysfunction. There is currently substantial interest in serum GGT levels as a general 
indicator of health and disease (Tynjala et al. 2012). The survey involved physical 
measurements and laboratory tests, including the measurement of serum GGT. The 
authors classified respondents into four groups based on their pattern of alcohol 
consumption: abstainers, former drinkers, moderate drinkers, and heavy drinkers. 
They then examined how these groups differed in serum GGT using ANOVA, while 
controlling for potential confounding respondent characteristics. Here is how they 
report their analytic methodology (p. 559):

Univariate differences between groups were determined with analysis of variance using the 
Bonferroni post hoc test for multiple comparisons. Logarithmic transformation of GGT 
data was used to obtain non-skewed distribution with homogeneity of variance. Age, BMI 
and the amount of smoked cigarettes per day were used as covariates in all analyses in order 
to avoid the effect of possible confounding factors. Values are expressed as mean ± SD. The 
statistical analyses were carried out using SPSS for Windows 19.0 (Chicago, IL, USA). 
A P-value of < 0.05 was considered statistically significant.

Let’s “deconstruct” this description a bit. Notice the use of the term “univariate” 
in the first sentence. Technically, that is not correct. At the least, it is a bivariate 
analysis, with the independent variable being drinking status and the study endpoint 
being serum GGT. The Bonferroni post hoc test is essentially a t test for the mean 
difference in serum GGT between any two groups. But it corrects for capitalization 
on chance because with four groups, there are six total comparisons one can make 
between pairs of drinking-status groups. With the Bonferroni technique, the chance 
of making at least one Type I error in all six tests is kept at 0.05. They use the natural 
logarithm of serum GGT instead of raw serum GGT as the study endpoint to satisfy 
assumptions of ANOVA. These assumptions are that serum GGT is normally dis-
tributed in each drinking-status group and that the variance of GGT is the same in 
each group. When the original variable does not meet these assumptions, the loga-
rithm of that variable typically does. The reference to age, BMI, and cigarettes 
smoked being used as “covariates” means that they are controlled in the analysis. In 
the next chapter we discuss the concept of statistical control. For the time being, 
let’s just accept that, statistically, the four drinking groups are being “made the 
same” on these three factors in the ANOVA. The analyses were done with the sta-
tistical software package SPSS, and results were considered significant if p values 
were 0.05 or less. Their results are shown as figures, with men’s and women’s data 
analyzed separately (Fig. 5.3):

Here is how the authors describe these results in the narrative (p. 559):

Among the subgroups, both men and women showed the lowest GGT values in abstainers 
(27.7 ± 1.6; 18.4 ± 1.7 U/l), the activities being significantly different from those observed 
in moderate drinkers (31.8 ± 1.8; 20.1 ± 1.7 U/l) (P < 0.001 for both) or heavy drinkers 
(56.9 ± 2.3; 30.8 ± 2.3 U/l), respectively (P < 0.001 for both) (Fig. 1). However, no signifi-
cant differences in GGT levels were found between abstainers and former drinkers (27.0 ± 
1.8; 17.5 ± 1.7 U/l).

Although not reported, we can assume that the F test for group differences, over-
all, was significant for both men and women. The authors then describe the results 
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of the Bonferroni tests of mean differences. The horizontal lines over the tops of the 
bars in the men’s and women’s figures in Fig. 5.3 are designed to reveal which 
group means are significantly different from each other. Any group means that are 
not joined by a separate horizontal line are not significantly different. For example: 
for the men, we see the lines above the “heavy drinkers” bar join heavy drinkers 
with each of the other drinking groups. This means that the mean serum GGT is 
significantly different for heavy drinkers vs. moderate drinkers, former drinkers, 
and abstainers. Similarly, the bars above “moderate drinkers” join moderate drink-
ers with former drinkers and abstainers. Hence, moderate drinkers have mean serum 
GGT that is significantly different from that of former drinkers and abstainers. The 
two groups who are not joined by their own horizontal line are abstainers and for-
mer drinkers. These groups are therefore not significantly different in mean serum 
GGT. The lines in the women’s figure are similarly interpreted.

 χ 2: Second-to-Fourth Digit Ratio Study

The second-to-fourth digit ratio of the right hand is apparently associated with pre-
natal testosterone levels and prenatal estrogen (Jung et al. 2010). Jung and col-
leagues therefore investigated whether this ratio might predict prostate volume and 
PSA levels in men. Three hundred and sixty-six men presenting at a Korean hospital 
with lower urinary tract symptoms, aged 40 or older, and with a PSA level ≤40 ng/
mL were prospectively enrolled in their study. All patients underwent transrectal 
ultrasonography. One analysis dichotomized second-to-fourth digit ratios as <0.950 
vs. ≥0.950, producing two groups of men. These men were then compared on sev-
eral dichotomized study endpoints via the χ2 statistic. Their results are shown in 
Table 5.6:

What is shown in the table here are (a) the contingency tables for the association 
between digit ratio and binary versions of several variables of interest, (b) the p 
value for the χ2 statistic for each contingency table, (c) the odds ratio (OR) for the 

Fig. 5.3 Serum GGT as a function of drinking status, separately by gender. Reprinted with per-
mission of Oxford University Press from Tynjala et al. (2012)
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odds of being in the first category of the interest variable, based on having a lower, 
vs. a higher digit ratio, and (d) the 95 % confidence interval (CI) for that odds ratio. 
Let’s examine one of these subtables to see how these measures are calculated. 
We’ll look at the association between digit ratio and PSA level (Table 5.7):

We see that 29 % of the men have a PSA ≥ 3.0 if their digit ratio is under 0.95, 
whereas only 19 % have a PSA that high if their digit ratio is 0.95 or higher. So it 
looks like a lower digit ratio is associated with a higher probability of a higher PSA. 
The chi-squared statistic is
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which has a p value of 0.024, as is shown in Table 5.6. Moreover, the odds ratio (i.e., 
for the odds of having a PSA ≥ 3.0 for those with a lower, vs. a higher digit ratio) is 

Table 5.6 Cross-classification of study endpoints by Second-to-Fourth Digit Ratio Group 
[Reprinted with Permission of John Wiley and Sons, Publishers, from Jung et al. (2010)]

Digit ratio

<0.950 ≥0.950

(Group A) (Group B) p Value OR 95 % CI

Age (years) ≥65 82 77 0.663 1.096 0.725–1.658
<65 102 105

PV (cc) ≥35 79 63 0.102 1.421 0.931–2.168
<35 105 119

PSA (ng/mL) ≥3.0 54 35 0.024 1.745 1.073–2.838
<3.0 130 147

PSAD (ng/mL/cc) ≥0.10 36 23 0.072 1.682 0.952–2.971
<0.10 148 159

Prostate biopsy Done 54 35 0.024 1.745 1.073–2.838
Not done 130 147

Cancer Present 21 7 0.006 3.221 1.334–7.778
Absent 163 175

Cancer detection Yes 21 7 0.061 2.545 0.943–6.868
No 33 28

PSA (ng/mL)

Digit ratio

<0.950 ≥0.950 Total

≥3.0 54 35 89
(29 %) (19 %) (24 %)
[44.16] [43.68]

<3.0 130 147 277
(71 %) (81 %) (76 %)
[139.84] [138.32]

Total 184 182 366

Table 5.7 Crosstabulation of 
PSA (ng/mL) with digit ratio 
category; numbers in cells are 
observed frequency (column 
%) [expected frequency]

5 Bivariate Statistical Techniques
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(0.29/0.71)/(0.19/0.81) = 1.741. In the table, it is shown as 1.745. This is due to a 
different way of calculating the odds ratio that avoids any rounding error: OR = (54) 
(147)/(35) (130) = 1.745. Hence, the odds of having a higher PSA are about 75 % 
higher if one has a higher (vs. a lower) digit ratio. The other significant associations 
in the table show that men with a lower digit ratio were also more likely to have 
undergone prostate biopsy and to have been diagnosed with prostate cancer.

 Paired t Test: Bariatric Surgery and Urinary Function Study

Both urinary incontinence and erectile dysfunction have been found to be associated 
with obesity (Ranasinghe et al. 2010). Therefore, Ranasinghe and colleagues stud-
ied the effects of bariatric surgery on urinary and sexual functioning in males and 
females. Their retrospective study involved sending questionnaires by mail to all 
patients who underwent laparoscopic gastric banding surgery (LGB) between 2001 
and 2009 at one particular surgical practice. Their sample consisted of 142 females 
and 34 males who responded to the survey. The respondents were mailed a ques-
tionnaire containing several standardized scales for detecting urinary symptoms, 
such as the International Consultation on Incontinence Questionnaire Short Form 
(ICIQ-SF) and the International Prostate Symptom Score (IPSS), and asked about 
their perceptions of urinary symptoms before and after surgery. They were also 
asked a “Quality of Life” question (p. 89): “If you were to spend the rest of your life 
with your urinary condition the way it is now, how would you feel about that?” It is 
not clear how this question is coded, however. Most likely the scores range from 
something like 1 for “okay” to 5 for “miserable.” Counterintuitively, the higher 
scores represent a lower quality of life, as is evident in their interpretation of results 
(see below). On average, it had been just over two-and-a-half years since the sur-
gery. Here is how the authors describe one type of analysis they performed (p. 89): 
“Paired t-tests were used to determine if there had been a statistically significant 
change in weight, body-mass index (BMI) and individual questionnaire scores after 
LGB.” Table 5.8 shows the results of these t tests:

Here is how they describe the results (all p values in the table are for the paired t 
test). All “Change” scores are calculated approximately as mean After—mean 
Before:

There was a significant weight loss in both males and females after LGB. The males had a 
greater weight loss than females (23.2 kg vs 22.7 kg), but females had a greater BMI loss 
(7.51 vs 8.28). In females, the ICQ-SF (P = 0.0008) and QOL (P < 0.0001) symptoms both 
significantly improved after LGB. However, there was no improvement in urinary function 
despite weight loss after LGB in males (Table 2).

As a final comment, we note that it would be better if the “Before” scores were 
actually measured prior to surgery rather than being based on recall. It’s always pos-
sible that, as part of an unconscious attempt to justify having had the surgery, 
respondents may tend to recall their symptoms before the surgery as being worse 
than they actually were.
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 Correlation Coefficient: Obesity and Tumor Volume  
in Prostate Cancer

Capitanio and colleagues (2011) hypothesized that excess body weight would be 
associated with larger prostate tumors independent of obesity prevalence in a particu-
lar nation, race, and continent of origin. They employed data from 1,275 consecutive 
Caucasian prostate cancer patients treated with radical prostatectomy and pelvic 
lymphadenectomy at an Italian Hospital between 2006 and 2009. Among other anal-
yses, they examined the correlation between body mass index (BMI; measured as 
kilograms of body weight divided by squared height in meters) and tumor volume 
(TV), in cubic centimeters (cc). Figure 5.4 presents a scatterplot of that relationship:

Table 5.8 Paired t tests for mean differences in study endpoints after vs. before LGB [Reprinted 
with permission of John Wiley and Sons, Publishers, from Ranasinghe et al. (2010)]

Outcome of interest Gender

Mean (SD) of outcomes

Before After Change p

Weight (kg) Male 145.6 (28.31) 123.3 (23.19) −23.1 (18.35) <0.0001
Female 118.3 (18.50) 96.7 (18.48) −22.7 (15.74) <0.0001

Body mass index (kg/m2) Male 47.3 (12.67) 38.4 (6.18) −7.51 (5.78) <0.0001
Female 43.5 (6.65) 35.5 (6.80) −8.28 (5.78) <0.0001

ICIQ Male 1.82 (3.43) 1.67 (3.59) 0.40 (3.55) 0.5418
Female 5.24 (5.05) 3.93 (4.83) −1.30 (4.34) 0.0008

Quality of life Male 1.56 (1.52) 1.50 (1.54) −0.06 (1.35) 0.8006
Female 2.48 (1.94) 1.79 (1.78) −0.72 (1.72) <0.0001

Urinary frequency (IPSS) Male 1.35 (1.57) 1.62 (1.69) 0.26 (0.90) 0.0951
Female 1.60 (1.61) 1.24 (1.42) −0.39 (1.42) 0.0032

Incomplete emptying 
(IPSS)

Male 0.53 (1.02) 0.62 (1.13) 0.09 (0.51) 0.3246
Female 0.93 (1.33) 0.67 (1.05) −0.25 (1.28) 0.0298

Nocturia (IPSS) Male 1.88 (1.55) 1.79 (1.49) −0.09 (0.93) 0.5851
Female 1.98 (1.63) 1.62 (1.57) −0.37 (1.01) <0.0001

Fig. 5.4 Scatterplot of tumor 
volume against body mass 
index for 1,275 patients. 
Reprinted with permission of 
John Wiley and Sons, 
publishers from Capitanio 
et al. (2011)
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We see that a line has been drawn through the data to show the linear trend in the 
plot: as BMI increases, so does tumor volume. The “R Sq Linear” shown in the plot 
refers to r2. The correlation coefficient is the square root of this, which is 0.095. This 
indicates, as is evident from the slope of the line in the plot, that there is a positive 
correlation between BMI and tumor volume. But the relationship appears rather 
weak. Is it significant? The authors have not reported that, but it’s easy to calculate 
the t test for r here:
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With 1,273 df, this is very significant (one-tailed p = 0.00034, from a Hewlett- 
Packard Scientific Calculator). Although the clinical significance of this relatively 
weak correlation may not be impressive, it is very statistically significant, due to the 
relatively large sample size and concomitantly enhanced power.

Preview. In the next chapter we continue the discussion of analyzing association 
between two quantitative variables. But instead of focusing on the correlation 
coefficient, we introduce the notion of a statistical model. That is, we will “model” 
the study endpoint as a linear function of the explanatory variable, introducing one 
of the most important of statistical techniques: linear regression modeling. With 
regression modeling, we can analyze the relationship between an explanatory 
variable and a study endpoint while controlling for any number of other potentially 
confounding variables. This vastly improves our ability to rule out latent selection 
bias as a problem for our analyses.

 Application: Bivariate Statistics in Action
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 Modeling the Study Endpoint Using Regression

The correlation coefficient discussed in the last chapter is a component of one of 
the most important techniques in statistics: linear regression modeling. In this sec-
tion, we introduce this topic and the subject of statistical modeling, in general. We 
begin with the familiar step of analyzing the association between a study endpoint 
and one explanatory variable, with both as quantitative variables. We then expand 
our model to include several explanatory variables, using the multiple linear regres-
sion model. Examples drawn from the GSS and the journal literature help to flesh 
out this topic.

 What Is a Statistical Model?

A model is a set of one or more equations describing the process or processes that 
generated the scores on the response variable (or variables). A model is essentially 
a statistical conceit. We entertain the notion that the world is driven by invisible 
equations, and our job is to estimate them. That is, we assume that the population of 
scores on the response variable is determined by an equation that is “out there” in 
the “population,” somewhere. This equation is a function of treatment as well as 
purely random fluctuations in human response, the latter being called experimental 
error. This is most likely not an accurate depiction of reality. However, it doesn’t 
have to be. We are guided by the saying attributed to the statistician George Box: 
“All models are wrong; some are useful” (Gill 2001). To the extent that models help 
us understand and predict human response, they have value. In truth, all of the sta-
tistical techniques we have covered so far are underpinned by statistical models. 
We’ve just avoided cluttering the discussion with technical jargon up to now. 
However, understanding regression requires an understanding of modeling.

Chapter 6
Linear Regression Models
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 A Regression Model for Exam Scores

Regard Fig. 6.1 above. It shows a scatterplot of two variables based on data col-
lected from students in the first author’s introductory statistics classes over a 10-year 
period. The two quantitative variables of interest are a math diagnostic test measure 
(X), based on a form administered on the first day of class, and students’ scores on 
the first exam (Y), given in week 6 of the course. The math diagnostic is intended to 
measure math proficiency. It is believed that those with greater math proficiency 
tend to do better on the first exam. The reason is that statistics is a form of applied 
mathematics and requires the same kinds of abstract reasoning skills as math does. 
This is, indeed, what the scatterplot shows, as the exam scores tend to be, on aver-
age, higher, the greater the diagnostic score (the observed range of the diagnostic 
was from 28 to 45). The correlation between variables here is 0.52.

Linear regression modeling assumes that these data were generated, in the “pop-
ulation” of students taking introductory statistics, by a linear equation of the form 
m a by X= + . The Greek letters all represent population quantities and are not 
directly observed. They are interpreted as follows: μy is the mean of exam scores for 
all students in the population having a particular diagnostic score, X. The mean of Y 
at each X is assumed to lie on a straight line whose equation is α + βX, where α is the 
equation intercept—the Y value at which the line crosses the Y axis—β is the slope 
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Fig. 6.1 Scatterplot of score on first exam (Y) plotted against math diagnostic test (X). Reprinted 
with the permission of John Wiley and Sons, Publishers, from DeMaris (2004)
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of the line, and X is the diagnostic score. The individual exam scores, however, do 
not all lie on the line. They are perturbed away from the line by random “noise,” 
or, as we have called it above, experimental error. If the population equation is 
written in terms of the individual scores, Y, then it is Y X= + +a b e , where ε rep-
resents that random error. As e a b= - +Y X( ), it is clear that the error represents 
the difference between the actual exam score and its mean value—as represented 
by the line.

As we noted, our job is to estimate this equation using sample data. The tech-
nique used for estimation is called ordinary least squares or OLS. How does it work? 
The counterpart, for the sample, of the population equation is Y a bX e= + + , where 
“a” is an estimate of α and “b” is an estimate of β. Our estimate of the population 
mean exam score at any given diagnostic value, μy, is the point on the line a + bX, 
which is denoted ŷ  (called “y-hat”). That is, ŷ a bX= + . If this line is used to predict 
every individual Y value, we will make a series of errors in prediction, denoted e. 
That is, e Y y= - ˆ  or e Y a bX= - +( ). The idea behind OLS is that the best estimate 
of the population line, α + βX, is that line in the sample that minimizes the total error 
in predicting Y using the sample equation a bX+ . Now, the errors are both positive 
and negative and tend to cancel each other out, so total error is measured by the sum 
of the squared errors. That is, we are looking for the a and b that minimize the sum 
of squared prediction errors (hence the name “least squares” in ordinary least 
squares). For a given sample, the X and Y values are fixed. Therefore the size of the 
errors only depends on the values chosen for a and b. Using calculus, it is a simple 
matter to find the formulas for a and b that minimize prediction error. These are then 
the OLS estimates of α and β.

For the current example, the “fitted line” in the lower right corner of Fig. 6.1 
shows the OLS estimate of the population regression equation ( ŷ  is shown as “y′” 
here). There are two primary benefits to be derived from the model. First, it is useful 
for forecasting. Suppose a prospective student is worried about his or her math abil-
ity and wants to know whether it’s possible to do well in the course. I can give that 
person the diagnostic test and then use the diagnostic score to generate an estimated 
score on the first exam. The student can then judge whether this bodes well or ill for 
their overall performance. So if their diagnostic score were, say, 42, then their esti-
mated score on the first exam is –35.49 + 2.75 (42) = 80.01, which is a B. Not a bad 
performance. Second, the slope of the equation, 2.75, tells us the nature and magni-
tude of the effect that math proficiency has on course performance. Intuitively, each 
additional point on the math diagnostic is worth, on average, another 2.75 points on 
the exam. Thus, I can describe how the treatment affects the response in precise 
mathematical terms.

 Other Important Features of Regression

Some nuances of regression need to be mentioned at this point. First, there are sev-
eral assumptions that should be satisfied before OLS estimation of linear regression 
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models is undertaken. We won’t go into all the details, but two assumptions are 
especially important. One is that the model we’re trying to estimate is linear in the 
parameters. What this means is that the right-hand side of the population regression 
equation is in the form of a weighted sum. That is, the parameters α and β are 
weights that multiply variables (i.e., β multiplies X) or constants (i.e., α multiplies 
the constant 1). The error term, ε, is an unobserved variable that is multiplied by the 
“parameter” 1. An equation that is not linear in the parameters is Y X= + +a eb . 
Notice that this is no longer a weighted sum, since β is an exponent of X rather than 
being a weight that multiplies it. This equation is therefore nonlinear in the param-
eters and is ideal for estimating a nonlinear relationship (in particular, an exponen-
tial, or accelerating positive, trend) between Y and X. It can be estimated by a 
technique called nonlinear least squares. We won’t cover that here. However, non-
linear models are very important and we will cover two of them in detail in Chaps. 
7 and 8 (in particular, logistic regression and the proportional hazards model).

Another important assumption, known as the orthogonality condition, is that ε 
(the error term in the population regression equation) is uncorrelated with X. If this 
is not the case, then our estimate, b, of β will be biased. Violation of the orthogonal-
ity condition usually happens whenever an unmeasured variable in the population 
that is correlated with X also affects Y. (This is precisely the situation depicted in 
Fig. 1.1, in which health awareness was the unmeasured variable at issue.) With just 
one X in the model, the orthogonality condition is almost surely violated, unless 
there is random assignment to levels of X. Unfortunately, orthogonality cannot be 
verified with the data. The reason is that an artifact of OLS estimation is that e is 
always uncorrelated with X in the sample, making it appear that orthogonality is 
satisfied. (The fact that e is uncorrelated with X is very important for understanding 
statistical control, so let’s remember this feature of OLS regression: Corr(X, e) = 0, 
i.e., the correlation between X and e is always zero.)

The second nuance is how we evaluate the goodness of a model. The most com-
monly employed measure for that purpose in linear regression is r2, which we have 
already encountered above. One could argue that unless a model is reasonably 
“good,” it shouldn’t be used for forecasting. For the introductory statistics example, 
the model r2 is 0.268 (not shown). Recall that r2 ranges from 0 to 1, so this repre-
sents a moderately effective model. R2 is arguably the most cogent measure of 
model effectiveness. Therefore we consider it in more detail here. R2 is referred to 
as a measure of discriminatory power (DeMaris 2004). If X has a causal effect on Y, 
then r2 is essentially telling us what proportion of the variability in Y is generated by 
the causal effect of X. Recall that the sample regression equation is Y a bX e= + + . 
It is easily shown that the total variance in Y is equal to the variance of (a + bX) plus 
the variance of e. That is, the total variability in Y consists of two components: the 
variability of the regression line (i.e., a + bX) and the variability around the regres-
sion line (represented by e). Figure 6.2 depicts one situation that is possible.

What is shown is the scenario in which 100 % of the variability in Y is accounted 
for by its regression on X (admittedly unrealistic, but useful for heuristic purposes). 
If we ignore X and only look at Y scores, then this two-dimensional figure is effec-
tively collapsed to one dimension, which is the Y axis. There, we see substantial 
variability in Y, with Y values ranging from 1 to 21. This is the total variability in Y, 

6 Linear Regression Models

http://dx.doi.org/10.1007/978-1-4614-7792-1_7
http://dx.doi.org/10.1007/978-1-4614-7792-1_8
http://dx.doi.org/10.1007/978-1-4614-7792-1_1#Fig00011


83

termed “unconditional variation in Y” in the figure. However, Y is perfectly deter-
mined by X via the equation Y = 1 + 2X. There is no experimental error. Thus, at any 
given X value, there is no variability in Y; there is just one value. For example, if X 
is 5, Y is 11. If X is 8, Y is 17, and so forth. This means that, at any particular X value, 
Y is perfectly determined: no variability in Y is exhibited. The difference between 
the total (or unconditional) variance in Y and the variance in Y at each X (i.e., the 
conditional variance in Y, given X) is what is accounted for by Y’s regression on X. 
In this extreme case, all of Y’s variability is accounted for by X, and therefore r2 is 1. 
Y only exhibits variation because X is varying and “taking Y with it,” so to speak. 
That is, all of the variability in Y is due to the fact that (a) X is varying from 0 to 10, and 
(b) Y values are being generated in lock-step with X. This is the extreme case of 
perfect determination of Y by X.

A more realistic scenario is shown in Fig. 6.3.
Here, we see that Y is no longer perfectly determined by X. The line in the middle 

of the points is the sample regression line: ŷ X= +1 2  (ŷ is shown as y’ in the fig-
ure). Although there are points that lie on the regression line, several are displaced 
away from the line. If we ignore X and look only at the Y scores again, the total 
variance in Y turns out to be 58.4. However, the variance of Y at each X value (visu-
ally revealed as the spread of the two points on either side of the line) is only 17.2. 
This is all of the variability in Y that remains at each X value. Now, 58.4 − 17.2 = 41.2. 
So 41.2 of the total variance in Y of 58.4, i.e., 71 % of the total variance in Y, is 
accounted for by Y’s regression on X. In this case, therefore, the r2 is 0.71. At the 
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Fig. 6.2 Variability in Y completely accounted for by X. Reprinted with the permission of John 
Wiley and Sons, Publishers, from DeMaris (2004)
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other extreme, if the slope estimate is zero, none of the variance in Y is accounted 
for by X, and r2 = 0. To understand why this is the case, we decompose the variance 
of Y in terms of the regression model (see, for example, DeMaris 2004, Chap. 3): 
s b s sy x e

2 2 2 2= + . That is, the variance of Y is equal to the square of the slope times the 
variance of X plus the variance of e. So if the slope is zero, all of the variance in Y 
is error variance, and none is generated by X. Normally, Y is partly determined by X 
and partly determined by random error, and r2 nicely encapsulates the proportionate 
contribution of X to the variability in Y in this process.

 Multiple Linear Regression

So far we have considered a regression model having only one predictor. This is 
known as simple linear regression or SLR. However, often we want to employ sev-
eral predictors, or, especially in observational studies, we want to control for several 
other potentially confounding variables. This is accomplished with the multiple lin-
ear regression, or MULR, model. When there is more than one X in the model, the 
procedure is called either a “multivariate” or a “multivariable” analysis.

The MULR model for the mean of a response (or study endpoint) is

 
m a b b by K KX X X= + + +…+1 1 2 2 ,
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Fig. 6.3 Variability in Y only partially accounted for by X
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where “K” stands for the total number of predictors (or “regressors”) in the model.
or, in terms of an individual Y score:

 Y X X XK K= + + +¼+ +a b b b e1 1 2 2 ,  

where ε represents experimental error, once again. Again, ε is assumed to be purely 
random “noise” arising naturally from the study of human response. It is also 
assumed to be uncorrelated with all of the Xs in the model. This is the orthogonality 
assumption, again. If this condition is violated, then one of more of the sample esti-
mates of the βs will be biased.

 Statistical Control in MULR

The βs in the model are called partial slopes or partial regression coefficients. They 
represent the effects of each variable controlling for all of the other variables in the 
model. That is, β1 is the unit change in the mean of Y for a one-unit increase in X1, 
controlling for (i.e., holding constant) all of the other Xs in the model. The other βs 
have comparable interpretations. The concept of statistical control is so important 
that we will take it up at length here. There are two ways to understand statistical 
control. The first is more intuitive; the second is more technically accurate.

 An Intuitive Sense of Control

First, then, imagine that we were able to randomly assign units to a treatment group 
and a control group. We’ll refer to group status simply as X. We know that, through 
randomization, those in the two different groups would have the same average value 
of any third variable, Z, which also affects Y. This means that if the treatment has an 
effect on Y, it’s not because of the “action” of Z on Y, since the groups are no differ-
ent, on average, on Z. Thus, there is no need for statistical control over Z in this 
instance. In the absence of random assignment, however, the two groups would 
likely be different on their average level of Z. Therefore, we don’t know how much 
it is X that affects Y, or the fact that X is related to level of Z, which, in turn, is what 
affects Y. How can we mimic random assignment after the fact? The closest we can 
come is to examine how X affects Y among all those who have the same value of Z. 
The equation that we want to estimate, then, is Y a b X b Z e= + + +1 2 , where b1 
 represents the effect of X among all those who are the same on Z. Figures 6.4, 6.5, 
6.6, 6.7, and 6.8 below show how this plays out.

What is shown in Fig. 6.4 is a bivariate scatterplot of Y against X. It looks like 
there’s a pretty strong effect (note that a slope is also referred to as an “effect” 
throughout this primer) of X on Y. The slope is 1.44. However, it turns out that a 
second variable, Z, is partly responsible for this seemingly strong effect. Z has a 
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strong positive effect on Y and is highly positively correlated with X. The scenario 
is displayed in Fig. 6.5.

As is evident from the figure, all paths connecting the three variables are positive. 
This means that if Z is not controlled, i.e., if it is left out of the model for Y, the 
product of the positive path between X and Z with the positive path between Z and 
Y, the result of which is positive, will be added to the positive path between X and 
Y, making it appear that X has a particularly strong positive effect on Y.

Z has only three values: 1, 2, or 3. So let’s examine a scatterplot of Y against X 
separately for all units who have the same value of Z. This way we can see how 
much X affects Y when Z is held constant (another term for statistical control). 
Figures 6.6, 6.7, and 6.8 show the X−Y scatterplots for each level of Z.
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Fig. 6.4 Bivariate scatterplot of Y against X. Reprinted with the permission of John Wiley and 
Sons, Publishers, from DeMaris (2004)
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Fig. 6.6 Bivariate scatterplot of Y against X when Z = 1. Reprinted with the permission of John 
Wiley and Sons, Publishers, from DeMaris (2004)
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Fig. 6.7 Bivariate scatterplot of Y against X when Z = 2. Reprinted with the permission of John 
Wiley and Sons, Publishers, from DeMaris (2004)
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Figure 6.6 shows the scatterplot of Y against X for all the points having Z = 1. This 
group of points should be recognized as the lowest third of the points in Fig. 6.4.

Figure 6.7 shows the scatterplot of Y against X for all the points having Z = 2. This 
group of points should be recognized as the middle third of the points in Fig. 6.4.

Figure 6.8 shows the scatterplot of Y against X for all the points having Z = 3. 
This group of points should be recognized as the highest (and rightmost) third of the 
points in Fig. 6.4.

What we notice in Figs. 6.6, 6.7, and 6.8 is that the slope of the line relating X to 
Y is now considerably reduced, compared to the slope in Fig. 6.4. This suggests that 
the positive effect of X on Y is substantially weaker when Z is held constant, as 
should obtain based on Fig. 6.5. The strong positive association of Z with Y can be 
seen by the fact that the cluster of Y scores moves up the Y-axis dramatically as Z 
goes from 1 to 2 to 3. Similarly, the strong positive association of Z with X can be 
seen by the fact that the clusters of points move from left to right along the X-axis 
as Z goes from 1 to 3. At any rate, the slope of the X effect on Y is, respectively, 
0.444, 0.595, or 0.544, for Z = 1, 2, 3. Since these values are not very different from 
each other, we can just average them, which gives us 0.528. We could then report 
0.528 as the effect of X on Y controlling for Z. Technically, this is not completely 
accurate. The partial slope of X in a MULR of Y on X and Z (estimated via OLS but 
not shown) is 0.564 instead of 0.528. But it’s close enough to convey a notion of 
how control is effected.

0 5 10 15
0

5

10

15

X

Y

fitted line:
y' = 7.4853 + .5441x

Fig. 6.8 Bivariate scatterplot of Y against X when Z = 3. Reprinted with the permission of John 
Wiley and Sons, Publishers, from DeMaris (2004)
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No-Interaction Assumption. It is important to notice that the slope of X in Figs. 6.6, 
6.7, and 6.8 is about the same in each case. So averaging these three slopes and 
reporting the result as the effect of X on Y, controlling for Z, is pretty accurate. But 
what if the three slopes were very different? Suppose, for example, that they were 
0.545, 0, and −0.545 for Z = 1, 2, and 3, respectively. Then their average is zero. In 
this case, controlling for Z would produce a very misleading picture. It would appear 
that X had absolutely no effect on Y once Z is held constant. But this is incorrect. It’s 
just that the effect of X is very different as we go from one level of Z to another. This 
latter situation is called statistical interaction. This term means that the association 
between X and Y changes as we go from one level of Z to the next. When that 
happens, we would say that X and Z interact in their effects on Y or that Z moderates 
X’s effect on Y. This phenomenon is a very important part of real data analysis and 
happens with regularity. We will take it up when we discuss the analysis of the GSS 
data using MULR below. In the meantime, the take-home point is that controlling 
for a third variable assumes that the relationship between the original two variables 
(i.e., X and Y) is exactly (or pretty closely) the same at each level of that third 
variable. If that is not the case, then we need to use an interaction model to analyze 
the data. We will see what one of these looks like below.

R2 for MULR. In MULR the analogue of r2 is R2. This represents the variation in Y 
that is accounted for by all of the Xs in the regression together. Again, this value 
ranges from 0 to 1. In the artificial-data example of Fig. 6.4, the R2 for the MULR 
of Y on X and Z is 0.92. With real data, one rarely sees anything so impressive.

Hypothesis Tests in MULR. Additionally, there are statistical tests of hypothesis in 
MULR, as in all procedures. These are typically concerned with two issues. First, is 
the model of any utility in predicting Y? The null hypothesis is that all of the partial 
regression coefficients equal zero. This is tested with an “F” test, similar to the F 
test in ANOVA. If that test is significant, the second issue is: which predictor effects 
(i.e., which partial slopes) are significant? This is addressed using a t test for the 
significance of each partial slope. The formula for each such test is t = b/se, where 
“b” is the partial slope in question and “se” is the standard error of that partial slope.

 Statistical Control: Technical Details

We mentioned above that the averaging of the separate effects of X on Y at different 
levels of Z wasn’t quite an accurate depiction of control. For the second perspective 
on control, we consider how it’s accomplished mathematically. Regard Fig. 6.5 
again. Suppose the figure represents a mechanical system in which the “circles” 
around the three variables are gears and the lines are drive shafts. And suppose the 
shaft from X to Y is hidden from view. If we turn the X gear the Y gear turns. But 
one reason is that the X gear is connected to the Z gear, so turning X turns the Z gear, 
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which also turns the Y gear. But we want to know whether the X gear is connected 
directly to the Y gear, so that turning X also results in a turning of Y, independently 
of the link through Z. What could we do? Well, the obvious solution is to discon-
nect the link from X to Z. This means that Z doesn’t turn when we turn the X gear. 
So if we turn the X gear under this condition, and the Y gear turns, then there is a 
connection there.

Now, let “turning” be equivalent to variation. What we need to do with X is to 
examine how variation in X relates to variation in Y while keeping Z from covarying 
(or varying along) with X. Here’s how that’s done. Recall that the estimated MULR 
equation is Y a b X b Z e= + + +1 2 . How do we actually obtain b1, say? Recall from 
above that, in SLR, Corr(X, e) = 0. That is, the error term, e, is uncorrelated with the 
predictor in that equation. Therefore suppose we regress X on Z, via the equation 
X c Z u= + +d . (This is just an SLR of X on Z, where we’re using different letters 
for intercept, slope, and error term.) Then Corr(Z, u) = 0. Note that u is defined as 
u X c Z= - +( )d . That is, u is a version of X from which the linear association 
between X and Z has been subtracted out or removed. That is, u is a version of X 
that is purged of its linear association (correlation) with Z. If we then estimate the 
SLR: Y a b u= +¢ ¢  we will see that b′ here is our b1 in the MULR. Effectively what 
we’ve done is to be able to let X vary and see how Y responds, but without Z varying 
at the same time. That is, it’s as if Z is being held constant as X is varying, which 
corresponds with our intuitive understanding of control. (The same mathematical 
operation underlies the partial slope for Z in the same MULR.) You can imagine, 
however, that if X and Z are too highly correlated (say, at a level of 0.95 or more) 
subtracting out the linear association with Z will leave almost nothing behind. That 
is, u would exhibit almost no variation, because most of X’s variance was accounted 
for (or generated) by Z. In that case, the regression of Y on u would be very unreli-
able, since if there’s little variation in the predictor, there can’t be much covariation 
with Y. The situation of X and Z being very highly correlated is known as multicol-
linearity in MULR. It is of concern because it interferes with reliable estimation of 
the partial slopes for variables that are affected by it. It isn’t often a serious problem, 
but if you see a reference to that term, you’ll know what’s being referred to. (It’s a 
problem that’s also easily remedied most of the time via a variety of ameliorative 
strategies.)

 An Example Using the GSS

Recall the physician stewardship variable from the 2002 GSS discussed in Chap. 4. 
We found that women were significantly lower on it than men were. We might ask 
what other factors affect physician stewardship. Or, we might speculate that, because 
men have, on average, greater annual income than women, they can more easily 
afford to use physicians’ services than women can. This might be why they’re more 
willing to “leave the driving” to their doctors, so to speak. Thus we might ask if 
there’s still a gender difference in physician stewardship once income is held 
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constant. Table 6.1 above presents the results of a multiple regression analysis of 
physician stewardship for the 1,769 respondents with complete data on all variables 
in the analysis. It uses the variables “female (coded 1 for females, and 0 for males),” 
“age (respondent’s age in years),” “educ (respondent’s education in years of school-
ing completed),” and “rincom98 (respondent income coded in intervals from 
1 = under $1,000 to 23 = $110,000 or more).” The response variable is labeled “rely-
doc,” which stands for physician stewardship. The table is the output from a popular 
statistical software program called Stata.

The “Coef.”column shows the regression coefficients for each X in the model; 
the coefficient for “_cons” is the intercept. The subsequent columns present stan-
dard errors for each coefficient (“Std. Err.”), t test values for testing whether each 
coefficient is zero in the population (“t”), the p value associated with each t test 
(“p>|t|”), and 95 % confidence intervals for each coefficient (“95 % Conf. Interval”). 
There is an initial F test for the model as a whole shown in the upper right part of 
the table. The null hypothesis for this test is that all of the effects of the independent 
variables—the regression coefficients—equal zero in the population. The F value is 
28.46 and is very significant (“Prob > F = 0.0000”). This means that at least one of 
the variables has a real (i.e., nonzero) effect on physician stewardship in the popula-
tion. The R2 for the model, however, isn’t particularly impressive. It’s 0.0606, which 
means that only about 6 % of the variability in physician stewardship is accounted 
for by our model. Nevertheless, all of the explanatory variables have significant 
effects on the response, as can be seen from the p values. This is most likely because 
we have a lot of power, given that the sample size here is 1,769 respondents.

The variable “female” needs some explanation. This isn’t really a quantitative 
variable, so you might ask how it can be in a regression model. It so happens that the 
coding of the variable, with females coded 1 and males coded 0, facilitates its use in 
regression. A variable coded this way is called a dummy variable. The terminology 

Table 6.1 Regression results for physician stewardship
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refers to the fact that the numbers “0” and “1” don’t convey any quantitative infor-
mation, per se. Rather, they are convenient “labels” that allow the variable to enter 
a regression model. When a dichotomous variable is coded this way its coefficient 
turns out to be the difference in the mean of the response for the group coded 1 vs. 
the group coded 0, controlling the other variables. So the coefficient of −0.509 for 
“female” is telling us that, on average, controlling for the other Xs in the model, 
females are about a half point lower in physician stewardship than males. This is 
what we saw before without controlling for any other variables. In fact, controlling 
for the other variables—including annual income—has made the difference slightly 
greater: −0.509 with controls vs. −0.433 without controls (from Table 4.1: this is the 
“diff” entry representing the raw mean difference between males and females in 
physician stewardship). Apparently, the gender difference in physician stewardship 
is not just an artifact of men having more money to spend on doctors. What about 
the other variables? The results suggest that average physician stewardship increases 
with age but actually declines with both increasing income and education. So much 
for the “more money to spend on doctors” hypothesis!

Finally, let’s write out the equation for physician stewardship, as estimated using 
the sample data:

 
ˆ . . Female . . . .y = - + - -4 89 0 51 0 01 0 11 0 02 98age educ rincom  

We could use this to get an estimated physician stewardship value for a respon-
dent of a particular demographic profile. So for a 40-year-old woman with a college 
degree (i.e., 16 years of education) and an annual income level of 20, her estimated 
physician stewardship score would be

 
ˆ . . ( ) . ( ) . ( ) . ( ) . .y = - + - - =4 89 0 51 1 0 01 40 0 11 16 0 02 20 2 62  

According to the way physician stewardship is coded, this translates to a response 
that is approximately halfway between “moderately disagree” and “slightly dis-
agree” with the notion of relying on the doctor’s knowledge rather than finding out 
about one’s condition on one’s own (see Chap. 2 for the coding of the physician 
stewardship variable).

 ANCOVA: A Particular Type of Regression Model

As a final comment, a multiple regression analysis containing a mixture of qualita-
tive (e.g., gender) and quantitative (e.g., age, education, income) explanatory vari-
ables, as in the above example, is also called an analysis of covariance, or ANCOVA. 
The moniker originates from experimental settings, in which interest centers on 
treatment-group (a qualitative factor) differences in a quantitative study endpoint 
while controlling for one or more quantitative “covariates,” which are simply 
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control variables. These are usually pre-randomization characteristics, e.g., pretest 
scores on a study endpoint, which are strongly related to the post-treatment values 
of the study endpoint. Including them in the model makes a more powerful test of 
the treatment effect because they help to minimize experimental error. ANCOVA 
then involves a regression model in which the study endpoint is regressed on the 
treatment factor plus quantitative control variables. Therefore, the term ANCOVA 
has come to be applied to any regression analysis in which the explanatory variables 
are a mixture of qualitative and quantitative factors. Typically, however, the term 
“analysis of covariance” is reserved for the case in which prime interest is in mean 
differences in the study endpoint by treatment group. It is usually of interest to 
examine means for each treatment group while controlling for the covariates. 
Analysts can then use the ANCOVA model to get predicted values for the study 
endpoint for each treatment group, as we did for the 40-year-old woman’s physician 
stewardship score above, with mean values for the covariates substituted into the 
equation. These predicted values are then referred to as adjusted means on the study 
endpoint by treatment group, since they are the treatment group means that adjust, 
or control, for the covariates. (See the applications below.)

 Modeling Statistical Interaction

Recall that statistical interaction is the phenomenon in which the effect of one vari-
able on another depends on the level of a third variable. In the regression example 
just considered, suppose our hypothesis is that the gender difference we’ve observed, 
in which females are lower in physician stewardship than males, depends on age. 
Because people have more health problems as they get older, we think that the gen-
der difference is not as pronounced among older respondents. To test this, we divide 
the sample by age into those who are younger than 50 (the younger group) vs. those 
who are 50 or older. For the 1,290 younger respondents, we regress physician stew-
ardship on education, gender, and income (not shown). The effect of being female 
on physician stewardship turns out to be −0.65925 (p < 0.0001). This suggests, as 
with the entire sample, that females are significantly lower on physician stewardship 
than males by about two-thirds of a unit. The same regression for the 479 older 
respondents (again, not shown) shows the effect of being female to be −0.32027 
(p > 0.10). Thus, among older respondents, the gender difference is no longer sig-
nificant, net of controls (“net of” controls means taking the other control variables—
education and income—into account). This is an example of a statistical interaction. 
The gender effect changes over age, with it being significant among younger respon-
dents but not significant among older respondents.

Nevertheless, an important question needs to be answered. Is the difference in the 
gender effect for younger vs. older respondents significant? This is a subtle aspect 
of interaction that is often overlooked. It is common practice to split a sample by 
some classification factor, such as age, and then run separate regressions within 
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each group. This is typically called stratification on the classification factor in 
 medical studies, and interaction effects may be referred to as “stratification” effects. 
When this is done, researchers often assume that observing different coefficients for 
the same predictor in the different stratification groups implies that the effects of 
that predictor are actually different in the population subgroups. But sampling error 
is such that any time one splits the sample based on some grouping factor, and runs 
separate regression models, one will inevitably get different effects for the same 
explanatory variables in each group. This does not imply that the variables in ques-
tion actually have different effects in the relevant population subgroups. In the cur-
rent example, the fact that the gender gap in physician stewardship is different for 
younger and older respondents in the sample does not mean that the gender gap in 
physician stewardship is different for younger vs. older respondents in the popula-
tion. And this principle holds even if the gender gap is significant in one subgroup 
(e.g., the younger respondents) but not in the other (e.g., the older respondents). 
What is needed is a formal test for the difference in the gender effect across age 
groups. How is this accomplished?

 The Interaction Model

The procedure is simple. We simply create a dummy variable for being 50 or older 
(coded 0 if the respondent is under 50 and 1 if the respondent is 50 or older) called 
“older.” We then create the crossproduct of “older” with the variable “female” 
(which you recall is a dummy variable for the respondent being female). That is, we 
literally create a new variable that is the product of these two dummies. The result-
ing model, the interaction model, looks like this (where “Female * Older” is the 
product of the female dummy variable with the “older” dummy variable):

 
ˆ Age Female Rincom Older Female* Older .y a b b b b b= + + + + +1 2 3 4 598  

For those who are younger (i.e., Older = 0), the regression is

 
ˆ Age Female Rincom ( ) Female* ( )y a b b b b b= + + + + +1 2 3 4 598 0 0  

or

 
ˆ Age Female Rincom .y a b b b= + + +1 2 3 98  

which means that b2 is the effect of being female, or the gender gap in physician 
stewardship, among the younger respondents.

For those who are older (i.e., Older = 1), the regression is

 
ˆ Age Female Rincom ( ) *( )y a b b b b b= + + + + +1 2 3 4 598 1 1Female  
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or,

 
ˆ Age ( )Female Rincom .y a b b b b b= + + + + +4 1 2 5 3 98  

Notice that we have grouped the two coefficients that multiply “Female” together. 
So the gender gap in physician stewardship among older respondents is b2 + b5. The 
difference in the gender gap among older vs. younger respondents is, therefore, b5. 
Hence a t test for the coefficient b5 is a test of whether the gender gap is significantly 
different among older vs. younger respondents. Table 6.2 shows the result of esti-
mating the interaction model shown above, using the regression software in the 
program SAS.

The coefficients of the regression are shown in the “Parameter Estimate” col-
umn. The last variable, “femold” is the crossproduct term of “female” times “older.” 
As we see, the gender gap among younger respondents is the coefficient for 
“female,” which equals −0.65925. The gender gap among older respondents is the 
sum of this coefficient and 0.33898, the coefficient of the crossproduct term. The 
sum is −0.65925 + 0.33898 = −0.32027, which agrees with the gender effect among 
older respondents that was given above. The difference in gender effects in the two 
age groups is therefore 0.33898, which as is evident, has a p value of 0.0703. Thus, 
at the conventional alpha level of 0.05, this difference is not quite significant. So we 
cannot conclude that there is a real difference in the gender effect on physician 
stewardship for younger vs. older respondents in the population. And this obtains 
even though the gender gap is significant among younger respondents but not sig-
nificant among the older ones, as we noted above. The bottom line is that interaction 
effects are tested in regression models via crossproduct terms. And if the supposed 
interaction, or stratification, effect has not been subjected to this kind of test, then it 
is not to be considered conclusive.

Table 6.2 Interaction model for the interaction of gender and age on physician stewardship

Parameter Estimates

Variable Label DF
Parameter 
Estimate

Standard 
Error t Value Pr > |t|

Intercept Intercept 1 3.67644 0.20908 17.58 <0.0001
AGE AGE OF 

RESPONDENT
1 0.00735 0.00524 1.40 0.1611

female RESPONDENT 
IS FEMALE

1 −0.65925 0.09908 −6.65 <0.0001

RINCOM98 RESPONDENTS’ 
INCOME

1 −0.03919 0.00767 −5.11 <0.0001

older RESPONDENT 
IS >50

1 −0.17397 0.18206 −0.96 0.3394

femold FEMALE* 
OLDER

1 0.33898 0.18714 1.81 0.0703
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 Repeated Measures ANOVA: Interaction in the Foreground

 A Study of Depressive Symptomatology

A type of analysis that is related to MULR is repeated measures ANOVA. Recall the 
ANOVA technique discussed in the previous chapter. That technique was employed 
when examining the association between a quantitative study endpoint and a quali-
tative treatment with more than two categories. But suppose we have the following 
scenario. A team of medical researchers wants to test which antidepressant is more 
effective at reducing depressive symptomatology in patients. Three hundred patients 
presenting with depressive symptoms at a local clinic agree to be enrolled in a clini-
cal trial. First, they are all pretested with the Center for Epidemiological Studies 
Depression Scale (CES-D), a widely used paper-and-pencil measure of depressive 
symptomatology. This instrument asks how often in the past week the subject has 
experienced each of 20 different symptoms. Examples are “I was bothered by things 
that usually don’t bother me,” and “I felt that I could not shake off the blues, even 
with help from my family or friends.” Response categories are “rarely or none of the 
time (<1 day),” “some or a little of the time (1–2 days),” “occasionally or a moderate 
amount of time (3–4 days),” and “most or all of the time (5–7 days).” The codes for 
each response are, respectively, 0, 1, 2, and 3. The scale ranges from 0 to 60, with 
higher scores indicating the presence of more depressive symptomatology. The pre-
test score on the CES-D is the time 1 measure in the study.

Then the researchers randomly assign 100 patients each to be treated by Celexa 
(treatment 1) and Wellbutrin (treatment 2), vs. placebo (control condition). These 
patients are then followed up every 4 months for a year. On each follow-up they are 
given the CES-D to fill out again. This results in three more CES-D scores for each 
subject, which constitute the time 2, time 3, and time 4 scores. Interest centers on 
the extent to which the antidepressant treatments reduce the trajectory in depressive 
symptoms over time, compared to the placebo condition. In this study, time, which 
has four levels—time 1, time 2, time 3, time 4—is another qualitative factor that 
affects depression, in addition to treatment. The “effect” of time would be revealed 
by the way in which the average depression in a given treatment group changes over 
time. But what is expected is that the reduction in depressive symptoms over time 
will be greater under the two antidepressant treatments, compared to placebo. That 
is, the primary effect the researchers are looking for is an interaction between treat-
ment and time in their effects on average depression. The means for the three groups 
at each time period are shown in Table 6.3.

 Analyzing the Data

Repeated measures ANOVA is typically a “two-factor,” meaning two explanatory 
variables, ANOVA. (It can have more than two factors, too, but much of the time two 
factors are all that are used.) This means that there are two independent variables: 
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treatment and time. The analysis is complicated by the fact that the same subjects are 
being measured at more than one time. Thus, the four CES-D scores over time for 
any given subject are tied together by virtue of coming from the same person. Like 
the paired t test example from the previous chapter, then, repeated measures ANOVA 
involves dependent sampling on the repeated measure. This variable is referred to as 
the within-subjects variable, because its values vary within any given subject. That 
is, each subject experiences all four levels of the time variable. The other variable, 
the treatment factor, is called the between-subjects variable. This is because it only 
varies between subjects. That is, any given subject only experiences one level of the 
treatment variable—they are either in one of the treatment groups or the control 
group. The upshot of this design is that there is typically a positive correlation 
between any two sets of responses pertaining to two different time periods. So 
CES-D scores for the 300 subjects at time 1 are positively correlated with CES-D 
scores for the same subjects at time 2 or time 3 or time 4, and so forth. Because of 
this, the standard error for testing the effect of time or the treatment × time interac-
tion is different from the standard error for testing the treatment effect, per se.

 Time, Treatment, and Treatment × Time Effects

There are three different “effects” that come out of this analysis. The time effect can 
be seen in the last row of Table 6.3, labeled “Mean.” It is the change in average 
CES-D over time, ignoring treatment group. Each number is the average of the three 
group means for a given time period. It is evident that there is a drop in average 
depressive symptomatology over time, with the mean symptom level at time 1 being 
46 and the mean symptom level at time 4 being 25. The treatment effect is shown by 
the three means in the last column of the table. It is the difference in mean CES-D 
by treatment group, ignoring time. Each of these means is the average of the four 
means over time for a given treatment condition. Hence we can see that the Celexa 
treatment has the lowest mean depressive symptomatology overall (25.7), and the 
placebo group has the highest mean overall (43.0). Nevertheless, neither of these 
effects is of prime interest. The focus of the study is the change in depressive symp-
tomatology over time, and how this differs according to treatment category. This is 
best seen in Fig. 6.9, which shows the trajectory of mean CES-D over time, sepa-
rately by treatment group.

Table 6.3 Mean CES-D scores by treatment group and time period for 300 subjects

Treatment n

Time

MeanTime 1 Time 2 Time 3 Time 4

Celexa 100 46.1 23.9 18.5 14.3 25.7
Wellbutrin 100 45.7 28.6 23.1 19.4 29.2
Placebo 100 46.3 43.4 41.2 41.2 43.0
Mean 46.0 32.0 27.6 25.0
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It is clear in the figure, first, that mean CES-D is the same for each treatment 
group at time 1. This is due to the randomization, which ensures that, on average, 
there should be no treatment-group difference in the initial value of the study end-
point, prior to treatment. Second, it is also clear that the trajectory in average CES-D 
is quite different in the three groups. The Placebo group has a relatively flat trajec-
tory, with only a slight reduction in CES-D over time. The Wellbutrin and Celexa 
groups, on the other hand, have much more pronounced declines in depressive 
symptomatology over time, with the Celexa group showing the greatest decline of 
the groups. Hence, as we noted at the outset, the primary effect expected in this 
analysis is that there would be an interaction between the two explanatory factors, 
treatment and time. Here we see that the interaction effect is the main “player” in 
the analysis.

 Applications: Regression and Repeated Measures  
ANOVA in Action

In the following journal applications, we will see how linear regression and repeated 
measures ANOVA have been employed in medical research. Additionally, we will 
consider issues that are raised by the particular approaches taken by each research 
team.
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Fig. 6.9 Mean CES-D over time, separately by treatment group
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 Gender Difference in Physician Salaries, Revisited

Recall the study of the gender difference in physicians’ salaries from Chap. 4 (Jagsi 
et al. 2012). Recall, also, that the mean difference in salaries between men and 
women physicians was $32,764 favoring the men. To what extent could this differ-
ence be explained by the fact that men had a greater number of publications and 
worked more hours, on average? In fact, the researchers controlled for many addi-
tional characteristics that might differentiate men and women. As reported in the 
article (p. 2412), there was a long list of control variables used in a multiple regres-
sion model for salary:

We described characteristics of this sample by gender and then constructed multiple variable 
linear regression models for salary with the following respondent characteristics: gender, 
age, race, marital status, parental status, additional graduate degree, rank, leadership, spe-
cialty nature, specialty pay level, current institution type, current institution region, current 
institution NIH funding rank group, whether the respondent had changed institutions, K 
award type, years since K award, K award funding institute, receipt of R01 or greater than 
$1 million in grants, publications, work hours, and percentage of time spent in research.

In their regression model containing all these factors, the effect of being male on 
salary was 13,399 (p = 0.001). This means that, net of all control variables, the gen-
der gap in average salary was still significant, amounting to $13,399.00 favoring 
males. The authors conclude (p. 2417):

Ultimately, this study provides evidence that gender differences in compensation continue 
to exist in academic medicine, even among a select cohort of physician researchers whose 
job content is far more similar than in cohorts previously studied, and even after controlling 
extensively for specialization and productivity.

 Obesity and Tumor Volume, Revisited

Recall the study by Capitanio and colleages (2011) from the previous chapter. They 
employed data from 1,275 consecutive Caucasian prostate cancer patients treated 
with radical prostatectomy and pelvic lymphadenectomy at an Italian Hospital 
between 2006 and 2009. Their primary interest was in examining how BMI might 
affect prostate tumor volume. As noted in the previous chapter, in a bivariate analy-
sis, they found a significant, albeit small, positive correlation between BMI and 
tumor volume that was significant. Would this association hold up after controlling 
for other patient characteristics? The results of simple and multiple regression mod-
eling are shown in Table 6.4.

The “B coefficient” column under “Univariable analyses” presents the regression 
coefficients for the simple linear regression of tumor volume (“PCa volume”) on each 
of the predictors listed in the “Predictors” column. So the regression of tumor vol-
ume on BMI shows a regression coefficient (i.e., slope) of 0.2; the regression of tumor 
volume on age shows a regression coefficient of 0.02, and so forth. The “p” column 
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gives p values for the test that the corresponding population coefficient equals zero, 
and therefore tells which of the predictors has a significant association with tumor 
volume. The “Multivariable analyses” columns provide the same information, but 
for the multiple regression of tumor volume on all seven predictors listed in the 
table. Hence, the partial regression coefficient for BMI in the multiple regression is 
0.14, with a p value of 0.04. This is the effect of BMI on tumor volume in the mul-
tiple regression that controls for age, diabetes, PSA, biopsy Gleason score, clinical 
stage, and prostate volume.

Here (pp. 679–680) is how the authors describe the results in Table 6.4 (which is 
“Table 4” in their article):

Table 4 shows univariable and multivariable linear regression analyses predicting TV at RP. 
With univariable analyses (Table 4), BMI results correlated with TV at RP (B = 0.2; p = 
0.001). Moreover, PSA level, biopsy Gleason score and clinical stage were associated with 
cancer size at RP as well (all p < 0.001). Conversely, patient age and prostate volume did 
not predict TV at RP (p > 0.4). On multivariable analysis, after adjustment for age, PSA 
level, biopsy Gleason score, clinical stage and prostate volume, BMI reached the indepen-
dent predictor status (p = 0.04) (Table 4).

Some commentary is in order. First, we remind the reader that “PCa” is prostate 
cancer, “TV” is tumor volume, and “RP” is radical prostatectomy. Second, the term 
“univariable” refers to the fact that the regression involves only one explanatory 
variable, i.e., it is simple linear regression, a form of bivariate analysis. Third, we 
note that the authors describe BMI results as “correlated” with TV, but then in 
parentheses give, not a correlation coefficient, but “B,” the simple linear regression 
coefficient and p value for BMI. Fourth, we note that two effects that are significant 
in the simple linear regression either become nonsignificant in the multiple regres-
sion (i.e., diabetes—whether the patient is diabetic) or show a marked increase in p 
value (i.e., BMI) from the bivariate to the multivariate analysis. The reason for these 
changes in p values is that many of the explanatory variables are positively corre-
lated with each other. For example, overweight people are more likely to be dia-
betic. Also there were positive correlations among BMI, PSA, prostate volume, and 
tumor grade (i.e., biopsy Gleason score). This means that the situation would be 
graphed as in Fig. 6.10.

Table 6.4 Simple and multiple linear regression models of tumor volume based on BMI and 
controls [Reprinted with permission of John Wiley and Sons, Publishers, from Capitanio et al. 
(2011)]

Predictors

Univariable analyses Multivariable analyses

B coefficient p B coefficient p

BMI 0.2 0.001 0.14 0.04
Age 0.02 0.4 −0.07 0.8
Diabetes 1.41 0.05 0.87 0.3
PSA 0.11 <0.001 0.10 <0.001
Biopsy Gleason score 3.30 <0.001 2.49 <0.001
Clinical stage 3.06 <0.001 1.58 <0.001
Prostate volume −0.01 0.5 0.07 0.4
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The same principle applies to Fig. 6.10 that applies to Fig. 6.5 above. That is, the 
simple linear regression, say, between BMI and tumor volume does not control for 
the other factors in the figure. Therefore all the indirect paths from BMI to tumor 
volume that go through the other variables are multiplied together and added to the 
direct path from BMI to tumor volume. This would make it appear that BMI has a 
particularly strong—and very significant—effect on tumor volume in the simple 
linear regression. In reality, that effect is the sum of many “pathways” that go from 
BMI to tumor volume through the other factors. This means that much of that seem-
ingly strong “effect” of BMI in the simple linear regression is not due to BMI actu-
ally influencing tumor volume. Rather, it’s the connection between BMI and these 
other factors, which, in turn, have influences on tumor volume, which is driving this 
strong effect. In the multiple regression, all these other factors are controlled. This 
is tantamount to severing the connections between BMI and all other factors in the 
diagram (the connections are all shown as curved two-headed arrows). With all 
those connections cut, the BMI effect is just the direct positive path from BMI to 
tumor volume. Although it is still significant, the force of its effect is substantially 
reduced. The same comments apply to the diabetes variable.

 Discrimination and Waist Circumference

Hunte (2011, #25) hypothesized that interpersonal experiences of discrimination are 
related to an increase in waist circumference over time. The reason, according to the 
author, is that (p. 1233) “individuals with relatively high levels of internalized beliefs 
about their race/ethnicity may have adopted a defeatist mind-set, which is thought to 
be related to the physiologic pathway associated with excess body fat accumulation.” 
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Hunte used the baseline (1995) and follow-up (2004) data on 1,452 respondents 
from the National Survey of Midlife Development in the USA. The researcher exam-
ined whether changes in the perceived experience of interpersonal discrimination 
had an effect on the change in waist circumference over the period. The average 
change in waist circumference over the 9-year period was 5.98 cm. That is, on aver-
age, respondents gained in waist size by approximately 6 cm over the period. 
Discrimination was assessed with a series of questions about the respondents’ per-
ception regarding how often they were subjected to various discourteous behaviors, 
such as being treated with less respect than other people or receiving poorer service 
than others. Based on these responses given at both times (1995, 2004), respondents 
were characterized as low stable (low discrimination at both times), decreasing 
(movement from higher to lower discrimination over time), increasing (movement 
from lower to higher discrimination over time), and high- stable (reporting high dis-
crimination at both times) types with respect to changing discrimination over time. 
The analysis primarily consisted of multiple regression models in which the change 
in waist circumference over time (the primary study endpoint) was regressed on 
change in interpersonal discrimination plus several control variables. One of the con-
trols was the respondent’s waist circumference at baseline (i.e., in 1995). Results for 
both men and women respondents are shown separately in Table 6.5.

The results are separated by gender because Hunte found an interaction between 
gender and discrimination in their effects on change in waist circumference. This 
means that the effect of change in discrimination on change in waist circumference 
was significantly different for men and women, which justifies separate regression 
models by gender. Hunte explains this as follows (p. 1236):

The 2-way interaction terms between sex and change in interpersonal discrimination vari-
able were significant after adjusting for none of the covariates (P < 0.05) and were margin-
ally significant (P = 0.067) when adjusting for all of the covariates listed in Table 2, 
suggesting that the relation between the change in interpersonal discrimination variable and 
waist circumference may differ for men and women (data not shown). Results from the sex- 
stratified analyses predicting mean change in waist circumference are presented in Table 2.

The explanatory variables “Decrease,” “Increase,” and “High Stable” shown in 
the leftmost column of the table are all dummy variables. Each one contrasts a 
particular discrimination group with the low-stable group. Accordingly, “Low sta-
ble” is listed as the “(referent)” category with a coefficient of 0.0. This notation 
means that “Low stable” is not actually an independent variable in the model. A 
variable with four categories needs only three dummy variables to represent it in 
the model. This is the same principle we saw with the dummy variable “female” in 
the model in Tables 6.1 and 6.2 above: a variable with two categories needs only 
one dummy to represent it in the model. Hunte describes the results in Table 6.5 as 
follows (p. 1236):

These results suggest that men who consistently reported high levels of interpersonal dis-
crimination over the study period experienced a larger (2.39 cm) increase in waist circum-
ference compared with men who consistently experienced low levels of interpersonal 
discrimination (P < 0.05). Likewise, the waist circumference of women who reported an 
increase in interpersonal discrimination increased approximately 1.88 cm more than that 
for women who were in the low-stable group (P < 0.05).
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We notice here that the researcher is reporting the effects for high stable (for 
men) or increase (for women) categories of change in discrimination in Model 3, 
only, for either gender. This is because these are the “full” models for either gender, 
that is, the models with all possible controls in them (the controls in each model are 
explained in footnotes a, b, and c). Hence we see that the partial regression coeffi-
cient for High stable for men is 2.39, which is significant at p < 0.05. This means 
that, on average and net of controls, perceiving high discrimination at both time 
periods is associated with 2.39 cm higher waist size, compared to the men in the low 
stable group. For women, the same discrimination variable is associated with 
2.09 cm higher waist size. But this effect is only marginal; it does not reach the 
conventional 0.05 significance level. On the other hand, the coefficient for Increase 
does attain p < 0.05 for women and suggests that those perceiving increasing dis-
crimination over time gained in waist size by 1.88 cm, on average, compared to 
women in the low-stable group.

Table 6.5 Regression of change in waist circumference on change in perceived discrimination 
plus controls [Reprinted with permission of Oxford University Press from Hunte (2011)]

Men Women

Model 1a Model 2b Model 3c Model 1a Model 1b Model 1c

Low stabled 
(referent)

0.0 0.0 0.0 0.0 0.0 0.0

Decreasee 0.20 (0.82)f 0.20 (0.82) 0.20 (0.82) 1.57 (1.09) 1.59 (1.10) 1.54 (1.09)
Increaseg 0.18 (0.62) 0.18 (0.62) 0.17 (0.62) 2.14 (0.88)** 2.09 (0.89)** 1.88 (0.89)**
High stableh 2.41 (0.96)** 2.41 (0.96)** 2.39 (0.96)** 2.27 (1.19)* 2.25 (1.19)* 2.09 (1.19)*
p Value for  

linear effect
>0.05 >0.05 >0.05 <0.05 <0.05 <0.05

Adjusted 
R-squared 
value

0.437 0.437 0.438 0.410 0.408 0.412

F-test result 44.764 33.901 28.746 45.747 34.361 29.533
p Value for 

model 
significance

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

No. of 
participants

678 678 678 774 774 774

*p < 0.10; **p < 0.05
aAdjusted for age, race discrimination at wave I, waist circumference at wave I, body mass index at 
waves I and II, education at wave I, household income at wave I, and depression disorder at wave I
bAdjusted for the covariates in model 1 and smoking at wave I, drinking at wave I, and physical 
activity at wave I
cAdjusted for the covariates in model 2 and major life events at wave II
dLow levels of perceived interpersonal discrimination in waves I and II; no change
eChange from high levels of interpersonal discrimination in wave I to low levels in wave II
fValues in parentheses, standard errors
gChange from low levels of interpersonal discrimination in wave I to high levels in wave II
hHigh levels of perceived interpersonal discrimination in waves I and II; no change
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One could argue that low-stable, decrease, increase, and high-stable categories of 
changing discrimination constitute increasing degrees of severity of discrimination. 
Why not just code these values as 1, 2, 3, and 4 and enter this as just one explanatory 
variable in the regression? In fact, this is what the researchers did and reported as a 
test for a “linear trend” (p. 1236):

The P values from the regression analyses testing for a linear trend of the interpersonal 
discrimination variable are presented in Tables 2 and 3. The P values suggest a positive 
association between interpersonal discrimination and increases in waist circumference for 
women but not for men over the 9-year study period (P < 0.05).

The p values resulting from these tests for a linear trend for men and women are 
shown in the row of values corresponding to “p value for linear effect” in Table 6.5. 
What these results mean is that one could, in fact, code discrimination 1–4 for 
women, as described above, and its regression coefficient would be positive and 
significant in the model when coded that way. On the other hand, if one used the 
same discrimination coding for men, the variable would not be significant that way. 
Examining the coefficients for the discrimination categories in Model 3 for women, 
it’s clear that each higher severity of discrimination is associated with a larger effect, 
with the coefficients for Decrease, Increase, and High stable being 1.54, 1.88, and 
2.09, respectively. But for men, this is not the case, with the coefficients being 0.20, 
0.17, and 2.39, respectively. Because the 1–4 coding is not therefore sensible for 
both men and women, the researcher has elected to present the dummy-coded dis-
crimination results in the table.

We notice in the table that the researcher has presented an “Adjusted R-squared 
value” for each model. This is comparable to the R2 discussed above. However, it 
has been adjusted because R2 tends to be a little too generous in assessing a mod-
el’s predictive performance. For example, R2 cannot possibly decrease when addi-
tional explanatory variables are added to a model, no matter how insignificant they 
are. For this reason, there is a corrected R2 called the adjusted R2, as is shown here. 
This measure has the property that it can decrease as one adds irrelevant predictors 
to the model. The fact that it does not decrease for the men’s models suggests that 
successive controls added to the models were all at least reasonably important. 
Such is not exactly the case for the women, since the adjusted R2 drops from 0.410 
to 0.408 from Model 1 to Model 2. However, it goes back up again to 0.412 for 
Model 3. In terms of indicating the models’ discriminatory power, the adjusted R2 
is interpreted just like R2. Hence, about 41–43 % of the variability in change in 
waist circumference is accounted for by the predictors in men’s and women’s 
models. Notice, also, that at the bottom of the table the researcher presents the 
“F-test result,” along with “p value for model significance.” This is the test for 
overall model utility that was discussed above. Apparently, all models show a 
highly significant F test result, which justifies testing the individual coefficients in 
each model.
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 Reducing Alcohol Dependence: An Example of ANCOVA

Cobain and her colleagues (2011) investigated whether brief interventions delivered 
by a nurse specialist to nontreatment-seeking alcohol-dependent patients in a hospi-
tal setting would be effective in reducing alcohol consumption and dependence. The 
study was conducted at two different hospitals in England in 2007. The study was 
not a randomized trial. Rather, one hospital was designated the test (i.e., interven-
tion) site and the other the control site. Patients were screened for eligibility for the 
study with the Alcohol Use Disorders Identification Tool (AUDIT). These scores 
had a range of 16–40, with mean baseline scores of 33.68 and 29.74 for the interven-
tion and control groups, respectively. If they scored sufficiently high on this paper-
and-pencil instrument, they then completed the Severity of Alcohol Dependence 
Questionnaire (SADQ). These scores had a range of 5–60, with mean baseline 
scores of 38.56 and 35.63 for the intervention and control groups, respectively. 
Patients receiving a positive score on the SADQ were then invited to be in the study 
(Cobain et al. 2011). Participating patients at the test site were given a brief interven-
tion program by an Alcohol Specialist Nurse (ASN). This consisted of a 15–20 min 
session described as follows (p. 435), where “BI” represents brief intervention:

In the intervention group, an ASN delivered BI of 15–20 min based on a commonly utilized 
strategy for the delivery of BI (FRAMES: feedback, responsibility, advice, menu of strate-
gies, empathy and self-efficacy) (Bien et al., 1993). The most important element in our use 
of this model is the exploration of patients’ perceptions of the link between their alcohol 
consumption and their emergency department attendance or hospital admission. There was 
no predetermined number of treatment sessions. Nurses made a clinical judgment of how 
many times a further follow-up appointment should be offered. BI took place on each fol-
low- up appointment. The nurses suggested that patients consider a range of options for 
additional support, including alcohol-specific support such as Alcoholics Anonymous 
(AA), or other community support groups. Pharmacological adjunct therapy was not pre-
scribed, but information was sometimes given on effectiveness and side effects so that 
patients could, if they wished, discuss that information with their general practitioner. There 
were four ASNs at the test site, and patients who attended for follow-up may have seen a 
different nurse at each occasion.

Participating patients at the control site simply received normal clinical care, 
along with advice regarding community-based services. Based on statistical power 
considerations it was determined to recruit 100 patients for each study group.

A follow-up interview was given to all recruited patients 6 months after their 
original assessments. At that time patients once again filled out the AUDIT and 
SADQ questionnaires regarding their alcohol dependence and provided other infor-
mation, such as the number of days on which they drank, the number of drinks per 
day, and so forth. The statistical analysis consisted of an analysis of covariance, look-
ing for a significant mean group (intervention vs. control) difference in several mea-
sures at the follow-up survey, with special attention to AUDIT and SADQ scores. 
Covariates used in the models as controls included baseline AUDIT and SADQ 
scores. This analysis was accomplished simply by regressing each study endpoint 
(e.g., AUDIT score, SADQ score, etc.) on a dummy variable for treatment group 
(intervention vs. control), baseline audit score, and baseline SADQ score. The results 
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are presented in Table 6.6. It is evident that means on SADQ, AUDIT, Number of 
units per drink day, and no. of drink days, at follow-up, were significantly different 
for intervention vs. control groups, adjusting for initial AUDIT and SADQ scores.

Here is how the authors describe the results (p. 436):

Alcohol consumption and alcohol dependence measures (AUDIT and SADQ) at follow-up 
and adjusted mean differences between two treatment arms are shown in Table 2. Patients 
in the intervention group had significantly lower (P < 0.0001) SADQ scores than patients in 
the control group. SADQ scores were 23 (95 % CI 17, 30) points lower in the intervention 
arm. Daily consumption of alcohol and number of drink days were significantly lower (P < 
0.0001) in the intervention group.

 Interaction 1: Evaluating the Six-Minute Walk in MS

There is considerable interest in applying walking-performance tests as clinical out-
comes in MS (Motl et al. 2012). Walking performance among MS patients is a key 
outcome variable that is associated with disease progression, independence, quality of 
life, and activities of daily living. One such promising walking test is the six- minute 
walk (6MW). Motl and his colleagues examined the pattern of change in cadence and 
oxygen consumption over the course of the 6MW among MS patients characterized 
by varying degrees of disability. The goal was to verify that the 6MW could serve as 
a good diagnostic tool for differentiating levels of disability in people with MS. The 
sample consisted of 95 people with clinically definite MS recruited via referrals from 
neurologists. All subjects completed the 6MW, which consisted of walking as far and 
as fast as possible for 6 min. Study endpoints were cadence in steps per minute and 
oxygen consumption (V.O2) in milliliters per minute. MS patients were divided into 
three disability levels based on their scores on the Expanded Disability Status Scale 
(EDSS). Disability status was classified as mild, moderate, or severe.

The researchers described their statistical strategy as follows (p. 3): “We exam-
ined differences in cadence and V·O2 over the 6MW using two-way group by time 
ANOVA.” Although not explicitly stated, this is a repeated-measures ANOVA. The 
between-subjects factor was disability status. The within-subjects factor was walking 

Table 6.6 ANCOVA results for brief intervention and control groups, controlling for baseline 
AUDIT and SADQ scores [Reprinted with permission of Oxford University Press from Cobain 
et al. (2011)]

Mean

Intervention 
(n = 48)

Control 
(n = 50)

Adjusted mean 
difference 95 % CI p-Value

SADQ 12.23 30.76 −23.47 −29.76, −17.18 <0.0001
AUDIT 13.50 24.90 −15.71 −20.46, −10.96 <0.0001
No. of units per drink day 8.08 23.00 −17.51 −23.03, −11.99 <0.0001
No. of drink days 3.69 5.62 −2.55 −3.68, −1.42 <0.0001
Length of stay in hospital 2.27 4.72 −1.74 −5.26, 1.79 0.3310
No. of A&E attendances 0.71 1.82 −1.09 −2.21, 0.03 0.0572
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time ranging from 0 to 360 s. The primary results are displayed in Figs. 6.11 and 
6.12. Figure 6.11 shows differences in cadence in the 6MW by disability status:

The authors describe these results as follows (p. 3):

There was a strong group main effect on cadence (steps/minute) during the 6MW, F(2,91) 
= 22.82, p = .0001, η2 = .33. Those with mild disability took significantly more steps per 
minute during the 6MW than those with moderate (d = 0.66) and severe (d = 1.64) disabil-
ity, and those with moderate disability took significantly more steps per minute during the 
6MW than those with severe disability (d = 0.99). This is illustrated in Figure 1. Cadence 
did not differ over the 6MW by time, F(5,455) = 0.42, p = .84, η2 = .01, or group and time, 
F(10,455) = 1.08, p = .37, η2 = .02.

The symbols “η2” and “d” represent effect sizes and indicate how strong each effect 
in the analysis is. The η2 values are like R2s, while the d values represent standardized 
mean differences. For the η2 values, small, moderate, and large effects are indicated 

Fig. 6.11 Disability-group differences in cadence over the 6MW. Reprinted from Motl et al. 
(2012) from BMC Neurology, an open-access journal

Fig. 6.12 Disability-group differences in oxygen consumption over the 6MW. Reprinted from 
Motl et al. (2012) from BMC Neurology, an open-access journal
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by values of 0.01, 0.06, and 0.14, respectively. For the d values, small, moderate, and 
large effects are indicated by values of 0.2, 0.5, and 0.8, respectively. The group main 
effect on cadence had an η2 of 0.33. This means that the group effect explained 33 % 
of the variance in cadence. The very low readings of the other two η2 values suggest 
that the time effect and the group by time effect were very weak. All of the mean dif-
ferences in cadence between disability groups had large effect sizes (0.66, 1.64, and 
0.99), hence group differences in cadence were quite pronounced. The “strong group 
main effect on cadence” is easily seen by the different heights of the “curves” for each 
disability group in the figure. The fact that each curve is relatively flat and shows 
almost no change in elevation over time is reflected in the statement “Cadence did not 
differ over the 6MW by time.” Similarly the statement that cadence did not differ over 
“group and time” refers to the fact that there was no interaction between disability 
status and time in their effects on cadence. This is evident in the fact that the three 
curves for the three disability groups are virtually parallel. This means that disability-
group differences in average cadence did not vary by time. The three “F” values 
reported in the authors’ statement are significance tests for, respectively, a disability-
status effect (which was very significant), a time effect (which was not significant), 
and a group × time interaction effect (which was not significant).

Figure 6.12 shows disability-group differences in oxygen consumption over 
the 6MW:

Here is how the authors describe the pattern in Fig. 6.12 (p. 3):

There was a very strong time main effect on V·O2 during the 6MW, F(11,1012) = 357.58, p 
= .0001, η2 = .80, as well as a moderate group main effect, F(2,92) = 4.41, p = .015, η2 = .09, 
and a moderate group by time interaction, F(22,1012) = 4.66, p = .0001, η2 = .09. Overall, 
V·O2 increased significantly every 30 seconds over the first 3 minutes of the 6MW, and then 
remained stable over the second 3 minutes of the 6MW; this is illustrated in Figure 2. The 
overall pattern of change in V·O2 over the 6MW was not changed in additional analyses that 
controlled for the presence/absence of disease- modifying or symptomatic therapy. The rate 
of increase in V·O2 was steeper in those with mild disability than those with moderate and 
severe disability based on the interaction, and those with mild disability had a higher rate of 
V·O2 than those with moderate and severe disability based on the group main effect.

This time there is a significant disability status x time interaction effect, as noted 
by the authors (F = 4.66, p = 0.0001). This is evident in the different shapes of the 
curves between about 30 and 150 s. Those with mild disability have a noticeably 
steeper rise in V.02 consumption than those with either moderate or severe disabil-
ity. On the other hand, the increase in V.02 consumption for the moderate and severe 
disability groups appears to be comparable.

 Interaction 2: Randomized Trial of Methods of Nephrostomy 
Tract Closure

Li and his colleagues (2010) employed a randomized trial to evaluate three different 
methods of nephrostomy tract closure after percutaneous nephrolithotripsy. In the 
authors’ words, the goal of the study was as follows (p. 1660):
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In this study, we performed a prospective randomized trial comparing the control group, 
where nephrostomy tract closure using 10-F Cope loop nephrostomy tube was used, with 
tubeless nephrostomy closure, where either a deep fascial stitch or a gelatin matrix haemo-
static sealant (FloSeal, Baxter Medical, Fremont, CA, USA) was used. We looked for dif-
ferences in perioperative variables, postoperative discomfort and complication rates.

Between April 2005 and March 2009, 31 patients undergoing percutaneous 
nephrolithotomy (PCNL) were randomly assigned to one of three groups: nephros-
tomy tract closure with FloSeal, fascial stitch, or Cope loop. Two of the primary 
study endpoints were a visual analog pain scale, scored 0–10, with ten representing 
the worst pain, and a quality-of-life measure (QOL), scored 0–100, with 100 repre-
senting the highest quality of life (Li et al. 2010). The pain and QOL scales were 
administered on postoperative day 1, and again at 1 week, 1 month, and 3 months 
after surgery. Here is how the authors describe their statistical analysis, with “SF- 
36” scores being the QOL scale:

To further identify differences in the progression of SF- 36 scores and analogue pain scale, 
data were analysed using a repeated measures ANOVA test with four time points (within 
groups effect) and three surgical groups (between group effect) (Tables 2a, 3a).

As is evident, the authors performed a repeated-measures ANOVA with the 
treatment- group factor as the between-subjects factor and time as the within- 
subjects factor. The results for the pain scale are shown in Table 6.7.

In the bottom panel of the table there are two F tests shown. One is for the main 
effect of time, and it is not quite significant (p = 0.09). The other is for the time x 
group interaction effect, and it is significant at p = 0.03. The latter effect suggests 
that the trend in pain over time is different, according to surgical group. These dif-
ferences are evident in the means shown in the three columns. Each surgical-group’s 
column presents the four mean scores on pain over the time periods, plus and minus 
their standard errors. However, let’s just regard the means. What we notice is that 
pain decreases quickly for the Cope loop group but much more slowly for the fascial 

Table 6.7 Repeated-measures ANOVA results for post-surgical pain [Reprinted with permission 
of John Wiley and Sons, Publishers, from Li et al. (2010)]

Time point

Nephrostomy tract closure method

Floseal, N = 3 Fascial stitch, N = 5 Cope loop, N = 5

After surgery 8.3 ± 8.7 21.8 ± 6.8 20.8 ± 6.8
1-week follow-up 17.0 ± 5.5 19.2 ± 4.3 4.6 ± 4.3
1-month follow-up 12.3 ± 9.7 20.0 ± 7.5 8.6 ± 7.5
3-month follow-up 6.7 ± 8.8 18.6 ± 6.8 5.4 ± 6.9

Repeated measures  
of ANOVA

Degrees of  
freedom (df) F-ratio (F) p

Time 3,30 2.37 0.09
Time-by-group  

interaction
6,30 2.86 0.03
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stitch group. The FloSeal group shows an increase in pain from after surgery to the 
1 week follow-up, before decreasing again at 1 and 3 months after surgery.

This interaction effect is especially evident in Fig. 6.13, which shows surgical- 
group differences in the trajectory of analog pain scores over time. The figure shows 
an additional pain measurement: a baseline pain measure taken prior to surgery. Due 
to random assignment to surgical groups, the baseline pain scores are the same for 
all three groups. The aforementioned interaction effect is easily discerned from the 
different trends in pain over time for the three surgical groups, from “Immediate 
Post-op” through “3 month,” and echoes the patterns shown by the means in 
Table 6.7.

 Interaction 3: The Effect of Testosterone Treatment  
on Aging Symptoms in Men

Interested in countering the effect of declining testosterone levels on aging men’s 
quality of life, Ho and colleagues (2011) undertook a randomized study to assess the 
effects of testosterone treatment. The primary study endpoint was the Aging Male 
Symptom (AMS) scale. This is a paper-and-pencil instrument that measures the 
severity of perceived complaints on each of 17 items tapping psychological, somato-
vegetative, and sexual domains of daily life. The range of scores is 17–85, with higher 
scores reflecting more severe symptomatology (Ho et al. 2011). Participating males 
were recruited via phone-call invitation from a cohort of randomly selected men aged 
40 or older from an urban Malaysian community. Inclusion criteria were age 40–70 
years, having total AMS scores >27, having early morning total testosterone level 
<12 nmol/L on two occasions, and having a PSA level of <4 ng/mL (Ho et al. 2011, 

Fig. 6.13 Trends in analog pain scores for different surgical groups over time. Reprinted with 
permission of John Wiley and Sons, Publishers, from Li et al. (2010)
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p. 261). Sample size was 56 in the treatment group and 58 in the control group. The 
treatment and control conditions are described by the authors (p. 262):

All participants received five injections from the package allocated to them at weeks 0, 6, 
18, 30 and 42 after formal enrolment. The active treatment was 1000 mg of testosterone 
undecanoate in 4 mL of castor oil, and placebo was just castor oil of the same volume and 
appearance. The injection was given as slow bolus i.m. at the gluteal region over 1 min.

The primary study endpoint was health-related quality of life (HRQoL), as mea-
sured by the AMS score. The authors describe their statistical analysis as follows  
(p. 262):

The effects of active treatment on HRQoL scores were estimated using repeated measure 
ANOVA by including the intervention × time interaction terms. The two-sided level of 
significance (p) was set at 0.05. Data analysis was done using the Statistical Package for the 
Social Sciences (SPSS Inc., Chicago IL, USA) version 15.

We note, once again, that a repeated-measures ANOVA is being employed to 
analyze the data. The authors are using the SPSS software, another popular statisti-
cal package. Table 6.8 shows the repeated-measures ANOVA results, along with 
mean total AMS scores and mean AMS scores for each domain of the AMS, by 
treatment status and time. Note that the F tests shown are all for the treatment group 
× time interaction effect.

Here is the authors’ description of the findings in this table (p. 263):

The improvement in the total AMS score was significantly greater in the treatment arm 
compared with the placebo arm (F: 4.576, df = 2.000, p = 0.017) over the 48-week period 
(Fig. 3). The change in mean total AMS score was − 12.6% in the placebo group and − 
21.9% in the testosterone undecanoate 1,000 mg group. Similarly, over the 48-week period, 
the mean AMS psychological and somatovegetative domain scores decreased significantly 
more in the testosterone undecanoate 1,000 mg arm than in the placebo arm (− 2.8 vs − 1.2, 
p = 0.03 and − 3.2 vs − 1.8, p = 0.016, respectively), but there was no significant difference 
in the change in sexual subscale scores between the two groups (Table 2).

Table 6.8 Repeated-measures ANOVA results for testosterone treatment groups [Reprinted with 
permission of John Wiley and Sons, Publishers, from Ho et al. (2011)]

AMS score
Intervention 
group Baseline Week 18 Week 48

Repeated 
measure 
anova, 
F

Mean (SD) total 
AMS sum score

Placebo 38.46 (11.85) 34.66 (10.06) 33.59 (10.69) 4.576
Testosterone 

undecanoate
41.73 (12.73) 32.73 (9.71) 32.61 (9.67)

Mean (SD) 
psychological 
domain score

Placebo 10.03 (3.98) 8.88 (3.38) 8.81 (3.30) 3.922
Testosterone 

undecanoate
11.11 (4.30) 8.61 (3.41) 8.27 (3.05)

Mean (SD) 
somatovegetative 
score

Placebo 15.93 (5.34) 14.58 (4.58) 14.12 (5.05) 26.174
Testosterone 

undecanoate
17.18 (5.52) 13.43 (4.67) 13.89 (4.48)

Mean (SD) sexual 
domain score

Placebo 12.49 (4.29) 11.20 (3.42) 10.66 (3.95) 2.512
Testosterone 

undecanoate
13.45 (4.34) 10.70 (3.63) 10.45 (3.69)
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Consistent with the authors’ report here, we can see that mean AMS from 
 baseline to week 18 to week 48 shows a greater decline for the testosterone 
undecanoate group than for the placebo group, whether the total AMS score is con-
sidered, or the AMS psychological or somatovegetative domain scores are consid-
ered. The treatment- group difference in the pattern of change in the mean AMS 
scores in the sexual domain is not quite significant. The authors conclude that long-
acting testosterone undecanoate treatment shows promise for improving aging 
men’s quality of life.

 Interaction 4: Spousal Support and Women’s Interstitial Cystitis 
Syndrome

Ginting and her colleagues (2010) draw on a transactional model of health to exam-
ine how a husband’s support might mitigate the impact of pain due to interstitial 
cystitis/painful bladder syndrome (IC/PBIS) on women’s quality of life. Their focus 
is on the interaction between husband support and IC/PBIS in their effects on wom-
en’s quality of life (HRQL, or health-related quality of life). In the authors’ words 
(p. 714):

Thus, the aim of the present study was to determine if spousal support influences the asso-
ciation between pain and patient adjustment variables (i.e. HRQL, depressive symptoms 
and disability) in women suffering from IC/PBlS. Given the novel and exploratory nature 
of the present study, no specific predictions were made.

Ninety-six women with a clinical diagnosis of IC/PBIS were recruited by letter 
invitation from three North American health centers. The women were asked about 
their experience of pain, along with how often their spouse responds in specific 
ways to their complaints of pain. Here is how the authors describe their statistical 
analysis:

To determine whether or not spousal responses influenced the relationship between pain 
and patient outcomes (i.e. interaction models), data were analysed using the repeated mea-
sures general linear model (GLM) procedure. The within-subjects factor (or repeated mea-
sure) was outcome and consisted of physical HRQL, mental HRQL, disability, and 
depressive symptoms. Pain (SF-MPQ), solicitous spousal responses, distracting spousal 
responses and negative spousal responses were included in the model as covariates. To 
determine whether or not spousal responses influenced the relationship between pain and 
the outcome variables, the model included two-way interaction terms involving pain and 
each of the spousal response variables.

This description requires some interpretation. First, the within-subjects factor, 
unlike the other repeated-measures ANOVAs that we’ve examined, is not time. 
Instead, it is study endpoint. That is, each respondent is measured on four study 
endpoints: physical HQRL, mental HQRL, disability, and depressive symptoms. As 
these measures are all from the same subject, they constitute dependent sampling. 
They are therefore treated the same statistically as if they were, say, the same vari-
able measured at four different times. Second, although this study involves repeated 
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measures, it’s not an ANOVA. Notice, for example, that there is no treatment group 
as a between-subjects factor. One might have classified these women into different 
groups based on the nature of the support given to them by their husbands. If that 
had been the case, spousal support would have been the between-subjects factor. 
But instead, levels of different types of spousal support, along with pain, are 
included as quantitative covariates. Also included are the interactions (i.e., cross-
product terms) between pain and each type of spousal support. In essence, each 
study endpoint (e.g., physical HQRL) is being regressed on pain, types of spousal 
support, and their interactions. The complication is that each study endpoint is cor-
related with the others, so that these regression equations are not independent. This 
mutual dependence among the study endpoints is taken account of in the analysis.

A primary finding was the significant interaction between pain and distracting 
spousal responses to wives’ pain in their effects on wives’ mental HQRL. Distracting 
spousal responses refer to the degree to which husbands try to distract wives from 
their pain when they complain of it. Husbands were classified into three groups 
based on how much they employed distracting behaviors: high-level distracters, 
moderate distracters, and low distracters. What the authors found was that the rela-
tionship between pain and mental HRQL was not significant for wives whose hus-
bands were high distracters. For wives whose husbands were moderate distracters, 
the relationship was significant (regression coefficient for pain = −0.66, p < 0.05) but 
was significantly weaker than for wives whose husbands were low distracters 
(regression coefficient for pain = −1.25, p < 0.05). The authors conclude that “spou-
sal responses may reduce or buffer the impact of pain on mental HQRL” (p. 715). 
Figure 6.14 illustrates this interaction finding.

What we see is that when husbands are high-level distracters (flat line in middle 
of graph), the slope of the linear regression of mental QOL on pain is approximately 
zero; i.e., pain has no effect on mental QOL. But when husbands are either moderate 
(dashed line) or low (solid line) distracters, the slope becomes increasingly nega-
tive. That is, greater pain is associated with lower mental QOL.

Fig. 6.14 Interaction of 
husband’s distracting 
responses (DR) with pain  
in their effects on wives’ 
mental quality of life  
(QOL). Reprinted with 
permission of John Wiley  
and Sons, Publishers, from 
Ginting et al. (2010)

 Applications: Regression and Repeated Measures ANOVA in Action



114

At this point, the reader should be thoroughly acquainted with linear regression 
and the related technique of repeated-measures ANOVA. All the techniques covered 
in this chapter are appropriate when the study endpoint is a quantitative variable. 
But what happens if the study endpoint is qualitative, and, in particular, a binary 
variable? It turns out that it is still possible to employ linear regression for these 
types of study endpoints. But the procedure is not optimal. In the next chapter we 
learn why and undertake the study of one of the most important techniques in the 
medical researcher’s toolkit: logistic regression modeling.
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Linear regression is a widely applicable modeling tool, but it is not appropriate 
when the correct model should be nonlinear in the parameters. Such is the case 
when the study endpoint is a binary variable. The model becomes nonlinear because 
what is being modeled is the probability that a case experiences the event of interest 
or that a case is in a particular category of the binary response. As a probability must 
fall between 0 and 1, the linear regression model cannot accommodate it. In this 
chapter, we examine this important principle, develop the logistic regression model 
as an alternative, and consider several examples of this modeling strategy from the 
research literature.

 Logistic Regression Model

Often the study endpoint of interest is a binary outcome, for example, whether or 
not a man’s PSA level exceeds 4.0 or whether the result of a prostate biopsy is posi-
tive or negative for cancer. When the endpoint is binary, a linear regression model is 
no longer optimal. Let’s consider why. Recall that a linear regression model for the 
population of units with, say, two regressors for simplicity, takes the form:

μy = α + β1X + β2Z.

Now, in the case of a binary response, Y takes on only two values, which can be 
represented as 1 if the unit experiences the event of interest and 0 otherwise. The mean 
of Y is then a proportion; in particular, the proportion of cases experiencing the event 
of interest in the population, or the probability of experiencing the event of interest. 
Let’s let P represent that probability. Then the linear regression model becomes

P = α + β1X + β2Z.

Chapter 7
Logistic Regression
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One could estimate such a model with OLS, but it’s not the best strategy. The 
primary problem is that the right-hand side (rhs) of this equation is misspecified. 
The reason is that a probability has to be within the range 0–1, but the rhs of this 
equation is not constrained to produce only that range of values. It’s entirely possi-
ble to get estimated probabilities <0 or >1 with this model. Therefore, a better 
approach is to find a function for the rhs that is also constrained to stay between 0 
and 1. There are two such functions, and they are depicted in Fig. 7.1. The plots 
show how a probability is related to a single variable, x, through these functions.

We see here that, instead of the probability having a linear relationship to x—as 
would be true of the linear regression function—its curve is S shaped, always 
remaining within the bounds of 0 and 1. The solid line is for the probit function, 
which is used in probit regression, and the dashed line is for the logit function, which 
is used in logistic regression. We focus only on the logit function in this primer, as it 
is the preferred technique in medical research for a binary study endpoint. The pro-
bit function is used extensively in other fields, such as economics and other social 
sciences. However, as we shall see, the logit function lends itself to the interpretation 
of explanatory variable effects in terms of “odds ratios,” which is intuitively appeal-
ing. The probit function does not have this property. Substantively, however, both 
modeling techniques result in the same conclusions about the sign and significance 
of explanatory variable effects on the study endpoint (DeMaris 2004).

Fig. 7.1 Logit and probit functions giving the probability that a variable “x” takes on specific 
values. Reprinted with permission of John Wiley and Sons, publishers, from DeMaris (2004)
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The logistic regression model for a probability, as a function of two regressors, is

 
P

X Z

X Z
=

+ +
+ + +
exp( )

exp( )
.

a b b
a b b

1 2

1 21
 

(7.1)

The rhs here is the algebraic formula that produces the dotted curve in Fig. 7.1 
(except the curve in Fig. 7.1 only uses x, rather than α + β1X + β2Z). In the event that 
“exp” is not familiar: “exp()” refers to the exponential function. “Exp(a)” means to 
raise Euler’s constant to the value of a. Euler’s constant is approximately equal to 
2.72. For example, exp(2) is 2.722 = 7.398. Euler’s constant has a considerable 
amount of importance in both calculus (Anton 1984) and statistics (DeMaris 2004). 
The natural logarithm is the inverse function for the exponential function. The 
natural logarithm of a is the number we have to raise Euler’s constant to in order to 
get a. For example, ln(7.398) = 2 because 2.722 = 7.398. Moreover, exp(ln(a)) = a 
and ln(exp(a)) = a. Hence, the natural logarithm and exponential functions go hand 
in hand.

Because the rhs of (7.1) is a complex nonlinear function, it’s not very easy to 
interpret the βs to describe how the regressors affect the probability. But the model 
can be transformed into a more interpretable version by applying the logit transfor-
mation to both sides of the equation. The logit transformation of the left-hand side 
is: ln[P/(1−P)], where “ln” refers to the natural logarithm (I use “log” interchange-
ably with “ln” in this primer). Substituting the rhs of (7.1) in place of P in the logit 
transformation gives us the transformation for the rhs of the equation in (7.1). The 
result is the logistic regression equation:

 
log .

P

P
X Z

1 1 2−






= + +a b b
 

(7.2)

The expression inside the parentheses, P/(1 − P), is the odds of event occurrence. 
The odds is just the ratio of two probabilities. (Recall that, although it seems gram-
matically incorrect, the odds is treated as singular.) In this case it’s the ratio of the 
probability the event occurs to the probability it does not occur. The odds is intui-
tive for most people. For example, 2-to-1 odds, or an odds of 2, indicates that the 
event is twice as likely to happen as not. This means that the probability of event 
occurrence must be 0.667, since 0.667/0.333 = 2. The left-hand side of (7.2) is 
therefore the log of the odds (or log-odds) of event occurrence. The rhs is the same 
as in linear regression. So the βs are interpretable as the change in the log-odds per 
unit increase in a given regressor, holding the other regressor constant. This still 
isn’t entirely satisfactory, since it’s hard to get a feeling for what a change in the 
log-odds means. Therefore, we can write the equation yet once more, in terms of 
the odds itself:

 

P

P
X Z

1 1 2−
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(7.3)
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Now, let’s consider what happens to the odds if we increase X by one unit while 
holding Z constant:

 

P

P
X Z X Zx1

11 1 2 1 2 1−
= + + + = + ++| exp( ( ) ) exp( )exp( ).a b b a b b b

 
(7.4)

What happens is the original odds (which equals exp(α + β1X + β2Z)) gets multiplied 
by exp(β1). Therefore, we can say that each unit increase in X, holding Z constant, 
magnifies the odds by exp(β1). This provides a convenient way to describe how each 
independent variable affects the odds of event occurrence. We just exponentiate the 
relevant regression coefficient to find the magnitude of the (multiplicative) change in 
the odds for a unit increase in the regressor. Exp(β1) is called the odds ratio (since it’s 
the ratio of the odds in (7.4) to the odds in (7.3), above) and is often the preferred way 
of presenting logistic regression results.

 Estimation of Logistic Regression Coefficients

Logistic regression models are not estimated with OLS. Instead, we use one of the 
most important estimation techniques in statistics: maximum likelihood estimation. 
The way this works is as follows. For any unit sampled from the population, we can 
express the probability that Y = 1 for that unit as

 P y P Py y( ) ( ) .= = − −1 1 1

 

This is called the Bernoulli probability distribution function. So, for that unit, the 
probability that his or her y is 1 is P P P1 1 11( )− =− . And the probability that his or 
her y is 0 is P P P0 1 01 1( )− = −− . The formula just expresses those probabilities in a 
compact form. Note that P varies over cases, since people’s risks for an event vary 
from person to person. Now, the probability that we get a particular collection of 
ones and zeros for our Ys in any sample is just the product of all those Bernoulli 
functions over all of the sample cases (this is the same principle we use to figure the 
probability of getting three heads in a row in three coin tosses: it’s (0.5)(0.5)
(0.5) = 0.125). That joint probability is

 
P P Py y( ) ( ) .y = − −∏ 1 1

 
(7.5)

where P(y) here represents the probability associated with the complete collec-
tion of ones and zeros in the sample, and the large “π” indicates the multiplication 
together of several terms. The function in (7.5) is called the likelihood function for 
the logistic regression model. Recall that P is a function of the regressors and their 
effects (i.e., the βs), as shown in (7.1) above. So, substituting (7.1) for P in (7.5) 
makes it clear that (7.5) is a complex function of the βs. In fact, once the sample has 
been gathered, the Xs and Ys are fixed. So P(y) in (7.5) is then only a function of α 
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and the βs. In maximum likelihood estimation, we choose as values for the α and the 
βs those values that maximize the likelihood function. These are then the parameter 
values that would have made the researcher’s sample of Ys most likely to have been 
observed (hence the name “maximum likelihood”). The estimation process is an 
iterative scheme in which a series of successive approximations is used to find the 
solution to a collection of nonlinear simultaneous equations. When this solution is 
found, the parameter estimates can then be plugged back into (7.5) to arrive at an 
estimated likelihood or probability of observing the sample Ys. This is sometimes 
reported in logistic regression results in log form, i.e., one may see “log likelihood” 
reported in a logistic regression table. However, this quantity is of no particular 
interest in and of itself and can be safely ignored.

 An Example

Recall the 2002 GSS data used to illustrate multiple linear regression in the previous 
chapters. In that same survey, respondents were asked about whether or not they had 
health insurance. Figure 7.2 shows how the question was presented and coded, along 
with the responses for 2,755 respondents giving valid responses to the question.

Here, “IAP” means inapplicable. We see that the vast majority of respon-
dents—86.6 %—have health insurance. Only 13.4 % of respondents do not have 
health insurance. (Ten respondents said either that they did not know whether they 
had health insurance or gave no answer to the question.) What kinds of people don’t 
have health insurance, then? To find this out, we can perform a logistic regression 
using this variable as the study endpoint. However, we will recode it so that 1 = no 
health insurance and 0 = has health insurance. The new variable is called “unin-
sured.” Also, we only use the 1,773 respondents who had valid data for all variables 
in the analysis. The results are shown in Table 7.1.

HLTHPLAN R HAD MEDICARE OR MEDICAID

Description of the Variable
855. Do you have any health insurance, including Medicare or
Medicaid?

Percent N Value Label
1 YES

13.4 2 NO
86.6  2,387  

  52,322  0 IAP
7 8 DONT KNOW
3 9 NO ANSWER

100.0 Total

368

55,087

Fig. 7.2 Distribution of insured status for GSS respondents

 An Example
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The table shows the explanatory variables used in the model (“Predictor”), the 
regression coefficients (“b”), the standard errors of the regression coefficients 
(“SE(b)”), the exponentiated regression coefficients (“Exp(b)”), the test statistic for 
testing whether each regression coefficient is significant (“z”), the p value for the 
test statistic (“p value”), and a 95 % confidence interval for the exponentiated 
regression coefficients (“95 % CI”). Four decimal places are used throughout so that 
some of the example computations can be illustrated. In the bottom half of the table, 
beginning with “Model χ2,” are several measures of the goodness of the model that 
will be explained below.

 Interpreting the Coefficients

Several of the individual coefficients are significant. Thus we see that older respon-
dents, women, the more educated, and those with more income are all less likely to 
fall into the uninsured category. Compared to Whites, however, those of other races 
than Black (the “Other race” variable) are more likely to be uninsured. On the other 
hand, Blacks are no different from Whites in the probability of being uninsured, 
controlling for other factors in the model. The “Exp(b)” column converts the coef-
ficients into odds ratios for easy interpretation. Thus, each additional year of educa-
tion magnifies the odds of being uninsured by a factor of 0.881. To express this in 
terms of a percent change in the odds, we use the transformation 100 × [exp(b) − 1]. 
That is, each year of education reduces the odds of being uninsured by about 
100 × [0.881 − 1] = −11.9, or 11.9 %. The odds of being uninsured for those of other 
races is 2.129 times greater than the odds for Whites. Or, the odds of being unin-
sured for those of other races is 100 × [2.129 − 1] = 112.9 % greater than for Whites. 
The other odds ratios are similarly interpreted.

Table 7.1 Logistic regression of uninsured status on explanatory variables in the GSS

Predictor b SE(b) Exp(b) z p value 95 % CI

Intercept 2.3205 0.4394 – 5.2811 <0.0001 –
Age −0.0278 0.0057 0.9730 −4.8772 <0.0001 (0.9620–0.9830)
Female −0.5581 0.1521 0.5720 −3.6693 0.0002 (0.4250–0.7710)
Education −0.1265 0.0277 0.8810 −4.5668 <0.0001 (0.8350–0.9300)
Income −0.0967 0.0132 0.9080 −7.3258 <0.0001 (0.8850–0.9320)
Black 0.0250 0.1980 1.0250 0.1263 0.8994 (0.6960–1.5120)
Other race 0.7558 0.2383 2.1290 3.1716 0.0015 (1.3350–3.3970)
Model χ2 161.2327 <0.0001
Df 6
H-L χ2 12.1883 0.1430
Df 8
Pseudo R1

2 0.1041
Pseudo R2

2 0.2004
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 Predicted Probabilities

Suppose we would like to get the estimated probability of being uninsured, based on 
the model, for a particular profile of person: a 25-year-old male of race other than 
Black or White, with a high-school education and average income (mean income is 
13.773 here). Here’s how we go about it. First, let’s get the estimated log-odds of 
being uninsured for this person by evaluating the equation using their characteristics:

Log (P P/ ( )) . . ( ) . ( ) . ( ) . ( .1 2 32 0 028 25 0 558 0 0 127 12 0 097 13 7− = − − − − 773 0 756 1 0 484) . ( ) . .+ = −

Then this person’s estimated odds of being uninsured is obtained by exponentiat-
ing this result:

Exp(−0.484) = 0.616.

Finally, the estimated probability of being uninsured is just the odds divided by 
one plus the odds:

P = 0.616/(1 + 0.616) = 0.381.

Hence, according to the model, this person has about a 38 % chance of being 
uninsured.

 Test Statistics and Confidence Intervals

Maximum likelihood estimation assumes that one’s sample size is reasonably large. 
Under that condition, the regression coefficients have a normal distribution. 
Therefore the test statistic for testing whether each regression coefficient is signifi-
cant is a z test, just like the test statistic for testing that the population mean is a 
particular value from Chap. 3. That is, for any regression coefficient, b, the hypoth-
esis is that the corresponding population regression coefficient, β, is zero. Since b is 
normally distributed we need to find out how many standard deviations b is away 
from zero so we can know how discrepant the sample results are from what we 
would expect under the null. The “standard deviation” in question is the standard 
error of the coefficient, i.e., SE(b). So the test statistic is a z test of the form:

 
z

b

b

b

b
=

−
=

0

SE SE( ) ( )
.
 

That is, the test statistic is just the ratio of the coefficient to its standard error. For 
example, from Table 7.1, the test for whether the effect of age is significant is 
z = −0.0278/0.0057 = −4.8772, with a p value that is <0.0001. It is, indeed, very sig-
nificant. The other z test statistics for the other coefficients are calculated in the 
same manner.

 Test Statistics and Confidence Intervals
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The confidence intervals in the column “95 % CI” are arrived at using the stan-
dard errors of the coefficients, along with the knowledge that the coefficients are 
normally distributed. Because each coefficient is normally distributed, adding and 
subtracting 1.96 standard errors from it gives us a 95 % confidence interval for the 
coefficient. For example, a 95 % confidence interval for the coefficient for being 
female is −0.5581 ± 1.96(0.1521) = (−0.8562, −0.2600). This means we are 95 % 
confident that the effect of being female (vs. being male) on the log odds of being 
uninsured is between −0.8562 and −0.2600. This can easily be converted into a 
confidence interval for the odds ratio [Exp(b)] by exponentiating both values. Thus 
exp(−0.8562) = 0.4250, and exp(−0.2600) = 0.7710, which agrees with the confi-
dence interval shown in the table.

There is also a global test for the utility of the model in logistic regression. This 
is comparable to the overall F test in linear regression discussed in the previous 
chapter. If this is significant, then at least one of the coefficients of the regression in 
the population is nonzero, and we then use the z tests discussed above to discern 
which these are. The global test for logistic regression, however, is not an F test. 
Rather it is a chi-squared test and is called the Model Chi-Squared Test (or the 
Likelihood-Ratio Chi-Squared Test) and is denoted “Model χ2” in Table 7.1. As is 
evident, the test is very significant (p < 0.0001), suggesting that the model is of some 
utility in predicting uninsured status.

 Examining Model Performance

Although a model may be of some utility in predicting the study endpoint, we may 
want to know, in particular, how much utility. There are various ways of assessing 
the model’s “fit” to the data or the model’s “predictive utility.” DeMaris (2004) has 
labeled model fit empirical consistency. This refers to the extent to which the study 
endpoint “behaves” the way the model says it should. On the other hand, he labels 
predictive utility discriminatory power. This property refers to the extent to which 
the model is able to separate, or discriminate, different cases’ statuses on the study 
endpoint from each other. Here we discuss measures of both empirical consistency 
and discriminatory power for the logistic regression model.

Hosmer–Lemeshow Chi-Squared Test. Define a “case” as a subject experiencing the 
event of interest and a “control” as a subject who does not experience the event. 
A widely used test of empirical consistency for the logistic regression model is the 
Hosmer–Lemeshow test (Hosmer and Lemeshow 2000). The idea behind this 
measure is to use the chi-squared statistic to compare the observed frequencies of 
cases and controls in the sample with their expected values under the model. With 
quantitative variables in a logistic regression model, however, each subject typically 
has a unique predicted probability of being a case. This means that there are as many 
different predicted probabilities of being a case as there are subjects in the sample. 
It might seem reasonable to compare whether subjects really are cases with these 
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probabilities, however, this cannot be done using a chi-squared test. In order to 
maintain the properties necessary for the statistic to have a chi-squared distribution, 
subjects are grouped into categories based on their predicted probabilities of being a 
case. In particular, deciles of risk are formed based on the predicted probabilities of 
being a case. Group 1 consists of the n/10 subjects with the lowest probabilities, 
group 2 the n/10 subjects with the next-lowest probabilities, and so on, up to group 
10, which consists of the 10 % of the sample with the highest predicted probabilities. 
Let P̂  equal the predicted probability of being a case, according to the model. Once 
the 10 groups have been identified, the expected number of cases in each group is 
calculated as the sum of P̂  over all subjects in that group. Similarly, the expected 
number of controls is the sum of (1− P̂ ) over all subjects in the same group. The 
Hosmer–Lemeshow statistic is then the chi-squared statistic for the resulting table of 
observed and expected frequencies. Under the null hypothesis that the model is 
empirically consistent, this statistic has a chi-squared distribution with 8 degrees of 
freedom. A significant χ2 implies a model that is not empirically consistent. Table 7.2 
shows the deciles of risk and the ensuing Hosmer–Lemeshow chi-squared test for 
empirical consistency for the logistic regression model in Table 7.1. This table was 
produced by the SAS software program.

The table shows the deciles as the “Group” column. The first decile, consisting 
of 177 subjects, is the group with the lowest risks of being uninsured, according to 
the model. It has 7 observed cases and 170 observed controls. According to the 
model, the expected number of cases for this group is 4.78, and the expected num-
ber of controls is 172.22. The other deciles all have higher risks of being uninsured, 
culminating in Group 10, the highest decile of risk, with 180 subjects. For this 
group, there were 60 observed cases and 120 observed controls. The expected num-
ber of cases and controls in this group, according to the model, are 70.92 and 109.08, 

Table 7.2 Deciles of risk and Hosmer–Lemeshow chi-squared test of empirical consistency

Partition for the Hosmer and Lemeshow Test

Group Total
Uninsurd = 1 Uninsurd = 0

Observed Expected Observed Expected

1 177 7 4.78 170 172.22
2 177 4 7.79 173 169.21
3 177 7 10.62 170 166.38
4 177 10 13.12 167 163.88
5 177 16 16.08 161 160.92
6 177 21 19.75 156 157.25
7 177 30 24.48 147 152.52
8 177 36 31.38 141 145.62
9 177 50 42.09 127 134.91
10 180 60 70.92 120 109.08
Hosmer and Lemeshow Goodness-of-Fit test
Chi-square DF Pr > ChiSq
12.1883 8 0.1430
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respectively. The Hosmer–Lemeshow statistic is shown at the bottom of the table as 
12.1883. It is not significant (p = 0.1430). This means that the expected numbers of 
cases and controls (according to model predictions) are not very different from the 
actual numbers of cases and controls. And this suggests that the model is indeed 
empirically consistent or has an acceptable fit to the data. This statistic is also 
reported in the bottom half of Table 7.1 as “H-L χ2.” However, an empirically con-
sistent model may not have much predictive power, as the following discussion 
reveals.

Pseudo-R2 Values. In multiple linear regression, the most commonly used measure 
of discriminatory power is R2. In logistic regression, because of the binary nature of 
the study endpoint, calculating an R2 measure is far more complicated. Many 
counterparts to R2 have been proposed for use in logistic regression (see, for 
example, Long 1997), but no single measure is consistently used. Additionally, 
many of these do not have the same interpretation as in linear regression. Although 
they typically range from 0 to 1, they cannot be interpreted as the variance in the 
study endpoint explained by the model. In an extensive simulation, DeMaris (2002) 
investigated the performance of eight popular pseudo-R2 measures for logistic 
regression. The two best-performing measures are shown in Table 7.1 as “Pseudo 
R1

2 ” and “Pseudo R2
2.” An advantage to these two measures is that both of them do 

have an explained-variance interpretation. However, they differ as to what the study 
endpoint represents. Pseudo R1

2  (referred to as “explained risk” and denoted “∆̂” by 
DeMaris) assumes that the study endpoint is a true qualitative difference in state. In 
this example, that’s reasonable. Either one has health insurance or one does not. A 
woman is either pregnant or she is not. And so forth. Pseudo R1

2  is then interpreted 
as the variation in the event in question that is accounted for by the logistic regression 
model. In the current example, it’s telling us that about 10 % of whether or not one 
has health insurance is explained by the model. Pseudo R2

2 , on the other hand 
(called the “McKelvey-Zavoina R2” and denoted “ RMZ

2 ” by DeMaris), is more 
appropriate when the binary study endpoint is a crude proxy for a quantitative 
underlying variable. For example, suppose we are studying depressive 
symptomatology. Subjects have all taken the CES-D and have a score on depressive 
symptomatology as a result. But the only information retained for them is whether 
or not their score was >25, a threshold deemed the cutoff for being clinically 
depressed. So all we have recorded on subjects is a binary indicator of whether or 
not they are clinically depressed. In a logistic regression of this binary indicator on 
a set of predictors, our interest might be in how the predictors influence depressive 
symtomatology per se, not just whether someone is clinically depressed. In that 
case, we might want to estimate the variance explained by our model in the 
quantitative underlying variable of depressive symptomatology. Pseudo R2

2  would 
be the measure to use for this. Thus, if whether or not one has health insurance were 
a proxy for a quantitative measure of the extent of health insurance, say, then Pseudo 
R2

2  is telling us the model explains about 20 % of the variance in that underlying 
measure. As a final note, neither Pseudo R1

2  nor Pseudo R2
2  is a routine part of the 
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output of statistical software. For this reason, they are not yet commonly used. So if 
the reader sees a “Pseudo R2” measure reported for logistic regression, he or she 
should not assume that it has an explained-variance interpretation.

The ROC Curve. Another way to examine discriminatory power for the logistic 
regression model is to examine how well it allows us to correctly classify subjects 
with respect to the study endpoint. This is assessed in the following manner. Obtain 
the model- predicted probabilities of experiencing the event for each subject, in the 
manner illustrated above for our 25-year-old male. If that probability is greater than 
some criterion value, typically taken to be 0.50, classify that subject as a case. If the 
probability is below the criterion, classify that subject as a control. Then compare the 
model- based classification to the subject’s actual status on Y to see how well the model 
leads to correct prediction of the subject’s status on Y. Repeat this operation for all the 
subjects in the sample. Table 7.3 shows the result of this process for the logistic 
regression model in Table 7.1.

We see that, of 241 uninsured cases in the sample, 18 or 7.5 % were correctly 
classified as uninsured by the model. The probability of a case being classified by 
the model as a case is called the sensitivity of classification; therefore sensitivity is 
7.5 % for this model. On the other hand, the probability of a control being classified 
by the model as a control is called the specificity of classification. In this example, 
1,519 out of 1,532 controls were correctly classified as controls. Therefore, specific-
ity is 99. 2 %. One minus the specificity is the false positive rate, i.e., the probability 
of a control being mistakenly classified by the model as a case. In this instance, that 
is 0.8 %. To the extent that sensitivity is greater than the false positive rate, as in this 
instance, the model has value. The probability of a case being classified as a case is 
greater than the probability of a control being classified as a case. On the whole, 
however, the model doesn’t appear to perform all that well, which is also consistent 
with the relatively low pseudo-R2 values in Table 7.1. In all, 1,519 insured subjects 

Table 7.3 Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,519 223 1,742
99.2 % 92.5 %

Uninsured 13 18 31
0.8 % 7.5 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.50
Sensitivity 7.5 %
Specificity 99.2 %
False positive rate 0.8 %
Percent correctly classified 86.7 %
Percent correct by chance 76.5 %
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were correctly classified as “insured” by the model, and 18 uninsured subjects were 
correctly classified as “uninsured.” That means that (1,519 + 18)/1,773 = 0.867 or 
86.7 % of the cases are correctly classified by the model. However, fully 76.5 % 
would be correctly classified just by chance alone. But most of the errors in classi-
fication are for cases. Perhaps classification performance of the model can be 
improved by setting the criterion lower.

Table 7.4 shows the results of setting the criterion at 0.30 instead of 0.50.
What this table shows is that sensitivity has been improved, but at the cost of 

specificity. Sensitivity is 21.2 % but specificity has dropped to 93.4 %. Nevertheless, 
sensitivity is higher than the false positive rate of 6.6 % But the percent correctly 
classified has also dropped some to 83.6 %. We notice, however, that we are not 
misclassifying the cases as badly as we were in Table 7.3, so there appears to be 
some improvement in that regard.

Since the sample percent uninsured is only 13.59 %, why not try that value as the 
criterion? Table 7.5 shows this result.

Once again, we have improved sensitivity at the expense of specificity, with both 
values now approximately the same—69.7 % and 69.5 %, respectively. And we note 
that sensitivity is more than twice as great as the false positive rate, as well. However, 
this time only 69.5 % of cases are correctly classified, which is actually worse than 
we could do by chance alone! Nevertheless, the accuracy of classification of both 
cases and controls appears to be strongly affected by choice of criterion value.

The idea of varying the classification criterion—as in Tables 7.3, 7.4, and 7.5—
gives rise to the receiver operating characteristic, or ROC, curve. The idea is to 
vary the criterion incrementally from 0 to 1, each time generating a classification 
table such as Tables 7.3, 7.4, and 7.5. Afterwards, a plot of sensitivity against the 
false positive rate, based on the entire collection of classification tables, produces 
the ROC curve. This is shown in Fig. 7.3 for the model in Table 7.1.

The area under the curve, or AUC, is the key measure of interest. (This is also 
called the “concordance index” or the “C” statistic.) It is interpreted as the likelihood 

Table 7.4 Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,431 190 1,621
93.4 % 78.8 %

Uninsured 101 51 152
7.6 % 21.2 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.30
Sensitivity 21.2 %
Specificity 93.4 %
False positive rate 6.6 %
Percent correctly classified 83.6 %
Percent correct by chance 76.5 %
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that a case will have a higher predicted probability of the event than a control 
across the range of criterion values investigated. The diagonal line in the middle of 
the graph represents an AUC of 0.50. This is the minimum AUC a model could 
demonstrate and would suggest a model of absolutely no discriminatory power. 
AUC values above 0.7 generally indicate models with acceptable discriminatory 
power, with higher AUCs implying even better performance. For example, an AUC 
above 0.80 is considered “excellent,” and an AUC above 0.90 is “outstanding” 

Table 7.5 Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,065 73 1,138
69.5 % 30.3 %

Uninsured 467 168 635
30.5 % 69.7 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.1359
Sensitivity 69.7 %
Specificity 69.5 %
False positive rate 30.5 %
Percent correctly classified 69.5 %
Percent correct by chance 76.5 %

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7469

Fig. 7.3 ROC curve for logistic regression model of uninsured status in Table 7.1
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(Hosmer and Lemeshow 2000). The AUC for the model of uninsured status in 
Table 7.1 is 0.75, which is just in the adequate range, but not great. This suggests 
that the model needs improvement before it would be useful for forecasting.

As a final comment, it should be noted that logistic regression is also used when 
the study endpoint has more than two categories. If these categories represent a 
qualitative variable, the procedure is then called multinomial logistic regression. If 
the categories represent rank order on some attribute but there are not enough cate-
gories to treat the response as a quantitative variable for linear regression, then the 
technique is called either ordered logit modeling or ordinal logistic regression. 
These variants on the logistic regression model see extensive use in the social and 
behavioral sciences, but are not often employed in medical research.

 Applications: Logistic Regression in Action

Logistic regression is an extremely popular tool in medical research. Below we 
present several examples of interesting applications of the technique to different 
medical issues.

 Morbidity Following Kidney Surgery

Abouassaly et al. (2011) studied the effect of patient age on the morbidity of kidney 
surgery associated with renal cell carcinoma. They were concerned that previous 
studies, largely based on single-institution populations, have painted too sanguine a 
picture about outcomes for this patient population. In their words (p. 812): “Better 
assessment of surgical morbidity, particularly in those at highest risk, i.e., elderly 
patients, would allow better preoperative counseling and may suggest the need for 
less invasive therapy in these groups, e.g., active surveillance or ablative therapy.” 
They employed a database of patients treated between 1998 and 2008, containing 
information on all acute care renal hospitalizations in nine of the ten Canadian prov-
inces. They excluded pediatric patients, as well as anyone treated for other than a 
solid or cystic renal mass, leaving a total of 24,578 patients for analysis. Explanatory 
variables included patient age, Charlson score (a measure of comorbidity), year 
(coded as fiscal year category), surgeon and hospital volumes for kidney procedures 
(both coded in quartiles), and patient income level (coded in quintiles). The study 
endpoint for the logistic regression was the probability of the patient having any 
complication after surgery. Table 7.6 is a partial reproduction of their logistic-
regression results table (results for complications after partial nephrectomy as 
another study endpoint, as well as some covariates, are not shown).

The results shown here are for the case of radical nephrectomy surgery. Notice 
that all effects are for qualitative factors, represented as sets of dummy variables. 
There is just one p value reported in the column “Overall p Value” for each qualita-
tive factor. This p value tells us whether that qualitative factor, per se, has a significant 
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effect on the risk of complications. If it does, then we would want to know which 
categories of that factor are “significant.” Each category having a coefficient associ-
ated with it is being compared to the reference group (labeled “Referent” in the table) 
for the dummy variables representing that factor. All effects are being reported as 
odds ratios (OR), with 95 % confidence intervals for the odds ratios in parentheses.

For example, being 80 or older is associated with odds of complications that are 
1.74 times higher than for those who are under 50 (the reference group), controlling 
for the other factors in the model. Or, those 80 or older have 74 % greater odds of 

Table 7.6 Logistic 
regression analysis  
of predictors of  
complications after radical 
nephrectomy (RN)

RN*

OR (95 % CI) Overall p Value

Age category <0.0001
Less than 50 Referent
50–59 0.98 (0.88–1.08)
60–59 1.14 (1.03–1.25)
70–79 1.39 (1.26–1.53)
80 or greater 1.74 (1.52–1.98)

Charlson category <0.0001
0 Referent
1 1.88 (1.73–2.05)
2 3.57 (3.19–4.00)
3 or greater 6.22 (5.18–7.48)

Fiscal yr category <0.0001
1998–1999 Referent
2000–2001 0.99 (0.90–1.09)
2002–2003 1.04 (0.94–1.15)
2004–2005 0.95 (0.86–1.05)
2006–2007 0.68 (0.61–0.75)

Surgeon vol quartile <0.0001
Low Referent
Intermediate 0.83 (0.77–0.91)
High 0.76 (0.69–0.83)
Very high 0.82 (0.74–0.91)

Hospital vol quartile <0.0001
Low Referent
Intermediate 1.02 (0.94–0.91)
High 1.41 (1.28–1.55)
Very high 1.41 (1.28–1.56)

Income quartile 0.039
Very Low Referent
Low 1.06 (0.96–1.17)
Intermediate 1.15 (1.04–1.27)
High 1.15 (1.03–1.27)
Very high 1.13 (1.02–1.26)

Reprinted with permission of Elsevier Publishers from 
Abouassaly et al. (2011)
*C-statistic = 0.66, Hosmer–Lemeshow p = 0.044
†C-Statistic = 0.65, Hosmer–Lemeshow p = 0.73
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complications compared to those under 50. Those having a Charlson score of 3 or 
greater have 6.22 times greater odds of developing complications, compared to 
those with a Charlson score of zero, and so forth. Whether each of these compari-
sons of a category of a factor with the reference group for that factor is significant 
can be discerned from the confidence interval for its odds ratio. If that confidence 
interval does not contain 1.0, then that odds ratio is significant. Returning to our two 
examples, we see that the confidence interval for the OR for age 80 or greater is 
1.52–1.98. This interval does not contain 1.0, so it is significant. This means that the 
odds of complications for those aged 80 or over are significantly greater than for 
those aged less than 50. Or, the confidence interval for the OR for a Charlson score 
of 3 or greater is 5.18–7.48. Again, this interval does not contain 1.0, so this OR is 
significant. Those with a Charlson score of 3 or greater have significantly greater 
odds of complications, compared to those with a Charlson score of zero. What do 
we do if we want to know whether those with a Charlson score of 3 or greater have 
greater odds of complications than those with Charlson scores of 2 (which is not the 
reference group)? What the analyst has to do is simply to change the reference 
group to those with a Charlson score of 2 and rerun the model. Then the OR for 
those with a Charlson score of 3 or greater will be with reference to those with a 
Charlson score of 2. This latter comparison may or may not be of interest. We see 
that several of the ORs are not significant, because their CIs do contain 1.0: the ORs 
for fiscal years 2000–2005, the OR for the intermediate hospital-volume quartile, 
and the OR for the low income quintile fall into this category.

Measures of empirical consistency and discriminatory power are reported at the 
end of the table. The starred (*) entries are for radical nephrectomy (the other two 
entries are for partial nephrectomy, whose results are not shown). We see that the 
AUC (“C-statistic”) is only 0.66. This is not considered acceptable discriminatory 
power for a logistic regression model. We notice, too, that the p value for the 
Hosmer–Lemeshow chi-squared is just significant, at p = 0.044. This also suggests a 
model that does not have a particularly good fit to the data. That very significant 
explanatory variable effects can coexist with a marginally performing model here is 
due to the very large sample size. In this case, there is a considerable amount of 
power for detecting “significant” effects, even though model performance is less 
than impressive on the whole.

 Caffeine, Smoking, and Parkinson Disease

Coffee drinking and cigarette smoking have both been shown, in a number of 
 studies, to be associated with a lower risk of developing Parkinson disease, or PD 
(Liu et al. 2012). The authors explain the connection of Parkinson’s with caffeine 
(p. 1200): “It has been hypothesized that caffeine and its major metabolites may 
protect dopaminergic neurons by antagonizing adenosine A2A receptor.” With this 
in mind, Liu and colleagues undertook an evaluation of the influence of caffeine 
intake and smoking on the development of PD in a large cohort of men and women. 
They utilized data from the NIH-AARP Diet and Health Study on AARP members 
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aged 50–71 from six US states and two metropolitan areas. A baseline survey on 
diet and lifestyle, including coffee and cigarette consumption, was answered in 
1995–1996. Then a follow-up survey was conducted in 2004–2006 among surviv-
ing participants to ascertain the occurrence of major chronic diseases such as 
Parkinson’s. After excluding cases with missing data, the sample size was 304,980 
participants, 1,100 of whom had been diagnosed with PD during or after the year 
2000. Caffeine intake was assessed at least 4 years before PD diagnosis for these 
individuals. In studies without random assignment to levels of the explanatory vari-
ables, an important means of control to ensure causal priority is to exclude certain 
cases. The authors explain (p. 1201): “Because caffeine intake was assessed in 
1995–1996 and we were concerned that PD patients might have altered their coffee 
consumption, even prior to PD diagnosis, we excluded 1,094 potential cases diag-
nosed before 2000 from the analyses.” That is, for individuals diagnosed too close 
to baseline (1995–1996), at which coffee consumption was measured, developing 
PD might actually have caused an increase in their coffee consumption. Since cof-
fee consumption is presumed to be a cause of level of risk for PD, these patients 
demonstrating reverse causation had to be excluded from the study. The statistical 
analysis consisted of a logistic regression of PD (coded 1 if the respondent had PD, 
0 otherwise) on caffeine intake plus control variables.

Participants with higher caffeine intake were more likely to be male, Caucasian, 
and less physically active. Caffeine intake was strongly associated with cigarette 
smoking. Higher coffee consumption was associated with a lower risk for PD. But 
once cigarette smoking was controlled in the analysis, this effect only held for caf-
feinated coffee. Moreover, consumption of other caffeinated beverages (e.g., tea, 
soft drinks) was not related to the risk of PD (Liu et al. 2012). The principal findings 
are explained by the authors (p. 1204) and shown in Fig. 7.4:

Duration of smoking was strongly associated with lower PD risk; further adjustment for 
caffeine intake barely changed the risk estimates for smoking (Web Table 3). Joint analysis 
of smoking duration and caffeine intake showed that smoking was associated with lower 
PD risk within each level of caffeine intake (Figure 1; for all subgroups, Ptrend ≤ 0.01). In 
contrast, higher caffeine intake was significantly associated with lower PD risk among 
never smokers (Ptrend = 0.04), but the monotonic trend was less clear among ever smokers. 
Nevertheless, compared with never smokers with low caffeine intake, long-term smokers 
with high caffeine intake had the lowest risk of PD. The statistical test for a potential inter-
action between smoking and caffeine intake was far from statistically significant (P = 0.57).

As the authors made clear, there is no interaction between smoking and caffeine 
intake in their effects on the probability of developing PD. The effects of caffeine 
intake and smoking appear to be cumulative in reducing the risk for PD, with the 
lowest odds of developing PD shown by the group with the last bar on the right in 
the figure. This is the group with high caffeine intake who are either past smokers 
who smoked for 30 or more years or who are current smokers. Their odds ratio of 
0.48 is comparing their odds of PD to those on the far left (with an OR = 1.00), the 
reference category. Thus, the lowest risk group for PD has odds of developing PD 
that are only about half (i.e., 0.48) the odds of those with low caffeine intake who 
never smoked. Controlling for age at baseline, race, physical activity, and gender do 
not alter these findings.
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 PSA as a Predictor of Prostate Cancer

Crawford and colleagues (2011) conducted a nonexperimental study to determine 
the prognostic value of initial PSA levels in men for identifying the risk of develop-
ing prostate cancer (PC). Their contention is that men with a first PSA reading 
between 1.5 and 4.0 face the same future risk of PC as those with a PSA level above 
4.0 in any given examination (Crawford et al. 2011). Their database consisted of 
men in the Health Alliance Plan of Henry Ford Health System between 1997 and 
2008. They were at least 40 years old, had initial PSA values between 0 and 4.0 ng/
mL, and had a minimum of 4years of follow-up after their first PSA. As in the previ-
ous study, exclusionary criteria were employed to exercise control over direction of 
causality (p. 1744):

To assess the future predictive value of a first PSA test, patients could not have been in the 
system for less than 6 months (to rule out the possibility of referral for prostate cancer) and 
patients could not have received a diagnosis of prostate cancer within 6 months of baseline 
PSA (otherwise, possibly representing the PSA that initiated biopsy and diagnosis). These 
exclusionary criteria were designed to ensure temporal separation between the baseline 
PSA and a subsequent diagnosis of cancer.

The study endpoint was a diagnosis of PC, coded 1 for such a diagnosis, and 0 
otherwise. This was then analyzed via logistic regression using initial PSA value as 
the primary predictor. Initial PSA value was dichotomized as <1.5 vs. 1.5–4. The 
authors’ description of their analytic technique is instructive (p. 1744):

Multivariate analysis, adjusting for age and race, was performed using SAS v9.1.3. Initially, 
the relative risk of prostate cancer was determined for all subjects based on a PSA threshold 
of 1.5 ng/mL. The PSA threshold analysis was subsequently stratified by race, controlling 
for age. To determine optimal PSA threshold, receiver operating characteristic curves were 
constructed and then the sums of sensitivity and specificity were evaluated. Area under the 
receiver operating characteristic curve (AUC) was used to determine the predictive ability 
of PSA values for prostate cancer. A perfect test has an AUC of 1.0, whereas a test with no 
diagnostic value has an AUC < 0.5.

Fig. 7.4 Odds ratios for PD 
according to caffeine intake 
(low, moderate, or high) and 
smoking status (Striped 
bars = Never; Gray bars = Past 
Smoker for 1–29 Years; 
Dotted bars = Past Smoker 
for ≥30 Years or Current 
Smoker). Reprinted with 
permission of Oxford 
University Press from Liu 
et al. (2012)

7 Logistic Regression



133

We notice that the authors mention the statistical software package they used to 
analyze the data as being SAS v 9.1.3. SAS output has been shown in previous 
chapters. We see, also, that some analyses were “stratified” by race, that is, analyses 
were run separately for different racial groups, and included age as a control vari-
able. Apparently the authors explored different PSA cutoffs for the dichotomized 
PSA explanatory variable but found that 1.5 provided the greatest AUC and the best 
values of sensitivity and specificity. Moreover, AUC was used to assess discrimina-
tory power of the model, as has been illustrated above for the GSS example.

The primary study findings are illustrated in Fig. 7.5.
As illustrated in the figure, and emphasized by the authors, men with a baseline 

PSA ≥ 1.5 ng/mL had odds of prostate cancer that were 15 times higher than those 
with PSA < 1.5 ng/mL. For African-American men, those with PSA ≥ 1.5 ng/mL had 
a PC risk that was 19 times higher than those with PSA < 1.5 ng/mL. How good was 
the researchers’ logistic regression model for forecasting PC? The AUC results are 
depicted in Fig. 7.6.

The figure shows that the AUC was 0.873, which suggests excellent discrimina-
tory power for the authors’ model. Sensitivity and specificity, according to the fig-
ure, are both about 0.80.

 Vitamin D Deficiency and Frailty

Another study employing logistic regression and reporting the AUC for the model 
is by Wilhelm-Leen et al (2010). Their primary study endpoint was frailty in older 
persons, described as a “multidimensional phenotype that describes declining phys-
ical function and a vulnerability to adverse health outcomes in the setting of 

Fig. 7.5 Risks of prostate cancer for the entire sample (a) and African-Americans Only (b). 
Reprinted with permission of John Wiley and Sons, publishers, from Crawford et al. (2011)
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physical stress such as illness or hospitalization” (Wilhelm-Leen et al., p. 171). 
Their hypothesis was that 25-hydroxyvitamin D deficiency would be predictive of 
frailty in older adults, controlling for advanced age and chronic medical conditions. 
They utilized data from the Third National Health and Nutrition Evaluation Survey, 
a nationally representative survey of the health status of persons residing in the USA 
collected in the period 1988–1994. Their sample consisted of 5.048 persons aged 60 
or older with 25-hydroxyvitamin D data available. Frailty was coded as 1 for frail, 
0 for not frail. This was based on respondents having three or more of the following 
conditions: low body weight for height, slow walking, weakness, exhaustion, and 
low physical activity. The authors controlled for several factors in their analysis, 
such as age, sex, and, poverty status, and various comorbidities, such as diabetes, 
chronic lung disease, and chronic kidney disease. The logistic regression results for 
Whites are shown in Table 7.7.

In the original table title (not reproduced here), AUC was reported as 0.767. This 
indicates a model with acceptable discriminatory power. We see, also, that the pri-
mary explanatory variable, vitamin D, has the expected effect. Those with D level 
less than 15 ng mL−1 have an estimated odds of being frail that is over three times 
greater (3.7, to be exact) than those with D levels greater than or equal to 30 ng mL−1. 
And this holds while controlling for age, gender, poverty-to-income ratio (PIR), and 
various comorbidities. As for the other factors, there appears to be no significant 
gender difference in the risk of frailty. But not surprisingly, the probability of being 
frail increases with age, a lower PIR, and the conditions of arthritis, nonskin cancer, 
chronic kidney disease, cardiovascular disease, and diabetes.

 Heat Sensitivity in MS Patients

Sensitivity to environmental heat is a well-known concomitant of multiple sclerosis 
(MS) that exacerbates MS symptoms. Flensner et al. (2011) examined the effects of 

Fig. 7.6 Receiver operating 
characteristic curve for PC 
prediction for all study 
patients. Reprinted with 
permission of John Wiley and 
Sons, publishers, from 
Crawford et al. (2011)
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heat sensitivity on a variety of common MS symptoms. Their data were drawn from 
334 MS sufferers in the Swedish MS Register. Inclusion criteria were being diag-
nosed with MS, having an Expanded Disability Status Score (EDSS) between 0 and 
6.5, and being between 20 and 65 years of age (Flensner et al. 2011). Information 
was gathered from respondents via mailed questionnaires. Heat sensitivity was 
based on a single question: “Are you sensitive to heat?” (Flensner et al. (2011), p. 2). 
This was coded simply “yes” (1) and “no” (0). Table 7.8 presents logistic regression 
results for the effects of heat sensitivity and the EDSS score on several MS symp-
toms. The authors’ table title notes that each symptom is coded “1 = never to some-
times, 2 = usually to always.” We should note that, although the study endpoint for 
logistic regression is usually coded 1 and 0, this coding is not a requirement. Any 
two numerical codes will suffice, provided they are recognized by the software used 
to analyze the data.

As is evident, heat sensitivity has significant effects on six of the eight symptoms 
shown. In all cases, heat sensitivity exacerbates the symptom. For example, those 
who are heat sensitive have odds of fatigue that are about two-and-a-half times 
greater than those who are not heat sensitive. Similar effects are seen for leg weak-
ness, concentration difficulties, pain, paraesthesia, and urination urgency. EDSS is 
also associated with several symptoms. Unique to this analysis is the reporting of a 

Table 7.7 Logistic 
regression results for frailty 
of white respondents

OR 95 % CI

Vitamin D (ng mL−1)
≥30 Reference –
15– < 30 1.0 0.6–1.7
<15 3.7 2.1–6.8

Age (years)
60–69 Reference –
70–79 1.9 1.3–2.8
≥80 2.5 1.4–4.5

Sex
Male Reference –
Female 1.2 0.8–1.8

Poverty to income ratio (PIR)
PIR ≥ 2 Reference –
PIR < 2 1.9 1.3–2.6

Comorbidity
Arthritis 3.8 2.2–6.5
Cancer, nonskin 1.9 1.2–2.9
Chronic liver disease 1.4 0.7–2.7
Chronic lung disease 1.4 0.8–2.3
Chronic kidney disease 1.7 1.1–2.6
Cardiovascular disease 1.8 1.2–2.6
Diabetes 1.6 1.1–2.3

Reprinted with permission of John Wiley and Sons, 
publishers, from Wilhelm-Leen et al. (2010)
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pseudo-R2 value: “R2 Nagelkerke.” For each MS symptom, R2 pertains to the logistic 
regression model containing two predictors: EDSS and heat sensitivity. The 
Nagelkerke R2 is similar to Pseudo R2

2  in Table 7.1 and discussed above. It is a good 
estimate of the quantitative variable that underlies a binary indicator. In this case, in 
which the study endpoints refer to the frequency or intensity of MS symptoms, such 
a quantitative underlying variable is quite plausible. The advantage to the Nagelkerke 
R2 is that it is frequently reported as a standard part of logistic regression software. 
The disadvantage is that, unlike the linear regression R2, Pseudo R1

2, and Pseudo R2
2, 

it does not have an explained-variance interpretation (DeMaris 2002). It simply 
indicates the degree of discriminatory power of the model, on a scale from 0 to 1. 
Apparently, the model demonstrates the greatest predictive efficacy for the study 
endpoint “balance problems.”

This chapter has dealt primarily with binary logistic regression, a technique that 
is appropriate whenever we have a dichotomous outcome variable. But what should 
we do if we have a dichotomous outcome but it represents an event that occurs to 
cases that are followed longitudinally? For example, we might follow patients from 
the time of their diagnosis with a potentially fatal disease to see what factors affect 
whether they die. It turns out that we do not just want to perform a logistic regres-
sion with death as the binary outcome as our analytic strategy. The reason is that we 
want to take account of how long they survive until death, not just whether they die 
or not. There will also be patients who are still alive at the end of the observation 
period. These patients have survival times that are said to be “censored.” Rather than 
just treat these cases as though they are “safe,” we incorporate the censoring into the 
analyses. These nuances of time-to-event data are all readily incorporated into the 
technique called survival analysis, the subject of the next chapter.

Table 7.8 Logistic regression analysis of common MS symptoms on EDSS score and heat sensitivity

MS symptoms

EDSS Heat sensitivity

R2 NagelkerkeOR 95 % CI P-value OR 95 % CI P-value

Fatigue 1.15 0.98–1.32 0.086 2.55 1.48–4.25 <0.001 0.136
Leg weakness 1.51 1.26–1.81 <0.001 2.21 1.24–3.93 0.007 0.274
Spasms 1.79 1.43–2.22 <0.001 1.65 0.77–350 0.194 0.232
Balance problems 1.62 1.34–1.94 <0.001 1.48 0.83–2.65 0.181 0.285
Concentration 
difficulties

1.08 0.92–1.28 0.354 3.40 1.85–6.25 <0.001 0.123

Pain 1.09 0.92–1.29 0.344 3.55 1.87–6.77 <0.001 0.136
Paraesthesia 1.20 1.02–1.41 0.026 2.10 1.21–3.64 0.008 0.095
Urination urgency 1.27 1.05–1.54 0.016 2.75 1.28–5.90 0.009 0.256

Reprinted from Flensner et al. (2011), an open-access journal
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This chapter takes up the topic of survival analysis, one of the most frequently 
employed statistical techniques in medical research. This is the statistical tool we 
use when we follow cases over time to see whether they experience a particular 
event. Because the event in question is often death, the period of time from incep-
tion of risk for the event until the occurrence of the event has come to be called 
survival time. And the technique has come to be known as survival analysis. 
However, in fields other than medicine it is also referred to as failure-time analysis, 
reliability analysis, duration analysis, or event history analysis (Allison 2010). The 
event in question need not just be death. In fact, any time we are interested in study-
ing the length of time until occurrence of an event and how characteristics of cases 
affect that time, survival analysis is relevant. The event in question could be the 
development of prostate cancer (Pettaway et al. 2011), recurrence of prostate cancer 
after radical prostatectomy (O’Brien et al.  2010), the occurrence of heart failure 
(Khawaja et al. 2012), death within 90 days of radical cystectomy (Morgan et al. 
2011), the development of incident dementia (Lieb et al. 2009), and so on.

 Why Special Methods Are Required

Why are special methods required for the study of survival time? Suppose that we 
randomly assigned men between the ages of 40 and 50 to be treated with either 
dutasteride (trade name: Avodart) or a placebo and then follow them for the next 10 
years with digital rectal exams and PSA measurements every 6 months to see if 
there is any difference between groups in the rate of development of prostate cancer 
(PC; established via prostate biopsy). For these men we have baseline (e.g., pre-
treatment) measures of educational level, marital status, and other demographics. 
We also take measures at each 6-month follow-up visit of nutritional intake, smok-
ing status, BMI, and other lifestyle habits. These latter are explanatory variables 
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whose values can change over time and are referred to as time-varying covariates. 
A simplistic statistical approach here might be just to create a binary variable, Y, 
coded 1 for whether the subject developed PC at any time over the 10-year period 
and 0 otherwise, and then estimate a logistic regression for the log-odds of develop-
ing cancer as a function of treatment status and other study covariates. However, 
this would be wasteful of important information. First, it makes a difference whether 
a unit develops PC early in the study as opposed to toward the end of the study. The 
simplistic approach ignores the timing of occurrence of the event of interest. In fact, 
this timing is a key endpoint for the study. Second, those at the end of the study who 
haven’t yet developed PC are being treated as though they are “safe” from the event. 
But they may develop PC after the study is over; it’s just that we aren’t able to 
observe their total survival time in the noncancer state. These units are said to have 
their survival time censored (by the end of the study) and are therefore referred to 
as censored cases.

An alternative approach might be to use survival time in the noncancer state as 
the study endpoint. Then we could just do a linear regression of survival time on 
treatment status plus study covariates. This is also problematic: how do we code 
survival time for censored cases? Assigning the time from beginning of the study to 
when they were last observed as their survival time is a poor strategy. The reason is 
that this value is surely an underestimate of actual survival time and will lead to 
biased estimates of predictor effects (Allison 2010). Also, in either the simplistic 
logistic regression or linear regression approaches, it is not clear how to incorporate 
time-varying covariates. Including in the model separate measures of each predictor 
for all follow-up times is not only cumbersome. It can also produce biased estimates 
because of causal ambiguity. For example, someone who develops PC early on may 
change their nutritional habits, stop smoking, and lose weight as a consequence. 
Hence time-varying covariates measured after the event may themselves be caused 
by the event and cannot plausibly be “predictors” of survival time (Allison 2010). 
All of these difficulties that are due to the inability of other techniques to handle 
censoring and time-varying covariates are easily remedied using survival-analysis 
methods. We now turn to those techniques.

 Elemental Terms and Concepts

We begin with some definitions. The inception of risk is the moment at which units 
come under the risk for an event. The beginning of observation is the moment at 
which we begin following them in a study. In the dutasteride example, we are 
assuming an inception of risk of age 40–50. That is, we assume that men do not 
come under the risk for PC until at least age 40–50. This may not be correct, how-
ever. The risk for PC may start much earlier in life. If the risk for PC actually begins 
at, say, age 30, but the beginning of observation is not until age 40–50, then the 
sample is said to be left-truncated. This means that they have already been at risk 
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for the event before they come under observation. Survival analysis is readily 
adapted to the problem of left truncation. The risk set is the collection of units at any 
given time who are still at risk for the event of interest. So if we start with 1,000 
men, total (500 in each treatment group), then the initial risk set is 1,000. If after 5 
years there have been 120 cases of PC, then the risk set at that point in time is 880 
and so forth. We have already defined censoring as the incomplete observation of 
survival time due to the ending of observation. This is further referred to as right 
censoring. (Left censoring occurs when units have already experienced the event of 
interest when recruited into the study; such units are then dropped from the study.) 
Sometimes units drop out of the study voluntarily before the end, or they are 
removed from the study for other reasons, such as death due to some other cause. 
These units are also treated as right-censored cases in survival analysis. Finally, the 
two most important components in survival analysis are the survival function and 
the hazard function. The survival function is the probability of surviving (i.e., con-
tinuing along without having experienced the event of interest) to any particular 
point in time. It’s called a “function” because it depends on time. The hazard func-
tion is approximately the instantaneous probability of experiencing the event for 
someone in the risk set at a particular moment in time. It, too, varies over time.

 An Example

We draw on data presented in Hosmer and Lemeshow (1999). A large HMO wanted 
to evaluate the survival time of its HIV+ members using a follow-up study. One 
hundred subjects were enrolled in the study from January 1, 1989 to December 31, 
1991. The study ended on December 31, 1995. After a confirmed diagnosis of HIV 
(inception of risk), members were followed until death due to AIDS or AIDS- 
related complications, until the end of the study, or until the subject was lost to 
follow-up. There were no deaths due to other causes. The study endpoint is survival 
time after a confirmed diagnosis of HIV. Since subjects entered the study at different 
times over a 3-year period, the maximum possible follow-up time is different for 
each study participant. Possible predictors of survival time were collected at enroll-
ment into the study. The variables involved in the study are shown in Table 8.1.

Table 8.2 shows the data records for the first ten cases in the study.
We see that the first subject was diagnosed with HIV on 15 May of 1990 and died 

from AIDS on 14 October, 1990. Thus, this person only survived 5 months after 
diagnosis. He or she was 46 years old at diagnosis and did not have a history of IV 
drug use. That CENSOR = 1 tells us that this person’s survival time ended in death. 
Subject ID 2, on the other hand, shows a survival time of 6 months from diagnosis 
until 20 March 1990, at which point they were lost to follow-up (CENSOR = 0). 
This 35-year-old did have a history of IV drug use. The longest surviving member 
in this group of 10 is ID 5, a 36-year-old without a history of IV drug use. This 
person survived 22 months until dying of AIDS.

 An Example
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 Estimating the Survival Function

It is typically of interest to estimate the survival function for individuals at risk of an 
event. That is, we want to see how quickly or slowly they succumb to the event of 
interest, in this case, death. In medicine, the most widely used method for estimat-
ing survival functions is the Kaplan–Meier (KM) estimator, also known as the 
product- limit estimator. It is a nonparametric technique because it does not rely on 
knowledge of the underlying distribution of survival time for the population of 
interest. In fact, this distribution is typically unknown, anyway. How does it work? 
Let’s use it to calculate a few survival probabilities for the HMO-HIV+ data.

We are interested in the following: for each time at which subjects were at risk 
for death, we want to know the probability of surviving until that point in time. As 
Hosmer and Lemeshow (1999) note, survival to any point in time should be consid-
ered a series of steps. It’s analogous to a toddler making his or her first steps. In 
order to walk five steps, the first four steps have to be made successfully. We use 
both the event and censoring times to determine what that “success rate” is. We 
begin at “time 0,” the beginning of observation, which is also the inception of risk. 

Table 8.1 Variables in the HMO-HIV+ study

Variable Description Codes/units

ID Subject ID Code 1–100
ENTDATE Entry date day/month/year
ENDDATE End date day/month/year
TIME Survival Time number of months between Entry date 

and End date
AGE Age age in years at enrollment
DRUG History of IV  

Drug Use
0 = No
1 = Yes

CENSOR Follow-Up Status 1 = Death due to AIDS or AIDS 
related factors

0 = Alive at study end or lost to 
follow-up

Table 8.2 Data records for the first ten cases in the HMO-HIV+ study

ID ENTDATE ENDDATE TIME AGE DRUG CENSOR

1 15may90 14oct90 5 46 0 1
2 19sep89 20mar90 6 35 1 0
3 21apr91 20dec91 8 30 1 1
4 03jan91 04apr91 3 30 1 1
5 18sep89 19jul91 22 36 0 1
6 18mar91 17apr91 1 32 1 0
7 11nov89 11jun90 7 36 1 1
8 25nov89 25aug90 9 31 1 1
9 11feb91 13may91 3 48 0 1
10 11aug89 11aug90 12 47 0 1
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Since everyone is alive at that point, the survival probability for time 0 is 1.0. In our 
sample, 15 people died within the next month. The conditional probability of dying 
in the first month is therefore 15/100, or 0.15. Therefore the probability of surviving 
the first month at risk is 1 − 0.15 = 0.85. Now, there are 85 people left who are still at 
risk of dying of aids. Two of those people are censored in the first month. So we 
need to reduce the risk set by two; it is now 85 − 2 = 83. However, the survival prob-
ability remains at 0.85; it only changes when there is another death. Then five peo-
ple die of AIDS in the next month, i.e., month 2 of the study. The conditional 
probability of dying in the second month, given survival through the first month, is 
then 5/83 = 0.0602. This means that the conditional probability of surviving the sec-
ond month, given that one survived the first, is 1 − 0.0602 = 0.9398. The probability 
of surviving 2 months is now the probability of surviving the first month times the 
probability of surviving the second month, given that one survived the first. That is, 
the survival probability for month 2 is 0.85 × 0.9398 = 0.7988. At this point, there 
are 78 people left in the risk set. Of these, five are censored in month 2, leaving only 
73 people in the risk set for month 3. By month 3, there are ten more deaths. The 
conditional probability of dying in the third month, given survival through the sec-
ond is then 10/73 = 0.1370. Thus, the conditional probability of surviving the third 
month, given that one survived the second, is 1 − 0.1370 = 0.8630. The probability of 
surviving 3 months is now the probability of surviving 2 months times the probabil-
ity of surviving the third, given that one survived to the second, or 
0.7988 × 0.8630 = 0.6984. The calculations are continued in this fashion until either 
everybody dies, at which point the survival probability becomes zero, or the remain-
ing cases are censored. When all that’s left are censored cases, the survival probabil-
ity remains constant at its last known value.

Table 8.3 presents a partial printout of the survival function based on the KM 
estimator for all 100 cases in the HMO-HIV+ study.

Output is from a popular statistical software package called SAS. Shown are 
“Survival,” the survival probability for each time period, and “Failure,” which is just 
1 − Survival. This is therefore the probability of dying by each time period. For 
example, the probability of surviving to month 7 is 0.4701 and the probability of 
dying by month 7 is 1 − 0.4701 = 0.5299. The censored observations are listed indi-
vidually and starred. The last survival probability shown is 0.0389 for 58 months. 
Thus, there is only a 4 % chance in this sample of surviving 58 months before suc-
cumbing to AIDS. The mean survival time (not shown) is 14.59 months. But the 
mean is not a reliable estimator of average survival time when there are censoring 
times greater than the largest event time, as is the case here. A much better estimator 
of average survival time is the median, which is 7 months. The median is the sur-
vival time such that about half of the cases survive at least that long. Figure 8.1 
shows a plot of the survival probabilities against time in the study.

This figure takes on the classic “ski-slope” shape of all survival functions. The 
survival curve begins at a value of 1.0 in the upper left corner of the plot. This cor-
responds to time 0, which is the beginning of the study. It then descends in value 
until the last survival probability, which in this case, is 0.0389. The censored cases 
are shown on the survival curve as small circles.

 Estimating the Survival Function
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Table 8.3 Partial printout of survival probabilities for the HMO-HIV+ study

Product-Limit Survival Estimates

Time Survival Failure
Survival  
Standard error

Number  
Failed

Number  
Left

0.0000 1.0000 0 0 0 100
1.0000 0.8500 0.1500 0.0357 15 85
1.0000* . . . 15 84
1.0000* . . . 15 83
2.0000 0.7988 0.2012 0.0402 20 78
2.0000* . . . 20 77
2.0000* . . . 20 76
2.0000* . . . 20 75
2.0000* . . . 20 74
2.0000* . . . 20 73
3.0000 0.6894 0.3106 0.0473 30 63
3.0000* . . . 30 62
3.0000* . . . 30 61
4.0000 0.6442 0.3558 0.0493 34 57
4.0000* . . . 34 56
5.0000 0.5636 0.4364 0.0517 41 49
6.0000 0.5406 0.4594 0.0521 43 47
6.0000* . . . 43 46
7.0000 0.4701 0.5299 0.0526 49 40
. . (cases omitted)
. .
. .
54.0000 0.0778 0.9222 0.0324 78 5
56.0000* . . . 78 4
57.0000 0.0584 0.9416 0.0296 79 3
58.0000 0.0389 0.9611 0.0253 80 2
60.0000* . . . 80 1
60.0000* . . . 80 0
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Fig. 8.1 Plot of the survival function for the HMO-HIV+ study
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 Comparing Survival Functions Across Groups

We might ask whether the survival experience is different for one group vs. another. 
For example, does it make a difference if one had a history of IV drug use? The null 
hypothesis is that the survivor functions are the same in the two groups. In other 
words, the probability distribution of survival time is exactly the same for each 
group, with each having the same mean survival time. Another statement of the null 
hypothesis is that the survival probability is exactly the same for each group at each 
time. The alternative hypothesis is that one group’s survival probabilities are uni-
formly higher or lower than the other’s. This is easily tested when employing the 
KM estimator. The most commonly used test is the log-rank test, although the 
Wilcoxon test is a popular alternative. Both tests compare the observed numbers of 
events (e.g., deaths) at each time to the expected numbers of events under the null. 
And both are distributed as chi-squared when the null hypothesis is true (Allison 
2010). Both are also nonparametric tests. They are particularly effective when one 
group’s survival probability is uniformly higher than the other’s across all time peri-
ods. The log-rank test is more powerful at detecting differences between groups that 
occur at later points in time. It is also more closely related to tests for group differ-
ences that are done within the framework of Cox’s proportional hazards model, 
which is discussed below (Allison 2010). Neither is reliable in the situation in which 
the groups’ survival curves “cross.” This would happen if one group has a higher 
survival probability at each time up to some specific time, after which its survival 
probability becomes lower than the other group’s. This is not a common occurrence. 
A plot of survival functions in the HMO-HIV+ study for groups defined by IV drug 
use is shown in Fig. 8.2.

In the plot, the upper curve is for those with no IV drug use; the lower curve is 
for those with a history of IV drug use. It is evident that those without drug use have 
substantially higher survival probabilities at each time until about 55 months, at 
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Fig. 8.2 Survivor functions for groups defined by IV drug-use status
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which point both groups’ survival probabilities tend to converge to a low value 
(about 0.04). Is this group difference in survival curves significant? The log-rank 
statistic is 11.86, with a p value of 0.0006, whereas the Wilcoxon statistic is 10.91, 
with a p value of 0.001 (results not shown). Hence, according to either test, the sur-
vival experience is significantly better for those without a history of IV drug use.

 Regression Models for Survival Data

With random assignment to treatment, there may be no need to control for any other 
factors in examining treatment-group differences in survival. In this case, differ-
ences between survival rates according to treatment-group status can be tested using 
either the log-rank or Wilcoxon tests applied to survival–function estimates gener-
ated using the KM technique. On the other hand, we may want to control for other 
covariates, especially if the data are from an observational study, as in the HMO- 
HIV+ study discussed here. Although the KM technique lets us examine group 
differences in the survival function, it does not allow controlling for other covari-
ates. For this purpose there are regression models for survival data.

One type of model uses logistic regression, but not in the simplistic manner 
described above. The approach described now is especially useful when survival 
time is not precisely measured. For example, in the dutasteride study described in 
the beginning of this section, men are followed up every 6 months. So, at best, we 
only know survival time in 6-month intervals, rather than the exact time from incep-
tion of risk until the occurrence of PC. One way to proceed is to create a new dataset 
containing a separate record for each 6-month period in which a man is cancer free. 
On that record we put all of his characteristics, including treatment-group status, 
that are of interest as predictors of PC. This includes the values of any time-varying 
covariates, coded according to their values in that 6-month period. For each man, 
there will be as many records as there are 6-month periods at which he is still at risk 
of developing PC. The maximum number of records a man can contribute is 20; two 
for each year of follow-up. Once he has developed PC or is censored due to some 
unforeseen exigency (e.g., lost to follow-up, dies, etc.), he no longer contributes 
records to the dataset. On all records for a given man who contracts PC, the study 
endpoint, Y, is coded 0, except for the last record, on which he’s coded 1. On all 
records of censored cases—including those censored by the end of observation, Y is 
coded 0 throughout. This new dataset is said to be in person–period format. This 
terminology emphasizes that each record in the data set is a period’s worth of mea-
sures contributed by a single person. We then apply ordinary logistic regression 
analysis to this dataset to regress Y on time period (coded using 19 dummies to 
represent the 20 time periods), treatment-group status, and the additional covariates. 
Although it seems that we are artificially inflating the sample size by converting to 
person–period format, it turns out that this approach is statistically sound (see, e.g., 
Allison 1982). This approach is referred to as a discrete-time hazard model.
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 Cox’s Proportional Hazards Model

When time is more precisely measured, say in months, days, hours, etc., we want to 
treat it as a continuous variable, that is, a variable with a precise continuum of quan-
titative values. There are two ways to proceed. One is to use a regression model for 
survival time itself. The response variable in the regression is actually the log of 
time. This ensures that the estimated survival time is always a positive quantity. This 
type of model is called an accelerated failure-time (AFT) model and is estimated 
using the technique of maximum likelihood. The drawback to it is that we must 
know, ahead of time, what the probability distribution of survival time is. This dis-
tribution determines both the survival and hazard functions. (Recall that the hazard 
function refers to the way in which the hazard of event occurrence varies over time.) 
If the wrong probability distribution is used, then model estimates of both the effect 
coefficients and their standard errors could be biased (this is bad).

Back in the 1970s the British statistician Sir David Cox came up with a unique 
solution to this dilemma. He partitioned the likelihood function for AFT models 
into two parts. He noticed that one part was only a function of the regression coef-
ficients, while the other was a function of both the regression coefficients and the 
hazard function. So he discarded the second part of the likelihood function and only 
used the first part to find the regression coefficients that maximized it. The tech-
nique is called partial likelihood estimation, and the resulting model is known either 
as the Cox regression model or the proportional hazards model (Allison 2010; 
DeMaris 2004; Hosmer and Lemeshow 1999). The beauty of this approach is that 
the underlying distribution of survival time is immaterial: we simply ignore how the 
hazard varies with time and focus on how explanatory variables affect the hazard. 
The response variable in the model is the log of the hazard rate, rather than the log 
of survival time. These two quantities are inversely related: the greater the hazard of 
the event at any given time, the shorter the survival time, and vice versa. The model 
easily incorporates time-varying covariates and censoring of survival times. With 
log(ht) as the log of the hazard (which varies over time, represented by the subscript 
“t”) and Xt as a time-varying covariate, the model with just two predictors (for sim-
plicity) takes the form

 log( ) .h b X b Zt t= +1 2  

The “t” subscript on X means that the values of X can change over time. On the 
other hand, Z is a time-invariant factor, like gender or race, that stays the same over 
time. Notice that there is no intercept in the model. This is part of the information 
that’s discarded in the likelihood function. The interpretation of the coefficients is 
very similar to interpretation of coefficients in logistic regression. Exponentiating a 
coefficient gives us the equivalent of an odds ratio, except that it’s called a hazard 
ratio in this model. For example, exp(b1) is the multiplicative factor by which the 
hazard of the event increases (or decreases) for each unit increase in Xt, controlling 
for Z. A similar interpretation applies to b2.

 Cox’s Proportional Hazards Model
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The Cox model is not as efficient as the AFT model, because it discards some 
information in the likelihood function. “Inefficiency” refers to the Cox coefficients 
having larger standard errors than in the AFT model, which means the Cox model 
isn’t as powerful as the AFT model. However, Cox regression more than makes up 
for this loss of efficiency by its robustness: the Cox model gives good results regard-
less of the underlying probability distribution of survival time. The same can’t be said 
for the AFT. The one limitation, of course, is that the Cox model doesn’t allow us to 
examine how the hazard rate varies over time. Nevertheless, it does allow estimation 
of the survival function and the manner in which the survival probability depends on 
the explanatory variables in the model. Because of its positive features, the Cox 
model is perhaps the most widely used regression model in survival analysis.

 Modeling the Hazard of Death Due to AIDS

Table 8.4 presents the results of a Cox regression for the hazard of death due to AIDS 
for the 100 subjects in the HMO-HIV+ study. The two explanatory variables are the 
subject’s age and history of IV drug use. Recall that the latter is coded as a dummy 
variable with 1 representing “used drugs” and 0 representing “did not use drugs.”

The first number of importance, highlighted in bold, is the likelihood-ratio 
 chi- squared test. This is analogous to the F test in linear regression or the model chi- 
squared test in logistic regression. It’s a test for whether the model as a whole is 
“significant.” That is, the null hypothesis for this test is that both population coeffi-
cients corresponding to age and drug use equal zero. As is evident, this hypothesis 
is resoundingly rejected at p < 0.0001. Regression coefficients for the variables “age” 
and “drug” (use) are listed under “Parameter Estimate.” We see that both age and 
drug use are significant predictors of death. The older the subject is, the greater the 
hazard of death at any given time. Exponentiating the age coefficient of 0.09151 
provides the hazard ratio of 1.096 that is shown at the far right. This is interpreted 
thus: each year older the subject is at the beginning of observation raises the hazard 
of death due to AIDS by a factor of 1.096, or about 9.6 %. Similarly, the hazard ratio 
for drug use is 2.563. This means that the hazard of death at any time is 2.563 times 
greater for those who used drugs than for those who didn’t.

Table 8.4 Cox regression results for the HMO-HIV+ study

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood 
Ratio

34.9819 2 <0.0001

Analysis of Maximum Likelihood Estimates

VariableDF Parameter 
Estimate

Standard 
Error

Chi-SquarePr > ChiSq Hazard 
Ratio

age 1 0.09151 0.01849 24.5009 <0.0001 1.096
drug 1 0.94108 0.25550 13.5662 0.0002 2.563
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 Predictive Efficacy of the Cox Model

How do we measure the predictive efficacy or discriminatory power of the Cox 
model? R2 values are not typically reported in hazard modeling because there is no 
commonly accepted analog of the R2 in linear regression. Instead, medical research-
ers are coming to rely more and more on an analog of the AUC in logistic regression. 
The measure in question is called the concordance index (or c index) and is described 
by Harrell et al. (1996) in their influential article. Here is how it is calculated. We 
consider all possible pairs of patients, at least one of whom has “died,” i.e., experi-
enced the event of interest. That means that if there were, e.g., 10 patients, 2 of 
whom had died, we would compare 16 pairs of patients: each of the eight surviving 
patients would be paired with each of the two deceased patients. We then generate a 
predicted survival time for each patient in the study based on the Cox regression 
results. If the predicted survival time is larger for the patient who lived longer, the 
predictions for that pair are determined to be concordant with the actual outcomes. 
Or, if one patient died and the other is known to have survived at least to the survival 
time of the first, the second patient is assumed to have outlived the first, and this is 
also a concordant pair. On the other hand, a patient pair is unusable if both patients 
died at the same time, or if one died and the other is still alive but hasn’t been fol-
lowed long enough to tell whether he or she will outlive the deceased one. The c 
index is defined by the authors as “the proportion of all usable patient pairs in which 
the predictions and outcomes are concordant” (Harrell et al. 1996, p. 370). As with 
the AUC, a value of 0.5 means the Cox model has no discriminatory power, and a 
value of 1.0 indicates perfect discriminatory power. Similar guidelines obtain for the 
c index as for the AUC: values above 0.7 indicate acceptable discriminatory power, 
values above 0.8 indicate excellent discriminatory power, and values above 0.9 indi-
cate outstanding discriminatory power. Unfortunately, the c index is not available in 
all Cox regression software. For example, it is not part of SAS version 9.1, which we 
used to analyze the HMO-HIV+ data above. Therefore we are not able to report it 
for that analysis. But we will see it used in the applications to be discussed next.

 Applications: Survival Analysis in Action

 Predicting 90-Day Survival After Radical Cystectomy

Our first application of the Cox model is from a study by Morgan and colleagues 
(2011) on the risk of mortality of bladder cancer patients within 90 days following 
radical cystectomy (RC). The authors’ study is motivated by their observation that 
among those 75 years old or more, bladder cancer is the fifth leading cancer diagno-
sis. Moreover, they argue that it is not always clear whether RC is safe and effica-
cious for this particular patient population (Morgan et al. 2011). The purpose of the 
authors’ study is to develop a predictive nomogram to augment clinical decisions 
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regarding a patient’s suitability for RC. A nomogram is a mathematical formula 
based on statistical analysis of patient outcomes. It is designed so that points can be 
assigned for various patient characteristics. The point total is then translated into a 
probability of surviving a particular procedure. As the authors note (p. 830): 
“Particularly, individualized modeling in the form of multivariate nomograms ben-
efits clinical decision making for prostate cancer and aids in outcome prediction 
after RC.”

The study in question was a retrospective cohort study of 220 consecutive 
patients aged 75 or older who underwent RC for urothelial carcinoma of the bladder 
at Vanderbilt University Medical Center (VUMC) between 2000 and 2008. Due to 
missing data on key factors, 51 patients were excluded from the study, leaving 169 
patients for statistical analysis. Here is the authors’ description of their statistical 
methodology (p. 830):

Patient information, including age, sex, race, preoperative albumin, CCI, clinical stage, 
pathological stage and urinary diversion type were obtained from patient charts. Preoperative 
serum albumin was determined close to the time of surgery and patients received no specific 
therapy based on serum albumin levels. Vital status was ascertained through the VUMC 
cancer registry, the Social Security Death Index and patient charts. Patients were censored 
at the date of last followup or death up to August 1, 2009. The primary study end point was 
90-day mortality. Cox univariate and multivariate regression was performed to determine 
predictors of 90-day mortality. HRs are presented with the 95% CI. Kaplan-Meier survival 
curves were generated to compare unadjusted 90-day mortality by patient age and preop-
erative albumin. Multivariate Cox regression coefficients were used to generate the prog-
nostic nomogram and the c-index was assessed as a measure of model accuracy.

Some commentary is in order. “HRs” are hazard ratios and they are presented 
along with 95 % confidence intervals (CIs). Kaplan–Meier curves are examined (but 
not shown here) to take an initial look at how survival probability differs according 
to patient age and preoperative albumin. The primary study endpoint bears comment. 
Normally the event of interest in survival analysis would be death, per se. However, 
the authors use death within 90 days of surgery as the event of interest. Patients with 
this brief a survival time after surgery would presumably not be good surgery candi-
dates. Hence, patients in this study would be considered censored if they are still 
alive after 90 days postsurgery. They would also be censored if they were lost to 
follow-up before the end of the 90-day observation window. Although the authors 
also describe patients as “censored” at the date of death, this terminology is not cor-
rect. Patients who experience the event of interest—in this case, death within 90 days 
post-op—are not censored, since their survival time is known exactly. In fact, in 
survival-analysis lingo they are known as uncensored cases. The “multivariate Cox 
regression” model was used to generate the predictive nomogram. Notice also men-
tion of the use of the c-index to assess model “accuracy,” i.e., predictive efficacy.

In the following passage, the authors detail the sample distribution on the event 
of interest (death within 90 days of surgery) and on the characteristics of patients 
excluded from the study (p. 830):

Of the 220 patients in the complete cohort 28 (12.7%) and 18 of the 169 (10.7%) in the 
analytical cohort died within 90 days of surgery. The 51 patients who were excluded from 
the analytical cohort due to incomplete preoperative information did not differ statistically 
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from the final cohort in age, race, or clinical or pathological stage. However, excluded 
patients were more likely to undergo continent urinary diversion (18% vs. 7%, p = 0.016). 
Ten excluded patients (19%) died within 90 days, which was not statistically different from 
the rate in the analytical cohort (log rank test p = 0.14).

We see that patients were more likely to be excluded due to missing data when 
they underwent continent urinary diversion. Notice the use of the log rank test to test 
whether the death rate among the 51 excluded patients (based on KM estimation) 
was different from that of the analytical cohort (i.e., the 169 patients actually used 
in the Cox model). It was not, suggesting that the analysis was likely not biased by 
the exclusion of these patients. Somewhat troubling (from a statistical viewpoint, 
that is) is that only 18 of the 169 patients in the Cox regression experienced the 
event of interest. This is a fairly small subset of the data, and it is not clear how 
robust the findings are when so few units are in the category of interest (i.e., dead 
within 90 days).

Table 8.5 shows the results of the Cox regressions.
The “Univariate” results are the results of a Cox regression of the log hazard of 

90-day mortality on each independent variable, one at a time. The “Multivariate” 
results are the result of a Cox regression of the log hazard of mortality on all four 
variables together. It’s clear that the univariate and multivariate results are pretty 
much in agreement. Only two of the four factors examined here have significant 
effects on the risk of mortality within 90 days in either the univariate or multivariate 
models: age and preoperative albumin level. The effects of both age and albumin 
level actually get a little stronger in the multivariate results. That is, each becomes 
a stronger predictor of the risk of mortality when controlling for the other (along 
with the other two factors). The “HR” column shows hazard ratios for each effect, 
along with their 95 % confidence intervals. Hence, each additional year of age raises 
the hazard of death by a factor of 2.3, while each additional unit increase of albumin 
raises the hazard by a factor of 2.5. (“IQR” as shown for Age and Preop albumin 
refers to the interquartile range or the range of the middle half of the values for the 
variable. Thus, 25 % of the patients are younger than 76.9 and 25 % are older than 
81.8, and so forth.) The c index for this model was 0.75 (Morgan et al. 2011), which 
indicates a model with acceptable predictive power.

Table 8.5 Cox regression analyses predicting the hazard of mortality within 90 
days [Reprinted with permission of Elsevier Publishers from Morgan et al. (2011)]

HR (95 % CI) p Value

Univariate
Age (IQR 76.9, 81.8) 2.15 (1.41–3.29) <0.001
Charlson comorbidity index (range 0–3) 1.47 (0.77–2.83) 0.25
Muscle-invasive clinical stage 1.48 (0.63–3.54) 0.37
Preop albumin (IQR 4.4, 3.7) 2.17 (1.33–3.57) 0.002

Multivariate
Age (IQR 76.9, 81.8) 2.30 (1.22–4.32) 0.010
Charlson comorbidity index (range 0–3) 1.30 (0.53–3.18) 0.56
Muscle-invasive clinical stage 1.55 (0.55–4.34) 0.41
Preop albumin (IQR 4.4, 3.7) 2.50 (1.40–4.45) 0.002
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Finally, Fig. 8.3 shows the predictive nomogram that can be used to estimate the 
90-day survival probability for any given patient.

The idea is to choose a patient profile in terms of the attributes of age, Charlson 
index, muscle involvement, and pre-op albumin. For example, the legend at the bot-
tom (not shown here) shows how to predict survival probability for an 83-year-old 
with muscle invasive cancer, Charlson index of 2, and pre-op albumin of 2.9. These 
values are located on their respective scales and then linked to their corresponding 
“contributed points” on the scale at the top. Then all the contributed points are summed 
for a total score. When doing this by inspection, we get 25 points for age, 5 points for 
the Charlson index, 10 points for muscle involvement, and 60 points for albumin level, 
for a total of 100 points. Then linking the point total with the 90-day survival probabil-
ity scale just below it, we see that this patient’s 90-day survival probability is 0.50. 
That is, he or she has a 50 % chance of surviving at least 90 days after surgery, accord-
ing to the nomogram (which is based on the multivariate Cox model in Table 8.5).

 Predicting Biochemical Recurrence After Radical Prostatectomy

Another example of the development of a predictive nomogram is offered by O’Brien 
and her colleagues (2010) in their study of biochemical recurrence (BCR) after 
 radical prostatectomy (RP). Here is the authors’ introductory statement (p. 390):

The accurate prediction of cancer cure after radical prostatectomy (RP) allows appropriate 
patient counselling and enables planning of secondary treatment. Nomograms are based on 
mathematical formulas that consider individual patient clinicopathological details, and are 
proven to give more accurate predictions than those based on clinical judgment or classifi-
cation of patients into risk groups [1,2]. One of the most widely used post-RP prognostic 

Fig. 8.3 Predictive nomogram for elderly patients’ 90-day survival after radical cystectomy 
[Reprinted with permission of Elsevier Publishers from Morgan et al. (2011)]
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tools is the Kattan nomogram, which was first published in 1999 then revised in 2005 and 
2009 [3–5]. This series of nomograms has established the importance of clinicopathologi-
cal variables such as preoperative serum PSA level, Gleason grade, extracapsular extension 
(ECE), seminal vesicle invasion (SVI), positive surgical margins (PSM) and pelvic lymph 
node involvement (LNI) for predicting the risk of biochemical recurrence (BCR) after RP.

The authors’ intention was to validate the Kattan nomogram with a new patient 
sample, and, in the process, to add some new predictive variables. These include 
percent of cancer with Gleason patterns 4 and/or 5 (% 4/5), prostate weight, presence 
or absence of intraductal carcinoma (IDCP), and tumor volume (O’Brien et al. 2010).

The sample consisted of all 2,385 consecutive RP cases processed at an Australian 
University Hospital between 1998 and 2007. After dropping patients based on vari-
ous exclusion criteria and further eliminating those with missing data, a total of 
1,939 patients were available for analysis. The study endpoint was BCR, defined as 
(p. 390) “a rising postoperative serum PSA of ≥0.2 ng/mL.” Survival time was cal-
culated as the time from RP to the occurrence of BCR for noncensored cases, or to 
the end of the study for censored cases. Cox regression was employed as the model-
ing technique. Once again, the authors used the c index to assess model discrimina-
tory power (O’Brien et al. 2010). In this analysis, however, there were significant 
interaction effects that were incorporated into the model and resulting nomogram. 
In particular, % 4/5 interacted with extracapsular extension (ECE) and with positive 
surgical margins (PSM) in their effects on the risk for BCR. Their Cox regression 
results are shown in Table 8.6.

In this table we see a sequence of models: Base model, Model 5, Final model. 
Each successive model adds an interaction term and tests its significance. Hence, 
the final model contains two interaction terms: % 4/5 × PSM and % 4/5 × ECE, both 
of which are significant after controlling for all other factors in the model. In the 

Table 8.6 Development of the final cox model for predicting BCR after RP [Reprinted with 
permission of John Wiley and Sons, Publishers, from O’Brien et al. (2010)]

Base model Model 5 Final model

N = 1,939 N = 1,939 N = 1,939

Hazard ratio p Hazard ratio p Hazard ratio p

Covariates
PSA 1.05 <0.001 1.05 <0.001 1.05 <0.001
Prostate weight 0.99 0.01 0.99 0.017 0.99 0.015
% 4/5 1.02 <0.001 1.03 <0.001 1.03 <0.001
IDCP 1.74 <0.001 1.71 <0.001 1.72 <0.001
SVI 1.94 <0.001 2.08 <0.001 1.98 <0.001
ECE 1.26 0.12 1.29 0.08 0.58 0.145
PSM 2.93 <0.001 8.7 <0.001 8.58 <0.001
% 4/5 × PSM N/A N/A 0.98 <0.001 0.98 <0.001
% 4/5 × ECE N/A N/A N/A N/A 1.012 0.016

p (LR test) N/A <0.0001* 0.016†

c Index for model 0.819 0.824 0.828
Bootstrap c index‡ 0.828
(95 % CI) (0.803–0.852)
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final model, we see, for example, that preoperative serum PSA level (PSA), the 
presence of intraductal carcinoma (IDCP), and seminal vesicle invasion (SVI) are 
all positively associated with the risk of BCR, with hazard ratios of 1.05, 1.72, and 
1.98, respectively. For example, invasion of the carcinoma into the seminal vesicles 
virtually doubles the hazard of BCR, controlling for other factors. On the other 
hand, greater prostate weight is associated with a lower risk of BCR (hazard 
ratio = 0.99). This final model has excellent prognostic accuracy (i.e., discriminatory 
power), with a c index value of 0.828.

Interpreting the effects of the variables % 4/5, PSM, and ECE is not quite as 
straightforward, because these variables interact with each other. How do we inter-
pret, for example, the effect of % 4/5? Because of the interaction effects, the hazard 
ratio for % 4/5 is expressed as

 ( . )( . )( . ).1 03 0 98 1 012PSM ECE

 

That is, this hazard ratio, which is the multiplicative effect of an increasing per-
cent of Gleason grade 4/5 tumors on BCR, is multiplied by two other terms that are 
functions of positive surgical margins and extracapsular extension, respectively. In 
other words, the effect of % 4/5 depends on the values of both PSM and ECE simul-
taneously. This is taken account of in the predictive nomogram, which is shown in 
Fig. 8.4. Note that the nomogram predicts 3-year survival probability, that is, the 
probability of surviving BCR-free for 3 years after radical prostatectomy.

Fig. 8.4 Postoperative nomogram predicting 3-year BCR-free probability after RP [Reprinted 
with permission of John Wiley and Sons, Publishers, from O’Brien et al. (2010)]
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In the authors’ figure legend, they explain how to use the nomogram (p. 394):

A patient’s points for the variables preoperative PSA, prostate weight, IDCP and SVI are 
calculated by drawing a line up from the scale bar for each variable to the points bar at the 
top. To calculate the points for % Gleason 4/5, the correct color-coded [color not repro-
duced here] scale bar is selected by taking into account the patient’s status for surgical 
margins and ECE. The points for all variables are then added to calculate total points. A line 
is drawn from the total points bar at the bottom of the nomogram to the probability bar 
below, giving the patient’s predicted chance of remaining free of BCR at 3 years after RP.

Let’s calculate a couple of survival probabilities using this nomogram. In par-
ticular, let’s try to understand how the effect of % 4/5 depends on PSM and ECE. 
Suppose that a patient has preoperative PSA of 20, prostate weight of 120, no 
Intraductal Carcinoma (IDCP = 0), and Seminal Vesicle Invasion (SVI = 1). And 
then let’s consider the effect of % 4/5 by assessing the change in the survival prob-
ability if the patient has 40 % Gleason 4/5 vs. 30 % Gleason 4/5. In other words, we 
examine the effect of an increase of 10 % in Gleason 4/5 on survival probability. But 
we do this under two different conditions: Case 1: a patient with ECE (−ve), PSM 
(−ve); Case 2: a patient with ECE (+ve), PSM (+ve). The points for a Case 1 patient 
with 30 % Gleason 4/5 are 25 (PSA), 22.5 (prostate weight), 0 (IDCP), 17.5 (SVI), 
and 32 (Gleason 4/5) for a total of 97. The points for a Case 1 patient with 40 % 
Gleason 4/5 are 25 (PSA), 22.5 (prostate weight), 0 (IDCP), 17.5 (SVI), and 37.5 
(Gleason 4/5), for a total of 102.5. The corresponding survival probabilities are 0.91 
for 30 % 4/5 and 0.89 for 40 % 4/5. The difference is approximately 0.02. Hence, a 
10 % increase in Gleason 4/5 at this setting of ECE and PSM translates into a reduc-
tion of 0.02 in the survival probability.

For Case 2, the only mathematical changes are with respect to the % 4/5 values. 
The points are 67.5 for 30 % Gleason 4/5 and 72.5 for 40 % Gleason 4/5. The total 
points are then 132.5 and 137.5 for 30 % 4/5 and 40 % 4/5, respectively. The cor-
responding survival probabilities are 0.67 and 0.60, respectively. The reduction in 
survival probability due to a 10 % increase in % 4/5 in this case is 0.07. What we’ve 
shown, then, is that the reduction in survival probability due to increasing the per-
cent of Gleason grade 4/5 cancer by 10 % is 0.02 at one setting of ECE and PSM 
values and 0.07 at a different setting of those values. This means that the “effect” of 
% 4/5 on BCR depends on ECE and PSM, which is exactly the meaning of an inter-
action effect. Hopefully this exercise has also illustrated how to effectively use this 
device for prognostic purposes.

Finally, the authors comment on a study limitation, as well as the particular use-
fulness of their nomogram for identifying at-risk patients (p. 394):

One of the main limitations of our study is the short follow-up times for BCR-free patients, 
which limits our nomogram to predicting BCR-free survival at 3 years post-RP. This has 
occurred because patients remaining BCR free at 2–3 years after RP are commonly referred 
back to their GPs for follow-up, but these PSA results are seldom forwarded to the treating 
urologists for our data collection purposes unless the patient develops BCR. We hope to 
rectify this problem in the future. However, research shows that 45–58% of BCRs occur 
within 2 years of surgery [25,26] and that patients developing BCR within 2 years are sig-
nificantly more likely to progress to metastasis within 3–5 years of BCR [25]. Our nomo-
gram will be useful for predicting these potentially ominous early failures, thus identifying 
patients who may benefit from adjuvant therapy.

 Applications: Survival Analysis in Action
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 Survival Following Radical Cystectomy

Yafi and colleagues (2010) studied factors related to various types of survival after 
patients had undergone radical cystectomy (RC). The sample consisted of 2,287 
(21.2 % female) patients who underwent RC at eight different academic centers 
across Canada between 1998 and 2008. Three different study endpoints were exam-
ined: overall survival (OS), recurrence-free survival (RFS), and disease-specific sur-
vival (DSS). Overall survival time refers to the time interval from RC until death 
due to any cause. Recurrence-free survival is the time interval from RC until the first 
evidence of clinical recurrence of bladder cancer. Disease-specific survival pertains 
to the time interval from RC to death specifically from bladder cancer. In this last 
analysis, patients who died from causes other than bladder cancer were considered 
censored as of the time of death. Also considered censored at time of death in this 
analysis were patients succumbing to perioperative mortality, defined by the authors 
as death within 30 days of surgery or before discharge home (Yafi et al. 2010). Cox 
regression results for the outcomes OS and DSS are shown in Table 8.7.

Of the demographic and lifestyle factors at the top of the table, smoking is a 
significant predictor of survival after surgery, even controlling for critical clinical 
factors. The hazard ratio of 1.3 suggests that smoking raises the hazard of death by 
about 30 % overall. Smoking also raises the hazard of death due specifically to blad-
der cancer by the same amount. The authors highlight this effect as an important 
contribution of the study (p. 543):

This is the first report on the impact of smoking on DSS following RC for bladder cancer, 
thus further emphasizing the deleterious associations of smoking not only with increasing 
bladder cancer incidence, but also with cancer-specific outcomes following curative surgi-
cal intervention.

Interestingly, adjuvant chemotherapy reduces the hazard of death overall by 
about 30 %, a very significant effect (p < 0.001). Although it is also estimated to 
reduce the hazard of death due to bladder cancer by about 25 %, this latter effect is 
not quite significant (p = 0.056).

 PSA Doubling Time and Metastasis After Radical 
Prostatectomy

Antonarakis and fellow researchers (2011) examined metastasis-free survival after 
radical prostatectomy (RP). Their primary explanatory variable was the time it takes 
for PSA readings to double in men with PSA recurrence following RP. The authors 
cited prior research pointing to the importance of PSA doubling time as a risk factor 
for metastasis. The sample was described by the authors as follows (p. 33):

Of all men undergoing radical prostatectomy at Johns Hopkins Hospital between July 1981 
and July 2010, 1973 developed biochemical recurrence (defined as a postoperative PSA ≥ 0.2 
ng/mL). After eliminating patients who received adjuvant/neoadjuvant or salvage therapies 
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before the detection of metastases (n = 798), and excluding patients with other missing infor-
mation (n = 533), 642 men remained (Fig. 1). Only 450 men had sufficient data to allow 
calculation of PSADT, and these patients alone formed our cohort. Patients were followed 
through December 2010.

Metastatic disease was defined as “the presence of osseous metastases on bone 
scan, or visceral (liver, lung, brain) or extra-pelvic nodal metastases on CT scan” 
(Antonarakis et al. 2011, p. 34). The study endpoint was metastasis-free survival 
(MFS), defined as “the time interval from biochemical recurrence to initial metasta-
sis” (Antonarakis et al. 2011, p. 34). At last follow-up, 29.4 % of patients had devel-
oped metastases (Antonarakis et al. 2011, p. 35). PSA doubling time was calculated 
as described by the authors (p. 34):

PSADT was calculated using the log of 2 divided by the slope of the linear regression line 
of the log of PSA value against time (in months). All PSA values ≥ 0.2 ng/mL obtained 
within 24 months after biochemical recurrence were used. A minimum of two PSA levels 
collected ≥ 3 months apart were required. Because no patient received salvage therapy upon 
biochemical recurrence, PSADT determinations were not influenced by treatment.

The authors employed Kaplan–Meier estimates of survival functions, stratified 
by selected prognostic factors, for a preliminary look at how prognostic factors 
affected MFS. Multivariable analyses were then done with the Cox model.

Figure 8.5 shows how MFS differs according to PSA doubling time using the 
Kaplan–Meier method. The p value for the log rank test is shown in the lower right 
corner of the figure.

Fig. 8.5 Survival curves for metastasis-free survival stratified by PSA doubling time (PSADT) 
[Reprinted with permission of John Wiley and Sons, Publishers, from Antonarakis et al. (2011)]
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The differences in survival curves according to PSADT are striking. The highest 
curve is for PSADT > 15 months, and the lowest is for PSADT < 3 months. The log 
rank test is very significant (p < 0.0001), suggesting that survival curves are signifi-
cantly different for men characterized by different values of PSADT.

Table 8.8 presents the results of univariate and multivariable Cox regression 
models for the hazard of metastasis.

In the multivariable model, we see that PSA doubling time still has a very signifi-
cant effect on the hazard of metastasis, even after controlling for several other clini-
cal factors. For example, those with doubling time under 3 months have 33 times the 
hazard of metastasis, compared to those with doubling time of 15 months or more 
(p < 0.001). We also notice that nonwhites have significantly lower hazard of metas-
tasis at any given time in the univariate model (HR = 0.4, p = 0.01). But this effect is 
no longer quite significant in the multivariable model (p = 0.086). Apparently, the 
effect of race is partly accounted for by the association of race with clinical factors 
added into the multivariable model.

Table 8.8 Cox proportional hazards models for MFS [Reprinted with permission of John Wiley 
and Sons, Publishers, from Antonarakis et al. (2011)]

Univariate model Multivariable model

Variables HR (95 % CI) p HR (95 % CI) p

Age at surgery, years (continuous) 0.99 (0.96–1.02) 0.713 1.01 (0.98–1.04) 0.464
Race

White 1 [reference] 1 [reference]
Non-white 0.4 (0.2–0.8) 0.010 0.5 (0.2–1.1) 0.086

Preoperative PSA, ng/mL (continuous) 1.00 (0.99–1.01) 0.567 0.99 (0.98–1.01) 0.424
Pathological Gleason sum

4–6 1 [reference] 1 [reference]
7 4.3 (1.7–10.7) 0.002 2.4 (0.9–6.2) 0.067
8–10 10.9 (4.4–27.1) <0.001 4.5 (1.7–11.9) 0.002

Pathological stage
Organ-confined disease 1 [reference] 1 [reference]
Extraprostatic extension 1.2 (0.6–2.3) 0.658 0.6 (0.3–1.3) 0.240
Seminal vesicle invasion 3.0 (1.5–6.0) 0.002 1.3 (0.6–2.8) 0.434
Lymph node involvement 3.1 (1.6–6.0) 0.001 1.1 (0.5–2.2) 0.811

Surgical margin status
Negative 1 [reference] 1 [reference]
Positive 0.8 (0.6–1.1) 0.198 0.9 (0.6–1.4) 0.829

Time to PSA recurrence
≤3 years 1 [reference] 1 [reference]
>3 years 0.4 (0.3–0.6) <0.001 1.0 (0.6–1.5) 0.964

PSA doubling time
≥15 months 1 [reference] 1 [reference]
9.0–14.9 months 2.7 (1.6–4.8) 0.005 2.5 (1.4–4.5) 0.002
3.0–8.9 months 11.6 (7.0–19.3) <0.001 8.0 (4.5–14.1) <0.001
<3.0 months 47.4 (25.2–89.0) <0.001 33.3 (16.4–67.4) <0.001

HR hazard ratio

 PSA Doubling Time and Metastasis After Radical Prostatectomy
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 Race Differences in the Risk of Prostate Cancer

Pettaway and colleagues (2011) followed a cohort of African American and 
Caucasian men to assess the progression of prostate disease severity after a diagno-
sis of benign prostatic hyperplasia (BPH). Their sample consisted of all men aged 
50–79 years who had been diagnosed with BPH in 1995 at the Henry Ford Health 
System in Detroit. The men were followed over an 11-year period. A main endpoint 
of the study was the development of prostate cancer (PC). The researchers were 
particularly interested in assessing whether African Americans might be at higher 
risk for the disease than Caucasians. They also examined the role of therapy with 
α-blockers (to control short-term symptoms) and 5α-reductase inhibitors (to reduce 
prostate size) in altering disease risk (Pettaway et al. 2011). In the following pas-
sage, the authors detail their exclusionary criteria and measurement of inception of 
risk (p. 1303; AUR refers to acute urinary retention):

Men with a diagnosis of AUR within 1 day of study entry were considered to be prevalent 
cases at baseline and were excluded from the analysis. Similarly, men undergoing prostate 
surgery within 1 week of entry into the study and men with prostate cancer diagnosed 
within 6 months of enrolment were considered prevalent cases and excluded from their 
respective analyses…Time at risk of each outcome began at the time that cases identified 
ceased to be categorized as prevalent cases; that is, 1 day after study entry for AUR, 1 week 
after study entry for prostate surgery, and 6 months after study entry for prostate cancer.

Preliminary findings regarding a potential interaction between baseline PSA and 
race in their effects on the rate of PC are shown in Fig. 8.6.

The authors say (p. 1304) “There also appeared to be a potential interaction 
between race, PSA level and risk of prostate cancer…” In the figure, we see that for 

Fig. 8.6 Prostate cancer rates by race and baseline PSA [Reprinted with permission of John Wiley 
and Sons, Publishers, from Pettaway et al. (2011)]
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PSA under 1.0, there is no race difference in the rate of PC. But as PSA levels 
increase to 1.0–1.9, 2.0–2.9, etc., the rate of PC for African Americans appears to 
be greater than for Caucasians at each PSA level. At the two highest levels of PSA, 
the race difference is significant. For example, among men with PSA of 4.0–4.9, 
6.8 % of African Americans vs. 2.2 % of Caucasians had developed PC. Among 
men with PSA of 5.0 or higher, 7.4 % of African Americans vs. 2.4 % of Caucasians 
had developed PC. From the article, it is unclear whether this interaction effect is 
significant; the authors mention no test for it. That the rates are significantly differ-
ent by race in some categories of PSA but not others does not necessarily indicate a 
significant interaction. This is most likely why the authors’ phrasing merely refers 
to the “appearance” of an interaction effect. We return to this issue shortly.

Cox regression results for the risk of PC are presented in Table 8.9.
Here we see that the race difference in the hazard of PC is significant even after 

controlling for PSA, age, income, and therapeutic regimen. African Americans have 
a risk of developing PC that is over twice that of Caucasians (hazard ratio = 2.21, 
p < 0.001). We see, also, that older men are at higher risk for PC, as are those with 
higher PSA levels. Neither income nor therapeutic regimen has a significant effect 
on the development of PC. This analysis could easily have incorporated an interac-
tion effect between race and PSA via the inclusion in the model of a crossproduct 
term taking the form “African American race × Prostate-specific antigen.” Such a 
term would have allowed the testing of whether such an interaction effect was sig-
nificant. However, the authors do not mention such a test, so it is unclear how much 
credence should be given to the suggested interaction shown in Fig. 8.6. Perhaps the 
research team will explore this issue further in subsequent studies.

In the next chapter, we will add a number of new techniques to the reader’s sta-
tistical arsenal. Although the regression models covered so far are adequate for most 
medical research, cutting-edge developments in statistics have led to a host of spe-
cialized statistical tools coming into more frequent use. These techniques include 
Poisson and negative-binomial regression, propensity-score analysis, multiple 
imputation, growth-curve modeling, and fixed-effects regression modeling. The 
readers’ statistical education would not be complete without them.

Table 8.9 Cox regression model results for the risk of prostate cancer by race and other factors 
[Reprinted with permission of John Wiley and Sons, Publishers, from Pettaway et al. (2011)]

Hazard ratio (95 % confidence interval) p-Value

African American race 2.21 (1.47–3.33) <0.001
Index age 1.02 (1.00–1.05) 0.033
Prostate-specific antigen 1.02 (1.01–1.02) <0.001
Income

Low income 1.
Medium income 1.06 (0.49–2.28) 0.885
High income 1.68 (0.77–3.67) 0.191

Therapy
α-blocker 1.07 (0.77–1.50) 0.674
5α-reductase 0.76 (0.28–2.09) 0.599

 Race Differences in the Risk of Prostate Cancer
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In this chapter we will learn about several additional advanced multivariate statistical 
techniques that are finding increasing application in medical research. Multiple 
imputation is a technique that allows us to “fill in” missing data. Often data on the 
study endpoint or the explanatory variables are missing for subjects in a study. If 
these subjects are therefore excluded from analysis, not only do we waste the data 
that they have provided, but their exclusion also introduces selection bias into the 
analyses. Multiple imputation allows us to fill in, or impute, the missing data with 
an estimate of what the data would have been had they been present. Once the data 
have been imputed, they can be used in any of the types of analyses that are dis-
cussed in this primer. Poisson regression and its close relative negative binomial 
regression are the appropriate models to employ when the study endpoint is a count 
of the number of events that have occurred to the subject in a given time period. 
Because counts must be represented by integer values and cannot be negative, we 
cannot use linear regression for this analysis, for reasons explained below. 
Propensity-score analysis is a statistical tool that allows us to mimic random assign-
ment to “treatment categories,” even though our data are from an observational 
study. Although we can control statistically for potentially confounding variables in 
an observational study, a problem arises if these covariates are imbalanced across 
groups. That is, the different treatment groups of interest have very different distri-
butions on the covariates. Propensity-score analysis is designed to balance mea-
sured covariates across treatment groups in order to more effectively simulate 
random assignment to treatment. Growth-curve modeling is useful whenever people 
are studied over time and interest centers on the pattern of change in a quantitative 
study endpoint over that time period. Because people contribute multiple time 
points’ worth of measurements to the analysis, linear regression is inadequate to 
model the complex error term required in these studies. Growth-curve models ele-
gantly incorporate the additional complexity into their structure. Finally, we will 
consider the dilemma we began with in Chap. 1 involving latent selection factors. 
What happens if there are one or more unmeasured covariates that might be driving 
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our results? Fixed-effects regression modeling is one technique that, under the right 
conditions, eliminates the threat from confounds that have not been measured. 
Several examples from the medical literature will help to illustrate the use of these 
important techniques.

 Multiple Imputation

Missing data in medical studies is a perennial problem. People in clinical trials who 
are followed up over multiple time points may drop out of the study at some point. 
All of their response values from that point on are necessarily missing. In observa-
tional studies based on interviewing respondents, very often respondents do not pro-
vide answers to some of the items. They may not know the answer, deem it 
inapplicable to them, or simply refuse to respond. The end result of all these difficul-
ties is that the data are missing on either the study endpoint or the independent vari-
ables for some portion of one’s sample. Several simple “fixes” for the problem have 
been used in the past. One solution is to employ listwise deletion. This means that 
one eliminates from the sample all cases that are missing on any of the variables in 
the study. Although this approach has advantages in some situations (Allison 2002), 
it may result in a drastic reduction in one’s sample size and a concomitant loss of 
statistical power (Johnson and Young 2011). Another simple solution is to replace 
the missing value with a number that constitutes one’s best “guess” for the missing 
value. This might just be the mean value of the variable for all cases with valid values 
on the item, an approach referred to as marginal mean imputation (Allison 2002). 
A better solution in the same vein would be to regress the problematic variable on 
other independent variables at hand. Then one can use the resulting prediction equa-
tion to generate a predicted value for the case that is missing on that variable. This is 
known as conditional mean imputation (Allison 2002). Or, in a longitudinal study, 
missing values on the study endpoint may be replaced by the last observed value of 
the study endpoint. This approach is known as the last observation carried forward 
strategy (Green et al. 2009; Nickel et al. 2011). However, all of the aforementioned 
simple fixes are flawed. As mentioned, listwise deletion wastes data. Strategies that 
replace a missing value with a single number fail to take prediction error into account 
in the imputation (Allison 2002). Moreover, those that replace several missing values 
with the same number, as in marginal mean imputation, artificially reduce the vari-
ance in the affected variables (Allison 2002). What is the preferred strategy?

Currently, two procedures for dealing with missing data are considered opti-
mum. One of these is full-information maximum likelihood estimation or FIML. 
This is a very complex procedure that sees limited use and will not be discussed at 
length here. Briefly, define the “incomplete data” as the complete dataset that 
includes all cases even though some of their data values are missing. In a nutshell, 
FIML derives the likelihood function for the parameters of one’s model based on the 
incomplete data. The model parameters are then estimated by maximizing this par-
ticular likelihood function (see Little and Rubin 1987, or Allison 2002, for further 
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details). The other approach sees widespread use in medical research, and as men-
tioned above, is called multiple imputation or MI. Two assumptions are typically 
made in using MI. The first is that one’s cases, consisting of the measurement of a 
study endpoint and explanatory variables for each of one’s analytic units, are obser-
vations drawn from a multivariate normal distribution (Little and Rubin 1987; 
Schafer 2000). This is a multidimensional version of the normal distribution that we 
discussed in Chap. 2. If a set of variables is characterized by a multivariate normal 
distribution, then each individual variable in the set has a normal distribution. 
Moreover, each variable can be written as a linear regression function of the other 
variables. That is, its mean follows a linear regression model with all of the other 
variables as its predictors. The second assumption is that the data are missing at 
random. This means that the probability a case has a missing value on a variable is 
independent of what the value of that variable would have been had it been observed 
(Allison 2002; Little and Rubin 1987). In other words, there is no tendency for those 
who, say, would have had lower values on the variable in question to be more likely 
to be missing on it.

Suppose that these assumptions are satisfied. Then when a variable in the dataset 
is missing for one or more cases, these values can be predicted from the correspond-
ing linear regression function of the other variables. So suppose one has a study 
endpoint, Y, and the explanatory variables X1, X2, and X3, for a sample of n cases. 
And suppose that Y and X2 are missing for some of the cases. One can regress Y on 
X1, X2, and X3 for all cases with valid values on these variables. Based on this regres-
sion equation, one can obtain predicted values of Y for the missing observations. 
The same can be done with X2. We regress X2 on Y, X1, and X3 for all those with valid 
observations and then use the regression equation to generate predicted values of X2 
for the missing observations. However, we don’t stop there. To each predicted value 
is added a random error term to account for the uncertainty involved in the predic-
tion. In this manner, we generate predicted values for all the missing data, and we 
have a complete dataset for analysis. And then the procedure is repeated using a 
different set of random errors to generate a different complete dataset for analysis. 
This is done again and again. The result is a collection of complete datasets, with 
each one distinguished by having somewhat different imputed values for the miss-
ing data. Researchers will typically generate anywhere from 5 to 50 complete data-
sets via the MI technique. With each dataset, one runs one’s statistical analysis. So 
if the analysis is a regression of Y on X1, X2, and X3 and we have 50 imputed datasets, 
we run the regression 50 times, each time using a different imputed dataset. When 
we’re done, we combine all of the 50 sets of regression coefficients and all of the 50 
sets of standard errors for those coefficients into one final set of coefficients and 
standard errors. Combining is done using a weighted averaging procedure, as dis-
cussed in Allison (2002) and Little and Rubin (1987). Then a test for the signifi-
cance of each of these final coefficients is a t test consisting of each coefficient 
divided by its standard error (Allison 2002; Little and Rubin 1987). Although it may 
seem as though we are just making up data here, the procedure is fully justified by 
statistical theory (Allison 2002; Little and Rubin 1987; Schafer 2000). Moreover, it 
produces unbiased estimates of the parameters of interest.

 Multiple Imputation
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 Poisson and Negative-Binomial Regression

An event count is the number of occurrences of an event within a fixed domain of 
observation (King 1988). An event is a discrete occurrence, such as a heart attack, 
stroke, seizure, or other medical episode. The domain of observation is the time 
period during which the subject is observed. For example, Rosenfeld and colleagues 
(2012) conducted a multicenter clinical trial to examine whether the inhalation of 
hypertonic saline would diminish the number of pulmonary exacerbations in a sample 
of children suffering from cystic fibrosis. The event in question here was a pulmonary 
exacerbation, and the domain of observation was the time from randomization to 
treatment/placebo until the last in-clinic visit or follow-up telephone call. Children 
were followed for up to 48 weeks after randomization to treatment groups. The num-
ber of pulmonary exacerbations was the primary study endpoint in this trial. It is 
necessarily integer-valued, ranging from 0 to whatever the greatest number of exacer-
bations was observed in this sample. The domain of observation was the time period 
during which a given child was followed up, which varied for different children. Two 
model covariates were age category and study site (Rosenfeld et al. 2012). One way 
to approach the analysis of these data would be to use linear regression to regress the 
number of exacerbations on model covariates. However, that is not the optimum strat-
egy when the study endpoint is a count. One reason is that a count cannot take on 
negative values. But the right-hand side of the linear regression equation is not con-
strained by that condition. It is free to take on any value. Hence, it is easy to get nega-
tive predicted counts using this modeling approach. Another problem is that the linear 
regression model assumes that the study endpoint is normally distributed at each 
combination of predictor values. Yet count data do not typically have a normal distri-
bution; rather their distribution is usually right-skewed. The distribution that is most 
appropriate for a count variable, at least as a starting point, is the Poisson distribution. 
This distribution for any variable, X, has one parameter, μ, and is expressed as:
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The parameter μ is both the mean and the variance of X in this distribution 
(DeMaris 2004).

The Poisson regression model assumes that Y has a Poisson distribution, in which 
the mean, μ, is influenced by one’s explanatory variables. This Poisson distribution 
is used as the basis for maximum likelihood estimation of the regression coefficients 
(DeMaris 2004). Moreover, the regression model employs log(μ) as the response. 
That is, the model is for the log of the mean of Y. The reason for this is theoretical 
(see, e.g., Cameron and Trivedi 1998; DeMaris 2004). But it also has the advantage 
of ensuring that predicted values of μ are nonnegative. The Poisson regression 
model is:

 log( ) .m a b b b= + + +…+1 1 2 2X X XK K  (9.1)

It resembles a linear regression model except that the response is the log of the 
mean of Y. The Poisson regression model has one drawback, however. The condi-
tional mean and variance have to be the same value, as they are essentially the same 
parameter. In practice, the variance of Y often exceeds its mean, thereby violating 
this assumption of the Poisson specification. If this is the case, standard errors of 
coefficients will not be correct; they will typically be underestimated. This means 
that we will be falsely inclined to declare predictor effects “significant” in the 
model, when their true effects are nil. A remedy for this problem is to use the nega-
tive binomial distribution to represent the distribution of Y. The difference between 
it and the Poisson distribution is that the former incorporates an extra parameter. 
This is called the overdispersion parameter. It allows the variance to exceed the 
mean and results in better estimates and more accurate standard errors. The nega-
tive binomial regression model looks exactly like the Poisson regression model, 
above. The only difference is the presence of the overdispersion parameter, which 
is contained in the likelihood function for maximum likelihood estimation. We do 
not see it in the regression equation itself. Moreover, we can test whether the over-
dispersion parameter itself is significant. If it is not, then the Poisson model is to be 
preferred.

Coefficients for Poisson or negative binomial regression are both interpreted the 
same way. They can be seen as effects on the log of the mean of Y. However, a more 
convenient way of talking about them is afforded by exponentiating them. To under-
stand the rationale for this, let us exponentiate both sides of (9.1):

 Exp[log( )] exp[ ]m a b b b= + + +…+1 1 2 2X X XK K  

or:

 m a b b b= …exp( )exp( )exp( ) exp( )1 1 2 2X X XK K  

or:

 m a b b b= …exp( )exp( ) exp( ) exp( ) .1 2
1 2X X

K
XK

 (9.2)

 Poisson and Negative-Binomial Regression



166

Equation (9.2) makes it clear that exp(β1), for example, is the multiplicative 
impact on the mean of Y for each unit increase in X1, controlling for the other Xs in 
the model. The other coefficients are similarly interpreted. Sometimes the Poisson 
or negative binomial model is couched as a model for the rate of event occurrence. 
We define the average rate of occurrence as the average number of events divided by 
the domain of observation. Let D represent the domain of observation. A Poisson 
model for the rate of event occurrences is then:

 

m
a b b b

D
X X

K
XK= …exp( )exp( ) exp( ) exp( )1 2

1 2

 

or:

 m a b b b= …D X X
K

XKexp( )exp( ) exp( ) exp( )1 2
1 2

 

and due to the identity D D= Exp[log( )], we have

 m a b b b= …exp(log( ))exp( )exp( ) exp( ) exp( )D X X
K

XK
1 2

1 2

 

or with the log of μ as the response:

 log( ) log( ) .m a b b b= + + + +…+D X X XK K1 1 2 2  (9.3)

Equation (9.3) shows that the rate of event occurrence is easily modeled by 
including the log of the domain size as an extra predictor. However, its coefficient is 
constrained to equal 1. This type of variable in either the Poisson or negative bino-
mial regression model is referred to as an offset (DeMaris 2004). A substantive 
example will aid in our understanding of this technique.

 An Illustrative Example: Pregnancy Stress  
in the NAPPS Study

Illustrative data for this chapter were drawn from the New Arrivals: Passage to 
Parenthood Study (NAPPS; DeMaris et al. 2010, 2011; Mahoney et al. 2009). The 
initial sample consisted of 178 married couples experiencing the third trimester of 
pregnancy of both spouse’s first biological child. They were drawn from a mid- 
sized, Midwestern city and surrounding suburban and rural communities. Couples 
were recruited via childbirth classes; announcements posted in medical offices, 
retail locations, or newspapers; word of mouth referrals; or direct mail. Inclusionary 
criteria were that spouses: (a) were married, (b) pregnant with each individual’s first 
biological child, and (c) spoke English. Data were collected in couples’ homes. 
Each spouse independently completed surveys that assessed the constructs used in 
the study. A research assistant was present throughout, both to answer any questions 
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and to ensure that spouses completed the surveys independently. Couples were reas-
sessed in the same manner three more times over the course of the next year: at 4, 7, 
and 13 months after the first visit. These constitute waves 2–4 of the study and 
encompass approximately the first full year of the life of the newborn. Couples were 
paid $75.00, $100.00, $100.00, and $125.00 for their participation in waves 1–4, 
respectively. Data collection began in October, 2005 and ended in August, 2008.

The study endpoint for Poisson/negative binomial regression was the number of 
pregnancy stressors experienced. This was asked of mothers in wave 1 of the sur-
vey. They were asked to check any of “the following difficulties that you may have 
experienced throughout your pregnancy.” This was followed by a number of prob-
lems that were both physical (“spotting,” “back pain,” “recurrent urinary tract infec-
tions”) and emotional (“loss of control over emotions,” “criticism/lack of support 
from family or friends about pregnancy”). The range of the stressor index was from 
1 to 16 reported difficulties, with a mean of 5.9 and a standard deviation of 2.8. The 
primary explanatory variable in the analyses in this chapter was unintended preg-
nancy, coded 1 if the pregnancy was unintended, and 0 if it was intended, based on 
both husband’s and wife’s responses. An unintended pregnancy was defined as a 
pregnancy that was either unwanted—the couple did not want to have a child—or 
mistimed, in particular, occurring earlier than intended (Zolna and Lindberg 2012). 
Forty-six percent of the pregnancies were not intended at the time they occurred. 
Other predictors of interest, all measured in wave 1, were mother’s age, household 
income in thousands of dollars, number of years the couple was married, number of 
hours per week the mother worked outside the home, and mother’s relative advan-
tage. This last was the mother’s perception regarding the balance of contributions to 
the marital relationship on the part of each spouse. The higher the score, the greater 
the mother’s perception that her husband was contributing more than she was 
(DeMaris et al. 2010). Table 9.1 presents the results of three different regression 
models for the number of pregnancy stressors: linear regression estimated with ordi-
nary least squares, Poisson regression, and negative binomial regression.

Table 9.1 Linear, poisson, and negative-binomial regression coefficients for the regression of 
number of pregnancy stressors on explanatory variables

Explanatory variable Linear regression Poisson regression
Negative-binomial  
regression

Intercept 4.371** 1.508*** 1.506***
Unintended pregnancy 0.415 0.069 0.069
Age 0.103 0.017 0.017
Household income (in thousands) −0.012 −0.002 −0.002
Number of years married −0.220 −0.037* −0.037*
Work hours −0.004 −0.001 −0.001
Relative advantage 0.267*** 0.043*** 0.042***
Dispersion parameter 0.025
R2 0.121 0.135 0.135

* p < .05; ** p < .01; *** p < .001

 An Illustrative Example: Pregnancy Stress in the NAPPS Study
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The linear regression identifies only one significant predictor: the relative advan-
tage scale. Both the Poisson and negative binomial regressions identify two signifi-
cant predictors: the relative advantage scale and the number of years married. The 
Poisson and negative binomial analyses are more to be trusted in this case, as they 
are more appropriate for a count variable. There is no need for an offset in this 
example, as the domain for all mothers was the same: the first 6 months of the preg-
nancy. Which is better: Poisson or negative binomial? The dispersion parameter’s 
value is 0.025 but it is not significant. This suggests that the assumption of the 
Poisson model that the mean and variance of the study endpoint are the same is not 
violated. Hence, the Poisson model would seem to be most appropriate, although 
the results are quite comparable for both. The Poisson results are best interpreted by 
exponentiating the significant coefficients. Controlling for other factors, each addi-
tional year married reduces the average number of pregnancy stressors by a factor 
of exp(−0.037) = 0.964 or by about 3.6 %. On the other hand, each unit increase in 
relative advantage increases the average number of pregnancy stressors by a factor 
of exp(0.043) = 1.044, or by about 4.4 %. DeMaris and colleagues (2010) have 
found that women, in particular, tend to be distressed by being overbenefited. 
Although the effect of an unintended pregnancy on the pregnancy stressor index is 
positive, it is nowhere near significant (p > 0.3, not shown). The R2 for the Poisson 
model indicates that about 13.5 % of the variance in number of pregnancy stressors 
is accounted for by the model.

 Propensity Score Analysis

In nonexperimental studies, ANCOVA is typically used to reduce bias in the esti-
mate of a “treatment” effect due to preexisting differences between treatment groups 
(Schafer and Kang 2008). However, among other things, the efficacy of ANCOVA 
in producing an unbiased estimate of a treatment effect rests on there being suffi-
cient overlap in covariate distributions between treatment groups. Otherwise, the 
treatment-effect estimate is based on extrapolation to a hypothetical set of covariate 
values that may not represent any real cases (Schafer and Kang 2008). The result is 
a badly biased estimate of the treatment effect. The problem is illustrated in Fig. 9.1:

Shown is a scatterplot of Y with X for n = 16 cases. The treatment group is repre-
sented by the symbol “1” and the nontreatment, or control, group by the symbol “0.” 
It is clear that the mean of Y for the treatment group, which is 14.8, is greater than 
the mean of Y for the control group, which is 6.45. The unadjusted mean difference 
on Y between groups is therefore 14.8−6.45 = 8.35. We see, also, that the two groups 
have very different distributions on the covariate, X. The mean of X for the control 
group is 2.8, and for the treatment group it’s 7.6. The ANCOVA model for Y is:

 
ˆ . . . .y X= + +3 70 3 69 0 98Treatment  
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It is clear from Fig. 9.1 and this equation that X has a strong positive linear effect 
on Y with a regression coefficient of 0.98 (p < 0.0001). In the ANCOVA, the treat-
ment effect is 3.69. This suggests that, controlling for differences on X, the mean 
difference is reduced from 8.35 to just 3.69. But how reliable is this? There is almost 
no overlap in the distribution on X for the two groups. That is, almost all X values in 
the control group are <5, and all X values in the treatment group are >5. What does 
it mean to say, “controlling for X” in this instance, when almost no case in the con-
trol group has the same X value as a case in the treatment group? As mentioned in 
Chap. 6, in ANCOVA it is customary to show adjusted means on Y for the treatment 
groups, adjusted for differences in the covariate distributions. This is usually done 
by holding X constant at its overall mean, which, in this example, is 5.2, and then 
using the ANCOVA equation to obtain predicted means. The adjusted means for 
treatment and control groups are:

 
Treatment adj: . . . ( . ) . ,y = + + =3 70 3 69 0 98 5 2 12 49

 

 
Control adj: . . ( . ) . .y = + =3 70 0 98 5 2 8 80

 

The difference in adjusted means is the adjusted difference of 3.69. This, suppos-
edly, is the treatment effect after “adjusting for X.” But notice that it is based on a 
value of X (i.e., X = 5.2) for which there are virtually no cases. We are therefore 
extrapolating outside the range of most of the observed responses. The resulting 

Fig. 9.1 Plot of Y with X 
showing nonoverlap of X 
values for treatment (“trt” = 1) 
and nontreatment (“trt” = 0) 
groups

 Propensity Score Analysis
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estimate is not very robust. The problem is compounded by having several imbal-
anced covariates in one’s model, as is typically the case. Propensity scores are 
designed to redress the imbalance in covariate distributions across groups and 
thereby produce a more robust estimate of the treatment effect.

The following definition and justification of propensity scores draw heavily from 
the excellent article by Schafer and Kang (2008). A propensity score is the condi-
tional probability of receiving the treatment given the covariates. Theoretically, 
treated and untreated cases with identical propensity scores would have identical 
distributions on the explanatory variables that were used to estimate the propensi-
ties. This suggests that cases with the same propensity score can be treated as though 
they were randomly assigned to treatment and control groups. Their mean differ-
ence on the study endpoint is therefore an estimate of the average causal effect of 
treatment for those cases. There is, of course, one caveat here. Propensity scores 
adjust for differences in measured covariates only. The assumption is that there is no 
unmeasured confound, or latent selection factor, that still distinguishes groups with 
the same propensity score (Guo and Fraser 2010; Schafer and Kang 2008). If this 
assumption is satisfied, then propensity-score analysis may be justified. Propensity 
scores can be estimated with a logistic regression of treatment status (coded 1 for 
treatment and 0 for control) on the covariates in one’s study. The estimated propen-
sities are the estimated probabilities of being in the treatment group, based on the 
logistic regression equation. One means of testing whether propensity-score analy-
sis is to be preferred over ANCOVA is as follows. Estimate a logistic regression 
equation for treatment status using the covariates. Obtain the predicted logits, i.e., 
log[ / ( )]p p1− , for each subject. Calculate the mean predicted logit in the treatment 
vs. the control group. Calculate the pooled (i.e., weighted average) standard devia-
tion of the logits for the treatment vs. the control group. If the difference between 
the mean logits exceeds one-half of the pooled standard deviation of the logits, then 
causal inferences using ANCOVA are not trustworthy and propensity scores should 
be used (Rubin 2001; Schafer and Kang 2008).

 An Example: Unintended Pregnancy and Mothers’ Depression

We draw once again from the NAPPS study to illustrate propensity-score analysis. 
The study endpoint this time is mothers’ depression. This measure employs ten 
items from the Center for Epidemiological Studies Depression Scale or CES-D 
(Mirowsky and Ross 1984). In all four waves of the study, mothers were asked to 
indicate how often they experienced certain feelings in the past week. Example 
items are “I was bothered by things that usually don’t bother me,” and “I felt that 
everything I did was an effort.” Response choices ranged from “Rarely or none of 
the time (<1 day)” to “All of the time (5–7 days),” and were coded 0–3, respectively. 
The scale score ranged from 0 to 30 and had an alpha reliability ranging from 0.70 
to 0.78 across the four waves of the study. (Alpha reliability, or Chronbach’s alpha, 
ranges from 0 to 1 and indicates the proportion of a measure’s variability that reflects 
a stable underlying trait; values above 0.70 are considered ideal.) For this example, 
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we use only the wave 1 depression score. Theoretically, we expect that mothers 
whose pregnancy was unintended will experience more depression than others. 
As their pregnancy was not planned for that particular time, they should experience 
more distress about its consequences for their bodies or their personal adjustment. 
Model covariates are: mother’s age and education, household income, number of 
years married, number of pregnancy stressors, and whether the fetus is male. 
Table 9.2 shows the distributions on these covariates for those with an intended, vs. 
an unintended, pregnancy.

We see that pregnancy-status groups have significantly different distributions—
i.e., means—on three covariates: age, household income, and number of years mar-
ried. The intended pregnancy mothers are older, have a higher household income, 
and have been married longer than the unintended pregnancy group. This may be a 
situation warranting propensity-score analysis. Nevertheless, we begin by using the 
traditional ANOVA/ANCOVA approach, regressing mother’s depression first on a 
dummy variable for the pregnancy being unintended, then adding the other covari-
ates. Table 9.3 presents these results.

We see in the ANOVA that those with an unintended pregnancy are, on average, 
about two-and-a-quarter units higher on depression than those whose pregnancies 
were intended (p = 0.0003). As a standard deviation of mother’s depression is 4.2 
(not shown), this is about a half of a standard deviation difference in depression, not 
a trivial amount. The other model covariates are included in the ANCOVA model 
shown in the last two columns of the table. Of the added covariates, the number of 

Table 9.2 Means on model covariates for those with intended vs. unintended pregnancies

Model covariate
Intended  
pregnancy

Unintended  
pregnancy

p-Value for  
mean difference

Age 28.083 26.122 0.0009
Household Income (in thousands) 66.880 55.793 0.0037
Number of years married 3.181 1.974 <0.0001
Education 6.000 5.817 0.1559
Number of pregnancy stressors 5.604 6.281 0.1105
Child is male 0.460 0.462 0.9811

Table 9.3 ANOVA and ANCOVA estimates and p-values for mothers’ depression at wave 1

Explanatory variables ANOVA p-Value ANCOVA p-Value

Intercept 7.781 <0.0001 6.544 0.0238
Unintended pregnancy 2.255 0.0003 1.929 0.0020
Age −0.026 0.7847
Household income (in thousands) 0.004 0.7510
Number of years married 0.059 0.7172
Education −0.193 0.6076
Number of pregnancy stressors 0.536 <0.0001
Child is male −0.635 0.2779
R2 0.072 0.206

 An Example: Unintended Pregnancy and Mothers’ Depression
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pregnancy stressors, not surprisingly, has a very significant positive effect on depres-
sion. Each additional stressor adds about a half of a unit to average depression. 
Controlling for pregnancy stress and the other covariates, the effect of an unin-
tended pregnancy is reduced somewhat, but is still quite significant (p = 0.002). Is 
this a reliable finding? We turn to propensity-score analysis to check.

To estimate propensity scores, we use only the covariates that could presumably 
be causally antecedent to the pregnancy: mother’s age and education, household 
income, and number of years married. Table 9.4 shows the results of the logistic 
regression model used to estimate propensity scores.

Apparently, the only significant predictor of unintended pregnancy status is the 
number of years married, which has a negative effect. Thus, the longer the couple 
has been married, the less likely the pregnancy was unintended. The Hosmer–
Lemeshow chi-squared is not significant, suggesting that the model has an adequate 
fit. The AUC, at 0.704, also suggests a model with adequate predictive efficacy. 
According to Pseudo- R1

2, the model accounts for about 11.6 % of the variance in 
pregnancy status, presuming that it is an either-or proposition. On the other hand, 
should one consider the intendedness of a pregnancy to be a continuous quantitative 
underlying variable, Pseudo- R2

2 suggests that about 16 % of its variance is accounted 
for by the model. We then assessed whether propensity-score analysis was war-
ranted. The mean logit for the unintended pregnancy group was −0.4473, and for 
the intended pregnancy group was 0.0894. The difference was 0.0894−
(−0.4473) = 0.5367. The pooled standard deviation of the logits was 0.7483, half of 
which was 0.374. As this is less than the mean difference of the logits, it appears 
that propensity-score analysis is warranted.

 Using Propensity Scores

There are several ways to employ propensity scores once they are estimated (see, 
e.g., Guo and Fraser 2010; Schafer and Kang 2008). However, Schafer and Kang’s 
extensive simulation study suggests that one particularly reliable technique is 

Table 9.4 Logistic 
regression estimates for 
prediction of unintended 
pregnancy for the purpose  
of creating propensity scores

Explanatory variable b p-Value

Intercept 2.015 0.1830
Age −0.044 0.4112
Household income (in thousands) −0.009 0.1742
Number of years married −0.280 0.0043
Education 0.051 0.8058
Model χ2

22.037 0.0002
Hosmer–Lemeshow χ2

14.062 0.0802
AUC 0.704
Pseudo- R1

2 0.116
Pseudo- R2

2 0.160
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subclassification, or stratification, by propensity scores. This approach has the 
advantage that it is easily accomplished using conventional software. The princi-
ple is simple. We begin by dividing the sample up into groups that have approxi-
mately comparable propensity scores. Normally, this would be done by categorizing 
the sample by quintiles (i.e., fifths) of the distribution of propensity scores. 
However, in the current example, this produced propensity-score groups with too 
few cases in either the intended or unintended pregnancy categories. For example, 
the second quintile only had nine in the unintended group, and the fifth quintile 
only had six in the intended group. Therefore, we used terciles (i.e., thirds) instead 
of quintiles to divide up the sample. Table 9.5 shows the cross-classification of 
tercile of the propensity- score distribution with pregnancy status for the 178 moth-
ers in the sample:

As is evident, some of the cells are still a little thin. There are only 15 mothers in 
tercile 1 and 21 in tercile 2 with an unintended pregnancy. But these numbers are 
adequate for our purposes here.

It is always important to examine whether balance has been achieved in model 
covariate distributions for those in the same propensity-score category. Table 9.6 
presents tests of mean differences, once again, for the model covariates, separately 
by tercile of propensity score.

There are no significant differences on the distributions of the model covariates 
for terciles 1 and 2. However, in tercile 3, significant differences obtained for num-
ber of years married and mother’s education, with the intended group being higher 
on both factors. Nevertheless, overall, greater balance across model covariates has 
been achieved by grouping on propensity scores.

Once the terciles (or quintiles or even finer divisions) have been established, the 
procedure is simple. Within each propensity-score category, we examine the mean 
difference in the study endpoint by treatment group. Or, we can do an ANCOVA 
within each propensity-score category, controlling for important model covariates 
(Schafer and Kang 2008). The latter is the strategy used here. In that the number of 
pregnancy stressors was the most important covariate for mother’s depression; we 
regressed depression on pregnancy status and number of pregnancy stressors sepa-
rately for each tercile of propensity scores. The results are shown in Table 9.7, 
where only the effect of an unintended pregnancy is displayed.

It is evident that the coefficient for unintended pregnancy is positive in each ter-
cile, although it is only significant in tercile 2 and marginally so in tercile 3. At this 
point, to combine these separate estimates into an overall effect, we simply calcu-
late a weighted average of them. The proportions of the sample falling into each 

Table 9.5 Crosstabulation of tercile of propensity scores with unintended pregnancy status

Tercile of propensity score Intended pregnancy Unintended pregnancy Total

1 38 15 53
2 33 21 54
3 25 46 71
Total 96 82 178

 Using Propensity Scores
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tercile, which are 0.30, 0.30, and 0.40, respectively, are used as the weights. 
A weighted average of the coefficients is:

 b = + + =0 30 0 624 0 30 2 950 0 40 1 729 1 76. ( . ) . ( . ) . ( . ) . .  

To combine the standard errors, we take a weighted average of the coefficient 
variances (which are just the squares of the standard errors). In this calculation, the 
weights are the squares of the proportions falling into each tercile. The overall stan-
dard error is then the square root of this weighted average (Schafer and Kang 2008). 
The computations are:

 Var = + + =0 30 1 212 0 30 1 074 0 40 0 904 0 3672 2 2 2 2 2. ( . ) . ( . ) . ( . ) . .  

 SE = =0 367 0 606. . .  

Table 9.6 Mean differences on model covariates for those with intended vs. unintended 
pregnancies by tercile of propensity scores

Model covariate
Intended  
pregnancy

Unintended  
pregnancy

p-Value for  
mean difference

1 Tercile
Age 31.026 29.800 0.2351
Household income (in thousands) 86.414 85.500 0.9254
Number of years married 4.790 4.817 0.9672
Education 6.105 6.333 0.3412
Number of pregnancy stressors 5.921 5.733 0.8238
Child is male 0.526 0.400 0.4073

2 Tercile
Age 27.333 28.048 0.3832
Household income (in thousands) 64.886 69.286 0.4789
Number of years married 2.631 2.298 0.2688
Education 5.939 6.191 0.2920
Number of pregnancy stressors 5.121 5.905 0.2919
Child is male 0.485 0.381 0.4538

3 Tercile
Age 24.600 24.043 0.3977
Household income (in thousands) 47.500 39.946 0.1139
Number of years married 1.460 0.899 0.0007
Education 5.920 5.478 0.0353
Number of pregnancy stressors 5.760 6.630 0.2433
Child is male 0.520 0.609 0.4699

Table 9.7 Coefficients for unintended pregnancy effect from ANCOVAs by tercile of propensity scores

Tercile Coefficient Standard error T value p Value

1 0.624 1.212 0.510 0.6091
2 2.950 1.074 2.750 0.0083
3 1.729 0.904 1.910 0.0599
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As DeMaris (2013) has suggested, a test of the unintended pregnancy effect, 
adjusted for propensity scores, is then accomplished with a t statistic. The degrees 
of freedom for t is taken to be the smallest error degrees of freedom from any of the 
individual ANCOVAs, which is 50 in this case. Hence, the test statistic for the effect 
of an unintended pregnancy, controlling for propensity scores, is t = 1.76/0.606 = 2.904, 
with a one-tailed p-value equal to 0.0027. As this is significant, we conclude, once 
again, that an unintended pregnancy elevates mothers’ depression, controlling for 
pregnancy stress, and other covariates.

We have seen here that the propensity-score analysis essentially supports the 
conclusions from the analysis using ANCOVA. Frequently, researchers will double- 
check the robustness of their analyses by using other techniques that are designed to 
address potential pitfalls in the primary analysis. This process of double-checking 
one’s results by performing multiple alternate analyses is referred to as sensitivity 
analysis, and is a staple of medical research.

 Growth-Curve Modeling

In Chap. 8 we discussed survival analysis, in which the time until occurrence of a 
discrete event was the study endpoint. The discrete event in question was considered 
a change from one state (e.g., cancer free) to another (e.g., cancer recurrence). But 
what should we do if, rather than a discrete state, interest centers on the gradual 
change over time in a quantitative variable? The technique of choice in this case is 
variously referred to as growth curve analysis (GCA; e.g., Umberson et al. 2009) or 
the linear mixed model (Green et al. 2009). In this type of study, subjects are mea-
sured on more than one occasion, similar to the case of repeated measures ANOVA 
discussed in Chap. 6. The difference is that the primary explanatory variables are 
quantitative rather than qualitative. This necessitates more of a regression approach 
than an ANOVA strategy.

A simple example of the data scenario is illustrated in Fig. 9.2.
This figure depicts the growth trajectories, or patterns of growth, in a study end-

point (Y) over nine time periods (numbered 0–8) for five subjects. (Note that 
“growth” is a general term for change over time; the change may, in fact, be a 
decline rather than literally “growth” in the response.) Each subject shows a linear 
pattern of change over time. Most exhibit a linear increase in the study endpoint 
over time, although subject 3 shows a linear decrease. Each subject’s growth in Y 
can be characterized by a linear regression equation with an intercept and a slope for 
Time. For example, subject 4 that shows the most pronounced positive growth (and 
is the top line in the figure) has equation:

 Y4 0 45 1 15= +. . .Time  

Subject 3’s growth in Y (represented by the bottom line in the figure) on the other 
hand has equation:

 Y3 0 35 0 15= −. . .Time  

 Growth-Curve Modeling
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In general, any given subject’s growth in Y can be represented by the equation:

 Y a b ei i i i= + +Time ,  (9.4)

where i denotes the ith subject, ranging from 1, 2, … to n, and ei represents the 
error term in the equation. In the simple example here, i ranges from 1 to 5 (and, to 
keep things simple, there are no errors in their regression equations). The i subscript 
on a and on b in (9.4) indicates that the intercept and slope of this equation vary 
from subject to subject, as is evident in Fig. 9.2. Because a and b vary over subjects, 
they are referred to as random growth parameters and are studied just like any other 
individual characteristics.

There are two principal aims in GCA (Singer and Willett 2003). The first is to 
describe the average trajectory in the study endpoint over time. This is the average 
of all the subjects’ trajectories, which is found by simply averaging the intercepts 
and slopes of all subjects in the study. For the example here, the average intercept is 
0.49 and the average slope is 0.45. The line representing the average intercept and 
slope is shown as the heavily shaded line in the middle of Fig. 9.2. The second aim 
is to understand how subject characteristics affect variability around the average 
trajectory. In other words, what explains the variability in individual subjects’ inter-
cepts and slopes? How are these affected by subjects’ attributes?

 Estimating the GCA Model

One way to understand how GCA is accomplished is to see it as consisting of two 
levels of analysis. First, it should be noted that the unit of analysis is not the indi-
vidual subject, but rather the occasion of measurement for a given subject. That is, 
in the simple example above, there are nine occasions of measurement for each of 
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five subjects, for a total of 9 × 5 = 45 units of analysis. We rewrite (9.4) to reflect this, 
using two subscripts for each unit of analysis: one for the subject (i) and one for the 
occasion of measurement (j).

 
Y a b eij i i j ij= + +Time .

 
(9.5)

Equation (9.5) is the first-level equation that describes the nature of Time’s effect 
on the study endpoint. Or, it describes the trajectory in the study endpoint over time. 
At the second level, the individual intercepts and slopes are themselves the study 
endpoints. They are modeled as being influenced by one or more subject character-
istics. For example, suppose that one such characteristic is the subject’s body-mass 
index (BMI):

 
a c d u

b f g w
i i i

i i i

= + +
= + +

BMI

BMI  (9.6)

At this level, we have two regression equations. One is for subjects’ intercepts, 
and the other is for subjects’ slopes. The terms ui and wi represent the error terms in 
these equations. Equations (9.5) and (9.6) can be combined into one composite 
equation. It is in this form, in fact, that it is represented in software packages such 
as SAS. If we simply substitute the mathematical definitions for ai and bi shown in 
(9.6) for the ai and bi in (9.5), we have the composite equation:

 
Y c d f g e u wij i j i j ij i i j= + + + + + +BMI Time BMI Time Time* ( ).

 
(9.7)

Equation (9.7) shows a conventional regression equation for Y that includes main 
effects of both BMI and Time and an interaction between BMI and Time. Notice 
that BMI’s effect on the intercept in (9.6) is shown in (9.7) as its effect on Yij. And 
BMI’s effect on the slope in (9.6) is shown in (9.7) as an interaction between BMI 
and Time in their effects on Yij. That is, the effect of time—the linear trajectory 
itself—depends upon BMI, which is what Eqs. (9.6) are suggesting. We have col-
lected all of the error terms as the parenthetical term in (9.7). This represents a much 
more complex error term than is found in linear regression estimated with ordinary 
least squares. The error term in (9.7) effectively models the complexity of the error 
that arises when the same subjects are measured multiple times on repeated occa-
sions in a given study (Singer and Willett 2003). The Model shown in (9.7) is typi-
cally estimated using maximum likelihood.

 An Example: The Trajectory in Mother’s Depression 
Over Time

In the NAPPS study mothers’ depression was measured in all four waves. Therefore, 
we can examine the trajectory in depression over time, as well as the factors that 
affect that trajectory. To begin, we list the data records of the first four mothers in 
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the dataset. To accomplish the analysis, the data must be in person-period form. 
That is, there must be four data lines for each mother, one for each occasion of mea-
surement. Each individual data line constitutes a unit of analysis for the study. 
Table 9.8 presents the data, as displayed by the software program SAS:

In this table, “Obs” is simply the number corresponding to each unit of analysis. 
“Subjid” is the subject identifier, which ranges here from 1 to 4. “Time” is in num-
ber of months since wave 1 and is coded 0, 4, 7, and 13. “Unintend” is the dummy 
variable for having an unintended pregnancy; all four mothers here had intended 
pregnancies. “M1pgst” is the pregnancy stressor index score. “Moverben” is the 
relative advantage score. “Modepr1–modepr4” are the depression scores for waves 
1–4, respectively (used to create the time-varying depression score). “Depressn” is 
the time-varying depression score that is the study endpoint. We see that the factors 
measured at wave 1—unintend, m1pgst, and moverben—are simply duplicated on 
each of the four records for a given mother. These are referred to as time-invariant 
or between-subjects variables. On the other hand, Time and Depressn both vary in 
value over the four records for each mother. These are the time-varying or within- 
subjects variables in the study. The level 1 model utilizes the time-varying explana-
tory variables to predict the time-varying study endpoint. The level 2 model utilizes 
the time-invariant factors to predict the intercept and slope of the level 1 model. 
These principles were illustrated in (9.5, 9.6, and 9.7), above. Although there are 
178 mothers in the study, a few cases are missing data at later time points. Hence, 
there are a total of 681 units of analysis in the study instead of 178 × 4 = 712. GCA 
is able to utilize all the available information even though some of the units of 
analysis have missing data (Fitzmaurice et al. 2004; Singer and Willett 2003).

Table 9.8 Listing of data lines for the first four mothers in the NAPPS study

Obs subjid time unintend m1pgst moverben modepr1 modepr2 modepr3 modepr4 depressn

1 1 0 0 8 2.12880 5 5 2 3.0000 5
2 1 4 0 8 2.12880 5 5 2 3.0000 5
3 1 7 0 8 2.12880 5 5 2 3.0000 2
4 1 13 0 8 2.12880 5 5 2 3.0000 3
5 2 0 0 11 2.06417 18 11 13 11.0000 18
6 2 4 0 11 2.06417 18 11 13 11.0000 11
7 2 7 0 11 2.06417 18 11 13 11.0000 13
8 2 13 0 11 2.06417 18 11 13 11.0000 11
9 3 0 0 5 3.39800 8 6 11 7.0000 8
10 3 4 0 5 3.39800 8 6 11 7.0000 6
11 3 7 0 5 3.39800 8 6 11 7.0000 11
12 3 13 0 5 3.39800 8 6 11 7.0000 7
13 4 0 0 5 −1.58919 7 1 3 2.0000 7
14 4 4 0 5 −1.58919 7 1 3 2.0000 1
15 4 7 0 5 −1.58919 7 1 3 2.0000 3
16 4 13 0 5 −1.58919 7 1 3 2.0000 2
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Figure 9.3 shows the average trajectory in depression for the NAPPS mothers.
We see in this instance that the trajectory is not linear. It declines in a nonlinear 

fashion until about month 7, at which point it begins to rise again. How should we 
model this? It turns out that this type of pattern can be very effectively represented 
by including both Time and its square (i.e., Time2) in the level 1 model. Models that 
include both X and X2 are referred to as quadratic models. They will typically “fit” 
any type of curve characterized by just one bend, as in Fig. 9.3 (Singer and Willett 
2003). Hence, the level 1 model has Time and Time2 affecting mothers’ depression. 
For the level 2 model, we will allow unintended pregnancy and the number of preg-
nancy stressors to affect the level-1 intercept. On the other hand, we will allow only 
the number of pregnancy stressors to affect the slopes of Time and Time2. (The effect 
of an unintended pregnancy on these slopes was not significant.) This means that 
time will interact with pregnancy stress in its effect on mothers’ depression. Or, the 
trajectory of mothers’ depression over time will depend on how stressful their preg-
nancy was. In this analysis, only the level 1 intercept was specified as a random 
parameter, varying over subjects. There was not enough variability in the slopes of 
Time and Time2 over subjects to also specify them as random parameters. Table 9.9 
shows the results of estimating this GCA.
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Fig. 9.3 Trajectory of mean 
depression over time for 
mothers in the NAPPS study

Table 9.9 Linear mixed 
model estimates for trajectory 
of mean depression over time 
for mothers in the NAPPS 
study

Explanatory variable b p-Value

Intercept 8.044 <0.0001
Time −0.779 <0.0001
Time2 0.044 <0.0001
Unintended pregnancy 1.555 0.0007
Number of pregnancy stressors 0.506 <0.0001
Time × number of pregnancy stressors −0.077 0.0021
Time2 × number of pregnancy stressors 0.006 0.0007
R2 0.220
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All factors in the model are quite significant, and the model accounts for about 
22 % of the variance in mothers’ depression over time. The intercept is the esti-
mated average depression score at the initial survey (i.e., wave 1) for mothers with 
scores of 0 on all predictors. Hence, for mothers in wave 1 with intended pregnan-
cies and no pregnancy stressors, average depression is estimated to be 8.044. The 
pattern over time is shown as a negative effect of Time and a positive effect of 
Time2. This implies a negative linear trend that is becoming more and more positive 
over time. This is easily seen by examining the slope for Time for mothers reporting 
no pregnancy stressors. That slope is −0.779 + 2(0.044) Time, which is −0.779 + 0.088 
Time (the slope for the effect of X in y a bX cX= + + 2 , by rules of calculus, is 
b + 2cX). That is, it is a function of Time itself. At Time 0 the slope is estimated to 
be −0.779 + 0.088(0) = −0.779. At Time 4, the slope is −0.779 + 0.088(4) = −0.427. 
At Time 8.85, the slope is −0.779 + 0.088(8.85) = −0.0002 (i.e., approximately zero). 
At Time 12, the slope is −0.779 + 0.088(12) = 0.277; and so forth. This nonlinear 
effect of time is indicating that the effect of passing time on mothers’ average 
depression is curvilinear. At first, passing time diminishes depression, but this 
becomes a smaller and smaller effect over time. After sufficient time, there is once 
again an increase in depression with passing time. An unintended pregnancy is asso-
ciated with an average depression score that is about 1.5 units higher at any given 
time, compared to the scores for mothers with intended pregnancies. Initially, the 
number of pregnancy stressors elevates average depression by about a half of a unit 
for each additional stressor. But it also significantly changes the trajectory in depres-
sion, since it interacts with both Time and Time2.

To see this, regard Fig. 9.4. It compares the estimated trajectories in depression 
for two types of mothers, based on the model in Table 9.9. The first type has an 
unintended pregnancy and a pregnancy stressor index that is two standard devia-
tions below the mean index score. These are referred to as the “low pregnancy 

0 2 4 6 8 10 12 14
3

4

5

6

7

8

9

10

11

12

13

Time in Months

M
ea

n 
D

ep
re

ss
io

n 
S

co
re

Low Pregnancy Stress
High Pregnancy Stress

Fig. 9.4 Fitted trajectories of 
mean depression for NAPPS 
mothers under low vs. high 
pregnancy stress based on 
model in Table 9.9

9 Other Advanced Techniques



181

stress” mothers. The second type has an unintended pregnancy but a pregnancy 
stressor index that is two standard deviations above the mean index score. These are 
the “high pregnancy stress” mothers.

The pattern shown is referred to as a nonlinear interaction effect (DeMaris 2004). 
This means that there is a different nonlinear trend in each group. It is clear that the 
trajectories take on different shapes, depending on the level of pregnancy stress. For 
low-stress mothers, there is an almost linear decline in depression over the follow- up 
period. But for high-stress mothers, the pattern is much more curvilinear. Depression 
declines in a nonlinear fashion to about month 7, and then begins a marked rise to 
the end of the follow-up period. Apparently, a stressful pregnancy has deleterious 
consequences for mothers’ mental health even up to a year after the birth.

 Fixed-Effects Regression Models

With the final technique discussed here, we come full circle and address an issue 
alluded to in Chap. 1. Recall the meat diet and PSA study in which we found that 
those on a meat diet had a higher average PSA level than those on a balanced diet. 
We noted that if men were not randomly assigned to each diet, then this finding 
could be confounded by a latent selection factor. Figure 9.5 shows the scenario, as 
depicted by Fig. 1.1:

The figure suggests, as noted in Chap. 1, that the positive “effect” of a meat diet 
on PSA level is completely caused by the negative association of a meat diet with 
health awareness and the negative effect of health awareness on PSA level. We fur-
ther assume that health awareness is not measured in our study, so how can we 
control for it? It turns out that the influence of health awareness in the meat diet- 
PSA level association can be eliminated if a few conditions are satisfied. First, we 
have observations on men for at least two different points in time. Second, the level 
of a man’s health awareness is a stable trait that does not change over time. Third, 
the effect of health awareness on PSA level is also stable and does not change over 
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Fig. 9.5 Health awareness  
as an unmeasured confound 
in the meat diet-PSA level 
relationship (from Chap. 1)
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time. If these conditions are met, health awareness can be controlled, even though it 
is not measured. It sounds like magic. But it’s based on simple mathematics. Let 
HAi be the health awareness level for the ith man and MDij be the dummy variable 
for being on a meat diet (MDij = 1) or not (MDij = 0) at a given time, j. The other 
condition that is required is that there be variation over time in men’s diets. That is, 
a sufficient number of men have to switch diets over time from meat to balanced, or 
vice versa. Let PSAij be the ith man’s PSA level at time j. PSA levels typically do 
fluctuate over time. Further, suppose we have two times on which men are observed, 
so that j = 1 and 2. Then we can write the equation for PSA level as a function of 
meat diet and health awareness at each time point:

 PSA MD HAi i i ia b e1 1 1 1= + + + ,  (9.8)

 PSA MD HAi i i ia b e2 2 2 2= + + + .  (9.9)

Notice that the effect of a meat diet on PSA level, b, is presumed to be the same 
at each time point. This, however, is an assumption that can be tested (as we show 
below). It is also important to note that meat diet is presumed to have a causal effect 
on PSA level. Since they are both measured at the same time point at each observa-
tion period, the causal priority of meat diet cannot be established based on its chron-
ological precedence. (Because a cause must precede an effect in time, were meat 
diet measured at an earlier time than PSA, its causal priority over PSA could be 
argued on that basis.) HAi here is referred to as a fixed effect. A fixed effect is any 
unmeasured characteristic in our model that is correlated with one or more of the 
other predictors (Allison 2005, 2009; Wooldridge 2002). Notice also that HAi has 
no j subscript because it does not change over time. Its effect, which is 1, is also the 
same at each time point, as per our required conditions. At this point, we simply 
subtract (9.8) from (9.9) to arrive at (9.10):

 PSA PSA MD MDi i i i i ia a b e e2 1 2 1 2 1 2 1− = − + − + −( ) ( ) ( )  (9.10)

In this final equation, the fixed effect, HAi, has been eliminated. We say that it 
has been “differenced away,” and this differencing technique is referred to as the 
first-differenced estimator of the fixed-effects model (Wooldridge 2002). What is 
left in (9.10) is simply the effect of a meat diet, in the form of the effect of the 
change in meat-diet status over time (and it is obvious why meat-diet status must 
change over time for at least some men: otherwise this variable would equal zero for 
everyone). The response in (9.10) is similarly the change in PSA level over time. 
The intercept is the difference in intercepts between (9.9) and (9.8). But it is also the 
average change over time in PSA level, controlling for diet. The key to (9.10) is that 
the causal effect of meat diet on PSA level at each time, shown in (9.8) and (9.9), is 
the same b that is estimated by (9.10). Therefore, estimating (9.10) using ordinary 
least squares regression provides an unbiased estimate of that causal effect, free 
from the influence of the unmeasured confound.
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 An Example: Marital Conflict and Mothers’ Depression

Once again, we draw on data from the NAPPS study to examine the effect of marital 
conflict on mothers’ depression. Conflict between spouses is a stressor that appears 
to elevate depressive symptomatology, and more so in wives than husbands 
(DeMaris 2004). We presume at the outset that it is marital conflict that causes 
mothers’ depression, and not the other way around. In NAPPS, the marital conflict 
score is the average of husbands’ and wives’ reports of the frequency of having both 
minor and major arguments. Each spouse’s answer regarding each level of argu-
ments is coded from 1 (“once a year or less”) to 6 (“just about every day”). A higher 
score on the scale reflects more frequent arguments. Table 9.10 shows the effect of 
marital conflict on mothers’ depression at the first and third waves of the study. 
These results are arrived at via linear regression models run separately for each 
wave of data. An unintended pregnancy and the pregnancy stressor index are 
included in the models as control variables.

To begin, the intercept for the wave 1 regression is substantially higher than the 
intercept for wave 3. This suggests that, net of other factors, average depression is 
higher at wave 1, during the third trimester of pregnancy. Marital conflict indeed has 
the expected significant positive effect on mothers’ depression, controlling for an 
unintended pregnancy and pregnancy stress. Each unit increase in marital conflict 
raises average depression by anywhere from a half to almost two-thirds of a unit. As 
before, both an unintended pregnancy and pregnancy stress also add significantly to 
the depression level. Although these findings make substantive sense, it is unclear 
whether the coefficient for marital conflict represents a causal effect. Could it be sim-
ply that poorer-quality marriages are characterized by greater conflict and also lead to 
higher levels of the wife’s depression? Figure 9.6 depicts this alternative scenario:

This model suggests that the positive relationship between conflict and depres-
sion is being driven by unmeasured marital distress. That is, marital distress is asso-
ciated with greater conflict and, at the same time, precipitates greater depression in 
wives. It is entirely possible that once marital distress is controlled, conflict has no 
effect on depression. For this reason, the path from conflict to depression is shown 
with a question mark.

Table 9.10 Cross-sectional regression models for the effect of marital conflict on mothers’ depression

Explanatory variable

Wave 1 Wave 3

b p-Value b p-Value

Intercept 5.247 <0.0001 1.287 0.1516
Marital conflicta 0.489 0.0022 0.621 <0.0001
Unintended pregnancyb 1.544 0.0083 1.561 0.0035
Number of pregnancy stressorsb 0.451 <0.0001 0.286 0.0026
a Measured in each wave
b Measured in wave 1, only
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Table 9.11 presents the fixed-effects regression analysis results. The change in 
mothers’ depression from wave 1 to wave 3 is regressed on the change in marital 
conflict from wave 1 to wave 3, along with the two control variables.

Once again, we regard the intercept first. It suggests that, net of other factors, 
there is an average drop of about 3 units in mothers’ depression over time. We see 
that the effect of marital conflict has been reduced slightly, but is still significant 
(p = 0.0421) and positive. The results suggest that, controlling for an unintended 
pregnancy and pregnancy stress, each unit increase in conflict adds about four- 
tenths of a unit to average depression. Thus, it appears that the effect of conflict is 
not just an artifact of its correlation with an underlying stable characteristic of the 
couples that also affects depression. This finding lends support to the proposition 
that marital conflict elevates mothers’ depression level. Nevertheless, there is a 
caveat: this analysis only controls for unmeasured couple (or mother) characteris-
tics that are stable over time and have stable effects on depression. Should there be 
an unmeasured characteristic that does not exhibit these conditions, it could still be 
driving the results.

We notice that the two control variables are very nonsignificant, despite both being 
very significant in the separate regressions by study wave. In fact, the presence of 
time-invariant controls such as these in the model is not necessary. Just as the differ-
encing of (9.9) and (9.8) eliminated any stable unmeasured confound, it also elimi-
nates time-invariant factors that have unchanging effects on the response. Since both 
unintended pregnancy and pregnancy stress were measured in wave 1, they necessar-
ily exhibit no change in value at wave 3. Also, as long as they have the same effect on 
wave 3 depression as on wave 1 depression, they both have stable effects on the 

marital conflict her depression?

marital distress

+ +

Fig. 9.6 Diagram of marital 
distress as a Fixed Effect 
Confounding the Marital 
Conflict-depression 
Association

Table 9.11 Fixed-effects 
regression via the first- 
differenced estimator for the 
effect of marital conflict on 
mothers’ depression

Explanatory variable b p-Value

Intercept −3.195 <0.0001
Difference in marital conflicta 0.411 0.0421
Unintended pregnancyb 0.017 0.9757
Number of pregnancy stressorsb −0.150 0.1268
a Measured as wave 3 conflict–wave 1 conflict
b Measured in wave 1, only
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response. Therefore, they are differenced away by the subtraction that produced 
(9.10) in the same way that HAi was eliminated. Nevertheless, they are controlled for, 
just as HAi is controlled in this analysis. However, if their effects on conflict were dif-
ferent in wave 3 compared to wave 1, then they would not be differenced away and 
they would appear in (9.10). In that scenario, the effect of each control on depression 
would be different, depending on the time of measurement of depression. Or, each 
control would interact with Time in its effect on depression. Including the two con-
trols in (9.10) is therefore a way of testing whether such interactions obtain. The 
results shown in Table 9.11 indicate that there are no such interaction effects. In other 
words, the assumption that these two control variables have invariant effects on 
depression over time appears to be supported. Whether the effect of conflict on 
depression is the same at each time point—an assumption of fixed-effects regres-
sion—can also be easily tested. One simply includes wave 1 conflict in (9.10), along 
with the change in conflict. A test for the significance of the coefficient of wave 1 
conflict in that equation is a test for the change in the effect of conflict across time 
periods (Allison 2005). When that was performed (not shown), it turned out to be 
nonsignificant. Hence, there is no evidence to suggest that the effect of conflict on 
depression is different at each time period. As a final comment, fixed-effects regres-
sion analysis is not the only technique for controlling an unobserved confound. 
However, the complexity of other techniques renders them somewhat beyond the 
scope of the present primer (see, e.g., DeMaris 2012, for two other such techniques).

 Applications

In this section of the chapter, we illustrate several applications of the aforemen-
tioned techniques that have appeared in the medical literature in recent years.

 Poisson Regression

We have already discussed the study by Rosenfeld and colleagues (2012) above. 
Here, we revisit that study and consider its results. Cystic Fibrosis (CF) is a debili-
tating and potentially fatal illness with particularly pernicious consequences for 
young children. The authors note the primary difficulty engendered by the disease 
(p. 2269):

Dysfunctional ion transport leads to reduced airway surface liquid volume in CF and reduc-
tion in mucociliary clearance. Retained mucus serves as a nidus for chronic infection and 
exaggerated, sustained neutrophilic inflammation, resulting in progressive air- way obstruc-
tion and bronchiectasis. Hypertonic saline has been demonstrated to increase airway sur-
face liquid in bronchial epithelial cells in vitro and to improve defective mucociliary 
clearance in patients with CF.

 Applications
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To examine the efficacy and safety of hypertonic saline inhalation in patients 
under 6 years old with CF, the authors conducted a 30-center randomized clinical 
trial. Children aged 4–60 months with a confirmed diagnosis of CF were randomly 
assigned to inhale either 7 % hypertonic saline (treatment group) or 0.9 % isotonic 
saline (control group) twice daily for 48 weeks. The primary outcome was the num-
ber of pulmonary exacerbations over the observation period of up to 48 weeks 
(some children were not observed for this entire follow-up period). The authors 
couch the study endpoint as (p. 2270) the “rate of pulmonary exacerbations,” since 
they control for the observation time for each child as an offset. In their own words 
(pp. 2271–2272):

The primary outcome, pulmonary exacerbation rate, was compared between groups accord-
ing to intent-to treat principles using a Poisson log-linear regression model with the log of 
observation time as an offset. Observation time was defined as time since randomization to 
last in-clinic visit or follow-up telephone call. (One participant’s observation time was 
defined to be one-half day, because he or she did not have an in-clinic visit or follow-up 
telephone call after randomization.) The rate ratio was also analyzed with adjustment for 
age category and site.

The authors refer to the model as a “log-linear” regression because, as we saw 
above, the log of the mean count is the response variable. And this is modeled as a 
linear function, or formula, involving the independent variables. We see that obser-
vation time, which was the number of weeks that the children were under observa-
tion in the study, was used as the offset here. The authors describe the dependent 
variable in the last sentence as the “rate ratio,” because, again as we have seen 
above, using an offset implies that one is studying the rate of event occurrence. Age 
category, coded as less than 30 months vs. 30 months or more, and site were 
employed as covariates in the model.

Ultimately, the authors found no significant effect on the exacerbation rate for 
treatment with hypertonic saline, as opposed to the control condition. They detail 
their results in the following passage (p. 2273):

The pulmonary exacerbation rate was 2.3 (95% CI, 2.0-2.5) per person-year among partici-
pants randomized to receive hypertonic saline and 2.3 (95% CI, 2.1-2.6) per person-year 
among participants randomized to receive isotonic saline. The ratio of the mean pulmonary 
exacerbation rate in the hypertonic saline group compared with the isotonic saline group 
was 0.97 (95% CI, 0.83-1.13).

The pulmonary exacerbation rate is couched in terms of person-years in each 
study group. Children, on the other hand, were followed for at most 48 weeks—not 
quite a year. No matter. It is a simple matter to convert the exacerbation rate over 48 
weeks to 1 that is over a year by multiplying it by the ratio 48/52. So suppose the 
average number of exacerbations in, say, the hypertonic saline group was 119.6. It 
turns out that mean duration of study participation for this group was 47 weeks 
(Rosenfeld et al. 2012). So the average exacerbation rate in this group was 
119.6/47 = 2.545 per 47-week period. Converted to a 52-week period, the rate is 
2.545 (47/52) = 2.3. Notice that the authors refer to “the ratio of the mean pulmonary 
exacerbation rate” for treatment vs. control groups. This is simply the exponentiated 
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coefficient for the treatment effect. That is, the effect of treatment with hypertonic 
saline in the Poisson regression model was −0.03. Therefore, the multiplicative 
impact of treatment on the mean exacerbation rate, itself, was then exp(−0.03) = 0.97. 
As the 95 % confidence interval for this effect contains 1, indicating no effect, this 
effect is clearly nonsignificant.

 Propensity-Score Analysis and Multiple Imputation

Wahbi and colleagues (2012) conducted a retrospective study of patients suffering 
from Steinert disease, also known as myotonic dystrophy type I (DM1). According 
to the authors, DM1 is the most common inherited neuromuscular disease in adults. 
Up to one-third of patients with DM1 succumb to sudden death due to progression 
of conduction-system disease leading to complete atrioventricular block (Wahbi 
et al. 2012). The objective of the study was to assess the difference in survival rates 
for patients treated with an invasive, vs. a noninvasive, strategy for this disease. The 
authors retrospectively identified 914 consecutive patients over the age of 18 from a 
French hospital who were admitted between January 2000 and December 2009 for 
management of DM1. Patients were divided into two groups based on their treat-
ment. The invasive strategy group consisted of all patients undergoing a systematic 
electrophysiological study followed by the implanting of a pacing device. The non-
invasive strategy group included patients who underwent neither of these treat-
ments, but were simply subjected to regular surveillance. The principal endpoint of 
the study was the overall survival probability. Survival analysis was conducted with 
the Cox proportional hazards model, with adjustment for potential confounding 
covariates. The authors employed propensity-score adjustments to these analyses. 
In the following passage, they explain their reasoning (p. 1294):

Because this was an observational study, a propensity score–based approach was used to 
limit the biases of between-group comparisons. The propensity score is the probability that 
a patient with specific baseline characteristics would receive an experimental intervention 
(in this case, the invasive strategy). Two patients with identical propensity scores included 
in the invasive strategy group and in the noninvasive strategy group could be considered 
randomly assigned to each group, and conditioning on the propensity score theoretically 
leads to unbiased estimates of between-group differences. We computed the propensity 
score using logistic regression, in which the comparison between the invasive strategy 
group and the noninvasive strategy group was the dependent variable and the baseline char-
acteristics were the independent variables.

The propensity scores were incorporated into the Cox regression in a number of 
alternate ways, following the principle of conducting a sensitivity analysis. For 
example, in one analysis, they were divided into quintiles and these were employed 
as covariates in the model, with or without other covariates. In another analysis, the 
raw propensity score was employed in the model as a quantitative covariate. In yet 
a third strategy, patients were matched on their propensity scores, and the Cox 
model was run with adjustment for the correlation “within matched sets” (p. 1298).
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The authors also resorted to replacing missing data with multiple imputation. 
As they explain (pp. 1294–1295):

The missing data on vital capacity for 60 patients, size of CTG amplification for 38 patients, 
left ventricular ejection fraction for 11 patients, PR interval for 10 patients, and QRS dura-
tion for 5 patients were handled through multiple imputations using the chained equations 
method, taking into account the baseline mortality hazard. The 30 independent, imputed 
data sets that were generated were analyzed separately. Estimates of the model variables 
were then pooled over the 30 imputations (according to the rule by Rubin and Schenker) to 
present single estimates and standard errors for each variable.

In this particular case, the authors generated 30 different imputed datasets and 
then combined the Cox estimates from all 30 analyses into one set of estimates and 
standard errors. The “chained equations method” is a particular estimation tech-
nique for arriving at the imputed values.

Ultimately, all analyses showed a distinct advantage of the invasive treatment 
over the noninvasive strategy. Hazard ratios for the overall hazard of death favored 
the invasive-strategy group and ranged from 0.47 to 0.61, depending on how propen-
sity scores were incorporated into the analysis. As the authors acknowledge (1298), 
this translates into an 11.3–16.9 % higher probability of survival at 9 years that is 
associated with the invasive strategy. The hazard of sudden death was also 75 % 
lower in the invasive-strategy group, compared to the noninvasive-strategy group.

 Growth-Curve Analysis I

Hewitt and Turrell (2011) investigated the consequences for psychological and 
physical health of marital separation. They theorized that the spouse who initiated 
the separation would have more feelings of control over the process. This increased 
control would then serve to mitigate the negative consequences of the marital dis-
ruption. They therefore hypothesized that (a) those who separate would have worse 
physical and mental health than those who remained married, and (b) among the 
separators, the initiators would fare better than others. Their data came from a lon-
gitudinal Australian population survey in which a sample of 1,786 men and 2,068 
women in their first marriages were followed from 2001 to 2007. There were seven 
waves of the survey conducted at yearly intervals. Their primary explanatory vari-
able, marital status, was coded into four categories: stable marriage, self-initiated 
separation, partner-initiated separation, and jointly initiated separation. Eight 
dimensions of physical and mental health constituted the study endpoints. These 
were all derived from a set of items referred to as the SF-36 on the survey question-
naire. One such outcome was referred to as “general health (overall personal 
health)” (Hewitt and Turrell 2011, p. 1310).

The analytic technique the authors employed was a growth-curve approach with 
only the intercept in the equation as a random growth parameter (as in our NAPPS 
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example, above). Other nuances of their strategy can be seen in the authors’ descrip-
tion of their statistical model (pp. 1310–1311):

Changes in physical and mental health with marital separation were examined using a series 
of linear random intercept models. This modeling approach accounts for the clustering of 
observations within persons and has the capacity to handle unbalanced panel designs 
(inconsistent numbers of observations per person)…Secondly, we included 1-year lag mea-
sures for health in each of the models of the 8 dimensions of the SF-36. The lagged health 
measures indicated the participant’s health status in the previous wave, which allowed us to 
take into account the effect of prior health status on current health status. This also helped 
us control for unobserved heterogeneity between individuals and reduced the potential for 
reverse causality (i.e., the possibility that poor health caused the marital transition).

The technique is described as a “linear random intercept” model, i.e., a linear 
mixed model with just the intercept as a random growth parameter. This model is 
described as allowing for the “clustering of observations within persons.” This 
refers to the fact that people are repeatedly surveyed over time. Therefore, each 
person is contributing seven observations, or cases, to the dataset. Since these are all 
from the same person, they are said to be “clustered” within the person. This situa-
tion creates a more complicated equation error that is nicely accommodated using 
linear mixed modeling. The design is said to be “unbalanced,” due to the fact that 
some years of data are missing for some of the participants. Therefore, not everyone 
is contributing the same number of observations to the dataset. Finally, including 
the 1-year lagged version of the health measure in the analysis of any given health 
measure is described as assisting in the control for “unobserved heterogeneity.” This 
term refers to an unobserved, or unmeasured, confounding variable that could skew 
results. A model that includes a lagged version of Y as an explanatory variable is 
referred to as an autoregressive model, and also helps to control for reverse causa-
tion. With this approach, the effects of other explanatory variables can be shown to 
be the effects on the change in Y over time. This provides some assurance that it is 
not simply the case that unhealthier people at any given time are more prone to sepa-
ration than others and are also unhealthier than others at a subsequent time period.

The authors’ hypotheses were generally confirmed. For example, Fig. 9.7 
(Figure 4 in the article) depicts the change over time in general health for women 
respondents:

The authors’ description of these results is (p. 1312): “Women whose partner 
initiated separation had significantly lower levels of general health (−5.39) than 
women who self-initiated separation, and this gap widened over time (Figure 4).” 
This pattern is evident in the figure: The dash-dot line, representing partner-initiated 
separation, begins to fall below the solid line, representing self-initiated separation, 
in the year before the separation. And this gap grows ever wider over time. Curiously, 
the general health of those who either self- or jointly initiated the separation becomes 
increasingly better than that of the stably married women over time. However, this 
gap may not be significant, as the authors do not highlight this finding. Although the 
figure is not shown, findings were similar for men (p. 1312): “…men who self- 
initiated separation had improved general health in comparison with stably married 
men (4.85). Men whose partner initiated separation had significantly worse general 
health than men who self-initiated separation (−5.28).”
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 Growth-Curve Analysis II

Another example of the linear mixed model comes from the work by Green and 
associates (2009). Their interest was in assessing the efficacy of tarenflurbil to slow 
the rate of cognitive decline in patients with mild Alzheimer disease (AD). 
Tarenflurbil is a selective Amyloid-β peptide (Aβ42) lowering agent. As the authors 
note (p. 2557), “In mouse models of AD, tarenflurbil prevents learning and memory 
deficits and reduces Aβ42 brain concentrations.” The authors conducted a random-
ized, double-blind study to compare tarenflurbil with placebo for 18 months at 133 
participating trial sites. The sample consisted of patients with mild AD severity and 
included 809 in the placebo group vs. 840 in the tarenflurbil group. The latter 
received 800 mg of the drug twice daily (Green et al. 2009). The authors describe 
the primary study endpoints 2558:

Co-primary efficacy outcomes were cognition as assessed by the Alzheimer Disease 
Assessment Scale–Cognitive Subscale (ADAS-Cog, 80- point version) and functional abil-
ity as assessed by the Alzheimer Disease Cooperative Study activities of daily living 
(ADCS-ADL, 78-point scale).

Although not articulated in this chapter, higher scores on the ADAS-Cog reflect 
a decline in cognitive ability. Lower scores on the ADCS-ADL, on the other hand, 
indicate a decline in activities of daily living.

In the following passage (p. 2559), the authors detail their statistical strategy, a 
combination of ANCOVA with the linear mixed model:

The primary analysis was performed on changes from baseline to month 18 in total score for 
ADAS-Cog and ADCS-ADL. Slopes of total scores for both scales were evaluated as a 
secondary outcome…. Change-from-baseline analyses were conducted using an analysis of 
covariance model with treatment group, clinical site, and current use of acetylcholinesterase 
inhibitor, memantine, or both as fixed effects with the baseline score as the covariate. 

Fig. 9.7 Predicted mean Short Form 36 general health scores for women who separated (self- 
initiated, partner-initiated, and jointly initiated) relative to those who remained married, HILDA 
Survey, waves 1–7 (2001–2007). HILDA, Households, Income and Labour Dynamics in Australia. 
Reprinted with permission of Oxford University Press from Hewitt and Turrell (2011)
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The slopes analyses were conducted using a repeated measures linear mixed model, with 
random intercepts and slopes, baseline score and time as covariates, factors for treatment 
group, clinical site, and current use of acetylcholinesterase inhibitor, memantine, or both, and 
a term for treatment group x time interaction. Time was treated as a continuous variable.

Let’s “deconstruct” this description. The first analytic technique mentioned was 
an ANCOVA in which the outcome—ADAS-Cog, say—was regressed on treatment 
group, baseline ADAS-Cog, and covariates. The effect of treatment in such a model 
is synonymous with its effect on the change in the outcome from baseline. For 
example, the change that comes closest to being significant was the change from 
baseline to month 15 (Table 2, p. 2562): 5.91 for the tarenflurbil group vs. 5.11 for 
placebo (p = 0.097). In this instance, the tarenflurbil group showed more of a cogni-
tive decline at month 15, but the difference was not significant.

The second technique is described as a “repeated measures linear mixed model,” 
i.e., a linear mixed model. Using the term “repeated measures” stresses that it is a 
growth-curve model, since the linear mixed model has other applications. Any situ-
ation involving units of analysis that are clustered within larger units is appropriate 
for this type of model. So this model could be used if we studied families (different 
family members are clustered within each family), schools (different children are 
clustered within each school), and so on (Raudenbush and Bryk 2002). In this 
model, as well, the baseline outcome is included as a covariate. Time in months was 
employed as the time factor, and the intercept and slope of the effect of time are both 
specified as random growth parameters. Moreover, an interaction is allowed between 
treatment group and time, similar to the interaction of number of pregnancy stress-
ors and time in the NAPPS example above (see Table 9.9 and Fig. 9.4). From Table 
2 of the study (p. 2562), the slope of the effect of time on the ADAS-Cog was 5.22 
for tarenflurbil and 5.06 for placebo (p = 0.69). The slope of time’s effect on the 
ADCS-ADL was −7.12 for tarenblurbil and −7.08 for placebo (p = 0.95). These 
results were disappointing. As the authors noted (pp. 2561–2562): “Tarenflurbil did 
not slow cognitive decline or loss of ADLs in patients with mild AD nor did any 
secondary outcome measure or post hoc analysis favor tarenflurbil.”

 Fixed-Effects Regression

A nicely articulated example of the fixed-effects regression model comes from the 
article by Duncan and Rees (2005). The authors were interested in reevaluating the 
potential causal effect of cigarette smoking on depressive symptomatology. 
Although a strong association between the two had been shown in prior studies, the 
authors argue that the association may not be causal. They suggest that an underly-
ing environmental or genetic factor could predispose individuals to both smoking 
and depression. The point of the study, in their words, was (p. 461):

In order to explore the role played by difficult-to-measure environmental and genetic influ-
ences potentially correlated with both smoking and depression, we compare estimates from 
standard regression models, which can be thought of as providing “naïve” estimates of the 
effect of smoking on depression, with fixed effects estimates that completely control for 
time-invariant factors.
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That is, the authors propose to compare ordinary least squares regression esti-
mates (i.e., standard linear-regression results) of the effect of smoking on depres-
sion, with those from fixed-effects regression models. As outlined above, the latter 
control for any time-invariant attribute having a time-invariant effect on depression 
that might be responsible for the smoking-depression association.

The authors use data from the National Longitudinal Study of Adolescent Health. 
This is a stratified random sample of students in all high schools with more than 30 
students in the USA. Wave 1 of the study was conducted in 1995; the same students 
were resurveyed approximately a year later (wave 2). A total of 13,068 students 
were in the analysis, 6,320 males and 6,748 females. Smoking status was captured 
with two variables: a dummy variable for whether the student was a smoker at each 
wave, and the number of packs per month smoked. Depressive symptomatology was 
measured with the aforementioned CES-D; the authors employed 18 of the total 20 
items originally included in the scale. In the following passage (pp. 462, 464), the 
authors explain the advantage of the fixed-effects approach (where π1 and π2 repre-
sent the effects on depressive symptomatology in wave 2 of, respectively, being a 
smoker and the number of packs smoked per month, each assessed in wave 1):

Estimating equation 1 using ordinary least squares will produce unbiased estimates of π1 
and π2 if the error term, εi, t = 2, is uncorrelated with smoking behavior. However, if unob-
servable environmental or genetic factors are correlated with both the CES-D score at fol-
low- up and smoking behavior, then ordinary least squares estimates will be biased. 
Furthermore, because the baseline CES-D score is not included as an explanatory variable 
in equation 1, this approach is subject to a problem of reverse causality: That is, if preexist-
ing depression leads to smoking at baseline, then it is inappropriate to interpret ordinary 
least squares estimates of π1 and π2 as the effect of smoking on depressive symptomatology. 
We address these problems by taking fuller advantage of the longitudinal nature of the 
Adolescent Health data by modifying equation 1 to include individual-specific intercepts, 
often called “fixed effects.”

The findings from the ordinary least squares regression are shown in Table 9.12 
(only the smoking variables and four of the six baseline (i.e., wave 1) controls are 
shown):

Here, it is clear that being a smoker at baseline is significantly (since the 95 % CI 
does not contain zero) associated with higher depressive symptomatology for both 
males and females. We see that the number of monthly packs smoked is associated 
with higher depressive symptomatology for females, but not males. Of the controls, 
having a disability, being older (vs. being 11–13 years old), being Black, being 
Hispanic, being of an “other” race/ethnicity, receiving welfare (for males), and hav-
ing an alcoholic parent (for females) are all associated with greater depressive 
symptomatology.

Table 9.13 presents the fixed-effects regression results:
We see in the table footnote that each student contributes two observations to the 

study: their data from wave 1 and their data from wave 2. Thus, the sample sizes for 
males and females are double what they were in the linear regression analysis (i.e., 
6,320 × 2 = 12,640 and 6,748 × 2 = 13,496). The comment about age refers to the fact 
that the time interval between waves 1 and 2 was not exactly the same for each stu-
dent. If it were, then the differencing process that eliminates the fixed effects would 
include the difference wave 2 age–wave 1 age in the model. However, this would be 
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the same constant for every student. For example, if there were exactly 12 months in 
between waves for every student, then the age difference would be 12 for everyone. 
A variable like this that exhibits no variability among respondents would be auto-
matically excluded from the regression. That age can be included here is due to the 
varying follow-up time intervals for students. The phrase “All other baseline control 

Table 9.12 Ordinary least squares regression results showing the effect of baseline smoking on 
the Center for Epidemiologic Studies Depression Score at Follow-up, by Gender, National 
Longitudinal Study of Adolescent Health, 1995–1996 [Reprinted with permission of Oxford 
University Press from Duncan and Rees (2005)]

Males Females

Marginal effect 
(increased score)

95 %  
confidence  
interval†

Marginal effect 
(increased score)

95 %  
confidence 
interval†

Smoker at baseline 2.85 2.01, 3.68 2.92 2.14, 3.71
Packs per month at baseline 0.06 –0.046, 0.057 0.06 0.0004, 0.116
Baseline controls Disability 3.03 1.26, 4.81 3.97 1.55, 6.38
Age (years)

14–15 1.55 0.85, 2.24 1.70 1.07, 2.32
16–17 1.67 0.91, 2.43 1.52 0.90, 2.13
≥18 3.17 2.03, 4.32 1.87 0.52, 3.23

Race/ethnicity variables
Black 1.88 1.14, 2.63 2.00 1.12, 2.87
Other 1.52 0.55, 2.49 1.87 0.82, 2.92
Hispanic 0.93 0.06, 1.79 1.59 0.43, 2.75

Household variables
Two-parent home 0.11 –0.57, 0.79 –0.29 –0.92, 0.33
Welfare receipt 1.20 0.33, 2.08 0.88 –0.33, 2.09
Alcoholic parent 0.11 –0.64, 0.85 1.16 0.38, 1.93

Table 9.13 Fixed-effects regression results from the Duncan and Rees Study. Reprinted with 
permission of Oxford University Press from Duncan and Rees (2005)

Males Females

Marginal effect 
(increased score)

95 %  
confidence 
interval

Marginal effect 
(increased score)

95 %  
confidence  
interval

Smoker  0.66 0.28, 1.04  1.16 0.69, 1.63
Packs per month  0.019 −0.004, 0.043  0.01 −0.02, 0.05
Age −0.14 −0.32, 0.04 −0.32 −0.52, −0.11
F statistic  6.00 10.18
p Value <0.001 <0.001
Sample size (no.) 12,640 13,496

Each respondent contributes two observations to the estimation of this model (one from the base-
line survey and the other from the follow-up survey). As a consequence, both the baseline and 
follow-up Center for Epidemiologic Studies Depression scores are utilized in the estimation of the 
parameters. Age is not captured by the individual fixed effects, because the time between the base-
line and follow-up interviews was not uniform across respondents. All other baseline control vari-
ables are absorbed by the individual fixed effects
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variables are absorbed by the individual fixed effects” is statistical jargon for the fact 
that the differencing process that eliminates the fixed effects also eliminates all other 
time-invariant controls (assuming they have time-invariant effects on depressive 
symptomatology). Nevertheless, all these factors are controlled in the fixed- effects 
analysis. Notice now that the effect of smoking status, although still significant for 
both genders, is dramatically reduced, compared to the linear regression results. And 
the number of packs smoked is no longer significant for either gender. As the authors 
note (p. 468), “…controlling for unobservable factors dramatically reduces the esti-
mated effect of smoking…These estimates suggest that smoking has, at most, an 
extremely modest impact on depressive symptomatology.”

 Conclusion: Looking Back, Looking Forward

 Looking Back

At this point, we have completed our statistical journey. In this primer, we have 
examined a range of techniques that are central to the statistical enterprise. We began 
by considering an issue that is at the heart of science: estimating causal effects. We 
then set out to understand the fundamental tools of statistics that enable us to accom-
plish this task: describing the center and spread of a variable’s distribution, describ-
ing population distributions, coming to grips with the sampling distribution of a 
statistic—arguably the most important single concept in inferential statistics. We 
then considered the twin inferential goals of estimation of population parameters and 
testing hypotheses about population parameters. In the process, we briefly enter-
tained the issue of the power of a statistical test. Next we investigated various means 
of testing the association between two variables, depending upon how each was mea-
sured. This was followed by an excursion into linear regression modeling, introduc-
ing the very important enterprise of the statistical modeling of a study endpoint. 
Continuing the modeling theme, we examined a number of different modeling tech-
niques that were tailored to the particular manner in which the dependent variable 
was measured. These included multiple linear regression, repeated- measures 
ANOVA, logistic regression, survival analysis, Poisson and negative binomial regres-
sion, and linear mixed modeling. Along the way, we have considered additional tech-
niques designed to handle particular problems in statistics, such as multiple 
imputation, propensity-score analysis, and fixed-effects regression models. By now it 
is hoped that the reader has a good understanding of the purpose and meaning of the 
statistical procedures that he or she is likely to encounter in the medical literature.

 Looking Forward

Statistics is an ever-evolving science: New statistical procedures are being invented 
on a daily basis. It is therefore impossible for any single book to cover all of the 
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techniques the reader is likely to encounter, let alone all of the new tools that will 
come along after that book is in print. Therefore, we outline here a prescription for 
understanding foreign statistical concepts and tools that the reader may encounter in 
the future. All statistical procedures are designed to aid in the scientific enterprise 
of determining the causes of real-world phenomena. Toward this end, the statisti-
cian uses different tools to accomplish a variety of goals:

Describe Data. We have discussed only a few of the many ways in which statisti-
cians describe variable distributions, focusing on the mean, median, percentile, vari-
ance, and standard deviation. We have also seen a few graphical techniques for 
depicting distributions, such as the histogram and bar chart. There are many other 
such tools that we have not discussed. And in all likelihood, new techniques for this 
purpose will be available in the future. It should be readily apparent when the user 
is being presented with statistical or graphical summaries of variable distributions.

Estimate Parameters. Confidence intervals are the primary means of presenting esti-
mates of population parameters. We have also mentioned some of the techniques that 
statisticians use to estimate parameters, particularly in statistical models. Such tech-
niques include least squares and maximum likelihood estimation. However, there are 
many other such procedures not covered here, such as method of moments estimation, 
generalized least squares, partial least squares, and so forth. New procedures for 
parameter estimation are likely to evolve as time goes on; the reader should be on the 
lookout for these.

Model a Study Endpoint. We have seen that a statistical model is a set of one or 
more equations that describe how the study endpoint was “generated” in the population. 
The model always includes a set of assumptions to go along with the equations; if 
those assumptions are satisfied, the model may produce useful estimates of predictor 
effects. If one or more of those assumptions is violated, the estimates of predictor 
effects may be invalid, or, at worst, utter nonsense. Most statistical models are a 
variant of the linear regression model, as we have seen. There is an equation relating 
the study endpoint to a set of explanatory variables. In this primer, we have consid-
ered only single-equation models or models consisting of only one equation for the 
study endpoint. There are many techniques that simultaneously employ more than 
one equation to describe a study endpoint. Examples are instrumental-variables 
regression, the nonrecursive model, and the sample-selection model. And there are 
other techniques that employ multiple equations to simultaneously model a set of 
related study endpoints. Examples of this are path analysis, factor analysis, and 
seemingly unrelated regression models. These are rarely used in medicine and so 
have not been covered in this primer. Regardless, the reader will be able to recognize 
when a model is being used to describe one or more study endpoints. And regardless 
of how arcane the technique, interest will be centered on the effects of one or more 
predictors on the study endpoint. These are relatively straightforward to decipher.

Estimate a Causal Effect. We have seen that causal effects can be estimated in an 
unbiased fashion when subjects are randomly assigned to treatment conditions. 
Since many “treatments” of interest cannot be randomly assigned, however, we must 
resort to statistical legerdemain to deal with potential biases that may arise. We have 
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considered some of these tools, in particular, statistical control, propensity-score 
analysis, and fixed-effects regression modeling. There are other procedures that 
have not been covered here, e.g., instrumental-variables regression or the Heckman 
self-selection model (DeMaris 2012). Regardless, the reader should be aware that, 
with nonexperimental data, researchers will typically try to employ statistical adjust-
ments of some kind to eliminate the threat of unobserved heterogeneity (or a latent 
confound).

Adjust for Measurement Error. Ideally, all study endpoints and predictor variables 
are exactly measured and all subjects provide complete data on them. In practice, 
this is rarely the case. Missing data are a perennial problem. We have seen that mul-
tiple imputation is a state-of-the-art technique for replacing missing data. New, 
improved procedures for this purpose are likely to come along in the future. Although 
most medical conditions and treatments are often exactly measured, some variables 
of particular interest are more subjectively assessed. Examples are quality of life or 
depressive symptomatology. There can be considerable measurement error in such 
variables, which, in turn, limits our ability to estimate how they are affected by 
explanatory variables (Bollen 1989). Statisticians are always on the lookout for 
improved measurement techniques. One statistical development, which has seen 
little application so far in medical journals, is structural equation modeling (Bollen 
1989). This statistical apparatus allows data analysts to account for measurement 
error in variables and thereby achieve more accurate estimates of predictor effects on 
a study endpoint. We can expect many more imaginative approaches to this problem 
to come along in the future.

In sum, the topics covered in this primer provide the fundamentals needed for 
understanding statistics as employed in medicine today. They also lay the ground-
work for coming to terms with new techniques that readers are likely to encounter 
as statistical applications in medicine continue to evolve. Hence, the reader should 
go forward with confidence, trusting that he or she has the statistical background to 
be a knowledgeable consumer of this elegant and powerful craft.
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    Accelerated failure-time model:    A type of regression model in survival analysis 
in which the study endpoint is the natural logarithm of survival time; it necessitates 
knowledge of the probability distribution for survival time, because the estimation 
method is maximum likelihood.   

  Adjusted means:    Estimated means on a study endpoint for different groups after 
controlling for the groups’ different distributions on the quantitative control vari-
ables in an ANCOVA model.   

  Adjusted  R  2 :    A version of  R  2  with the property that, unlike  R  2 , it can decline as new 
predictors are added to a regression model. The adjusted  R  2  is better than  R  2  as an 
estimator of the  R  2  for the population model.   

  Alpha reliability (a.k.a. Cronbach’s alpha):    A measure ranging from 0 to 1 that 
represents the proportion of a composite measure (i.e., a sum of individual items) 
that consists of a stable underlying attribute.   

  Alpha-level for a test:    The criterion probability that is compared to the  p  value to 
determine whether the null hypothesis is to be rejected or not. The usual alpha level 
is 0.05.   

  Analysis of covariance (ANCOVA):    A variation on linear regression in which 
quantitative explanatory variables are combined with qualitative explanatory vari-
ables in a regression model.   

  Analysis of variance (ANOVA):    A type of bivariate or multivariable statistical 
analysis for a quantitative study endpoint when all explanatory variables are qualita-
tive in measurement.   

  Area under the curve or AUC (a.k.a. concordance index):    In logistic regression, 
the area under the ROC curve; it represents the likelihood that a case will have a 
higher predicted probability of the event than a control across the range of criterion 
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probabilities. In Cox regression, it’s referred to as the concordance, or “ c ” index and 
serves the comparable function of indicating the predictive power of the model.   

  Association:    A relationship between two variables in which the distribution of the 
fi rst variable changes over the levels of the second variable. That is, the second vari-
able appears to infl uence the distribution on the fi rst variable. If the second variable 
causes the fi rst, then the two variables should be associated.   

  Autoregressive model:    A regression model in which one of the explanatory vari-
ables is an earlier measurement of the study endpoint.   

  Average causal effect:    The average of the causal effects for all cases in the 
population.   

  Bar graph:    A graphical display of a variable’s distribution, in which the heights of 
bars represent the percents of cases having each value.   

  Beginning of observation:    In survival analysis, the moment in time when subjects 
begin to be followed by the researcher.   

  Between-subjects variable:    A variable in repeated-measures ANOVA or linear 
mixed modeling that does not change over time for a given subject but takes on dif-
ferent values for different subjects.   

  Biased estimator:    A sample statistic that is an inaccurate estimator of the corre-
sponding population parameter; in particular, the mean of its sampling distribution 
is not equal to the population parameter.   

  Bivariate statistics:    Statistical procedures for testing and assessing the association 
between two different variables.   

  Bonferroni post-hoc test:    A multiple- comparison procedure allowing the 
researcher to test differences between pairs of group means without incurring capi-
talization on chance.   

  Capitalization on chance:    The situation in which performing multiple tests of 
hypothesis raises the probability of rejecting a true null hypothesis beyond the alpha 
level desired for the group of tests.   

  Cases:    The units of analysis in one’s study. In logistic regression, however, the 
term also refers to the units of analysis who have experienced the event of interest.   

  Causal effect:    The difference between the study endpoint’s value if a subject expe-
riences the treatment  condition vs. its value if the same subject were to experience 
the control condition instead. This is a counterfactual defi nition because it is impos-
sible to observe.   

  Censored cases:    In survival analysis, these are cases with incompletely observed 
survival times.  Right censoring  occurs when the subject has not yet experienced the 
event by the end of the observation period.  Left censoring  occurs when subjects 
have already experienced the event by the beginning of observation.   
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  Center of a distribution:    The typical or average value in a variable’s distribution.   

  Chi-squared ( χ  2 ) test:    A test of hypothesis used for testing the association between 
two qualitative variables or for testing model utility for models estimated with maxi-
mum likelihood.   

  Classifi cation table:    In logistic regression, a table showing the crosstabulation of 
a subject’s actual status as case or control with the model’s prediction of whether 
that subject is a case or control.   

  Clinical signifi cance:    The condition in which sample results that are signifi cant 
are also clinically meaningful.   

  Confi dence interval:    An interval of numbers that we are very confi dent contains the 
true value of a population parameter.   

  Controls:    In logistic regression, the units of analysis who have not experienced the 
event of interest.   

  Correlation coeffi cient:    A measure ranging from −1 to +1 that indicates the 
strength and direction of linear association between two quantitative variables.   

  Cox regression model (a.k.a. proportional hazards model):    The most com-
monly used regression model for survival data. The response variable is the log of 
the hazard function.   

  Crosstabulation (a.k.a. contingency) table:    A table displaying the association 
between two qualitative variables.   

  Data:    Numbers, letters, or special characters representing measurements of the 
properties of one’s analytic units, or cases, in a study; data are the raw material of 
statistics.   

  Degrees of freedom:    A technical term refl ecting the number of independent ele-
ments comprising a statistical measure. Certain distributions require a degrees of 
freedom value to fully characterize them (e.g., the  t ,  χ  2 , and  F  distributions).   

  Descriptive statistics:    The body of statistical techniques concerned with describ-
ing the salient features of the variables used in one’s study.   

  Deviation score:    The difference between a variable’s value and the mean of the 
variable.   

  Directional conclusion:    A conclusion in a two-tailed test that uses the nature of 
the sample results to suggest where the true parameter lies in relation to the null- 
hypothesized value.   

  Dispersion of a distribution:    The degree of spread exhibited by a variable’s val-
ues, typically assessed with the standard deviation.   

  Distribution (or probability distribution) of a variable:    The collection of all 
values of a variable along with their associated probabilities of being observed.   
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  Dummy variable:    A variable in a regression model coded 1 if the case falls into a 
certain category of an explanatory variable and 0 otherwise. Used to represent quali-
tative predictors in a regression model.   

  Event count:    The number of occurrences of an event to a subject within a given 
time period.   

  Experimental error:    Random error that prevents study endpoints from being pre-
cisely determined by one or more explanatory variables.   

  Experimental study:    Any study in which the study treatments (or levels of the 
explanatory variables) are randomly assigned to cases.   

  Explanatory variable (a.k.a. regressor, predictor, covariate):    The causal vari-
ables in one’s study that are used to explain the behavior of the study endpoint.   

  Exponential function:    A mathematical operation in which Euler’s constant 
(approximately equal to 2.72) is raised to the desired power.   

  External validity:    The extent to which a study’s results can be generalized to a 
larger, known population.   

   F  test:    A statistical test for which the null hypothesis is that all group means are the 
same (ANOVA) or that all regression coeffi cients equal zero in the population (lin-
ear regression).   

  False positive rate:    In logistic regression, the probability of a control being mis-
takenly classifi ed as a case by the prediction equation.   

  First quartile:    The value in a distribution such that 25 % of the cases have lower 
values.   

  First-differenced estimator:    An estimation method used in fi xed- effects regres-
sion modeling that eliminates the fi xed effect by using change scores for both the 
study endpoint and the explanatory variables.   

  Fixed effect:    An unobserved characteristic of subjects that is both a predictor of 
the study endpoint and correlated with one or more explanatory variables in a 
regression model. Left unaddressed it will lead to biased regression estimates.   

  Fixed-effects regression model:    A regression model in which the infl uence of 
unmeasured heterogeneity has been eliminated.   

  Growth-curve modeling (a.k.a. the linear mixed model):    A regression analysis 
in which the response variable is the trajectory of change over time in a quantitative 
study endpoint. Interest centers on describing the average trajectory of change, as 
well as what subject characteristics lead to different trajectories of change for differ-
ent types of subjects.   

  Hazard function:    Approximately the instantaneous probability of experiencing 
the event of interest at any given time; this changes over time and is therefore a 
function of time.   
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  Hazard ratio:    The ratio of the hazard of event occurrence for subjects who are a 
unit apart on an explanatory variable.   

  Hosmer–Lemeshow test:    A test of goodness-of- fi t for a logistic regression model. 
It has a chi-squared distribution with eight degrees of freedom under the null 
hypothesis that the model fi ts. A signifi cant value means the model does not fi t the 
data well.   

  Hypothesis:    A tentative statement about the value of one or more population 
parameters.   

  Ignorability of treatment assignment:    The condition in which the potential out-
comes of an experiment are  independent of the manner in which treatment condi-
tions are assigned to cases.   

  Inception of risk:    In survival analysis, the moment in time when subjects come 
under the risk for an event.   

  Independent-samples, pooled-variance t test:    A test for whether the means of 
two independently sampled groups are different; this test assumes that the variance 
of the study outcome is the same in each subpopulation.   

  Inferential statistics:    The body of statistical techniques concerned with making 
inferences about a population based on drawing a sample from it.   

  Internal validity:    The extent to which treatment-group differences on a study end-
point represent the causal effect of the treatment on the study endpoint.   

  Interquartile range (IQR):    The difference between the fi rst and third quartiles in 
a distribution.   

  Kaplan–Meier (a.k.a. product-limit) estimator:    A nonparametric estimator of 
the survival function in survival analysis.   

  Left skewed:    Said of distributions where most cases have high values of the vari-
able, and a few outliers have very low values.   

  Left-truncated cases:    Subjects in survival analysis who have already been at risk 
for event occurrence for some time when they come under observation.   

  Likelihood function:    The formula for the probability of observing the collection 
of study endpoints observed in the sample, written as a function of the statistical 
model in question. Once a sample is collected, this formula is only infl uenced by the 
values of the coeffi cients in one’s model.   

  Likelihood-ratio chi-squared test:    The counterpart of linear regression’s  F  test 
for logistic regression; this is a test of overall model utility.   

  Linear regression:    A type of analysis in which a quantitative study endpoint is 
posited to be determined by one or more explanatory variables in a linear equation, 
i.e., a formula involving a weighted sum of coeffi cients times variables plus an error 
term.   
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  Linearity in the parameters:    The condition in which the right hand side of a sta-
tistical model is a weighted sum of coeffi cients times variables.   

  Log likelihood:    The natural logarithm of the value of the likelihood function that 
is arrived at when coeffi cient estimates are plugged back into the likelihood func-
tion and the function is evaluated at those values. This property is not particularly 
informative but is nevertheless often reported when models are estimated via maxi-
mum likelihood.   

  Logistic regression:    A regression model for the case in which the study endpoint 
is binary. The model holds that the log of the odds for the event in question is a 
linear function of the explanatory variables; estimation of the model is via maxi-
mum likelihood.   

  Logit transformation:    The natural logarithm of the odds of the event.   

  Log-rank test:    In survival analysis, a test for whether different groups of subjects 
have the same survival functions. An alternative test is the  Wilcoxon test .   

  Maximum likelihood estimation:    A means of estimating the coeffi cients of a sta-
tistical model that relies on fi nding the coeffi cient values that maximize the likeli-
hood function for the collection of study endpoints in the sample.   

  Mean of a variable:    The arithmetic average of the variable’s values.   

  Mechanism:    A characteristic that transmits the effect of one variable on another; 
also called an  intervening  variable or a  mediating  variable.   

  Median of a variable:    The value of the variable such that half of the cases are 
lower in value and half are higher in value.   

  Missing at random:    Said of missing data when the probability of being missing on 
a variable is unrelated to the value of that variable had it been observed.   

  Missing data:    The problem of data being absent for one or more variables in one’s 
study.   

  Mode:    The most commonly occurring value in a distribution.   

  Multicollinearity:    The situation in a regression model in which two are more pre-
dictors are highly correlated with each other, leading to poor-quality coeffi cient 
estimates.   

  Multinomial logistic regression:    A logistic regression model for a study endpoint 
with more than two values.   

  Multiple imputation:    A means of fi lling in missing data that involves using the 
interrelationships among variables in one’s analysis, along with random error, to 
estimate the missing values. This process is repeated to create multiple copies of 
one’s data; then one’s statistical analysis of the data is repeated with each copy of 
the dataset and the results are combined into one fi nal set of results.   
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  Multiple-comparison procedure:    A statistical procedure for comparing group 
means that avoids capitalization on chance.   

  Multivariate (or multivariable) analysis:    An analysis in which one examines the 
simultaneous effect of two or more explanatory variables on a study endpoint.   

  Multivariate normal distribution:    A multidimensional version of the normal dis-
tribution that characterizes a collection of variables. If a set of variables has a mul-
tivariate normal distribution, then the variables are all intercorrelated and each 
individual variable is normally distributed.   

  Natural logarithm:    The number that Euler’s constant (approximately 2.72) would 
be raised to in order to arrive at the value in question.   

  Negative binomial regression:    Similar to Poisson regression except that there is 
no restriction that the mean and variance of the study endpoint must be identical.   

  Nonlinear association:    An association between two quantitative variables in 
which the scatterplot does not follow a linear trend.   

  Nonlinear interaction effect:    An interaction effect in which the nonlinear rela-
tionship between the study endpoint and an explanatory factor takes on different 
shapes over levels of another explanatory variable.   

  Nonlinear model:    A statistical model that is not linear in the parameters, e.g., the 
logistic regression model, the Poisson regression model, the proportional hazards 
model.   

  Nonparametric test:    A statistical test that makes very few assumptions about pop-
ulation distributions.   

  Nonprobability sample:    A sample that is not a probability sample, i.e., a hand-
picked sample, a convenience sample, a “snowball sample,” etc. Study results using 
this type of sample can only be generalized to a hypothetical population.   

  Normal distribution:    A population distribution that is symmetric and for which 
68 % of cases are within one standard deviation of the mean, 95 % of cases are 
within two standard deviations of the mean, and approximately all cases are within 
three standard deviations of the mean. Certain sample statistics have a normal sam-
pling distribution.   

  Null hypothesis:    The opposite of the research hypothesis.   

  Observational study:    Any study in which the study treatments (or levels of the 
explanatory variables) are not randomly assigned to cases.   

  Odds ratio:    The ratio of the odds of an event for two different groups.   

  Odds:    The ratio of probabilities for two different events for one group.   

  Offset:    The log of the length of the time period over which an event count is taken, 
entered into a regression model with its coeffi cient constrained to equal 1. This 
converts the study endpoint into the rate of event occurrence.   
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  One-tailed test:    A test of hypothesis for which the research hypothesis is direc-
tional, i.e., if the null hypothesis is false, the true parameter value is hypothesized to 
be either strictly above the null-hypothesized value or strictly below it.   

  Ordinal logistic regression:    A logistic regression model for a study endpoint with 
more than two values where the values also represent rank order on the characteris-
tic of interest.   

  Ordinary least squares (a.k.a. OLS):    A means of estimating coeffi cients in linear 
regression and ANOVA models that depends on fi nding the estimates that minimize 
the sum of squared prediction errors.   

  Orthogonality condition:    The assumption that the experimental- error term in a 
statistical model is uncorrelated with the explanatory variables in the model.   

  Overdispersion parameter:    A parameter in the negative binomial regression 
model that allows for the possibility that the variance of the study endpoint can be 
larger than the mean of the study endpoint.   

   P  value:    The probability of obtaining sample results as least as unfavorable to the 
null hypothesis as was observed if the null hypothesis is true.   

  Paired  t  test:    A test for the difference between means for two groups when the 
groups are not independently sampled.   

  Parameter:    A summary measure of some characteristic for the population, such as 
the population mean or proportion.   

  Partial likelihood estimation:    The estimation method for the Cox regression 
model. It uses only the part of the likelihood function that is based exclusively on 
the regression coeffi cients.   

  Partial regression coeffi cient (a.k.a. partial slope):    The coeffi cient for a predic-
tor in a regression model that contains more than one explanatory variable. It repre-
sents the effect of that  predictor controlling for all other predictors in the model.   

  Percentile:    The value in a distribution such that a certain percentage of cases are 
lower than that value; for example, the 75th percentile is the value such that 75 % of 
cases have lower values.   

  Person-period data format:    A type of dataset for statistical analysis in which each 
subject contributes to the dataset as many records as there are occasions on which 
that subject was measured. Datasets in this format are often necessary in survival 
analysis and growth- curve analysis.   

  Poisson distribution:    A probability distribution for an integer variable represent-
ing an event count.   

  Poisson regression:    A type of regression analysis in which the study endpoint is a 
count of the number of occurrences of an event that has happened to subjects in 
some fi xed period of time.   
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  Population:    The total collection of cases the researcher wishes to generalize the 
results of his or her study to.   

  Power of the test:    The probability that one will reject a false null hypothesis with 
a particular statistical test.   

  Predictive nomogram:    A mathematical formula, based on statistical modeling, 
which facilitates forecasting patient outcomes. In survival analysis, the predicted 
outcome is typically the probability of surviving a given length of time before expe-
riencing the study endpoint.   

  Probability sample:    A type of sample for which one can specify the probability 
that any member of the population will be selected into it. This type of sample 
enables generalization of the study results to a known population.   

  Propensity scores:    Predicted probabilities of receiving the treatment for different 
subjects. Subjects who have the same propensity scores can be treated in statistical 
analyses as though they were randomly assigned to treatment groups.   

  Propensity-score analysis:    Any statistical analysis that controls for propensity 
scores and thereby balances the distributions on control variables across groups of 
subjects.   

  Pseudo- R  2  measure:    Any of several analogs of the linear regression  R  2  used for 
nonlinear models such as logistic regression, Poisson regression, Cox regression, 
etc.   

  Quadratic model:    A regression model that includes a variable along with its 
square as explanatory factors in the model. Such a model allows for a nonlinear 
relationship between the study endpoint and that factor; the curve describing that 
relationship would be able to have one bend in it.   

  Qualitative variable:    A variable whose values indicate a difference in kind, or 
nature, only. Even if represented by numbers (which they usually are), the values 
convey no quantitative meaning.   

  Quantitative variable:    A variable whose values indicate either the exact amount 
of the characteristic present or a rank order on the characteristic.   

   R  2 :    A measure of the strength of association between a quantitative study endpoint 
and one or more quantitative explanatory variables. It has the additional property 
that it can be interpreted as the proportion of variation in the study endpoint that is 
accounted for by the explanatory variable(s).   

  Range:    The difference between the highest and lowest values in a distribution.   

  Rate of event occurrence:    An event count divided by the time period over which 
the count is taken.   

  Receiver operating characteristic (ROC) curve:    In logistic regression, a curve 
showing the sensitivity of classifi cation plotted against the false positive rate as the 
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criterion probability is varied from 0 to 1. Used to indicate the predictive effi cacy, 
or discriminatory power, of the model.   

  Relative risk:    The ratio of the probability of an event for two different groups.   

  Repeated-measures ANOVA:    A type of ANOVA in which subjects are repeatedly 
measured on the study endpoint over time, so that time becomes an additional 
explanatory variable in the analysis. Often repeated-measures ANOVA features a 
treatment factor and time as the two explanatory variables.   

  Research hypothesis:    The hypothesis that the researcher is trying to marshal evi-
dence for; this is usually the hypothesis that is suggested either by prior research or 
theory as being true.   

  Reverse causation:    The situation in which the study endpoint in a regression 
model is actually the cause of one of the explanatory variables in the model, rather 
than the other way around.   

  Right skewed:    Said of distributions where most cases have low values of the vari-
able, and a few outliers have very high values.   

  Risk set:    In survival analysis, the total group of subjects who are at risk for event 
occurrence at any given time.   

  Robust:    The property of a statistical procedure of providing valid results even 
when the assumptions for that procedure are not met.   

  Sampling distribution:    The probability distribution for a sample statistic; this dis-
tribution determines the  p  values for statistical tests.   

  Sampling to a population:    Conjuring up a hypothetical population that nonprob-
ability sample results might be generalizable to by imagining repeating the sam-
pling procedure ad infi nitum to generate a population. One’s current sample can 
then be considered a random sample from this hypothetical population.   

  Scatterplot:    A graphical display of the association between two quantitative vari-
ables achieved by plotting points representing the intersection of each variable’s 
values.   

  Selection bias:    Bias in one’s regression estimates brought about either by an 
unmeasured characteristic of cases that causes only certain kinds of cases to be 
assigned certain treatments ( self-selection bias ) or by an unmeasured characteristic 
that causes only certain kinds of cases to be present in one’s sample ( sample-selec-
tion bias ).   

  Sensitivity analysis:    An alternative analysis using a different model or different 
assumptions to explore whether one’s main fi ndings are robust to different analyti-
cal approaches to the research problem.   

  Sensitivity of classifi cation:    In logistic regression, the probability of a case being 
classifi ed as a case by the prediction equation.   
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  Simple random sample:    A sample in which every member of the population has 
the same chance of being selected into the sample.   

  Specifi city of classifi cation:    In logistic regression, the probability of a control 
being classifi ed as a control by the prediction equation.   

  Standard deviation:    The square root of a variable’s variance. The standard devia-
tion is the most commonly used measure of dispersion, and represents approxi-
mately the average distance of values from the mean of a distribution.   

  Standard error:    The standard deviation of the sampling distribution of a statistic.   

  Statistical control:    Statistically holding other explanatory variables constant when 
looking at the effect of a given  predictor on a study endpoint. It is designed to mimic 
the kind of control achieved with random assignment to levels of the predictor. 
However, it is no substitute for random assignment, as it only controls for  measured  
characteristics.   

  Statistical interaction (a.k.a. stratifi cation effects):    The situation in which the 
nature of the association between a predictor and a study endpoint is different for 
different levels of a third variable.   

  Statistical model:    A set of one or more equations describing the process or pro-
cesses that generated the scores on the study endpoint.   

  Statistical signifi cance:    The condition in which the  p  value for a statistical test is 
below the alpha level for the test, leading to rejection of the null hypothesis.   

  Strength of association:    The degree to which knowledge of one’s status on 
one variable enables prediction of one’s status on another variable that it is 
associated with. Measures of strength of association ideally range in absolute value 
from 0 to 1.   

  Study endpoint (a.k.a. outcome, dependent variable, criterion variable or 
response variable):    The “effect” variable whose “behavior” one is trying to 
explain using one or more explanatory variables in the study.   

  Subclassifi cation on propensity scores:    A means of performing propensity-score 
analysis in which the substantive analysis is repeated on different groups having 
roughly the same propensity scores. The analysis results from the different groups 
are then combined into one fi nal result via weighted averaging.   

  Survival analysis:    The analysis of time-to- event data, i.e., the length of time until 
an event occurs to subjects. The most popular multivariable technique, Cox regres-
sion, is a model for the log of the hazard of the event.   

  Survival function:    The probability of surviving to a particular point in time with-
out experiencing the event of interest; this changes over time and is therefore a 
function of time.   
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  Symmetric:    Said of distributions that exhibit no skewness, and for which exactly 
50 % of cases lie above and below the mean of the distribution.   

   T  distribution:    A population distribution that is symmetric and resembles the nor-
mal distribution except that it exhibits more dispersion. Some sample statistics have 
a  t  sampling distribution.   

  Test of hypothesis:    A statistical test of the plausibility of the null hypothesis in a 
study.   

  Test statistic:    A sample statistic measuring the discrepancy between what is 
observed in the sample, as opposed to what one would expect to observe if the null 
hypothesis were true. A requirement for a test statistic is that it must have a known 
sampling distribution if the null hypothesis is true.   

  The central limit theorem:    A mathematical theorem specifying the sampling dis-
tribution of a sample statistic (e.g., the sample mean) when the researcher has a 
large sample.   

  Third quartile:    The value in a distribution such that 75 % of cases have lower 
values.   

  Time-varying covariates:    Explanatory variables whose values can change at 
 different occasions of measurement for the same subject.   

  Two-tailed test:    A test of hypothesis for which the research hypothesis is not 
directional, i.e., the research hypothesis allows for the possibility that the true 
parameter value could fall on either side of the null-hypothesized value.   

  Type I error:    The probability of rejecting a true null hypothesis in a statistical 
test.   

  Type II error:    The probability of failing to reject a false null hypothesis in a 
 statistical test.   

  Unbiased estimator:    A sample statistic for which the mean of its sampling distri-
bution is equal to the population parameter it is designed to estimate; this is consid-
ered a desirable property of an estimator.   

  Uncensored cases:    In survival analysis, those subjects who experience the event of 
interest during the observation period of the study.   

  Unmeasured heterogeneity:    An unmeasured characteristic of one’s cases that is 
related to one or more explanatory variables in the study, as well as the study 
 endpoint. Part or all of the supposed “effect” of the explanatory variables on the 
study endpoint is actually attributable to this unmeasured confounding factor.   

  Variance of a variable:    The average of the squared deviation scores.   

  Wilcoxon rank sum test:    A nonparametric test for the difference in the study end-
point between two independently sampled groups.   
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  Within-subjects variable:    A variable in repeated-measures ANOVA or linear 
mixed modeling that takes on different values over time for the same subject.   

   Φ  2 :    A measure of the strength of association for two qualitative variables that are 
each binary variables. It is equivalent to the square of the correlation coeffi cient for 
quantitative variables.   

 Glossary of Statistical Terms



211A. DeMaris and S.H. Selman, Converting Data into Evidence: A Statistics Primer 
for the Medical Practitioner, DOI 10.1007/978-1-4614-7792-1,
© Springer Science+Business Media New York 2013

      References 

  Abouassaly, R., Alibhai, S. M. H., Tomlinson, G. A., Urbach, D. R., & Finelli, A. (2011). The 
effect of age on the morbidity of kidney surgery. The  Journal of Urology, 186 , 811–816.  

  Agresti, A. (1990).  Categorical data analysis . New York: Wiley.  
  Agresti, A., & Finlay, B. (2009).  Statistical methods for the social sciences  (4th ed.). Upper Saddle 

River, NJ: Prentice Hall.  
  Allison, P. D. (1982). Discrete-time methods for the analysis of event histories. In S. Leinhardt 

(Ed.),  Sociological Methodology 1982  (pp. 61–98). San Francisco: Jossey-Bass.  
  Allison, P. D. (2002).  Missing data . Thousand Oaks, CA: Sage.  
  Allison, P. D. (2005).  Fixed effects regression methods for longitudinal data using SAS . Cary, NC: 

SAS Institute Inc.  
  Allison, P. D. (2009).  Fixed effects regression models . Thousand Oaks, CA: Sage.  
  Allison, P. D. (2010).  Survival analysis using SAS: A practical guide  (2nd ed.). Cary, NC: SAS 

Institute Inc.  
  Anton, H. (1984).  Calculus  (2nd ed.). New York: Wiley.  
  Antonarakis, E. S., Feng, Z., Trock, B. J., Humphreys, E. B., Carducci, M. A., Partin, A. W., et al. 

(2011). The natural history of metastatic progression in men with prostate-specifi c antigen 
recurrence after radical prostatectomy: Long-term follow-up.  BJU International, 109 , 32–39.  

  Bendavid, E., Holmes, C. B., Bhattacharya, J., & Miller, G. (2012). HIV development assistance 
and adult mortality in Africa.  Journal of the American Medical Association, 307 , 2060–2067.  

  Bien, T. H., Miller, W. R., & Tonigan, J. S. (1993). Brief interventions for alcohol problems: 
a review.  Addiction, 88 , 315–335.  

  Bollen, K. A. (1989). Structural  equations with latent variables . New York: Wiley.  
  Cameron, A. C., & Trivedi, P. K. (1998).  Regression analysis of count data . Cambridge, UK: 

Cambridge University Press.  
  Capitanio, U., Suardi, N., Briganti, A., Gallina, A., Abdollah, Lughezzani, G., et al. (2011). 

Infl uence of obesity on tumour volume in patients with prostate cancer.  BJU International, 109 , 
678–684.  

  Cobain, K., Owens, L., Ruwanthi, K., Fitzgerald, R., Gilmore, I., & Pirmohamed, M. (2011). Brief 
interventions in dependent drinkers: A comparative prospective analysis in two hospitals. 
 Alcohol and Alcoholism, 46 , 434–440.  

  Crawford, E. D., Moul, J. W., Rove, K. O., Pettaway, C. A., Lamerato, L. E., & Hughes, A. (2011). 
Prostate-specifi c antigen 1.5–4.0 ng/mL: A diagnostic challenge and danger zone.  BJU 
International, 108 , 1743–1749.  

  DeMaris, A. (2002). Explained variance in logistic regression: A Monte Carlo study of proposed 
measures.  Sociological Methods & Research, 31 , 27–74.  



212

  DeMaris, A. (2004).  Regression with social data: Modeling continuous and limited response 
 variables . Hoboken, NJ: Wiley.  

  DeMaris, A. (2012).  Combating self-selection bias in nonexperimental research: A Monte Carlo 
Study . Manuscript submitted for publication.  

  DeMaris, A. (2013). Logistic regression: Basic foundations and new directions. In I. B. Weiner 
(Series Ed.), W. Velicer, & J. Schinka (Vol. Eds.),  Handbook of Psychology: Vol. 2. Research 
methods in psychology  (2nd ed., pp. 543–570). Hoboken, NJ: Wiley.  

  DeMaris, A., Mahoney, A., & Pargament, K. I. (2010). Sanctifi cation of marriage and general 
religiousness as buffers of the effects of marital inequity.  Journal of Family issues, 31 , 
1255–1278.  

  DeMaris, A., Mahoney, A., & Pargament, K. I. (2011). Doing the scut work of infant care: Does 
religiousness encourage father involvement?  Journal of Marriage and Family, 73 , 354–368.  

  Duncan, B., & Rees, D. I. (2005). Effect of smoking on depressive symptomatology: A reexamina-
tion of data from the National Longitudinal Study of Adolescent Health.  American Journal of 
Epidemiology, 162 , 461–470.  

  Emara, A. M., Chadwick, E., Nobes, J. P., Abdelbaky, A. M., Laing, R. W., & Langley, S. E. M. 
(2011). Long-term toxicity and quality of life up to 10 years after low-does rate brachytherapy 
for prostate cancer.  BJU International, 109 , 994–1000.  

  Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004).  Applied longitudinal analysis . Hoboken, 
NJ: Wiley.  

  Flensner, G., Ek, A., Soderhamn, O., & Landtblom, A. (2011). Sensitivity to heat in MS patients: 
A factor strongly infl uencing symptomology – an explorative survey.  BMC Neurology, 11 :27.  

  Gill, J. (2001).  Generalized linear models: A unifi ed approach . Thousand Oaks, CA: Sage.  
  Ginting, J. V., Tripp, D. A., Nickel, C., Fitzgerald, M. P., & Mayer, R. (2010). Spousal support 

decreases the negative impact of pain on mental quality of life in women with interstitial 
 cystitis/painful bladder syndrome.  BJU International, 108 , 713–717.  

  Green, R. C., Schneider, L. S., Amato, D., Beelen, A. P., Wilcock, G., Swabb, E. A., et al. (2009). 
Effect of tarenfl urbil on cognitive decline and activities of daily living in patients with mild 
Alzheimer disease.  Journal of the American Medical Association, 302 , 2557–2564.  

  Guo, S., & Fraser, M. W. (2010). Propensity  score analysis: Statistical methods and applications . 
Thousand Oaks, CA: Sage.  

  Guyatt, G. H. (1991). Evidence based medicine.  American College of Physicians Journal Club, 
114 , A16.  

  Harrell, F. E., Jr., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: Issues in 
developing models, evaluating assumptions and adequacy, and measuring and reducing errors. 
 Statistics in Medicine, 15 , 361–387.  

  Hewitt, B., & Turrell, G. (2011). Short-term functional health and well-being after marital separa-
tion: Does initiator status make a difference?  American Journal of Epidemiology, 173 , 
1308–1318.  

  Ho, C. C. K., Tong, S. F., Low, W. Y., Ng, C. J., Khoo, E. M., Lee, V. K. M., et al. (2011). A ran-
domized, double-blind, placebo-controlled trial on the effect of long-acting testosterone treat-
ment as assessed by the Aging Male Symptoms scale.  BJU International, 110 , 260–265.  

  Hosmer, D. W., & Lemeshow, S. (1999).  Applied survival analysis: Regression modeling of time 
to event data . New York: Wiley.  

  Hosmer, D. W., & Lemeshow, S. (2000).  Applied logistic regression  (2nd ed.). New York: Wiley.  
  Hunte, H. E. R. (2011). Association between perceived interpersonal everyday discrimination and 

waist circumference over a 9-year period in the Midlife Development in the United States 
Cohort Study.  American Journal of Epidemiology, 173 , 1232–1239.  

  Jagsi, R., Griffi th, K. A., Stewart, A., Sambuco, D., DeCastro, R., & Ubel, P. A. (2012). Gender 
differences in the salaries of physician researchers.  Journal of the American Medical 
Association, 307 , 2410–2417.  

  Johnson, D. R., & Young, R. (2011). Toward best practices in analyzing datasets with missing data: 
Comparisons and recommendations.  Journal of Marriage and Family, 73 , 926–945.  

References



213

  Jung, H., Kim, K. H., Yoon, S. J., & Kim, T. B. (2010). Second to fourth digit ratio: A predictor of 
prostate-specifi c antigen level and the presence of prostate cancer.  BJU International, 107 , 
591–596.  

  Khawaja, O., Kotler, G., Gaziano, J. M., & Djousse, L. (2012). Usefulness of desirable lifestyle 
factors to attenuate the risk of heart failure among offspring whose parents had myocardial 
infarction before age 55 years.  American Journal of Cardiology, 110 , 326–330.  

  King, G. (1988). Statistical models for political science event counts: Bias in conventional proce-
dures and evidence for the exponential Poisson regression model.  American Journal of Political 
Science, 32 , 838–863.  

  Li, R., Louie, M. K., Lee, H. J., Osann, K., Pick, D. L., Santos, R., et al. (2010). Prospective ran-
domized trial of three different methods of nephrostomy tract closure after percutaneous neph-
rolithotripsy.  BJU International, 107 , 1660–1665.  

  Lieb, W., Beiser, A. S., Ramachandran, S. V., Tan, Z. S., Au, R., Harris, T. B., et al. (2009). 
Association of plasma leptin levels with incident Alzheimer disease and MRI measures of 
brain aging.  Journal of the American Medical Association, 302 , 2565–2572.  

  Little, R. J. A., & Rubin, D. B. (1987).  Statistical analysis with missing data . New York: Wiley.  
  Liu, R., Guo, X., Park, Y., Huang, X., Sinha, R., Freedman, N. D., et al. (2012). Caffeine intake, 

smoking, and risk of Parkinson disease in men and women.  American Journal of Epidemiology, 
175 , 1200–1207.  

  Long, J. S. (1997).  Regression models for categorical and limited dependent variables . Thousand 
Oaks, CA: Sage.  

  Mahoney, A., Pargament, K. I., & DeMaris, A. (2009). Couples viewing marriage and pregnancy 
through the lens of the sacred: A descriptive study.  Research in the Social Scientifi c Study of 
Religion, 20 , 1–45.  

  Marcus, S. M., Stuart, E. A., Wang, P., Shadish, W. R., & Steiner, P. M. (2012). Estimating the 
causal effect of randomization versus treatment preference in a doubly randomized preference 
trial.  Psychological Methods, 17 , 244–254.  

  Mirowsky, J., & Ross, C. E. (1984). Components of depressed mood in married men and women: 
The Center for Epidemiological Studies depression scale.  American Journal of Epidemiology, 
119 , 997–1004.  

  Moayyedi, P. (2008). CON: Evidence-based medicine—the emperor’s new clothes?  American 
Journal of Gastroenterology 103 , 2967–2969.  

  Morgan, T. M., Keegan, K. A., Barocas, D. A., Ruhotina, N. Phillips, S. E., Chang, S. S., et al. 
(2011). Predicting the probability of 90-day survival of elderly patients with bladder cancer 
treated with radical cystectomy.  The Journal of Urology, 186 , 829–834.  

  Motl, R. W., Suh, Y., Balantrapu, S., Sandroff, B., Sosnoff, J. J., Pula, J., et al. (2012). Evidence for 
the different physiological signifi cance of the 6- and 2-minute walk tests in multiple sclerosis. 
 BMC Neurology, 12 :6  

  Nickel, J. C., Gilling, P., Tammela, T. L., Morrill, B. Wilson, T. H., & Rittmaster, R. S. (2011). 
Comparison of dutasteride and fi nasteride for treating benign prostatic hyperplasia: The 
Enlarged Prostate International Comparator Study (EPICS).  BJU International, 108 , 388–394.  

  O’Brien, B. A., Cohen, R. J., Wheeler, T. M., & Moorin, R. E. (2010). A post-radical- prostatectomy 
nomogram incorporating new pathological variables and interaction terms for improved prog-
nosis.  BJU International, 107 , 389–395.  

  Ott, L. (1988).  An introduction to statistical methods and data analysis . Boston: PWS-Kent.  
  Paton, N. I., Goodall, R. L., Dunn, D. T., Franzen, S., Collaco-Moraes, Y., Gazzard, B. G., et al. 

(2012). Effects of hydroxychloroquine on immune activation and disease progression among 
HIV-infected patients not receiving antiretroviral therapy: A randomized controlled trial. 
 Journal of the American Medical Association, 308 , 353–361.  

  Pettaway, C. A., Lamerato, L. E., Eaddy, M. T., Edwards, J. K., Hogue, S. L., & Crane, M. M. 
(2011). Benign prostatic hyperplasia: Racial differences in treatment patterns and prostate can-
cer prevalence.  BJU International, 108 , 1302–1308.  

  Ranasinghe, W. K. B., Wright, T., Attia, J., McElduff, P., Doyle, T., Bartholomew, M., et al. (2010). 
Effects of bariatric surgery on urinary and sexual function.  BJU International, 107 , 88–94.  

References



214

  Raudenbush, S. W., & Bryk, A. S. (2002).  Hierarchical linear models: Applications and data 
analysis methods  (2nd ed.). Thousand Oaks, CA: Sage.  

  Rosenfeld, M., Ratjen, F., Brumback, L., Daniel, S., Rowbotham, R., McNamara, S., et al. (2012). 
Inhaled hypertonic saline in infants and children younger than 6 years with cystic fi brosis: The 
ISIS randomized controlled trial.  Journal of the American Medical Association, 307 , 
2269–2277.  

  Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to 
the tobacco litigation.  Health Services and Outcomes Research Methodology, 2 , 169–188.  

  Schafer, J. L. (2000).  Analysis of incomplete multivariate data . Boca Raton, FL: Chapman & Hall/
CRC.  

  Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized studies: A practical 
guide and simulated example.  Psychological Methods, 13 , 279–313.  

  Singer, J. D., & Willett, J. B. (2003)  Applied longitudinal data analysis: Modeling change and 
event occurrence . New York: Oxford University Press.  

  Singleton, R. A., Jr., & Straits, B. C. (2010).  Approaches to social research . New York: Oxford 
University Press.  

  Subramanian, S., Tawakol, A., Burdo, T. H., Abbara, S., Wei, J., Vijayakumar, J., et al. (2012). 
Arterial infl ammation in patients with HIV.  Journal of the American Medical Association, 308 , 
379–386.  

  Tynjala, J., Kangastupa, P., Laatikainen, T., Aalto, M., & Niemela, O. (2012). Effect of age and 
gender on the relationship between alcohol consumption and serum GGT: Time to recalibrate 
goals for normal ranges.  Alcohol and Alcoholism, 47 , 558–562.  

  Umberson, D., Liu, H., & Powers, D. (2009). Marital status, marital transitions, and body weight. 
 Journal of Health and Social Behavior, 50 , 327–343.  

  Wahbi, K., Meune, C., Porcher, R., Becane, H. M., Lazarus, A., Laforet, P., et al. (2012). 
Electrophysiolgical study with prophylactic pacing and survival in adults with myotonic dys-
trophy and conduction system disease.  Journal of the American Medical Association, 307 , 
1292–1301.  

  West, S. G., & Thoemmes, F. (2010). Campbell’s and Rubin’s perspectives on causal inference. 
 Psychological Methods, 15 , 18–37.  

  Wilhelm-Leen, E. R., Hall, Y. N., deBoer, I. H., & Chertow, G. M. (2010). Vitamin D defi ciency 
and frailty in older Americans.  Journal of Internal Medicine, 268 , 171–180.  

  Wooldridge, J. M. (2002).  Econometric analysis of cross section and panel data . Cambridge, MA: 
MIT Press.  

  Yafi , F. A., Aprikian, A. G., Chin, J. L., Fradet, Y., Izawa, J., Estey, E., et al. (2010). Contemporary 
outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: 
A Canadian multicentre experience.  BJU International, 108 , 539–545.  

  Yu, H., Hevelone, N. D., Lipsitz, S. R., Kowalczyk, K. J., Nguyen, P. L., & Hu, J. C. (2012). 
Hospital volume, utilization costs and outcomes of robot-assisted laparoscopic radical prosta-
tectomy.  The Journal of Urology, 187 , 1632–1638.  

  Zolna, M. R., & Lindberg, L. D. (2012).  Unintended pregnancy: Incidence and outcomes among 
young adult unmarried women in the United States, 2001 and 2008 . New York: Guttmacher 
Institute.       

References



215

                        About the Authors 

 Alfred DeMaris earned a Ph.D. in sociology from the University of Florida in 1982 
and a master’s degree in statistics from Virginia Tech in 1987. He is currently pro-
fessor of sociology and statistician for the Center for Family and Demographic 
Research at Bowling Green State University in Bowling Green, Ohio. His other 
statistical monographs are  Logit Modeling: Practical Applications  (Sage, 1992) and 
 Regression with Social Data: Modeling Continuous and Limited Response Variables  
(Wiley, 2004). He has published another dozen articles and book chapters on statis-
tical techniques as well as approximately 70 journal articles on topics in family 
social psychology. His work has appeared in  Psychological Bulletin, Sociological 
Methods & Research, Social Forces, Social Psychology Quarterly, Journal of 
Marriage and Family , and  Journal of Family Issues , among other venues. He was 
twice awarded the Hugo Beigel Award for the best empirical article in the  Journal 
of Sex Research . He has been teaching statistics at the undergraduate and graduate 
levels for the past 30 years. Through his company, Statistical Insights, he does sta-
tistical consulting on a regular basis for individuals in the social and behavioral 
sciences as well as those in medicine and industry. 

 Steven Selman received his undergraduate degree in Engineering Physics at the 
University of Toledo. Following his medical school training at Case Western 
Reserve University, he completed residencies both in General Surgery and Urology 
at University Hospitals of Cleveland. His research interest has principally been in 
the arena of urologic oncology and methodologies of urologic resident education. 
He has over 100 publications in the peer-reviewed urologic literature. Currently, 
Dr. Selman serves both as residency Program Director and Chair of the Department 
of Urology at University of Toledo Medical Center.    

A. DeMaris and S.H. Selman, Converting Data into Evidence: A Statistics Primer 
for the Medical Practitioner, DOI 10.1007/978-1-4614-7792-1,
© Springer Science+Business Media New York 2013



217A. DeMaris and S.H. Selman, Converting Data into Evidence: A Statistics Primer 
for the Medical Practitioner,  DOI 10.1007/978-1-4614-7792-1,
© Springer Science+Business Media New York 2013

  A 
  Accelerated failure-time model , 145  
   Adjusted mean difference , 106  
   Adjusted means , 93, 169  
   Adjusted R 2  , 104  
   Adjuvant chemotherapy , 154  
   Aging male symptom (AMS) scale , 110–112  
   Alcohol consumption and gamma- 

glutamyltransferase enzyme , 71–73  
   Alcohol dependence , 105–106  
   Alpha level for a test , 26  
   Alpha reliability , 170  
   Alzheimer disease , 19, 190  
   AMS.    See  Aging male symptom (AMS) scale 
   Analysis of covariance (ANCOVA) , 92–93, 

105–106, 168–169, 190, 191  
   Analysis of variance (ANOVA) , 60–61, 71–73  
   ANCOVA.    See  Analysis of covariance 

(ANCOVA) 
   ANOVA.    See  Analysis of variance (ANOVA) 
   Area under the curve (AUC) , 127–128, 130, 

132–134, 172  
   Arterial wall infl ammation in HIV patients , 55  
   Association , 59  
   AUC.    See  Area under the curve (AUC) 
   Autoregressive model , 189  
   Average causal effect , 6, 170  
   Average trajectory , 176  

    B 
  Beginning of observation , 138  
   Benign prostatic hyperplasia , 158  
   Bernoulli probability distribution 

function , 118  
   Between-subjects variable , 97  

   Biochemical recurrence after radical 
prostatectomy , 150–153  

   Bivariate statistics , 57–77  
   Bladder cancer , 147–150  
   Bonferroni post hoc tests , 61, 72  
   Brachytherapy , 20–22  

    C 
  Caffeine intake , 130–132  
   Capitalization on chance , 60  
   Case , 4  
   Causal effect , 1, 5–8, 182  
   Causal relationship , 1  
   Censored cases , 138  
   Central limit theorem (CLT) , 33–35, 44  
   Central tendency , 10, 11  
   Charlson index , 129, 130, 150  
   Chi-squared test , 61–64, 73–75  
   Chronbach’s alpha.    See  Alpha reliability 
   Cigarette smoking , 130–132, 191–194  
   Classifi cation table , 125–127  
   Clinically meaningful difference , 46, 47, 49  
   Clinical trial , 8  
   CLT.    See  Central limit theorem (CLT) 
   Composite equation , 177  
   Concordance index (C statistic) , 126, 

147–149, 151, 152  
   Conditional distribution , 62  
   Conditional mean imputation , 162  
   Confi dence interval , 39, 40, 48–49, 91–92, 

122  
   Contingency table , 62  
   Correlation , 6, 65–71, 76–77, 80, 82  
   Covariance , 67  
   Cox regression model , 146–159, 187–188  

                  Index 



218

   Crossproduct , 67  
   Crosstabulation , 61  
   Cystic fi brosis , 164, 185, 186  

    D 
  Deciles of risk , 123  
   Degrees of freedom , 18  
   Dependent sampling , 70  
   Depressive symptomatology , 96–98, 191–194.   

  See also  Mothers' depression 
   Descriptive statistics , 19–22  
   Deviation score , 12, 67  
   Directional conclusion , 43, 62  
   Discrete-time hazard model , 144  
   Discriminatory power , 82.     See also  R 2  
   Disease-specifi c survival , 154  
   Dispersion , 9–13  
   Domain of observation , 164  
   Dummy variable , 91  
   Dutasteride , 137  

    E 
  Effect size , 107  
   Empirical consistency , 122, 123  
   Equal variance assumption , 42, 44  
   Erectile dysfunction , 61–64, 75–76  
   Estimated probability , 121  
   Estimated propensities , 170  
   Euler’s constant , 117  
   Experimental error , 79  
   Explained-variance interpretation , 81–84, 124, 

125, 136  
   Exponential function , 117  
   External validity , 7–8  

    F 
  False positive rate , 125  
   First-differenced estimator , 182  
   First-level equation , 177  
   First quartile , 11  
   Fixed effect , 182  
   Fixed-effects regression model , 3, 181–182, 

191–194  
    F  test , 61, 72, 89  
   Full-information maximum likelihood for 

missing data , 162  

    G 
  Gender inequity in physician salary , 54, 99  
   Goodness-of-fi t.    See  Empirical consistency 
   Growth-curve analysis , 175–181, 188–191  

    H 
  Hazard function, defi ned , 139  
   Hazard ratio , 146, 149, 151, 154, 158, 

159, 188  
   Heat sensitivity in multiple sclerosis patients , 

134–136  
   HIV , 2, 3, 20, 54, 55  
   HIV+ status and AIDS , 139–144, 146–147  
   Hosmer–Lemeshow test , 122–124, 129, 

130, 172  
   Hypertonic saline , 164, 185–187  
   Hypothesis tests in multiple regression , 89  

    I 
  Ignorability condition , 6  
   Imputation of missing data , 3  
   Inception of risk , 138  
   Independent-samples, pooled-variance  t  test , 

41–45, 48–54, 57.     See also T  test for 
mean difference 

   Inferential statistics , 2  
   Interaction between pain and spousal support , 

113–114  
   Interaction in Cox regression , 151–153  
   Interaction in multiple regression , 89, 93–95  
   Interaction in repeated-measures ANOVA , 

96–99, 108–112  
   Intercept , 80  
   Internal validity , 8  
   Interquartile range , 19  
   Interstitial cystitis/painful bladder syndrome , 

112–114  
   Intravenous drug use , 2, 139, 143–147  

    K 
  Kaplan–Meier (KM) estimator , 140–144, 156, 

157  

    L 
  Laparoscopic gastric banding surgery , 75, 76  
   Large-sample test of hypothesis about the 

mean , 27  
   Last observation carried forward , 162  
   Latent selection factor , 7, 170, 181  
   Left censoring , 139  
   Left-skewed , 15  
   Left truncation , 139  
   Likelihood function , 118  
   Likelihood-ratio chi-squared test , 122, 146  
   Linear association , 68  
   Linear function , 68  
   Linear in the parameters , 82  

Index



219

   Linear mixed model.    See  Growth-curve 
analysis 

   Linear regression , 79–136, 138, 167, 192, 193  
   Listwise deletion , 162  
   Liver dysfunction , 72, 73  
   Logistic regression , 115–136, 138, 144, 

170, 172  
   Logit transformation , 117  
   Log likelihood , 119  
   Log-odds of event occurrence , 117  
   Log-rank test , 143  

    M 
  Mann–Whitney test , 44  
   Marginal mean imputation , 162  
   Marital confl ict and mothers' depression , 

183–185  
   Marital separation and health , 188–190  
   Maximum likelihood estimation , 118–119  
   Mean , 10–11  
   Mean difference , 6, 41–42, 47  
   Mechanism , 3  
   Median , 9, 11  
   Median survival time , 141  
   Metastasis after radical prostatectomy , 

154–157  
   Missing at random , 163  
   Missing data , 3, 162  
   Mode , 20     
   Model chi-squared test.    See  Likelihood-ratio 

chi-squared test 
   Morbidity following kidney surgery , 128–130  
   Mothers' depression , 170–175, 177–181.     See 

also  Depressive symptomatology 
   Multicollinearity , 90  
   Multinomial logistic regression , 128  
   Multiple-comparison procedure , 61.     See also  

Bonferroni post hoc tests 
   Multiple-comparisons , 72  
   Multiple imputation , 3, 162–163, 188  
   Multiple regression.    See  Linear regression 
   Multiple sclerosis and walking performance , 

106–108  
   Multivariable analysis , 3  
   Multivariate analysis , 3  
   Multivariate normal distribution , 163  

    N 
  National probability sample , 13  
   Natural logarithm , 117  
   Natural logarithm transformation 

for ANOVA , 72  

   Negative binomial regression , 164–168, 
255–261  

   Nephrostomy tract closure, methods of , 
108–110  

   Nonexperimental study , 7–8  
   Nonlinear interaction effect , 181  
   Nonlinear in the parameters , 82  
   Nonlinear least squares , 82  
   Nonlinear relationship , 82  
   Nonlinear relationships, missed by  r  , 68  
   Nonparametric, alternative to mean-difference 

test , 44  
   Nonparametric test , 44  
   Nonprobability sample , 4  
   Normal distribution , 17, 33–43, 46, 

47, 57, 72, 121  
   Null hypothesis , 24  
   Number of pulmonary exacerbations , 164, 

185–187, 255, 290–292  

    O 
  Obesity , 75–77  
   Odds , 64  
   Odds ratio , 64, 118  
   Offset , 166  
   OLS.    See  Ordinary least squares (OLS) 
   One-tailed test , 43, 44  
   Ordered logit modeling (a.k.a. ordinal logistic 

regression) , 128  
   Ordinary least squares (OLS) , 81  
   Orthogonality condition , 82  
   Overdispersion parameter , 165  

    P 
  Pacing device, implanting of , 187  
   Pain scale , 108–110, 112–114  
   Paired  t  test , 69–71, 75–76  
   Parameter , 2, 6  
   Parkinson disease , 130–132  
   Partial likelihood estimation , 145  
   Partial regression coeffi cient , 85  
   Partial slope , 85  
   Pelvic lymphadenectomy , 76, 99–101  
   Percent change in the odds , 120  
   Percentile , 9, 11  
   Person–period format , 144, 178  
   Φ 2  for strength of association in chi-squared 

test , 64  
   Physician stewardship , 14, 47, 48, 59, 90–95  
   Poisson distribution , 164  
   Poisson regression , 164–168, 185–187  
   Population , 4  

Index



220

   Population distribution , 9  
   Post hoc tests in ANOVA , 61.     See also  

Bonferroni post hoc tests 
   Power of a statistical test , 45–47, 54–55, 

69, 91, 105  
   Prediction error , 81  
   Predictive nomogram , 147–148, 150, 152  
   Pregnancy stress , 166–168, 177–181, 183, 184  
   Probability model , 117  
   Probability sample , 4, 8  
   Probit regression , 116  
   Product-limit estimator.    See  Kaplan–Meier 

estimator 
   Propensity score , 168–175, 187–188  
   Proportional hazards model.    See  Cox 

regression model 
   Prostate biopsy , 75, 137  
   Prostate cancer , 4, 20–21, 75, 99–101, 

132–133, 137  
   Prostate-specifi c antigen (PSA) , 4, 73–75, 

110, 132–133, 154–157  
   Prostate tumor volume , 73–77, 99–101  
   PSA.    See  Prostate-specifi c antigen (PSA) 
   Pseudo-R 2  , 124–125, 136, 172  
   Pulmonary exacerbations.    See  Number of 

pulmonary exacerbations 
    P  value , 25, 49–53  

    Q 
  QOL.    See  Quality of life (QOL) 
   Quadratic model , 179  
   Qualitative variable , 10  
   Quality of life (QOL) , 75–76, 108–110  
   Quantitative variable , 9–10  

    R 
   R  2  , 60, 61, 77, 82–84, 89, 91, 168  
   Race and prostate disease progression , 

158–159  
   Radical cystectomy , 147–150  
   Radical nephrectomy , 129–130  
   Radical prostatectomy , 76–77, 99–101  
   Random assignment , 6  
   Random growth parameters , 176  
   Randomized clinical trial , 20, 108–112, 

185–187, 190–191  
   Range , 12  
   Rank order , 9, 58  
   Rate of event occurrence , 166  
   Receiver-operating characteristic (ROC) curve , 

125–128  

   Recurrence-free survival , 154  
   Regression modeling and statistical control , 

59, 84–90  
   Relative risk , 6, 64  
   Repeated-measures ANOVA , 

96–98, 106–110  
   Repeated-measures general linear model , 

112–114  
   Research hypothesis , 24  
   Reverse causation , 131, 188–189, 192  
   Right censoring , 139  
   Right-skewed , 15, 44  
   Risk set , 139  
   Robot-assisted laparoscopic radical 

prostatectomy , 20  
   Robustness, of Cox regression model , 145–146  
   Robust test , 44  

    S 
  Sampling distribution , 17, 28–37, 47  
   Sampling to a population , 4–5, 8  
   SAS software , 52, 95, 123, 132, 141, 

146–147, 177–178  
   Scatterplot , 65, 76, 80, 83, 84, 86–88  
   Second-level equation , 177  
   Selection bias , 3, 6, 8  
   Sensitivity analysis , 175  
   Sensitivity of classifi cation , 125  
   Simple random sample , 4  
   Single-equation models , 195  
   Skewed distribution , 11  
   Slope , 80  
   Specifi city of classifi cation , 125  
   Spousal support , 112–114  
   Squared deviation , 12  
   Standard deviation , 13  
   Standard error , 30, 35, 89  
   Stata software , 48, 91  
   Statistical control , 85–90  
   Statistical interaction.    See  Interaction 
   Statistical model , 79  
   Statistical Package for the Social Sciences 

(SPSS) software , 72  
   Statistical power.    See  Power of a statistical test 
   Statistical signifi cance , 19, 26, 49  
   Steinert disease , 187  
   Stratifi cation , 94, 133–134  
   Strength of association , 60  
   Structural-equation modeling , 196  
   Study endpoint , 3, 41  
   Subclassifi cation by propensity scores , 

172–175  

Index



221

   Sum of squared errors , 81  
   Survival analysis , 137–159  
   Survival following radical 

cystectomy , 154  
   Survival function , 139  
   Survival time , 137  
   Symmetric distribution , 17  

    T 
  Tarenfl urbil , 190–191  
    T  distribution , 17, 42–44, 46  
   Test of hypothesis , 23, 36, 39, 44  
   Testosterone treatment , 110–112  
   Test statistic , 24, 28, 36  
   Third quartile , 11  
   Time-varying covariates , 138  
   Transrectal ultrasonography , 73  
    T  test for correlation coeffi cient , 49, 68, 77  
    T  test for mean difference , 42, 72–73.     

See also  Independent-samples, 
pooled- variance  t  test 

    T  test for partial slope in multiple 
regression , 89  

   Two-tailed test , 43, 47–48  
   Type I error , 45, 47, 60  
   Type II error , 45  

    U 
  Unbiased estimate , 12, 30  
   Unconditional distribution , 62  
   Uninsured health status , 119–128  
   Unintended pregnancy , 166–168, 170–175, 

177–181, 183–184  
   Unmeasured heterogeneity , 

3, 8, 189, 191–194  

    V 
  Variance , 12  
   Vitamin D defi ciency and frailty , 133–134  

    W 
  Waist circumference and discrimination study , 

101–104  
   Wilcoxon Rank Sum Test (WRST) , 

44, 57–58  
   Wilcoxon test in survival analysis , 143  
   Within-subjects variable , 97  
   WRST.    See  Wilcoxon Rank Sum Test (WRST) 

    Z 
   z  test for logistic regression coeffi cients , 121         

Index


	Preface
	Contents
	Chapter 1: Statistics and Causality
	What Is Statistics?
	What Statistics Is
	 An Example
	 Populations and Samples
	 Probability vs. Nonprobability Samples
	 Sampling “to” a Population
	 Statistics and Causal Inference
	 A Mathematical Definition of “Causal Effect”
	 How Do We Estimate the ACE?
	 Example of Latent Self-Selection
	 Internal vs. External Validity: A Conundrum


	Chapter 2: Summarizing Data
	Descriptive Statistical Techniques
	Quantitative vs. Qualitative Data
	 Describing Data

	 Measuring Center and Spread of a Variable’s Distribution
	The Mean
	 Percentiles and the Median
	 Dispersion
	 Data from the General Social Survey
	 Describing the Population Distribution
	 The Normal and t Distributions

	 Applications: Descriptive Statistics in Action
	Tarenflurbil Study
	 Hydroxychloroquine Study
	 RALP Study
	 Brachytherapy Study


	Chapter 3: Testing a Hypothesis
	The Test of Hypothesis
	Let’s Roll the Dice
	 Testing Whether Al’s Die Is Loaded
	 Statement of Hypotheses
	 Testing the Null Hypothesis
	 Making a Decision
	 “Statistically Significant” Results
	 What About Your Sequence of Die Rolls?

	 Large-Sample Test of Hypothesis About a Mean
	Assumptions for the Test
	 Statement of Hypotheses

	 Before Going Further: The Sampling Distribution of a Sample Statistic
	Simple Example of a Sampling Distribution
	 A More Elaborate Example
	 Sampling Distribution of the Mean for the Large-Sample Test of Hypothesis
	 The Central Limit Theorem
	 Test Statistic and P -Value
	 Summary


	Chapter 4: Additional Inferential Procedures
	Confidence Intervals and the T Test
	Confidence Intervals
	 Testing the Difference Between Two Means: The T Test
	 Statement of Hypotheses
	 Sample Information and the Sampling Distribution
	 Assumptions for the T Test
	 Computation of the Test Statistic
	 Finding the P Value
	 One-Tailed vs. Two-Tailed Tests
	 Summary: Hypothesis Testing
	 Decision Errors and the Power of the Test
	 Power of the T Test in the Diet Example
	 T Tests for the GSS Data
	 Comments About Statistical Tests
	 P Values, Revisited
	 Sampling from “The Population”

	 Application: T Tests and Statistical Power in Action
	Gender Difference in Physician Salaries
	 Power Considerations in Hydroxychloroquine Study
	 Power in the Arterial Inflammation Study


	Chapter 5: Bivariate Statistical Techniques
	A Nonparametric Test for the Steak-Diet Example
	 Computing the WRST
	 Bivariate Statistics
	Bivariate Analysis: Other Scenarios
	 Qualitative Treatment with More Than Two Levels: ANOVA
	 Qualitative Treatment and Qualitative Response: χ  2 
	 Calculating the χ  2 Value
	 Minimum and Maximum Values of χ  2 
	 Measuring the Strength of Association
	 Quantitative Treatment and Response: The Correlation Coefficient
	 Testing the Significance of R 
	 The Paired t Test: How Correlation Affects the Standard Error
	 Summary of Bivariate Statistics

	 Application: Bivariate Statistics in Action
	ANOVA: GGT and Alcohol Consumption
	 χ  2 : Second-to-Fourth Digit Ratio Study
	 Paired t Test: Bariatric Surgery and Urinary Function Study
	 Correlation Coefficient: Obesity and Tumor Volume in Prostate Cancer


	Chapter 6: Linear Regression Models
	Modeling the Study Endpoint Using Regression
	What Is a Statistical Model?
	 A Regression Model for Exam Scores
	 Other Important Features of Regression

	 Multiple Linear Regression
	Statistical Control in MULR
	 An Intuitive Sense of Control
	 Statistical Control: Technical Details
	 An Example Using the GSS
	 ANCOVA: A Particular Type of Regression Model
	 Modeling Statistical Interaction
	 The Interaction Model

	 Repeated Measures ANOVA: Interaction in the Foreground
	A Study of Depressive Symptomatology
	 Analyzing the Data
	 Time, Treatment, and Treatment × Time Effects

	 Applications: Regression and Repeated Measures ANOVA in Action
	Gender Difference in Physician Salaries, Revisited
	 Obesity and Tumor Volume, Revisited
	 Discrimination and Waist Circumference
	 Reducing Alcohol Dependence: An Example of ANCOVA
	 Interaction 1: Evaluating the Six-Minute Walk in MS
	 Interaction 2: Randomized Trial of Methods of Nephrostomy Tract Closure
	 Interaction 3: The Effect of Testosterone Treatment on Aging Symptoms in Men
	 Interaction 4: Spousal Support and Women’s Interstitial Cystitis Syndrome


	Chapter 7: Logistic Regression
	Logistic Regression Model
	 Estimation of Logistic Regression Coefficients
	 An Example
	 Interpreting the Coefficients
	 Predicted Probabilities
	 Test Statistics and Confidence Intervals
	 Examining Model Performance
	 Applications: Logistic Regression in Action
	Morbidity Following Kidney Surgery
	 Caffeine, Smoking, and Parkinson Disease
	 PSA as a Predictor of Prostate Cancer
	 Vitamin D Deficiency and Frailty
	 Heat Sensitivity in MS Patients


	Chapter 8: Survival Analysis
	Why Special Methods Are Required
	 Elemental Terms and Concepts
	 An Example
	 Estimating the Survival Function
	 Comparing Survival Functions Across Groups
	 Regression Models for Survival Data
	 Cox’s Proportional Hazards Model
	 Modeling the Hazard of Death Due to AIDS
	 Predictive Efficacy of the Cox Model
	 Applications: Survival Analysis in Action
	Predicting 90-Day Survival After Radical Cystectomy
	 Predicting Biochemical Recurrence After Radical Prostatectomy
	 Survival Following Radical Cystectomy

	 PSA Doubling Time and Metastasis After Radical Prostatectomy
	 Race Differences in the Risk of Prostate Cancer

	Chapter 9: Other Advanced Techniques
	Multiple Imputation
	 Poisson and Negative-Binomial Regression
	 An Illustrative Example: Pregnancy Stress in the NAPPS Study
	 Propensity Score Analysis
	 An Example: Unintended Pregnancy and Mothers’ Depression
	 Using Propensity Scores
	 Growth-Curve Modeling
	 Estimating the GCA Model
	 An Example: The Trajectory in Mother’s Depression Over Time
	 Fixed-Effects Regression Models
	 An Example: Marital Conflict and Mothers’ Depression
	 Applications
	Poisson Regression
	 Propensity-Score Analysis and Multiple Imputation
	 Growth-Curve Analysis I
	 Growth-Curve Analysis II
	 Fixed-Effects Regression

	 Conclusion: Looking Back, Looking Forward
	Looking Back
	 Looking Forward


	Glossary of Statistical Terms
	References
	About the Authors
	Index



