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Preface

This book gives an introduction to the contemporary mathematical theory of
noninteracting particles moving at finite velocity in one dimension with alternating
directions, so-called the telegraph (or telegrapher’s) stochastic processes. The
main objective is to give the basic properties of the one-dimensional telegraph
processes and to present their applications to option pricing. The book contains
both the well-known results and the most recent achievements in this field.

The model of a mass-less particle that moves at infinite speed on the real line
and alternates at random two possible directions of motion infinitely many times
per unit of time is of great interest to physicists and mathematicians beginning
with the classical works of Einstein [1] and Smoluchowski [2]. First, A. Einstein
determined the transition density of such a kind of motion as the fundamental
solution to the heat equation. Then, M. Smoluchowski described this as a limit of
random walks. This interpretation is used by physicists as an instrument for
mathematical modelling the physical processes of mass and heat transfer. Later
this stochastic process, called afterward the Brownian motion, was applied to
explain the motion first observed by the botanist Robert Brown in 1828.

It is curious that in 1900, i.e. 5 years before Einstein, Louis Bachelier proposed
and analysed the model of financial contracts based on what is now called
‘‘Brownian motion’’ [3] (see also [4]). A. Einstein was completely unaware of the
work of R. Brown, as well as of the work of L. Bachelier. Nevertheless, Einstein’s
paper has had incredible influence on the science of the twentieth century, but the
unusual and outstanding work of L. Bachelier has been lost from scientific
interchange and it was only rediscovered in 1964. In the textbook of Feller [5]
Brownian motion is named as the process of Wiener-Bachelier.

The crucial point in studying the Brownian motion was a work by Wiener [6] in
which he was able to introduce a Gaussian measure in the space of continuous
functions. Thus, he had given the opportunity of rigorous axiomatic constructing
an extremely important stochastic process that was afterwards called the Wiener
process. After the appearance of the Einstein–Smoluchowski’s model governed by
the heat equation, Brownian motion has been extensively used to describe various
real phenomena in statistical physics, optics, biology, hydrodynamics, financial
markets and other fields of science and technology. It was discovered that the
theoretical calculations based on this model agree well with experimental data if
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the speed of the process is sufficiently big. If the speed is small, this agreement
becomes worse. This fact, however, is not too surprising if we take into account
the infinite-velocity nature of the Wiener process.

That is why many attempts were made to suggest alternative models in which
the finiteness of both the speed of motion and the intensity of changes of directions
per unit of time, could be assumed. Such a model was first introduced in 1922 by
Taylor [7] in describing the turbulent diffusion, (see also the discussion between
Prof. Karl Pearson and Lord Rayleigh in 1905, [8–10]). In 1926 V. Fock [11]
suggested the use of a hyperbolic partial differential equation (called the telegraph,
or damped wave equation) to describe the process of the diffusion of a light ray
passing through a homogeneous medium. Later the time-grid approach was
developed at length by Goldstein [12]. This naturally led to the telegraph equation
describing the spatio-temporal dynamics of the potential in a transmitting cable,
(without leakage) [13]. In his 1956 lecture notes, Kac, (see [14]), considered a
continuous-time version of the telegraph model. Since then, the telegraph process
and its various generalisations have been studied in great detail with numerous
applications in physics, and, more recently, in financial market modelling. The
telegraph process is the simplest example of the so-called random evolution (see,
e.g., [15, Chap. 12] and [16, Chap. 2]).

An efficient conventional approach to the analytical study of the telegraph
process, similar to that for diffusion processes, is based on pursuing a fundamental
link relating various expected values of the process with initial value and/or
boundary value problems for certain partial differential equations. One should note
that the telegraph equation first appeared more than 150 years ago in a work by
W. Thomson (Lord Kelvin) in an attempt to describe the propagation of electric
signals on the transatlantic cable [17]. At present, it is one of the classical equa-
tions of mathematical physics.

The main objective of the book is to give a modern systematic treatment of the
telegraph stochastic processes theory with an accent on the financial markets
applications. These applications are rather new in the literature, but we believe that
our approach is quite natural if we take into account the finite-velocity market
motions joint with abrupt jumps (deterministic or of random values) that naturally
produce heavy tails in such models.

In this book we develop a unified approach based on integral and differential
equations. This approach might seem somewhat unusual for those specialists who
mostly use the stochastic calculus methods in their research. We, however, believe
that our approach is quite natural and could be exploited as a fruitful addition to
the classical methodology.

The book consists of five chapters and is organised as follows.
In Chap. 1, for the reader’s convenience and in order to make the book more

self-contained, we recall some mathematical preliminaries needed for further
analysis.

Chapter 2 deals with the general definition and basic properties of the telegraph
process on the real line performed by a stochastic motion at finite speed driven by
a homogeneous Poisson process. We derive the finite-velocity counterparts of the
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classical Kolmogorov equations for the joint transition densities of the process and
its direction representing a hyperbolic system of two first-order partial differential
equations with constant coefficients. Basing on this system, we derive a second-
order telegraph equation for the transition density of the process. The explicit
formulae are obtained for the transition density of the process and its characteristic
function as the solutions of respective Cauchy problems. It is also shown that,
under the standard Kac’s condition, the transition density of the telegraph process
tends to the transition density of the one-dimensional Brownian motion. The
formulae for the Laplace transforms of the transition density and of the charac-
teristic function of the telegraph process are also obtained.

In Chap. 3 we consider some important functionals of telegraph processes. We
describe the distributions of the telegraph process in the presence of absorbing and
reflecting barriers. First passage times and spending times of the telegraph pro-
cesses are considered also. This presentation corrects some stable inaccuracies in
the field.

The applications of telegraph processes to financial modelling presented in
Chap. 5, require studying of the asymmetric telegraph processes. Moreover, it is
crucial to add jumps to the asymmetric telegraph process. In Chap. 4 we introduce
the reader to this new situation.

Chapter 5 is devoted to some contemporary applications of the telegraph pro-
cesses to financial modelling. We modify the classical Black–Scholes market
model exploiting a telegraph process instead of Brownian motion. As is easy to
see, the simple substitution of a telegraph process instead of Brownian motion in
the framework of Black–Scholes-Merton model leads to arbitrage opportunities.
To get an arbitrage-free model we add a jump component to the telegraph process.

The huge literature on the mathematical modelling of financial markets began
from two fundamental papers of Black and Scholes [18] and of Merton [19]. In this
classical model the price of risky asset is assumed to follow a geometric Brownian
motion. This assumption permits one to obtain nice closed formulae for option
prices and hedging strategies.

Nevertheless, the famous Black–Scholes formula has well-known shortages. It
is commonly accepted that Black–Scholes pricing formula distorts some option
prices. Typically, it substantially underprices deep-in-the-money and out-of-the-
money options and overprices at-the-money options, but downward (or upward)
slopes are possible. To accord the Black–Scholes formula with market prices of
standard European options different volatilities for different strikes and maturities
are used. This trick is referred to as the volatility smile. In the ‘‘typical’’ com-
portment the implied volatility of deeply in-the-money and out-of-the-money
options is higher than at-the-money options. Modern fearful markets are afraid of
large downward movements and crashes. A smile pattern of these markets more
resembles a ‘‘skew’’, where implied volatility increases with shortening the
maturity time.

These observations provoke a growing interest in the construction of more and
more complicated extensions of the Black–Scholes model. Stochastic volatility
models are based on the stochastic dynamics of the Black–Scholes implied
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volatility. Various patterns of smiles and skews can be constructed depending on
the correlation and the parameters of the volatility process. These models have
some empirically approved evidences of their realistic and unrealistic features, but
we believe that such an approach proposes the quantity sophistication instead of
fundamental explanation of problem.

Another approach, that adds a pure jump process to Black–Scholes diffusion,
can capture many volatility smiles and skews. This idea of jump-diffusion model
have been proposed for better adequacy by Merton [20], and nowadays is applied
to handle option pricing, especially when options are close to maturity. Similar to
stochastic volatility models, jump-diffusion models increase Markov dimension of
the market and form incomplete market models.

We suggest here a new model to explain market’s movements. Suppose the log-
returns are driven by a telegraph process, i.e. they move with a pair of constant
velocities alternating one to another at Poisson times. To make the model more
adequate and to avoid arbitrage opportunities the log-return movement should be
supplied with jumps occurring at times of the tendency switchings.

Such a model looks attractive due to finite propagation velocity and the intu-
itively clear comportment. The jump-telegraph model captures bullish and bearish
trends using velocity values, and it describes crashes and spikes by means of jump
values. This model describes adequately the processes on oversold and overbought
markets, when changes on the market tendencies accumulate in course of time.

At the same time, the model is analytically tractable. It allows us to get solu-
tions for hedging and investment problems in closed form. Jumps are used in the
model to avoid arbitrage opportunities, but not solely for adequacy.

The model based on the telegraph processes with jumps of deterministic values
is complete as well as in the classical Cox-Ross-Rubinstein and Black–Scholes
cases. It is attractive mathematically and allows us to freely modify the model to
meet the needs of applications.

Under respective rescaling, the jump-telegraph model converges to Black–
Scholes model. It permits us to define naturally a volatility of the jump-telegraph
model depending on the velocities and jump values as well as on the switching
intensities. The model based on jump-telegraph processes is characterised by
volatility smiles of various shapes including frowns and skews depending on the
parameters’ values.

Unfortunately, some important topics remain outside this book because of the
volume restrictions. In particular, the whole complex of problems related to the
multidimensional counterparts of the telegraph processes is omitted. The reader
interested in this multidimensional theory should address to the survey article [21]
recently published in the Encyclopedia of Statistical Science, Springer, where the
most important results and open problems in this field are presented.

We hope that this book will be interesting to specialists in the area of diffusion
processes with finite speed of propagation and in financial modelling. We expect
that the book will also be useful for students and postgraduates who make their
first steps in these intriguing and attractive fields.
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Chapter 1
Preliminaries

Abstract In this chapter we recall the main mathematical notions and concepts of
the required theory on probability and calculus.

Keywords Markov processes · Brownian motion · Stochastic integrals · Poisson
process · Bessel functions · Generalised functions

1.1 One-Dimensional Markov Processes

Let (Ω,F,P) be the probability space. Let B be the σ -algebra of the Borel subsets
of the real line R,R = (−∞,∞), and T > 0 be an arbitrary positive number. A
Markov process ξ(t), t > 0, on the probability space (Ω,F,P) is determined by the
transition probability function P(Γ, t, x, s), 0 ≤ s < t ≤ T, x ∈ R, Γ ∈ B, which
is defined as

P(Γ, t, x, s) = P {ξ(t) ∈ Γ |ξ(s) = x} .

Function P(Γ, t, x, s) is treated as the probability that the process ξ (which at
time s is located at point x) at time t, t > s will be located at the Borel set Γ ∈ B.
In other words, P(Γ, t, x, s) is the probability of passing within the time t − s from
the point x into the set Γ .

By definition, function P(Γ, t, x, s) satisfies the following properties:

1. P(Γ, t, x, s) is a B-measurable function with respect to x under fixed s, t, Γ .
2. Under fixed s, t, x function P(Γ, t, x, s) is a probability measure on B (so,

P(R, t, x, s) = 1).
3. For all 0 ≤ s < t1 < t2, x ∈ R, Γ ∈ B, the following relation holds:

A. D. Kolesnik and N. Ratanov, Telegraph Processes and Option Pricing, 1
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40526-6_1,
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2 1 Preliminaries

P(Γ, t2, x, s) =
∞∫

−∞
P(dy, t1, x, s)P(Γ, t2, y, t1). (1.1.1)

Relation (1.1.1) is referred to as Chapman-Kolmogorov equation.
One can distinguish two main classes of Markov processes in dependence of the

continuity of their sample paths. The first class consists of those Markov processes
whose P-almost all sample paths are continuous. The most important representative
of such class of Markov processes, the Wiener process, will be considered in Sect. 1.2.

Another class consists of the Markov processes with discontinuities of finite values
(jumps), so-called the first-type discontinuities. Such processes are referred to as the
jump Markov processes. The representative of such processes, the Poisson process,
will be examined in Sect. 1.4. See also jump processes in Chap. 5.

1.2 Brownian Motion and Diffusion on R

We begin our survey of subclasses of Markov processes with the important example
of a Brownian motion.

Definition 1.1 The stochastic process w = w(t) = w(t, ω), t ≥ 0, ω ∈ Ω , is a
real-valued standard Brownian motion (also called the Wiener process) if

(a) w(0, ω) = 0 and sample paths w = w(t, ω) are continuous functions for almost
all ω ∈ Ω;

(b) for any t and s (t, s > 0) the increment w(t+s)−w(s) has the normal distribution
with the mean 0 and variance t ;

(c) for any 0 = t0 < t1 < t2 < . . . < tm , the variables w(tk)−w(tk−1), 1 ≤ k ≤ m,
are independent.

The first and the second moments, that is, the mean value and the variance of the
Wiener process w(t) are E{w(t)} = 0,E{[w(t)]2} = t. The covariance function of
w(t) is given by E{w(t)w(s)} = min{t, s}.

It is easy to see that if w(t) is a Brownian motion, then, for arbitrary s > 0 and
α �= 0, the process generated by increments, w(t + s)− w(s), t ≥ 0, as well as the
scaled process α−1w(α2t), t ≥ 0, are the Brownian motions too. In particular, the
process {−w(t), t ≥ 0} is a Brownian motion. Moreover, the process generated by
increments, w(t + s) − w(s), t ≥ 0 is independent of the past, i. e. of the values
w(t ′), t ′ ≤ s.

The stochastic processes {w(t), t > 0} and {tw(1/t), t > 0} have the same
distribution (see e.g. [1]).

The process w(t) has the Gaussian density given by the formula

p(x, t) = 1√
2π t

exp

(
− x2

2t

)
, x ∈ R, t > 0. (1.2.1)

http://dx.doi.org/10.1007/978-3-642-40526-6_5


1.2 Brownian Motion and Diffusion on R 3

Function p = p(x, t) is the fundamental solution to the one-dimensional heat
equation

∂p(x, t)

∂t
= 1

2

∂2 p(x, t)

∂x2 . (1.2.2)

The characteristic function of w(t), that is, the Fourier transformation Fx→ξ of
the density p = p(x, t) with respect to spatial variable x ∈ R, has the form

E{exp(iξw(t))} = Fx→ξ [p(x, t)](ξ) = exp
(
−ξ2t/2

)
, ξ ∈ R. (1.2.3)

The Laplace transformation Lt→s with respect to time variable t ≥ 0 is given by
the formula

Lt→s[p(x, t)](s) = 1√
2s

exp
(
−|x |√2s

)
, Res > 0. (1.2.4)

For more detailed definitions of these integral transformations, Fx→ξ and Lt→s ,
and their main properties see Sect. 1.6.

The homogeneous Brownian motion wσ := σw(t) with arbitrary diffusion
coefficient σ 2 > 0 has the marginal distributions which are defined by densities
pσ = pσ (x, t). For t > 0

pσ (x, t) = σ−1 p(x/σ, t) = 1

σ
√

2π t
exp

(
− x2

2σ 2t

)
, x ∈ R, t > 0 (1.2.5)

(see (1.2.1)), which is the fundamental solution to the heat equation

∂pσ (x, t)

∂t
= σ 2

2

∂2 pσ (x, t)

∂x2 . (1.2.6)

The moments of wσ (t) and respective integral transforms can be found by the
evident rescaling of the formulae for the standard Brownian motion. The mean and
the variance of wσ (t) are E{wσ (t)} = 0,E{[wσ (t)]2} = σ 2t.The integral transforms
(see (1.2.3) and (1.2.4)) have the form

E{exp(iξwσ (t))} = Fx→ξ [pσ (x, t)](ξ) = exp
(
−ξ2σ 2t/2

)
, ξ ∈ R, (1.2.7)

Lt→s[pσ (x, t)](s) = 1

σ
√

2s
exp

(
−|x |
√

2s

σ

)
, Re s > 0. (1.2.8)

The peculiar property of the Brownian motion is the following: almost all sample
paths of Brownian motion {w(t, ω), t ≥ 0} are nowhere differentiable and for P-
almost allω ∈ Ω the sample paths of the Brownian motion have unbounded variation
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in any subinterval. Moreover, the length of any piece of Brownian trajectory is infinite,
see e. g. [2].

The distributions of some important functionals of the one-dimensional Wiener
process w(t) are given by the following results (see [2]).

1. Distribution of the maximum of Brownian motion. For x > 0

P

{
sup

0≤s≤t
w(s) < x

}
=

√
2

π t

x∫

0

e−z2/(2t)dz. (1.2.9)

2. Distribution of the first passage time. Let a > 0 be an arbitrary point on the
right-half of the real line R. Let Ta = inf{t : w(t) > a} be the instant of first
passing through the point a of the Wiener process w(t). Then the random variable
Ta has the density (for x > 0):

d

dx
P {Ta < x} = a√

2πx3
e−a2/(2x), x > 0. (1.2.10)

3. Joint distribution of the maximum and of the value of Brownian motion. Let
a > 0 be an arbitrary point on the right-half of the real line R. Then for x < a
the following relation holds:

P

{
sup

0≤s≤t
w(s) < a,w(t) < x

}
= 1√

2π t

x∫

x−2a

e−z2/(2t)dz, x < a, a > 0.

(1.2.11)
4. Arcsine law. Consider the occupation time functional

hT := 1

T

T∫

0

H(w(t)) dt, T > 0, (1.2.12)

where H = H(x) is the Heaviside unit step function, i. e.,

H(x) =
⎧⎨
⎩

1, x > 0,
x ∈ R.

0, x ≤ 0,

So, hT ∈ [0, 1] is the proportion of time spent by the Brownian motion (w(t),
0 ≤ t ≤ T ) on the positive semi-axis. The distribution of the random variable
hT does not depend on T (this follows from the self-similarity of the Brownian
motion and the fact that H(αx) ≡ H(x) for any α > 0) and is given by the
classic arcsine law,
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P{hT < y} = 2

π
arcsin

√
y, 0 ≤ y ≤ 1, (1.2.13)

with the probability density

parcsine(y) := 1

π
√

y(1− y)
, 0 < y < 1. (1.2.14)

We will continue the description of occupation time functionals in Chap. 3 (for the
telegraph processes). Let B be the σ -algebra of the Borel subsets of a line R. A real-
valued Markov process X = X (t), t ≥ 0, with the transition probability function
P(Γ, t, x, s),where t > s ≥ 0, x ∈ R, Γ ∈ B is referred to as the diffusion process
on the real line R, if the following conditions are fulfilled:

1. For all ε > 0, x ∈ R, t ≥ 0

lim
Δt→+0

1

Δt

∫

|y−x |>ε
P(dy, t +Δt, x, t) = 0. (1.2.15)

2. There exist functions μ = μ(x, t) and σ = σ(x, t), such that for all ε > 0,
x ∈ R, t ≥ 0

lim
Δt→+0

1

Δt

∫

|y−x |<ε
(y − x)P(dy, t +Δt, x, t) = μ(x, t), (1.2.16)

lim
Δt→+0

1

Δt

∫

|y−x |<ε
(y − x)2 P(dy, t +Δt, x, t) = σ 2(x, t). (1.2.17)

Functionsμ = μ(x, t) and σ = σ(x, t) defined by formulas (1.2.16) and (1.2.17)
are called the drift and the diffusion coefficients, respectively.

Diffusion processes are closely related to partial differential equations of parabolic
type. Let a diffusion process X = X (t) be such that functions μ = μ(x, t) and
σ = σ(x, t) are bounded and continuous.

We define the differential operator L,

L f (x, s) := 1

2
σ 2(x, s)

∂2 f

∂x2 + μ(x, s)
∂ f

∂x
, s ≥ 0. (1.2.18)

Here function f = f (x, s) is twice continuously differentiable in x .
Suppose that functions μ = μ(x, t) and σ = σ(x, t) satisfy the following

conditions:

(a) σ(x, t) ≥ δ > 0 for all x and t > 0;
(b) μ(x, t) and σ(x, t) satisfy a Hölder condition in x and t , that is, for some ε > 0

http://dx.doi.org/10.1007/978-3-642-40526-6_3
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|μ(x, t)− μ(x ′, t ′)| + |σ 2(x, t)− σ 2(x ′, t ′)| ≤ C(|x − x ′|ε + |t − t ′|ε)

for all x, x ′ ∈ R, t, t ′ > 0. For any bounded continuous function g : R → R and
any t > 0 consider

u(x, s) :=
∞∫

−∞
g(y)P(dy, t, x, s), s ∈ [0, t], x ∈ R.

Then function u = u(x, s) satisfies the equation

− ∂u(x, s)

∂s
= Lu(x, s), s < t, x ∈ R, (1.2.19)

with the terminal condition
lim
s↑t

u(x, s) = g(x).

Suppose that the transition probability function P(Γ, t, x, s) has the density (with
respect to Lebesgue measure in R), that is, there exists a function p(y, t, x, s), such
that for all 0 ≤ s < t, x ∈ R, Γ ∈ B,

P(Γ, t, x, s) =
∫

Γ

p(y, t, x, s)dy,

and this transition density p(y, t, x, s) is sufficiently smooth with respect to (y, t).
If the limiting relations (1.2.15), (1.2.16) and (1.2.17) are fulfilled uniformly with

respect to x ∈ R and functions μ = μ(x, t) and σ = σ(x, t) have two partial
derivatives with respect to x , which are bounded and satisfy a Hölder condition
(with respect to x), then there exist continuous derivatives

∂p(y, t, x, s)

∂t
,

∂

∂y
(μ(y, t)p(y, t, x, s)),

∂2

∂y2 (σ
2(y, t)p(y, t, x, s)),

and the density p(y, t, x, s) satisfies the equation

∂p(y, t, x, s)

∂t
= 1

2

∂2

∂y2 (σ
2(y, t)p(y, t, x, s))− ∂

∂y
(μ(y, t)p(y, t, x, s)), (1.2.20)

for all y and t .
Equation (1.2.19) is in the backward variables (x, s). Hence this equation is called

backward Kolmogorov equation. Equation (1.2.20) (in the forward variables (y, t))
is referred to as forward Kolmogorov equation. It is also known as Fokker-Planck
equation. The differential operator L is called the generator of diffusion process X .



1.2 Brownian Motion and Diffusion on R 7

Equations (1.2.19) and (1.2.20) are parabolic which implies the “parabolic” com-
portment of diffusion processes, i. e. the infinite propagation speed and lack of mem-
ory. In contrast, in the next chapter we will introduce and study a stochastic process
with finite speed which is characterised by a bounded propagation velocity and is
described by hyperbolic PDEs (so-called Cattaneo system and telegraph equation).

1.3 Stochastic Integrals and Itô’s Formula

Let (Ω,F, {Ft }t≥0,P) be the filtered probability space. Suppose w(t), t ≥ 0 is an Ft -
adapted Brownian motion. Let X = X (t) be a stochastic process on this probability
space. Our goal is to define the stochastic integral

∫ t
0 X (s)dw(s). It is known that

the trajectories of w are of unbounded variation with probability 1. Thus the integral∫ t
0 X (s)dw(s) cannot be defined as a Stieltjes integral.

First, consider the integral of a simple adapted process. Process X = X (t) is called
the simple adapted if there exists a partition 0 = t0 < t1 < · · · < tn = t and random
variables ξ0, ξ1, . . . , ξn−1, such that X (t0) = ξ0 and X (t) = ξi for t ∈ (ti , ti+1], i =
0, 1, 2, . . . , n − 1, where ξi is Fti -measurable and E|ξi |2 <∞, i = 0, 1, . . . , n − 1.
That is

X (t) =
n−1∑
i=0

ξi1{t ∈ (ti , ti+1]}. (1.3.1)

If X = X (t) is a simple adapted process, the stochastic integral or Itô integral is
defined by

∫ t

0
X (s)dw(s) =

k−1∑
i=0

ξi (w(ti+1)− w(ti ))+ ξk (w(t)− w(tk)) , t ∈ (tk, tk+1].

The stochastic integrals of simple processes have the following properties, which
can be carried over to the stochastic integrals of general adapted processes.

1. Linearity. For any simple adapted processes X and Y and constants α and β

∫ t

0
(αX (s)+ βY (s)) dw(s) = α

∫ t

0
X (s)dw(s)+ β

∫ t

0
Y (s)dw(s).

2. For the indicator of an interval (a, b]
∫ t

0
1{s ∈ (a, b]}dw(s) = w(b)−w(a),

∫ t

0
1{s∈(a,b]}X (s)dw(s) =

∫ b

a
X (s)dw(s).

3. Zero mean. E

(∫ t
0 X (s)dw(s)

)
= 0.

4. Isometry.
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E

(∫ t

0
X (s)dw(s)

)2

=
∫ t

0
E (X (s))2 ds.

Proof Properties 1 and 2 immediately follow from the definition. Since ξi is Fti -
measurable (depends on the values of w(t), t ≤ ti ) and the increments w(ti+1)−w(ti )
are Fti -independent, then

E

(∫ t

0
X (s)dw(s)

)
=

k−1∑
i=0

E
{
ξi E

(
w(ti+1)− w(ti ) | Fti

)}

+ E
{
ξkE

(
w(t)− w(tk) | Ftk

)}

=
k−1∑
i=0

E {ξi }E (w(ti+1)− w(ti ))

+ E {ξk}E (w(t)− w(tk)) = 0,

proving property 3.
The isometry property 4 can be proved in the similar way by conditioning on Fti ,

see [2]. �

To define Itô integral for more general processes the following result is applied.

Theorem 1.1 Let X = X (t) be a regular (continuous) adapted process such that

E

(∫ t
0 |X (s)|2ds

)
<∞. Then

• There exists a sequence {Xn(·)} of simple processes such that

lim
n→∞E

(∫ t

0

∣∣Xn(s)− X (s)
∣∣2 ds

)
= 0.

• The sequence of integrals
∫ t

0 Xn(s)dw(s) converges in probability. The limit is

said to be the integral
∫ t

0 X (s)dw(s).
• The stochastic integral defined above satisfies properties 1–4.

Proof Only an outline of the proof is given. Let {tn
i }ni=0 be a partition with max

i
(tn

i+1−
tn
i )→ 0, as n→∞. First, define the sequence {Xn(·)} of simple processes by means

of (1.3.1) with

ξi = ξn
i = (ti+1 − ti )

−1
∫ ti+1

ti
X (s)ds, i = 0, 1, 2 . . . , n − 1.

Second, the Itô integral
∫ t

0 X (s)dw(s) is approximated by the sequence of sums
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n−1∑
i=0

X (tn
i )

(
w(tn

i+1)− w(tn
i )

)
,

where {tn
i } is a partition with max

i
(tn

i+1 − tn
i )→ 0 as n→∞.

For details of the proof see e.g. [2].

One of the main tools of stochastic calculus is Itô’s formula which gives the rule
of the change of variables.

Theorem 1.2 If f : R→ R is a twice continuously differentiable function, then for
any t ≥ 0

f (w(t)) = f (0)+
∫ t

0
f ′(w(s))dw(s)+ 1

2

∫ t

0
f ′′(w(s))ds. (1.3.2)

More generally, Itô’s rule can be formulated in the following form.

Theorem 1.3 If function F : R × [0,∞) → R, F = F(x, t) is continuously
differentiable in the second variable t and twice continuously differentiable in the
first variable x, then for any t ≥ 0

F(w(t), t) =F(0, 0)+
∫ t

0

∂F

∂x
(w(s), s)dw(s)

+
∫ t

0

[
∂F

∂t
(w(s), s)+ 1

2

∂2 F

∂x2 (w(s), s)

]
ds.

(1.3.3)

The proofs see in e.g. [2].

1.4 Poisson Process

Consider the following example of Markov process. The counting Poisson point
process will be used in the forthcoming analysis of the telegraph random process and
its applications. In this section we give a definition of the Poisson point process and
recall its most important properties which we will substantially be relying on.

Consider a homogeneous stochastic flow {ξ(t), t ≥ 0} of events that occur at
random time instants τ1 < τ2 < . . . , τ0 = 0. By definition, a counting process is

N (t) := max{n : τn ≤ t}, N (0) = 0.

Definition 1.2 The stochastic flow {ξ(t), t ≥ 0} (and the counting process N =
N (t) as well) is referred to as the Poisson process, if it possesses the following
properties:
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1. Stationarity. The distribution of the number of events in any time interval (t, t+τ)
depends only on its length τ but not on t .

2. Lack of memory. The distribution of the number of events in any time interval
(t, t + τ) is independent of the distribution of the past, i.e. before time t . This
implies that the conditional distribution of these events in (t, t + τ), under any
assumptions regarding the number of these events that have occurred before the
moment t , coincides with the unconditional probability.

3. Ordinarity. Counting process N (t) obeys the following infinitesimal properties,

P{N (t +Δt)− N (t) = 0} = 1− λΔt + o(Δt),

P{N (t +Δt)− N (t) = 1} = λΔt + o(Δt),

P{N (t +Δt)− N (t) ≥ 2} = o(Δt), Δt → 0,

(1.4.1)

where λ > 0 is some positive number.

Let us split (0, t] into “small” intervals ((k − 1)t/n, kt/n]. Due to (1.4.1) in this
interval only one event of the stochastic flow occurs with probability pn = λt/n +
o(1/n). Then the number of occurrences Nn(t) in (0, t] is binomially distributed:

P{Nn(t) = k} =
(

n

k

)
pk

n(1− pn)
n−k .

Hence, as npn → λt , the latter converges in distribution to the Poisson distribution
with parameter λt ,

Nn(t)
d→ Po(λt), n→∞.

Similarly, for disjoint intervals [tk−1, tk], k = 1, . . . , d, we have by independence
(see point 2 of Definition 1.2)

P {Nn(t1) = k1, Nn(t2)− Nn(t1) = k2, . . . Nn(td)− Nn(td−1) = kd}

→ (λt1)k1

k1! e−λt1 · · · · · (λ(td − td−1))
kd

kd ! e−λ(td−td−1).

Therefore the Poisson process N = N (t), t ≥ 0 is a stochastic process with
independent increments and

P{N (t)− N (s) = k} = [λ(t − s)]k
k! e−λ(t−s), k ≥ 0, 0 ≤ s < t, λ > 0. (1.4.2)

Parameter λ is called the intensity of N = N (t), t ≥ 0.
The time intervals ηk := τk − τk−1, τ0 := 0 between arrivals of two successive

Poisson events are independent exponentially distributed random variables:

P{ηk > t} = e−λt , t ≥ 0.
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Arrival times τn have an Erlang distribution with the density (see e.g. [3])

pτn (t) =
(λt)n−1

(n − 1)!λe−λt , n = 1, 2, . . . (1.4.3)

To describe the conditional distribution of arrival times {τk}∞k=1 notice that for any
t > 0 and any n ∈ N

{τ1, . . . , τn | N (t) = n} d= {
Z(1), . . . , Z(n)

}
,

where Z1, . . . , Zn are independent and uniformly distributed on [0, t] random vari-
ables, and {Z(1), . . . , Z(n)} is the order statistics. Hence

P {τ1 ∈ dt1, . . . , τn ∈ dtn | N (t) = n} = n!
tn

dt1 . . . dtn .

In particular, for n = 1 we have the uniform distribution,

P {τ1 ∈ dt1 | N (t) = 1} = 1

t
dt1.

1.5 Modified Bessel Functions

In this section we present a brief survey of modified Bessel functions Iν(z) and their
properties which will be used in this book.

The modified Bessel function Iν(z) satisfies the Bessel equation

z2 d2u

dz2 + z
du

dz
−

(
z2 + ν2

)
u = 0, (1.5.1)

and it has the following series representation

Iν(z) =
( z

2

)ν ∞∑
k=0

1

k!Γ (k + ν + 1)

( z

2

)2k
, ν ∈ (−∞,+∞). (1.5.2)

From series representation (1.5.2) it follows that

I0(0) = 1, Iν(0) = 0, ν > 0.

In this book only the case of integer ν, ν = n, and half-integer ν = n ± 1

2
,

n = 0, 1, 2, . . . , will be used.
The important particular cases of modified Bessel functions (1.5.2) are given by



12 1 Preliminaries

I0(z) =
∞∑

k=0

(z/2)2k

(k!)2 , I1(z) = I ′0(z) =
∞∑

k=0

(z/2)2k+1

k!(k + 1)!

and I2(z) = −2

z
I1(z)+ I0(z).

(1.5.3)

One can easily check also that for ν = 1/2 formula (1.5.2) yields:

I1/2(z) =
√

2

π z
sinh z. (1.5.4)

From (1.5.3) the useful estimates follow

I0(z) ≤ ez,
I1(z)

z
≤ 1

2
ez, z ≥ 0. (1.5.5)

Indeed,

I0(z) =
∞∑

k=0

(
(z/2)k

k!
)2

≤
( ∞∑

k=0

(z/2)k

k!

)2

= ez

and

I1(z)

z
= 1

2

∞∑
k=0

1

k!(k + 1)!
( z

2

)2k ≤ 1

2

∞∑
k=0

1

(k!)2
( z

2

)2k = 1

2
I0(z) ≤ 1

2
ez .

We also note the integral representation of the form (see [4, 9.6.18, p.376])

Iν(z) = zν

2νΓ (ν + 1/2)
√
π

∫ 1

−1
(1− ξ2)ν−1/2 cosh(ξ z)dξ, ν > −1

2
. (1.5.6)

In particular , if ν = 0,

I0(z) = 1

π

∫ 1

−1
(1− ξ2)−1/2 cosh(ξ z)dξ = 1

π

∫ 1

−1
(1− ξ2)−1/2eξ zdξ. (1.5.7)

The asymptotic behaviour of Bessel functions at infinity is given by the formula
(see [4, 9.7.1, p. 377]):

Iν(z) = ez

√
2π z

(1+ O(1)), z→+∞. (1.5.8)

Formula (1.5.8) expresses the fact that the modified Bessel function Iν(z) tends
to infinity, as z → +∞, like z−1/2ez and the first term in the asymptotic expansion
of this function does not depend on index ν.
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Remark 1.1 The Bessel function Jν(z) of real argument is defined as the solution of

z2 d2u

dz2 + z
du

dz
+

(
z2 − ν2

)
u = 0. (1.5.9)

Function Jν(z) is given by the following series representation

Jν(z) =
( z

2

)ν ∞∑
k=0

(−1)k

k!Γ (k + ν + 1)

( z

2

)2k
. (1.5.10)

It is easy to see that functions Iν and Jν are connected with each other by the relation

Iν(z) = e−iνπ/2 Jν(e
−iπ/2z), −π < arg z ≤ π

2
. (1.5.11)

For ν = n integer, formula (1.5.11) takes the form

In(z) = i−n Jn(i z), n = 0, 1, 2, . . . (1.5.12)

1.6 Generalised Functions and Integral Transforms

In this book our needs in generalised functions (distributions) are extremely modest,
but seeking the completeness of the presentation we describe briefly some definitions
and results, which will be used below. Consider the linear space Φ of functions
ϕ = ϕ(x), x ∈ R supplied with the topology defined by the convergence of the
sequences {ϕn} of elements of this space. This space will be called a fundamental
space, its elements are fundamental or test functions.

The conjugate (dual) space Φ ′ of continuous functionals defined on Φ is called a
space of generalised functions (distributions), see [5]. The sequence of generalised
functions fn is said to be convergent to generalised function f , if for any ϕ ∈ Φ

< fn, ϕ >→< f, ϕ >, as n→∞.

Examples of fundamental spaces

• The space Φ = D(R) of all infinitely differentiable functions ϕ = ϕ(x), x ∈ R

with compact support.

The topology is defined by the convergence of sequences in D . The sequence
ϕn ∈ D converges to zero, if all the functions ϕn(x) vanish for |x | > R (with the
common R) and the sequence {ϕn} converges uniformly to zero together with their
derivatives, for any α = 0, 1, 2, . . .

ϕ(α)n (x) ⇒ 0, |x | ≤ R,

where ϕ(α)n is the derivative of order α.
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Such a topology can be defined as a countable set of the norms

‖ϕ‖k = sup
|x |≤R,0≤α≤k

|ϕ(α)(x)|, k = 0, 1, 2, . . .

The conjugate space D ′ of continuous functionals defined on D is named as the
Gelfand space of generalised functions.

Locally integrable function f = f (x), x ∈ R (that is, integrable on any compact
set in R) generates some generalised function. The expression

< f, ϕ >=
∞∫

−∞
f (x)ϕ(x)dx (1.6.1)

is a linear continuous functional on D(R). Such distributions are called regular. Note
that, since the function ϕ(x) has a compact support, the integration in (1.6.1) is doing,
in fact, on a compact set.

Another example is given by the δ-function. For any x0 ∈ R define the continuous
linear functional on D(R)

< δ(x − x0), ϕ >= ϕ(x0). (1.6.2)

• The space Φ = S (R) of all infinitely differentiable functions ϕ = ϕ(x), x ∈ R,
which tend to zero for |x | → ∞ together with the derivatives of all orders faster
than any power of 1/|x |.
The convergence of sequence {ϕn} to zero means ∀α, β ∈ Z+

|x |βϕ(α)n (x) ⇒ 0, as n→∞

or, equivalently, the topology is defined by the sequence of norms,

‖ϕ‖k = sup
β,α≤k

|xβϕ(α)(x)|, k = 0, 1, 2, . . .

α, β = 0, 1, 2, . . .

The conjugate space S ′(R) is named the space of tempered distributions. The space
S (R) is called the Schwartz space.

Readily, D(R) ⊂ S (R) and hence D ′(R) ⊃ S ′(R).
Let us define some linear operations. We can justify the new operations first with

regular distribution 1.6.1. For example, if f is locally integrable and β = β(x) is
continuous function then for any ϕ ∈ D(R) we have the identity

∞∫

−∞
[β(x) f (x)]ϕ(x)dx =

∞∫

−∞
f (x) [β(x)ϕ(x)] dx .
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So the following definition looks reasonable. If β = β(x) is an infinitely dif-
ferentiable function then the operation of multiplication of generalised functions by
function β is defined by the equality: for any fundamental function ϕ

< β f, ϕ >=< f, βϕ >

(in the case of tempered distributions infinitely differentiable function β is assumed
to be bounded).

In the same manner we can define the differentiation. Let function f = f (x)
be locally integrable and locally differentiable (i.e. the derivative f ′(x) exists a.e.).
Then integrating by parts we have

∞∫

−∞
f ′(x)ϕ(x)dx = −

∞∫

−∞
f (x)ϕ′(x)dx for any test-function ϕ.

For arbitrary distribution f its derivatives are defined as follows: for any test
function ϕ

< f (α), ϕ >= (−1)α < f, ϕ(α) >, α = 0, 1, 2, . . . (1.6.3)

All generalised functions are infinitely differentiable in this sense.
We need also the integral transforms. For arbitrary regular function f define the

Fourier transformation,

Fx→ξ [ f ](ξ) =
∞∫

−∞
eiξ x f (x)dx, ξ ∈ R.

By this definition and Fubini’s theorem for any integrable function f and for any
test-function ϕ ∈ S (R) we have

∞∫

−∞
Fx→ξ [ f ](ξ)ϕ(ξ)dξ =

∞∫

−∞
ϕ(ξ)

⎧⎨
⎩
∞∫

−∞
eiξ x f (x)dx

⎫⎬
⎭ dξ

=
∞∫

−∞
f (x)

⎧⎨
⎩
∞∫

−∞
eiξ xϕ(ξ)dξ

⎫⎬
⎭ dx =

∞∫

−∞
f (x)Fξ→x [ϕ](x)dx .

It is easy to demonstrate that the space S (R) is close with respect to Fourier
transformation: if ϕ ∈ S (R) then ϕ̂ ∈ S (R). Here ϕ̂ = ϕ̂(x) = F [ϕ](x) =
∞∫
−∞

eiξ xϕ(ξ)dξ .

We define the Fourier transform F [ f ] = f̂ of tempered distribution f ∈ S ′(R)
as

< f̂ , ϕ >=< f, ϕ̂ >, ϕ, ϕ̂ ∈ S (R). (1.6.4)
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The inverse Fourier transform of the test-function ϕ is given by the formula

F−1[ϕ](x) = (2π)−1

∞∫

−∞
e−iξ xϕ(ξ)dξ, (1.6.5)

and as is easy to see that F−1[ϕ̂] = ϕ.
Defining the inverse transformation in S ′(R) as

< F−1[ f ], ϕ >=< f,F−1[ϕ] >

we obtain the one-to-one correspondence f (x) ←→ f̂ (ξ) between tempered gen-
eralised functions f ∈ S ′ and their Fourier transforms f̂ .

Let us now give some important properties of the Fourier transformations of
generalised functions.

1. Fourier transformation of the derivatives: for arbitrary tempered distribution
f ∈ S ′

Fx→ξ [ f (α)(x)](ξ) = (−iξ)αFx→ξ [ f (x)](ξ), α = 0, 1, 2, . . .

Here f (α) is the α-th derivative.
2. Shift of the Fourier transformation: for arbitrary tempered distribution f ∈ S ′

Fx→ξ [ f (x)](ξ + ξ0) = Fx→ξ [eiξ0x f (x)](ξ).

3. Fourier transformation of the similarity: for arbitrary tempered distribution
f ∈ S ′

Fx→ξ [ f (cx)](ξ) = 1

|c|Fx→ξ [ f (x)] (ξ/c) .

We will also need a definition of another integral transformation of a one-
dimensional generalised function, namely the Laplace transformation. It is a contin-
uous integral transformation defined on the complex plane C.

Let f be a locally integrable function on the line such that f (t) = 0 for t < 0.
Moreover, we assume that | f (t)| < Aeat for t ≥ T for some positive constants A, T
and a. In other words, the absolute value of the function f should not increase at
infinity faster than some exponential function with a fixed rate. Under this condition
the integral

Lt→s[ f (t)] = f̃ (s) =
∞∫

0

e−st f (t)dt, s = σ + iξ, (1.6.6)

exists for Re s = σ > a.
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Formula (1.6.6) determines a continuous transformation of the real-valued func-
tion f defined on the real line R into a complex function f̃ (s) = Lt→s[ f ](s)
defined in the right half-plane C

+ of the complex plane C. The transformation (1.6.6)
is referred to as the Laplace transformation of the locally integrable function f .
The function f̃ (s) is the holomorphic (analytical) function in the right half-plane
Res = σ > a > 0 such that f̃ (s)→ 0, as σ →∞, uniformly with respect to ξ .

The integral relation (1.6.6) in terms of Fourier transformation takes the form:

Lt→s[ f ](s) = Fx→ξ [e−σ t f (t)](−ξ), σ > a. (1.6.7)

Denote byS ′+(a) the set of all tempered distributions f ∈ S ′ such that f |t<0 = 0
and e−σ t f (t) is a tempered distribution for all σ > a. Formula (1.6.7) defines the
Laplace transform of any tempered generalised function f ∈ S ′+(a).

Note that there exists the one-to-one correspondence f (t) ←→ f̃ (s) between
generalised function f ∈ S ′+ and its Laplace transform f̃ (s).

Obviously, the Laplace transformation (1.6.6) (or (1.6.7)) is a linear operation,
that is, if f1(t)←→ f̃1(s), σ > a1, and f2(t)←→ f̃2(s), σ > a2, then

λ f1(t)+ μ f2(t)←→ λ f̃1(s)+ μ f̃2(s), σ > max(a1, a2).

Let us now give some important properties of the Laplace transformation.

1. Laplace transformation of the derivatives: for arbitrary generalised function
f ∈ S ′+(a)

Lt→s[ f (n)(t)](s) = snLt→s[ f (t)](s), σ > a, n = 0, 1, . . . .

2. Shift of the Laplace transformation: for arbitrary generalised function
f ∈ S ′+(a)

Lt→s[eλt f (t)](s) = Lt→s[ f (t)](s − λ), σ > a + Reλ.

3. Laplace transformation of the similarity: for arbitrary generalised function
f ∈ S ′+(a)

Lt→s[ f (kt)](s) = 1

k
Lt→s[ f (t)] (s/k) , σ > ka.

The main example of the generalised function which will be exploited throughout
all the book is the δ-function. Due to definition (1.6.2), for any test function ϕ we
have

< δ(ct ± x), ϕ >x= ϕ(ct), < δ(ct ± x), ϕ >t= 1

c
ϕ(x/c). (1.6.8)
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Notice that δ-function is the derivative of the unit step function. Applying defini-
tion of the derivative (1.6.3) to the Heaviside unit step function we obtain

< θ ′(x − x0), ϕ > = − < θ(x − x0), ϕ
′ > (1.6.9)

= −
∞∫

x0

ϕ′(x)dx = ϕ(x0) =< δ(x − x0), ϕ > .

Hence θ ′(x − x0) = δ(x − x0).
Moreover, for any test-function ϕ

< δ(α)(x − x0), ϕ >= (−1)αϕ(α)(x0).

Fourier and Laplace transformations of δ-function can be expressed directly by
respective definitions and basic properties. By definitions (1.6.4) and (1.6.2),

< δ̂, ϕ >=< δ, ϕ̂ >=
∞∫

−∞
ϕ(ξ)dξ.

Hence δ̂ = 1.
We are interested also in the Fourier and Laplace transformations of δ(x ± ct).

As is easy to see,

Fx→ξ δ(x ± ct) = e±ictξ , Lt→sδ(x ± ct) = 1

c
e±sx/c.

Remark 1.2 Occasionally instead of < δ, ϕ > we will write down

∞∫

−∞
δ(x)ϕ(x)dx = ϕ(0).
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Chapter 2
Telegraph Process on the Line

Abstract We define the classic Goldstein-Kac telegraph process performed by a
particle that moves on the real line with some finite constant speed and alternates
between two possible directions of motion (positive or negative) at random homo-
geneous Poisson-paced time instants. We obtain the Kolmogorov equations for the
joint probability densities of the particle’s position and its direction at arbitrary time
instant. By combining these equations we derive the telegraph equation for the tran-
sition density of the motion. The characteristic function of the telegraph process
is obtained as the solution of a respective Cauchy problem. The explicit form of
the transition density of the process is given as a generalised function containing
a singular and absolutely continuous parts. The convergence in distribution of the
telegraph process to the homogeneous Brownian motion under Kac’s scaling condi-
tion, is established. The explicit formulae for the Laplace transforms of the transition
density and of the characteristic function of the telegraph process, are also obtained.

Keywords Telegraph process · Kolmogorov equations · Transition density ·
Characteristic function · Rescaling · Laplace transform

We begin with the classical case of random evolution, so-called Goldstein-Kac tele-
graph process on the real line. It is performed by a particle which starts at time t = 0
from the origin and moves with some finite constant speed c on the line (−∞,∞),
taking an initial direction of the motion (positive or negative) with equal probabilities
1/2. The motion is controlled by a homogeneous Poisson process of a constant rate
λ > 0. When a Poisson event occurs, the particle instantaneously takes the oppo-
site direction and keeps moving with the same speed c until the next Poisson event
occurs, then it takes the opposite direction again, and so on.

A. D. Kolesnik and N. Ratanov, Telegraph Processes and Option Pricing, 19
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40526-6_2,
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2.1 Definition of Process and the Structure of Distribution

We start our consideration with a general definition of a two-state Markov process.
On the filtered probability space (Ω,F, {Ft }t≥0,P) consider the Markov process

ε = ε(t) ∈ {0, 1}, t ≥ 0 with transition intensity λ, λ > 0,

P{ε(t +Δt) �= ε(t)} = λΔt + o(Δt), Δt →+0. (2.1.1)

Process ε = ε(t) is assumed to be adapted to the filtration {Ft }t≥0. The initial state
ε(0) is a random variable with the symmetric distribution, P{ε(0) = 0} = P{ε(0) =
1} = 1/2.

Definition (2.1.1) means that the point process of switching times τ1 < τ2 < . . . of
Markov process ε = ε(t) has independent and exponentially distributed increments:
P{τn+1 − τn > t |Fτn } = P{τn+1 − τn > t} = e−λt , t ≥ 0, τ0 = 0.

Let N = N (t), t ≥ 0 be a counting Poisson process, N (t) = max{n : τn ≤ t}.
From (2.1.1) it follows that the distribution of N (t) has the form (see 1.4.2)

P{N (t) = k} = (λt)k

k! e−λt , t > 0, k = 0, 1, 2, . . . (2.1.2)

To define the Goldstein-Kac telegraph process it is convenient to use the direction
process D = D(t) := (−1)ε(t), t ≥ 0. This is a two-state stochastic process taking
the values D(t) = +1 (resp. ε(t) = 0) if the particle moves in the positive (forward)
direction at time t , and D(t) = −1 (resp. ε(t) = 1) if it moves in the negative
(backward) direction at this time. Notice that D(t) = D(0)(−1)N (t), t ≥ 0. The
initial direction D(0) is a random variable such that P{D(0) = +1} = P{D(0) =
−1} = 1

2 .

Let c > 0 denote the constant speed. Then the particle’s position X (t) at arbitrary
time t > 0 is given by the formula

X (t) := c
∫ t

0
D(s)ds = cD(0)

∫ t

0
(−1)N (s) ds. (2.1.3)

We define also the following two processes (with fixed initial directions, D(0) =
±1):

X±(t) := ±c
∫ t

0
(−1)N (s) ds. (2.1.4)

Note that the distribution of X (t) has two atoms at points±ct , which correspond
to the case when no one Poisson event occurs till time t and, therefore, the particle
does not change its initial direction. It means that N (t) = 0 (with probability e−λt ).
Therefore

P
{

X+(t) = +ct
} = P

{
X−(t) = −ct

} = e−λt ,

P {X (t) = +ct} = P {X (t) = −ct} = 1
2 e−λt .

(2.1.5)

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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It is easy to see that

P {X (t) = x} = 0 ∀x, x �= ±ct.

Hence the distribution function F(x, t) = P{X (t) < x}, x ∈ (−∞,∞), t > 0, is
continuous on R

2+ \{|x | = ct}, where R
2+ := (−∞, ∞)× (0, ∞). Moreover, since

the speed c is finite, then F(x, t) ≡ 0, if |x | > ct, t > 0. By the same reasons the
density

p(x, t) = P{X (t) ∈ dx}/dx, x ∈ (−∞,∞), t > 0, (2.1.6)

has the support [−ct, ct].
The term “density” is treated in the sense of generalised functions, p ∈ D ′. The

distribution density p = p(x, t) contains respective singular part. Furthermore,

p(x, t) = 1

2
e−λt [δ(x + ct)+ δ(x − ct)] (2.1.7)

+ P(x, t)1{|x |<ct}, x ∈ (−∞,∞), t > 0,

where δ(x) is the Dirac’s δ-function, P is the absolutely continuous part of the
distribution with support [−ct, ct], and 1A(x) is the indicator function

1A(x) =
{

1, x ∈ A,
0, x /∈ A.

(2.1.8)

For any continuous function ϕ: R→ R the expectation Eϕ(x + X (t)) is

Eϕ(x + X (t)) = 1

2
e−λt [ϕ(x − ct)+ ϕ(x + ct)]+

∫ ct

−ct
ϕ(x + y)P(y, t)dy.

Fix the initial particle’s direction D(0) = ±1.
Let p+(x, t) and p−(x, t) be the conditional distribution densities under fixed

initial direction D(0) = ±1,

p±(x, t) = P{X±(t) ∈ dx}/dx (2.1.9)

= P{X (t) ∈ dx | D(0) = ±1}/dx, x ∈ (−∞, ∞), t > 0,

such that p(x, t) = (p+(x, t)+ p−(x, t)) /2. Similarly to (2.1.7) we conclude that

p+(x, t) = e−λtδ(x − ct)+ P+(x, t)1{|x |<ct},
p−(x, t) = e−λtδ(x + ct)+ P−(x, t)1{|x |<ct},

(2.1.10)

where P+ and P− are the absolutely continuous parts of these conditional distribu-
tions, P(x, t) = (P+(x, t)+ P−(x, t)) /2.
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The detailed description of functions P(x, t), P±(x, t) defined in (2.1.7) and
(2.1.10) is the main goal of forthcoming analysis.

2.2 Kolmogorov Equations

Let τ = τ1 be the first switching time of the Markov process ε = ε(t). Then for any
t > 0 we have the following equality in conditional distribution (under fixed initial
direction D(0) = σ, σ = ±1)

X (t)
d= σct1{τ>t} +

[
σcτ + X̃(t − τ)

]
1{τ<t}. (2.2.1)

Here the conditional distribution of X (t) is considered under the fixed initial
direction D(0) = σ . The telegraph process X̃ = X̃(t) starts at the opposite direction
−σ and is independent of X .

The distribution of τ is given by (1.4.3) (with n = 1), P{τ ∈ ds} = λe−λsds.
Hence equation (2.2.1) is equivalent to the following set of integral equations for
conditional densities p± defined by (2.1.9),

p+(x, t) = e−λtδ(x − ct)+
t∫

0
p−(x − cs, t − s)λe−λsds,

p−(x, t) = e−λtδ(x + ct)+
t∫

0
p+(x + cs, t − s)λe−λsds,

(2.2.2)

where δ = δ(x) is the δ-function. Here and thereafter we presume
∫ b

a δ(t)ϕ(t)dt =
ϕ(0) for any continuous test-function ϕ and a < 0 < b.

Conditioning on the last switching time we can get the integral equation for
the joint distribution of the particle’s position and its current direction, similar to
Eq. (2.2.2). Let τ be the last switching instant till time t (in the case of N (t) > 0),
τ := max{τn, n = 1, 2, , . . . | τn < t, N (t) > 0}. Looking backwards, we deduce
that

X (t)
d= D(t)ct1{N (t)=0} + [D(t)c(t − τ)+ X (τ )]1{N (t)>0}. (2.2.3)

It is known that for a Poisson process both forward and backward recurrence times
are exponentially distributed, see e. g. [1]. Hence t − τ is exponentially distributed
with parameter λ as well.

Let f (x, t) and b(x, t) be the joint probability densities of the position and the
direction of forward and backward moving particle, respectively,

f (x, t) = P {X (t) ∈ dx, D(t) = +1} /dx,
b(x, t) = P {X (t) ∈ dx, D(t) = −1} /dx,

x ∈ (−∞,∞), t > 0. (2.2.4)

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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The densities f = f (x, t) and b = b(x, t) satisfy the following set of integral
equations similar to (2.2.2)

f (x, t) = 1

2
e−λtδ(x − ct)+

t∫
0

b(x − c(t − s), s)λe−λ(t−s)ds,

b(x, t) = 1

2
e−λtδ(x + ct)+

t∫
0

f (x + c(t − s), s)λe−λ(t−s)ds.
(2.2.5)

It is easy to see, after the change of variables s → t − s, that the integrals in
(2.2.2) coincide with the respective integrals in (2.2.5).

Notice that f (x, t), b(x, t) and p+(x, t), p−(x, t) are equal to zero, if
|x | > ct , since the speed c is finite. Differentiating Eqs. (2.2.2) and (2.2.5) we obtain
Kolmogorov equations in the differential form.

Define the matrix operator

L =
(

Lx,t
+ + λ −λ
−λ Lx,t

− + λ
)
,

where the differential operators Lx,t
+ and Lx,t

− are defined as

Lx,t
± :=

∂

∂t
± c

∂

∂x
. (2.2.6)

In what follows, the superscript T denotes the transposition of vectors.

Theorem 2.1 [Kolmogorov equations] Functions p = (p+, p−)T and p = ( f, b)T

satisfy the equation
Lp = 0, |x | < ct. (2.2.7)

Moreover, if |x | > ct then p+(x, t) ≡ p−(x, t) ≡ f (x, t) ≡ b(x, t) ≡ 0, and
the initial conditions are

p+(x, +0) = p−(x, +0) = δ(x), f (x, +0) = b(x, +0) = 1

2
δ(x). (2.2.8)

Proof Initial conditions (2.2.8) follow immediately from Eqs. (2.2.2) and (2.2.5).
To get the equations we apply (in the sense of differentiation of generalised func-

tions) the differential operators Lx,t
± (see 2.2.6) to Eqs. (2.2.2) and (2.2.5). Equa-

tion (2.2.7) can be obtained by exploiting the integration by parts in the resulting
integral equations.

To prove that, first notice

Lx,t
+
[
e−λtδ(x − ct)

] = −λe−λtδ(x − ct), (2.2.9)

Lx,t
−
[
e−λtδ(x + ct)

] = −λe−λtδ(x + ct),
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Lx,t
+
[

p−(x − cs, t − s)
] = −∂p−(x − cs, t − s)

∂s
,

Lx,t
−
[

p+(x + cs, t − s)
] = −∂p+(x + cs, t − s)

∂s
.

Consequently, applying operator Lx,t
+ to the first equation of (2.2.2) we get

Lx,t
+
[

p+(x, t)
] = −λe−λtδ(x − ct)+ p−(x − ct, 0)λe−λt

−
∫ t

0

∂p−(x − cs, t − s)

∂s
λe−λsds.

Integrating by parts in the latter integral we have

Lx,t
+
[

p+(x, t)
] = −λe−λtδ(x − ct)+ p−(x − ct, 0)λe−λt

− p−(x − ct, 0)λe−λt + λp−(x, t)

− λ
∫ t

0
p−(x − cs, t − s)λe−λsds

= −λp+(x, t)+ λp−(x, t),

where in the last step we have used the first equation of (2.2.2). This equality coincides
with the first component of (2.2.7) for p±(x, t). Proofs of the rest are left to the
reader. �

Corollary 2.1 Densities p± and f, b are related as

f = 1

2
p+, b = 1

2
p−. (2.2.10)

Remark 2.1 System (2.2.7) is also named as Cattaneo system.
Equation (2.2.7) for function p = ( f, b)T has the sense of the forward

Kolmogorov equation (or the Fokker-Planck equation) for the Goldstein-Kac tele-
graph process X = X (t), see [2]. Here the matrix differential operator L is the
generator of process X = X (t), while the matrix Λ,

Λ =
(
λ −λ
−λ λ

)
, (2.2.11)

is the infinitesimal matrix of the embedded two-state Markov chain ε which controls
the telegraph process X = X (t).

Remark 2.2 We introduce also the dual Kolmogorov equations (for expectations).
Let ϕ : R→ R be a test-function (continuously differentiable). Consider the condi-
tional expectations under the given initial direction D(0) = ±1,
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u±(x, t) = E±{ϕ(x + X (t))} =
∫ ∞
−∞

ϕ(x + y)p±(y, t)dy,

and the expectations with respect to joint distribution of the position and the current
direction

u+(x, t) =
∫ ∞
−∞

ϕ(x + y) f (y, t)dy, u−(x, t) =
∫ ∞
−∞

ϕ(x + y)b(y, t)dy.

Differentiating these equalities in t , applying equation (2.2.7) and then integrating
by parts we conclude that functions u = (u+, u−)T and u = (u+, u−)T satisfy the
equation

L′u = 0, (2.2.12)

where L′ =
(

Lx,t
− + λ −λ
−λ Lx,t

+ + λ
)

is the dual operator.

The initial conditions for Eq. (2.2.12) are

u±(x,+0) = ϕ(x), u±(x,+0) = 1

2
ϕ(x).

Remark 2.3 It is easy to write down the backward Kolmogorov equation as well.
Let

p±(y, t; x, s) = P{X (t) ∈ dy | X (s) = x, D(s) = ±1}/dy, s < t

denote the densities related to the particle, which starts at time s from the point x .
Using an approach similar to (2.2.5) we obtain the integral equation

p±(y, t; x, s) = e−λ(t−s)δ(y − x ∓ c(t − s))

+
∫ t−s

0
p∓(y, t; x ± cτ, s + τ)λe−λτdτ,

since the medium is homogeneous. Differentiating similarly the proof of Theorem
2.1, we get the differential backward Kolmogorov equation,

−Lx,s
+ p+ ≡ − ∂p+(y, t; x, s)

∂s − c ∂p+(y, t; x, s)
∂x = −λp+(y, t; x, s)+ λp−(y, t; x, s),

−Lx,s
− p− ≡ − ∂p−(y, t; x, s)

∂s + c ∂p−(y, t; x, s)
∂x = −λp−(y, t; x, s)+ λp+(y, t; x, s),

x − c(t − s) < y < x + c(t − s), s < t.
(2.2.13)

Remark 2.4 There are several different interpretations of telegraph-type processes,
cf. e. g. [3, 4]. Here we present somewhat exotic.

Let e1, e2 ∈ R
2, e1 = (1, 0)T and e2 = (0, 1)T . Consider the Markov process

ξ = ξ t = (1 − ε(t))e1 + ε(t)e2, t ≥ 0, where ε = ε(t) ∈ {0, 1} is the two-state
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Markov process defined by (2.1.1). Hence, the telegraph process X = X (t), t ≥ 0
can be expressed as

X (t) = c
∫ t

0
D · ξudu,

where D = e1 − e2 = (1, −1)T .
Notice that

ξ t −
∫ t

0
Λξudu,

is a martingale, where Λ is defined by (2.2.11). Hence, ξ t can be represented as
follows

ξ t = ξ0 +
∫ t

0
Λξudu +Mt , (2.2.14)

where Mt is the martingale (M0 = 0). Equation (2.2.14) is equivalent to

ξ t = etΛξ0 +
∫ t

0
e(t−u)ΛdMu . (2.2.15)

Representation (2.2.15) can be exploited as a source of various examples. If X =
X (t) is the basic telegraph process, defined by (2.1.3) (with D(0) = +1), then the
state process ξ t is defined by

ξ t =
(

1+ (−1)Nt

2
,

1− (−1)Nt

2

)T

.

In this case the underlying martingale defined by (2.2.14) should be

Mt =
(
λ

∫ t

0
(−1)Nu du − 1− (−1)Nt

2
, −λ

∫ t

0
(−1)Nu du + 1− (−1)Nt

2

)T

.

(2.2.16)
Process Mt defined by (2.2.16) is actually the jump-telegraph martingale, see

Theorem 4.1 (Chap. 4). The case of D(0) = −1 can be proceeded similarly.
Unfortunately, other examples of naturally defined martingales Mt produce rather

exotic things. For instance, if the underlying martingale Mt has Mt = (−1)Nt e2λt

as a component (see e.g. [5]), then the resulting state process ξ t can be expressed by
means of

ξ0 + λ
∫ t

0
(1± e−2λ(t−u))e2λu(−1)Nu du +

Nt∑
k=1

(−1)k
1± e−2λ(t−τk )

2
e2λτk

http://dx.doi.org/10.1007/978-3-642-40526-6_4
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(see 2.2.15). This is the telegraph process with variable jumps and velocities of a
very special comportment.

Nevertheless, representation (2.2.15) could be useful in various aspects. For 0 ≤
s ≤ t

E{ξ t |Fs} = E{ξ t | ξ s} = e(t−s)Λξ s .

Hence, the expectations of the telegraph process can be easily computed by

EX (t) = c
∫ t

0
D · euΛξ0du,

etc.

2.3 Telegraph Equation

Hyperbolic systems (2.2.7) and (2.2.12) (and 2.2.13) of the first-order equations are
equivalent to the hyperbolic differential equation of the second order (see 2.3.1).

Theorem 2.2 Functions p± = p±(x, t) as well as functions f = f (x, t), b =
b(x, t) are solutions of the telegraph differential equation,

∂2 p

∂t2 + 2λ
∂p

∂t
= c2 ∂

2 p

∂x2 , t > 0, x ∈ (−∞,∞). (2.3.1)

Proof The proof is based on the so-called Kac’s trick. We prove that Eq. (2.3.1) is
valid for p± = p±(x, t). The proof for f and b is left to the reader.

Let

p(x, t) = p+(x, t)+ p−(x, t)

2
and w(x, t) = p+(x, t)− p−(x, t)

2
.

In vectorial notations,

p = p(x, t) = (e+ · p) /2, w = w(x, t) = (e− · p) /2,

where e+ = (1, 1), e− = (1, −1) and p = (p+, p−)T .
Notice that

1

2
e+ · Lp = ∂p

∂t
+ c

∂w

∂x
,

1

2
e− · Lp = ∂w

∂t
+ c

∂p

∂x
+ 2λw.

Multiplying Eq. (2.2.7) by e+/2 and e−/2 we obtain the equivalent system
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{
∂p
∂t + c ∂w

∂x = 0,
∂w
∂t + c ∂p

∂x = −2λw.
(2.3.2)

Then, we differentiate the first equation of system (2.3.2) in t and the second one
in x ,

∂2 p

∂t2 = −c
∂2w

∂x∂t
,

∂2w

∂x∂t
= −c

∂2 p

∂x2 − 2λ
∂w

∂x

Eliminating the mixed derivative we obtain

∂2 p

∂t2 = c2 ∂
2 p

∂x2 + 2λc
∂w

∂x
.

Applying again the first equation of system (2.3.2) we get (2.3.1) for p = p(x, t).
In the similar way one can see that w satisfies (2.3.1). It suffices to differentiate

the first equation of (2.3.2) in x and the second one in t , and then again to eliminate
the mixed derivative.

Therefore the same equation is valid for p± = p±(x, t). �

Equation (2.3.1) is called the telegraph or damped wave equation.
To specify the solution of this equation it is necessary to define the initial condi-

tions. For the densities p± and f, b (see 2.1.9 and 2.2.4 respectively) these conditions
are obvious. For example, for conditional densities p± we have

p±|t↓0 = δ(x),
∂p±
∂t

∣∣∣∣
t↓0
= ∓cδ′(x), (2.3.3)

for f, b the initial conditions are

f |t↓0 = b|t↓0 = 1

2
δ(x),

∂ f

∂t

∣∣∣∣
t↓0
= −∂b

∂t

∣∣∣∣
t↓0
= − c

2
δ′(x),

and, hence, for the density p = p(x, t) = 1

2
(p+(x, t) + p−(x, t)) = f (x, t) +

b(x, t) (see 2.1.6)

p|t↓0 = δ(x),
∂p

∂t

∣∣∣∣
t↓0
= 0. (2.3.4)

In each of these cases the first equality means that initially the particle is located
at the origin, see initial conditions (2.2.8), and the second one follows directly from
the first condition and from Eq. (2.2.7).

Let ϕ : R→ R, ϕ ∈ C2 be any test-function. Consider the expectations
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u±(x, t) = E±ϕ(x + X (t)) =
∞∫

−∞
ϕ(x + y)p±(y, t)dy (2.3.5)

=
∞∫

−∞
ϕ(y)p±(y − x, t)dy,

x ∈ (−∞,∞), t ≥ 0.

Applying the differential operator
∂2

∂t2 + 2λ
∂

∂t
− c2 ∂

2

∂x2 to (2.3.5) one can see

that the differential equations for functions p± and for functions u± are the same.

Theorem 2.3 Functions u± as well as the function u(x, t) = Eϕ(x + X (t)) =
1

2
(u+(x, t)+ u−(x, t)) satisfy Eq. (2.3.1) with the following initial conditions:

u+(x, +0) = u−(x, +0) = u(x, +0) = ϕ(x), (2.3.6)

and (see Eq. (2.2.12))

∂u±
∂t

(x, +0) = ±cϕ′(x), ∂u

∂t
(x, +0) = 0. (2.3.7)

Remark 2.5 Applying the Kac’s trick to system (2.2.13) we get another version
of the telegraph equation, which has the sense of backward equation. Let p =
p±(y, t; x, s), then

∂2 p

∂s2 − 2λ
∂p

∂s
= c2 ∂

2 p

∂x2 , s < t, (2.3.8)

with the terminal conditions

p±(y, t; x, s)|s↑t = δ(y−x),
∂p±(y, t; x, s)

∂s

∣∣∣∣
s↑t
= ±cδ′(y−x). (2.3.9)

It is important to note that all equations and their transforms are treated in the
generalised sense, that is, as the differentiation of generalised functions. More pre-
cisely, we assume that all the functions and their derivatives are considered in the
space D ′.

Hyperbolic system (2.2.7) as well as hyperbolic Eq. (2.3.1) are well-posed and
the solution is supported into the cone S̄ between the bicharacteristics,

S = {(x, t) ∈ R
2+ = R× (0,∞) : |x | < ct},
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if the initial conditions are concentrated at the origin. The solution of (2.3.1), (2.3.4)
is unique in the space D ′.

Solving the Cauchy problem for Eq. (2.3.1) with the initial conditions (δ(x), 0)
is equivalent to solving the inhomogeneous telegraph equation

∂2 p(x, t)

∂t2 + 2λ
∂p(x, t)

∂t
− c2 ∂

2 p(x, t)

∂x2 = δ(x) δ(t), (2.3.10)

where the generalised function on the right-hand side of this equation represents
the instant unit point-like source concentrated at the initial time t = 0 at the origin
x = 0.

From (2.3.10) it follows that the transition density p(x, t) of the telegraph
process X (t) is the fundamental solution (the Green’s function) to the telegraph
equation (2.3.1). This implies the fine analogy between the telegraph process X (t)
and the one-dimensional Brownian motion w(t), whose transition density is the
fundamental solution to the one-dimensional heat equation (1.2.2).

2.4 Characteristic Function

In this section we study the characteristic function (the Fourier transform of the
transition density) of the telegraph process X (t),

p̂(ξ, t) = Fx→ξ [p(x, t)] =
∞∫

−∞
eiξ x p(x, t) dx, (2.4.1)

where p = p(x, t) is the transition density (see (2.1.6) and (2.1.7)).

Theorem 2.4 Let d = d(ξ) = λ2 − c2ξ2, and 1A is the indicator function (see
(2.1.8)).

For any t > 0 the characteristic function of the telegraph process X (t) has the
form :

p̂(ξ, t) = e−λt
{[

cosh
(

t
√

d(ξ)
)
+ λ√

d(ξ)
sinh

(
t
√

d(ξ)
)]

1{|ξ |≤ λc
} (2.4.2)

+
[

cos
(

t
√−d(ξ)

)
+ λ√−d(ξ)

sin
(

t
√−d(ξ)

)]
1{|ξ | >λ

c

}
}
.

Proof According to (2.3.1) and (2.3.4), the characteristic function p̂(ξ, t) is the
solution of the initial-value problem: for any ξ ∈ (−∞,∞) (ξ is fixed)

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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d2 p̂(ξ,t)
dt2 + 2λ d p̂(ξ,t)

dt + c2ξ2 p̂(ξ, t) = 0,

p̂(ξ, t)|t=0 = 1, d p̂(ξ,t)
dt

∣∣∣
t=0

= 0.
(2.4.3)

The characteristic equation of the ordinary differential equation in (2.4.3) is

z2 + 2λz + c2ξ2 = 0

with the roots z1 = −λ−√d(ξ), z2 = −λ+√d(ξ).
Therefore, the general solution of the ordinary differential equation in (2.4.3) has

the form:
p̂(ξ, t) = C1et(−λ−√d(ξ)) + C2et(−λ+√d(ξ)), (2.4.4)

where C1, C2 are some constants which do not depend on t . The initial conditions
of (2.4.3) give us the system

{
C1 + C2 = 1,

C1
(−λ−√d(ξ)

)+ C2
(−λ+√d(ξ)

) = 0.

The solution of this system is

C1 = 1

2

(
1− λ√

d(ξ)

)
, C2 = 1

2

(
1+ λ√

d(ξ)

)
.

Substituting these values into (2.4.4) we obtain for |ξ | ≤ λ
c (resp. for d = d(ξ) =

λ2 − c2ξ2 > 0):

p̂(ξ, t) = 1
2

(
1− λ√

d

)
et (−λ−√d) + 1

2

(
1+ λ√

d

)
et (−λ+√d)

= e−λt
[

et
√

d+e−t
√

d

2 + λ√
d

et
√

d−e−t
√

d

2

]

= e−λt
[
cosh

(
t
√

d
)
+ λ√

d
sinh

(
t
√

d
)]
.

(2.4.5)

Since cosh(i z) = cos(z) and sinh(i z) = i sin(z), we have for |ξ | > λ
c (resp. for

d = d(ξ) = λ2 − c2ξ2 < 0):

p̂(ξ, t) = e−λt
[

cos
(

t
√−d

)
+ λ√−d

sin
(

t
√−d

)]
. (2.4.6)

Collecting (2.4.5) and (2.4.6) we obtain (2.4.2). Note that function (2.4.2) is contin-
uous with respect to ξ because
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lim
ξ↑ λc

p̂(ξ, t) = lim
ξ↓ λc

p̂(ξ, t) = e−λt (1+ λt).

The theorem is proved. �

2.5 Transition Density

The principal aim of this section is to obtain the transition density p(x, t) (2.1.6)
of the telegraph process X (t). This is possible by computing the inverse Fourier
transform of p̂(ξ, t), but we prefer the direct calculation based on the Cauchy
problem for telegraph equation (2.3.1) with initial condition (2.3.6) and (2.3.7) (see
Theorem 2.3). This result is given by the following theorem. Another approach is
presented in Sect. 4.1.1.

Theorem 2.5 For any t > 0 the transition density p(x, t) of the telegraph process
X (t) has the form:

p(x, t) = e−λt

2 [δ(ct + x)+ δ(ct − x)]

+ e−λt

2c

[
λI0

(
λ
c

√
c2t2 − x2

)
+ ∂

∂t I0

(
λ
c

√
c2t2 − x2

)]
1{|x |<ct},

x ∈ (−∞,∞), t > 0,
(2.5.1)

where I0(x) is the modified Bessel function, δ = δ(x) is Dirac’s δ-function.

Remark 2.6 Taking into account that I ′0(z) = I1(z) (see 1.5.3), we have

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
= λct√

c2t2 − x2
I1

(
λ

c

√
c2t2 − x2

)
, (2.5.2)

and, therefore, the transition density p = p(x, t) given by (2.5.1) has the following
alternative form:

p(x, t) = e−λt

2 [δ(ct + x)+ δ(ct − x)]

+λe−λt

2c

[
I0

(
λ
c

√
c2t2 − x2

)
+ ct√

c2t2−x2 I1

(
λ
c

√
c2t2 − x2

)]
1{|x |<ct},

x ∈ (−∞,∞), t > 0.
(2.5.3)

Proof Due to Theorem 2.3 it is sufficient to prove that the expectation

u(x, t) = Eϕ(x + X (t)) = e−λt

2
[ϕ(x − ct)+ ϕ(x + ct)]

+ e−λt

2c

∫ ct
−ct ϕ(x + y)

[
λI0

(
λ
c

√
c2t2 − y2

)
+ ∂
∂t I0

(
λ
c

√
c2t2 − y2

)]
dy

(2.5.4)

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_1
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satisfies telegraph equation (2.3.1) with the initial conditions

u(x, t)|t↓0 = ϕ(x), ∂u(x, t)

∂t

∣∣∣∣
t↓0
= 0 (2.5.5)

(see (2.3.6)–(2.3.7)) for any test-function ϕ : R→ R, ϕ ∈ C2.
After the change of variables u = e−λt v(x, t) it is easy to see that function

u = u(x, t) is the solution to the problem (2.3.1) and (2.5.5) if and only if the
function v = v(x, t) solves the equation

∂2v

∂t2 (x, t)− c2 ∂
2v

∂x2 (x, t) = λ2v(x, t), x ∈ (−∞,∞), t > 0. (2.5.6)

Initial conditions (2.5.5) take the form

v(x, t)|t↓0 = ϕ(x), ∂v(x, t)

∂t

∣∣∣∣
t↓0
= λϕ(x), x ∈ (−∞,∞). (2.5.7)

We find the solution of Cauchy problem (2.5.6)–(2.5.7) in the following terms.
For any continuous function ψ, ψ : R→ R, we set

Z(x, t; ψ) = 1

2

∫ t
0 [ψ(x + cs)+ ψ(x − cs)] I0

(
λ
√

t2 − s2
)

ds

= 1

2

∫ t
−t ψ(x + cs)I0

(
λ
√

t2 − s2
)

ds.

Lemma 2.1 The solution v(x, t) to Eq. (2.5.6) supplied with the initial conditions

v(x, t)|t↓0 = ϕ, ∂v(x, t)

∂t

∣∣∣∣
t↓0
= ψ (2.5.8)

can be expressed in the form

v(x, t) = Z(x, t; ψ)+ ∂Z

∂t
(x, t; ϕ). (2.5.9)

Theorem 2.5 follows from Lemma 2.1. Indeed, substituting λϕ instead of ψ in
(2.5.9) and differentiating in t we obtain

v(x, t) = 1

2
[ϕ(x − ct)+ ϕ(x + ct)]

+1

2

∫ t
−t ϕ(x + cs)

[
λI0

(
λ
√

t2 − s2
)
+ ∂

∂t I0

(
λ
√

t2 − s2
)]

ds,

which corresponds to (2.5.4) (after suitable change of variables).
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Proof of the Lemma First we prove that Z = Z(x, t; ψ) fits to Eq. (2.5.6).
Differentiating we obtain

∂Z(x, t; ψ)
∂t

= 1

2
(ψ(x + ct)+ ψ(x − ct)) (2.5.10)

+ 1

2

∫ t

−t
ψ(x + cs)

∂

∂t
I0

(
λ
√

t2 − s2
)

ds

= 1

2
(ψ(x + ct)+ ψ(x − ct))

+ 1

2

∫ t

−t
ψ(x + cs)I1

(
λ
√

t2 − s2
) λt√

t2 − s2
ds.

Then, using the limit relation lim
z→0

I1(z)

z
= 1

2
we have

∂2 Z(x, t; ψ)
∂t2 = c

2

(
ψ ′(x + ct)− ψ ′(x − ct)

)+ λ2t
4 (ψ(x + ct)+ ψ(x − ct))

+1

2

∫ t
−t ψ(x + cs) ∂

2

∂t2 I0

(
λ
√

t2 − s2
)

ds.

(2.5.11)
Finally, notice

c2 ∂
2 Z(x, t; ψ)

∂x2 = 1

2

∫ t

−t

∂2ψ(x + cs)

∂s2 I0

(
λ
√

t2 − s2
)

ds.

Integrating by parts, similarly to (2.5.11), we get

c2 ∂2 Z(x, t; ψ)
∂x2 = c

2

(
ψ ′(x + ct)− ψ ′(x − ct)

)+ λ2t
4 (ψ(x + ct)+ ψ(x − ct))

+1

2

∫ t
−t ψ(x + cs) ∂

2

∂s2 I0

(
λ
√

t2 − s2
)

ds.

(2.5.12)
Collecting (2.5.11) and (2.5.12) we have

∂2 Z(x, t; ψ)
∂t2 − c2 ∂2 Z(x, t; ψ)

∂x2

= 1

2

∫ t
−t ψ(x + cs)

(
∂2

∂t2 − ∂2

∂s2

)
I0

(
λ
√

t2 − s2
)

ds.
(2.5.13)

For any smooth function φ

∂2φ(t2 − s2)

∂t2 − ∂
2φ(t2 − s2)

∂s2 = 4φ′(t2 − s2)+ 4(t2 − s2)φ′′(t2 − s2).

In particular, if φ(z) := I0(λ
√

z), then
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φ′(z) = λ

2
√

z
I1(λ
√

z), φ′′(z) = − λ

4z3/2 I1(λ
√

z)+ λ
2

4z
I2(λ
√

z),

and therefore

4φ′(z)+ 4zφ′′(z) = λ√
z

I1(λ
√

z)+ λ2 I2(λ
√

z).

Finally, due to Bessel equation (see (1.5.1) and (1.5.3)), I2(z)+ 2

z
I1(z) = I0(z), we

have

(
∂2

∂t2 −
∂2

∂s2

)
I0

(
λ
√

t2 − s2
)
= λ2 I0

(
λ
√

t2 − s2
)
.

This equality and (2.5.13) give us Eq. (2.5.6) for Z , and, therefore, the equation for
v defined by (2.5.9). From definition of Z and equalities (2.5.10)–(2.5.11) we easily
get

Z(x, +0; ψ) = 0,
∂Z

∂t
(x, +0; ψ) = ψ(x), ∂2 Z

∂t2 (x, +0; ψ) = 0

which is equivalent to (2.5.8). Lemma 2.1 and Theorem 2.5 are proved.
Notice that conditional densities p±(x, t) defined by (2.1.9) satisfy Eq. (2.3.1)

with initial conditions (2.3.3). Hence functions q±(x, t) := eλt p±(x, t) fit for
Eq. (2.5.6) with initial conditions

q±(x, t)|t↓0 = δ(x),
∂q±(x, t)

∂t

∣∣∣∣
t↓0
= λδ(x)∓ cδ′(x).

Applying again Lemma 2.1 we obtain the explicit formulae for p±(x, t):

p±(x, t) = e−λt
[

Z(x, t; λδ ∓ cδ′)+ ∂Z

∂t
(x, t; δ)

]
(2.5.14)

= e−λtδ(ct ∓ x)+ P±(x, t),

where (see (2.1.10)) P±(x, t) are the absolutely continuous parts of the distributions,

P±(x, t) = P(x, t)∓c
∂

∂x
I0

(
λ

c

√
c2t2 − x2

)
1{|x |<ct} (2.5.15)

= λe−λt

2c

[
I0

(
λ

c

√
c2t2 − x2

)

+ ct ± x√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
1{|x |<ct},

http://dx.doi.org/10.1007/978-3-642-40526-6_1
http://dx.doi.org/10.1007/978-3-642-40526-6_1
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x ∈ (−∞,∞), t > 0.

For definition of P(x, t) see (2.1.7).
Notice that P+(−x, t) ≡ P−(x, t) and p+(−x, t) ≡ p−(x, t).
Moreover, in addition to (2.2.10) we have

1

2
p−(x, t) = f (−x, t),

1

2
p+(x, t) = b(−x, t). (2.5.16)

Hence f (x, t) ≡ b(−x, t).
The explicit formulae for f (x, t) and b(x, t) follow from (2.5.14) and (2.5.15).

Remark 2.7 Equalities (2.5.16) have a probabilistic proof. Since the telegraph
process is the renewal one, each sample path can be considered with inverted time
direction. This means that if X+ = X+(t) , X− = X−(t) and X = X (t) are the tele-
graph processes defined by (2.1.3) and (2.1.4) which are driven by the same Poisson
process, then due to symmetry

X±(t) = ±c
t∫

0
(−1)N (s)ds = ±c(−1)N (t)

t∫
0
(−1)N (t)−N (s)ds

d= ±c(−1)N (t)
t∫

0
(−1)N (t−s)ds = ∓c(−1)N (t)

t∫
0
(−1)N (s)ds =: Y∓(t).

Variable Y∓(t) is distributed like a telegraph process with the final direction which
is opposite to the initial direction of the original process X±.

Identities (2.5.16) follow from these observations.

2.6 Convergence to Brownian Motion

In this section we establish the limiting behaviour of the telegraph process X (t) as
both the speed of the motion c and the intensity of switchings λ tend to infinity in
such a way that the following condition holds

c→∞, λ→∞, c2

λ
→ σ 2. (2.6.1)

Condition (2.6.1) is referred to as Kac’s condition. The following theorem states
that, under Kac’s condition (2.6.1), the telegraph process X (t) is asymptotically a
Wiener process.

Theorem 2.6 For any fixed x ∈ (−∞,∞), t > 0, under Kac’s scaling condition
(2.6.1) random variables X (x, t) := x + X (t) converge in distribution to Wx (t),
where {Wx (t)}t>0 is the diffusion process which starts from x ∈ (−∞,∞) with zero
drift and diffusion coefficient σ 2,
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x + X (t)
d→ Wx (t), x ∈ (−∞,∞), t > 0. (2.6.2)

Proof Let ϕ : R→ R be a bounded continuous function. It is sufficient to compute
the limit of the function

Eϕ(x + X (t)) = 1

2
e−λt [ϕ(x + ct)+ ϕ(x − ct)]+ Ec,λ(x, t), (2.6.3)

as c, λ→∞, c2/λ→ σ 2. Here

Ec,λ(x, t) =
ct∫

−ct

ϕ(x + y)P(y, t)dy (2.6.4)

and P(y, t) is the absolutely continuous part of the distribution,

P(y, t) = λe−λt

2c

[
I0

(λ
c

√
c2t2 − y2

)
+ ct√

c2t2 − y2
I1

(λ
c

√
c2t2 − y2

)]
,

(see (2.1.7) and (2.5.3)).
The first summand in (2.6.3) (corresponding to the discrete component of the

distribution) tends to zero, e−λt [ϕ(x + ct)+ ϕ(x − ct)] → 0, because function ϕ
is bounded and e−λt → 0 as λ→∞.

We split the integral in (2.6.4) into two summands, Ec,λ(x, t) = E (1)(x, t) +
E (2)(x, t), where

E (1)(x, t) =
∫

|y|<(ct)1/2

ϕ(x + y)P(y, t)dy,

E (2)(x, t) =
∫

(ct)1/2<|y|<ct

ϕ(x + y)P(y, t)dy.

The first part reflects the integration on [−(ct)1/2, (ct)1/2], such that under scaling
condition (2.6.1)

λ

c

√
c2t2 − y2 →∞

for any y, |y| < (ct)1/2. Applying asymptotics (1.5.8) of Bessel functions (with
ν = 0, 1) we obtain

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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λe−λt

2c

(ct)1/2∫
−(ct)1/2

ϕ(x + y)

[
I0

(
λ
c

√
c2t2 − y2

)
+ ct√

c2t2−y2
I1

(
λ
c

√
c2t2 − y2

)]
dy

∼ λ
c

(ct)1/2∫
−(ct)1/2

ϕ(x + y)e−λt+λ
√

t2−y2/c2 dy√
2πλ
√

t2−y2/c2
.

(2.6.5)
Notice that if |y| < (ct)1/2, then under scaling (2.6.1) we have

−λt + λ
√

t2 − y2/c2 = −λy2/c2

t +√t2 − y2/c2
→− y2

2σ 2t

and

λ/c√
2πλ

√
t2 − y2/c2

=
√
λ/c√

2π
√

t2 − y2/c2
→ 1

σ
√

2π t
.

Moreover, since function ϕ is bounded, under the Kac’s condition (2.6.1) we have

|ϕ(x + y)| e−λt+λ
√

t2−y2/c2 λ/c√
2πλ
√

t2−y2/c2
1{|y|<(ct)1/2}

≤ C
√
λ/c√

2π
√

t2−t/c
e
−λy2/c2

t+
√

t2−t/c ≤ Ae−ay2
.

Here A and a depend on t only, so the inequality is fulfilled uniformly in y.
Hence, by Lebesgue’s dominated convergence theorem the latter integral in (2.6.5)

converges to

1

σ
√

2π t

∫ ∞
−∞

ϕ(x + y)e−
y2

2σ2 t dy.

To finish the proof it is sufficient to demonstrate that the second component
E (2)(x, t) of Ec,λ(x, t) vanishes under Kac’s condition. Notice that (see (1.5.5))

I0(z) ≤ ez,
I1(z)

z
≤ 1

2
ez, z ≥ 0.

Applying these inequalities and then changing the variables, y = c√
λ

s, we have the

following estimates for E (2)(x, t),

λe−λt

2c

∫

(ct)1/2<|y|<ct

ϕ(x + y)

(
I0

(λ
c

√
c2t2 − y2

)
+ ct√

c2t2 − y2
I1

(λ
c

√
c2t2 − y2

))
dy

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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≤ λ

2c

∫

(ct)1/2<|y|<ct

ϕ(x + y)

(
1+ λt

2

)
exp

{
−λt + λ

√
t2 − y2/c2

}
dy

= λ

2c

∫

(ct)1/2<|y|<ct

ϕ(x + y)

(
1+ λt

2

)
exp

{
−λy2/c2

t +
√

t2 − y2/c2

}
dy =

∣∣∣∣y = c√
λ

s

∣∣∣∣

=
√
λ

2

(
1+ λt

2

) ∫
√
λt
c <|s|<

√
λt

ϕ

(
x + c√

λ
s

)
exp

{
− s2

t +
√

t2 − s2/λ

}
ds

≤
√
λ

2

(
1+ λt

2

) ∫
√
λt
c <|s|<

√
λt

ϕ

(
x + c√

λ
s

)
exp

{
− s2

2t

}
ds

≤ Cλ3/2t2 exp

{
− λ

2c

}

∼ Cλ3/2t2 exp

{
−
√
λ

2σ

}
→ 0

as λ, c→∞ and c2/λ→ σ 2.

Remark 2.8 Theorem 2.6 can be generalised up to the functional limit theorem
(invariance principle). Under the Kac’s scaling condition (2.6.1) the telegraph process
X (x, t) := x + X (t) converges in distribution in C([0, T ]; (−∞,∞)) (equipped
with the sup-norm and the σ -algebra generated by the open subsets) to the process
Wx (t), t > 0, the diffusion process which starts from x ∈ (−∞,∞) with zero drift
and diffusion coefficient σ 2. To prove that, we need more detailed considerations
comprising the compactness properties which are not included in the framework of
this presentation. See [2].

Generalisations of the convergence (2.6.2) to the asymmetric case see in [6].

Remark 2.9 We can also check that, under the Kac’s condition (2.6.1), the charac-
teristic function (2.4.2) of the telegraph process X (t) converges to the characteristic
function of the one-dimensional Brownian motion.

First we note that from Kac’s condition (2.6.1) it follows that (λ/c) → ∞ and,
thus, 1{|ξ |≤ λc

} → 1, 1{|ξ |>λ
c

} → 0. Therefore, for the characteristic function

(2.4.2) we have the asymptotic relation (for c→∞, λ→∞):

p̂(ξ, t) ∼ e−λt

[
cosh

(
t
√
λ2 − c2ξ2

)
+ λ√

λ2 − c2ξ2
sinh

(
t
√
λ2 − c2ξ2

)]

= e−λt

⎡
⎣cosh

⎛
⎝λt

√
1− c2

λ2 ξ
2

⎞
⎠+ 1√

1− c2

λ2 ξ
2

sinh

⎛
⎝λt

√
1− c2

λ2 ξ
2

⎞
⎠
⎤
⎦
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∼ e−λt

⎡
⎣cosh

⎛
⎝λt

√
1− c2

λ2 ξ
2

⎞
⎠+ sinh

⎛
⎝λt

√
1− c2

λ2 ξ
2

⎞
⎠
⎤
⎦

= exp

⎛
⎝−λt + λt

√
1− c2

λ2 ξ
2

⎞
⎠

= exp

(
− c2ξ2t

λ(1+√1− c2ξ2/λ2

)
.

Due to Kac’s condition (2.6.1) we have
c2

λ2 → 0 and, therefore,

lim
c, λ→∞
(c2/λ)→σ 2

p̂(ξ, t) = exp

(
−1

2
tσ 2ξ2

)
. (2.6.6)

This is the characteristic function of the homogeneous one-dimensional Brownian
motion with zero drift and diffusion coefficient σ 2 (see (1.2.3)).

2.7 Laplace Transforms

In this section we compute the Laplace transforms (in t) of the transition density of
the telegraph process X (t), t ≥ 0 and of its characteristic function.

Let f : [0,∞) → R be an integrable function. The Laplace transform f̃ (s) is
defined as

Lt→s f ≡ f̃ (s) =
∫ ∞

0
e−st f (t)dt, s > 0, (2.7.1)

see (1.6.6).
If f ∈ D ′([0,∞)) is a distribution (generalised function) supported on [0,∞),

then the Laplace transform is defined by means of

< f̃ , ϕ >=< f, ϕ̃ > for any test function ϕ ∈ D([0,∞)).

Theorem 2.7 The Laplace transform (with respect to time t) of the transition density
p(x, t) of the telegraph process X (t) is given by the formula: for ∀x ∈ (−∞,∞)

p̃(x, ·)(s) =

⎧⎪⎨
⎪⎩

1
2c

√
s+2λ

s e−
|x |
c

√
s(s+2λ), x �= 0

1
2c

(√
s+2λ

s + 1

)
, x = 0.

(2.7.2)

http://dx.doi.org/10.1007/978-3-642-40526-6_1
http://dx.doi.org/10.1007/978-3-642-40526-6_1
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Proof First notice that due to Theorem 2.5 (see 2.5.1)

p(x, t) = e−λt

2
[δ(ct − x)+ δ(ct + x)]+ P(x, t),

where

P(x, t) = e−λt

2c

[
λI0

(
λ
c

√
c2t2 − x2

)
+ ∂

∂t I0

(
λ
c

√
c2t2 − x2

)]
1{t>|x |/c},

x ∈ (−∞,∞).
(2.7.3)

To calculate the Laplace transform of P(x, ·), notice that

∞∫

|x |/c
e−λt−st ∂

∂t
g(x, t)dt = −g(x, |x |/c + 0)e−(λ+s) |x |c + (λ+ s)g̃(x, λ+ s).

(2.7.4)

The Laplace transform of the first term, g0(x, t) := λe−λt

2c
I0

(
λ
c

√
c2t2 − x2

)

1{t>|x |/c}, is given by the formula (see e.g. [7], formula 29.3.93, p.1027)

g̃0(x, ·)(s) = λ/2c√
s(s + 2λ)

e−
|x |
c

√
s(s+2λ). (2.7.5)

Applying now formula (2.7.4) to the second term of function P(x, t) defined by
(2.7.3) and collecting the result and (2.7.5), we get from (2.7.3)

P̃(x, ·)(s) = λ/2c√
s(s+2λ)

e−
|x |
c

√
s(s+2λ)

+
(
− 1

2c e−(λ+s) |x |c + (λ+s)/2c√
s(s+2λ)

e−
|x |
c

√
s(s+2λ)

)
.

(2.7.6)

The Laplace transform of the singular part e−λt

2 [δ(ct − x)+ δ(ct + x)] is given

by
1

2c
e−(λ+s) |x |c , if x �= 0; and

1

c
, if x = 0.

Now, from (2.7.6) we obtain (2.7.2). �

Remark 2.10 Due to continuity theorem (see e.g. [8], Chap. 13, Theorem 2a) and
the convergence result (Theorem 2.6) we see that, under Kac’s condition (2.6.1), the
Laplace transform p̃(x, ·) converges to Laplace transform of the transition density of
Brownian motion. This result can be obtained directly from formula (2.7.2). Indeed,
from Kac’s condition (2.6.1) it follows that

√
λ

c
→ 1

σ
,

λ

c
→∞,

and, therefore, function p̃(x, ·) defined by (2.7.2) turns into

http://dx.doi.org/10.1007/978-3-642-40526-6_1


42 2 Telegraph Process on the Line

1
2c

√
s+2λ

s e−
|x |
c

√
s(s+2λ) = 1

2

√
λ

c

√
1
s

( s
λ
+ 2

)
e−|x |

√
λ

c

√
s( s
λ
+2)

→ 1
2

1
σ

√
2
s e−|x | 1

σ

√
2s = 1

σ
√

2s
e−|x |

√
2s/σ ,

(2.7.7)

and this is exactly the Laplace transform of the transition density of the homogeneous
Brownian motion with zero drift and diffusion coefficient σ 2 (see (1.2.8)).

Theorem 2.8 The Laplace transform of the characteristic function p̂(ξ, t) given
by (2.4.2) of the telegraph process X (t) has the form:

Lt→s[ p̂(ξ, t)] = s + 2λ

s2 + 2λs + c2ξ2 , s > 0. (2.7.8)

Proof Applying to (2.4.2) formulas (29.3.15)–(29.3.18) (p.1022, [7]) we have

Lt→s

{
e−λt

[
cosh

(
t
√
λ2 − c2ξ2

)
+ λ√

λ2−c2ξ2
sinh

(
t
√
λ2 − c2ξ2

)]
1{|ξ |≤ λc

}
}

=
[

s+λ
(s+λ)2−(λ2−c2ξ2)

+ λ
(s+λ)2−(λ2−c2ξ2)

]
1{|ξ |≤ λc

}

and

Lt→s

{
e−λt

[
cos

(
t
√

c2ξ2 − λ2
)
+ λ√

λ2−c2ξ2
sin

(
t
√

c2ξ2 − λ2
)]

1{|ξ |>λ
c

}
}

=
[

s+λ
(s+λ)2+(c2ξ2−λ2)

+ λ
(s+λ)2+(c2ξ2−λ2)

]
1{|ξ |>λ

c

}.

Summing up these equalities we obtain (2.7.8). �

Notes

By the volume restrictions the content is rigourously selected. In particular, branch-
ing telegraph processes, travelling waves as well as applications in biology are not
included in this chapter, see e.g. [9–12] and references therein.

Other references to this chapter are [4, 5, 13–30].
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Chapter 3
Functionals of Telegraph Process

Abstract In this chapter we study some important functionals of the telegraph
processes. We derive the explicit formulae for the densities of the telegraph processes
with reflecting and absorbing barriers, as well as first passage times and occupation
time distributions. Our presentation corrects some inaccuracies and errors in this
field.

Keywords Barriers · Occupation times · First passage time

3.1 Motions with Barriers

Let X = X (t), t ≥ 0 be the telegraph process, X (t) = c
∫ t

0 D(s)ds and D(t) =
D(0)(−1)N (t), as defined in (2.1.3). Here N = N (t) is the counting Poisson process
with parameter λ, λ > 0. Consider also two processes X± = X±(t)with fixed initial
direction (see (2.1.4)).

For arbitrary a ∈ (−∞,∞) we define the first passage times for the processes
X± = X±(t) and X = X (t),

T±a = inf{t ≥ 0 : X±(t) = a}, Ta = inf{t ≥ 0 : X (t) = a}. (3.1.1)

3.1.1 Telegraph Process with Reflecting Barrier

Consider now the particle which moves in accordance with the same law, but with
reverses of the direction at point a. Let Xre f (t) be the current particle’s position and
τ k = τ k(a), k = 1, 2, . . . be the moment of kth reversal,

τ k = inf{t : t > τ k−1, Xre f (t) = a}, k ≥ 1, τ 0 = 0. (3.1.2)

Let a > 0 (the case of a < 0 can be described similarly). Hence the parti-
cle’s direction just after each reversal is −1 (in the case of a < 0 it is +1). The
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directions of X (t) at collision points alternate, D(τ k) = (−1)k−1, k = 1, 2, . . .
Therefore, between collisions the direction of Xre f (t) is Dref (t) = −D(τ k)D(t) =
−(−1)N (τ k )(−1)N (t), if τ k < t ≤ τ k+1, k = 1, 2, . . .

Hence the process Xre f is defined as follows,

Xref (t) =
{

X (t), t ≤ τ = τ 1,
a − (−1)N (τ k )c

∫ t
τ k (−1)N (s)ds, τ k < t ≤ τ k+1, k = 1, 2, . . .

(3.1.3)
Moreover, at each collision with the point x = a the process renews with initial

direction −1. Indeed, at t ∈ (τ k, τ k+1]
Xre f (t) = a − (−1)N (τ k )c

∫ t
τ k (−1)N (s)ds

= a − c
∫ t−τ k

0 (−1)N (s+τ k )−N (τ k )ds = a − c
∫ t−τ k

0 (−1)N ′(s)ds.
(3.1.4)

Here N ′(s) = N (s + τ k) − N (τ k) is the number of Poisson events occurred after
the moment τ k . It has the same distribution as N (s).

Let

pre f (x, t) = P{Xre f (t) ∈ dx}/dx, p(x, t) = P{X (t) ∈ dx}/dx

be the transition densities of Xre f (t) and X (t), respectively. Function p = p(x, t)
is defined by (2.5.1).

Theorem 3.1 If t > a/c, then

pre f (x, t) = p(x, t)+ p(2a − x, t), x < a. (3.1.5)

Proof Notice that, by definition (3.1.3), Xre f (t) = X (t) if t < τ 1. Further, it is easy
to see that if t ∈ [τ 2n−1, τ 2n), then Xre f (t) is distributed as 2a − X (t), and if t ∈
[τ 2n, τ 2n+1), then Xre f (t) is distributed as the original process X (t), n = 1, 2, . . .

Let ϕ = ϕ(x), x < a, be any smooth test-function. Then

Eϕ
(

Xre f (t)
)
= E

[
ϕ (X (t))1{t<τ 1}

]

+
∞∑

n=1

{
E
[
ϕ (X (t))1{τ 2n≤t<τ 2n+1}

]

+ E
[
ϕ (2a − X (t))1{τ 2n−1≤t<τ 2n}

]}
= Eϕ(X (t))1{X (t)<a} + Eϕ(2a − X (t))1{X (t)>a}

=
a∫

−∞
ϕ(x)p(x, t)dx +

∞∫

a

ϕ(2a − x)p(x, t)dx

=
a∫

−∞
ϕ(x) (p(x, t)+ p(2a − x, t)) dx .

The theorem is proved. ��

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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Remark 3.1 If t < a/c, then Xre f (t) = X (t), hence pre f (x, t) = p(x, t). Formula
(3.1.5) is still valid because for x < a and t < a/c the density p(2a− x, t) vanishes.

Notice that for −ct < x < 2a − ct we also have p(2a − x, t) = 0 and hence
again pre f (x, t) = p(x, t).

Similarly to (3.1.5) the conditional densities (with known initial direction)

pre f
± (x, t) = P{Xre f (t) ∈ dx | D(0) = ±1}/dx

take the following explicit representation (supported by [−ct, a]):

pre f
− (x, t) = p−(x, t)+ p−(2a − x, t),

pre f
+ (x, t) = p+(x, t)+ p+(2a − x, t), x ≤ a.

(3.1.6)

Remark 3.2 It is interesting to note that densities (3.1.6) satisfy the following initial-
boundary value problem. Functions pre f

± and pre f satisfy the telegraph equation

∂2 p(x, t)

∂t2 + 2λ
∂p(x, t)

∂t
= c2 ∂

2 p(x, t)

∂x2 , x < a, t > 0,

with the following initial and boundary conditions :

pre f
±
∣∣∣
t=+0
= pre f

∣∣∣
t=+0
= δ(x),

∂pre f
±
∂t

∣∣∣∣∣
t=+0

= ∓cδ′(x), ∂pre f

∂t

∣∣∣∣
t=+0
= 0,

∂pre f
±
∂x

∣∣∣∣∣
x=a−

= ∂pre f

∂x

∣∣∣∣
x=a−

= 0.

We get the proof by applying Theorem 2.2 to representation (3.1.6).

3.1.2 Telegraph Process with Absorbing Barrier

Now we suppose that the particle is absorbed at the point x = a > 0. It means that
the respective process denoted as Xabs(t), t > 0 coincides with X (t) if t < Ta ; if
t ≥ Ta then Xabs(t) = a. Here Ta is the first passage time defined by (3.1.1).

In contrast with the case of reflecting barrier it is more convenient to express the
distribution of Xabs(t), t > 0 in terms of last direction densities. Let
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f abs(x, t) = f abs(x, t; a) = P{Xabs(t) ∈ dx, D(t) = +1}/dx,
babs(x, t) = babs(x, t; a) = P{Xabs(t) ∈ dx, D(t) = −1}/dx,

x < a,

(3.1.7)
be the distribution densities for the particle which moves forwards and backwards,
respectively. Similarly to Theorem 2.1 we can derive the Kolmogorov equations for
f abs(x, t) and babs(x, t).

Theorem 3.2 Densities f abs and babs satisfy the following system,

{
Lx,t
+ f abs(x, t) = −λ f abs(x, t)+ λbabs(x, t),

Lx,t
− babs(x, t) = −λbabs(x, t)+ λ f abs(x, t),

for t > 0, x < a, (3.1.8)

with the initial and boundary conditions,

babs
∣∣
t=0 = f abs

∣∣
t=0 =

1

2
δ(x),

babs
∣∣
x=a− = 0,

(
Lx,t
+ f abs + λ f abs

)∣∣
x=a− = 0.

(3.1.9)

Here the differential operators Lx,t
± are defined by (2.2.6).

Proof Equations (3.1.8) and initial conditions of (3.1.9) follow from the system
(2.2.7)–(2.2.8).

By conditioning on the last switching near the reflecting barrier a we check the
boundary conditions (3.1.9). Similarly to (2.2.5) we have for any ε > 0 and t > a/c

babs(a − ε, t) =
t∫

t−ε/c
f abs(a − ε + c(t − s), s)λe−λ(t−s)ds.

Passing to the limit, as ε→+0, we obtain babs(a−, t) = 0. Notice that babs(x, t) ≡
0, if t ≤ a/c, since the speed is finite. Boundary condition for f abs follows from the
first equation of system (3.1.8). ��
Remark 3.3 Notice that for t < a/c the motion cannot attain the barrier, so
f abs(x, t) ≡ f (x, t) and babs(x, t) ≡ b(x, t), x ∈ [−ct, ct].

The (unique) solution of problem (3.1.8)–(3.1.9) is expressed in terms of transition
densities f and b (see (2.2.4)).

Theorem 3.3 For t > a/c the transition densities of the distribution of Xabs(t) are

babs(x, t) = b(x, t)− b(2a − x, t),
f abs(x, t) = f (x, t)− f (2a − x, t)− 2c

λ
b′(2a − x, t)

if x < a, t ≥ a/c.

(3.1.10)

where b′(y, t) = ∂b(y, t)

∂y
.
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Proof We prove that the functions f abs and babs defined by (3.1.10) solve system
(3.1.8) with initial-boundary conditions (3.1.9).

First notice that functions f = f (x, t) and b = b(x, t) satisfy Eq. (2.2.7) with
initial conditions given by (2.2.8). Applying operator Lx,t

− to the first equality of
(3.1.10) and using (2.2.7) we have

Lx,t
− babs(x, t) = Lx,t

− b(x, t)− Lz,t
+ b(z, t)

∣∣
z=2a−x

= Lx,t
− b(x, t)− Lz,t

− b(z, t)
∣∣
z=2a−x − 2cb′(2a − x, t)

= −λb(x, t)+ λ f (x, t)+ λb(2a − x, t)
−λ f (2a − x, t)− 2cb′(2a − x, t)

= −λbabs(x, t)+ λ f abs(x, t).

Next, using the similar technique we apply Lx,t
+ to the second equality of (3.1.10).

We have

Lx,t
+ f abs(x, t) = Lx,t

+ f (x, t)− Lz,t
− f (z, t)|z=2a−x + Lx,t

+
[

2c

λ
· ∂b(2a − x, t)

∂x

]

= Lx,t
+ f (x, t)− Lz,t

+ f (z, t)|z=2a−x + 2c f ′(2a − x, t)

+ Lx,t
+
[

2c

λ
· ∂b(2a − x, t)

∂x

]

= −λ f (x, t)+ λb(x, t)+ λ f (2a − x, t)− λb(2a − x, t)

− 2c
∂ f (2a − x, t)

∂x

+ 2c

λ

∂

∂x

[
∂b(2a − x, t)

∂t
+ c

∂b(2a − x, t)

∂x

]

= −λ f (x, t)+ λb(x, t)+ λ f (2a − x, t)− λb(2a − x, t)

+ 2c

λ

∂

∂x

[
−λ f (2a − x, t)+ ∂b(2a − x, t)

∂t
+ c

∂b(2a − x, t)

∂x

]

= −λ f (x, t)+ λb(x, t)+ λ f (2a − x, t)− λb(2a − x, t)

+ 2c

λ

∂

∂x
[−λb(2a − x, t)]

= −λ f abs(x, t)+ λbabs(x, t).

Therefore functions f abs = f abs(x, t) and babs = babs(x, t) defined by (3.1.10)
satisfy Eq. (3.1.8).

The initial conditions in (3.1.9) follow from the initial conditions (2.2.8) for
functions f = f (x, t) and b = b(x, t). Boundary conditions in (3.1.9) are fulfilled,
since

b(x, t)|x=a = b(2a − x, t)|x=a = b(a, t)

and due to the first equation of (3.1.8). ��
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Denote by pabs± the conditional transition densities of Xabs when the initial direc-
tion is known:

pabs− (x, t) = pabs− (x, t; a) = P{Xabs(t) ∈ dx |D(0) = −1}/dx,
pabs+ (x, t) = pabs+ (x, t; a) = P{Xabs(t) ∈ dx |D(0) = +1}/dx,

x < a.

(3.1.11)
Notice that, due to symmetry and time-reversal trick (see Remark 2.7 and (2.5.16)),
from Theorem 3.3 we easily obtain for t > a/c and x < a

pabs− (x, t; a) = 2 f abs(−x, t; a − x) = 2 f (−x, t)
−2 f (2a − x, t)− 4c

λ
b′(2a − x, t)

= p−(x, t)− p+(2a − x, t)− 2c
λ

p′−(2a − x, t),
pabs+ (x, t; a) = 2babs(−x, t; a − x) = b(−x, t)− b(2a − x, t)

= p+(x, t)− p−(2a − x, t).

(3.1.12)

Remark 3.4 Notice that first formula of (3.1.12) differs from formula (3.3) of [1].

Let us remind notations P(x, t) and P±(x, t) introduced by (2.5.1) and (2.5.15),

P(x, t) = λ
2c e−λt

[
I0

(
λ
c

√
c2t2 − x2

)
+ ct√

c2t2−x2 I1

(
λ
c

√
c2t2 − x2

)]
,

P±(x, t) = λ
2c e−λt

[
I0

(
λ
c

√
c2t2 − x2

)
+ ct±x√

c2t2−x2 I1

(
λ
c

√
c2t2 − x2

)]
.

The survival probabilities of Xabs(t) can be expressed as follows.

Theorem 3.4 If t > a/c, then

P{Xabs(t) < a|D(0) = −1} =
a∫
−a

P(x, t)dx + 2c
λ

P−(a, t),

P{Xabs(t) < a|D(0) = +1} =
a∫
−a

P(x, t)dx .
(3.1.13)

Proof Applying the first formula of (3.1.12) we have

P{Xabs(t) < a|D(0) = −1} =
a∫

−∞
pabs− (x, t; a)dx = e−λt +

a∫

−ct

Pabs− (x, t; a)dx,

where e−λt is the probability that no one Poisson event occurs till time t and
Pabs− (x, t; a) = P−(x, t) − P+(2a − x, t) − 2c

λ
P ′−(2a − x, t) is the absolutely

continuous part of the distribution, P ′−(y, t) = ∂P−(y, t)

∂y
.

Hence
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P{Xabs(t) < a|D(0) = −1}

= e−λt +
a∫

−ct

P−(x, t)dx −
a∫

2a−ct

[
P+(2a − x, t)+ 2c

λ
P ′−(2a − x, t)

]
dx

= e−λt +
a∫

−ct

P−(x, t)dx −
ct∫

a

P+(x, t)dx − 2c

λ

ct∫

a

P ′−(x, t)dx

= e−λt +
a∫

−ct

P−(x, t)dx −
−a∫

−ct

P−(x, t)dx − 2c

λ

[
P−(ct, t)− P−(a, t)

]

=
a∫

−a

P(x, t)dx + 2c

λ
P−(a, t),

since P+(−x, t) ≡ P−(x, t) (see (2.5.15)),
∫ a
−a P−(x, t)dx= ∫ a

−a P+(x, t)dx= ∫ a
−a P(x, t)

dx and P−(ct, t) = λ

2c
e−λt .

The proof of the second equality of (3.1.13) is similar. ��
Remark 3.5 Since

P{Xabs(t) < a} = 1

2

[
P{Xabs(t) < a|D(0) = −1} + P{Xabs(t) < a|D(0) = +1}

]

=
a∫

−a

P(x, t)dx + c

λ
P−(a, t),

we have the obvious inequalities

P{Xabs(t) < a|D(0) = +1} < P{Xabs(t) < a} < P{Xabs(t) < a|D(0) = −1}.

3.2 Occupation Time Distributions

This section is devoted to the detailed description of the proportion of time spent by
the telegraph process X = X (t) on the positive semi-axis. This result generalises
the famous and beautiful arcsine law by Paul Lévy which dates back about 70 years
(see [2, Théorème 3, pp. 301–302]).

Let w = w(t) be a standard Brownian motion on R starting from the origin
(w(0) = 0), and consider the occupation time functional (see (1.2.12))

hT := 1

T

∫ T

0
H(w(t))dt, T > 0, (3.2.1)

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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where H(x) is the Heaviside unit step function (i.e., H(x) = 0 for x ≤ 0 and
H(x) = 1 for x > 0). The distribution of the random variable hT is given by the
arcsine law, (1.2.13).

In this section we obtain the similar property of the telegraph process.

3.2.1 Feynmann-Kac Connection

The arcsine law for Brownian motion is usually derived using the Feynmann-Kac
formula. Let us present the Feynmann-Kac formula for telegraph processes, which
is of interest by itself.

Let q = q(x), g = g(x), x ∈ (−∞, ∞) be bounded functions, such that
g ∈ C1(R) and q is piecewise continuous, i. e., q ∈ C(R \ Dq), where Dq is a finite
set of discontinuities, and moreover, q has finite left and right limits at the points of
Dq . Consider the Cauchy problem

⎧⎨
⎩
∂v+
∂t − c ∂v+

∂x = λ(v− − v+)+ qv+,
∂v−
∂t + c ∂v−

∂x = λ(v+ − v−)+ qv−, t > 0, x ∈ (−∞,∞),
v± |t↓0 = g(x), x ∈ (−∞,∞).

(3.2.2)

Let X (x, t) = x + X (t) be the telegraph process which starts from point x ∈
(−∞,∞).
Theorem 3.5 The functions

v+(x, t) = E+

⎧⎨
⎩g(X (x, t)) exp

⎛
⎝

t∫

0

q((X (x, s))ds

⎞
⎠
⎫⎬
⎭ , (3.2.3)

v−(x, t) = E−

⎧⎨
⎩g(X (x, t)) exp

⎛
⎝

t∫

0

q((X (x, s))ds

⎞
⎠
⎫⎬
⎭ (3.2.4)

defined by the conditional distributions (given the initial direction D(0) = ±1) for
all (x, t) ∈ R× (0,∞) such that x ± ct /∈ Dq satisfy Cauchy problem (3.2.2).

Proof The initial conditions of the Cauchy problem (3.2.2) follow immediately from
(3.2.3)–(3.2.4). To prove that equations in (3.2.2) are valid for v± we first obtain the
system of integral equations.

Denote by f+(y, t) and f−(y, t) the conditional probability densities for the
particle that currently moves forward (D(t) = +1), given the initial direction D(0) =
+1 and D(0) = −1, respectively,

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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fσ (y, t) = P {X (t) ∈ dy, D(t) = +1 | D(0) = σ } /dy, σ = ±1.

Conditional densities for the current backward direction are denoted by b+(y, t) and
b−(y, t), namely

bσ (y, t) = P {X (t) ∈ dy, D(t) = −1 | D(0) = σ } /dy, σ = ±1.

Notice that functions f = ( f+(x, t), f−(x, t))T and b = (b+(x, t), b−(x, t))T sat-
isfy Eq. (2.2.7) and the initial conditions

f |t=0 = (δ(x), 0)T and b|t=0 = (0, δ(x))T . (3.2.5)

The integral equations for functions v± are expressed in terms of conditional
densities f± and b±.

Lemma 3.1 Functions v± = v±(x, t), which are defined by (3.2.3)–(3.2.4), satisfy
the following system :

v+(x, t) = v0+(x, t)+ ∫ t
0 ds

∫∞
−∞ q(x + y)

[
v+(x + y, t − s) f+(y, s)

+v−(x + y, t − s)b+(y, s)
]

dy,
(3.2.6)

v−(x, t) = v0−(x, t)+ ∫ t
0 ds

∫∞
−∞ q(x + y)

[
v+(x + y, t − s) f−(y, s)

+v−(x + y, t − s)b−(y, s)
]

dy.
(3.2.7)

Here v0±(x, t) = E±{g(x + X (t))}.
Proof (of the Lemma) First notice that for any locally integrable function Φ the
following statement is valid: if

ϕ1(t) := exp

(∫ t

0
Φ(s)ds

)
and ϕ2(t) := 1+

∫ t

0
Φ(s) exp

(∫ t

s
Φ(r)dr

)
ds,

then ϕ1 ≡ ϕ2. This is clear because both functions, ϕ1 and ϕ2, satisfy the equation

dϕ

dt
= Φ(t)ϕ(t)

with the initial condition ϕ(0) = 1.
Since ϕ1 ≡ ϕ2, then

exp

(∫ t

0
Φ(s)ds

)
= 1+

∫ t

0
Φ(s) exp

(∫ t

s
Φ(r)dr

)
ds,

with 
(s) = q(x + X (s)). Then multiplying by g(x + X (t)) and taking the expec-
tations, we obtain

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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v±(x, t) =v0±(x, t)+ E±
{

g(x + X (t))
∫ t

0
q(x + X (s)) (3.2.8)

exp

(∫ t

s
q(x + X (r))dr

)
ds

}
,

The process (X (t), D(t)) is renewable at any fixed time. We compute the expec-
tations in (3.2.8) conditioning on the state at time s, 0 < s < t . We get

E±q(x + X (s))g(x + X (t)) exp

(∫ t

s
q(x + X (r))dr

)

=
∫ ∞
−∞

q(x + y)
[

f±(y, s)E+ {g(x + y + X (t − s))

exp

(∫ t−s

0
q(x + y + X (r))dr

)}

+ b±(y, s)E−
{

g(x + y + X (t − s)) exp

(∫ t−s

0
q(x + y + X (r))dr

)}]
dy

=
∫ ∞
−∞

q(x + y)
[

f±(y, s)v+(x + y, t − s)+ b±(y, s)v−(x + y, t − s)
]

dy.

Substituting this result into (3.2.8) we obtain (3.2.6)–(3.2.7). Lemma 3.1 is
proved. ��

Now we derive Eq. (3.2.2) from (3.2.6)–(3.2.7). We will check the first equation
of (3.2.2). The proof of the second one is similar.

Differentiating the integral equation (3.2.6), and then integrating by parts in view
of initial conditions (3.2.5), we have

∂v+
∂t
= ∂v0+

∂t
+
∫ ∞
−∞

q(x + y)
[
v+(x + y, 0) f+(y, t)+ v−(x + y, 0)b+(y, t)

]
dy

−
∫ t

0
ds
∫ ∞
−∞

q(x + y)

[
∂v+(x + y, t − s)

∂s
f+(y, s)

+∂v−(x + y, t − s)

∂s
b+(y, s)

]
dy

= ∂v0+
∂t
+ q(x)v+(x, t)

+
∫ t

0
ds
∫ ∞
−∞

q(x + y)

[
v+(x + y, t − s)

∂ f+
∂s
(y, s)

+v−(x + y, t − s)
∂b+
∂s

(y, s)

]
dy,

and
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c
∂v+
∂x
= c

∂v0+
∂x
+ c
∫ t

0
ds
∫ ∞
−∞

∂

∂y

[
q(x + y)v+(x + y, t − s)

]
f+(y, s)

+ ∂

∂y

[
q(x + y)v−(x + y, t − s)

]
b+(y, s)

= c
∂v0+
∂x
− c
∫ t

0
ds
∫ ∞
−∞

q(x + y)

[
v+(x + y, t − s)

∂ f+
∂y

(y, s)

+v−(x + y, t − s)
∂b+
∂y

(y, s)

]
dy.

The first equation of (3.2.2) follows from the latter two equations and (3.2.6). This
can be demonstrated by using the Kolmogorov equations (2.2.7) for functions f, b
and dual equations (2.2.12) for v0±. Theorem 3.5 is completely proved. ��

3.2.2 Statement of the Main Result

For T > 0 consider the following occupation time random variables

ηT := 1

T

∫ T

0
H(X (t))dt, η±T :=

1

T

∫ T

0
H(X±(t))dt, (3.2.9)

where H(x) = 1(0,∞)(x) is the Heaviside step function and X (t), X±(t) are the
telegraph processes introduced above (see (2.1.3) and (2.1.4)). Note that the total
time spent by the processes X±(t), 0 ≤ t ≤ T, at the origin (and at any fixed level x)
almost surely (a.s.) is equal to zero, since by Fubini’s theorem we have

E

∫ T

0
1{x}(X±(t))dt =

∫ T

0
P{X±(t) = x}dt = 0. (3.2.10)

Hence, the complementary quantity 1 − η±T a.s. represents the proportion of time
spent by the processes X±(t), 0 ≤ t ≤ T on the negative half of the axis,

1− η±T =
1

T

∫ T

0
1(−∞,0)(X±(t))dt (a.s.),

and by symmetry it follows that

η+T
d= 1− η−T , η−T

d= 1− η+T . (3.2.11)

Let us consider the function ϕT (t), t ≥ 0 defined by

http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
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ϕT (t) := 1

4πλT

∫ t

0

1− e−2λT u

u3/2
√

t − u
du, t > 0, ϕT (0) := 1

2
. (3.2.12)

After the substitution u = t y, we have in the limit as t ↓ 0,

ϕT (t) = 1

4πλT t

∫ 1

0

1− e−2λT ty

y3/2
√

1− y
dy → 1

2π

∫ 1

0

1√
y(1− y)

dy = 1

2
(3.2.13)

(cf (1.2.14)), and thus ϕT (·) is continuous at zero (and hence everywhere on [0,∞)).
Note the following useful scaling relation, which easily follows from the represen-
tation of ϕ given by (3.2.13):

ϕαT (t) = ϕT (αt), t ≥ 0, α > 0. (3.2.14)

Let us also set

ψT (y) := 2λTϕT (y)ϕT (1− y), 0 ≤ y ≤ 1. (3.2.15)

We are now ready to state our main result.

Theorem 3.6 The random variables η±T defined in (3.2.9) have the distributions

P
{
η±T ∈ dy

} = 2ϕT (1)δx±(dy)+ ψT (y)dy, 0 ≤ y ≤ 1, (3.2.16)

where δx± is the Dirac measure (of unit mass) at point x± , with x− = 0 , x+ = 1.
Furthermore, the distribution of ηT (see (3.2.9)) is given by the formula

P
{
ηT ∈ dy

} = ϕT (1)δ0(dy)+ ϕT (1)δ1(dy)+ ψT (y)dy, 0 ≤ y ≤ 1. (3.2.17)

In other words, the distributions of η−T , η+T has a discrete part with atom of mass
2ϕT (1) at point 0 or 1, respectively, and an absolutely continuous part with the density
ψT defined by (3.2.15). Similarly, the distribution of ηT has atoms at points 0 and 1,
both of mass ϕT (1), and an absolutely continuous part with the densityψT as above.
Atoms correspond to the case of unreversed particle.

Remark 3.6 The ±-duality in (3.2.16) becomes clear from relation (3.2.11) and the
symmetry property ψT (y) ≡ ψT (1− y) (see (3.2.15)).

Remark 3.7 Integrating in (3.2.16) over [0, 1], we arrive at the curious identity

2ϕT (1)+ 2λT
∫ 1

0
ϕT (y)ϕT (1− y)dy = 1.

Remark 3.8 Using an integral formula (see [3, 9.6.16, p. 376]) or (1.5.7) for the
modified Bessel function I0, it is easy to check that the function ϕT defined by
(3.2.12) admits another representation,

http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_1
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ϕT (t) = 1

2λT t

∫ λT t

0
e−y I0(y)dy, t > 0. (3.2.18)

Indeed, applying formula (1.5.7) we have

1

2λT t

∫ λT t

0
e−y I0(y)dy = 1

2πλT t

∫ λT t

0
e−ydy

∫ 1

−1

eyξ√
1− ξ2

dξ

= 1

2πλT t

∫ 1

−1

dξ√
1− ξ2

∫ λT t

0
e−(1−ξ)ydy

= 1

2πλT t

∫ 1

−1

1− e−(1−ξ)λT t

(1− ξ)3/2(1+ ξ)1/2 dξ

= 1

4πλT t

∫ 1

0

1− e−2uλT t

u3/2(1− u)1/2
du = ϕT (t),

proving (3.2.18).
Then formula (3.2.18) can be transformed (see [3][11.3.12, p. 483]) into

ϕT (t) = 1

2
e−λT t(I0(λT t)+ I1(λT t)

)
.

Thus, the distribution ofη±T (0) andηT (0) can be expressed in terms of the modified
Bessel functions I0 and I1, like the distribution of the telegraph process (cf. (2.5.1),
Theorem 2.5).

In view of the scaling properties of the telegraph process (Theorem 2.6), it is not
surprising that the random variables ηT , η

±
T converge in distribution to the arcsine

law as T →∞.

Theorem 3.7 For 0 ≤ θ ≤ 1,

lim
T→∞P{ηT ≤ θ} = lim

T→∞P{η±T ≤ θ} =
2

π
arcsin

√
θ. (3.2.19)

3.2.3 Proof of Theorems 3.6 and 3.7

For arbitrary β ∈ R, set

v±T (ξ, t) = E

[
exp

{−β
T

∫ T t

0
H(cT ξ + X±(u))du

}]
, ξ ∈ R, t ≥ 0.

(3.2.20)
Since H(·) is a bounded function, the expectation in (3.2.20) is finite for all β ∈ R.

Note that the value

http://dx.doi.org/10.1007/978-3-642-40526-6_1
http://dx.doi.org/10.1007/978-3-642-40526-6_2
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v±T (0, 1) = E

[
e−βη

±
T

]
(3.2.21)

represents the Laplace transform of the random variable defined in (3.2.9), and,
hence, it can be used in order to characterise the distribution of η±T .

Let us record some simple properties of the function v±T .

Lemma 3.2 For each β ∈ R and any T > 0, the functions v±T (ξ, t) are continuous
in ξ ∈ (−∞,∞) and in t, t ≥ 0.

Moreover
lim

ξ→−∞ v±T (ξ, t) = 1, lim
ξ→+∞ v±T (ξ, t) = e−βt . (3.2.22)

Proof Continuity in t ∈ [0,∞) is obvious. As mentioned above (see (3.2.10)), for
any ξ0 ∈ R we have cT ξ0 + X±u �= 0 for all u ∈ [0, T t] except a (random) finite
set. Since the function H is continuous outside zero, this implies that, for such u,
H(cT ξ+ X±u )

a.s.−→ H(cT ξ0+ X±u ) as ξ → ξ0 and hence, by Lebesgue’s dominated

convergence theorem,
∫ T t

0 H(cT ξ + X±u )du
a.s.−→ ∫ T t

0 H(cT ξ0 + X±u )du as ξ →
ξ0. The continuity of v±T (·, t) at point ξ0 now follows by Lebesgue’s dominated
convergence theorem applied to the expectation (3.2.20), since

exp

{−β
T

∫ T t

0
H(cT ξ + X±(u))du

}

is bounded (for any fixed t).
To prove (3.2.22), note that, for T > 0 and each u ∈ [0, T t], we have cT ξ+X±u >

0 (i. e. v±T (ξ, t) = e−βt ) for ξ > cT t
cT = t , and cT ξ + X±u < 0 (i. e. v±T (ξ, t) = 1)

for ξ < −t . Lemma 3.2 is proved. ��
From definition (3.2.20) it follows that if β ≥ 0 then, for each ξ ∈ R, the functions

v±T (ξ, ·) are bounded on [0,∞), so the Laplace transform

w±T (ξ, s) :=
∫ ∞

0
e−st v±T (ξ, t)dt, s > 0 (3.2.23)

is well defined.

Lemma 3.3 Set s̃ := s + β. For any fixed s > 0 the functions w±T = w±T (ξ, s)
defined by (3.2.23) are continuous in ξ ∈ R and satisfy the following system

⎧⎨
⎩

dw+T
dξ = λT

(
w+T − w−T

)+ (s + βH(ξ)
)
w+T − 1,

dw−T
dξ = λT

(
w+T − w−T

)− (s + βH(ξ)
)
w+T + 1,

ξ �= 0, (3.2.24)

and the boundary conditions
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lim
ξ→−∞w±T (ξ, s) = s−1, lim

ξ→+∞w±T (ξ, s) = s̃−1. (3.2.25)

Proof Functions w±T (ξ, s) are continuous in ξ , since v±T (ξ, t) are bounded and con-
tinuous (see Lemma 3.2 ). Further, applying Theorem 3.5 (with g(x) ≡ 1 and
q(x) = −βT−1 H(x)), we see that the functions v±T = v±T (ξ, t) defined by (3.2.20)
satisfy the Cauchy problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ∂v+T
∂t +

∂v+T
∂ξ
= λT

(
v+T − v−T

)+ βH(cT ξ)v+T ,

∂v−T
∂t +

∂v−T
∂ξ
= λT

(
v+T − v−T

)− βH(cT ξ)v−T , t > 0, T ξ ± t �= 0,

v±T (ξ, 0) = 1, ξ ∈ R.

(3.2.26)
Integrating by parts and using the initial condition (3.2.26), we have

∫ ∞
0

e−st ∂v±T (ξ, t)

∂t
dt = −v±T (ξ, 0)+ s

∫ ∞
0

e−st v±T (ξ, t)dt = −1+ sw±T (ξ, s).

(3.2.27)
Applying the Laplace transformation (with respect to t) to Eq. (3.2.26) and tak-
ing into account (3.2.27), we immediately obtain the differential equation (3.2.24).
Finally, the boundary conditions (3.2.25) readily follow from (3.2.29) by Lebesgue’s
dominated convergence theorem applied to (3.2.23). Lemma 3.3 is proved. ��
Lemma 3.4 Suppose that for each s > 0, functions w±T (·, s) are continuous and
satisfy Eq. (3.2.24) and boundary conditions (3.2.25). Then

w+T (0, s) = 2
κ̃+s̃ + 2λT

(κ+s)(κ̃+s̃) ,

w−T (0, s) = 2
κ+s + 2λT

(κ+s)(κ̃+s̃) ,
(3.2.28)

where κ = κ(s) := √s(s + 2λT ) and κ̃ := κ(s̃) = √s̃(s̃ + 2λT ).

Proof Solving separately system (3.2.24) for ξ < 0 and for ξ > 0 with boundary
conditions (3.2.25) at infinity, we find

w±T (ξ, s) =
{

K±(s)eκξ + 1/s, ξ < 0,
K̃±(s)e−κξ + 1/s̃, ξ > 0,

(3.2.29)

where the coefficients K± = K±(s) and K̃± = K̃±(s) satisfy the equations

⎧⎪⎪⎨
⎪⎪⎩

κK+ = λT (K+ − K−)+ sK+,
κK− = λT (K+ − K−)− sK−,
κ̃ K̃+ = λT (K̃+ − K̃−)+ s K̃+,
κ̃ K̃− = λT (K̃+ − K̃−)− s K̃−.

(3.2.30)
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Taking into account the continuity of w±T (·, s) at zero, we also obtain

{
K+(s)+ 1/s = K̃+(s)+ 1/s̃,
K−(s)+ 1/s = K̃−(s)+ 1/s̃.

(3.2.31)

The systems (3.2.30) and (3.2.31) are easily solved to yield

K±(s) = −β
s
· κ ± s

sκ̃ + s̃κ
< 0, K̃±(s) = β

s̃
· κ̃ ∓ s̃

sκ̃ + s̃κ
> 0,

with κ and κ̃ defined in the Lemma.
Hence, from Eq. (3.2.29) we obtain

w±T (0, s) = K±(s)+ 1

s
= −β(κ ± s)

s(sκ̃ + s̃κ
+ 1

s
(3.2.32)

= κ + κ̃ ∓ β
sκ̃ + s̃κ

= κ ± s + κ̃ ∓ s̃

sκ̃ + s̃κ
.

Note that
κ2 − s2 = 2λT s, κ̃2 − s̃2 = 2λT s̃,

hence

w+T (0, s) = 2λT

(κ − s)(κ̃ + s̃)
, w−T (0, s) = 2λT

(κ + s)(κ̃ − s̃)
,

which is equivalent to (3.2.28). Lemma 3.4 is proved. ��
To finish the proof of Theorem 3.6, it is sufficient to calculate the inverse Laplace

transformation on the right-hand side of Eq. (3.2.28).

Lemma 3.5 Let ϕT (t), t ≥ 0 be defined by (3.2.12). Then, for s > 0 , we have

∫ ∞
0

e−stϕT (t)dt = 1

κ + s
(3.2.33)

and

∫ ∞
0

e−st
(∫ t

0
e−βyϕT (y)ϕT (t − y)dy

)
dt = 1

(κ + s)(κ̃ + s̃)
, (3.2.34)

where κ = κ(s) and κ̃ = κ(s̃) are as defined in Lemma 3.4.
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Proof Note that

∫ ∞
0

e−stϕT (t)dt = 1

4πλT

∫ ∞
0

1− e−2λT u

u3/2

(∫ ∞
u

e−st dt√
t − u

)
du

= 1

4πλT

∫ ∞
0

e−su(1− e−2λT u)

u3/2

(∫ ∞
0

e−sτ dτ√
τ

)
du

= 1

4λT
√
πs

∫ ∞
0

e−su
(

1− e−2λT u
)

u−3/2du

= 1

4λT
√
πs
· 2√π

(√
s + 2λT −√s

)

= 1√
s(s + 2λT )+ s

= 1

κ + s
,

and (3.2.33) is proved. Furthermore, formula (3.2.33) readily implies (3.2.34) by the
convolution property of the Laplace transformation. Indeed, recalling that s+β = s̃,
the left-hand side of (3.2.34) is given by the product

∫ ∞
0

e−stϕT (t)dt
∫ ∞

0
e−s̃tϕT (t)dt = 1

(κ + s)(κ(s̃)+ s̃)
,

and (3.2.34) follows. ��
Thus, by Lemmas 3.4 and 3.5 and the relation (3.2.21) we get

E
[
e−βη

−
T
] = v−T (0, 1) = 2ϕT (1)+ 2λT

∫ 1
0 e−βyϕT (y)ϕT (1− y)dy,

E
[
e−βη

+
T
] = v+T (0, 1) = 2ϕT (1)e−β + 2λT

∫ 1
0 e−βyϕT (y)ϕT (1− y)dy.

(3.2.35)
By inspection of the right-hand sides of (3.2.35), it is evident that the distribution
of η±T consists of an atom at point 0 (for η−T ) or 1 (for η+T ), and of an absolutely
continuous part corresponding to the integral term in (3.2.35). More precisely, for
each θ ∈ [0, 1],

P{η−T ≤ θ} = 2ϕT (1)+ 2λT
∫ θ

0
ϕT (y)ϕT (1− y)dy,

P{η+T ≥ θ} = 2ϕT (1)+ 2λT
∫ 1

θ

ϕT (y)ϕT (1− y)dy.

Theorem 3.6 is proved. ��
Theorem 3.7 follows from Theorem 3.6 and from the following asymptotics of

function ϕT . After change of variables we have
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√
TϕT (t) = 1

4πλ
√

T

t∫

0

1− e−2λT u

u3/2
√

t − u
du = 1

4π

λT t∫

0

1− e−2τ

τ 3/2
√
λt − τ/T

dτ

= 1

4π

T α∫

0

1− e−2τ

τ 3/2
√
λt − τ/T

dτ + 1

4π

λT t∫

T α

1− e−2τ

τ 3/2
√
λt − τ/T

dτ.

Let α ∈ (2/3, 1). Thus, the first summand converges to

1

4π
√
λt

∞∫

0

1− e−2τ

τ 3/2 dτ,

as T →∞. The second summand is

1
4π

λT t∫
T α

1−e−2τ

τ 3/2
√
λt−τ/T

dτ = 1
4π
√

T

λt∫
T α−1

1−e−2T u

u3/2
√
λt−u

dτ

≤ 1
4πT 3α/2−1

λt∫
T α−1

du√
λt−u
→ 0.

Therefore, as T →∞,

√
TϕT (t)→ 1

4π
√
λt

∞∫

0

1− e−2τ

τ 3/2 dτ = 1√
2πλt

.

Thus, using Theorem 3.6, we have for 0 < a < b < 1

P{a < η±T < b} →
∫ b

a

dy

π
√

y(1− y)
.

Therefore, the distributions of η±T converge, as T →∞, to the classical arcsine law
for standard Brownian motion. Theorem 3.7 is proved. ��

3.3 First Passage Time

In this section (as in Sect. 4.2) we consider the generalised telegraph process with
alternating velocities c0 > 0 > c1, which is controlled by the Poisson process with
alternating switching intensities λ0 and λ1.

The main objective is to compute the distribution of the first passage time

http://dx.doi.org/10.1007/978-3-642-40526-6_4
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T (x) = inf{t ≥ 0 : X (t) = x}, x > 0,

assuming that c0 > 0 > c1.
It is easy to see that the conditional distributions (if the initial state is fixed) have

the form

P0{T (x) ∈ dt} = e−λ0tδx/c0(dt)+ Q0(x, t)dt, P1{T (x) ∈ dt} = Q1(x, t)dt,
(3.3.1)

where δx/c0 is the Dirac measure (of unit mass) at point x/c0 corresponding to the
motion which does not change its positive velocity c0 and Qi (x, t), i = 0, 1 are the
absolutely continuous parts of the distributions. If t < x/c0, then the particle does
not attain the level x and Qi (x, t) = 0, i = 0, 1.

Theorem 3.8 Conditional distribution densities Q0(x, t) and Q1(x, t) have the
form :

Q0(x, t) = λ0λ1x exp{−λ0ξ−λ1(t−ξ)}
2c
√
λ0λ1ξ(t−ξ) I1

(
2
√
λ0λ1ξ(t − ξ)

)
1{t>x/c0},

Q1(x, t) = λ1 exp{−λ0ξ−λ1(t−ξ)}
2cξ

[
x I0
(
2
√
λ0λ1ξ(t − ξ)

)

− c1√
λ0λ1

√
t−ξ
ξ

I1
(
2
√
λ0λ1ξ(t − ξ)

) ]
1{t>x/c0},

(3.3.2)

where ξ = ξ(x, t) = x − c1t

2c
, t − ξ = c0t − x

2c
, 2c = c0 − c1.

Proof Consider the Laplace transform of these distributions,

φi (x, s) = Ei e
−sT (x), s > 0, i = 0, 1.

In view of (3.3.1), the Laplace transforms φi take the form

φ0(x, s) = e−(λ0+s)x/c0 +
∫ ∞

0
e−st Q0(x, t)dt, φ1(x, s) =

∫ ∞
0

e−st Q1(x, t)dt.

Let t > x/c0. Conditioning on the first switching, we have

Q0(x, t) =
∫ x/c0

0
λ0e−λ0τ Q1(x − c0τ, t − τ)dτ, (3.3.3)

Q1(x, t) = ∫ +∞0 λ1e−λ1τ e−λ0(t−τ)δ (t − τ − (x − c1τ)/c0) dτ

+ ∫ c0 t−x
2c

0 λ1e−λ1τ Q0(x − c1τ, t − τ)dτ
= λ1c0

2c e−λ0ξ−λ1(t−ξ) + ∫ c0 t−x
2c

0 λ1e−λ1τ Q0(x − c1τ, t − τ)dτ.
(3.3.4)
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Hence,

φ0(x, s) = e−(λ0+s)x/c0 +
∫ ∞

0
e−st dt

∫ x/c0

0
λ0e−λ0τ Q1(x − c0τ, t − τ)dτ

= e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−λ0τdτ

∫ ∞
τ

e−st Q1(x − c0τ, t − τ)dt

= e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−(λ0+s)τdτ

∫ ∞
0

e−st Q1(x − c0τ, t)dt.

Then

φ0(x, s) = e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−(λ0+s)τ φ1(x − c0τ, s)dτ. (3.3.5)

In the same manner we derive the integral equation for φ1. In view of (3.3.4),
similarly to (3.3.5), we have

φ1(x, s) =
∫ ∞

0
e−st Q1(x, t)dt = λ1c0

2c

∫ ∞
x/c0

e−st e−λ0ξ−λ1(t−ξ)dt

+ λ1

∫ ∞
0

e−(λ1+s)τ
[
φ0(x − c1τ, s)− e−(λ0+s)(x−c1τ)/c0

]
dτ.

Thus,

φ1(x, s) = λ1

∫ +∞
0

e−(λ1+s)τ φ0(x − c1τ, s)dτ. (3.3.6)

By differentiating Eq. (3.3.5)–(3.3.6) we obtain the system of ordinary differential
equations

c0
∂φ0
∂x (x, s) = −(λ0 + s)φ0(x, s)+ λ0φ1(x, s),

c1
∂φ1
∂x (x, s) = λ1φ0(x, s)− (λ1 + s)φ1(x, s),

(3.3.7)

The initial condition for φ0 follows from Eq. (3.3.5):

φ0(+0, s) = 1, s > 0, (3.3.8)

and, by definition of T (x), we have at infinity

φ0(+∞, s) = φ1(+∞, s) = 0, s > 0. (3.3.9)

In the vector form system (3.3.7) reads

∂φ

∂x
(x, s) = A φ(x, s), x > 0. (3.3.10)
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Here φ = (φ0, φ1)
T and matrix A is defined by

A =
(−(λ0 + s)/c0 λ0/c0
λ1/c1 −(λ1 + s)/c1

)
.

Equation (3.3.10) with boundary conditions (3.3.8)–(3.3.9) can be solved to yield

φ0(x, s) = eαx , φ1(x, s) =
(

1+ s + αc0

λ0

)
eαx , (3.3.11)

where α = α(s) is the negative eigenvalue of matrix A , i. e. the negative root of the
equation

det(A − α I ) ≡ c0c1α
2 + 2(ã + as)α + s(2λ+ s) = 0.

Thus,

α = α(s) = −ã − as + d(s)

c0c1
< 0,

where d(s) = √
(ã + as)2 − c0c1s(2λ+ s). Here we exploit the notations of

Sect. 4.2 and ã = (λ1c0 + λ0c1)/2.
The Laplace transforms φ0 and φ1 can be inverted with help of [3] to yield the

densities Q0 and Q1 in terms of modified Bessel functions.
Consider function Q0 defined by (3.3.2),

Q0(x, t) = λ0λ1x exp{−λ0ξ−λ1(t−ξ)}
2c
√
λ0λ1ξ(t−ξ) I1

(
2
√
λ0λ1ξ(t − ξ)

)
1{t≥x/c0}

= x
√
λ0λ1 exp{−(c̃t+βx)/c}√
(c0t−x)(x−c1t)

I1
(√
λ0λ1(c0t − x)(x − c1t)/c

)
1{t≥x/c0},

(3.3.12)
where c̃ = (λ1c0−λ0c1)/2. The Laplace transform of Q0 can be computed by using
the table, see 29.3.96 and 29.2.14 of [3]:

∫ ∞
x/c0

e−st Q0(x, t)dt = eαx − e−(λ0+s)x/c0 .

Here the following identities are applied:

λ0ξ + λ1(t − ξ) = (c̃t + βx)/c, ξ(t − ξ) = (c0t − x)(x − c1t)

4c2 .

and (
t − ax/(c0c1)

c

)2

−
(

x

c0c1

)2

= (t − x/c0)(t − x/c1)/c
2.

http://dx.doi.org/10.1007/978-3-642-40526-6_4
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To obtain the inverse Laplace transform of Q1 we rewrite Eq. (3.3.12) as

Q0(x − c1τ, t − τ) = λ0λ1(x − c1τ)I1
(
2
√
λ0λ1ξ(t − τ − ξ)

)
e−λ0ξ−λ1(t−τ−ξ)

2c
√
λ0λ1ξ(t − τ − ξ) .

Therefore, formula (3.3.4) becomes

Q1(x, t) = λ1c0

2c
e−λ0ξ−λ1(t−ξ) + Q̃1(x, t), (3.3.13)

where

Q̃1(x, t) = λ0λ
2
1e−λ0ξ−λ1(t−ξ)

2c

(c0t−x)/(2c)∫

0

(x − c1τ)I1
(
2
√
λ0λ1ξ(t − τ − ξ)

)
√
λ0λ1ξ(t − τ − ξ) dτ.

Changing the variables in this integral, z = 2
√
λ0λ1ξ(t − τ − ξ) (or, equivalently,

τ = τ(z) = t − ξ − z2/(4λ0λ1ξ)), and setting z0 = 2
√
λ0λ1ξ(t − ξ) we obtain

Q̃1(x, t) = λ1e−λ0ξ−λ1(t−ξ)

x − c1t

z0∫

0

(x − c1τ(z))I1(z)dz

= λ1e−λ0ξ−λ1(t−ξ)

x − c1t

z0∫

0

(
c0

2c
(x − c1t)+ cc1z2

2λ0λ1(x − c1t)

)
I1(z)dz

= λ1c0e−λ0ξ−λ1(t−ξ)

2c

z0∫

0

I1(z)dz + cc1e−λ0ξ−λ1(t−ξ)

2λ0(x − c1t)2

z0∫

0

z2 I1(z)dz.

The latter two integrals can be expressed as

∫ z0

0
I1(z)dz = I0(z0)− 1,

∫ z0

0
z2 I1(z)dz = z2

0 I2(z0)

(see, e.g. [3], 9.6.27 and 11.3.25).
Thus,

Q̃1(x, t) = λ1

2c

[
c0 I0(z0)− c0 + c1

c0t − x

x − c1t
I2(z0)

]
e−λ0ξ−λ1(t−ξ). (3.3.14)

By the first Eq. 9.6.26 of Ref. [3] we have the identity I2(z) = I0(z) − 2I1(z)/z.
Hence,



3.3 First Passage Time 67

Q̃1(x, t) = λ1

x − c1t

[
x I0(z0)− c0ξ − c1√

λ0λ1

√
c0t − x

x − c1t
I1(z0)

]
e−λ0ξ−λ1(t−ξ).

(3.3.15)
The second equation of (3.3.2) follows from (3.3.13) and (3.3.15). ��
Remark 3.9 In the case of symmetric motion, c0 = −c1 = c, λ0 = λ1 = λ,
formulae (3.3.12) and (3.3.15) take the form

Q0(x, t) = λxe−λt

√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)
1{t>x/c}, (3.3.16)

Q1(x, t) = λe−λt

x + ct

[
x I0

(
λ

c

√
c2t2 − x2

)
+ c

λ

√
ct − x

x + ct
I1 (3.3.17)

×
(
λ

c

√
c2t2 − x2

)]
1{t>x/c}.

In the case of arbitrary c0, c1, c0 > 0 > c1, the conditional density of T (x) given
ε(0) = 0 is known (see [4] and [5] for symmetric motion , and [6] in general case).
In [6] the equation similar to (3.3.4) is also derived (see Eq. (5.6) therein). To the
best of our knowledge, if the initial velocity is negative (and x > 0), then the explicit
form of first passage time distributions Q1 is still unknown even in the symmetric
case (see [6], Remark 5.1 ; cf. (3.3.17) and Theorem 4.1 of [1]).

Notes

Telegraph processes with reflecting and absorbing barriers were studied by numer-
ous physicists and mathematicians, see e.g. [4],[1, 5, 7–13]. Nevertheless, some
erroneous results are still presented in this field. In this chapter we correct some
inaccuracies, including the distributions of first-passage times.

Section 3.2 contains the recent results on occupation time distribution of telegraph
processes, see detailed presentation in [14]. The distributions of the first passage times
are analysed in [15].
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Chapter 4
Asymmetric Jump-Telegraph Processes

Abstract In this chapter we examine the more general jump-telegraph process with
alternating velocities and alternating transition intensities in the presence of determin-
istic jumps at random time instants. The existence of the unique martingale measure
is very important for financial modelling. Exploiting the analogue of Doob-Meyer
decomposition (see e.g. [1]) we characterise the martingales based on the telegraph
processes with jumps. A version of Girsanov’s Theorem for jump-telegraph processes
is obtained as well. The explicit formulae for the moments of the asymmetric tele-
graph process are also derived.

Keywords Jump-telegraph process · Expectations · Variances · Moments ·
Martingales · Girsanov’s Theorem

4.1 Generalised Jump-Telegraph Processes

For the purposes of financial modelling we need some generalisation of the telegraph
process defined in Chap. 2. We consider the telegraph process with alternating veloc-
ity values and alternating transition intensities. Moreover, we need a jump component
to be added to the telegraph process.

The existence and the uniqueness of a martingale measure are very important for
financial modelling (see Theorem 5.1 and 5.2). Exploiting the analogue of Doob-
Meyer decomposition (see e.g. [1]) in this section we characterise the martingales
based on the telegraph processes with jumps. The version of Girsanov’s Theorem
for jump-telegraph processes will be obtained as well.
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4.1.1 Transition Densities

On the filtered probability space (Ω,F, {Ft }t≥0,P) consider the Markov process
ε = ε(t) ∈ {0, 1}, t ≥ 0, with alternating transition intensities λ0 > 0 and λ1 > 0
(cf. (2.1.1) of Chap. 2)

P{ε(t +Δt) �= ε(t) | ε(t)} = λε(t)Δt + o(Δt), Δt →+0. (4.1.1)

Process ε = ε(t) is assumed to be adapted to the filtration {Ft }t≥0. All the paths
of ε are right-continuous. We will consider also the left-continuous version of ε,

ε(t−) :=
{

ε(0) for t = 0,
lim
s↑t
ε(s) for t > 0.

Notice that the switching times τ1 < τ2 < . . . of the Markov process ε = ε(t)
have exponentially distributed and independent increments: P{τn+1−τn > t |Fτn } =
exp

(−λε(τn)t
)
, τ0 = 0, and τn+1 − τn, n ≥ 0, are independent.

Let c1 < c0. We denote V (t) = cε(t) and X (t) = ∫ t
0 V (s)ds. The process X is

called the (inhomogeneous) telegraph process with alternating states (c0, λ0) and
(c1, λ1).

Remark 4.1 We have already changed the notations of previous chapters. The rea-
sons are the following. We will consider the alternating pairs, (c0, λ0) and (c1, λ1),
as the different market states. We say that (c0, λ0) is the basic state, or 0-state.
Staying on the optimistic “bearish” viewpoint, we use notation 0 for the basic state
instead of + for the “growing” market (with velocity c0), and 1 instead of − for the
“falling” market (with velocity c1, c1 < c0). When the market receives respective
information (or the market signals) its current state changes from (c0, λ0) to (c1, λ1)

or vice versa.

Remark 4.2 In the homogeneous case of λ0 = λ1 and −c1 = c0 = c properties
of the telegraph process are well known (see Chap. 2). For the financial modelling
we need the inhomogeneous process with alternating switching intensities defined
above. The exact marginal distributions of inhomogeneous X (t) are calculated in [2],
[3]. Calibration for needs of financial market modelling has been suggested recently
in [4], [5].

In this chapter we need also a pure jump (compound Poisson) process J (t), t ≥ 0.
Let h0, h1 be arbitrary fixed numbers that can be treated as the values of jumps,
h0, h1 ∈ (−∞, ∞). The process J = J (t) is specified as the (right-continuous)
process J = J (t) =∑N (t)

n=1 hεn , t ≥ 0, with jumps occurring at the switching times
τn, n = 1, 2, . . . Here εn = ε(τn−) is the value of the Markov process ε just
before switching time τn , and N = N (t), t ≥ 0 is the counting Poisson process,
N (t) = max{n : τn ≤ t}.

http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
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We define a jump-telegraph process as the sum X (t) + J (t), t ≥ 0. Fix the
initial state ε(0) = i ∈ {0, 1}, so the process starts with the velocity ci and the first
jump will be of value hi at the first switching time τ1 = τ (i)1 which is exponentially
distributed (with transition intensity λi ). Then for any t > 0 we have the following
equality in distribution

X (t)+ J (t)
d= ci t1{τ1>t} +

[
ciτ1 + hi + X̃(t − τ1)+ J̃ (t − τ1)

]
1{τ1<t}, (4.1.2)

where both the telegraph process X̃ and the jump process J̃ start from the opposite
state, 1 − i , and they are independent of X and J . The principle described by
Eq. (4.1.2) is similar to (2.2.1) of Chap. 2.

Let
Pi {·} = P{· | ε(0) = i} and Ei = E{· | ε(0) = i}, i = 0, 1,

denote the conditional probabilities and conditional expectations under the initial
state value ε(0) = i . The conditional transition densities of X + J are defined by

pi (x, t) := Pi {X (t)+ J (t) ∈ dx} /dx, (4.1.3)

pi (x, t; n) := Pi {X (t)+ J (t) ∈ dx, N (t) = n}/dx, n ≥ 0, i = 0, 1.

It is clear that

pi (x, t) =
∞∑

n=0

pi (x, t; n). (4.1.4)

Using (4.1.2) we immediately get the following set of integral equations (cf. Chap. 2,
Eq. (2.2.2))

p0(x, t) = e−λ0tδ(x − c0t)+ ∫ t
0 p1(x − c0s − h0, t − s)λ0e−λ0sds,

p1(x, t) = e−λ1tδ(x − c1t)+ ∫ t
0 p0(x − c1s − h1, t − s)λ1e−λ1sds

(4.1.5)

and

pi (x, t; 0) = e−λi tδ(x − ci t), n ≥ 1, i = 0, 1,

pi (x, t; n) = ∫ t
0 p1−i (x − ci s − hi , t − s; n − 1)λi e−λi sds.

(4.1.6)

Here δ(·) is Dirac’s δ-function, and for any test-function ϕ we presume that (1.6.8)
holds:

∫ b
a δ(y − cs)ϕ(s)ds = ϕ(y/c)/c, −∞ ≤ a < b ≤ ∞, if y/c ∈ [a, b].

Notice that Eq. (4.1.5) can be obtained by summing up in (4.1.6).
Differentiating integral equations (4.1.5) and then integrating the result by parts

(compare with the proof of Theorem 2.1) we easily derive the equivalent Cauchy
problem

http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_1


72 4 Asymmetric Jump-Telegraph Processes

⎧⎪⎨
⎪⎩

∂p0
∂t (x, t)+ c0

∂p0
∂x (x, t) = −λ0 p0(x, t)+ λ0 p1(x − h0, t),

∂p1
∂t (x, t)+ c1

∂p1
∂x (x, t) = −λ1 p1(x, t)+ λ1 p0(x − h1, t),

t > 0, (4.1.7)

with the initial conditions p0(x, 0) = p1(x, 0) = δ(x).
In the same manner we show that integral equations (4.1.6) are equivalent to the

set of equations, n ≥ 1,

{
∂p0
∂t (x, t; n)+ c0

∂p0
∂x (x, t; n) = −λ0 p0(x, t; n)+ λ0 p1(x − h0, t; n − 1),

∂p1
∂t (x, t; n)+ c1

∂p1
∂x (x, t; n) = −λ1 p1(x, t; n)+ λ1 p0(x − h1, t; n − 1),

(4.1.8)
t > 0, with the initial function pi (x, t; 0) = e−λi tδ(x − ci t), i = 0, 1 and the
initial conditions pi (x, 0; n) = 0, n ≥ 1, i = 0, 1.

We present the marginal distributions of the jump-telegraph process with alter-
nating switching intensities as the solutions to (4.1.5) and (4.1.6) (or, equivalently,
(4.1.7) and (4.1.8)).

We will use the notations of Theorem 3.8,

ξ = ξ(x, t) := x − c1t

c0 − c1
and t − ξ = c0t − x

c0 − c1
. (4.1.9)

Notice that 0 < ξ(x, t) < t , if x ∈ (c1t, c0t). Using these notations we define
functions qi (x, t; n), i = 0, 1: for c1t < x < c0t ,

q0(x, t; 2n) = λn
0λ

n
1

(n − 1)!n!ξ
n(t − ξ)n−1

n ≥ 1,

q1(x, t; 2n) = λn
0λ

n
1

(n − 1)!n!ξ
n−1(t − ξ)n

(4.1.10)

and

q0(x, t; 2n + 1) = λn+1
0 λn

1

(n!)2 ξn(t − ξ)n
n ≥ 0,

q1(x, t; 2n + 1) = λn
0λ

n+1
1

(n!)2 ξn(t − ξ)n
(4.1.11)

Denote θ(x, t) = 1
c0−c1

e−λ0ξ−λ1(t−ξ)1{0<ξ<t}.

Proposition 4.1 Equations (4.1.6) and (4.1.8) have the following solution:

pi (x, t; 0) = e−λi tδ(x − ci t), (4.1.12)

pi (x, t; n) = qi (x − jin, t; n)θ(x − jin, t), n ≥ 1, i = 0, 1,
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where the displacements jin are defined as the sum of alternating jumps, jin =∑n
k=1 hik , where ik = i, if k is odd, and ik = 1− i, if k is even.

Proof For n ≥ 2 we directly substitute expressions (4.1.12) and (4.1.10)–(4.1.11)
into system (4.1.6) of integral equations.

To make the necessary simplifications notice that for 0 ≤ s ≤ t and c1t < x < c0t

ξ(x − c0s, t − s) ≡ ξ(x, t)− s, ξ(x − c1s, t − s) ≡ ξ(x, t), (4.1.13)

and hence, for i = 0, 1

λi s+λ0ξ(x−ci s, t−s)+λ1(t−s−ξ(x−ci s, t−s)) ≡ λ0ξ(x, t)+λ1(t−ξ(x, t)).

The latter equality means that

e−λ0sθ(x − c0s, t − s) ≡ θ(x, t)1{s<ξ(x,t)}, (4.1.14)

e−λ1sθ(x − c1s, t − s) ≡ θ(x, t)1{s<t−ξ(x,t)}.

To verify Eq. (4.1.6) first notice that, due to (4.1.13) and (4.1.14), the following
identities are fulfilled:

∫ t

0
ξ(x − c0s, t − s)m(t − s − ξ(x − c0s, t − s))k · e−λ0sθ(x − c0s, t − s)ds

= θ(x, t)
∫ ξ(x,t)

0
(ξ(x, t)− s)m(t − ξ(x, t))kds = θ(x, t)

ξ(x, t)m+1

m + 1
(t − ξ(x, t))k

and

∫ t

0
ξ(x − c1s, t − s)m(t − s − ξ(x − c1s, t − s))k · e−λ1sθ(x − c1s, t − s)ds

= θ(x, t)
∫ t−ξ(x,t)

0
ξ(x, t)m(t − s − ξ(x, t))kds = θ(x, t)ξ(x, t)m

(t − ξ(x, t))k+1

k + 1
.

With these equalities in hand, it is easy to see that functions pi (x, t; n), i = 0, 1
which are defined by (4.1.10)–(4.1.12), satisfy integral equations (4.1.6).

For n = 1 equations (4.1.6) can be solved by using the initial functions pi (x, t; 0)
= e−λi tδ(x − ci t) and pi (x, t; 1) defined by (4.1.11)–(4.1.12), pi (x, t; 1)
= λiθ(x, t).

Remark 4.3 In particular, in the homogeneous case λ0 = λ1 = λ the multiplier θ
becomes θ(x, t) = e−λt1{c1t<x<c0t}, cf. formula (2.5.1).

Remark 4.4 Assume jump values to be symmetric, h0+h1 = 0. Hence jin = 0, if n
is even, and jin = hi , if n is odd. Summing up in (4.1.4) and using explicit formulae
(4.1.9)–(4.1.12) for pi (x, t; n) and series representations (1.5.3) for modified Bessel

http://dx.doi.org/10.1007/978-3-642-40526-6_2
http://dx.doi.org/10.1007/978-3-642-40526-6_1
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functions one can obtain the following expression for the distribution densities of
the jump-telegraph process (cf. (2.5.3), (2.5.15))

pi (x, t) = e−λi t · δ(x − ci t)

+ 1

c0 − c1

[
λiθ(x − hi , t)I0

(
2

√
λ0λ1(c0t − x + hi )(x − hi − c1t)

c0 − c1

)

+ √
λ0λ1θ(x, t)

(
x − c1t

c0t − x

) 1
2−i

I1

(
2

√
λ0λ1(c0t − x)(x − c1t)

c0 − c1

)]
,

(4.1.15)
where I0(z) and I1(z) are the modified Bessel functions given by (1.5.3). Functions
p0 and p1 defined by (4.1.15) solve PDE-system (4.1.7) as well. Formula (4.1.15)
generalises formula (2.5.1) of Theorem 2.5.

Formulae similar to (4.1.15) have been presented in [2]. See also [6, 7]. The
detailed explicit formulae of this type can be found in recent paper [8].

The plots of distribution densities pi (x, t) (continuous part) are presented in
Fig. 4.1.
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Fig. 4.1 Conditional probability densities of jump telegraph process X (t) (absolutely continuous
part) with values t = 1, c0 = 4, c1 = −4, h0 = −0.2, h1 = 0.2 and with λ0 = λ1 = 5 or
λ0 = λ1 = 20
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4.1.2 Expectations and Variances Jump-Telegraph Martingales

Applying again master Eq. (4.1.2) (or (4.1.5)) one can obtain the integral and differ-
ential equations for the expectations of jump-telegraph processes.

Proposition 4.2 The conditional expectations mi (t) := Ei {X (t) + J (t)}, t > 0,
satisfy the system

mi (t) = 1− e−λi t

λi
di +

∫ t

0
λi e
−λi sm1−i (t − s)ds, i = 0, 1. (4.1.16)

Here numbers di := ci + λi hi , i = 0, 1, characterise the drift properties of the
jump-telegraph process X (t)+ J (t), t > 0.

Proof To compute mi (t) we use integral equations (4.1.5). Indeed,

mi (t) =
∫ ∞
−∞

xpi (x, t)dx

= ci te
−λi t +

∫ ∞
−∞

x

[∫ t

0
p1−i (x − ci s − hi , t − s)λi e

−λi sds

]
dx

= ci te
−λi t +

∫ t

0
λi e
−λi sds

∫ ∞
−∞

xp1−i (x − ci s − hi , t − s)dx .

Changing the variables x = x ′ + ci s + hi we have

mi (t) = ci te
−λi t +

∫ t

0
λi e
−λi s(ci s + hi )ds +

∫ t

0
λi e
−λi sm1−i (t − s)ds.

Hence

mi (t) = (ci/λi+ hi )
(
1− e−λi t)+

∫ t

0
λi e
−λi sm1−i (t − s)ds,

proving (4.1.16). �

Integral Eq. (4.1.16) can be rewritten in the differential form.

Corollary 4.1 The set of Eq. (4.1.16) is equivalent to the Cauchy problem for the
equation

dmi

dt
(t) = di − λi mi (t)+ λi m1−i (t), t > 0, i = 0, 1, (4.1.17)

with the initial conditions m0(0) = 0, m1(0) = 0.

Proof The initial conditions follow directly from Eq. (4.1.16). Differentiating in
(4.1.16), integrating by parts and using the initial conditions m0(0) = m1(0) = 0,
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we have

dmi

dt
(t) = e−λi t di −

t∫

0

λi e
−λi s ∂m1−i (t − s)

∂s
ds

= e−λi t di + λi m1−i (t)− λi

t∫

0

λi e
−λi sm1−i (t − s)ds

= di − λi mi (t)+ λi m1−i (t).

To derive the final equality we again apply (4.1.16). �

The next theorem gives us the necessary and sufficient condition for a jump-
telegraph process to be a martingale.

Theorem 4.1 Let d0 = c0 + λ0h0 and d1 = c1 + λ1h1 (as in Proposition 4.2). The
process X (t)+ J (t), t ≥ 0, is a martingale if and only if

d0 = 0 and d1 = 0. (4.1.18)

Proof First notice that, due to renewal character of X (t) + J (t) for s, t ∈
[0, T ], s < t, we have

E{X (t)+ J (t) |Fs} =E{X (t)+ J (t)− X (s)− J (s) |Fs} + E{X (s)+ J (s) |Fs}
=mε(s)(t − s)+ X (s)+ J (s).

Therefore, the process X (t) + J (t), t ≥ 0, is a martingale if and only if mi (t) ≡
0, i = 0, 1. Meanwhile, the solution m0(t), m1(t), t ≥ 0, of the Cauchy problem
for Eq. (4.1.17) is equal to zero, mi (t) ≡ 0, i = 0, 1, if and only if equalities
(4.1.18) are fulfilled. �

System (4.1.17) can be generalised to describe the moments of the jump-telegraph
process. The specific statement is given by the following.

Proposition 4.3 Let f = f (x), x ∈ (−∞,∞) and α0 = α0(t), α1 = α1(t), t ≥
0, be arbitrary smooth deterministic functions. Let X (t) + J (t), t ≥ 0, be the
jump-telegraph process with the alternating sets of parameters, (c0, λ0, h0) and
(c1, λ1, h1). Then the conditional expectations

u0(x, t) = E0 f (x−α0(t)+X (t)+J (t)), u1(x, t) = E1 f (x−α1(t)+X (t)+J (t))

satisfy the system
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⎧⎪⎪⎨
⎪⎪⎩

∂u0

∂t
(x, t)−

(
c0 − dα0

dt
(t)

)
∂u0

∂x
(x, t) = −λ0 [u0(x, t)− u1(x + β0(t), t)] ,

∂u1

∂t
(x, t)−

(
c1 − dα1

dt
(t)

)
∂u1

∂x
(x, t) = −λ1 [u1(x, t)− u0(x + β1(t), t)] ,

(4.1.19)
where β0(t) = h0 − (α0(t)− α1(t)) , β1(t) = h1 − (α1(t)− α0(t)).

Proof First notice that the expectations ui = ui (x, t) can be computed by the
following integrals

ui (x, t) =
∫ ∞
−∞

f (x − αi (t)+ y)pi (y, t)dy, i = 0, 1,

where the transition probability densities p0, p1 are defined by (4.1.3). Differenti-
ating these equalities in t we see that

∂ui

∂t
= −dαi (t)

dt

∂ui (x, t)

∂x
+
∫ ∞
−∞

f (x − αi (t)+ y)
∂pi (y, t)

∂t
dy, i = 0, 1.

To finish the proof it is sufficient to apply Eq. (4.1.7) to the densities p0, p1 with
subsequent integration by parts. �

The expectations mi (t) = Ei (X (t) + J (t)), i = 0, 1, t > 0, satisfy system
(4.1.17), which can be rewritten in the following vector form:

dm
dt
= Λm+ v1.

Here

Λ =
(−λ0 λ0
λ1 −λ1

)
, m = (m0(t), m1(t))

T and v1 = (d0, d1)
T .

We deduce a formula for the conditional variance under the given initial state
i = ε(0), s = (s0(t), s1(t))T , si (t) = Vari (X (t) + J (t)), i = 0, 1, by setting
f (x) = x2, αi (t) = mi (t), i = 0, 1, in Proposition 4.3. In this case the set of
Eq. (4.1.19) becomes

ds
dt
= Λs+ v2, (4.1.20)

where v2 = (λ0(h0 + m1(t)− m0(t))2, λ1(h1 + m0(t)− m1(t))2)T .
In general, such system

dx(t)
dt
= Λx(t)+ v(t)

with zero initial conditions has the following solution
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x(t) =
t∫

0

e(t−τ)Λv(τ )dτ. (4.1.21)

The exponential etΛ can easily be calculated and is found to be

etΛ = 1

2λ

(
λ1 + λ0e−2λt λ0(1− e−2λt )

λ1(1− e−2λt ) λ0 + λ1e−2λt

)
, (4.1.22)

where 2λ := λ0 + λ1.
Substituting e(t−τ)Λ given by (4.1.22) and v1 = (d0, d1)

T instead of v(τ ) in
(4.1.21) and then integrating, we obtain the explicit formula for the expectations:

m(t) = t

2λ

(
λ1 + λ0Φλ(t) λ0 − λ0Φλ(t)
λ1 − λ1Φλ(t) λ0 + λ1Φλ(t)

)(
d0
d1

)
(4.1.23)

= t

2λ

[
(λ1d0 + λ0d1)

(
1
1

)
+ (d0 − d1)Φλ(t)

(
λ0
−λ1

)]
,

where Φλ(t) = 1− e−2λt

2λt
.

To analyse the variances, notice that m0(t)− m1(t) = t (d0 − d1)Φλ(t). Hence

v2(τ ) =
(
λ0(h0 + m1(τ )− m0(τ ))

2

λ1(h1 + m0(τ )− m1(τ ))
2

)
=
(
λ0 (h0 − (d0 − d1)τΦλ(τ))

2

λ1 (h1 + (d0 − d1)τΦλ(τ))
2

)

= 1

(2λ)2

(
λ0

(
2λh0 − (d0 − d1)+ (d0 − d1)e−2λτ

)2

λ1
(
2λh1 + (d0 − d1)− (d0 − d1)e−2λτ

)2

)
.

With this formula in hand, the explicit expression for s(t) can be obtained from
(4.1.21) and (4.1.22), but it is rather cumbersome. Nevertheless we can easily find
the limits of si (t)/t as t → 0 and as t →∞:

lim
t→0

s(t)
t
= lim

t→0

1

t

t∫

0

e(t−τ)Λv2(τ )dτ = v2(0) = (λ0h2
0, λ1h2

1)
T . (4.1.24)

To compute the limit at infinity, notice that the integrand in (4.1.21) can be written
down by multiplying the matrix e(t−τ)Λ defined by (4.1.22) and the vector v2(τ ).
The result has the following structure

A+ Be−2λτ + Ce−2λ(t−τ) + De−2λ(t+τ),

where A, B, C, D are constant vectors. The constant part A of this expression is
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A = 1

(2λ)3

(
λ1 λ0
λ1 λ0

)
·
(
λ0 (2λh0 − (d0 − d1))

2

λ1 (2λh1 + (d0 − d1))
2

)

= λ0λ1

(λ0 + λ1)3

[
(λ1(h0 + h1)+ c1 − c0)

2 + (λ0(h0 + h1)+ c0 − c1)
2
]

e+,

where e+ = (1, 1)T .
Therefore

lim
t→∞

s0(t)

t
= lim

t→∞
s1(t)

t

= λ0λ1

(λ0 + λ1)3

[
(λ1(h0 + h1)+ c1 − c0)

2 + (λ0(h0 + h1)+ c0 − c1)
2
]
.

(4.1.25)

Remark 4.5 In the symmetric case whenλ0 = λ1 := λ one can simplify formulae for
m and s. We set a = (c0+c1)/2, c = (c0−c1)/2, B = (h0+h1)/2, b = (h0−h1)/2,
γ0 = −2c(c/λ+ h0), γ1 = −2c(c/λ− h1). In these notations

mi (t) =
[
a + λB + (−1)i (c + λb)Φλ(t)

]
t, i = 0, 1, (4.1.26)

si (t) =
[

c2

λ
+ λB2 + (c + λb)2

Φ2λ(t)

λ
+ γiΦλ(t)+ (−1)i 2B(c + λb)e−2λt

]
t.

(4.1.27)

4.1.3 Change of Measure for Jump-Telegraph Processes

Fix the time horizon T, T > 0. Let ε = ε(t), t ∈ [0, T ], be the underlying
Markov process with alternating parameters λ0, λ1 > 0 defined on the filtered
probability space (Ω,F, {(F)t }t∈[0,T ],P) by Eq. (4.1.1). Let us present the measure
change technique for this process.

Consider the telegraph process X∗(t), t ≥ 0, with parameters (c∗0, λ0) and
(c∗1, λ1), which is driven by the Markov process ε. Assume that c∗0 < λ0, c∗1 < λ1.

Consider the jump process

J ∗(t) = −
N (t)∑
n=1

h∗εn

with the jump values h∗0 = −c∗0/λ0 and h∗1 = −c∗1/λ1, h∗0, h∗1 > −1; εn :=
ε(τn−) and the counting Poisson process N (t), t ≥ 0. Due to Theorem 4.1 the sum
X∗(t)+ J ∗(t), t ≥ 0 is an (Ft ,P)-martingale. The process

Z(t) = Et (X
∗ + J ∗), 0 ≤ t ≤ T (4.1.28)
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is the (Ft ,P)-martingale also. Here E t (·) denotes the (right-continuous) stochastic
exponential.

Define a new measure P
∗ on FT by the distribution density

dP
∗

dP

∣∣∣∣
FT

= Z(T ).

Integrating in (4.1.28) we see that ([9], Proposition 3.9.2)

Z(t) = eX∗(t)κ∗(t), (4.1.29)

where
κ∗(t) =

∏
s≤t

(
1+ΔJ ∗(s)

)
, κ∗(0) = 1.

Here ΔJ ∗(s) = J ∗(s)− J ∗(s−) is a jump value.
The jump component κ∗(t) can be described as follows. Consider the recurrent

sequence
κ∗,in = κ∗,1−i

n−1 (1+ h∗i ), n ≥ 1, i = 0, 1, (4.1.30)

where κ∗,i0 = 1. Precisely speaking, if n = 2k, then κ∗,in = (1 + h∗i )k(1 + h∗1−i )
k,

and if n = 2k + 1, then κ∗,in = (1 + h∗i )k+1(1 + h∗1−i )
k . Process κ∗(t), t ≥ 0 can

be expressed by means of the sequence κ∗,in , n ≥ 0, namely, κ∗(t) = κ∗,iN (t). Then

(4.1.29) can be expressed as Z(t) = eX∗(t)κ∗,iN (t), where, remind, i = ε(0) ∈ {0, 1}
indicates the initial state of the system.

The following theorem is a counterpart of Girsanov’s theorem in this setting.

Theorem 4.2 Under probability P
∗ with density Z(T ) relative to P, the process

X = X (t), 0 ≤ t ≤ T is also the telegraph process with the parameters (c0, λ
∗
0)

and (c1, λ
∗
1), where λ∗i = λi (1+ h∗i ) = λi − c∗i , i = 0, 1.

Proof Suppose that both the telegraph processes X∗ and X are driven by the common
Markov process ε, and have the velocities c∗i and ci , i = 0, 1, respectively. Hence
X∗(t) and X (t), t ≥ 0 are connected with each other as follows,

X∗(t) = μX (t)+ at, (4.1.31)

where the constants μ and a solve the system

{
μc0 + a = c∗0,
μc1 + a = c∗1 .

Solving this system we have μ = Δc∗

Δc
= c∗0 − c∗1

c0 − c1
and a = c∗1c0 − c∗0c1

c0 − c1
.
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Let pi (x, t; n) and p∗i (x, t; n) be the transition densities of X (t) and X∗(t)
defined by (4.1.3). Functions pi (x, t; n) satisfy the set of Eq. (4.1.6) with h0 =
h1 = 0.

To prove Theorem 4.2 it is sufficient to demonstrate that functions p∗i (x, t; n)
satisfy Eq. (4.1.6) with λ∗0, λ∗1 instead of λ0, λ1 (and with h0 = h1 = 0).

By (4.1.29) and (4.1.31) the densities pi and p∗i are connected as follows:

p∗i (x, t; n) =E
{

Z(t)1{X (t)∈dx, N (t)= n} | ε(0) = i
}
/dx

= κ∗,in eμx+at pi (x, t; n).
(4.1.32)

Hence, due to Eq. (4.1.6) (with h0 = h1 = 0) we have

p∗i (x, t; n) = κ∗,in eμx+at
∫ t

0
p1−i (x − ci s, t − s; n − 1)λi e

−λi sds.

Now we apply again identity (4.1.32):

p∗i (x, t; n) = (1+ h∗i )
∫ t

0
e(μci+a)s p∗1−i (x − ci s, t − s; n − 1)λi e

−λi sds.

Application of the equalities

μci + a = c∗i , (1+ h∗i )λi = λ∗i = λi − c∗i , i = 0, 1,

finishes the proof of the Theorem.

4.2 Moments

In this section we study moments of the asymmetric telegraph process X (t), t ≥ 0.
The approach presented is useful for the goals of financial applications and it is also
interesting in general.

The explicit formulae for the moments can be obtained by differentiating the
characteristic function p̂(ξ, t), (2.4.1). Instead, we use an alternative approach based
on the Kolmogorov equations. These equations look more natural with asymmetric
velocities and switching rates. Thus we consider the telegraph process X = X (t)
which is driven by the Markov process ε = ε(t) with arbitrary switching intensities
λi > 0, i = 0, 1, such that the generator of ε = ε(t) is defined by the matrix

Λ :=
(−λ0 λ0
λ1 −λ1

)
. (4.2.1)

http://dx.doi.org/10.1007/978-3-642-40526-6 _2
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The respective velocities of X are c0, c1, such that X (t) := ∫ t
0 cε(s)ds. In this

section we assume that c0 > 0 > c1.
Let pi = pi (x, t) be the conditional densities of X (t), if the initial state i ∈ {0, 1}

is fixed. Notice that in this setting the Kolmogorov Eq. (2.2.7) takes the form

∂p0

∂t
(x, t)+ c0

∂p0

∂x
(x, t) = −λ0 p0(x, t)+ λ0 p1(x, t),

t > 0 (4.2.2)

∂p1

∂t
(x, t)+ c1

∂p1

∂x
(x, t) = −λ1 p1(x, t)+ λ1 p0(x, t),

with the initial conditions p0(x, 0) = p1(x, 0) = δ(x).
Moments of r. v. X (t), t > 0,

m(i)
n (t) = Ei {X (t)n} =

∫ ∞
−∞

xn pi (x, t)dx, i = 0, 1, n ≥ 0, (4.2.3)

satisfy the following recursive chain of integral equations.

Theorem 4.3 For arbitrary n ≥ 1 the expectations, defined by (4.2.3), satisfy the
equations

m(0)
n (t) = n

2λ

[
I

(
λ1c0m(0)

n−1 + λ0c1m(1)
n−1

)
(t)+ λ0C

(
c0m(0)

n−1 − c1m(1)
n−1

)
(t)

]
,

m(1)
n (t) = n

2λ

[
I

(
λ1c0m(0)

n−1 + λ0c1m(1)
n−1

)
(t)− λ1C

(
c0m(0)

n−1 − c1m(1)
n−1

)
(t)

]
,

(4.2.4)
where 2λ = λ0 + λ1, and m(i)

0 (t) ≡ 1, i = 0, 1. Here the integral operators I and
C are defined on C[0,∞) as follows,

I f = I f (t) :=
∫ t

0
f (s)ds, C f = C f (t) :=

∫ t

0
e−2λ(t−s) f (s)ds. (4.2.5)

Proof By differentiating (4.2.3) in t we have

dm(i)
n (t)

dt
=
∫ ∞
−∞

xn ∂pi

∂t
(x, t)dx, i = 0, 1.

We apply Eq. (4.2.2) with subsequent integration by parts. For n ≥ 1, i = 0, 1,

dm(i)
n (t)

dt
= nci

∞∫

−∞
xn−1 pi (x, t)dx − λi

∞∫

−∞
xn pi (x, t)dx + λi

∞∫

−∞
xn p1−i (x, t)dx,

(4.2.6)

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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which is equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩

dm(0)
n (t)

dt
= −λ0m(0)

n (t)+ λ0m(1)
n (t)+ nc0m(0)

n−1(t),

dm(1)
n (t)

dt
= −λ1m(1)

n (t)+ λ1m(0)
n (t)+ nc1m(1)

n−1(t),

n ≥ 1 (4.2.7)

with initial conditions m(0)
n (0) = 0, m(1)

n (0) = 0, n ≥ 1, and m(0)
0 (t) ≡ m(1)

0 (t) ≡ 1.
Introducing the vector notations

mn(t) = (m(0)
n (t), m(1)

n (t))T , m̃n−1(t) = (c0m(0)
n−1(t), c1m(1)

n−1(t))
T ,

we can rewrite the latter system in the matrix form:

dm̃n(t)

dt
= Λmn(t)+ nm̃n−1(t), n ≥ 1, (4.2.8)

where matrix Λ is defined by (4.2.1).
Differential equation (4.2.8) with zero initial condition is equivalent to the set of

integral equations

mn(t) = n
∫ t

0
e(t−s)Λm̃n−1(s)ds, n ≥ 1. (4.2.9)

The exponential of tΛ can be easily calculated. It has the form

etΛ = 1

2λ

⎛
⎝λ1 + λ0e−2λt λ0(1− e−2λt )

λ1(1− e−2λt ) λ0 + λ1e−2λt

⎞
⎠ , 2λ = λ0 + λ1. (4.2.10)

Substituting this in (4.2.9) we verify recursive relations (4.2.4).

Let operators I and C be defined by (4.2.5). It is easy to see that operators I
and C commute.

Let U0,0 = U0,0(t) ≡ 1. We define the family of functions Un,m = Un,m(t),
n,m ≥ 0, t ≥ 0, by the following equalities:

Un,m(t) := C nI mU0,0(t). (4.2.11)

First notice that U0,m = I mU0,0 = tm/m! and by applying the n-fold convolu-
tion of C we have

Un,0(t) = C nU00(t) = (2λ)−ne−2λt
∞∑

k=n

(2λt)k

k! . (4.2.12)
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Due to formula 6.5.13, [10]

Un,0(t) = (2λ)−n

(n − 1)!γ (n, 2λt), (4.2.13)

where γ (n, ·) is the incomplete gamma function, γ (n, x) := ∫ x
0 e−t tn−1dt .

Applying the series expansion of incomplete gamma function, 6.5.29 [10], we
finally get

Un,0(t) = (2λ)−n

(n − 1)!
∞∑

k=0

(−1)k(2λt)n+k

k!(n + k)
= tn

(n − 1)!
∞∑

k=0

(−2λt)k

k!(n + k)
, n ≥ 1.

(4.2.14)
Notice, that functions Un,m can be expressed by means of the Kummer confluent

hypergeometric functions Φ = Φ(a, b; z). In particular, applying 6.5.12 [10] to

(4.2.13), we have Un,0(t) = tn

n!Φ(n, n+1;−2λt).Moreover, repeatedly integrating

equality (4.2.14), we obtain for n,m ≥ 0

Un,m(t) =I mUn,0(t) = 1

(n − 1)!(2λ)n+m

∞∑
k=0

(−2λt)n+k+m

k!(n + k)(n + k + 1) . . . (n + k + m)

= 1

(n − 1)!(2λ)n+m

∞∑
k=0

(−2λt)n+k+m(n + k − 1)!
k!(n + k + m)!

= 1

(n + m)!(2λ)n+m

∞∑
k=0

(−2λt)n+k+m(n)k
k!(n + m + 1)k

= tn+m

(n + m)!
∞∑

k=0

(−2λt)k(n)k
k!(n + m + 1)k

= tn+m

(n + m)!Φ(n, n + m + 1;−2λt). (4.2.15)

It is easy to see that functions Un,m = Un,m(t), n,m ≥ 0, are linearly inde-
pendent. Solving the set of Eq. (4.2.4) we derive the formulae for m(i)

n (t) in the
“almost-closed-form”.

Theorem 4.4 Moments m(i)
n (t), i = 0, 1 can be expressed by means of the linear

combination of Kummer functions Φ(· , n + 1;−2λt):

m(i)
n (t) =

tn

n!
n∑

k=0

a(i)k,n−k Φ(k, n + 1;−2λt), 2λ = λ0 + λ1. (4.2.16)

Here the coefficients a(i)n,m are defined as follows: n,m ≥ 1,



4.2 Moments 85

a(0)0,0 = a(1)0,0 = 1,

a(0)0,m = a(1)0,m =
m

2λ

[
λ1c0a(0)0,m−1 + λ0c1a(1)0,m−1

]
,

a(0)n,0 =
nλ0

2λ

[
c0a(0)n−1,0 − c1a(1)n−1,0

]
, a(1)n,0 =

−nλ1

2λ

[
c0a(0)n−1,0 − c1a(1)n−1,0

]
,

(4.2.17)
and, n,m ≥ 1,

a(0)n,m =
n + m

2λ

[(
λ1c0a(0)n,m−1 + λ0c1a(1)n,m−1

)
+ λ0

(
c0a(0)n−1,m − c1a(1)n−1,m

)]
,

a(1)n,m =
n + m

2λ

[(
λ1c0a(0)n,m−1 + λ0c1a(1)n,m−1

)
− λ1

(
c0a(0)n−1,m − c1a(1)n−1,m

)]
.

(4.2.18)

Proof We write the solution of Eq. (4.2.4) in the form

m(i)
n (t) =

n∑
k=0

a(i)k,n−kUk,n−k(t), (4.2.19)

where functions Un,m are defined by (4.2.11).
If n = 0, then (4.2.19) follows from m(0)

0 = m(1)
0 = 1 and a(0)0,0= a(1)0,0= 1,

U0,0 ≡ 1.
Inserting (4.2.19) in Eq. (4.2.4) we obtain for n ≥ 1:

m(0)
n (t) = n

2λ

[
λ1c0

n−1∑
k=0

a(0)k,n−1−kUk,n−k(t)+ λ0c1

n−1∑
k=0

a(1)k,n−1−kUk,n−k(t)

+ λ0c0

n−1∑
k=0

a(0)k,n−1−kUk+1,n−1−k(t)− λ0c1

n−1∑
k=0

a(1)k,n−1−kUk+1,n−1−k(t)

]
,

m(1)
n (t) = n

2λ

[
λ1c0

n−1∑
k=0

a(0)k,n−1−kUk,n−k(t)+ λ0c1

n−1∑
k=0

a(1)k,n−1−kUk,n−k(t)

− λ1c0

n−1∑
k=0

a(0)k,n−1−kUk+1,n−1−k(t)+ λ1c1

n−1∑
k=0

a(1)k,n−1−kUk+1,n−1−k(t)

]
.

Comparing these equations with (4.2.19) we get (4.2.17)–(4.2.18) by using linear
independence of Un,m .

Representation (4.2.16) now follows from (4.2.19) and (4.2.15).

Remark 4.6 Formulae (4.2.17) in closed form become:

a(0)0,m = a(1)0,m =
m!
(2λ)m

(λ1c0 + λ0c1)
m, m ≥ 0, (4.2.20)
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a(0)n,0 =
λ0(c0 − c1)n!

(2λ)n
(λ0c0 + λ1c1)

n−1,

a(1)n,0 =−
λ1(c0 − c1)n!

(2λ)n
(λ0c0 + λ1c1)

n−1
n ≥ 1. (4.2.21)

In particular, (4.2.20) and (4.2.21) give

a(0)0,1 = a(1)0,1 =
1

2λ
(λ1c0 + λ0c1), a(0)1,0 =

λ0

2λ
(c0 − c1), a(1)1,0 = −

λ1

2λ
(c0 − c1).

By definition of Kummer function, Φ(0, 2; z) ≡ 1, Φ(1, 2; z) = ez − 1

z
. Applying

(4.2.16) with n = 1 we have the following expressions for the first moments,

m(i)
1 (t) = t

[
a(i)0,1Φ(0, 2;−2λt)+ a(i)1,0Φ(1, 2;−2λt)

]

= 1

2λ

[
(λ1c0 + λ0c1)t + (−1)iλi (c0 − c1)

(
1− e−2λt

2λ

)]
, i = 0, 1.

Similarly, the second moments are

m(i)2 (t) = t2

2

[
a(i)0,2Φ(0, 3;−2λt)+ a(i)1,1Φ(1, 3;−2λt)+ a(i)2,0Φ(2, 3;−2λt)

]

= 1

4λ2

{
(λ1c0 + λ0c1)

2t2 + 2λ0λ1c2

λ2 (e−2λt − 1+ 2λt)

+ (−1)i
2λi c

λ

[
2βc

λ
(1− e−2λt )+ (λ1c0 + λ0c1)t − (λ0c0 + λ1c1)te

−2λt
]}
.

Here the following equalities have been used (see [10]):

Φ(0, 3; z) ≡ 1, Φ(1, 3; z) = 2(ez−1− z)/z2, Φ(2, 3; z) = 2(zez−ez+1)/z2,

a(0)0,2 = a(1)0,2 =
(λ1c0 + λ0c1)

2

2λ2 , (see (4.2.20)),

a(i)1,1 =
λi (c0 − c1)

2λ2

[
λ1−i (c0 − c1)+ (−1)i (λ1c0 + λ0c1)

]
, (see (4.2.18)),

a(i)2,0 = (−1)i
λi (c0 − c1)

2λ2 (λ0c0 + λ1c1), (see (4.2.21)), i = 0, 1.

Equations (4.2.18) have the following equivalent form: for n,m ≥ 1

a(0)n,m − a(1)n,m = (n + m)(c0a(0)n−1,m − c1a(1)n−1,m),

λ1a(0)n,m + λ0a(1)n,m = (n + m)(λ1c0a(0)n,m−1 + λ0c1a(1)n,m−1).
(4.2.22)
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Remark 4.7 For the symmetric telegraph process formulae (4.2.16) have a closed
form. If λ0 = λ1 =: λ, c0 = −c1 =: c, then formulae (4.2.22) become:

a(0)n,m − a(1)n,m = c(n + m)(a(0)n−1,m + a(1)n−1,m),

a(0)n,m + a(1)n,m = c(n + m)(a(0)n,m−1 − a(1)n,m−1),

which is equivalent to

a(0)n,m − a(1)n,m = c2(n + m)(n + m − 1)(a(0)n−1,m−1 − a(1)n−1,m−1),

a(0)n,m + a(1)n,m = c2(n + m)(n + m − 1)(a(0)n−1,m−1 + a(1)n−1,m−1).

Therefore,

a(i)n,m = c2(n + m)(n + m − 1)a(i)n−1,m−1, n,m ≥ 1, i = 0, 1. (4.2.23)

The initial coefficients are a(i)0,0 = 1, a(0)1,0 = c, a(1)1,0 = −c (see (4.2.20) with m = 0
and (4.2.21) with n = 1). The “boundary” values in the symmetric case become (see
(4.2.20) and (4.2.21)) a(i)0,m = a(i)n,0 = 0 for any m ≥ 1, n ≥ 2.

Thus, (4.2.23) gives a(i)n,n = (2n)!c2n, a(i)n+1,n = (−1)i (2n + 1)!c2n+1, n ≥ 0

and a(i)n,m = 0 for other n,m, i = 0, 1.
Hence, formula (4.2.16) can be easily simplified to

m(i)
2n (t) = (ct)2nΦ(n, 2n + 1;−2λt),

m(i)
2n+1(t) = (−1)i (ct)2n+1Φ(n + 1, 2n + 2;−2λt).

(4.2.24)

From (4.2.24) the unconditional moments follow:

m2n(t) = (ct)2nΦ(n, 2n + 1;−2λt), m2n+1(t) ≡ 0.

The moments of symmetric telegraph processes have been presented in [4] and
[11] in terms of modified Bessel functions, but formulae (4.2.24) are more succinct.

Applying the asymptotic formula, (see [10], 13.1.5):

Φ(a, b; z) = �(b)

�(b − a)
(−z)−a[1+ O(|z|−1)], |z| → ∞, Re z < 0, (4.2.25)

to formulae (4.2.24), we obtain the limits under scaling condition (2.6.1):

m(i)
2n (t)→ (σ 2t)n(2n − 1)!!, m(i)

2n+1(t)→ 0, i = 0, 1 (4.2.26)

and this coincides with moments of Brownian motion with diffusion coefficient σ 2.
This accords with the classic result by M. Kac [12].

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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Notes

This chapter is based preferably on papers by the second author, see [3, 7, 13].
Section 4.2 follows paper [14].
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Chapter 5
Financial Modelling and Option Pricing

Abstract In Chapter 5 we apply the results of previous chapters for option pricing.
The fundamental building block of all financial modelling is the concept of arbitrage-
free and complete market. For the time- and space-continuous stochastic models the
unique underlying process satisfying this concept is the geometric Brownian motion.
In contrast, we suggest another approach to the continuous-time stochastic modelling
of financial markets based on the telegraph processes. We construct a simple model,
which is free of arbitrage and complete.

Keywords Option pricing · Hedging strategies · Martingales · Jump-telegraph
processes · Rescaling · Implied volatility

Applications of stochastic processes in financial modelling date back to the begin-
ning of XX century. Louis Bachelier in his thesis (1900) [1] discovered the concept
of Brownian motion with a view to study price movements on the Paris exchange.
Unfortunately, his discovery has been lost for a long time. The name of Bachelier
was returned in scientific circulation more than a half century later, see this story
in [2]. From 1973, beginning with the papers by Merton, [3], Black and Scholes,
[4], the probabilistic exploration in the field becomes extremely fruitful. More and
more sophisticated models have been constructed in attempts to describe financial
markets. Now the shelf of textbooks on mathematical finance is almost infinite. The
reader is referred to [5] or [6]. We can also mention such textbooks as [7–14], to
name a few.

The fundamental building block of all financial modelling is the concept of
arbitrage-free and complete market. If we proceed with continuous-time (and space)
stochastic models, the unique underlying process which satisfies this concept is the
Brownian motion. In this chapter we suggest another approach for continuous-time
stochastic modelling of financial markets based on the telegraph processes. We con-
struct a simple model, which is free of arbitrage and complete.

The majority of these results has been recently published (see [15–17]). The main
objective of the next section is to give a brief introduction to the methods and concepts
required in this field.

A. D. Kolesnik and N. Ratanov, Telegraph Processes and Option Pricing, 89
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40526-6_5,
© The Author(s) 2013



90 5 Financial Modelling and Option Pricing

5.1 Hedging Strategies and Option Pricing

First, we remind briefly the Black-Scholes settings and some general principles of
financial modelling, referring the reader to more detailed presentations (see, for
example, [5] or [6] and references therein).

5.1.1 Option Pricing, Hedging and Martingales

Consider the financial market of two assets, namely, a risky asset which is driven by
a stochastic process, and a deterministic bond (bank account).

Let (Ω,F,P) be a probability space. Fix the trading horizon T, T > 0. Let
{Ft }t∈[0,T ] be a filtration and Ft can be interpreted as an information available for
investors at time t . We assume that F0 consists of all P-null sets and their comple-
ments, FT = F.

Let stochastic process S = S(t), t ∈ [0, T ] represents the price of risky asset,
B = B(t), t ∈ [0, T ] is the (non-random) bond price. The process S = S(t) is
assumed to be adapted to the filtration {Ft }t∈[0,T ].

The underlying assets S and B are traded continuously at time instants t ∈ [0, T ],
a portfolio (or a strategy) πt , t ∈ [0, T ] is given by (two-dimensional) random
process (ϕt , ψt ) with the wealth process Vt = ϕt S(t) + ψt B(t). So, ϕt and ψt are
the numbers of units of the risky asset and of the bond, respectively, in the portfolio
which is formed at time t, t ∈ [0, T ]. The processes ϕt , ψt , t ∈ [0, T ] are assumed
to be predictable (i. e. their trajectories are left-continuous a.s.).

The strategy is said to be admissible, if Vt ≥ 0 a.s. for all t ∈ [0, T ]. We call
the strategy πt self-financing, if any changes in the value Vt result entirely from the
changes in prices of the basic assets:

dVt = ϕt dS(t)+ ψt dB(t), t ∈ [0, T ]. (5.1.1)

We say that the market model possesses arbitrage opportunities if there exists an
admissible market strategy πt , t ∈ [0, T ] such that the value process Vt , t ∈ [0, T ]
satisfies the following conditions

V0 = 0, E{VT } > 0. (5.1.2)

We say that the market model is viable or it is arbitrage-free if it contains no
arbitrage opportunities.

Consider a non-negative random variable H on the probability space (Ω,FT ,P)

as a contingent claim with maturity T . The claim H is replicable, if there exists an
admissible self-financing strategy, such that the final strategy value coincides with
H : VT = H a.s. This strategy is named the hedging strategy for the claim H.
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If the model is arbitrage-free, the value process which is associated with replicable
strategy is unique (so called the law of one price).

The law of one price can be proved by constructing an arbitrage strategy.
To describe the model without arbitrage we need the notion of martingale.

Definition 5.1 Let (Ω,F, (Ft )t∈[0,T ],P) be the filtered probability space. An Ft -
adapted process M = (Mt )t∈[0,T ] is P-martingale, if E|Mt | < ∞ for all t ∈ [0, T ]
and

EP{Mt | Fs} = Ms for all s, t ∈ [0, T ], s < t. (5.1.3)

Here E = EP{·} and EP{· | Fs} denote expectations with respect to probability
measure P.

We say that probability measure P
∗ is equivalent to measure P if P

∗ has the same
null sets as P. We use the notation P

∗ ∼ P.
The probability measure P

∗ ∼ P is the equivalent martingale measure (EMM) for
the market model (S, B) if the discounted price S̄(t) = B(t)−1S(t) is a martingale
under measure P

∗ and filtration {Ft }t∈[0,T ].
Theorem 5.1 (First fundamental theorem) The following statements are equiva-
lent:

• There exists an equivalent measure P
∗ ∼ P such that the discounted price

B(t)−1S(t) is a P
∗-martingale.

• The market model is arbitrage-free.

Definition 5.2 Market model (S, B) is said to be complete if any FT -measurable
claim H can be hedged by an admissible self-financing strategy.

Theorem 5.2 (Second fundamental theorem) Let the market model (S, B) pos-
sesses an EMM. The following statements are equivalent:

• The equivalent martingale measure is unique.
• The market model is complete.

See the extensive literature on fundamental theorems beginning with two works
by Harrison and Pliska [18, 19]. Details can also be found in [20].

It is known (see, e. g. [6]) that if the EMM exists and is unique, then for any
replicable contingent claim H the hedging strategy value Vt can be calculated as

Vt = B(t)EP∗{B(T )−1H | Ft }. (5.1.4)

In particular, the initial strategy value (or the arbitrage price of derivative) is c =
V0 = EP∗{B(T )−1H}.

To construct the equivalent martingale measure we use the standard measure
change technique.
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Let (Ω,F, (Ft )t∈[0,T ],P) be the filtered probability space. Suppose P
∗ is the prob-

ability measure on the space (Ω,FT ) which is absolutely continuous with respect
to P:

ZT := dP
∗

dP
.

Consider also the P-martingale Zt = EP{ZT | Ft }, t ∈ [0, T ].
Let Mt , t ∈ [0, T ] be a measurable process on (Ω,F, (Ft )t∈[0,T ],P). It is well-

known that Mt Zt is a martingale under P if and only if Mt is a martingale under P
∗

(see e.g. [5], Lemma 7.2.2).

5.1.2 Black-Scholes Model and Girsanov’s Theorem

Consider the market model of two assets, the bond

B(t) = er t , t ∈ [0, T ], (5.1.5)

and the risky asset
S(t) = S0eσw(t)+μt , t ∈ [0, T ], (5.1.6)

where r > 0, σ > 0 and μ ∈ (−∞,∞) are constants and w = w(t) is the standard
Brownian motion (see Definition 1.1). Hence, by Itô’s Theorem (Theorem 1.2)

dS(t) = S(t)
(
σdw(t)+

(
μ+ σ 2/2

)
dt
)
.

This market model is named the Black-Scholes model. The discounted risky asset
price S̄(t) := B(t)−1S(t), t > 0 satisfies the stochastic equation

dS̄(t) = S̄(t)
(
σdw(t)+ (μ− r + σ 2/2)dt

)
. (5.1.7)

To eliminate the drift component we use the following classic result.

Theorem 5.3 (Girsanov’s Theorem) Let γt , t ∈ [0, T ] be an adapted measurable
process such that

∫ T
0 γ 2

s ds <∞ a.s. Consider the P-martingale

Zt = exp

(
−
∫ t

0
γsdw(s)− 1

2

∫ t

0
γ 2

s ds

)
.

If the new measure P
∗ is defined by the density ZT ,

dP
∗

dP

∣∣∣∣
FT

= ZT ,
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then the process

w̃(t) = w(t)+
∫ t

0
γsds

is the standard Brownian motion under new measure P
∗.

For the proof see e.g. [5].

Applying Girsanov’s Theorem with γt = γ = μ−r+σ 2/2
σ

we transform Eq. (5.1.7)
into

dS̄(t) = σ S̄(t)dw̃(t),

where w̃(t) := w(t) + γ t, t > 0, is the Brownian motion with respect to measure
P
∗ and filtration {Ft }t∈[0, T ]. Hence S̄(t) = B(t)−1S(t) is a P

∗-martingale and

dS(t) = S(t) (σdw̃t + rdt) , (5.1.8)

or, by integrating,

S(t) = S0eσ w̃(t)+(r−σ 2/2)t , t > 0.

Let H = f (S(T )) be the contingent claim. To describe the hedging strategy πt =
(ϕt , ψt ), let us consider the function

F(x, t) = e−r(T−t)
EP∗ { f (S(T )) | S(t) = x} . (5.1.9)

This function can be interpreted as the option price at time t ∈ [0, T ] with
maturity time T , if at time t the risky asset price is equal to x . In other words, the
strategy value Vt = ϕt S(t)+ψt B(t) and function F(x, t) are connected as follows:
Vt = F(S(t), t), t ∈ [0, T ] (see (5.1.4)).

Applying the Black-Scholes analysis [4] we derive the fundamental equation.
Differentiating F(S(t), t) and exploiting Itô’s formula (1.3.3), we have

dVt = d (F(S(t), t))

= ∂F

∂x
(S(t), t) dS(t)+ ∂F

∂t
(S(t), t) dt + 1

2
σ 2S(t)2

∂2 F

∂x2 (S(t), t) dt.

Substituting (5.1.8) we get

dVt = σ S(t)
∂F

∂x
dw̃t +

(
r S(t)

∂F

∂x
+ 1

2
σ 2S(t)2

∂2 F

∂x2 +
∂F

∂t

)
dt. (5.1.10)

On the other hand, due to self-financing condition (5.1.1), dVt = ϕt dS(t) +
ψt dB(t) = ϕt dS(t)+ rψt B(t)dt . Hence, by (5.1.8)

dVt = σ S(t)ϕt dw̃t + r(S(t)ϕt + ψt B(t))dt = σ S(t)ϕt dw̃t + r Vt dt. (5.1.11)

http://dx.doi.org/10.1007/978-3-642-40526-6_3
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According to the uniqueness property of diffusion processes [21] we compare the
coefficients of the differentials dw̃(t) and dt in (5.1.10)–(5.1.11). Hence

ϕt = ∂F

∂x
(S(t), t), (5.1.12)

1

2
σ 2S(t)2

∂2 F

∂x2 (S(t), t)+ r S(t)
∂F

∂x
(S(t), t)+ ∂F

∂t
(S(t), t) = r F(S(t), t).

(5.1.13)
Formula (5.1.12) gives the number of risky assets which should be held into the

hedging portfolio. The number of bonds can be defined as ψt = B(t)−1Vt − ϕt S̄(t).
We rewrite the fundamental equation (5.1.13) as follows,

1

2
σ 2x2 ∂

2 F

∂x2 (x, t)+r x
∂F

∂x
(x, t)+ ∂F

∂t
(x, t) = r F(x, t), 0 < t < T . (5.1.14)

Due to definition (5.1.9), equation (5.1.14) is supplied with the terminal condition

F(x, T ) = f (x). (5.1.15)

The solution of this terminal value problem gives us another way of finding the option
price.

Using the probabilistic reasoning (5.1.4) or, alternatively, taking the solution of
the terminal value PDE-problem (5.1.14)–(5.1.15) one can obtain the famous Black-
Scholes formula for the call option price: if asset prices are presented in (5.1.5)–
(5.1.6) and the claim is H = (ST − k)+ with fixed level k of negotiated price, then
the derivative value at time t is equal to

Vt = S(t)Φ(z+)− ke−r(T−t)Φ(z−), 0 ≤ t < T, (5.1.16)

where z± := ln(S(t)/k)+ (r ± σ 2/2)(T − t)

σ
√

T − t
and Φ(z) = 1√

2π

z∫
−∞

e−x2/2 dx.

We have mentioned not all mathematical principles and aspects which are applied
in finance. In particular, the optimisation theory under a random environment is
omitted (see a review of these methods in [22]).

5.2 Market Model Based on Jump-Telegraph Processes

Assume that the price of a risky asset S(t) is driven by the stochastic equation

dS(t) = S(t−)d (X (t)+ J (t)) , t > 0. (5.2.1)
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Here X = X (t), t ≥ 0, is the telegraph process with the parameters (c0, λ0),

(c1, λ1), where c0 ≥ c1, and J = J (t) = ∑N (t)
n=1 hε(τn−) is the jump process with

h0, h1 > −1. Suppose that S(t), t > 0, is right-continuous.
The price of a non-risky asset (bond or bank account) has the form

B(t) = eY (t), Y (t) =
t∫

0

rε(t ′)dt ′, (5.2.2)

where r0, r1 > 0 are the interest rates of the respective market states. Notice that in
this framework we assume the bond price to be a stochastic telegraph process.

Integrating (5.2.1) we have

S(t) = S0Et (X + J ) , (5.2.3)

where S0 = S(0). Here the stochastic exponential E (·) is defined by (4.1.29) with
ci and hi instead of c∗i and h∗i , i = 0, 1. Precisely speaking, S(t) = S0eX (t)κ(t),
where κ(t) = κ i

N (t). The sequence κ i
n, n ≥ 0 is defined by (4.1.30), but now we use

h0 and h1 instead of h∗0 and h∗1.

Remark 5.1 Let us give some historical and substantial remarks. Telegraph processes
have been exploited first for stochastic volatility modelling (see [23]). Then, the
model based on a pure jump process have been studied in [24].

In general, the telegraph market model possesses arbitrage opportunities, if the
jump component vanishes, i. e. h0 = h1 = 0 (cf. the models considered in [25] and in
[26]). It reflects the widely accepted opinion that the telegraph process has a persistent
character. The corresponding arbitrage strategy can be described as follows.

Assume r0 = r1 = 0 for simplicity. Take levels A, B such that S0 < A < B <

S0ec0T . Consider the following strategy: buy the risky asset at time t1 = min{t ∈
[0, T ] : S(t) = A}, and then sell it at time t2 = min{t ∈ (t1, T ] : S(t) =
A or S(t) = B}. This strategy has no losses at time t1, because t1 coincides with the
switching time of X with zero probability. Hence the strategy yields a positive profit
with positive probability P{S(t2) = B}.

In the sequel, we assume that h0, h1 
= 0. Moreover, let the parameters of model
(5.2.1)–(5.2.2) satisfy the inequalities

r0 − c0

h0
> 0,

r1 − c1

h1
> 0. (5.2.4)

Under such conditions, we can find a unique martingale measure in the framework
of market model (5.2.1)–(5.2.2). Recall that measure P

∗ is a martingale measure for
model (5.2.1)–(5.2.2) if the process B(t)−1S(t), t ≥ 0 is a P

∗-martingale. We
define this measure by the density Z(t), t ≥ 0, see (4.1.29). Notice that measure P

∗
is defined by the pair of real numbers c∗0, c∗1 (and by h∗i = −c∗i /λi > −1, i = 0, 1).

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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Theorem 5.4 Measure P
∗, defined by (4.1.29), is the equivalent martingale measure

for model (5.2.1)–(5.2.2) if and only if

c∗0 = λ0 + c0 − r0

h0
, c∗1 = λ1 + c1 − r1

h1
. (5.2.5)

Moreover, under measure P
∗ the process N = N (t) is again the Poisson process

with alternating intensities

λ∗0 =
r0 − c0

h0
> 0, λ∗1 =

r1 − c1

h1
> 0. (5.2.6)

Proof By Theorem 4.2 the switching intensities under the changed measure P
∗ are

λ∗i = λi − c∗i , i = 0, 1. Then, notice that conditions (5.2.4) and (5.2.5) provide the
following inequalities: for i = 0, 1

h∗i = −c∗i /λi = −1+ (ri −ci )/(λi hi ) > −1, λ∗i = λi −c∗i = (ri −ci )/hi > 0.

Therefore, the process Z = Z(t) = Et (X∗ + J ∗) with c∗i = λi + ci−ri
hi

and h∗i =
−c∗i /λi , i = 0, 1 defines the density of new probability measure P

∗ correctly.
According to Theorem 4.2, the process X−Y is the telegraph process (with respect

to measure P
∗) with the parameters (ci − ri , λ

∗
i ), λ

∗
i = λi − c∗i , i = 0, 1. By

Theorem 4.2 the jump-telegraph process X (t)−Y (t)+J (t), t ≥ 0 is a P
∗-martingale

if and only if (λi − c∗i )hi = −(ci − ri ), i = 0, 1. Hence c∗i = λi + (ci − ri )/hi .
Moreover, h∗i = −c∗i /λi = −1+ (ri − ci )/λi hi and λ∗i = λi − c∗i = (ri − ci )/hi .
The theorem is proved. �

Due to Theorem 5.4, the market model (5.2.1)–(5.2.2) is arbitrage-free and com-
plete if its parameters satisfy conditions (5.2.4).

5.3 Diffusion Rescaling and Natural Volatility

In this section we discuss the convergence of this model to the model based on the
geometric Brownian motion.

We begin with some generalisation of the limit theorem of Chap. 2 (see Theorem
2.6). We assume that switching intensities λ0, λ1 are different, but λ0 − λ1 =
o(λ0 + λ1), as λ0, λ1 → ∞. Precisely speaking, let X = X (t), t ≥ 0 be a
telegraph process with velocities c0 = −c1 =: c, c > 0, and with alternating
switching intensities λ0, λ1 > 0. Let c→∞, λ0, λ1 →∞ such that

c2/λ→ σ 2, cμ/λ→ β, σ > 0, β ∈ (−∞,∞), (5.3.1)

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_2
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where λ := (λ0 + λ1)/2 and μ := (λ0 − λ1)/2. Notice that from (5.3.1) it follows
that μ/

√
λ→ β/σ .

Theorem 5.5 Under scaling conditions (5.3.1) the following weak convergence
holds: ∀t > 0

X (t)
d→ σw(t)− βt, (5.3.2)

where w = w(t), t > 0 is the standard Brownian motion.

Proof Consider the conditional characteristic functions

p̂ j (ξ, t) := E

{
eiξ X (t)

∣∣∣ ε(0) = j
}
=
∫ ∞
−∞

eiξ x p j (x, t)dx, j = 0, 1.

Due to Prokhorov’s Theorem [27] it is sufficient to prove the convergence of p̂ j (ξ, t)
to exp{−σ 2ξ2t/2− iξβt}.

Similarly to Eq. (2.4.3) one can see that function p̂ := ( p̂0, p̂1)
T satisfies the

following initial value problem

dp̂
dt
(ξ, t) = A p̂(ξ, t), t > 0 (5.3.3)

with the initial conditions p̂0(ξ, 0) = p̂1(ξ, 0) = 1, where the matrix A is defined
by

A :=
(−λ0 + icξ λ0

λ1 −λ1 − icξ

)
.

The solution of the initial value problem for (5.3.3) can be expressed as

p̂(ξ, t) = et z1 e1 + et z2 e2. (5.3.4)

Here z1 and z2 are the eigenvalues of matrix A , e1 and e2 are the respective
eigenvectors. Eigenvalues z1, z2 are the roots of the equation det(A − z I ) = 0,
where

det(A − z I ) = z2 − Tr(A )z + det(A ) = z2 + 2λz + c2ξ2 + 2icμξ.

Hence the eigenvalues are z1 = −λ −
√

D, z2 = −λ +
√

D with D = λ2 −
c2ξ2 − 2icμξ .

Notice that

A − z1,2 I =
(−μ+ icξ ±√D λ0

λ1 μ− icξ ±√D

)
.

http://dx.doi.org/10.1007/978-3-642-40526-6_2
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From the initial conditions p̂0(ξ, 0) = p̂1(ξ, 0) = 1 and (5.3.4) it follows that
e1 + e2 = (1, 1)T .

Let ei = (xi , yi ), i = 1, 2. To compute eigenvectors e1 and e2 we have the
following system, A ei = zi ei , i = 1, 2, and e1 + e2 = (1, 1)T . This is equivalent
to ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−μ+ icξ +√D)x1 + λ0 y1 = 0,
λ1x1 + (μ− icξ +√D)y1 = 0,

(−μ+ icξ −√D)x2 + λ0 y2 = 0,
λ1x2 + μ− icξ −√Dy2 = 0,

x1 + x2 = 1,
y1 + y2 = 1.

Solving this system we can easily obtain

e1 =1

2

(
1− λ/√D − icξ/

√
D, 1− λ/√D + icξ/

√
D
)T
,

e2 =1

2

(
1+ λ/√D + icξ/

√
D, 1+ λ/√D − icξ/

√
D
)T
.

Then, notice that under conditions (5.3.1), c2/λ2 → 0, cμ/λ2 → 0. Hence
λ/
√

D → 1, c/
√

D → 0 and e1 → (0, 0)T , e2 → (1, 1)T . Moreover, Re z1 < 0
and

z2 = −λ+
√

D = D − λ2

√
D + λ = −

c2ξ2 + 2icμξ√
D + λ =− c2ξ2/λ+ 2iξcμ/λ√

D/λ+ 1

→− 1

2

(
σ 2ξ2 + 2iξβ

)
.

Passing to the limit in (5.3.4) we obtain the convergence of p̂0(ξ, t) and p̂1(ξ, t)

to e−(σ 2ξ2+2iξβ)t/2, which coincides with the characteristic function of σw(t)− βt .
The theorem is proved. �

The following theorem provides the necessary connection between stock prices
driven by a geometric jump-telegraph process and a geometric Brownian motion.

Let the underlying telegraph process X = X (t) with velocities c0, c1, and jump
process J = J (t) with jump values h0, h1 > −1 be driven by the Markov process
ε = ε(t) with alternating switching intensities λ0, λ1. Let the price of risky asset be
defined by (5.2.3). Denote c = (c0 − c1)/2, a = (c0 + c1)/2.

We assume that c, λ→∞, such that (5.3.1) is fulfilled. Moreover h0, h1 → 0
and

λ0h0 − λ1h1√
λ

→ γ,
√
λi hi → αi , i = 0, 1. (5.3.5)

Theorem 5.6 Under scaling conditions (5.3.1) and (5.3.5) we additionally assume
that the following limit exists:



5.3 Diffusion Rescaling and Natural Volatility 99

a + 1

2
[λ0 ln(1+ h0)+ λ1 ln(1+ h1)]→ δ. (5.3.6)

Then model (5.2.3) converges in distribution to the Black-Scholes model:

S(t)
d→ S0evw(t)+dt , t ∈ [0, T ], (5.3.7)

where

v2 = σ 2 + α
2
0 + α2

1

2
− γ

2

4
, d = δ − β

(
1+ γ

2σ

)
. (5.3.8)

Remark 5.2 We notice that
α2

0 + α2
1

2
− γ

2

4
≥ 0, so v2 ≥ σ 2. To prove this inequality

notice that

λ0h2
0 + λ1h2

1

2
− (λ0h0 − λ1h1)

2

4λ
≡ λ0λ1(h0 + h1)

2

4λ
≥ 0 ∀λ0, λ1 > 0,

and apply (5.3.5).

Proof For arbitrary z ∈ R consider the moment generating function of ln(S(t)/S0),

f (z, t) = Eez ln(S(t)/S0) = Eez(X (t)+ln κ(t)) = Eez X (t)κ(t)z .

To prove the convergence (5.3.7) it is sufficient to verify that under scaling conditions
(5.3.1), (5.3.5) and (5.3.6)

f (z, t)→ ev2z2t/2+dzt . (5.3.9)

First notice that X (t) = at + X0(t), where X0 = X0(t) is the telegraph process
with symmetric velocities±c, which is driven by the same Markov switching process
ε = ε(t). Fix the initial market state i = ε(0) ∈ {0, 1}. The conditional generating
function fi (z, t) can be expressed as

fi (z, t) = Ei

{
ez(at+X0(t))κ(t)z

}

= e(ci z−λi )t + e(az−λ)t
∞∑

n=1

(κ i
n)

z

ct∫

−ct

ezx−μx/cq0
i (x, t; n)dx .

Here q0
i (x, t; n) are defined by (4.1.10)–(4.1.11) with symmetric speed c0=−c1=c.

Using equalities (4.1.12) and (4.1.10)–(4.1.11) the factors (κ i
n)

z can be absorbed
as follows

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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fi (z, t) = e(ci z−λi )t + e(az−λ)t
∞∑

n=1

∫ ∞
−∞

e(z−μ/c)x q̂0
i (x, t; n)dx,

where functions q̂0
i (x, t; n) are defined as above by (4.1.10)–(4.1.11) with c0 =

−c1 = c and λ̂0 = λ0(1+h0)
z, λ̂1 = λ1(1+h1)

z instead of λ0 and λ1, respectively.
Functions q̂0

i (x, t; n), i = 0, 1, n ≥ 1, are related to the transition densities

p̂0
i (x, t; n) of X̂0(t), the telegraph process with velocities ±c, which is driven by

the Markov process ε̂ with alternating intensities λ̂i , i = 0, 1:

p̂0
i (x, t; n) = e−λ̂t−μ̂x/cq̂0

i (x, t; n),

where λ̂ = (λ̂0 + λ̂1)/2 and μ̂ = (λ̂0 − λ̂1)/2 (see Proposition 4.1). Hence

fi (z, t) = e(ci z−λi )t + e(az−λ+λ̂)t
∞∑

n=1

∫ ∞
−∞

e(z−μ/c+μ̂/c)x p̂0
i (x, t; n)dx (5.3.10)

= e(ci z−λi )t + e(λ̂−λ+az)t
∫ ∞
−∞

e((μ̂−μ)/c+z)x p̂0
i (x, t)dx .

Here p̂0
i (x, t) =

∞∑
n=1

p̂0
i (x, t; n) is the absolutely continuous part of the distribution

of the telegraph process X̂0(t)with symmetric velocities±c and with the alternating
switching intensities λ̂0 = λ0(1+ h0)

z, λ̂1 = λ1(1+ h1)
z .

We will apply Theorem 5.5 to process X̂0(t). To verify assumptions (5.3.1), we
need to compute the limits of c2/λ̂ and cμ̂/λ̂ under scaling conditions (5.3.1), (5.3.5),
where λ̂ = (λ̂0 + λ̂1)/2, μ̂ = (λ̂0 − λ̂1)/2.

It is easy to see that

c2

λ̂
= 2c2

λ0(1+ h0)z + λ1(1+ h1)z
= c2

λ
· λ0 + λ1

λ0(1+ h0)z + λ1(1+ h1)z

= c2

λ
· λ0 + λ1

λ0 + λ1 + o(λ0 + λ1)
→ σ 2,

and

cμ̂

λ̂
= c · λ̂0 − λ̂1

λ̂0 + λ̂1
= c · λ0(1+ h0)

z − λ1(1+ h1)
z

λ0(1+ h0)z + λ1(1+ h1)z

= c · λ0 − λ1 + z(λ0h0 − λ1h1)+ o(λ0h0 − λ1h1)

λ0 + λ1 + o(λ0 + λ1)

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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=
c · λ0 − λ1

2λ
+ z

c√
2λ
· λ0h0 − λ1h1√

2λ
+ o(1)

1+ o(1)
→ β + zσγ

2
.

With this in hand, applying Theorem 5.5 we have the following convergence to
the normal distribution

X̂0(t)
d→ σw(t)− (β + zσγ/2)t ∼ N (−(β + zσγ/2)t, σ 2t),

and hence,

p̂0
i (x, t)→ 1

σ
√

2π t
e−(x+β̂t)2/(2tσ 2), i = 0, 1, (5.3.11)

where β̂ = β + zσγ/2.
The limiting normal distribution in (5.3.11) has the following moment generating

function,

∫ ∞
−∞

ezx 1

σ
√

2π t
e−(x+β̂t)2/(2tσ 2)dx = exp

{
z2σ 2t

2
− zβ̂t

}
. (5.3.12)

We finish the proof of (5.3.9) by applying scaling conditions (5.3.1), (5.3.5) to
(5.3.10). First, notice

μ̂− μ
c
= (λ̂0 − λ0)− (λ̂1 − λ1)

2c
= λ0 ((1+ h0)

z − 1)− λ1 ((1+ h1)
z − 1)

2c

=
√
λ

c
· λ0 ((1+ h0)

z − 1)− λ1 ((1+ h1)
z − 1)

2
√
λ

→ γ z

2σ
. (5.3.13)

Then, using (5.3.6) we obtain

az + λ̂− λ = az + 1

2

[
λ0ez ln(1+h0) + λ1ez ln(1+h1)

]
− λ0 + λ1

2

= az + z

2
[λ0 ln(1+ h0)+ λ1 ln(1+ h1)] (5.3.14)

+ z2

4
[λ0 ln2(1+ h0)+ λ1 ln2(1+ h1)] + o(1)

→ δz + α
2
0 + α2

1

4
z2.

Applying (5.3.11)–(5.3.14) to (5.3.10) and using continuity of moment generating
functions, convergence (5.3.9) emerges. Indeed,
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fi (z, t)→

exp

{
δzt + α

2
0 + α2

1

4
z2t + z2σ 2t

2

(
1+ γ

2σ

)2 − z
(

1+ γ

2σ

)
t ·
(
β + zσγ

2

)}

= exp

{
zt
(
δ − β

(
1+ γ

2σ

))
+ z2t

2

(
α2

0 + α2
1

2
+
(
σ + γ

2

)2 − σγ
(

1+ γ

2σ

))}

= exp

{
dzt + z2t

2

[
α2

0 + α2
1

2
+ σ 2 − γ

2

4

]}
= exp

{
dzt + v2z2t/2

}
.

The theorem is proved. �

Remark 5.3 Due to the structure of limiting volatility (see (5.3.8)) the value σ 2 =
lim(c2/λ) can be interpreted as the “telegraph" component of volatility, and the terms

α2
0 + α2

1

2
− γ

2

4
= lim

{
λ0h2

0 + λ1h2
1

2
− (λ0h0 − λ1h1)

2

2(λ0 + λ1)

}

are the components of volatility engendered by jumps. Here lim denotes the limit
under conditions (5.3.5).

It is reasonable to define the volatility vol of the model (5.2.1)–(5.2.2) as pre-limit
value, see (5.3.8) and Remark 5.2,

vol2 = c2

λ
+ λ0λ1(h0 + h1)

2

4λ
. (5.3.15)

Notice that the volatility increases if the model is asymmetric in jump values, i. e.
h0 + h1 
= 0.

Remark 5.4 Condition (5.3.6) can be changed to

a + λ
2
(h0 + h1)→ δ′, where δ′ := δ + 1

4
(α2

0 + α2
1).

This is obvious due to the following limit relation

λ

2
[ln(1+ h0)+ ln(1+ h1)− (h0 + h1)] = −λ

2

h2
0 + h2

1

2
+ o(1)→−α

2
0 + α2

1

4
.

In these terms the drift coefficient in Theorem 5.6 takes the form

d = δ′ − 1

4
(α2

0 + α2
1)− β (1+ γ /2σ) .
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5.4 Fundamental Equation and Perfect Hedging

Consider European option with the maturity time T and the payoff function H =
f (S(T )). We assume that f is a continuous function. To price the option, we need
to study the master-functions

Fi (t, x) = F(t, x; i) = E
∗
i

{
e−Y (T−t) f (xeX (T−t)κ(T − t))

}
, (5.4.1)

i = 0, 1, 0 ≤ t ≤ T,

where E
∗
i denotes the (conditional) expectation with respect to the martingale mea-

sure P
∗ under the initial state ε(0) = i .

Similarly to Eq. (4.1.5) and using (4.1.2) we obtain the system of integral equa-
tions, i = 0, 1, t < T ,

Fi (t, x) = e−(λ∗i +ri )(T−t) f (xeci (T−t)) (5.4.2)

+ λ∗i
T∫

t

F1−i (s, x(1+ hi )e
ci (s−t))e−(λ∗i +ri )(s−t)ds,

with the terminal conditions Fi (t, x) |t↑T = f (x). Here risk-free intensities λ∗i
are defined by λ∗i = (ri − ci )/hi , i = 0, 1 (see Theorem 5.4, formula (5.2.6)).
Differentiating in t and integrating by parts in the result we obtain the PDE-form of
(5.4.2):

∂Fi

∂t
(t, x)+ ci x

∂Fi

∂x
(t, x) = (ri + λ∗i )Fi (t, x)− λ∗i F1−i (t, x(1+ hi )), (5.4.3)

0 < t < T, i = 0, 1.

Remark 5.5 Systems (5.4.2) and (5.4.3) play the same role for our model as the
fundamental Black-Scholes Eqs. (5.1.14)–(5.1.15). In contrast with the classic theory,
system (5.4.3) is hyperbolic. In particular, it implies the finite propagation velocity,
which corresponds better to the intuitive understanding of financial markets. Note
that Eqs. (5.4.2) and (5.4.3) do not depend on λ0 and λ1, just like the respective
Eq. (5.1.14) in the Black-Scholes model (5.1.5)–(5.1.6) does not depend on the drift
parameter.

Equation (5.4.3) can be used for the explicit description of the hedging strategy.
Remind that the admissible self-financing strategy π = (ϕt , ψt ), 0 ≤ t ≤ T is
called a hedge (perfect hedge, replicating strategy) of the option with maturity at
time T and payoff function H, if its terminal value is equal to the payoff of the
option: V π

T = H a.s.

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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For the wealth process

Vt = V π
t = ϕt S(t)+ ψt B(t), 0 ≤ t ≤ T, (5.4.4)

we require the self-financing property to be fulfilled,

dVt = ϕt dS(t)+ ψt dB(t). (5.4.5)

Let S, B follow the model (5.2.1)–(5.2.2). Equation (5.4.5) can be written in the
integral form

Vt = V0 +
t∫

0

ϕs S(s)dX (s)+
t∫

0

ψsdB(s)+
N (t)∑
n=1

ϕτn hε(τn−)S(τn−).

Using the identity ψt ≡ B(t)−1(Vt − ϕt S(t)) (see the balance in (5.4.4)), we obtain

Vt = V0+
t∫

0

rε(s)Vsds+
t∫

0

ϕs S(s)(cε(s)−rε(s))ds+
N (t)∑
n=1

ϕτn hε(τn−)S(τn−). (5.4.6)

To identify such a strategy in the case H = f (S(T )), note that (5.1.4) becomes

Vt = V π
t = B(t)E∗[B(T )−1H

∣∣∣Ft ] = F(t, S(t); ε(t)), (5.4.7)

where the functions F(t, x; i) = Fi (t, x), i = 0, 1 defined by (5.4.1) satisfy
the fundamental equation (5.4.3). Notice that the strategy value Vt depends on the
current market’s state ε(t)(or in other words, it depends on the direction of market’s
movement). Exploiting Itô’s formula (1.3.3), we get

Vt = V0 +
t∫

0

∂F

∂s
(s, S(s); ε(s))ds +

t∫

0

∂F

∂x
(s, S(s); ε(s))S(s)cε(s)ds (5.4.8)

+
N (t)∑
n=1

(Vτn − Vτn−).

Comparing Eqs. (5.4.6) and (5.4.8), using the fundamental equation (5.4.3) and
the definition of λ∗i , λ∗i = (ri − ci )/hi , we have (between jumps): for t ∈
(τn−1, τn), n ∈ N,

ϕt =
S(t)cε(t)

∂F

∂x
+ ∂F

∂t
− rε(t)Vt

S(t)(cε(t) − rε(t))
(5.4.9)

http://dx.doi.org/10.1007/978-3-642-40526-6_1
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= F(t, S(t)(1+ hε(t)), 1− ε(t))− F(t, S(t), ε(t))

S(t)hε(t)
.

Moreover, from (5.4.6) and (5.4.8), we obtain the values of ϕτn :

ϕτn =
Fτn − Fτn−

S(τn−)hε(τn−)
= F(τn, S(τn), ε(τn))− F(τn, S(τn−), 1− ε(τn))

S(τn−)hε(τn−)
.

(5.4.10)

It turns out that the process ϕt is left-continuous. To prove this, note that from
(5.2.3) it follows that

S(τn−)(1+ hε(τn−)) = S(τn). (5.4.11)

The left-continuity of ϕt can be proved by applying (5.4.11) to (5.4.9)–(5.4.10).

5.5 Pricing Call Options

The main goal of this section is to derive an explicit formula for the initial price c
of a call option with payoff H = (S(T ) − K )+, K > 0, in the framework of the
market model (5.2.1)–(5.2.2). According to the theory of option pricing we have

c = E
∗ { B(T )−1(S(T )− K )+

∣∣∣ ε(0)
}
= E

∗
ε(0)

{
B(T )−1(S(T )− K )+

}
, (5.5.1)

see (5.1.4). Here K is the strike price and E
∗{·} denotes the expectation with respect

to the martingale measure P
∗ which was constructed in Sect. 5.2.

Fix the initial state i = ε(0). Formula (5.5.1) has the standard form,

c = ci = S0U (i)(y, T )− K u(i)(y, T ), (5.5.2)

where y = ln K/S0 and

u(i)(y, T ) = E
∗
i

{
e−Y (T )1{X (T )+ln κ(T )>y}

}
, (5.5.3)

U (i)(y, T ) = E
∗
i

{
e−Y (T )+X (T )κ(T )1{X (T )+ln κ(T )>y}

}
. (5.5.4)

To compute the functions u(i) and U (i) defined by (5.5.2)–(5.5.4) first notice that

Y (t)
d= μr X (t)+ ar t, (5.5.5)

where μr = r0 − r1

c0 − c1
and ar = c0r1 − c1r0

c0 − c1
. Formula (5.5.3) becomes
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u(i)(y, T ) =
∞∑

n=0

u(i)n (y − bn, T ),

where bn = ln κ(i)n and

u(i)n (y, t) = e−ar t

∞∫

y

e−μr x p∗i (x, t; n)dx . (5.5.6)

Numbers κ(i)n are defined by (4.1.30) with hi instead of h∗i , and the transition densities
p∗i (x, t; n) are defined by (4.1.3) with P

∗
i instead of Pi .

Conditioning again on the number of switchings we have

U (i)(y, T ) =
∞∑

n=0

U (i)
n (y − bn, T ),

where (see (5.5.4) and (5.5.5))

U (i)
n (y, t) = κ i

ne−ar t

∞∫

y

e−μr x+x p∗i (x, t; n)dx . (5.5.7)

To obtain the explicit pricing formula from (5.5.2) we should integrate in (5.5.6)–
(5.5.7). It is easy to see that functions u(i)n and U (i)

n , i = 0, 1, n ≥ 1, are continuous
and piecewise continuously differentiable, whereas u(i)0 (y, t) = e−(λ∗i +ri )t1{ci t>y},
U (i)

0 (y, t) = e−(λ∗i +ri−ci )t1{ci t>y}.
We derive now the PDEs for functions u(i)n and U (i)

n , i = 0, 1, n ≥ 0, using the

notation Li u := ∂u

∂t
+ ci

∂u

∂y
.

Proposition 5.1 Functions u(i)n and U (i)
n , i = 0, 1, n ≥ 0, defined by (5.5.6) and

(5.5.7) satisfy the following systems, i = 0, 1, n ≥ 1, t > 0

Li u
(i)
n (y, t) = −(λ∗i + ri )u

(i)
n (y, t)+ λ∗i u(1−i)

n−1 (y, t), (5.5.8)

LiU
(i)
n (y, t) = −(λ∗i + ri − ci )U

(i)
n (y, t)+ λ∗i (1+ hi )U

(1−i)
n−1 (y, t) (5.5.9)

with the initial conditions u(i)n

∣∣∣
t=0
= 0, U (i)

n

∣∣∣
t=0
= 0.

Proof Equation (5.5.8) follows, from Eq. (4.1.8) for distribution densities p∗,in .
Indeed, differentiating in formula (5.5.6) we have

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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∂u(i)n (y, t)

∂t
= −ar u(i)n (y, t)+ e−ar t

∞∫

y

e−μr x ∂p∗i
∂t
(x, t; n)dx .

Applying Eq. (4.1.8) (with h0 = h1 = 0) and integrating by parts we have

∂u(i)n

∂t
(y, t) = −(ar +μr ci +λ∗i )u(i)n (y, t)+λ∗i u(1−i)

n−1 (y, t)+ ci e
−μr y−ar t p∗i (y, t; n).

(5.5.10)
We have used here the identity

e−ar t

∞∫

y

e−μr x p∗1−i (x, t; n − 1)dx = u(1−i)
n−1 (y, t), (5.5.11)

which follows from Eq. (5.5.6).
On the other hand, differentiating (5.5.6) in y we have

ci
∂u(i)n (y, t)

∂y
= −ci e

−μr y−ar t p∗i (y, t; n). (5.5.12)

From Eqs. (5.5.10) and (5.5.12) using the equalities ar + μr ci = ri , i = 0, 1, see
(5.5.5), we get Eq. (5.5.8).

The proof of (5.5.9) is similar. The only difference is that instead of (5.5.11) we should
use the identity (see (5.5.7))

κ i
ne−ar t

∞∫

y

e−μr x+x p∗1−i (x, t; n − 1)dx = (1+ hi )U
(1−i)
n−1 (y, t).

The proposition is proved. �

To underline the dependence on the parameters we will use the notations

u(i)n = u(i)n (y, t; λ0, λ1, c0, c1, r0, r1),

U (i)
n = U (i)

n (y, t; λ0, λ1, c0, c1, r0, r1)

for functions u(i)n and U (i)
n defined by (5.5.6)–(5.5.7). Here λi are the switching

intensities, ci are the velocities of the main telegraph process X = X (t) and ri are
the interest rates of the bond B = B(t). Comparing Eqs. (5.5.8) and (5.5.9), we note
that

U (i)
n (y, t; λ∗0, λ∗1, c0, c1, r0, r1) = u(i)n (y, t; λ̂0, λ̂1, c0, c1, 0, 0),

(5.5.13)

http://dx.doi.org/10.1007/978-3-642-40526-6_4
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where, remind, λ̂i := λ∗i (1 + hi ) = λ∗i + ri − ci , i = 0, 1 (see (5.2.6)). Hence,

to obtain the exact pricing formulae it is sufficient to get the exact formulae for u(i)n ,
and then use (5.5.13) and (5.5.2).

Notice that P-a.s. c1t ≤ X (t) ≤ c0t . Due to Eq. (5.5.6), for n ≥ 0, i = 0, 1,

u(i)n (y, t) ≡ 0, if y > c0t, (5.5.14)

u(i)n (y, t) ≡ ρ(i)n (t) := e−ar t

∞∫

−∞
e−μr x p∗i (x, t; n)dx, if y < c1t. (5.5.15)

In the latter case, system (5.5.8) takes the form

dρ(i)n

dt
= −(λ∗i + ri )ρ

(i)
n + λ∗i ρ(1−i)

n−1 , t > 0, n ≥ 1, i = 0, 1. (5.5.16)

Here, by Eq. (5.5.6),

ρ
(i)
0 (t) = E

∗
i

{
B(t)−11{N (t)=0}

}
= e−(λ∗i +ri )t , t ≥ 0, i = 0, 1. (5.5.17)

System (5.5.16) is supplied with the initial conditions

ρ(i)n (0) = 0, n ≥ 1, i = 0, 1. (5.5.18)

Lemma 5.1 The solution of system (5.5.16) can be represented in the form

ρ(i)n (t) = e−(λ∗1+r1)t�(i)n P(i)n (t), i = 0, 1, n ≥ 0,

where �(i)n = (λ∗i )[(n+1)/2](λ∗1−i )
[n/2], n ≥ 0, and functions P(i)n are defined as

follows:
P(0)0 (t) = e−at , P(1)0 ≡ 1, (5.5.19)

P(i)n = P(i)n (t) = tn

n!

(
1+

∞∑
k=1

(m(i)
n + 1)k
(n + 1)k

· (−at)k

k!

)
, i = 0, 1, n ≥ 1.

Here

m(0)
n = [n/2] , m(1)

n = [(n − 1)/2] ,

(m)k = m(m + 1) . . . (m + k − 1), a = λ∗0 − λ∗1 + r0 − r1,

[·] is the integer part of a number.
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Proof Notice that in the particular case λ∗0 = λ∗1 = λ and r0 = r1 = 0, the solution

of system (5.5.16) is well known: ρ(i)n (t) = πn(t) = P{N (t) = n} = (λt)n

n! e−λt ,

which coincides with the result of Lemma 5.1.
In the general case, we apply the following change of variables

ρ(i)n (t) = e−(λ∗1+r1)t�(i)n P(i)n (t).

Due to (5.5.17), in these notations, for n = 0, we have P(1)0 (t) ≡ 1, P(0)0 (t) = e−at ,
where a = (λ∗0 + r0) − (λ∗1 + r1). Initial conditions (5.5.18) lead to the initial

conditions P(i)n

∣∣∣
t=0
= 0, n ≥ 1, i = 0, 1, for the system

⎧⎪⎪⎨
⎪⎪⎩

dP(0)n

dt
+ a P(0)n = P(1)n−1

dP(1)n

dt
= P(0)n−1

, n ≥ 1. (5.5.20)

It is easy to see that functions P(i)n defined by (5.5.19) satisfy system (5.5.20). �

Remark 5.6 Formulae (5.5.19) can be expressed by means of hypergeometric func-
tions, see [28], Chap. 13:

P(i)n (t) = tn

n! 1 F1(m
(i)
n + 1; n + 1; −at), i = 0, 1.

Formulae (5.5.19) can be rewritten in detail:

P(0)2n+1 =P(1)2n+1 = P2n+1 = t2n+1

(2n + 1)!

⎡
⎣1+

∞∑
k=1

(n + 1) . . . (n + k)

(2n + 2) . . . (2n + k + 1)
· (−at)k

k!

⎤
⎦ ,

P(1)2n =
t2n

(2n)!

⎡
⎣1+

∞∑
k=1

n(n + 1) . . . (n + k − 1)

(2n + 1) . . . (2n + k)
· (−at)k

k!

⎤
⎦ ,

P(0)2n =
t2n

(2n)!

[
1+

∞∑
k=1

(n + 1) . . . (n + k)

(2n + 1) . . . (2n + k)
· (−at)k

k!

]
, (5.5.21)

Further, using (5.5.21) it is easy to check the useful identity:

P(1)2n (t)− P(0)2n (t) ≡ a P2n+1(t), t ≥ 0, n ≥ 0.

In the similar manner we can express the general solution of Eq. (5.5.8).
Define the coefficients βk, j , j < k:
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βk,0 = βk,1 = βk,k−2 = βk,k−1 = 1, (5.5.22)

βk, j = (k − j)[ j/2]
[ j/2]! , k ≥ 1, j < k.

We use coefficients βk, j to define the following functions ϕk,n = ϕk,n(t), k ≤ n:

ϕ0,n = P2n+1(t), (5.5.23)

ϕk,n =
k−1∑
j=0

ak− j−1βk, j P(1)2n− j (t), t ≥ 0, 1 ≤ k ≤ n.

Finally, we define functions v(i)n = v(i)n (p, q) (for positive p, q) as follows.
For n = 0 set v(1)0 ≡ 0, v(0)0 = e−ap, and for n ≥ 1

v(0)2n+1(p, q) = v(1)2n+1(p, q) = P2n+1(p)+
n∑

k=1

qk

k! ϕk,n(p), n ≥ 0,

v(1)2n (p, q) = P(1)2n (p)+
n−1∑
k=1

qk

k! ϕk+1,n(p), n ≥ 1, (5.5.24)

v(0)2n (p, q) = P(0)2n (p)+
n∑

k=1

qk

k! ϕk−1,n−1(p), n ≥ 1.

Now we can derive the expressions for u(i)n = u(i)n (y, t), i = 0, 1, in the interval
c1t < y < c0t .

Theorem 5.7 System (5.5.8) admits the unique solution of the form

u(i)n =

⎧⎪⎨
⎪⎩

0, y > c0t,

w(i)n (p, q), c1t ≤ y ≤ c0t, i = 0, 1.

ρ
(i)
n (t), y < c1t,

(5.5.25)

Here

w(i)n = e−(λ∗0+r0)q−(λ∗1+r1)p�(i)n v(i)n (p, q), i = 0, 1, n ≥ 0, (5.5.26)

p = c0t − y

c0 − c1
, q = y − c1t

c0 − c1
.
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Coefficients �(i)n and functions ρ(i)n are defined in Lemma 5.1. Functions v(i)n =
v(i)n (p, q) are defined in (5.5.24).

Proof By Eq. (5.5.6), u(i)n (y, t) ≡ 0, if p < 0, and u(i)n (y, t) ≡ ρ(i)n (t), if q < 0.
We solve now system (5.5.8) for c1t ≤ y ≤ c0t , i. e. for p, q > 0. First notice

that for any smooth function w = w(p, q)

L0w(p, q) = ∂w

∂t
+ c0

∂w

∂y

= 1

c0 − c1

(
c0
∂w

∂p
− c1

∂w

∂q

)
+ c0

1

c0 − c1

(
−∂w

∂p
+ ∂w

∂q

)
= ∂w

∂q

and

L1w(p, q) = ∂w

∂t
+ c1

∂w

∂y

= 1

c0 − c1

(
c0
∂w

∂p
− c1

∂w

∂q

)
+ c1

1

c0 − c1

(
−∂w

∂p
+ ∂w

∂q

)
= ∂w

∂p
.

Therefore, in the notations of (5.5.25)–(5.5.26) for p, q > 0 (i. e. for c1t < y <
c0t) Eq. (5.5.8) are equivalent to the system

⎧⎨
⎩
∂v(0)n
∂q = v(1)n−1
∂v(1)n
∂p = v(0)n−1

, n ≥ 1. (5.5.27)

To define the initial (n = 0) functions v(i)0 , i = 0, 1 we apply definition (5.5.6)

of functions u(i)n :

u(i)0 = e−(λ∗i +ri )t1{y<ci t} ≡ e−(λ∗i +ri )(p+q)1{y<ci t},

and (5.5.26):
u(i)0 = e−(λ∗0+r0)q−(λ∗1+r1)p v(i)0 (p, q).

Comparing these two expressions we have

v(0)0 = e−ap1{p>0}, v(1)0 = eaq1{q<0}, (5.5.28)

where a = (λ∗0 + r0)− (λ∗1 + r1).
Applying again definitions (5.5.6), and (5.5.26) and Lemma 5.1 we have the fol-

lowing boundary conditions for (5.5.27):

v(i)n

∣∣∣
p<0
≡ 0, v(i)n

∣∣∣
q<0
= eaq P(i)n (p + q), (5.5.29)
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where P(i)n = P(i)n (t), n ≥ 0, i = 0, 1, are defined by (5.5.19).
We will find the solution of Eq. (5.5.27) in the form (5.5.24) with indefinite ϕk, n .
First, if the number of equation is odd (i. e. for 2n+1 instead of n), then substituting

v(0)2n+1 and v(1)2n+1, v(0)2n+1 = v(1)2n+1 defined by (5.5.24) into system (5.5.27) we see
that Eq. (5.5.27) are fulfilled if

n∑
k=1

qk−1

(k − 1)!ϕk, n(p) = P(1)2n (p)+
n−1∑
k=1

qk

k! ϕk+1, n(p), ∀p, q > 0

and

P ′2n+1(p)+
n∑

k=1

qk

k! ϕ
′
k, n(p) = P(0)2n (p)+

n∑
k=1

qk

k! ϕk−1, n−1(p), ∀p, q > 0.

Here the prime denotes the derivative.
These relations are equivalent to

ϕ1, n(p) = P(1)2n (p), (5.5.30)

P ′2n+1(p) = P(0)2n (p) (5.5.31)

and
ϕ′k,n(p) = ϕk−1,n−1(p), p > 0, 1 ≤ k ≤ n, n ≥ 1. (5.5.32)

Second, if the number of equation is even (i. e. for 2n instead of n), then substituting
v(0)2n and v(1)2n defined by (5.5.24) into system (5.5.27) we see that Eq. (5.5.27) are
fulfilled if

n∑
k=1

qk−1

(k − 1)!ϕk−1, n−1(p) = P2n−1(p)+
n−1∑
k=1

qk

k! ϕk, n−1(p)

and

P(1)2n

′
(p)+

n−1∑
k=1

qk

k! ϕ
′
k+1, n(p) = P2n+1(p)+

n−1∑
k=1

qk

k! ϕk, n−1(p).

These equations are equivalent to

ϕ0, n−1(p) = P2n−1(p), (5.5.33)

P(1)2n

′
(p) = P2n−1(p) (5.5.34)

and
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ϕ′k+1, n(p) = ϕk, n−1(p), p > 0, 1 ≤ k ≤ n − 1, n ≥ 1. (5.5.35)

Notice that equalities (5.5.31) and (5.5.34) follow from the second equation of
(5.5.20). Equations (5.5.32) and (5.5.35) are equivalent.

We define the functions
ϕ0,n(p) := P2n+1(p), (5.5.36)

ϕk,n(p) :=
k−1∑
j=0

ak− j−1βk, j P(1)2n− j (p), 1 ≤ k ≤ n, n ≥ 1.

In particular, due to the definition of βk, j (see (5.5.22)), coefficient β1,0 = 1 and

henceϕ1,n(p) = P(1)2n (p), which coincides with (5.5.30). The first equality of (5.5.36)
yields (5.5.33).

It remains to check that functions ϕk,n (5.5.36) solve system (5.5.32). Differenti-
ating (5.5.36) and using (5.5.20) we get

ϕ′k,n(p) =
k−1∑
j=0

ak− j−1βk, j P(0)2n− j−1(p).

By the identities P(0)2n+1 ≡ P(1)2n+1 and P(1)2n − P(0)2n ≡ a P2n+1, n ≥ 0 (see Remark
5.6), we have

ϕ′k,n(p) =
∑
j≥0,

j is even

ak− j−1βk, j P2n− j−1(p)

+
∑
j≥0,

j is odd

ak− j−1βk, j P(1)2n− j−1(p)−
∑
j≥0,

j is odd

ak− jβk, j P2n− j (p).

To complete the proof, it is sufficient to apply the identities βk,2m+1 = βk−1,2m and
βk,2m − βk,2m+1 = βk−1,2m−1, which evidently follow from the definition of βk,n

(see (5.5.22)). Theorem 5.7 is completely proved. �

Remark 5.7 If λ∗0 = λ∗1 = λ, r0 = r1 = r , then a = λ∗0 − λ∗1 + r0 − r1 = 0 and

formula (5.5.25) looks more simple. First, by definition (5.5.21) we simplify P(i)n to

P(i)n (t) = tn

n! . Moreover, π(i)n ≡ πn = (λt)n

n! e−λt and ρ(i)n = e−r tπn(t). The sum

(5.5.36) for ϕk, n contains the only term ϕk, n(t) = P(i)2n−k+1(t) =
t2n−k+1

(2n − k + 1)! .
Therefore,

v(i)n (p, q) = 1

n!
m(i)

n∑
k=0

(
n

k

)
qk pn−k
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and

u(i)n = λne−(λ+r)t

⎧⎪⎪⎨
⎪⎪⎩

0, y > c0t,

v(i)n (p, q), c1t ≤ y ≤ c0t,
tn

n! , y < c1t.

Remark 5.8 It follows from (5.5.25) that functions u(1)0 and u(0)0 are discontinuous

at q = 0 and p = 0, respectively. All subsequent functions u(i)n , n ≥ 1, defined by
(5.5.25), are continuous. The points of possible discontinuity of the first derivatives
are concentrated on the lines p = 0 and q = 0. For example, for u(0)1 and u(1)1 we
have

∂u(i)1

∂q

∣∣∣∣∣
q=+0

− ∂u(i)1

∂q

∣∣∣∣∣
q=−0

= λ∗i e−(λ∗0+r0)p,

∂u(i)1

∂p

∣∣∣∣∣
p=+0

− ∂u(i)1

∂p

∣∣∣∣∣
p=−0

= λ∗i e−(λ∗0+r0)q , i = 0, 1.

In general, using (5.5.25) one can prove that functions u(i)n and their derivatives up
to (n − 1)-th order are continuous.

Remark 5.9 The formulae in (5.5.2)–(5.5.7) have a different structure, which depends
on the sign of ln(1+ h1)(1+ h0).

1. If (1+ h1)(1+ h0) < 1, then ln(1+ h1)+ ln(1+ h0) < 0, hence bn → −∞.
The price of a call option is given by formula (5.5.2) with

u = u(i)(y, T ) =
n(i)1∑
k=0

ρ
(i)
k (T )+

n(i)0∑
k=n(i)1 +1

u(i)k (y− bk, T ; λ∗0, λ∗1, c0, c1, r0, r1),

and
U = U (i)(y, T ) = u(i)(y, T ; λ̂0, λ̂1, c0, c1, 0, 0), (5.5.37)

where y = ln K/S0 and

n(i)1 = min {n : y − bn > c1T } , n(i)0 = min {n : y − bn > c0T } , i = 0, 1.

2. If (1+ h1)(1+ h0) > 1, then ln(1+ h1)+ ln(1+ h0) > 0, hence bn → +∞.
Denoting

m(i)
1 = max {n : y − bn > c1T } , m(i)

0 = max {n : y − bn > c0T } , i = 0, 1,

we obtain the call option price formula of the form (5.5.2) with
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u(i)(y, T ) =
m(i)

1∑
k=m(i)

0

u(i)k (y − bk, T ; λ∗0, λ∗1, c0, c1, r0, r1)+
∞∑

k=m(i)
1 +1

ρ
(i)
k (T ),

and U (i)(y, T ) is defined in (5.5.37). Consider the following examples.

Example 5.1 The Merton model.

If r0 = r1 = r, c0 = c1 = c, h0 = h1 = −h, h < 1, λ0 = λ1 = λ, Eq. (5.2.1)
takes the form

dS(t) = S(t−)(cdt − hdN (t)),

where N = N (t), t ≥ 0, is a (homogeneous) Poisson process with parameter λ > 0.
In this case functions U (i) ≡ U and u(i) ≡ u in (5.5.2) do not depend on i . Functions
u and U are defined as follows.

If 0 < h < 1 and c > r , then bn = n ln(1− h)→−∞ and

u = u(ln K/S0, T ) = e−rT
n0∑

n=0

u(i)n (ln(K/S0)− bn, T )

= e−rT
P(N (T ) ≤ n0) = e−rTΨn0(λ

∗T ),

where λ∗ = (c − r)/h > 0 and Ψn0(z) = e−z
n0∑

n=0

zn

n! . In this case, function U has

the form
U (y, T ) = Ψn0(λ

∗(1− h)T ).

For h < 0 and c < r , i. e. bn = n ln(1− h)→+∞, we have

u(y, T ) = e−rT (1− Ψn0(λ
∗T )

)
,

U (y, T ) = 1− Ψn0(λ
∗(1− h)T ).

In both cases,

n0 = inf{n : S0en ln(1−h)+(c−r)T > B(T )−1 K } =
[

ln(K/S0)− cT

ln(1− h)

]
.

Example 5.2 Let us consider another symmetric case λ0 = λ1 = λ, r0 = r1 = r,
c0 = r + c, c1 = r − c and h0 = −h, h1 = h; c > 0, 0 < h < 1. These
assumptions simplify the form of u(i). In this case we have λ∗0 = λ∗1 = c/h and
bn → −∞. Here b2n = n ln(1− h2) and b2n+1 = n ln(1− h2)+ ln(1− (−1)i h).
We denote

ni =
[

ln(K/S0)− (c + (−1)i r)T

ln(1− h2)

]
, i = 0, 1. (5.5.38)
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Function u(0) has the form (see Remark 5.7)

u(0)(y, T ) = e−(c/h+r)T

⎧⎨
⎩

2n1∑
n=0

(cT/h)n

n! +
2n0∑

n=2n1+1

(c/h)n

n!
[n/2]∑
k=0

(
n

k

)
qk

n pn−k
n

⎫⎬
⎭ ,

where pn = (r + c)T − y + bn

2c
≥ 0, qn = y − (r − c)T − bn

2c
≥ 0 and y =

ln(K/S0).
Function u(1) has the similar form.

5.6 Historical and Implied Volatilities in the Jump
Telegraph Model

5.6.1 Historical Volatility

Historical volatility is defined as

HV(t) =
√

Var{log S(t + τ)/S(τ )}
t

. (5.6.1)

For the classic Black-Scholes model log S(t + τ)/S(τ )
d= at + σw(t), where

w = w(t), t ≥ 0, is a standard Brownian motion, the historical volatility is constant:
HVBS(t) ≡ σ .

Consider a moving-average type model (see [29]), which is described by

log S(t)/S(0) =at + σw(t)− σ
t∫

0

dτ

τ∫

−∞
λ0e−(λ0+λ1)(τ−u)dw(u),

σ, λ1, λ0 + λ1 > 0.

Usually these models are applied to capture memory effects of the market [24, 30].
The historical volatility (5.6.1) for this model can be exactly described [29],

HV(t) = σ

2λ

√
λ2

1 + λ0(2λ1 + λ0)Φλ(t) (5.6.2)

with 2λ = λ0 + λ1 and Φλ(t) = (1− e−2λt )/(2λt).
The historical volatility of jump telegraph model (5.2.1) is defined by

HVε(τ )(t) =
√

sε(τ )(t)

t
, (5.6.3)
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where si (t) = Vari [X (t)+ ln κ(t)] and i = ε(0) is the initial state. Due to (4.1.20),
historical volatility HV = (HV0(t),HV1(t))T can be computed by the formula

HV(t) =

√√√√√1

t

t∫

0

e(t−τ)� v(τ )dτ , (5.6.4)

where v = (v0(τ ), v1(τ ))
T is defined as in (4.1.20), but with ln(1+ hi ) instead of

hi , i = 0, 1:

v0(τ ) = λ0 [ln(1+ h0)− CτΦλ(τ)]
2 , v1(τ ) = λ1 [ln(1+ h1)+ CτΦλ(τ)]

2 .

Here C = c0+λ0 ln(1+ h0)− c1−λ1 ln(1+ h1) andΦλ(τ) = (1− e−2λτ )/(2λτ),
2λ = λ0 + λ1.

Historical volatility in jump telegraph model has the following very natural
limiting behaviour (see (4.1.24)–(4.1.25)):

lim
t→0

HVi (t) =
√
λi | ln(1+ hi )|,

lim
t→∞HVi (t) =

√
λ0λ1

2λ3

[
(λ0 B + c)2 + (λ1 B − c)2

]
, i = 0, 1,

(2B = ln(1 + h0)(1 + h1), 2c = c0 − c1; see (4.1.25)). These limits look quite
reasonable: the limit at 0 is engendered by jumps only, the limit at∞ contains both
the drift component and a long-term influence of jumps.

Using (4.1.27) and (5.6.1), in the symmetric case λ0 = λ1 = λ formula (5.6.4)
takes the form similar to (5.6.2),

HVi (t) =
√

c2

λ
+ λB2 + (c + λb)2

Φ2λ(t)

λ
+ γiΦλ(t)+ (−1)i 2B(c + λb)e−2λt ,

(5.6.5)
i = 0, 1.

The limits of historical volatility under a standard diffusion scaling (see Theorem
5.6) look more complicated. Nevertheless, in the symmetric case λ0 = λ1 = λ, we
have under the scaling conditions of Theorem 5.6, i. e. λ, c→∞, hi → 0, c2/λ→
σ 2,
√
λhi → αi that the historical volatility HVi (t), i = 0, 1 defined by (5.6.5)

converges to v =
√
σ 2 +

(
α0 + α1

2

)2

. Indeed, according to scaling conditions, we

have the convergence of the first two terms
c2

λ
+ λB2 to v2 = σ 2 +

(
α0 + α1

2

)2

.

http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
http://dx.doi.org/10.1007/978-3-642-40526-6_4
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The remaining part vanishes, because Φλ(t) → 0, e−2λt → 0, ∀t > 0, as

λ→∞, and the limits of
(c + λb)2

λ
, γi , B(c + λb) are finite.

5.6.2 Implied Volatility and Numerical Results

Define the Black-Scholes call price function f (μ, v), μ = log K , by

f (μ, v) =

⎧⎪⎪⎨
⎪⎪⎩

F
(−μ√

v
+
√

v
2

)
− eμF

(−μ√
v
−
√

v
2

)
, if v > 0,

(1− eμ)+, if v = 0,

where F(z) = 1√
2π

z∫
−∞

e−x2/2dx is the distribution function of the standard normal

law. The processes Vi (μ, t), t ≥ 0, μ ∈ R, i = 0, 1, defined by the equation

E
[
(S(t + τ)/S(τ )− eμ)+|Fτ

] = f (μ, Vε(τ )(μ, t)), (5.6.6)

are referred to as the implied variance processes.
The implied volatilities IVi (μ, t) are

IVi (μ, t) =
√

Vi (μ, t)

t
. (5.6.7)

Below, we perform the numerical valuation of the jump telegraph volatility
(5.3.15) and the historical volatility (5.6.4) which are compared with the implied
volatilities (5.6.7) with respect to different moneyness and to the initial market
states. The implied volatilities are calculated by the explicit formulae (5.5.1)–(5.5.2),
(5.5.13), (5.5.25), and (5.6.7). First, we consider the symmetric case: λ0 = λ1 = 10,
c0 = +1, c1 = −1 and h0 = −0.1, h1 = +0.1. In Fig. 5.1 we plot implied volatil-
ities in this simple case. Table 5.1 lists call prices and implied volatilities of this
volatility smile numerically. Notice that these frowned smiles of implied volatilities
IV0 and IV1 intersect at K/S0 ≈ 1.17.

Table 5.2 and Fig. 5.2 show the implied volatility picture for skewed movement,
when the market prices have a drift: both velocities are positive, and to avoid an
arbitrage, we suppose jump values to be negative. This figure has unstable oscillations
for deep-out-of-the-money options. Moreover, only in this case historical and jump
telegraph volatilities are less then implied volatilities values for at-the-money options.

Finally, we present the case taken asymmetrically with λ1 = 48.53, λ0 =
34.61, h1 = −0.0126, h0 = −0.0358, c1 = 0.61, c0 = 1.24. These
parameters correspond to the simulations of a preferably bullish market with small
jump corrections. The main feature of this market consists in the redundancy of small
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Fig. 5.1 Symmetric smile, t = 1, S0 = 100, λ0 = λ1 = 10, h0 = −0.1, h1 = 0.1, c0 = 1,
c1 = −1, HV± = 0.3162

Table 5.1 Symmetric smile, t = 1, S0 = 100, λ0 = λ1 = 10, h0 = −0.1, h1=+ 0.1, c0 = 1,
c1 = −1

K 40 70 100 117 130 160 190 220 250 280

c1 60.0013 31.6774 12.7370 6.9036 4.1565 1.1433 0.2632 0.0478 0.0058 0.0002
c0 60.0026 31.7257 12.7680 6.9039 4.1382 1.1128 0.2430 0.0390 0.0032 0.0
IV1 0.2670 0.3147 0.3206 0.3200 0.3186 0.3128 0.3045 0.2935 0.2787 0.2545
IV0 0.2811 0.3175 0.3214 0.3200 0.3180 0.3109 0.3010 0.2875 0.2671 0.0

Table 5.2 Skewed smile, t = 1, S0 = 100, λ0 = λ1 = 10, h1 = −0.03, h0= − 0.19, c1= 0.3,
c0 = 1.9

K 50 100 150 200 250 300 350 400 450 500

c1 50.8133 17.6956 5.5624 1.8243 0.6350 0.2325 0.0882 0.0347 0.0127 0.0053
c0 50.9762 18.5944 6.3367 2.2640 0.8586 0.3454 0.1413 0.0621 0.0279 0.0099
IV1 0.4475 0.4473 0.4539 0.4590 0.4620 0.4632 0.4630 0.4624 0.4577 0.4565
IV0 0.4662 0.4704 0.4776 0.4827 0.4856 0.4875 0.4868 0.4873 0.4867 0.4766

jumps. The calibrated martingale distribution is strongly asymmetric (Table 5.3 and
Fig. 5.3).

The behaviour of implied volatility in the jump-telegraph model for these data
surprisingly resembles the calibration results for stochastic volatility models of



120 5 Financial Modelling and Option Pricing

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

log−moneyness: log(K/S0)

im
pl

ie
d 

vo
la

til
ity

IV+

IV−

Fig. 5.2 Skewed smile, t = 1, S0 = 100, λ0 = λ1 = 10, h1 = −0.03, h0 = −0.19, c1 = 0.3,
c0 = 1.9 , HV1 = 0.4198, HV0 = 0.4402
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Fig. 5.3 Asymmetric smile, t = 1, S0 = 100, λ1 = 48.53, λ0 = 34.61, h1 = −0.0126, h0 =
−0.0358, c1 = 0.61, c0 = 1.24 , HV1 = 0.1630, HV0 = 0.1642
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Fig. 5.4 Skewed smile, S0 = 100, λ0 = λ1 = 10, h1 = −0.03, h0 = −0.19, c1 = 0.3, c0 = 1.9

Table 5.3 Asymmetric smile, t = 1, S0 = 100, λ1 = 48.53, λ0 = 34.61, h1 = −0.0126, h0 =
−0.0358, c1 = 0.61, c0 = 1.24

K 50 70 100 130 160 190 220 250

c1 50.0002 30.1167 6.8313 0.4913 0.0146 0.0002 0.0000 0.0000
c0 50.0002 30.1215 6.8838 0.5117 0.0162 0.0003 0.0000 0.0000
IV1 0.1809 0.1762 0.1714 0.1684 0.1663 0.1645 0.1628 0.1608
IV0 0.1819 0.1773 0.1728 0.1699 0.1679 0.1662 0.1646 0.1629

the Ornstein-Uhlenbeck type (see [31], Fig. 5.1, where implied volatilities of OU-
stochastic volatility model was depicted). Similar comportment is observed in jump-
diffusion models (see Table 2 of [32]). All calculations were prepared by considering
a data set of European call options on S&P 500 index).

Figure 5.4 depicts an implied volatility surface with respect to strike prices and
maturity times.

5.7 Pricing Exotic Options

In the framework of model (5.2.3) it is possible to price more exotic than the standard
call options. Here we give some hints to up-and-out and α-quantile call options.

Consider the market with the underlying assets defined by (5.2.1)–(5.2.2). Up-and-
out call option is a European call, expiring at time T , with strike K and up-and-out
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barrier B. We assume K < B. Denote M(t) = max
0≤s≤t

X (s). The payoff function of

this option is (S(T )− K )+1{M(T )<B}.
The price of this option at time t is represented by

Fi (t, x) = E
∗
i

[
e−Y (T−t)(S(T − t)− K )+1{M(T−t)<B}

]
, x = S0 = S(0).

In the rectangle {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ B} functions Fi (t, x), i = 0, 1
satisfy integral and differential Eqs. (5.4.2), (5.4.3) with the terminal condition

Fi (T, x) = (x − K )+, 0 ≤ x ≤ B,

and the boundary conditions (cf. [13], Theorem 7.3.1):

Fi (t, 0) = 0, 0 ≤ t ≤ T,

Fi (t, B) = 0, 0 ≤ t < T .

The option price formulae can be obtained by solving this boundary value problem
similarly to formulae (5.5.2)–(5.5.4).

Another example of path-dependent options based on telegraph processes which
can be easily proceeded is so-called the α-quantile option. We define the payoff
function using the following notation. Let

l(x, y, t) =
t∫

0

1{S(x,s)≤y}ds

be the occupation time with respect to t of the process S = S(x, t) = xeX (t)κ(t)
lying below the level y. The α-quantile (0 < α < 1) of stochastic process S is
defined by Mα

T = inf{y : l(x, y, T ) > αT }. The terminal payoff function of the
fixed strike α-quantile call option is defined by (Mα

T − K )+.
To price this option, we operate similarly to Sect. 3.2. Consider the double Laplace

transform

wi (x) =
∞∫

0

e−bt vi (x, t)dt,

where vi (x, t) = Ei exp(−βl(x, y, t)), β > 0. Notice that functions vi satisfy the
Feynman-Kac system

{− ∂v0
∂t + c0x ∂v0

∂x = λ0 [v0(x, t)− v1(x(1+ h0), t)]+ k(x)v0(x, t),

− ∂v1
∂t + c1x ∂v1

∂x = λ1 [v1(x, t)− v0(x(1+ h1), t)]− k(x)v1(x, t),
(5.7.1)

http://dx.doi.org/10.1007/978-3-642-40526-6_3
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with

k(x) =
{

0, x > y,
β, x ≤ y.

To prove that, we use again the conditioning trick. Let

Y (i)t (x) = exp

{
−β

∫ t

0
1{Si (x,s)≤y}ds

}
, i = 0, 1.

Notice that, for any x, y > 0, the root s = s∗i of the equation xeci s = y is unique.
Set

τ ∗i (x, t) = s∗i =
ln(y/x)

ci
, if s∗i ∈ [0, t];

τ ∗i (x, t) = t, if s∗i > t;
τ ∗i (x, t) = 0, if s∗i < 0.

Conditioning on the first switching, we obtain the following equality in distribution

Y (0)t (x)
d=e−βτ∗0 (x,t) · 1{τ>t} +

∫ t

0
λ0e−λ0sY (1)t−s(xec0s(1+ h0))e

−βτ∗0 (x,s)ds,

Y (1)t (x)
d=e−β(t−τ∗1 (x,t)) · 1{τ>t} +

∫ t

0
λ1e−λ1sY (0)t−s(xec1s(1+ h1))e

−β(t−τ∗1 (x,s))ds.

Here τ is the first switching time.
Therefore,

v0(x, t) = e−βτ∗0 (x,t)−λ0t+
∫ t

0
λ0e−λ0sv1(xec0s(1+h0), t−s)e−βτ∗0 (x,s)ds, (5.7.2)

v1(x, t) = e−β(t−τ∗1 (x,t))−λ1t +
∫ t

0
λ1e−λ1sv1(xec1s(1+ h1), t − s)e−β(t−τ∗1 (x,s))ds.

(5.7.3)
Differentiating Eqs. (5.7.2)–(5.7.3) we obtain system (5.7.1) by applying the
following identity

[
− ∂
∂s
+ ci x

∂

∂x

]
τ ∗i (x, s) = −1, i = 0, 1.

System (5.7.1) leads to the set of ordinary differential equations for (w0, w1):

{
c0xw′0(x) = λ0(w0(x)− w1(x(1+ h0)))+ (b + k(x))w0(x)− 1

c1xw′1(x) = λ1(w1(x)− w0(x(1+ h1)))+ (b − k(x))w1(x)− 1.
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Let L−1
b and L−1

β denote the Laplace inversion with respect to Laplace variables
b and β, and let t and τ be the respective variables after Laplace inversion. The price
of the α-quantile option is

ci
K , α = e−rT

∞∫

K

P
∗
i (M

α
T ≥ x)dx = e−rT

∞∫

K

L−1
b L−1

β

[
wi (x)

bβ

] ∣∣{t=T, τ=αT } dx

(5.7.4)
(cf. [33], formula (3.6)). By performing the integration one can obtain the integral
representation of (5.7.4) as well as the distribution of l(x, y, t). In the presence of
jumps, the closed formulae for distribution of l(x, y, t), similar to (3.2.16)–(3.2.17),
are yet unknown.

Notes

Option pricing model based on the generalised jump-telegraph processes was first
introduced by the second author [34]. Later this model has been substantially devel-
oped in [15–17], [35].

This book does not contain extensively developed theory of continuous time ran-
dom walks (CTRW) with its multiple applications to finance [36]. Market models
based on diffusion-telegraph processes, see [37], are also omitted.
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