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If one is satisfied, as he should be, with that which is to be probable, no 
difficulty arises in connection with those things that admit of more than one 
explanation in harmony with the evidence of the senses; but if one accepts 
one explanation and rejects another that is equally in agreement with the 
evidence it is clear that he is altogether rejecting science and taking refuge 
in myth. 

— Epicurus (Letter to Pythocles, Fourth Century B.C.) 

Physical concepts are free creations of the human mind, and are not, 
however it may seem, uniquely determined by the external world. In our 
endeavour to understand reality we are somewhat like a man trying to 
understand the mechanism of a closed watch. He sees the face and the 
moving hands, even hears its ticking, but he has no way of opening the case. 
If he is ingenious he may form some picture of a mechanism which could be 
responsible for all the things he observes, but he may never be quite sure his 
picture is the only one which could explain his observations. He will never 
be able to compare his picture with the real mechanism and he cannot even 
imagine the possibility of the meaning of such a comparison. 

— A. Einstein, The Evolution of Physics, 1938 





Preface 

More so than other classes of statistical multivariate methods, factor analysis 
has suffered a somewhat curious fate in the statistical literature. In spite of 
its popularity among research workers in virtually every scientific endeavor 
(e.g., see Francis, 1974), it has received little corresponding attention 
among mathematical statisticians, and continues to engender debate con-
cerning its validity and appropriateness. An equivalent fate also seems to be 
shared by the wider class of procedures known as latent variables models. 
Thus although high-speed electronic computers, together with efficient 
numerical methods, have solved most difficulties associated with fitting and 
estimation, doubt at times persists about what is perceived to be an apparent 
subjectiveness and arbitrariness of the methods (see Chatfield and Collins, 
1980, p. 88). In the words of a recent reviewer, "They have not converted 
me to thinking factor analysis is worth the time necessary to understand it 
and carry it out." (Hills, 1977.) 

Paradoxically, on the more applied end of the spectrum, faced with 
voluminous and complex data structures, empirical workers in the sciences 
have increasingly turned to data reduction procedures, exploratory methods, 
graphical techniques, pattern recognition and other related models which 
directly or indirectly make use of the concept of a latent variable (for 
examples see Brillinger and Preisler, 1983). In particular, both formal and 
informal exploratory statistical analyses have recently gained some promi-
nence under such terms as "soft modeling" (WoId, 1980) and "projection 
pursuit" (Huber, 1985; Friedman and Tukey, 1974). These are tasks to 
which factor analytic techniques are well suited. Besides being able to 
reduce large sets of data to more manageable proportions, factor analysis 
has also evolved into a useful data-analytic tool and has become an 
invaluable aid to other statistical models such as cluster and discriminant 
analysis, least squares regression, time/frequency domain stochastic pro-
cesses, discrete random variables, graphical data displays, and so forth 
although this is not always recognized in the literature (e.g. Cooper, 1983). 

ix 
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Greater attention to latent variables models on the part of statisticians is 
now perhaps overdue. This book is an attempt to fill the gap between the 
mathematical and statistical theory of factor analysis and its scientific 
practice, in the hope of providing workers with a wider scope of the models 
than what at times may be perceived in the more specialized literature (e.g. 
Steward, 1981; Zegura, 1978; Matalas and Reicher, 1967; Rohlf and Sokal, 
1962). 

The main objections to factor analysis as a bona fide statistical model 
have stemmed from two sources—historical and methodological. Historical-
ly, factor analysis has had a dual development beginning indirectly with the 
work of Pearson (1898, 1901, 1927), who used what later becomes known as 
principal components (Hotefling, 1933) to fit "regression" planes to multi-
variate data when both dependent and independent variables are subject to 
error. Also, Fisher used the so-called singular value decomposition in the 
context of ANOVA (Fisher and Mackenzie, 1923). This was the beginning 
of what may be termed the statistical tradition of factor analysis, although it 
is clearly implicit in Bravais' (1846) original development of the multivariate 
normal distribution, as well as the mathematical theory of characteristic 
(eigen) roots and characteristic (eigen) vectors of linear transformations. 
Soon after Hotelling's work Lawley (1940) introduced the maximum likeli-
hood factor model. It was Spearman (1904, 1913), however, who first used 
the term "factor analysis" in the context of psychological testing for 
"general intelligence" and who is generally credited (mainly in psychology) 
for the origins of the model. Although Spearman's method of "tetrads" 
represented an adaptation of correlation analysis, it bore little resemblance 
to what became known as factor analysis in the scientific literature. Indeed, 
after his death Spearman was challenged as the originator of factor analysis 
by the psychologist Burt, who pointed out that Spearman had not used a 
proper factor model, as Pearson (1901) had done. Consequently, Burt was 
the originator of the psychological applications of the technique 
(Hearnshaw, 1979). It was not until later however that factor analysis found 
wide application in the engineering, medical, biological, and other natural 
sciences and was put on a more rigorous footing by Hotelling, Lawley, 
Anderson, Joreskog, and others. An early exposition was also given by 
Kendall (1950) and Kendall and Lawley (1956). Because of the computation 
involved, it was only with the advent of electronic computers that factor 
analysis became feasible in everyday applications. 

Early uses of factor analysis in psychology and related areas relied heavily 
on linguistic labeling and subjective interpretation (perhaps Cattell, 1949 
and Eysenck, 1951 are the best known examples) and this tended to create a 
distinct impression among statisticians that imposing a particular set of 
values and terminology was part and parcel of the models. Also, ques-
tionable psychological and eugenic attempts to use factor analysis to mea-
sure innate (i.e., genetically based) "intelligence," together with Burt's 
fraudulent publications concerning twins (e.g., see Gould, 1981) tended to 
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further alienate scientists and statisticians from the model. Paradoxically, 
the rejection has engendered its own misunderstandings and confusion 
amongst statisticians (e.g., see Ehrenberg, 1962; Armstrong, 1967; Hills, 
1977), which seems to have prompted some authors of popular texts on 
multivariate analysis to warn readers of the "... many drawbacks to factor 
analysis" (Chatfield and Collins, 1980, p. 88). Such misunderstandings have 
had a further second-order impact on practitioners (e.g., Mager, 1988, p. 
312). 

Methodological objections to factor analysis rest essentially on two 
criteria. First, since factors can be subjected to secondary transformations of 
the coordinate axes, it is difficult to decide which set of factors is appro-
priate. The number of such rotational transformations (orthogonal or ob-
lique) is infinite, and any solution chosen is, mathematically speaking, 
arbitrary. Second, the variables that we identify with the factors are almost 
never observed directly. Indeed, in many situations they are, for all practical 
intents and purposes, unobservable. This raises a question concerning 
exactly what factors do estimate, and whether the accompanying identifica-
tion process is inherently subjective and unscientific. Such objections are 
substantial and fundamental, and should be addressed by any text that deals 
with latent variables models. The first objection can be met in a relatively 
straightforward manner, owing to its somewhat narrow technical nature, by 
observing that no estimator is ever definitionally unique unless restricted in 
some suitable manner. This is because statistical modeling of the empirical 
world involves not only the selection of an appropriate mathematical 
procedure, with all its assumptions, but also consists of a careful evaluation 
of the physical-empirical conditions that have given rise to, or can be 
identified with, the particular operative mechanism under study. It is thus 
not only the responsibility of mathematical theory to provide us with a 
unique statistical estimator, but rather the arbitrary nature of mathematical 
assumptions enables the investigator to choose an appropriate model or 
estimation technique, the choice being determined largely by the actual 
conditions at hand. For example, the ordinary least squares regression 
estimator is one out of infinitely many regression estimators which is 
possible since it is derived from a set of specific assumptions, one being that 
the projection of the dependent variable/vector onto a sample subspace 
spanned by the independent (explanatory) variables is orthogonal. Of 
course, should orthogonality not be appropriate, statisticians have little 
compunction about altering the assumption and replacing ordinary least 
squares with a more general model. The choice is largely based on prevail-
ing conditions and objectives, and far from denoting an ill-defined situation 
the existence of alternative estimation techniques contributes to the inherent 
flexibility and power of statistical/mathematical modeling. 

An equivalent situation also exists in factor analysis, where coefficients 
may be estimated under several different assumptions, for example, by an 
oblique rather than an orthogonal model since an initial solution can always 
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be rotated subsequently to an alternative basis should this be required. 
Although transformation of the axes is possible with any statistical model 
(the choice of a particular coordinate system is mathematically arbitrary), in 
factor analysis such transformations assume particular importance in some 
(but not all) empirical investigations. The transformations, however, are not 
an inherent feature of factor analysis or other latent variable(s) models, and 
need only be employed in fairly specific situations, for example, when 
attempting to identify clusters in the variable (sample) space. Here, the 
coordinate axes of an initial factor solution usually represent mathematically 
arbitrary frames of references which are chosen on grounds of convenience 
and east of computation, and which may have to be altered because of 
interpretational or substantive requirements. The task is much simplified, 
however, by the existence of well-defined statistical criteria which result in 
unique rotations, as well as by the availability of numerical algorithms for 
their implementation. Thus once a criterion function is selected and opti-
mized, a unique set of estimated coefficients (coordinate axes) emerges. In 
this sense the rotation of factors conforms to general and accepted statistical 
practice. Therefore, contrary to claims such as those of Ehrenberg (1962) 
and Temple (1978), our position on the matter is that the rotation of factors 
is not intrinsically subjective in nature and, on the contrary, can result in a 
useful and meaningful analysis. This is not to say that the rotational problem 
represents the sole preoccupation of factor analysis. On the contrary, in 
some applications the factors do not have to be rotated or undergo direct 
empirical interpretation. Frequently they are only required to serve as 
instrumental variables, for example, to overcome estimation difficulties in 
least squares regression. Unlike the explanatory variables in a regression 
model, the factor scores are not observed directly and must also be 
estimated from the data. Again, well-defined estimators exist, the choice of 
which depends on the particular factor model used. 

The second major objection encountered in the statistical literature 
concerns the interpretation of factors as actual variables, capable of being 
identified with real or concrete phenomenon. Since factors essentially 
represent linear functions of the observed variables (or their transforma-
tions), they are not generally observable directly, and are thus at times 
deemed to lack the same degree of concreteness or authenticity as variables 
measured in a direct fashion. Thus, although factors may be seen as serving 
a useful role in resolving this estimation difficulty or that measurement 
problem, they are at times viewed as nothing more than mathematical 
artifacts created by the model. The gist of the critique is not without 
foundation, since misapplication of the model is not uncommon. There is a 
difficulty, however, in accepting the argument that just because factors are 
not directly observable they are bereft of all "reality." Such a viewpoint 
seems to equate the concept of reality with that of direct observability (in 
principle or otherwise), a dubious and inoperative criterion at best, since 
many of our observations emanate from indirect sources. Likewise, whether 
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factors correspond to real phenomena is essentially an empirical rather than 
a mathematical question, and depends in practice on the nature of the data, 
the skill of the practitioner, and the area of application. For example, it is 
important to bear in mind that correlation does not necessarily imply direct 
causation, or that when nonsensical variables are included in an analysis, 
particularly under inappropriate assumptions or conditions, very little is 
accomplished. On the other hand, in carefully directed applications involv-
ing the measurement of unobservable or difficult-to-observe variables—such 
as the true magnitude of an earthquake, extent and/or type of physical pain, 
political attitudes, empirical index numbers, general size and/or shape of a 
biological organism, the informational content of a signal or a two-dimen-
sional image—the variables and the data are chosen to reflect specific 
aspects which are known or hypothesized to be of relevance. Here the 
retained factors will frequently have a ready and meaningful interpretation 
in terms of the original measurements, as estimators of some underlying 
latent trait(s). 

Factor analysis can also be used in statistical areas, for example, in 
estimating time and growth functions, least squares regression models, 
Kalman filters, and Karhunen–Loeve spectral models. Also, for optimal 
scoring of a contingency table, principal components can be employed to 
estimate the underlying continuity of a population. Such an analysis (which 
predates noteHines work on principal components—see Chapter 9) can 
reveal aspects of data which may not be immediately apparent. Of course, in 
a broader context the activity of measuring unobserved variables, estimating 
dimensionality of a model, or carrying out exploratory statistical analysis is 
fairly standard in statistical practice and is not restricted to factor models. 
Thus spectral analysis of stochastic processes employing the power (cross) 
spectrum can be regarded as nothing more than a fictitious but useful 
mathematical construct which reveals the underlying structure of correlated 
observations. Also, statisticians are frequently faced with the problem of 
estimating dimensionality of a model, such as the degree of a polynomial 
regression or the order of an ARMA process. Available data are generally 
used to provide estimates of missing observations whose original values 
cannot be observed. Interestingly, recent work using maximum likelihood 
estimation has confirmed the close relationship between the estimation of 
missing data and factor analysis, as indicated by the EM algorithm. Finally, 
the everyday activity of estimating infinite population parameters, such as 
means or variances, is surely nothing more than the attempt to measure that 
which is fundamentally hidden from us hut which can be partially revealed 
by careful observation and appropriate theory. Tukey (1979) has provided a 
broad description of exploratory statistical research as 

• an attitude, a state of flexibility, a willingness to look for those things that we 
believe are not there, as well as for those we believe might he there... its tools 
are secondary to its purposes. 
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This definition is well suited to factor and other latent variable models and is 
employed (implicitly or explicitly) in the text. 

The time has thus perhaps come for a volume such as this, the purpose of 
which is to provide a unified treatment of both the theory and practice of 
factor analysis and latent variables models. The interest of the author in the 
subject stems from earlier work on latent variables models using historical 
and social time series, as well as attempts at improving certain least squares 
regression estimators. The book is also an outcome of postgraduate lectures 
delivered at the University of Kent (Canterbury) during the 1970s, together 
with more recent work. The volume is intended for senior undergraduate 
and postgraduate students with a good background in statistics and mathe-
matics, as well as for research workers in the empirical sciences who may 
wish to acquaint themselves better with the theory of latent variables 
models. Although stress is placed on mathematical and statistical theory, 
this is generally reinforced by examples taken from the various areas of the 
natural and social sciences as well as engineering and medicine. A rigorous 
mathematical and statistical treatment seems to be particularly essential in 
an area such as factor analysis where misconception and misinterpretations 
still abound. Finally, a few words are in order concerning our usage of the 
term "factor analysis," which is to be understood in a broad content rather 
than the more restricted sense at times encountered in the literature. The 
reason for this usage is to accentuate the common structural features of 
certain models and to point out essential similarities between them. Al-
though such similarities are not always obvious when dealing with empirical 
applications, they nevertheless become clear when considering mathe-
matical-statistical properties of the models. Thus the ordinary principal 
components model, for example, emerges as a special case of the weighted 
(maximum likelihood) factor model although both models are at times 
considered to be totally distinct (e.g., see Zegura, 1978). The term "factor 
analysis" can thus be used to refer to a class of models that includes 
ordinary principal components, weighted principal components, maximum 
likelihood factor analysis, certain multidimensional scaling models, dual 
scaling, correspondence analysis, canonical correlation, and latent class/ 
latent profile analysis. All these have a common feature in that latent root 
and latent vector decompositions of special matrices are used to locate 
informative subspaces and estimate underlying dimensions. 

This book assumes on the part of the reader some background in 
calculus, linear algebra, and introductory statistics, although elements of the 
basics are provided in the first two chapters. These chapters also contain a 
review of some of the less accessible material on multivariate sampling, 
measurement and information theory, latent roots and latent vectors in both 
the real and complex domains, and the real and complex normal dis-
tribution. Chapters 3 and 4 describe the classical principal components 
model and sample-population inference; Chapter 5 treats several extensions 
and modifications of principal components such as 0  and three-mode 
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analysis, weighted principal components, principal components in the com-
plex field, and so forth. Chapter 6 deals with maximum likelihood and 
weighted factor models together with factor identification, factor rotation, 
and the estimation of factor scores. Chapters 7-9 cover the use of factor 
models in conjunction with various types of data such as time series, spatial 
data, rank orders, nominal variables, directional data, and so forth. This is 
an area of multivariate theory which is frequently ignored in the statistical 
literature when dealing with latent variable estimation. Chapter 10 is 
devoted to applications of factor models to the estimation of functional 
forms and to least squares regression estimators when dealing with measure-
ment error and/or multicollinearity. 

I would like to thank by colleagues H. Howlader of the Department of 
Mathematics and Statistics, as well as S. Abizadeh, H. Hutton, W, Morgan, 
and A. Johnson of the Departments of Economics Chemistry, and Anth-
ropology, respectively, for useful discussions and comments, as well as other 
colleagues at the University of Winnipeg who are too numerous to name. 
Last but not least I would like to thank Judi Hanson for the many years of 
patient typing of the various drafts of the manuscript, which was accom-
plished in the face of much adversity, as well as Glen Koroluk for help with 
the computations. Thanks are also owed to Rita Campbell and Weldon 
Hiebert for typing and graphical aid. Of course I alone am responsible for 
any errors or shortcomings, as well as for views expressed in the book. 

Alexander Basilevsky 

Winnigep, Manitoba 
February 1994 
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CHAPTER 1 

Preliminaries 

1.1 INTRODUCTION 

Since our early exposure to mathematical thinking we have come to accept 
the notion of a variable or a quantity that is permitted to vary during a 
particular context or discussion. In mathematical analysis the notion of a 
variable is important since it allows general statements to be madc about a 
particular member of a set. Thus the essential nature of a variable consists in 
its being identifiable with any particular value of its domain, no matter how 
large that domain may be. In a more applied context, when mathematical 
equations or formulas are used to model real life phenomena, we must 
further distinguish between a deterministic variable and a probabilistic or 
random variable. The former features prominently in any classical descrip-
tion of reality where the universe is seen to evolve according to "exact" or 
deterministic laws that specify its past, present, and future. This is true, for 
example, of classical Newtonian mechanics as well as other traditional views 
which have molded much of our comtemporary thinking and scientific 
methodology. 

Yet we know that in practice ideal conditions never prevail. The world of 
measurement and observation is never free of error or extraneous, nones-
sential influences and other purely random variation. Thus laboratory 
conditions, for example, can never be fully duplicated nor can survey 
observations ever be fully verified by other researchers. Of course we can 
always console ourselves with the view that randomness is due to our 
ignorance of reality and results from our inability to fully control, or 
comprehend, the environment. The scientific law itself, so the argument 
goes, does not depend on these nuisance parameters and is therefore fixed, 
at least in principle. This is the traditional view of the role of randomness in 
scientific enquiry, and it is still held among some scientific workers today. 

Physically real sources of randomness however do appear to exist in the 
real world. For example, atomic particle emission, statistical thermody- 

1 
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namics, sun spot cycles, as well as genetics and biological evolution all 
exhibit random behavior over and above measurement error. Thus random-
ness does not seem to stem only from our ignorance of nature, but also 
constitutes an important characteristic of reality itself whenever natural or 
physical processes exhibit instability (see Prigonine and Stengers, 1984). In 
all cases where behavior is purely or partially random, outcomes of events 
can only be predicted with a probability measure rather than with perfect 
certainty. At times this is counterintuitive to our understanding of the real 
world since we have come to expect laws, expressed as mathematical 
equations, to describe our world in a perfectly stable and predictable 
fashion. The existence of randomness in the real world, or in our measure-
ments (or both), implies a need for a science of measurement of discrete and 
continuous phenomena which can take randomness into account in an 
explicit fashion. Such a science is the theory of probability and statistics, 
which proceeds from a theoretical axiomatic basis to the analysis of scientific 
measurements and observations. 

Consider a set of events or a "sample space" S and a subset A of S. The 
sample space may consist of either discretc elements or may contain subsets 
of the real line. To each subset A in S we can assign a real number P(A), 
known as "the probability of the event A." More precisely, the probability 
of an event can be defined as follows. 

Definition 1.1. A probability is a real-valued set function defined on the 
closed class of all subsets of the sample space S. The value of this function, 
associated with a subset A of S, is denoted by P(A). The probability P(A) 
satisfies the following axioms.* 

(1) P(S) = 1 

(2) P(A) a-0, all A in S 
(3) For any r subsets of S we have P(A 1  U A 2  U ••• U 	= P(4 4 i ) 

P(A 2 ) + • - 	Ilk) for A 4  fl A )  = 0 the empty set, i j 
From these axioms we can easily deduce that P(0) — 0 and P(S) = l, so that 
the probability of an event always lies in the closed interval 0 -5_ P(A).-5- I. 
Heuristically, a zero probability corresponds to a logically impossible event, 
whereas a unit probability implies logical certainty. 

Definition 1.2. A real variable X is a real valued function whose domain 
is the sample space 5, such that: 

(1) The set {X :5x} is an event for any real number x 

(2) P(X = ±- c°) 0 

This definition implies a measurement process whereby a real number is 
assigned to every outcome of an "experiment." A random variable can 

• Known as the Kohnogorov axioms. 
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therefore be viewed as either a set of discrete or continuous measurements. 
At times a finer classification is also employed, depending on whether the 
random variable is ordinal, nominal, or consists of a so-called ratio scale 
(Section 1.5). 

Once events or outcomes of experiments arc expressed in terms of 
numerical values they become amenable to arithmetic computation, as well 
as algebraic rigor, and we can define functions for random variables much in 
the same way as for the "usual" mathematical variables. A random variable 
is said to have a probability function y =f(x) where x is any value of the 
random variable X and y is the corresponding value of the function. It is 
convenient to further distinguish between continuous and discrete probabili-
ty functions. 

Definition 1.3. Let X be a continuous random variable. Then f(x) is a 
continuous probability function if and only if 

(1) f(x) 0 
(2) f f(x) dx = 1 

over values x for which X is defined. If A represents an interval of x, then A 
is an event with probability 

(3) P(A)= P(X E A) = JA f(x) dx 

Definition 1.4. Let X be a discrete random variable. Then f(x) is a 
discrete probability function if and only if 

(1) f(x) 0 
(2) Ex  f(x)= 1 

over values (finite or countably infinite) for which X is defined. If A 
represents an interval of x, then A is an event with probability 

(3) P(A)= P(x E A) = EA  f(x) 
Functions of the type f(x) are known as univariate probability functions 

or distributions since they depend on a single random variable X. Johnson 
and Kotz (1969, 1970), for example, have tabulated many such functions. A 
probability distribution can be given either algebraically in closed form or 
numerically as a table of numbers. In both cases a distribution relates a 
single value of f(x) with some value x of X. A distribution can also be 
characterized by a set of parameters, and we frequently require such 
parameters, which determine important characteristics of f(x) such as 
location, spread, skewness, and other "shape" properties. Such parameters, 
if they exist, are known as moments. The kth moment of a probability 
function f(x), about the origin, is defined as 

= 	f(x) dx 	 (Ii ) 

for a continuous probability function and 
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p.„ = E x7(x) 
	

(1.2) 

for a discrete probability function. Usually only the first few moments are of 
interest, and in practice k rarely exceeds 4. The first moment about the 
origin, known as the expectation or the mean of the random variable, is 
given by 

	

E(X) = ac xf(x) dx 	 (1.3) 

and 

	

E(X) = xf(x) dx 	 (1.4) 

for continuous and discrete probability functions, respectively. The follow-
ing properties of the mean value can be derived from Eqs. (1.3) and (1.4). 
Let X be any random variable and let c and k denote constants. Then 

E(c) 	 (1.5a) 

E(cX) cE(X) 	 (1.5b) 

E(k c X) k cE(X) 	 (1.5c) 

and E is a linear operator. Equation (1.5) generalizes to any number of 
random variables. 

The second moment about the origin of a random variable, obtained by 
setting k = 2 in Eqs. (1.1) and (1.2) is also of major importance. It is usually 
adjusted for the mean value yielding the expression 

Efx — E(X)J 2  = 	- E(X)f f(x) dx 	 (1.6) 

known as the second moment about the mean, or the variance of a 
continuous random variable X, with summation replacing the integral for a 
discrete random variable. The variance is usually denoted as var(X) or 
simply q 2 . The square root of a of Eq. (1.6) is then known as the standard 
deviation of X. From Eq. (1.6) we obtain the useful identity 

cr 2 = E [X - E(X)j 2  

	

E(X2 ) E(X) 2 	 (1.7) 

where E(X 2 ) is the second moment about the origin and E(X) 2  is the square 
of the expected value. Analogously to Eq. (1.5) we also have 

var(c) 0 	 (1.8a) 
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var(cX) -- C 2  var(X) 

var(k + cX) = c 2  var(X) 

As implied by the term, the variance determines the variability or spread of 
a random variable in the sense that it measures the expected or average 
squared distance of a random variable from its mean E(X). 

Example 1.1. Consider the normal probability function 

1  
f(x)  0-Nri; exP 	; 	a 14  / 2  (1.9) 

which plays a major role in statistical sampling theory. It can be shown that 
Eq. (1.9) satisfies Definition 1.3 and is therefore a probability function. Also 
E(X)= p,, var(X) = cr 2 , which in turn determine the location and spread of 
the normal distribution. The normal probability function appears in Figure 
1.1 for two alternative values of p, and cr. 

The normal probability function (Eq. 1,9) as well as its multivariate 
version (Section 2.8) play a central role in statistical inference, construction 
of confidence intervals, and estimation theory. In turn normality gives rise 
to the chi-squared, F, and t distributions. 0 

Figure 1.1 Pie normal probability function for two alternative values of p., a. 

1.2 RULES FOR UNIVARIATE DISTRIBUTIONS 

1.2.1 The Chi-Squared Distribution 

Consider n normal random variables X 1 , X2 , 	, X which are independent 
of each other and which possess zero mean and unit variance. Then the sum 
of squares 

x x2i  + x22  + • - + x ,2, 
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AA') 

Figure I 	The chi-squared probability function for n = 	degrees of freedom, 

is distributed as the (central) chi-squared distribution 

	P-2 ) 17 ex 
rizr (•-) 2 

(1.10) 

with n degrees of freedom, where E(x).--- n and var(x) = 2n. As is illus-
trated in Fig. 1.2 for n = 10 degrees of freedom the chi-squared distribution 
is skewed, but as n increases, x tends to the standard normal distribution. 
When the random variables Xi  = 1, 2, . , n) do not have unit variance 
and zero mean, they can be standardized by the transformation Z 1  = (X, — 
g)/a (i= 1, 2, ., n) and the sum of squares Z2t  + Z 22  + — • + Z 
chi-squared distribution with n degrees of freedom. When p, is not known 
(but a-  is) .and a normal sample x t , x2 , ... ,x„ of size n is available, then 

et 
(Xi 1)

2 

s— 1 

is distributed as a chi-squared random variable with n — 1 degrees of 
freedom. 

1.2.2 The F Distribution 

Let x i  and x2  be independent chi-squared random variables with m, n 
degrees of freedom respectively. Then the ratio 

is distributed as the F distribution: 

11(rn + n)121  (mr" 
r(m/2)c(n/2) n 	F(nl  2"  

107  

+ — F (1.12) 
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Figure 1.3 The F probability function for in 10, n 10 degrees of freedom. 

with rn and n degrees of freedom. We have 

14F)  = n — 2 ' 
2n 2(m + n — 2)  

var(F) 
m(n — 2) 2 (n —4) 

The F distribution is also skewed (Fig. L3) and when m is fixed and n 
increases, Eq. (1.12) approaches the chi-squared distribution with m 
degrees of freedom. Since the chi-squared itself approaches the standardized 
normal, it follows the limit of Eq. (1.12) as m, n co is also the normal 
distribution. 

1.2.3 The t Distribution 

Let 1, s 2  be the sample mean, variance of a normally distributed random 
variable. Then the standardized expression 

is distributed as the t distribution (Fig. 1.4) with n degrees of freedom where 
E(t) =0, var(t) nl(n 2). The t distribution is a special case of the F 
distributions since for in = 1, F = t2  in Eq. (1.12) and we obtain 

Figure 1.4 The Student t and the normal probability functions for n = 6 degrees of freedom 
and = 0, r = 1, 
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11(n + 1)121 	t2 ) 
f(t)  

(1.13) 

When z is a standard normal variate, the quotient 

t 	, 	
Vx 2  It! 

is also distributed as Eq. (1.13), which can be seen by letting m 1 and 
F t 2  in Eq. (1.12). 

1.3 ESTIMATION 

Probability provides the basis for the notion of a random variable. One way 
in which randomness can be introduced is by random sampling. For 
example. in scientific experimentation where random variables are continu-
ous and the sample space is thus infinite, a finite set of experiments can only 
represent an estimate of the underlying reality. Because of further random 
factors such as measurement error, variation in materials and/or subjects, 
and other diverse but minor external influences beyond the experimenter's 
control, any measured experimental quantity will necessarily possess some 
random variation. Even when the population is finite, pragmatic considera-
tions may prohibit a total analysis of that population owing to practical 
factors such as cost or human effort. This is the case, for example, in sample 
surveys of human or inanimate populations where randomness is intro-
duced, over and above imprecision of measurement and natural variation, 
by the artificial random sampling process. Thus, given the presence of 
random variation, a methodology of inference is required, which permits 
statements to be made concerning unobserved populations once a finite set 
of sample measurements is available. The situation is fundamentally un-
avoidable since in empirical work, unlike that of mathematical algebra or 
logic, the process of (logical) deduction is replaced by that of induction. 
Whereas logical deduction proceeds from the superset to a subset, induction 
works in the opposite direction by attempting to infer properties of the 
superset from those of a subset. All that can be done here is to ensure that 
the subset chosen, (i.e., the sample) "represents" any subset in that it does 
not differ significantly or systematically from any other subset which could 
have been chosen. The theoretical study of such equivalence between 
sample subsets, and thus between sample subsets and supersets (popula-
tion), is the realm of sampling and estimation theory. 
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1.3.1 Point Estimation: Maximum Likelihood 

Consider n observations made for a random variable X, such that its 
probability function f(x) depends on r unknown parameters (0 1 , 02 , ,0,). 
This can be expressed by writing f(x; 0 i , 02 ,... ,0,). Our purpose is to 
estimate the parameters 0, given n sample values of X. 

Definition 1.5. Any function of the sample observation is known as a 
statistic or an estimator. A particular value of an estimator is called an 
estimate. 

Given a population parameter there exists, in principle, a large number 
of estimators from which we can usually choose, We wish to select those 
estimators that possess optimal precision or accuracy, defined in some sense. 
A well-known optimality principle which is frequently used is that of 
maximum likelihood. 

Definition 1.6. The likelihood function of n random variables 
X2 , ,X is the joint distribution L(X / , X2 „ ,X; 0) where 0 is a set of 
unknown parameters. Clearly, when a set of observations x i , x„,... ,x. is 
given, the likelihood function depends only on the unknown parameters 0. 

A likelihood function resembles a probability function except that it is 
not sufficiently restricted in the sense of Definitions 1.3 and 1.4. 

Example 1.2. Consider the normal probability function Eq. (1.9) and a 
set of random independent observations x i , x2 ,... „x„. We have two 
parameters to estimate, 0 1  = 1A, and 02  = cr 2 . For the ith observation we have 

1 	1 

	

f(xi )— 	exp — —
2 

[(x
i 

— kt.)/(7] 2 } 	(i = 1, 2, . . . n) 

and the joint likelihood function of all the observations is 

	

1 	1 	1 	 2 i 	1  
L(1.c,a)— avs-r  exp 	2  [(x 1  kt)/o-] 	exp — [(x 2  — p.)/a1 2 } 

— 

21  

p.)/a) 2 } 

kt ) 2 } 
(1.14) 

crvs-1  r  exp 

0-n(21iTy'l 2exP (x‘  

Equation (1.14) depends only on the unknown parameters ;.a, and a. The 
principle of maximum likelihood estimation is to find those values of ks, and 
a, that maximize Equation (1.14). Thus, in an a posteriori sense, the 
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likelihood of the sample x i , x 2 , 	,x. is maximized. Given that the sample 
is taken randomly (and independently) by assumption, it should therefore 
represent the unknown population of values of kt, and a as best as is 
possible, in the sense that the sample estimates ki and ô are the most 
probable or the most likely to appear. If the likelihood function possesses a 
derivative at kr, and (7, it can be maximized in a straightforward fashion by 
setting these derivatives equal to zero. Actual numerical solutions however 
may not exist in closed form, and thus require successive iteration to obtain 
an adequate numerical approximation. As well, the function Eq. (1.14) may 
not possess a global maximum point and we then say that maximum 
likelihood estimators do not exist. 

Example 1.3. Consider a normally distributed population where we wish 
to find the maximum likelihood estimators of IA and a. Taking natural 
logarithms to facilitate differentiation, Eq. (1.14) becomes 

1 
L(p,,o -)= —n In r — —2- In(27r) — 	[(x i  — kr.)/a1 2  (1.15) 

which possesses the same maxima as Eq. (L14) since a logarithmic 
transformation is monotonic, that is, order preserving. The partial deriva-
tives of Eq. (1.15) with respect to kr.,if are 

al. 	2 
= — —2- 	1.0/4-1/0 

aL 	n 2 
= 	— —2- 	 1.4 )/Lr 2 i 

and setting to zero yields the estimators 

E x i 	 . 

i-mi  — i , 	
a 
" 2 _ E  (x,  - p.)2 

n 	 n i -1 

Since p. is not known it is replaced by the estimator A =1, and n by n — 1 to 
ensure the unhiasedness of 6. 2 . 	 El 

Maximizing the likelihood function is but one procedure that can be used 
to estimate unknown parameters. Different procedures yield competing 
estimators, but we wish to pick out that estimator which possesses optimal 
accuracy. The concept of accuracy consists of two independent estimation 
criteria; 

1. Unbiasedness, consistency. An estimator Ô of 0 is said to be unbiased 
if and only if E(0) = 0, irrespective of sample size. For a sample size n, the 
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estimator in  of 0 is consistent when it converges, in probability, to the true 
value as n --> 00• We write plim 0„ = 0. 

2. Efficiency. An estimator è of 0 is said to be efficient if it possesses 
minimum variance. It is relatively efficient if for some other estimator ti, we 
have var( 0) s_ var(n). 

The criterion of consistency can also be described heuristically as unbiased-
ness in large samples, or assymptotic unbiasedness. Thus although an 
unbiased estimator will always be consistent, the converse is not necessarily 
true. When a choice of estimators is available, a common two-stage strategy 
is to consider only unbiased estimators, if they exist, and then to select those 
that possess minimum variance, The strategy however is not always optimal 
since a biased estimator can possess small variance and thus be more precise 
or accurate than an unbiased estimator with high variance (Fig. 1.5). Thus 
since variance is only defined for an unbiased estimator, a more general 
strategy is to consider the so-called mean squared error (MSE) criterion, 
where MSE = variance + (bias) 2  (Fig. 1.6). The MSE provides a simulta- 

O=E( 1 ) 

Figure 1.5_ Sampling distributions of an unbiased, inefficient estimator e and a biased efficient 
estimator 0. 

variance 

Figure 1.6 Mean squared error as a sum of squares of two orthogonal components—the 
squared standard deviation and the square of the bias. 
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neous measure of accuracy for an estimator both in terms of variance as well 
as bias. 

The classical approach to estimation however is to avoid biased es-
timators. This is due in part to a reluctance to use estimators which, on the 
average, "miss the mark." Also, the bias may not he a decreasing function 
of the sample size but may increase as the sample size increases. In any case, 
it is often impossible to estimate the magnitude of the bias. However, if the 
bias is small, a biased estimator may be superior to one that is unbiased but 
is highly inefficient. Thus in Figure :1.5, for example, the biased estimator 0 
has a higher probability of being closer to the true value 0 than the unbiased 
estimator 0. The reason lies in their variances, and this gives 0 a smaller 
MSE, and thus better overall accuracy. 

1.3.2 The Likelihood Ratio Criterion 

A problem closely related to estimation is that of determining decision rules 
concerning parameters of probability functions. For example, given a 
random sample x i , x2 , ,x„ we wish to test the null hypothesis Ho :i.t = c 
against the composite alternative Ha :g 

More generally we may be interested in testing r parameters 0 1 ,02 , 
belonging to a known probability function. Statistically powerful tests can be 
constructed by the generalized likelihood ratio criterion 

L(fl o )  
A 	 (1.16) 

L(11) 

where 1/0  is the parameter space defined by a range of possible values under 
Ho , Or, the disjoint parameter space under H. and C/ fl0  U fin . Here L(fl o ) 
is the maximum of the likelihood function in fi n , that is, the likelihood 
function for which the unknown parameter(s) have been replaced by their 
maximum likelihood estimators. The term L( a ) is defined in a similar 
manner. We accept Ho  if A > k, where k is a predetermined arbitrary 
constant and 0 <A <1. Thus small values of A indicate the likelihood of the 
sample is small under Ho  and we tend to accept Ha  at some probability level 
a. In other words, we choose k such that P(A < c!tio  is true) a, the 
probability of Type I error. 

Example 1.4. Consider a sample of size n taken from a normal 
population with known variance Or 2  and unknown mean p,. The likelihood 
function Eq. (1.14) can be expressed as 

I x." 
L(p.) 	 exp [ 	2  

I  N," 

( Er VITri 	exP 	ar 2  atil 

 

(x, 1+ 1 -- it 
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	 "p  [_ 20.1 	_ + 	_ 0211 

( cr\l ) nexP r o4d --/* (xj —i)2  3-(1- IL)2 11 
Here the space C/ 0  consists of the point = c, whereas 12 consists of the 
whole real p. axis. Thus 

and 

L(tio ) — ( 0.1n-77-1 	r) n  exp [1.1a 	(x, — 42  

L(n) — ( (rv --7-T1 	)" exp 	 (x, — _0 2N 

where p, is replaced by e (under H„) and by its maximum likelihood 
estimator 1 respectively. The likelihood ratio Eq. (1.16) is then 

A= exp [ n 	(i — 02 ] 
2cr 2  

(1.17) 

The proper critical region for testing Ho  is the interval 0 < A < k, where 
k <1 is chosen to yield the desired level of a. Let a = 0.05. Then we chose k 
such that 

fok  h(A1H0  is true) dA = 0.05 
	

(1.18) 

where h(A1H0  is true) is the probability function of A when p. = c. From Eq. 
(1.17) we have 

c) 2  
—2 In A — 	

cr2/n 
(1.19) 

which, when Ho  is true (p. = e), is distributed as the chi-squared distribution 
with one degree of freedom. The degrees of freedom are equal to the 
number of parameters determined by Ho . When the sample is taken from a 
normal population, Eq. (1.19) is an exact chi-squared random variable, and 
when the population is other than normal, the distribution of Eq. (1.19) 
approaches the chi-squared probability function as a limit, with increasing n. 
Let y = —2 In A, a chi-squared random variable. Then using tables the 
critical region is given by 

c)2 
>3.84 

In 
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and the 95% confidence interval for the normal sample mean is 

(1.20) 

Alternatively the right-hand tail of the chi-squared distribution can be 
employed directly. We compute —2 In A and compare it with the critical 
value for a = 0.05 and 1 degree of freedom. 	 LI 

Example 1.5. The likelihood ratio Eq. (1.17) is based on the assumption 
that a 2  is known. We now consider the case when a 2  is replaced by its 
maximum likelihood estimator (Example 1.3). We have 

1 n  

and substituting these values in L(h ) ) and L(h) we obtain 

	

Lal) = [ 	2ir 
nE cr, - ..oz ] n/2  

	

'Uti o )= [ 	 

n 	(x, - 0 2
] n12 

exp(—n/2) 

where in 00  we set = c in accordance with Ho . The likelihood ratio is then 
given by 

A
L(no ) 

— 	— 
L(t) 

n n12 

[ 

i=1 
 n 

E (x, - c) 2 

 2 

i.. I 

(1.21) 

To determine a critical value k for which the critical region 0 <A <k 
corresponds to a Type I probability, we proceed as follows. Using the 
identity 

2  n ( — 2  

1.96 	 1.96 
> c + 	

' 

	 < c — 

exp(—n/2) 

A can be expressed as 
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n/ 2 
(1.22) 

I + [n(i — c) 2 	(xi  — -0 2 1 

 

The critical region is then A < k so that 

	 < k 21n  
n(i — c) 2 	(x, — .0 2 

1 

or 

(i  
I —  s 	>1/(n — 1)k' (1.23) 

where 

re 

S
2 

= E 	- I) 2 In — I and k` =-- 1/k 21n  — I 
	

0 
1=1 

Equation (1.23) is the t test with (n — 1) degrees of freedom. Most well-
known tests can also be derived using the likelihood ratio and this provides a 
unifying approach to the theory of statistical testing. When the distribution 
of A is not known, we know that for a large sample —2 In A tends to be 
distributed as chi-squared, with degrees of freedom equal to the number of 
fixed constants assigned by H o . 

The normal probability function figures prominently in a discussion when 
a random sample x, x2 „ „ ,x,, is assumed to be drawn from a normal 
population. This need not always be the case. It is known however from the 
Central Limit Theorem that sums of independent, standardized random 
variables tend to be distributed approximately as the standard normal 
probability function, If a process is multiplicative, the Central Limit 
Theorem can still be invoked, but in terms of logarithms. Since much of 
statistical testing tends to involve sample means, the Central Limit Theorem 
makes the univariate normal probability function of great practical impor-
tance. The univariate normal in turn can be generalized to that of a 
multivariate normal probability function which plays a central role in 
statistical multivariate analysis (Section 2.8). The multivariate normal 
however is a special case of the so-called multivariate probability function. 

1.4 NOTIONS OF MULTIVARIATE DISTRIBUTIONS 

The preceding section dealt briefly with several key concepts relating to 
univariate probability functions of the form y = f(x). More frequently, 
however, we observe phenomena that are outcomes of several random 
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variables operating jointly. This suggests a generalization of the univariate 
distribution f(x) to a multivariate distribution of the form y =f(x j , 
x x ) 2 , • - • 	p • 

Definition 1.7. Let X 1 , X2 , ... ,Xp  be a set of p continuous random 
variables. Then f(x l , x 2 , ... ,xp ) is a continuous multivariate probability 
function if and only if 

(1) f(x l , x 2 , 	,x p ) 
(2)ff - • f f(x l , x 21 	, xp ) dx, dx 2  - - • dxp = 1 

over values x, x z , 	,xp  for which X1 , X,,. 	, X,, are defined If At, 
A 2 , . . 	A p  represent intervals of K t , X2 , ... Xp , that is, A 4 = a, xi  b, 
(1=1, 2, .. 	p), then A = 	-5. x l 	b i ; a2  x 2 ..5 b 2 ; 	ap  xp 	p) is 
termed an event and has probability 

P(A) — P(a l  _-5, x l -_5_ b l ; a2 -_5 x 2  -_5, b 2 ;... ,ap  lc x p  _. bp ) 

i = 	,,, ... 	b2 	hi 

f(x l , x 2 , , . . , xp ) dr, dx 2  • - - dx P  aP 	02 	a l  

P(A) represents "volume" in pth dimensional space. 

Definition 1.8. Let X, X2 , . . Xp  be a set of p discrete random 
variables. Then f(x„ x2 ,. ,xp ) is a discrete probability function if and 
only if 

(1) f(x2 , xz ,  

(2) E x  - • • E x. E x  f(x l , x 2 , . 	,xp )= 1 
P 	 2  

A multivariate distribution captures the joint Or simultaneous effect of a 
set of interrelated random variables. At times it is necessary to know the 
distribution of a subset of these variates, irrespective of the distribution of 
the remaining variables. Such distributions are known as marginal dis-
tributions. 

Definition 1.9. Consider a set of p continuous random variables Xt , 
X2, ,X , Xr+1 , , Xp . The marginal distribution of X1 , X2 , . , Xp. is 
defined as 

g(x i , x 2 , 	,x) 	
_mc 

	f(x„x,, • ,x p )dx„, dx„.2 " • dxp  

Marginal distributions of discrete random variables are defined in a similar 
way, with summations replacing integrals. In particular, the marginal 
distribution of a single variate, say the first, can be obtained by integrating 
the multivariate distribution over the remaining p 1 random variables. 

A marginal distribution of a subset of random variables X 1 , X2, . . . , X is 
thus a probability function which does not involve the remaining set Xr+1, 
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• • 
Xp , that is, it describes the probabilistic behavior of the r variates 

irrespective of the remaining p r variables. 
When dealing with a multivariate set of random variables questions of 

independence often arise, which are of crucial importance in theoretical and 
applied work. 

Definition 1.10. Let f(x l , x2 , 	, x) be a multivariate distribution with 
marginal distributions g i (x,), g 2(x 2 ), 	gp (xp ). Then the random vari- 
ables X 1 , X2, . . , Xp  are said to be independent if and only if 

=11. g(x) 
	

(1.24) 

for all values within the range of the random variables for which the 
distribution f(x l , x2 ,. 	, xp ) is defined. 

Both the concepts of joint and marginal distributions lead to yet a third 
type of probability distribution, that of a conditional probability function. 

Definition 1.11. Consider a marginal distribution of a set of random 
variables X1 , X2, • . 	The conditional probability function of X,-+1, 

Xp , given that the complementary set X, X2 , . . , X, takes on 
values x i , 	,x„, is given by 

14,, x 2 , • . . 
 g(xl , x2, 	
(1.25) 

, 

A conditional distribution describes the probabilistic behavior of a set of 
random variables, when a complementary set is held fixed. When the two 
sets are independent, Eq. (1.25) can be written as 

f(x 1 ,x2 , 	. ,xp ) 
hcrr+1 ,x,+2 , • • • , Xp iX t , X2 , • • • X a..) 	  g(x , x 2 , . 

g(x 	, x r)h(x,,,, x r +2 , 	,x,) 

g(x 	,x,) 

,xp ) 

that is, the conditional and marginal distributions are identical only when 
the two sets are independent. Here x i  , x2 , . . , x, contribute no information 
toward the distribution of xr+1 , x„ 2 , . • 

Notions of dependence (independence) play an important role in multi-
variate analysis. Using Definition 1.10 we see that a set of random variables 
is independent if and only if the joint distribution can be factored into a 
product of marginal distributions. Thus it is unnecessary to consider 
multivariate distributions if each random variable is independent. What 
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defines "multivariateness" is therefore not the availability of more than a 
single random variable, but the fact that variables are interdependent. 

In multivariate analysis the two most widely used measures of depen-
dence arc the covariance and its standardized version the correlation 
coefficient, defined as follows. Let X and Y be continuous random variables. 
The rth and the sth product moment about the origin of their joint 
distribution is defined as 

= E(X'Y')= j‘  I xrysf(x, y)dx dy 
	

(1.26) 

When X and Y are discrete the double integral in Eq. (1.26) is replaced by 
double summation signs. Let p and p , be the means of the marginal 
distributions of X and Y as defined by Eq. (1.3). Then 

Pr ERX IL.AY — ,20 1 1 

Ax) r (Y — 14)1(x, y) dY (1.27) 

is known as the rth and sth product moment about the mean. The 
covariance between X and Y is obtained from Eq. (1.27) by setting 
r =s = I. Symbolically the covariance is denoted by crxy  or cov(X, Y) and 
can be evaluated in terms of moments about the origin as 

ofIxy  = E(XY)— E(X)E(Y) 	 (1.28) 

Since —crA cry  cr, y s clifry  we also have 

  

ERX 1•0(Y gy)} 	(fry 
(1.29) PXY = [E(X 1.0 2  E(Y p ),) 21" trrir y  

where —175.. go, s 1. The standardized quantity pxy is known as the correla-
tion coefficient. The covariance has the following two properties: 

covf(X + c), (Y + k)] cov(X,Y) 

cov(cX, kY) = ck cov(X, Y) 

Let Y = c Xt  + c2X2  4- • • • + ceXp  be a linear combination of p random 
variables. Then the variance of Y is 

P P 

var(Y) = E E C C if 
	 (1.30) 

where cro  is the covariance between X,X 1 . The covariance between two 
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linear combinations Y 1  = c l X1  + c2 X2  + • • • + Cr  Xr  , Y2 = d I X + d 2X2 4" • ' • 
+ d p Xp  is the bilinear form 

P P 

cov(Y,, Y2 ) --- E E 	 (130 
i=1 

From Eq. (1.28) when X and Y are independent o 	0, but the converse is 
not true. 

1.5 STATISTICS AND THE THEORY OF MEASUREMENT 

As we have discussed, random variables can be grouped into two broad 
categories, depending on whether they are continuous or discrete. At times 
it is useful to partition the two categories into still smaller subdivisions to 
reflect certain specific properties that are being measured. For consistency 
and clarity it is desirable to base such a classification on the theory of 
mathematical transformations. A useful byproduct of the exercise is that we 
are able to define the process of "measurement" in more general terms than 
is at times thought possible, which permits a uniform treatment of diverse 
scientific processes, both in the social and the natural sciences. We are also 
in a better position to define clearly what constitutes a measurement and 
whether certain data can legitimately be used in conjunction with some 
particular statistical model. 

It is usual to consider two basic types of measurement processes; the 
so-called fundamental measurement and derived measurement. In this 
section we restrict ourselves to the former since derived measurement 
constitutes a major topic of factor analysis and is considered in other 
chapters. One of the earliest attempts to define fundamental measurement 
in mathematical terms is that of Russell (1937) who defined measurement as 
follows: 

Measurement of magnitudes is, in its most general sense, any method by which a 
unique and reciprocal correspondence is established between all or some of the 
magnitudes of a kind and all or some of the numbers, integral, rational, or real, as 
they may be. 

Russell's definition is essentially that which is used today, albeit in modified 
form. Given a physical or a conceptual "object," we can always define 
properties of that object, a particular choice of properties being determined 
by the needs of the problem at hand. For instance, in an opinion poll we can 
discern properties of human beings such as "age," "sex," "occupation," 
"voting preference," or "income." Or given a chemical material we may be 
interested in properties such as atomic composition, molecular weight, 
whether the product is a fluid or a solid, viscosity if the former or melting 
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point (if it exists) if the latter, and so forth. Similarly a biological experiment 
may be carried out to study the effect(s) of a parasitic worm on mammal 
tissue under various conditions. Measurement is then a process whereby 
such properties are related to sets of numbers by certain predetermined 
rules. Before considering these rules in more detail we develop the notions 
of a relation and that of a mapping or function. 

1.5.1 The Algebraic Theory of Measurement 

A measurement process concerns itself with a numerical description* or 
"quantification" of properties of objects, and as such implies a process of 
comparison whereby every element of a set is compared with other elements 
of the set. This in turn introduces the important notion of a relationship. 
Consider a nonempty set A consisting of a collection of objects possessing a 
common property. The inclusion of an element within a set is denoted by 
a EA, whereas altA denotes "a is not in the set A." We can define three 
operations for sets in terms of their elements. 

Definition 1.12. Let A and B be any two sets. Then for some element x 
(1) The union of two sets A and B, written as 

AUB= (x:xe A or xE/i} 

consists of all elements that are either in A or in B or both. 
(2) The intersection of two sets A and B, written as 

AF1B=(x:xe A and xE 

consists of all elements that are in both A and B. 
(3) The difference between two sets A and set B, written as 

A— B = (x;xE A and x0/11 

consists of all elements x that are in A but not in B. 
The empty set 0 is defined as that set which contains no elements and is 
therefore contained in every set. A set contained in another set is called a 
subset. Two sets A and B are equal if and only if they contain identical 
elements, that is, if A is contained in B and vice versa. When A is contained 
in B but is not equal to B we write A CB and say that A is a proper subset 
of B. 

The elements of a set need not stand in any particular order, and these 
sets are known as ordered sets. - 

* it can be argued that measurement can also proceed without the use of numbers (see Roberts, 
1979). 
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Definition 1.13. Let a,b denote any two elements of a set A. Then the 
pair a,b is ordered if and only if 

(a,b) — (c a d) 

implies a = c and b = d. 

Definition 1.13 can be extended to any number of elements. Note that it is 
insufficient for ordered sets to simply possess equal elements in order to be 
considered equal, since the equal elements must also appear in an identical 
order. 

Definition 1.14. Let A and B be any two sets. Then the Cartesian 
product A x B is the ordered set 

A x B = {(a, b); a E A and b E 13) 

The notion of a Cartesian product can be extended to any number of sets. 

Definition 1.15. A binary relation R in a set A is a subset of A x A. that 
is, RCA X A. We write aRb for any two elements (a, b)E R 5_ A where 
a E A and b E A. 

The elements of the relation RCA X A are ordered in pairs. Conversely, if 
some (or all) elements of A are ordered in pairs we obtain a relation R. For 
this reason we speak of a relation within a set. A special type of relationship 
which is important in measurement theory is that of an equivalence relation. 

Definition 1.16. A relation R in A is an equivalence relation if and only 
if the following thrce properties hold: 

(1) R is reflexive, that is, aRa for all a E A. 
(2) R is symmetric, that is, aRb implies bRa for all a E A and b E A. 
(3) R is transitive, that is, aRb and bRc implies aRc for all a, b, c E A. 

The set A, together with one (or more) relation R, is also known as a 
relational system. Thus the relation "equal to" is an equivalence relation but 
"less than" is not. 

An equivalence relation enables elements of A to be partitioned into 
nonoverlapping and exhaustive sets known as equivalence classes. Let R be 
an equivalence relation of a set A. Then the equivalence class of a E A, with 
respect to R, is the set 

[a] = (b E A: aRb) 	 (1.32) 

The equivalence class of any element a E A is thus the set of all elements of 
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A for which the equivalence relation R holds. The following theorem can be 
proved. 

THEOREM 1.1. Let R be an equivalence relation on the set A. Then the 
set of equivalence classes forms a partition of A, that is, R induces a 
partition of A into mutually exclusive and exhaustive subsets. 

So far we have considered relations defined on sets that do not necessari-
ly contain numbers, since a set A can consist of any objects so long as they 
possess some common property. To define a scale of measurement, 
however, we must be able to relate the elements of a relation R with a set of 
numerical values such that they capture the essential property of these 
elements. Evidently a numerical representation of this type cannot, in 
general, be unique. For example, sample points can consist of discrete 
outcomes such as "heads" or "tails" of a coin-tossing experiment, denoted 
by 1 and 0, or at the other extreme we may be interested in continuous 
outcomes such as agricultural yield, temperature, or money incomes earned 
by individuals. In each of these examples we are concerned with a number 
associated with an outcome. Since such outcomes are generally stochastic, 
or contain stochastic components, we are in fact dealing with values of 
random variables. 

Definition 1.17. A relational system (or a relational structure) consisting 
of a set A and relations R,, R,,. , R,,, is known as an algebra if and only if 
all relations are arithmetic operations. It is a k-dimensional numerical 
relational system if and only if A= R k  where R is the set of real numbers 
and R k  is the k-dimensional plane. It is an empirical relational system if the 
elements of A are physical objects (events). 

A relational system thus consists of a set A with one or more relations 
defined on that set. A numerical relational system consists of mathematical 
operations defined over the multidimensional set of real numbers A= R'. 
There exist certain relations known as functions (mappings, transformations) 
which are of special interest in statistical work. 

Definition 1.18. A function f from set A into another (or the same) set 
B is a subset of the Cartesian product A x B such that 

(1) For any element x E A there exists an element y E B such that 
(x, Ef 

(2) (x, y) Ef and (x, z) E f imply y = z 

A function f thus represents a collection of ordered pairs (x, y) which 
satisfy Definition 1.18; that is, for every element x of A there is at least one 
corresponding element y in B. Given an element x, the element y associated 
with it must therefore be unique. A function can be represented by an 
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y - f(x) 

Figure 1.7 An arbitrary function y=f(x) observed at discrete points x 1 . x2 , .. 

algebraic equation y = f(x), by a table of numbers, or by a graph (Fig. 1.7). 
Here x is known as the independent variable and y as the dependent 
variable. The element y is also known as the image of x under f, and x is 
known as a preimage of y under f. Definition 1.18 can be extended to a 
function of k variables, that is, to the Cartesian product A I  X A 2  X 	A k , 

In terms of the sets A, B we can write f: 	8, indicating that f is a 
function (mapping) of A into B as shown in Figure 1.8. The range of 
f: B need not equal the codomain B since in general y E B need not 
have a preimage in A under f. 

Definition 1.19. Let A, B be the domain and codomain, respectively, of 
some function f: B. Then the transformation f: A-0B, which pre-
serves certain operative rules, is known as a homomorphism. 

A homomorphism can be either "into" or "onto." If it is both, that is, if f is 
one-to-one (and onto), it is known as an isomorphism. More specifically, 
consider a binary operation 0 defined on set A. Then the transformation 

domain A codomain B 

Figure 1.8 A transformation of elements of set A (domain) into set B (codornain). 
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f: A---> A is a homomorphism if and only if f(x i  ox2 ) =fix, ) of(x 2 ) for any 
two elements x i , x2  of A. Two common operations, for example, are 
addition and multiplication. Here f is a homomorphism if and only if 
f(x 1 x2)= f(x,)f(x 2 ) and f(x, + x 2 ) = f(x)+ f(x 2 ), that is, if multiplication 
and addition are preserved. The logarithmic transformation is not a 
homomorphism since it does not preserve addition or multiplication. 

Definition 1.20. Consider set A, consisting of specified empirical objects 
or properties (attributes), together with in empirical relations R 1  , 
R 2 ,. 	,R„, and the set R of real numbers with relations S I , S2 , . . , 

Then a real-valued function on A is a homomorphism if it takes each R, 
from the empirical relational system into Si , the numerical relational system, 
i = 1, 2, . 	m. 

More generally we can have n sets A I , A 2 , . . , A„, in relations R. 
R 2 , . , R i„, defined on the Cartesian product A i  X A 2  X • • • A„ and a 
vector-valued homomorphism 4) with components 0,, 4)2 , . . . , 4),, such that 
4) takes each R i  into Si , each being defined on A i , I =1, 2,.. . n. 

Homomorphisms are important in measurement theory since measure-
ment can be considered as the construction of homomorphisms from 
empirical relational structures into numerical relational systems. The map-
ping must of course be a homomorphism since arithmetic operations defined 
between measurements must preserve equivalent empirical relations. A set 
of measurements is also known as a measurement scale. A scale can be 
either univariate or multivariate. 

Definition 1.21. Consider a set A together with m empirical relations 
R I , R 2 , . . . ,R„, and the r-dimensional plane Te with relations Sr 

 S2 , ,S,„. Then an r-dimensional scale is a homomorphism of the 
empirical relational system into the r-dimensional numerical relational 
system. 

These definitions determine in a general sense what a measurement scale 
is, but they do not specify how to construct such scales. The actual scale 
construction is largely a practical issue which depends on the objective(s) of 
the analysis, the type of phenomenon under consideration, and the extent 
and quality of information and data available. There is no single method for 
constructing measurements, and scales are therefore not unique since an 
infinite number of scales can exist which will map homomorphically any 
given empirical relational system into a numerical relational system. Thus if 
no single criterion is available to select a scale from members of its 
equivalence class, we are left with the additional task of having to chose that 
particular scale which will meet the objectives of the analysis. Many 
different types of scales exist, and over the years they have been classified 
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into six main groupings depending on the relative uniqueness of the set of 
permissible mappings. 

1.5.2 Admissible Transformations and the Classification of Scales 

Since a given measurement scale is not uniquely determined, the question 
arises as to the degrees of freedom available when specifying a particular 
scale, Thus for a given representation characterizing the relationship of an 
empirical relational system, a scale may be required to preserve the ordering 
of elements, the ordering of differences between values assigned to ele-
ments, and so forth. If a given scale represents an empirical relational 
system adequately, any other scale is also permitted (and is referred to as an 
admissible transformation) if it preserves the representational relation 
between empirical and numerical entities, There are six major measurement 
scales which are widely employed in the natural and social sciences, and 
which are based on the positive affine linear mapping: 

y = a + bx 	(b > 0) 	 (1.33) 

Equation (1.33) preserves both order and interval, a property which is of 
crucial importance to scientific measurement, In what follows we therefore 
consider only unidimensional and linear scales, since multidimensional and 
nonlinear scales can be obtained by extension, 

Absolute Scale 
The only unique scale that can be defined is the absolute scale, which 
possesses a unique unit of measure. Thus if x is an absolute scale, the only 
admissible transformation is y = x. The best known example of an absolute 
scale is counting the number of elements in a set (e.g., the binomial random 
variable x). Data of this type are usually referred to as count data (Chapter 
8). 

Ratio Scales 
A more familiar type of scale is the so-called ratio scale, which conforms 
more closely to our intuitive motion of what constitutes a measurement. It is 
mainly employed for properties that correspond to continuous quantities 
such as length, intervals of time, heat, mass, age, money income and so 
forth, Such scales are also known as quantitative scales since they possess a 
natural zero origin, order, and differential gradation. Here the empirical 
relational system is mapped homomorphically into a numerical relational 
system (the scale) which possesses the following properties: 

1, Existence of a natural zero, so that complete absence of a quantity 
corresponds to the number zero on the scale, and vice versa. For example, a 
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zero reading on a chronometer only makes sense when no time has elapsed, 
and zero on the Kelvin thermometer implies a complete (theoretical) 
absence of heat. The Centigrade or Fahrenheit scales, on the other hand, do 
not represent a ratio scale for measuring heat since the choice of origin (the 
zero point) is arbitrary. 

2. Ordinal property: let x, y be readings on a ratio scale. Then x <y only 
when x denotes a lesser quantity than y. 

3. Distance property: let x i , y i  and x 2 , y 2  represent readings on a ratio 
scale such that x i  >y and x,> y 2 , and let (x t  — y;) = d i  and (x2  — y 2 ) = d 2 . 
Then d 1  = d2  implies equal differences in the magnitudes of the readings. 
For example, when measuring length the difference d t  between two lengths 
x i , y I  must be the same as the difference d 2  between two other lengths 
x2 , y 2  in order that x i  =x2 , y 1  = y2 , 

Clearly a ratio scale is not unique since it can be dilated (or compressed) 
by a constant factor of proportionality. A common example is converting 
meters into yards or yards into meters. Thus if x is a ratio scale, then 

y bx 	(b > 0) 	 (1.34) 

is also a ratio scale and Eq. (1.34) is the only admissible transformation for 
this type of measurement. Any other transformation will destroy properties 
1-3 given above. Note that ratios of the form xly are constant (invariant) 
and that ratios of the scale arc also ratio scales. Clearly Eq. (1.34) can be 
easily extended to nonlinear relations, such as polynomials, by suitable 
transformations on x, y. Ratio scales are used to represent physical quan-
tities and in this sense express the cardinal aspect of a number. In the 
scientific and engineering literature ratio scales are also known as physical 
variables. 

Difference Scale 
The origin of a ratio scale is unique and can only be represented by the 
number zero. If we remove this restriction we have what is known as a 
difference scale. Difference scales are thus not unique since their origins can 
assume any real number. For any different scale x, the linear transformation 

y = a + x 	 (1.35) 

is also a difference scale. Thus although ratio scales must possess the same 
origin (but may differ in the unit of measure b), difference scales must 
possess the same unit of measure (b= 1) but may only differ in the origin. 
Difference scales can therefore be used in place of ratio scales when the true 
zero origin is either unknown or does not exist. Such scales are not often 
employed, but an example would be the measurement of historic time based 
on a religious calendar. Although the unit of measure is the same (the yearly 
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cycle of the earth revolving around the sun), the origin is arbitrary since the 
starting times of the calendars coincide with different events. 

interval Scales 
A more general type of scale, of which the difference scale is a special case, 
is the interval scale. Interval scales derive their name from the fact that the 
only meaningful comparison between readings on such scales is between 
intervals. Thus if x is any interval scale, 

y = a + bx 	(b > 0) 	 (136) 

is also an interval scale and Eq. (1.36) is the only admissible transformation 
for such scales. Many examples exist of linear interval scales, the best 
known being the Centigrade and Fahrenheit thermometers. Both are related 
by the equation C = (5/9)(F-32) and neither possesses a natural origin since 
C = 0 and F —0 do not imply total absence of heat. The ordinal property on 
the other hand is preserved since 90°C > 80°C, for example, holds only when 
the first reading corresponds to a greater heat content than the second. The 
distance property also holds since the difference (90°C — 80°C) = 10°C is the 
same as (50°C — 40°C) --- 10°C. Other examples of an interval scale include 
geological measurements such as the Wadell measure of sphericity (round-
ness), grain size, and isotopic abundance. A closely related scale is the 
log-interval scale whose admissible transformation is 

y = axb 	(a, b> 0) 	 (1.37) 

It derives its name from the fact that a logarithmic transformation yields an 
interval scale. 

Ordinal Scales 
An ordinal scale possesses no natural origin, and distance between points of 
the scale is undefined. It simply preserves ranks of the elements of an 
empirical set. It is usual to use the positive integers to denote "first," 
"second," ... , "nth" position in the ranking although this is not essential. If 
x is an ordinal scale and f(x) is a strictly monotonically increasing continuous 
function of x, then y =f(x) is also an ordinal scale. Of course in practice 
such scales tend to be discrete rather than continuous. Ordinal scales are 
used, for example, to represent preferences and judgments, ordering 
winners of tournaments, classifying (ranking) objects, and generally as 
indicators of relative magnitude such as Moh's hardness scale in geology. 
They can also be used in place of ratio scales when we have excessive 
measurement error, that is, when exact values are not known. Clearly 
ordinal scales represent orders of magnitude or the ordinal aspect of 
numbers. 
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Nominal Scales 
Finally, when the ordinal property is removed we obtain the so-called 
nominal scale. A nominal scale is discrete and simply indicates in which 
group a given object is found. Since nominal scales possesses none of the 
three "quantitative" properties of a ratio scale, they also are known as 
qualitative or categorical scales, and are simply characterized by the notion 
of equivalence (Definition 1.16). Some authors do not consider nominal 
scales to be measurements at all, since they impart no quantitative informa-
tion but represent pure qualities. They do however fall within the realm of 
definitions of measurement theory and are frequently encountered in 
practice. It was seen in Theorem 1.1 that the set of equivalence classes 
forms a partition of a set, that is, an equivalence relation partitions a set A 
into mutually exclusive and exhaustive subsets. Such a partition is equivalent 
to the forming of mutually exclusive and exhaustive categories, and this is 
sufficient to constitute a nominal measure. Thus a nominal scale is a 
one-to-one homomorphism of equivalence classes into the real numbers, 
where the equivalence relation is "equal to." The permissible transforma-
tion for a nominal scale is any one-to-one mapping from the real numbers R 
into themselves. For example, consider four different types of pesticides 
labeled A, B, C, and D. A nominal scale can be constructed from the four 
mutually exclusive and exhaustive categories by replacing them by the 
integers 1, 2, 3, and 4. These integers however are arbitrary, since any real 
numbers can be used in their place so long as no two are the same, They 
impart no numerical information and are merely used as convenient labels. 
Other examples of nominal scales include the male—female classification, 
type of occupation, presence or absence of a treatment in an experiment, 
and so forth. In Chapter 8 we see that since nominal scales cannot be 
manipulated using standard arithmetic operations they are usually replaced 
by the so-called "dummy" variables, taking on values of 0, 1, or any other 
suitable integers. Nominal scales are also closely related to the absolute 
scale since the only numerical information they impart (indirectly) is a count 
of the number of elements contained in a category or a set. This also 
includes relative frequencies such as probabilities and percentages associated 
with discrete events. 

1.5.3 Scale Classification and Meaningful Statistics 

The particular scale classification described in the previous section was first 
considered by Stevens (1946; see also Anderson, 1961; Pfanzagl, 1968), 
although the essential notions implicit in the scales are not new. Stevens' 
classification and terminology were initially adopted by the psychological 
and social sciences, but have since spread into other disciplines and are by 
no means unknown in the statistical sciences as well (Thomas, 1985). It is 
not the only system available or possible and Coombs et al. (1954), for 
example, have argued for a still finer classification. Stevens' classification 
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however is widely used today and has become a convenient peg on which to 
hang a discussion of the application of stochastic models to data analysis. 
Some authors have even gone overboard with attempts to superimpose the 
concepts of measurement onto statistical theory and practice, without the 
apparent realization that the appropriate conceptualization for statistical 
measurement is accomplished by a more general theoretical structure—that 
of mathematical probability theory. The end result of such notions has often 
been a restrictively rigid and subjective view of what is thought to be 
"meaningful" in statistics (however, see Gaito, 1980). Thus a given 
statistical model, so the argument goes, can only be used with an "appropri-
ate" type of measurement scale (together with its admissible transforma-
tions); for example, ordinal scales can only be used in conjunction with a 
"nonparamctric" model, and so forth. Although this is relevant for many 
empirical applications, it is not valid in any universal sense, since the more 
fundamental distinction in statistics is that betwecn a continuous and a 
discrete random variable. 

As we have noted, the basic purpose of a scale is to convey, in numerical 
form, empirical information in the most convenient and direct way possible. 
This in turn facilitates computation and interpretation of the results. Also, 
since scales relate an empirical relational system to a numerical relational 
system, their construction must be guided by mathematical as well as 
physical considerations. The type of scale finally chosen therefore dcpends 
on thc object or phenomena under study, the scope and purpose of the 
analysis, and the quality of data available. The situation can also be 
aggravated by the presence of measurement error, missing data, and 
unobservable or difficult-to-observe variables. For example, when variables 
arc not observable directly, they must be estimated from those that are. 
Here the type of scale required for a population is not necessarily the same 
as that which is available in a sample. A question then arises as to the 
applicability of a particular statistical model for a given measurement scale 
and vicc versa. Two misconceptions are common in the nonstatistical 
literature. individual features of certain scales arc at times ignored, and this 
leads to nonsense results—for example, when employing an incorrect 
dummy-variable coding in a regression ANOVA model (design) when 
estimating factor effects. On thc other end of the spectrum, at times 
attempts are made to place overly rigid restrictions on the type of computa-
tion that can (or should) be carried out for a given scale. For example, 
arithmetic operations, it is at times claimed, can only be applied to ratio or 
interval scales if we are to obtain meaningful statistics (e.g., see Marcus-
Roberts and Roberts, 1987). Also factor and regression analyses, we are 
cautioned, are not to be used with discretc (ordinal or nominal) data if we 
are to avoid "meaningless statistics" (Katzner, 1983). Not only is such a 
view contrary to much of statistical practice, it also ignores the fact that 
meaningfulness is not merely a function of scale–arithmetic interrelation-
ships but depends on the a priori objectives of a statistical model, the 
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mechanics of the actual computations, and the interpretability of the final 
result(s). The rationale for using a particular scale is therefore intimately 
bound with a particular statistical analysis or model and the scientific 
hypothesis to be tested or physical mechanism to be revealed. The use of a 
particular scale is, in the final analysis, valid because statistical tests 
(estimators) concern, in the first instance, numbers and not the particular 
type of scale used. This is because arithmetic operations do not involve units 
of measurement, and because scale values can always be redefined to yield 
interpretable results. The numbers themselves clearly cannot distinguish 
from what type of scale they have originated, although this must always be 
kept in mind by the analyst. Also, estimation is normally carried out in 
samples, not in populations, so that although observations may consist of 
ordinal or nominal scales this need not be the case for population values. 
Inherent measurement error and unobservability of population values 
frequently makes it impossible to measure sample observations on the same 
scale as the population. To reiterate, as long as understandable and useful 
interpretation is possible, any type of scale can be used in conjunction with 
any type of statistical model. For further discussion the reader is referred to 
Coombs et al. (1954), Adams et al. (1965), and Anderson et al. (1983a). A 
comprehensive and extensive trcatment of the algebraic theory of measure-
ment has also been provided by Roberts (1979). 

1.5.4 Units of Measure and Dimensional Analysis for Ratio Scales 

Generally speaking a measurement can be considered as a relationship 
between a real number and some phenomenon or object(s) under study. A 
more traditional and restrictive view common in the physical sciences is to 
consider measurement as a process of quantification, the objective being to 
determine the degree of "quantity" that can be associated with some object, 
material or otherwise. Herc the concept of measurement is inherently bound 
up with relating quantities to ratio scales, usually by the use of a suitable 
apparatus which registers thc readings. The particular advantage of using 
ratio scales, apart from purposes of recording and classifying data, is to 
enable us to relate empirical information to the entire (positive) real number 
system, which in turn allows the use of mathematical expressions to process 
or manipulate data. The end result, it is hoped, is a mathematical equation 
that describes or reflects law-like behavior of some specific aspect of the 
natural world, which can be used to predict future events. A question then 
arises as to which physical variables (units of measure) can be used together 
consistently within a single equation. Clearly, if we are to avoid "mixing 
apples and oranges," the units of measure must also conform with respect to 
the arithmetic operations implied by the equation. In other words, an 
equation should not only hold numerically but must also balance in terms of 
the symbols and concepts assigned to the physical variables. Note that the 
principle can also be used to assign units to the constants or parameters of 
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an equation. Thus the actual symbols themselves are immaterial—all that is 
required is that they be employed in a consistent manner. The concept is 
known as the principle of dimensionality and was first introduced into 
physics by Fourier in 1822 in his well-known book Theorie Analytique de la 
Chaleur, where the comment is made that every physical variable or 
constant in a physical equation has its own "dimension," and that terms of 
the same equation cannot be compared if they do not have the same 
apparent dimension. The principle has since become a prominent feature of 
physics and engineering (Ipsen, 1960). 

Example 1.6. Consider the familiar expression for an accelerating 
object. We have 

acceleration = velocity/ time 

distance/time  
time 

= distance/time 2  

a quadratic function of time. 
The reason for introducing rules of functional manipulation to units of 

measure is to be able to establish fundamental and consistent relationships 
within the four physical coordinate axes. In more empirical work however 
this is not always possible, for example, when using linear expressions of the 
form 

y = b o  + 64 1 + b 2x2  + • • • + bp xp  

to study and/or predict the empirical behavior of some variable y based on a 
knowledge of p independent variables. Here disparate units are frequently 
used for the variables, particularly in exploratory research or in areas such 
as the social sciences, where it is difficult to use dimensional consistcncy 
(see, however, De Jong, 1967). As well, variables may be unit-free index 
numbers or ratios measured with respect to some common base. The 
principle, however, can be used to identify the constants as rates of change 
since 

no. of units of y 
b i = unit of xi  (1.38) 

ci 

1.6 STATISTICAL ENTROPY 

We sometimes wish to compare the degree of concentration of two or more 
sets of probabilities. Three well-known indices of the form E i xip i  are 
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available, where p;  is the probability measuring the share of the ith element 
and xi  is the weight attached to the probability. The distinction is arbitrary 
since we can also think of pi  as weights, for example, as in the case of 
mathematical expectation. The importance of such concentration indices lies 
in their use as measures of the degree of redundancy (information) or 
entropy of a system. The best known of such measures is the entropy index, 
which is derived from the negative binomial distribution. Consider an 
experiment with two equally likely outcomes, and let x represent the trial 
number on which we obtain a "success" outcome. Then the probability 
p =f(x) of obtaining a success on the xth trial is given by 

(1.39) 

and taking logarithms (base 2) we have 

x = —log 2 p 	x = 1, 2, . , . 	 (1.40) 

Equation (1.40) is also known as the information content of an event or a 
message. Note that here the more probable an event thc less "information" 
it contains, and in the limit as 1 we have x--) 0. Thus the term 
"information" here refers to empirical information, that is, to the occur-
rence of an event and not to its truth (or falsehood) or psychological 
content. An analogy which can be used in conjunction with Eq. (1.40) is 
that of a chess board, where a player makes a mental note of some 
particular square, the location of which the other player is to guess. Without 
prior information the optimal strategy is to divide the board into two equal 
areas, and under the binary response of "yes" or "no" to successively 
subdivide the board until the unknown square is found. Of course in this 
analogy the process is finite; generally the process is infinite. Using Eq. 
(1.40) the total entropy or information of the system can be defined as 

/ = f(x)x 

= -E P log2Pi 

= 2, P1log 2  
i=1 

(1.41) 

which is the expected (average) information content of an experiment 
consisting of n trials. Equation (1.41) is also known as the Shannon 
information index. Using x = log 2p we may think of the expression as a 
measure of concentration of the probabilities. Two other measures that can 
also be used are the Herfindahl index, 

= 	PiPi 
i=1 

(1.42) 
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where each probability is weighted by itself, and the Hall—Tideman index, 

C = 
i=1 

(1.43) 

where the weights are taken as the rank order i of each probability in the 
series. The entropy or information measure Eq. (1.41) however is more 
commonly used since it has the advantage of decomposability; that is, if a 
series of probabilities are split into subgroups, the concentration within the 
groups, plus that between the groups, will equal the concentration of the 
overall group. This has an analogy in the decomposition of variance 
common in statistical analysis. The Shannon information index is maximum 
over all probability laws at the uniform distribution (Exercise 1.6) and 
minimum at the normal distribution. Minimizing Eq. (1.41) therefore can 
serve as a criterion for normality (Example 3.1). 

1.7 COMPLEX RANDOM VARIABLES 

The classification of measurement scales considered in Section 1.5 assumes 
that the admissible transformations are defined in the real field. Evidently 
this is almost always the case. Not all variables employed in statistical 
analysis however are real. For example, in the study of multivariate 
measurements distributed over time (or physical space) it is not uncommon 
to first transform the data by means of a bivariable (univariable) Fourier 
transform (Chapter 7) to restore independence to the observations. The end 
result is a set of power cross-spectra which depend on the imaginary number 
1/1-1 

Consider any two real numbers x, y. A complex number z is then defined 
as 

z x iy 	 (1.44) 

Geometrically, a complex number can be considered as a point in the 
two-dimensional plane (Fig. 1.9). Let z„z 2  be any two complex numbers. 
Then their sum and product are defined as 

z 1  + z2  = (x1  + iy) + (x2  + iy2 ) 

= (X2  + X2) + 1(yt + Y2) 	 (1.45) 

and 

z i z, = (x 1  + 1y 1 )(x2  + ey2 ) 

= x 1x2  + /x i  y 2  + iy 1 x2  + i 2y z  y 2  

(x1x2 Y1 Y2) +01y1  x2Yi) 
	

(1.46) 
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z.x+iy 

Figure 1.9 A geometric representation of a 
complex number Z in the two-dimensional 	I 	 I 
plane. 	 0 	1 	2 	3 	4 

Let 
= x— iy 	 (1.47) 

the complex conjugate of z. Then a special case of Eq. (1.46) is the product 

z 1 i2  = (x i  + iy i )(x 2  — iy 2 ) 

	

=(xix2+ YiY2) 	xiY2) 
	

(1.48) 

Equations (1.45)—(1.47) are complex, but to define the familiar concepts of 
length, distance, and angle we require real-valued functions. Using Eq. 
(1.47) we have 

z = (x + iy)(x — iy) 

=x2 + y2 

= Z 
	

(1.49) 

the squared magnitude (length) of a complex variable, which can be used to 
define real-valued functions of complex expressions. 

Of.  particular interest is the case when z is a random variable. Since 
V-1 is fixed, z can only vary randomly when its real and imaginary parts 

x, y are random. This leads us to the following definition of a complex 
random variable. 

Definition 1.22. The (complex) expression Eq. (1.44) is said to be a 
complex random variable if and only if its real and imaginary parts are 
distributed as a (real) bivariate probability function. The definition of a 
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complex random variable is easily extended to that of a complex multi-
variate distribution. 

Definition 1.23. Let Z 1 , Z 2 , . . . Zp  be a set of complex random 
variables. Then g(Z p  Z2 , . . . Zi,) is a complex probability function if and 
only if the real and imaginary parts are distributed as f(X i , Y1 , X2, 
Y,, , X,, Yi,), a 2p-variate probability distribution. 

For the first two moments of a complex random variable we have 

and 

E(Z)= E(X + tY) 

= E(X) + iE(Y) 

= + (1.50) 

     

cov(Z„ Z2 ) E{[Z 1  E(Z 1 )11Z2  — E(Z 2 )]) 

= [cov(x l , x 2 ) + cov(y 1 , y2 )1+ ilcov(y i , x2 ) — cov(x l , y2 ) -1 

(1.51) 

using Eq. (1.48). Letting 11  --- Z2  it can then be shown that 

var(Z)= a + ),2 
	

(1.52) 

where cr 2x  = var(x), r 	var( y). 

EXERCISES 

1.1 Prove Eq. (1.17). 

1.2 Prove relationships in Eq. (1.8) using Eqs. (1.6) for the expectation. 

1.3 Using Eq. (1.3) (or 1.4) prove the three results of Eq. (1.5). 

1.4 Describe which scale you would use to measure the following random 
variables. State reasons for your choice and whether sample scale 
values correspond to population values. 
(a) Gold, silver, and bronze medals in an Olympic competition. 
(b) Letter grades of an examination in statistics. 
(c) Iron content in an ore sample 
(d) Artifacts found in a series of archaeological closed assemblages 

(e.g., graves). 
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(i) Types of artifacts. 
(ii) Quantity of each type of artifact. 

(e) Body length of a 3-year female sperm whale. 
(f) Cross-classification of hair color versus eye color of a sample of 

school children. 

1.5 Prove that for the entropy of a probabilistic system we have 

1 

i=1 	P 

where In represents the natural logarithm (e.g., see Shier, 1988). The 
entropy is thus maximized when all outcomes are equally probable 
(uniform distribution). 

1.6 Prove the relation in Eq. (1.52), where Z is any complex random 
variable. 
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CHAPTER 2 

Matrices, Vector Spaces 

2.1 INTRODUCTION 

Matrices together with the concept of a vector space play a leading role in 
the definition and interpretation of factor analysis and related multivariate 
models. Besides providing a unified approach to the subject, they also result 
in straightforward proofs and derivations of the main results, and make it 
possible to compare different factor model specifications without introducing 
unnecessary detail. In this chapter we describe, in a summary fashion, 
matrix topics and multivariate concepts that feature prominently in factor 
analysis and which the reader will find a handy reference. A more detailed 
account however is available in Graybill (1983), Searle (1982), and 
Basilevsky (1983). The main purpose of utilizing matrices in statistics is to 
be able to handle two-way numerical arrays of observations arranged in 
tables, independently of the size and complexity of such tables. Inherent in 
such a treatment is the concept of "dimension" for which the reader is 
referred to Hurewicz and Wallman (1974). The simplest example is that of a 
linear array of real numbers: 

V= 	,v2 ] 	 (2.1) 

known as a (row) vector. The components u i  of the vector may be negative, 
positive, or zero and are referred to as scalars. When all elements of V are 
zero, V is known as a zero vector, and when v i  1(1 1, 2, .. , n) it is 
known as a unity vector to distinguish it from the unit vector consisting of a 
single unit entry with remaining elements identically zero. More generally a 
unit vector is any vector with unit length. 

A vector may also be written as the column array 

(2.2) 

37 



38 	 MATRICES, VECTOR SPACES 

the choice between Eqs. (2.1) and (2.2) being essentially arbitrary. In what 
follows we assume vectors to be column arrays of the form shown in Eq. 
(2.2) unless specified otherwise. Also, vectors are denoted by boldface 
uppercase letters and their elements as italic lowercase letters. To conserve 
space, in what follows Eq. (2.2) is represented in the form V= 
[v1, v2, . , where superscript 1' denotes the operation of trans-
position—an operation that transforms row (column) vectors into column 
(row) vectors. 

A matrix is a two-dimensional array of numbers 

A 

a 
11 21 	a22 

a :  1 	a .  [ pt2 

. 	• 	• 
• 	• 	g 

. 	• 	. 

a Ik 

a2k 

apik 

(2.3) 

said to be of order (n x k) with typical element all . Matrix A is then said to 
be of rectangular form. A matrix can be considered as a generalization of a 
vector since it is composed of both column and row vectors. Alternatively, a 
vector can be viewed as a reduced column or row matrix. 

The transposed matrix A1  is one whose rows and columns have been 
interchanged. Clearly if A is (n x k), AT  is (k x n), that is, with k rows, n 
columns. A matrix can be multiplied by a scalar number, a vector array, or 
another matrix. When n = k it can also be inverted, that is, the unique 
matrix inverse K may exist such that AA - ' = A- 'A =I where I denotes the 
square identity matrix with unities on the main diagonal and zeroes 
elsewhere. A matrix that possesses inverse A -  is then said to be nonsingu-
lar, otherwise A is a singular matrix. 

Although matrices represent numerical arrays or tables, their elements 
can be used to define scalar functions. Two such functions are the 
determinant and the trace, both defined for square matrices only. The 
determinant of a square (n x n) matrix A, written as IAI, is a scalar number 
which can be used to obtain volume in multidimensional space. When 
applied to certain matrices the determinant provides a generalization of 
the statistical concept of (univariate) variance, The trace of a square 
matrix, written tr(A), is the sum of the diagonal elements of A and can also 
be used to measure the total variance contained in a set of random 
variables. 

2.2 LINEAR, QUADRATIC FORMS 

Besides being useful for manipulating large tables of data, matrices also lend 
themselves to the handling of large systems of linear and quadratic 
equations. Let C and X represent column vectors with typical elements c i , x 
respectively. Then a linear equation can be expressed as the product 
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ll  a21 
 a2/  

y=(x l ,x2 ,... ,x„) 

an1 

 . 

• • 	11 

• • a22 

a„, 
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= C IX I  C2X 2  + • " CA .Xk 
	 (2.4) 

by the definition of a vector product. A system of linear equations can then 
be eypressed as 

y i  a ll x /  + a 17x2  + • + a ikx k 
 y2 = axi  + a22x 2 + • + azierk 

 y„ = anix t  + a,, 2x, + • • • + a „kx4  

or 

a i2 [yyll [aall 
2R a22 

• 

yn 	a„ 1  a„, 

• • • 

• • • 

Y = AX 	 (2.5) 

where Y and X are (n x 1) vectors and A is the (n x k) matrix of coefficients. 
When Y is a vector of known coefficients and n k the system (Eq. 2.5) can 
be solved uniquely by computing the inverse AT' (if it exists); that is, we can 
write 

X = 	 (2.6) 

Quadratic forms also can be expressed in matrix notation. The general 
equation of second degree in the variables x i , x2 ,. ,x„ is given by the 
scalar 

y 	 (2.7) 
J 	j1 

where it is convenient to assume aii = a 	Eq. (2.7) can be expressed 
uniquely in matrix form as 

= XTAX 
	

(2.8) 
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THEOREM 2.1. The quadratic form (Eq. 2.7) can always be expressed 
uniquely, with respect to a given coordinate system, as y = X TAX where X is 
a vector of variables and A is a symmetric matrix of known coefficients. 

The representational uniqueness of a quadratic form is conditional on the 
symmetry of A, since a quadratic form can also be written in terms of a 
nonsymmetric matrix. 

Definition 2.I. Let X and Y be two (n X 1) vectors. Then the inner 
product X • Y between X and Y is thc sum of products of their components. 

An inner product of two vectors can also be expressed as a matrix product, 
since 

X•Y=x t y, +x2 y2  + • • • 4- x„y„ 

,x„1[ Y1 
Y2 

XTY 

When X Y we obtain 

the sum of squares of the components. This is also a special case of Eq. 
(2,8) when A = I, the identity matrix. Quadratic forms are not independent 
of the positioning of the coordinate axes. They may however be easily 
transformed from one set of coordinates to another by the use of the 
following theorem. 

THEOREM 2.2, Two symmetric matrices A and B represent the same 
quadratic form if and only if B = P I AP where P is nonsingular. 

Quadratic forms, together with their associated symmetric matrices, can be 
classified into five major categories. 

1. Positive Definite. A quadratic form y = X TAX is said to be positive 
definite if and only if y = AX >0 for all X 0. Here A is referred to 
as a symmetric positive definite matrix, the so-called Grammian 
matrix, Positive definite matrices always possess positive determinants. 

Y„ 
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Note however that a non-symmetric matrix can also have a positive 
determinant. 

2. Positive Semidefinite (Nonnegative Definite). A quadratic form is said 
to be positive semidefinite (or nonnegative definite) if and only if 
y = XTAX >0 for all X 0 O. Here fAl >0 and A is said to be positive 
semidefinite. 

3. Negative Definite. A quadratic form is said to be negative definite if 
and only if y = X TAX >0 for all X 0. Thus A is negative definite if 
and only if —A is positive definite. 

4. Negative Semidefinite (Nonpositivc definite). A quadratic form is said 
to be . negative semidefinite (or nonpositive definite) if and only if 
y=X I AX -250. 

5. Indefinite. Quadratic forms and their associated symmetric matrices 
need not be definite or semidefinite in any of the senses described 
above. In this case the quadratic form can be negative, zero, or 
positive depending on the values of X. 

Positive (semi) definite Grammian matrices possess the following prop-
erties. 

THEOREM 2.3. Let y = X TAX be a positive definite quadratic form. 
Then: 

I. The positive definiteness of y (and of A) is preserved under 
nonsingular linear transformations of X. 

2. If A is positive definite then B TAB is also positive definite, where B 
is a nonsingular matrix. 

3. Let A be symmetric. Then A is also positive definite if and only if it 
can he factored as A = P TP where P is nonsingular. 

4. Let A he positive definite. Then for any two vectors X, Y we have 

(X 1 102  s (XTAX)(Y 	L Y) 	 (2.9) 

When A is large it is usually difficult to obtain the value of its determinant 
lAl. At times only upper (lower) bounds of lAl  are required. When A is 
positive definite these bounds are particularly easy to obtain. 

THEOREM 2.4. Let A be a positive definite matrix. Then we have the 
following bounds for lAl. 

1. 	 0<lAl Lz - • a n n 

with equality holding when A is either diagonal or triangular. 

2. 0‹ ( A I 	(a 2 v+ a2 .+ • 2f 
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3. Let B be positive definite. Then 

IA + BI"" IAI"" + 

the Minkowski inequality for determinants, with equality holding 
when one matrix is a scalar product of the other. 

Finally, we can define polynomials of the form 

X T  AY = E E aux g y i 	 (2.10) 
1-1,-1 

which depend on two sets of variables x„ y,. Expressions such as Eq. (2.10) 
are known as bilinear forms. Here A is no longer ncccssarily a square 
matrix. 

2.3 MULTIVARIATE DIFFERENTIATION 

The vector analog of the partial derivative aylax is the column vector of 
partial derivatives 

ay 
Y = 

ay 

(2.11) 

ax i  ax i  
dy 

dx 2  ax 2  
ay 

ox 

_dx„. _dx„ 

where y = f(X); X is an (n x 1) column vector and y a scalar denoting the 
values of the multivariatc function. Multivariate derivatives are useful in 
factor analysis since they can be used to derive normal equations of a model 
as well as multivariate estimators such as maximum likelihood estimators 
(see Dwyer and MacPhail, 1948; Dwyer, 1967; Mardia et al., 1979; Rayner, 
1985). Multivariate derivatives may be conveniently classified into two main 
types depending on whether they result in a vector or in a matrix. 

2.3.1 Derivative Vectors 

1. y = f(x) = c o ns tant. Then 

cly [ 001 
ax 

0 



=A 	 (2.12) 
Oy 
d 

dx2  
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2. y =f(x) = linear. Then 

y = al x 1  + a2x 2  + - • + anx„ 

= AT  X 

and 

3. y =f(x)= quadratic. Here y X TAX and the column vector of deriva-
tives is easily seen to be 

dx 
dy 

(3y 	 + 12x 2  + • • • + a inx, dx2 = 2 (3X a21x1 a22X2 	• ^ a2„x„ 
a „i x, + a,,,x, + • • • + a„„x„ 

dy 
dx„_ 

[a 11 a 2 	• 	1„][x 
a21 a22 • • a2„ 	x2  

=21. 	 . . 	. 

ant an2 	 x„ 

= 2AX 

where A is symmetric. For the special case A = I we have 

(2.13) 

(2.14) 

Exampk 2.1, Consider the quadratic equation y 94 + 12x 1x2  
+ 4x.2  in the n = 2 independent variables x i , x 2 . We have 

y = 9x 1  + 12x + 4x22 

 — [xi , x 2 1[69  64] [xx21 

= XTAX 



and differentiating with respect to x i , x 2  yields 

dy 
(3x, — 18x 1  + 12x 2 = 2(9x 1  + 6x 2 ) 
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(3y 
— 12x + 8x2  = 2(6x /  + 4x 2 ) ox i  

or 

[ (3)?  I 	[

9 6 xi dy 	dx, 
= 2 

6 4 x2  c7x2  

2.3.2 Derivative Matrices 

More generally we can define a vector derivative with respect to a vector of 
unknowns. Let 

Y1 
Y2 
: I 	 X= 

_Yn 

Then the derivative of y i  with respect to every x1  can be expressed as 

(3Y 

dyi 0y2 . 	• 	• 

• • 	• 

• • 	• 

dYn - 

(2.15) 

dx, 

dY]  
ox i  
0y2 

ax l 
 dYn 

ax2 

 dh 

ax2 

 dY2 

ax 2 

 dyn  

OX 

Ox,, Ox,, dx„. 

The following derivatives play an important role in multivariate analysis. 

1. Systems of Linear Equations. Let Y = AX be a system of linear 
equations in n unknowns. Then 

	

a21 	a ni ] 

c7Y 	a12 a22 "n2 
• 

c7X 	 • 

	

[ :ti t „ a-z„ 	a„„ 

=AT (2.16) 



O x 
(2.17a) — dx 	q 
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2. With Respect to Its Own Elements. The derivative of a (n x r) martix 
X with respect to any of its element x 4i  is given by 

the (n x r) matrix with unity in its (1, j)th position and zeros elsewhere. If X 
is symmetric, then x ii  =xi, and 

	

Ox 	

= j 

Jii  + Jii  15'J 

3. Matrix Product Suppose that two matrices X, V are conformable for 
multiplication and that both are functions of the variable z. Then 

d XY  YdX XdY 

	

dz 	dz 

4. Determinants. Let y = IXI and let IXii l be the cofactor of element x 1 . 

	

Then we have IXI = xil lX ii  I +x, 2 1X,2 1+ 	+xin IXi„I so that 

a Ix' 	a 

	

oxi;  	+ • • • + xi„ixi.i) 

	

= fx4 1 	 (2.19) 

for nonsymmetric X. When X is symmetric we have 

f 

	

dx,i 	1 Ix,/  I 	1=1 

Furthermore if X is nonsingular, 

alxf  
= /xi axii  

(2.17b) 

(2.20) 

(2.21) 

and when X is symmetric we have 

0 log„IXI = I
2X 	

(2.22) 

If the elements of X depend on some variable y, then 
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1 aixi  
(3y gel 	dy 

dixi ax,, 
ixi 	axii  ay 

tr(X -1 °X ) (3y 

which applies to any nonsingular matrix, symmetric or otherwise. 
5. Trace Function. Let y tr(X) = tr(X T ). Then 

ay 	d(x li + x22 + - • • + x) 
axii 	 ax 

t o 	i 
1 

so that the matrix of derivatives is given by ay/ax =1. 

Let A be another square matrix and X be nonsingular. Then 

dx -1 1 
tr(AX -1 )= tr[A 

=tr[—AX -1 n X-I 1 

=tr{X -I AX -1 (t—X )1 

= —(X 1 AX -1 )1i  

the (j, i)th element. Thus 

tr(AX -1 )— —(X -1AX (IX 

When both A and X are symmetric we have 

'Ax )T 	i Of 
— tr(AX -1 )= 

—(X -1 AX -1 )T 	i=i 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

6. Matrix Inverse. We have the product 1= XX -1  and using Eq. (2,18), 
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or 	 (2.27) 

ax' 
	— X- 'i ll dx 

7. Total Derivatives. Let y = f(X) where y is a scalar and X some matrix. 
Then if dX is the matrix of total derivatives we have 

(414Y) 	T 
dy = tr --rot dX 

and hence if 

dy tr(C dX T ) 

= tr(C T  dX) 

where vector C may depend on X (but not on dX), then 

(2.28) 

Also, 

d(YX) = (dY)X + Y(dX) 	 (2.29) 

dX = 	dXX 	 (2.30) 

d(tr X) = tr(dX) 	 (2.31) 

d log,IXI = tr(X dX) 	 (2.23) 

2.4 GRAMMIAN ASSOCIATION MATRICES 

di 	 dX -L  
=0 = J X + 

The moments considered in Chapter 1 are all defined in terms of population 
probability functions. Two major difficulties exist which tend to render these 
definitions less effective in a multivariate sample. First, the population 
distributions required for the univariate and bivariate moments are rarely 
known in practice, so that sample estimates of the true moments must be 
used instead. Second, these product moments are at most binary in nature, 
that is, they are only defined for at most two random variables and when 
more than two are available we are left without a measure of association. 
One way out of the difficulty is to define the notion of a (sample) association 
matrix, 
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Consider a table of data observed for p random variables and n sample 
points. for example, as in Table 2.2 where p = 7 and n = 24. Viewed as a 
matrix the table can generally consist of any one, or a mixture, of 
measurement scales considered in Section 1.5. We have 

Y = 

	

•Y1 1 	Y12 	• • 	Yip 
• • . 

	

Y21 Y22 	Y2p 

	

Y n1 Y,12 	 Yrip 

(2.33) 

  

a matrix consisting of n rows and p columns, where y 1, represents an 
observation for the jth variable and ith sample point. The p column vectors 
thus represent random variables and the n rows the sample points. Usually 
interest centers on an analysis of the p random variables and in this case 
n >p, although this is by no means the only situation possible. One of the 
chief objectives of factor analysis is to be able to discern patterns of 
interrelationships which may exist between the p random variables and/or 
the n sample points. To achieve this objective we require a multivariate 
measure of association, or an association matrix. We first consider associa-
tion moments for the p random variables. 

Definition 2.2. Let Y denote a (n x p) data matrix. Then any symmetric 
(p xp) matrix S whose (1, h)th element measures the degree of association 
between variables Y i  and Yh  is known as an association matrix. 

Association matrices can be either Grammian or non-Grammian depend-
ing on the binary measure of association used. An example of a non-
Grammian association matrix is the (symmetric) distance matrix D whose 
(/, h)th element is the distance (Euclidian or otherwise) between any two 
random variables. Although D is symmetric, it is not positive definite owing 
to the zero diagonal entries, and thus cannot be Grammian. Although factor 
analysis is usually restricted to Grammian association matrices, it is possible 
to extend the method to distance matrices as well. 

Four broad categories of Grammian matrices are possible for summa-
rizing the pattern of associations between observed random variables, as 
indicated in Table 2.1. 

Table 2.1 Four Types of Grarnmian Association Matrices Which are 
Possible Depending on Parameters of Magnitude and Location 

About Origin 	 About Mean 

Unstandardized 	 Inner product matrix 	 Covariance matrix 
Standardized 	 Cosine matrix 	 Correlation matrix 

to unit variance 



GRAMMIAN ASSOCiATION MATRICES 	 49 

2.4.1 The Inner Product Matrix 

The simplest measure of association between any two column vectors 
(variables) of a data matrix is the inner product, normally considered in 
linear algebra. The inner product is also refered to as the scalar or the dot 
product. Let Yi  and Y1, be n-component column vectors of Y. Then the 
inner product between Y 1  and Y,, is defined as the sum of products of 
components, that is, 

Y 1 '  Yh E 

The inner product can also be expressed as 

YI Yh = 

 

11 Y1 11 Il Yh II 	° 

(2.34) 

(2.35) 

where 	= 	y":1) 1/  2  and IlY h il (E7,, .y . h ) 112  are the lengths of Y i , Yh 

respectively and 0 is the angle between them. This is portrayed in Figure 
2.1. Although vectors are often drawn symbolically as arrows, it should be 
kept in mind that they represent points in multidimensional vector space. 

The following three properties of the inner product can be deduced using 
Eq. (2.35), 

1. The inner product is not independent of the number of vector 
components, that is, it depends on the sample size n. Thus increasing 
(or decreasing) the sample size will alter the value of Y i  • Yh  without 
necessarily altering 0. 

2. The inner product depends on the magnitudes of the two vectors, so 
that a simple proportional change in the unit of measure will alter its 
value. 

 

Figure 2.1 Angle 0 between two vectors Y, 
and V, with lengths 11 11/11 and IlYkil, respec-
tively. 
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3. it is not independent of the origin or the means of the random 
variables, and can be altered by a simple translation of the axis 
produced by an addition or subtraction of a constant. 

When 2 and 3 are not considered to be objectionable, or are indeed 
essential to the measuring process, the inner product can be modified by 
defining an adjusted or "average" value: 

1117 11 1 11 Yhi l cos 0 
	

(2.36) 

which is independent of the sample size n. This leads to thc following 
definition of an inner product matrix. 

Definition 2.3. A matrix of (sample) inner products is the matrix S i 
 whose (/, h)th element is the average inner product between the /th and hth 

columns Y. that is, 

5, --i
l
l Vry 
	

(2.37) 

where 

f  III 7  i II III 7  1.11 cos 0 
y l ry h  _  (2,38) 

2.4.2 The Cosine Matrix 

The dependence of the inner product on the lengths of the vectors is at 
times an undesirable property, particularly when considering variables with 
uncomparable units of measure, Also, even for comparable units of measure 
a change from inches to centimeters, for example, will alter the inner 
product even though no intrinsic change has occurred in the degree of 
relationship between Y i  and Yh . Thus when a unit-free measure of associa-
tion is required the inner product can be standardized to yield a magnitude-
free coefficient which does not change when a variable is multiplied by a 
constant, such as occurs when inches are transformed to centimeters. 
Dividing both sides of Eq. (2.36) by the magnitudes of the two vectors 
yields 

(Yr • Yh)  cos 9 — 
IlYhil 

(239) 

the cosine of the angle between Yi , Yh . When 0 0 both Yi  and Yh  lie on 
the same straight line and arc thus linearly dependent. For 8 --- 900  the 
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random variables are orthogonal, and in general —1 cos 0 s 1. it is also 
easy to verify that Eq. (2.39) is a unit-free measure of linear association. 

Definition 2.4. The cosine matrix is the matrix C whose (/, h)th element 
is the cosine of the angle between Y 1 , Y h, that is, 

C = N1 - " 2 (VTV)1W " 2 	 (2.40) 

where M is the diagonal matrix of vector magnitudes. 
A typical element co, of C is given by 

{cos 9 
— 

h 
1=h (2.41) 

In terms of vector components cos 0 can be expressed as 

It 

E yoth 

cos 0 = 	„ 	1,2 (  n 	)112  
(E  

1=1 	 1 

(2.42) 

2.4.3 The Covariance Matrix 

Both the inner product and the cosine are dependent on the positions of the 
coordinate axes. Since variances and covariance are defined as second 
moments about the mean, however, they are independent of average or 
general levels of a variable; that is, they are invariant with respect to shifts 
of the axes effected by addition or subtraction of constants. 

Definition 2.5 The sample covariance matrix of a set of p random 
variables is a matrix S whose (/, h)th element is the covariance between the 
/th, hth columns of a data matrix V, that is, S has the typical element 

ih ih) 
Sift — 	 n —1 

— n 	_ 1 [E 	 (2.43) 

When V, =17h , Eq. (2.43) yields the sample variance. A sample 
covariance has the following properties: 

s (Yi+c).(YhFk) = 
s 

L. = ckslk cyri-Y k (2.44) 



52 	 MATRICES, VECTOR SPACES 

Adding (subtracting) constant numbers to random variables does not alter 
the magnitude of the covariance, but multiplying by constants does. 

The covariance martix can also be computed in terms of matrix oper-
ations. Let 

Yi-i  )72 
. 	

Y] 
Yp 

[_ 
Y2 

by the mean value matrix whose columns are the sample means of 
Y i , V 2 , 	'VI,. Then the covariance matrix is given by 

S— n —1 (V —Y)T(Y —8.()  

1 
—

n--1 

where X V — ie is the deviations-about-means matrix. Thc matrix equiva-
lent of Eq. (2.43) can thcn be expressed as 

1 
S — n 	1  (Y — V) T(1" — 

1 
= n-1 (YIY Y'Y V Ty iTI V) 

1  
(V TY - nY Y) n-1 (2.45) 

(Exercise 2.17). The symmetric matrix IPS' contains terms of the form )71 )7h 

for / h and for / = h. Equation (2.45) is the multivariate equivalent of 
the familiar computing formula for the sample variance (see also Exercise 
2.2). Since in most applications the levels of random variables should not 
influence their degrce of closeness or association, the covariance matrix is 
more widely employed than the inner product or the cosine matrix, 
particularly when thc random variables arc continuous. Covariances are also 
independent of the sample size since the numerator of Eq. (2.43) is divided 
by a —1. 

2.4.4 The Correlation Matrix 

Since the covariance between any two random variables depends on the 
variances (magnitudes) of the variables, it can only be used for random 
variables with the same units of measure. It can however be adjusted to 
yield a new coefficient of association that is scale free. Such a coefficient is 

Y2 	• • • 	S'ip 
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known as the correlation coefficient and can he obtained from a covariance 
in much the same way as the cosine is obtained from the inner product. Let 
Ism  I denote the absolute value of the sample covariance between variables 

Y h. Then it follows from the Cauchy-Schwartz inequality that Is /h i pyh , 
that is, -sish  Sur  LS-SpSh  where s i  and sh  are sample standard deviations. 
Dividing by sish  we have 

where 

So, 
r aw = 

Sish 

slh  

Sish 
(2,46) 

  

(2.47) 

  

r 	 -11/2r 	 11/2 

LE (yii jii) 2  I LE (Yi/i — 3702  
1 7 1 	 r".1 

is the sample correlation coefficient between Y i  and Y h. It can be shown that 

r (Y rf 	Y h+ 	
r 

r 	= rm 
	 (2.48) 

so that a correlation coefficient is independent of addition and multiplication 
by constants. It is also independent of the sample size. In this sense Eq. 
(2.47) represents a pure, unitless measure of linear association between two 
observed random variables. 

Definition 2.6 A correlation matrix is a matrix of correlation coefficients 
R whose off-diagonal elements consist of terms of the form given by Eq. 
(2.47) and whose diagonal elements are identically equal to unity. 

The correlation matrix can also be computed by matrix operations. Let Sd  
be a diagonal matrix whose diagonal elements are the sum of squares 
(YI V1) T(Y1 	(Y2 V2)T(Y2 	) • • (Yp  Yp ) T(Y -)Then P 	P 
R is given by 

R = Sd  " 2 (Y - il y(Y - 	" 2  

= S; "2XTXS; 112  

= Z .1 74 
	 (2.49) 

where Z = (Y V)5 4-112  is the (n x p) matrix of standardized variables, that 
is, columns of Y adjusted to zero mean, unit variance. From Eq. (2A9) it 
follows that a sample correlation coefficient between random variables can 



54 	 MATRICES, vEcroR SPACES 

also be viewed as the inner product between two vectors standardized to 
zero mean and unit length. When common units of measure exist the 
covariance matrix generally should be used since a difference in variances 
imparts important information to the estimation process. At times this is not 
possible and a typical data base will contain diverse units of measure. In this 
Situation variances are no longer comparable and yield no useful informa-
tion, and random variables should be standardized to equal (unit) variance. 
Although standardization can introduce an element of artificiality into the 
analysis, there does not seem to be much choice in the matter once different 
units of measure are present. 

Example 2.2. Table 2.2 presents a data matrix I' which consists of seven 

Table 2.2 	Seven Socioeconomic Random Variables Observed for ii 
London Boroughs 

29 

Boroughs Y 1  Y2 Y3 Y4 Y, Y, 

I. 	City -44.3 182.4 8.1 0.647 0.0304 65.58 0.00 
2. Battersea -31.5 101.4 15.19 1.957 0.0174 83.75 1.62 
3. Bermondsey -50.3 97.2 16.02 1.697 0.0170 93.69 1.13 
4. Bethnal Green -49.8 102.6 15.26 1,763 0.0080 95.74 2.03 
5. Camberwell -32.5 99.8 15.91 1.913 0.0190 86.85 2.23 
6. Chelsea -12.1 134.0 11.54 1.363 0.0343 46.87 2.23 
7. Deptford -35.1 100.4 15.46 2.073 0.0156 90,10 2.24 
8. Finsbury 50.7 101.5 15.70 1.850 0.0166 89.48 1.99 
9. Fulham -23.6 104.9 13.52 1.693 0.0231 77.77 1.72 

10 Greenwich -16.5 101.1 16.22 1.501 0.0174 80.74 1.26 
11. Hackney -26.4 104.1 14.92 2.193 0.0174 90.43 2.30 
12. Hammersmith -18.0 95.4 14.67 2.113 0.0167 78.94 2.72 
13. Hampstead 4.7 149.8 11.27 1.767 0.0300 46.77 2.09 
14. Holborn -31.6 173.3 9.91 0.983 0.0410 63.12 2.28 
15. Islington -32.6 109.3 15.04 2.427 0.0146 87.62 2.94 
16. Kensington -8.9 149.5 11.59 1.920 0,0297 46.36 3.84 
17. Lambeth -26.1 101.9 15.48 2.250 0.0212 83.78 2.75 
18. Lewisham -4.3 102.3 15,34 1.700 0.0167 80.39 1.21 
19. Paddington -17.6 120.5 12.17 2.260 0.0287 66.35 2.80 
20. Poplar -58.1 94.1 17.07 1.993 0.0166 95.36 2.95 
21. St. Marylebonc -18.7 167.6 8.66 1.107 0.0311 50. 22 2.28 
22. St. Pancras -31.9 115.6 13.43 1.910 0.0246 77.32 3.04 
23. Shoreditch 57.6 94.0 17.45 1.650 0.0106 96.09 3.18 
24. Shouthwark -46.0 100.4 16.40 1.907 0.0245 93.58 2.47 
25. Stepney -59.1 104.0 15.97 1.977 0.0200 93.21 3.38 
26. Stoke Newington -11.0 99.6 15.93 2.383 0.0166 84.88 1.66 
27. Wandsworth -8.9 100.7 14.61 1.723 0.0182 74.79 1.83 
28. Westminster -26.2 129.0 9.86 1.170 0.0315 54.73 1.96 
29. Woolich -6.5 94.3 16.63 1.520 0.0109 80.87 1.28 

Source: Wallis and Maliphant, 1967. 
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random variables observed from 29 London Boroughs. The variables are 
defined as follows: 

= Percentage of population change. 1931-1951. 
Y 2  = Female/male ratio (percentage) of 15- to 20-year olds. 
Y 3 .--=" Percentage of population that is male, under 21 years of age. 
Y, = The demographic fertility rate. 
Y 5  = Suicide rate during 1960-1962; 14-year olds and older (percen-

tage of population). 
Y o  = Percent of population whose terminal education age is 15 years 

or less. 
Y 7  = Percentage of labor force that is unemployed. 

Using Eq. (2.34) the inner product matrix (Eq. 2.37) is given by 

Y, 
740.0 

Y, Y 3  Y, Y,  
Y, 

-1582.9 30786.7 Y2  
-709.7 146.1 381.8 Y3  

8, = -36.8 396.2 43.6 7.9 Y4 
.03 7.0 -5.0 -0.01 .002 Y, 

1764.2 -46.0 2059.6 225.2 -1.14 12936.5 y, 
• 23.9 185.9 45.1 8.6 1.13 176.6 21.9 - Y7 

Since S 1  is symmetric, the upper half of the matrix is omitted. Positive inner 
products imply that variables arc related directly, whereas negative values 
indicate an inverse relationship. 

The inner product depends on the mean values of the random variables. 
To see the extent of this dependence we compute the covariance matrix S. 
The mean values derived from Table 2.2 are 5 1  = -25.1655, Y2 = 114.8517, 
57-3  = 14.1145, ji4  = L7728, 95  = 0.0214, )7„ =77.77l7, 97  = 2.1866 so that 
matrix Y contains n = 29 equal row vectors and r = 7 columns consisting of 
the means 
covariance 

9 1 , 	)72 , 

matrix 

14224.9 
1354.1 

-245.3 
8.1 

.59 
3854.2 

81.7 

)77 . 

18224.4 
-1527.1 
-199.5 

4.7 
-8977.9 

-67.6 

Using 

189.1 
19.3 
-.49 

996.3 
8.5 

Eq. 	(2.43) 	then 	yields 	thc 	(7 

4.9 

	

-.05 	.0017 

	

90.4 	-2.9 	7182.7 

	

4.7 	.008 	2.6 	17.7 

x 7) 

We observe large changes in the corresponding entries of the two matrices, 
particularly for variables with large means. Indeed, the change in some cases 
is so acute as to reverse the signs of the inner product. The reason for this 
lies mainly in the large differences in the means. ovariances therefore 
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measure linear association when random variables are standardized to the 
same (zero) mean, and in this sense variables are compared on an equal 
footing. This is generally a desirable property for continuous variables since 
a relationship should depend on the degree of covariation between the 
random variables rather than on the levels of the measurement scales. 

Although the covariance matrix is adjusted for means, it still depends on 
the diagonal variance terms. When these reveal large differences, par-
ticularly when units of measurement are not comparable, it makes little 
sense to allow the variances to influence the analysis. For example, here 
s 21  1354,1 and s52  ------ 4.7, which would indicate that Y2  is more closely 
related to Y1  than to Y5  . However, Y, tends not to vary to any great extent 
and a very small (but significant) covariation of Y2 and Y5  may go 
undetected if the large difference in the variances is not taken into account. 
To remove the effects of the variances we therefore compute the correlation 
matrix (Eq. 2.49): 

1.0000 

	

.0841 	1.0000 
-.1496 -.9312 1.0000 

R = 	.0308 -.6680 	.6348 1.0000 

	

.1193 	.8310 -.8481 -.5132 	1.000 

	

-.3813 -.7847 	.8550 	.4819 -.8088 1.0000 

	

-.1628 -.1190 	.1462 	.5039 	.0473 	.0073 1.000 

where the diagonal matrix S d-  " is given by 

1/119.3 
1/135.0 	 0 

1/13.8 
s, = 1/2.2 

1/.04 
0 	 1/84.8 

1/4.2. 

We now observe Y2  to be more closely related to Y5 than to Y. 

2.5 TRANSFORMATION OF COORDINATES 

There exists a basic source of indeterminacy in representing vectors as 
points in multidimensional space, since the origin together with the position 
of the coordinate axes essentially is arbitrary. This was seen in Section 2.4, 
where transformations of the variates lead to alternative measures of 
association. Any movement of the axes results in a new set of coordinates, 
and thus in different numerical values of the observations, although in a 
basic sense the variates themselves remain unchanged. Thus expressing the 
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original variables as differences from their means, for example, is simply 
equivalent to a parallel shift of the coordinates axes where the origin is 
placed at the mean point of the sample observations. Also, transforming the 
covariance to a correlation coefficient may be viewed as the shrinking 
(extension) of the coordinate axes to unit length. 

A more fundamental procedure of transforming the coordinates however 
is to alter their orientation by means of a rotation, clockwise or anticlock-
wise. When the angle is maintained at 90 0  the rotation is said to be 
orthogonal, whereas for alternative angles we say the rotation is oblique. In 
a typical statistical analysis the axes are left unrotated, hut in factor analysis 
such rotations of the axes form a part of the methodology. 

2.5.1 Orthogonal Rotation 

Let V= (x, y)T  be a vector in two-dimensional space with respect to a set of 
coordinate axes. Assume the coordinate axes are rotated clockwise through 
an angle 6. This is portrayed in Fig. 2.2. If V* = (x*, y*)T  represents the 
same vector with respect to a new position of the axes we have 

x r cos a, y = r sin a 	 (2.50) 

and 

Figure 2.2 An orthogonal clockwise rotation 
of coordinate axes x and y through the angle 

=300  to the new position x*. y*. 
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x*=rcos(a+0)=rcosacos0 —rsinasin0 

y* = r sin(a + 0 ) = r sin a cos + r cos a sin 0 

where r Oil. Using Eq. (2.50) we have 

x* = x cos 0 — y sin 0 

y* x sin 0 + y cos 0 (2.51) 

or 

Fel [- cps° —sin 0 ] Ix] 
Ly* 	L sin 0 	cos 0 j Ly 

that is, 

V* PV 	 (2.52) 

where P is an orthogonal matrix. Since sin 0 = cos(90— 0) and sin 20 + 
cos 20 = 1, thc columns of P are direction cosines of the new axes x*, y*. 
Also, the counterclockwise rotation is given by V* = II V where P T  = P 

Example 2.3. Let V (x, y)T = (2, 4) T . Rotating x, y clockwise through 
300  results in the new system (x*, y *)I , with respect to which the coordi-
nates of V are 

x 	[- cos 0 —sin 01 Fx1 
[y* 	Lsin 0 	cos Oi Lyi 

[ .8660 —.5000114 
.5000 	.866OjL2 j 

r 2,464 
L 3.173 j 

The direction cosine of axes (x*, y*) . ' referred to the original axes (x, y)T 
 are given by the vectors 

[cos 30] — _ [.8660 I 
Lsin 30 J L.5000 

—sin 30 1 _ —. 5000i 
1)2  = L cos 30J L .8660J 

that is, by the columns of P. For an anticlockwise rotation the matrix P is 
replaced by PT . 

When more than two coordinate axes are present the situation becomes 
less straightforward because any pair of axes (or more) can be rotated 
independently of the remaining set. It consequently becomes difficult to give 
a general expression for the orthogonal transformation matrix P. In practice 
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however axes rotations can be carried out by taking two axes at a time until 
a satisfactory position has been arrived at (although Euler's method allows 
the simultaneous rotation of up to three axes). Also, axes can be rotated in 
the presence of more than a single vector. This is illustrated in the following 
example using five vectors in three-dimensional vector space. 

Example 2.4. 	Consider three coordinate axes x, y, z and vectors Vi  = 
(1, 2, 3) , V2  = (2, 4, 1)T , V3  (0, 3, 5)T , V4  = ( - 2 , 1, 4) r  and V5  = (1, 
-3, 4)T . Arranging the five vectors as columns of a matrix X, the first 
rotation is given by rotating the xz plane (clockwise) through some angle 0 1 . 
Let 0 1  = 20°. Then 

Pi  X = 
cos 200  

[ 	0 
sin 200  

0 
•1 
0 

-sin 20°i 
0 

cos 20° 

1 
2 
3 

2 
4 
1 

0 
3 
5 

-2 
1 
4 

1 
-3 

4 

[

-.0864 
2 

3.1611 

1.5373 
4 

1.6237 

-1.7101 
3 

4.6985 

-3.2475 
1 

3.0747 

-.4284 
-3 

4,1008 

= X I  

Next we rotate axes x and y counterclockwise, through 02  = 35°. The matrix 
of rotation is 

P, = 
cos 35° 

[ -sin 35° 
sin 35 0 

 cos 35° 
0 

0 
0 
1 

so that the second stage rotation is given by 

[ 	cos 35° sin 35° 
P2x = -sin 35° cos 35° 

0] 
0 

0 0 1 

	

x [

- .0864 1,537 	-1.7101 -3,2475 - ,4284 
2 	4 	3 	1 	-.3 

	

3.1611 1.6237 	4.6985 	3.0747 4.1018 

= 

	

[1.0763 	3.5533 

	

1.6879 	2.3950 

	

3.1611 	1.6237 

.3199 
3.4383 
4.6985 

-2.0866 
2,6818 
3.0747 

-2.07161 
-2,2118 

4.1018 

Last, we rotate the yz axis clockwise through 03 = 60°: 
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1 	0 	0 	] 
P3 X 2  = 	0 	cos 60° 	—sin 60° [ 0 
	sin 60° 	cos 60° 

1.0763 3,5533 .3199 —2.0866 —2,0716 
X 	1.6879 [ 2.3950 3.4383 2,6818 —2.2118 

3,1611 1,6237 4.6985 3.0747 4.1018 

[ 	
1.0763 3.5533 .3199 —2,0866 —2.0716 

= —1.8936 —,2086 —2.3498 -1.3219 —4.6581 
3.0423 2.8859 5.3269 3.8597 —3,9663 

The final rotation matrix P is then obtained as the product of the pairwise 
rotation matrices, that is, 

P P3P2PI 

Since P1 , P2 , and P3  are orthogonal, P must also be an orthogonal matrix. El 

2.5.2 Oblique Rotations 

A more general rotation of axes is the oblique rotation where axes are 
allowed to intersect at arbitrary angles. Consider an orthonormal coordinate 
systemE l  = (1, 0, 0, . . . ,0) 1 , E, 	(0, 1, 0, .. 	. 	= 	0, . 	, 1) T  
and the set of linearly independent unit vectors F 1  = 	a 12 , 	, 
F 2  = (a21 , a 22 , • • • , 	• • , F, = (a„ 1 , an ,, 	, ann ) T , where coordinates 
ao  are measured with respect to the base E i  (1= 1, 2, . 	, n). Vectors F t , 
F2,.. , F„ can be expressed as 

F 1  = a 1 1 E 1 + 6E 12 E2  + 	+ 

F2 = a 21 E 1  a22E2 ' " a2.E. 

+ a„ 2 E 2  + • • • + 

(2.53) 

Consider any other vector V= (v i , v,, 	v„)T  with respect to the orthonor- 
mai basis. Then 

V= u 1 E 1  + v 2 E 2  + • • • + v„E„ 	 (2.54) 

Also since F 1 , F2, . 	F„ are linearly independent they form a basis of the 
vector space, and 

V= v*I - F t  + v72  + • • • + v7,F 	 (2.55) 

where the v7 denote coordinates of V with respect to F t , F2 ,. 	F. 
Substituting Eq. (2.53) into Eq. (2.55) yields 

V= vI(a„E l  + a 12 E 2  + • - + a i „E„) + ul(a 2l E t  + a 21 E2  +... + az„E„) 

+ • + v„*(aio 	+ a n2E, + • + a„„E„) 
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+ if'21 a 21  + • • + 	+ (v7. 17 12  + ulla 22  + • • + v:a n2 )E 2  

+ • 	(uta in  + vIa2 „ + • • +  

and equating coefficients with those of Eq. (2.54) we have 

+ av v; + • • • +a„ i v: 
v2  = al2vt a22v/ + • • + a„ 2 v„* 
v„ = a l „v: + a2„vI + • + av: 

(2.56) 

The system of n equations (Eq. 2.56), in terms of the unknowns 
9  

V; . 	, v, possesses a unique solution when the F 1 , F2 „ , . , F. are 
linearly independent, yielding oblique coordinates in terms of the original 
coordinates. 

Distance and angle can also be expressed in terms of oblique coordinates. 
Let d be the length of a vector V whose coordinates refer to an oblique 
system (Fig. 2.3) such that 0 0 12  n; 180°. Using the Law of Cosines (e.g., 
see Basilcvsky, 1983) the squared distance between V and the origin is given 
by 

d 2  =x + x ?, — 2x 4 2  cos(180° — 912) 

- 2 	2 2x  - + x 2  + i x cos 012 

2 	2 

E E xix, Cos 0„ 	 (2.57) 

Equation (2.57) represents a quadratic form in x and x,. More generally, 

X, 

Figure 2.3 Euclidian distance in terms of oblique coordinates. 
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given a k-dimensional space, Eq. (2.57) can be generalized to the quadratic 
form 

k 

d 2 = 	E x,x, cos 0ii 
f=1 j• - 1 

COS O lt  
cos 02 1  

COS Ok 

cos 0 1 , 
COS 022 

COS Ok 2  • 	• 

COS 0 lk]r 

k 

1] 

COS 02k 	X2 

X 
COS Ok k 

 

= xTcx 

   

(2.58) 

where C is a symmetric cosine matrix. Similarly the Euclidian distance 
between two vectors X I , X 2  is given by 

d 2  = ( X I  — X 2 )TC(X I  X2) 

k 

= E E (x 11  — x2 , )(x „ — 	cos 0,1 	 (2.59) 

Let a„ fit  represent direction cosines and let 8 be an angle lying between 
two vectors expressed in terms of k oblique coordinates. Then the cosine of 

is 

k k 

cos 0 = E E criA cos 
i=1 i=1 

(2.60) 

2.6 LATENT ROOTS AND VECTORS OF GRAMMIAN MATRICES 

To a large extent the mathematical core of factor analysis consists of 
computing latent roots and latent vectors of symmetric, positive definite 
matrices. Other names include eigenroot, eigenvalue (cigenvector), charac-
teristic root, and characteristic value (characteristic vector). In certain areas 
of engineering and applied mathematics latent roots are also known as 
singular values. In classical factor analysis interest is restricted to (semi) 
definite Grammian matrices such as the covariance or correlation matrix. 
Latent roots and latent vectors then estimate latent or underlying tendencies 
which may exist within an intercorrelated set of random variables. In this 
section we consider principal properties of latent roots and latent vectors of 
Grammian matrices since these play a prominent role in subsequent 
chapters. 

Definition 2.7. A nonzero latent vector Pi  of a (k x k) matrix A is any 
(k x 1) vector satisfying the equation 
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AP, = Ay; 	(i --- 1, 2, . . 

where A, is the corresponding latent root associated with l. 

The latent roots and vectors can also be combined into matrix form, and we 
write 

P 1 AP = A 	 (2.61) 

where the columns of P are linearly independent latent vectors P 1 , 
P2  , . . , Pk and A is the diagonal matrix 

0 
A

0 	A,1 

A 1  

A2 
(2.62) 

For an arbitrary matrix A, A, and P contain complex numbers. The set of all 
latent vectors of A which correspond to a single latent root A form a vector 
space of dimension (k r) where r is the rank of (A — Al). Actually A always 
possesses k linearly independent latent vectors P I , l'2 ,. 	, Pk  if they 
correspond to distinct latent roots A 1 , A2  , . . 	Ak . The converse is not 
necessarily true, and a matrix can possess linearly independent latent vectors 
even though roots are not distinct, Equation (2.61) is known as a similarity 
transformation, and we say that the diagonal matrix A is similar to the 
matrix A. 

The similarity transformation (Eq. 2.61) preserves many important 
properties of a (square) matrix. When A is positive (semi) definite, A is also 
positive (semi) definite and when A is nonsingular, so is A, that is A is 
nonsingular if and only if all latent roots are nonzero. However, in general 
the rank of A does not equal the number of nonzero latent roots, although 
for a Grammian matrix this is always true. The principal properties which 
are of interest in factor analysis can be summarized by the following 
theorem. 

THEOREM 2.5. Let A be a real (k x k) matrix with distinct latent roots 
A 1 , A2 , . . . , A. Then 

(1) IAI = IAI = A 1 , A2 1  . 	, Ak  . 

(2) tr(A) = tr(A) 	+ A2  + " • + Ak  

(3) When A is similar to A, A -1  is similar to A 
(4) A, AT  possess the same latent roots but different latent vectors. 

When A is symmetric, latent roots and vectors assume a particular and 
well-known structure which has far-reaching consequences for applied work. 
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THEOREM 2.6. Let A be any symmetric matrix. Then 
(1) Latent roots and latent vectors of A are real. 
(2) Any two latent vectors Pi , Pi  which correspond to latent roots A i , 

A l  (1, = 1, 2, . 	, k) respectively are orthogonal; that is, there 
always exist a matrix P such that 

PAP = A 	 (2.63) 

where PTP = PP T  = I and diagonal elements of A are not neces-
sarily distinct. 

(3) The number of nonzero latent roots (latent vectors) of A is equal 
to the rank of A. 

Thus given a symmetric matrix A we can always define a linear decompo-
sition 

A = PAPT  

AYIPT A2P2P1 + • 	AAPAK 
	

(2.64) 

where P r  = p , PiPiT  are unit rank (r x r) matrices, and 

PI P .; + P2PT2  + • • • + PA C-  = I 	 (2.65) 

The decomposition (Eq. 2.64) is also known as the spectral or the singular 
value decomposition of A. When all elements of a symmetric matrix are 
strictly positive, using the well-known Rayleigh quotient it can be shown 
that (1) the largest latent root A 1  is strictly positive, and (2) its associated 
latent vector P 1  can always be chosen to have strictly positive elements (e.g., 
see Barnett, 1978, Appendix). Alternatively, the result may be derived as a 
special case of Peron's theorem (Basilevsky, 1983; Exercise 2.16). 

When A is further specified to be positive (semi) definite, sharper results 
can be obtained concerning the spectrum of A. The following theorem is a 
special case of Theorem 2.6. 

THEOREM 2.7. Let A be a symmetric, positive (semi) definite matrix. 
Then 

( I) The Ai  are all strictly positive when A is positive definite. 
(2) The Ai  are nonnegative when A is positive semidefinite. 
(3) Elements of P are real (negative, positive, zero) 

Because of the preservation of Grammian properties of a matrix under 
similarity transformations, quadratic forms can also be classified in terms of 
their latent roots (Section 2.2). Let A be a (k x k) symmetric matrix. Then a 
quadratic form y XTAX is: 



—A) 	a 12 	• . . 	a lk 

a 12 	(an — A) • • • 	a2k 

(akk — A) 1 a ik 	a2k 

CA) = (2.68) 
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(1) Positive definite if and only if A, >0, i = 1, 2, 	. , k. 
(2) Positive scmidefinite if and only if A i  0. 
(3) Negative definite if and only if A, <0, i = 1,2, . . k. 
(4) Negative semidefinite if and only if A 1 -.5.0. 
(5) Indefinite if and only if some latent roots are positive and others are 

negative. When a latent root is zero, the indefinite form is singular. 

The task of actually computing latent roots and latent vectors is carried 
out by specialized numerical algorithms (e,g., see Ilammarling, 1970). The 
algebraic basis of a solution, however, can be described as follows. From 
Definition 2.6 we have AP A i P, or 

(A — A,I)P, = 0 	(i = 1, 2, . 	, k) 	 (2.66) 

a system of k homogenous linear equations in k + 1 unknowns; k unknown 
components of Pi  plus the unknown latent root A,. From the general theory 
of linear equations we know a nonzero solution vector exists if the matrix of 
coefficients B = (A — Al) is singular for some root A, = A; that is, if 

IBI =IAAIHO 	 (2.67) 

or 

(- okAk + (-1)4  ' 

o 

k l 	 (_ 1 )k 2 2  Ak 2+ 

a kth-order polynomial in A. The roots A I , A2 ,. • . ,A are conventionally 
ranked as A I  A2  - - - --2. A. Once the values of A i  are known, corre-
sponding latent vector p can be found using Eq. (2.66). For example, when 
i = 1 we have the following system of k linear equations: 

[ (a 11  — A1) 	a 12 
a 12 	(an — Ai) 	a2k 	p 21 	

[001 a lk 

a lk 	a2k 	• . • (a 	A1) P k I [ 0] 

(2.69) 

in k unknowns. The system does not have a unique solution, however, 
owing to the arbitrary magnitudes of the latent vectors. Since we can choose 
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any magnitude for P1 , in practice P1  is given unit length for convenience. 
This introduces the additional equation 

Tpi =p 	p 221 	pk2 1  = 	 (2.70) 

which together with Eq. (2.69) yields a unique solution. The process is 
repeated for i = 2, 3, . , , k until all the latent roots A i  and their corre-
sponding latent vectors Pi  are known. Since A is Grammian, all roots are 
real and nonnegative and the real latent vectors form an orthonormal set. 
Note however that if Pi  is a latent vector, so is even though P ill);  = 1, 

Example 2.5. We have the Grammian matrix 

A = [11 51  L 5 5J 

where 

IA 	= I 11 — A 	5 I 
I 5 	5 — A I 

= A 2  - 16A + 30 

a second-degree polynomial with solutions A 1  = 13.83, A2 = 2.17. Substitut-
ing A 1  = 13.83 in Eq. (2.69) we have 

1- 11 —A 1 	5 -pil l 

L 5 	5—A1 Lp,1 LoJ 
Or 

1 -2 .83 	5 11p 1 ,1 _ 
L 5 	—8.83.1Lp2i i LO 

so that 

+5p21 =0 

5p — 8.83p2i  = 0 

2 	„2 
P11 ' P21 

with solution P i  = (.8700, .4925) T , Similarly when A2  = 2,17 we have 
P2  = —,4925, .87(X)) 1 . The latent vectors can be arranged as columns of the 
matrix 

p = 1.8700 —.4925 1 
L.4925 	.8700J 

where it is easy to verify that P IP = PP' = 1. 



1.2717 	 0 
1.0896 

A= 	 .2362 
.1644 

0 	 1427 

[4.0437 

.05161 
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Example 2.6. Consider the correlation matrix R of Example 2.2. The 
latent roots and vectors are found to he 

P2 	P3 	P4 	Ps 	P6 	P7  

■••• 

.1115 	.0005 	.9219 -.2196 	.0168 	.2896 	-.0720 

.4694 	.0495 -.1389 	.1069 -.4257 	.5056 	.5565 
-.4787 -.0590 	,0550 - .2644 	,3449 - .0230 	.7583 

P= 	-.3639 	.4561 	.2336 	.7656 -.0945 	.0068 	.0990 
.4440 	.2386 -.0804 	.1921 	.8177 	.1844 	.0053 

-.4453 -.2084 -.2122 	.0213 	.1019 	.7837 	-.2971 

	

-.1017 	.8281 -.1472 -.4968 -.1078 	.1083 	-.1101 

and can be used to verify Theorems 2.5-2.7 (Exercise 2.4). 

2.7 ROTATION OF QUADRATIC FORMS 

The latent roots and vectors of a symmetric matrix can be used to rotate 
quadratic forms to a more simple structure. Let y = X TAX, the equation of a 
kth dimensional ellipse with center at the origin, X = (x i , x,, . . , x k )T  and 
y = q> 0, an arbitrary constant. Since A need not be diagonal, the quadratic 
form generally contains product terms of the form x ixi  (ii) in addition to 
the squared expressions x r2. (i = 1, 2, . , k; Section 2.2), The principal axes 
of the ellipse do not coincide with the k coordinate axes and this gives the 
quadratic expression a cumbersome "interactive" form. The dy1clx i  contain 
variables other than x i , which magnifies the problem of locating extremum 
points. Transforming A to diagonal form simplifies the equation, and as 
shown in Chapter 3 allows for a clearer understanding of data. 

Let X be a radius vector with squared length 

2 	TV 	2 	2 r = X A = X i  + X2 + 	+ Xk (2.71) 

where X = (x , x 2 , . 	, xk ir  is any point on the ellipse. Let r, denote the 
lengths of X when the radius vector (Eq. 2.71) coincides with the ith 
principal axis of the ellipse, that is, X has length r, when its vertex lies on 
the point of intersection of the ellipse and a sphere with center at the origin 
and radius r,. Let the points of intersection be X =Q i  = (q ii , q21, gki)T 
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so that Q TQ, = ri  (I=1, 2, ... , k). Using the theory of Lagrange multi-
pliers we know that constrained extremum points Q i  are also stationary 
values of the function 

= Q, l'AQ; A,(Qi TQ, - r12) 	 (232) 

Differentiating Eq. (2.72) with respect to Q i  and setting to zero yields the 
system of linear equations 

(30  
2AQ, — 2A1Qi  = 
	

(2.73) 

or 

(A — Ai l)Q, = 0 	(i = 1, 2, . . k) 	 (2.74) 

It follows from Eq. (2.66) that points Q1, Q2,. 	,Q are latent vectors of 
the symmetric, positive definite matrix A (scaled to lengths r i ) and A 1 , 
A,,. , A k  are k latent roots. Once A i  and Qi  are known, they may be 
arranged in matrix form and Eq. (2.74) is equivalent to 

AQ = QA 	 (2.75) 

where A is diagonal and Q is orthogonal. Also, rewriting Eq. (2.74) as 
AQ i  = A,Q, we have 

so that 

Q7AQ AigrQ, 

= Ar 

= q 

q 1/2 
ri - 

(2.76) 

(2.77) 

is the half-length of the principal axes of the ellipse, where A, >0 and 
QT(,2—  R a diagonal matrix with elements r, (1= 1, 2, ... , k) . The column 
vectors of Q can be scaled to unit length so that columns of P=Q111 -1/2  are 
unit latent vectors. The orthogonal transformation 

Z = P I Z 
	

(2.78) 

then defines an orthogonal rotation of axes (orthogonal rotation of the 
k-dimensional ellipse) such that axes of the ellipse coincide with new 
coordinates axes Z 1 , Z2, .. , Z. The ellipse can now be expressed as 
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y = XTAX 

XT(PAP1')X 

= ZTAZ 

= A 1 z 21  + A 2 4 + - + Ak z 2k 	 (2.79) 

which is free of cross-product terms z izi  (i 	As demonstrated in Chapter 
3, this is the geometric basis for a principal components decomposition of a 
covariance (correlation) matrix. A more general result concerning the 
equivalence of two quadratic forms is as follows. 

THEOREM 2.8. Two symmetric matrices A, B represent the same quad-
ratic form if and only if B = PTAP where P is nonsingular. 

Example 2.7. Consider the quadratic form 

2 y =-- 11x, + 10x ,x 2  + 5x.,1 

.1x 1 , x2 1[ 1 51 55 ] {xxj 

= XTAX 

which contains the cross-product term 10x 1 x2 . From Example 2.5 we have 

A  _ 113.83 0 1 p r .8700 —.4925 1 
L 0 	2.17J ' 	L .4925 	.8700 J 

and the two half-lengths of the ellipse are, for y = q =1, r 1  = (1/13.83) 1/2 = 
.2689, r2  = (1/2.17)112 .6788. Then from Eq. (2.79) it follows that the 
quadratic, with respect to the new axes, is 

y = 13.83z', + 2.17z'2  

2.8 ELEMENTS OF MULTIVARIATE NORMAL THEORY 

Latent roots and vectors of Grammian matrices play a crucial role in many 
areas of multivariate analysis, particularly when dealing with the multi-
variate normal distribution. Recall that univariate t, F, and x 2  distributions 
all assume that the underlying random variable is distributed normally 
(Section 1.2). In multivariate analysis the equivalent assumption is that of 
multivariate normality, from which multivariate versions of the t, F, and X 2  
distributions can be derived. The multivariate normal distribution plays a 
central role in multivariate tests of significance and in deriving likelihood 
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ratio tests for principal components analysis and maximum likelihood factor 
analysis. 

2.8.1 The Multivariate Normal Distribution 

Consider a set of k random variables X„ A'2 ,. 	 not necessarily 
independent, where X = (x 1 , x2 , . , xk  ) T  represents a vector of values of 
the random variables. Then X follows a multivariate normal distribution if 
and only if 

f(x)- 	f 	„ 

	

(270k/2111W exPt 	[(X 14.  X (X — 101} (2.80) 

Here 	and IL are the population covariance matrix and mean vector, 
respectively, where 

- 2 
tip 

7 

O.,. 	47  2 

aa 

(72: 1 
fik 

(2,81) 

17  I k 	(12k 

 

and IL = 	1.1.2 „ . . p.k ) 1  . Since 	is assumed to exist we have III 0 0 
and the multivariate normal (Eq. 2.80) is said to be nonsingular. The 
covariance matrix can also be expressed as 

2 
P12ff1ff2 	Plkerlo-k 

2 
PI2i7072 cr 2 	 P2 k 2 17  k 

(2.82) 

_P I k ff  k P 2k (7.  2 ak 

where gi  is the population correlation between Xi , Xj . Since the multivariate 
normal is completely determined by p, and it is usually written as N(R, X). 

The exponent of Eq. (2,80) represents a quadratic form with cross 
product terms unless = D, a diagonal matrix. Consequently it follows from 
Section 2,7 that 

(X— 	"(X— p.,) = c 	 (2.83) 

is a k-dimensional ellipsoid with center at p, = 	p2 , 	, /LO T  and shape 
parameters 	(Fig. 2.4). Also, Eq. (2.83) is distributed as chi-squared with 
k degrees of freedom (Section 1.2.1). Since 	is symmetric and positive 
definite, the quadratic form (Eq. 2.83) is positive definite and can (see 
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111 	
f 

Figure 2.4 A finite representation of elliptic bases of two bivariate normal distributions with 
common and $1, but different values of c. 

Section 2.6) be rotated to diagonal form using latent roots and vectors of X. 
Maximizing Eq. (2.83) subject to constraint 

(2.84) 

leads to the Lagrange expression 

= (X — 1.)TX ( X — p,) — Al(X p.) T(X — p,) — r] 	(2.85) 

and differentiating with respect to vector X (Section 2.3) leads to 

ock 	_ 
Toy 21 (X — p..) — 2A(X p.) = 0 

or 

(X 	AI)(X — = 0 

For part (3) of Theorem 2.5 we know that X, X -  possess identical latent 
vectors, but reciprocal latent roots. Since the ordering of latent roots is 
arbitrary, X can be replaced by X where 

(X — 3I)(X — p,) --- 0 	 (2.86) 

and 3 = 1/A. For a repeated root of multiplicity m the k-dimensional 
ellipsoid is hyperspherical of dimension m <k. Random variables associated 
with repeated roots are said to possess isotropic variation in that subspace. 
The variables X, can also be transformed to independent (uncorrelated) 
form by the following theorem. 
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THEOREM 2.9. A matrix 1: is Grammian if and only if it can be expressed 
as = P rP where P is nonsingular. 
From Eq. (2.86) we have 

(I — si)(x p.) = (PTP — SI)(X — 1.1.) 

= 0 

or 

Pi  P( X -- IL) = ( X — 1.031 

so that 

(X — p,) IPTP(X — p.) = r51 	 (2.87) 

using Eq. (2.84). The transformed set of variables is then given by 

Z = P(X — p,) 	 (2.88) 

which represents a new set of orthogonal normal random variables. The 
columns of P are normalized latent vectors and the new variables, Z (z , 

. 	ZO T are orthonormal, that is, 

7 T 	1 — t o  (2.89) 

Also, it is easy to see that E(Z) = 0. More generally, 

var(z e )= 	IP, 

(2.90) 

Thus from the theory of quadratic forms it follows that a set of correlated 
multivariate normal variables can always be rotated to a new uncorrelated 
univariate set. 

Example 2.8. Consider the bivariate normal distribution where we let 
= x and x2  = y. Equation (2.80) becomes 

f(x, y) — 

   

   

27717 cr 1/1 — p 2 
x 

x expl 

	

i( x — 	 ikr) 	AY) 
 + (Y ILY) 2 1} 

CT 	LT .1" 2(1 — p 2 ) 	 (r. 	
— 2 
	(TA 

(2.9-1) 

where (27r)" 2  277- for k = 2 and 
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Pry 00'v g7.071)-  

2 112 

= ox 0y 111 - p 2  (2.92) 

Note that in order to avoid singularity, —I< p <1. Also, for the exponent, 

1 	 1 
[(X 	(X 1,01 — [(x P) ,  (y —  i)1 

X 

1 

(.Y 
P 

'y 

14y )  (Y 

(2.93) 
(7 .2,(1 — p 2 ) ox ay (1 

1 

p 2 ) 

ax try (I - p 2 ) 

1  

o;(11 p2) 

+
2P(x  [(x 

2(1 - p") ultu:y 

a quadratic form with the cross-product term (x — kt.,)(y — gy ). 
The multivariate normal can also be written in a more compact form. Let 

X 2  - 112  
Z 1  - 	 Z2 -  

	

o 	' 

	

I 	 o2 	 ak 

Then Eq. (2.80) can be expressed as 

f(z i , z 2 , 	, zk)=f(Z)--. 	 1 	T 

(270k /21 R i 112 	— ex13{ -2- 1Z R ZI) (2.94) 

where 

R= 

1 	P2I 	 Pk11 

P2! 	1 	Pk2 

[. 	 • 
• 

Pk1 Pk2 

(2.95) 

is the correlation matrix. The z 1 , z 2 , 	,z k  are standardized normal 
variates with zero mean and unit variance. Equation (2.94) is easier to 
manipulate because of its simplified structure. For the bivariate normal we 
have 

1  
f(u, u) — 	 exp{  

2V p' 	2k 1  — 19 - 
„ 

) 
Ft./ 2 — 2puu + v 2j} 	(2.96) 

7T  

where z 1  = u, z 2  
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Let S 	" 	be a set of arbitrary variables. Then the multi- 
variate normal moment generating function is given by 

M,,4 (S) = E(e sTx ) 

=exp(ST I.t. 	S'S) 
	

(2.97) 

and for standardized variables we have 

M z (S) ---..E[exp(S TZ)1 

exp( -SRS) 

I \-,k  ‘-‘k  
---.exp(— 75 

e-- 	- 
Piis1s,) (2.98) 

Also for k =2, 

Mz (S)=exp( ---fl i ipuse0 
1=1 I- I 

2 	2 =exp[— (s, + s 2  + 2p 12s 1 s 2 )} (2.99) 

The multivariate normal provides a convenient starting point for factor 
analysis owing to the equivalence between zero correlation and indepen-
dence, as indicated by the following theorems. 

THEOREM 2.10. A set of multivariate normal variates X 1 , X2, . . . Xk 
are independent if and only if X is diagonal. 

PROOF. Independence implies zero correlation for any two normal 
random variables X and Y since 

cov(X, Y) E(xy) — E(x)E(y) 

= E(x)E(y) --- E(x)E(y) 

=0 	 (2.100) 

using Eq. (1.28). Conversely, when cov(X, Y)= 0, X is diagonal and the 
multivariate normal can be factored into a product of univariate normals. 

Example 2.9. Under zero correlation the bivariate normal (Eq. 2.91) 
can be expressed as 
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f(x, y)= 7;  expi — 
( X 	 1 2  (Y 	Y  ) 2  I cry  

	

1 	1 (x —  )1 	 1 	1 

	

F.; 	exp[ 	
2 	

ex p[ — 2  

	

v z 	L 	(ix 	 v z ffy 

=f(x) f(Y) 

op - 1.45:\ 21 
‘‘ (Ty  ) 

a product of univariate normals. Two points must be kept in mind 
concerning independence, zero correlation, and normality. First, it is 
insufficient that a multivariate distribution be factored into a product of 
fuLctions, each involving only a single variable, to establish distributional 
independence—each term in the product must be a univariate probability 
function. Second, although multivariate normality implies marginal normali-
ty, the converse does not hold, since it is easy to provide examples of 
nonnorrnal bivariate distributions whose marginal distributions are normal 
(Anderson 1984, p. 47; Broffitt, 1986). Thus independence and zero 
correlation are equivalent concepts only under joint (multivariate) normali-
ty, not simply marginal normality. It is possible, therefore, to have 
univariate normal variates which are uncorrelated but dependent (e.g., see 
Behboodian, 1990). 

THEOREM 2.11. Let X — N(L, X), Then any subvector of X is also 
multivariate normal, with the correspondingly reduced mean vector and 
covariance matrix. 

Theorem 2.11 states that multivariate normality is preserved in any subspace 
so that multivariate normality implies normality of all marginal distributions. 

Multivariate independence can also be generalized as follows. Consider 
the two subvectors of X = X 2 )T  which partition the covariance matrix of 
X as 

1_ 

 [

1. 11 112] 

/21 / 22 

where 1 21  =IT12 . Then the following theorem holds. 

(2.101) 

THEOREM 2.12. The multivariate normal subvectors X 1 , X 2  are distribut-
ed independently if and only if 1 12  =X121  =0. 

PROOF. When 1, 12  =0 the second part of the exponent in the moment 
generating function (Eq. 2.97) can be expressed in the partitioned form 
(Eq. 2.101) as 
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, 	 - sTls = SS ST I S 

	

1 	11 	1 	2 	22 2 

We have 

T 	1 
1  Mx(S) exp(S Toti l  - ST/ 1 / S i  eXP(5

Q 	— S 2 . 2 	2 2 22S 2 

implying f(X)=MX I )f2(X 2 ), where f(X 1 )= N(p.,„ I lt ) and f(X 2 )= 
N(p.2 , Iv ). It follows that the subvectors are distributed independently. The 
converse of the statement is also true. 

THEOREM 2.13. The multivariate normal random variables X I , 
X2, . Xk  are mutually independent if and only if they are pairwise 
uncorrelated. 

The proof consists of invoking Theorem 2.10 and using the moment 
generating function (Eq. 2.97) (see Exercise 2.1). 

It can be concluded from these theorems that independence of normal 
random variables depends on whether is diagonal. Since any Grammian 
matrix can be diagonalized by a similarity transformation (Section 2.6) it 
follows that a set of multivariate normal variates can always be transformed 
to an independent set by a rotation of the associated quadratic form 
(Theorem 2.10). Of course a correlated set of nonnormal variables can also 
be rotated to an uncorrelated form, but this does not necessarily achieve 
independence. 

Example 2.10. For the bivariate normal the correlation matrix is 

R = [ 091 P1 ] 

and to reduce R to diagonal form we solve (R - A,1)1 3, = 0 where A„ P, are 
latent roots—vectors. We have 

	

1 - A 
	P 	

= p 	1- A  

or 

A 2  -2A +(1 - p 2 ) A 2  - 2A + (1 - p)(1 + p) 

[AO - ORA ( 1  +01 

=0 

with solutions A = A t  = 1 + p, A = A 2  + 1 - p. When p = 1 the correlation 
matrix is singular, A i  = 2, A 2  = 0, and the bivariate normal degenerates to 
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Figure 2.5 A bivariate normal distribution rotated to independent form. 

the univariate case. Also when p = 0, A t  = A2  and the ellipse (Fig. 2.5) 
assumes the isotropic circular form. For 0<p <1 we have A /  > A2 , and for 

<p <0 we have A l  <A2 . To obtain the latent vectors we solve the 
normal equations (Eq. 2.86), that is 

PP11 PP12 

PP11 - PP12 ° 
2 4_ 71 2  

P11 	V21 

for A I  = 1 + p and 

PP?) PP22 ° 

PP21 PP22 ° 
2 	2 

P21 + P22 = 

for  Az   = 1 —p.  The solutions are then given by P I  = (NrCif, Nfl 12)T , P2 = 
(V1/2, —V1/2)T . Note that the latent vectors do not depend on p. This is 
considered further in Chapter 3 when we examine the case of equally 
correlated variates. Continuing with the example, the exponent of the 
bivariate normal [omitting the proportionality constant —(1/2)(1 —p 2)1 can 
be expressed as 

—2puo + V 2  = [U, 01[ 1p  Pi ] rui ] 

= [z „ zdr +0  P ) ( 1 01[2;21 
= (1 + p)z 2, (l —ja)z 
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where z 1 , z 2  are new independent normal variables. 
The multivariate normal distribution has two additional useful properties 

apart from those considered in Theorems 2.9-2.13; (1) all conditional 
distributions are normal, and (2) the conditional expectation is linear in the 
conditioning variables, El 

THEOREM 2.14. Let X = 	X 2 ) 1.  where X„ X2 are partitions of a 
multivariate normal vector X. Then the conditional distribution of X I , given 
X2, is multivariate normal with expectation 

+ 1121 22' (x 2 -- 

and covariance matrix 

„ 12 22 ' 1'12 

IL, and 	(1, j = 1,2) are suitable partitions of the mean vector and 
covariance matrix respectively. Note that the expected values of X I  are 
linear functions of the conditioning random variables X2 . In this sense, it 
may be said that linearity characterizes the normal distribution and vice 
versa. Several other characterizations involving linearity can also be estab-
lished. 

THEOREM 2.15. Let X 1 , X2, . . , Xk be independent random variables 
each distributed as the univariate normal N(A, (4), i = 1, 2, . , k. Then 
any linear combination y .= a ,x, + a2x 2 + - + ak xk = al X is also univariate 
normal with the mean ai and variance a rIa, where = diag(a.). 

PROOF. The moment generating function of X i  is 

1 
M(s) exp(p,„s 	

2 2) 
cr,s 	(1 = 1, 2, 	, k) 

and since X, are independent normal they must also be uncorrelated 
(Theorem 2.13). The moment generating function of a linear combination y 
is then 

Mr(s) = in A /(a is) 

2 2 2) 11 exp(kt iais — -2- (r i ai s 
I-1 

1  2  = exp(s E /L i tz ;  --s 	Gri 2 
(2.102) 

the moment generating function of a univariate normal variable with mean 
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= 	ar m., aT p, 
,-! 

and variance 

atxa  

where is diagonal owing to the independence of Xi , X2,.. X k 
It is incorrect however to conclude that linear combinations of univariate 

normal variables are necessarily normal. The correct condition is that the 
random variables be multivariate normal. Also, using the Central Limit 
Theorem, Theorem 2.15 can be extended to sums of nonnormal indepen-
dent random variables with finite means and variances. The resultant 
distribution however is only asymptotically normal. For further results along 
these lines see Muirhead (1982). Exact normality of linear combinations of 
random variables can be obtained under conditions of the following 
theorem. 

THEOREM 2.16. Let X be distributed as the multivariate normal N(L, /). 
Then r k linear combinations V= AX, where A is (r x k), are distributed 
as the multivariate normal N(Ap., A TIA). 

PROOF. The moment generating function of the vector 1 7  is 

E(e s1 Y)E(eslAX ) 

E[e(Als)11 

= exp[(ArS) r p., 	(A'S) (A'S)] 

= exp[S1  (Aix) — S T(A/AI  )S1 

which is the moment generating function of the multivariate normal 
N(Ap,, A/AT ). 

The multivariate normal also possess a unique linearity property in that 
every linear combination of its variates is also normal. 

THEOREM 2.17. (Frechet, 1951). Let X possess a multivariate distribu-
tion with mean vector p, and covariance matrix /. Let y = a rX be a linear 
combination such that y is univariate normal for any a O. Then X is 
distributed as the multivariate normal N(p., /). 
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PROOF. The moment generating function of y is 

1 
E(e i x ) = exp(sa T p. — 2

a
Txa) 

for every value of the scalar s. Letting s =1 we have 

exp(a Tii 	aTXa) 

which is the moment generating function of the multivariate normal 
MIL, 1). 

The converse question to ask is how many normal linear combinations 
are required to establish multivariate normality of the random variables. 

THEOREM 2.18. If every linear combination of XI , X2,.. , Xk  is 
normally distributed, then X = (X 1 . X2 .. 	XX is multivariate normal. 

The stress in Theorem 2.18 is on the word every, since all linear 
combinations must be normal to ensure multivariate normality of X. If only 
r <k linear combinations are normal, this is not sufficient to establish 
multivariate normality of X. A counterexample is given by Melnick and 
Tenenbien (1982) for k = 2. 

THEOREM 2.19. (Generalization of Theorem 2.15). 
Let X I , X,,. . ,Xk  be (k X 1) vectors, each distributed independently as 

N(R•, X i ) (1 = 1, 2, . . , k). Let Y = AX + A 2X 2  + • • • + AX k  where A, 
are fixed (m x k) matrices such that m k. Then Y 	A,Xi  is distribut- 
ed as the m-dimensional multivariate normal with mean vector 
and covariance matrix E,k=1  Ai X i A,T . 

This theorem possesses a number of special cases of interest. For 
example, when A i  = I the sum of multivariate vectors X 1  + X 2  ' • • + Xk is 
distributed as the multivariate normal with mean vector E. and 
covariance matrix E,k, Xi . The converse, a multivariate generalization of 
Cramer's (1937) theorem, is also true. 

THEOREM 2.20. (Multivariate generalization of Cramer Theorem). Let 
, X2 , .. Xk  be independent random vectors. Then when the sum 

Y = + X2  + • • ' Xk  is multivariate normal, each X i  (i ---- 1, 2, , k) is 
also multivariate normal. 

For a proof the reader is referred to Srivastava and Khatri (1979). Cramer's 
(1937) original theorem states that if the sum of k independent random 
variables is normally distributed, each random variable is also normal. When 
the random variables are not independent, the result is not necessarily true. 
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The main properties of the normal distribution can be summarized as 
follows. 

I. Let X be a k-dimensional random variable such that X N(R, 1). 
Then each component X, of X is marginally univariate normal. Also, each 
subvector X* of X is marginally multivariate normal N(L*,1,*) where p,* 
and I.* are conformable partitions of p, and The converse, however, is 
not true since a set of k normal random variables need not possess a joint 
multivariate normal distribution. It follows that if random variables are not 
marginally normal, they cannot possess a multivariate normal distribution. 

2. Linear combinations of independent normal random variables are 
normally distributed (Theorem 2.15). Also, linear combinations of multi-
variate normal variates are normal (Theorem 2.16), A linear combination of 
correlated normal random variables however is not necessarily normal. This 
demonstrates the looseness of the statement "linear combinations of 
normally distributed random variables are normally distributed." For a 
bivariate illustration see Rosenberg (1965). 

3. We have from Theorem 2.19 that a sum of independent normal 
variables is normal. Also from Theorem 2.20 we have the converse that if k 
vectors X t , X2 ,. „ Xk are distributed independently, and if in addition 
their sum Y is normal, then each X, (i — I, 2, . . , k) must be normal. 
When X i  are dependent, the result does not necessarily follow, since one of 
the following may hold. 

(i) The X, are marginally normal, hut the sum V = 	X is not 
normal. 

(ii) The X, are marginally not normal, but the sum V = E k. X. is I 
normal. 

For examples of these two eases see Kale (1970). 
4. Finally, of major importance in multivariate analysis is the relationship 

between independence and uneorrelatedness (Theorem 2.10), namely, that 
multivariate normal variates are mutually independent if and only if they are 
mutually uncorrelated. The essential condition is that the variates be 
multivariate normal, not merely marginally normal, since the latter con-
dition is not enough to establish uncorrelatedness as a necessary and 
sufficient condition for independence. 

The following example (Behboodian, 1972, 1990) illustrates the looseness 
of the statement "two normal random variables are independent if and only 
if they are uneorrelated." 

Example 2.11. Consider two k-dimensional normal distributions 
f1 (x 1 ,x 2 ,...,x k ), 	 ,x k ) together with the linear combination 

E 	 (2.103) 
1-I 
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where p l  +p2  =1 and 0<p1  < 1 for i 1, 2. Equation (2103) is a probabil-
ity density function known as a mixture of (two) normal distributions f,  f2 . 
Assume both normal distributions are standardized to zero mean and unit 
variance. Let R 1  = (pill ) and R2 = (p,12 ) be the two correlation matrices for 

12  respectively. Then the moment generating functions off t , h are given 
by Eq. (2.98) and that of the mixture by 

M(s i ,s2 , . 

2 

• sk = E P1mAs1,s2, • • • ,sk) 
 il 

1 	
k 

=Pi exP(— 

k 

 E pipsisi ) 
i-l i =1 

 

 

ik k 

±- /32 ex13 ( — 	13„2 (2.104) 

The marginal distributions of the x i  are univariatc normal, whereas their 
joint density is a mixture of two bivariate normal densities and thus cannot 
be normal. Also, from Eq. (2.104) it follows that the correlation coefficient 
of any two normal variates x ;  and xi  (in the mixture) is 110 . 1.D in 4-  P2PtiV Now 
let p 1  =p2  and piii  = pio . Then although x i  and x i  are not independent in f, 
and f2 , since R I , R2  are not diagonal, they are nevertheless uncorrelated in 
the mixture Eq. (2.103). 

To illustrate further the relationship between normality and indepen-
dence consider a mixture or two trivariate normal distributions with 
correlation matrices 

[

1 0 	 I -13
i of 

	

0 	 R2  = [ —p 

	

— P 	 P  1 	 p Oh 

where p<111(2.  to ensure positive definiteness (Behboodian, 1972). The 
moment generating function of the mixture is 

1 	/ 	2 
/WS!, S2, S 3 ) =p1 exp[ — (si + s 2  + s— 2ps i s3  + 2ps2s3] 

	

1 	2 	2 	2 
p 2  exp[ — -2- (s + s2  + s3  — 2ps 1 s 2  + 2ps i s 3 )] 

(2,105) 

and letting p i  = p2  = 1/2 we observe that although the normal variates x 1 
 and x3  are uncorrelated, they are not independent. Also, the linear 

combination y i  =x 1  + x2 + x3  is normal but y 2  =x 1  — x2  + x3  is not. 
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2.8.2 Sampling From the Multivariate Normal 

The multivariate normal distribution is completely determined by its mean 
vector IL and covariance matrix X. In most instance, however, when dcaling 
with empirical observations the values of p, and are not known. Thus 
given a multivariate normal population, and given a finite random sample 
from the population, there remains the additional question of how to 
estimate p. and X. A commonly used technique is that of maximum 
likelihood (ML), which possesses certain optimality properties. Analogously 
to Eq. (1.15), the multivariate normal likelihood function can be obtained 
as follows. Given the ith observation vector we have 

1 	t 
f(Yo Yi2 7  • " 7 Yrk) — 

(270
1/2

111
1/2 exPl 	[(31 - 1-0 TX -1 (Y, - R)1I 

(1 = 1, 2, . 	, n) 

where y, is the ith row of V. For an independent sample the multivariate 
likelihood function becomes 

L(11., X) f(Y5AYT) 	f(y) 

	

1 	1 

	

(27o nk 	exPI 	E (y, 	- P.)} 

(2.106) 

and taking natural logarithms we obtain 

L*(R,X) = 	nk In(27r) 	n 1n11,1 - L (y, 	 - IL) 

(2.107) 

where ML solutions are given by 

The ML estimator of the mean vector p. is thus given by 

p.) 

- 0 

or 
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=Pk) (YY2, • 

(2.108) 

The ML estimator of p., is thus simply ft', whose components are univariate 
sample means of the k random variables. The ML estimator for X can be 
derived in at least one of three ways (see Anderson, 1984; Rao, 1965; 
Morrison, 1967). In what follows we outline the proof presented by 
Morrison, which is somewhat less involved. Using matrix derivatives 
(Section 2.2) and Eq. (2.107) we can write 

OL 	1 	TZ —1  
+ a Jp )i 1 (y, — IA) = 0 (2.109) 

where 6' 17  is the (i, j)th element of i -l and matrices i,, arc defined in 
Section 2.3. Since the expression under the summation is scalar, it equals its 
own trace and Eq. (2.109) becomes 

E (y, 	 Jp)I -1 (Y, — IL) 

tr E (y, - P)(Y, - tol), - ‘00  +4)X - ' 

a well-known property of the trace function. The k(k + 1)/2 normal 
equations are then given by 

+ i - " E (y i — Y)(y i  	(2.110) 

where p. has been replaced by the ML estimator Eq. (2.108). Solving Eq. 
(2.110) yields 

1 fl 	
1 n  T = E (yi - v)(Yi - v) r 

 =— 2,  xixi n 	 n 

=s 

the (biased) ML estimator of X. An unbiased estimator is obtained by 
replacing n with n — 1. 

Results that arc similar to univariate sampling theory can also be derived 
for the multivariate case. 

THEOREM 2.21. Let Y denote a (n x k) sample matrix taken from 
N(p., X). Then for an independent and identically distributed sample 

(1) V is distributed as N(p, —
1
n  X). 
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(2) Let Vi'. 1 x i x:" . = XIX where X = Y — V and x i  denotes the ith row 
of X. Then X TX is distributed as the Wishart distribution. 

f(XTx) = c lirrinixTxi(n-k -)12 exp( -- n  trSX -1 ) 2 

where the constant c is given by 

(2.112) 

(2.113) 

When k = 1 the Wishart assumes its special univariate case, the chi-squared 
distribution. The Wishart distribution plays an important role in maximum 
likelihood factor analysis and is discussed further in Chapters 4 and 6. 

The normal maximum likelihood function can be expressed in several 
alternative forms, all of which will be found useful in subsequent chapters. 
We have, for the exponent part of Eq. (2.106), 

(Yi 1.01I -1 (Yi 	IL) 	tr 	(yi 

n 
= 	tr(Y• 1-0 1.1; _ 

1
2 	tr 	— PINY, — 

-2-1  tr[1, 	(Yi 	IL)(Yi 

= — —2 tr[I -1 X1 X] 

where x, = y r  — p. It follows that the likelihood (Eq. 2,106) can also be 
written as 

III n12 
1 

i(X) —  ( 	2 7r )n k I 2 eXP[ 	tr(i -I X I X)] 

Also, for the likelihood function, y i  is the ith row of the matrix 

Y!! Yt2 	* Yu 

[.... 

Y2I Y22 

, 	 . 

. 	 . 

Y ni Y2 	

. v 
•Y  2k 

• . 	Y,1 

Y 

(2.114) 

and p is the vector of population means. Let I = (1, 1, . . . , 1) T , the unity 
vector. Then the likelihood (Eq. 2.106) can also be expressed as 
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1 
f(Y) = c exp[ — -2- (Y — 11i)(Y — (2.115) 

where c is the constant of proportionality. When p. is not known it can be 
replaced by V. and another form of the likelihood is 

1 
f(Y) = c exp[— -2-  tr(1, -  )(YT Y — 	-17 )] (2.116) 

since XTX = YTY — 	For further information the reader is referred to 
Anderson (1984), Srivastava and Carter (1983), Muirhead (1982), and 
Morrison (1967). 

2.9 THE KRONECKER PRODUCT 

Let A and B be (n x k) and (m x r) matrices respectively. Then the product 

a 12 B • 1 craft 
a 21 B a22B . 	• • a2kB 

C=A0B= [a

n ti 

. 

anl ii an2B 

is known as the Kronecker product. Other names include direct product and 
tensor product. Since C is (nrn x kr), A and B are always conformable for 
multiplication. The Kronecker product has the following properties (see 
Exercise 2.12). 

I. Anticommutative law: AOB 0 BOA. 
2. Let A, B, C, and D he matrices for which the usual matrix products 

AC and BD are defined. Then the matrix product of Kronecker 
products is given by (A0B)(C OD) = ACOBD. This generalized to 
any number of products. 

3. Associative law: AO(BOC)= (A0B)OC. 
4. Transpose of a Product: (A B) T  AT  BT . 
5. Let A, B, C, and D be conformable for matrix addition. Then 

(A +B)0(C+ D)= (AOC) + (AOD)+(BOC)+ (BEM). 
6. Let A be an (n x k) matrix. The Kronecker power is defined as 

kr+1)  AO kr)  where r = 1, 2, ... , n. 
7. The trace of the Kronecker product is the product of traces, that is 

tr(A B) = tr(A) tr(B). 
8. The rank of a Kronecker product equals the product of ranks, that is 

p(Aos) p(A) p(B). 
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9. Let A and B be (n x n) and (m x m) nonsingular matrices, Then 
(A ®B) = A -1 0B 1 . 

10. Let A and B be (n x n) positive definite (semidefinite) matrices, Then 
A OB is positive definite (semidefinite), 

11. Let A and B be (n x n) and (m x m) nonsingular matrices. Then 
1A0BI= 

12. Let A-  be a generalized inverses of A, that is AAA = A. Then for 
any two matrices A and B we have (A ®B) = A -  OW- . 

13. Let A +  and B +  be left inverse of any two (n x k) and (m x r) 
matrices, that is AA = II, and BB =1,, where lk and I, are (k x k) 
and (r x r) unit matrices, Then (A' B 4-  )(A B) = Ii,, where 1 k, is 
the (kr x kr) unit matrix, 

14. Let A = PLPT  and B QMQ T  where A and B are square matrices of 
order n, P and Q are orthogonal, and L and M are diagonal. Also let 
A OB = C. Then C has the spectral representation C = RNR T  where 
R =POQ is orthogonal and N a diagonal matrix. 

PROOF. We have 

C=A0B= (PLII T ) (QMQT ) 

-_-,.(p0Q)(LOM)(P T OQ T ) 

.(p0(2)(LOM)(POV 

where 

(POQ) 1 (POQ)=(P 0(i)(POQ) 

so that R is orthogonal, Also N = LOM is diagonal so that C = RNR T  is the 
spectral representation of C. 

15. More generally, let C = (A i  OB I ) + (A 2  OB 2 ) + • 	+ (Ak  OBk ) 
where Ai  and B, are square matrices of order n. Then if y is a latent 
vector of all the matrices B 1 , B2 , 	Bk so that Il ly =A 1 y (i = 1, 
2,... k) and if x is a vector such that (A 1  A 1 + A2 A 2  +...  + 
Ak Ak )x = /IA then IL is a latent root of C and 
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C(x0y) =(A i  CDB 1 )x0y 

= E (Aix) (B,y) 

= E (A,A,x) y 

gxel) 

Further properties and applications are given by Graham (1981). 

2.10 SIMULTANEOUS DECOMPOSITION OF TWO GRAMMIAN 
MATRICES 

The spectral decomposition of a Grammian matrix (Section 2.5) can be 
generalized to that of a decomposition of a Grammian matrix A in the 
metric of B, where B is any nonsingular matrix. This yields a simultaneous 
decomposition of the two matrices A and B. When B is positive definite we 
have the following important special case. 

THEOREM 222. Let A and B be symmetric matrices such that B is 
positive definite, and let 

(A — A,B)P, = 0 	 (2.117) 

Then the latent roots A, and latent vectors P, of A, said to be in the metric of 
B, have the following properties: 

(1) There exists a real diagonal matrix A = diag(A,) 	and a real 
matrix P, such that 

PTAP = A 	 (2.118) 

PIBP = I 	 (2.119) 

(2) A and B can be decomposed simultaneously as 

A =(P)TAP 

= A I S I ST + A2 S 2S.21.  + " .AkS kK 	 (2.120) 

B=(P 1 )TP -1  

=S I ST +S 2 S .2r  + • • +SkS IT, 	 (2.121) 



SIMULTANEOUS DECOMPOSMON OF TWO GRAMMIAN MATRICES 	 89 

where S, is the ith column of (P -1 ) T . 
(3) The roots A, are invariant with respect to coordinate transforma-

tion, that is, for a nonsingular matrix C we have 

IC TAC — A(C TBC)I = IC T(A — AB)CI 

= IC T I 	ABI ICI 
and setting to zero yields 

IC TAC — A(C TBC)1= IA — ABI = 

the characteristic equation of Eq. (2.117). 
(4) Equation (2.117) is equivalent to 

	

(11 -1 A Al)P-0 	 (2.122) 

where 11 -1 A is not necessarily symmetric and the latent vectors 
need not represent an orthogonal coordinate system, that is, 
PTP I. 

An alternative way to express Eq. (2.117) which may be more 
convenient for statistical computation is as follows. Since B is 
Grammian, by assumption we can write B= W where W is 
nonsingular (Theorem 2.9). Let Q, =WP,. Then Eq. (2.117) can 
be expressed as 

AW -  = A,W 

kwr Q  

that is, 

	

— MN, 	= 0 
	

(2.123) 

(i = 1, 2, . . . , k) 

The advantage of Eq. (2.123) is that matrix .  (W T ) --1 AW -- " is symmetric, 
unlike 11 -1A, so that the latent vectors Q, can be chosen orthonormal. Also 
it can be shown that Eqs., (2.118) and (2,119) still hold in Eq. (2.123) 
(Exercise 2.18). 

Finally we note that Eq. (2.117) can be derived by maximizing the 
quadratic form (Eq. 2.118) subject to a constraint (Eq. 2.123). Let A, be a 
Lagrange multiplier. Thus maximizing 

	

= P,TAP, A,(P,TBP, —1) 	 (2.123a) 

( 5 ) 

we have 
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=AF — A.BP. = a  pi  

or 

(A — A,B)P, = 0 	(1, 2, . . . , k) 	 (2.124) 

2.11 THE COMPLEX MULTIVAR1ATE NORMAL DISTRIBUTION 

Although most statistical analyses are conducted in terms of real numbers, it 
is at times necessary to consider the more general complex plane. Complex 
random variables were already encountered in Section L7 together with the 
notion of a complex multivariate distribution. In this section we examine the 
complex multivariate normal distribution together with the Hermitian 
complex matrix and its spectral representation. 

2.11.1 Complex Matrices, Hermitian Forms 

Definition 2.8. A complex matrix C is a matrix that contains at least one 
complex entry. The complex conjugate C is the matrix whose entries consist 
of the complex conjugates where cu  is the (i, j)th element of C. 

Of special interest are the so-called Hermitian matrices which, in a sense, 
are complex equivalents of real symmetric matrices, and which play an 
important role in the complex multivariate normal distribution and its uses, 
e.g. in multiple time series analysis. 

Definition 2.9. The Hermitian transpose of a complex matrix C is the 
matrix CH = CT.  A matrix is said to be Hermitian if and only if C" = C. 

THEOREM 2.23. Let A and B be any two complex matrices. Then 
(1) (AB) = AB
(2) (A) r  = (AT ) 

(3) AH A is real 

(4) (A") H  = A 
(5) (AB) H  = B"AH  

The proof of the theorem is left to Exercise 2.19. 

Definition 2,10. The matrix P is said to be unitary if and only if 
pi-1p = ppH the identity matrix. 

A unitary matrix is the complex counterpart of a real orthogonal matrix. 

dcA 
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Definition 2.11. The matrix A is said to be normal if and only if 
AH A = AA". 

Examples of normal matrices are unitary and Hermitian matrices (Exercise 
2.15). 

Definition 2.12. Let X and Y be two (ti x 1) complex vectors. The 
complex inner product is the scalar X • Y = i y 1  + 12.Y2 ' • • + ion . The 
norm (length) of a complex vector X is then given by (X • X)" 2 . 

Note that by Definition 2,12 (X •X) >0 if X 0 0. Also (X • Y) = (Y • X), the 
property of Hermitian symmetry. In matrix notation we can write the inner 
product as X Ty so that i Ty = VTX, A quadratic form can then be expressed 
as X AY and the question arises as to whether a complex form can be 
rotated to independence using the spectral properties of A. 

THEOREM 2.23a. Let C be a (k x k) Hermitian matrix. Then 

(1) The latent roots of C are real. 

(2) C possesses k orthonormal latent vectors. 

PROOF 

(1) Let P. be a latent vector which corresponds to the latent root 
(i = 1, 2, 	, k), Then CP;  = AP and premultiplying by P:r  we 
have 

PTCP,= Ai 	 (2.125) 

Also 

cP, )F1  = API ) H 

Or 

A  1. -1 

Or 

(2.126) 

since C is Hermitian. Post-multiplying (2.126) by Pi , subtracting 
Eqs, (2.125) and (2.126) we have 

— PP1 A PTP,(A, — 	= 0 

	

and since P ITP, 00 for Pi  0 0 we conclude (A i  — 	= 0, that is, 
A,= A. which is only possible when A i  is real, 
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(2) We have CPi  = A,Pi , CP/  = A i llt  for any two real, distinct latent 
roots of C. Premultiplying by Pi  and Pi  respectively we have 

PTCPi  = A III) , 

Subtracting the two expressions yields 

(PTCP, — CPI) = 	— A i ) 	(2.127) 

Since both terms on the left-hand side are scalar quantities, each 
must equal its Hermitian transpose, and we have 

f„T cp,  _ ( f„Tcp,) H 

= PrC"(PiT ) H 

 = Vir CP, 

Since C is Hermitian. It follows that the left-hand side of Eq. 
(2.127) is zero and 

PiT p(Ai  — A i ) = 0 

Since Ai  0 Ai  by assumption it follows that PJP , = 0, implying that 
Pi  and Pi  are orthogonal vectors. 

When all k latent roots are not distinct it is still possible to find a set of k 
mutually orthogonal latent vectors, analogously to the real case. Since a real 
symmetric matrix is a special case of a Hermitian matrix, we have also 
proved that a real symmetric matrix must possess real latent roots and 
mutually orthogonal latent vectors. When the symmetric matrix is positive 
(semi) definite the latent roots are also positive (nonnegative). Of interest in 
statistical analysis is the complex generalization of a real quadratic form, 
known as a Hermitian form. 

Definition 2.13. A Hermitian form in the complex-valued variables 
x2 , 	, xk  is a function of the type 

k k 

h = E E 
J -1 

= ITcx 

where C is a Hermitian matrix. 
The matrix C can be real or complex. When C is real h is known as a real 

Hermitian form. When the variables X are also real-valued, then a Hermi-
tian form becomes a (real) quadratic form (Section 2.7). Actually the main 
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results concerning Hermitian forms parallel closely those obtained for 
quadratic forms. Thus a Hermitian form can be rotated to independent 
form, analogously to a real quadratic form. We have the following theorem, 
which may be considered as the basis of a principal component analysis in 
the complex plane (see Section 5.7). 

THEOREM 2.24. Let C be a (k x k) Hermitian matrix and P a (column) 
latent vector (unitary) matrix. Let X be a (k x 1) vector of complex valued 
variables such that X = PZ. Then 

iTCX = A I  i l Z, + A22 2 Z2  + • + Akikk 	 (2,128) 

PROOF. We have 

fiTcx = iTtiTcpz 

= 21-AZ 

= A ti t z + Ai2z2  + 	+ Akikzk 

2.11.2 The Complex Multivariate Normal 

Let 

Z =[z 1 , z 2 , 	, z pr 

= [x + iy 1 , x 2  + 	. . 	Xr  iY i9 ] 	 (2.129) 

a complex vector of random variables (Section 1.7) where V= [x i , y, x2 , 
y2, , xp , ypi is 2p-variate normal. For the sake of simplicity we assume 
E(V) = 0. Then Z is said to follow a p-variate complex distribution. A 
question arises as to whether Z can be expressed in a functional form 
equivalent to Eq. (2.80). It turns out that this is only possible in the special 
case where 

1 	, 
var(xi ) = var(y,) 

cov(xj , yi ) = 0 

for the same complex variate, and 

1 
cov(xi , xk ) = cov(Yi, Yk) = -2" aikai crk 

1 
cov(x y k ) = —cov(x k , yj )---- -f Pik frio-k 

for different complex variates (Wooding, 1956; Goodman, 1963). Here ajA 



1 1 [1 
[E(xixk ) E(x/Yk)] 	—2- 0  

E(yfr k ) E(y l y k ) 	Irk 
2 pik  

j = 

j k 

(2.130) 
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and 13. are arbitrary constants. Thus the (2p x 2p) covariance matrix 
E(Vii) =I consists of (2 x 2) submatriees of the form 

The corresponding zero mean p-variate complex normal random variables Z 
then have their distributions specified by (p x p) Hermitian covariance 
matrices 

= E [ZZI 

with typical element 

E:(z,ik )= (°ik ) 

where 

2 
k 

= jk 
iPik)Critrk 

(i = k) 
(jk) 

(2.131) 

and can be expressed in the form 

f(Z) — p
i

ll 
 exp(Z u % I Z) 

ir 
(2.132) 

The term "complex multivariate normal distribution" is then usually 
restricted to the special case for which the restrictions of Eq. (2.130) hold. If 
Z 1 , Z2, . . Zn  is a sample of n complex-valued vectors from Eq. (2.132), 
then the sample Hermitian covariance matrix 

n 
i=—E zzft in 	I I-1 

(2.133) 

is the (sufficient) maximum likelihood estimator of I. Let A = 	Then the 
joint distribution of the (distinct) elements of A is the complex form of the 
Wishart distribution given by 

lAr - P  
./(A) — 	exp[—tr(X -I A)] /(X) (2.134) 

where ./(X) = 	t)f(n)f(n — 1). . .f(n p + 1)12:In (Goodman, 1963; 
Srivastava and Khatri, 1979). 
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EXERCISES 

2.1 Prove Theorem 2.13. 

2.2 Let Y be a (n x p) data matrix and J the (n x n) matrix consisting of 
unities. Show that the sample covariance matrix can be expressed as 

S 	[YT (I – J)Y1 

where I is the identity matrix. 

2.3 (Albert and Tittle, 1967). For the probability function 

f(x l , x2
) = I—exp 1 	I 2 	2‘ k + x2 /I 	0; x i  0,x2 0 Is  

(a) show that it is zero in the second and fourth quadrants of the 
(x i , x 2 ) plane and is consequently not bivariate normal. 

(b) Show that the marginal normal densities fi (x i ) and f2 (x2 ) of 
f(x i  , x2 ) are standard normal. 

2.4 Verify Theorems 2.5-2.7 using matrices of Example 2.6. 

2.5 Prove Theorem 2.22. 

2.6 Let X = (x 11 ) be a (n x p) matrix. Show that 

11 	p 

E E x?. = tr(XX T). 

2.7 Prove Eq. (2.35) for the inner product, and verify the three prop-
erties of the inner product. 

2.8 Verify Eqs. (2.44) and (2.48) for the covariance and correlation 
coefficients respectively. 

2.9 Using Example 2.2 verify (within rounding errors) Theorems 2.5-2.7. 

2.10 Show, for Example 2.10, that 

0 	 x >0 x 	 X>'0 1 - 	2 - 	I - 9  - 
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A l - A2  
P — 

A1 + A2 

= 1/2(A, —A 2 ) 

2.11 Let X = (x 1 , x2 , . x131 , a (k x 1) column vector. Show that the unit 
rank matrix XX I  possesses the unique nonzero latent root A = X TX. 

2.12 Verify the Kronecker product properties of Section 2.9. 

2.13 Prove that a set of k random variables which do not have marginal 
normal distributions cannot be distributed as a multivariate normal 
distribution. 

2.14 Prove that unitary and Hermitian matrices are normal. 

2.15 Prove that for a symmetric matrix with strictly positive elements, (1) 
there exists a largest, unique latent root A i > 0, and (2) the latent 
vector Pi  associated with A l  can always be chosen to havc strictly 
positive elements. 

2,16 Prove Eq. (2.45). 

2.17 Show that Eq. (2.123) preserves Eqs. (2.118) and (2.119). 
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CHAPTER 3 

The Ordinary Principal 
Components Model 

3.1 INTRODUCTION 

Let X I , A'1 ,. . Xp  represent a set of random variables distributed as some 
multivariate probability function f(x, , x 2 , . xp ). The p variates need not 
be independent, and this gives rise to the essential distinction between 
univariate and multivariate distributions (Definition 1.10). An important 
special case arises when f(x i , x2,. . , xp ) denotes a multivariate normal 
distribution. As noted in Section 2.8, two further properties follow which 
make the multivariate normal of practical importance: (1) conditional means 
assume a linear structure, and (2) zero correlations become a necessary and 
sufficient condition for complete independence. Thus for a multivariate 
normal sample a significant lack of pairwise correlation infers population 
independence. This is the simplest situation for detecting independence 
between continuous random variables. Frequently random variables will be 
independent, for example, in experimental set-ups where treatments are 
manipulated independently of each other or other covarying influences. In 
both experimental as well as nonexperimental research, however, indepen-
dence is a relatively rare phenomenon in situations where variables cannot 
be collected in isolation from each other, This is because for a given sample 
(population) variables are usually collected within fairly narrow and well-
defined areas of interest, and this results in an intercorrelated set. There 
often exist unobservable or "latent" variables which have given rise to the 
correlation among the observed set, for example, responses of individuals to 
an opinion poll such as a market research questionnaire, which usually 
depend on unobserved traits such as taste and attitude. Also, variables may 
represent measurements of the same object, for example, body parts of a 
biological organism where dimensions of the constituent parts will depend 
on latent traits such as overall body "size" and body "shape". Alternatively, 
in the absence of latent variables, correlation may result from the existence 

97 
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of distinct groups or clusters of variables which possess a common property 
not shared by the remaining set(s), and here we may wish to extend the 
concept of correlation to apply to more than two variables. Furthermore, 
when an experiment possesses more than a single dependent (experimental) 
variable, we may observe significant correlation amongst these variables, 
even though the treatments are orthogonal. The class of models known as 
factor analysis then attempts to answer what is perhaps the most elementary 
and fundamental question in multivariate analysis: given a set of intercorre-
lated random variables, how can we reduce (estimate) the dimensionality of 
the vector space containing these variables, and at the same time (possibly) 
identify the source of the observed correlations? Differently put, how can 
we explain the systcmatic behavior of the observed variables by means of a 
smaller set of computed but unobserved latent random variables? From the 
perspective of data analysis these objectives are equivalent to the attempt of 
representing, with as little loss as possible, a large set of data by means of a 
parsimonious set of linear relations, which in turn can be considered as 
newly created random variables. 

The most straightforward model that seeks to achieve this objective is 
that of principal components analysis (PCA). The situation here is some-
what different from the least squares regression model since neither of the 
observed variables is assumed to he the dependent or the independent 
variable. Rather we suspect that the observed variates depend on a smaller 
number of unobserved dimensions or "variables" which may account for the 
systematic or true variance/covariance structure of the observations (Fig. 
3.1). The purpose for a dimensional reduction may then lie in the con-
venience of working within a smaller space, or else we may wish to estimate 
and identify what are felt to be real (but unobserved) influences or random 
variables. The former task is at times ascribed to principal components 
(PCs), whereas the latter is conventionally viewed as the objective of a 
"proper" factor analysis model, such as the maximum likelihood factor 
model (Chapter 6). A sharp distinction between the two types of models 
however is not warranted since the mathematical and statistical structures of 
both are not unrelated. Certainly in many applications PCs may be treated 
as if they were random variables capable of explaining observed behavior. 
The most elementary framework however in which to consider the ordinary 
PC model is in terms of an extension of the usual binary (bivariate) 
correlation coefficient to the multivariate case. The model has a wide range 
of more specific applications which include the following: 

1. Given a set of random variables, we may wish to examine the 
correlational pattern(s) that can exist amongst the variables. This may also 
be done interactively (Dumitriu et al., 1980). A frequent result is a 
nonhierarchical cluster analysis or a grouping (aggregation) of the variables. 
Conversely, we may be given samples of chemical or physical mixtures with 
the task of uncovering or "unmixing" their constituent parts. 
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Figure 3.1 A set of p = 4 observed random variables influenced by r = 2 latent factors. 

2. Uncovering unobserved explanatory variables which in a regression 
sense account for the variation in the observed set. In this context it is usual 
to attempt to identify the components (factors) in terms of real phenom-
enon. A related problem is to identify which factors are to be retained and 
which are to be discarded. Alternatively, for multivariate normal data we 
may wish to rotate the corresponding ellipse to its major (minor) axes. This 
results in a set of orthogonal (independent) normal variates, and is in fact 
the original context in which PC-type orthogonal rotations were considered 
by Bravais (1846). 

3. Rather than reduce the dimensionality of an observed set by discard-
ing needless components, we may wish to discard unnecessary variables 
from the observed set 

4. Given a set of homogeneous time series, for example, commodity 
prices, the aim may be to construct index numbers which represent the 
observed variation over a period of time. 

5. Given a stochastic process with at least a single realization, we may 
wish to perform a spectral decomposition of the observed process. The 
objective may be to filter random error or noise from a time series or a 
two-dimensional image, or to recognize a pattern in some configuration. 

6. Regression-type curve fitting. This may be carried out in at least four 
distinct fashions depending on the objective(s). (0 Given a least squares 
regression equation with highly multicollinear and/or error-prone explanat-
ory variables, we are to estimate the original equation while at the same 
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time correcting for the effects of multicollinearity and/or errors in the 
independent variables. Here the factors or components are used as in-
strumental variables and need not be identified with any real behavior. A 
byproduct of the exercise is an increase in the number of degrees of 
freedom, resulting from reduced dimensionality of the regressor subspace. 
(ii) Independent regression variables are decomposed into a smaller number 
of components-factors and these are used in place of the original explanat-
ory variables. This also provides an effective solution of multicollinearity 
and/or errors in variables and increased degrees of freedom. However the 
component-factors must actually be identified with some "real" behavior in 
order to achieve a sensible interpretation of the regression equation. (iii) 
Estimate a regression of the form fix ! , x2 ,. xp ) = 0 where all variables 
are treated symmetrically, that is, all are assumed to possess error terms. 
This is the original use of "principal components" in a regression setting, 
from Pearson (1901), who termed the procedure as the method of "planes 
of closest fit." As in other regression models, the variables should not be 
highly collinear. (iv) Estimate functional forms and growth curves. 

7. Identification of outlier observations; optimal matrix approximations. 

8, Classifying (scaling) individuals (sample points). Rather than analyze 
intercorrelations between variables, we may wish to study the interelation-
ships between the individual sample points. More generally we may wish to 
plot both variables as well as sample points in a joint space in order to 
reveal particular affinities of certain sample points to particular variables. 

9. Hierarchical clustering. Here the purpose is to construct a tree-like 
graph or a dendogram for classification purposes of sample points, given a 
set of variables or characteristics. When many variables are present it can be 
more convenient to use a reduced number of PCs to construct the 
dendogram rather than the original variables. 

10. For discrete (ordinal, nominal) data we may wish to investigate the 
existence of optimal continuous scales which maximize the Cramer correla-
tion within a (p x q) contingency table. Boolean (0, 1) matrices can also be 
analyzed, either within a network-type graph or an ordination (seriation) 
situation. 

11. Finally, graphical techniques such as biplots and others can be used 
in conjunction with principal components. 

More general decompositions, for example in the complex field, are also 
common and some of these are considered in subsequent chapters. Owing to 
the existence of statistical electronic computer programs, relatively large sets 
of data can be analyzed without great difficulty. For a brief description of 
factor analysis as a data analytic tool the reader is referred to Frane and Hill 
( 1976). 
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3.2 PRINCIPAL COMPONENTS IN THE POPULATION 

From a purely mathematical viewpoint the purpose of a population principal 
component (PC) model is to transform p correlated random variables to an 
orthogonal set which reproduces the original variance/covariance structure. 
This is equivalent to rotating a pth dimensional quadratic form to achieve 
independence between the variables (Section 2.7). A number of methods 
exist which can be used to orthogonalize a set of random variables. A PCA 
employs latent roots and latent vectors of a Grammian matrix to achieve this 
aim, initiated in statistics by Bravais (1846), Pearson (1901), Frisch (1929), 
Hotelling (1933), and Girschick (1936, 1939). The origins of the method 
probably go back to Bravais (1846) in the form of rotating an ellipse to 
"axes princ-ipaux" in order to achieve independence in a multivariate normal 
distribution (Sections 2.7, 2.8). 

Let X = (Xi , A',,. , Xp ) r  be a (p X 1) vector of continuous random 
variables with zero mean and covariance matrix E(XX 1 ) = X, and consider 
the linear transformation 

-= 77' 114 1  + 7T21 X2 	' ' ' 	7Tp  Xp  =ll,x 

C2= 712x + 	+ 	= H X2  

Cp = Tr! pX 1 + 7T2, X2 + • • • + V•p pXp = 111TX 

(3.1) 

where 

var(0 = E(e)= 	X)(11;I X)T1 

=11,rE(XX T)11, 

= HH 	 i = I, 2, , . 	p 	(3.2) 

and 

cov(C, C i ) = Eat , C 	ERI1T X)(11T Xi" 

— 11:r  E( X X T  )11 j  

EITXHi  

0ij 	(3,3) 

In matrix form, g =1R TX where g= , C2 	ir  are the new random 
variables and H is a (p x p) matrix of fixed, nonrandom coefficients. For the 
special case when X is diagonal, Xi  are uncorrelated random variables and, 
hopefully, each can be studied more simply by univariate methods. Here 
orthogonalization is clearly unnecessary since the new variables C I  are simply 
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proportional to the original X; . As the covariances between the random 
variables X1 , X2 ,. . Xp  increase, however, they tend to contain more and 
more redundant information and may be replaced by a smaller number r of 
orthogonal variables which account for a smaller but sufficiently higher 
percentage of the original variance. In the limit when all observed variables 
become highly intercorrelated (linearly interdependent), a single dimension 
suffices to account for the total variance. The principal components model 
therefore represents an extension of the notion of (bivariate) correlation to 
three or more random variables in terms of their mutual correlation to a set 
of common variables or "factors." The creation of such mathematical 
variables or dimensions is necessitated by the inherent restrictiveness of the 
usual correlation coefficient which is, by definition, a binary function. 
Although initially such factors are viewed as mathematical constructs, 
should it prove possible to identify them in terms of real behavior they may 
be regarded as genuine explanatory dimensions or variables. This is 
illustrated in Figure 3.1 for p = 4 and r 2. The new random variables C, are 
known as principal components (PCs) and the coefficients 77-ii  are known as 
loadings. Clearly if parsimony is to be at a maximum the ‘ i  should be 
orthogonal, but may be transformed to an oblique set (Section 2.5.2) if 
required. Also, the number of orthogonal components that account for a 
given percentage of variance should be kept to a minimum. The former 
condition of orthogonality is satisfied by Theorem 2.6, whereas the latter is 
met by ranking components in a decreasing order of explanatory power or 
variance. The expansion (Eq. 3.1) may be terminated at any stage if it is felt 
a satisfactory percentage of variance of the original variables has been 
accounted for by the ‘, (i = 1, 2, . r) for some r. Using the results of 
Section 2.6, the number of (nonzero) principal components is then equal to 
the rank of 	The latent vectors are also standardized to unit length 
(variance) so that 11TH, = 1 (i = 1, 2, . 	, I)). Alternative standardization 
can also be used depending on the application. 

In mathematical terms the objective is to compute linear combinations 
given by Eq. (3.1) which maximize the overall variance of X1, X2 , . , Xp , 
subject to the constraint that II ;  are unit vectors. This is equivalent to 
maximizing the Lagrangean expression (see, eg., Tracy and Dwyer, 1969) 

= 	— A i (Efir tl i  — 1) 	(i = 1, 2, . , p) 	(3.4) 

with respect to the Il i , that is, finding the latent roots and vectors of a 
quadratic form (Section 2,7). Setting partial derivatives to zero then yields 

--arT - 	2A1 11 i  = 0 

or 

— AAA!, = 0 	(1= I, 2, . . . , p) 	 (3.5) 
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Equation (3.5) is maximized by that latent vector which corresponds to the 
largest latent root, and ranking the roots in the decreasing order A t  a- A 2  ?. 

• • A p  maximizes the quadratic form (Eq. 3.5) in a sequential manner. 
The latent roots and vectors can also be derived simultaneously by 
maximizing 

4)= kfrxn - A(LI'n -1) 	 (3.6) 

that is, by solving 

= 	— 2A11 = 0 

Or 

(X — 	= 0 	 (3.7) 

From Section 2.6 the terms A 1  A2 - • • • ?- A are real, nonnegative, and 
roots of the determinantal polynomial 

IX — All = 	 (3.8) 

Once A, are known, the latent vectors are obtained by solving Eq. (3.7). The 
variance/covariance structure of the PCs can then be derived as follows. 

THEOREM 3.1. Let = HX, and 4;j  = H ITX be any two linear combina-
tions of p random variables X such that H i  and Hi  are latent vectors of 
E(XX T )= X. Then 

(1) H, and Hi  arc orthogonal vectors when they correspond to 
unequal latent roots. 

(2) ‘, and Cj  are uncorrelated random variables such that var( i ) ----- A, 
(i = I , 2, . . 

PROOF 
( I ) From Eq. (3.5) we have ill, = 	= A+111  and premultiply- 

ing by HT and H 	yields HH, = Ai liTH e  and 
= 	Subtracting we then have 

HTX.H, — 	= A i n; Hi  — 

= (Ai  — Adirr, 

= 0 

since nTn = nTn, and Efirxn,=krIn Thus for A, A . 

conclude that II:Hi  = O. 
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(2) We have 

cov(C„ ‘j ) = cov(i tTx, HiTx) 

= liTxn, 

= A 1 HE 11, 

= 

since 11,1111  = 0 from part (1), The PCs are thus orthogonal 
whenever the latest vectors are. Their variances are given by 

= 	(i = 1, 2, . 	p) 

using Eqs. (3.2) and (3.5). 

THEOREM 3.2. Let I possess latent roots A and latent vectors H. Then 
(1) When X I , X2, . 	Xp  are uncorrelated, 

2 tr, = var(X,) = A, 	(i 1, 2, . , p). 

(2) When A 1 ------  A2 =— A p , XI , X2, . . X p  are homoseedastic and 
uncorrelated. 

PROOF 
( ) From Eq. (3.8) we have 

a2 — A I  
2 a- 2 A2 0 

0 

2 	 2 
Ai)(az A2) ' ' • (ap Ap)= 0  

so that 

or 

var(X,) = 	= A, 	(i = 1, 2, . .. , p) 
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(2) Thc second part follows as a special case. 

Theorem 3.2 demonstrates that when a covariance matrix is diagonal, 
there is no gain in performing a PCA. As correlations between the random 
variables increasc, however, economy is achieved by replacing 
X I , X2, , X,, with a reduced number of components. Also, Theorem 3.1 
indicates that the latent vectors, together with their PCs, are always 
orthogonal whenever their corresponding latent roots are different. Actual-
ly, it can be shown that a symmetric matrix always possesses orthogonal 
(unit) latent vectors even when some (or all) roots arc equal (Theorem 2.6). 
The following three cases can be distinguished in practice: 

1. All latent roots distinct, A 1  > A2 > ' • ' > A p . Here H is unique as are 
the components =111 7 X (up to sign changes). 

(2) All roots equal, A 1  = A2 = " ' = A. The quadratic form associated 
with Eq. (3.5) becomes a pth dimensional sphere and it no longer makes 
sense to maximize Eq. (3.4). The quadratic form is said to be isotropic, and 
although H is still orthogonal, it is no longer unique. 

(3) r <p roots distinct, A i  > A 2 > - • > A, >Ar+1  = - • =A p , Latent vec-
tors corresponding to A 1  > A2 > ' > A, are unique (up to sign change), but 
those corresponding to A r+I  = • - • = A i, are not. We have both nonisotropic 
and isotropic variation in a p-dimensional space. The p-dimensional ellipse 
contains an embedded sphere of dimension ( p – r) with a constant-length 
radius vector, 

The maximization of the quadratic form results in an important property 
of the PCs—at each stage they maximize the global variance of thc random 
variables Xi  (i = 1, 2, ... p). Actually, PCs possess several other desirable 
optimality properties which hinge on the following theorem. 

THEOREM 3.3 (Rayleigh Quotient). Let X be a covariance matrix with 
latent roots A t  A2  - • A p  and let 

UTIU  
q U U 

(3.9) 

for some vector U 0. Then 
(i) A 

U TXU  
(ii) At = max 	T 	A ,, = 

U U 
if and only if U is, respectively, the 
first and last latent root. 

n 
U7IU  

mm 
 

UTU 
latent vector of corresponding to the 
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PROOF. 
(1) Since X is Grammian it must possess real, orthogonal, latent 

vectors H, 11 2 ,...,Hp  such that XII, = RA (i = 1, 2„ p). 
Also, the vector U can always be expanded as 

U=a 1 11 1  +a 2 11 2  + • • + ap ri p  

= 

	

for some coefficients a l , a 2 1 	ap . We have 

1.1 ( XU  
q  UTU 

AT(H TXH)A  
ATHTHA 

ATAA  
ATA 
2 	2 	 2 a l  A 1  + a 2 A2  + • • + ap A p  

2 	2 a l  + a 2  + • • - + a 2 

so that 

a21 A 1  + a2 A 2  + • • +a 2 A 	Ma i  + a 2  + • • +a 2
) 

2 	 2 	2 
P P  	 q — A — 

(A2  — A t )a 21  + (A 3  — A l )a; + • • • + (A p  Al )ap2  
2 	2 a t + a 2 + • - • + a 2 

Since the right-hand side of the equation is non-negative and since 
A2 	• • ' Ap, it follows that q A t  and repeating the process 

using Ap  we obtain q A p . 
(ii) Let U=11 1 . Then 

rfirx11 1  

	

q - Al rein 	A1 

— A t  

=0 

Likewise q — A p  = 0 so that 

11f 
A 1  max 	T  

H i  H i  
and A — min 	P  Erni  

P P 

2 	2 	 2 	2 a l + a2 ' • + a 2 

	

a l + a 2 	' • • + a2 
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THEOREM 3,4. Let ll = HA, where H is the orthogonal matrix of latent 
vectors and A is a diagonal matrix of latent roots such that A 1  A2 • • • • 

A Then p 

Ai  = max(a TIa) = 	 (i = 1, 2, . .. , p) 

where a is any unit vector such that a lit = 0. 

PROOF. Let a TX = 0 be any liner combination of the random variables. 
Then 

var(0) = a T1,a 

aTnirmul Ta  

= aTHAIII Ta 

= l'Ay 

= 

where -y= H Ta. Also 	al- nuTot 1 since a Ta = 1. We have 

var(0) = a TIa 

= A 1 7 21  4.  A2Y; ' • + A p 7p2  

-S A 17 21 + A1722  + • • • + AlYp2  

since A 1  A 2  •- • ^ • • A. Thus for any linear combination 0 we have var(0) = 
T
Ia 

 

A. Since equality only holds when y = (1, 0, . 	, (j) T , that is, when 
a = El t , it follows that 

A 1  = max (aTXa) = A TI L11 1  .T._1  

and A 1  maximizes the variance of 0 = aTX 
For the second root A2 , condition Wil l  = 0 is replaced by the ortho-

gonality condition y Ttl i tl i = 0, so that y1  = 0. Since yTy aTa  = 1, by 

 definition we have 

= E Ai7f my; + + • ' 7120 A2 

with equality holding only when y = (0, 1, 0, . . . , 0) T. This implies that 
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-y H 2 , and 

A2  = max (aT %rx)=114112  

where a TII 2  = 0. The process continues until all p latent roots are extracted. 

Theorem 3.4 demonstrates that of all linear combinations of some 
random variables X = (X I  X2  , . Xp  ) 1  , variance is maximized (at each 
stage) only when coefficients of linear combinations are latent vectors of 
such that A l 	 The linear combinations are then the PCs 

= HTX (i 1, 2, 	, p), and this effectively solves the optimality prob- 
lem introduced at the outset of the chapter: given a set of random variables 
XI , X2 ,, .. ,Xp , how can we find another set 6 , . 4 which maximize 
total variance of the X,? Since each PC maximizes variance, we can always 
retain that number I- p which accounts for some predetermined minimal 
percentage of variance. Alternatively, all PCs may be computed and the last 
(p r) omitted if they account for an insignificant (negligible) proportion of 
variance. Both approaches result in identical coefficients H. The higher the 
correlation between the value of Xi , the smaller is the number of PCs 
required to account for a fixed percentage of variance. The principal 
properties of the PC model can be summarized by the following five 
theorems. 

THEOREM 3.5. Let X = (X 1 , X2 , . , Xp ) r  be a set of random variables 
where E(X) =0, E(XXT) = 1r, and il l  111 = A. Then 

E(g) 
(ii) E(g1 ) = A 

PROOF. 
(i) Since 	H IX we have 

E(") = irliE(X 1 ) + 77-2.,E(X2 ) + - • • + ripi E(Xp ) 

-= 0 

When E(X) 0, however, population means of components are 
linear functions of the expected values of the X,. 

(ii) EggT) E1(11 Tx)(in Tx)T 1 

= FI TE(XX r  )11 

Efrui  

--- A 
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so that 

	

IA. 	i E(CiCi) 	o 	i Of 

Once latent vectors are known Eq. (3.1) can be inverted to express the 
random variables in terms of the PCs, 

= /7.11 4•1  + v12 	+ • • • + /Tip  

x2 = 1r2i 	ir22‘2 + •  • • + 7T2 	II((2T4  

X 	Irp t 	Trp 2t2 	Trfip ‘ p  = 	p) ‘ 

(3.10) 

where fl ()  is the ith row vector of R. Note that 11 .(10 11 (i)  O. In matrix 
form, 

X = EI‘ 

THEOREM 3.6. The PCs 4'1 , C2 , 	, 	reproduce both the variances as 
well as the covariances of the random variables X I , X 2 ,. 

PROOF 

= E(XX T ) 

ER 1101101  

= EIE(;C t )EI T  

= HAA T  

= 	A2 11 2 E1 -2r  + • • • + (3.11) 

from Theorem 3.5. 
The PCs are not invariant with respect to scale change (linear or aftine 

transformation) and poststandardization of the variables will not yield the 
same latent roots and latent vectors as prestandardization. 

THEOREM 3.7. Let A and in be the latent roots and latent vectors of I. 
Then covariances between Xi  and are given by the ith and jth elements of 
HA. 
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PROOF. We have 

eov(X, g) = gyigT) 

=E(HT) 

= HE(ggl ) 

= [IA 

so that 

(3.12) 

[E(X I  CI ) E(X 1 4'2 ) • - • E(X I C p ) 

E(xgT) = 
E(X 2 ) E(X 22 ) . a . E(V2C p ) 

. 	

. 

E(X p ‘t ) E(X) •. E(X p 4) 

 

 

IT12A2 
Tr22 A2 

a 

irp 2 A 2 

• 

or 

E(X i ‘i )= A 	. 	(i, j = 1, 2, 	p) . 	(3.13) 

Equation (3.13) assumes unstandardized g. Standardizing, we obtain 

A-  ng 	 (3.14) 

SO that columns of g* become orthonormal random variables. The 
covariances between X and C* are then given by 

oov(X, g*) = E(XV 1  ) 

= E[X(A.: 

= EixgTA-  " 2 1 

= HAA-1/2  

= 11V" 

so that 

	

cov(X„ ‘,) = A) rz ir,i 	 (3.15) 

Equation (3.15) still depends on o- . To free coefficients (covariances) 
from the effects of the variances al of the random variables they can further 
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be standardized to the form 

1 /2 
A 71i

i— 
 COV(X„  Ci )  

Cri 	
A  I/20;  (i, 	= 1, 2, ... p) 

(3.16) 

using Eq. (3.13). The value of ag  are the correlations or the loadings 
between the ith variate and jth component. In what follows they are 
referred to as correlation loadings to distinguish them from the covariance 
loadings (Eq. 3.15). The correlation loadings are thus latent vectors which 
have been normalized such that 

a Ta = A , 	aaT = 	 (3.17) 

where A consists of latent roots of P, the correlation matrix of the random 
variables, Equations (3.10) and (3.11) can also be expressed in terms of the 
a coefficients if the latent vectors are scaled such that both random variables 
and PCs possess unit variance (Example 3.1). We have 

TI TUI = II TE(XX1 )n 

=E(1tlxxrri) 

A 

and pre- and postmultiplying by A.--1 ' 2  yields 

E(AT I ' 2 11 .1.XX TLIA ' 11 ) = 

or 

ts  XX It = I 
	

(3.18) 

where 

g*= j 2arx 	 (3.19) 

Equation (3.19) implies that 

(ll A  1/2 ) -ic  

-nA 1 T 2g* 
	

(3.20) 

and to convert covariance loadings into correlation loadings we have 

X* =--- 	 (3.21) 

where 412  is the diagonal variance matrix of X and a =41-1 11A112 . When 
E(X.X T ) = P, the correlation matrix, the loadings are given by a = HA1/2 
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since A = 1. In element form, 
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==ali g 4-0f22 C;+-..4-064 C; 

X p*  = api ct + a p2  C1'2  + • • 	app  

where both variables and PCs are standardized to unit length. The stan-
dardized loadings a obtained from the correlation matrix however are not 
equal to the standardized loadings obtained from the covariance matrix. The 
point is pursued further in Section 3.4. The standardized loadings are 
usually displayed in a table such as 

a ll 	a 12 	• . . 	a lp 

a21 a22 • • Or2p  

apl ap2 • . a PP 

which can be of aid when deciding which components are to be retained 
(deleted). 

The following two theorems develop further the properties of a PCA. 

THEOREM 3.8. Let be a ( p x p) covariance matrix with latent roots A 
and latent vectors H. Then 1. -L  possesses latent roots A -1  and latent vectors 
H. 

PROOF. From Eq. (3.11) we have 

X -1 = (111A11 1') -L  

= HA-1 1I T  

1 	I 

2 

1 
+ H IIT  A 	P P (3.23) 

for A i  >0 (i = 1,2, 	p). 

(3.22) 

Thus is nonsingular if and only if /11 > 0 for all i. When one (or more) of 
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the latent roots arc small, elements of X -  become large and Z is said to be 
ill-conditioned, 

An important outcome of Theorem 3.3 is that the PC model possesses a 
number of important optimality properties, which make it an attractive 
model in many situations where optimization is of importance. 

THEOREM 3.9. Let X = 	A'2 ,. . 	). r  be a set of random variables 
as in Theorem 3.5. Then the PC model possesses the following optimality 
properties: 

(i) The PCs maximize the total trace (univariate variance) of the X. 

(ii) The PCs maximize the generalized variance of the Xi . 
(iii) The PCs minimize total entropy, that is, they maximize the 

information content of the variables, 

(iv) The PCs maximize Euclidian distance. 
(v) The PCs minimize the mean squared error criterion, 

PROOF 

(i) From Theorem 3.6 we have 

tr(I) = 

= tr(A1I11 T ) 

= tr(A) 

= A l  4 A 2 	' • • + A p  (3.24) 

where A i  a" A 2  • • • AA,, are the variances of the PCs. Since tr(X) 
is the total univariate variance, it follows that at each stage the 
first PCs maximize the overall univariate variance of X. Converse-
ly, trace is minimized by the last set of PC's. 

(ii) Since the generalized variance is equivalent to (squared) volume 
in p-dimensional space we have 

= 1,11AW 

=11111A1 111'1 

= At tilt la' 

=1A1 

A 1 A 2 " • A p 
	 (3.25) 

so that highest order PCs maximize the generalized variance or 
the determinant of the covariance matrix. 

(iii) From Section 1.6 the total information content of the variables 
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can be defined as 

I = E A, In A, 	 (3.26) 

where A 1  a A2  • • • .-?°- A p , Since the logarithmic function is mono-
tonic (order preserving), it follows that Eq. (3.26) is maximized 
for each PC. 

(iv) Let dkh  denote the Euclidian distance between Xk and Xh. Using 
Theorem 3.5 we have 

d h =  E(Xk - 

= E(X) + 	— 2E(XkXh) 

= E 1T1A,  + E Ir 2hiA1 — 2  E irkhiAi 

7Thi)
2 

Ai 
	 (3.27) 

for k h. Maximum distances between random variables are 
therefore associated with the largest latent roots. 

(v) The proof is a consequence of the fifth part of Theorem 3.17 (see 
also Fukunaga, 1990). 

It follows from part i of the theorem that for any other set of orthonormal 
vectors Q 1 , Q, . . ,Q. we have 

QQ_.-cE riTur 1 .A 1  + A2  + • • • + A 	 (3.27a) 

for I r p. Further optimality properties are considered in Section 5.8.1 
(See also Jolliffe, 1986; Fukunaga, 1990; Obenchain, 1972; Okamoto, 1969). 

Theorem 3.9 demonstrates that the PCs provide an optimal orthogonal 
coordinate system with respect to the five criteria considered. When the PCs 
are standardized to unit variance we also have, for expression 3.27, 

E (aki ani) 	 (3.28) 
i-t 

where a 	ahi  are defined by Eq. (3.13). For the correlation matrix we 
have d 2k„ = 2(1 — Pkh)  where pkh  is the correlation between Xk and Xh. Also 
note that entropy (Eq. 3.26) is maximized when A 1 ---- A2  = - • = A. that is, 
in the uniform or isotropic case where a PCA does not normally make sense 
(see Section 3.3). On the other extreme the minimum entropy occurs when 
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random variables are multivariate normal, as illustrated by the following 
example. 

Example 3.1. For the multivariate normal distribution f(X) the in-
formation content is maximized by maximizing 

— E[In f(X)1 

(27r) -(" 2 11,1exp[---pi TI -iX1{— X TV"'X 	144 

—p12 1n(270} dX 

= +1 441+ ln(27r) 

E 	+ In A, + ln(277-)J 

which, as was seen above, is maximized by high-order latent roots since I is 
simply a function of III. It is also possible to define the so-called cross 
entropy, as well as the conditional entropy of a random variable, and to 
express the latter in terms of the latent roots of the covariance matrix (see 
Parzen, 1983). 

The main outcome of Theorems 3.3-3.9 is to establish that the principal 
objective of a PCA is to retain a smaller number r <p of PCs, which 
reproduce a sufficiently high portion of the selected criterion, but in a lower 
dimensional space. Alternatively, optimality can be achieved by selecting 
the smallest latent roots, for example when minimizing the M.S. error 
criterion. Normally in practice the criterion chosen is that of univariate 
variance, that is, tr(X), although this owes more to tradition than to any 
intrinsically superior property of the function. The trace of a covariance 
matrix however does provide a general benchmark, since PCs that maximize 
Eq. (3.24) are likely also to be in the optimal region of the remaining 
criteria, The PC model does not require distributional assumptions, but 
when X is N(0,1), the model is identical to rotating a p-dimensional ellipse 
(Section 2.7). Here correlated normal variates X = (X 1 , K,,. 	Xp )T are 
transformed to an uncorrelated set of normal variates g = (C!, C2,. , 
such that g is N(0. A), where A is diagonal. Consequently normal PCA can 
be viewed as a statistical procedure for converting a multivariate normal 
distribution into a set of independent univariate normal distributions, since 
here zero correlation implies distributional independence (Section 2.8). The 
advantage of the transformation, particularly when p is large, lies in the 
relative simplicity of dealing with optimal univariate variables as opposed to 
an interdependent multivariate set. As shown in Chapter 4, multivariate 
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normality is also essential for parametric statistical significance testing using 
the chi-squared and other sampling distributions. 

Example 32. The starting point for a PCA of an infinite population is a 
dispersion matrix of the variates, usually or P. Consider four random 
variables X1, X2, X, and X4  with covariance matrix 

471.51 324,71 73.24 4.35 
324.71 224.84 50.72 2.81 
73,24 50.72 11.99 1,23 

4.35 2.81 1.23 .98 

which can be converted to the correlation matrix 

[10(00 	.9973 .9741 .2024 
p = .9973 	1.0000 .9768 .1893 

.9741 	.9768 1.0000 .3588 

.2024 	.1893 .3588 1.0000 

The latent roots and vectors of are given by 

[

706.97940 	 0 

.89430 
0 	 ,09715] 

11= 

.8164 

.5633 

.1272 
.....0075 

-.0248 
-.1059 

„5677 
.8160 

.5707 
-.7662 
-.2747 

.1081 

.0844-  
-.2917 

.7652 
-.5676._ 

and using Eq. (3.10) the random variables can be expressed as 

X i  = .8164C, .0248C2  + .5707C3  + .08444 

X2 = .56336 - .1059C2  - .76626 - .2917C4  

XA 	.1274 1 + .5677C2  - .2747C3  + .76524. 

X4 = .00756 .8160C2  ,1081C3 .5676C4  

Standardizing the random variables, together with the principal compo-
nents, to unit length using Eq. (3,16) then yields the expansion 

X ; = .9997C - .0013C 42' + .0249C: + .0266C: 

.9989C; - .0084; - .0483C; - 

= .9767C; + .1904C '21(  .0750‘; + .0688C: 

X: .2051C; + .9575C 27 + - .1787C: 

A = 
1.34915 



A = [3.0568 
.9283 

n = [

.5627 .1712 
5623 .1849 
.5696 -.0008 
.2065 -.9677 

and 

0 
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Now consider the latent roots and vectors of the correlation matrix I', 

0  

.0130 
.00181 

.5685 .5750 

.1820 -.7851 
-.7906 .2241 

.1360 -.0484 

Since the random variables have been prestandardized, we only have to 
standardize the components. Multiplying the columns of II by the square 
roots of corresponding latent roots (Eq. 3.15), we obtain the expansion 

= .9838C + .1650C; + .0648C + .0244C: 

X; = .9831C + .1782C 1 + .0207C; - .0333C: 

X,T = .9959C - .0008C; - .090IC; + .0095C: 

X: = .3610C; - .9324C; + .0155C1 - .0026C: 

Although the covariance loadings are similar to the correlation loadings, 
they are clearly not the same. Even signs can be reversed-although « 42  is 
positive as a covariance loading, it becomes highly negative as a correlation 
loadings. This illustrates the importance of deciding initially which disper-
sion matrix to use. 

Since loadings are correlation coefficients, they indicate the relative 
influence of a component (variate) on the variates (components). Using the 
covariance matrix we see that X I , X2, and X3  are very highly intercorre-
fated, their joint effect being picked up by the first PC. However, X 4  is 
largely independent of the first three variables and is mainly represented by 
the second component. The interpretation for the correlation matrix is the 
same except that the second component C; is negatively correlated to X4. 
Actually the two sets of results can be made to agree by noting that the 
covariance loading a42 = -9575, together with its components C 2* , can be 
multiplied by -1, which converts a42  to a negative quantity. Alternatively, 
the same operation can be applied to the correlation loadings. This 
illustrates the point that the latent vectors are unique up to sign changes 
only. The interpretation of C; is then simply applied to (-C1) with X: 
retaining its sign. Both sets of loadings indicate that the variables can be 
well estimated within a two-dimensional vector space. For example, using 
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the covariance matrix we have 

= .9997C 

X; = .9989C 7 

= .9767C 7 

x: = .2015c7 + .9575C; 

where omitted components may be considered as residual terms which 
represent natural variation in the population. The four variables are plotted 
in Figure 3.2 in the plane defined by C I* and ‘;. Clearly C I* can be identified 
with cluster A, whereas CI represents cluster B, containing the single 
variable X4. Given the high tendency for the first three variables to cluster, 
we may suspect that once residual variation is removed the variables 
measure the same underlying influence or "factor." Thus any two of these 
variables can be removed without excessive loss of information. A PCA thus 
provides a cross-sectional view of the pattern of intercorrelations within a 
set of random variables. 

Finally, using latent roots it is possible to compute the percentage of 
variance accounted for by the retained components C i* and C;. Using the 

.80 

.70 - 

.60 - 

.30 

20 - 

.10 - 

• 

1- 	T 	I 	1 	IT 	Tit; 
.10 .20 .30 .40 .50 Re .70 .90 .90 1.00 

e2 
Figure 3.2 Random variables X„ K2, Xi, X 4  (Example 3.2) plotted in the reduced space 
defined by the first two principal components c,‘, and C;. 
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covariance matrix we have 
2 

R 2  - 

Ai  
706.9794 + 1.3492 

4 	tr(I) 
E A i  

708.33 
709.32 

= .9986 

or 99.86% of the total (univatiate) variance. 
The main computational burden in carrying out a PCA lies in determin-

ing the latent roots A and latent vectors II of (or P). Several well-known 
iterative numerical methods exist to achieve this, for which the reader is 
referred to Hotelling (1936a), Anderson (1958), and Hammarling (1970). 

3.3. ISOTROPIC VARIATION 

Principal components are, in a sense, mathematical artifacts created by the 
requirements of the correlational analysis, which usually cannot be observed 
directly unlike the original variables which represent the primary measure-
ment scales. The PCs are linear combinations of the original variables, and 
as such cannot be used for explanatory purposes unless they too are 
identified in terms of real behavior. This is usually achieved by using the 
correlation loadings to tell us which components are most important, in the 
sense of being highly correlated with some (or all) of the variables. The 
exact method(s) of identification vary from application to application, and 
these are discussed more fully in the following chapters, One special case 
however is particularly easy to deal with and makes interpretation straight-
forward—when we have a single nonisotropic dimension or component 
explaining the behavior of all of the variates. 

Consider p equally correlated random variables X = (X i , X2 ,. • • , Xp ) T  
with common correlation coefficient p and equal variance cr 2 . Using Eq, 
(2.82) we see that the covariance matrix has a particularly straightforward 
structure (see also Eq. 4,14), 

r- 2 a-2 op 2 . • 	p 

0, 2
p cr 2 2 • • • 	CT p 

a-2p 
1 	CI

2
p 	. 

Cr 
2 

2 
IT 

2p 0'
2
p 	• • or 
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= 0. 2 

P P P ••• P 
P 1  P P ••' P 
PPIP ••• P 

 

  

  

= or2p 	 (3.29) 

where var(X,.)= cr 2  , (i = 1, 2, ... p). Since the latent roots of Eq. (3.29) 
are proportional to those of p, there is no loss of generality in considering 
latent roots and vectors of the latter matrix. Besides having theoretical 
interest the equicorrelation matrix P finds application in a number of diverse 
areas. It is also particularly easy to work with using analytic means and 
provides an easy-to-understand illustration of a population PCA. 

Consider a (p x p) matrix A with a typical element 

(3.30) 

By performing row/column operations, A can be reduced to diagonal form, 
and consequently its determinant can be expressed as 

JAI = lx + (p — 1))71(x — y) ( P -L) 	 (3.31) 

(Exercise 3.6). From Eq. (3.31) the latent roots of P are solutions of 

1 — A p P 
1 — A 

IP — AI I = 

_P P • - • 1 — A 

= [(1— A) + (p — 1)p1(1 — A — p)' - 

= 0 
so that the largest root is given by 

At = 1 4- (P 	1 )P 
	

(3.32) 

and the remaining (p — 1) isotropic roots are solutions of (1 — A - p)P = 0, 
that is, 

A3  = • • • — A p  = 1 — p 	 (3.33) 
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Solving Eq. (3.32) then yields 

A I  is also the largest root equal to the constant row (column) sum of 
(P— Al). When p = 1, all last p 1 roots are identically zero. It can be 
shown that 

( 1 	1 	1 \I 
rit 	 \if)/ 

(3.34) 

the unit latent vector corresponding to A I . Since remaining p — 1 roots are 
equal, coordinate axes in the p — 1 dimensional subspace can be rotated to 
any arbitrary position without altering variance. Thus any set of p — 1 
orthogonal vectors can be taken for these latent vectors, It is convenient to 
select the p — I latent vectors from the last p 1 columns of the orthogonal 
Helmert matrix as 

( 	  

\171 ) T  

	

113 ( \FL 	
2  
	 — _ 	0 . . 0

)T 

  

p 1 \T 

VAP 1 ) )  

(3.35) 

  

Vp(P - 

Note that the (2 x 2) correlation matrix of Example 2.10 is necessarily both 
a special case of the isotropic model (Eq. 3.32) as well as a special case of a 
PCA of an arbitrary correlation matrix. 

The first PC that corresponds to the nonisotropic latent root A t  is given 
by 

(

1 	1 	1\ 

Nr/5 	" 	xx 
2 

1‹, 

vP i=1 	 X 
= 

(3.36) 

where I is the arithmetic mean of the p random variables. The variance of CI 
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is given by 

var(‘,) = —1 var(x, +x2  + • • • + x,) 

= —
1 

[var(x,) + var(x 2 ) + • • + var(xp ) + (sums of crossproducts)1 

= —1 [sum of all elements of matrix Pi 

1 
= — ([1 +(1 — p)pl + [1 +(1 — p)pl + • • • + [1 +(1 — p)pl) 

= 1 + (1 — p)p 

= 

and correlation loadings between C I  and the X1  are given by WEI, or 

a — + 	 
(p 	1)  1112 F

l Pi 

	

P 	P 

	

= p 	(1 p)  1112 

P 	1 (3.37) 

The dominant component, is thus equally correlated to all of the p random 
variables. The proportion of variance explained by C I  is 

A, 1 + (p — 1)p 

= P + 
( 1  19 )  

= a  2 	 (3.38) 

The structure of the latent roots for equicorrelated random variables is 
portrayed in Figure 3.3 for p = .50 and p = 7. 

These results can be summarized by the following theorem. 

THEOREM 3.10. Let be a covariance matrix such that A I  > A, = A3 = 
= A =45 Then 

P 

X = Oi l 4" 51 
	

(3.39) 

where a, is the vector of (equal) loadings for the first nonisotropic PC. 
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1 	2 	3 	4 	5 	6 	7 

Figure 3.3 Latent roots for equicorrelated random variables where p = .50 a nd p = 7. 

PROOF. Using Eq. (3.11) we have 

= 	+ on 2 HT2  + • • • + 311,n,T+sri t nT 

= (A l  -45)11 1 11 T1  +45(11 1 11T + 11 2 11 + 	4.  rip  II 13T ) 

=(A, —3)11,11T+8i 

Let A = A t  —8. Then 

= A11 1 1111 +81 
) I 211 A  I 211T1 

	51 
 

= a l aT + 31 

where a l  = A I/211 1 = (A 1  — cr)" 1 11 1  is the column vector of (equal) loadings 
for the first PC. 

Note that li t  is weighted by (A 1  8)" 2 , not by A 112 1. Also Eq. (3.39) 
implies that we can write 

X = a t rt  + e 	 (3.40) 

where E(ee T ) =81 such that ‘ 1*e l  =0. An important point to note is the 
residual error term e is homoscedastic and uncorrelated. Equations (3.39) 
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and (3.40) represent the simplest form of a factor analysis model (see 
Chapter 6). 

Example 3.3. Equicorrelated random variables can occur in the context 
of biological allometry, which is the study of differences in shapes of 
biological organisms that can be associated with size. Consider the growth of 
an organism with physical attributes measured by five variables 

Y„ . . . , Y5 . Also, assume growth occurs in such a way as to result in all 
body attributes of the organism to be equally correlated, say .80. Then the 
correlation matrix takes the form 

[1.00 
.80 1.00 

	

P= 	.80 	.80 1.00 

	

.80 	.80 	.80 1.00 

	

.80 	.80 	.80 	.80 1.00 

Using Eqs. (3.32) and (3.33) the latent roots are A 1  = I + (5 - 1).80 = 4.2, 
= • • • = A5  = 1 p = .20. Also using Eq. (3.34) the latent vector corre-

sponding to A 1  = 4.2 is 

fi t  = (1/V5- , 	, 1/V) 

= (.4472, .4472,  

the remaining latent vectors being given by Eq. (3.35). The correlation 
loadings for H i  can also be computed from Eq. (3.37) as 

	

[ 	 - p1 	
----

112 	[ 	.20- 1 1 / 2  
.80 +75 - 

p 

------ .91655 

and 	represents the general size component of the organism, accounting 
for A 1  /p = 4.2/5 = 84% of the total trace of P. The remaining 16% of the 
variance is isotropic and cannot be identified with systematic biological 
phenomenon such as shape—it is simply due to the unique properties of the 
five attributes or variables, much in the same way as for an ordinary least 
squares equation. For a theoretical review of allometry see Sprent (1972). 
The problem is considered further in Section 6.3. 

Example 3.4. To see how the equiconrelation model works with real 
data we consider a well-known example from Jolicoeur and Mosimann 
(1960) which deals with the size and shape of the Painted Turtle, chrysernys 
picta marginata. A total of 84 specimens were collected in the St. Lawrence 
valley 35 miles southwest of Montreal, Quebec, of which 24 males and an 
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equal number of females were selected and their carapace dimensions 
measured in three perpendicular directions. Note that for a sample PCA the 
starting point is a data matrix Y, not a dispersion matrix as in the case of an 
infinite population (Examples 3.2, 3.3) The data are reproduced in Table 
3.1. The mean vector and covariance matrix for the females is Y = (136.00, 
102.58, 51.96)T  and 

[451.39 
S=1 271 .! 7  

168.70 

271.17 
171.73 
103.29 

168.70 
103.29 
66.65 

A comparison of the female and male covariance matrices is carried out in 
Example 4.5. Decomposing S yields the following latent roots and latent 

Table 3.1 Carapace Measurements (mm) of the Painted Turtle 

Males Females 

Length Width Height Length Width Height 
(Y1) (Y2) (Y3) (Y1) (Y2) (Y3) 

93 74 37 98 81 38 
94 78 35 103 84 38 
96 80 35 103 86 42 

101 84 39 105 86 40 
102 85 38 109 88 44 
103 81 37 123 92 50 
104 83 39 123 95 46 
106 83 39 133 99 51 
107 82 38 133 102 51 
112 89 40 133 102 51 
113 88 40 134 100 48 
114 86 40 136 102 49 
116 90 43 137 98 51 
117 90 41 138 99 51 
117 91 41 141 105 53 
119 93 41 147 108 57 
120 89 40 149 107 55 
120 93 44 153 107 56 
121 95 42 155 115 63 
125 93 45 155 117 60 
127 96 45 158 115 62 
128 95 45 159 118 63 
131 95 46 162 124 61 
135 106 47 177 132 67 

Source: Jolicoeur and Mosimann, 1960; reproduced with permission. 
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vectors: 

[ 	 , 680.40 	0 1 
L 	 6.50 

0 	2,86i 

.8126 
P = [ -.5454 

-.2054 

.4955 

.8321 
-.2491 

.30681 

.1006 

.9465 

THE ORDINARY PRINCIPAL COMPONENTS MODEL 

where Latin letters indicate matrices of sample values. The covariance 
matrix S does not exhibit the homoscedastic, equicovariance structure of 
Eq. (3.29). However, convening the latent vectors into correlation loadings 
reveals the following. Let 

r ,047067 
.07631 

I_ 	0 	 .120249} 

be a diagonal matrix whose nonzero elements are reciprocal square roots of 
the variances. Then correlation loadings are given by 

AT  =S 1211 ?  

= 
[ .04707 

0 
0 

0 
.07631 

0 

0 	I [8126 
0 	.4955 

12249 	.3068 

-.5454 
.8321 
.1006 

-.2054] 
-.2491 

.9465 

x 
 [

26.0845 
0 
0 

0 
2.5495 

0 

0 	I 
0 

1.6912 

= 
[.9976 

.9863 

.9803 

.0654 

.1619 

.0314 

.0164] 

.0321 

.1961 

The main results can be conveniently summarized in a table of the form (see 
Section 5, 3.2 and 3,4) 

z; 	z; 
Length: X I  .9976 .0654 .0164 
Width: X 2  .9863 .1619 .0321 
Height: X3 .9803 .0314 .1961 

Latent roots 680.40 6.50 2.86 
Percent of trace 98.64 .94 .41 

where the Z7 represent standardized PCs. Only a single size component is 
required to account for most of the variation, indicating a high degree of 
"redundancy" in the measurements, the last two representing random 
variation. The concepts have also been applied to measurements of the 
human body (Relethford et al., 1978). 
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3.4 PRINCIPAL COMPONENTS IN THE SAMPLE 

3.4.1 Introduction 

The preceding section deals with the theory of PCA as it applies to an 
infinite population of measurements, where the input consists of a (p x p) 
population dispersion matrix. In practice populations are rarely observed 
directly and instead a finite sample of n observations is taken for p random 
variables _(Example 3.3). The starting point here is a (n x p) data matrix 
X Y Y, which can then be converted to any one of the four Grammian 
forms (Section 2.4). 

A data matrix can be represented in a finite dimensional vector space. 
This may be done in two ways. First, we can define a vector space of 
dimension p, the so-called variable space where each sample point (row of 
X) is represented as a point in a p-dimensional vector. This is of course 
conditional on the linear independence of the columns of X since otherwise 
the points will be contained in a subspace of smaller dimension. Thus, 
generally, the dimension of the variable space defined by the columns of X is 
equal to the rank r p n of X, that is, the number of linearly independent 
columns of X. Alternatively, we can define an n-dimensional sample vector 
space which contains the p columns of X. Assuming for the moment that 
p n, the r-dimensional column space of X is a subspace of the n-dimen-
sional sample space. The purpose of PCA in a random independent sample 
taken for a set of continuous (ratio, difference) random variables is to locate 
the subspace which, in a sense, represents the random variables. The initial 
objective for a sample is to discard those PCs that represent sampling 
variation, measurement error, and natural individual variation of the 
population, Using the optimality theorem (Theorem 3.9) these will be the 
last PCs. The end result is an overall enhancement of the data. If too many 
PCs are retained the enhancement will be insufficient, whereas if too many 
arc discarded the result will be a distortion of the data (the topic of testing 
for residual PCs is pursued further in Chapter 4). This is accomplished by 
computing latent roots and vectors of a suitable sample Grammian matrix 
and then examining for isotropic variation (Section 3.3). Again either the 
covariance or correlation matrix can be used, depending on the unit(s) of 
measure and the extent of variation of the random variables. For the sake of 
convenience we shall work with a Grammian matrix of the general form 
X X, the specific scaling of columns of X being evident within the context of 
discussion. The following theorem is fundamental to a PCA of a rectangular 
data matrix X. 

THEOREM 3.11. Let X be a (n X p .) matrix. Then the vector space 
generated by the columns of X is identical to that generated by the columns 
of XXT. 
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PROOF. Let V be a (n x 1) vector such that V TX = 0, Hence V TXXT  = 0. 
Conversely, let V TXX T  =0 implying that V TXXTV= 0 so that V 1 X = 0. It 
follows that every vector which is orthogonal to X is also orthogonal to XX T 

 and vice versa, so that columns of X and XXT  generate the same vector 
space. 

It can also be shown that columns of X generate the same vector space as 
columns (rows) of X I X. A rectangular data matrix X can therefore be 
analyzed by using the spectral decomposition of either X I X or XX' which 
are both square matrices (Theorem 3.17). An analysis using X TX is at times 
known as R-mode analysis, while that based on XX T  as Q-mode analysis As 
will be seen below, the two types of PC analyses are duals of each other. 
However, an R and a Q analysis may have different substantive objectives in 
mind. When the purpose is to analyze the random variables, normally p <n , 

and an R-mode decomposition is more handy, but the situation can be 
reversed when interelationships between the sample points are of interest 
(Section 5.4). Since rows of X TX generate the same vector space as rows of 
X, we have p(X TX) = p(X)= r p. Similarly, columns of both XX T  and X 
generate the same space so that p(X TX) = p(XX r ) = p(X)= r p 

3.4.2 The General Model 

Consider n observations on p random variables represented by the vectors 
X t , X 2 , . Xp , where X 1  =X2 = • = = 0 and S = ( t;  - )X TX. Since 
degrees of freedom represent a scalar constant they are usually omitted, and 
the analysis is based on X TX rather than on the sample covariance matrix S. 
Let P denote a ( p x p) matrix of unknown coefficients such that the 
quadratic form P TV XP is maximized subject to the constraint P TP I. This 
is equivalent to maximizing the Lagrangean expression 

(I) = PTXTXP — il(PTP — I) 	 (3.41) 

where Ills a diagonal matrix of Lagrange multipliers. Differentiating with 
respect to P and setting to zero we have 

al' = 2XTX — 21P o 

or 

(X TX /1)P = 	 (3.42) 

The normal equations (Eq. 3.42) yield estimates 11 and P of population 
latent roots and vectors Al and 11 of Section 3.2. When X TX is nonsingular, 
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all latent roots are strictly positive. However in a sample, unlike a 
population, strict equality of the sample latent roots is precluded, as 
indicated in the following theorem. 

THEOREM 3.12. Let X be a (n x p) data matrix, such that the joint 
distribution of the p variates is absolutely continuous with respect to a 
np-dimensional Lebesgue measure. Let X F AX = S where A is a real (n x n) 
symmetric matrix of rank r. Let p() denote the rank of a matrix. Then 

(i) p(S) = min(p, r) 

(ii) Nonzero latent roots of S are distinct with probability one. 
For a proof of the theorem see Okamoto (1973). Theorem 3.12 implies that 
when 0 the latent roots X X can be ordered in a strictly decreasing 
sequence / 1 > 12  > • • • > /p , which are solutions of the characteristic polyno-
mial 

IX TX — /II = 0 	 (3.43) 

Once the latent roots and vectors are known, Eq. (3.42) can be written in 
matrix form as 

P I X'XP=L 
	

(3.44) 

where 

1 2 

10p  1 
(3.45) 

and columns of P are latent vectors of X rX such that P IP = 1. Since latent 
vectors correspond to distinct sample latent roots they are unique up to sign 
changes, and in a sample we need not concern ourselves with the problem of 
equal latent, roots, at least theoretically speaking. 

Sample PCs are obtained in a similar manner to population values. Since 
X represents a (n x p) data matrix (rather than a vector of random 
variables), the sample PCs are (n x 1) vectors, say 1 1 , Z 2 ,. , Z. Once 
latent roots and vectors are known (Eq. 3.44) can be rewritten as Z T Z = L, 

where 

Z = XP 	 (3.46) 

is the (n x p) matrix whose columns consist of unstandardized PCs. Stan-
dardizing to unit length, we have 

Z* = 	" 2  = XPL -  " 2 	 (3.47) 
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where it is easy to show that Z* .Z* = I. 

In what follows we assume that the PCs are standardized so that Z denotes a 
matrix of p standardized PCs (unless stated otherwise). For alternative 
scaling criteria see Section 3.8. The data matrix can then be expressed as 

X = Z(PL -1/2 ) - ' 

= ZI, u2P 

(3.48) 

where A is a (p x p) matrix of loading coefficients. We have 

• • • 

X] 	z I 1 Z12 	
7 a„ a 21 	• • a I 

P 
X2p 	Z21 Z22 • • 12 a22 	

• . . 	ap2 
• [ 	 • 	• 	• 

Xnp 	Zn1  Zn  2 • . 	z np 	a lp a2p • . 	a PP 

or 

 

(149) 

Equation (3.48) implies that the decomposition of the p columns of X is 

= a„Z, +a 1212  + 	+a lp; 

X2  = a2 , 	+12 22 Z2 	+ a2p  Zp 
(3.50) 

  

= a pi Z 1  ap2 Z 2 + • " app Z p  

where —1 Is a cs. 1. Note that notationally the matrix of loading coefficients 
is defined as A f  rather than A, since we initially assume that interest lies in 
"explaining" the correlational (covariance) structure of the observed var-
iates in terms of PCs as in Eq. (150). The coefficients 

A = 	" 2 	 (3.51) 

have a somewhat different interpretation, and are considered further in 
Section 3.8.2. Note also that A A'. both variables and com-
ponents are standardized to unit length the coefficients au  are correlations 
between the variables and PCs (correlation loadings), and the elements of Z 
are referred to as component scores. For unstandardized variates and/or 
PCs, a ii  represent covariances (covariance loadings). Equation (3.50) forms 
the basis of a PCA of a set of random variables. Since components account 



PRINCIPAL COMPONENTS IN THE SAMPLE 	 131 

for a decreasing percentage of the observed variables the idea is to retain a 
smaller number r of PCs which account for a sufficiently high percentage of 
the total variance/covariance structure and which can be interpreted 
meaningfully within a given framework. The remaining p r components 
can then be grouped into residual error terms, one for each random 
variable. Generally speaking the first r components describe (in a decreasing 
order) the common effects or "redundancies" (if they exist) whereas the 
p - r residual components represent specific or unique residual effects. 
Also, when variables form distinct clusters the PCs can be viewed as 
estimates of these clusters. Alternatively, the last (p - r) PCs may be of 
main interest in which case the linear combinations account for an increasing 
percentage of variance. 

Example 3.5. To set ideas, consider the sample correlation matrix 

R = [

1.00 
-.3649 

.5883 

-.3649 
1.00 
-.0384 

.5883 
-.0384 
1.00 

with latent roots and latent vectors given by 

L = 
1.7099 

[ 0 
.9656 

0 

.32451 
P= 

.6981 
[ - .3912 

.6000 

.0248 

.8502 

.5258 

.71561 

.3522 
- .6032 

respectively where the observed variates are assumed to be standardized to 
unit length for the sake of simplicity (for unstandardized variates see Section 
3.4.3). Unstandardized PCs (the "scores") are then given by 

Z, 
	

P 

	

XI' 	X 2 , X 3 )[ 

Z2  = X1'2  = (X I , X2 , X 3 )[85021 

Z 3  = XP3  = (X I , X2 , X 3 )[ 

.6981 
- .3912 I = 

.6000 

.0248 

.5258 

.7156 

.35221 = 
-.6032 

.0 248X 1 

 .6981X, 

.7156X 

- .3912X 2  + .6000X 3 

 + .8502X2  + .5258X 3 

 + .3522X2  - .6032X 3  

where the X i , Zi  (i, j 1, 2, 3) are (n x 1) sample vectors. Using Eq. (3.48) 
we can then express the vatiates in terms of standardized PCs as 

(X i , X2, X3) = (Z 1 , Z2 , Z3) 

-.3912 [ 1.3076 
.9827 

[6981 
.0248 .8502 

.60001 

.5258 
0 .5696 .7156 .3522 -.6032 



132 	 THE ORDINARY PRINCIPAL COMPONENTS MODEL 

or 

X, = (.6981)(1.3076)Z, + (.0248)(.9827)Z 2  + (.7156)(.5696)Z 3 

 = .9128Z, + .0243Z2  + .4076Z 3  

X, = (—.3912)(1.3076)Z 1  + (.8502)(.9827)Z 2  + (.3522)(.5696)Z 3 

 = .5116Z + .8355Z2  + .2006Z 3  

X 3  = (.6000)(1.3076)Z + (.5258)(.9827)Z 2  — (.6032)(.5696)Z 3 

 = .7842Z1  + .5167Z 2  — .3436Z 3  

that is, 

Z 1  Z 2  Z 3  

X , .9128 .0243 .4076 

AT  = X2 —.5116 
[ 

.8355 .2006 
X 3  .7842 .5167 —.3436 

The statistical properties of sample PCs are summarized in the following 
theorems. 

THEOREM 3.13. Let X represent a (n X p) data matrix such that X = 
X2,= • • = Xp = 0 and let P and L be the latent vectors and latent roots of 
X I X respectively. Then 

(i) The columns of Z have zero means, that is, Z = 	= - • = Zp = 

0 
(ii) The i, jth element XIX /  of XTX can be expressed as 

XX J = ail a + a 12 a12 ' • • +  rp (3.52) 

that is, X TX = 
(iii) ATA = L 	 (3.53) 

PROOF 
(i) From Eq. (3.46) we have 

=p l1 X 1 	+ • +ppiX)„ 
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and summing over vector elements yields 

U 	 n 	 n 	 Pt 

E zii  =p li  E ..vil  + p21  2.„ xj2 + • • • + ppi  E _rip 
 i-1 	,.1 	 i...1 

= 0 

When the observed variables are not expressed as differences 
about means, the sample means of the principal components are 
linear combinations of the variate means. 

(ii) Equation (3.44) implies that X I X = PLPT, and for the (i, j)th 
element of X TX we have 

X T,X, = PLPT 

+ /2P12P12 + ' ' ' + 1pPipPip 

= 	2  P I)( 1 1 / 2  P ft) + ( 1 2 12  P12)(112  P 	4-  • 

=--- 	a12 a12  + • + 

the (i, j)th element of AA I  so that X TX = AAT . 
(iii) From Eq. (3.51) we have 

AA =1,'"PT111," 2  

= I, 

which establishes Eq. (3.53). Also 

ATAi  
1 = j 

j (3.55) 

THEOREM 3.14. Let X be a (n x p) data matrix such that 31 = 0, and let Z 
represent the matrix of unstandardized principal components. Then the 
sample covariance loadings are given by 

(i)  

cov(ZI , Xi ) = (rt 	(1, j = 1, 2, . . . , p) 
	

(3.56) 

When the variables are standardized then 
(ii) The loadings A are correlation coefficients between the Z i  and X, 

j= 1, 2, . . , p). 

. 	(1 112 	)11 112  
1,1  p Pip 	p Pipl 

(3.54) 
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PROOF 

(i) We have, in matrix form, 

cov(Z, X) – (n –I 	1) Z r X 

(XP)LX 

P1  X rX 

LPT  

using Eqs. (3.51) and (3.49). 
(ii) Let S---(1/n– 1)XTX be the sample covariance matrix. The 

correlation matrix between unstandardized variates X and un-
standardized components Z is given by 

R = L - I/ xtrxis  t /2 

" 2 1, 5cox* 

AT 
	

(3.57) 

where X* denotes the standardized version of X. Thus when 
variates and components are standardized their intercorrelations 
are given by 

A = X* TZ* 	 (3.58) 

In what follows we assume that the variates and components are unit 
vectors so that A consists of correlation loading coefficients unless stated 
otherwise. When unstandardized variables are used, however, the elements 
of A must be further adjusted by diagonal elements of (X rX) -1/2 , assuming 
the PCs are unit vectors. In the most general case, when neither the variates 
nor the components are standardized, correlation loadings in element form 
are given by 

11.12 
p11 

 a. 
(XT X ) 12  

)1/2 (3.59) 

for i, j = 1, 2, 	, p where pit  is the . (i, j)th element of P. In matrix notation 
we have as in Eq. 3.57 AT  = S l2P1  L 112  where S "2  is the diagonal matrix 
of reciprocal values of the sum-of-squares. It is clear from the preceding 
theorems that sample corelation or covariance loadings can be obtained in 
two distinct ways (as in the case of the population model—see Sec. 3.2). The 
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variates, the components, or both can be either prestandardized or post-
standardized, but this does not yield the same loading coefficients. Clearly 
the latent roots and latent vectors also differ for the correlation and 
covariance matrices (Section 3.4.3). 

At times we require latent roots and vectors of certain matrix functions. 
The following theorem is a special case of the well-known Caley—Hamilton 
theorem. 

THEOREM 3.15. Let X be a (n x p) data matrix such that i t  = fC 2  = • • • = 
Xp =0, and where X TX has latent roots L and latent vectors P. Then for 
some scalar c, 

(i) eXTX has latent roots cL and latent vectors P. 

(ii) XTX + cl has latent roots L + cI and latent vectors P. 

(iii) (XTX) c  has latent roots L` and latent vectors P. 

PROOF 

(i) Diagonalization of cX TX yields 

Pl.(cX TX)PT  = cPTXTXP 

cL 	 (3.60) 

using Eq. (3.44), 
(ii) We have 

PT(X TX + cI)P P rXTXP + 131.cIP 

L + cPTP 

L + cl 	 (3.61) 

(iii) We have X TXP PL, and premultiplying by (X TX) yields 

(XTX) 2P = X TXPL 

PL 2  

By repeated multiplications and induction we conclude that 

(XTX)C P= PL e 	 (3.62) 

so that (X TX)c  possesses latent roots L e  and latent vectors P. 

Property i of Theorem 3.15 permits the use of X TX in place of the sample 
covariance matrix S since neither correlation loadings or standardized 
component scores are affected by the scalar 1/(n — 1) (but latent roots are). 
Note that unstandardized component scores are not the same for the two 
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matrices. In practice, however, for large n the matrix X .1  X can be awkward 
to work with because of large entries. To fix ideas we consider two examples 
taken from sociology/demography and geology. 

Example 3.6. Consider the latent roots and vectors of the sociodemog-
raphic variables of Example 2.2. For the correlation matrix the first three 
PCs account for 

3 

6.4051  
7 X 100 	x loo 

J li 

=91.5 

percent of the trace (univariate variance) of the variables (see also Exercise 
3.21). Using Table 3.4 and Eq. (3.59) we see that the PCs also account for a 
high percentage of the correlation amongst the seven variables. Table 3.4 
also indicates that only three components are required in order to explain 
most of the variance of the seven random variables. Also since l 
5.6033 the first three components account for a large portion of the 
generalized variance (Theorem 3.9), Since L and P are known the stan-
dardized component scores can be computed using Eq. (3.51), where 

	

.111 	.001 	.922 -.220 	.017 	.290 	.072- 1/2.011 

	

.469 	.050•.139 	.107 -.426 	.506 	.556 	1/1.128 	0 

	

-.479 -.059 	.055 	,264 	.345 	.023 	.758 	1/1.044 
PL 7  = 6 

	

- .364 	.456 	.234 	.766 	.095 	.077 	.099 	1/.48  

	

.444 	.239 	.080 	.192 	.818 	.184 	.005 	 1/.405 

	

- .445 -.208 -.212 	.021 	.102 	.784 - .297 	0 	11.378 
_- .102 	.828 	.147 	.497 -.108 	.108 - .110_ _ 	 1f.227. 

	

.05542 	.00045 	.88322 	.45216 	.04142 	.76670 	- .31677 

	

.23342 	.04393 - .13308 	.22001 - 1.04983 1.33850 	2.44888 

	

- .23803 - .05228 	.05269 	- .54411 	.85066 --.06085 	3.33690 

	

-.18097 	.40447 	.22375 	1.57529 	-.23315 	.01806 	.43577 

	

.22079 	.21155 -.07704 	.39519 	2.01659 	.48807 	.02319 

	

-.22142 -.18477 -.20332 	.04375 	.25132 2.07474 -1.30726 

	

_ .05059 	.73427 - .14104 -1.02221 	- .26598 	.28664 -.48442 

and X and Z*  are given in Tables 3.2 and 3.3 respectively. The individual 
scores can also be obtained from 

	

z: =x1,11" 2 	= 1,2, . 	, p) 	 (3.63) 

where P, is the ith column of P. Since here X contains standardized random 
variables, the matrix of correlation loadings is given by Eq. (3.56) where 
every column of P is multiplied by the square root of the corresponding 
latent root. The elements of Al' are exhibited in Table 3.4, where by 
convention rows correspond to variables and columns to the PCs. Evidently, 
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Table 3.2 Standardized Soeloclemographic Random Variable Matrix X, Obtained 
by Standardizing Variables of Table 2.2 

Borough X 1  X 2  X i  X4  X i  X f, X7 

City -.1604 .5004 -.4374 -.5088 .2173 -.1439 -.5195 
Battersea - .0531 .0996 .0782 .0833 -.0951 .0705 .1346 
Bermondsey -.2107 - .1308 .1386 -.0342 - .1047 .1878 -.2510 
Bethnal Green - .2065 -.0908 .0833 -.0044 -.3210 .2120 - .0372 
Camberwell -.0615 -.1115 .1306 .0634 -.0567 .1017 .0103 
Chelsea .1095 .1418 -.1872 .1852 .3110 -.3646 .0103 
Deptford -.0833 -.1071 .0979 1357 -.1384 .1455 .0127 
Finnsbury .6361 -.0989 .1153 .0349 -.1144 .1381 -.0467 
Fulham .0131 .0737 -.0432 -.0361 .0418 0 -.1108 
Greenwich .0727 -.1019 .1531 - .1228 - .0951 .0350 -.2201 
Hackney -.0104 -.0796 .0586 .1899 -.0951 .1494 .0270 
Hammersmith .0601 -.1441 .0404 .1538 -.1120 .0138 .1267 
Hampstead .2504 .2589 -.2069 -.0026 .2077 - .3658 -.0229 
Holborn -.0539 .4330 -.3058 -.3570 .4720 -.1729 .0222 
Islington -.0623 -.0411 .0673 .2957 -.1624 .1162 .1790 
Kensington .1364 .2567 -.1836 .0666 .2005 -.3706 .3928 
Lambeth -.0078 -.0959 .0993 .2157 - .0038 .0709 1339 
Lewisham .1749 - .0930 .0891 .0329 - .1120 .0309 -.2320 
Paddington .0634 .0418 -.1414 .2202 .1760 .1348 .1457 
Poplar -.2761 -.1537 .2149 .0995 -.1144 .2075 .1814 
St. Marylebone .0542 .3907 - .3967 -.3009 .2341 -.3251 .0222 
St. Pancras -.0565 .0055 -.0498 .0620 .0779 - .0053 .2028 
Shoreditch -.2719 - .1545 .2426 -.0555 - .2586 .2161 .2360 
Southwark -.1747 - .1071 .1662 .0607 .0755 .1865 .0673 
Stepney -.2845 -.0804 .1349 .0923 -.0327 .1822 .2835 
Stoke-Newington .1188 -.1130 .1320 .2758 -.1144 .0839 -.1251 
Wandsworth .1364 -.1048 .0360 - .0225 - .0759 -.0352 -.0847 
Westminster -.0087 .1048 - .3094 -.2724 .2437 -.2719 -.0538 
Woolich .1565 -.1522 .1829 -.1142 -.2513 .0366 -.2154 

Z3 , picks up the influence of X I  (population change 1931-1951), whereas Z2 
correlates with X 7  (percentage unemployed) and to a lesser extent with X 4  
(fertility rate). Most of the variance, however, is explained by Z 1 , which 
shows a contrast between X3 and X6  (young male population, low terminal 
education age) and X2  and X6  (high young female/male ratio, suicide rate). 
Such components are also known as polar components. The contrast 
indicates low education age, which is found in boroughs high in young males 
and low in young females, which in turn is negatively correlated with the 
suicide rate (X 5 ), Variable X, (fertility rate) is also negatively correlated 
with X 2  and X5  and we conclude that high suicide rates appear to be found 
in boroughs containing a high young females/young male ratio, for reasons 
which are not apparent from Table 3.4. 

The split between boroughs high in young females on the one hand and 
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Table 3.3 Standardized Matrix Z* of Principal Components Obtained from the 
Sociodemographk Variables of Table 3.2 

Borough Z; Z: Z: 

City .4102 -.4699 - .2594 .2296 - .2452 .2229 .0395 
Battersea - .0897 - .1086 .0011 .1938 .0112 - ,1160 .0409 
Bermondsey - .1201 -.2681 .1638 .1606 .1572 - .0709 .0677 
Bethnal Green -.1676 .1446 -.1801 - .0584 - .4256 - .0125 - .1473 
Camberwell - .1087 -.0103 .0373 .0038 .1207 - .0057 .0635 
Chelsea .2661 .0819 .0753 - .1118 .2723 - .3198 .0860 
Deptford - .1409 .0018 0445 .1133 - .0854 .0272 - .0496 
Fin nsbury .0751 - .0800 .5762 --.3085  .0367 .5663 - .2043 
Fulham .0152 .0881 .0235 .0744 .1634 - .0980 - .2900 
Greenwich -.0516 -.2504 .0896 -.1431 .1444 -1290 .2436 
Hackney - .1229 .0423 .0202 .1959 - .0727 .1565 .1240 
Hammersmith -.1019 .1206 .0967 - .0118 -.1037 -.1362 .2521 
Hampstead .2520 .1159 .2368 .1417 -.1038 .1131 .3573 
Holborn .3768 .0387 .2056 -.1200 .2689 .4284 .1276 
Islington .1532 .1899 .0623 .2063 -.3170 1115 .0301 
Kensington .2056 .4472 .0906 .1390 .2289 - .0981 .3005 
Lambeth - .1088 .1622 .0263 .1330 .1091 .0470 .0353 
Lewisham -.0471 - .2217 .1993 -.0056 .0320 -.0534 .0694 
Paddington .0685 .2676 .0855 .3192 .0702 --.0345  .1839 
Poplar - .2007 .0928 -.2588 - .0906 .0829 - .0020 .1099 
St. Marylebone .3656 .0421 - .0474 -.1411 -.2908 .0294 - .0955 
St. Pancras .0069 .1943 .0729 -.0252 .0369 .0534 -.1971 
Shoreditch .2157 .0366 -.2766 -.4644 .1597 -.0411 .0903 
Southwark .1133 .0420 - .1709 .0297 .4136 .1569 .0996 
Stepney ---.1452  .1942 -.2873 -.1118 .0704 .1110 .0076 
Stoke-Newington .1386 .0318 .1980 .3705 -.0047 .0191 .1948 
Wandsworth -.0261 -.0873 .1562 .0847 .0122 -.1727 m1042 
Westminster .2637 .0271 .0548 -.0944 .1274 .3130 -.5047 
Woolich -.1024 -.2805 .1849 -.2613 -.0918 -.2055 .1890 

Table 3.4 The Matrix of Correlation Loadings A T  Representing Correlation 
Between PCs and Variates s  

.43 Z: Z: r,` Total SS 

X 1  .2241 	.0006 .9623 - .1068 .0068 .1094 - .0163 1.0 
X2 .9439 	.0559 -.1450 .05197 -.1726 .1910 .1264 1.0 
X 3  -.9625 	-.0665 .0574 - .1285 .1399 -.0087 .1722 1.0 
X, -.7318 	.5144 .2440 .3721 - .0383 .0026 .0225 1.0 
X 5  .8928 	.2690 - .0839 .0933 .3315 .0696 .0012 1.0 
X6  -.8954 	.2350 -.2215 .0103 .0413 .2961 - .0675 1.0 
X, .2.046 	.9338 - .1537 -.2415 .0437 .0409 -.0250 1.0 

4 1, = 4.043; 12 =1.271; 13 = 1.089; 4 = .2362; 4 = .1644; 4 = .1427; 17  = .0516. 
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young males on the other is probably due to structural aspects of the labor 
force in London. Since both X 2  and X 5  positively correlate to Z 1  their high 
level is indicated by large and positive Z 1  scores. Thus both high young 
female/male ratios, as well as high suicide rates, tend to be found in 
business-oriented districts such as City, Chelsea, Hampstead, Halborn, 
Kensington, St. Marylebone, and Westminster. These boroughs possess a 
higher young, single, female labor force mainly employed in government 
institutions and private service industries. Highly negative scores on the 
other hand are found for Poplar and Shoreditch, indicating a prevalence of 
young males and low suicide rates in the more traditional blue collar, 
working class districts. Note that signs of the loadings and scores, for a given 
PC, are relative in the sense that interchanging both will not alter interpreta-
tion. Correlation loadings for the first two components are plotted in Figure 
3.4. The predicted (systematic) parts of the variables are given by 

= .2241Z 1  + .0006Z, + .9623Z 3  

i2 = .9439Z 1  + .0559; — .1450Z 3  

.2046Z 1  + .9338Z2  — .1537Z 3  

Of course all three PCs need not be retained for all variates. Components 

Figure 3.4 Correlation loading coefficients for the first two principal components Z 1  and Z 2  of 
Table 3.4. 
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exhibiting low correlation loadings may be omitted since not every PC is of 
equal importance for every variable, nor are all variables of equal impor-
tance for every component. For instance, although Z 1 , Z 2 , and Z3 explain 
R 21  = (.2241) 2  + (.0006) 2  + (.9623) 2  = .9762 of the variance of X I 7 they ac-
count for only R 24  = .8600 of the variance of X 4 - 

Example 3.7. An interesting application of PCA in the natural sciences 
occurs in Geology. During the summer of 1983 sediment samples were taken 
at Lynn Lake, Manitoba, by the Geological Survey of Canada. Amongst 
other variables, the following p 16 measurements of trace elements were 
taken for each sample location. 

= zinc, ppm 
Y2 = copper, ppm 
Y3 = lead, ppm 
Y4  = nickel, ppm 
Y5  = cobalt, ppm 

= silver, ppm 
Y7  = manganese, ppm 
Ys = arsenic, ppm 

Y9  = molybdenum, ppm 
Y 9 = iron, pct 
Yil = mercury, ppb 
Yr, = loss on ignition, pct 

= uranium, ppm 
Y14  = fluorine, ppm 
YI  5 = vanadium, ppm 
Y16  •= cadmium, ppm 

Sample means and standard deviations, together with the correlation matrix, 
are presented in Tables 3.5 and 3.6. Because of the effect of different units 
of measure (parts per million, parts per billion, percentages) the correlation 

Table 3.5 Sample Means and Standard Deviations of Lake Sediment Data from 

Lynn Lake. Manitoba 

Element 

V, 
Y2 
Y, 

111 4 

Y 5 
 Y, 

Y, 
Y8 

"10 
Yll 
"12 

Y 13 

Y 14 

Y15 

Yl6 

Means 	 Standard Deviations 

	

81.68 ppm 	 43.74 ppm 

	

15.68 ppm 	 6.85 ppm  

	

2.08 ppm 	 3.46 ppm 

14.63 ppm 
58.2681  pPpPmm  7.88 ppm 

	

.12 ppm 	 .19 ppm 

	

975.54 ppm 	 2874.95 ppm 

1.23 ppm 

	

2.56 ppm 	 2 .49  P  63 pPpmm 

	

4.42 pct 	 4.60 pet 

	

64.40 ppb 	 48.96 ppm 

	

35.79 pet 	 19.18 pet 

	

4.12 ppm 	 3.09 ppm 

	

242.34 ppm 	 116.19 ppm 

	

31.35 ppm 	 50.92 ppm 

	

.65 ppm 	 4,99 ppm 



Table 3.6 Correlation Matrix for p =16 Geological Measurements (Table 3.4) 

Y.  

1.000 

, 6 y , y, V u  V 1 4 

.505 1.000 
.031 .037 .000 
.600 .557 .164 1.000 
.785 .513 .085 .820 1.000 

-.015 .005 056 .152 .091 1.000 
.455 .289 .102 .745 .723 -.022 1.000 
.336 .292 053 .415 .469 .057 .404 1,000 

.570 .229 .026 .441 .646 -.022 , 482 .403 1.000 

.798 .298 - .051 .327 .598 - .061 .283 .280 .671 1.000 

.148 .049 .013 -.062 -.095 -.030 -.081 -.136 -.089 -.034 1.000 

- -.047 -.039 -.210 -.283 .022 -.226 - .336 -.206 -.129 .423 1.000 

.333 .337 .050 .278 .257 -.076 .152 .101 .174 .236 -.092 -.143 1.000 

.100 .266 .046 .366 .280 - .072 .248 .351 .012 - .030 - ,241 .648 .087 1.000 

.427 .175 .050 .262 .284 .032 .081 .054 .144 .411 - .052 -.010 .631 - .095 1.000 

.229 .019 .027 .119 .110 .009 .003 - .048 .020 165 -.002 .135 .580 -.2111 .929 1.000 
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Table 3.7 Correlation Loadings, Percentage Variance Explained, and Latent Roots 
for p = 16 Geological Variables (Table 3.5) 

Element z Z2 Z z5  R 2  Latent Roots 

V, .839 .186 .296 -.102 -.089 .8445 5.10374 
Y, .595 - .031 .092 .284 -.458 .6539 2.50188 
Y 3  .096 -.065 .002 .512 .290 .3597 1.71054 

.823 -.160 .047 .377 - .029 .8481 1.23672 
V s  .917 -.130 .148 .051 .064 .8864 1.08377 
Y, .020 - .062 .094 .462 .606 .5938 .95891 
Y, .701 -.269 .115 .153 .035 .6016 .77603 
Y 8  .560 -.346 -.071 -.026 .067 .4435 .67026 
Y 9  .690 -.093 .290 -.389 .254 .7847 .60995 

Y10 .698 .199 .262 -.462 .131 .8261 .47363 

Yi .121 .251 .603 .251 -402 .6659 .25392 
Y 1 , .344 .492 .600 .207 -.071 .7683 .24175 

Vu .469 .507 -.435 .039 -.198 .7070 .16237 
V1 1  .330 -.574 -.507 .113 -.313 .8062 .11937 

Y 15 .471 .768 -.341 .030 .082 .9356 .07497 
V 16  .262 .834 -.352 .122 .104 .9138 .02219 

Variance % 46,40 15.64 10.69 7,73 6.77 16.0000 

rather than the covariance matrix is used to eliminate the effects of uneven 
variance (see Section 3.4.3). 

Table 3.7 exhibits correlation loadings, "communalities" (R 2 ), latent 
roots, and percentage of variance accounted for by the first r = 5 PCs. 
Together, the five components explain 87.23% of the trace of the correla-
tion matrix. The first component Z, accounts for almost half of the variance, 
and mainly correlates with V 5 , Y I , Y4 , Y 7 , Y 9 , Y 10 , 11 8 , and Y2. Here Z, 
represents a mixture (linear combination) of these elements. The com-
ponent scores of Z, then indicate which sample points contain a particularly 
high (low) amount of such a metal combination (mineral type). The second 
component Z2  indicates that Y16, Y 1 5, Y 1 3, and Y 12  form another mixture 
(linear combination) of elements, orthogonal to Z, and characterized by a 
low iron, a high cadmium, vanadium, and uranium content. It is also 
relatively high in flammable material (loss on ignition). The remaining 
dimensions have a similar interpretation, although they contribute less to 
the observations. 

3.4.3 The Effect of Means and Variances on PCs 
Grammian association matrices can be expressed in four different ways 
depending on measures of location and scale (Section 2.4). Both the 
loadings and the scores however are dependent on the mean values and 
variances of the variables, so that initially a choice must be made as to how 
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Table 3.8 Correlation Loading Coefficients for Standardized, tInstandardized 
Variates and PCs Obtained from the Correlation, Product-Moment Matrices 

Principle Components 

Variates Standardized 	 Not Standardized 

Standardized 
R S- " 2XTXS - " 2  

Not standardized 
XTX 	 ao = (XT4 Xl1 112P4 

/I/2
pi  

a i" — 	1/2 
I  

the variables are to be centered and scaled. The situation is portrayed in 
Table 3.8. First consider the effect of the mean vector. In most applications 
random variables are adjusted for differences in their general levels 
(distance from the origin). The affine transformation is applied in order to 
place the variables on an equal footing with respect to the origin. An added 
advantage is that the data vectors become points in a linear vector space. 
Using Eq. (3.46) where X = Y — Y we have 

X = (Y 11) = ZP 1  

or 

Y = + ZPT 	 (3.64) 

so that given PCs and latent vectors (loadings) of X TX we can always 
reconstruct the original observations. Note however that latent roots and 
vectors of Y 1  Y cannot be obtained in a straightforward way from those of 
X I  X since latent roots and vectors are not independent of affine (or linear) 
transformations. It was seen in Section 3.3 that the first PC tends to reflect 
the general correlational structure of the variables and is thus a reflection of 
general "size." This is even more true for the matrix Y 1 Y. Since the sums of 
squares and products tend to be dominated by the mean values, the first PC 
of Y TY simply reflects this mean influence. A PCA of Y therefore generally 
tends to yield trivial results, with large loadings for the first PC and much 
smaller ones for the remaining. The difficulty however is readily solved by 
replacing Y by the matrix X. 

Unequal variances also cause interpretational difficulties when variables 
either do not possess comparable units of measure or else are highly 
heteroscedastic (uneven variance) for the same unit of measure. This is 
because the lack of comparability between correlation and covariance 
matrices is caused by the (unequal) variances rather than the covariance 
terms (Exercise 3.23). In this case the difficulty is solved by standardizing X 
such that columns possess equal (unit) variance. Even when units of 
measure are the same, however, the correlation matrix may be more 



144 	 THE ORDINARY PRINCIPAL COMPONENTS MODEL 

advantageous when there are large differences in the variance. This is 
because variables with relatively large sums of squares tend to dominate 
those PCs that correspond to large latent roots, The loadings for the first 
few PCs therefore are generally distorted by these differences in the 
variances. Thus it is precisely variables that could be most unstable which 
receive disproportionately larger weights and which tend to dominate the 
analysis and cause interpretational difficulties (e.g., see McGillivray, 1985). 
In this situation the high variance variables can be omitted from the analysis 
or the entire set standardized to unit variance. In certain applications where 
variables are related exponentially, for example, those dealing with constant 
rates of growth (Section 3.7), a logarithmic transformation will tend to 
reduce differences in the variances. More generally we may also wish to 
weight elements of X TX by numbers other than standard deviations. For 
example, not all variables may possess equal reliability, as when some data 
are missing (Section 4,7.3), and those more error prone may then be given 
smaller weight in the analysis. It must be stressed however that there is 
generally no straightforward relationship between a PCA of weighted and 
unweighted variables. 

The following example illustrates the effect of the mean values of the 
variables. 

Example 3.8. We consider the artificial data matrix given by Orloci 
(1967). We have 

17  = 

	

[26 	24 

	

40 	16 

	

30 	26 

	

40 	20 

361 
42 
28 
16 

X --- 

-8 
6 

-4 
6 

2.5 
-5.5 

4.5 
-1.5 

5.5 
11.5 

-2.5 
-14.5 

where Y = (34, 21.5, 30.5) T  and 

4776 2844 40961 
[ 	

152 -80 -52 

	

YTY = 2844 1908 2584 	X TX = -80 59 -39 

	

4098 2584 4100 	 -52 -39 379 

The latent roots, vectors of the two matrices are 

331.087990 
[10306.050083 0 	1 

146.861927i 

1.669641 .631919 .390204 
.416065 .116015 -.901904 

L.6152oo -.766302 .185231 

and 

194.811758 
[391.807285 0 1  

1380958] 

.189278 .838846 .510400 

.069281 -.529910 .845219 
-.979476 .124620 .158417 
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respectively, The (unstandardized)PCs of X are then the columns of 

	

[-8 

6 -1. 

2.5 	5.5 

	

.

189278 	.838848 .510400 

	

6 -5.5 	11.5][ '069281 -.529910 .845219 Z = 
-4 	4.5 	-2 

-14.
.5
5 	-'979476 	.124620 .158417 5  

-6.72814 -7.35015 -1.09886 

	

-10.50935 	9.38072 	.23550 

	

2.00334 -6.05154 	1.36585 

	

15.23415 	4.02096 - .50248 

The original observations can be reproduced using Eq. (3.64). Thus for Y 1 
 we have 

Y = .Y + ZP; 

	

34 	15.23415 	
' 

4.02096 	-.50248 ' 

.23550][' /89278  

	

34 	2,00334 -6.05154 	1.36585 
I 838848 

510400 

	

.3344 	---1(6) 57029831 54 -7.35015 -1.09886 
9.38072 

[34
34
34] [

-4.  6
8 .001 

00 

	

34 	6.00 

[26,00] 
40.00 
30.00 
40.00 

where P is the first row of P', not to be confused with a transposed (row 
vector). The remaining columns can he determined in a similar fashion. 

The mean vector makes itself felt through the first PC of the matrix Y 1 Y. 
Standardized loadings for both Y TY and XTX are given below. Since the 
columns of Y are not corrected for their means, the loadings for Y are 
direction cosines rather than correlations. 

Z 1  Z2 Z3 	Z I  Z2  Z 3  

Y 1  .9837 .1664 .0684 X 1  .3039 .9497 .0761 

Y 2 .9670 
[ 

.0483 .2502 
] 

X 2  .1785 
[ 

-.9629 .2023 
Y 3 .9754 -.2178 .0351 X 3 -.9959 .0893 .0150 

It is evident that the inclusion of the mean vector has made a substantial 
difference in the analysis. Although the mean vector dominates the analysis 
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of Y through the first component Z 1 , once it is removed the loadings of 
X = — 17  reveal nontrivial linear combinations of the columns of X. 

3.5 PRINCIPAL COMPONENTS AND PROJECTIONS 

Consider a set of p linearly independent variables X I  , X 2 , ... Xi,, each 
containing n observations. Let 

= Z(ZT Z) -  'ZT 	 (3,65) 

be a (n x n) projection matrix which projects vectors orthogonally onto a 
subspace of dimension p < n. A well-known transformation which seeks to 
orthogonalize the observed variates is the Gram—Schmidt transformation 

Z i  X i  

Z2  =(I - 112. 1 )X 2  

Z3 = ( I  - Pz1 P12) X3 

  

Zp = ( 11 PZ1 Pz 2 	 Pz(p-1)) Xp (3.66) 

where the Z i  form a new set of orthogonal variates (Exercise 3,2). The 
orthogonalization procedure is sequential. Beginning with a first arbitrary 
choice X 1  = Z 1 , the second orthogonal vector Z 2  is the difference between 
X2 and its orthogonal projection onto X i , Z 3  is the difference between X3 
and its orthogonal projection onto Z i  and Z 2 , and so forth until all p vectors 
are found. 

The Gram—Schmidt projection can he viewed as a series of least squares 
regressions. Let Y be a random (n x 1) vector of observations which 
depends on p explanatory variables such that 

Y = p,x, + /32 )( 2  + • • • + /3pXp  + e 

X is an (n x p) matrix, 13 is a (p x 1) vector of fixed coefficients, and c is the 
(n x 1) residual vector such that E(c) = 0, E(Y) = p,= X. A simplifying 
assumption is that c possesses a diagonal covariance matrix with equal 
nonzero diagonal entries, say cr 2 . The covariance matrix of V can then be 
written as = cr 2 V where V is symmetric, positive definite, Let ft denote a 
vector space such that !LEO and dim(fl) =p. Then the range of X is 
R(X) = (p.: p. --- X13} for some fixed p, and an estimate M = I' of p.= E(Y) 
can be found such that M EU. Since M is not unique an additional condition 
of orthogonality is usually required so that M is orthogonal to the sample 
residual vector = Y — M, that is (Y — M)114T  =0 for all X e U. When 
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R(X), that is, X is of full rank, M is the orthogonal projection of Y onto 
R(X), with projection matrix P, = X(X TX) - "XT  so that 

M = PO( 

= X(XTV I XTY 

=x' 

(3.68) 

The regression estimator = (x-rx) xT., 
Y possesses certain optimal prop-

erties which derive from the orthogonal nature of the projection. Thus is 
constrained to lie in the n — p dimensional null space N(X), perpendicular to 
R(X). 

Two points emerge from the geometry of regression, discussed above, 
which are relevant to factor analysis and which indicate the formal similarity 
of factor analysis models to least squares regression. First, least squares 
represent, in a sense, a dimension-reducing procedure since the n-dimen-
sional sample space is reduced to a p <n dimensional random variable space 
containing the systematic variation in Y. The reduction results from the 
orthogonal projection of Y onto the column space of X, which gives least 
squares regression optimal properties. It follows that prior information 
concerning the error structure of the variables is required, such as ortho-
gonality. Second, regression requires prior information in the form of 
explanatory variables which are thought to account for a significant propor-
tion of the variance in Y. The dependence must be posited beforehand since 
statistical techniques, by themselves, cannot isolate the direction of causality 
if such causality exists. 

Both PCA and least squares regression share common geometric prop-
erties and can be considered in a unified manner in terms of projections. 
Consider p intercorrelated random vectors X I , X 2 , .. Xp . Then computing 
r p < n PCs is equivalent to projecting vectors from a p-dimensional space 
R(X) onto an r-dimensional subspace S(Z) such that 

T . X = 	Z 2 ell 2T 	Z rar  e(r) 

= z aT + (r) (r) 	(r) (3.69) 

Z(r) is the (n x r) matrix of the first r PCs, ii .(1;)  the (r x p) matrix of 
estimated coefficients, and e (r)  is the (n x p) matrix of residuals. Equation 
(3.69) is similar to least squares regression except that the PCs are unknown 
and must be estimated together with the coefficients. The first sample PC Z 1 

 is that linear combination which accounts for the largest proportion of 
variance, where 
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variance, where 

x= z ecT 1 	(1) (330) 

and S(Z 1 ) = {'P: 	Z l et T/  }. An estimate of 11/ 1 , say F 1 = Z 1 1 I  is found 
such that 

(X —FO TZ, =0 	 (3.71) 

for all Z 1  E S(Z 1 ), that is, Z 1  is orthogonal to the (p —1) dimensional 
residual space R(X — F 1 ). For any other estimate FT the norm IX is 
minimized if and only if F7 = F 1 . Thus F 1  is the orthogonal projection of X 
onto Z 1 , and 

F 1  = pn x 

=z i (tIrz) LzTx 

= z i zTx 

=z 1 	1 (3.72) 

where &T.= Z .ITX is the least squares regression estimator of a T1  . Thus 

= 11, 1 X + (1-1), I )X 	 (3.73) 

where Pz1  = Z i  ( ZT Z i ) 1  . 
Equation (3.72) cannot be used as it stands since Z 1  is unknown. The 

sum of squares of X due to Z 1  is the squared norm 

Ipzi x 1 11 =tri (P 1 x) 1 (P21 x )] 

= tr[XTP, X] 

= tr[X TZ (Z .; . Z 1 ) - I ZTX1 

tr[XX TZ I (Z;Z i ) 

= trIZTXX TZ 1 (ZTZ I ) -1 1 

ZTXX TZ  

ZTZ I  
(3.74) 

using well-known properties of the trace function. To maximize Eq. (334) 
we maximize the Lagrangian expression 

4, =CxxTC1 — higTiti — 1 ) 
	

(3.75) 
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where h i  is the Lagrange multiplier. Differentiating with respect to g, and 
setting to zero we have 

-=xxrz, - h i z, =o ag, 

or 

(XX T  — h 	= 0 	 (3.76) 

The vector of estimates Z I  of C, is therefore the latent vector of the (n x n) 
matrix XX which corresponds to the largest root h 1 . The vectors u i  and Z 1 

 can therefore be determined jointly as the first latent vectors of XTX and 
XX T , respectively. To minimize computational effort, however, Z 1  is 
normally taken as the first vector of scores obtained from Eq. (3.63). Here 
the population PC g, can be regarded either as random or as fixed. (Section 
6.8). 

The second PC is obtained by estimating the coefficient vector a 2  such 
that 

	

X = 	+ Z2a 2T  + € (21  

	

= 	+ AP2  + e (2)  

where S(Z 2 ) = (qt2 : ‘112  = Z 2a2T ) and 

_ zia Ti  = z2u -r2  + col  

so that 

e=ZaT +e (I ) 	2 2 	(2) 

We seek an estimator of W 2  = Z zaT2 , say F 2 , such that 

F2 ) 1  Z2  = 0 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

The distance is a minimum if and only if F2  is the orthogonal projection of 
the first stage residual matrix 

H i  = X — 	 (3.81) 
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onto the second basis vector Z 2 , that is, 

F 2 = Pz2H I 

= Z2(Z I2r Z2) -1 Z 12r 111 

= Z2*X F 1 ) 

=Z2Z T2ji 

= 	 (3.82) 

where 61 2  = Z 2T X and Z 2TZ 2 = 1, H i  = X — Z l et TI , and ZIF I  =0. An estimator 
Z2  of ;2  is obtained by taking the latent vector of XX 1  which corresponds to 
the largest latent root h 2  =12 . The orthogonal projection induces the 
partition 

H I  =1),2 11 1 + (I —1)22 )11 1 	 (3.83) 

and substituting for IFI I  yields 

(X —11, 1 X)= 1122 (X —1121 X)+ (1—P22 )(X —11, 1 X) 

= Z 2 ZIX + X — Z I ZT — Z 2 ZIX 

=11, 2 X+ X —P,.. 1 X—P,,X 

where P, 1 111, 2  0. The second stage decomposition of X is then 

X ---- (Pz1  + 	+ 	(11, 1  + P, 2 )IX 

=P(2)X + (I — P(2) )X 
	

(3.84) 

We also have 

XTX (Z t al + 	+ 	+ Z T2  + H 2 ) 

= a 	+ a 2a2 	KIL2 

	

T 	 (3.85) 

so that the second-stage residual sums of squares matrix is given by 

11121.11 2 = X TX — 

= XT X — X • I)z , x — X • 1122 X 

X T(I —1121 — P,2 )X 
	

(3.86) 

where 

1321 	Pz2) 
	

(3.87) 
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The process continues until (1 — 11, 1  Pz2 	P 	= 0. Given r p we 
have 

X = (11„ + 11, 2  + ' • • + P, r )X + [I — ( 1),1 +P+ ' ' 	P„)IX 

Z(011 .(ro  + 1E09  

= 11 (r) E (r) 
	 (3.88) 

where i ( , )  is the (n x p) matrix of predicted values, and a and Z, are the 
latent vectors of X I X and XX 1  respectively. As is shown in Theorem 3.17, 
however, it is wasteful to decompose both matrices, and in practice Z, are 
taken as PC scores of X TX. Evidently when r = p decomposition (Eq. 3.88) 
reproduces X exactly. Note that Eq. (3.88) can also be viewed as represent-
ing a linear hypothesis of the type 

Ho: 
	contains r components (factors) 

H.: 
	

is arbitrary 	 (3,89) 

the testing of which is deferred to Chapter 4. When H o  is accepted, the first r 
components Z(r)  are viewed as estimators of the unobservable latent 
variables g(,) , which explain the behavior of X. Then i to  is the (n x p) 
matrix of unexplained residual variation. The coordinate-free projection 
viewpoint of the PC model provides an analogy with the more familiar 
regression model. Also, the following two points emerge more clearly. 

1. Since the residual sum-of-squares matrix iToi cr)  is not diagonal, the 
residual terms are not assumed to be uncorrelated. The effect of residual 
variation is therefore assumed to be felt on both the diagonal as well as 
off-diagonal terms of X 'X. 

2. Equation (3.88) indicates the looseness of the statement "the PCA 
represents an exact decomposition of a dispersion matrix," since the residual 
matrix i (r)  can clearly he endowed with stochastic characteristics which 
results in a stochastic decomposition. 

Projective properties of PCA are summarized in the following theorem. 

THEOREM 3.16. Let X be a (n x p) data matrix and let P. = 
Z(Z TZ) Zr = ZZT  represent the (n x n) matrix which projects observations 
orthogonally onto the r.tsp dimensional subspace spanned by r.s:p PCs. 
Then 

(i) The predicted values of X are given by 

=1),X 	 (3.90) 
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(ii) The predicted sums-of-squares are given by 

tr(X TP,X) = / 1 + /2 + — + 	 (3.91) 

(iii) The predicted sums of squares matrix is given by 

T 
X X = (r)a (r) (3.92) 

where  
ILO) L (r) = A(r) are sample correlation loading coefficients (Sec-

tion 3.4.2) so that the predicted sample covariance matrix is 

1  a  T 
n – 1 (r)  " (3.93) 

PROOF 
(i) We have 

=X P X= (P 	1122  + • • + P„)X 

=p, I X + Pz2 X + • • • +P„X 

= Z 1 Z11 .X + Z2Z2TX + ••• + Z r Z,TX 

+ 	+ 	Zr ICIE rT  

the predicted values of X, using the first r PCs. 

(ii) For the predicted sums of squares we have 

tr(X TPz X) =tr(XTZ (r)i(r ) X) 

= tr(iioet .(1',9 ) 

= tr( ) il (r) ) 

= / I  + /2  + - • + 

(iii) We have 

= (I)X)T(P2  X ) 

X TZ ZT  X (r) 

(3.94) 
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where ii ( ,)  =13(r) L (1,!)2 . Using Theorem 3.15 we have 

1 	, 	1 
n 1 a (r)a(r )  n — 

1/21 1.12 DT 
r) 1-'(r) 14 (r) A  (0 

1 
T  

n

- 

 — •1 	P (r) L  (r) P (r) 

1 	T 
X X 

n

- 

 — 1 

= 

Deriving the PC model by orthogonal projections provides a geometric 
perspective of the model, akin to least squares theory since formally 
speaking we can consider the first r components as explanatory statistical 
variables, which happen to be unobserved. Also the PCs can be character-
ized by the spectral decompositions of XX T , as well as X I X. indeed there 
exists a dual relationship between the spectra of the two matrices, which 
makes it unnecessary to compute both sets of latent root and latent vectors. 

THEOREM 3,17 (Singular Value Decomposition). Let X be a (n x p) data 
matrix such that p(X) = p n, X = 0, and let X 1 X and XX T  be (p x p) and 
(n x n) Grammian matrices respectively, Then 

(i) Nonzero latent vectors of XX T  are standardized PCs of X rX. 
(ii) Nonzero latent roots of X TX and XX r  are equal. 

(iii) Any real (n x p) matrix X can be decomposed as 

X= 
	 112 / 2 442K 	+ 11:2Qp ppT 	 (3.95) 

where Q , 	the ith latent vector of XX T  and Pi  is the ith latent 
vector of X I X, 

(iv) XX T  can be decomposed as 

XXT = ZLZ T 	 /2 Z z Z; • • + 1 Z Z T  P P P 

 

= 1 1 Pz! 12 Pz2 	 1p Pzp 

 

(3.96) 

where Pz, = Z,(Z iT Zi )'Z,T  = ZAT  = QiQ,T  are matrices which pro-
ject vectors orthogonally onto Z i  (i 1, 2, ... , p), and Z = Q. 

(v) Equation (3.95) minimizes the sum of squared errors 

E = X — (),It i2 PT, 



M= 

0 	

/p 

01 

0 

12 
=  IL 0 

Lo oi (3.100) 
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PROOF 
(i) Let 

(X TX)P = PL 
	

(3.97a) 

and 

(XX 1 )Q = QM 
	

(3.97b) 

where L and M are latent roots and P and Q latent vectors of X TX 
and XX T  respectively. Since p(X)--p(X TX) = p(XX T ) = p, the 
(n x n) matrix XX T  can only have p nonzero latent roots 
(Theorem 2.6), Premultiplying Eq. (197b) by X we have 

(XXT)XP = XPL 	 (3.98) 

where Z = XP are unstandardized latent vectors of XX T  (PCs of 
VX). Standardizing, we have 

= XPL -112  = Z* 	 (3,99) 

the standardized matrix of PCs of X T X. 
From part i we have 

(ii) M = QI (XX' )Q = (XP) T(XX T )XP 

= P1  X T (XX T)XP 

= (Z TX)(X TZ) 

= ATA 

from Theorem 113, so that 

and it follows that nonzero roots of M and L must be equal. 
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(iii) We have 

X --- 11,X = (Pz 	Pz2 	• • + Pzp  )X 

= z t zTx + z 2zIx + • - -+zpz -prx 

	

=z+ 	 z a T 
P P 

2 in, DT ilt2n pT +... 12 	DT 
I MI A 	-1- 1 2 ‘EZA  2 	 P '"EP P 

(3.101) 

since Q = Z from part i of the proof, and et ;  = / 2PT ,--- A i  

(iv) From Eq. (198) we have 

XX T  = QMQT  = QLOT  

= Q141 ' 12Q2 (if + • • • + 1p Qp Q; 

=r i z t zT, 4- 12z2 z 2r + • • +/,,zpzpl.  

=1,112 , + ry22  + - • + Ip P,p  

(v) The sum of squared errors is given by, for s =p r, 

E = X — Q,14,112 P1; = Q,1): 2 Q.$ 1,s" 2 P13 . 	 (3.102) 

If 1 5.r < P components are retained. The sum of squared errors 
is then 

tr(ETE) = tr(Ps 1.4 202Ls1/2 P1,) 

= tr(P.,1, 5" 2 1,.," 2 PT;) 

= tr(1).J.,K) 

tr(L) 

= is  + 4, 1  + • + /p  (3.102a) 

the sum of the last s = p — r latent roots which, by Theorem 3.9, 
are minimized. 

Equation (3.101) is known as the singular value decomposition of a 
rectangular matrix X where p(X) = p n. When the columns of X are 
centered at zero, it is unnecessary to compute loadings and scores of XX T 

 since the loading coefficients of XT X are suitably normalized scores of XX 1 , 
and vice versa. While loadings yield information concerning the variable 
space, scores provide information about the sample space. Thc point is 
made more clearly by the following. From the singular value Theorem 3.17 
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we have 

QTXP = L' 2 - X = QI.P 2PT 
	

(3.103a) 

and transposing yields 

prxTc• = L" 2 --oi 1  = pi," 2 QT 
	

(3.103b) 

where QTQ = 1, but QQ T  is a projection matrix. Also, Q = Z are the left 
latent vectors of X and P are the right latent vectors of X. Whereas Eq. 
(3.103a) represents a decomposition of the column (variable) space of X, 
Eq. (3.103b) represents a decomposition of the row (sample) space of X. 
Clearly both spaces provide distinct but complementary information. It is 
easy to verify that pre (post) multiplying Eq. (3.103a) by Eq. (3.103b) yields 
the Grammian decompositions of Eqs. (3.97a) and (3.97b) respectively. This 
simply represents a restatement of Theorem 3.11 (see also Exercise 3.11). 
More generally it can be shown that for any two matrices (real or complex) 
A, B the nonzero latent roots of AB are the same as those of BA, assuming 
the products exist (Good, 1969). The latent vectors however are different. 
Note that the symmetry between the loadings and the scores does not hold 
for covariance matrices of the rows and columns since the centering of the 
row and column vectors is not the same, and the spaces are therefore not 
comparable. 

Example 3.9. Consider the data matrix from Example 3.8, where 
columns are adjusted to zero mean and unit length. The correlation matrix 
for the columns is 

1.0000 -.8448 -.2160] 
X rX = [ - .8448 1.0000 - .2608 

L-.2167 -.2608 1.0000 

and the sum of squares and products matrix between the rows 

.6068 -.3819 .3649 -.5898 
- .3819 1.0985 -.6532 -.0633 

.3649 -.6532 .4650 -.1766 
-.5898 -.0633 -.1767 .8297 

Note that this is not a correlation matrix since rows of Y are not unit 
vectors. The latent roots of XX 1  are given by 

[ 1.84595 	 0 1 [I, 01 
M 	 1.11718 

0 	 .03682_1 Lo oi 

xxi [ _ 
- 
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and those of X TX are 

1 1.84595 

0  
1.11718 

[ 0 	 .03682] 

The latent vectors of X TX and XX T  are columns, respectively, of 

.4970 .3500 .6162 0 
-.6438 .5451 -.1965 0 

.4782 -.1478 -.7073 0 
-,3314 -.7433 .2852 0 

P 

 [

-.7()39 -.2626 -,6632 
.7122 -.2054 -.6713] , 

-.0401 	.9428 -.3309 

and unstandardized PC scores of X are 

Z = XP 

	

[-.6489 	.3255 

	

,4867 	-.7160 

	

-.3244 	.5859 

	

.4867 	-.1953 

	

.6753 	.3699 

	

-.8748 	.5761 

	

.6498 	-.1562 

	

_-.4504 	-.7899 

.2825 . 5907] 

-.1284 
-.7448 

.1184 
-.0376 
-.1356 

.0548 

{ -.7009 
7122 ' 

-.0401 

-.2626 
-.2054 

.9428 

Standardizing columns to unit length then leads to 

-,6632 
-.6713 
-.3309 

V =xpL - " 2 =n -112  

[ 

	

.6753 	.3699 	.1184 	111.35866 	
0 	1 

	

-.8748 	.5761 -.0376 1/1.05697 

	

.6498 -.1562 -.1356 	0 	 1.19187_1 

	

-.4504 -.7899 	.0548 

	

[

.4970 	.3500 	.6162 

	

-.6438 	.5451 -.1965 
.4782 -.1478 -.7033 

	

-.3314 -.7473 	.2852 

which is identical to the nonzero submatrix contained in Q. Equivalent 
results also hold for the covariance matrix, the sum of products, and the 
cosine matrices described in Chapter 2. 

Example 3.10. An immediate implication of Theorem 3.17 is that we 
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may compare and relate points in the variable space to those in the sample 
space. Consider a horticultural experiment where bud-cut chrysanthemums 
arc used to evaluate the effects of different levels of sucrose and 8- 
hydroxyquinoline citrate on the opening of immature flowers (Broschat, 
1979). Experimental data representing means of three replications are given 
in Table 3.9 where 

1/ 1  = initial fresh weight (gm) 

Y2  = final fresh weight (gm) 

Y3 = final dry weight (gm) 

11, = flower diameter (mm) 

Y5 = flower height (mm) 

= postharvest life (days) 

The treatments consist of nine combinations of % sucrose/ppm and 
8-HQC, which are thought to affect flower-keeping quality. We thus have a 
MANOVA design resulting from the intercorrelations that exist between the 
dependent variables. A PCA can be carried out to determine which 
treatments influence which dependent variable(s). First the correlation 
loadings of X rX are computed for the first two PCs (Table 3.10, Fig. 3.5), 
where we perceive two distinct clusters. The first cluster consists of X. X 4  
and X5, which is most closely related to Z 1 . Since the three variables 
measure initial flower size, component Z 1  can he identified with an 
underlying dimension of initial flower size or the overall flower quality. 
Consulting the scores of X 1X (Table 3.11), we also see that the flower size 
component Z 1  is related positively to the last three treatments, all of which 
contain high sucrose concentrations. It scores negatively for treatments 1 

Table 3.9 Effect of Sucrose and an Antimkrobal Agent, 8-Hydroxyquinoline 
Citrate (8-11QC), on the Opening and Keeping Quality of Bud-Cut 
Chrysanthemums 

Trcatment V , V 3  V 4  V s  V„ 

0/0 52.9 52.6 12.1 54.6 32.7 5.7 
0/200 53.5 62.3 11.6 56.3 32.4 9.8 
0/400 54.5 65.9 12.2 57.8 34.1 8.2 
2/0 52.4 57.4 13.4 54.4 32.9 4.2 
2 / 200 52.8 74.1 15.9 52.5 32.7 14.8 
2 / 400 53.1 78.4 15.4 54.9 33.0 9.8 
4 / 0 59.2 641 15.0 61.4 35.6 3.7 
4/200 54.6 85.5 21.6 55.2 33.3 18.8 
4 / 400 58.7 88.2 20.1 60.1 33.9 12.0 

Source: Browhat, 1979. 
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Table 3.10 Correlation Loadings for Six Experimental 
Variables and Two Principal Components, Using the Data 
of Table 3.9. 

Variables 

X /  (fresh wt., initial) 	 .942 	—.280 
X 2  (fresh wt., final) 	 .626 	 .736 
X 3  (dry wt„ final) 	 .661 	 .689 
X, (flower diameter) 	 .818 	 --.519 

Xs  (flower height) 	 .797 	—.501 
X, (post harvest life) 	 .184 	 .939 
Latent Roots 	 3.054 	2.495 
Variance (%) 	 50.90 	41.58 

Z2 
-1- 1.00 

.8•3 
• x2  

I 	1 	1- 	4 	I 
- 1.00 - .BO 	-.60 	-.40 	-.20 

I 	I 	I 
.20 	.40 	.60 

Z 1  
I 4- 

.80 	1.00 

— .40 

.20 

--.20 

- -.40 

--.60 

— -1.00 

Figure 3.5 Correlation loadings of Table 3.10 representing p 6 flower-keeping variables, in a 
two-dirnensionai subspace. 

(controls) and 4, followed by 2 and 5, since these represent low combina-
tions of sucrose and 8-HOC. 

The second component 12 is positively correlated to X2, X3, and X. and 
represents flower-keeping quality. Again, consulting the scores (Table 3.11) 
we see that best results are obtained with 200 ppm of 8-HOC and 4% 
sucrose (treatment 8) followed by 2% sucrose (treatment 5). The worst 
results for keeping quality are produced by treatments 7, 3, 1, and 4, all of 
which lack either sucrose or 8-1-1QC. The best total effect of size and 
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Table 3.11 Principal Component Scores for the 
First Two Components. The Scores are Standardized 
so that Their Sum of Squares are Equal to the 
Degrees of Freedom n - 1 

Treatment 
	 z, 	z, 

0/0 -1.080 -.612 
0/200 -349 -.199 
0/400 .031 -.681 
2/0 -.966 -.513 
2/200 -.590 1.037 
2/400 -.271 .479 
4/0 1.410 -1.613 
4/200 .619 1.660 
4/400 1.595 .441 

keeping quality is therefore achieved in the vicinity of treatments 8 and 9, 
that is, combinations using high sucrose and/or high 8-HOC. 

Although a PCA cannot be used directly for testing experimental 
hypotheses in a straightforward manner it can nevertheless be used as an 
exploratory procedure which may suggest hypotheses or reveal broad 
relationships between variables and treatments. The PCs can also be useful 
as a first step in a MANOVA of multivariate experimental data (Chapter 
10.5). Since the first two PCs of Example 3.10 account for 92.5% of the 
variance, the remaining four can be taken to represent random residual 
error. The first two components therefore capture most of the experimental 
effect, and a MANOVA can be replaced by a standard ANOVA repeated 
separately for Z 1  and Z 2 . Figure 3.5 also reveals that Z 1  and Z2  can be 
rotated orthogonally to coincide with the two clusters, indicating that the 
treatments seem to have an independent effect on initial flower size and 
keeping quality. 

3.6 PRINCIPAL COMPONENTS BY LEAST SQUARES 

Referring to the last section, Eq. (3.69) assumes the existence of r 
explanatory PCs or factors which account for systematic variation in the 
observed variables. The error matrix i ( , )  is then viewed as containing 
residual sampling variations and other random effects which are peculiar to 
each variable and sample point, but which are independent of the systematic 
variation Z ( p ) . The explicit distinction between explained and residual 
variance, together with their orthogonal separation, leads to yet another 
development of PCA reminiscent of regression analysis, due to Whittle 
(1953). In this form. PCA is also one of the special cases of "proper" factor 
analysis which is considered further in Chapter 6. 
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Let g, a, represent fixed population parameters and let e denote a 
random residual term. Then given a multivariate sample of rt observations 
for p random variables we can write 

X = ‘aT  + e 	 (3.104) 

where we wish to find estimators t and el, of g and a which minimize the 
sums of squares of both e l e and ee T . Assuming the residuals are homos-
cedastic and uncorrelated we have 

u2 1  = _ gaT)T(x gal') 

x Tx  _ xTgaT _ acx airtaT 	(3.105) 

and 

ee r = 0.21  = _ caTxx  _ got -rir 

= X X T ax 	otTX  + got  TagT (3.106) 

This approach is somewhat different theoretically from the more standard 
PC model, where only loadings are fixed but the scores are assumed to be 
random. A similar distinction is also made by Okamoto (1976). 

Because of the fixed nature of a and g, their components can be taken as 
parameters of the population, similar to the basic regression model. 
Differentiating Eq. (3.105) with respect to a and setting to zero we have 

a(je) ^ 	T" 	T 	-T 
- 2X

T 
 + 2iitt g = o or x = at t 

and premultiplying by X yields 

XX =Xa4 t 

= tt 

since Xã t. Thus 

(xx = 

(3,107) 

(3.108) 

where et = A is diagonal. The least squares estimators I and A are thus 
latent vectors and latent roots of XX r . Also, differentiating Eq. (3.106) with 
respect to g and setting to zero yields 

(3(ee T )  
— —2Xee + 2ç T.  a =0 or Xa 	a 	(3.109) ag 
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and premultiplying by XT  and setting el = XTOC we have 

(x 1 x)et=ayi 	 (3.110) 

so that it =P and A. L are latent vectors and roots of X T X respectively 
(Section 3.4). Whittle's (1953) derivation thus leads to a PCA where & and 
are latent vectors (loadings) and scores of X 1 X respectively (Theorem 3.17). 
Since the normal equations (Eqs. 3.107 and 1108) assume that a and t are 
fixed population parameters, it may be of interest to find their maximum 
likelihood estimators (Section L3) under the assumption of multivariate 
normality. It has been shown however (Solari, 1969) that such estimators do 
not exist. The sole optimality property of Whittle's estimators is therefore 
that of least squares. This can be seen from Equations (1107) and (3.109) 
by solving for & and g. 

3.7 NONLINEAR1TY IN THE VARIABLES 

Both population as well as sample PC models represent linear decomposi-
tions in that (1) the components are linear combinations of the original 
variables and (2) the decompositions are linear in the loading coefficients. 
Conversely, once loadings and scores are known, the variables can be 
expressed as linear combinations of the PCs. However, much in the same 
way as for the regression model, linearity is not required for the original 
variables. The PCs, for instance, can represent linear combinations of 
nonlinear functions of the random variables. Two types of nonlinearities 
commonly occur in practice—those due to polynomial and exponential 
(constant-rate-of-growth) behavior. When these occur a set of highly related 
random variables can exhibit low correlation unless nonlinearity is taken 
into account. This however can be done in a straightforward manner, much 
the same as for the regression model. 

As an example consider two variables X1  and X2  which are related by a 
quadratic polynomial. Clearly a correlation coefficient computed using X I 

 and X2  is somewhat meaningless since the interrelationship between the two 
variables is nonlinear. To reflect the quadratic nature of the interrelation-
ship the correlation coefficient must therefore be computed using quadratic 
terms as well. A PC obtained from such quadratic correlation is then itself a 
quadratic function of the form 

2  
Z = 	 _10.  + p2ix 2  + pol  p41(x 1 x2 ) + p5ix; (3.111) 

Letting Y1  =x1 , Y2 = x2, . 	Y5 = x22, Eq. (3.109) can be written as 

zi Pi' Yi Pv Y2 4-  AY Y3 4-  P41 Y4 4-  PSI Y5 

a linear function of the transformed variables. Equations such as Eq. (3.111) 
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Figure 3.6 Principal components loadings for p 73 linear and quadratic economic variables. 

can be extended to any number of variables and any degree, although 
polynomials of degree higher than k =3 are rare in practice because of 
interpretational difficulties. Figure 3.6 represents a two-dimensional scatter 
of loading coefficients for p = 73 linear and quadratic terms. Owing to the 
quadratic terms amongst the variables there is a clear tendency for the 
loadings to lie in a quadratic (circular) pattern, Also, since linear and 
quadratic terms tend to be highly intercorrelated, a PC transformation tends 
to concentrate variance in the first few latent roots. The PCs here find a 
natural interpretation as orthogonal polynomials. 

Example 3.11. McDonald (1962) has considered orthogonal polyno-
mials from the point of view of PCA. Consider 

x = biz + ci (z 2  — 1) + aie 

= f(z) + aie 	 (3.112) 

which is used to generate p = 7 variables by assigning particular values to the 
coefficients (Table 3,12). It is further assumed that E(x i )= E(z) 0 and 
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Table 3.12 Coefficients for Generating Eq. (3.110) 

Variable 	b, 	c; 	a, 

x, 	 ,170 	1.115 	.073 
x2 	 .026 	1.126 	.123 
x3 	 .995 	 .000 	.099 
X4 	 -.076 	-1.087 	.276 
xs 	 .013 	-1.128 	.114 

	

.894 	.000 	.447 
Xi 	 .000 	- 1.108 	.218 

Source: McDonald, 1962; reproduced with permission. 

E(z 2 ) = 1. We have E(x) = f(z) = b,z + c 1 (z 2  - 1) with "correlation" matrix 

.990 

	

.987 	.983 

	

.056 	.027 .933 
R = - 958 -.957 .083 .935 

-.990 -.986 .000 .961 .991 
- ,032 -.062 .897 .013 .086 .869 
-.971 -.967 .044 .941 .972 .106 .957 

which is identical to the usual correlation matrix except that unities on the 
main diagonal have been replaced by that proportion of the variance which 
is due to f(z). The method is known as principal factor analysis and is 
discussed in more detail in Chapter 6. A linear decomposition into PCs 
results in the loadings of Table 3.13. Since observations are generated by a 
quadratic expression, it requires r = 2 dimensions to account for the variance 
due to f(z). The loadings and the scores arc plotted in Figures 3.7 and 3.8. 
Since x, are simulated quadratic functions it is not possible to interpret the 
loadings in terms of specific physical attributes. The scores of Figure 3.8 

Table 3.13 	Factor Loadings for p= 7 Quadratic 
Functions 

Variable z i  Z2 

x I .994 .042 
x 2 .991 .011 
x 3  .014 .966 
x4  -.965 -.065 
x 5  -.995 .015 
X6  -.071 .930 
x7  -.977 .050 

sum-of-squares 4.853 1.807 

Source: McDonald, 1962. 
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Figure 3.7 Principal factor loadings of Table 313. 
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Figure 3.8 Principal factor scores for n =-- MO simulated observations for Eq. (3110). 
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however form a clear quadratic pattern which can be further smoothed by a 
parabolic least squares fit. This then provides an estimate of f(z). 

The second type of nonlinearity frequently encountered in practice is 
exponential, which occurs for example when dealing with rates of growth in 
time series or when measuring shape in biological allometry. When variables 
are exponential, linearity can be restored by a logarithmic transformation of 
the data. Consider p random variables Yi , Y2 ,. . Y. When the variables 
vary exponentially and this is ignored, the loadings and scores are biased 
and it may require an unnecessarily larger number of components to account 
for the systematic variation. Assuming the variables are strictly positive, the 
jth principal component of (natural) logarithms is given by 

z i = pit  In y i  + p21  In y 2  + - • - +pri. in yr  

In(Yc' 1 Y /2)2` ' 	YpP'") 	 (3.113) 

so that Eq. (3.111) can also be written as the exponential equation 

exp(zd = y 1;1)yi? • • yPp P, 	 (3.114) 

A useful byproduct of a logarithmic transformation is that it tends to make 
results less dependent on the unit(s) of measure. 

Equation (3.111) assumes the original variables are not expressed as 
differences about their means. In applied statistical work however random 
variables are almost always expressed as deviations from their means. 
Logarithms can also be adjusted in this fashion. Let x. In y i  (i = 
1, 2, .. . , n); then 

x, — = ln yi  — (In y i ) 

1 
= In y, —n-  (In 	+ In y 2;  + • • • + In ym.) 

.Y2i • 	Y • • ni) ""  

= In 	In G, 

= In (y j iGi ) (3.115) 

where Gi  is the geometric mean of y , . The jth PC can then be expressed as 

exp(2j) = (11P11 (11  -)-r G t 	G2  
(3.116) 
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z = In[V-L) PI' Yz ) 1' 2, 	Y 	• 
p) PPI1 

G2  

In() + p21  ln(#) 	+ pp, In(1 7  ) c-----' (3.117) 

The mean-adjusted model (Eq. 3.115) is also dependent on whether the 
covariance or correlation matrix is used. In practice however when working 
with logarithms correlation loadings obtained from the correlation matrix 
often tend to be similar to the correlation loadings obtained from the 
covariance matrix, probably owing to the fact that the logarithmic trans-
formation yields coefficients that are percentage rates of change. For an 
alternative approach to the use of logarithms in PCA see Amato (1980). 

Example 3.12. Jolicoeur (1963) studied the relationship(s) between 
length and width of the humerus and femur bones of the North American 
Marten Manes americana) to determine their "robustness." The following 
measurements (millimeters) were obtained for 92 males and 47 females. 

= Total length of the humerus, from the head to the medial condyle 
Y2  = Maximum epicondylar width of the distal end of humerus 
Y 3  = Total length of femur, from head to the medial condyle 
Y 4 = Maximum width of the distal end of the femur 

Since growth tends to take place at a more or less exponential rate, the PCA 
is carried out using logarithms rather than the original measurements 
themselves. The means and covariance matrices of the logarithms (base 10) 
are given in Table (3.14). 

A PCA is carried out on the two covariance matrices of Table 3.14. The 
first latent vector P 1  = (.4121, .5846, .3894, •5803) T  has positive elements, 
which are roughly equal to 1/1/4-  = .50, indicating the first PC is propor-
tional to the geometric means of the four variates. It represents a measure 
of general size since the four variables tend to be equicorrelated (Section 

Table 3.14 Means, Variances, and Covariances for x i  = log wy, of Length and 
Width of Humerus Bone of Marks americana 

92 Males 	 47 Females 

V 	(1.8066. 1.1138, 1.8493, 1.1003) 1  

lo 

 1

1.1544 .9109 1.0330 

- 9109 2.0381 .7056 
1.0330 	.7056 1.2100 

	

.7993 1.4083 	.7958 

(1.7458, 1.0365. 1.7894, 1.0244) 1  

.7993 •9617 	.2806 .9841 .6775 
1,4083 4 10  .2806 	1.8475 .3129 1.2960 
.7958 .9841 	.3129 1.2804 .7923 

2.0277J L.6775 	1.2960 .7923 1.7819 

Source: Jolicoeur, 1963: reproduced with permission. 
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Table 3.15 Latent Roots and Vectors of Covariance Matrices S of Table 3.14 

92 Males 	 47 Females 

[ 	

10-4 

4,5482 	0 	 [3.7749 
10 -4 11164 	 1,6047 

.6447 
0 	 1210 	 0 

.3680 
0  .1240] 

.4121 .5846 .3894 .5803 ,3520 .5474 A104 .6388 

.5208 -,4025 .6411 -,3947 I I 	.5025 -.6091 .5977 -.1390 

.1484 .6804 -.1276 -.7057 J J .2168 .5738 .2265 -.7567 

.7327 -.1807 .6489 .9071 .7594 -.0145 -.6504 .0119 

Source: Jolicouer, 1963; reproduced with permission, 

3.3). We thus have 

v 	,4121 
(  Y2  \ . 584" /  Y3  \ -3894  (  y4  ) '58°3  -1 

log io  [( 64.' . 106 ) 	 \ 0.60 / 	\ 12.60/ 	J 

The second latent vector contains both positive and negative elements. The 
second largest direction of variation therefore indicates that humerus and 
femur width increase when humerus length and femur length decrease, and 
vice versa, This represents variation in the relative width of the limb bones 
so that Z, can be interpreted as a shape factor; Z i  can also be interpreted in 
a similar fashion. The fourth component accounts for just under 2% of the 
trace and is taken as a random residual factor. Correlation loadings are 
given in Table 3.16 where the PCA has partitioned bone length and width 
into two independent "directions"-size and shape. This helps to under-
stand some of the more general aspects relating to physiological structure. 
The concepts of morphometry discussed above also find use in geology 
(F'ordham and Bell, 1978). For greater detail concerning problems of 
biological morphology the reader is referred to Bookstein (1989), Sundberg 
(1989), and Somers (1986, 1989). 

Table 3.16 Correlation Loadings for the Length and Width of Humerus Bone of 
Manes americana 

Variables  

X, (humerus length) .8181 .5122 .1105 
X, (humerus width) .8734 -.2979 .3816 
X, (femur length) .7549 .6157 - .0928 
X, (femur width) .8692 - .2929 -.3965 

Percent variance 70.73 17.36 10.03 

Source; Jolicouer, 1963; reproduced with permission. 
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Example 3.13. Another example of a logarithmic transformation, ap-
plied to a larger set of variables, concerns the external body measurements 
of the Humpback whale, taken between 1925 and 1931 at South Georgia 
and South Africa whaling stations (Matthews, 1938). The data are re-
produced in Tables 3.17 and 3.18 for males and females respectively. To 
compare the results using a logarithmic transformation to those using raw 
observations, both sets of correlation loadings are computed (Table 3.)9). 
Owing to the high intercorrelation between the variables the results do not 
differ substantially, although logarithms appear to give marginally better 
results. The untransformed data have already been analyzed by Machin and 
Kitchenham (1971; see also Machin, 1974) although their results differ from 
ours because of the treatment of missing data. Because of the difficulties of 
gathering data, some observations are missing, and the remaining may 
contain measurement error, for example, Y 18,13  =7- 7.12 m, which appears to 
be out of line. This particular observation is deleted from the analysis and 
replaced by the mean value Y 1 3. The missing values are likewise replaced by 
the sample means of the corresponding variables, which permits analysis of 
the entire sample (see Basilevsky et al., 1985). The variables are defined as 
follows; 

Length 	Y1 = total length; tip of snout to notch of flukes 
Head 	Y2 = tip of snout to blowhole 

Y3  = tip of snout to angle of gape 
Y4 = tip of snout to center of eye 

= center of eye to center of ear 
Y6 = length of head from condyle to tip 
Y7  = greatest width of skull 

Tail 	Y8  = notch of flukes to posterior emargination of dorsal fin 
Y9  .= width of flukes at insertion 
Ylo  = notch of flukes to center of anus 
Y1 , = notch of flukes to umbilicus 
Y12 = notch of flukes to end of system of ventral grooves 

Flipper 	YI3 =  axilia to tip of flipper 

Y14 = anterior end of lower border to tip of flipper 
= greatest width of flipper 

Dorsal Fin Y16  = vertical height of dorsal fin 
Y17  = length of base of dorsal fin 

Sex 	Yi 8 = center of anus to center of reproductive aperture 

Two sets of PCs are computed from joint male/female covariance 
matrices: the first is based on natural logarithms of the data and the second 
on the original unit of measure (m). Although the global structure of the 
correlation loadings of both analyses does not differ greatly, those based on 
logs discriminate to a better extent the first two size/shape components 
(Table 3,19). The correlation loadings are obtained from covariance 



Table 3.17 External Body Measurements (m) of the Humpback Whale (Males) of South Georgia Bay and South Africa, 
1925-1931 

Y, Y 2  Y3  Y, Y1, Y6 Y8 Y 9  Ym VII YO Y14 Y .1; Y I6 YIT Y18 

8.4 1.4 1.8 1.95 .38 2.85 .8 2.1 3.85 3.6 .25 .55 2.2 2.45 .65 2.15 1.45 1.0 
12.8 2.7 3.5 .6 4.2 1_2 2.95 5.3 ,32 1.4 3.6 4.1 1.0 4.1 .55 
14.75 3.1 3.6 4.1 .67 4.76 1.25 3.45 5.8 5.5 .46 1.8 3.4 4.25 1.0 5.0 2.3 1.35 
13.1 2.6 3.1 3.42 .61 4.21 1.1 2.9 5.6 5.1 .26 1.22 3.5 3.7 .95 1.3 
13.0 2.65 3.1 3.48 .42 4.0 .92 3.05 5.25 5.1 .37 1.5 3.5 3.8 .9 4.4 1.85 1.2 
12.55 2.7 3.07 3.42 .57 3.98 .96 2.86 5.35 5.2 .24 .8 3.0 3.62 .78 2.31 
9.92 1.85 2.16 2.39 .51 3.35 1.0 2.55 4.2 4.48 .2 1.1 2.68 3.16 .72 2.85 1-4 .9 

12.70 2.6 3.5 .6 3.95 1.02 2.95 5.35 5.35 .34 .8 .94 1.2.5 
12.8 2.35 3.3 1.04 3.35 4.7 2.2 
11.5 2.05 2.7 2.9 .5 3.75 1.0 1 .75 4.65 4.6 .25 1.1 2.8 3.0 .9 1.9 1.1 
9.55 1.75 2.25 2.35 .47 3.1 .82 4.0 4.1 .15 .75 2.17 2.85 .72 3_15 1.6 .8 
8.0 1.65 1.85 2.0 .4 2.35 .7 2.05 3.45 3.38 .13 .50 .58 2,26 1.27 .7 

9.83 1.78 2.13 2.35 .44 3.2 .9 2.52 4.48 4.6 .85 2.65 3.22 .75 2.77 1.75 1.08 
13.0 2.37 2.98 3.23 .58 4.51 1.08 3.19 5.77 5,7 .27 1.0 3.27 3.95 .96 1.45 
14.07 2.86 3,67 .65 4.45 3.45 5,93 5.73 .32 1.13 3.54 4.07 .92 4,14 1.17 
12.27 2.36 2.68 3.02 .58 4.1 .92 2.99 5.05 5.05 .29 1.0 3.84 3.93 .83 3.55 1.93 1.25 
14.5 3.0 3.55 3.76 4.85 1.14 3.46 6.5 6.5 .28 1.0 4.4 4.63 .94 4.45 1.46 
9.93 1.84 2.07 2.39 3.2 .71 3.11 4.3 4.44 .26 .71 7.12 3.2 .68 1.7 .95 

10,95 1.95 2.44 2.53 .55 3.65 .95 2.55 4.6 4.65 .22 ,7 3.15 .85 1.0 
9.7 1.86 3.12 2.32 3.6 .76 2.3 4.2 4.05 .19 .97 .55 2.75 1.59 .8 

11.9 2.4 2.88 3.07 .56 4.0 .95 3.0 5.2 5.0 .2 1.0 .78 3.63 1.92 1.3 
13.15 3.53 2.98 
12.75 2.85 3.32 
11.35 2.95 .92 2.8 4.8 
14.13 2.85 3.22 3.56 .65 4.68 1.09 3.36 6.02 6.25 .42 1.25 3.75 4.06 1.08 4.22 2.18 1.42 
13.41 2.66 3.42 2.95 .53 4.45 1.08 3.32 5.7 5.5 .3 .85 3.3 3.85 .93 4.38 2.41 1.27 
11.37 2.32 2.78 2.96 .6 3.96 .98 2.83 4.98 5.03 1.0 3.75 3.50 .75 3.42 1.91 1.2 

12.28 2.37 2.83 3.04 .58 3.97 .88 2.85 5.05 4.9 .3 1.35 3-8 3.95 .92 3.6 2.2 1.18 
11.3 2.12 2.67 2.9 .5 3.75 .83 2.78 5.02 5.06 .25 .98 2.89 3.39 .9 3.51 2.17 1.2 

13.16 2.82 3.34 3_56 .61 .98 3.01 5.36 5.2 .37 1.35 3.87 4.41 1.02 4.3 2.15 1.41 

11.6 2.28 2.67 2.95 .48 4.14 -96 2.88 5.06 4.92 .24 .85 2.92 3.46 .91 1.2 

Source: Matthews, 1938. 
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Table 3.18 External Body Measurements (m) of the Humpback Whale (Females) of South Georgia Bay and South Africa, 
1925-1931 

11 1  Y 2  111  Y, Y 5  Yi, Y, Y8  Y9  Yu) ''II Y12. YL3 YI4 Y15 YI6 YI7 VIII 

13.55 3.0 3.45 3.6 4.5 1.3 3.0 5.45 5.05 .28 .7 3.95 1.0 4.2 2.4 .45 
14.1 3.1 3.9 .65 4.47 1.28 3.13 5.64 5.33 .32 1.5 3.93 4.45 1.0 4.55 2.4 .53 
14.9 2.88 3.45 3.87 .7 4.9 1.15 3.45 5.85 5.6 .3 1.45 4.0 4.65 1.0 .5 
12.6 3.1 1.3 2.85 5.9 3.64 4.03 .97 .32 
13.15 2.5 3.0 3.35 .66 4.37 1.0 3.32 5.35 5.25 35 _9 3.63 3.91 .88 3.85 2,01 .47 
12.5 2.59 2.9 3.31 .53 4.1 1.15 3.13 5.26 5.05 .24 1.2 3.25 3.62 .87 3.8 2.11 .42 
14.85 2.98 3.4 3.75 .75 4.88 1.14 3.7 6.45 6.3 .28 1.6 4.35 4.65 1.0 4.35 2.36 .55 
13.55 2.85 3.18 3.6 .68 4.46 1.03 3.07 5.45 5.0 .29 1.5 3.38 4.05 .96 4.0 2.15 .38 
14.9 3.15 3.5 3.84 .76 1.26 3.67 5.95 4.37 5.1 1.08 4.45 2.38 .35 
10.5 1.94 2.45 2.6 .51 3.66 .82 2.68 4.65 4.5 .25 1.0 .77 3.06 1.67 .62 
10.05 1.78 2.0 2.25 .47 3.35 .9 2.45 4.4 .21 1.0 .45 
12.8 2.94 3.38 3.56 4.06 .98 2.72 5.2 5.09 .23 1.37 .41 
11.65 2.75 1.1 2.7 4.6 3.1 3.75 3.5 1.9 .35 
14.53 2.92 3.48 3.87 .63 4.35 1.16 3.35 6.0 5.8 .3 1.3 4.15 1.17 4.4 2.44 .58 
11.27 2.5 2.95 3.1 .52 3.55 .84 2.8 4.9 5.0 .34 1.15 3.1 3.65 .84 3.5 1.64 .47 
9.92 1.95 2.2 2.48 .47 3.4 .8 2.4 4.5 .27 .85 2_72 3.11 .73 2.95 1.64 .4 

11.8 2.33 2.60 2.82 .48 3.98 1.0 2.98 5.25 538 .25 .94 3.25 3.70 .85 3.35 .7 
13.66 2.90 3.23 3.56 .63 4.13 1.11 3.02 4.58 4.73 .26 .67 3.75 4.20 .93 4.30 2.30 .47 
13.05 2.65 3.25 3.42 .56 4.33 1.03 3.03 5.44 .3 1.55 3.93 3.86 .38 
12.35 2.55 2.9 3.25 .61 4.12 .97 2.98 5.4 .22 1.05 3.57 .88 .69 
13.9 2.95 3.5 3.8 1.06 3.32 5.96 .28 .95 4.25 4.41 .93 4.47 2.47 .5 
14.0 2.8 3.6 4.5 1.08 5.33 5.9 .91 .65 
9,5 1.75 2.2 2.36 2.32 3.92 3.9 2.65 3.2 .69 .39 
9.9 2.0 2.45 2.7 .5 3.5 .87 2.65 4.65 4.6 .20 .10 2.73 3.2 .73 3.41 1.9 .45 

14.2 2.23 3.38 4.09 .65 4.52 1.07 3.14 5.55 5.63 .3 1.2 4.08 4.36 1.1 4.77 .38 
10.25 1.81 2.44 2.55 .47 3.55 .83 2,54 4.7 4.81 .27 .78 2.65 3.0 .76 3.0 1.9 .6 
12.75 2.53 2.85 3.16 4.43 1.03 3.22 5.59 5.18 .25 1.0 3.67 4.07 .92 3.83 2.25 .55 
13.16 2.5 3.04 3.31 .55 4.25 1.0 3.41 5.72 5.57 .3 1.1 3.64 3.78 .88 3.88 2.2 .47 
13.5 3.7 3.16 3.54 .66 4.17 1.06 3.13 5.55 5.32 3.34 4.18 .87 .53 
11.38 2.39 2.71 3.07 .49 3.8 .92 2.86 5.15 5.08 .2 .9 3.17 3.3 .9 3.42 2.19 .5 
10.72 2.06 2.56 2.8 .44 2.56 .89 2.68 4.67 4.67 .19 .95 3.18 3.32 .8 3.27 2.04 .42 

Source: Matthews. 1938. 
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Table 3.19 Correlation Loadings for the External Body Measurements of the 
Humpback Whale for Data in Log Meters and Meters (Male and Female 
Covariance Matrix)" 

Log Meters Meters 

Variables Z2  

Length 	Y 1  .962 .158 -.153 .014 998 -.1101 -.049 -.006 
Head 	y2  .933 .052 -.185 -.066 .924 .149 -.103 

Y, .890 .093 -.146 -.110 .894 -.135 .048 -.183 

Y4 .947 .106 -.113 - .030 .953 .081 - .082 - .114 
Y, .797 .034 - 078 -.119 .774 -.189 .034 -.115 
Y, .880 .132 -.095 .073 .865 -.070 .020 - ,270 
Y7 .791 .024 -.215 .142 .767 -.055 -.075 -.124 

Tail 	Y 8  .868 .201 -.008 .069 .885 .183 -.007 -.081 
Y, .811 -.047 .131 .098 .779 -.090 -.150 -.102 

Yila .751 .171 -.020 -.WO .745 .202 -327 .424 

If it .886 .176 -.124 -.017 .916 .176 .115 .185 

Y12 .840 .291 -0510 .037 .864 .332 .196 .1134 
Flipper 	Y,, .754 .032 -.200 -.276 .771 - .365 .402 .251 

Y14 .805 .038 -.202 -.271 .819 -.374 .300 .110 

Y15 .869 .090 -.084 .150 .864 -.002 -.005 -.103 
Dorsal fin Y 16  .678 .288 .315 .551 .612 .182 ,048 -.268 

Y 17  .720 .025 .640 - ,249 .594 - .063 .017 - .177 
Sex 	Y,, -.179 .983 -.006 -.031 .037 .673 .466 -.219 

Variance (%) 66.5 7.57 4.38 3.40 65.4 5.99 2.55 3.49 

'Percentage variance equals sum of squares of correlation loadings for each component. 

loadings by adjusting for the standard deviations of the variables (Table 
3.8). A possible disadvantage of the logarithmic transformation however lies 
in the computation of the percentage of variance which is explained by each 
PC, when the covariance rather than the correlation matrix is used.* The 
reason for this is that the latent roots (Table 3.20) can provide misleading 
results in this respect. For example, the trace of the covariance matrix of 
logarithms is .66114, indicating that Z2  accounts for .221061.66114 = .3343 
or 1/3 of the total variance, clearly a misleading result. The percentages of 
variance in Table 3.1 are therefore computed using the correlation loadings 
found in that table (see Theorem 3.13). Using Table 3.19 the PCs can be 
identified as follows. The first component is an index of total body size for 
both males and females, and is maximally correlated with vectors Y 1 , Y2 , 
and Y4 . Since the first half of the sample represents males and the second 
half females, we can use the scores of Z i  to compare the overall size of 
males and females. The mean male scores for males and females are -.315 
and .284, respectively, indicating a larger overall body structure for females. 

The second PC correlates with shape variables Y g , Y 12 , Y 16 , and Y lg , and 
in view of the latter provides an effective discriminator for sex. Since values 

*The disadvantage however is more a function of the standard computer statistical packages, 
which do not permit sufficient flexibility, but rather seem to assume the correlation matrix is of 
main interest. 
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Table 3.20 	Latent Roots of Covariance Matrices in 
Data In Log Meters. Meters for Male and Female 
Whale Measurements Combined (see Table 3.19) 

Loge  Meters 
•■••••■■•• 

Meters 

.30993 4.99623 

.22106 .19893 

.03736 .13748 

.02271 .11778 
.01446 .09468 
.00987 .07683 
.00927 .05890 
.00874 .04342 
,00655 .03685 
.00550 ,03191 
.00393 .02983 
,00307 .01980 
,00250 .01322 
.00190 .00988 
.00181 .00519 
,00122 .00235 
.00096 .00176 
.00032 .00130 

of Y lh  are larger for males, the correlation loading (.983) is positive 
although this is arbitrary since signs can be reversed for all loadings with a 
corresponding reversal in the interpretation of Z,. The remaining com-
ponents Z 3  and Z4  account for shape peculiarities found primarily in the 
dorsal fin and which are independent of body size and those shape factors 
that are related to sex. 

3.8 ALTERNATIVE SCALING CRITERIA 

3.8.1 Introduction 

It was seen in previous sections that for a covariance (correlation) matrix the 
latent vectors can be sealed in three distinct ways: (1) unit vectors so that 
P/ P---- PP' =1, (2) elements as correlation loadings, and (3) elements as 
covariance loadings (Theorem 3.13). The first normalization is usually 
imposed for reasons of computational simplicity, whereas the latter two are 
used as interpretational aids since loading coefficients satisfy the relationship 
ArA = L and AAT  = XTX. Equivalent results also hold for the inner product 
and cosine matrices (Section 2.4). Owing to its scale and location invariance 
however the correlation matrix is the more popular Grammiau form, and 
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has retained a virtual monopoly in the more applied literature. It is possible 
however to scale PCs in alternative ways. 

3.8.2 Standardized Regression Loadings 

When using PCA to explain variation in a set of random variables, the latent 
vector elements arc standardized to lie in the interval [-1, 1]. This yields the 
correlation loading matrix AT . When the objective is to express the PCs in 
terms of the observed variates, however, it is at times more convenient to 
use the matrix A, as defined by Eq. (3.51). We can then write 

Z' = XA 	 (3.118) 

where A may be termed as the matrix of standardized regression loading 
coefficients. Note that Z' # Z (see Section 3.4). The matrix Z' can be 
obtained as follows. Pre- and postmultiplying Eq. (3.44) by L" 2  we have 

L I12 P rX1 XPL I " = L2 	 (3.119) 

so that Z' = ZL 112  = 	= XA. Since 

A = (XTX) -1 XTZ' 	 (3.120) 

the rationale for the standardization Z' = Z14 112  seems to be that it yields 
standardized regression coefficients when the PCs are regressed on the 
random variables (standardized or otherwise), that is, the regression co-
efficients satisfy Theorem 113. Regression standardization has been used by 
Hawkins (1974) for purposes of error detection (Section 5.8.2; see also 
Jackson, 1991). 

Example 3.14. Consider the correlation loadings of Example 3.5. We 
have, using Eq. (3.116), 

	

[.9128 —.5116 	.78421 

	

(Z; ,Z, Z 13) (X I , X2, X3) .0243 	.8355 	.5167 

	

.4076 	.2006 - .3436 

which yields the equations 

Zi 	.9128)( 1  + .0243X 2  + .4076X 3  

—.5116X 1  + .8355X2  + .2006X3  

Z 13  = .7842X 1  + .5167X 2  + .3436X3 
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3.8.3 Ratio Index Loadings 

An alternative method of scaling is to express latent vector elements in 
relation to the largest coefficient of a PC. This is achieved by dividing each 
element (loading) by the largest coefficient for that component, which then 
assumes the value of unity. The motivation for such a scaling seems to be to 
ignore the presence of residual variation and to examine each PC in 
isolation from the remaining ones (Geffers, 1967). The difficulty with such 
an approach is that it ignores the ranking of the PCs or the magnitudes of 
the individual correlation loadings. 

The ratio loadings however can always be converted back into latent 
vectors or correlation (covariance) loadings. Let pi, represent the latent 
vector element for the ith variable and the jth PC. Also, let 

p 	max(pii , 	• • • 
	 (3.121) 

for k random variables. Then for some jth PC we have 

2 	2 
P 4  P7j 

2 	

+Pk)  
— — C 	 (3.122) 

P 
 

the sum of squares of the ratio coefficients, where p 2  is also included in the 
numerator. it follows that the largest latent vector clement (for the jth PC) 
is given by p = I c , and multiplying the ratio coefficients by p recovers the 
initial unit-length latent vectors, which can then be used to construct 
correlation (covariance) loadings. Although the original signs of the co-
efficients are lost, this is not of major importance since signs of the latent 
vectors are not uniquely determined. Of course the relative signs of the 
loadings, for the jth component, are preserved so that interpretation of the 
PCs is still possible. 

Example 3.15. An example of the ratio index loading coefficients is 
Jeffer's (1967) study of timber used as pitprops in mines. The variables are 
defined as follows: 

Y1: Topdiam 
Y2: Length 

	

: 	Moist 

Y4: Testsg 
Y5: Ovensg 

	

T6 : 	Ringtop 

	

117 : 	Ringbut 
Y8: Bowmas 
Y9: Bowdist 

Top diameter of the prop (in) 
Length of the prop (in,) 
Moisture content of the prop, expressed as a 

percentage of the dry weight 
Specific gravity of the timber at the time of the test 
Oven-dry specific gravity of the timber 
Number of annual rings at the top of the prop 
Number of annual rings at the base of the prop 
Maximum bow (in.) 
Distance of the point of maximum bow from the top 

of the prop (in.) 
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Y10 : Whorls 	Number of knot whorls 
Y, : 	Clear 	Length of clear prop from the top of the prop (in,) 
Yt2: Knots 	Average number of knots per whorl 
Y13 : 	Diaknot 	Average diameter of the knots (in.) 

The ratio loadings for the first T= 6 Pcs are given in Table 3.21, 
Note it is no longer possible to compare coefficients between PCs or to 

determine the percentage of variance explained by each PC. Otherwise the 
components are identified in the usual manner. Here Z, is a size index for 
the props, Z2 picks up moisture content (presence or lack of) of the timber, 
which evidently determines the density of the wood, and so forth. The latent 
roots together with percentage of variance accounted for are given in Table 
3.22. 

A more informative analysis however is one which is based on the 
correlation loadings of Table 3.23, where Jeffers ratio coefficients are 
converted using Eq. (3.122). Thus for Z 1 , variable Y2  has a unit ratio 
coefficient; also 

2 	2 	4_ 2 
P11 	P21 	' Pkt  

	

- 2 	6 .00  
P21 	 P21 

so that P P21 = .40824, and using this value the first latent vector and 
correlation loadings can be reconstructed from Table 3.21. A similar 
technique can bc used for the remaining PCs. Table 3.22 gives us a better 
idea as to the overall importance of the principal components. 

Table 3.21 Scaled Latent Vectors for r= 6 Principal Components or p = 13 
Physical Measurements of Pitprops 

Variable Z, Z 2  Zi Z4  Z 5  

X 1  : Topdiam 0.96 0.40 -0.43 -0.11 0.14 0.19 
X 2  : Length 1.00 0.34 -0.49 -0.13 0,19 0.26 
X, : Moist 0.31 1,00 0,29 0.10 -0.58 -0.44 
X 4  ; Testsg 0.43 0.84 0.73 0.07 -0.59 -0.09 
X, : Ovensg 0.14 -0.31 1.00 0.06 -0.29 1.00 
X6  : Ringtop 0.70 -0.26 0.99 -0.08 0,53 0.08 

Ringbut 0,99 -0,35 0,53 -0.81 0.36 0.00 
X x  : Bowmax 0,72 -0,35 -0.51 0.36 -0.31 -0.09 
X„ : Bowdist 0.88 0,32 -0.43 0.12 0.18 0.05 
X 1 „ : Whorls 0,93 -0,46 -0.25 -0.26 -0.26 -0.28 
X: Clear -0.03 0.38 -0.15 1,00 0.57 0.28 
X12: Knots -0.28 0,63 0.19 -0.37 1.00 -0.27 
X13: Diaknots -0.27 0,57 -0.68 -0.38 - 0.13 1.00 

Source: Jeffers, 1967; reproduced with permission. 
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Table 3.22 
of Pitprops 

Latent Roots of the Correlation Matrix of p = 13 Physical Properties 

Component Eigenvalue 

Percentage of Variability 

Component Cumulative 

1 4.219 32.4 32.4 
2 2.378 18.3 50.7 
3 1.878 14.4 65.1 
4 1.109 8.5 73.6 
5 0.910 7.0 80.6 
6 0.815 6.3 86.9 
7 0.576 4.4 91.3 
8 0.440 3.4 94.7 
9 0.353 2.7 97.4 

10 0.191 1.5 98.9 

Source: Jeffers, 1967, reproduced with permission, last three omitted. 

Table 3.23 Correlation Loadings for r= 6 Principal Components of the Physical 
Measurements of Pitprops 

Z 3 	Z4 

X, : Topdiam .805 .327 -.284 -.078 .080 .107 
X2  : Length .839 .278 -.323 -.093 .109 .147 
X 3 	Moisture .260 .816 .191 .071 -.332 -.248 
X4 	Testsg .361 .686 .481 .049 -.338 -.051 
X s  : Ovensg .117 -.253 .659 .042 .166 .565 
X 	Ringtop .587 -.212 .652 -.057 .304 .045 
X 7 	Ringbut .830 -.286 .349 -.575 .206 0 
Xs  : Bowmax .604 -.286 -.336 .255 -.177 -.051 
X9 : Bowdist .738 -.261 -.283 .085 .103 .028 
X: Whorls .780 -.376 -.165 -.184 -.149 -.158 

X„: Clear -.025 .310 -.099 .709 *327 .158 
X12: Knots -.235 .514 .125 -.262 .573 -.153 
X13: Diaknots -.226 .465 -.448 -.270 -.075 .565 

3.8.4 Probability Index Loadings 

A still different normalization rule is to scale the latent vectors so that their 
elements sum to unity. This is at times done when PCs are used to construct 
indices in socioeconomic research (Rain, 1982). Loading coefficients scaled 
in such a manner are then interpreted as mixture coefficients. Let 

pz, 	Pk denote latent vector elements for some PC, such that 	0 
(i 1, 2, . 	k) and 	p = 1. Then the elements m can be resealed to 
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unit-sum probability index loadings by defining 

Pi  
k 	 = 1, 2, . . , k) (3.123) 

so that E 	1. Conversely given numbers qi  such that 

(3.124) 

we have 

E k 	)112 	 (3.125) 
i-1 	(E qi  

\i-i 

which permits us to recover the original latent vectors using eq. (3.123) 
since 

qi  

 Pi 	 (3.126) — ( 	(1 \112 

) 

EXERCISES 

3.1 Let P X(X TX) - "X T  be a projection matrix. Verify that 11„ is 
idempotent and symmetric, that is, P,11„. p, and P 	P. 

3,2 Prove, by induction, that Eq. (3.66) represents an orthogonal set of 
variables. How is the Gram—Schmidt transformation related to least 
squares regression? 

3.3 Let 11 TP11 = A where P is a (p x p) population correlation matrix. 
Show that 
(a) tr(A) = p 
(b) 0L.c. IPH.. 1. What do the two bounds represent in terms of 
relationships between the random variables? 
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3.4 Prove that aTa A and aaT  = P where a is a matrix of correlation 
loadings. (Equation 3.17) 

3.5 Using Eq. (3.14) verify that cv 7. = 
3.6 Let A be a ( p x p) matrix whose elements are given by Eq. (3.30). 

Show that the determinant of A is given by Eq. (3.31). 

3.7 Consider the (4 X 4) covariance (correlation) matrix of Example 3.2. 
Verify the results of Theorem 3.8. Also verify that latent vectors of P 
are orthogonal unit vectors. 

3.8 Prove that columns of a (n x p) matrix X generate the same vector 
space as the columns of X rX 

3.9 Let S = 	X TX be the sample covariance matrix where L and P are 
latent roots and vectors of X TX respectively. Prove that S has latent 
roots L and latent vectors P. Using this result show that 
correlation loadings of S are given by 

1 
ai; = n 	PiAsi)

1/2 

where s i  is the ith diagonal element of S, and consequently correla-
tion loadings are the same for both X I X and S. Show also that X 
and S possess the same standardized PC scores, but that unstandar-
dized scores differ. 

3.10 Using Eqs. (3.103a and b) prove the results of Theorem 3.17. 

3.11 Prove that latent vectors which correspond to zero latent roots are not 
necessarily zero (see also Theorem (5.14). 

3.12 Prove that for the covariance matrix 

2 2  r 	cr p"cT

▪  

p 
cr 

2
p a- 2 	2 

CTp 

0- 2p 	2
p 	

• 

(7
2 

we can write 1: = (A t  — A)Tr i  Tr;" + AI where A I  is the non-isotropic root 
and A is the common isotropic root of multiplicity p — 1 (section 3.3). 
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3.13 Let g = IITX and let Z =111TX be the sample realization of where X is 
a (p x 1) vector. Show that --WZ where W is a (p x p) orthogonal 
matrix. 

 
3,14 Let r 	

-.
,. - 	 2 u , be the partial correlation coefficient 

[( 1 	1. 1)( 1 	- 
between the ith and jth variable when the effect of the first com-
ponent has been removed. Show for the equal correlation model (Eq. 
3.29), that 

rii. , - 
P + 1  

where a = r,, = rio  the loadings for the first component. 

3.15 The following data represent averages of 10 independent measure-
ments, from the Herbarius at the University of British Columbia 
(source: Orloci, 1967) 

Specimens (0.10mm units) 
Mean 

Standard 
Deviation 

Characters 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (x,) (s,) 

Corolla (Y,) 75 61 53 77 41 56 60 57 48 53 58 49 40 60 66 47 50 55,94 10,29 
Calyx (1'2 ) 27 17 20 19 16 18 19 28 29 35 37 29 30 36 45 36 41 28.35 9.05 
Style (Y3 ) 65 54 64 57 33 62 64 46 53 54 54 64 31 48 39 31 30 49,94 12.78 
Corolla lobe (Y4 ) 11 11 13 15 12 19 21 11 10 8 10 13 4 9 7 4 4 10.71 4.78 
Pedice1(Y5 ) 15 16 13 12 11, 14 21 17 16 14 18 26 6 13 16 10 7 14.41 4.82 

Compute correlation loading coefficients using (a) the correlation 
matrix, and (b) the covariance matrix. How do the two sets of 
coefficients compare to each other? Are both sets equally informa-
tive? Explain (see also Exercise 3.23). 

3.16 Let n(X) = (X TX)" 2 , the so-called nucleus of the (n x p) matrix X. 
Show that 
(a) trin(X)i = A; t2  + A.12 12 + • - 	A ip" 2  

(b) In(X)1= A l24 2  + - • • + A p" 2 

 3.17 Using Eqs. (3.103a and b) prove 
(a) X(X'X) 1  = ZL -I/2PT  = ZA t  
(b) X(XTX) 112  = 

(c) X(X TX) -I X T  = ZZ T  

3.18 The use of the ratio i i /tr(X TX) as the proportion of total variance 
accounted for by the ith sample PC has the defect that it lies in the 
half-closed interval 1 0. Show that the statistic 

1 
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; . 	 
tr(X X) — s,2„ 

lies in the interval 1 	0 where s„2, is the largest diagonal element 
of X TX (Klock and Bannink, 1962). 

3.19 Using Theorem 3.15 show that PC correlation loadings extracted from 
a covariance matrix are identical to those from a correlation matrix if 
the variances of the variables are equal. 

3.20 Principal components can be used as multivariate indices, for exam-
ple, when evaluating toxicity in phase III clinical trials for cancer 
treatment. The following table of n = 6 observations for p = 3 random 
variables is given by Herson (1980). 

Coefficients 

Toxicity 	 Polymorphonuelear 
Index 	Wb-cs Lyinphotrytes 	Cells 	Blast Cells Platelets Hemoglobin Variance (%) 

r, 
r, 

0.597 
—0.326 

0.278 
0.408 

0.329 
0.432 

0,552 
-- 0.418 

0.037 
0.460 

0.390 
0.395 

37.6 
26.8 

YA  0.117 —0.457 —0.091. 0.187 0.848 —0.122 14.1 
Total 78.5 

(a) Compute the PC correlation loadings, given that all three vari-
ables are standardized to unit length. 
(b) Compute the percentage of variance which all three PCs explain 
of the observed variables. 
(e) Compute the percentage of covariance which all three PCs 
explain of the observed variables. 
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CHAPTER 4 

Statistical Testing of the Ordinary 
Principal Components Model 

4.1 INTRODUCTION 

The PC model finds diverse application in many disciplines since its 
relatively straightforward structure makes it easy to interpret in various 
settings and according to differing requirements. When using PCs with 
sampled data, however, many practitioners seem to be unaware of the 
statistical nature of the model. This in turn is reinforced by the lack of 
statistical significant testing capabilities of some computer packages, al-
though statistical tables arc now readily available for many relevant 
distributions (see Kies, 1983). This seems to be a glaring drawback, 
particularly when a comparison is made with other multivariate techniques 
such as least squares regression, discriminant analysis, and canonical 
correlation. To be sure, "rules of thumb" are frequently employed; for 
example, latent roots smaller than unity are often treated as "insignificant," 
and correlation loadings smaller than .20 are routinely omitted in computer 
software packages. Such practice is statistically arbitrary, and seems to be 
prompted more by intuitive concepts of practicality and "parsimony" than 
by probabilistic requirements of sample—population inference. 

In this chapter we consider the topic of statistical significance testing for 
the ordinary PCA model of Chapter 3. Although the PCA model can itself 
be used in statistical inference (Dauxoi's et al., 1982) this aspect is not 
considered in the present chapter, Although traditionally the objective of 
factor analysis has been to identify the "true" model, a recent emphasis has 
shifted from this position to the more pragmatic one of attempting to find 
that model that gives the best approximation to the true model. In this latter 
view we ask the question "how much identifiable information does the 
sample at hand contain," rather than "how can we use a sample to estimate 
(corroborate) a true population model," Thus in the context of factor 
analysis an appropriate question might be not what the number of correct 
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factors is, but how many factors can be reliably extracted, given a set of 
data. The two methodological orientations are not as opposed as they may 
appear at first sight, since. the main difference lies in their respective starting 
points rather than any basic disagreement on the relevance or feasibility of 
statistical testing. Whereas the latter approach starts with the sample at 
hand, the former begins with a prespecified target population and then 
attempts to verify whether the sample data accords with the null hypothesis. 
The difference was already encountered in the Introduction under the guise 
of exploratory statistical data analysis versus a confirmatory establishment of 
formal scientific hypotheses. Clearly in the limit both approaches have the 
common task of reconciling theory with sample evidence, that is demon-
strating consisting between theory and data a requirement that forms the 
basis of scientific statistical testing. 

More specifically, two sets of methodologies are considered—those based 
on maximum-likelihood criteria and those that utilize Baysian criteria or 
other less formal data-analytic procedures. Since the theory of large sample 
significance testing is well developed for the multivariate normal, this 
distribution looms prominently in maximum-likelihood methodology al-
though clearly normality is not always the best assumption. Even when the 
assumption of normality is tenuous, however, it may still provide a close 
approximation to reality. It is also useful to compute normality-based test 
criteria as supplements to the usual computer output, in order to provide 
comparisons with other criteria that may be used. In addition, even though 
optimality of the PC model is not conditional on normality, if normality is 
satisfied then the PC loadings and scores become ML estimators, with the 
additional desirable property of asymptotic efficiency. 

THEOREM 4.1. Let V be a (n x p) data matrix consisting of n in-
dependent samples observed for p multivariate normal variates Y1, 
Y2 ,. 	Y. Then the sample covariance matrix i= (1./N)X TX is a ML 
estimator of X, where N = n – 1 and A 1  > A2 > 	> Ap . In addition, solu- 
tions of fi /JI = 0 and (i – (1 1)P1  = 0 are ML estimators of the population 
latent roots and latent vectors A i  and H , respectively. 

The proof of the theorem consists of noting that latent vectors corre- 
sponding to the roots A 1  > A2 > 	> A p  are unique (up to multiplication by 
–1) . so that the l >1 > ' > 11., must be ML estimators, given 	= (1/ 
N)X X is a ML estimator of 	(Anderson, 1984). Alternatively, on the 
assumption that X, = (I iN)X rX is a Wishart distribution, one may obtain the 
normal equations for A and 1-1 (Girshick, 1936; Flury, 1988). The ML 
estimators of A and II cannot be derived by maximizing the likelihood 
function with respect to these parameters, since the likelihood is constant 
under orthogonal transformations (Kendall, 1957)—such maximization 
simply permits us to derive estimators of A and H, without necessarily 
demonstrating that they are ML. Note also that ML estimation for a sample 
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is not strictly parallel to a population decomposition into PCs (Section 3.2). 
Whereas a theoretical population PCA begins with a covariance matrix 1,, 
the starting point for a sample analysis is a data matrix Y. 

The following theorem is of fundamental importance for statistical testing 
and for the derivation of ML estimators. 

THEOREM 4.2. Let X 1 , X 2 , . . X), be (n x 1) vectors sampled from a 
N(0, X) multivariate normal distribution. Then the (p x p) matrix X T X is 
distributed as the central Wishart distribution 

N p — 1  
exp(—+ tr 1 X TX) 2 (4.1) 

A special case arises for p uncorrelated, standardized random variables. 
Given a sample of size n, the correlation matrix R = X I X is distributed as 

PN/2)1 P  
f(R) = 	(4.2) 

Tr I l4p(p 	n  r  P 	N  — +  ) 1  
2 

When p = 1, the Wishart distribution is equivalent to the chi-squared 
distribution Eq. (1.10). 

In what follows we consider significance tests for covariance and correla-
tion matrices of multivariate normal densities, together with their latent 
roots and latent vectors (loadings). Most of the tests are based on the 
likelihood ratio (LR) criterion, whose exact distributions are unfortunately 
not always known. Even for the case of known distributions (see Consul, 
1969), percentage points do not seem to have been tabulated. Thus in 
practice one must resort to asymptotic chi-squared approximations, which 
only hold for large multivariate normal samples. Although this limits the 
usefulness of LR tests, nevertheless this represents an improvement over a 
total reliance on informal rules of thumb or intuition. More recent work on 
robustness and testing for multivariate normality is considered in the final 
section. 

4.2 TESTING COVARIANCE AND CORRELATION MATRICES 

The starting point for a sample PCA is a (n x p) data matrix Y, which is 
used to compute a covariance (correlation) matrix between the p random 
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variables. A PCA of such a matrix may then reveal a particular feature or 
informative dimensions of the data which were not suspected to be present. 
Before carrying out a full-fledged PCA, however, it is usually advisable to 
perform preliminary testing of the covariance (correlation) matrix in order 
to avoid unnecessary computation. For example, we may first wish to test 
for independence between the random variables or to determine whether 
more than one sample (for the same variables) possess identical population 
covariance matrices. 

4.2.1 Testing For Complete Independence 

When all random variables are uncorrelated it does not make sense to 
perform a PCA since the variables already possess an independent uncorre-
lated) distribution. In practice, however, sample covariances (correlations) 
are not likely to be identically zero, and sample dispersion matrices will not 
be perfectly diagonal. A PCA of accidentally correlated data will in reality 
yield meaningless results, and it is often a good idea to first test for complete 
independence of the random variables. 

Consider p linearly independent normal variates and _their sample 
realizations Y 1 , Y,,... ,Y,, such that p(Y) =p. Let X = Y —Y. We wish to 
test hypotheses of the form 

110 : = D or Ho : P = I 

H.:X OD or 11,,:P1 
	

(4.2a) 

where P is a population correlation matrix and D is a diagonal covariance 
matrix. A test statistic can be derived which maximizes the LR criterion 
(Section 1.2.2). Let x, denote the ith row of X. so that E7.,_ = X TX. 
When 1/0  is true, the maximum of the likelihood is given by 

= 
2 	1 
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to 	r12 

(27r)"' (n ) 

tr[(-1  X TX)D 

where 15 = diag 	6-22 , 	, erp2 ) is the ML estimator of D. Also, taken 
over the entire set of values of t  and X, the maximum of the likelihood is 

1 	I 
2  rp/2iiin/2 exp 

1 	I 	1 	vt" 

(2.7)n/12Iiln12 	P 	-2-  tr 	(xixT)i - 
= 

1 	n 
eXp [ — Xi 

1  
(27.1.ypniii„,2 exp[— npJ (4.4) 

SO that the ratio of the two likelihoods is maximized by 
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Although the distribution of A is unknown —2 In A can be shown to be 
distributed asymptotically as the chi-squared distribution, that is, as n 	00 
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we have 

X 2 = —21n A 

= —n [lnit! — In (fI ri f2)] (4.6) 

approaches the chi-squared distribution with (p — 1) degrees of freedom. 
The ratc of convergence improves when n is replaced by the correction 
factor [n — (1/6p)(2p 2  +p + 2)1 (Bartlett, 1954). Also, since 

A = 

 

(P

n 2 ).1/ 2 

(4.7) 

(Box, 1949) Eq. (4.6) can be written as Al 2 	InIRI where R is the sample 
correlation matrix. Convergence is more rapid if n is replaced by In — 1/ 
6(2p + 5)1. The distribution of 

—In — 116(2p + 5)11nIRI 	 (4.8) 

then approaches the chi-squared distribution with 5-(p —1) degrees of 
freedom. When R approaches diagonal form, IRI approaches unity and we 
tend not to accept H o  for large values of Eq. (4.8) and (4.6). Given 
multivariate normality the chi-squared approximation is usually satisfactory 
for n — p 50. Since the test is asymptotic, the biased ML estimator can 
usually be used in place of S. The exact distribution of the likelihood ratio 
statistic has recently been tabulated by Mathai and Katiyar (1979). Mudhol-
kar and Subbaiah (1981) provide a Monte Carlo evaluation of the likelihood 
ratio test for complete independence against several alternative tests, and 
conclude that the likelihood ratio criterion generally performs well. 

Example 4.1. From Example 3.1 we have the covariance matrix 

[471.51 324.71 73.24 4.35 
i = 324.71 224.84 50.72 2.81 

	

73.24 	50.72 11.99 1.23 

	

4.35 	2.81 	1.23 	.98 

Assuming the variables are drawn from a four-dimensional normal dis- 
tribution, we have 	= 86.32, 11,4=1 ó = 1,245,689.3, n= 11, and p = 4. 
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Using Bartlett's correction factor we have, from Eq. (4.6), 

1 2 = — [(n — I) — 	(2p 2  +p + 2)1 [Inlii — In (fi 

= —[10 — A(32 + 4 + 2)][1n(86.32)— In(1245689.3] 

— 8.4167 (4.4581 — 14.0352) 

=8061 

Since 5- (p — 1) = 6, we have x .205.6 = 12.6 and conclude that 	is probably 
not diagonal. To illustrate the test using Eq. (4.8) we convert X into the 
sample correlation matrix 

R 
 [

1.00 	.9973 	.9740 .2023 

	

9973 1.00 	.9767 	.1893 

	

.' 9740 	.9767 1.00 	.3590 

	

.2023 	.1893 	.3590 1.00 

where 

X 2  = — [10 — 1 / 6 (8 + 5)] In(.0000693) 

= —7.8333(-9.5771) 

= 75.02 

which is again larger than A/ 20 ,.6  = 12.6 and we tend to reject lio . 

Example 4.2. The independence test is illustrated by Vieffa and Carlson 
(1981) using simulated data. Given a random sample from an independent 
p-variate normal distribution, it is always possible to obtain nonzero 
loadings since R (or I) can indicate an apparent departure from diagonality. 
The magnitudes of the loadings can at times be surprisingly high, and this 
may create false impressions concerning a PC analysis. The data and results 
are shown in Tables 4,1-4.4 where the correlation loadings are generally 
low except for several large values, which are certainly large enough to be 
retained by most informal rules of thumb. When latent roots are known the 
LR test is particularly easy to compute. Using Eq. (4.6) we have 

X 2  = — Rn — 1) — 1/6(2p + 5)11n1RI 

= — Un — 1) — 1/6(2p + 5)11n(i i , /2 , „ ,1) 

—[47— 1/6(22 + 5)]1n[(1.8404)(1.5657)... (.4496)] 
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Table 4.1 Input Random Data for ri = 48 Samples and p = 11 Independent Normal 
Variates 

Cases Y1 Y 2 Y 3 Y4 Y. 176 Y7 Ya Y ,* YTu 

1 45 65 34 49 56 46 44 52 51 50 52 
2 45 35 30 36 57 31 67 22 60 47 51 
3 53 31 74 45 95 66 64 43 83 64 88 
4 75 43 43 36 21 30 37 34 55 76 54 
5 66 62 61 35 28 27 20 47 61 18 32 
6 62 30 68 11 74 50 66 44 42 76 52 
7 34 37 35 25 52 40 46 23 63 39 63 
8 47 33 45 48 23 71 71 75 39 57 42 
9 56 56 52 47 55 32 42 55 84 59 78 

10 50 58 53 22 17 48 60 33 26 67 55 
11 65 76 50 28 73 30 65 62 34 33 43 
12 22 48 62 58 62 52 67 79 13 50 70 
13 45 45 40 75 63 37 18 58 64 39 65 
14 42 50 52 41 15 45 52 50 59 61 45 
15 45 52 30 12 54 54 6 34 73 46 53 
16 43 61 27 85 46 72 45 55 78 44 35 
17 41 46 81 40 38 46 48 57 65 51 53 
18 57 51 65 46 85 45 69 52 34 72 63 
19 24 41 75 69 17 16 53 18 43 40 47 
20 31 25 52 25 56 56 22 83 33 44 43 
21 46 40 51 74 52 72 9 23 53 43 7 
22 62 61 73 49 54 76 39 49 42 41 63 
23 66 19 49 45 74 41 56 45 51 39 37 
24 37 52 52 57 52 50 68 44 22 59 39 
25 38 59 48 44 53 67 61 49 68 71 42 
26 51 38 48 54 44 67 54 57 50 45 52 
27 67 51 53 57 86 47 73 44 59 60 31 
28 41 59 57 53 24 85 56 23 34 72 69 
29 29 41 67 55 48 66 72 41 58 52 57 
30 80 58 37 58 57 53 32 34 21 48 61 
31 30 55 52 54 51 37 62 44 45 52 61 
32 22 62 62 64 29 51 23 35 45 44 27 
33 54 30 25 71 58 28 68 54 67 49 83 
34 14 67 58 62 59 66 20 35 73 72 15 
35 68 21 64 76 28 14 36 57 36 69 59 
36 81 44 13 32 40 61 65 66 43 70 62 
37 52 59 60 35 71 41 33 37 54 51 55 
38 17 47 73 45 64 63 58 66 62 4 68 
39 73 63 32 67 29 43 20 53 37 34 33 
40 62 55 47 55 50 59 28 55 74 56 53 
41 54 35 21 58 38 51 68 62 34 29 61 
42 67 64 25 46 73 48 56 40 29 49 67 
43 35 18 69 68 36 55 67 55 66 75 ao 
44 45 36 82 19 54 82 49 40 68 61 56 
45 45 63 52 34 58 15 26 68 37 73 54 
46 29 57 37 49 27 63 33 46 18 65 40 
47 68 38 39 49 34 19 40 32 61 26 36 
48 66 31 54 28 52 53 49 14 53 81 51 

Source: Vierra and Carlson, 1981; reproduced with permission, 
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Table 4.2 Sample Correlation Matrix of the p = 11 Independent Normal Varlates 

X 1 	1.00000 
X2 - .04125 1.00000 
X3 - .33646 - .12844 1.00000 
X 4  -.15420 	.00838 -.07771 1.00000 
X 	.09997 - .00102 .07737 -.14453 1.00000 
X, - .23473 	.04781 .11924 .00208 .06843 1.00000 
X, -.01007 -.27203 .08298 -.05531 .18106 .07611 1.00000 
X8  -.00491 	.02097 -.06750 .06446 .10542 .00716 .09059 1.00000 

.07462 -.13710 .09665 	.02159 	.16349 	.05971 - 14651 	, 16515 1.00000 
X to 	.07407 	.10432 	.12435 -.15301 	.01333 	.14561 	.18907 -.13320 .05044 1.000(10 
X 1 	.12407 - .15870 .02143 -.16290 .24314 - .06673 .36298 .16018 .00976 .08284 1.00000 

Source: Vierra and Carlson, 1981; reproduced with permission. 

Table 4.3 Latent roots, Percentage of Variance, and Cumulative Percentage 
of Variance of p = 11 Normal Variates 

Factor 	Latent Roots 	Variance (%) 	Cumulative Percentage 

	

1 	 1,84042 	 16.7 	 16.7 

	

2 	 1.56568 	 14.2 	 31.0 

	

3 	 1.26055 	 11.5 	 42.4 

	

4 	 1.19852 	 10.9 	 53.3 

	

5 	 1.10770 	 10.1 	 63.4 

	

6 	 ,9183 	 8.3 	 71,7 

	

7 	 .76670 	 7.0 	 78.7 

	

8 	 .69619 	 6.3 	 85.0 

	

9 	 .66689 	 6.1 	 91.1 

	

10 	 .52933 	 4.8 	 95.9 

	

11 	 .44963 	 4.1 	 100.0 

Source: Vierra and Carlson, 1981; reproduced with permission. 

Table 4.4 Factor Loadings for the p = 11 Normal Variates 

Components 

Variables 	Z 	 Z, 	 13 	Z 4  

X , 	 .16635 	-.71306 	-.39459 	.00966 	-.00644 
X, 	- .45693 	-.12573 	.03502 	- .04976 	.70432 
X, 	 .22364 	.68361 	.00923 	.02021 	-.02931 
X, 	- .37734 	.09022 	.47469 	.05174 	- .41020 
Xs 	 .48425 	-.02315 	.01899 	.54138 	.41816 
X, 	 .07382 	.54256 	.13468 	-.14290 	.44059 
X, 	 .71061 	.03610 	.25245 	- .24161 	-.14362 
X 8 	 .17458 	- .25950 	.71277 	.07183 	.14340 
X9 	 .00243 	.33959 	- .33086 	.71133 	-.17150 
X 1 „ 	 .37947 	.20823 	-.40280 	- .53786 	.05361 
X, , 	 .70154 	-.20912 	.12741 	.14336 	-.00470 

Source: Vierra and Carlson, 1981; reproduced with permission. 
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= —(47 — 4.5) In(.3752) 

= —42.5 (— .98029) 

=41.66 

Since we have 112p(p — 1) = 1/2(11)(10) = 55 degrees of freedom, using 
a = .05 the LR criterion is compared to X 2os,ss 73.3, which indicates a 
nonrejection of the null hypothesis, that is, there is no reason to suppose the 
existence of a multivariate (normal) distribution so that a PCA is not 
warranted in this instance. 0 

4.2.2 Testing Sphericity 

A special case of the test for independence is the so-called sphericity test, 
which attempts to determine whether in addition to being diagonal a 
covariance matrix also possesses equal (diagonal) elements, that is, whether 
a set of random variables is both independent and homoscedastic. The test 
derives its name from the fact that given multivariate normality the 
distribution of a set of p independent and homoscedastic random variables 
will have the form of a p-dimensional sphere. Note that the sphericity test 
only applies to covariance matrices since a correlation matrix is by definition 
homoseedastic, and a test for sphericity in this case is identical to the 
independence test of the previous section. 

The test can be derived by using the LR principle. We test, for some 
unknown cr 2 , 

Ho : 	cr 2I 

1-1,a : 	a z 1 
	

(4.9) 

where we reject Ho  when at least two diagonal elements are not equal. Since 
Eq. (4.9) is a special case of Eq. (4.2a) the LR statistic can be derived as 
follows. From Eq. (4.5) we have 

A — [n  6.2 1;12 

•i - 1 	- 

lir 12 

[(6,2)7112 

(6.2)np/2 
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and replacing '& 2  by its ML estimate (lip) tr(i) = (V pn) tr(XTX) yields 

A 
InX T X1" 12  

[-nip tr(XTX)r" 

 

 

IX TX!'" 2  

{1 tr(X 1"
X)

rp" (4.10) 

When the latent roots of X TX are known the statistic Eq. (4.10) is 
particularly easy to compute and can be expressed as 

A (4.11) 

where the expression in square brackets is the ratio of the geometric and 
arithmetic means of latent roots, and where we use n in place of degrees of 
freedom because of the asymptotic nature of the test. As n--) co, the 
distribution of -21n A under Ho  tends to the chi-squared with 1/2 (p + 
2)(p - 1) degrees of freedom. Note that Eq. (4.10) does not change when 
XTX is replaced by the sample covariance matrix. Since convergence is 
usually improved by Bartlett's correction factor, the criterion is normally 
expressed as 

1 	 1 2 
X = - [n - -6p (2p -  +p + 2)) [InIX T XI - p In (- tr X TX)] (4.12) 

Example 4.3. The test for sphericity can be illustrated by referring to the 
random data of Table 4.1, which has covariance matrix as in Table 4.5 
where InISI = 61.05473, tr(S) = 3134.32, n = 48, and p 11. The chi-squared 

Table 4.5 Covariance Matrix of p = 11 Normal Random Variates (see Table 4.1) 

282.01 

	

-985 	195.17 
-92,47 - 28.53 266.97 

	

-44.12 	2.38 -22.02 	291.10 

	

32.03 	.27 	24.93 -47.84 363.86 

	

-68.84 	11.89 	34,06 	0.00 	23.19 	301.76 

	

-2.51•70.17 	1.49 -17.02 	65.53 	25,95 

	

-1.34 	-4.23 	- 17.46 	17.96 	31.94 	.55 

	

-20.05 -33.61 	26.39 	5.39 	54.93 	18.30 

	

21.42 -23.99 	32,07 - 41.86 	3,74 	42.33 

	

._33.23 -34.55 	4.95 	45.20 	73.66 -19.13 

348.63 
27.69 

-47,87 
55,03 

109.65 

254.35 
-46.20 
-33.13 

39.45 

308.29 
-14.65 

3,08 
267.53 
20.88 254,65 
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statistic Eq. (4.12) is then 

x 2  = -148 - A(242 + 11 + 2)1[61.055 -- 111n( 3-Ti.L? )1 

= -44.1364(61.055 - 62.1750) 

=49.43 

193 

which is compared to X .:J/2(p+ 1)(p-1) = X2.05,65 = 84.8. We tend to accept Ho 
 and conclude that the population covariance matrix is of the spherical form 

= or  2 i.  

Example 4.4. In their study of arthropod infestation in stored grain 
bulks of Canadian prairie wheat, Sinha and Lee (1970) measure three 
environmental variables and the extent of infestation by six types of 
arthropods. The nine variables are defined as follows: 

Y1  = Grade of cereal (wheat, oats, and barley, according to the Canadian 
grading system) on a scale of 1 (highest quality) to 6 

Y2 = Moisture content by percentage weight. 
Y3 = Dockage  (presence of weed, broken kernels, and other foreign 

material) 
Y, = Acarus 
Y5  = Cheyletus 
Y6 Glycyphagus 
Y, = Tarsonemus 
Y8  = Cryptolestes 
Y9  = Procoptera 

Before proceeding to carry out a PCA of the nine variables, the correlation- 
al structure is first tested to see whether the correlation matrix of Table 4.6 

Table 4.6 Correlation Matrix for Nine Arthropod Infestation Variables (n = 165) 

Y1 	Y2 	Y3 	1114 	 Y 5 	Y 6 	Y 7 	Y 8 	Y9 

[1.000 
.441 
.441 
.107 

R= .194 
.105 
.204 
.197 

-.236 

1.000 
.342 
.250 
.323 
.400 
.491 
.158 

-.220 

1.000 
.040 
.060 
.082 
.071 
.051 

-.073 

1.000 
.180 
.123 
.226 
.019 

-.199 

1.000 
.220 
.480 
.138 

-.084 

1.000 
.399 

-.114 
-.304 

1.000 
.154 

-.134 
1.000 
-.096 1.000 

Source: Sinha and Lee, 1970; reproduced with permission. 
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differs significantly from the unit matrix. Using Eq. (4.8) we have 

X 2  = [164 — 1/6 (18 + 5)1In(.18792) 

= —(160.17)(-1.67169) 

=267.7 

which for a = ,05 and 1/2 (9)(8) = 36 degrees of freedom is highly signifi-
cant, implying the correlation matrix of Table 4.6 differs from the identity 
matrix. 

4.2.3 Other Tests for Covariance Matrices 

Several other tests of significance can be used to determine 	homo- 
geneity or to test for equal correlation. 

Covariance Matrix Equality 
The same variables may at times be observed in 
question arises as to whether the samples can 
originated from the same population. Should this 
advantage to pooling the samples since this results 
of freedom and yields more reliable estimates of 
Given k samples, each containing an identical set 
variables with ng  (g =1, 2, . k) observations, 
hypothesis 

data 

different samples, and a 
be considered to have 
be the case, there is an 
in an increase of degrees 
PC loadings and scores. 
of p multivariate normal 
we wish to test the null 

110 :11 =X 2 = • • • =I k  

against the alternative that at least two covariance matrices are not equal. 
Let 

XIX= E g / X (8) 
	n = E ng 
	i= 

g- 

where X (1) , X (2) , 	X( k)  are (n k  x p) data matrices. 
Then using the LR method it can be shown (Srivastava and Carter, 1983; 

Anderson, 1984) that the corresponding criterion is given by 

k 	 
A = 11 

k IXT X I 2 

	

= 11 	 (g) 	(g)1  

	

gI 	IXTX1 7  
n

ti2pn 

VT 
nP3rtg 

(4.13) 
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For large n, the criterion -2 In A has an approximate chi-squared dis-
tribution with 1/2(k - 1)p( p + 1) degrees of freedom. Convergence is more 
rapid if 2 is replaced by 

2 
m = (n - 2a) 

where 

(± 	- 1) (2p 2  + 3p 	-1) 
14_,1 ng 

a - 	  
12(p + 1)(k - 1) 

Example 4.5. Consider the male and female turtle data of Example 3.3. 
We wish to decide whether a PCA can be carried out using pooled male and 
female data, that is, we wish to test the hypothesis 

110 ; E 1 --- X2 

X 2  

The sample means and covariance matrices for the two groups are summa-
rized in Table 4.7. Using Eq. (4.13) we have k = 2, n 1  = n2  = 24, and n = 4 
so that 

I-I 0;401' 

A - 
(  n2 	(2p 2 + 3p - 1) 

a - 	1 n I n 2 	) 12(p + 1)(k - 1) 

where we use sample sizes rather than degrees 
asymptotic nature of the test. 

We have the determinants  

138.77 79.15 37.38 
79.15 50.04 21.65 
3738 21.65 11.26 

of freedom due to the 

271A7 
171.73 

168.701 
103.29 

103.29 66.65 

451,39 
1, Ii 2 1= 1271.17 

168,70 

= 792.64 	 = 12648.64 

Table 4.7 Mean Vectors X and Covariance Matrices ±, and 1 .2  for the 
Turtle Carapace Data of Tabk 3.1 

24 Males 

Width (X,) 	Height (X3 ) 
(g2 '  88- 29) ( 16 '  40- 71 ) 
79.15 37.38 

[

138.77 
79.15 50.04 21.65 

i 

37.38 21.65 11.26 

Statistic 	Length (X 1 ) 
(je, -113.38) 

Source: Jolicoeur and Mosimann, 1960; reproduced with permission. 
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and the pooled determinant is 

!if = fill + lid 

1590.16 350.32 206.081 
= 350.32 221.77 124.94 

206.08 124.94 	77.91 

= 44493.8 

Using sample covariance matrices the natural log of Eq. (4.13) if given by 

= 193.45 — 256.87 

= —63.42 

where 

(2+2-1)(2-3 2 +3-3-1)  
a = 12(3 + 1)(2 — 1) 

3(26)  
48 

=1.625 

and the correction factor becomes 

2 
m 	(n — 2a) 

=-4-[48 — 2(1.625)] 

= 1.8646 

The chi-squared approximation is then given by 

x 2 
= M In A 

= —1.86(-63.42) 

= 117.96 

which is distributed approximately as x 21 , 2(p  _ 0(0. 0  = x 24 . For a Type I 
error, a= .05, we have X.05.4 = 9.49, and 1/0  is rejected, and we conclude 
that male and female covariance matrices differ significantly. 

Example 4.6, For the whale data of Example 3.13 both males and 
females are included in the PCA, so that both are assumed to possess an 
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identical variance/covariance matrix. Since Y 	a discriminant variable for 
males and females, it is omitted from the analysis. Using Eq. (4.13) to test 
for equality of the two covariance matrices we have 

In A = E 21-n8  148 1 - n 141 
g-1 

= +En t  14 1 1+ n2  142 1- n In III] 

- 

 [

fl i  E ln + n2  L In /21 - n 	in!] 
,=t 

=I[31(-92.60) + 31(-92.76) - 62(-76.25)] 

= -509.42 

where m = 1.4364. The asymptotic chi-squarcd statistic is then 

x 2 = -mm n A 

-1.4364(-509.42) 

= 731.72 

which is significant at the a = .01 level, indicating a difference in the two 
covariance matrices. The latent roots and PC correlation loadings for the 
male and female covariance matrices are given in Tables 4.8 and 4.9 

Table 4.8 Latent Roots for Male and Female 
Covariance Matrices (Variables in Natural Logarithms) 

Male Female 

38545 .22667 
.03474 .03991 
.02825 .02055 
.01919 .01585 
A)0914 .01308 
.00837 .00925 
.00743 .00743 
.00616 .00509 
.00443 .00472 
.00340 .00297 
.00194 .00252 
.00143 .00218 
.00103 .00118 
.00088 .00109 
.00062 .00069 
.00047 .00051 
.00018 .00013 
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Table 4.9 Correlation Loadings for Male and Female Covariance Matrices 
(Variables in Natural Logarithmsr 

Males Females 

Z 1  Z 2  Z 3  Zi Z 2  Z 3  

X i  
X 2  
X, 
X, 

.970 

.956 

.892 

.957 

.983 

.915 

.900 

.951 
X 3  .751 .214 .848 
X 6  .919 .836 
X, .855 .644 .347 .364 
Xs  .944 .783 .307 
X 9  .810 .780 .199 .309 
X is  .827 .733 .555 
X 1 , .929 .830 .227 .261 
X, 2  .920 .775 .279 
X 13  .649 .342 .340 .871 
X I , .752 .361 .339 .864 
X I , .871 .877 
X .526 .782 
X,„ .820 .410 .381 .505 .848 

'Loadings smaller than .10 are omitted. 

respectively. The first component is a size dimension, whereas the second, 
third, and fourth components represent shape dimensions. Note also (Table 
4.8) that the males' body structure is more closely related to their general 
body size than is the case for the females. E I 

Testing for Proportionality 
A more general test is to verify whether k - 2 covariance matrices are 
proportional, that is, whether hypothesis 

H9 :1 1  = cI2  

holds, where c > 0 is a scalar constant. The pooled ML estimator is then 

= 	+ cS2 ) 

where the Wishart distribution Eq. (4.1) is given by 

kilr" 2 cP" 12 exp[-1/2 trI -I (S /  + cS2 )1 

The test is based on the fact that when 119  is true the latent roots of 1: 2 2:i 
must all equal c. It is possible to derive the asymptotic distribution of c, 
which can then be used to test H o . For further detail see Rao (1983) and 
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Guttman et al. (1985). Flury (1986, [988) has generalized the test for k >2 
groups (samples). 

Testing for Equal Correlation 
One of the simplest structures for a PCA occurs when all variables are 
correlated equally (Section 3.3). In this situation a single dominant PC 
explains all of the nonisotropic variance for the population. It is therefore at 
times desirable to test for such a structure before computing PCs. 

Consider a population covariance matrix 	with an equicorrelation 
structure. Here can also be expressed as 

(r 2f(1 — p)1+ peel 	 (4.14) 

where p is the population correlation coefficient and e is a column vector of 
unities. We wish to test the hypothesis 

Ho: 	u 2 [( 1  P )1  + PeeT 1 

Ha : cr 2R1 — p)I + peel 	 (4.15) 

Let 6-2  and r be the ML estimators of cr 2  and p respectively. Then under Ho  
the ML estimator of III is = (0-2 ) 1 (1 r)P -  [1 + (p — 1)r], whereas 
under Ha  it is of the general form = (1/n)X TX. The ratio of the two 
likelihoods is then (see Srivastava and Carter, 1983). 

A
L(ñ9))  	 Il  —   
L(0,) — (61'(j r)P 1 [1 4 (p — 1)r] 

(4.16) 

The test is from Wilks (1946). Here —2 In A is approximately chi-squared 
with g, (p + 1) —2 degrees of freedom, Box (1949) has shown that the 
approximation is improved by using the factor 

In —p(p + 1) 2(2p — 3)1 
m — 

-1 
(4.17) 

so that —m In A is approximately chi-squared with 5:  ( p +1)— 2 degrees of 
freedom. Since the test is asymptotic we have retained the biased ML 
estimator 

The ML ratio test Eq. (4.16) is only applicable to covariance matrices so 
that its counterpart using the correlation matrix is not available. The 
hypothesis 

Ho  : R pl 

Ha : R pi 
	

(4.18) 



200 	STATISTICAL TESTING OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

is therefore usually tested using Lawley's (1963) heuristic test, which is 
based on the off-diagonal elements of the sample correlation matrix. Let 

1 
F. = 	 

p — 1 
i7v 

2 	
pp 

P(P —1 ) 	" 
(4.19) 

that is, Fi  is the mean of all off-diagonal elements for the jth column of R, 
and i is the overall mean of all off-diagonal elements. Since the diagonal 
elements are fixed at unity, they do not enter into the computations. Also, 
let 

h = CP — 02 E 1—  ( 1—  02 1  
p — (p — 2)(1 — 

(4.20) 

Then Lawley (1963) has suggested that in large samples the statistic 

2 	 
(4.21) X - 	

P 

	

--n-  F)2 	7 2,2, 	 i)(r— i) 2  — hE — 1 
I 1  

is approximately chi-squared with 112(p + 1)(p — 2) degrees of freedom. 
When the null hypothesis is accepted, we conclude that there exists a single 
nonisotropic dimension (PC). It will be seen in the next section that 
existence of a single isotropic component can also be determined by a direct 
test of the latent roots. 

Example 4.74 To illustrate the use of Eq. (4.16) we consider the Painted 
Turtle carapace measurements (females) of Example 4.5. We wish to test 
whether possess the equal correlation and homoseedastie structure po- -  

Using the unbiased estimator S we have IS  I 12,648.636, p 3, and n = 24 
where the unknowns (7 2 , p are estimated from S as 

s2  = — 	sTi  = 1(689.77) ---- 229.923 
P i-1 

2r 	
2  

s 	 EEs = 
p(p — 1) t.,_/ 	( 543-1 6) ----  181.053 

so that 

181.053  
r = 229.923 = ' 7875 
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Taking natural logs, Eq. (4.16) becomes 

In A = InISI —p 1n(s 2 ) — (p — 1)ln(1 — r) — In[l + (p — Orl 

— 9.4453 — 16.3132 + 3.0976 — 3.5417 

—7.312 

where 

23 — 3(16)(3)  
m —21.5 6(2)(8) 

so that 

X
2 = —m In A = —21.5(-7.312) = 157.21 (4.22) 

is approximately chi-squared with i(p + 1) —2 4 degrees of freedom. 
Since x .4  = 9.49 we conclude that / does not have the form a2p. 

Equation (4.16) does not indicate whether equality is violated for the 
diagonal elements of /, the off-diagonal elements, or both. A situation may 
arise therefore whereby H0  is rejected due to unequal diagonal elements of 
1. If variance however is of no interest, S may be converted to the 
correlation matrix 

1.00 
R - 	.974 1.00 

.973 	.965 1.001 

and equality of correlation coefficients tested using Eq. (4.21). We have 
p =3, n = 24, F1  = .9730, F2 .9695, f3  = .9690, F- = 1/3(2.912) = .9707, and 
h = 1.336 as defined by Eqs. (4.19) and (4.20). Then 

E E (rii  — 1.) 2  = (.974 — .9707) 2 + (.973 — .9707) 2  + (.965 — ,9707) 2 

 = .0000487 

(Fi  — i)2 = (.9730 — .9707) 2 + (.9695 — .9707) 2  + (.9690 9707)2 

 = .0000096 

and Eq. (4.21) becomes 

23  
X 

z 
= (1 — .9707)

2 [(.0000487 — 1.336 (.0000096)1 

= .9618 

Since x 205 , 2  = 5.66, we fail to reject Ho  at level a = .05 and conclude that 
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when the carapace measurements are standardized to unit variance, the 
resulting correlation matrix exhibits an equicorrelational structure, 

4.3 TESTING PRINCIPAL COMPONENTS BY MAXIMUM 
LIKELIHOOD 

Once preliminary testing has been carried out on the covariance (correla-
tion) matrix the next stage is to determine how many PCs have arisen as a 
result of random sampling, measurement error, or residual (individual) 
variation. The tests used to determine significant PCs involve latent roots 
rather than loadings, since it turns out that the roots tell us in a more direct 
fashion the number of isotropic dimensions which are present, and thus the 
number of stable loading coefficients. Note that it does not make sense to 
test whether roots are significantly different from zero if the population 
multivariate distribution is p-dimensional (nondegenerate). Zero roots arise 
from exact linear dependencies amongst the variables, which are at time of 
interest in regression-type Problems (Chapter 10). For a PCA however they 
are of little practical interest since they correspond to PCs, which explain 
precisely zero percent of the population variance. The discarding of such 
components is thus tantamount to removing mathematically deterministic 
relationships amongst the variables. The analytical strategy proposed in this 
section consists of two stages. First, reject PCs that correspond to isotropic 
roots, since these cannot possibly be of any interest. Second, discard those 
PCs that possess no evident interpretation, those that possess both small 
correlation loadings and that also explain a small percentage of variance. 
The two stages are distinct since the second stage (if required) must by 
necessity remain somewhat arbitrary and conditional on the actual applica-
tion and objective of a PCA. More recent criteria are discussed in Section 
4.15, which may obviate the two-stage selection process by the use of 
penalty functions which penalize high-dimensional models. Thus before any 
attempts are made at behavioral interpretation, residual components should 
be discarded in order to reduce PCs to a smaller set of nontrivial dimen-
sions. A statistical test of significance therefore should precede any discard-
ing of PCs if we have reasonable guarantees that data are multivariate 
normal. For a general review of tests for latent roots and latent vectors see 
also Tyler (1981). 

4.3.1 Testing Equality of All Latent Roots 

Given a multivariate sample from MIL, X) the distribution of all the latent 
roots has been given by Roy (1957) and James (1964). The functional form 
for arbitrary and n is involved and is difficult to use for testing purposes. 
When = Al however the exact joint distribution of the sample latent roots 
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l i >12 > • - • > lp  of XTX can be written as 

P 	 (n-p- 1 	 „ f(L) = c exp [— .112A  E ri 	ci  - )/2 rt „ 
 

where 

	

p 1 12 	P 

C — 

\2A1
\ 
	alr  I 1 r[30 + 1 — 	 1-1 111(p + 1 

n 	2 	 h71 

(4.23) 

for n degrees of freedom. It can also be shown that the sample roots 11  are 
distributed independently of the sample latent vectors. When p = 1, Eq. 
(4.23) reduces to the univariate beta distribution. Percentage points for the 
largest root 1 1  have been tabulated for p —275. For further reference to 
distributional properties of the latent roots of X rX see Muirhead (1982) and 
Anderson (1984). 

The test for equality of all the latent roots is based on the LR criterion 
from Mauchly (1940). In fact it is identical to the sphericity test Eq. (4.11), 
but is expressed in tcrms of the latent roots. It is handier to usc after a PCA 
has already been carried out and the roots are known. From Eq. (4.11) we 
have 

[  IX I X1  j" 
A — 

Itr(X TX)  1P 

1 P 

(4.24) 

so that the sphericity test is equivalent to testing the hypothesis 

	

1/0 : A 1  = A2  =1 ' • • 	Ap 

Ha : not all equal 

where —2 In A is approximately chi-squared with 1/2(p + 2)(p — I) degrees 
of freedom. The test criterion can be written as 

1 
x 2  = —[n —Tr; (2p 2  + p+ 2)] [In 	+ p In 	( -1  ± li)] 	(4.25) 

11  1-1 

which is identical to Eq. (4.12) where again we use n rather than n — 1. 
Since we tend to accept Ho  for small values of x 2  the sphericity test is 
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formally equivalent to testing for equality of the geometric and arithmetic 
means of the latent roots. Also when using the correlation matrix, a 
criterion equivalent to Eq. (4.8) is 

X
2 --In --Wp+5)Iinfl 

	
(4.26) 

but which is more handy to use when the latent roots are known, 

4.3.2 Testing Subsets of Principal Components 

When the null hypothesis of sphericity (total independence) is rejected it is 
still possible for a smaller number of p — r latent roots to be equal. As noted 
earlier (Section 33) this corresponds to an isotropic p — r dimensional 
sphere embedded in the p-dimensional normal ellipsoid, and any orthogonal 
rotation of the principal axes cannot increase or decrease length (variance) 
of the axes. Consider a sample of size n from a multivariate normal 
N(1L, I). We wish to test 

Ho : Ar +i = Ar  4 2 	•= Ap 

Ha : not all ( p — r) roots are equal 

When r =p 1, the test is equivalent to testing for existence of a single 
nonisotropic PC. An appropriate test is the extension of the LR test for 
complete independence, 

P 

[ 	

TI2 

fl  / 
A =  

(_.,1 ± tar 
\ CI 	1  

[ P 	]n/2 

ri 4 
i=r+1  

qr 

(4.27) 

where iq  is the arithmetic mean of the last q 	sample roots (Bartlett, 
1950; Anderson, 1963a). Lawley (1956) has shown that the chi-squared 
approximation is improved slightly if Bartlett's multiplier is increased by the 
amount 

Rd'  
it (1, - ro2 
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The statistic 

1 	2 	 r 	(
1
q) 2  

)( 2- 	r 	(2q -  + q + 2) + 	 

X[ 
 E In /, q In (—

I 
	4)] 	 (4.28) 

	

ir=r+1 	 q1=r+1 

is then approximately chi-squared with (ti + I) — 1 degrees of freedom 
where 

1 P  E q i _ r 	q 

Lawlcy's correction may be conservative (James, 1969). Thc test can be 
used to check for equality of any 1 <r p adjacent latent roots of a sample 
covariance matrix. When the correlation matrix is used, Eq. (4.28) does not 
posscss an asymptotic chi-squared distribution. Howcver the test is at times 
employed for the last p r latent roots of a correlation matrix when these 
account for a small percentage of total variance, and whcn n is large. When 
complete sphericity is rejected, Eq. (4.28) can be applied to the last 2, 
3, . p 1 roots in a sequential manner. The testing procedure often 
results in more PCs than can be meaningfully interpreted, and a careful 
inspection of the retained loadings is normally required in addition to the 
tcst. Anderson (1963a) has shown that the LR criterion can also be used to 
test the equality of any r adjacent roots. At times Lawley's correction factor 
is omitted, in which case Eq. (4.28) can also bc written as 

1 ' r  2 —[n — r — 4(2q 2  + q + 2)] LE In! — q In (— /,)] 	(4.29) 
q 

Alternatively, it is possible to test whether the first r roots account for a 
sufficient percentage of the variance. This is achieved by testing thc null 
hypothesis 

205 

Ho . H 	 (4,30) 



206 	sTivris .ricAL TESTING OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

for some 0 < H <1. Let 

(1 - H) E 	- 	 (4.31) 
im.r+1 

Assuming the latent roots of X are distinct, it can be shown that as n—> 
the limiting distribution of 

n i "[T + 	A — 

i - 1 
, 

, A  ] 

t-r+1 
(4.32) 

is normal with mean zero and variance 

	

= 2(H)2 E A + 2( 1 H)2 	A 	 (4.33) 
i-r [-I 

When population roots Ai  are replaced by /i  it is possible to test Eq. (4.30), 
that is, to test whether the first r PCs explain a significant proportion of 
variance, and to construct confidence intervals for expressions of the form 
(sce Saxena, 1980) 

(4.34) 
i=r+1 

Example 4.8. We use the whale measurements of Example 3.11 to 
illustrate Eq. (4.28). Since the last 14 roots account for just over 10% of the 
total variance, we wish to determine whether they can bc considered to 
represent isotropic dimensions. Wc have 

Ho : A—A = • = Als  

H„: not all equal 

where n= 62. p = 18, q = 14, E il% In /i  --80.11085 q and lil(l(? ) = 14 
In(.00506) = —74.15965 

4 	12 (.005006) 2 + 	4_ 	(.005006) 2  

if! 	(.309925 — .005006) 2 	(.022712 — .005006) 2  

= .10484 
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I 	2 	 1 

so that 

X 2 - (53.1428 + .10484)(-80.11085 + 74.15965) 

---- 316.9 

For a = .05 and 1(q + 1) — 1 = 104 degrees of freedom, the test statistic 
indicates a significant difference among at least two of the last 14 latent 
roots. The last 14 PCs however appear to be uninterpretable, and for most 
practical intents and purposes can be omitted from the analysis. The 
example also illustrates the known fact that LR chi-squared tests of 
dimensionality typically retain more components than can be interpreted in 
a sensible manner (see also Section 4.3.5). Note that the rejection of H o 

 does not necessarily imply that the last subset of n—r components represent 
systematic variation--it simply indicates that the residual variance structure 
is not isotropic at some significance level. This can occur, for example, when 
different sources of error exist such as sampling variation, measurement 
error, missing values, natural variation, and so forth. 

4.3.3 Testing Residuals 

The main reason for testing whether the smallest p--r latent roots are 
isotropic is to be able to determine the effective dimensionality of a data 
matrix, that is, the number of components required to reproduce the 
explainable part of matrix X. An alternative approach is to consider the 
residuals of a principal components model (Jackson and Mudholkar, 1979; 
see also Gnanadesikan and . Kettenring, 1972) which is based on testing PC 
residuals. Let 1). } = Z (r) (Z(F, } Z ( , ) )• 'Z (t)_)  ZoZT(r)  be the projection matrix 
that projects orthogonally columns of X onto the first r principal com-
ponents (Section 3.5). Then the matrix that projects X onto the residual 
space, or the last p— r components, is given by (I — Pz( , ) ). The matrix of 
residuals is then 

Q2  --- (X — j1) 

• (I — Pz(r))X 

Zof  _oZ (p  .0X 

K4 ( 
	 (p-r) 

▪ ZAT  Z (r) A;rr)  (4.35) 
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and the residual variance matrix is given by 

(X — i) 1 (X — 	= A(p _ r) Z .Tp _ o Z (p _ r) ATI.,_ r)  

= A Al  (p-r} (P - r) 

= L(1)—) 
	 (4,35a) 

the diagonal matrix of the last (smallest) latent roots. The total residual 
variance is then 

tr(X ji) T (X — 	= tr(L — L crj ) 

(4.36) 

Let xi  and z, represent the ith row (observation) vector of X and Z 
respectively. Once the first r PCs have been obtained, the adequacy of the 
model can be tested by using the predicted observation vector 

Cc, = 	 (4.37) 

which yields the residual sums of squares 

Q = (x, 	ii ) 
	

(4.38) 

Equation (4.38) can be used as a measure of overall tit of the p-dimensional 
observation vector. Let 

E  ,2 

t 
ir+1 

where h o  = 1 — (20 1 02 03 /30 22 ), Then Jackson and Mudholkar (1979) have 
shown that the statistic 

0 1 [(Q/0 1  )11 0  — 02h 0 (h 0  — 1)/0  — 1 )1  = 
(202 h 20 ) 1/2  

(4.39) 

is distributed approximately as N(0 1 1), and can thus be used to test for the 
significance of departure of the ith observation vector from the predicted 
values (Eq. 4.37). Let p, denote the one-tailed probability associated with 
ci , the value of c for the ith observation. Then under the null hypothesis Ho : 
the last (p — r) roots are isotropic, the expression 

Q0 = —2 E In p, 
e----1 

is distributed approximately as the chi-squared distribution with 2n degrees 
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of freedom and can be used to test for significance of residuals for the n 
observations (Jackson, 1981). 

4.3.4 Testing Individual Principal Components 

The previous sections provide global asymptotic tests for the principal 
components model and can serve as useful overall indicators of the structure 
of a sample covariance (correlation) matrix. It is also possible however to 
derive asymptotic tests for the individual latent roots and vectors (loadings), 
which allows for a more detailed or local analysis of the individual roots and 
loading coefficients. 

Testing Individual Latent Roots 
THEOREM 4.3 (Anderson, 1963a). Consider n observations from 

N(p., /), and let A L  A2  • ' A 	ri , 11 	be the latent roots I " 
and latent vectors of X. Also, let 1, >12 >. - > lp  and PI  , P2  . . , P, be 
latent roots and vectors of = X 1 X. Then, as n--0 

(i) every I is distributed independently of its corresponding latent vector 

(ii) For a distinct latent root A i  the expression 

(4.40) 

is distributed approximately as N(0, 1). 

Theorem 4.3 was first considered by Girshick (1939) who used a Taylor 
series expansion of /, (about A i ) to show that the sample variance of I is 
approximately 2A,2 /n (see also Waternaux, 1976). In matrix form we have 
the approximations 

1, A 1  + 	— X)11, 	 (4.40a) 

(4.40b) 

where iv, k  11;( - 1)11i  A k  Ai ). Equation (4.40a and b) can be used to 
study point estimation of the latent roots and vectors (see Skinner et al. 
1986). Theorem 4.3 can also be used to establish asymptotic confidence 
intervals and tests of hypotheses concerning individual roots. A two-sided 
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normal 100(1 – a) percentage confidence interval is given by 

1, 
L12 -"5- Ai  

1 + Zo2 – ( n- 	1 – n 
2 )" 2  

Bounds can also be placed on the last p – r isotropic roots of 	Let A be a 
population latent root of multiplicity q =p – r. Then a sample estimate of A 
is 

(4.41) 

(4,42) 

where from Theorem 4.3 we know the distribution of 

iq  – A  

2 )"2 	
(4.43) 

A (—nq 

approaches N(0, 1). Using Eq. (4.41), a two-sided confidence interval for A 
is then 

( ---)
2 "2 5- A 	 2 )112 	

(4.44) 
1 + 7402  —1 —Zap, (

nq nq 

which can be used to estimate A after the null hypothesis of q isotropic roots 
has been accepted. There also seems to be some evidence that Theorem 4.3 
carries over (asymptotically) to nonnormal populations (Davis, 1977). 

Example 4.9. For Example 4.6, a 95% confidence interval for the first 
(male) latent root is 

38545 	 38545  
2  )1r2 	 ( 2 ) 1 " 

1 – 1.96 (Ti- 	1 – 1.96 --j-f 

so that .25733 A I  .76758, which does not include the female latent root 
.22667. For an application to Palaeoecology see Reyment (1963). 

Testing An Entire Latent Vector 
Tests for individual PCs of a covariance matrix can also be carried out using 
latent vectors. The reason for considering tests of an entire latent vector (see 
also Example 4.10) is that in practice an adjusted latent vector C i  may be 
used in place of the observed vector P s.; for example, values close to zero 
may be set identically equal to zero in the belief that these are the true 
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population values. A test is then required to determine whether the adjusted 
latent vector C, represents a population vector. We first state a theorem due 
to Girshick. 

THEOREM 4.4 (Girshick, 1939). Consider a sample of size n drawn from 
a normal N(p,, X) population with latent roots A 1  > A2  > • - • > Ap  and latent 
vectors El l , 11 2 , ... ,I1p . If 1 1  > /2  > > /p  and Pi  , P2 ,. . . , Pp  are latent 
roots and latent vectors of 5= (1/n)X 'X, then as n-->00 the distribution of 

(P, — 11,) 

approaches a multivariate normal with mean vector 0 and covariance matrix 

A,A, 

(AA
IT 
 's 	

, 2, . 	, p) 	(4.46) 
, 	i) 	4'  

Equation (4.46) is asymptotically independent of l. 
Anderson (1963) considers the null hypothesis 

1/0 : H, = C, 

against the alternative that at least one element of II, is not equal to an 
element of some arbitrary constant vector C, Using Theorem 4.4 it can be 
shown that the distribution of 

X 2 = n (1,-C 	+ 
—1 

C .r  SC . — 2) 	 (4.47) 

approaches a chi-squared distribution with p — 1 degrees of freedom. 
Adjustments other than n (or n 1) are also possible (Schott, 1987). For an 
extension to the correlation matrix see Schott (1991). Anderson's test is 
asymptotic and cannot be used for a small sample. A different approach is 
taken by Mallows (1960) (see also Srivastava and Khatri, 1979, p. 296) and 
for a more special case by Kshirsagar (1961). Mallows considers H o : 
hypothetical linear combination XC = Z ( , )  is a PC against the alternative Ha  
that XC is not a PC, When H1, is not rejected we accept C as a latent vector 
of S. Using multiple regression theory an exact test of H o  is shown to be 
based on the statistic 

F — 	— + 1 ) 	T - t 	1 RC S C)(C SC) - 11 
P 

(4.48) 

which under HO is the F distribution with p — 1 and n —p + 1 degrees of 
freedom. The same test is also proposed by Jolicoeur (1984). Kshirsagar 
(1961, 1966) considers the null hypothesis: XC = Z (e)  is a PC (C is a latent 
vector) given a covariance matrix has the isotropic structure of Eq. (3.29). 
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The test is also exact and is based on multiple correlation theory. Let A I  and 
A be the nonisotropic and isotropic roots, respectively, and let 11 1  be the 
latent vector corresponding to A. Let X represent a sample of size n from a 
p-dimensional normal distribution where the PCs are normal independent 
N(0, 1) variates but Z 1  N(0, A 1 ). l'hen the expression 

P n 

X 
2 VV2 

P n 

= E E - E „ 
1-1 	fI 

= tr(ZTZ) — tr(ZTZ I ) 

= tr(X TX) — C TXTXC 	 (4.49) 

under the null hypothesis II I  = C is chi-squared with n(p — 1) degrees of 
freedom. Let S = C IXTXC. Then Eq. (4.49) can be expressed as 

Al 2  = tr(XTX) — S 	 (4.50) 

which may be used to test overall departure from 110 . Such departure can he 
due to two main reasons: (1) there exists more than a single nonisotropic 
PC, or (2) the hypothetical vector C is not the true vector H I . Following 
Bartlett (1951b) the overall chi-squared statistic can be partitioned as 

2 	2 	2 
X = Xl) + Xd (4.51) 

and the directional contribution x 2d  can be tested given X 02 , that is, given the 
existence of p — 1 isotropic roots. The coefficient of regression of Xll i  on 
XC is (C rX 1  XC) I C I  XTX11 1  where var(XC) = (1 /n)(C TX XC), and stan-
dardizing yields the scalar 

C (trx)iti  
(C

T
X

T
XC) 

/2 

which is distributed as N(0, 1). Thus 

[cT(xTx)n r/cTxTxc 
i-7=2 

is chi-squared with (p — 1) degree of freedom or 

xa=  zdP  (crxrxn i)(nT, x-rxc) 2 V 

1 - 2 	C TX TXC 
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is chi-squared with (p — 1) degrees of freedom. Thus under 

1/0 :11 = C 

we have 

(cTxTn,)(rErxTxc) 	(cTxTru(riTtrxc)  
C T  X T  XC 	 X T  XC 

(C T  X T  X11 1)(C T  X T  X11 1 )  

C T  X T  XC 

(C TxTxrull,TxTxc) 
= L cTXTXC 

C IXTXC 

C (XTX) 2C 	T T  
C(X X)C 

C X XC 

so that 

x 2a = {EC (X5E) 2 CHC I (X IX)C1 — C T X T XC) 

	

= — 1)[(C 1 S 1C)(C TSC) — C TSC1 	 (4.52) 

is chi-squared with (p 1) degrees of freedom. The test assumes that A is 
known (so that the isotropic components can be standardized to unit 
variance), which is rarely the case in practice. When A is not known Eqs. 
(4.49) and (4.52) can be used to define the F statistic, for unstandardized 
components, as 

/1/113 	 
x - In(p— I) 

— I )1(C TS2C)(C TSC) -1  CTSCj  
(4.53) 

n(tr S C TSC) 

which is distributed with p — I and (n — I)(p — I) degrees of freedom 
(Srivastava and Khatri, 1979). The case of an isotropic distribution when the 
number of variables leads to is considered by Yin and Krishnaiah (1985). 
A numerical example is given by Kshirsager (1961). 

Testing Elements of the Latent Vectors 
Once r p components of a covariance matrix have been accepted as 
accounting for a significant portion of the variance, the next step lies in 
determining which individual loadings are significantly different from zero. 
This can be of importance when the retained PCs are not expected to be 
significantly correlated with each and every variable. Since A = PA", testing 
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for zero loadings is equivalent to testing 

Ho: = 0 

H„: /T.,/  0 0 

Using Eq. (4.46) it can be shown (Girshick, 1939) that variance/covariance 
matrices for elements within latent vectors are given by 

F 1  = E(131  — 
	

1 	( n A  1 ) 2  (A 	) 2 " ' " 'r  

A 2  
"2  E(p, 11 2 )(P211 2 )(P2 11)loT 	 " 

n 
7"2 — 1 ) 	(k — A2) 2  - 

37,c2. 

Hp Illp-r - p A  	PY-1 	  rp  =E(pp  IIp )(Pp  —11p ) r  — (n — 1) 	(As  — Ap _ 1 ) 2  

(4.54) 

The equations can also he expressed in matrix form. Thus for r, we have 

   

A1A2  
(A2  — A 1 ) 2  

     

     

0 

 

[n] 

r, [11 2  n 3 	Hp ] 

  

A I A3  

   

   

(A3 — A)` 	. 

 

   

0 

  

A l A p 

 

       

     

(A p  A 1 )2 _ 

 

Ale 

    

= D" "HT (..1) 	( 	1) 

where subscript (-1) denotes that the first latent vector and the first 
diagonal term of D 2  (corresponding to A 1 ) are omitted. The remaining 
covariance matrices are given by 

ri  = n, )D 	(i — 2, 3, ... ,p ) 

	

(4.55) 

Thus the covariance between any gth and hth elements is 

A 2 	Ai 	5 	
• • 7 P) IrgS Ir  COV( Pgo h ) 	RI I 	(ii - 	1  (A - 	

it3 	(i = 1, 2 . 

(4,56) 

It can also be shown that cross-variances between the gth element of the ith 



2 
COV(Pgi Phj 	gi.hi 	— 1)(Ar i — Ai) 

IT‘2 

—A,A 1  
(4.57) 
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latent vector and the hth element of the jth latent vector is given by 

for i j.  Equation (4.57) indicates that latent vector elements are correlated 
between different latent vectors, even though the latent vectors are ortho-
gonal. Such correlation is not usually evident, and is frequently ignored in 
practice. Since y 2g , ‘ „)  increases as A1 Ai , it follows that covariance is largely 
a function of the differences between latent roots. Since roots are usually 
ranked in decreasing order, most of the correlation will occur between 
elements of adjacent latent vectors. It follows that PC loadings which are 
associated with insignificantly different latent roots cannot be distinguished 
in practice and can safely be ignored (see also Section 4.3.2). This provides 
additional rationale for first testing latent root differences before proceeding 
with a PCA. 

Not only is it possible to estimate the covariance structure between the 
loadings, but Eq. (4.56) can also be used to provide asymptotic estimates of 
their standard deviations. This in turn permits the testing of hypotheses for 
individual loading coefficients. When the parent distribution is multivariate 
normal, the asymptotic distribution of 

P11 — 17'4 
z — 	 (4.58) 

is also normal and Eq. (4.58) can be used to test hypotheses concerning 
population parameters 'my  This provides an objective procedure for discard-
ing individual loading coefficients. Of course the magnitudes of the retained 
loadings may not he very high, and further deletion may be required using 
auxiliary information. A statistical test of significance however should 
always precede any deletion of coefficients. 

Example 4.10. Reyment (1969) uses the Anderson (1963a) chi-squared 
statistic (Eq. 4.47) to test whether two covariance matrices possess equal 
(collinear) dominant latent vectors. Here p = 3 body dimensions of freshwa-
ter African ostracods drawn from individuals cultured in two different 
environments are obtained using the variables 

= log 10  (carapace length) 

Y2  = log y)  (carapace height) 
Y3  log 10  (carapace breadth) 

The sample covariance matrices and their latent roots and vectors for the 
two respective samples (groups) are: 
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(a) The sample from the first environment (n i  =365): 

[ 
.0003390 .002137 .0003069] 

S t  = .0002137 .0003393 .0002552 
.0003069 .0002552 .0005396 

.525445 .045020 -.849636] 

	

P1  = [ .481346 	.807700 	.340480 

	

.701580 -.587872 	.402731 

/11  = .0009445 , 	12 1 = .0001655 , 	1 	.0001079 

(b) The sample from the second environment (n 2 = 908): 

[ 
.0005074 .0002332 .0002084 

S2 ------- .0002332 .0003311 .0002448 
.0002084 .0002448 .0004515 

[ 

	

-- 
.628000 -.733153 	.260973 

	

P2 = .515343 	.140505 	.845387 

	

.583130 	.665392 	.466062 

/ 12 = .0010223 , 	/22 = .0001371, 	1  

Here the objective is to test whether the two covariance matrices are 
homogeneous with respect to the (dominant) size dimension. Letting C I  = 
(.0005074, .0002332, .0002084) 1.  (the first latent vector of S 2 ) we have 
1 /  //I  = .0009445, SS 1 , and 

1 1 1  CTS 1-  `C / = .0009445(.0005074, .0002332 „ 0002084) 

[ 
.0003390 .0002137 .0003069] - ' [.0005074} 

	

x .0002137 .0003393 .0002552 	.0002332 

	

.0003069 .0002552 .0005396 	.0002084 

= .0009445(1235.0164) 

= 1.166477 

1 
C T/  S / C 	1058.7613(.0005074, .002332, .002084) 

.11 

{ 
.0003390 .0002137 .0003069 .0005074 

x .0002137 .0003393 .0002552 .0002332 
.0003069 .0002552 .0005396] .0002084 

=1058.7613(.0009238) 

= .97808 



88.67 67,04 54.06 

[

102.74 
88.67 142.74 86.56 80,03 
67.04 86.56 84.57 69.42 
54.06 80.03 69.42 99.06 

335.35 
48.04 

16.42] 
29.33 

0  0 

with latent roots 

L= 
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so that 

2 	1. 	 1 
( „I( = 	,„ ,...- 1 	CAC I  - 

1 11 

= 365(1.16647+ .97808 —2) 

= 52.76 

Comparing the theoretical chi-squared value with p — I = 2 degrees of 
freedom indicates the rejection of 11 0 , so that the two covariance matrices 
appear to be heterogenous with respect to the first (size) dimension. 

Example 4.11. (Jackson and Hearne, 1973). One of the most important 
properties of rocket fuel performance is the impulse produced during firing. 
An estimate of this number is normally obtained by a method known as 
static testing, whercby the fired rocket is firmly fastened to the ground and 
the resultant impulse measured by gages attached to its head. To improve 
reliability, two identical gages are attached to the rocket's head. Each gage 
is connected with two separate systems of recording; (1) an electronic 
integrator which determines total impulse, and (2) an oscilloscope and 
camera which record the rocket's thrust as a function of time. The 
photographic record is then planimetered to obtain total impulse. This 
results in the following variables: 

Y1  = Gage 1: integrator reading 
Y2  = Gage 1: planimeter reading 
Y3  = Gage 2: integrator reading 
Y4  = Gage 2: planimeter reading 

in the study n = 40 readings are recorded. Although the sample size is too 
small for use with asymptotic theory, and multivariate normality may not 
apply, the example should nevertheless serve as an illustration of the theory. 

The covariance matrix for the four variables is 
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and latent vector 

P= 
 [

.49 
61 

.46 

.45 

-.62 
-.18 

.14 

.75 

-.57 
.76 

-.17 
-.26 

-.26 
-.15 

.86 
-.41 

we then have, from Eq. (4.56), 

A, 
var(p8,)= y 82 . - 	2, 	ir 

(1) 	(A tt - 	 s  - A1 )2 g  
176 i 

(4.59) 

and setting g = i = 1, we obtain for the first loading 

4 	/3  
	 2 

	

var(Pii)= Y 211 - (n  - 1) 	2 (1 1  - jt)2 
Pi 

335.35  I  (48.04)(62) 2 	(29.33)(57) 2  

39  I- (48.04 335.35) 2  (29.33 -335.35)2  

(16.42)(26) 2  

(16.42 - 335.35) 2 i 

= 8.599[000224 + .000102 + .0000111 

= .002898. 

Likewise the covariance between, say, p i , and p 21  is given by 

	

11 	4 	ls  
2 

	

coy( p 11 , P21) = Y11.21 - (it  -1) ?)2 (l 
	102 PIsP23 

	

335.35  [  (48.04)(62)(-.18) 	(29.33)(-.57)(76)  

	

39  L (48.04 - 335.35) 2 	(29.33 - 335,35)2  

(16.42)(-.26)(-.15)1  
(16.42 - 33535) 2  --I 

= 8.599[-.00006495 - .00013567 + .0000063j 

= -.001670 

Also, to illustrate the use of Eq. (4.57) the covariance between p 23 = .76 



14  

-.104 
- .051 

.379 
 -,167 
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and p 14 = -.26 is given by 

1 1 1 4  
c°v( P23 P14 = Z3 1 4n(/4  _ 14  )2 P23 P14 

-(29.33)(16.42)  
(.76)(-.26) 

39(29.33 - 16.42) 

= .0146 

Transforming the covariances into correlation coefficients then results in the 
(p 2  x p l ) = (16 x 16) correlation matrix (Jackson and Hearne, 1973). 

P' 1 

P21 

P31 

P41 

P 1 1 	P21 	p3 1 

1.0 
-.2 	1,0 
-.3 -.4 	1.0 
-.6 -.5 	,1 

P41 

LO 

P12 P22 	P32 	P42 P13 	P23 	P33 	P43 P14 	P24 P34 P44 

1, 12 .1 	.1 	0 -.2 1.0 
P22 .1 	1 	0 -.2 -.9 	1.0 
P32 .2 	.1 -.1 -2 .2 -.4 1.0 

P42 .2 	.1 	-.1 -.3 .9 -.7 -.1 	1.0 

P13 .1 	-.1 	0 0 -.9 	.9 -.4 -.7 1,0 

P23 .2 -A 	.1 .1 -.7 	.7 -.3 -.6 .9 1.0 

P33 . 	-,1 	0 0 .2-.2 	.1 	.1 5 -.6 	1.0 

P43 .0-.1 	0 0 .9 -.9 	.4 	.7 -.7-.4-.2 	1.0 

40 14 ° 	0-.1 0 -.1 	0 	.4-.3 -.3 -.4 	.8 - 4 1.0 

P24 0 	O-.1 0 (1 	0 	.1 -„1 .3 	.5 -1.0 	.4 -.8 	1.0 

P34 1 	0-.3 .1 .1 	0-.3 	.2 -.3 -.5 	.8-4 .6 -.9 1.0 

P44 0 	0 - 1 0 .2 	.1-.7 	.4 -.2 	3 	,5-.2 .1-.6 .8 1.0 

The correlation loadings of the four variables are 

Zz Z 3  

X I  .885 - ,424 ,305 
X 2  .935 - .104 .345 
X )  .916 .106 -.100 
X 4  .828 .522 --1.41 

where each latent vector is multiplied by the square root of its latent root 
and divided by the standard deviation of the corresponding variable. To test 
whether loadings are significantly different from zero, the standard devia- 
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lions of the latent vector elements are computed using Eq. (4.56). The 
matrix of latent vectors can then be written as 

— .49 —.62 —.57 —.26 
(.05) (,19) (.21) (.18) 
,61 —,18 .76 —.15 

(.04) (.25) (.08) (.21) 
.46 .14 —.17 .86 

(.03) (.14) (.24) (.05) 
.45 .75 —.26 —.41 

_(.06) (,11) (.26) (.13) 

where standard deviations appear in brackets. With the aid of Eq. (4.58) we 
see that a 22 , a32 , a 33 , a43 , a 14 , and a 24  are insignificantly different from zero. 
The revised table of loadings appears in Table 4.10. The first PC is an 
estimate of total trust, whereas the remaining three PCs measure contrasts 
between gages, indicating a possible lack of synchronization. For further 
illustration of the test(s) see Jackson (1981). 

Table 4.10 Significant Loading Coefficients for 
the Four Rocket Propulsion Variables 

Z 3 	Z 4  

	

.885 	-.424 	-_305 	— 
X 2 	,935 	 .345 
X 3 	.916 	 .379 
X4 	.828 	.522 	 .167 

4.3.5 Information Criteria of Maximum Livelihood Estimation of 
the Number of Components 

More recently attempts have been made to utilize entropy information 
statistics (Section 1,6) to estimate the number of explanatory factors that 
can be extracted from a covariance matrix. The main reason for this is that 
the classical ML principle often leads to choosing a higher number of 
dimensions of a model than can be interpreted, and thus may not be the 
appropriate procedure for implementing the intuitive notion of the "right" 
model. Information statistics are also based on the assumption of multi-
variate normality, and are similar to Mallows' (1973) Cp statistic, which is 
well-known in regression analysis. The general objective can be understood 
in terms of a model-selection criterion, which takes into account both the 
goodness of fit (likelihood) of a model as well as the number of parameters 
used to achieve the fit. Such criteria take the form of a penalized likelihood 
function, specifically thc negative log Likelihood plus a penalty term which 
increases with the number of parameters fitted. Some penalty functions also 
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depend on the sample size in order to incorporate the concept of consistent 
estimation. 

The first attempts in this direction, in the context of factor analysis, are 
from Akaike (1971a, 1987), who utilized his AIC criterion (Akaike, 1974a; 
1974b) to estimate the number of factors or dimensions required to obtain 
an adequate (penalized) fit. Akaike (1971a) evaluates the quality of the 
estimate by the expectation of its log likelihood, which in turn is based on 
the Kullback-Leibler mean information statistic (Kullback and Leibler, 
1951). Let 0 be an estimate of a parameter 0 of a probability distribution 
with density function f(y ), where the random variable Y is distributed 
independently of 0. Then the quality of the estimate 0 is evaluated by 

E[In f(y 1 6)] = E f(y 10) In f(yle)dy 	(4.60) 

It can be shown (Akaike, 1971a) that the resultant criterion is given by 

AIC = -2(In L m) 

= -2(ln of maximum likelihood- number of free parameters in the 

model) 	 (4.61) 

(see also Bozdogan, 1987). Here m is also the expected value (degrees of 
freedom) of the asymptotic chi-squared distribution associated with the 
likelihood ratio criterion, and is equal to the dimension of the model 
(parameter vector 0). The procedure consists of varying the number of 
parameters and generating a set of alternative models. We then chose the 
model with minimum AIC. Alternatively, we can consider the equivalent 
problem of maximizing the expression 

= In L - rn 	 (4.62) 

which is more convenient to work with. 
Let a set of p random variables have distribution N(R, 1). Thus omitting 

terms which arc functions of the constant n, the likelihood function is given 
by 

L= - —2 fln + tr(SX -1 )1 

Also, let = aa T  + where a is a matrix of PC loadings and 	is a 
diagonal matrix with equal nonnegative diagonal entries. The MC criterion 
is then implemented by replacing L into Eq. (4.62) with = aa T  + i and 
varying the number r of PCs until the expression is maximized, where 
m [2p(r + 1) - r(r - 1)j. The testing procedure is a special case of the ML 
factor model and is pursued further in Chapter 6. 

The attractive feature of the A1C criterion is that it reduces the number 
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of significant factors when compared to the NIL chi-squared procedure 
discussed in Section 4,3.2. A difficulty with Eq. (4.62) however lies in the 
penalty term m = number of free parameters, which does not depend on the 
sample size n. The AIC criterion therefore is an inconsistent estimator of 
the true dimensionality of a model, Thc criterion is usually seen as not being 
motivated by the objective of estimating "the correct" model (number of 
explanatory PCs), but rather by that of finding the number of PCs which can 
be cstimated given a single multivariate normal sample. Since consistency is 
an asymptotic property, the argument goes, and since all samples are of 
finite size, it matters little whether the AIC criterion provides us with 
consistent estimates. The view clearly misses an essential point. Given that 
repeated samples can be taken, of varied size, it is clearly of some 
importance that values of an estimator should converge to a single "true" 
value of the population, since without such a criterion it is difficult to relate 
sample information to population structure. 

A different approach to the problem of estimating dimensionality is 
provided by Schwartz (1978; see also Rissanen, 1978), who uses Bayes 
estimation under a special class of priors to derive the alternative criterion 

C. = In(L) 	In(n) 	 (4.63) 

the Bayesian nature of the factor model is also recognized by Akaike 
(1987)1. Schwartz's criterion differs from Eq. (4.62) in the penalty function 
since C2  is now also a function of the sample size n. Clearly as n increases 
the two criteria produce different results, with C. yielding a smaller number 
of PCs. 

Other modifications use penalty terms that are logarithmic functions of n. 
Hannan and Quinn (1979), for example, have proposed the criterion 

C3  = In(L) — c In(In n) 	 (4.64) 

for some constant c > 2. However, C3  has a slow rate of increase with n, 
possibly not a desirable feature in factor analysis. Other penalty functions 
are discussed by Bozdogan (1987), who provides a comprehensive review of 
the background theory of A1C and proposes a number of alternative 
criteria, one of them being 

= 2 In(L) m[In(n) + 2] — In(/) 	 (4.65) 

where / is Fisher's information which depends on the reduced number m of 
estimated parameters. 

The criteria discussed in this section are all general criteria for estimating 
dimensionality of a linear model, and do not apply only to factor analysis. 
This is a further illustration of our claim, that estimating dimensionality is 
not a problem that only concerns factor analysis. As witnessed by the 
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bibliography, only recently has the statistical generality of the problem been 
addressed in any systematic fashion. None of the above criteria however 
seem to have bcen evaluated for their relative ability to pick out the true 
dimension of a PC factor model, or for robustness against nonnormality and 
other sampling difficulties such as stability, presence of outliers, or missing 
data. 

4.4 OTHER METHODS OF CHOOSING PRINCIPAL COMPONENTS 

When large samples are available from multivariate normal populations the 
statistical tests considered in the preceding sections represent valid proce-
dures for determining the number of significant components and/or in-
dividual loadings. For PCA, however, experience has shown that statistical 
significance is not necessarily synonomous with meaningful interpretation, 
particularly when the population is nonnormal and when outliers are present 
in the sample. A difficulty associated with ML tests lies in the assumption of 
multivariate normality and large samples. As the sample size increases, the 
Bartlett—Anderson chi-squared tests tend to retain an excessive number of 
PCs, although this can be circumvented by the use of information-based 
criteria (Section 4.3.5). Even the AIC criterion however may overestimate 
true dimensionality when n (or p) is large. Thus trivial PCs are frequently 
retained by ML tests together with those whose interpretation is more 
straightforward but by no means certain. This implies that ML tests should 
be used only as a first stage in what may become a multistage decision 
process as to which PCs are to be retained, that is, which components can be 
considered trivial from a substantive as well as a statistical point of view, 
Such a strategy seems to be less subjective than those traditionally employed 
(particularly in the social sciences), which seek to minimize the number of 
PCs using informal rules of thumb (Section 4.4.3) together with the 
questionable "principle of parsimony." Unfortunately, statistical testing is 
still not widely employed (or available) with many statistical packages, and 
experience seems to be insufficient to establish the utility of the various tests 
described in Section 4.3. 

In an attempt to circumvent the at times tenuous assumption of multi-
variate normality (and large samples), workers have recently turned to 
non-ML estimation/tests based on resampling schemes. The advantage of 
such nonparametric procedures is they do not require the assumption of 
normality, at least in moderate to large samples. 

4.4.1 Estimates Based on Resampling 

The three best-known resampling procedures used in conjunction with PCA 
are (1) the jackknife, (2) the bootstrap, and (3) cross validation. Although 
these are by no means the only nonparametric resampling methods (see 
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Efron, 1981), they have been used in practice with the PC model and 
evidence exists for their usefulness. The only drawback for such methods 
seems to be the heavy reliance on electronic computing timc, although with 
present technology this does not seem to be a major obstacle. 

The Jackknife 
Consider a random sample x, x 2 , 	, x„ taken from an unknown popula- 
tion with parameter 0. Jackknife estimation is a procedure for obtaining an 
estimate 0 of 0., together with its standard deviation. If 0 is a biased 
estimator, the bias of the jackknife can be shown to decrease as a 
polynomial function of n (see Kendall and Stuart, 1979). The estimator is 
obtained by the following device. Using the original sample, n subsamples, 
each of size n — 1, are formed by deleting systematically each observation in 
turn. Let 0„ be a statistic calculated using the entire sample and let 0, (i 1, 
2, ... , n) be the statistic calculated with the ith observation removed. A set 
of it different values (the so-called pseudovalues) of the statistic can be 
obtained as 

ne,, — (n — 1)6, 	 (4.66) 

and the jackknife is then the overall estim,ator 

(4.67) 

or the mean of the n partial estimates. When n is large, economy in 
computation may be achieved by deleting more than a single observation at 
a time. The variance of the pscudovalues (Eq. 4.66) is then 

Pk 

S
, 

n 	1 	(61 	64)2  (4.68) 

and the variance of 6* is obtained as (s 2 )* = s 2 /n. 
The simple device of generating n subsamples and then estimating a 

series of values of estimates can be applied to obtaining jackknifed PC 
loading coefficients, together with their standard deviations. This is done by 
computing a set of n loadings and averaging to obtain the final estimates. 
The same applies to scores, latent roots, and vectors. Although the process 
requires extensive computation, it has the advantage of being applicable to 
relatively small samples. However, for testing purposes we still require the 
assumption of (approximate) normality. Jackknife estimation has recently 
being applied to PCA by Reyment (1982), Gibson et al, (1984), and 
McGillivray (1985). 

Example 4.12. The jackknife is used by McGillivray (1985) to compute 
standard errors of latent vector elements for logarithmically transformed 
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Table 4.11 Jackknifed PC (±2 SD) Derived for Males from the Covariance 
Matrix (Coy) of Logarithmically Transformed Data and the Correlation Matrix 
(Cor) of the Original Data 

Variable 

PC 1 PC 2 

Coy Cor Coy Cor 

Mandible 0.24 ± 0.04 0.23±0.03 -0.06 2 0,10 0.24 ± 0.08 
Skull width 0.21 ±0.04 0.22 ± 0.03 -0.01 ± 0.10 0.32 ±0.14 
Skull length 0.31 2- 0.12 0.24 -.t 0.03 -0,35 ± 0,16 -0.17 -± 0.09 
Coracoid 0.30 2-  0.03 0.31 ± 0.02 - 0.01 ± 0.13 0.03 ± 0.04 
Sternum length 0.40± 0.09 0.23 ± 0.05 -0.11 ± 0.13 0.52 ± 0.08 
Keel 0.45 -1-  0.11 0.23 ±0.04 -0.26 ± 0.16 0.48 ± 0.06 
Sternum width 0.25 0.03 2-  0.04 0.50±0,16 0.36±0.15 
Humerus 0,29 ± 0.05 0.32 2-  0.02 -0.02 -± 0.13 0.20 ± 0.06 
Ulna 0.28 -± 0.06 0.32 -± 0.02 -0.02 -±- 0.12 0.26 ± 0.09 
Carpometacarpus 0.30 ± 0.08 0.33 ± 0.02 -0.07 :0_-  0.10 0.22 ±0.10 
Femur 0.23 ± 0.05 0.32 ± 0.02 -0.02 ± 0.09 0.15 -1-  0.04 
Tibiotarsus 0.26 ± 0.06 0.29 ± 0.03 -0.15 ± 0.13 0.26 ± 0.08 
Tarsometatarsus 

length 0.28 ± 0.06 0.31 ± 0.02 -0.03 -± 0.07 0,20 ± 0.07 
Tarsometatarsus 

width 0.29 ± 0.05 0.23 ± 0,04 0.10 -1-  0.12 0.36 ± 0.07 
Synsacrum 0.08 ± 0.34 0.03 ± 0.08 0.98 ± 0.15 -0.23 ± 0.15 
Scapula 0.16 ± 0,05 0.15 ± 0.09 0.10 ± 0,12 0.02 ± 0.15 

Source: McGillivray, 1985; reproduced with permission. 

body measurements of the Great Horned Owl (males). The results are given 
in Table 4.11. 

Since the logarithmic transformation tends to equalize variance, the PCs 
based on the covariance matrix are not very different from those based on 
the correlation matrix (Section 3.7), especially when interval estimates are 
considered. Here assumptions of normality and a large sample are not 
required for calculation purposes, but approximate normality (which may 
hold by the Central Limit Theorem) is needed for testing purposes. Thus 
normality of the PCs should be verified (Section 4.6) before proceeding to 
test significance. A definite advantage of the jackknife is that it may be 
applied equally to both covariance as well as correlation matrices, which is 
more difficult to do with ML methods. LI 

The Bootstrap 
Another resampling procedure is the bootstrap estimator, which is also a 
"nonparametric" technique for estimating parameters and their standard 
errors within a single sample (Efron, 1979, 1981). The idea is to mimic the 
process of selecting many samples of size n by duplicating each sample value 
m times, mixing the resultant inn values, and randomly selecting a sequence 
of independent samples, each of size n. This yields a set of independent 
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estimates for the parameter(s) in question, which allows an overall mean 
estimate and the calculation of the standard deviation(s). Preliminary results 
for the correlation coefficient of a bivariate normal sample indicates that the 
bootstrap performs better than other resampling schemes, including the 
jackknife (Efron, 1981), although it requires more computation. Indeed for 
PCA and other multivariate methods the computation required may be 
prohibitive. The bootstrap however has been used to obtain interval 
estimates for PCs by Diaconis and Efron (1983) and Stauffer et al. (1985), 
who compare ecological data to those generated "randomly" by computing 
interval estimates for the latent roots and vectors. As with the jackknife, the 
bootstrap interval estimates may be obtained for both the covariance and 
correlation matrices. The difficulty again is that at least approximate 
normality is required for significance testing, so that normality (or at least 
symmetry of distribution) of the PCs should be assessed before testing is 
carried out. 

Cross Validation 
Cross validation is another resampling scheme and is based on the idea that 
a set of data can be subdivided into groups, with the model estimated in one 
group(s) and then evaluated in the remaining group(s) to verify goodness of 
fit, forecasting properties, and so forth. If the omitted observations can be 
estimated from the remaining data and then compared to the actual omitted 
values, that model is chosen which provides the best predictor of these 
values (Mosteller and Wallace, 1963; Stone, 1974). Recently, cross valida-
tion has been applied to PCA as a possible alternative to normality-based 
ML tests to obviate assumptions of normality and large samples. Let x v  be 
any element of a data matrix X. Then predicted values are given by 

Iii = E aj.h Z ih 
	 (4.69) 

h =1 

(Section 3.4) where r is the number of components to be tested. The rows of 
X are divided into G groups, the first is omitted, and a PCA is carried on the 
remaining G — 1 groups. The "missing" observations are estimated by Eq. 
(4.69), assuming the z ih  values exist for the missing group (h I. 2, .. . , r), 
and the estimates are then compared to actual values by the predictive sum 
of squares 

1 	
p 

PRESS(r) 	E E I  - )2 
nP 	J -t 

(4.70) 

where n is the number of elements in the omitted group. The process is 
repeated for each of the G omitted groups, and the total predictive sum of 
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squares is then computed as 

TPRESS = E PRESSg(r) 	 (4.71) 
g t 

for r PCs. Theoretically the optimal number of groups G should equal the 
total sample size (Stone, 1974), but this is frequently computationally 
involved. Wold (1978) has therefore suggested that 4-7 groups be used, 
which appears to work well in practice and does not decrease statistical 
efficiency to any great extent. 

A difficulty arises using Eq. (4.69) since PC values (scores) are normally 
not available for the omitted observations. Eastment and Krzanowski (1982) 
suggest that both rows and columns of X be omitted to allow the predicted 
values fc i, to be computed from all the data, except for the ith row, jth 
column. Let z denote the ith observation for the jth PC when the jth 
column of X is omitted, and let a u  denote the loading for the jth PC and the 
ith variable. Then predicted values can be obtained as 

1 1 	a j eh th 
	 (4.72) 

It -1 

Note that the sign of icif  cannot be determined without a decomposition of 
the entire matrix X. The choice of the optimum value of r then depends on a 
suitable function of Eq. (4.71). One such choice is the statistic 

TPRESS(r - 1) - TPRESSO  Dr  
W(r)= TPRESS(r) 	DR  

(4.73) 

where D,. is the number of degrees of freedom required to fit the rth 
component and DR  is the number of degrees of freedom remaining after the 
rth component has been fitted, that is, Dr = n + p - 2r and DR= D - D„ 
where D = p(n - 1) is the total number of degrees of freedom; r is then 
equal to the number of PCs for which W(r)> 1. 

Cross validation in the context of PCA is relatively recent and does not 
seem to have been widely used. The lack of a known distribution for W(r) 
precludes statistical inference. Recent Monte Carlo simulations (Krzanowski 
1983) seem to indicate that the procedure retains less PCs than the Bartlett 
chi-squared test, and in fact frequently yields a similar number of retained 
PCs as the "greater than or equal to the mean root" rule (Section 4.4.3). 

Example 4.13. Using McReynolds' gas chromatography data 
(McReynolds, 1970), Wold (1978) and Eastment and Krzanowski (1982) 
perform a PCA of chemical retention indices for p = 10 compounds and 
n = 226 liquid phases. The values of W(r) are given in Table 4.12. 

An examination of the W(r) values reveals that r = 3 components (Z 1 , Z2, 
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Table 4.12 	A Cross-Validatory Analysis Using W(r) to Select the Number of PCs 

Component 
Latent 
Root Dr  DR  W(r) 

1 306,908 234 2,016 279.69 
2 3,054 232 1,784 2.18 
3 1,572 230 1,554 .20 
4 1,220 228 1,326 1.99 
5 487 226 1,100 .66 
6 265 224 876 .22 
7 140 222 654 ,11 
8 84 220 434 .05 
9 55 218 216 .02 

10 30 216 0 — 

Source: Eastrnent and Krzanowski, 1982; reproduced with permission, 

and Z 4 ) correspond to W(r)> 1. Since W(r) is not a monotonically decreas-
ing function of r, the procedure does not necessarily select the first r 
components. Also, although components may account for an equal per-
centage of variance, they need not possess equal predictive (explanatory) 
power. 1:1 

4.2.2 Residual Correlations Test 

Velicer (1976) has proposed an alternative method for selecting nontrivial 
PCs based on partial (residual) correlation after r < p components have 
been extracted. It also does not permit sample—population significance 
testing and does not require distributional assumptions. Let 

X = Z 	+ e (r) 	(r) 	(r) 

where €(,.) is a (n X p) residual matrix after r <p PCs have been extracted. 
The residual sums of squares and product matrix is 

E (T)E = XTX XTP X (r) 	(r) 	 Z (r) 

= X T  X X T  Z ) (Z T(  Z 0) -  1  Z T( 

 = X X - XT Z (r)(rr) X 

= X T  X - A AT  (r) tr) (4.74) 

which can be computed for both covariance and correlation matrices. Let 

Rs = D -1.12T 	" - 2 
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be the matrix of partial correlations, where D = diag(ET,. )€ () ). Let r,-*/ 
 represent the off-diagonal elements of R* and let 

r., 

fr 	P(P 1 ) 
	 (4.75) 

which lies in the interval 0-1. The stopping rule proposed by Velicer (1976) 
consists of accepting components up to and including those that correspond 
to the minimum value of f,, since small values of Eq. (4.75) indicate that the 
r retained PCs are uniformly correlated with most of the variables, and in 
this sense capture nonresidual variation. Velicer (1976) gives several values 
of f. for known data in psychology, and points out that for these data his 
procedure results in a smaller number of PCs than would be retained by the 
commonly used rules of thumb. 

4.4.3 Informal Rules of Thumb 

Finally, several other procedures have been proposed (mainly in the 
psychometric literature) as possible stopping rules for selecting components. 
These methods however are statistically (or mathematically) flawed (see 
McDonald, 1975), or else appear to be based on ad hoc, subjective 
reasoning and cannot be recommended as replacements for criteria consid-
ered in the above sections. Since they appear to be widely known however 
and have made their way into standard statistical computer packages, they 
are considered here for the sake of completeness. 

The first method, and perhaps the best known, is to reject PCs that 
correspond to latent roots smaller than or equal to the mean of all latent 
roots; that is, we retain roots l >1 2  > • •l, such that 

/, 	/2 	• - • ›/, 	= 

When the correlation matrix is used t= 1, and this corresponds to the usual 
"rule of parsimony" frequently encountered in applications. For the correla-
tion matrix the rule can also be rationalized by the notion that a PC which 
does not account for more trace than any single variable cannot possibly be 
of any interest. Two objections may be raised against such a practice. First, 
a PC with latent root smaller than the mean root may nevertheless possess a 
meaningful interpretation, since it can correlate highly with one, or perhaps 
two, observed variables. Such information may be of interest in certain 
applications. Second, it is precisely the low variance components which 
could be of primary interest, for example, when examining residuals for 
outliers (Section 4.7) or estimating an orthogonal regression (Section 
10.2.3). 
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The second procedure is graphical in nature, and is usually based on a 
visual inspection of the latent roots or on logarithms of the latent roots. The 
procedure has been called the "scree test" by Cattcll (1966), although it also 
cannot be considered as a statistical test in any true sense of the word, since 
at best it simply provides a graphical supplement to procedures considered 
in previous sections. The method consists of plotting latent roots against 
their rank numbers and observing whether, at some point (latent root), the 
slope becomes "markedly" less steep, that is, the latent roots tend to be 
isotropic. Thus a characteristic plot of the latent roots will frequently exhibit 
exponential decline, perhaps with lower-order roots decreasing in a linear 
fashion. Although artificial simulations based on "random" data do indicate 
that plots can be useful guides or indicators of correct dimensionality, real 
data appear to give less clear-cut results (Joliffe, 1986; Farmer, 1971). The 
real usefulness of the "test" however is probably as a graphical guide when 
carrying out statistical testing. 

A third procedure based on Horn (1965) which has become more 
prominent in the psychometric literature is to use regression analysis on the 
latent roots of a correlation matrix of normal data in order to predict mean 
latent roots (for a specified range of n and p values) and to use the 
estimated mean root as a selection criterion for real data matrices. As such 
the method can be considered as a generalization of the two rules of thumb 
considered above. The procedure, known as parallel analysis, is based on 
Allen's and Hubbard's (1986) equation. 

In(1)=a + b, In(n —1) + c1  lni(p — i — 1)(p — + 2)/2] + d, In(f i _ i ) 

where i is the ordinal position of the ith latent root. 
Although the procedure is of a more advanced nature, it nevertheless 

suffers from a lack of a clear statistical rationale and represents a somewhat 
ad hoc approach to the problem of estimating dimensionality. It cannot be 
expected therefore to perform well in general empirical situations (see also 
Lautenschlager, 1989). 

Example 4.14. The random (independent) normal data of Example 4.2 
indicate complete sphericity of the latent roots when using the chi-squared 
test. The latent roots of the covariance matrix are given in Table 4.13 (Figs. 
4.1 and 4.2). Plotting 1, against exhibits the characteristic exponential 
decline common for random normal data. The plot can also he linearized by 
transforming to logarithms. Thus the linearity of In l Fig. 4.2) would seem 
to confirm the chi-squared test of complete sphericity. Linearity can be 
confirmed further by least squares regression or else more simply by a plot 
of In — In I (i= 2, 3, . , r) against rank number, such as in Figure 4.3, 
where approximate linearity is indicated by a random scatter of residuals. 
For random, independent (normal) data, linearity is simply a byproduct of 
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Table 4.13 Latent Roots (Natural Logarithms) 
of Random, Independent Normal Data (Example 4.2) 

Number 	Latent Roots I , 	 In /, 

1 553.4971 6.3163 
2 440.5440 6.0880 
3 388.3756 5.9620 
4 342.4686 5.8362 
5 294.6565 5.6858 
6 263.6820 5.5747 
7 212.8715 5.3607 
8 197.6678 5.2866 
9 168.8241 5.1289 

10 147.6623 4.9949 
11 124.0577 4.8207 
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Figure 4.1 Latent roots of Table 4.12 derived from the covariance matrix of p= ii 
independent, normal variates. 

the arbitrary ordering of the latent roots, and can always be removed by a 
random permutation. 

4,5 DISCARDING REDUNDANT VARIABLES 

The intent behind a PCA is to reduce the dimensionality of a set of observed 
variables and at the same time to maximize the retained variance. In 
situations where a large set of variables is available, we may ask ourselves a 



232 	STATISTICAL 

5,50 - 

5.30 - 

5.10 

TESTING OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

• 
• 

• 
5.90 • 
5.70 - • 

• 
5.50 

• 
5.30 - • • 
5.10 - • 
4,90 - • 
4.70 - 

4.50 I i I T r 

1 	2 	3 	4 	5 	5 	7 	8 	9 	10 	11 

Figure 4.2 Logarithmic transformation of latent roots of Table 4.13 of independent normal 
variates. 
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Figure 4.3 The In l . 	plotted against rank number (Table 4.12). 

somewhat different question: which variables can we omit from the set and 
still retain most of the essential information? For instance, the external body 
measurements of the humpback whale (Example 3.11) correlate mainly with 
a single size dimension so that most of the variables except body length may 
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be considered as redundant. This can result in considerable economy of 
measurement by reducing the number of variables required to capture the 
concept of "size." Also, if chosen haphazardly redundant variables can 
result in a nonsensical interpretation of a PCA (see Ramsey, 1986). 

At times the decision to retain certain variables rests on some specific 
need, or perhaps on purely theoretical grounds. Such variables will be 
retained automatically and will not be affected by the selection process. For 
the remaining variables however statistical criteria can be used in the 
selection process. Several criteria have been investigated by Joliffe (1972, 
1973) and McCabe (1984). 

Let 

r XTlX1 xTx_ LxIx, 

 

 

be the partitioned (p x p) matrix XTX where X 1  is the (n x k) matrix of 
retained variables. We have C() choices for X T1  X i  given k, and 2P — 1 
choices for k. Given k, the conditional dispersion of the rejected set X 2 

 given XI  is 

(x -rx)22. 1= x2vx2— x-r2x1()(rx 1 ) 1 xx2 

X 21' X 2  X2TPxI X 2 	 (4,76) 

where 

IxTx1= IxTx111(xTx)22.11 
	

(4.77) 

Let e l  , c2 ,. • cp _ k  be the latent roots of (X IX) 224'  Then McCabe (1984) 
shows that 

p-k 

mini(X TX) 22.1 1= min H ei 	 (4.78) 
i- 

p - k 

min tr(XTX)22.1' min E ci 

k 

mini(XTX 	n E 2, )22.11 2  = mm 	c 

(4.79) 

(4.80) 

are optimal for discarding set X,, where 1-1 2  denotes the sum of squares of 
matrix elements. Note that it follows from Eq. (4.78) that minimizing 
(XTX)22.11 (the "residual" variance) is equivalent to maximizing IXTX 1 1, the 

retained variance. In practice, the choice of which criterion is used will 
depend on the specific objective(s) at hand. 

The criteria (Eqs. 4.78-4.80) make use of the conditional sums of squares 
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and products matrix (X TX)22. I ' An alternative method for rejecting vari-
ables is to use PCs. Joliffe (1972, 1973) has considered several methods. 
One that seems to work well is to use the first r PCs to reject 1 <r <p 
variables. We simply note which variables possess the highest loadings for 
the first component, the second component, and so on until r PCs are used 
up. Alternatively, we can use large loadings for the last p — r components to 
reject variables, that is, the variable which possesses maximal correlation 
with one of the last p r principal components is rejected. Results for 
simulated data are given by Joliffe (1972) and for real data by Machin 
(1974), who considers the whale measurements of Example 3.11. 

4.6 ASSESSING NORMALITY 

It was seen in Section 4.3 that tests using maximum likelihood require at 
least approximate multivariate normality if they are to be used to estimate 
the number of significant parameters (dimensions). In this section we 
consider several tests which can bc used to assess univariate and multivariate 
normality. 

4.6.1 Assessing Univariate Normality 

The first step when assessing a multivariate sample for normality is to test 
the marginal distributions, since nonnorrnality of the latter precludes 
normality in higher dimensions (Section 2.8), Also certain types of nonnor-
mality can become more apparent from the shape(s) of the marginal 
distributions. A PCA of marginal normal variables may either exhibit less 
multivariate nonnormality, be more robust to departures from multivariate 
normality, or both. Many tests are available for univariate normality and a 
review is provided by Mardia (1980). The most promising of these seem to 
be based on quantiles, which also lend themselves well to graphical methods 
and which are available with several large statistical computer packages. 

Consider a random independent sample x, x 2 , ... x„ taken from a 
univariate distribution f(x). Also let the n order statistics Y(I)  <Y 12)  < • • • < 
y („ i  represent the original sample values x e  ranked in increasing order. A 
percentile then divides a sample into two groups of a given percentage. 
Certain commonly used percentiles are given specific names, for example, 
the median and quartile, which are the fiftieth and twenty-fifth percentiles 
respectively. When percentages are converted to probabilities (proportions) 
they are known as quantiles, so that for any probability p we can define the 
corresponding quantile Q( p). In a given sample quantiles are obtained from 
the ranked observations, that is Q(p) is taken as Y(i)  whenever p is one of 
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the fractions 

(i  - .50) 	
(i 	1, 2, . , , , n) 
	

(4.81) 

Other intervals can also be employed (see Barnett, 1975)—for example, the 
BMDP statistical programs use the intervals 

100(3i- 1)  
3n + 1 (i = 1, 2, . . . n) 	 (4.82) 

The quantiles Y(I)  can then be plotted against p i  to yield what is known as a 
quantile plot. Let F(x) be the cumulative distribution of x. Then a quantile 
plot is simply the sample estimate of F-1 4? . When sample quantiles are 
plotted against their theoretical values F -  (x), we obtain a theoretical 
quantile-quantile or a probability plot. It follows that when sample 
estimates approach their theoretical values, a quantile-quantile plot ap-
proaches a straight line with 45' at the origin. This provides a straight-
forward graphical technique for assessing univariate normality, since values 
of the cumulative normal can be readily obtained from tables. Marked 
departures of points from the 45 0  diagonal indicate outlier departure from 
univariate normality. Thus by studying the patterns of such departure it is 
possible to detect outlier observations and to determine direction of skew if 
any exists (Chambers et al., 1983). 

4.6.2 Testing for Multivariate Normality 

Testing for univariate normality can only reveal whether random variables 
are not multivariate normal (Exercise 2.10; Section 2.8.1). When all 
marginals are univariate normal, however, we still require a test for 
multivariate normality. Quantile-quantile plots can be used to assess 
multivariate normality (Healy, 1968, Easton and McCulloch, 1990) by 
computing sample values of the multivariate normal exponent and compar-
ing the resulting quantiles with those of the chi-squared distribution. 

Consider the (n x p) matrix 

Y = 

where rows are multivariate sample points y !  = CYH ,  Y125 •_• • ylpi 5  
• 

Y2 = (Y217 Y22 7  • • • 7  Y2p)r and y n 	(ynr, yn2 , 	. , y). Let Y=(Y, 52, 
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jp )T  and S H -L-f (XTX), Then 

d 2 = (y il TS -1 (y — 'it ) 

= Z i 	= 1, 2, . . n) 
	

(4.83) 

are squared generalized interpoint distances* where 

= 	fir) 

The d i2  can be converted into quantiles and plotted against theoretical 
chi-squared quantiles, which must yield a straight line when samples are 
taken from a multivariate normal distribution. Recently Easton and McCul-
loch (1990) devised a general multivariate approach to quantile plots. In 
practice exact straight lines are rare owing to sampling variability, and 
judgment will be required as to whether the plot is linear. The subjective 
element can always be removed of course by the further use of regression or 
first differences, if so desired. 

Theoretical quantile plots can be constructed in one of three ways: 

1. Ordered d,2  values can be plotted against the expected order statistics 
of the chi-squared distribution with p degrees of freedom, which on the null 
hypothesis of multivariate normality results in a straight line through the 
origin at 45 0 . 

2. For small samples, better results may be obtained by plotting ordered 
d i2  values against the expected order statistics of a corrected beta dis-
tribution (Small, 1978), 

3. Ordered (4)" 2  and alternatively (d 2 )" 3  values are plotted against 
expected order statistics of the standardized normal distribution. (Healy, 
1968). 

The last approach uses the normal approximation to the chi-squared, and 
should therefore not be used in small samples. Departures from normality 
need not occur in p-dimensional space, but may occur in lower dimensions 
and can thus be masked in a p-dimensional quantile—quantile plot. Sub-
spaces should therefore be investigated as well, which for large p may 
become impractical. Andrews et al. (1973) have suggested that plots of 
be supplemented by plots of angular position. An alternative plotting 
technique based on the Shapiro—Wilks statistic has also been proposed by 
Royston (1983). Small (1980) has suggested an approximate method of 
assessing multivariate normality using univariate marginals. Still a different 
approach, from Mardia (1970) and Malkovich and Afifi (1973), is to use the 
multivariate cxtension of the skewness and kurtosis tests, which has been 

Also known as squared radii, centroids, or squared Mahalanobis distance, 



b 2  p(p + 2) 
z - 

[ I  —n 8p(p + 2)
] 
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used in biological morphometrics by Reyment (1971). A measure for 
multivariate skewness can be defined as 

b, 
1 n  " 

2 E E [(y, —v)Ts - "(y i  — v)1 3  n 	Jr 1 
(4.84) 

and of multivariate kurtosis by 

b 2  = — 	- Y TS n 
r  (4.85) 

Then the asymptotic distribution of 

(4.86) 

is chi-squared with 1/6 p(p + 1)(p + 2) degrees of freedom. Also since b 2  is 
asymptotically normal with expected value p(p +2) and variance 
1 In[8p(p + 2)1, 

(4.87) 

is asymptotically N(0, 1). Gnanadesikan (1977, p. 175), however, reports 
that investigations indicate large samples are required to obtain good 
approximations. Reyment (1971) also suggests large samples of at least 
n = 100 when using Eq. (4.86) and n ---- 180 for Eq. (4.87). A basic weakness 
of using Eqs. (4.86) and (4.87) is that insignificant values of b 1  and b 2  do 
not necessarily imply normality. An algorithm for skewness and kurtosis is 
given by Mardia and Zemroch (1975). 

Example 4.15. Royston (1983) has considered the following hemato-
logical variables measured for n ----- 103 workers, using the square root normal 
approximation of squared distances (Eq. 4.83) (see Table 4.1): 

= Hemoglobin concentration 
Y2  = Packed cell volume 

Y3 = White blood cell count 
Y4  = Lymphocyte count 
Y5 = Neutrophil count 

Serum lead concentration 

Univariate, bivariate, trivari ate 	. quantile-quantile plots reveal normality 
in all subspaces and for all sample points, except for individuals 21, 47, and 
.52 which are nonnormal outliers in three-dimensional space defined by Y3, 



238 	STATISTICAL TESTING OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

Table 4.14 Hematological Measurements for n = 103 Workers 

Case No. 	It i 	Y 2 	V. 	ilf4 	 Y, 	YIS 
1 114 39 4100 14 25 17 
2 14.6 46 5000 15 30 20 
3 13.5 42 4500 19 21 18 
4 15.0 46 4600 23 16 18 
5 14.6 44 5100 17 31 19 
6 14.0 44 4900 20 24 19 
7 16.4 49 4300 21 17 18 
8 14.8 44 4400 16 26 29 
9 15.2 46 4100 27 13 27 

10 15.5 48 8400 34 42 36 
11 15.2 47 5600 26 27 22 
12 16.9 50 5100 28 17 23 
13 14.8 44 4700 24 20 23 
14 16.2 45 5600 26 25 19 
15 14.7 43 4000 23 13 17 
16 14.7 42 3400 9 22 13 
17 16.5 45 5400 18 32 17 
18 15.4 45 6900 28 36 24 
19 15.1 45 4600 17 29 17 
20 14.2 46 4200 14 25 28 
21 15,9 46 5200 8 34 16 
22 16,0 47 4700 25 14 18 
23 17.4 50 8600 37 39 17 
24 14.3 43 5500 20 31 19 
25 14.8 44 4200 15 24 19 
26 14.9 43 4300 9 32 17 
27 15.5 45 5200 16 30 20 
28 14.5 43 3900 18 18 25 
29 14.4 45 6000 17 37 23 
30 14,6 44 4700 23 21 27 
31 15.3 45 7900 43 23 23 
32 14.9 45 3400 17 15 24 
33 15.8 47 6000 23 32 21 
34 14,4 44 7700 31 39 23 
35 14.7 46 3700 11 23 23 
36 14.8 43 5200 25 19 22 
37 15.4 45 6000 30 25 18 
38 16.2 50 8100 32 38 18 
39 15.0 45 4900 17 26 24 
40 15.1 47 6000 22 33 16 
41 16.0 46 4600 20 22 22 
42 15.3 48 5500 20 23 23 
43 14,5 41 6200 20 36 21 
44 14.2 41 4900 26 20 20 
45 15.0 45 7200 40 25 25 
46 14.2 46 5800 22 31 22 
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Case No. Y 2  V, Y4 Y 5  Y o  

47 14.9 45 8400 61 17 17 
48 16.2 48 3100 1 1  15 18 
49 14.5 45 4000 20 18 20 
50 16.4 49 6900 35 22 24 
51 14.7 44 7800 38 34 16 
52 17.0 52 6300 19 21 16 
53 15,4 47 3400 12 19 18 
54 13.8 40 4500 19 23 21 
55 16.1 47 4600 17 28 20 
56 14.6 45 4700 23 22 27 
57 15.0 44 5800 14 39 21 
58 16.2 47 4100 16 24 18 
59 17.0 51 5700 26 29 20 
60 14.0 44 4100 16 24 18 
61 15.4 46 6200 32 25 16 
62 15.6 46 4700 28 16 16 
63 15.8 48 4500 24 20 23 
64 13.2 38 5300 16 26 20 
65 14,9 47 5000 12 25 15 
66 14.9 47 3900 15 19 16 
67 14.0 45 5200 23 25 17 
68 16.1 47 4300 19 22 22 
69 14.7 46 6800 35 25 18 
70 14.8 45 8900 47 36 17 
71 17.0 51 6300 42 19 15 
72 15,2 45 4600 21 22 18 
73 15.2 43 5600 25 28 17 
74 13.8 41 6300 25 27 15 
75 14.8 43 6400 36 24 18 
76 16.1 47 5200 18 28 25 
77 15.0 43 6300 22 34 17 
78 16.2 46 6000 25 25 24 
79 14.8 44 3900 9 25 14 
80 17.2 44 4100 12 27 18 
81 17.2 48 5000 25 19 25 
82 14,6 43 5500 22 31 19 
83 14.4 44 4300 20 20 15 
84 15.4 48 5700 29 26 24 
85 16.0 52 4100 21 15 22 
86 15.0 45 5000 27 18 20 
87 14.8 44 5700 29 23 23 
88 15.4 43 3300 10 20 19 
89 16.0 47 6100 32 23 26 
90 14.8 43 5100 18 31 19 
91 13.8 41 8100 52 24 17 
92 14.7 43 5200 24 24 17 
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Table 4.14 	(Continued) 

Case No. Y, V . Y 3  Y4 V. 

93 14.6 44 9899 69 28 18 
94 13.6 42 6100 24 30 15 
95 14.5 44 4800 14 29 15 
96 14.3 39 5000 25 20 19 
97 15.3 45 4000 19 19 16 
98 16.4 49 6000 34 22 17 
99 14.8 44 4500 22 18 25 

100 16.6 48 4700 17 27 20 
101 16.0 49 7000 36 28 18 
102 15.5 46 6600 30 33 13 
103 14.3 46 5700 26 20 21 

Source: Royston, 1983; reproduced with permission. 

Y4  and Y. (Fig. 4.4a). Once the three sample points are removed and 
Y 3 —Y6  replaced by their logarithms, the remaining 100 appear to be sampled 
from the multivariate normal (Fig. 4.4b). 

• (b) 

,2, se 
a 2.0 

"?.- 10 - 
g 	• a 0- 

-Lo- 
t 
)g. -3.0- 	• 

-4.0-3.0-2.0-1.0 0 1.0 2.0 3.0 4.0 
Expected Normal Order Statistics 

Figure 4.4 Normal plots of (square roots) of squared distances of the hematology data using 
logarithms with: (a) outliers present, and (b) outliers removed (Royston, 1983; reproduced with 
permission). 

Example 4.16. Reyment (1971) presents several examples of the use of 
multivariate skewness and kurtosis for determining possible normality. A 
pooled sample of n 302 observations on Swedish grasshoppers (Omocstus 
haemorrhoidalis) for four variables is available: 

= length of hind femur 
Y2  = pronotal length 
1/3  elytron length 
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Y4  least width between pronotus ridges 

Univariate analysis indicates significant skewness for Y2  and Y4  as well as 
kurtosis for 1(4 . The null hypothesis of multivariate normality can therefore 
be rejected without recourse to a multivariate test. To illustrate the use of 
Eqs. (4.86) and (4.87) however we have (Reyment, 1971) b l  = 1.21 and 
b 2  = 27.25 so that 

,1( 2  "- (1 .21) -= 60.9 

with 20 degrees of freedom, and 

27.25 — 24 
z — 	 — 4.08 

[ -Z(6)1 112  

Thus the data exhibit significant multivariate skewness and kurtosis, again 
rejecting the null hypothesis of multivariate normality. 

4.6.3 Retrospective Testing for Multivariate Normality 

Generally speaking, a test for multivariate normality will precede a PCA if 
significance tests are to be carried out on the loadings and/or latent roots. 
However if significance testing of the PCs is optional, normality tests can 
also be carried out using the PCs themselves. Thus a PCA can be performed 
first, followed by an assessment of the latent roots and vectors and of 
multivariate normality. Here we may wish to test multivariate normality 
retrospectively in order to decide whether likelihood ratio tests can be used. 
Since the PCs are mutually orthogonal, multivariate normality can easily be 
assessed by testing the individual PCs themselves, for example, using normal 
theoretical quantile—quantile plots (Srivastava and Carter, 1983). It now 
becomes unnecessary to examine pairs, triplets, and so on since marginal 
normality of the principal components implies their joint normality, and that 
of the data. Also, even though the original p-dimensional distribution may 
not be normal, testing the principal components can reveal whether 
normality holds in certain subspaces. For example, normality may hold only 
for the last p — r residual components, which suffices for purposes of testing 
for isotropic variation. 

Finally, since the latent roots are conventionally defined as order 
statistics, they may be tested directly by means of theoretical chi-squared 
quantile plots. This approach seems particularly appropriate when the 
number of variables is large. 
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4.7 ROBUSTNESS, STABILITY AND MISSING DATA 

Unbiased, asymptotically efficient estimates are obtained when (1) the data 
represent an uncontaminated random multivariate normal sample, and (2) 
no data are missing. Also, when multivariate normality is accepted, 
statistical testing of the PCs can proceed unimpeded. However, since 
sampling difficulties can frequently destroy an ideal modeling situation, 
modification(s) to a PCA may become necessary. A prior question of some 
interest therefore is the extent to which the PCs (as well as their test 
statistics) are affected by departure(s) from normality, homogeneity of 
sample, and missing data; that is, how robust or stable is a PCA to 
departure from standard assumptions and to variations in sampling con-
ditions? 

4.7.1 Robustness 

A number of studies have been conducted on the effects of nonnormality on 
a principal components analysis. The robustness of the Bartlett—Anderson 
chi-squared test has been investigated by Waternaux (1976) and Davis 
(1977) (see also Ruyrngaart, 1981). 

Waternaux (1976) considers four trivariate population distributions; 
normal, short and long-tailed nonnormal, and exceptionally long-tailed 
nonnormal. Monte Carlo simulations indicate that the chi-squared tests are 
not very robust, particularly in small samples and when testing the largest 
(or smallest) latent root(s). Nonrobustness to small sample departure from 
multivariate normality is also confirmed by Layard (1974), who tested 
equality of covariance matrices (Section 4.2). On a more theoretical level 
Davis (1977) derived results that indicated conditions under which the 
Bartlett—Anderson test is conservative. An empirical investigation of the 
effect(s) of sample size on latent roots and vectors was also conducted by 
Dudzinski et al. (1975) using geological data, but the results are not 
conclusive. Indeed there seems to be a lack of evidence concerning 
robustness in large samples. Also the effect(s) of ancillary conditions such as 
approximate univariate normality or skewness on robustness has not been 
investigated to any great extent. The Mallows—Akaike type dimension 
estimation criteria considered in Section 4.3.5 also have not been evaluated 
for robustness to either nonnormality or small sample size. The question of 
assessing multivariate normality seems to be of some importance since it is 
not yet possible to transform nonnormal data to approximate normality 
when p > 2 (e.g., see Andrews et al., 1971). 

The second important consideration is whether PCA is robust against 
(nonnorrnal) outliers. Nonnorrnal outlier sample points are introduced when 
observations from long-tailed distributions contaminate a normal sample, or 
when we commit nonnormal error(s) of measurement. Since a PCA utilizes 
Euclidian norms and inner products, it can be expected to be heavily 
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influenced by outliers because the larger the outlier, the disproportionately 
greater thc influence. Three broad approaches can be taken to increase 
robustness of PCAs to outliers. First, outlying observations can be elimi-
nated from the sample; second, outliers can be modified by replacing them 
with more appropriate values; third, robust versions of covariance/correla-
tion matrices can be used. 

An alternative procedure is to replace the covariance matrix by a matrix 
of weighted sums of squares, and products (about weighted means) when 
carrying out a PCA, the so-called M-estimators (Campbell, 1980). Thus 
Matthews (1984), for example, has used M-cstimators in conjunction with 
Royston's hematological data to correct for outlier individuals 21, 47, and 52 
(Example 4.14). The M-estimators are applied directly to the PCs, which 
are then used to estimate the covariance matrix. The procedure is iterative 
and yields a weighted dispersion matrix together with its latent roots and 
latent vectors. Devlin et al. (1981) carried out Monte Carlo simulations of 
the effect(s) of various types of robust correlation matrices on a PCA, and 
recommended several robust dispersion matrices (see also Rousseeuw and 
Van Zomeren, 1990). Finally, a projection-pursuit approach to robust 
estimation of dispersion matrices and principal components call also be used 
(Li and Chen, 1985). Since no estimator appears to be globally best, each 
robust estimator should he used with the specific conditions under which it is 
optimal. 

4.7.2 Sensitivity of Principal Components 

A closely related but perhaps a more general question to ask is how 
sensitive is a PCA to changes in the variances of the components? That is, 
given a change in some latent root, how much change can be expected in the 
corresponding correlation loadings? Let 1.) = v(c) be a function of c to he 
maximized, and let U = v(e) be the maximum of the function achieved at 
c =e. Consider a small departure ö —u =e from the maximum. Then 
{C16 — v defines values of c in the arbitrarily small region about 6, the 
"indifference region with boundary e." Using a Taylor series expansion we 
obtain the second-order approximation 

v U + gTr + r'Hr 

where 

r =c- 
g = gradient vector of v(c) evaluated at c = -e 
H = Hessian matrix of v(c) of second derivatives evaluated at c= 

(4.88) 

and where H is negative (semi) definite at c = e. Since at the maximum 
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g = 0, the region e about ii can be approximated by 

r THr 2e 	 (4.89) 

(de Sarbo et al. 1982; Krzanowski, 1984). Let A = —H so that A is positive 
(semi) definite (Section 2.2). Then r l Ar = 2e is the equation of a p-
dimensional ellipsoid, which defines a region of the coefficient space within 
which differences r = c — e-  result in a reduction of at most e in the criterion 
function u. It follows that the maximum change (perturbation) that can be 
induced in the coefficients without decreasin ö by more than e is the 
maximum of r Tr subject to the constraint r 1 Ar = 2e. Differentiating the 
Lagrange expression 

41) = r 
	

TA r — 2e) 
	

(4.90) 

and setting to zero yields 

(A 	Al)r = 0 	 (4.91) 

(Section 2.7). The appropriate value of r = c — e is thus the eigenvector 
corresponding to the largest latent root of A -1  (smallest latent root of A), 
normalized such that Ir TArl = 2e. This is the same as finding the component 
c whose angle 8 with 5 (in p-dimensional space) is maximum, but where 
variance is no more than e of that of C. Using Eq. (4.88) Krzanowski (1984) 
developes a sensitivity analysis for PCA. Let S be the sample covariance 
(correlation) matrix. Then (Section 3.4) the function to be maximized (in 
present notation) is 

V = C T  SC - 1(C TC - 1) 	 (4.92) 

so that the maximum is achieved at e = c t , the latent vector which 
corresponds to the largest latent root 1=1 1 = c irSc 1 . Now at the maximum 
the Hessian matrix of second derivatives of v is 28 — 21 1 1, where / 1 > 12  > - 
>/p  are latent roots of S with corresponding latent vectors c, C 2 ,. , cp . 
The latent values of H are therefore 2(/, —1 1 ) with corresponding latent 
vectors e l , c 2 , ,c,,, and the smallest latent root of A = —H is therefore 
2(1 1  — /2 ) with latent vector c 2 . The maximum perturbation that can be 
applied to e l  while ensuring that the variance of the resulting component is 
within e of / 1  therefore depends on r = kc 2 , where 

k — ±- (1  I _12)1/2 
(4.93) 

The PC that is "maximally e different" from c, is then given by 

c 	+ r = c, cde/(1 1  —12 )1 112 	 (4.94) 
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and imposing the normalization of cTc = 1 we have 

C (1)  = {e l  -±- c 2 [e/(/ 1  - toj i12 / (1  + 	12)} 1/2 	(4.95) 

the component that differs maximally from c 1  but whose variance is at most 
e less than that of e l . Since /2  with unit probability (Theorem 3.12), the 
component (Eq. 4.95) is defined for all sample covariance matrices S. The 
cosine of the angle 0 between c o)  and e l  is then 

cos 0 = [1 + e(11 - 12 )] -112 	 (4.96) 

Equation (4.96) can be generalized to any jth or (j + 1)th latent root. As 
was the case for Girshick's covariance matrix (Theorem 4.4), the stability of 
the loading coefficients are functions of the differences of the latent roots, 
and this reinforces once again the necessity for discarding PCs with similar 
variance. Recently Critchley (1985) has developed the so-called influence 
functions for the detection of influential observations for principal com-
ponents. 

Example 4.17. Using previously published data, Krzanowski (1984) 
considers the effect(s) of a 5% and 10% change in the latent roots on the PC 
correlation loadings. The loadings and their perturbed values are summa-
rized in Table 4.15 where e =11 110 and e = li /20. Since 1 1  accounts for most 
of the variance, the interpretation of Z i  is not altered in terms of the general 
size component, although the angle of perturbation is not small. The largest 
effect(s) of the perturbations is felt in low-order PCs because of the 
closeness of the corresponding latent roots. A statistical test of significance 

'Table 4.15 	Sensitivity Analysis of White Leghorn Fowl Latent Vectors 

Component Variance 

Coefficients 

Angie 0 X, X. X, X„ X, X 6  

1 4.568 0,35 0.33 0.44 0,44 0.43 0.44 
Perturbed 5% 4.352 0.47 0.48 0.39 0,37 0.36 0.37 14 
Perturbed 10% 4.159 0.50 0.54 0.36 0.33 0.32 0,34 19 
2 0.714 0.53 0.70 -0.19 -0,25 -0,28 -0.22 
Perturbed 5% 0.682 0.26 0.87 -0.16 -0.24 -0.24 -0.20 19 
Perturbed 10% 0.656 0.15 0.90 -0.15 -0.23 -0.22 -0.18 26 
3 0,412 -0.76 0.64 0.05 -0.02 0,06 0.05 
Perturbed 5% 0,393 -0.72 0.61 -0.11 -0,15 0,21 0.18 16 
Perturbed 10% 0.377 • '0.69 0,59 -0.16 -0,20 0.25 0.22 23 
4 0.173 0.05 0.00 -0.52 -0.49 0.51 0.47 
Perturbed 5% 0.165 0,04 0.00 -0.55 -0.42 0.30 0.65 17 
Perturbed 10% 0,156 0.03 0,00 -0.55 -0.39 021 0.71 
5 0.076 -0.04 -0.00 -0,19 0.15 -0,67 0,70 
Perturbed 5% 0.073 -0.03 -0.03 0,13 -0.15 -0.67 0,72 24 
Perturbed 10% 0.068 -0.02 -0,04 0,22 -0.25 -0.64 0.70 33 
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(Section 4.3) can also precede (accompany) a sensitivity analysis of this 
type, to obtain a better grasp of the variations that could represent residual 
error. 	 El 

4.7.3 Missing Data 

Another difficulty that can cause estimation problems and upset multivariate 
normality is when a portion of the data is missing. This was the case in 
Example 3.13, where some of the measurements were not recorded. The 
simplest solution to the problem is to delete sample points for which at least 
one variable is missing, if most of the data are intact. The "listwise" deletion 
of observations however can cause further difficulties. First, a large part of 
the data can be discarded even if many variables have but a single missing 
observation. Second, the retained part of the data may no longer represent a 
random sample if the missing values are missing systematically. Third, 
discarding data may result in a nonnormal sample, even though the parent 
population is multivariate normal. Of course, for some data sets deleting 
sample points is out of the question—for example, skeletal remains of old 
and rare species. 

An alternative approach is to use the available data to estimate missing 
observations. For example variate means (medians) can be used to estimate 
the missing values. The problem with such an approach is its inefficiency, 
particularly in factor analysis where the major source of information is 
ignored—the high intercorrelations that typically exist in a data matrix 
which is to be factor analyzed. Two types of multivariate missing data 
estimators can be used, even in situations where a large portion of the data 
is missing: multivariate regression and iterative (weighted) PCA. For a 
review of missing data estimators see Anderson et al. (1983) and Basilevsky 
et al. (1985). A recent approach, the so-called EM algorithm, also appears 
to be promising particularly in the estimation of factor scores (Section 6.8). 

Generally, for a given data matrix not all sample points will have data 
missing. Assume that m individuals have complete records that are arranged 
as the first m rows of Y, and (n m) individuals have missing data points in 
the last (n – m) rows. If an observation is missing, it can be estimated using 
a regression equation computed from the complete portion of the sample. 
Without loss of generality, assume that the ith individual has a missing 
observation on the jth variable. The dependent variable in this case is Y i  and 
we have the estimate 

f - 

.9i1 =  40 +  E fiky,k+ E I3kYIk 
	 (4.97) 

k"- - t 	k=j4-1 

Since the method does not utilize all of the sample information when 
estimating regression equations, a more general approach is to use the entire 
data matrix when estimating the regression equation. 
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Another procedure which can be used is the PC model itself; that is, PCs 
and the missing data can be estimated simultaneously. Let 1,, = (w ed denote 
the (n x p) indicator matrix where 

w. = 1 if x e1  is not observed 

Also let J be the (n x p) matrix whose elements are ones and let CD denote 
the direct product of two matrices. Then Y can be expressed as 

Y = [(1— I)®Yj + [I OD Y] 	 (4.98) 

where 

Y (k)  = - 1,)0X 

Y (14)  = I, Y 
	

(4.99) 

are the known and unknown parts, respectively. The procedure is equivalent 
to replacing the unknown values by zeros. Let Y (k)  = Z(t) P )  + e for some 
1 s r <p. Then new estimates for the missing values (as well as those 

(k) present) are given by Y = Z (o P1) . The process is continued until satisfac-
tory estimates are obtained. Iterative least squares algorithms have also 
been proposed by Wiberg (1976) and de Ligny et al. (1981). A better 
procedure is probably to replace the missing entries with the variable means 
and iterate until stable estimates are obtained for some suitable value of k 
(see Woodbury and Hickey, 1963). Also, the variables can be weighted to 
reflect differential accuracy due to an unequal number of missing observa-
tions (see Section 5.6). The advantage of the iterative method is that it 
allows the estimation of missing values in situ, that is, within the PC model 
itself. The regression and PC estimation procedures do not require the 
assumption of normality. Finally, correlations may be computed using 
available pairs of observations (see Yawo et al., 1981). 

A closely related problem is as follows. Having calculated the latent roots 
and latent vectors of X TX = A, how can we use these computations to obtain 
the roots and latent vectors of a modified version of A (or vice versa), where 
the modifications are defined as follows: 

A [ Ad = 	, that is, appending (deleting a row a T  
a 

A = [A :a], that is, appending (deleting) a column a 

A discussion and solutions are provided by Bunch and Neilson (1978) and 
Bunch et al. (1978). The results can be used for prediction purposes using 
time series or other ordered data, or when performing a sensitivity analysis 
of the effect(s) of deleting (adding) rows or columns of A. 

0 if x 1  is observed 
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EXERCISES 

4.1 Using Girshick's test (Eq. 4.56) show that for the matrix 

  

• • 

 

  

the variances and covariances of the elements of the first latent vector 
111  of are given by 

var(pit )— 
nk l  p 2  

- [1 (k — 1)41 — p] 

so that correlation between p ri  and p, 1  is given by 

1  
cor(p, I , p si ) — k 1 

4.2 The following data have been published by Goldstein (1982) 

Ward YI Y2 Y3 Y4 Y5  

1 28 222 627 86 139 96 20 
2 53 258 584 137 479 165 31 
3 31 39 553 64 88 65 22 
4 87 389 759 171 589 196 84 
5 29 46 506 76 198 150 86 
6 96 385 812 205 400 233 123 
7 46 241 560 83 80 104 30 
8 83 629 783 255 286 87 18 
9 112 24 729 225 108 87 26 

10 113 5 699 175 389 79 29 
11 65 61 591 124 152 113 45 
12 99 1 644 167 128 62 19 
13 79 276 699 247 263 156 40 
14 88 466 836 283 469 130 53 
15 60 443 703 156 339 243 65 
16 25 186 511 70 189 103 28 
17 89 54 678 147 198 166 80 
18 94 749 822 237 401 181 94 
19 62 133 549 116 317 119 32 
20 78 25 612 117 201 104 42 
21 97 36 673 154 419 92 29 

[1 + (k — 1)p](k — 1)(1 — p)  

cov(p ri , p, 1 )— 
nk 3 2  p 
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for the n = 21 wards of Hull (England) where 

Overcrowding, per 1000 households 
V2  = No inside toilet, per 1000 households 
Y3 = Do not possess a car, per 1000 households 
114  = Number of males per 1000 in unskilled or semiskilled work. 
Y5  = Number with infectious jaundice, per 100,000. 
Y6 = Number with measles, per 100,000. 
Y7 = Number with scabies, per 100,000. 

Y1, Y2 , Y3 , and Y, pertain to the 1971 census whereas Y5 , Y6 , and Y7 
 are rates as reported between 1968 and 1973. 

(a) Using an appropriate dispersion matrix compute latent roots, 
latent vectors, and correlation loadings for the seven variables. 

(b) Ignoring the small sample size, test for equality of the latent 
roots using the Bartlett—Anderson likelihood ratio criterion (Sections 
4.3.1 and 4.3.2). 

(c) Ignoring the small sample size, use Girshick's criterion (Example 
4.11) to test the significance of correlation loadings for the last three 
PCs. 

(d) Using the F-test (Eq. 4.53), determine whether the covariance 
matrix possesses isotropic structure. 

4.3 Consider the latent roots of Table 4.13 in Example 4.14 
(a) Using the chi-squared criterion (Eq. 4.6), test whether the 

covariance matrix is of diagonal form. 
(b) Using Eq. (4.11) test whether the covariance matrix exhibits 

spherical form. 
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CHAPTER 5 

Extensions of the Ordinary 
Principal Components Model 

5.1 INTRODUCTION 

The PC model described in Chapter 3 represents the classic approach to the 
problem of decomposing a set of correlated random variables into a smaller 
orthogonal set. As such it is relatively straightforward to interpret in most 
situations, and is used in a wide range of disciplines. The PC model can 
nevertheless be generalized and extended in several directions. This gives it 
greater flexibility and makes it applicable to a wider range of situations. 

5.2 PRINCIPAL COMPONENTS OF SINGULAR MATRICES 

The ordinary principal components model is defined in terms of the 
decomposition of nonsingular Grammian matrices into real positive latent 
roots and real orthogonal latent vectors. At times singular matrices arc also 
of interest, and this requires an extension of PCA to a more general case. 
This was already encountered in part in Chapter 3 (Theorem 3.17). Singular 
Grammian matrices can arise from three principal causes. First, for a (nx p) 

data matrix Y where p<n,it may be the case that one random variable (or 
more) is a perfect linear combination of one or more other variables. This 
may happen, for example, when a new variable is created as a linear 
function of several other variables and is then included as a column of Y. Or 
we may be given compositional (percentage) data where each of the n 
samples is broken down into its constituent parts, which are then expressed 
as percentages (proportions) of the total sample (Section 5,9.1). When these 
percentages are included as columns of Y, the matrix becomes singular, 
since each row of Y has the constant sum proportional to 100. In this case 
p(X TX) =r<p<n and p(XX I ) =r<p<n (Theorem 3.11). A singularity 
of this type, should it occur, results in zero latent roots, but otherwise a 
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PCA is unaffected, that is, the model of Chapter 3 also applies to singular 
matrices. 

The second_ situation in which a singular Grammian matrix arises is when 
we consider X I X such that p> n. This can occur, for example, when sample 
points are difficult (or costly) to obtain, and as many variables as possible 
are included to extract the maximal amount of information from the sample. 
The same situation arises when the sample points are of primary interest, 
and more variables are then included than sample points to reverse 
(formally) the roles of sample/random variable spaces. 

The third situation which results in singularity is when interest again 
centers on the Grammian matrix XX T, that is, on the row structure of Y, but 
r-p<n. We know from Theorem 3.17 that it is not . necessary to de-
compose XX T  whcn latent roots and latent vectors of X rX are available, 
given X =Y — Y. However, when the main interest lies in the sample rather 
than in the variable space, it no longer makes sense to center the columns at 
zero. When alternative centering is employed, a PCA can no longer be 
based on X TX (Section 5.3). Finally, we may require the spectrum of a 
singular matrix when computing generalized matrix inverses. 

5.2.1 Singular Grammian Matrices 

When only r <p columns of X are linearly independent, the expansion of 
X TX assumes the more general form 

-r 

pT 
0 2 

• 

12 
X TX = [PI , P2  . . . 	, 0 . . 	0 	• 

lrhI 	0 _o 	:e 
o 

= 1 1 PI P; + 12 P2 K + • • 

= A I AT + A 2 AT2  + • • • + AA"; 

= A AT  (,) (5.1) 

so that the (i, j)th clement of X rX is given by 

X;FXi =a 11a  + a2 ,a2i  + • • • + a riari 	 (5.2) 

A(r)  is the (p x r) matrix of loadings of the singular matrix X IX. The last 
(p r) columns are identically zero since they correspond to (p — r) linearly 
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dependent columns of X. The r PCs are given by 

Z (r) = XA 	 (5.3) 

where A (,)  = P(oL (--,; 12  so that 

X = Z(r) A 	 (5.4) 

Equation (5.4) does not imply that X has no residual variation due to 
sampling and/or error measurement, but simply cxpresses the fact that the 
last (p — r) PCs are zero owing to (p — r) redundant (linearly dependent) 
random variables. Theorem 3.17 can thus be generalized to the form 

   

I L  

 

XX T  = [Q Q2, " • Qr] 

  

0 

12 

 

AMY 

  

12Q2Q1 4- • • • 
4-  irQrQ,! (5.5) 

where p(XX 1 ) = r <p <n. It should be pointed out however that latent 
vectors which correspond to zero latent roots need not be necessarily zero 
(Section 5.9.1). 

5.2.2 Rectangular Matrices and Generalized Inverses 

When the latent roots and latent vectors of X TX and XX I  are known, the 
rectangular matrix X can be decomposed in terms of these roots and vectors 
(Theorem 3.17). A similar expansion exists when X is not of full rank, the 
so-called singular value decomposition of a matrix. 

THEOREM 5.1 (The Singular Value Decomposition Theorem). Let X be a 
(n x p) data matrix of reduced rank r<p<n. Then there exists a real 
(n x r) matrix Q, a real (p x r) matrix P, and a real (r x r) diagonal matrix 
41 w  such that 

(i) QTXP = (r) wheri e (20 = L 	the diagonal matrix of r nonzero 
latent roots of 

(ii) XTX = PA(20PT . 
(iii) xxT = Q4120.1 4! 

(iv) PTP QTQ = I 	Q = Z, the PCs of X TX. 
(v) X +  = R 1 QT  whcre X +  and 41+  are Moore—Penrose generalized 

inverses. 
(vi) PPT  X + X and QQT  = XX +  are projection matrices that project 

vectors orthogonally onto the r-dimensional column space of X. 
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(vii) (X TX) = PL (+0PT  and (XXI) = QL (÷0QT 
 (X01  are Moore-Penrose generalized 

sponding singular Grammian matrices. 

where (X IX) +  and 
inverse of the corre- 

PROOF 

(i) We have p(X)=p(X TX) = p(XXT) so that 

x = 1: l2Q 1 p'll 11,12Q2p2T 	12QpprT 	(5.6) 

where Q i  and Pi  (iv = 1, 2, . . , r) are latent vectors of XX T 
 and XTX respectively and 

     

1 -] 

  

    

0 

  

= 

 

0 

   

   

4112 

   

  

0 

    

      

(5.7) 

It follows 

QTXP = 46, (r)  

where A(r)  =1,. 
(ii)-(iv) Using Eq. (5.8) we have 

X T  X 	 (r  )P 

p 41(2 r ) p T 

= P1.40. } P1  

QA(f) P 1 P41(F) Or  

= Q r)  QT 

= QL WQT  

(5,8) 

(5,9) 

(5.10) 

where columns of P and Q are orthogonal latent vectors so 
that 

pTp = QTQ i(r) 	 (5.11) 

(v and vi) The Moore-Penrose generalized inverse of the singular 
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(diagonal) matrix A is 

!: 
414- 	[ .1 0 a ..... 

 

(5.12) 

 

where diagonal elements 57 of A t+ro  are defined as 

 3, # 0 
5/  (i = 1, 2, ... 

Lo  

The Moore—Penrose generalized inverse of X can then be 
defined as 

X +  = PA, (+0QT  

since 

I 	1 	T 	1 
3 Pi % 4--8, P2Q2 + 	P QT  

r r  1 

(ppl ppT = p( pTp)pT 

ppT 

(QQT )(QQT ) = Q(QTQ)QT  
_ QQT 

(5.13) 

Since matrices PP T  and QQT  are symmetric and idempo-
tent they are orthogonal projection matrices. Also using 
Eq. (51:3) we have 

XX +  = (QA( r)11.1  )(PA, (4;01  ) =QQ1 	(5.14) 

x x = (pA(r) QT)(QA(r) pT) ppT 	(5.15) 

(vii) The Moore—Penrose inverse of L is 

L' = 

   

0 IL (r )  01 
I o DJ 

      

 

Alma 

  

   

where elements of L +  are defined similarly to those of A+. 
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it is then straightforward to show that (X TX) +  and (XX T ) + 
 obey the four Penrose conditions since 

(X 1  X) = PL ITT  

	

= PL PT 	 (5.16a) 

(XX T ) 4  QL ÷ QT  

	

QLQ 	 (5.16b) 

Example 5.1. Klovan (1975) published a (20 X 10) data matrix con-
structed such that p(Y) = 3. The matrix consists of 10 geological variables 
observed for 20 locations (Table 5.1). As a result only three columns of the 
matrix are linearly independent. The variables are defined as follows: 

• = Magnesium in calcite 
Y2  = Iron in sphalerite 

Y3 =  Sodium in muscovite 
Y4 	Sulphide 
Ys 	Crystal size of carbonates 
Y6  = Spacing of cleavage 
Y7  = Elongation of ooliths 
Y8 	Tightness of folds 
Y, =Veins/meter 2  
Y10  = Fractures/meter 2  

Both matrices X TX and XX 1  possess three nonzero latent roots and latent 
vectors (Table 5.3). The columns of X are standardized to unit length so 
that X T X represents a correlation matrix of the 10 geological variables 
(Table 5.2). Since tr(X X) = tr(L) and ILI, the first three latent 
roots contain the entire variance, since they all lie in a three-dimensional 
subspace. The latent roots of X are then 

(5.46321) 1 ' 2  

a = 	 (3.191644)1/2 

0 	 (1.345070) 1 ' 2  

 

0 

[2.337 	o 
1.787 	0 

0 	1.160j 
0 	0 
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Table 5.1 

EXTENSIONS OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

Geological Data Matrix with Three Linearly Independent Columns 

Locality V 1  Y2 V3 V4 11 5 Y6 V, Y 8  Y9  V 1 ,1  

1 1175 999 975 625 158 262 437 324 431 433 
2 936 820 813 575 267 379 478 413 411 428 
3 765 711 716 599 457 548 579 558 491 513 
4 624 598 600 542 471 515 531 520 490 500 
5 417 422 422 432 444 441 437 439 437 437 
6 401 403 375 401 405 270 317 290 515 465 
7 520 504 488 469 427 370 410 386 507 482 
8 661 626 618 553 462 466 506 480 529 523 
9 877 787 773 594 354 401 493 434 500 498 

10 1060 932 898 656 315 312 468 370 580 552 
11 1090 960 935 681 334 375 518 427 567 555 
12 896 811 790 629 403 411 511 448 570 555 
13 748 688 672 560 401 399 472 426 525 512 
14 617 573 553 477 360 315 385 342 487 462 
15 436 424 389 393 361 207 277 236 514 455 
16 664 587 560 419 212 182 287 221 397 369 
17 750 665 651 484 259 299 387 331 399 396 
18 903 787 791 573 291 396 486 427 421 437 
19 998 888 887 657 366 499 583 527 480 506 
20 1162 999 994 671 252 404 539 450 449 471 

Source: Klovan, 1975; reproduced with permission. 

Table 5.2 Correlation Matrix of 10 Geological Variables of Table 5.1 

1.0000 
.9979 
.9944 
.90177 

--.5760 
.1303 
.5809 
.2826 
.0122 
.2601 

1.0000 
.9981 
.9327 

--.5224 
.1826 
A251 
.3341 
.0573 
.3157 

1.0000 
.9416 

--.4976 
.2342 
.6636 
.3823 
.0352 
.3141 

1.0000 
-.1798 

.4786 

.8342 

.6102 

.2860 

.5914 

1.0000 
.6153 
.2574 
.5186 
.5402 
.5495 

1.0000 
.8803 
.9873 
.1811 
.5237 

1.0000 
.9442 
.2161 
.6044 

Loom 
.2091 
.5742 

1.0000 
.9085 1.0000 

Source: }Cavan, 1975; reproduced with permission. 

Example 5.2. To find the (unique) Moore-Penrose inverse of a singular 
Grammian matrix consider 

	

L- .6068 -.3819 	.3649 -.5898 
xxT 

	

	- .3819 1.0985 -.6532 -.0633 = 

	

.3649 -.6532 	.4650 -.1766 

.5898 -.0633 -.1767 	.8297 
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Table 5.3 	Latent Roots and Vectors of the Correlation Matrix R = X I X 
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Latent Vectors 

Z i  Z2  Z, 

X,: 	Mg .34360 -.32982 .07613 
X,: 	Fe .35887 -.30012 .08135 
X 3 : 	Na .36705 -.28667 .03533 
X,: 	Sulphide .41762 -.10964 .08093 
X5: Crystal .00738 .55964 -.00733 
X6: Spacing .27950 .33595 -.39794 
X7: Elongation .39770 .13380 -.24201 
X a : 	Tightness .32715 .28106 -.34827 
X,: 	Veins .13996 .30297 .66790 
X.. 	Fractures .28471 .30364 .44208 
Latent roots 5.46321 3.191644 1.345070 

Source; Klovan, 1975; reproduced with permission. 

The matrix has rank 3 and its generalized inverse is 

( LICT ) 4 = QL 4-r) QT  

[

.4970 

= 	-.6438 
.3500 
.5451 

.6162] 
-.1965 [1/1.84595 	0 

0 	1/1.11718 
0 	] 
0 

.4782 
-.3314 

-.1478 
-.7473 

.7073 

.2852 0 	0 1/.03682 

.4970 -.6438 .4782 -.3314 
x 	.3500 [ .5451 -.1478 -.7473 

.6162 -.1965 -.7073 .2852 

.7492 -.2505 -.2505 -.2505 

. -.2505 .7502 -.2494 -.2500 
-.2505 -.2494 .7508 -.2497 
-.2505 -.2500 -.2497 .7496 0 

5.3 PRINCIPAL COMPONENTS AS CLUSTERS: LINEAR 
TRANSFORMATIONS IN EXPLORATORY RESEARCH 

The examples used in Chapter 3 conform largely to a structured "a priori" 
approach to the PC model-for example, the measurement of size and 
shape of biological organisms or mineral/ore types based on core sample 
composition. A less structured exploratory approach to PCA is also 
possible, particularly when we wish to identify patterns and/or causes of 
intercorrelations amongst the variables. Here PCA can provide a natural 
extension of binary measures of association, in terms of nonhierarchical 
clusters that contain highly intercorrelated variables. The use of PCs as 
clusters is made possible by an indeterminacy in an otherwise unique 
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solution, since the loadings (and scores) can be altered arbitrarily by a linear 
transformation of the coordinates. The indeterminacy is inherent in the 
nature of coordinate axes, which from a general mathematical viewpoint are 
arbitrary and whose choice is usually guided by simplicity of form, ease of 
manipulation of algebraic expressions, and other practical considerations_ 
Thus Cartesian coordinates can be rotated to any position, and may 
intersect at any angle without affecting the configuration of a given set of 
points. In statistical data analysis the location of a set of coordinate axes is 
also arbitrary, in the sense that variance, angles, and distance are invariant 
with respect to their position. The r<p dimensional subspace of the 
ordinary principal components model is, however, chosen so as to satisfy 
two general constraints—orthogonality of axes and the stepwise optimi-
zation of variance. 

When searching for clusters, however, different constraints are usually 
required. Once the optimal "correct" r-dimensional subspace is found we 
may wish to introduce an additional condition, namely, that each PC be 
maximally correlated with a single subset or cluster of the random variables. 
This permits a straightforward identification of the PCs in terms of the 
clusters if such clusters exist. This generally implies the elimination, from a 
PC solution, of the initial conditions of variance maximization and com-
ponent orthogonality since a second linear transformation is applied to the 
principal components, that is, to the orthogonally rotated original variables. 
Such secondary transformations or rotations can be orthogonal or more 
generally oblique. 

5.3.1 Orthogonal Rotations 

If the primary function of a secondary linear transformation is to locate 
clusters in a linear subspace by rotating loading coefficients to "simple 
structure" the first step in the analysis is to decide upon the number of 
components to retain (see Chapter 4). This is because rotated principal 
components are not invariant with respect to a change in their number; that 
is, adding or removing a principal component will change the outcome of 
the rotation by altering the magnitudes and/or signs of the loadings. The 
second point to keep in mind is that a rotation of the latent vectors P (and 
corresponding unstandardized principal components) will not yield the same 
results as rotating the correlation loadings A T  (and standardized com-
ponents). Although it is more usual to rotate correlation loadings, it is 
instructive to first begin with the orthonormal latent vectors. Consider the 
sample principal components model (Section 14) where 1<r<k com-
ponents are retained as being significant, and X = Z (r) PT(r)  + 6, where Po.) is 
the (p x r) matrix of orthonormal latent vectors, / I  >12 >. >1„ and 6 
represents the last (p– r) principal component. Rotating the r orthogonal 
principal components to a new orthogonal position is then equivalent to 
multiplying the latent vectors and the scores by an (r x orthogonal matrix 
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T and its inverse T -1 , that is, the model can always be expressed as 

X = 	 + a 

-- v(r)QT0 + 8 
	

(5.17) 

where Vo  = Z(r) T and Q(r) P(r)T are the new rotated scores and latent 
vectors respectively, and matrix Q (r)  is not to be confused with that of the 
previous section. Then T is a matrix of direction cosines of the new axes 
with respect to the old set, that is, 

P Q =P T (r) (r) 

=T 	 (5.18) 

and similarly 411/(r)  =Lol l'. Clearly T is not unique since an infinite 
number of orthogonal rotations is possible unless an additional criterion is 
introduced to fix the location of the axes. We first consider two theorems 
which outline the general properties of orthogonal rotations. 

THEOREM 5.2 Let X = Z (r) P r)  +6 be a PC model and let X =V(r. ) (i(1,.. )  + 8 
as in Eq. (5.17). Then 

(i) Predicted values X and their sum of squares remain unchanged by 
T. 

(ii) Rotated latent vectors remain orthogonal, that is, 0 0 - 	= 
(iii) Rotated principal components are no longer orthogonal, that is, 

VT0V(r)  is not a diagonal matrix. 

PROOF. Clearly 

(i) The transformation T cannot alter the predicted values since 
X = Vo.AT, )  = 7, (0 P ) . It follows that the predicted sums of 
squares also remain unchanged, which can be seen from 

(vitr)
Ql

r" ) )T( vo.) QT0 ) 

▪ Po. ) TT - I L (OTT -  t P;)  

13(r1 L (r) P10-4  

▪ Z:(11,..)Zi( r)  

the original predicted sum of squares. 
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(ii) The rotated latent vectors remain orthogonal since 

QFQ 
= ( 1)(0T)T(P(r) T) 

= 	'PT( .0P(r) T 

=1 

since P(,, )  and T are orthogonal. 
(iii) Rotated PC scores are no longer uncorrelated since 

VCroV(r) = (ZoT)T(Z(r)T) 

= T-1 Z T(oZoT 

= 	I L(, ) T 

which is not a diagonal matrix when the PC scores are not 
standardized to unit length. 

The third part of Theorem 5.2 is perhaps somewhat unexpected since the 
orthogonal rotation is applied to orthogonal principal components. The 
correlation occurs because the original principal components are not 
standardized to unit length. Also, the new components no longer successive-
ly account for maximum variance (Exercise 5.2), although from the first part 
of the theorem it is clear that total explained variance remains unchanged. 
Jackson (1991) provides a numerical example of correlated, orthogonally 
rotated principal components. The lack of orthogonality and variance 
maximization leads some authors to caution against a routine use of 
orthogonally rotated principal components (e.g., see Rencher, 1992), but 
the difficulties are more formal than real. First, component correlation can 
be removed by employing standardized component scores. Second, variance 
maximization is a mathematical constraint imposed on the model to obtain a 
convenient solution* and is not necessarily "data driven." As a result, it 
may not reveal interesting configurations of the variables in certain sub-
spaces. 

The usual practice, when carrying out a principal component analysis, is 
to use the correlation loading coefficients A T  and standardized component 
scores. This is because interpretation is made easier and the rotated 
component scores maintain orthogonality, although this is not necessarily so 
for the loading coefficients. In terms of correlation loadings and stan- 

•Variance maximization is an outcome of the arbitrary ranking of the latent roots, which may 
or may not be of substantive interest. 
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dardized principal components the model becomes 

X = Z(r) P(Tr)  + 6 

= 7I UI ---- i/2DT 

'(r)'(r) 'V) 	(r) (r) 	" 

= Z *  AT  +& (r) 	(r) 

and rotating the axes orthogonally through some angle yields 

X = 4.) TT 	+ 

= Z71T(A(0T)T  + 

T = G( ) 13 .(r)  + 8 
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(5.18a) 

(5.18b) 

where G(0  = Z (*r) T and B(r)  = (A(r)T) are the new scores and loadings, 
respectively. The transformed principal components model has the following 
properties. 

THEOREM 5.3. Let X = Z ) A.(1: )  + 8 be a principal components model and 
let X = G() 13 (To  + 6 as in Eq. (5.18b). Then 

(1) Predicted values It and their sum of squares remain unchanged by 
T. 

(ii) Rotated correlation loadings A'(I,i )  are no longer orthogonal, that 
is, B (Toll (r)  is not a diagonal matrix. 

(iii) Rotated principal components remain orthonormal, that is, 
G (roG(r)  = 

PROOF 
(i) The proof is left as an exercise (Exercise 5.5). 

(ii) We have 

11 .( ,.. ) 11 (r)  = (A(0T)1 (A(0T) 

= T 

= T '1, ( ")2P (r' )P0914 1/2T 

= T 1,09T 

which is not diagonal since L (r)  is not generally proportional to 
the unit matrix. 
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(iii) Rotated component scores are still orthonormal, that is, 

G; )G (T)  = (Z(*„ )T)1. (Z(*r)T) 

= 	Z (*,. ) T 

= TT  

=1 

since the columns of Z t";, )  are orthonormal. 

The main properties of orthogonal rotations may be summarized as 
follows (see also Example 5.3): 

1. An orthogonal transformation T of unstandardized principal com-
ponents and standardized latent vectors only preserves orthogonality of the 
latent vectors but not of the principal components. The covariance matrix of 
the rotated component scores is given by VV( ,)  = T L(oT = 
T -I P(ToX I XP(F)T which is nondiagonal since T does not contain latent 
vectors of the matrix P T0.) X rXP(r) . An orthogonal transformation T of 
standardized principal components and loading coefficients only preserves 
orthogonality of the principal components but not of the loadings. The 
covariance matrix of the rotated loadings is given by 13: 0 B (r)  = T -1 1,09T = 
T  i p 	r.rolx Tx-(r)  T which is again nondiagonal. 

2. Since matrix 	is preserved by the orthogonal transformation T, the 
variance/covariance structure of the original variables is left unaltered 
within the r-dimensional subspace. Also distance is preserved between the 
variables in the subspace. 

3. Rotated principal components no longer preserve the constraint that 
they successively maximize variance of the observed variables, that is, we no 
longer have the ordering / 1 > /2  > • • > Ir . Thus the largest variance may be 
associated with any one of the rotated principal components since the total 
variance explained by the r components is repartitioned between them. This 
point should be kept in mind when selecting the appropriate explanatory 
subspace. If the objective of an orthogonal rotation is to locate orthogonal 
variable clusters (if they exist), the choice of r itself may be aided by such 
rotations—successively increasing values of r are chosen, each being accom-
panied by a rotation to determine whether a "meaningful" subspace has 
been located. 

4. Since the rotated (standardized) principal components are orthogonal, 
the new loading coefficients Bo  still represent correlations between the 
variables and the principal components. Also, the new component scores 
are still orthogonal to the residual error term 8 (Exercise 5.3). 

In practice components may either be rotated simultaneously or two at a 
time (see Horst, 1965). For a clockwise rotation of two axes through an 
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angle 0, the general transformation matrix is particularly simple to express 
since 

[cos 0 —sin 0 1 
sin 0 	cos OJ 

For r components the elements of T are embedded in an (r x r) orthogonal 
matrix with diagonal elements equal to unity and the off-diagonal elements 
equal to zero. For example, let r = 4 and let Tik  be a (4 x 4) orthogonal 
matrix which rotates the /th and kth axes in a four-dimensional space. Then 
the matrix 

T14 

cos 0 
0 
0 

sin 0 

0 
1 
0 
0 

0 
0 
1 
0 

—sin 0 
0 
0 

cos 0 

rotates the first and fourth axes, and so forth. The signs of sin 0 are 
determined by the direction of the rotation, and 0 is chosen to maximize a 
predefined criterion. Thus given r axes we have a total of 

r\ r(r —  1)  
c k2) — 	2 

pairwise rotations for any given direction. The orthogonal transformation 
which rotates all r axes can then be obtained as 

T = T 12 , 	, Tr  

To achieve optimal interpretability we require an additional criterion, 
which could indicate when an optimal position of the component axes has 
been reached. Several criteria are employed depending on the broad 
requirements of the problem at hand (see Harman, 1967, Horst, 1965) 

The Varimax Criterion 
Originally from Kaiser (1958), several versions of the varimax procedure are 
available (see Horst, 1965, Chapter 18; Lawley and Maxwell, 1971) 
depending on whether components are rotated simultaneously or in pairs. 
By far it is the most popular criterion for rotating PC axes. Let B r  denote 
the (r x p) new (rotated) loading matrix with typical element b,,, and 
consider the expression 

V* 
1 P  E  2 )2 
P ,„I  

1 ii; ,) 2) 2  
p 1- 

(5. 19) 

for j = 1, 2, . 	, r. Equation (5.19) represents the variance of the (squared) 
loadings for the jth PC. Squared loadings are used to avoid negative signs, 
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but they also represent contribution to variance of the variables. Also, b i2i  is 
the contribution to the total variance explained by the jth component for the 
ith variable. The purpose is to maximize the sum 

V* E 	 (5.20) 

which results in a pattern of elements of B T  where some are made as small 
as possible, and others are made as large as possible (in absolute value). 
Actually the varimax criterion tries to obtain PCs with a high correlation for 
some variables or no correlation at all with others. For this reason it 
minimizes the number of PC-s and is well suited for locating clusters that lie 
at right angles to each other. 

Since rotations are carried out in an r-dimensional subspace the values of 
the rotated loadings will depend on the number of components which are 
retained. Since in practice r is not always known, rotations are often 
repeated, varying r until a satisfactory result is obtained. Indeed rotations 
can be used as aids in selecting the value of r, but should not replace the 
statistical testing criteria described in Chapter 4. Since Eq. (5.20) depends 
on the total percentage of variance accounted for by the r components, less 
reliable variables are given less weight than those whose variance is well 
explained by the r components, a desirable feature in statistical estimation. 
An adjusted criterion however is also at times used, the so-called normal 
varimax criterion given by 

1 P  ( ) 2 	1 ( P 	b.) 2  
V. =- - E 	- - E 

P 1 -1 h 	p 2  ,-1 
(5.21) 

and we maximize V= E;=, Vi  where 11 is the proportion of variance of the 
ith variable explained by the first r PCs. Since V is adjusted for the 
differential effects of the total variance 12 it does not depend on the total 
percentage of variance explained by the components, and both reliable and 
unreliable variables are given equal weight in the criterion. 

Example 5.3. Consider the geological data of Example 5.1. Since p(X) = 3 
there is no ambiguity concerning the selection of the number of components 
to be rotated. Tables 5.4-5.6 contain the correlation loadings, latent roots, 
and scores of the initial and rotated solution, respectively. Maximizing the 
varimax criterion (Eq. 5.20) leads to the orthogonal transformation matrix 

	

[ — .75862 	.57799 .30070 
T= 	.63877 	.56888 .51803 

.12835 —.58507 .80076 

and the new loadings B T(3)  = (AT)T  (Table 5.5) are portrayed in Figure (5.1). 
We can see that there is a general tendency for loadings to both increase and 
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Table 5.4 Unrotated Loadings of the Correlation Matrix of 10 Geological 
Variables for Three Nonzero Components 

Z, 1, Z 3  

X1: Mg .8031 -.5892 .0883 
X2: Fe .8388 -.5362 .0944 
X3: Na .8579 -.5121 .0410 
X4: Sulphide ,9761 -.1959 .0939 
X5: Crystal .0172 .9998 -.0085 
X6: Space .6533 .6002 -.4615 
X7: Elongation .9296 .2390 -.2807 
X8: Tightness .7647 .5021 -.4039 
X9: Veins .3271 .5413 .7746 
X10: Fractures .6655 .5425 .5127 
Latent Roots L 5.4632 3.1916 1.3451 

Source: Klovan, 1975; reproduced with permission. 

Table 5.5 	Varhnax Rotated Loadings (15 T ) and Rotated Latent Roots 

6, G2  G 3  

X,: 	Mg .9970 .0773 .0070 
X2: Fe .9909 .1246 .0500 
X3: Na .9832 .1806 .02.55 
X4: Sulphide .8777 -.3979 .2672 
X,: 	Crystal -.6267 .5837 .5163 
X6 : 	Space .0530 .9890 .1378 
X,: 	Elongation .5165 .8375 .1786 
X8: Tightness .2075 .9639 .1666 
X9: Veins .0019 .0438 .9990 
X10: Fractures .2241 .3933 .8917 
Latent Roots K 4.46852 3.31843 2.21298 

Source: Klovan, 1975; reproduced with permission. 

decrease in magnitude for each PC, which permits a clearer identification of 
the components. The loading coefficients lie in the positive octant (with the 
exception of one) and are thus positive, which precludes orthogonality. The 
new orthogonal axes also do not coincide, in this case, with any variable 
clusters which may exist but the rotation does represent the closest 
orthogonal fit to the configuration of points in three-dimensional vector 
space. From Table 5_5 we can see that G 1  represents mineral variables 
X 1 -X 4 , which in turn are negatively related to the crystal size of the 
carbonates. Similarly G2 may be taken as an index of deformation 
(X6 , X 7 , X8 ), and G 3  represents an index of permeability (Klovan, 1975). 
The corresponding rotated varimax scores G (3 ) = Z3)T, together with the 
original scores, are shown in Table 5.6. 

The data in this Example are artificial and are meant only to serve as a 
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Table 5.6 
Table 5.1 

EXTENSIONS OF THE ORDINARY PRINCIPAL COMPONENTS MODEL 

Original and Varimax Rotated Scores for the Geological Data of 

Location Z 1  Z 2  Z, G G 3  

1 .3887 -2.2838 .1359 L697 -1.101 -.904 
2 .1989 -.9798 -1.1363 .614 .218 -1.322 
3 .9083 1.2182 --1.0941 -.223 1.811 .027 
4 .2926 1.3964 -.9847 -.780 1.503 .022 
5 -.9595 1.0959 -1.4845 -1.580 .911 -.881 
6 -1.6185 .6760 .9116 -1.503 -1.053 .573 
7 -.7464 .9150 .1871 -1.092 -.021 .382 
8 .2992 1.2964 .0020 -.585 .888 .742 
9 .4987 .0377 .1130 .359 .238 .250 

10 .9111 -.4040 2.1310 1.192 -.926 1.724 
11 1.2932 -.1946 1.5206 1.265 -.248 1.479 
12 .8987 .6101 1.1914 .434 .163 1.499 
13 .1935 .5946 .4475 -.171 .182 .711 
14 -.8158 .1323 .3074 -.648 -.568 .079 
15 -1.8532 .1726 1.3474 -1.308 -1.715 .599 
16 -1.7613 -1.5741 -.2310 -.353 -1.731 -1.497 
17 -.8554 -1.0525 -.9248 -.092 -.542 -1.503 
18 .2300 -.6998 -1.1155 .465 .378 -1.160 
19 1.3189 .1578 -.7823 .779 1.277 -.141 
20 1.1785 -1.1592 .5417 1.531 .335 -.672 

Source: Klovan, 1975, reproduced with permission. 

G2  

Figure 5.1 Varimax-rotated correlation loadings (Table 5.5). 

numerical example. PCA is applied widely in geology, however, to help gain 
greater insight into the distribution of elements in mineral groups, analyze 
mixtures, and so forth, For an example of real data the reader is referred to 
Webb and Briggs (1966). 0 
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Example 5.4. The varimax criterion is frequently employed in explorat-
ory research to uncover patterns of intercorrelations which are not visible 
from an inspection of the data, or of the correlation matrix. In addition, if 
theory is lacking, PCA can be a valuable tool for uncovering relationships 
and/or data structures. The following is an example from Andrews (1948), 
in the field of allergy research, who performed a rotated PCA of the 
correlation matrix of 36 antigens observed for 291 patients. The objective 
here is to supplement the pairwise correlation information obtained in the 
first phase of the analysis, that is, to determine whether or not patients' 
allergic sensitivities would group themselves into related clusters or 
"families." If key members of the cluster(s) are viewed as symptoms, the PC 
associated with the cluster has the interpretation of a particular type of 
allergy infection. The next step would be to see whether objects in the same 
cluster possess common chemical properties which do not appear in other 
clusters, but which could be tested for their ability to cause allergic 
reactions. Because of the nature of the problem, the objective is to carry out 
an orthogonal rotation of the axes. 

Ten PCs are selected to account for the significant variance structure of 
the 36 original variables. The varimax-rotated correlation loadings, grouped 
into clusters, are shown in Table 5.7. The antigen reactions do not seem to 
group themselves according to any simple or apparent scheme of basic, 
common proteins. This is the typical situation in exploratory research, 
where prior knowledge is scant and a preliminary statistical analysis is 
typically the beginning of an investigation. Further examples of exploratory 
research may be found in Spading and Williams (1978), who use the 
varimax rotation to isolate differences in avian vocalizations, and Drury and 
Daniels (1980), who employ rotated components to identify orthogonal 
component-clusters of bicycle riding skills. For an empirical assessment of 
PCA and hierarchical clustering see Fordham and Bell (1977). 

Table 5.7 The r=-- 10 Clusters Obtained by Orthogonal Varimax Rotation of 
p =36 Allergy Variables. Since Some Variables Appear in More than a Single 
Cluster the Groupings Overlap 

G i  G2 

LePage glue .68 Ragweed .58 
Horse epithelium .52 Aspergillus .55 
Raw silk .47 Timothy .42 
Alternaria .36 Cat epithelium .40 
Pyrethrum .34 Kapok .40 
Flaxseed .30 Dog epithelium .33 

Pyrethrum .30 

G 3  G4 

Banana .69 Feathers .67 
Peanut .53 Shellfish .63 
Orange .44 Dust .48 



268 	 EXTENSIONS OF ME ORDINARY PRINCIPAL COMPONENTS MODEL 

Table 5.7 	(Continued) 

Lima bean .39 Fish .35 
Kapok .37 Rice .34 
Mustard .34 Raw silk .34 

G5 G h  
Tomato .60 Tomato .68 
Horse serum .48 Green pea .62 
White potato .46 Lima bean .52 
Cat epithelium .45 Alternatia .45 
Milk (casein and whey) .42 Orange .45 
Dog epithelium .32 Ragweed .42 
Rice ,32 Chicken .41 
Flaxseed .32 Rice .41 
Pork .30 Mustard .36 

Timothy .35 
Rabbit epithelium .35 
Wheat .33 

G, G E, 
Beef .56 Cat epithelium .50 
Dog epithelium .51 Fish .46 
Horse epithelium .50 Rabbit epithelium .37 
Egg white .47 Aspergillus .35 
Mustard .47 Beef .33 
Cat epithelium .44 Pork .31 
Altern aria .36 Dog epithelium .30 
Fish .32 
Banana .32 

G„ G1(1 

Chocolate .62 Rice .43 
Rice .45 Horse epithelium .39 
Chicken ,ao Egg white .38 
Green pea .4o Horse serum .35 
Peanut .38 White potato .35 
Pork .32 Alternaria .34 
Wheat .30 Pyrethrum .30 

Source: Andrews, 1948. 

The Quartinsox Criterion 
The varimax criterion seeks to maximize the variance of the loadings across 
the variables. An older criterion in previous use and which at times is still 
employed is the so-called quartimax criterion, which seeks to maximize 
variance across the PCs. Let 

1 

1=1 	r 	J-1 
	 (i = 
	

(5.22) 
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G 1 G2 G3 

X 1 : 	Mg .9995 .0312 -.0105 
X2 . 	Fc .9963 .0809 .0301 
X 3 : 	Na .9907 .1357 .0026 
X,: 	Sulphide .8991 .3704 .2335 
X,: 	Crystal -.5911 .6391 .4921 
X: 	Space .1003 .9915 .0831 
X 7 : 	Elongation .5570 .8209 .1259 
X fi : 	Tightness .2540 .9608 .1112 
X9: Veins .0196 .0973 .9951 
X10: Fractures .2559 .4297 .8653 
Latent Roots K 4.5814 3.3458 2.0728 

where b q  are the new loadings. Equation (5.22) represents the "variance" of 
the squared loadings, which in turn represents contribution to variance of 
the variables. The quartimax maximizes 

(5.23) 

the sum of variances of the rotated loadings. Since the quartimax criterion 
attempts to maximize variance across the components, it tends to produce a 
dominant component, which makes it appropriate for growth/size studies 
and related areas (Section 3.3), but undesirable for a cluster analysis. 
Although there is a tendency to concentrate variance in the first component, 
the results at times do not differ greatly from the variable clustering criteria 
such as the varimax. Table 5.8 gives the loading coefficients rotated by Eq. 
(5.23), which may be compared to those of Table 5.6. 

Other Orthogonal Criteria 
In recent years alternative criteria have been proposed, many of which 
consist of linear combinations of the varimax and quartimax criteria. They 
possess the general form 

R = c 1 V + c 2 Q 	 (5.24) 

where V and Q are the varimax and quartimax criteria respectively and c 1 
 and e 2  are constants. The use of criterion (Eq. 5.24) requires a priori 

knowledge of c i  and c2 , however, which are essentially arbitrary. 
A somewhat different orthogonal rotation criterion has been proposed by 

McCammon (1966). Let bei  denote the rotated correlation loadings. Then 
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we minimize the entropy expression 

P 	r 
-E E b 2 

In (b. 
i, I j r.- 

(5.25) 

The advantage of Eq. (5.25) over the varimax criterion appears to be that 
the minimum entropy solution produces a higher proportion of coefficients 
whose absolute values are closer to zero. This gives a better resolution to 
the rotated loadings and enhances component-cluster identification. 

5.3.2 Oblique Rotations 

The previous section illustrates the use of orthogonal rotations in explorat-
ory research as an attempt to locate, with as little ambiguity as possible, 
orthogonal variable clusters or groupings. Orthogonal rotations however 
may be viewed as a special case of a more general class of factor models, 
namely, those that remove the last constraint used in the initial PC solution—
that of component orthogonality. For this reason oblique rotations are more 
effective in uncovering natural variable clusters, since variable groupings 
need not be orthogonal to each other. Even in the case of cluster 
orthogonality, an oblique rotation will still yield orthogonal (or approxi-
mately orthogonal) axes as a special case. Oblique rotations also make 
possible a particularly straightforward interpretation of the PC factors, in 
terms of the variables forming the clusters that represent the components. 

THEOREM 5.4, Let Eq. (5.18b) be a PC model with respect to an oblique 
basis G I , G 2 , . .. , G r . Then the following properties hold in the r <p space: 

(i) X X= BCPBT  where 41 = G TG = TTT is the correlation matrix of 
the oblique components, 

- (ii) XX T = GB T BG 1 . 
(Hi) B T  = (GTG) -I GTX and k=GBT=P0X  where Pc, is idempotent 

and symmetric. 

PROOF 
(i) From Eq. (5.18b) we have 

XI  X = (GB1  + 6)T(GB + 6) 

= BGTGBT  + BG T6 + 6TGB T  + &To 

= 	8To 

where G 1 6 =,61 G = 0 owing to the initial orthogonality of the 
PCs. Since 8 r8 is the matrix of residual errors, X X = B4411 
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represents the variance/covariance structure accounted for by the 
first r components. 

(ii) XX T  = (GB T  6)(GBT  + 6)T  

= GBTBG T  + 8T 6 

and the explained portion is then XX = GB TBG 1 . 
(iii) Premultiplying Eq. (5.18b) by G we have 

GTx GTGBT GTo  

= ( TT 

SO that 

= (G 'G) 	 (5.26) 

is the (r x p) matrix of regression coefficients of the original 
random variables on r oblique PCs. Premultiplying Eq. (5.26) by 
G we then obtain 

GB1  = G(( TG) - ' GX 

= Pu X 

(5.27) 

thc predicted values of X. 

Equation (5.26) yields an important relationship between the oblique 
correlation loading coefficients, component correlations, and correlations 
between the oblique components and observed random variables. Since 
components are no longer orthogonal the correlation loadings obtained 
(say) from the correlation matrix need not be equal to the correlation 
coefficients between the variates and the PCs. In the psychometric literature 
the former are known as the "pattern" and the latter as the "structure." In 
what follows we refer to the two sets as the regression loading coefficients 
and the correlation loading coefficients. From Eq. (5.26) we have 

4:113,BT G TX 	 (5.27a) 

where 4) is the (r x r) component correlation matrix, B T  is a p X  r) matrix 
of regression loading coefficients (coordinates of the variables X with respect 
to the oblique components G), and G i  X is the correlation matrix of the 
variables and oblique components, that is, the matrix of correlation loading 
coefficients. For the sake of simplicity we assume both variables and 
components are standardized to unit length. In general, the oblique PC 
model can be interpreted in terms of least squares regression theory where 
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both the coefficients and the independent variables (i.e., the components) 
are to be estimated from the data. However, since the elements of B do not 
necessarily lie in the interval f 1, 1 J ,  component identification is usually 
made easier by consulting the correlation loading coefficients G TX. 

As was the case for orthogonal rotations, the oblique transformation 
matrix T is arbitrary from a general mathematical point of view. There exist 
an infinite number of matrices which can rotate orthogonal components to 
an oblique form. Since we wish to rotate the PCs so as to obtain the clearest 
identification possible (given the data), a further optimization criterion is 
necessary. Two criteria that are frequently used are the oblimin and the 
quartimax criteria. 

The Oblimin Criterion 
The oblimin criterion minimizes the expression 

r 

Q = 2_, 
r 

vi 2_, 
P 

[z., L  2 L 2 
iiv „h  

1 - P  1.2 	b 2 p  (fE_i 	 th
) 	

(5.28)  

that is, it minimizes, across all pairs of axes, the sum of covariances of 
squared loadings while summing for each pair of axes across the p variables. 
Equation (5.28) is also known as the oblique varimax criterion. The 
computational algorithm is iterative and transforms the columns of A one at 
a time, until a matrix T is obtained such that BT = (AT) T . Since the oblimin 
criterion maximizes the spread of loading magnitudes per component, and 
minimizes the correlations between the components, it is suitable for use as 
a technique of nonhierarchical cluster analysis. Once the loadings B are 
known, they can be transformed into correlation loadings (pattern) by the 
use of eq. (5.27a). 

Many other oblique rotations have been developed, particularly in the 
psychological literature, for which the reader is referred to Harman (1967), 
Mulaik (1972), Gorsuch (1974), and Mcdonald (1985). Not a great deal of 
statistical/numerical work seems to have been done with respect to oblique 
criteria and many seem to continue to suffer from statistical defects and 
excessive subjectivity. The oblimin criterion however has been employed 
with real data and appears to perform satisfactorily. The following examples 
use the criterion to enhance interpretation of the factors and to carry out 
exploratory statistical analysis. 

EXAMPLE 5.5. We again consider the geological data used in Examples 
5.3 and 5.4. It was seen the orthogonal rotations improved the inter-
pretability of the PCs. To verify whether an orthogonal component structure 
is appropriate however we compute oblimin regression loadings and correla-
tion loadings, which are given in Tables 5.9 and 5.10 respectively, The 
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Table 5.9 	Obllmin Regression Loading Coefficients B (pattern) for 10 Geological 
Variables 

G 2  G, 

X I : Mg 1.002 -.012 .019 
X2: Fe ,990 ,029 ,055 
X ,: Na .975 .096 .017 
X 4 : Sulphide .840 .283 .228 
X. Crystal -.709 .566 .416 
X„: Space - .069 1.033 - .055 
X 7 : Elongation ,420 .815 .032 
X„: Tightness .090 .984 - .015 
X,: Veins - .006 -.196 1.062 
X lo : Fractures .177 .188 .881 

Table 5.10 Oblimin Correlation Loading (Structure) Between Oblique 
Components and 10 Geological Variables 

6 1 G 2  63 

X , : Mg 1,000 .196 .053 
X2: Fe .997 .249 .105 
X3: Na .995 799 .093 
X.: Sulphide .906 .543 .375 
X 5 : Crystals -.579 .590 .614 
X,: Space .136 .997 .355 
X,: Elongation .584 .912 .374 
X„: Tightness ,287 .996 .382 
X9: Veins - .003 ,228 .984 
X10: Fractures .249 .575 .963 

oblique components (axes) are shown in Figure 5.2 where 

1.000 
tP I = [ .201 1.000 

.039 	.400 1.000 I 

is the matrix of component correlations. Thus whereas the first and third 
components arc, to all practical intents and purposes orthogonal, the second 
component is somewhat correlated with the other two. Comparing Table 
5.10 with Table 5,5 we see that although the intreprctation of the PCs is 
preserved, the oblimin components yield a slightly clearer interpretation. 
The two sets of correlation loadings do not differ to a great extent because 
of the low degree of intercorrelations amongst the PCs. The oblique 
component scores are shown in Table 5.11. Oblique rotation has also been 
used by McElroy and Kaesler (1965) to study lithologic relations within rock 
strata. 
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Figure 5.2 	Oblitnin-rotated correlation loadings of Table 5.9 where 0 ---- 

Table 5.11 	Oblimin Component Scores for 10 Geological Variables 

78.4°. 

Location G 1  C, 

1 1.605 -1.038 -1.076 
2 ,642 .041 -1.222 
3 -.068 1,745 ,421 
4 -.649 1.376 .331 
5 -1.488 .536 -.703 
6 -1.592 -1.101 .282 
7 -- 1.093 -.080 .336 
8 -.513 .934 .903 
9 .375 .322 .307 

10 1.093 -.442 1.510 
11 1,226 .182 1.416 
12 .433 .488 1.510 

13 -,162 .289 .729 
14 -.695 - .617 -.068 

15 -1,454 -1.718 ,166 
16 -.486 -2.008 -1,853 
17 -.124 - .817 -1,587 
18 .505 .209 -1.033 
19 .886 1.313 .168 
20 1.560 .386 -.537 

Example 5.6. Example 5.5 illustrates an oblique rotation using artificial 
data. An oblique rotation has been used by Mukherjee (1974) to study 
discrepancies of response to demographic surveys. Since it is found in 
practice that retesting the same respondents after several months does not 
produce identical responses, a degree of nonsampling error would seem to 
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Table 5.12 Oblique PCA for Survey Reporting Discrepancies 

Discrepancy Measure 
.„ 

Regression Loadings (Pattern) Correlation Loadings (Structure) 

G, 
Age 

G 2 	C 3 	G 4 

Children Pregnancy Education 
G i 

Age 
G2 	G 2 	G A  

Children Pregnancy Education 

Respondent's education -0.080 0.130 -0.114 0.176 -0.130 0.151 -0.151 0.193 
Spouse's education --0.069 -0.136 0.096 - 0.477 -0.045 0.176 0.096 0.459 
Number of pregnancies -0.108 0.134 0.696 0.082 -0.141 -0.008 0.604 0.064 
Female child 0.108 0.326 -0.051 -0.079 0.112 0.334 -0.115 -0.114 
Male child -0.008 0.673 0.178 -0,027 -0,036 0.638 0.040 -0.059 
Age at consummation 0.809 0.072 -0.107 -0.033 (1.815 (1055 -0.127 -0.232 
Age at rnaniage 0.918 0.155 -0.108 0.149 0.874 0.126 -0.157 -0,081 
Respondent's age 0.451 -0.221 0.265 -0.127 0.492 -0.295 0.314 -0.248 

Source: Mukherjec, 1974. 

Table 5.13 Intercorrelations Among Four Primary Oblique Factors 

Primary Factor Pattern 

Code 	Primary Factor Pattern 	 G, 	G 2 	G3 	G4  

0 I 	Age-related discrepancy 	 1.00 
G 2 	No. of children discrepancy 	 .05 	1.00 
G 3 	Discrepancy in reporting pregnancy 	-.01 	.21 	1.00 
G, 	Discrepancy in reporting education 	.25 	- .03 	.05 	1.00 

Source; Mukherjee (1974). 

be present in the survey. Defining the test-retest discrepancies for p = 8 
variables as the difference between the two sets of answers, Mukherjee 
(1974) obtains r = 4 oblique factors (Table 5.12 and 5.13) for Indian data. 
Since the first PC does not exhibit isotropy, it is concluded that the variates 
tend to cluster. The first oblique factor is identified as inconsistency in 
reporting age-related data, the second is a related to discrepancies with 
respect to number of children, and the last two define discrepancy scores in 
reporting pregnancies and educational qualification of spouse, respectively. 
The nature of each discrepancy is in turn related to cultural aspects of 
Indian society. 

Positive Quadrant Rotations 
The oblimin oblique rotation is useful when the objective is to associate, as 
closely as possible, oblique PCs with as many nonoverlapping subsets of 
variables as possible. A second purpose may be to extract a dominant size or 
growth component, followed by oblique secondary PCs which express more 
local groupings of the variables. Other objectives are also possible. For 
example, given chemical or geological mixtures, we may wish to rotate the 
axes obliquely in such a way that all correlation loadings become positive, 
and the axes pass through certain coordinate points in order to gain insight 
into compositions of mixtures (see Section 5.9). 
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5.3.3 Grouping Variables 

Once clusters have been identified by a linear transformation of the axes, a 
further step may be to group or aggregate all the variables, within a given 
cluster, into a composite variable. For example, we may have an excess of 
variables, and rather than deleting the variables or replacing the original 
variables by a smaller set of PCs, we may wish to retain all the variables by 
aggregating them into a smaller number of "supervariables." Oblique 
rotations are particularly useful for such a purpose, and result in a reduction 
of the original data set while at the same time retaining much of the original 
information. 

Consider the following PC solution: 

+ b 12 G 2  + b 13 G3  +8 /  

X 2  = b 21  G 1  + b22G 2  + b23 G 3  + 62 

X3  = b 31 G + b32 G2 b33G 3  + 

X 4 -= b4I G  I + b42G2 b 43G 3  4-  64  

X 5  = b si G + 	6 53G 3  + 8, 

X 6  bbiG b62 G 2  b63G 3  + 66  

X 7  ---- b7 I GI 10;2  b73G 3  + 67 	 (5.29) 

where p = 7 and r = 3 and we have g = 2 oblique clusters X 1  and X.  Since 
variables within each cluster are highly correlated, they may be aggregated 
as 

+ x, + x, 

= (h„ + b„ 	+(h,2 + b 22  1- b 32 )G 2  + (b 13  + b 23  + b 33 )G 3  

=c 1 G 1  + c2G2  + c3G3  

0 41  + b 51  + b61  + b71 )G 1  + (b 42  + b52  + b62  + b 72 )G 2  

+ (b 43  + 6, 3  + b + b 73 )G 3  

= d I G i  d 2G 2  + d 1 G 3 	 (5.30) 

To convert the coefficients into correlation loadings we have 

	

C I 	C 2  
G + G 2  + G3 

	

s t 	s 1 	S i   

	

d I 	d 2 	d 3 11  
— = — G + G 2  + — G 3  

	

S u Si/ 	Su 	S i , 
(5.31) 
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where sf = X T1  X, and s2t1 = X TII X E , are the variances of the two aggregates. 
Equation (5.30) may then be used in place of the original system (Eq. 5.29). 

Example 5.7. Variable aggregation is frequently carried out using 
economic variables. Consider the following variables with represent prices 
of p =10 commodities: 

Y1 : Agriculture 

1'2 : Mining and quarrying 
Y3: Food, drink, and tobacco 
Y,: Chemicals 
Y5: Engineering 
Y6: Textiles 
Y7: Other manufacturers 
Yg: Gas and electricity 
Y9: Services 
Y10:Noncompetitive imports 

	
0 

Since prices tend to move jointly over time, the 10 variables arc highly 
correlated, and we wish to group them into a smaller number of aggregate 
variables. The correlation loadings, together with the latent roots, are 
exhibited in Table 5.14 were the original data are first transformed into 
logarithms to linearize the relationships and reduce differences in the 
variances. All price variables (except X5 ) are highly correlated, which is 
consistent with the existence of a single commodity group or cluster, with X5  
forming a cluster of its own. 

Table 5.14 Correlation Loadings from the Covariance Matrix of 10 
Price Indices; United Kingdom, 1955-1968 

Z 1  Z, Z 3  

X I : 	Agriculture .9798 -.1078 .9716 
X 2 	Mining ,9947 .9894 
X ., 	Food .9756 - .1682 .9801 
X4 	Chemicals .9924 .9849 
X 5 	Engineering -.3468 .4146 .8030 .9370 
X, 	Textiles .9768 - ,1770 .9854 
X, 	Manufacturing .9861 -.1265 .9884 
Xs 	Gas and electricity .9176 .3817 .9877 
X,: 	Services .9817 -.1188 .9778 
X, 0 : 	Imports .8815 -.1777 .3550 .9346 
Latent roots 5.182 .137 .073 
Variance (%) 94.87 2.51 1.34 
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The variables can therefore be aggregated into two groups, as 

X= (.9798+ .9947 + • • • + .8815)Z 1  + (—.1188 + .3550)Z 3 

 = 8.6862Z1  + .2362Z 3  

= -.3468Z E  + .8030Z 2  

where S 1  = 8.897 from the covariance matrix. Standardizing to unit variance 
then yields the equations 

1 	8.6862 	.2362  
X1 8.8970 XI 8.8970 Z ' + 8.8970 Z3  

= .9763Z 1  + .0265Z 3  

= —.3468Z 1  + .80301, 3  

which represent a more compact system. The aggregated equations can he 
further rotated to oblique form if so desired. 

5.4 ALTERNATIVE MODES FOR PRINCIPAL COMPONENTS 

A (n x p) data matrix Y represents a two-way classification, consisting of n 
observations measured for p random variables. In classical PCA interest lies 
in an analysis of the structure of the random variables, with an analysis of 
the sample spaces as a byproduct if the observations are centered about the 
column (variable) means. At times however the main interest may lie in the 
sample points or thc row space of Y. Here it no longer makes sense to 
center the data by column means. Or else data may be given in the form of a 
three-way (or higher) classification, for example, variables, individuals 
(objects), and time. The interest would then be to observe how the sample 
point measurements vary over time. In both cases we have a different mode 
of data presentation, which does not conform to the classic PC set-up and 
thus requires further modification and adjustment if a PCA is to provide 
meaningful results. 

5.4.1 Q-Mode Analysis 

When sample points rather than variables are of interest it is usually more 
fitting to base a PC analysis on a (n x n) product-moment matrix of the 
observations, rather than the variables. This is particularly appropriate when 
values other than variable means are to be used for centering purposes, or 
when more variables than sample points are available. The latter situation 
can arise, for example, when the variables are of interest but sample points 
are expensive (difficult to obtain), in which case the available sample will be 
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subjected to intense scrutiny by using as many variables as can be obtained 
under the circumstances. A PCA carried out on the sample points is known 
as a 0-mode factor analysis, in contrast to the usual analysis of random 
variables which is then termed an R-mode factor analysis. The main 
practical rationale however for using 0-mode analysis is to study the sample 
points, and perhaps to group them into more homogeneous subsets. This 
objective can be achieved in several ways depending on the type of 
association matrix defined for the observations. 

The more straightforward method of analyzing sample points is to make 
use of Theorem 3.17, since we know (XX T)Z ZL when X = Y Y and Z is 
a matrix of scores obtained from X TX. An examination of the columns of Z 
then indicates which sample points lie close to each other, that is, which 
sample points possess similar profiles or characteristics in terms of the 
random variables (e.g., see McCammon, 1966; Zhou et al., 1983). When 
n >p it is easier to obtain Z, P, and L from X tX whereas when n <p it is 
computationally more efficient to decompose XX T . When n = p, any one of 
the two association matrices may be used. Since a Q-mode analysis using 
Theorem 3.17 is a direct outcome of the usual PC decomposition, only the 
variables are adjusted to a common (zero) mean. A parallel situation exists 
when the variables are not centered, that is, when a PC decomposition is 
based on the matrix Y TY or YYT . 

The simplest departurc from a usual PCA occurs when the rows of V are 
centered by the means 

= P 

P 	
(1 = 1, 2, . . . n) 	 (5.32) 

that is, the sample points are expressed as deviations from the mean vector 
= (Y1 , 112 , . , YJT , thus setting the row means to zero. Other values can 

also be used—for example adjusting the row means to equal .50 (see 
Miesch, 1980). Owing to the different centering procedures, however, as 
well as to the nature of sample points (as opposed to random variables), it 
becomes more difficult to justify the general use of measures such as 
covariances or correlation coefficients which after all are designed for 
random variables. As a special case, however, Gower (1967) has pointed 
out that adjustments of the form of Eq. (5.32) can be rationalized when 
sample points lie on a sphere, and it becomes more natural to use a circle as 
a measurement of shortest distance (Fig. 5.4). Let y = (y„ y 2 , . . . yp )T  

• and x = (x 1 , x 2  , . .. , ) 1  be any two row vectors (sample observations) of a 
(n X p) data matrix. Then the distance between the two points along a circle 
is the radius r, where 0 is the angle separating the two points. When both y 
and x are adjusted by Eq. (5.32) we have 

E y i 	x, = 0 
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and 

E 	y  
cos 0 =  	, P 	P 	1/2 

1-1  (E x 2  E v 2 ) 

= r xy 
	 (5.33) 

so that the correlation coefficient ru  can be interpreted as the cosine of the 
angle between x and y. The "distance" between the two points can also be 
expressed in terms of 0, and we have 

0 = cos - xy 
	 (5.34) 

Thus given n sample points either the cosine measure (Eq. 5.33) or angles 
(Eq. 5.34) between the points can be used in place of covariance or 
correlation coefficients, and a principal components analysis (perhaps 
accompanied by rotation) will reveal pattern(s) of interelationship(s) which 
may exist between the sample points. Since the objective however is to 
maximize the mean sum of squared distances between the sample points, 
this again leads us back to a standard R-mode PCA of the matrix X 1  X, as is 
seen from the following Theorem. 

THEOREM 5.5 (Rao, 1964). Let Y be a (n x p) data matrix with row 
vectors y i  = (y 11 . y 12 , . , 	and y 2  =6)21 , Y 22' 22, • • • Y20 1  • • • 5  Y = 
(y„ i , y„ 2 , . a 	y„p ) 1  . Then the mcan sum of squares of the c(?) intcrpoint 
distance is given by tr(X TX), that is 

—

1 
E

n
E— 	

- 
(y 	y )1 (y. - v .) = tr(X r x) n 

where XY— Y.  
The theorem may be proved by induction. An optimal least squares fit in an 
r-dimensional subspace is thus still provided by the first r < p principal 
components, which correspond to the r largest latent roots. 

Theorem 5.5 assumes that the original n points are represented in a 
p-dimensional Euclidian space with orthogonal coordinate axes. There are 
situations however where oblique axes may be more appropriate (Section 
5.3.2). In such a case the Euclidian distance between two sample points y i 

 and y. the quadratic form (y i  y i )1 1' - I (y, — y,), with F positive definite, 
and Theorem 5.5 can then be expressed in a more general form (Section 
5.6). 

Example 5.8. An example of 0-analysis using the cosine measure is 
given in Miesch (1976) (Tables 5.15 and 5.16). Two and three-dimensional 
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Table 5.15 Hypothetical Data on Olivine Compositions (Weight %) 

Sample 
	

Si02 	 FeO 
	

MgO 

1 40.048 14.104 45.848 

2 38.727 2.1.156 40.117 

3 36.085 35.260 28,655 

4 34.764 42.312 22.924 

5 33.443 49.364 17.193 

6 30.801 63.468 5.731 

Source: Miesch, 1976h; reproduced with permisnion. 

Table 5.16 Correlation Loadings (Varimat) of 
Q-Analysis Based on Cosines Between Samples 

Sample G G, 

1 0.2089 0.7911 
2 0.2869 0.7131 
3 0.4429 0.5571 
4 0.5209 0.4791 
5 0.5989 0.4011 
6 0.7549 0.2451 

Source: Miesch, 1976b; reproduced with permission. 

spherical coordinates of a principal components analysis are depicted in 
Figures 5.3 and 5.4. The objective of the graphical representation is to 
locate "key" sample points in terms of their basic (percentage) composition, 
and thc samples rather than variables (minerals) are therefore of main 

Figure 5.3 Olivine compositions represented as vectors in two and three dimensions. Vectors 
V, and V. are varimax axes. Vectors PC, and PC, are principal components axes. Other vectors 
represent compositions of fayalite (Fa) and forsterite (Fo) and oxide constituents of olivine 
SiO 2 , FeO, and MgO (IVIiesch, 1976; reproduced with permission). 
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Figure 5.4 Three-dimensional vector sys-
tem as a sterogram (Miesch. I97fr, re-
produced with permission). 

Fo0 

interest. For a further comparison of R and 0-mode factor analysis in the 
context of Geology see Klovan (1975). 	 0 

5.4.2 Multidimensional Scaling and Principal Coordinates 

The initial input into a standard factor analysis consists of a data matrix. At 
times however the original data are not available, and our initial observa-
tions consist of interpoint distances or measures of similarity between the 
variables (sample points). The problem now becomes to estimate, within a 
reduced r-dimensional space, the original vectors or coordinates which had 
given rise to the interpoint distances. This is known as multidimensional 
scaling (MDS). Since non-Euclidian and nonmetric distances can also be 
used, MDS at times possesses a degree of flexibility which may not be found 
in a standard PCA. Care however must be taken when interpreting the 
results, since although a distance matrix is symmetrix it cannot be positive 
(semi) definite, owing to zero diagonal entries. As is well known, the latent 
roots and vectors of a symmetric matrix are real, but the former need not be 
nonnegative. Also, it can be difficult to establish statistical properties of 
certain MDS procedures or solutions since these are algorithmic (numerical) 
in nature and cannot be expressed in algebraic or closed form. For further 
detail see Coombs and Kao (1960) and Gnanadesikan (1977). 

The classic version of MDS uses Euclidian distance as similarity measures 
and can be related, in a straightforward manner, to PCA (e.g., see Dobson 
et al., 1974). Two cases appear in practice—when observed distances are 
identical to true distances (similarities) and when distances are subject to 
errors of observation. When data (the distances) are observed without 
measurement error the solution has been given by Young and Householder 
(1938; see also Eckart and Young, 1936). Consider n points, together with 
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their matrix of squared distances 

D 2  

0 	4 • • d21 „ 

d 221  0 	• 	d 2  2n 

 

   

1 .2  1 	61,7, 2 	0 

The points, generally speaking, may represent samples (individuals) or 
random variables. We assume that the origin of the coordinate system is 
placed at one of the unknown points, so that in effect we only have n 1 
points (row vectors) to consider. Let Y be the unknown (n x p) data matrix 
and let y i  be the ith row vector of Y. Then from the cosine law of the 
triangle any (I, j)th element of YY r  can be expressed as 

Tl 	T 	T 	2 
Y ,Y 	(YfYi 	— did 

1 	, 

	

= (d;;, + I 12. „ — d 	 (5.35) 

Since Z T(YY T)Z =L from Theorem 3.17 the unknown points can be 
computed as 

Y = ZL 112 
	

(5.36) 

where Z is the (n — 1) x p matrix of adjusted latent vectors of YY T  and L is 
the diagonal matrix of latent roots. The solution to the MDS problem then 
consists in reconstructing the unknown data matrix Y, which can be 
achieved in the following two steps: 

1. Taking the nth point as arbitrary origin, construct the matrix of inner 
products using eq. (5.35). 

2. Compute the latent roots and vectors of YY T  and take the coordinates 
of the (n — 1) unknown points as IL' i2  

It can be shown that the choice of point selected as origin does not affect the 
result. Young and Householder (1938) also show that .dimensionality of the 
n points with mutual distances d equal to p(YY r ). The procedure is 
therefore a variation of a PCA of YY T , where one of the points is taken as 
the origin. As in PCA, a smaller number of dimensions may be retained if 
these correspond to small (lower) order latent roots. Finally, a necessary 
and sufficient condition for a set of numbers = d, to be mutual distances 
between a real set of points in Euclidian space is that the symmetric matrix 
YYT  be positive (semi) definite (Grammian), which clearly is the case here. 

The Young and Householder model has a drawback in that it is affected 
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by errors of measurement. Since the origin is translated to one of the n 
points, differential errors of observation render the model dependent on 
which point is selected as origin. Torgerson (1952) has proposed a more 
robust model where the origin is translated to the mean of the n observa-
tions. Following Torgerson (1952, 1958) and Rao (1964), let y i  , y 2 , . 
be n points (row vectors) and let'Si be the mean point. Then given any two 
points y i  and y i  we have 

r 	 I-  
— 	— 	= LY 	

1
, n-  (Y1 + Y2 + " + Y)lLY 	

1
: 	I + Y2 + " + YJI T  

1 
= 	[(yr 	yl) + • • • + 	Y„)1[(Y /  Y I) 	(y, - 

L L [(Yi Y g )(Y; Y g ) T  (Y 	Yh)(Yi Yh) r  
fl 	 h= 

(Yi — Y;)(Yi — Y 1 ) T  (Y g  Yh)(Y 8  Yh) r i 

1 

g— Ih —1 

1 

2n 	n 	d 'I' 	n 2  • • 
(5.37) 

where d , the squared distance between sample points y i  and y i  and 

eir2 
" = t. 	" ih 

h= I 
d2 = E d gi  

g -  I 

Pl 

d 2  = 	E U g h 
g= 1 -=1 

(5.38) 

Equation (5.37) is similar in form to the expression y ii  — 3 . .).74  + y which 
is used to estimate row and column effects in a two-way (fixed effects) 
ANOVA. Using Eq. (5.37) is thus equivalent to adjusting the row and 
column means, and the overall mean, to zero. Gower (1966, 1967; see also 
Reyment et al., 1984) has provided a more recent but equivalent version of 
the model, known as the principal coordinate (principal axes) model. When 
the number of variables exceeds the number of sample points, and the 
matrix Y is of full rank, all roots are nonzero and retaining all the PCs will 
reproduce the original distances di,. More generally the number of nonzero 
roots equals p(Y), and when lower-order nonzero roots are omitted, the 
principal coordinates model provides in a lower dimensional space, the 
closest fit possible to the original (112)n(n — 1) interpoint distances. The 
model can be operationalized as follows: 

1. Given a (n x p) data matrix Y consisting of n sample points and p 
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random variables form the (n X  n) matrix E with elements 

1 
ei 
	 i j 	

(5.39) 
1 

2. Form the (n x n) matrix F with elements 

ei, 	e.; 
= to 

where 

(5.40) 

and 

— Eft  e n )-I 

1 " 
=— E e n 

1 " 
= —E 

n L.1 

(5.41) 

3. Carry out a PCA of the positive semidefinite matrix F. Then the rth 
latent vector of F, normalized such that its sum of squares equals the rth 
latent root, yields the desired coordinates along the rth principal axis. 

It is also easy to show that 

4 = ft , 4- fll  

= ei, + ell  - 2eti 	 (5.42) 

(Exercise 5.6), Equation (5.40) is identical to Eq. (5.37) since F represents 
a distance matrix adjusted such that row, column, and overall means are 
zero. Torgerson's classical MDS (principal coordinate) decomposition can 
be summarized by the following theorem. 

THEOREM 5.6. Let D= (d i ) be an (n x n) distance matrix defined in 
Euclidian space, and let 

F = HEH 	 (5.43) 

where H= I ,, - (1/n) ii "  and F= (fii ) as defined by Eq. (5.40) Suppose F 
is positive semidefinite of rank p n - 1. Let L and Q be the nonzero latent 
roots and latent vectors of F, respectively, such that Q TQ =L. Then the 
configuration of n points in p space is given by the columns of Q, that is, the 
latent vectors of F normalized such that Q`Q = L and with means at the 
origin. 
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For a proof of the theorem see Gower (1966). Theorem 5.6 yields a "full 
rank" solution to the MDS problem, that is, the points are fully recon-
structed within the p <n — 1 subspace defined by the p variables if all of the 
nonzero latent roots and latent vectors are kept (Theorem 5.1). When r < p 
latent vectors are retained, however, the distances 3 within this subspace 
are still optimal estimates of do  in the sense 

n n 

E 	(d.. a.)2  i=1;=1 

is minimized (see Theorem 3.9). Theorem 5.6 can be extended to non-
Euclidian distances. 

THEOREM 5.7 (Mardia, 1978). Let B be an arbitrary (symmetric) dis-
tance matrix adjusted as in Eqs. (5.39)—(5.41). Then for a given / r < n 
there exists a (fitted) positive semidefinite matrix B, of rank at most r, such 
that 

n 	it 

E E (bo  — h u )= tr(B — 11) 2 	 (5.44) 

PROOF. Let / 1  12  • • I„ bc the latent roots of B. Then we minimize 

11 

tr(B — B) 2  = E — 	 (5,45) 

where l are latent roots of I and the minimum is taken over nonnegative 
roots only. Thus when there are r positive latent roots in B we have i= 1. 
(1 = 1, 2, . , r), and only the first r roots are used when B is positive 
semidefinite. The minimum of Eq. (5.45) defines a measure of distortion in 
B, and is given by E l. Mardia (1978; see also Mardia et al., 1979) gives 
other results, including a treatment of missing values (missing distances), 
The MDS procedure can also be applied to more general Euclidian distances 
such as the Mahalanobis distance (see Krzanowski, 1976). 

5.4.3 Three-Mode Analysis 

An immediate extention of the R- and 0-mode models is the so-called 
three-mode principal components model, which attempts to combine the 
objectives of both the R- and the Q-mode types of analyses. For the R and 
Q modes the observed data are represented by a single matrix array with 
variables as columns (rows) and sample points as rows (columns). A 
generalization can be imagined however in the form of a three-way 
rectangular array with typical element yo , where the third subscript 
represents an additional mode or method of classification and yields a total 
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of nxpxt observations (i = 1, 2, 	, n; j = 1, 2, . • . , p; k = 1, 2, . . . , t). 
Thus the third mode, which is denoted by the extra subscript k, may for 
example represent different occasions, time periods, geographical areas, or 
experimental conditions (e.g., see Mills et al., 1978; Sinha et al., 1973). 
Although three-way data are at times portrayed as a three-dimensional 
matrix array, this can be misleading since such entities are undefined within 
the usual matrix algebra which underlies the PC model. Rather we must 
consider such data as sets of t distinct (n X p) matrix arrays, which are to be 
analyzed jointly. 

Consider a set of t (n x p) data matrices Y(1) , Y(2 ) , • ' Yu), each 
consisting of the same random variables and sample points, but at different 
occasions. Since occasions are not necessarily independent, the purpose is to 
combine the t matrices into a single PCA, which could exhibit the 
interrelationships between the three modes of classifying the data. A 
number of methods have been proposed to achieve this end, for a review 
(together with an extensive bibliography) see Kroonenberg (1983a and b). 

Two-stage Principal Components 
Consider t separate principal component analyses carried out on, say, the 
columns of Y(117  Y(2) , Vol . Since the. variables will generally be 
correlated across the t occasions, the t sets of loadings should also exhibit 
correlation, although loading coefficients will still be uncorrelated within 
each set of variables. It is therefore possible to carry out a second-stage 
PCA, treating the first-stage components as second-stage input variables, 
and obtain joint axes within which the original loadings can be plotted for 
the t occasions. Bouroche and Dussaix (1975), for example, have considered 
several alternatives for three-way data using such an approach. We briefly 
describe one of their procedures for illustrative purposes. Assuming the 
correlational structure among the variables is of interest, the first-stage 
analysis consists of 

Tr  P (1)( XMX(1) (II = L(1) 

pT t v T 	 y 
( 2 )"‘ ( 2 ) IN 2 ) )11  (2) 	lj(2) 

 

FIcrt )(X .(r )X( r ) W( 1 ) = L (}  

 

(5.46) 

where Xiik.  ) X(k)  represents a (p X p) association matrix for the kth occasion 
and P(k )  and L(1, )  are corresponding latent vectors and latent roots (k 
1, 2,... , t). At this stage all p latent vectors are retained for each occasion. 

The second stage consists of correlating the first (dominant) latent vectors 
Pm) , P)(2)7  • . . 7  P 	second latent vectors P2(1)7  P2(2) , . • , P2(07 	• , 

the pth latent vectors Ppm , Pp( , ) , . , Poo  across all t occasions. This yields 
P x t) association matrices, each of which are diagonalized in turn and the 
following latent vectors are retained: 
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= the latent vector associated with the largest latent root of P (1), 
P1(217 ' • • 7 PIM 

V2  = the latent vector associated with the largest latent root of P2(1) , 
2(2) ,  " 	2(t)  

V = the latent vector 

  

associated with the largest latent root of 

111)( 2
)
,  " ' 

In practice the process is terminated when q<p components have been 
extracted. The projections (coordinates) of the variables onto the second-
stage PCs can then be computed in the form of correlation loading 
coefficients. This yields a summary representation of the p variables across t 
occasions, within a reduced number of g axes. Clearly the procedure is most 
appropriate when at the second stage all p correlation matrices possess 
isotropic latent roots. When this is not the case, the procedure results in 
information loss. 

Example 5.9 (Bouroche and Dussaix, 1975). Annual sample surveys are 
carried out by SOFRES in France to determine characteristics that influence 
automobile demand. The questionnaire consists in part of the following five 
variables: 

= Price of automobile 
Y2  = Inside space 
Y3  = Trunk size 
Y, = Index measuring comfort of car 
Y5  = Sound proofing 

The variables are measured for n = 10 brands of cars over a period of t= 3 
consecutive years. The data matrices appear in Table 5.17, which represents 
an automobile popularity typology over a period of three years, and can be 
used to trace consumer automobile choice. Since the purpose of the analysis 
is to trace behavior of the five variables over time, the data are centered by 
variable means, and PCs are computed from correlation matrices. The three 
sets of loadings for three PCs are given in Table 5.18. Although components 
are orthogonal within years, they are clearly correlated between years. 
Carrying out a second-stage PCA of the three sets of components of Table 
5.18 then yields a reduced set of latent vectors (Table 5.19). The latent 
vectors can be standardized in the usual way to yield correlation loadings. 

0 

Mapping Covariance Matrices 
An alternative method, with somewhat similar objectives, has been de- 
veloped by Escoufier (1980a and b). Consider n individuals, each of which 
are observed to possess an association matrix S t  (i = 1, 2, . , n). The 
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Table 5.17 Three-way Market Data Cross Classified by Car Brand, Reason for 
Choice, and Year 

Car Brand Y V. Y3 V4 Y5 

Year 1 

A 338.0 118.0 195.0 173.0 16.0 
B 210.0 185.0 210.0 342.0 1.0 
C 180.0 404.0 310.0 684.0 38.0 
D 142.0 212.0 203.0 708.0 48.0 
E 102.0 110.0 52.0 330.0 41.0 
F 33.0 313.0 152.0 273.0 39.0 
G 207.0 188.0 76.0 456.0 32.0 
H 45.0 245.0 61.0 520.0 60.0 
1 325,0 35,0 60.0 64.0 0 
I 63,0 85.0 14.0 437.0 0 

Year 2 

A 397.0 102.0 445,0 142.0 3,0 
B 294.0 145.0 440.0 273,0 13.0 
C 239.0 282.0 270.0 518.0 18.0 
D 92.0 160,0 301.0 435.0 12.0 
E 315.0 78.0 110.0 230.0 30.0 
F 205.0 193.0 401,0 125,0 0 
0 161.0 286,0 148.0 170.0 15.0 
H 114,0 171.0 42.0 391.0 32.0 
I 509.0 30.0 95.0 93.0 3.0 
J 408,0 39.0 31.0 334.0 5.0 

Year 3 

A 313.0 136,0 447.0 98.0 9.0 
B 202.0 261.0 489.0 206.0 16.0 
C 172.0 359.0 337M 3110 33.0 
D 118,0 373.0 404.0 231.0 33.0 
E 164,0 215.0 28.0 168.0 50.0 
F 65.0 282.0 414.0 130.0 23.0 
G 165,0 239.0 53.0 139.0 41.0 
H 60.0 346.0 118,0 231.0 27.0 
I 375.0 80.0 85.0 147.0 32.0 
1 120.0 253,0 49.0 196.0 11.0 

Source: Bouroche and Dussaix, 1975; reproduced with permission. 

objective consists of the following: (I) to find a graphical representation of 
the n matrices, (2) to define a new matrix which is a good "compromise" 
between the original matrices, and (3) to obtain a joint mapping of both the 
individuals and their covariance matrices S. 

To achieve the first objective consider n covariance matrices S t  (i = 



Table 5.18 Principal Component Loadings for Data of Table 5.17 

Year 1 Year 2 Year 3 

Z I(l) Z 2(1)  Z3Z„„ Zi(2) Z2121  Z2(3) 

X I : 	Price .6132 .4766 .3621 -.9342 -.0474 .2439 -.3892 .8397 .2814 
X 2 : 	Space .8092 .2881 .3759 .7990 .3198 -.2421 .6012 -.7826 .0317 
X3 	Trunk size .3679 .7408 A737 .0883 .9612 .2066 .8989 .3774 .2111 
X,,,: 	Comfort .8840 .2859 -.3445 .7173 -.3017 _6243 .3366 -.5755 .1717 
X 5 : 	Sound proof .8524 -.4110 .2467 .5507 -.6227 -.1205 -.4892 -.5226 .6855 
Latent roots 4.43 1.04 .77 2.48 1.59 .62 1.88 1.59 .47 

Source: Bouroche and Dussaix, 1975; reproduced with permission. 
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Table 5.19 	Second-Stage Latent Vectors or the Three Principal Components 

V, v, 

X,: Price —.4498 --.1983 .2167 
X 2 : Space .4895 —.1757 .4377 
X,: Trunk size .1838 —.8539 .1889 
X,: Comfort .5854 — .0603 —.6552 
X,: Sound proof .4262 .4438 .5445 

Source: Bouroche and Dussaix, i975; reproduced with permission. 

1, 2, .. . , n), together with the matrix C with typical element c„= tr(S,Si ) 
(i = 1, 2, . , n). This yields a symmetric, positive definite matrix containing 
inner products of elements of the original n matrices. The idea is then to 
compute latent roots and vectors of C, and thus obtain a plot of the S t . 

Second, the "compromise" matrix S is defined as 

fr 

S = E pji Si 	 (5.47) 

a linear combination of the original covariance matrices, where p o  are 
elements of the first latent vector P I  of C. To determine how well S 
summarizes the n covariance matrices let Q denote the matrix of latent 
vectors of S such that W I  = S. and let Qi  be the matrix of latent vectors of 
S i  where QQ,T  = Si . The latent vectors are thus in effect correlation 
loadings. Projecting each Q, onto the column space of Q yields the n 
matrices 

Q" = Q(Q1 Q) FQ, 

= , 2, . , n) 

where iti  is the vector of regression coefficients of the latent vectors of Q on 
those of Q,. 

Example 5.10 (Escoufier, 1980a). Consider n =4 individuals with 
covariance matrices 

[ 2 
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Then 

[ 32 

C= 	80 
80 

128 

80 
272 
128 
320 

80 
128 
272 
320 

1281 
320 
320 
512 

Table 5.20 Latent Roots and Vectors of Matrix C 
with Typical Element cu  =tr(S,Si ) 

P, P2  

.1842 0 

.4602 .7072 

.4602 —.7072 

.7365 

1 1 =944.0 	 /2  — 144.0 

with latent roots and vectors as in Table 5.20. Since for the present example 
p(C) = 2, the last two latent roots are zero and we have an exact representa-
tion in a two-dimensional space (Fig. 5.5), from which we can see that S I 

 and S2 are proportional while S, and 53  are equidistant from the origin. 
Also, using Eq. (5.47) we have 

[

10.86 

S = 	0 
—10.86 

0 

0 
10.86 
0 

—10.86 

10.86 
0 

10.86 
0 

0 
—10.86 

0 
10.86 

with the nonzero latent roots // = / 2  = 21.72 and corresponding latent vectors 

S4  

• S3 • S2 

s, 

P2 

Figure 5.5 The n —4 covariance matrices in a reduced space. 
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Q, 

	

• 13 	 oh, 

	Q1  

	

-.50 	 „so 

Figure 5.6 The n = 4 individuals mapped on the space defined by the latent vectors Q, and Q z 
 of matrix S. 

(.50, .50, —.50, —50) T  and (—.50, .50, .50, —50) T , which form vertices of a 
square (Fig. 5.6). The discrepancy between the representation of the 
individuals given by the compromise matrix and the representation obtained 
from the initial matrices S i  can then be seen from Figure 5.7. 

second axis 

.3  . 2  

first axis 

*4 

Figure 5.7 Graphical representation of the matrices 0 °1  in the space of the compromise 
matrix (S, = +; S. = X; S= 0; S, =*). 
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Tucker's Method 
A better known methodology for three-mode PC is from Tucker (1966, 
1967). The method consists of three sets of latent vectors plus the so-called 
"core matrices" which relate loadings to each of the three data modes. 
Before PCs can be computed, however, the three-way data must be 
arranged in a matrix array. This may be done in one of several ways. For 
example, the t (n x p) matrices may be "stacked" on top of each other to 
yield an augmented (partitioned) data supermatrix, which is then used to 
compute a covariance (correlation) matrix. Alternatively the modes can be 
"nested" within each other. The method adopted by Tucker is as follows. 
Assuming the three-way data have been centered in an appropriate way, 
they can then be expressed in the form of three distinct matrices; the 
(n X pi) matrix „X, the (p x nt) matrix I,X, and the (t x np) matrix ,X. The 
matrices are decomposed into principal components and the three outputs 
related by means of the "core" matrices. We have 

„X = AF(BOC) 

X = B E G(A l  0C) 

C H(A OB) 	 (5A9) 

where 0 denotes the Kronecker product (Section 2.9) and 

A -= the (n x n) matrix of latent vectors of „X„X T  
B = the (p x p) matrix of latent vectors of I,Xp XT  

C = the (t x t) matrix of latent vectors of ,X,X T  

The matrices F, G, and H are the core matrices whose orders are always the 
same as the left-hand side data matrices of Eq. (5.49). A three-mode core 
matrix relates the three types of factors, and as its name implies, is 
considered to contain the basic relations within the three mode data under 
study. The core matrices are computed from the data matrices and the latent 
vectors—for example, the matrix F is obtained as 

F = kr; X(11 .1.  C 1. ) 	 (5.50) 

and similarly for G and H. Although Eq. (5.49) utilize all the latent vectors 
of the three data matrices, the idea is to use a reduced number. Also as in 
the usual two-mode PCA, the loadings can be rotated to aid interpretation. 

The three-mode PC model can be extended to the general n-mode case in 
a more-or-less routine fashion. The notation, particularly subscripting, 
becomes somewhat tedious and to overcome this Kapteyn et al. (1986) 
introduce an alternative development of the model. 

Excunple 5.11. Hohn (1979) has presented an example of Tucker's 
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three-mode model using Oudin's (1970) geological data, consisting of 
elemental (chloroform) analysis of heavy fractions of organic extracts of 
Jurassic shales of the Paris basin. The percentage composition of the 
extracts are given in Table 5_21. The data arrangement is equivalent to a 
three-way, completely cross-classified design with a single replication per 
cell. The purpose of the analysis is to compare composition of chemical 
elements. Thus prior to the elemental analysis the organic extract of each of 
the four samples is fractioned into three categories; resin, CC1 4  soluble 
asphaltenes, and CCI, insoluble asphaltenes. The three modes are therefore 
fraction, locality, and elemental composition. The three sets of PC latent 
vectors are shown in Tables 5.22-5.24. Since interpretation is more difficult 
using the orthonormal latent vectors, they are standardized to yield 
correlation loadings. The first component of Table 5.22 represents the joint 

Table 5.21 Compositional Analyses of Elements of Heavy Fractions or Organic 
Extracts; Jurassic shales of the Paris Basin, France 

Fraction Locality 

Elemental Percentage Composition 

C H C/H 0 

Resin Echanay 72,44 9,24 7.83 8.16 .56 2.53 
Ancerville 76.14 9.39 8.11 6.18 1.23 3.68 
Essises 77.61 8.68 8.94 5.58 1.12 .29 
Bouchy 81.46 7,63 10.67 4.59 .88 .42 

CCI, 
soluble 

Echan ay 
AncervilIe 

65.03 
71.42 

7.14 
7.68 

9.10 
9.29 

10.90 
11.61 

1.09 
1.39 

2,38 
1.69 

asphaltenes Essises 79.44 7.22 11.09 8.65 1.07 .18 
Bouchy 78.34 6.56 11.92 5.96 1,66 .75 

CC1 4  Echany 66.38 6.61 10.04 18.32 .00 1.65 
insoluble A ncervil le 73.20 7.61 9.62 10.82 2.67 .00 
asphaltenes Essiscs 75.61 6.46 11.70 11.76 1.54 .80 

Bouchy 79.90 6.65 12.01 7.46 1.92 .65 

Source: Oudin (1970). 

Table 5.22 The First Three Latent Vectors of 
Elemental Percentages for Three Fractions and Four 
Locations After Varimax Rotation 

Element 1 2 3 

.2057 .6602 -.0728 

.5881 .2899 .0365 
C/H - .6201 .0832 -- .0817 
0 - .1240 -.6721 .0571 

- .0201 - .0180 .9784 
.4599 - .1454 -.1620 

Source: Hohn, 1979; reproduced with permission. 
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Table 5.23 First Two Latent Vectors of Fractions 
After Varimax Rotation 

Fraction 1 2 

Resin .0267 .9563 
Soluble asphalt .4914 .2410 
Insoluble asphalt .8705 -.1654 

Table 5.24 

Source: Hohn, 1979; reproduced with permission. 

First Three Latent Vectors of Locations After Varimax Rotation 

Location 1 2 

Echanay .9661 .0141 -.0036 
Ancerville -.0031 .0019 .9997 
Essises .1867 .6516 .0181 
Bouchy -.1783 .7584 -.0179 

Source: Hohn 1979; reproduced with permission. 

presence of H and S (which is also accompanied by a lack of C/H), the 
second reveals a contrast between C and 0, while the third represents the 
single element S. The remaining two tables are interpreted in a similar 
manner. The fractions yield two components (insoluble asphalt and resin, 
respectively) while the locations (listed in order of increasing depth) reveal 
three PCs correlated to Echanay, Essises and Bouchy, and Ancerville. 

The first element component (high H, S; low C/W) has a high weight 
(.8670) for the second fraction component (resins) and the first locality 
component (Echanay), but a high negative weight (- .9433) for the same 
elements for the first fractions component (insoluble asphaltenes) for the 
second locality component (Essises and Bouchy) as seen from the core 
matrix (Table 5.25). Thus we have high H, S (low C/H) in the resins for the 

Table 5.25 Core Matrix with Components for Elements, Fractions, and Localities 

1 2 3 

Element 

1 
Fraction 1 .0841 - .9433 .0233 

.) .8670 -.0291 .8957 
2 

Fraction 1 -1.0819 .2639 -.2327 
2 .0276 .7281 .1798 

3 
Fraction 1 -.5856 .2414 .6120 

2 -.1716 -.1282 -.1512 

Sour= Hohn, 1979; reproduced with permission, 
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shallowest sample (Esheney) but low H, S (high C/H) in the insoluble 
asphaltenes for the deeper samples (Essiscs, Bouchy). Similarly the second 
element component (high C, low 0) weights positively for the combination; 
resins (fraction component 2) and sample component 2 (Essises, Bouchy), 
but negatively for the combination of fraction component 1 (insoluble 
asphaltenes) and sample component 1 (Eschanay). Thus Hohn (1979) 
concludes that the shallowest sample is characterized by high H and S in the 
resins, and low C and high 0 in the insoluble asphaltenes. With depth the 
resins become richer in C and poorer in 0, whereas the insoluble asphal-
tenes become poorer in both H and S. The composition of a given sample 
appears to be a function of both depth and fraction, but the fractions do not 
appear to behave in an identical manner. The three-mode PCA thus serves 
as a useful exploratory tool and may provide information concerning 
interaction effects and possible contrasts. The three-mode PC model can 
also be used to perform an MDS analysis (Tucker, 1972). 

5.4.4 Joint Plotting of Loadings and Scores 

The loading coefficients of X TX describe the variable space and the scores 
contain information concerning the sample space. At times it is of consider-
able interest to be able to compare the two spaces. For example, we may 
wish to know which sample points are particularly influenced by certain 
variable clusters as represented by the first sets of PC loadings, and vice 
versa. Since the spectral decompositions of X TX and XX T  are duals, a PCA 
can provide useful information as to the interrelationship(s) between the 
sample space and the variable space. 

The most straightforward method of comparing the two spaces is by a 
visual inspection of the loadings and the scores (Example 16). Here large 
loading coefficients are matched with relatively high PC scores, with 
matches of equal signs denoting presence and those of opposite signs 
denoting absence of some variable space attribute in a particular sample 
point. Since both loadings and scores form orthogonal sets, unidimensional 
and multidimensional comparisons are possible. A two-dimensional joint 
plot of the (unit length) latent vectors of X I X and XX r  (loadings and scores 
of X TX) is shown in Figure 5.8. Such plots have also been called "biplots" 
(Gabriel 1971) and are most appropriate for small data matrices for which 
most of the information is concentrated in low-dimensional subspaces. Also 
since rows and columns of X represent different vector spaces, care must be 
taken when interpreting such plots, that is, when comparing overall 
proximities of the loadings and the scores. Although both sets of vectors are 
standardized to common (unit) length, the common coordinate system 
represents a somewhat artificial device. A joint plot, on the other hand, is 
not without utility. Frequently relative position is of interest, and here 
biplots can be used to compare relative distances between two sample points 
and all the variables, as well as the relative distances between any two 
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Figure 5.8 Joint plot of standardized principal component loadings and scores of London data 
of Example 3.6. 
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variables and all the sample points. Such plots are particularly useful in 
exploratory analysis since they can indicate broad, qualitative structure(s) of 
the data, model specification, and so forth (Bradu and Grine, 1979; Weber 
and Berger, 1978). 

The plot of Figure 5.8 is asymmetric, in the sense that rows and columns 
of X are not treated equally with respect to scale and origin. To obtain a 
symmetric joint plot of the loadings and the scores a variation of principal 
axes (coordinates) adjustment is at times used (Section 5.4.2). Introduced 
by Benzecri (1970) the method has become known as "analyses factoriele 
des correspondences" or "correspondence analysis" in English. It consists of 
adjusting the rows and columns of Y to the same origin and scale, which 
facilitates their joint plotting in a reduced space, usually two-dimensional. 
The distinctive feature of correspondence analysis however is that it 
considers a data matrix as a bidimensional probability distribution. First, 
each entry of Y is divided by the sum of all the entries, that is, Y is first 
converted to the matrix F with typical element 

Yij  

ij 	P 

E E y„ 
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Next, the relative frequencies f f. are adjusted for scale and location, which 
yields a matrix with elements 

where and f are row and column totals respectively. A matrix V of sums 
of squares and products can then be defined with elements 

-11—  f 

 vi jk 	11/417 	Vrk  

Owing to the symmetric adjustment of the variables and the sample points, 
the loadings and the scores of the matrix V can he compared mathematically 
on a more equal footing. Because of the constant-sum rows and columns the 
matrix V is of rank r = min(p — 1, n 1), and the smallest latent root is 
therefore zero (Section 5.9,1). For numerical examples and computer 
programs see David et al. (1977), Lebart et al. (1984), Greenacre (1984). In 
some countries, particularly France, the method has become a popular 
procedure for "data analysis (see Deville and Malinvaud, 1983). The 
method is pursued further in Chapter 9 in the context of discrete data. 

Several limitations of the method and its rationale emerge when it is 
applied to continuous random variables. First, because of the nature of the 
adjustments, the entries of the matrix F are considered in terms of 
"probabilities," an undefined concept when dealing with specific values of a 
continuous variable. To be theoretically meaningful the columns of V must 
first be broken down into discrete intervals, thus effectively destroying the 
continuous nature of the data. Also, the data must he nonnegative in order 
to be discretized so that positive frequencies can be obtained. The biggest 
objection to correspondence analysis of data matrices however lies in its 
implicit mispecification of the matrix Y, when columns constitute the 
variable space and rows represent a sample space. Owing to the symmetric 
nature of the adjustments, the rows and columns of V are assumed to 
represent a bidimensional sample, much in the same way as a contingency 
table. Such a representation is clearly of questionable validity for a sample 
taken from a multidimensional distribution. A comment of a more historical 
nature also seems to be in order. Although for discrete data correspondence 
analysis represents a straightforward (graphic) extension of PC/canonical 
correlation-type models (Section 8.5), this seems to have been somewhat 
obscured in the past (e.g., see Theil, 1975), perhaps because of the literal, 
nonstandard translation of statistical terms from French into English,* The 
result has been an overinflated claim of originality for the procedure. 

For example, a scatter diagram is referred to as a "cloud," (weighted) variance becomes 
"inertia," and so forth, 
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5.5 OTHER METHODS FOR MULTIVARIABLE AND MULTIGROUP 
PRINCIPAL COMPONENTS 

The previous section dealt with an extension of PCA to data sets that are 
cross-classified according to three criteria or modes—p random variables, n 
sample points, and t occasions or time periods. The PC loading coefficients 
can then be computed so that we can observe the interrelated and 
interactive structure of the data. Two other extensions of PCA are possible: 
when we have more than one set of variables, and when there are two or 
more samples. In this section we describe several methods that can be used 
to analyze simultaneously more than one data set. 

5.5.1 The Canonical Correlation Model 

Due to Hotelling (1936b), the canonical correlation model can be viewed as 
a generalization of PCA since it seeks to account for the multidimensional 
correlational structure between two sets of variates observed for the same 
sample. Consider two sets of variates X (1)  and X(2) , each containing p 1  and 
P2 random variables respectively. We assume that the variables are mea-
sured about their means, p i  <p2  and p 1  + p a  =p and both sets are observed 
for the same n sample points. The (n x p) data matrix can then be written in 
the vertically partitioned form X = [X (1) : X(2) 1, where X (1)  is (n x p i  ) and 
X(2)  is (n x p2 ). The matrix X I X can be expressed in the partitioned form as 

X( 2) ] 

= (x T )x(2)) T is a (p2  X p i  where X .(I2' ) X( i) 	 ) matrix. The objective of the 
canonical correlation model is to provide an internal analysis of the 
correlational structure between the two sets of variables. To derive the 
model we consider the p-component partitioned vector of population 
random variables: 

X =[X(/) . X (2) 1 1 	[X( 1)1 X(1)2  . . . X(1)0  k'(2) 1 X'(2)2  • • • X(2 )01 

with covariance matrix 

111 /12 

1.21 /22 

(5.52) 
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Then given X and X the problem of canonical correlation can be stated more 
precisely as follows; how can we compute a linear combination 

U = Cr iX( 01 	allX(1)2 -4-  • • • 4.  Ogr iX(tup t 7-7  OtTX(1) 

in the first group, and a linear combination 

t 
V = 131  X(  2) 	132X(2)22X(2)2 	13p2'( 2)1,2 - 13X (2) 

in the second, such that the correlation between the two linear combinations 
is maximized. Hotelling's (1936h) solution to the problem can he stated in 
the following theorem (see Anderson, 1958). 

THEOREM 5.8. Let 	be a (p x p) partitioned covariance matrix. The 
coefficients that maximize the correlation between the linear combinations 

- u a rX(I)  and v 13 T
X(2)  are the latent vector solutions of the systems of 

equations. 

(I I-11 12 1 2211 2i — A2)*  = 

(12-211 21 1 I-1 11 12 A2 )13  

where the matrices are as in Eq. (5.52) and A =g =0/ T1, 12 0 is the maximum 
correlation. 

PROOF. For simplicity assume both linear combinations are standardized 
to unit variance, that is, 

var(u) = E(u 2 )== gal X(1) X .:na =a 1 	1 

var(v) = E(v 2 ) = E( 13 tX(2)X'cr2)13) PTI2213  = 

The correlation between u and v is then given by 

E(uu)— E(or T X (11 x;r2) p)= a TI 12 11 

which is to be maximized subject to the constraint that u and v are unit 
vectors. We have the Lagrangian expression 

1 
--0L'I l2 0 	 - - -2 11(P'%2213  — 1) (5.53) 

and differentiating with respect to the coefficients and setting to zero yields 
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the normal eqrations 

= X120 -A 11 &=0 

.,. 
- I221= 0 ap 	12 

(5.54) 

(5.55) 

Multiplying Eq. (5.54) by A and Eq. (5.55) by 1, 2' and rearranging yields 

ALAI' Villa 	 (5.56) 

X221X2i451. 	 (5.57) 

and letting 2 = A and substituting Eq. (5.57) into Eq. (5.56) we then have 

( 1 11' 21 12 1421 X21 —A)&=0 	 (5.58) 

Alternatively we can write 

- 
- 

( X 2-2I X2t 	
1

/I1 /12 A )0 = 0  (5.59) 

where 42  = 	= 0 2 , the generalized multiple correlation coefficient(s) 
between the two sets of variates. 

Thus the largest (positive) correlation between the linear combinations u 
and u is the positive square root ofche largest latent root A;, the second 
largest is the positive square root of A -2 , and so forth until all A t  A 2  ' • ' 
-2 

Ap roots are known. The number of nonzero latent roots is equal to p(I 12). 

In practice both vectors Ot and can be computed from Eq. (5.58) since 

^ 	IIIX121/ 	̂2212'• 21  a 	 13— 	„, 
A 	 A 

(5.60) 

(see Exercise 5.7) and the normal equations (Eq. 5.58) suffice to carry out a 
canonical correlation analysis. In particular, one of the sets may be viewed 
as dependent and the other as independent, in which ease the canonical 
correlation model can be considered as an cxtention of multiple regression. 
In this situation the largest root A

, 
 viewed as the (largest) coefficient of 

multiple determination and the canonical weights as regression coefficients 
of one set upon the other. 

To observe better the geometric properties of the model, and to relate it 
to PCA, consider the partitioned sample matrix (Eq. 5.51). Let R 2  denote 
the diagonal matrix of sarnple latent roots r 21  (i = 1, 2, . , p,) where 11 are 
sample equivalents of A , that is r are solutions of the determinantal 
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equation 

1(X -I0X0) ) -1 (XT0 X(2) )(3q; I X(2) ) -1 (X'T2) X0) ) — rq( = 0 	(5.61) 

Let A and B represent sample equivalents of a and /3. Then the normal 
equation for A is 

XT( 1 ) X(21( X T2)X (2)) -1X (T2) X(1) A  = X (TI) X(1)AR 2  

or 

ATxT ) x(2) (xf2) x(2) ) - `34r2) X() A = Ai XT/I X(i) AR2  = R2 	(5.62) 

since ATX ) X(I) A = 1 by the normalization rule. An equivalent result holds 
for B. The two sets of coefficients are related by the regression relations 

A =1C(X (To X() ) -1 X (T1) X (2) B 

B=R -I (X (12) X(2) ) -1 X .(1.2) X0)A 
	

(5.63) 

The number of nonzero roots r2i  is equal to p(XT ) X (2) ), and corresponding 
to these values we obtain the two sets of standardized canonical variates 

Z(1) = X(1) A 	Z(2) = X(2) B 
	

(5.64) 

which are analogous to PCs except that they maximize multiple correlation 
coefficients between the two sets rather than the variance within sets. The 
matrices A, B, and R2  provide a spectral decomposition of the portioned 
submatrices of /I X. 

THEOREM 5.9. Let X TX be a partitioned dispersion matrix as in Eq. 
(5.51). Then the submatrices of X TX have the following spectral representa-
tion. 

(i) XT0 X(i)  = (A r)  

(ii) )4r2)X(2) 	(BT ) -111-  
(iii) XTI) X (2)  = (A1') - 1 11B -1  

The first two parts of the theorem follow from the normalization rule while 
part iii is a direct consequence of the spectral decomposition Theorem 5.7. 
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We can thus write 

Z (1.1 ); 1 1 i Z fri 1Z1( 2 ) 
' 

Z( 2 )1 - 	1 	 
42 )1(Ti ) : 42 ) Z( 4 ) 

[ AT  X(1; ) Xi I.  i A i Al.  X (I; ) X ( 2 IA 
` ' 	 . 

lp , R 
+ [ 	 

[R : I2 

zTz = 

laTvT v A  it Tyr v 
" '4‘'(2) 1"(1) 111  " /"( 2)"12)" 

(5.65) 

where tp , and 1p2  are (p 1  x p i ) and (p 2  x p 2 ) unit matrices respectively, and 
R is a (p 1  x p2 ) matrix with p l  diagonal elements I > r2  > • - - > r r, a 0 
and the remaining elements are zero. Roots corresponding to linear 
dependence assume values of unity and those that correspond to ortho-
gonality are identically zero. The diagonal elements of R can therefore be 
considered as latent roots of the bilinear form B TX (12) Xt o tt. 

An interpretation which is more in accord with regression analysis can 
also be placed on the diagonal matrix R 2 . Replacing Eq. (5.64) into Eq. 
(5.62) we have 

R2  = ITO X (2)( X I2) X ( 2 )) IX (r 
2 ) Z (1) 

= Z T  P 7 
	

(5.66) 

where P( 2  ) is a symmetric projection matrix. The diagonal elements of R 2 
 are therefore percentages of variance of the set X(1)  accounted for by the set 

X()) . Also, it can be shown that 

R 2  = 	) PO) Z( 2 ) 

where P = X(I) (X 1 1) X(1). Y 'XI' We also have the determinant 0) 	(  

I(X(T ) X(I) ) - 1 (XT" );2 01 -1 X(2)X0)1 

1,q1)X(2)(X '(12'  ) X(2 1))X(T2)X( 1 )1 
1,0-( l ) X(t ) 1 

IXT) ),P(2 ) X( 

IX To; )1 

(5.67) 

(5.68) 

which is the generalized multiple correlation coefficient representing the 
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variance of X (1)  accounted for by the set X(2) . A similar expression exists for 
the variance of X (2)  accounted for by X (1) . Thus either set of variables can 
be taken as the set of dependent (independent) variables. 

The matrices A and B which contain the latent vectors are akin to loading 
coefficients, since they relate the observed variates in both sets to their 
respective cannonical variates. They may be standardized to yield correla-
tions between the observed and the latent variables, much in the same way 
as the PCs. Using Eq. (5.64) we have 

(t(ro X(1) )A 

XT2) Z(2)  = (X (2) ;„ ) )B 

which can be used to obtain correlation loadings. 
Finally, a likelihood ratio test can be developed to test the equality of the 

latent roots much in the same way as for PCA, and this leads to a test of 
independence between the two sets of variates. We have 

Ho: X2 I  = 0 

H„:1 21 0 

or in terms of the latent roots (canonical correlations), 

Ho: p 21 . p,2 

Ha : at least one not zero 

The LR statistic is then given by (not to be confused with the term of Eq. 
(5.53) 

1 ( XTI) X(1)) -1T(i)X(2)(X(T2)X( , )r ' X(T2)x(1)  A - 

= 	(1 - ) 

IX TM X(1)1 

(5.69) 

where - 2In A approaches the chi-squared distribution as n--->oc. Bartlett 
(1954) has developed a multiplying factor which increases the rate of 
convergence. The approximate chi-squared statistic, given multivariate 
normality, is then 

1 
x 2  = -[(n -1) -- -7.4E  (m  + 	+ 1) In A. (5.70) 

with p i p 2  degrees of freedom. Equation (5.70) can be used to test for 
complete independence (all roots equal zero). To test the last p i  - q roots 
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let 

Then 

P 

A 

• 

= 1-1 2 

1 
= — [(n — 1) — (PI p2  + 1)] In A, 

(5.71) 

(5.72) 

is approximately chi-squared with (p l  — q)(p 2  — q) degrees of freedom. A 
further refinement in the approximation has been obtained by Fujikoshi 
(1977) and Glynn and Muirhead (1978; see also Muirhead, 1982) whereby 
the distribution of 

q _ 
% 2 = [n — q — (p, p2  + 1) + 2, r, - I In A 	(5,73) 

is approximately chi-squared with (p i _q)(p2 _q) degrees of freedom. 
Evidence suggests however that the canonical correlation model is not very 
robust against nonnormality (Muirhead and Waternaux, 1980). 

Example 5.12. Sinha et al. (1986) have used canonical correlation 
analysis to determine the intercorrelation(s) between a set of dependent and 
independent variables (seed germination, presence of fungi, and environ-
mental conditions) using n = 8135 measurements taken at grain bins in 
Winnipeg (Manitoba) during 1959-1967 (see also Sinha et al., 1969). The 
two sets of variables are defined as follows for p p + p2  = 6 + 6 = 12. 

Dependent: Set I (germination, field fungi) 

• = Percentage germinability of seed 
Y2 = Amount of alternaria 
Y 3  = Amount of cochlinbolus 
Y4 = Amount of cladosporiurn 
• = Amount of nigrospora 
Yt, = Amount of gonatobotryy 

Independent: Set II (environment) 

Y, = Month of collection 
Y8 = Bin number; one of two bins each containing 500 bushels of wheat 
Y9  = Depth of sample 
Yto  = Grain temperature C° at each depth 
Yil  = Location of sample (peripheral or inner area of bin) 
Yi  2 = Percent moisture of grain at each depth and location 
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Table 5.26 Latent Roots and Correlations and Bartlett's chi-squared 
Test for Wheat Data 

Pair of 
Canonical 
Variates 

Latent 
Roots (r,2 ) 

Canonical 
Correlations (r i ) x 2  Test 

Degrees of 
Freedom 

1 .836 .91 16049.3 36 
2 .107 ,32 1351.7 25 
3 .034 .18 425.2 16 
4 .013 .11 142.7 9 
5 .003 .05 34.6 4 
6 .000 .02 6.1 1 

Source: Sinha et al., 196R; reproduced with permission. 

The principal results appear in Tables 5.26 and 5,27. Since variables are 
measured in noncomparable units of measure, the analysis is based on the 
correlation matrix. All chi-squared values of Table 5.26 are significant at the 
a = .05 level, no doubt due in part to the large sample size. To identify the 
canonical variates the authors correlate these variables with the observed set 
(Table 5.27). Since there are two groups of observed variates (the depen-
dent and independent set) and two canonical variables per each multiple 
correlation, we have in all two sets of pairwise correlations per latent root. 
The authors conclude that location (with somewhat lower moisture) in-
fluences germination and reduces alternaria and nigrospora as well as 
gonatobotrys (first pair). Also the second canonical pair reveals some 
aspects of interdomain relationship not exposed by the first arrangement. 

Table 5.27 Correlations Between the First Two Pairs of Cannonical Variates and 
Wheat Storage Variables" 

Variables 

Canonical Set A Canonical Set Il 

Set 1: Dependent 	Set Independent Set I Dependent Set II; Independent 

y 1 ; Germination .57 .10 -.10 
Y. Alternuria -.49 - .09 -.15 

Y,: coehliobolus -,16 -.28 -.05 

Y 4 : Cladosporium .64 .12 

Y : Nigrospora - .37 .29 .05 
Y 6 : Gottatobotrys -.25 .15 

Y. Month - 09 .06 .43 

V,: Bin ,5 -.13 -.46 

Y.,: Depth -.15 
V „,; Tcenperaiurc .24 -.07 -.81 

Y, 1 : Moisture -.26 -.26 ,12 .12 

Y u : Location .15 .92 -,07 .13 

Multiple correlations 
	

r,= .91 	 r2 -- .32 

Source: Sinha et al. (1984 
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We may conclude that month, bin, temperature and location are involved 
with germination, alternaria cladosporiurn, and nigrospora in a bulk grain 
ecosystem. Canonical variables can also be rotated to enhance interpretation 
(Cliff and Krus, 1976). Unlike PCA, however, it does not make sense to use 
correlation "loadings" as an interpretive aid since in canonical correlation 
analysis the correlations between an individual variable and the canonical 
variate are redundant because they merely show how the variable by itself 
relates to the other set of variables. Thus all information about how the 
variables in one set contribute jointly to canonical correlation with the other 
set is lost—see Rancher (1988) for detail. CI 

5.5.2 Modification of Canonical Correlation 

The canonical correlation model of the previous section is normally 
employed to study direct correlations between two sets of variables, 
including the case when one set is viewed as dependent and the other as 
independent. Indeed the model can be obtained by an iterative regression 
procedure (see Lyttkens, 1972) and has been employed in simultaneous 
equation theory (Hooper, 1959) and discrimination (Glahn, 1968). Canoni-
cal variates can also be used in place of classification functions (Falkenhagen 
and Nash, 1978). At times a different objective arises, namely, to estimate 
those underlying and unobserved variates that have produced the intercorre-
lation between the two sets of observed random variables. Thus we may 
require an overall measure of relationship between two sets of variables. 
The procedure has been termed "redundancy analysis" (see Rencher, 1992). 
That is, analogous to PCA, we wish to maximize the correlation between v 
and X (1)  = (Xi , X2, . , Xpi ) T  and u and X (2)  = (Xpi 41 , X. . . Xp ) in 
order to maximize the explanatory power of the latent variables u and v. 
The classical canonical correlation model does not necessarily achieve this. 
Consider the linear combinations u TX  v = riTx (2)  such that 
aTa 1, but u and v are not necessarily unit vectors. The co-
variances between u and X (2)  and v and Xo I  are then given by cov(a TX (1) , 
X( 2) ) = aT2:12 and cov(13 rX (2) , – 13 112 , and to maximize explanatory 
power we can maximize the sum of squares of the 
covariances aiI12/2Ia  and plix, 2 0 subject to constraints aTa 13 1. 0 = 1. 
This is equivalent to maximizing the Lagrangian expressions 

(I) = a X12X2I a p.(aTa – 1) 

pTi2lE1213 - A(PT o - 1) 
	

(5.74) 

(see Tucker, 1958). Differentiating and setting to zero yields the normal 
equations 

001 Oa = 2X 12 1 2I ii – 2i& = 0 

atii/(30=2X 21 1, 120 2A0 =0 
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Or 

(1 1 2 1: 2 1 - 	= 0 

(X21E12 ;00= 0 
	

(5,75) 

that is, ix and 11 are latent vectors of 122and  (X 12 1. 21 ) T . Let A and B 
represent sample latent vector matrices. Then the sample equivalent of Eq. 
(5.75) is 

(X (T ) X (2) )(X (T2) X(1) ) = AL 2AT  

(XT2)X(I))(X(11)X(2)) BL 2BT 
	

(5.76) 

so that 

13 1-(X (1-2)  X (1)  )A = L 
	

(5.77) 

The matrices A and B contain left and right latent vectors, respectively, of 
the matrix X 1(2) X (1)  and 1, is the matrix of p, nonzero latent roots. The 
sample linear combinations with maximum correlation are then given by 

U = X( 1) A 
	

V= X(2) B 
	

(5.78) 

where V TU = L, that is, the linear combinations are biorthogonal. Using eq. 
(5.76) and (5.77) it can also be shown that 

U T X(2) X 1(1 2.  ) U = L 2  

VTX(1) X- I)V = L 2 	 (5,79) 

that is, U and V are latent vectors of X (2) X (T2)  and X (1) ,41., )  respectively (see 
Exercise 5.9). The decomposition (Eq. 5.79) can be viewed as the simulta-
neous PCA of the sets X(1)  and X(2)  since Eq. (5.78) implies that 

X = UAr + 8(1) 

X( 2)  = VB T  + 6(2 ) 	 (5.80) 

where ST1) 8(2)  = 0. By derivation it is clear that the vectors U and V are 
maximally correlated. 

The linear combinations u and v are not necessarily unit vectors. Van den 
Wallenberg (1977) has proposed a model which is identical to that of Tucker 
(1958) with the exception that u and u are normalized to unit length. We 
have 

E(u 2) E(UU 	aTI li a = I 

E(v 2 ) = E(VVT) = 0Tx22 0 =1 
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which replace the constraints in Tucker's model. The change in constraints is 
equivalent to maximizing correlations between the observed variates and the 
linear combinations (PCs). Differentiating the Lagrangian expressions and 
setting to zero yields the normal equations (Exercise 5.10) 

(1 12 1 21 + 	1 1 )(91  ° 

( 1 21 1 12 - A X 22 )13 - 
	

(5.81) 

5.5.3 Canonical Correlation for More than Two Sets of Variables 

The classical canonical correlation model described in Section 5.5.1 seeks 
linear combinations (canonical variates), one from each of the two groups, 
that are maximally correlated. As it stands the canonical correlation model 
cannot be generalized to more than two sets of variables since correlation is 
intrinsically a binary concept. Rather than define the model in terms of 
finding linear combinations that are maximally correlated, it is possible to 
define canonical correlation in terms of finding a single auxilliary linear 
combination (canonical variate), together with two different linear combina-
tions (one from each set) that are maximally correlated with the auxilliary 
canonical variate. Couched in this form, canonical correlation can be readily 
extended to any finite number of variable groupings, much in the same way 
as scalar coorelation is generalized by PCA. 

Consider p sets of random variables observed in a given sample. We then 
have the observation matrices X(1)  , X(2)  , „ . X( p)  where each matrix is 
(n x p 1 ). Let Z be a (n x 1) vector, which is not observed directly but is 
assumed to be related to the observed sets by the regression relations 

Z = X (1) A l +e l 	Z = X(2) A2 e2,. Z=X A +e (P) P 	P 

(5.82) 

Let Po)  Xo) (X0) XXXT0. )  be the orthogonal projection matrix for the ith 
equation. Then the variance explained by the set X o)  is given by 
7 Try 

iok -m 
v
o) (0 o
T 

I  XT )  }7, Also, we know X () (X T(i) X() ) - 1 X (Ti)  = 1.-m  
where Z(j)  is the (r x p3 matrix of standardized PCs of )4ri) X(1)  (Exercise 
3.20). Now, let Z* be a latent vector of one of the matrices 

such that it maximizes explained variance. Then 
Z* = 1 and 

7  Tv v T v  - lyT #7* 
za *  4.71.0) ( 	(i ) pt. (  ) 	i)  

R 2  — 	 — 
Z*TZ *  

(5.83) 

sincc thc latent roots of an idempotcnt symmetric matrix take on the values 
of zero or unity (e.g., Basilevsky, 1983). Also, as is known from regression 
theory 0 R 2  1, so that the latent roots of the projection matrix can be 
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viewed as the two extreme values of R 2 . Clearly, in practice Z* will rarely 
account for the entire variance of the p sets of variables. We then seek the 
best compromise possible, in the form of that vector Z which accounts for 
the maximal variance. Such a vector is given by the latent vector that 
corresponds to the largest latent root of the sum of projection matrices. 
That is, we select Z such that 

efE x (I) 
i=1 

() 	0  x 	rIX 0 )T }Z =1 1  )  
(5.84) 

More generally, the sum in Eq. (5.84) can also be replaced by a weighted 
sum. When Z accounts for the entire variance of the p sets of random 
variables we have 1, =p and Z in addition becomes the (common) latent 
vector of the p projection matrices. This approach to canonical correlation is 
from Carroll (1968). A review of this and other approaches is also given by 
Kettenring (1971). An advantage of this approach is that it links canonical 
correlation to the familiar concept of PCA when more than a single set of 
variables is present, 

5.5.4 Multigroup Principal Components 

Canonical correlation-type models consider a vertical partition (augmenta-
tion) of a data matrix. An alternative situation is presented when we have a 
horizontal partition, that is, when a common set of random variables is 
observed in two or more distinct groups or samples. The objective is then to 
compare PCs computed from the same variables but in different sample 
spaces. 

Several methods can be used to handle the situation of multigroup PCA, 
depending on the situation and objective(s) of the analysis. For example, 
when using PCA for classification or taxonomic purposes with g distinct 
groups of individuals, each group can be replaced by the mean vector, 
resulting in a (g x p) matrix which can be analyzed using R or 0-mode 
analysis. The procedure however should only be used when a broad analysis 
is of interest since all of the within-group variation is destroyed in the 
process. Since g groups could also represent samples from different popula-
tions, a PCA would presumably be preceded by a suitable test, for example, 
a test for equality of the covariance matrices (Section 4,2), 

A different objective presents itself when we wish to compare the 
similarity (disimilarity) of PCs for g distinct groups (populations)--for 
example, in the case of the painted turtle data (Example 3,3), when 
comparing morphological size and shape factors for males and females (see 
Pimentel, 1979). In this situation PC loadings (scores) can be computed for 
each separate group and then correlated across groups to reveal dimensions 
that are similar for the groups. For large g, and in the event of high 
intercorrelation between PCs from different groups, a secondary PCA may 
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further reduce the complexity of the data and reveal common structure(s) 
between the populations. If the groups represent samples from a common 
population, the data may of course be pooled into a single sample and a 
single PCA carried out for the pooled group. This however can be carried 
out in two distinct ways. First, the original g data matrices may be pooled 
(averaged) and a PCA carried out on the resultant covariance (correlation) 
matrix (e.g„ see Lindsay, 1986). Note that if the groups do not represent 
samples from the same population, the resultant PCs will he determined by 
both within and between group variation, resulting in a hybrid set of PCs 
which are difficult to interpret. Second, it is possible to combine the g 
sample covariance matrices into a single pooled covariance matrix. The 
advantage of this procedure is at times viewed as avoiding the mixing up of 
within and between group variation (see Thorpe, 1983). Since pooling is 
only legitimate when groups represent a common population, the advantage 
is probably more illusory than real. Finally, it should be pointed out that any 
form of pooling invariably results in a loss of information, and perhaps a 
better approach to the problem lies in stacking the g data matrices into a 
large r supermatrix. 

More recently attention has shifted to multigroup PC structures for 
groups that do not necessarily represent an identical population. First 
consider the case for two groups. The problem, in the present context, was 
first considered by Cliff (1966) and more recently by Krzanowski (1979). Let 
X I , X2, . . . Xp be a set of random vectors observed in two distinct samples 
of size n and m, respectively. We then have two (n x p) and (m x p) data 
matrices, which can be viewed as partitions of a larger data matrix X. Let 
the two matrices be denoted as X (0  and X(2)  . Then if both represent 
samples from similar populations, they should possess similar PCs. Let 

X(I) =Z(1) it'.1) + 6(I}' 
	X(2) = Z(2) A .(1 2), 	8(2) 

	(5.85) 

where 

A 	= I/2 13T 

111 ( 1 ) 	1-4 ( 1 ) 1- ( 1 ) 

	

AT 	
1/2 

 L 2 "2 	
T 

() 	2 
v  T 

	

2 	() P( ) 	and 	1-- (1 ).01.,••X ti) (1) Pw =1,(I) ,  

DT vT v 
IF (2) 41"(2)'1"(2) 1- (2) 	A-q2) (5.86) 

If the common latent vectors Po)  and P(2) are drawn from the same 
population, their degree of relationship can be measured by inner products 
or by cosines of the angles between them. This leads to the following 
theorem. 

THEOREM 5.10 (Krzanowski, 1979). Let 

HT(p .(1.1) p(2) )(p(Ti ) p(2) )TH = M 	 (5,87) 
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and U=1/(1) H where U is a unit vector, M is a diagonal matrix of r nonzero 
latent roots, and H represents orthogonal latent vectors. 

(i) The ith minimum angle between an arbitrary vector in the space 
of the first r principal components of the first sample, and the one 
most nearly parallel to it in the space of the first r components of 
the second sample is eos - rn '( i2 ) where m 1  is the ith latent root of 
(P(I)P(2)(P)Pc2))

T 
 • 

(ii) The columns U, 	, . . Ur  of U =11() H can be chosen to be 
mutually orthogonal vectors which are embedded in the subspace 
of the first sample. Similarly (P(2) PTo) )U i  and (P(2) P(12) )U 2 , 

. , (P(2) Pir2) )U, form a corresponding set of mutually orthogonal 
vectors in the subspace of the second sample. 

PROOF. From Eq. (5.87) we have vectors U=P(I) H which are generated 
by columns of Po) , Also P(2) P(12)  is the projection matrix which projects 
vectors orthogonally onto the subspace spanned by the orthogonal columns 
of P(2)', 

Let U= (P(2) P(12) )U be the projection of U onto columns of P(2) , that is t.) 
contains the projections of U in the subspace generated by the first r PCs of 
the first sample onto the subspace generated by r PCs of the second sample. 
Then from Eq. (5.87) we have 

) P ) 	M 
	

(5.88) 

so that the cosines of the angles Oi  that lie between U and 10 are given by 

11) i l  
cos 01 = lur}  = (U, U1 ) "2  

= [Uir(P( 2) P.(12.  ))( P(2 ) P12.  dUil "2 

 IU:r (P( 2) P (T2) )Ui l 112  

FLI T.  „T p El  I .  Np 	11. I 2 
ir 	)k (2) 11-  (2)./ (I)"/i (5,89) 

since U is a unit vector. It follows from Eqs. (5.87) and (5,89) that the ith 
diagonal element of M contains cos 20, and the minimal angle 0, (1= 
1, 2, . , r) between the two r-dimensional subsets is given by 

= cos'(m,)'" 

where 0 0 
The proof of the second part is left as Exercise 5.11. 

Thus the minimum angle between a vector in the space of the first r PCs 
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of the first sample, and the one most nearly parallel to it (in the space of the 
first r PCs) of the second sample, is given by .01  = cos -Am i ) 1 ' 2  where 
O_.???, .15. I is the largest latent root of (1 ) ) P(2) )(Plo) P(2) ) 1 . The latent roots 
m i  can therefore be used as measures of similarity between corresponding 
pairs of PCs in the two samples. Also ,m 1  measures global similarity 
between the two sets of PCs since 

i - 1 
Mi 	tr( P(i) PG))( P(I)r(2)) 

 

 

r 	r 

= E E co5-0. 
i=1 

(5,90) 

where 0;1  is the angle between the ith PC of the first sample and the jth PC 
of the second sample. The sum (Eq. 5.90) varies between r (coincident 
subspaces) and 0 (orthogonal subspaces). The similarities between two 
samples can also be exhibited through the pairs 10 = P (1) H and U = 
(P(2)1)T21 U, and 1)(1)  and P(2)  are interchangeable. The methodology can also 
be extended to more than two groups. 

THEOREM 5.11 (Krzanowski, 1979). Let h be an arbitrary vector in a 
p-dimensional space and let Ok  he the angle between h and the vector most 
parallel to it in the space generated by r PCs of group k (k = 1, 2, , g). 
Then the value of h that minimizes 

=C OS 
2

Ok  
k I 

is given by the latent vector h 1  which corresponds to the largest latent root 
of E gk _ i  Ak it il, where A k is the (p x r) matrix of loadings for the kth sample. 

PROOF. We have 

cos z Ok  = hAk  A Tkh T  

so that 

E cos% -- h(E Ak AkT)hT  
k = I 	 k 1 

wherc h can be taken as the latent vector that corresponds to the largest 
latent root of A k Alk . For greater detail, together with a numerical 
example, see Krzanowski (1979) 

This procedure for comparing PCs in several samples utilizes a two-stage 
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procedure (Section 5.4.2). Recently Flury (1984, 1988) proposed an alter-
native single-stage procedure for generalizing the PCA model to more than 
a single sample. Let 

Ho : 11 1 k Ii = A k 	(k =1, 2, ... g) 	 (5.91) 

represent the null hypothesis that all g populations possess p common latent 
vectors H and common PCs 

u r  = itlx k  

where Xk  is a vector of p random variables in the kth population. Given 
sample covariance matrices S i , S.,,. , Sg , the common likelihood of 1k, 
under appropriate assumptions, is 

1 
L(I 1' /2i 	II? ) C 	etr(— -I S k ) IT •-k1 k 	2 	(5.92) 

k-, 

where c is a constant and etr denotes the exponential trace (exponent of the 
trace). The log-likelihood ratio statistic for H the asymptotic chi-squared 
statistic 

X 2 = —21n 
L(S t , S2 , . 	Sg ) 

n
k  In  Sk k.z-1 

L(i. t 2 	ig ) 

(5.93) 

with (1/2)(g — 1)p(p — 1) degrees of freedom where i k  is the ML estimator 
of in the kth population. Let P 1 . P2 „ . P8  be latent vectors common to 
S 1 . S 2 , . . , Sg , Then 

gik 	
Si lt I , =0 	(k' 	2 ' 	P) 	(5.94) Pfl:[ 

I 	ik si 

where P TP= 1 and the group PCs are given by Uk = PkTX. The latent vectors 
are not necessarily orthogonal across the g groups; also, the sample 
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covariance matrix for the common PCs is given by 

	

Ck = Pl Sk P 	(k = 1, 2, „ , g) 	 (5.95) 

and the correlation matrix by 

R =D -112 C k  D -112 	(k = 1, 2, . . , g) 	(5.96) k 	k 	k 

where llk = diag(C k ). Correlation matrices close to 1 would then imply 
departure from Ho , that is, lack of a common PC structure. Since the 
analysis is carried out using sample covariance matrices, the eigenvectors 
have to be standardized to yield correlation loadings. The model has been 
termed by Flury (1984) as the Common Principal Components model since 
the underlying common dimensions represent a compromise solution for the 
g groups. In the event that covariance matrices are proportional (Section 
4.23) a common PC subspace can be defined for the g groups. Flury (1986a) 
has also provided statistical criteria which can bc used for testing purposes. 

Example 5,13. Flury (1984) presents a numerical example of his 
common principal components approach using Anderson's (1935) iris data 
(see also Fisher, 1936). Sample covariance matrices, ML estimates 
(under the restriction of common latent vectors), and common latent vectors 
are given in parts a—c and variances of the common PCs, latent roots of the 
Sk , and correlation matrices of common PCs appear in d and e. If the 
hypothesis of common PCs is to be maintained for all three populations, the 
1, values must lie close to the latent roots of the Sk. This is the case for 
sample 1 (versicolor) but less so for samples 2 (virginica) and 3 (setosa). The 
significance of the chi-squared statistic ,V 2 = 63.91 with 12 degrees of 
freedom confirms this initial impression. Further information concerning the 
intercorrelations between the common PCs is provided by correlation 
matrices R I , R 2 , and R3. 

Table 5.28 A Common Principal Component Analysis of Anderson's 
(1935) Iris Data 

(a) Sample Covariance Matrices 

Versicolor (n = 50) 

8.5184 18.2898 5.5780 
8.5184 _ 9.8469 8.2653 4.1204 

[26.6433 

S
1 — 	18.2898 8.2653 22.0816 7.3102 

5.5780 4.1204 7.3102 3.9106 



OTHER METHODS FOR MULTIVARIABLE AND MULTIGROUP COMPONENTS 	317 

Table 5.28 (Continued) 

Virginica (n 2  = 50) 

[ 40.4343 9.3763 30,3290 4.9094 
93763 10.4004 7,1380 4.7629 

30,3290 7.1380 30.4588 4.8824 
4.9094 4,7629 4.8824 7.5433 

Setosa (n 3 =50) 

[12,4240 9.9216 L6355 1.0331 
s  = 	9,9216 14.3690 1.1698 	.9298 

3 	1.6355 	1.1698 10159 	.6069 

	

1.0331 	.9298 	.6069 1.1106 

(b) MLEs of Population Covariance Matrices 

[ 18.
29.5860 

il l= 	7.3004 

4.6667 

40.6417 
i 7  = 	1 1 . 5 0 0 5 

27.8263 
[ 7.9275 

[9.4477 
i _ 	3.5268 

3  - 	4.5255 
1.2613 

7.3004 
7.4546 
6.6121 
2.8309 

1L5005 
11.0588 
8.8976 
2.8603 

15268 
10.2264 

- -2.5687 
.2601 

18.6600 
6.6121 

21.2145 
6.2692 

27.8263 
8,8976 

29.6478 
7.0677 

4.5255 
-2.5687 

9.5669 
2.1149 

4.6667 
2.8309 
6.2692 
3.2273 

7.9275 
2.8603 
7.0677 
7.4885 

1.2613 
.2601 

2.1149 
1.6793 

(c) Coefficients .  of Common Principal Components 

p = [

.7367 -.6471 -.1640 .1084 

- 
2468 .4655 -.8346 -.1607 
,6047 .5003 e 5221 .3338 
,1753 .3382 .0628 .9225 

(d) Variances l of CPC's and Eigen values of Si  

Versicolor: l , = 48.4602 7.4689 5.5394 1.0139 
Eigenvalues= 48.7874 7.2384 5.4776 .9790 

Virginica: l 	69.2235 6.7124 7.5367 5.3642 
Eigenvalues = 69.5155 5.2295 10.6552 3.4266 

Setosa: 131 	= 14.6444 2.7526 12.5065 1.0169 
Eigenvalues = 23.6456 2.6796 3.6969 .9053 
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Table 5.28 (Continued) 

(e) Covariance and Correlation Matrices of CPCs 

[ 48.4602 
r, 	_ 	3.4972 
'''' - 	-1.1931 

.7172 

3.4072 
7.4689 
-.3776 

.2049 

-1.1931 
-.3776 
5.5394 
-.3278 

.7172 

.2049 
-.3278 
1.0139 

1.000 .1791 -.0728 .1023 
_ 	.1791 [ 1.0000 -.0587 .0745 

-.0728 -.0587 1.0000 -.1383 
.1023 .0745 -.1383 1.0000 

r . 
[ 69.2235 

_ 	-1.6211 
-1.6211 

6.7124 
2.6003 

-1.9278 
-2.9062 

2.3514 
2' 2.6003 -1.9278 7,5367 -2,2054 

-2.9062 2.3514 -2.2054 5.3642 

D  

A1.2  

143  

_ 
- 

4--.  

[

14.6444 

[ L0000 
.0752 
.1138 

-.1508 

-.5682 
-9.9950 

-.2160 

-.0895 
[ 1.000 

-.7385 
-.0546 

-.0752 
1.0000 
-.2710 
.3919 

-.5682 
2.7526 

.0487 
-.4236 

-.0895 
1.0000 
.0083 

-.2532 

.1138 
-.2710 
1.0000 
-.3468 

-9.9950 
,0487 

12.5065 
.4235 

- .7385 
,0083 

1.0000 
.1188 

-.1508 
.3919 

-.3468 
1.0000 

-.2106 
-.4236 

.4235 
1.0169 

-.0546 
-.2532 

.1188 
1.0000 

Source: Flury, 1984; reproduced with permission. 

'The sample covariance matrices reported here were multiplied by ICY'. 

5.6 WEIGHTED PRINCIPAL COMPONENTS 

When estimating the model X = Z (, ) ATir)  + 8, the r common components Zoi 
 do not always account for the same percentage of variance of each variable, 

Thus some variables may have most of their variation explained by r 
common components, whereas others may witness a substantial part of their 
variance relegated to the residual matrix 8. This is because not all variables 
will be equally affected by sampling variation, measurement error, or 
natural variation in the population. Such error heteroscedasticity however is 
not taken into account when computing the PCs, and the values of the first r 
PCs are independent of r. Thus both precise as well as error-prone variables 
are treated equally since they receive the same weight, and this results in a 
misspecification of the model. 
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Let 

	

X = x + 	(1, 	 (5.97) 

where x and A represent the true and error parts, respectively. The 
covariance can thus be decomposed into two parts as 

	

X = X* + 	 (5.98) 

in conformity with Eq. (5.97), where the true part is a linear combination of 
r<p PCs, that is, 

	

x= ta 
	

(5.99) 

However rather than decompose X it is more valid to decompose the 
product 

‘If 
	

(5.100) 

since variates with greater (smaller) error variance should be given less 
(greater) weight in the analysis. Also, premultiplying by IP results in a 
unit residual "covariance" matrix, that is, homoscedastie and uncorrelated 
residual terms. As can he seen in Chapter 6 this bears a greater resemblance 
to a "proper" factor analysis model. 

Let n be a (p x 1) vector of coefficients. We wish to maximize the 
quadratic form 

H T/H  
A – n'qm 

Cross-multiplying and differentiating with respect to n yields 

(5,101) 

T 2■01,11 + —all  fl WEI = 2X1I 	 (5.102) 

so that the necessary condition for a maximum is 

(3A 	2(X – Atlf)11  0  
--- 	Efrgrin 	 (5.103) 

where we assume Erwin 7.› 0 for all 11 O. The normal equations can then 
be written as 

(X – kt1)111= 0 	 (5.104) 

so that 11 is the latent vector of X (in the metric of IP) which is associated 
with the largest root A (Section 2.10), Alternatively Eq. (5,104) can he 
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expressed as 

(IP 	— 	= 	 (5.105) 

where 1-1 is the latent vector associated with the largest latent root of the 
weighted matrix %V I I. Using Eq. (5.98), the normal equations can he 
expressed in yet a third form as 

[‘lf 	+ 	— AlJfl = [ 11, 	— 141 = 0 	(5.106) 

from which it is evident that only linear combinations that correspond to 
A> 1 need he considered. Also, the error covariance matrix IP need not be 
restricted in any fashion—for example, it need not be diagonal or corre-
spond to homoscedastie error terms. When is constrained to be diagonal 
however we obtain an important class of factor analysis models discussed in 
Chapter 6. Note also that the quantity 

1 
I = —2 In A 

= —
1

In 	
ni

. (5.107) 
2  illimi 

can be interpreted as a measure of the degree of information between X and 

X 
When using weighted PCs with sample data a difficulty arises with respect 

to the estimation of IP. Generally speaking, prior information is required, 
which usually takes the form of specifying a value for r, although for 
multivariate normal data the latent roots can be tested for isotropic structure 
and the number of common factors can therefore be determined (Section 
4.3). Once the number of common components is known (given), the matrix 
AP can be estimated jointly with the latent vectors, usually by iteration. Note 
that the loading coefficients are no longer independent of the number r of 
common PCs as is the case for the ordinary principal components model of 
Chapter 3. An advantage of the weighted principal component model is that 
it is invariant with respect to changes in the units of measure, so that both 
the covariance and correlation matrices, for example, yield the same set of 
correlation loadings. Once the loadings and the scores are known, nothing 
new arises as to the interpretation or the use of the weighted principal 
component—for an example see Datta and Ghosh (1978). 

An alternative way of considering a weighted principal components 
analysis is in terms of an oblique Euclidian space, which generalizes the 
usual orthogonal Cartesian coordinate system (see also Section 5.4.1). 

	

THEOREM 5,12. Let v 	v .1= N., tr,.„ v 1,2,• • 	3/ 2 = CY21 Y221 • • • Y2p) 

. . . , and y, = 	y,, 2 , 	, yup ) be ri points in an oblique Euclidian 
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space, with squared interpoint distances given by (y, — O TT -1 (y 1  — O for 
T positive definite. Then the optimal-fitting subspace of the n points is given 
by the solution of (X TX — f,F)Q. = 0, where i = I, 2, . , r and the goodness 
of the tit is measured by the ratio R 2  = E J  1,12.4 I,. 

PROOF, Let vi  = Qy i  represent a linear transformation of the n points, 
where Q is a matrix of latent vectors of X TX in the metric of F. Then 
y, = Q T V, and we have, for the ith and jth points, 

(Yi Yi)
T
r 1

(Y . 	1) = (Q
T 	

Q
T 
 v,) r

- 
 t() 

= 	vi )TQr 	 v1 ) 

= t r(r Ix x) 

where the latent vectors can be chosen such that QTTQ, = 1 and Q,TFQ j  = 0 
for i j (Section 2.10). The sum of squares of interpoint distances are thus 
given by 

PI 

EE (t, - 	- v1 ) = v 1 + 2 + ' • - 	) 

and the optimal fit is then provided by the first r latent roots and latent 
vectors of X TX, in the metric of r 

5.7 PRINCIPAL COMPONENTS IN THE COMPLEX FIELD 

It was shown in Section 2.11 that we can define a multivariate normal 
distribution using complex random variables. A further question arises as to 
whether it is possible to extend PCA to cover the case of complex variables 
together with its general interpretation, distribution theory, and testing. It 
turns out that the formal extension of PCA to the complex field is 
straightforward, Let X be a vector of random variables with covariance 
matrix E(XX T ) = If a random sample is available, the unbiased estimator 
of is S =  '  1  A where A is the matrix of sums of squares and products of 
the sampled random variables. The population latent vectors are then 
obtained from the Hermitian matrix together with the corresponding 
latent roots (Section 2.11.1), that is, 

IIT fl =A 
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where 

f 1 if = 
TO if 

and A is a (real) diagonal, nonnegative matrix. Corresponding sample 
estimates are then obtained from matrix S. that is 

PISP = L 

where (unstandardized) PCs are obtained as the linear combinations P,TX,. 
Nothing new emerges in practice when using complex PCs—for time series 
application see Section 7.7. Hardy and Walton (1978) use principal com-
ponents to analyze wind speed and wind direction where exponential 
notation is used to relate speed and direction within a single complex 
number z = xe i°  , where x is observed wind speed and 8 is the observed wind 
direction. Gupta (1965) has also extended the usual hypothesis testing to the 
complex case including Kshirsager's test for a single nonisotropic PC 
(Section 4.3.3). 

5.8 MISCELLANEOUS STATISTICAL APPLICATIONS 

Aside from being used in analyzing data, the PC model can also be 
employed in conjunction with other statistical techniques, such as missing 
data estimation (Section 4.7.3) or regression (Chapter 10). In this section 
we consider several applications of PCA which are intended to solve specific 
statistical difficulties in areas other than factor analysis. First we consider 
certain optimality criteria. 

5.8.1 Further Optimality Properties 

Let Y be any (n x p) matrix. Then we wish to find a matrix i such that the 
error matrix E = Y – Y is as small as possible. We chose the Euclidian 
(Frobenius) norm 

hEll = 	, P, 1  e;.]" 2 
	

(5.108) 

which is to be made a minimum. 

THEOREM 5.13 Let Y be any (n x p) real matrix such that Y = Z (1) P ) 

 and i = 1, 2, . , r p Sn, Then IlElf IlY – 	is a minimum when 
Z ( T ) P ,) where the columns of Z (r) and P(1) are the first r PCs and latent 

( 

vectors respectively. 
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PROOF. We have (Exercise 5.12) 

I1Y11 2 =11Y -  C7 11 2  
11Y ZoP1(:)11 2  

= tr(Y - Z (,) 11 ,) ) 1.(Y Zo.) 11[0 ) 

= tr(Y T Y - Y TZ(oP(c)  - 13(04) Y + P(ot(1,.. ) ,Z(r) P"(1,. ) ) 

tr(Y T Y - Poleo. ) ;,. ) PT0. )  

= tr(Y TY) - tr(P(, ) ,Z T(r) Z (o PT01 ) 

= 	- tr(Z (ToZ(0 ) tr(P.(1,-. )P(0) 

which is minimum for a PCA (Theorem 3.9) see also Okamoto (1976) and 
Ozeki (1979). 

For each latent root a PCA provides the hest unit rank least squares 
approximation for any real matrix Y. The result is also given in Rao (1964); 
Gabriel (1978) provides several alternative but parallel formulations of 
Theorem 5.11 For further results within the context of quality control see 
Hanson and Norris (1981). A more general problem is to minimize the 
weighted norm 

I1W * ( Y ZcoPcroll 
	

(5.109) 

where the asterisk denotes the Hadamard (element by element) product. 
Equation (5.109) is related to the missing value problem when all elements 
of W assume the values 0 and 1 (Section 4.7.3). An iterative algorithm for 
minimizing Eq. (5.109) is provided by Gabriel and Zamir (1979). Gabriel 
and Odoroff (1983) have also considered a robust version of Theorem 5.12 
by considering robust averages such as trimmed means and medians, which 
can be used in conjunction with a data matrix to carry out a (robust) PCA 
(see Section 4.7.1). 

Optimal latent roots and latent vectors of a symmetric matrix can also be 
obtained under restrictions. 
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THEOREM 5.14 (Rao, 1964). Let S be a symmetric (p x p) matrix and U 
a (p x k) matrix of rank k. Also, let VI  , V2  , . Vr  be p-dimensional vectors 
satisfying the restrictions 

11 	j 
bvTvi = to 	Jo; 

(ii) 	 VTU = 0 	(i = 1, 2, . 	r) 

Then the maximum of 

vTsv, + v,Tsv, + - - - + v,Tsv, 

	

is attained when V;  = R i  (1= 1, 2, 	r), the ith latent vector of the matrix 
[I — U(U TU) L UT 1S = [I — Pu ]S. The maxima are then the sums of the latent 
roots of [I — PidS. 

The proof consists of showing that the latent roots of (I — P„)S are the 
same as those of the symmetric matrix S 112(1 — P)S 1/2 . The result can be 
generalized to oblique (weighted) coordinates by considering the weighted 
expressions VflV, = I and VVi  = 0. 

5.8.2 Screening Data 

Principal components can be used as diagnostic aids in uncovering multi-
variate outliers and measurement errors in multivariate data. Consider the 
matrix X +  = (X TX) -  'Ye for nonsingular X TX. Then X +  is known as the 
(unique) generalized inverse of the (n x p) matrix X (Section 5.2). Aside 
from its use in multivariate regression X +  can be employed to spot 
multivariate outliers in a data matrix, since a high value of the ith and jth 
elements of X +  indicates the ith sample point's value for variable j is not 
consistent with its values for the remaining variables. The inverse X +  is 
therefore sensitive to deviations from a multivariate pattern. 

Example 5.14. Consider the matrix 

[ —3 —2 
—2 —1 
—1 	1.5 

	

X= 	0 —0.5 
1 	0 
2 	1 
3 	1 

for p = 2 variables and n = 7 sample points (Gabriel and Haber, 1973). 
Although no observation appears to be an outlier, the third sample point is 
distinct from the rest. Forming the generalized inverse and transposing 

( I) 
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yields 

[ —.041 —.161 
—.056 —.037 
—.200 +.400 

(r)T  — +.043 —.105 
+.071 —.086 
+.056 +.037 
+.127 —.048 

where it is apparcnt that the third row is a multivariate outlier. 

In Example 5.14 the matrix X is assumed to be of full rank. When 
p(X) = r<p .15 n and X +  can no longer be computed in the usual way, a PC 
decomposition can he used to obtain the more general expression X +  = 
(X1 X) + XT  where (X TX) is the generalized inverse of X rX. Let Q TXP = 
4(, )  be the singular value decomposition of X (Theorem 5.1) where p(X) = 
r<p <n. Then it is east),  to verify that (X T X) +  = PAgP1  is a unique 
generalized inverse of (X X) so that 

X +  = (X I X) + X t  

PAIP 

DA  - ! iv 
= '01‘e 

where A (r)  is defined as in Theorem 5.1. The generalized inverse X + can be 
used to estimate a regression equation when the explanatory variables are 
not linearly independent (Section 103). 

A principal components analysis can also be used to devise a testing 
procedure for detecting errors of measurement in the observed variables. 
Consider the PC decomposition (Eq. 3.1) where the variables X i  are given 
by 

( j 1, 2, ... p) where xi  is the true part and 6 1  is the error part. We then 
may wish to test 

325 
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for some j. Consider the standardized PCs 

= (irti /V-A--;)X 1  + (viz  /la; )X2  + - • - +  

= Or21 /NI:COX' + (ir22i1A-2)X.-2 + • ' • + (ir2p f1rA-2)Xp 
‘I, = (frp , /ITAT,)X 1  + (irp2 1VAT,)X2  + • • • + (irpp  /VAT,)Xp  

where for the sake of convenience the roots are ranked as A 1  A2 	5-- 

A p . Also note that the "standardized" coefficients 	represent re- 
gression-type loadings rather than the usual correlations between the 
variates and components (Section 3.8.2). Clearly the first set of PCs 
correspond to small roots that contain most of the error information. When 
the unobserved values xi  represent standardized N(0, 1) variates, replacing 
Eq. (5.112) into Eci, (5,110) yields the hypothesis 

Ho ; Ce  = 0 

Hu: ‘i =  E 	 (5,113) 

which is equivalent to Eq. (5.111). The coefficients of Eq. (5,112) that 
correspond to small roots can also be rotated using an orthogonal trans-
formation such as the varimax criterion in order to locate large error 
coefficients. Although of theoretical interest, the testing procedure cannot 
always he translated into practice since the true parts are generally not 
observed. However, if a previous "calibration" sample is available for which 
the true parts arc known (or have been estimated), then the system of 
equations (Eq. 5.112) may be used to estimate the influence of errors in 
further samples. 

5.8.3 Principal Components in Discrimination and Classification 

The classical problem of discriminant analysis is well known. Given p 
random variables observed for g groups of sample points, each with n, 
observations (t = 1, 2, „ g), is it possible to compute functions of the 
random variables which "discriminate," in an optimal manner, between the 
groups? If so, and given a further set of observations, the discriminant 
function(s) can be used to classify the new observations with a minimal 
probability of error. Various solutions of the problem may be found in 
standard texts of multivariate analysis (e.g. see Anderson 1984a). 

Principal components analysis can also he adapted to perform a similar 
role. Thus from the viewpoint of PCA the situation is as in Section 5.4.3, 
where p identical random variables are observed for t groups or classes, 
each with n, observations. The idea is to first estimate r <p principal 
components for each group, and then use least squares regression to 
compute t equations for the new observation vector y = (yi, Y2, • • • 

(5.112) 
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using the loadings as independent variables (Wold, 1978; WoId et al., 1982). 
Group membership is then decided upon using a goodness of fit statistic of 
the regression equations. Thc procedure is also at times referred to as 
disjoint principal components analysis and has been used in medical and 
biochemical research (Dunn and Wold, 1980; Duewer et al., 1978) where it 
appears to possess advantages over classical discrimination. A major 
application lies in drug research, where the objective is to be able to relate 
chemical structure and function of organic molecules so that unobserved 
medical (biological) properties of molecules can he predicted without having 
to synthesize their structure (Dunn and Wold, 1978). The result is often a 
saving of time and effort in pursuing unfruitful lines of research. 

Other variations of classification using PCA are also possible, where the 
loadings (scores) are used to cluster the variables (observations) (Saxena and 
Walters, 1974; Cammarata and Menon, 1976; Mager, 1980a). Also, when 
performing a hierarchical cluster analysis of the sample points, PCA can be 
used to reduce the dimensionality of the variable space. When using PCA in 
a cluster or classification analysis it is also of interest to consider heterogen-
ous populations that consist of mixtures of more fundamental, homogeneous 
populations. For example, let V be a k-dimensional random variable 
distributed as a mixture of two normal distributions, with mixing parameters 
p and q = 1— p, means ti. 1  and p..2 , and common covariance matrix X. Let A 
denote the Mahalanobis distance between the two normal components of 
the mixture. Then 17  has covariance matrix 

V= pqddl  + X 	 (5,114) 

and 

42 = 	— 112)1 	— RO I  

= di le 

where d = (R I  
Consider the spectral decomposition V= A i n, 	+ A2 1r,1r2T  + 	+ 

Aork Tr,,T. where 1 --sr < k terms are retained. Then the (squared) 
Mahalanobis distance in r-dimensional subspace is 

(TrTd)2  [1
pq 	

(Tr iTd) 2 1 

	

A 	

-1 

	

, 	 A 1 
(5,115) 

(Chang, 1983). The PCs that best discriminate, between the two populations 
are therefore those that correspond to large values of (a il  d)2 /A i , assuming 
possesses distinct roots. The distance between the mixture components 
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based on the ith PC can then be tested as 

= 0 

II a : A i  0 

using the likelihood ratio test. It can also be shown (Wolf, 1970) that 
sampling from discrete mixtures is related to the so-called latent class model 
(Section 6.13). 

5.8.4 Mahalanobis Distance and the Multivariate T-Test 

It was seen in Section 5.6 that distance in oblique Euclidian space is given by 
(y, — y i ) (y, — y i ) where F contains lengths and the nonorthogonal 
orientations of the coordinate axes_ Let r.S, the sample covariance 
matrix. Then the expressions 

di/  = (y, Yi ) TS -I (Y, Y ) 
	

(5.116) 

and 

y -rt s  i yi  
cos 0 — 	  

1(Yi S  Yt)(Yj S Yj) 
(5.117) 

are the Mahalanobis distance and cosines between the points y, and y r 
 respectively. Equations (5.116) and (5,117) take into account the unequal 

variance and correlation amongst the variables. A special case of Eq. 
(5.116) is the multivariate T 2  statistic 

(rz — 1 ) 	= (37—  PO I'S 
	

(5.118) 

When S is not diagonal it may be advantageous to decompose S -1  into 
principal components. We have 

(n 1)1 2  =- 	— TS'( — 

= (Jr' — 1,0 1 (PL 'P r (ir — 10) 

[L " 2P'(5r PON, "2PT(Sr POI 

(5.119) 

where Z is a ( p x 1) observation score vector for the components. The 
individual t are uncorrelated and are analogous to the usual univariate t 

statistic. An advantage of using t i  rather than T 2  is that for even moderately 
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correlated random variables T 2  may consist of insignificant dimensions, that 
is, much (or most) of the significance may he concentrated in a few 
components. it is then possible to accept Ho  using T 2 , in spite of significant 
mean difference(s) among some dimensions. On the assumption of multi-
variate normality, t are univariate chi-squared with unit degrees of 
freedom, and the T 2  statistic can be replaced by either t t; . . , t ,2  or t 21 , 

+ t22", • • • and t 	t; + - - - + t where the sums are distributed as 41) , 
2 	2 

X/2), • • • X ( r ). The decomposition can also be used to establish multivariate 
confidence intervals. Since the decomposition is not independent of the 
scaling of coordinates, the sample covariance matrix can be replaced by the 
correlation matrix in the event of large differences in the variances. The PC 
transformation has been used by Jackson (1959) in the context of multi-
variate quality control to test for significance in sample means. 

Example 5.15. The following example is considered by Takemura 
(1985). We have n = 60 male students with scores for p =-- 6 different tests 
(Y 1  = English, Y 2  = reading comprehension, Y 3  = creativity, Y4  =- 
mechanical reasoning, Y 5  = abstract reasoning, Y6 .= mathematics). Group-
ing the students into two groups, depending on whether they intend to go to 
college, we have the following means and pooled sample covariance matrix: 

-17 1 	ir 2 	-Y.  3 
	

ir 5 

Group A 87.15 38.78 11.68 15.06 10.83 33.26 
Group B 81.38 31.04 9.70 12.58 9.62 20.96 

111.46 
56.96 67.22 

S = 
18.87 
11.24 

17.28 
9.93 

14.47 
6.30 9.65 

10.15 7.76 1.76 2.67 4.74 
60.08 49.64 14.5.5 12.86 10.94 81.41_ 

The latent vectors, latent roots, and t .;2  values for the six variables are then 

Pt  P2 P3 P4 P5  Po  

.66 - .72 -.19 -.02 .02 .03 

.48 .24 .79 -.27 .08 .04 

.15 .03 .22 .76 -.54 -.24 

.10 .11 .01 .59 .72 .33 

.08 .06 -.06 -.00 .44) -.90 

.53 .63 -.53 -.06 -.15 .06 
208.9 36.07 24.34 11.61 5.30 2.72 

15.5 14.5 .81 .005 .07 1.69 
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where T 2  = 32.56 is significant, but only the first two components have 
significantly different means, at a = .05. The first dimension differentiates 
academic subjects whereas the second contrasts English and mathematics, 

5.9 SPECIAL TYPES OF CONTINUOUS DATA 

In certain disciplines, for example geology, ecology, archaeology, and 
chemistry, the random variables may he expressed as either proportions or 
angular directions. Such data possess specific features not usually found in 
other types of continuous random variables, and consequently modify the 
structure and interpretation of a PCA. 

5.9.1 Proportions and Compositional Data 

Much of scientific data consists of concentration measurements such as parts 
per million, milligrams per liter, proportions (percentages), and so forth. 
When the concentrations do not add up to fixed constants ("closed arrays"), 
no special difficulties arise as to a PCA of the data, apart from the unit of 
measure problem and the effect(s) of additional transformations which may 
be required for approximate univariate normality of the variables. As was 
seen in Section (5.4.1), data expressed as proportions may also necessitate 
the use of cosine measures rather than covariances or correlations, par-
ticularly when performing a Q-analysis of the sample points (Imbrie and 
Purdy, 1962; Erez and Gill, 1977). When the data are nonlinear, for 
example, exponential, the logarithmic transformation will also tend to 
reduce variance differences as well as improve normality (see Hitchon et al., 
1971). The transformation is particularly appropriate when measurements 
are distributed as the log-normal probability function, for example, sedi-
ment particle size (Klovan, 1966) or money income in economics (Aitchison 
and Brown, 1957). Here a rotation of axes will also be typically used for 
identification purposes (e.g., see Hudson and Ehrlich, 1980). Also when 
dealing with rates and proportions (Fleiss, 1973) the inverse sine trans-
formation may be used in place of logs, but the practice does not seem to be 
common in factor analysis (see, however, Goodall, 1954). 

Frequently proportions (percentages) represent an exhaustive analysis of 
a set of physical samples, for example, chemical composition of rocks or 
minerals (Le Maitre, 1968; Miesch, 1976a). Such numbers are said to form a 
(positive) simplex (Fig. 5.9). Here the row sums of Y are constant, and this 
introduces additional difficulties into a PCA, over and above those en-
countered when interpreting a correlation (covariance) between open arrays. 
Consider two variables x, >0 and y i  >0 such that xi  + yi  = 1 (1= 
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Figure 5.9 The equilateral triangle of possible points in a mixture y, -1-y 2  -4- y3  ----= I. 

1, 2, . . . , n). Then we have 

E xi y i  = E x, E 	0 	 (5.120)  

since O:5. 4 0:5. x,2. 75, xi  1, and for uncentered measures of association, constant-
sums introduce positive association even when x i  and yi  are independent. 
Likewise for centered data the sums of products are 

E x i)), = E x, - xi2 

(5.121) 

a negative quantity. It follows from Eq. (5.121) that the covariance function 
is always negative since 

E coy(xq  x.) = —var(x ) < 0 	(q = 1, 2, ... k) 
	

(5.122) 
‘011 

The "bias" implied by Eq. (5.122) or Eq. (5.120) may be removed by 
deleting a column from Y, but this has the disadvantage of rendering a PCA 
dependent on the variable which has been deleted. Closed arrays are 
consequently analyzed either by considering the total data or by transform-
ing the proportions to induce "independence." 

THEOREM 5.15 Let xit  + x12  + • - - + Xik  T (1 1, 2, ... n) where 
XTX = (n — I )S. Then 
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(1) XTX possesses a zero latent root with a corresponding latent 
vector whose elements can all be chosen to equal 1/Vic. 

(2) The latent vector elements that correspond to nonzero latent roots 
sum to zero. 

PROOF 

(1) Let X1, X 2 , . „ Xk_ be linearly independent. Then .  the set XI, 
X 2 , . . . , X k  _1, Xk  is linearly dependent and p(X X) = k — 1, 
implying that X i X possesses a zero latent root. The statement also 
follows from the fact that the row (column) sums of X rX are 
identically zero. Let V= (u 1 , u2 , 	, uk )T  be the corresponding 
latent vector. Then (X TX)V= 0 or 

v l ( xTx 1 )+ v2 (xTx 2 ) + • • + uk (xTx4 ) = 
(k2rX 1 ) + u2 (k2rX 2 )  + • • • + uk (X; Xk  )  = 0 

v 1 (X 1 ) + v2 (x1;x 2 ) + • - - + v4 (xTk x k ) = 

where 

= —E (x:•x,), 
ewe 1 

(x .,rx,)= E (X -2rX i ), • , ( 
jo2 	 ik 

using the closure constraint (Eq. 5.122) where X I  = X 2  = • ' ' • 0. 
We than have 

(v 1  — v2 )XTX 2  + 	— v3  )XTX 3  + • • + (v — u k  )3(5‘ k  = 0 
(v,- vox,rx, + (v 2  - vox,Tx, + • • • + (v 2  — )XT2  X k  =  0 

(uk  u l )kkrX + (uk  1.12)X .1r X2 + • + (v k  — U k ))( 1.k  Xk_! = 

so that a solution can always be chosen such that u l  = u 2  = • • - 
uk . Standardizing we conclude that V* = (1/1rk, 1/ 	. , 1/1fic) 1  
is a latent vector that corresponds to the zero latent root. 

(2) Let P. P,. . , Pk _ 1  be the latent vectors that correspond to the 
k — 1 nonzero latent roots of X TX. Then (X TX — 	= 0, and for 

0 we have 

(XTX 1 )p 11  + (kir X 2 )p21  + • + (k)Ek )pki  = lip,/  

(XT1 )( 2 )p l1 + (X 12-X 2  )p2i  + 	+ (X2' Xk )pki  lip2i  

(X TI X)p o  (X2T X)P21  + • • • + (X lic. X0Pki = 11Pki 
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Adding, we obtain 

k 	 k 	 k 	 k 

P11 E x 1  x /I + p2) zd  X 2 Xh + • • • + plc/ 2.., X k X h = 1j E pij 

Or 

p v(0) +p4(0) + • • • + pki(0) = 0= 11 ± 

so that E k  p. =0 (j = 1, 2, . 	k) when IO. 
It follows from Theorem 5.14 that the columns of X lie in a 

k — 1 dimensional hyperplane, with perpendicular vector r" = 
(1/V-k, 1/0-c, , 1I\'). The situation is not unsimilar to that 
found in allometry when measuring overall size, except for 
compositional data, the constant-sum constraint does not account 
for any variance. The results of Theorem 5.14 hold for the 
covariance matrix (XTX) and do not necessarily extend to other 
association matrices. 

It may also be difficult to interpret covariance/correlation 
coefficients for proportions (particularly when dealing with 
compositional data). To overcome the difficulty Aitchison (1983, 
1984) employs a logarithmic transformation which at times im-
proves linearity and normality. The transformed data are then 

ln x 	In x. 	(j —1, 2, . . , k) 	(5.123) k , 

so that the transformed data matrix is given by 

X = ln [4: (y)] 
	

(5.124) 

where Si= (y 	yp )"P is the geometric mean of an observa- 
tion vector (Section 3.7). Equation (5.123) preserves the zero-sum 
property of the second part of Theorem 5.14. Although its 
application may be of theoretical interest, it does not necessarily 
result in very different PC loadings than would be obtained for the 
nontransformcd proportions (see Joliffe, 1986). Finally, when 
analyzing compositional data important considerations may be (1) 
measurement or rounding error in the proportions, and (2) the 
type of association matrix to use. Small errors in the constant-sum 
constraint may have a disproportionate effect on the properties of 
Theorem 5.14 and may render the computations unstable. Also, 
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even though proportions are unit-free numbers, using covariances 
may yield loadings and scores that are heavily influenced by the 
diagonal elements of S, that is, by the relative abundance or 
scarcity of the individual constituents that make up the composi-
tions. 

Example 5.16. The following data represent samples of a rhyolite-basalt 
complex from the Gardiner River, Yellowstone National Park, Wyoming 
(Table 5.29). Using both the covariance and correlation matrices we have 
the latent roots and latent vector structure as in Table 5.30. 

Converting the covariance latent vector elements of P 1  to correlation loading 
coefficients indicates the dependence of the vector on the variances of the 
oxides, that is, on their relative abundance (scarcity). Also, the departure of 
the elements of P8  (Table 5.30) from the constant value .35355 also indicates 
the sensitivity of the constant sum vector to small errors which are present in 
sample points 6, 11, 15, and 16 of Table 5.29. For a related application see 
also Flores and Shideler, 1978). 

Table 5.29 Compositional Percentage Data Consisting of p = 8 Measurements 
and n = 15 Samples 

SiO Al 203  FeO MgO CaO Na20 K 2 0 H 20 Totals 

51.64 16.25 10.41 7.44 10.53 2.77 0.52 0.44 100,00 
54.33 16.06 9.49 6.70 8.98 2.87 1.04 .53 100.00 
54.49 15.74 9.49 6.75 9.30 2.76 .98 .49 100,00 
55.07 15.72 9.40 6.27 9.25 2.77 1.13 .40 100.01 
55.33 15.74 9,40 6.34 8.94 2.61 1.13 .52 100.01 
58.66 15.31 7.96 5.35 7.28 3.13 1.58 .72 99.99 
59.81 14.97 7.76 5.09 7.02 2.94 1.97 .45 100.01 
62.24 14.82 6,79 4.27 6.09 3.27 2.02 .51 100.01 
64.94 14.11 5.78 3.45 5.15 3.36 2.66 .56 100.01 
65.92 14.00 5.38 3.19 4.78 3.13 2.98 .61 99.99 
67.30 13,94 4.99 2.55 4.22 3.22 3.26 .53 100,01 
68.06 14.20 4.30 1.95 4.16 3.58 3.22 .53 100.00 
72,23 13.13 3.26 1.02 2,22 3.37 4.16 .61 100.00 
75,48 12.71 1.85 .37 1.10 3.58 4.59 .31 99.99 
75,75 12.70 1.72 .40 .83 3.44 4.80 .37 99.98 

Variances 
63.2939 1.4232 8.4027 5.899 9.7130 .1010 1.9360 .0106 

Source: Miesch, 1976a. 
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Table 5.30 Latent Roots and Latent Vectors of the Compositional Data of Table 
5.29 Using the Covariance and Correlation Matrices 

P, P2  P3 	P4 	 P5  1) 1,7  P8  

(a) Covariance Matrix 

-.835644 -.080680 .137053 	-.028769 .192950 .292841 -.173304 -.350086 
.124379 .432898 -.291339 	-.120720 -.583357 .424091 -.225306 .356028 
.304187 -.295150 .067320 	.639876 .134390 .471175 .235729 .332789 
.154413 -.626143 -.266213 	-.545307 .127153 .009716 -.161878 .364038 
.326904 .328751 .709615 	-.216437 .264265 .042307 -.192517 .354922 

-,029921 .406778 -.386978 	-.149214 .403938 -.128041 .602835 ,344456 
-.145634 -.222519 .309422 	-.003706 -.591419 -.392795 .449636 .356768 

.001784 .062137 -.268122 	.456809 .073883 -.582940 -.484546 .368115 
1 -90.6367 1, 	.0606 1 3  = .0353 	1 4 = .0213 /5  = 0.148 /6  = .0067 /7 	.0031 /8  = .0000 

(b) Correlation Matrix 

.382509 .004028 - .113068 	.044658 .038187 -.338457 -.161409 .834762 

.378941 .007632 .275387 	.812091 .318431 .956994 .012881 .127293 

.382671 -.000871 .041321 	-.183269 -.136789 -.168152 .829130 .289088 

.381818 -.028532 .049378 	-.471083 .646937 .313657 -.204755 .264974 

.381762 - .028570 ,128552 	.013153 -.668310 .421741 - .319930 .331487 
-.350472 .153517 .900203 	- .140696 .004855 .113456 .097338 .032723 
-.380521 -.022029 -.245161 	.250961 .115065 .751099 .363512 .148670 

.067074 .987037 -.141965 	.007624 -.001569 .022065 -.020715 .011348 
/, -= 6.8176 /z  = .9914 1, = .1715 	14  = .0113 1, = .0051 1„ = .0020 1 7  = .0012 1„ = .0000 

5.9.2 Estimating Components of a Mixture 

A physical interpretation of a linear combination of compositional data is 
that of a mixture, with vectors representing a specific composition or 
distribution of the mixture components. Thus when a PCA indicates the 
existence of clusters of mixture constituents, they can be interpreted as 
complexes or compounds formed from the basic elements of the composi-
tion. For example, a particular mineral or solid solution may be indicated by 
highly intercorrelated chemical elements or geochemical metallic oxides 
(Middleton, 1964; Saxena, 1969; Saxena and Walter, 1974), Here interest 
centers on the variable space, that is, on the elements or constituents of a 
given sample where either a covariance or correlation matrix may be used 
depending on the desired relative weighting of the variables. High PC 
scores, when rotated such that all are positive, can then be interpreted in 
terms of "pure form" samples which had given rise to the remaining samples 
as mixtures. 

At times an analysis of mixtures is cast in the form of a 0-mode PCA. 
This may be due to computational reasons when more variables than 
observations are available. More frequently, however, a 0-mode analysis is 
easier to work with (assuming n is not large) if interest centers on the 
component scores. This is because compositional data (either with closed 
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arrays or otherwise) can also be considered in terms of the rows of Y where 
the sample space is viewed as having arisen from a set of n — r mixtures of a 
smaller number r of basic samples which contain the true proportion of the 
constituent compositions or "end members." That is, we can reproduce, in 
specified proportions, the entire set of samples in terms of physical mixtures 
of cnd members. This permits a description of the ingredients in terms of 
the end-member samples rather than in terms of the individual ingredients 
themselves (Fig. 5.10). The role of a PCA is then to provide an "unmixing" 
of the samples, in terms of the basic (end member) samples. It is assumed 
that these basic samples have been observed as part of the total sample, an 
assumption which is very nearly satisfied for large n. 

A difficulty still remains in the identification of the true source of the 
mixtures because of the rotational arbitrariness of the factors. The arbitrari-
ness can be removed, however, by the a priori condition that mixture 
propositions be nonnegative. This implies a rotation of the factors since 
nonnegativity for the loadings and the scores cannot be met for composition-
al data, owing to Theorem 5.14. The problem can be resolved by rotating 
the factor axes into the positive quadrant in such a way that each axis 
coincides with a plotted sample point, which is then taken as an end-
member of the sample point mixtures. As indicated in Section 5.3.2, such a 
rotation is generally oblique (Fig. 5.11). The method appears to have 
originated in the analysis of mixtures encountered in geological samples 
(1mbrie and Purdy, 1962), and is today widely employed in geology and 
other earth sciences (e.g., Klovan, 1966; Hitchon et al., 1971; Miesch, 
1976a; Butler, 1976; Hudson and Ehrlich, 1980) as well as chemistry and 
ecology (Kowalski et al., 1982; Gold et al., 1976), Expositions of the 
method may also be found in Joreskog et al. (1976) and Full et al. (1981), 
with variations in Klovan (1981) and Clarke (1978). Fortran programs 

U2  

Figure 5.10 A compositional vector I' consisting of p = 5 ingredients from a mixture of r 2 
unknown sources such that y a 1 u 1  + a 2 u, and 0:5_ a s  1. 



SPECIAL TYPES OF CONTINUOUS DATA 	 337 

PC '2 
G2/  

QD • 	 „--" G, 

  

Peal 

Figure 5.11 The n r = 4 sample points described as linear combinations (mixtures) of r .= 2 
end members. 

adapted to geological applications are given by Imbrie (1963) and Klovan 
and Miesch (1976). 

A second major application of PCA in the analysis of mixtures is when 
dealing with continuous curves, for example, chemical spectroscopic dis-
tributions of absorbance at varying wavelength. Let y 1(A) be a continuous 
curve (distribution) which represents an additive mixture of r unknown and 
nonnegative linearly independent functions, that is, 

Yi(A) = al r fi ) (A) a21 i21 (A)+ ' • + ap i ti(A) 
	

(5.125) 

where the f11 (A) may be normalized to unit area as 

dA = 1 
	

(5.126) 

An example is Beer's law, which states that the spectrum of a mixture of r 
constituents (at wave length A) is a linear function of the constituents' 
spectra in terms of molar absorptivity (percentage) at wave length A. The 
coefficients a, (i = 1.. , r) then represent concentrations of the r con-
stituents (components) of the mixture (Howery, 1976; Weiner, 1977; 
Spjotvoll et al., 1982). In practice the curves will he sampled at n discrete 
points, resulting in 

Y = 	a 2f2  +• + arf,. 	 (5.127) 

where Yi is a (nx 1) vector of observations on the jth mixture spectra, 1, is 
the (ti x 1) vector of spectra absorbance of the ith constituent, and a i  is the 
concentration of constituent i. Neither the number, the spectra, nor 
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concentrations of the constituents are known. Equation (5.127) can there-
fore be estimated by a PCA of Yi , where a, are the loadings and fi  are the 
scores such that 

i = I 

The situation is not unlike considering a finite mixture of probability 
distributions. Examples from spectrophotometry and chromatography may 
be found in Ritter et al. (1976), Weiner and Howery (1972), and Cartwright 
(1986). Again, if a 0-mode is considered, the analysis is also at times 
carried out on the cosine matrix (Rozett and Petersen, 1976) or else simply 
on the matrix YY T  (Burgard et al., 1977) instead of the covariance or 
correlation matrix. 

Example 5.17 (Lawton and Sylvestre, 1971). We have n= 5 spectro-
photometric curves (samples) (Fig. 5.12) measured at p= 30 wavelengths, 
resulting in the data matrix of Table 5.31. A PCA of the (uncentered) 
matrix YYT  is carried out, which yields two dominant latent roots (the 
mixtures consist of two components) with latent vectors as given in Table 
5.32. After suitable (generally oblique) rotation to remove negative values 
from V2  (see also Spjotvoll et al., 1982), the estimated spectra of the two 
pure constituents (here two dyes) is obtained (Table 5.33; Fig. 5.13). 

Wavelenglh 

Figure 5.12 Five specttmcopic curves at wavelengths 410 lc A s 730 (Lawton and Sylvestre, 
1971; reproduced with permission), 
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Table 5.31 The p = 5 Spectrophotometric Curves Sampled at n =30 wavelengths 

Curve 	 Curve 	 Curve 	 Curve 	 Curve 
Y, 	 Y2 	 Y3 	 114 	 Y, 

0.924 2.478 1.239 0.413 2.774 
4.406 8.006 6.845 5.075 11.920 
5.488 9.009 10.110 6,393 18.392 
6.530 11,900 11.586 9.009 20.969 
4,977 9.422 10,307 7.475 16,681 
4.898 8.419 8,242 6.452 13.907 
3.875 6,432 6.845 4.839 10.878 
3.600 6,157 6.255 4,485 10.032 
3,501 4,780 5,272 3.796 8,439 
4.878 5,429 5.724 4.917 7.534 
9.992 9,953 9.678 8.950 9.068 

16.379 16,601 17.762 15.815 12.845 
27.341 27.715 28.521 36,653 20,083 
40.146 44.041 42.566 42.015 33,321 
52.735 62.570 58.085 55.155 48.752 
54,801 72.995 66.858 62.944 70.262 
51.260 80.155 72.405 66.701 88.633 
46,775 81.512 73.448 66.937 98.350 
39.832 74.962 68.353 60.623 97.800 
30.272 64.950 57.613 52.676 88.240 
22.463 51.496 45.969 39.969 72.799 
15.795 34.875 34.442 30.154 55.352 
11.350 25,728 25,079 21.303 41.189 
7.947 17,900 17.703 15.087 30.135 
4,760 11,271 11.684 9.796 20,103 
2.813 7.317 7.140 5.842 13.632 
2.065 4.485 4.544 3.698 8.065 
1.593 2.813 2.655 2,419 5.134 
0,964 1.436 1,318 1,259 2,833 
0.669 0.472 0.079 0.138 0.551 

Source: Lawton and Syrvestre, 1971; reproduced with permission. 

5.9.3 Directional Data 

A general objective of PCA is to determine the magnitude and direction of 
the principal axes of variation. At times the data themselves are directions, 
for example, when attempting to determine the angular direction(s) of 
magnetized rock (Fisher, 1953; Creer, 1957) or the spatial origin of comets 
(Tyror, 1957). Since the directional component of the data is of interest, the 
distances are usually set arbitrarily to unity, which gives rise to a system of 
polar coordinates (Fig. 5,14), Converting the angles to direction cosines 
then yields a set of unit vectors Y 1 , Y2, , , , Yp  where yy1  = 1 (j = 
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Table 5.32 The Orthonormal Latent Vectors that 
Correspond to the Two Largest Latent Vectors of 
VIO 

172  

0.009 0.015 
0.041 0.048 
0.056 0.103 
0.068 0.103 
0.055 0.080 
0.047 0.058 
0.037 0.045 
0.034 0,041 
0.029 0.030 
0.031 -0,004 
0.050 -0,078 
0.082 -0,169 
0.134 -0.291 
0.210 -0.400 
0.290 -0.477 
0.349 -0.302 
0.389 -0,074 
0.402 0.094 
0,377 0.218 
0.327 0.284 
0.261 0.285 
0,191 0.243 
0.140 0.192 
0.100 0.150 
0.065 0.109 
0.042 0.085 
0.026 0.044 
0.016 0.025 
0.009 0,014 
0.002 -0.002 

Source: Lawton and Syivestre. 1971; reproduced with permis-

sion, 

1, 2, . . , p). For p = 2 we have 

= cos 0 , 	y i2  = sin 0 	(0 0 <27r) 

and for p ----z 3 

yil  = cos 0 , 	y 2 =sincosp, 	y 13  - sin 0 sin 

(0 -.5- 0 	7Tg 	(pi S. 27r) 
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Table 5.33 Estimated Spectra of Two "Pure" 
Constituents of the Mixtures Using Rotated (Oblique) 
Components 

0.0000 0.0004 
0.0005 0.0015 
0.0001 0.0025 
0.0005 0.0028 
0.0004 0.0023 
0.0005 0.0018 
0.0004 0.0014 
0,0004 0.0013 
0.0004 0.0010 
0.0009 0.0007 
0.0024 0,0003 
0.0046 0.0001 
0.0077 0.0000 
0.0112 0,0006 
0.0145 0.0017 
0,0137 0.0051 
0,0117 0.0087 
0,0098 0,0109 
0.0074 0,0117 
0.0051 0.0112 
0,0033 0.0096 
0.0020 0,0074 
0.0012 0,0056 
0.0007 00042 
0,0003 0.0028 
0.0000 0,0020 
0.0001 0,0011 
0,0001 0.0007 
0.0001 0.0004 
0.0001 0.0000 

Source: Lawton and Syivestre, 1971; reproduced with permis-
sion, 

In general, direction cosines can be expressed as 

y 11. = cos 0 H sin Oh 
	 (5.128) 

where sin OG = COS Op  = I (see Mardia, 1975). 
In practice directional data are mainly encountered in physical space, that 

is, when p = 2 or 3. Here the data are distributed on the circumference 
(surface) of a circle (sphere) with unit radius, and interest lies in being able 
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Figure 5.13 Estimated spectra of the two constituents of mixtures of Table 5.30. 

to determine whether the points, that is, the direction cosines, form certain 
patterns or configurations on the circle (sphere). Thus one-dimensional 
formations consist of either a single cluster or two antipodal clusters lying on 
a common axis; a two-dimensional pattern consists of a band ("girdle") 
around the sphere; and a three-dimensional pattern is indicated by a 
uniform distribution of the points on the sphere's surface. A uniform 
distribution however does not imply a random configuration, since general 
spatial randomness is (usually) generated by the Poisson distribution. The 
convention here is to consider an alternative, but equivalent, system of 
three-dimensional polar coordinates (Fig, 5,15) where 0 is the angle of 
declination (azimuth) and (1) is the angle of inclination. The principal 
geographic or geologic directions are then described by the coordinate 
system (Table 5.34), both in angular and directional cosine form. Actual 
observations then assume values between —1 and +1, and the direction 
cosines are given by 

= cos q? cos 0 , 	y i2  = cos 41 sin 0 , 	y i , = sin ip 	(5.129) 

The objective of locating configurations (clusters) on a shpere with the 
center at the origin is easily seen to be equivalent to carrying out a PCA of 
the matrix of sums of squares and products of the three direction cosine 
vectors with the number of clusters being indicated by the number of large 
latent roots (see also Watson, 1966). Note that the direction cosines are not 
corrected for the means. Furthermore, Eq. (5129) can be used to estimate 
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S. 

 

Figure 5.14 (a) Representation for a circular 
(two-dimensional) variable (b) Representation for 
a spherical (threc-dimensional) variable. b. 

Figure 5.15 Geographic orientation of a unit vector P in three-dimensional space_ 
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the mean declination (azumith) and mean inclination using the latent vector 
elements, Solving Eq. (5.129) for 6 and 9 we have 

= tan _1(Y2\  
Y it) 

9 = (5.130) 

Table 5.34 The Principal Geographic Directions in Terms of the Polar 
Coordinate System of Figure 5.15 and Eq. (5.129) 

Declination 	Inclination 	Direction 	Cosines 

Direction (0 ) (0) Y Y2 Y3 

North 0 0 1 0 0 
South 180 0 -1 0 0 
East 90 0 0 1 0 
West 270 0 0 -1 0 
Up 0 -90 0 0 -1 
Down 0 90 0 0 1 

Example 5.18 The following data are quoted in Fisher (1953) and refer 
to nine measurements of remanent magnetism of Icelandic lava flows during 
1947 and 1948 (Table 5.35). The matrix of sums of squares and products is 
then 

.90646 .32502 2.35223 
Y T Y = 	.32502 [ .42559 1.04524 

2.35223 1.04524 4.66808 

with latent roots and vectors as shown in Table 5.36. The existence of a 
single dominant latent root indicates the existence of a single cluster (or two 

Table 5.35 Angles and Direction Cosines (Eq. 5.129) of Directions of 
Magnetization of Icelandic Lava, 1947-48 

Sample 0 4,  V, V2 1113 

1 343.2 66.1 ,3878 -.1171 .9143 
2 62.0 68.7 .1705 .3207 .9317 
3 36.9 70.1 .2722 .2044 .9403 
4 27.0 82.1 .1215 .0624 .9905 
5 359.0 79.5 .1822 -A032 .9833 
6 5.7 710 .2909 .0290 .9563 
7 50A 693 .2253 .2724 .9354 
8 357.6 58.8 .5176 -.0217 .8554 
9 44.0 51.4 .4488 .4334 .7815 

Source.: Fisher, 1953; reproduced with permission. 
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Table 5.36 Latent Roots and Latent Vectors of 
Magnetized Lava (Direction Cosines) 

P, P2 P3 

.2966 - .0631 .9529 
V, .1335 .9908 .0240 
V i  .9456 —.1201 - .3022 

8.5533 12  = .2782 1, — .1680 

Source: Fisher, 1953; reproduced with permission. 

antipodal clusters) whose direction can be estimated by the elements of P. 
We thus have, using Eq. (5.130), 

.1335  
0 = tan 	— 24 2' 

.2966 

Example 5.19. Creer (1957) analyzed n = 35 sandstone samples of 
Keuper Marls (England), taken from a 100-ft stratigraphical section, in 
order to measure the direction and intensity of the natural remanent 
magnetization. The angles, direction cosines, and latent roots and vectors of 
Y TY are given in Tables 5.37 and 5.38. 

6.70657 4.12005 1.84181 
Y TY = 	4.12005 [ 142493 —1.30868 

1.84181 —1.30868 24.86850 

The general orientation of the band can be measured by computing the 
angular direction of the perpendicular to the great circle passing through it, 
by using the latent vector associated with the smallest latent root. The 

Figure 5.16 Polar equal-area projection of the 
directions of samples of Keuper Marls (Creer, 
1957) where S is the direction of an axial dipole 
along the present geographical axis; P and P,. 
represent the primary axis of magnetization; • 
is the perpendicular pole to the primary axis of 
magnetization. 



346 	 EXTENSIONS OP THE ORDINARY PRINCIPAL COMPONENTS MODEL 

Table 5.37 Angles and Direction Cosines of the Data of Directions of Intensity of 
Natural Remanent Magnetization of Sandstone (Keuper Marls), Devonshire, 
England 

Sample 
Number V I  V 2  y 3  

1 28 41 0.6664 0.3543 0.6561 
2 19 70 0.3234 0.1114 0.9397 
3 23 52 0.5667 0.2406 0.7880 
4 35 40 0.6275 0.4394 0.6428 
5 28 47 0.6022 0.3202 0.7134 
6 24 60 0.4568 0.2034 0,8660 
7 28 49 0.5793 0.3080 0.7547 
8 29 67 03417 0.1894 0.9205 
9 12 76 0.2366 0.0503 0.9703 

10 17 66 0.3890 0.1189 0.9135 
11 22 56 0.5185 0.2095 0.8290 
12 28 60 0.4415 0.2347 0.8660 
13 24 44 0.6571 0.2926 0.6947 
14 27 60 0.4455 0.2270 0.8660 
15 341 81 0.1479 -0.0509 0.9877 
16 213 85 -0.0731 -0.0475 0.9962 
17 235 64 -0.2514 -0.3591 0.8988 
18 240 67 -0.1954 -0.3384 0.9205 
19 192 77 -0.2200 -0.468 0.9744 
20 193 49 -0.6392 -0.1476 0.7547 
21 215 31 -0.7021 -0.4917 0.5150 
22 216 55 -0.4640 -0.3371 0.8192 
23 219 45 -0.5495 -0.4450 0.7071 
24 234 51 -0.3699 -0.5091 0.7771 
25 198 67 -0,3716 -0.1207 0.9205 
26 229 45 -0.4639 -0.5337 0.7071 
27 230 70 -0.2198 0.2620 0.9397 
28 231 37 -0.5026 -0.6207 0.6018 
29 224 75 -0.1862 -0.1798 0.9659 
30 217 19 -0.7551 -0.5690 0.3256 
31 237 84 -0.0569 -0.0877 0.9945 
32 276 58 0.0554 -0.5270 0.8480 
33 30 73 0.2532 0.1462 0.9563 
34 78 86 0.0145 0.0682 0.9976 
35 13 76 0.2357 0.0544 0.9703 

Source: Greer, 1957; reproduced with permission. 

direction of the pole to the great circle is then given by the angles (Fig. 5.16) 

= tan -1 (.82026/ -.56538) = -55_4° 

cA= sin ! (.08660) = 4.970 
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Table 5.38 Latent Roots, Latent Vectors of Direction Cosines of anguir Direction 
of Natural Remant Magnetization of Keuper Marls of Table 5.37 

Directions 	 P, 	 P2 	 P3 

V, 	 .09006 	 .81989 	 —.56540 
V., 	 —.04297 	 .57037 	 .82016 
V, 	 .99501 	 —.04959 	 .08660 
Latent roots 	 1 1  = 25.0915 	 12  = 9.4612 	 13 = .4469 

Source: Creer, 1957; reproduced with permission. 

Note that the perpendicular is also defined by the angles 0 124.6° and 
cf, = 4.97°. Other material on directional data may be found in Upton and 
Fingleton 1989. 

EXERCISES 

5.1 Let X +  =1/.1(+0Q1  he the generalized inverse of a (n x p) matrix X 
(Theorem 5.1). Show that the following relations hold: 

(i) XX + X =X 
(ii) VXX +  = X +  

(iii) (XX + )T  = XX 4  
(iv) (X + X)T = X f X 

5.2 Prove that the rotated principal components V 	Theorem 5.2 no 
longer successively account for maximum variance. 

5.3 Consider Eq. (5.18b) where G and B T  are orthogonally rotated 
components and loadings respectively (Theorem 5.2a). Show that the 
new scores G are orthogonal to the residuals 8. 

5.4 Let B = TA be a linear transformation of loading coefficients A. Show 
that T = &AL' where L is the diagonal matrix of latent roots. 

5.5 Prove the first part of Theorem 5.3. 

5.6 Prove Eq. (5.42). 

5.7 Using Theorem 5.8 prove Eq. (5.60). 

5.8 Show that relationships of Eq. (5.63) holds. 

5.9 Derive the relationships of Eq. (5.79). 
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5.10 Derive the normal equations (Eq. 5.81) and compare the parameters 
with those of Tucker's model. 

5.11 Prove the second part of Theorem 5.10. 

5.12 Let A be a (n x in) matrix with Euclidian norm 11All as defined by Eq. 
(5.108). Show that 11A11 2  = tr(ATA) = tr(AAT ). 

5.13 Prove Theorem 5.6. 

5.14 Show that the canonical correlation model of Theorem 5.8 is equiva-
lent to the model 

12 1  a 	111 
[1 21 	°[13] .= X [ ° 

5.15 The following data represent p = 22 physical and chemical measure-
ments for n = 8 samples of crude oil (McCammon, 1966). 

Properties Samples 

1 0.9516 0.8936 0,8774 0.8805 0.8680 0.8231 0.8370 0.8161 
2 1.5400 1.5010 1.4920 1.4935 1.4860 1.4615 1.4675 1,4570 
3 2.39 1.46 1.37 0.52 0.34 0,49 0.11 0.34 
4 89.6 83.8 77,0 81.8 82.7 67.1 73.3 60.4 
5 27.8 15.0 19.0 17.8 17,2 6.4 12.1 8.3 
6 11.5 9.6 9.1 8.9 8.6 4.6 6.0 4,6 
7 14.5 5.3 6,2 3.3 1.3 0.6 1,2 0.2 
8 44.7 66.8 61,4 65.4 65.7 83.4 73.4 79,7 
9 1.5 3.3 4.3 4.6 7,2 5.0 7.3 7.2 

10 6,1 15,9 17.2 17.8 20.2 25.3 29.2 27.9 
11 30.2 28.2 29.1 30.6 30.6 31.9 30.3 31.4 
12 19.9 17.4 15.8 16.6 16,6 16.3 15.0 15.1 
13 11.7 10.9 103 10.2 9.0 8.1 8.4 8.6 
14 5.8 4.6 4.9 4.6 4.1 3.2 3.1 2.7 
15 3.2 2.5 2.4 2.1 2.1 1.6 1.4 1.5 
16 5.8 5.8 5,6 5.1 5.0 3.9 4.0 4.0 
17 2.6 2.2 2.2 2.0 1.8 1.5 1.3 1.3 
18 3.5 2.9 2.7 2.5 2.3 1.6 1.5 1.5 
19 1.1 0.8 0.9 0.7 0.6 0.5 0.5 0.5 
20 5.5 4.7 4.6 4.3 4,1 3.5 2.9 3.2 
21 4.6 3.9 3.8 3.5 3.4 2.5 2.3 2.3 
22 6.8 6.0 6.7 5.7 5.0 3.7 3.7 3.4 

(a) Using a Q-mode approach perform a PCA of the n = 8 samples, 
using the cosine measure. 

(b) Carry out a PCA of the (8 x 8) correlation matrix of the samples. 
How do the scores differ from those in part a? 
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5.16 A chemical analysis of Hellenistic Black-Glazed Wares using attic and 
nonattic samples yields the following data (Hatcher et al., 1980): 

Oxides of 	Al 	Mg 	Fe 	Ti 	Mn 	Cr 	Ca 	Na 	Ni 

Attic 

	

15.12 	4.00 	8.10 	1.13 	0,136 	0.088 	6.16 	0.73 	0.050 

	

15.59 	4.15 	8.10 	1.05 	0.097 	0.080 	4,06 	1.11 	0.046 

	

17.01 	4.21 	7.74 	1.05 	0.112 	0,086 	6.72 	0.86 	0.048 

	

17.48 	4.87 	8.66 	1.10 	0.094 	0.076 	5,60 	0.89 	0.050 

	

17.01 	3,88 	8.10 	1.02 	0.094 	0.086 	5.18 	0.89 	0.050 

	

18.43 	4.21 	8.10 	1.07 	0.087 	0.076 	5,74 	0,94 	0.044 

	

17.96 	4,15 	8.24 	0,98 	0.099 	0.091 	4.63 	0,89 	0.051 

	

17.01 	3.81 	7.74 	1,07 	0.124 	0.076 	8,95 	0.78 	0.048 
n = 9 	15.59 	4.15 	7.74 	1.06 	0,097 	0.082 	7.00 	0,86 	0.043 
Nonattic 

= 

13,23 
18.43 
17.48 
16,07 
16.07 
20.32 
16.07 
17.96 

2,79 
1.69 
2.52 
2.92 
3.25 
3,55 
3.08 
2.09 

6.83 
7,39 
6,48 
7.39 
7.53 
8.10 
7.53 
7.04 

0.97 
1.07 
1.02 
1.02 
1.10 
0,98 
1,02 
0,97 

0,138 
0.133 
0.120 
0.151 
0.129 
0.097 
0,151 
0.094 

0.016 
+0.00 
<0.015 

0.016 
0.017 
0.018 
0,017 

<0.015 

4,34 
7,83 
7.00 
7.00 
7.55 
3.22 
7.83 

11.47 

1.16 
0.84 
1.13 
1.16 
1,11 
0.67 
1.21 
0,62 

0.023 
0.014 
0.015 
0.025 
0.029 
0.024 
0.027 
0,017 

Using principal components determine whether it is possible to 
discriminate between the attic and nonattic measurements using a 
PCA of the matallic oxides. 

5.17 The following correlation matrix is given by Allison and Ciechetti 
(1976) in a study of sleep in mammals: 

Y i 	Y, 	Yl• 	Y4 	Yi 	Y fs 	Y ? 	Yli 	Y, 

	

- 1.000 	 -3 
Y 2 	.582 	1,000 
Y i 	-.377 -.342 	1,000 
y. 	- .712 	-.370 	.685 	1,000 
V , 	-.679 	-,432 	.777 	.945 	1.000 

	

--.589 	-.651 	.682 	.692 	.781 	1.000 
Y 7 	.369 	.536 	.018 	.253 	.192 	.158 	1,000 
Y, 	-.580 	-.591 	.518 	.662 	.640 	.588 	.680 	1,000 
179 	,542 	-.686 	.226 	.432 	.377 	.363 	.930 	.819 	1.000 

where the random variables are defined as 

= Stow-wave sleep 
Y2  = Paradoxical sleep 
Y3 = Life span 
Y4  = Body weight 
Y5  = Brain weight 
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Y6  = Gestation time 
Y7  = Predation index 
Y8  Sleep exposure 
Y9  = Overall danger 

Carry out a cluster analysis of the variables by means of (a) the 
varimax rotation Eq. (520) and (b) the oblimin in criterion (Eq. 
5.28) by using the first r = 2 principal components. Which rotation 
results in a clearer identification of the component axes? 
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CHAPTER 6 

Factor Analysis 

6.1 INTRODUCTION 

Hitherto there has been very little discussion about the difference between 
the terms "principal components" and "factor analysis." This is in keeping 
with the established practice of applied statistical literature, where the term 
"factor analysis" is generally understood to refer to a set of closely related 
models intended for exploring or establishing correlational structure among 
the observed random variables. A difference in statistical and mathematical 
specification between the two models nevertheless exists, and in this chapter 
it becomes important to differentiate between principal components and 
factor analysis "proper." The difference is that principal components models 
represent singular value decompositions of random association matrices, 
whereas a factor analysis incorporates an a priori structure of the error 
terms. This is done in two ways: (1) the errors in the variables are assumed 
to be uncorrelated, and (2) 1 r<p common factors account for the entire 
covariance (correlation) between the variables, but not the variances. In this 
sense factor analysis resembles more a system of least squares regression 
equations than does the principal component model, although neither 
factors (the explanatory variables) nor loadings (the coefficients) are 
observed. Factor analysis is therefore motivated by the fact that measured 
variables can be correlated in such a way that their correlation may be 
reconstructed by a smaller set of parameters, which could represent the 
underlying structure in a concise and interpretable form. As was the case for 
the principal components decomposition, an important point is to decide 
which variables to include in a factor model since the number of factors and 
coefficients generally depend on the choice. If the aim of the analysis is 
purely exploratory, then virtually all variables under consideration can be 
"thrown into the pot." Here the objectives are normally limited to either a 
correlational analysis of the variables (in the presence of uncorrelated error 
terms), or the intention may be precisely to uncover which variables to 
retain as effective measures of the dimensions or phenomena of interest. A 
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haphazard choice of intercorrelated variables however has little utility for a 
causal or structural analysis, and here careful theoretical judgment employ-
ing both substantive as well as mathematical reasoning should accompany 
the selection process. Several sequential sets of estimates are usually 
required before a satisfactory outcome is reached. 

Before any estimation procedure can begin we must first ask ourselves 
two statistical questions: (1) do unique common factors exist, from the 
mathematical point of view, and if so, (2) what is their precise status in the 
physical world? As the following sections show, the answer to the first 
question is generally "no." Indeed, it is the process of defining uniqueness 
restrictions that determines most factor models used in practice. The second 
question may be answered in two ways, depending on how we view or 
consider the factors in a given physical or nonmathematical setting. First, 
factors may be viewed as estimates of real or physical random variables 
which have given rise indirectly to the observed correlations. Once the 
influence of the factors is removed, the observed variables should become 
independent. Second, we can view factors as simply artificial mathematical 
constructs, which need not be real but which represent latent measurement 
scales or variables, which are by nature multidimensional and perhaps 
dynamic. Such composite multidimensional variables are generally not 
observable by themselves in toto, and therefore require a whole set or 
spectrum of more simple but intercorrelated variables in order to represent 
or capture them, each variable contributing an essential ingredient. Factor 
analysis can then be used to estimate or measure such composite variables. 
This is particularly common in the social or human sciences, when attempt-
ing to measure concepts such as "mental aptitude," "consumer tastes," 
"social class," "culture," "political orientation," and so forth. Clearly the 
question of the existential status of the factors is essentially empirical in 
nature, and cannot nor should not be a part of the a priori specification, but 
must rather form an integral part of the posterior analysis or investigation. 
Here an analysis of the loadings and the scores, or perhaps the use of 
further statistical models such as regression, may throw light on the factors, 
but such good fortune can by no means be guaranteed. This is because in 
the final analysis the estimated factors are primarily mathematical con-
structs, and as such do not rely on any process of identification or 
interpretation for their validity. Indeed, for certain applications, factors do 
not require interpretation, since they may also be used simply as instrumen-
tal variables, for example, to reduce multicollinearity and errors in variables 
in least-squares regression (Chapter 10) or to provide estimates of "true" 
dimensionality. The principal motivation for using factor analysis however 
does lie in the possibility of a "meaningful" interpretation of the data, 
particularly in exploratory analysis when using the so-called "unrestricted" 
factor models which, contrary to their name, embody restrictions of a 
fundamental nature, 
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6.2 THE UNRESTRICTED RANDOM FACTOR MODEL IN THE 
POPULATION 

The general factor model can be written as 

Y = + 	+ e 	 (6.1) 

or 

X = alb + e 	 (6.2) 

where Y = (y 1 , y,. • yr ) l  is a vector of observable random variables, 
41= 051 , Ci>2  , , Ckir  is a vector of r <p unobserved or latent random 
variables called factors, a is a ( p x r) matrix of fixed coefficients (loadings), 
and e = (e l , e2 , . , EI )I' is a vector of random en-or terms. Usually for 
convenience the means are set to zero so that E(X) = E(40 = E(E) = 0. The 
random error term consists of errors of measurement, together with unique 
individual effects associated with each population variable yi . When a 
random sample is taken, the residual errors also contain sampling variation. 
For the present model we assume that a is a matrix of constant parameters 
and is a vector of random variables. Equation (6,1) resembles a 
regression model except the factors 41 are not observed directly and must be 
estimated from the data together with the parameters. This introduces 
difficulties of identification which do not exist in other statistical models such 
as, for example, the classic single-equation regression model. 

The following assumptions are usually made for the factor model (Eq. 
6.2): 

(i) p(a) = r < p 
(ii) E(X 	= 

(iii) E(XXT) X, t,:(4)4) T)= ft. and 

so that the errors are assumed to be uncorrelated. The factors 
however are generally correlated, and II is therefore not necessarily 
diagonal. For the sake of convenience and computational efficacy 
the factors are usually assumed to be uncorrelated and of unit 
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variance, so that .f/ — I and 

E(475,41,) 
	 = 	 (6.4) 

When a nonorthogonal system is required the factors may he rotated 
to oblique form. 

(iv) E(4)E T ) = 0 so that the errors and factors are uncorrelated. 

Using assumptions i—iv we have, from Eq. (6.2), 

E(XX T ) = I = E(a. + e)(a. + 

E(aoloTaT ao€  T coTaT cc  T) 

= aE(441 )aT  + aE(clk I ) + E(E. T)aT  + E(e€ T ) 

= anaT  E(e€ T ) 

F + (6.5) 

where r= anal.  and IP = E(e€ 1) are the true and error covariance 
matrices, respectively. Also, postmultiplying Eq. (6.2) by (II T  we have 

E(Xo-r ) E(ototto -r etp -r )  

= aE(tlx1:0 T ) + E(€43 T ) 

= aft 
	

(6.6) 

using conditions iii and iv, For the special case of Eq. (6.4) we have a = 1, 
and the covariance between the manifest and the latent variables simplifies 
to E(X. T ) = a. 

An important special case occurs when X is multivariate normal, since in 
this case the second moments of Eq. (6.5) contain all the information 
concerning the factor model. It also follows that the factor model (Eq. 6.2) 
is linear, and the variables are conditionally independent given the factors 
•. Let 40— N(0, I). Then using Theorem 2.14 the conditional distribution of 
Xis 

X 41)  NRI 	1,  12 -221411 , ,  ( 11 - /12/2211'112)] 

N[a(I), (X — aa T)I 

N[a., %Pi (6.6a) 

with conditional independence following from the diagonality of qr. The 
common factors • therefore reproduce all covariances (correlations) be- 
tween the variables, but account for only a portion of the variance. It is also 
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possible to derive ML estimators of a, (I), and 111 which have the advantage 
of asymptotic efficiency, and to conduct hypothesis testing and the construc-
tion of confidence intervals for the ML estimates of a. it turns out that it is 
always possible to select the coefficients a in such a way that they represent 
correlations between X and • (assuming the factors exist) whether X 
represents the covariance or correlation matrix. Finally, apart from the 
distribution of X, the factor model (Eq. 6.2) is assumed to be linear in the 
coefficients a, but not necessarily in the factors et. All these are properties 
not shared by the principal components model, but are found more 
frequently in regression-type specifications. Unlike the regression model the 
"independent variables" are not known, thus the initial estimation of the 
model is based on Eq. (6.5) rather than on Eqs. (6.1) or (6,2), assuming 
that X (or its estimate) is known, This is normally achieved by setting II I 
and estimating a and IP jointly, usually by iterative methods. When a finite 
sample is available, the factor scores • can also be estimated by one of 
several procedures (Section 6.8). 

Since the factors are not observed directly, a question arises as to 
whether they are "real." Clearly, the question of the interpretability of 
factors cannot be established in complete generality for all possible cases 
and applications, and the matter of factor identification must remain, 
essentially, one of substantive appropriateness, depending on the nature of 
the application and type of variables and data used. Thus, although an 
arbitrary collection of ill-defined variables will hardly produce factors that 
can be interpreted as representing something real, a carefully selected set, 
guided by theoretical principles, may very well reveal an unexpected and 
empirically or theoretically meaningful structure of the data. Prior to the 
physical identification of the common factors however lies a more fun-
damental mathematical question—given a factor model, under what con-
ditions (if any) can X be factored into two independent parts as implied by 
Eq. (6.5)? Furthermore, assuming a mathematically identifiable factoriza-
tion exists, under what conditions is it possible to find a unique set of 
loadings a? Given 1 < r <p common factors it can be shown that it is not 
generally possible to determine a and (1) uniquely. Even in the case of a 
normal distribution this cannot be guaranteed, since although every factor 
model specified by Eq. (6.6a) leads to a multivariate normal, the converse is 
not necessarily true when 1 < r <p. The difficulty is known as the factor 
identification or factor rotation problem, and arises from a basic property of 
the model not encountered in, for example, the common PC model of 
Chapter 3. Rather than effect a singular decomposition of a Grammian 
matrix we now have to contend with a system of quadratic equations in the 
unknown elements of II= aika T  and 'P, which must be solved in such a way 
that T is Grammian and qf is diagonal, with diagonal elements 7 >0 (i = 1, 

Assume there exist 1 < r <p common factors such that r = af/aT  and 
is Grammian and diagonal. The covariance matrix X has C() +p = 112 



356 
	

FACTOR ANALYSIS 

p(p + 1) distinct elements, which therefore equals the total number of 
normal equations to be solved. The number of solutions however is infinite, 
which can be seen as follows. Since 1Z is positive definite, there must exist a 
non-singular (r x r) matrix B such that a = BTB and 

= Una T  

=a(B I B)a i  +IP 

(aB T)(all'r ) T  + 

= a*a* r  + 
	

(6.7) 

Evidently both factorizations (Eqs. 6.5 and 6.7) of I leave the same residual 
errors AP and therefore must represent equally valid factor solutions. Also, 
we can effect the substitution a* aC and IP— C -1 11(CT) -1 , which again 
yields a factor model which is indistinguishable from Eq. (6.5). No sample 
estimator can therefore distinguish between such an infinite number of 
transformations, each of which is of potential interest. The coefficients a 
and a* are thus statistically equivalent and cannot be distinguished from 
each other or identified uniquely. That is, both the transformed and 
untransformed coefficients, together with 4 1, generate I in exactly the same 
way and cannot be differentiated by any estimation procedure without the 
introduction of additional restrictions. 

In view of the rotational indeterminacy of the factor model we require 
restrictions on 11, the covariance matrix of the factors. The most straight-
forward and common restriction is to set 11 = I, that is, to define the factors 
as orthogonal unit vectors (Eq. 6.4) in much the same way as was done for 
the principal components model of Chapter 3, The number m of free 
parameters implied by the equations 

= aaT  + v 
	

(6.8a) 

is then equal to the total number pr + p of unknown parameters in a and 41, 
minus the number of (zero) restrictions placed on the off-diagonal elements 
of 1/, which is equal to 1/2(r 2  — r) since it is symmetric (assuming r 
common factors). We then have 

m =(pr + p)— 112(r2  — r) 

= p(r +1)— 112r(r — 1) 
	

(6.8b) 

where the columns of a are assumed to be orthogonal. The number of 
degrees of freedom d is then given by the number of equations implied by 
Eq. (6.8a), that is, the number of distinct elements in I minus the number 
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of free parameters m. We have 

d = I 12p( p + 1) — I pr + p — 1/2(r2  — r)] 

= 112R p — r) 2  — (p — r)] 
	

(6.9) 

(Exercise 6.1) which for a meaningful (i.e., nontrivial) empirical application 
must be strictly positive. This places an upper bound on the number of 
common factors r which may be obtained in practice, a number which is 
generally somewhat smaller than the number of variables p (Exercise 6.2). 
Note also that Eq. (6.9) assumes that the normal equations are linearly 
independent, that is, X must be nonsingular and p(a) = r. For a nontrivial 
set-up, that is, when d > 0, there are more equations than free parameters 
and the hypothesis of r common factors holds only when certain constraints 
are placed on the elements of X. Thus there could be problems of existence, 
but if parameters exist we may obtain unique estimates. These and other 
points are discussed further by Lawley and Maxwell (1971). Note that even 
when fi = I, the factor model (Eq. 6.8a) is still indeterminate, that is, the 
factor coefficients a can be rotated or transformed as in Eq. (6.7), This 
however is the only mathematical indeterminacy in the model (assuming that 
unique error variances exist) although others of a more applied nature also 
exist (see Elffers et al., 1978). The indeterminacy is usually resolved by 
initially fixing the coordinate system, that is, by "rotating" the factor 
loadings a such that they satisfy an arbitrary constraint. The nature of such 
constraints in turn defines the type of factor model (Section 6.4) assuming 
r> 1, since for a single common factor the loadings are always determinate. 

Example 6.1, Consider the case where p 5 and r = 2. The normal 
equations (Eq. 6.8a) may be expressed in terms of the elements as 

2 = a + a - 	• + a 2/r + i 	= 1, 2, . . . p) 12 

for the diagonal variance terms of 1„ and 

irri al aj I 4-  i 2 aj2 + • • • + r aj r 	(i i ) 

for the off-diagonal covariance terms, The number of free parameters is 
then given by 

m = 5(2 + I)— 1/2(2 2  — 2) 

=14 

and the degrees of freedom are 

d = 1/ 2[(5 — 2) 2  — ( 5 + 2)] 

=1 
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For p = 5 random variables we cannot therefore have more than r =2 
common factors. 	 0 

Identification can also be considered through the perspective of sample-
population inference, that is, inference from a particular realization of the 
model to the model itself (Rciersol, 1950; Anderson and Rubin, 1956). 
When 11, and are given in numerical form, we have what is known as a 
structure. A structure includes completely specified distributions of the 
factors, together with a set of equations and numerical coefficients that 
relate observed variables to the common factors. A structure is thus a 
particular realization of Eq. (6.5), which in turn represents the set of all 
structures compatible with the given specification. Given a structure 1, n, 
and qr we can generate one, and only one, probability distribution of the 
observed random variables. However, there may exist several structures that 
generate the same distribution. Since these structures are all equivalent to 
each other, the theoretical factor model can not be identified, since the 
possibility that a and IP can possess different values in equivalent structures 
leads to a lack of uniqueness. Generally speaking, however, identification is 
often possible, as is demonstrated by the following theorems. 

THEOREM 6.1 (Reiersol, 1950). Let be a (p x p) covariance matrix. A 
necessary and sufficient condition for the existence of r common factors is 
that there exist a diagonal matrix lir, with nonnegative elements, such that 
– = aa T  is positive definite and of rank r. 

The proof is based on the well-known result that a necessary and sufficient 
condition for a (p x p) matrix to be expressed in the form BB 1 , where B is 
(p x r) and r < p, is that the matrix be positive definite and of rank r. Note 
that Theorem 6.1 does not assert the existence of nonnegative error 
variances—it simply relates the existence of such variance to the existence of 
r common factors. Note also that 41, need not be strictly positive. In practice 
negative residual variance can and does occur, at times with surprising 
frequency. Such cases are known as Heywood cases in the psychometric 
literature. When a Heywood case occurs, the factor model is not appro-
priate, and an alternative model such as principal components should he 
used. 

THEOREM 6.2. Let X = a + e possess a structure such that r = r o <p, 
where ro  is the minimum rank of a and IP is nonsingular. Then the factor 
model contains an infinite number of equivalent structures when r = ro + 1. 

A proof may be found in Takeuchi et al. (1982). Thus for any single value of 
r we see again that there exist an infinite number of non-singular diagonal 
matrices lir with nonnegative elements which satisfy the factor model (Eq. 
6.8a). Conversely, to determine a unique xif we require the value of r, and 
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the minimum rank value r = r„, is achieved only when 1P is unique. 
Necessary and sufficient conditions for uniqueness of 1P do not secm to be 
known. For other necessary or sufficient conditions see Anderson and Rubin 
(1956). 

To achieve complete identification we thus require prior information in 
the form of knowledge of either 1P or r, since it does not seem possible to 
obtain unique values of both simultaneously. Also, to achieve identification 
we require ancillary (but arbitrary) restrictions in order to fix the basis of a 
common factor space. The specific nature of these restrictions vary from 
model to model, and these are discussed in the following sections. It is 
important to note however that mathematical restrictions do not necessarily 
achieve what is, after all, a fundamental objective of factor analysis—not 
only to estimate the dimensionality of the explanatory subspace but also to 
identify the factors or dimensions that span it, in terms of substantive 
phenomena. On the other hand no solution is possible without these 
restrictions. In practice, therefore, since a priori information is not generally 
given—indeed such information is often a part of the objective of the 
analysis—a trial and error procedure is usually employed. At each stage we 
let r„ = 1, 2, . r <p, compute the factor loadings, and then rotate these 
loadings (either orthogonally or obliquely) until a sensible result is obtained. 
In the event X — N(0, X) statistical tests can also be employed to test for r. 
However, even though a unique (restricted) solution basis is found, it is 
unlikely to he retained once the initial loadings are computed. Owing to the 
inherent mathematical arbitrariness involving the transformation of axes, 
such a procedure can be open to abuse, and must be employed with some 
care. Note that the situation encountered here is somewhat different than 
that for the principal components model. Although axis rotations are also 
employed, the situation for principal components is less arbitrary since the a 
priori value of r will not alter the (unrotated) loadings. As was seen in 
Chapter 3, we simply compute p components and then select (or test for) r. 
However, the situation concerning factor identification only applies to the 
so-called exploratory factor model. When several samples are available, or a 
single large sample is divided into several parts, sample information may be 
used to impose prior restrictions on the loading, usually in the form of 
zeroes. Alternatively, zero restrictions may also be imposed on theoretical 
grounds. In this situation it is possible to obtain identification of the factors 
without further rotation. This is known as confirmatory factor analysis, and 
is discussed briefly in Section 6.11. 

Factor analysis can be developed in greater generality by using theoretical 
probability distributions (Anderson, 1959; Martin and McDonald, 1975; 
Bartholomew, 1981, 1984). The starting point is the relationship 

f( X ) 	h (0)g( X 10 ) c/41) 	 (6.9a) 

where f(X) and h(0) are densities of X and (1), g(X14) is the conditional 
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density of X given values 4), and R is the range space of 4). Here it is 
understood that the vectors X and 4) denote particular values of the 
corresponding vectors of random variables. Using Bayes' formula the 
conditional density of 4), given X, is 

	

h(4) X) = h(40g(X14))/f(X) 	 (6,9b) 

Clearly f(X) does not determine g(X I.) and h(4)) uniquely, and further 
assumptions must be made. The basic assumption is the conditional 
independence of X, that is, the conditional distribution of X can be 
expressed as 

g(X 10)=11 g(X 1 14)) 
	

(6.9c) 
I 

so that 

h(0) 	g(X,14)) 

f(X) 	
(6.9d) 

Further assumptions about the form of g(X 1 140) and h(4)) must be made in 
order to obtain g(X14)), but this does not provide a unique solution to the 
factor problem since the prior distribution h(4)) is still arbitrary. Thus a 
one-to-one transformation can be defined from 4) to new factors ii ,  say, 
which does not affect f(X), and no amount of empirical information can 
distinguish between the various transformations and h(4) X). Prior assump-
tions must therefore be made about h(4)), which could emerge from our 
assumptions about the nature of the common factors or be simply based on 
practical expedience if the sole objective lies in data reduction. Here a 
further common assumption is the linearity of the factor model (Eq. 6.2) 
although nonlinear functions of 4) can also be considered. Also, if we 
assume that 4)— N(0, 1), the conditional expectation of X (given 40) is also 
normal with expectation a. and covariance matrix qt, that is, X141 — 
1V(a4), 40. Thus since %If is diagonal we can characterize factor analysis by 
the general property of conditional uncorrelatedness of the variables, given 
the common factors. Using Lemma 6.5 it can also be shown using Baysian 
arguments that 4) I X — Ni(et TI - 'cxX), (a .1.41-1 a + 1)]. Thus Baysian suf-
ficiency can be used to provide a statistically rigorous treatment of the factor 
identification problem. The theoretical merits of the approach are: (1) it 
indicates essential assumptions in order to resolve the identification prob-
lem, (2) it points the way to more general structures, and (3) it reveals 
possible inconsistencies between assumption and estimation procedure. 

When a sample of size n is taken, the factor model (Eq. 6.2) can be 
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expressed as 

X=FA+e 	 (6.10) 

where X is now a (n x p) matrix consisting of n multivariate observations on 
the random variables X 1 , X2, . Xp , each identically distributed. The 
unobserved explanatory factors are usually assumed to be random (in the 
population) but can also be assumed to be fixed (Section 6.7). Other 
specifications are also possible (see McDonald and Burr, 1967). If the 
factors or latent variables are further assumed to be orthonormal, and 
uncorrelated with the residual error term, we have from Eq. (6.10) 

FTX = FTFA + FTe 

	

=A 	 (6.11) 

and 

X TX = (FA + e)T(FA + e) 

= ATF TFA + ATFTe + eTFA + eTe 

	

= ATA + e Te 
	

(6,12) 

In the following sections we consider the main factor models commonly used 
in practice, together with several extensions such as the latent class and 
latent profile models. 

6.3 FACTORING BY PRINCIPAL COMPONENTS 

Factor analysis differs from principal components in that r < p unobservable 
or latent common factors are fitted to the observations, under the prior 
specification that the error terms are (1) mutually uncorrelated, (2) 
heteroscedastic, and (3) uncorrelated with the common factors. Since the 
error covariance matrix is diagonal, the common factors are assumed to 
reproduce the covariances (correlations) between the observed variables, 
but not the variances. Factor analysis can therefore be viewed as a special 
ease of the weighted principal components model (Section 5.6), and 
historically principal components have been used to estimate factors. It 
turns out, however, that the unweighted principal components model can 
also be considered as a special case of the general factor model. 

6.3.1 The Homoscedastic Residuals Model 

The homoscedastic residuals factor model is a special case of Eq. (6,2) since 
it assumes that the error terms possess equal variance, It is also known as 
the principal factor model, but the name is confusing since the term is also 
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applied to a somewhat different specification (Section 6.3.3). The homos-
cedastic residuals model has been considered by Whittle (1953) and Lawley 
(1953), and derives its advantage from the following property (Anderson 
and Rubin, 1956). 

THEOREM 6.3. Let = aa T  + IP be a factor model such that ‘It = 0- 2 1 for 
some scalar a 2 > 0. Then the model = 	r  + (r 2 1 is identifiable. 

PRooF. The latent roots and latent vectors A i  and 11 of / are given by 

(X — A11)11 1 = [(aaT  + u 2 1) 

= [F — (A, — (F 2 )1111 1  

= [r - A ,*1]11, 

=0 	 (i = I , 2, 	. 	(6A3) 

where A,* = A 1  — (7 2  are the latent roots of the "true" part F aot T  . We thus 
have a principal components decomposition of aa T  and since A, o- 2 , the 
scalar (r 2  can be chosen as the minimal latent root of 1, with multiplicity 
p r, and the factor model (Eq. 6.13) is identifiable. Since p(F) r, the 
principal components of F yield r common factors, which are unique except 
for sign changes, that is, multiplication by —1 (Section 3.2). Once the 
common factors are known, they may be rotated orthogonally or obliquely 
(Section 5.3) to enhance interpretability. None that to obtain correlation 
loadings the r latent vectors of 11' are standardized by A,* (i = 1, 2, ... , r). 

Once the latent roots and vectors are known we have, in matrix form, 

ECM = El Tatx 1.11 = A* 	 (6.14) 

where ciaT  is (p x p) of rank r, H is (p x r), and 

 

A,* 

A* = 

0 

  

is the diagonal matrix of nonzero latent roots of F. The factor loadings are 
then given by 

a= I1A*" 2 	 (6.15) 

or a, = 	(i = I, 2, ... , r). 
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Given a sample of size n we have the decomposition 

X = X* + e 

= 	+ e 

where X TX = ATA + e Te and e Te = .s 21 is the homoscedastic sample error 
variance matrix. The sample analog of Eq. (6.13) is then 

(X TX — /iI)P, = (AAT  — /71)Pi  = 0 	 (6.16) 

where 17 = — s 2  (1= 1, 2, 	, r). Since Eq. (6.16) provides the correct 
specification only when the last (p — r) latent roots are equal, s' can be 
estimated as 

E 
• 	 tr41  

p - r (6.17) 

Equation (6.16) can also be expressed as 

PTAATP = L* 	 (6.18) 

where L* = L — s 21 is diagonal. Equation (6.18) is thus a princirl corn 
ponents model with (p — r) isotropic roots and loadings A1  = L* 11  PT. The 
difference between the ordinary principal components model of Chapter 3 
and the more general factor analysis model is now clear. The latter contains 
heteroscedastic residual terms, whereas the former assumes the special case 
of equality of the residual variance terms. Note that since ordinary principal 
components do not adjust for error variance, the component loadings are 
inflated by a factor of (7. 2 , that is, principal component loading estimates are 
biased upward in the presence of uncorrelated residual errors. However, 
when the error terms are correlated, both principal components and factor 
analysis provide biased estimates. 

6.3.2 Unweighted Least Squares Models 

The main limitation of Eq. (6.13) is the assumption of equal error variance. 
A more general model is = u r  + u t2I, which implies the decomposition 

(X — At I)111, 	[11 .  — (A, — o-,2 )I111, 	 (6.19) 

where IP = (T /2 1 is a diagonal heteroscedastic error variance matrix. Equation 
(6.19) provides a generalization of the homoscedastic model (Eq. 6.13). 
Note that A, (Y IF is specified to he Gramm Ian. Thus the practice of 
minimizing the residual sums of squares can be extended to a wider class of 
factor models, which may be solved using a principal components decompo- 
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sition. Least squares models are also known as minimum residuals or 
minimum distance models, and include as special cases well-known factor 
models such as the principal factor and the "minres" models (Harman, 
1967; Comrey, 1973). They all possess a common feature in that they 
minimize the criterion 

U = tr(S — X) 2  

2 = E -G„,T 

Following Joreskog (1977) the total derivative of U is 

dU = d[tr(S — 2:) 2 1 

= tr[d(S — 1,) 2 ] 

= —2 tr[(S — X) dJ 

= —2 tr[(S X)(a da l  + daa l  )1 

= -4 tr[(S 1)a da l  

so that 

au 
Da = —4(X—S)a 

(6.20) 

(6.21) 

using Lemmas 6.2 and 6.3 of Section 6.4.2. Setting to zero yields the normal 
equations 

we= [(eta' +It) siet 

= 	(s4it +a) 
=0 
	

(6.22) 

where && = L is diagonal. Equation (6.22) can be rewritten as 

(6.23) 

where L and ei are latent roots and latent vectors of (S — ) respectively. 
Equation (6.23) therefore represents a principal component analysis of the 
corrected covariance (correlation) matrix (S — Alr) whose observed diagonal 
variance terms have been replaced by corrected values (and which can 
therefore possess only r nonzero latent roots). Note also that the model is 
not independent of scale. In addition, since the error terms are not known 
beforehand, both the loadings and error variances must be estimated 
simultaneously. This can be done in two ways. The first method is to use 
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principal components to obtain the initial estimate of '‘Ir, say + 0 p  using the 
first r components. We then have 

+0  diag(S — &a l ) 	 (6.23a) 

where since residual errors are to be uncorrelated, only the diagonal 
elements of S are replaced by estimated values. Once the initial estimate 
'Pm  is known, it can be replaced in the normal equations (Eq. 6.23) to 
obtain an improved second round estimate 4r (2) , and so forth until the 
sequence of error variances and loadings converges to stable values. The 
second method leads to a model known at times as the "image factor 
model." 

6.3.3 The Image Factor Model 

Another common practice is to estimate residual error variances by 
regression analysis, where each variable (in turn) becomes the dependent 
variable, and to use the predicted variances (R 2  values) as diagonal elements 
of the matrix S +. Such practice however is inadvisable and should be 
resisted since it leads to inconsistency of the statistical estimators. This can 
be seen from the following arguement. Let Y be a (n x 1) vector of 
observations on a dependent variable, and let X denote a (n x p) matrix of n 
observations on p independent variables such that Y = x13 + e and X = x + 8 
where 8 is a matrix of measurement errors for the independent variables and 
x is the matrix of true (but unobserved) values of X. The term e then 
represents error in Y. For a random sample. there will also exist additional 
terms in & and c such as sampling error, but (for the population) all 
variables must at least contain errors of measurement, together with natural 
random variation by the very nature of the factor hypothesis itself, Since in 
the regression set-up Y corresponds, in turn, to one of the variables of the 
set X I , X 2 , , Xp , we have 

Y= x13 +e 

= (X 8)11 + c 

=x13+11 	 (6.24) 

where Ti =E-613 is the residual error in both the dependent and in-
dependent variables and X represents the data matrix for the remaining 
p — 1 variables. The ordinary least squares estimator of 13 is then 

ii=(X I X) 	Y 

= (xix)XTpip + To 
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=pilxy'xIxo+(xTx) - ExTiq 

	

= 3 + (xix) 
	

(6.25) 

and taking expected values yields 

1,49 = I +14(xT,0 - 'xTii i 

(6.26) 

since 

ERX TX) 'X = ERXTX) 	+ 8) 1 (e — awl 

= ERX I"X) -1 (x re — x 1 813 + B T€ 8T8(31 (6,27) 

Thus even when xTe = XTs = 6Te — 0 we have 8 1.6 0, so that 
ERX TX) --  0, and is inconsistent for 13, It follows that the 
predicted values (and thus the R 2  coefficients) are also inconsistent, and a 
principal components decomposition of the reduced principal factor correla-
tion matrix will yield inconsistent estimators. Indeed, the bias can he worse 
than if an unreduced covariance (or correlation) matrix had been used. 
Moreover, using R 2  values can introduce secondary bias since R 2  is not 
corrected for degrees of freedom and is therefore a monotonically non-
decreasing function of p,  the number of explanatory variables. The model is 
also known as the principle factor model. 

Another variant of image factor analysis is to use the weighted principal 
components model whereby a component analysis is performed on X T X as 

(X TX O)P, ------ [(X - e) 1 (X e) — e lyi  

= (X T X — I,e Te)P, 

	

0 
	

(6.28) 

with e l e diagonal. The (n x p) matrix of residuals e is usually computed 
ahead of time by regression, but since all variables are still affected by errors 
in the regression equations, the. weighted image factor model is also subject 
to estimation inconsistancy. 

A number of other variants of the principal factor or image factor models 
have been proposed, but they differ only in the methods used to estimate 
the error terms. For example, iteration may be used with Eq. (6.28) in an 
attempt to improve the initial solution. As a general rule however models 
that combine principal components with ordinary least squares regression 
yield inconsistent estimators. 
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6.3.4 The Whittle Model 

Principal component factors are usually regarded as unobserved variables, 
which vary randomly in the population. Whittle (1953) has shown that 
components (factors) can also be considered as fixed variates which are 
solutions of the weighted principal component model 

— A iWM, = 0 	(1— 1, 2, . . . , r) 	 (6.29) 

where IP is a diagonal matrix of residual variances. The derivation is given 
in Section 3.7. When IP is not known, an iterative procedure suggested by 
Whittle (1953) can be used. Initially, 'P=I and r<p components are 
computed and used to obtain the first-stage residual variances. The variance 
terms are then substituted into Eq. (6.29), second-stage common factors are 
obtained, and so forth until IP together with the loadings converges to stable 
values, A simulated numerical example may be found in Wold (1953). 

6.4 UNRESTRICTED MAXIMUM LIKELIHOOD FACTOR MODELS 

Neither the homoscedastic residuals model nor the principal component 
factor specifications resolve the difficulty of estimating residual variation 
since the former assumes an unrealistically simplified error structure and the 
latter represents least squares estimators that are statistically flawed. Also, it 
is not clear how to test the principal factor loadings and latent roots for 
statistical significance. As an alternative to least squares, when the popula-
tion is multivariate normal, the principle of maximum likelihood can be used 
to derive the normal equations. The advantage of ML estimators is that they 
are efficient and consistent and permit statistical testing of parameters. The 
first significant contributions in this area are due to Lawley (1940, 1941) and 
Joreskog (1963, 1966), and in spite of initial difficulties of numerical 
convergence, ML estimation is today widely employed. Actually, several 
specifications of ML factor analysis have been proposed which lead to 
slightly different estimation procedures. Maximum likelihood estimation 
however can only be used for random factors since when factors are fixed, 
strictly speaking ML estimators do not exist (see Solari, 1969). The class of 
models is usually referred to as unrestricted maximum likelihood factor 
analysis, to differentiate it from the restricted or confirmatory factor models 
(see Lawley and Maxwell, 1971). It should be kept in mind however that the 
unrestricted factor models are also subject to restrictions or constraints, 
albeit of a more mathematical nature (Section 6.2). 

6.4.1 The Reciprocal Proportionality Model 

Consider a factor model like Eq. (6.2) where IP is a diagonal heteroscedas- 
tic error variance matrix. As noted at the outset, unique solutions do not 
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generally exist, and in order to achieve identification further constraints are 
required. Since the primary role of constraints are to achieve identification, 
their choice is largely arbitrary. Assuming that initially orthogonal common 
factors are required, Lawley (1953) and Joreskog (1962, 1963) have 
proposed that the model be estimated in such a way that 

= u 2(diag X -  ' )- 

2A - a 46, (6.30) 

where (7 2  >0 is an arbitrary scalar and = diag 	consists of diagonal 
elements of 	The constraint (Eq. 6.30) implies the residual variances 
are proportional to the reciprocal values of the diagonal terms of 21 -1 , from 
which the model derives its name. The factor model can thus he expressed 
as 

= aaT qt. 

(6.31) 

and pre- and postmultiplying by A l /2 we have 

/2u1/2 41 1/2 r41 1 /2 + cr2i 

= I* 	 (6.32) 

say, a weighted covariance matrix. The choice for the restriction (Eq. 6.30) 
is now clear—it converts the factor model to the equal residual variances 
model of Section 6.3.1. 

THEOREM 6.4. Let 1: be the population covariance matrix such that 
X = cm' +2  and A.= I ). Then the first r <p roots A I  > A 2  > • • 
As. of Al / 21 411 /2 are distinct, and the remaining (p – r) are equal to a". 

PROOF. Let A i  be the ith roots ofX* =41.1/21.1/2 a 	and If;  the ith root of 
/20ta -ril l /2 	r2 rii i /2 .  Then 

IX* –A , Ij = 	 — All  

= KA I /2aal-A 1 / 2 + 0. 2 1 ) 

1 ,11120ta
1 
A i /2 	(Ai 

	0. 2  )11 

= At /2 1,A1/2 	 (6.33) 

where 7, = A, – (7 2  for i = 1, 2, 	, p. Since r is (p x p) and positive 
semidefinite of rank r<p, it must possess r nonzero and (p r) zero roots, 
that is, A 1  > A 2  > • • • > A, > A,. +1 	A,, 2  = • • • 	A p  = cr - . Since scaling a 
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covariance matrix by A u2  converts the model to that of equal residual 
variances, it follows that the reciprocal proportionality model (Eq. 631) is 
identifiable, if we are given the value of r. The model can therefore be 
viewed as a principal component analysis of the scaled matrix X*. Alter-
natively, the loadings may be obtained from the equation 

iAa = aA 	 (6.33a) 

The constraint that a TAa be diagonal therefore constitutes an arbitrary 
condition to ensure identifiability of the coefficients, that is, the constraint 
fixes the initial position of the coordinate axes. In practice when r is not 
known its value is usually decided on the basis of trial and error, accom-
panied by tests of significance. It can also be shown that Eq. (631) has 
another desirable feature—the elements of a arc always correlation loadings 
no matter whether the correlation, covariance, or sum-of-squares and 
products matrix X TX is used, The proof proceeds along the lines of Theorem 
6.6 (Exercise 6.4). 

The MI, estimators for a and (r 2  are obtained when the observations 
represent a sample from the MIL, I) distribution. Alternatively the factors 
43 1 , 402 , 40, and the errors e t , € 2, , ep  may be assumed to follow 
independent normal distributions with zero means and diagonal covariance 
matrices I and 41, respectively. When the observed variates are multivariate 
normal, it can be shown that the sample variances and covariances follow 
the Wishart distribution 

AS) „ CrEr niltir° -P- 1)  exp[l tr(I - 'S)j 

where S can be replaced by X TX with a suitable adjustments in the constant 
of proportionality c. Replacing by I* and S by 

S* = (diag S 1 ) 112  S(diag S 

D u2S1D 112  

I)! /2 

 

1 
n-1

1) 1/2 (X IX)D 1/2  

 

(6.34) 

however does not necessarily preserve the Wishart distribution, where 
D diagS. Furthermore, the exact distribution of S* is not known, 
although asymptotic results can be obtained. Assuming A as the 

 approximate log-likelihood function is given by Joreskog (1963) as 

L(X*) = k[–In1I*1 + tr(S*X* -1 )1 

= k[–Inlaa T  + i4r  + tr[S*(aa T  + IP) "1 	(6.35) 
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where k is a constant of proportionality and ignoring expressions that 
depend on n. Differentiating Eq. (6.35) with respect to a and IP and setting 
to zero yields the normal equations 

(s* 

(see Section 6.4.2) where 

^ = I, 2.. • , r) 

r 
2 	 a- — 	trS* E p r[ 

A• p- r ,_, +1  

(6.36) 

(6.37) 

(6.38) 

that is, '& 2 , tr, and A, are ML estimators. Alternatively, correlation loadings 
may also be obtained by solving the sample version of Eq. (6.33a), that is, 

SDet OCA 	 (6.39) 

When the variables are not multivariate normal the estimators (Eqs. 6.36– 
6.38) arc still optimal, but only in the least squares sense. A further 
advantage of the model is that it is not iterative in nature and is thus 
relatively easy to compute. It is not as optimal however as the full or 
iterative ML model, which generally provides more efficient estimators. 
Two well-known iterative models—due to Lawley and Rao—are frequently 
employed in practice. 

6.4.2 The Lawley Model 

The original ML factor model was introduced by Lawley (1940, 1941) and 
differs from the reciprocal proportionality model in the weighting scheme 
used for the dispersion matrix. It also is invariant with respect to scale 
change so that the correlation, covariance, and X TX matrix yield identical 
correlation loading coefficients. Let 	(y 	Y2, • • • r yp ir  be NOL, 
Then using the. Wishart distribution (Eq. 6.35) the log likelihood can be 
expressed as 

1,(1) = In c 	In111 + --(n p – 1)1n1S1 +--f 	'S) 	(6.40) 
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the maximum of which must be the same as that of 

11 
L — 	+ tr(S)1 

371 

— 	 Atri + tr(aaT  + 111 ) -  'S1 
	

(6.41) 

omitting constant functions of the observations, which do not alter the 
maximum. 

In the random model the likelihood of (Eq. 6.40) is based on the ratio of 
the likelihood under the factor hypothesis (Eq. 6.5), to the likelihood under 
the hypothesis that is any positive definite matrix. We have 

I10 : = aaT  + 11r 

any positive definite matrix 

In practice it is numerically more convenient to optimize a different but 
equivalent function, as stated in the following lemma. 

Lemma 6.1. Maximizing Eq. (6.40) is equivalent to minimizing 

InIII + tr(SI 	—InISI — p 

tr(X 1 5) — In11-1 St —p 	 (6.42) 

The proof consists of noting that Eqs. (6.41) and (6.42) differ only in terms 
of constant functions of n and p. it can also be shown that Eq. (6.42) is 
nonnegative and attains the value of zero if and only if = S (see Exercise 
6.5). For this reason Eq. (6.42) is frequently used as a loss function, that is, 
as a measure of goodness-of-fit of 1: to S (Section 6,6). Although the 
minimization of the likelihood in the context of factor analysis was first 
considered by Lawley (1940; see also Lawley and Maxwell, 1971), the 
numerical technique employed did not always lead to convergence, until the 
introduction of the Fletcher—Powell (1963) algorithm by Joreskog (1966). 

Although the maximization of Eq. (6.42) cannot be obtained in closed 
form, the ML normal equations can be derived by multivariate calculus. 
Ignoring functions of the observations and assuming (1) random and a fixed 
we maximize the expression 

L InIXI + tr(SI 	 (6.43) 
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which depends only on a and IP. We have 

aL a 1101 a(tr 	)  
OP 	all,  

a 	+ API 	a[tr S(aal.  + AP) 1 1  
OAP 

diag(aaT  + AP) - ' (aal  + AP) -1 S(ua l  + ) (6.44) 

where ä'P/8'P = I. Setting to zero we have 

= diag(itfi l  + 	— 	+ 	 + ) I  = 0 

Or 

1 1= 0 	 (6.45) 

where i = 	 T  + if. The normal equation (Eq. 6.45) is equivalent to 

diag(i)= diag(S) 	 (6.46) 

or the condition that the sample variances reproduced by the ML estimators 
el and AP equal the sample variances observed in the sample. 

Next, differentiating Eq. (6.43) with respect to a we have 

L a Injua r  + 'P 	i tr[S(aa r + AP) '1  
aa 	aa 	 aa 

I 	all,' 
i ciaT 	a  + tr {S(aaT  + 1p) -5471  wet& 4_ qt ) 1 .1 

In terms of the elements cr ii  the first term of the derivative becomes 

a hilaa T  P 

	  E 
Iota 	/PI g - 1 h - I 

=—tr(X -1 	) acrii  

ao-  T 
CLOI 4-  WI 	

aaif 

where the subscripts g, h denote the corresponding element of the deter-
minant (matrix). For the (i, j)th loading the matrix 0//aau  is symmetric, 
with zeroes everywhere except the ith row and jth column, which has 
elements 2c:to  in the (1, j)th position. Direct multiplication and simplication 
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then leads to 

(6.47) 

The second term can also be simplified as 

al]
tr [S(aa' r  + 111 ) -  —a  S(aed .  + 'Pr = tr 	I SX — 

so that 

a 
tr[S(aa r  + ‘11 ) 1 1 	'SI l a aa 

The pr derivatives of the likelihood, with respect to the loadings, can then 
be expressed as 

aL 

 

= (6.48) 

 

and setting to zero we have the normal equations 

(i 	= o 	 (6.49) 

An alternative and a somewhat simpler derivation using Lemmas 6.2 and 6,3 
has also been given by Joreskog (1977). 

Lemma 6.2. Let f be a linear scalar function of a vector X and let dX 
denote the matrix of total differentials. If df— tr(cdX T ), where c depends 
on X but not on dX, then apax= c. 0 

Lemma 6.3. Let X and Y be matrices, Then 
(i) d(YX)=dYX + YdX 

(ii) dX 	—X l dXX --1  
(iii) d(tr X) = tr(dX) 
	

El 

Using Eq. (6.42) we have the total derivative 

dF = d tr( 1 S) —d ln 'SI 

= tr(d1; -1 S) — tr(S -1 1; 	'S) 

= tr((S-) d t J 

= tr[(1,— S) 'di 1 ] 
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= 	"(I - S) 1  (daa T  + a da l  

= 2trII -1 (1, S)/ -1  a da T  I 

so that 

which, equating to zero, leads to the normal equations (Eq. 6.49). 
Equations (6.45) and (6.49) constitute the normal equations for the 

Lawley MI- factor model. Since Eq. (6.49) does not have a unique solution, 
a further arbitrary constraint is required to render the model identifiable. 
The constraint which Lawley uses specifies that a Tqr" = q be diagonal, 
and this fixes the basis of the solution space, thus yielding unique correlation 
loadings a. Since the constraint is arbitrary, it can always be removed once a 
unique initial solution is found, using any one of the orthogonal or oblique 
rotations (Section 5.3). 

Lemma 6.4. Let 	aaT  + gr be a factor decomposition of X. Then 

X I  = 	‘P l a(' + 
	

(6.50) 

Proof. Postmultiplying Eq. (6.50) by we have 

X -  = 	- qt`a(I + 	l aTIP -1 1(aa T  + VI) 

= IP" (aaT  + 11r) lir -  a(1 +1) I  aTlif (au' 

= 	' au' + I - 	 I  a(I + -l aTqf -l aaT  

111-1 a(1+ 	 "%If 

= Waal  + I - 	a(I + 	 I  a(I + 	a 

' au' + I - 	l aaT  

=1 

	

where q----  aTtlf -  'a is diagonal. 	 0 

Postmultiplying Eq. (6.50) by a leads to the further identity of Lemma 
6.5. 
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Lemma 6.5. Let the conditions of Lemma 6.4 hold. Then 

l a =‘11  

375 

Proof Postmultiplying Eq. (6.50) by a we have 

1-1 a= 

	

	l a- 111-1 a(I+iri) l a 1IP -l a 

- 1P -l a(1+71) .  

Sincel is diagonal with nonzero diagonal elements, and post-multiplying 
by 	1 (1+ N) it follows that 

X -1 a1 -1 (I +TO= qr -lotif"(1+ TO- 	t a 

or 

= qr  

Postmultiplying by i yields 

X -J a+X -I ari= 111- 'a or X -l a=q1-l a(I+11) -  

Substituting Eq. (6.51) into Eq. (6.49) we have 

(i 	+ 	= 

and postmultiplying by (I+ T), substituting for X, we obtain 

Ciet T lir 	+ a— siir -1 451--=o 

or 

+ 1)= 0 

Premultiplying by lir " and collecting terms we can write 

	

[qr 	Sqr 	- (11+101qr 	a= 0 
	

(6.52) 

•-• 	/2 	-- I /2 

Let S* 	SAP 	be a weighted sample covariance matrix. Then the 
final form normal equations can be expressed as 

ES* - 	
+1)1]1, 1  Li21 

= 0 	(1 =1, 2, . 	, r) 	(6.53) 
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where it is clear that 	+ 1 is the i ith, latent root of 5*. __The loadings 	are 
obtained from the latent vectors qr, — ix, such that iiTqf el= is a diagonal 
matrix, a mathematical constraint introduced to render the loading co-
efficients identifiable. The reciprocal proportionality model of the previous 
section and the ML model (Eq. 6.53) therefore differ mainly in the initial 
identifiability constraints used. For ML factor analysis when the parent 
distribution is normal, the constraint that a Ltlf -1 a be diagonal is also 
equivalent to the a priori arbitrary constraint that the distribution of (11) I X 
have a diagonal covariance matrix (Section 6.2), that is, that the factors 
given the observed variables X be independent (Section 6.8). This may be 
seen from the fact that since a TIP -l a is diagonal, the off-diagonal terms are 
of the form 

E a,kallittli 
	 (6.53a) 

i 

and must be zero, that is, when the variates are resealed so that the residual 
variance of each is unity, the covariance between (lc, Oth factor is zero. 
Also, the diagonal terms of the form a,-k /i/r, represent the part of the 
variance of variate X, which is explained by the kth factor pk  . As for the 
principal components model, the diagonal elements of a T‘P -l a are ranked 
in decreasing order so that 41, 1  accounts for the maximal total variance, P2 

accounts for the second maximal variance, and so forth until we reach p r , 
which explains the smallest portion of the total variance of the variates. 0 

THEOREM 6.5. Let X = 	X2,. 	 Xp) represent a vector of p 
random variables such that X —N(D, I) and X = aal" + 	Then 

(i) If there exists a unique diagonal matrix IP with positive diarnal 
elements such that r largest latent roots of X* = 111-1 ' 21111-1 2  are 
distinct and greater than unity, and the remaining p r roots are 
each unity, then a can be uniquely defined such that 

Er (ni  + onyt t-  "'a, = o 	 (6.54) 

(ii) Let 

x* 	- it 2 np. - / 2 + 1 	 (6.55) 

2, 	, r) is the ith latent root of IP !2FiP2 such that Ti I >Y1 2 > 

be the sealed model (Eq. 6.51). Then ik= a.,L11r, 'a, (i = I, 

• > 	and n„ =17,+2 = • • • - 17,, - 0. 

PROOF 

(i) Since I* is Grammian and nonsingular it can be expressed as 

(X* —Anil, ---= 0 	 (6.56) 
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for A t  > Az  > • -A p . When IP is unique, so are a and H. and letting 
Ai  = + I and Ili  = 11, 1 112 ai , we obtain Eq. (6.54). 

(ii) Since X* = ‘11 . " 2 011-112  + I we have, from Eq. (6.52) 

lop  Tip  - I 2 4_ _ (ni opp  2a,  = 0 
 Or 

op - 	12 _ 	 i2 ai  = 0 	 (6.57) 

Since I=aaT  is (p x p) and p(T)— r, the last p — r roots of T must 
equal zero, that is, corresponding to the zero roots of IP ti21-11r - 112 , the last 
p — r roots of X* are equal to unity. 

Theorem 6.5 resembles Theorem 6.4 and indicates that the principle of 
maximum likelihood and normality are not essential to the derivation of 
Lawley's model. When the data are not sampled from N(p., 1,), the normal 
equations (Eq. 6.53) still yield optimal estimators in the least squares sense, 
although statistical testing is usually precluded. However, the latent roots of 
X* must exceed unity if is to be positive definite. Lawley's model can also 
be compared to a principal component decomposition of the weighted 
covariance matrix X* where both X and the weights IP - 112  are estimated by 
an iterative sequence such as the following: 

1. Compute S (or X TX), extract the first r principal components, and 
using Eq. (6.12) compute an estimate of %It, say 'Pm . 

2 2. Construct the weighted covariance matrix S(t)  ---- Alr o)  SAV(1)  , com-
pute principal components and obtain the second-order estimate of 'IP, say 

(2) .  
3. Repeat the procedure until residual errors approach stable values lir. 

Now let 

1 2  
04] 

and let 1:%, P2 , . 4  ,P, be the first r latent roots and latent vectors of 
S* = 	Slif 	Then 

S*11( ,. ) 	P(r) L (r) 	 (6.58) 

where P(r)  is the (p X r) matrix of latent vectors of S. The ML estimator ij 
is obtained as 

(6.59) 
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where 

and 

^1/2 lir a Poi) 

P(,)(1,) - 

so that 

= 41. 112p(r)(L(r) 	 (6.60) 

is the (p )( r) matrix of correlation loadings. 

The algebraic derivation given above is mainly useful for reasons of 
exposition, since the numerical computations can be implemented in a 
number of different ways—see, for example, Johnson and Wichern (1982). 
A difficulty with the ML factor model is that the likelihood function (Eq. 
6.42) may not possess a true maximum, which can be due to violations of 
conditions such as the strict positiveness of the error terms,* multivariate 
normality, or more generally unimodality. Even when the likelihood does 
possess a unique global maximum, a particular numerical algorithm may fail 
to locate it, since the iterative sequence may converge to a local maximum 
instead. This underlines the importance of having to verify assumptions such 
as multivariate normality of the population (see Section 4.6). The 
covariance matrix must also be nonsingular so that, for example, the 
number of variables cannot exceed the number of observations. An 
advantage of the model however lies in the improved properties of the 
estimator ex, such as greater efficiency and reduced bias, as well as 
invariance to the units of measurement. 

THEOREM 6.6. Let X he a random vector with nonsingular covariance 
matrix 1. Then the weighted covariance matrix 1* =111-- 2 14,- 1/2 is 

 invariant under a scale transformation of X. 

PROM'. Let H be a diagonal matrix such that Z HX. The matrix Z 
represents a change of scale of the random variables. The factor decomposi- 

*For the case when some residual error variances are identically zero see Mardia et al.. 1979, 
p. 277. 
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tion is then 

142,H = HFHT  + MPH I.  

---HrHT+(iptrw.)(Hipi'2)r 

and weighting by (resealed) error variances yields 

(IPP 112 ) -IHIH 1- (IP II2H 	(Hilt' :2)- 	+ I 

Or 

qt - 12p  - 1 /2 = qf  - 1 i2pp - / 2 + 

the original factor model of the unsealed variables. 

6.4.3 The Rao Canonical Correlation Factor Model 

An alternative least squares derivations of the ML factor model has been 
provided by Rao (1955). The derivation is of interest in that it represents an 
alternative view of the factor model, and demonstrates the least squares 
optimality of Lawley's model without having to assume multivariate nor-
mality. Let X be a (p X 1) vector of random variables and X* = E(X) a41, 
that is, that part which is predicted by the set of r common factors. Then 
X = a + c = X* + c. We wish to compute coefficients that maximize the 
correlation(s) between X = (X I , X 2 , . . , Xp ) T  and X* = (X i*, 

From Section 5.51 we know that the maximum correlation 
between X and X* is the highest canonical correlation between the linear 
combinations u=i3Tx and V=11 1 X* where 13 and ry are unknown co-
efficients to be determined. We have 

var(U)=-- E(U 2)= E(pixxill) = tqxx v=i3T115 

var(V) = E(1/ 2 ) = E(tt l X*X*-y l ) = -y l E(X*X* 1  )11= ? Try 

cov(U, V) = F(N) = E(fi l  XX* ) = I E(XX* l )y= 11 1  Py 

since 

XX T  (a4) + c)(a49 1.  

= aclx1) 1 a viol a 

aa 

x*x* 1 
	

(6.61) 

where (11470 = I and 01) =0 by assumption. We thus maximize cov(U, V) = 
13 T Py subject to the constraint of unit variance of U and V. From the 
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canonical correlation model we have 	I LI , 1 12  = 	= '2I r, and 

(X1- 1 12:12 1 21, 21 	= (I -I rr -I r- A 2oni  

(X - ' - A 2 1)11, 

or 

(6.62) 

for I = 1, 2, 	, r maximal correlations. The A 2  are solutions of the 
determinental equation 

Ir- IA,71 = I(X 'P) AI  — 

I( 1 	Al2-  )1; 

2 ) 111  

= 0 

where we can let H I  = I for maximal correlation and 	= 1/(1 — A,2 ), 
Equation (6,62) can thus be expressed as 

	

- Cq1 )13; =0 
	

(6.64) 

for i = 1, 2, • . • r common factors. The normal equations (Eq. 6.64) can be 
reduced to those of Eq. (6.54) except for the normalization of the latent 
vectors, and the canonical correlation factor model (Eq. 6.64) is thus also a 
solution to Lawley's normal equations. The latent roots and latent vectors e, 
and 11, of (in the metric of Air) thus maximize the correlation loading 
coefficients a between the variates and the common factors, an optimality 
property not possessed by principal components when the residual errors are 
heteroscedastic, For a multivariate normal sample the solutions of 

	

(s - t,+)1), =o 	 (6.65) 

are also ML estimators. For the special case when IP = 0- 21 we obtain the PC 
model, and if the ( p x p) matrix E is singular of rank r <p we can write 

 

Jk 	
2 

a

( 	

2) 

cr 21 II 

 

  

 

(15.i5-r) 
(1 — 

 

(r < 
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6.4.4 The Generalized Least Squares Model 

The least squares or the so-called "minres" model (Eq. 6.23) can be 
generalized to minimize the weighted least squares criterion 

G = tr[S -I (S — X)S - '(S — X)I 

= tr[S l (S — X)1 2  

= tr(I — S -I X) 2 	 (6.66) 

where S is the weight matrix (Joreskog and Goldberger, 1972; Joreskog, 
1977). The rationale for the criterion parallels that of generalized least 
squares regression for heteroseedastic error terms. We have the total 
differentials 

dG = d[tr(S 	— I)1 

tr[d(S I  — 02] 

= 2 tr[(S -I X — I) 	— I)] 

= 2 tr[(S --1 X —1)S -1  

and keeping IP fixed, 

= d(aal  + ‘11 ) 

a(da T )+ (da)a l  

= 2a(da 1 ) 

so that 

dG = 4 tr[(S 	— I)S -1 a(daT)1 

Using Lemma 62 we arrive at 

dot = 4S -1 (1. — S)S .-t a 

and setting to zero yields the normal equations 

S -1 (i — s)s 'it=o 

is -  la--« 	 (6.67) 

Premultiplying by -1  and rearranging terms leads to an expression which is 
equivalent to Lawley's normal equations (Eq. 6.49; see also Exercise 6.6). 
The conditional minimum of Eq. (6.67), given IP, is however different from 
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the conditional minimum of Lawley's ML model (see Joreskog, 1977). 
Nevertheless, the loadings obtained using Eq. (6.67) are also consistent 
estimators of a and are asymptotically equivalent to the Lawley/Joreskog 
estimator (Browne, 1974)—in fact using an alternative weighting scheme at 
each iteration it is possible to force the solutions of Eq. (6.67) to converge 
to the Lawley/Joreskog solution (Lee and Jennrich, 1979). The generalized 
least squares model (Eq. 6.67) can also be compared to the ML factor 
model in terms of the diagonality constraint which is imposed to obtain 
identifiability of the model. Thus using Lemma 6.4 it can be shown 
(Exercise 6.7) that Eq. (6.67) is equivalent to 

(11, 1 / 2 S 
	

(6.68) 

where, as for the ML model, we can take a Ilr -l a to be diagonal. The 
l ,  columns of 'P 112a are thus latent vectors of %PIizs ip ! /2 and nonzero 

diagonals (I + WA, - 'cr) -1  are the latent roots. Since the conditional 
minimum of G for given lit'' 2  is obtained by choosing the smallest roots of 
'tir' /2S 4012  the generalized least squares criterion can also be viewed as 
one which choses a TS -  l et to be diagonal. 

6.5 OTHER WEIGHTED FACTOR MODELS 

The ML and least squares estimators considered in Section 6.4 are not the 
only examples of weighted factor models used in practice. More specialized 
weighted models are also at times used to handle particular difficulties found 
in certain disciplines. 

6.5.1 The Double Heteroscedastic Model 

In the weighting schemes employed in Section 6.4 the residual error matrix 
IP is generally taken to be heteroscedastic, in the sense that two or more 
variables are assumed to have different error variances. The observations 
for each variable however arc assumed to have equal error variance. A 
more general model is also possible, where the error variances of both the 
variables and observations are not constant, that is, for the (i, j)th element 
of e we have 

var(eq ) = 	 (6.69) 

where cov(€11 , cia) = 0 for i0k and j 	so that the error terms are 
uneorrelated between the variables and the observations, Such an error 
structure, which can frequently exist for both experimental and nonex-
perimental data, has been incorporated into the factor model by Cochran 
and Horne (1977), who report superior results to those obtained using the 
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principal components model of Chapter 3. As an example, consider Beer's 
Law, where Y is a (nxp) matrix consisting of r responses (molar ab-
sorbance, fluorescence, or chemiluminence) at n wavelength channels. 
Assuming the response at each wavelength channel to be a linear function of 
the concentration of each detectable species (plus error), we have the 
sample factor model X = FA + E where F and A are the (nx r) concen-
tration and (r X p) static spectrum matrices, respectively. The objective is 
then to find the rank of the true data matrix Y where the variance of the 
error term varies across both spectra and wavelength channel. The doubly 
heteroscedastic error specification (Eq. 6,69) therefore implies a differential 
impact on the error term for the rows and columns of Y. A solution is to 
weight the zero-mean data matrix X by the two diagonal matrices C 112  and 

so that errors assume the homoscedastic form 0 -2 1 where 

C = diag(e, , C 2 , . . ,C„) 

D= diag(d i , d2 , • , d) 

We have 

X* = "2- XD -112 = C "FAD 1/2  +C uED " 2  

or 

X* 	= (D - 1r2ATF 1.0 " 2 )(C .1/2FAD ti2 ) (D  .u2ETC " 2 C lu ED 112 ) 

= D 1 A 1 F 1 C - 'FAD 	+ 
	

(6.70) 

As for the reciprocal proportionality model (Section 6.4.1) the latent roots 
of the weighted covariance matrix (ignoring degrees of freedom) of Eq. 
(6.70) are given by the determinantal equation 

l x* Tx . 	 1/2 ATFT.- (.; 'FAD -  112  + 0" 21) - Ai l! 

= I(D - " 2 ATF rC -1 FAD 1 ' 2 ) + (o- 2 — A r )II 

= 0 
	

(6.71) 

The covariance matrix of the true portion 	u2ATF-r- t.; FAD -1/2  of the 
data is thus assumed to be of rank r, where r<p <n so that X* TX* 
possesses r roots I I  >12 > • • • >1, and (p — r) isotropic roots equal to 
the weights C and D are not known, the solution proceeds iteratively for 
successive choices of r, observing for each choice whether the last (p— r) 
roots tend to the isotropic structure. Alternatively if a' is known, for 
example o- .2  = 1, this fixes the number r of nonisotropic roots. The residuals 
e q  can also he plotted on a graph (e.g., against time or wavelength in the 
chemical application) to examine any patterns that may occur, implying an 
incorrect choice of r since this yields a non isotropic structure of the last p—r 
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roots. Also, let Q r  denote the sum of squares of the residuals when r 
common factors are used. Then when the true rank of X is r, the quantity 

.2 	Q,  

cr — 	 (6.72) (n r)( p r) 

should lie in the interval to- 2  +3, cr 21 for some small 8 >0. 

6.5.2 Psychometric Models 

Since psychology and other social sciences have traditionally been frequent 
users of factor models, a number of variants of weighted factor analysis have 
appeared in these disciplines, of which the so-called "scaled image" and 
"alpha" models are well known. The scaled image model is defined by the 
normal equations 

	

- 112U.+ - 2 oft  = 0 	
(i ----- 1, 2, . 	, 	(6.73) 

where + and 1-  are first-stage estimates of Eq. (6.5). Although the model 
represents an attempt to control for bias arising out of error terms, it is not 
in fact optimal, either in the maximum likelihood or the least squares sense, 
unless further iteration is carried out, in which case it approaches the ML 
model (Eq. 6.54). 

Another weighting scheme is to use "communality" (explained variance) 
as weights for the variables. The so-called alpha factor model is then based 
on the latent roots and latent vectors of the matrix 

[diag(t)] -  " 2 1'[diag( P)] -1 /2 
	

(6.74) 

that is, the explained part fs of the correlation matrix is weighted inversely 
by the communalities. Statistical or sampling properties of this model 
however are not known, and the rationale for the weighting scheme appears 
to be based on a particular line of psychometric reasoning. For Monte Carlo 
comparisons between the alpha and other factor models see Velicer (1977), 
Acito and Anderson (1980), and /keit° et al. (1980). Computer programs 
for the alpha model (as well as the minres and ML models) may be found in 
Derflinger (1979). 

6.6 TESTS OF SIGNIFICANCE 

When X N(0, 1,), the hypothesis of r common factors can be tested using 
large sample theory, that is, we can test the null hypothesis 

Ho : = an"' 4- 
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against the alternative 

H „: 0 	+ %If 

to determine whether X contains r >0 common factors (plus a diagonal 
error variance matrix) versus the alternative that X is an arbitrary covariance 
matrix. The methodology and types of tests available for factor models are 
similar in scope to those used for principle components (Chapter 4). 

6.6.1 The Chi-Squared Test 

The classic test for r common ML factors is the large sample chi-squared 
test. First, consider the test for complete independence of the variates 
(Lawley and Maxwell, 1971). Under H o  the likelihood function (Section 
6.4) is 

L(w)= Clil ."12  exp 	tr(± I S)] 

a  T lir  - rtI2 exp[tr( «a T  4-  lir )S] 

and under Ha  we have 

L(12) = ciS1 - " /  2  exp [— tr(S - / S)] 

= c1SI ni2 	 np) 
exp (— 

(6.75) 

(6.76) 

since under Hai = S, the sample estimate. The likelihood ratio statistic for 
testing Ho  is A = L(0)1 L(12) where —21n A is asymptotically chi-squared. 

For large n we have 

—2In A = —2 In /.(4)) + 21n L(.0) 

= n[Inlil + tr(Si 1 ) — lnSf — p1 

Since from Eq. (6.45) diag i = diag S, the criterion reduced to 

X 2  = 	+p — InISI—pj 

iii = nln 	 (6.77) 
ISI 

Since the test for complete independence is equivalent to testing whether 
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r 0 we have, from Eq. (6.77) for large samples 

!SI  
x 2  = –n In 	)= n InIRI 	 (6.78) 

since when r = 0 we have = diag (S) and the determinantal ratio equals 
[RI, the determinant of the correlation matrix. The statistic (Eq. 6.78) is 
valid for a large sample size n. For not-so-large samples the chi-squared 
approximation is improved if n is replaced by (n 1) – 1/6(2p + 5) (Box, 
1949) for d (1/2)[(p r) 2  (p + r)] degrees of freedom, the difference 
between the number of parameters in and the number of linear con-
straints imposed by the null hypothesis. In practice the likelihood ratio test 
will often indicate a larger number of common factors than what may be 
interpreted in a meaningful setting, and it is at times best to carry out a 
rotation of the loadings before deciding on the value of r. In any case, the 
number of common factors may not exceed that number for which d is 
nonpositive (Section 6.1). 

When K 	accepted, that is, when the asymptotic chi-squared statistic 
indicates the presence of at least a single common factor, the test is repeated 
for larger values of r since the objective now becomes to estimate the 
"correct" number of common factors 4, • 3 , 1  6 2, • ,.; 7 4) ( 1 r< p). As was 

1 seen in Theorem 6.5 the latent roots of 	= -1``Xlir /2  equal unit/ when 
those of the weighted or "reduced" correlation matrix lit I 2np -- " equal 
zero. The appropriate test for the existence of 0< r <p common factors is 
thergore equivalent to testing whether the last p – r roots (ij, + 1) of 
AP SAP -1 ' z  differ from unity. The rationale for the test is similar to that 
encountered in Section 4.3 when testing for the existence of r principle 
components. The criterion for testing for the existence of r common factors 
is given by (see Lawley and Maxwell, 1971) 

X 2  = –[n  – 1 – -6-(2p + 4r + 5)1 	In(n, + 1) 	(6.78a) 
or=r+1 

since it is the low-order latent roots that provide a measure of the goodness 
of fit of the factor model to the data. 

Several comments are in order when using the likelihood ratio statistic 
(Eq. 6.78a), First, the statistic is asymptotically chi-squared only when 
X N(0, I), and requires at least moderately large samples—Bartlett 
(1950), for example, suggests n r 50. Second, as Geweke and Singleton 
(1980) have pointed out, Wilks' (1946) theorem is applicable only under 
certain regularity conditions. Let 0 denote the vector of free parameters in 
aaT  + IP and let On  be the vector of ML estimators in a sample of size n. 
Then Wilks' (1946) theorem requires that the distribution of Nin(ii„ 0) 
approaches a normal with zero mean and positive definite covariance matrix 
as n--o. c, that is, On  must be a consistent estimator of 0. This is so only when 
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we do not have a Heywood case, that is, when lir > 0 and when the number 
of common factors has been correctly estimated. When these regularity 
conditions do not hold the asymptotic ML theory can be misleading, 
particularly in a small sample. Finally, the chi-squared test is applicable only 
for covariance matrices and, strictly speaking, does not apply to correlation 
matrices. 

6.2.2 Information Criteria 

Information criteria described in Section 4.3.5 can also be used to test for 
the "correct" or "optimum" number of factors. Indeed, the AIC statistic 
was initially developed for time series and the ML factor model (Akaike 
1974; 1987). The main idea is to use functions which are similar in spirit to 
Mallows' Cp  statistic, which penalizes an excessive number of fitted parame-
ters something which the chi-squared test does not do. 

In what follows we base our discussion on Bozdogan (1987). Consider the 
absolutely continuous random vector X, which has probability density 
f(X10) and where 0 is some vector of parameters. If there exists a true 
vector of parameter 0*, then the measure of goodness of fit used is the 
generalized Boltzmann information quantity 

B = E[In f(X10) + In f(X10*)1=- —1 	 (6.79) 

also known in the statistical literature as the Kullback—Leibler information 
criterion. Under the principle of entropy maximization we wish to estimate 
f(X10*) by means of f(X I 0) such that the expected entropy 

Ex (B) = Ex tE[In f(X10)] E[In f(X I  0*)] 

= EAElin f(X10)1) 	 (6.80) 

is maximized (that is, the Kuelback—Leibler information I is minimized 
since large values of this quantity imply that the model f(X 0) provides a 
good fit to f(X10*). The expected value of Eq. (6.79) can therefore be used 
as a risk function to measure the average estimation error of the fitted 
model. The AIC criterion is then a sample estimator of E[In f(X10)J, the 
expected log likelihood or ncgentropy, and is given by the general expres-
sion 

AIC(r) = —2 In L(r) + 2m 	 (6.81) 

where rn is the number of free parameters after a model has been fitted, and 
L(r) is the likelihood. Equation (6.81) was originally developed by Akaike 
(1974a) in the context of time series, but it can be expressed in a form handy 
for maximum likelihood factor analysis (Akaike, 1987). Since for r common 
factors we have L(r) = (n/2) Ef'_,. +1  In Or  and the number of free parameters 
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is m =p(r + l) — (1/2)r(r — 1), Eq. (6.81) can be expressed as 

AIC(r) = (-2) 	In 	+ [2p(r + 1)— r(r — 1)1 	(6.81a) 

where EL! ,  1)r + 2 	represent the last (smallest) latent roots. The idea of 
using Eq. (6.81a) is to vary the number of common factors, beginning with 
r = 1 7  and to chose that value of r which corresponds to the minimum of 
AlC(r). Although no statistical testing is involved as such, both Eqs. (638a) 
and (6.81a) depend on the value of Ur), that is, on the last (p r) latent 
roots. Note however, that in Eq. (6.81a), m is not the number of degrees of 
freedom as for the chi-squared statistic, but corresponds to the number of 
free parameters in the system (Section 6.1). 

As pointed out by Schwarz (1978), however, the penalty term 2m does 
not depend on the sample size n. This implies that the same number of 
common factors would be selected by Eq. (6.81a) for small as well as large 
samples, given a common factor structure. The AIC(r) criterion therefore is 
not a consistent estimator of the "correct" number of factors r. Schwarz's 
approach is to assume a prior distribution of a general form, where the 
observations are generated from a Koopman—Darmois family of densities, 
and to obtain a Baysian criterion which selects that model which is as 
probable as possible in the a posteriori sense. Schwarz's criterion may be 
expressed as 

n 
SIC(r) = — —2 2, In + -2 In n (6.81b) 

where the terms are as in Eq. (6.81a), but the penalty term (m/2) In n also 
depends on the sample size n. The value of r is then selected such that 
SIC(r) is minimized. Actually Schwarz maximizes —SIC(r), but Eq. (6,81b) 
is more handy to use when used in conjunction with Eq. (6.81a). It is also 
used in statistical computer packages such as SAS, The SIC(r) criterion 
selects a smaller number of common factors than does AIC(r) when n> 8 
(Exercise 6.16). SIC(r) however is not the only alternative to Eq. (6.81)— 
for other formulations see Sclove (1987) and Bozdogan (1987). 

Example 6.2. As an example of the testing procedures described in this 
section consider the following data for p 5 characteristics of n = 32 brands 
of automobiles. Since the data arc intended to serve only as a numerical 
illustration, the sample size and the number of variables is somewhat smaller 
than would normally be encountered in practice, and the testing procedure 
does not employ the full range of values of r. Also, the correlation rather 
than the covariance matrix is used since the ML factor model is invariant 
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with respect to scale (unit) of measurement. The variables are defined as 
follows, and their values are given in Table 6.1. 

- Engine size (volume) 
172  = Horsepower 
Y3  = Carburator size (number of barrels) 
Y, = Automobile weight (lbs.) 
115  = Time to achieve 60 miles per hour (sec) 

Table 6.1 The p 	5 Characteristics of n = 32 Brands of Automobiles 

Car No. Y 112 Y3 174 Y5 

1 160.0 110.0 4 2620 16.46 
2 160.0 110.0 4 2875 17.02 
3 108.0 93.0 1 2320 18.61 
4 258,0 110.0 1 3215 19.44 
5 360.0 175.0 2 3440 17.02 
6 225.0 105.0 1 3460 20.22 
7 360.0 245.0 4 3570 15.84 
8 146.7 62.0 2 3190 20.00 
9 140.8 95.0 2 3150 22.90 

10 167.6 123.0 4 3440 18.30 
11 167.6 123.0 4 3440 18.90 
12 275.8 180.0 3 4070 17.40 
13 275.8 180.0 3 3730 17.80 
14 275.8 180.0 3 3780 18.00 
15 472.0 205.0 4 5250 17.98 
16 460.0 215.0 4 5424 17.82 
17 440.0 230.0 4 5345 17.42 
18 78.7 66.0 1 2200 19.47 
19 75.7 52.0 2 1615 18.52 
20 71.1 65.0 1 1835 19.90 
21 120.1 97.0 1 2465 20.01 
12 318.0 150.0 2 3520 16.87 
23 304.0 150.0 9 3435 17.30 
24 350.0 245.0 4 3840 15.41 
25 400.0 275.0 2 3845 17.05 
26 79.0 66_0 1 1935 18.90 
27 120.3 91.0 2 2140 16.70 
28 95.1 113.0 7 1513 16.92 
29 351.0 264.0 4 3170 14.50 
30 145,0 175.0 6 2770 15.50 
31 301.0 335.0 8 3570 14.60 
32 121.0 109,0 2 2780 18.80 
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Table 6.2 Principal Components Loading Coefficients (Unrotated) and Latent 
Roots of the Correlation Matrix of p =5 Automobile Characteristics 

Variables 

Principal Components 

Z i  Z 2  Z, Z4 Z, 

X, .875 .415 — .209 —.029 .131 
X. .949 — .057 — .106 .286 —.057 
X, .762 — .432 .479 —.010 .056 
X4 .776 .581 .176 —.145 —.097 
X, —.771 .606 .306 .178 .038 
Latent 

roots 
3.3545 1.0671 .4090 .1352 .0342 

Variance ( %) 67.09 21.34 8.18 2.70 .68 

First, a principal components analysis is carried out for the five variables 
to gain an initial idea of the number of principal dimensions required to 
represent the data adequately. Referring to Table 6.2 it appears that 
between two and three components arc needed for the task. First, we test 
for complete independence, that is, whether one or more common factors 
are present. Using Eq. (6.78) (see also sec. 4.2.1) we have the approximate 
chi-squared criterion 

x2-  –(n – 1)1011 

--31 In[(3.3545)(1.0671)(.4090)(.1352)(.0342)1 

–311n(.0067695) 

= –31(-4.9953225) 

= 154.86 

without using Box's correction factor. Replacing (n – 1) by (n – 1) – 
(1/6)(2p +5) = 31 –(1/6)(10+ 5) = 28.5 we obtain x2=  142.37, a 
somewhat smaller figure. Using 

d = 4[(p – 02  (p + 

0 ) 2  – ( 5 )i 

=10 

degrees of freedom we see that both chi-squared values are significant at the 
.01 level. 

Next we commence the estimation process of the ML factor model, 
beginning with the r = I common factor and employing SAS statistical 
software. Surprisingly, an unexpected difficulty develops—we obtain a 
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Heywood case, that is, a single common factor attempts to explain more 
than 100% of the total observed variance. As was seen in the preceding 
sections this is possible in exploratory factor analysis. Although the irregu-
larity or Heywood condition is known to occur, the frequency of its 
occurrence can at times be surprising. 

Since the data cannot be represented by a single common factor (plus a 
regular error term) we continue for r = 2 factors. Here a regular solution is 
possible, and the loading coefficients are given in Table 6.3. Comparing 
these values with those of Table 6.2 we can see that both models yield 
loadings that are similar in value. The R 7  values (communalities) are also 
comparable, with the exception of X„ which is a discrete random variable, 
and in this case does not have errors of measurement and consequently 
cannot be represented well by the factor model. 

The latent roots of the weighted "reduced" correlation matrix 
-1/2 

Dir 	are 	= 33.108682, 	= 12.343351, -43  = .686216, ill 
-1:2 

.121614, and -175  — —.807835 and the latent roots of Alr 	SIP 	are thus 
given by ei  = 	+ 1). The likelihood criterion (Eq. 6.78a) yields 

5 

—[31 k(10 + 8 + 5)] E In 61  

= —27.167(ln 1.686216 + In 1.121614 + In .192165) 

= —27.167(-1.01216) 

=27.497 

which is approximately chi-squared with d (112)(3 2 — 7) = 1 degree of 
freedom. The value is still significant at the .01 level, and we may feel that 
r = 3 common factors are appropriate. This however is precluded because of 
negative degrees of freedom, and a three-factor model does not exist for 
P 5 • 

Next, we illustrate the use of the Akaike A1C(r) and the Schwarz SIC(r) 
criteria. Once the latent roots 0, are known, the AIC criterion can be easily 

Table 6.3 Maximum Likelihood Factor Loading Coefficients (Unrotated) or the 
Correthtion Matrix of p =5 Automobile Characteristics' 

Variables 

Maximum Likelihood Common Factors 

/4;2 R2 

X, .936 .206 91.84 
X 2  .898 — .196 84.53 
X, .622 —.353 51.14 
X 4  .845 .469 93.35 
X, —.620 .740 93.18 

'The R 2  values are the communalities for the variables. 
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computed using Eq. (6.81a) as 

n  5 

AIC(r) = (-2) 	E.,  In 6,) + [2p(r +1) — r(r 1)] 

= 32(1.01216) + [10(3) — 2(1)] 

= 32.389 + 28 

= 60.389 

and Schwarz's criterion as 

5 
L.2-7  E In be  + 	In n 

a-3 

— 16( — 1.0.1216) +7(3.46574) 

=40.455 

using Eq. (6.81b). Note that a comparison between the three criteria is not 
possible for our example since a constant number of r = 2 common factor is 
estimated. In a more realistic application, however, when using larger p the 
value of r for both information criteria is varied and that value is selected 
which coincides with the smallest value of the criteria. In general the 
chi-squared statistic yields the largest number of significant factors, followed 
by the AIC(r) with SIC(r), resulting in the most parsimonious model. 

6.6.3 Testing Loading Coefficients 

On the assumption of normality it is possible to derive exact asymptotic 
second moments of the estimated ML loadings of Section 6.4, which enables 
us to test hypotheses of the form 

Hi ,: a 1  =0 

H,: a,, 0 0 

as well as to compute confidence intervals and estimate correlations amongst 
the ail . For the reciprocal proportionality model it can be shown (Joreskog, 
1963) that if D—+Zi as n cc, the sample variances and covariances are given 
by 
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nE(ii, — as , — as irl 

  

a  a l: E  
2(A, - 	i+,.$ (A i  — 0.2 ) 2 

 

x  [  ((AA). (TA, :  

I 	 ; 

nEt(a s  a3 )(cl, — a1 )1 — 	 
(As  — A,)2 

aças
" 

(6.82) 
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respectively. The results (Eq. 6.82) however are derived from an approxi-
mate rather than an exact distribution, although the ill. are asymptotically 
ML estimators. For the Lawley—Rao ML estimators consider the likelihood 
(Eq. 6.40) with expected matrix of second derivatives Etafi ay.  0'1'J G. 
Also, let A be the diagonal matrix of the first r latent roots of AP — 1/2/1P -1/2 

 (Theorem 6.5). Then for a normal sample the distribution of if-  approaches 
N[4', (2/n)G. -112]. Let big  be the column vector whose elements b L , q , 
b, 	. , b

1,:d 
. et are the regression coefficients of the & jq  on 'P s , +2 , . 	 , 

The regression terms are corrected for the fact that the true lif f  are not 
known. Then Lawley has shown (Lawley and Maxwell, 1971; Chapter 5) 
that the covariance between any two loadings is 

= 	
A,A, 

	

21) .1. (G -1/2 )bi , 	(6.83) 

with variances given by setting i = j and r = s where it is understood that the 
denominator of the first term does not vanish. With the correction term of 
Jennrich and Thayer (1973), the regression coefficients b mq  can be com-
puted as 

= -«.
/q 	

—1) -1+ - 2  6/dil  

x [34  — 1/26 	/(A*  — 1) 4- q E 	A,31 (6.84) 
irvAq 

for r common factors, where S ii  is the Kronecker delta. The derivation of 
the moments of the coefficients assumes that is the covariance matrix, but 
Lawley and Maxwell (1971) also give approximate results for the correlation 
matrix. Since ML factor models are invariant to changes in scale, however, 
there is no loss in generality by assuming the covariance matrix is used. The 
test then makes use of normal tables where N/Fi(il — a) approaches a 
multivariate normal with mean zero, assuming & is a consistent estimator of 
a. It is also possible to derive moments for rotated loadings (Archer and 
Jennrich, 1973; Jennrich, 1973), but this is presumably not required if 
coefficients are pretested before a rotation is used, with insignificant values 
being replaced by zeroes. 

The preceding tests of significance require the assumption of multivariate 
normality. As for the PC model, however, it is also possible to use 
resampling schemes such as the jackknife, the bootstrap, or cross validation 
(Section 4.4.1) to test parameter variation and goodness of fit. The 
jackknife and bootstrap estimation however have potential difficulties in 
that the former may yield inconsistent coefficient estimates (e.g., correlation 
loadings greater than unity) and both require greater computing time than 
the parametric tests based on normality. Resampling methods however have 
not been widely used with factor models, and initial Monte Carlo in- 
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vestigations do not seem very informative (Pennel, 1972; Chatterjee, 1984). 
It is also not clear what effect, if any, improper solutions have on the 
variances. Again, variances for both the rotated and unrotated loadings can 
be estimated, but rotated loadings present a greater computational burden 
(see Clarkson, 1979). Cross validation on the other hand seems an attractive 
option, but it has not been used to any great extent with real data. 

A few additional comments are now in order concerning Theorem 6,1, 
which lays down the necessary and sufficient condition for the existence of 
1 s r<p common factors, and which can thus be considered as the 
fundamental theorem of factor analysis. As was seen in previous sections, 
the condition is that there exists a diagonal matrix AP with entries (/)/ > 
(j = 1, 2, ... , p) such that aa T  r is positive semidefinite of rank r. Thus 
given a diagonal positive definite matrix AP , the condition guarantees the 
mathematical existence of a decomposition = F + , subject to identifica-
tion constraints, for 1< r<p. In practice however AP is almost never known 
and must therefore be estimated from the data, together with the co-
efficients a. As was seen in Example 6.2, the simultaneous existence of 
1 s r <p common factors and Gram mian Ir and Alt cannot generally be 
guaranteed. This implies zero and/or imaginary error terms, which clearly 
does not fit the factor specification (Section 6.1). The immediate con-
sequences of such improper solutions are (1) the upper bound for the 
number of common factors implied by Eq. (6.9) is only a necessary 
condition, and (2) sample loadings become inconsistent estimators of the 
population parameters. The way out of the difficulty which is at times taken 
is to either force the factor model onto the data, perhaps using Baysian-type 
arguments (Martin and McDonald, 1975; Koopman, 1978) or else to relax 
the condition of positive (semi)definiteness of F = aa T  and Alf (vanDriel, 
1978). Since improper solutions can occur with both populations as well as 
sample covariance matrices however, a Heywood case may be a signal that 
the factor model is not appropriate and perhaps should be replaced by a 
principal components model. 

6.7 THE FIXED FACTOR MODEL 

The models considered in the previous sections assume that the factors (11) 
are random variables rather than fixed parameters. At times, however, the 
factors may be viewed as fixed in repeated sampling, so that in Eq. (6.1) V 
and e are random but both a and (1) are fixed. This was the case, for 
example, in Sections 3.6 and 6.3.4 when dealing with Whittle's model, 
where the factors are considered as fixed parameters. Fixed factors could 
also be appropriate if the error terms are considered to consist only of 
measurement error rather than measurement error plus individual differ-
ences. For the fixed model we then have the specification E(e) = 0, E(Y) = 

+ a., E(ee T ) ='P, and E{ [Y — E(Y)][Y — E(Y)1} = gr. The fixed model 
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is at times also viewed in terms of matrix sampling rather than sample point 
sampling since the multivariate sample points must remain constant for 
repeated sampling. The fixed model appears to have been first considered by 
Lawley (1942) in the context of the normal log likelihood 

L = [c 10101 + 
	

(6.85) 

when attempting to obtain ML estimators of a and (I). It was subsequently 
proved by Solari (1969) however that the fixed case does not possess ML 
estimators. 

Attempts to find estimators based on the likelihood or a function 
resembling the likelihood have persisted, based partly on the conjecture that 
parallel to the situation in regression analysis, factor loadings for the fixed 
case would resemble those of the random model. Recently McDonald 
(1979) has considered minimizing the loss function 

= 1[141.1 + tr 2i. -1 4131 	 (6.86) 

which is essentially the log likelihood ratio defined on the basis of an 
alternative hypothesis 

E[Y — E(Y) .1[Y — E(Y)J' 41. 	 (6.87) 

Ho , as in the random case, is the error covariance matrix under the factor 
hypothesis whereas Ha  states that the en-or covariance matrix is any 
diagonal matrix 41 with positive diagonal elements. Minimizing Eq. (6.86) 
then leads to the same estimators of a and c as those obtained under 
Lawley's model (Section 6.4.2) except the fixed model yields least squares 
rather than ML estimators. Anderson and Rubin (1956) have shown that 
while ML estimators do not exist for fixed factors, estimates based on 
maximizing the noncentral Wishart likelihood function are asymptotically 
equivalent to the ML estimates for random factors. Thus for large samples it 
is possible to use asymptotic ML estimates for random factors to estimate 
nonrandom factors. 

6.8 ESTIMATING FACTOR SCORES 

The factor models of the previous sections provide estimates of the 
correlation loadings a, which for the most part can be obtained using either 
the correlation or the covariance matrix. Indeed, this frequently represents 
the primary objective of factor analysis since it is the loading coefficients 
which to a large extent determine the reduction of observed variables into a 
smaller set of common factors, and which enable the identification and 
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interpretation of factors in terms of meaningful phenomenon. Although the 
loadings generally vary for each variable, they are nonetheless constant for 
each sample point, and in this sense do not provide information concerning 
the relative position of a given sample point vis a vis the factors. The 
situation is similar to that encountered with the principal component model 
(Chapter 3). Unlike principal component analysis, however, the factor 
scores are not unique, due to the a priori reduced dimensionality of the 
factor space. This in turn implies a different estimation strategy from that 
which was employed for principal components. Whereas in PCA the scores 
are obtained routinely as linear combinations Z = XPL - " 2  = XA, where all 
p principal components are used, this is not possible for factor analysis 
"proper" due to the a priori specification r<p. Thus given the orthogonal 
factor model (Eq. 6.2) with r, a, and tif known (estimated), the factor 
model contains a further indeterminacy in the form of nonuniquc factor 
scores due to singularity of a. The final stage in a factor analysis of a data 
matrix is therefore that of finding optimal estimates of the scores or the 
"observations" for 41). Two general avenues of approach are possible 
depending on whether is considered to be fixed or random. 

6.8.1 Random Factors: The Regression Estimator 

An estimator of the factor scores 	can be derived within the context of 
maximum likelihood theory by assuming the joint normality of (I) and X. 
Consider the augmented (partitioned) vector Z = X1 1 , which by as-
sumption is distributed as a (r +p) dimensional normal distribution with 
mean vector 1.1= 0 and covariance matrix 

[XI! Xt2 
= E(ZZ) r  = E ' " [40T  X T  I 

121: 1 22 	 X 

E(DOT  ) E(OX 

LE(xoT) E(XxT) 

It follows that the conditional distribution of 	given X is also normal, that 
is, 

(1) 1 X — NRIt2XZ;X) 	(Iit Ii2X;21 /1r2)] 

—N[et T Y, 	, 	(I - a 	a)] 	 (6.88) 

where E(X T ) = aT  and using Theorem 2.14. Using Lemma 6,5, the 
covariance matrix of OIX can also be put in an alternative form. 
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Lemma 6.6. Let the conditions of Theorem 6.5 hold. Then 

I— aa = (I + a l*-1 a) 	 (6.89) 

0 
Proof. It follows from Lemma 6.5 that 

	

= a rrif 	+ 

= + 

where Ti = °L EW -  'a. We then can write 

I — 	t a = I — 	f 

=(1 + 	+ 11) -1 -10+ -Fir 

(I +Ili 

	

+ 	i a) 

The conditional distribution of 4) given X is therefore 

01X NLa T  IX, (I + atilt l a] 	 (6.90) 

Equation (6.90) can also be viewed in Baysian terms as the posterior 
distribution of given the p variables X (Anderson, 1959; Bartholomew, 
1981). It also follows that the expectation of the posterior distribution of the 
factor scores is given by 

E(4) 1 X) = a T1, - t X 

= + a TAP ar a Tilt -I X 	 (6.91) 

using Eq. (6.90). To obtain the maximum likelihood estimator consider a 
(n x p) data matrix X with known (estimated) loadings a, such that X = 

+ E. The sample counterpart of Eq. (6.91) is then 

• = xirs `aTo 4. 	aT) -- 	 (6.92) 

where lir 	is the diagonal matrix of residual variances. 
The maximum likelihood estimator (Eq. 6.92) is asymptotically efficient, 

although it is not unbiased. When normality of X is not assumed, the 
estimator (Eq. 6.92) possesses optimality in the least squares sense since it 
minimizes the mean squared error criterion. Let 

• =XB+ 	 (6.93) 
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where B is a (p x r) matrix of coefficients. Were • known, B could he 
estimated by the ordinary least squares regression estimator 

= (X rX) -I X T0 	 (6.94) 

which can be derived by minimizing tr(6 TB). Since • is not known, 
however, it can be estimated as 

43= Xfi 

= X(X . ' X) -1 X 1 43 

= x(xTx) 'ai 	 (6.95) 

Equation (6.95) is known as the regression estimator and is due to 
Thurstone (1935) and Thompson (1951). Actually it can be shown to be 
equivalent to the maximum likelihood estimator (Eq. 6.92) since using the 
identity (Eq. 6.50) of Lemma 6.4 we have 

43— XS 1 T 

=x+ -teiTo +air -t aT) - " 
	

(6.96) 

keeping .  in mind we are dealing with sample estimates, and restricting 
OOP ex l  to diagonal form (Exercise 6.17). The classic least squares 
estimator is therefore maximum likelihood when both the observed vari-
ables and the factors are assumed to be jointly normal. The estimator 
however is biased, since although Eq. (6.96) assumes the error to be in 40, 
in reality error measurement belongs to X—the regression estimator 
reverses the role of the dependent and independent variables. As p-4co, 
however, the sampling variance of 0 decreases. This is also true for factors 
that are associated with large terms in the diagonal matrix &INV that is, 
factors that account for large variance can be estimated more precisely than 
those that do not. Bartholomew (1981) however has pointed out that the 
criterion of unbiasedness may be inappropriate owing to the randomness of 
•, that is, the estimator (Eq. 6.96) represents an estimate of E(0 I X) rather 
than •, which is an appropriate criterion for random variables, see also 
Kano (1986). 

6,8.2 Fixed Factors: The Minimum Distance Estimator 

The estimator (Eq. 6.92) considers 0 as random, to be estimated once X 
and a are known. A different set of factor scores was derived by Bartlett 
(1937) using the alternative assumption that each sample point is character-
ized by a fixed vector of r parameters •,. Then for the ith individual, 
x, N(a4)1 , IP) where WI), + e i  is now a (p x 1) vector of observations on p 
variables, maintaining the convention that vectors represent column arrays. 
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Since the 0, are fixed population parameters, it is now more appropriate to 
seek linear estimators which posses optimal properties such as unbiasedness 
and least variance. 

Let xi  be a ( p X 1) vector of observations for the ith sample point such 
that xi  = a(11)1 + e i , where we assume that a is known. Then a reasonable 
optimality criterion might be to minimize the weighted (Mahalanobis) 
distance between x, and its predicted value , that is, to minimize 

d (xi  — a.1 ) 1  tic (xi  — a0i ) 

x qf x — 	a(bi  + o4 	(6.97) 

Note that di  also represents the weighted sum of squares of residual errors. 
Differentiating with respect to the unknown parameters • and setting to 
zero yields the normal equations 

ad, 
—2a1 tit xi  + 2a TIP - a01  = 0 a.;  

or 

= ((JAI' la) l ul l!, I x; 	 (6.98) 

The Bartlett estimator 40, is therefore the usual generalized least squares 
estimator of x i  on a. Minimizing Eq. (6.97) is also equivalent to minimizing 

tr[(x (  a.i ) Tqf (xi 	 (6.99) 

(Exercise 6.10). Note also that the estimator 

(a. ' a) 

known as the least squares estimator, is misspecificd when 0 a-2I, and that 
var(01 )> var(410. Solutions for (1), are thus obtained by using the general-
ized inverse (aTqf 41-  . Although the estimator (Eq. 6,98) has the 
desirable properties of being unbiased and efficient, it does assume that 
scores are parameters rather than random variables. As pointed out in 
Section 6,7 this can introduce theoretical difficulties when using maximum 
likelihood estimation. Also note that the tb i  are correlated unless (a Tql -l a) 
is diagonal, as is the case for the maximum likelihood model of Section 
6.4.2. 

The third set of factor scores was proposed by Anderson and Rubin 
(1956, p. 139) who derived Bartlett's estimator subject to the constraint that 
scores be orthogonal. Minimizing 

tr[(x, a01 )Tqf -1 (x, — as,)] 	— 1) 	(6.100) 
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leads to the estimator 

(1),* = [(a l* 'a)(1 + 	)] 	 (6.101) 

for ML factors (Exercise 6.14). The estimator Eq. (6.101) possesses higher 
mean squared error than does the estimator Eq. (6.91). 

When a and IP are known, the estimators of fixed population factor 
scores are also ML estimators. When a and IP are to be estimated, however, 
then ML estimators of the factor scores do not exist since the normal 
equations have no minimum (Anderson and Rubin, 1956). For large 
samples it is thus at times suggested that 40 be treated as if it were random 
and ML estimators he used as approximations. 

6.8.3 Interpoint Distance in the Factor Space 

Once the factor scores are computed it may be of interest to examine the 
interpoint distances between the individual sample points in the reduced 
common factor space (Gower, 1966). For Thompson's estimator the 
distance between the (i, j)th sample point is 

dT 	— 401-(, —4P,) 

= [(I + 	 (x 011 ((1 + a Tilvl a)_ 'aTqf 	— xi )] 

(x, xi )Tqv i a(1 + aTqf l a)aTilf (x, x,) 	 (6.101a) 

and using Bartlett's estimator we have 

dB — (4P; —4P01- 4; 4:0 
= [(aTip  ! ct) otTip  - (xi  _ xi )j -r [(aTip 	! ct - rIp. - oci  

= (x, 	xj )" .111-1 a(a I llf l a) -2a 1111-1 (x, — xi ) 

where both dr  and dB  represent Mahalanobis distance in r-dimensional 
space. It can be shown (Exercise 6.8) that ti, d m  with equality holding if 
and only if d T  dB  =O. 

6.9 FACTORS REPRESENTING "MISSING DATA:" THE EM 
ALGORITHM 

A more recent innovation in maximum likelihood estimation is the so-called 
expectation maximization (EM) algorithm, which uses normal theory to 
estimate both the parameters and scores of the factor model simultaneously. 
The algorithm is iterative and does not necessarily yield the same estimates 
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as the Law ley—Joreskog model, which uses the Fletcher—Powell numerical 
maximization procedure. The EM algorithm was originally developed to 
estimate missing data from the multivariate normal distribution (Demster et 
al., 1977), and in the context of factor analysis it simply treats the scores as 
data which are 100% missing. 

Consider the ML normal factor model, where a multivariate normal 
sample is available in the form of a (n x p) matrix X where X = Y — Y. We 
wish to obtain an augmented matrix (F, X), but in the sampling situation the 
scores F are all missing. Consider the ith row of (F, X) where the row 
vectors are independently and normally distributed and the marginal 
distribution of every row of F has zero mean and unit variance. Then given a 
sample of n observations x l , x2 , „ , x„, we are to estimate the parameters 
a and %If, together with the missing variables F. It is also convenient to 
assume an orthogonal factor structure, although this is not essential, 
Following Rubin and Thayer (1982) the likelihood of observing (f i , x i ), (f2 , 

(f„, x„) can be expressed as 

=JI g(xi  I a, ilr)g(f, a, IP ) 

= 	(2/r) '1/2 1‘11 1 -1  expf —1 / 2(x, — fia)IP 1 (x, — tair iX(27r) PI2  
1=1 

x exp[ 1/2f,f,r 1 	 (6.103) 

where x, and f, are rows of X and F respectively, g(x, I a, III) is the 
conditional distribution of x, given f, (viewed as a function of the parameters 
a and 11"), and g(f, I a, ilt) is the joint distribution of the unobserved factor 
scores and is likewise considered to be a function of a and qr. The 
likelihood, based on the original data X, is given by Eq. (6.40). The EM 
algorithm consists of two steps. First, in the E step we find the expectation 
of the likelihood (Eq. 6.103) over the distribution of the factor scores F, 
given the data X and initial estimates of the parameters a and qr. This is 
done by calculating the expected values of the sufficient statistics SI FF and 
S variance and covariance matrices of F, X. The computations involve 
a least squares regression for estimating the factor scores given the initial 
values of a and IP. The second or maximization (M) step consists of 
maximizing the expected (log) likelihood just as if it were based on 
complete data. The computations involve least squares regression of the 
variables on the factor scores, which were estimated in the expectation step. 
The iterative process continues until stable values of the loadings and the 
scores arc obtained. It is proved in Dempster et al. (1977) that each step 
increases the likelihood. An error in the proof is subsequently corrected by 
Wu (1983), who summarizes the theoretical properties of the convergence 
process of the algorithm. 
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The EM algorithm does not compute second derivatives, so that second-
order sufficiency conditions for a maximum are not evaluated. Several other 
criticisms of the algorithm have also been raised (Demster et al„ 1977; 
discussion), particularly concerning its claim of superiority over the Joreskog 
implementation of the Fletcher--Powell algorithm (Bentler and Tanaka, 
1983; Rubin and Thayer, 1983) with respect to convergence. Certainly both 
algorithms can run into difficulties if certain regularity conditions are not 
met, and if the assumption of normality is violated. In this case the 
likelihood may not be unimodal, and if care is not taken convergence can be 
to a local rater than to a global maximum. Evidence to date seems to 
suggest however that both the EM as well as the Fletcher—Powell algorithms 
should not be used with multimodal likelihoods in the case of nonnormal 
data. Of course the best way to ensure a unimodal distribution is in the 
presence of normality, and this underlines the importance of first verifying 
multivariate normality (Section 4.6). 

6.10 FACTOR ROTATION AND IDENTIFICATION 

Unlike principal components, factor models require a priori restrictions in 
order to yield unique (or identifiable) solutions (Section 6.1). These 
restrictions are of a purely mathematical naturc and thus do not guarantee 
that coordinate axes will assume positions that can enable the researcher to 
identity the "real" nature of the factors. In this sense therefore both the 
factors and principal components share the same identification problem. 
Thus since factors cannot be identified within nonsingular transformations, 
an arbitrary (orthogonal) position of the axes is initially chosen. Further 
rotation of the loadings and the scores may therefore he required to 
interpret the factors in a meaningful way, as was the case in Section 5.3. 
Evidently, rotations by themselves cannot enhance interpretability if the 
data do not contain relevant relationships amongst the variables. If the 
variables tend to cluster, however, a transformation of axes should reveal 
such a structure. An orthogonal, or more generally oblique, factor rotation 
will therefore normally accompany a factor analysis of data, particularly if 
the objective of the analysis is exploratory in nature. The main objective 
here is then identical to that of principal components, namely to locate or 
isolate clusters of variables. 

Rotation of the common factors proceeds in the same fashion as 
encountered in Section 5.3. Once the loadings and the scores have been 
estimated, the factor model can be expressed as 

(1,a 
+ 

= GO + 	 (6.104) 
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where T is a (r x r) transformation matrix chosen to optimize some 
criterion, for example, the variance or the quartimax criterion. We have 

X I X = (GO + ) T(G3 + 

-T 	-1-  
= 13 G GP+P G e+e G13+e e 

tiTG TG A 

=I SIP + Air (6.105) 

where GTG is the common factor covariance matrix. When the random 
variables are standardized, both SZ and G E C! represent correlation matrices. 
Oblique rotations can also be used with the Bartlett estimator (Eq. 6.98) 
since oblique factor estimates are simply the original factors which have 
been rotated, that is, for the ith observation 

G T  = 	)- 1 0+ 
= 	 - 	T - 

- T 	'OC T ) 

= 
	

(6,106) 

so that factor scores are automatically rotated by the same transformation 
matrix T as arc the loadings. Since oblique positions of the axes represent 
the general ease, they are frequently employed in exploratory cluster 
analysis (Example 6.3). 

When T is orthogonal the new correlation loadings 11 still correspond to 
correlation coefficients between the variables and rotated factors. For an 
oblique rotation, however, the so-called pattern coefficients 13 become 
regression coefficients and must be further transformed to yield correlation 
loadings. From Eq. (6.104) we have 

11--- (G I G) I G I X 	 (6.107) 

where G TX is the matrix of correlations between the common factors and 
the variables given by 

G:rx (G TG) 	 (6.108) 

and G TG is the factor correlation matrix. The correlations (Eq. 6.108) are 
also known as structure coefficients and are generally different in magnitude 
to the regression coefficients 13. Since the regression coefficients (Eq. 6,107) 
however are not bounded in the closed interval I-1, lb the identification of 
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oblique factors is best accomplished by using the structure values (Eq. 
6.108). 

Once the values of the loadings and the scores are known, the identifica-
tion of factors proceeds much in the way as for principal components. It is 
rarely that a single set of estimates will suffice to yield a thorough analysis of 
the data, and several passes are usually required before a satisfactory 
specification is obtained. In this respect factor analysis shares a common 
feature with most other multivariate techniques. The particular strategy and 
identification procedure will of course depend on the type of data and the 
general objective of the analysis. The following stepwise procedure, for 
example, may be employed when attempting to locate an underlying factor 
structure. 

I. The first set of analysis are normally exploratory and tentative in 
nature. If the application is new and data are uncertain, it is difficult to 
make a priori assumptions with any degree of confidence, for example, if it 
has not been determined whether data arc multivariate normal or if the 
exact number of common factors is not known. A combination of statistical 
testing and empirical evaluation is therefore almost always required even at 
the outset. Thus initial attempts should be made to ensure that data are not 
too highly skewed, and a preliminary principal component analysis may be 
conducted to help determine the number of factors. 

2. Based on the results of part 1 an initial value of r is established and a 
factor analysis can be carried out followed by oblique (orthogonal) rotation. 
Again, it may require several experimental "passes" before the final value 
of r is decided upon, especially if the AIC(r) or SIC(r) criteria of Section 
6.6.2 are used. Unlike the principal components model a change in the value 
of r will alter both the loading coefficients and the scores. In turn, the 
number of common factors retained will depend on a combination of 
statistical testing, empirical interpretation, and rotation of the axes. 

Example 6.3. As a numerical illustration of Lawley's maximum likeli-
hood model we consider an example from agricultural ecology (Sinha and 
Lee, 1970). Composite samples of wheat, oats, barley, and rye from various 
locations in the Canadian Prairie are collected from commercial and 
government terminal elevators at Thunder Bay (Ontario) during unloading 
of railway boxcars. The purpose is to study the interrelationships between 
arthropod infestation and grain environment. The following p = 9 variates 
are observed for n ----- 165 samples: 

Y1  Grade of sample indicating grain quality (1 highest, 6 lowest) 
Y, = Moisture content of grain (percentage) 

— Dockage or presence of weed seed, broken kernels, and other 
foreign matter 
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Y4 Number of grain 
Y5  = Number of grain 

-= Number of grain 
Y7  = Number of grain 
Y8 = Number of grain 
Y9 Number of grain 

arthropods Acarus 

arthropods Cheyletus 

arthropods Glycyphagus 

arthropods Larsonemus 
art hropods Cryptolestes 

arthropods Psocoptera Li 

Owing to univariate skewness of the sample histograms, the grade and 
dockage measurements were transformed by the square root transformation, 
and the discrete arthropod counts were subjected to the transformation 
log lo (Yi  + 1). The product-moment correlation matrix of the nine variables 
is shown in Table 6.4. 

Initially a principal components analysis is carried out using the correla-
tion matrix (Table 6.4) and the chi-squared statistic (Section 4.3) is 
computed as 

X 2 	In(li )+ Nr in (i 

= -164(-2.9072) + 656(-7089) 

---- 478.75 - 465.06 

= 13.69 

for 1/2 (5 2  - 13) = 6 degrees of freedom where N n - 1 and r = 4. The 
latent roots and correlation loadings are shown in Table 6.5. For a = .01 the 
null hypothesis that the last five roots are isotropic cannot be rejected. Next 
a maximum likelihood factor analysis is carried out using r = 3 common 
factors (Table 6.6 and the loadings are given in Table 6.7. A comparison of 
Tables 6.5 and 6.7 indicates that principal components and ML factor 
loadings differ. The PCA shows that low grade, moisture, and to a lesser 
extent dockage content tend to encourage the presence of Tarsonelnus, 
Cheyletus, and Glycyphagus, and to a lesser degree Acarus, but to discour- 

Table 6.4 Correlation matrix for the p. 9 Variates of Arthropod Infestation Data 

V I  
Y 2  
V, 

Vt 
 V, 

V, 
II% 
Y 9  

1.000 
.441 
.441 
,107 
.194 
.105 
.204 
.197 
.236 

1.000 
.342 
.250 
.323 
.400 
.491 
.158 

-.220 

1.000 
.040 
.060 
.082 
.071 
.051 

-.073 

1.000 
.180 
.12-3 
.226 
.019 

-.199 

1.000 
.220 
.480 
.138 

-.084 

1_000 
.399 

-.114 
-.304 

1.000 
.154 
.134 

1.0(X) 
-.096 1.000 

Source; Sinha and Lee, 1970; reproduced with permission. 
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Table 6.5 	Unrotated Principal Component Correlation Loadings of Orthropod 
Infestation Data 

z, z„ z, 
Y 1 : Grade .601 .573 -.07O -.010 
Y„: Moisture .803 .080 - .046 .138 
Y a ; Dockage .418 .653 -.273 .280 
Y4 : Acarus .404 - .243 -.046 -.431 
;: Cheyletus ,577 - .274 - .430 .214 
Y,: Glycyphagas .562 -.431 .407 .142 
Y 7 : Tarsonemus .707 -.348 .270 .197 
V. 8  ; Cryptolestes .252 .337 .675 - .409 
Y 9 : Procoptera - .439 .051 .384 .654 
Latent roots 2.7483 1.3180 1.1107 .9833 

Source: Sinha and Lee, 1970; reproduced with permission. 

Table 6.6 Chi-Squared Test for Maximum Likelihood Factor Analysis of 
Arthropod Infestation Data 

Degrees of 
Number of Factors 	 X 

2 	 Freedom 	Probability 

0 202,80 36 0.00 
1 68.25 27 0.00 
2 33.89 20 0.03 
3 16.54 13 0.22 

Source: Sinha and Lee. 1970; reproduced with permission. 

Table 6.7 Maximum Likelihood Factor Loadings for Arthropod Infestation Data 

Unrotated Solution Varimax Rotated Solution 

Variate 1 2 3 2 3 

Grade 0,24 0.61 -0.40 0.22 0.74 0.06 
Moisture 0.53 0.53 0.17 0.37 0.37 0.57 
Dockage 0.02 0.57 -0.16 -0.05 0,57 0,17 
Acarus 0.29 0.14 0.18 0.21 0.03 0.31 
Cheyietus 0.79 0.03 0,07 0.73 0.00 0.32 
Glycyphagus 0.28 0.37 0.56 0.06 0.02 0.73 
Tarsonemus 1,00 0.00 0.00 0.95 0.02 0.31 
Cryptolestes 0.35 0.08 -0.32 0.39 0.25 -0.11 
Psucoptera -0,15 -0.39 -0.16 -0.03 -0.25 -0.38 

Source: Sluha and Lee, 1970; reproduced with permimion. 

age Procoptera. The second component indicates that low-grade cereals tend 
to contain more dockage, whereas the third and fourth represent contrasts 
between Cheyletus and Glycyphagus, Cryptolestes, and Procoptera on the 
one hand and Cryptolestes and Procoptera on the other. The (unrotated) 
ML factor loadings indicate that the presence of Tarsonemus and Cheyletus 
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is primarily related to moisture (factor 1) and that low grade, moisture, and 
dockage is positively related to Glycyphagus and negatively to Procoptera, 
Rotated ML loadings indicate that the three environmental variables are 
positively related to Cryptolestes and negatively to Procoptera. The third 
factor (unrotated) relates negatively Glycyphagus to grade and to 
Cryptolestes, but rotated orthogonally the factor correlates positively with 
moisture and somewhat less to Acarus, Cheyletus, and Tarsonemus. Given 
the somewhat divergent interpretation which is possible, perhaps an oblique 
rotation should also be performed to attempt to reconcile the results. On the 
other hand, given the different mathematical specifications of the two 
models there are no reasons why principal component and the factor 
loadings should agree (given the present data) and in the final analysis the 
choice must depend on substantive considerations. 

Example 6.4. A comparison between maximum likelihood factor analy-
sis and principal components, using both orthogonal and oblique correlation 
loadings, is afforded by an analysis of Olympic decathlon data using eight 
Olympic decathlon championships since World War 11 and representing 
n = 160 complete starts (Linden, 1977). The objective is to explore motor 
performance functions (physical fitness) of athletes. The variables to be 
analyzed are the 10 events comprising the decathlon: 

= 100-m run 
Y2  = Long jump 
Y3  = Shotput 

Y4 High jump 
Y5 = 400-m run 

Y6 = 100-m hurdles 
Y7  = Discus 
Y8  = Pole vault 
Yst  = Javelin 
Y10  = 1500-m run 

whose correlation matrix is given in Table 6.8. Both the rotated and 
unrotated correlation loadings are exhibited in Tables 6.9 and 6,10, 
respectively, 

A comparison between PC and ML factor loadings indicates a different 
pattern of loadings for both initial solutions, but sets of rotated loadings 
tend to be similar. The principal component loadings appear to be more 
interpretable, perhaps because of a lack of significant measurement error, 
and account for a higher percentage of variance than do the factor loadings. 
Linden (1977) identifies four major clusters of variables that can be 
Identified with the common factors, Factor 1 represents short-range running 
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Table 6.8 Correlation Matrix of Decathlon Variables 

1.00 

	

.59 	1.00 

	

.35 	.42 	1.00 

	

.34 	.51 	.38 	1.00 

	

.63 	.49 	.19 	.29 	1.00 

	

.40 	.52 	.36 	.46 	.34 	1.00 

	

.28 	.31 	.73 	.27 	.17 	.32 	1.00 

	

.20 	.36 	.24 	.39 	.23 	.33 	.24 	1.00 

	

.11 	.21 	.44 	.17 	.13 	.18 	.34 	.24 	1.00 

	

- .07 	.09 	-.08 	.18 	.39 	.00 	-.02 	.17 	MO 	1.00 

Source: Linden, 1977; reproduced with permission. 

Table 6.9 Principal Components Correlation Loadings for the Initial, Orthogonal 
(Varimax), and Oblique (Quartimin) Solutions for Decathlon Variables 

Initial 
	

Orthogonal 
	

Oblique 

2 	3 	4 	1 	2 	3 	4 	1 
	

3 

; 100-m run 	.69 	.22 - .52 -21 	.88 	.13 -.11 	.16 	.87 	.06 -.15 

V. : Long jump 	.79 	.18 -.19 	.09 	.63 	.20 	.00 	.51 	.53 	.08 -.05 

V, High jump 	.67 	.13 	.14 	.40 	.24 	.14 	.04 
V, ; Shotput 	.70 -.54 	.05 -.18 	.25 	.82 -.15 	.22 	.13 	.82 -.16 

.75 	.08 	.00 -.01 

.11 	.83 	.03 	.44 V, : 400-m run 	.62 	.55 -.08 -.42 	.80 	.07 	.47 	

.63 	.26 	.02 -.20 Y 6  : 110-rn hurdle 	.69 	.04 -.16 	.35 	.40 	.16 	-.15 

	

-.08 	.15 	.09 	.82 -.08 V, : Discus 	.62 -.52 	.11 -.23 	.19 	.81 	
.23 	.76 -.21 	.06 	.19 Y„ : Pole vault 	.54 	.09 	.41 	.44 -,04 	.18 

	

.14 	.11 	.13 	.77 	.15 Y„ ; Javelin 	.43 -.44 	.37 -.24 	.05 	.74 

	

.93 	.09 	.10 -.03 	.93 V I „: 1500-m run 	.15 	.60 	.66 -.28 	.05 -M4 

.04 

.45 

.06 

.77 

.02 

.62 

.01 

.81 
-.01 

.07 

Total variance 	37.9 	15.2 	11.1 	9.1 	21.3 	20.2 	12.3 	19.4 	18.9 	19,5 	12.1 	18.4 

Source: Linden, 1977; reproduced with permission. 

Table 6.10 Maximum Likelihood (Rao Canonical) Correlation Loadings for the Initial, 
Orthogonal (Varimax), and Oblique Solutions for Decathlon Variables 

Initial 	 Orthogonal 	 Oblique 

I 	2 	3 	4 	1 	2 	3 	4 	1 	2 	3 	4 

V, : 100-m run 	-.07 	.35 	.83 -.17 	_81 	.16 -.15 	.28 	,85 -.05 -.28 	.06 

Y 2  : Long jump 	.09 	.43 	.60 	.28 	.47 	.21 	.00 	.61 	.29 -.03 -.08 	.60 

V :, : Shotput 	-.08 	1.00 	.00 	.00 	.15 	.83 -.10 	.27 	.03 	.82 -.10 	.06 

V, : HighiumP 	.18 	.40 	.34 	.45 	.14 	.20 	.11 	.69 -.14 -.01 	,07 	.82 

400-m run 	.39 	.22 	.67 - .14 	.76 	.07 	.41 	.20 	.87 	.00 	.29 - .09 

Y 6  : 110-rn hurdle 	.00 	.36 	.43 	,39 	.28 	.22 -- .05 	.55 	.07 	.01 -,10 	.60 

V, : Discus 	-.02 	.73 	.03 	.02 	.17 	.81 -.02 	.15 	.05 	.86 -.01 -.10 

V s  : Pole vault 	.17 	.25 	.23 	.39 	.07 	.17 	.16 	.48 -.12 	.05 	.14 	.56 

V, : Javelin 	.00 	.44 -.01 	.10 	.03 	.44 	.04 	.16 -.04 	.46 	.04 	.06 

V,,,; 1500-m run 	1.00 	.00 	.00 	.00 	.04 - .OS 	.81 	.12 	.06 	.07 	.82 	.03 

Total variance 	12.3 	24,3 	18.4 	6.4 	16.0 	17.3 	9.0 	16.3 	16.0 	16.4 	8.8 	17.3 

Source; Linden, 1977; reproduced with permission. 
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Table 6.11 	Oblique Factor Regressions Loading Coefficients ("Patterns") for n = 181 
Rheumatoid Arthritis Patients 

G 1 	C, G, 	G4 	G5 	G 6 	G7 

Item (Fatigue) (Hostility) (Friendliness) ( Vigor) (Depression) (Tension) (Confusion) Commonalities 

Fatigued .907 .7364 

Exhausied .891 .8131 

Bushed .980 .7586 

Worn out .688 .6312 

Weary .684 .5948 

Sluggish .607 	 .275 .6278 

List less .537 .4837 

Miserable .328 	 .260 .5707 

Helpless .259 	 .252 .4486 

Furious .739 .6012 

Rebellious .712 .5875 

Bad tempered .614 .5953 

Ready so fight .607 .3486 

Spiteful .591 .5242 

Resentful .545 	 .323 .6180 

Peeved .507 .5685 

Annoyed A81 .5981 

Angry .475 	 .251 .5500 

Guilty .304 	 .260 .3379 

Good•ri inured .737 .5850 

Considerate .709 .5123 

Trusting .561 .4058 

Sympathetic .557 .3353 

Friendly .549 .3973 

Alert 533 .4905 

Cheerful .467 	.321 .6010 

Helpful .467 	.334 .4672 

Clear-headed .415 	 :732 .2806 

Carefree .376 .2996 

Energetic .790 .6517 

Active .751 .6011 

Vigorous .695 .5169 

Full of pep .645 .6471 

Lively .614 .5147 

Efficient .305 	.436 .4552 

Sad .615 .6205 

Unhappy .577 .6584 

Blue .571 .6314 

Discouraged .476 .5795 

Bitter .437 	 .456 .5760 

Desperate .397 	 .433 .5334 

Hopeless .429 .3480 

Gloomy , 366 .6455 

Unworthy .315 .3274 

Lonely 302 	 .254 .3008 

Worthless .278 .3517 

Terrified .276 .3627 

Nervous .615 .5538 

Tense .580 .5063 

On edge .554 .6355 

Shaky .464 	.279 .4880 

Uneasy .411 .5881 

Restless .409 .4357 

Grouchy .253 	.309 	 .34-4 .5163 
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Relaxed .322 .344 .4420 
Forgetful .539 .3550 
Muddled .538 .6335 
Bewildered .510 .5655 
Unable to concentrate .461 .3094 
Uncertain about things .363 .4032 
Panicky -305 .4085 
Confused .267 .283 .3852 
Anxious .2193 
Deceived .3110 
Sorry for ihittgs done .2097 

Source: Still et al., 1977; reproduced with permission. 

speed (Y 1 , Y5 ), factor 2 is "explosive arm strength" or object projection 
(Y 3 , Y 7 , Y9 ), factor 3 is running endurance (Y 10 ), and factor 4 correlates 
with "explosive leg strength" or body projection. Note that the long jump 
(Y 2 ) correlates with factor 1 and factor 4 since this event requires both 
running speed and body projection. The same can be said of the 100-m 
hurdle (Y 6 ), which also requires a combination of speed in running and 
jumping. Similar studies dealing with sports fitness and motor movements 
may be found in Cureton and Sterling (1964) and Maxwell (1976). 

Example 6.5. An exploratory oblique-cluster factor analysis is carried 
out by Stitt et al. (1977) to examine whether a "Profile of Mood States" 
questionnaire administered to n = 181 rheumatoid arthritis patients could 
reveal distinct mood categories. The rotated oblique factor coefficients, 
together with the factor correlation matrix, are presented in Tables 6.11 and 
6.12, respectively. Here the oblique coefficients represent regression ("pat-
tern") coefficients rather than correlations and their magnitudes should be 
interpreted with care. Nevertheless, a broad qualitative pattern seems to he 
present in the data (Fig. 6.1), which appears to reveal a "tree-like" structure 
of moods of the patients. Exploratory analyses of this type can then serve as 
a guide to further research. A general theoretical outline for the use of 
factor analysis in medical diagnostics may be found in Overall and Williams 
(1961; see also Shea (1978). Also a similar study dealing with smoking 
motives and nicotine addiction is given by Russell et al. (1974). For an 
analysis of aircraft accidents data see Gregg and Pearson (1961). 

Table 6.12 Correlation Matrix for Factors or Table 6.8a 

Fatigue 
Hostility 	 0.34 	Hostility 
Friendliness 	-0.17 	-0.20 	Friendlihess 
Vigor 	 -0.50 	-0.11 	 0.44 	Vigor 
Depression 	0.38 	0.51 	-0.18 	-0.23 	Depression 
Tension 	 0.53 	0,38 	-0.16 	-0.21 	0.41 	Tension 
Confusion 	0.27 	0.31 	-0.09 	-0.13 	 0.37 	0.25 

Source: Stitt et al., 1977; reproduced with permission. 
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(1) 

GENERAL MOOD 

GENERAL POSITIVE 	GENERAL NEGATIVE 
MOOD 	 MOOD 

JA4 
POSITIVE 	POSITIVE NEGATIVE NEGATIVE 

EMOTIONAL PHYSICAL 
(Friendliness) 

PHYSICAL 
MOOD 

0A1  

NEGATIVE NEGATIVE EMOTIONAL•PASSIVE 
EMOTIONAL 	(General Depression) 

ACTIVE 
(1-lostalty) 

POSITIVE 	NEGATIVE 
PHYSICAL PHYSICAL 

NON/ 	(Fatigue) 

(Confusion) 	NEGATIVE EMOTIONAL•PASSIVE 
(General Depreasion) 

 

(Tension) 	(Depression) 

Total 	Depression 
Despair 

Figure 6.1 Tree diagram showing results for 1-8 factors (Stitt et al., 1977: reproduced with 
permission). 

Example 6.6. A classic application of factor analysis to economic data is 
provided by Adelman and Morris (1965; 1967—see also Adelman and 
Morris, 1970; Brookins, 1970; Rayner, 1970) in their analysis of economic 
development as it relates to social and demographic factors. An application 
of the methodology using more recent data is given by Abizadeh et al. 
(1990) (see also Abizadeh and Basilevsky, 1986). The data consist of k 20 
variables observed for n = 52 countries, and the objective is to measure the 
potential for economic development. Because of its heterogenous nature 
and method of collection the variables contain errors of measurement that 
vary from variable to variable and country to country, and the data thus 
provide a good vehicle for the implementation of ML factor analysis. The 
following variables are selected as good candidates for capturing the 
principal dimensions of the potential for economic development of 52 "free 
market" countries. Here, however, the main interest lies in utilizing the 
factor scores to provide a ranking for the economies viz a viz their relative 
states of "development." 

PHYSICAL EMOTIONAL 

= Males enrolled in elementary schools (percentage of school-age 
group, 1981) 
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Y2  = Females enrolled in elementary schools (percentage of school-age 
group, 1981) 

Y, = Status of women (ratio of female to male enrollment in elementary 
schools, 1981) 

Y4  = Percent of government expenditure on education (1981) 

Capital equipment (machinery) imports as percentage of total 
imports (1981) 

Y6  = Percent of population enrolled in higher education (1981) 

Y7  = Average rate of growth of services (1970-1982) 

Y8 = Average rate of growth of domestic investment (1970-1982) 

Average rate of growth of primary exports (1970-1982) 

Y10 = Average index of food production (1960-1970= 100; 1980-1982) 

Ytt = Average annual population growth (1970-1982) 

YI2 = Percentage of physicians to population (1980) 

= Ratio of US aid to total GDP (1981) 

Yi 4  = Ratio of US military aid to total GDP (1981) 
Y15  = Number of cities with population over 500,000 (1981) 
YI 6  = Net direct private investment 
YI7  = Percentage of labor force to population working age (15-65 years 

of age; 1981) 
Y!8  = Resource balance 
Y19 = Percent value of machinery as export (1981) 
Y20  = Percent value of machinery as import (1981) 	 1=1 

Five ML factors are computed and rotated to oblique form since on a 
priori grounds it is expected that the socioeconomic factors are correlated. 
The factor loadings are given in Table 6.13 and the factor scores in Tables 
6.14 and 6.15 where only the first two sets of factor scores are considered. 

First, the most important dimension is the economic base or infra-
structure of development. The first factor (F r ) correlates positively with the 
percentage of machinery exports (Y 1 „), number of physicians per popula-
tions (Y 12 ), percentage of population enrolled in higher education (1' 0 ), 
number of cities with population over half a million (Y 15 ), and average 
index of food production (Y 10 ). It correlates negatively however with the 
percentage of government expenditure on education (Y 4 ), average annual 
population growth (Y 1 ), and average growth rate of primary exports (Y„). 
It therefore appears to represent the general development potential based 
on the existing infrastructural means of development of the countries. The 
scores on factor F t  for the 52 countries are given in Table 6.14 and are 
ranked in descending order. The results conform to our understanding and 
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Variable F l  F 2  F, F4  F5  

V i  0.18 0.46 -0.17 0.11 0.99 
V 2  0.30 0.81 -0.21 0.85 
V, 0.34 0.9'7 -0.13 -0.26 0.49 
Y, -0.42 0.22 - 
Y 5  -0.32 - -0.12 0.21 0.35 
V,,, 0.74 0.51 -0.26 -0.13 0.31 
V, -0.19 -0.5.5 0.30 0.79 0.19 
V -0.50 0.40 0.97 0_18 
V9  -0.82 -0.11 0.17 0.12 0.10 

V10 0.41 0.23 -0.26 - 0.13 
V„ -0.81 -0.39 0.29 0.32 -0.17 

V r2 0.85 0.53 -0.32 -0.31 0.27 

V13 -0.35 -0,18 0.86 -0.20 
V I , -0.29 - 0.92 0.11 - 

V15 0.40 0.16 -0.14 

V16 - - 0.34 0.10 

1'17 - -0.15 0.45 0.10 

VIII -0.21 -0.37 - 0.10 -0.16 
V 19  0.88 0.22 -0.22 -0.14 

V20 - - -0.15 0.45 0.10 

Source: Abizadeli et al., 1990; reproduced with permission. 

experience of economic development. Setting aside for the moment the 
group of developed countries that have and will continue to have a good 
development potential (countries 1-14 in Table 6.14), South Korea ranks 
the highest in the remaining group followed by Singapore and others. 
Notably, these countries are the ones most expected to experience a 
relatively high rate of economic growth, ceterus paribus. Alternatively, 
beginning from the other end we find the poor African countries, which 
indicates a very low level of development potential. 

The second factor F2 (Table 6.15) represents a social factor that 
emphasizes the status of women, an important social indicator of develop-
ment potential. It is evident that women can contribute to economic 
development of a country by actively participating in its labor force, 
particularly if they are skilled and educated. 

Again, the factor scores provide a ranking for this dimension of potential 
for economic developments, where it can be seen that countries like 
Panama, Thailand, the Philippines, and Singapore fall in the middle of the 
F 2  scale as they did on the basis of F t  (Table 6.14). Also countries such as 
Syria, Ethiopia, and Sudan, which were low on F t , continue to rank low on 
F, as well. The methodology can also be used to measure government size 
of various countries (Abizadeh and Basilevsky, 1990). 



414 
	

FACTOR ANALYSIS 

Table 6.14 Oblique Factor Scores for F 1 , the Factor of General Potential for 
Economic Development 

Country F, Country F, 

I. USA 1.861 27. Panama -0.429 
2. Germany L846 28. Thailand -0.434 
3. Japan 1.755 29. Philippines -0.445 
4. 	Italy 1.639 30. Peru -0.462 
5. Sweden 1.569 31. Turkey -0.479 
6. Austria 1.400 32. Ivory Coasi -0.516 
7. Belgium 1.253 33. Mauritius -0.561 
8. France 1.250 34. Pakistan -0.571 
9. UK 1.214 35. Indonesia -0.712 

10. Spain 1.093 36. Senegal -0,720 
11. Finland 1.080 37. Morocco -0.730 
U. Denmark 1.063 38. El Salvador -0.731 
13. Canada 0.831 39. Vcnezueia -0.746 
14. Netherlands 0.804 40. Syria -0.795 
15. Korea 0.738 41. Jamaica -0.838 
16. Singapore 0.646 42. Papua NG -0.873 
17. New Zealand 0.274 43. Mexico -0.936 
18. Australia 0.215 44. Sudan -0.946 
19. Uruguay 0.103 45. Bolivia -0.950 
20. Yemen 0.005 46. Ethiopia -0.985 
21. 	India -0.056 47. Zimbabwe 1.084 
22. Sri Lanka -0.285 48. Tanzania -1.148 
23. Tunisia -0.314 49. Nicaragua -1.170 
24. Chile 0.327 50. Honduras -1.203 
25. Jordan -0.406 51. Zambia -1.228 
26. Malaysia -0.419 52. Kenya -1.368 

Source: Abizadeh et al., 1990; reproduced with permission. 

6.11 CONFIRMATORY FACTOR ANALYSIS 

The factor models described in preceding sections are usually referred to as 
exploratory factor models, since aside from a specification of r (or 41 no 
other a priori information is required. The objectives of estimating common 
factors in such models are thus not very different from those of a principal 
components analysis. By using a more general error structure, exploratory 
factor analysis seeks to gain further insight into the structure of multivariate 
data. At times however the investigator may already have carried out a 
factor analysis of a set of variables in a different sample, in which case prior 
information is available for use in further samples. Thus the number of 
common factors may already be known, or loading coefficients may have 
been tested and certain ones found to be insignificantly different from zero. 
If subsequent samples are taken it would be wasteful to ignore such prior 
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Table 6.15 	Oblique Factor Scores for F2 , the Status of Women Factor for 
Potential Economic Development 
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Country F 2  Country F2  

1. Jamaica 0.951 27. Peru 0.289 
2. Netherlands 0.797 28. Zambia 0.285 

3, Chile 0.788 79. Thailand 0.284 
4. Australia 0.752 30. Singapore 0.270 
5. Denmark 0.731 31. Korea 0.203 
6, Belgium 0.692 32. Tanzania 0.134 
7. France 0,683 33, Malaysia 0.062 

8, Spain 0.679 34, El Salvador 0.037 
9, UK 0.668 35, Kenya -0.009 

10, 	Italy 0,635 36. Bolivia -0.237 
11. Sweden 0.635 37, Turkey -0.319 
12. New Zealand 0.632 38, Jordan -0.350 

13, Finland 0.593 39, Indonesia -0,399 
14. Germany 0.591 40, Papua NG -0,430 
15. Mexico 0.580 41, Ivory Coast -0,622 
16. USA 0,572 42. Syria -0.787 
17. Venezuela 0.531 43. Senegal -1.082 
18. Japan 0,518 44. Tunisia -1.086 
19. Austria 0.502 45. Nicaragua -1.130 
20. Panama 0,502 46. Sudan -1.203 
21, Canada 0,500 47. India -1.320 
22. Zimbabwe 0.394 48. Mauritius -1,417 
23, Uruguay 0,397 49. Ethiopia -1.421 
24. Honduras 0,363 50. Morocco -1.851 
25. Philippines 0.333 51. Pakistan -2.497 
26. Sri Lanka 0.317 52. Yemen -4.444 

Source; Abizadch et al., 1990; reproduced with permis5ion. 

information, and we may then wish to impose zero restrictions on the 
loadings. Values other than zeroes can also be used, but zeroes are most 
common in practice. Other advantages are that restricted factor models can 
improve factor interpretation and render the factor model identifiable. 

Let n be the factor correlation matrix. The total number of parameters 
to be estimated in a, ft, and AP is 

pr + 1 r(r + 1) +p = (2p + r)(r + 1) 	 (6.109) 

Let n., n n , and no  be the number of specified (restricted) parameters in a, 
a and IP respectively, where in =na  - no . Then the number of 
unrestricted parameters to be estimated is 

;-(2p + r)(r + 1)- m 	 (6.110) 
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which should be smaller than ip(p + 1)—the number of distinct elements 
of 1—to yield a nontrivial solution. Thus 

r2  + m > (p + r)(p + r + I) 	 (6.111) 

and a necessary condition for factor parameters to be uniquely determined is 
that 

(6,112) 

Sufficient conditions however are difficult to define, since not only the 
number but also the positioning of the zero-restricted parameters have to be 
taken into account (Joreskog and Lawley, 1968). Note that restrictions can 
include zero constraints on the off-diagonal elements of 0., which results in 
mixed orthogonal/oblique factors. Clearly, if a sufficient number of restric-
tions are used, it becomes unnecessary to rotate the factors. The diagonal 
elements of ‘Ir can also be prespecified, but this is less usual in practice. For 
derivation and further detail concerning the confirmatory model see Lawley 
and Maxwell (1971). Just as for the exploratory model, confirmatory 
maximum likelihood factor analysis loadings are computed iteratively, but 
recently Bentler (1982) proposed a noniterative computational scheme for 
such a model. One difficulty with confirmatory factor analysis however, as 
with any other model incorporating a priori restrictions, is the introduction 
of bias into the estimates when incorrect restrictions are used. At times zero 
restrictions arise naturally in specific circumstances. Thus Anderson (1976), 
for example, has developed a factor model useful for confirming clinical 
trials, which uses a block triangular matrix of factor loadings to achieve a 
unique rotation of the axes. 

Example 6.7. The data of Example 6.3 are divided into two groups 
using a random process, and a confirmatory ML factor analysis is carried out 
on half of the data. Since the exploratory factor analysis has indicated that 
Tarsonemus, grade, and Glycyphagus dominate the first, second, and third 
factors, respectively, these loadings are kept fixed, together with several 
other loadings. Coefficients that are set to zero are replaced by –. For 
biological interpretation and implications of the analysis see Sinha and Lee 
(1970) (Table 6.16). Here an oblique factor solution is obtained directly 
without any further rotation, 0 

6.12 MULTIGROUP FACTOR ANALYSIS 

As for the principal components model, it is possible to extend factor 
analysis to the multimode and multigroup situations discussed in Sections 
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Table 6.16 	Oblique Confirmatory ML solution with (Approximate) 95% 
Confidence Interval for p= 9 variates" 

Variate F, 	 F, 	 F, 

Gradc - 	 - 	 0.96 -± 0,16 
Moisture -0,14 ± 0,29 	 0.63 ± 0.31 	 0.43 ± 0,14 
Dockage -0,48 :t 0,32 	 0,51 ± 0.32 	 0,43 ± 0,14 
Acarus.  0.05 ± 0,24 	 0.05 zt-  0,26 	 0,18 ± 0.12 
Cheyletus 0.38 :4-  0.30 	-0.38 ± 0.32 	 0.27 -± 0.13 
Glycyphagus 0.88 :!-__ 0.18 	 - 

Tarsonemus - 	 0.74± 0.14 
Cryptolestes -0.17 ± 0.25 	-0.00 ± 0.26 	 0.15 :4: 0.12 
Psocoptera -0.58 ± 0.36 	 0.35 ± 0.36 	-0.21 ± 0.13 

Factor Correlations 

1.00 
0.78 	0.15 1.00 X 2 = 13.40 with 13 degrees of 
0.15 ± 0.13 0.22 -± 0.15 	1.00 	 freedom, probability 	0.34. 

"Fixed coefficients are replaced by dashes. 

Source: Sinlla and Lee, 1970; reproduced with permission. 

5.4 and 5.5. An annotated bibliography for three-mode (and higher) models 
is given in Kroonenberg (1983b). In this section we describe briefly a 
generalization of thc Lawlcy ML factor analysis model to the case of several 
groups of variables (from McDonald, 1970) (see also Joreskog, 1970, 1971; 
Browne, 1980) which is similar to a canonical correlation analysis of several 
groups of variables. 

Consider t sets of variables Y (1) , Y (2) , 	Y 	that 

Y (I) = P(11 + a (I).(1) 	€ (1) 

Y(2) = P(2) + U (2).(2) + € (2)  

I(  (0 = 1409 + a(r).(r) ( (r) 

represent t factor models where Y (k)  is (Pk 	4)(k)  is (r x 1) and a(k)  is a 
(Pk x r) matrix of loadings (k = 1, 2, 	, I). Equation (6.113) may be 
expressed more compactly as 

where p E 	pk  and Y is (p x1), a (p X r), and • (r x 1). The 
covariance matrix of the entire set is then 

(6.113) 

X = aa r  + 	 (6.115) 
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where the (p x p) residual covariance matrix has the block diagonal form 

(6.116) 

and cov(4), E T) = 0, • — N(0, I), and e N(0, 111 ). Note that the error 
covariance matrix ‘1,  is no longer constrained to be strictly diagonal. 

Given a total sample of size n, IviL estimators can be obtained in a 
standard way. The sample estimator of the covariance matrix 	is 

S I2 

S12 

 

(6.117) 

So • 	• 

 

    

and minimizing the expression 

F = lnIXI + tr(SX 	— lnIS1 p 

leads to the maximum likelihood estimators & and lir such that 

= aseir + lir 	 (6.118) 

The actual solutions and numerical techniques are discussed by Browne 
(1980) who shows that multigroup factor analysis can be considered as a 
generalization of canonical correlation (see also Browne, 1979). Also 
Bentler and Lee (1979) have developed a multigroup factor model which is 
a more general version of Tucker's three-mode principal components model 
(Section 5.4). 

6.13 LATENT STRUCTURE ANALYSIS 

Both principal components as well as generalized least squares-type factor 
models standardize the observed variables to zero mean and employ second-
order moment matrices, such as the covariance or correlation matrix, to 
obtain an initial set of coefficients. Although normality is generally not 
required (except for testing purposes), the usual factor models nevertheless 
assume that at most second moment statistics are sufficient to estimate the 
model. Factor models however are generally unidentified (no unique 
solution) and even in the presence of prior identification constraints there is 
no guarantee of avoiding a Heywood case. Two reasons for such a state of 
affairs arc ( I) skewed distributions and (2) bimodality of the data. This 
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suggests a more general class of models, first suggested by Lazarsfeld (1950; 
see also Lazarsfeld and Henry, 1968; Anderson, 1959; Fielding, 1978; 
Bartholomew, 1987) arid known generally as latent structure analysis. For a 
continuous (and continuously observed) multivariate population, latent 
structure models fall into two categories depending on whether the latent 
variables are considered to be discrete or continuous. 

Consider the situation where a multivariate sample consists of r homoge-
neous groups such that the distribution is not necessarily symmetric. We 
then have a mixed sample consisting of subsamples drawn from r distinct 
populations, and the objective is to "unmix" the sample space into a small 
number of latent subsamples or classes. Since the distribution need not be 
symmetric, estimates of higher moments or "interactions" such as 

rt 

E xiricaxih 
	 (6.119) 

must be taken into account. When the variables X 1 , X2  , . 	XI, are 
standardized to unit length we have the corresponding higher order 
"correlation" coefficients pik, • . . , and so forth to any desired order. In 
practice the existence of higher-order interaction terms is usually not known 
and their relevance must be determined together with the parameters of the 
model, defined as follows. Let a population consist of r latent classes A 1 , 
A 2  . . , A, each of relative size 7r 1 , 71-2 , . , V,. such that E ir_ i  71-1  = 1. Let 
denote the mean of variable Yi  within the latent class 1. Then the normal 
equations for the so-called "latent profile" model is 

Pik E 

Pikh =  E Trigiigkitth, 
	 (6.120) 

and so on for higher order interactions. Although the basic model only 
considers means of the form p9 ,, within the latent classes higher moments 
such as variances can also be introduced. It is also interesting to note that a 
unique (identifiable) solution may be obtained by varying the number of 
interaction terms pfich, , given p observed random variables (see Ander-
son, 1959). Analogously to the factor model (Eq. 6.2), latent profile models 
use the concept of conditional independence, that is, latent classes are 
obtained in such a way that the variables within each class are independent, 
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not merely orthogonal. The operative assumption is that second, third and 
higher moments have arisen because of the nonhomogeneous composition 
of the original sample. 

Other models are also possible, for example, when the observed variables 
are discrete (Section 9.7) or when both the observed and latent spaces are 
continuous. Based on the assumption of local independence we can write 

E(X,X k ) E(Xi  I Z = z)E(A'k  I Z = z) 

for some latent variable Z. The specific type of model obtained is then 
dependent on the form of the functions fi (z) and fk (z). For example, in 
factor analysis we have the linear functions 

f1(z) a1  + biz 

(z) =ak  + bk z 

but more general functions are also possible, such as polynomials or 
exponentials. Nonlinear continuous latent spaces thus provide a natural 
generalization of the factor model. For greater detail the reader is referred 
to Lazarsfeld and Henry (1968). 

EXERCISES 

6.1 Show that the number of degrees of freedom of a common factor 
model can be expressed as in Eq. (6.9). 

6.2 Using Eq. (6.9) show that for r= 1 common factor we must have 
p > 3. 

6.3 Prove that the matrix ir = mil' (Theorem 6.3) can only have r 
nonzero latent roots. 

6.4 Following Theorem 6.6 prove that the reciprocal proportionality 
model (Section 6.4.1) is invariant with respect to scaling of the 
observed random variables. 

6.5 Prove that in Lemma 6.1 

F(X) = p(a — In g — 1) 

where a and g are the arithmetic and geometric means of the latent 
roots of - 'S. 
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6.6 Prove that Eq. (6.67) is equivalent to Lawley's normal equations (Eq. 
6.49). 

6.7 Prove Eq. (6.68). 

6.8 Using Eqs. (6.101a) and (6.102), prove that d r  15. d u  (Mardia, 1977). 

6.9 For Section 6.10, show that for an orthogonal matrix T the rotated 
loadings are correlation coefficients between the observed variables 
and the rotated factors. 

6.10 Show that minimizing Eq. (6.99) leads to the same estimator as Eq. 
(6.98). 

6.11 Show that the alpha factor model (Eq. 6.74) is equivalent to solving 
the equations 

[F — A, diag(F)Ill i  = 0 	(i --- 1, 2, . . , r) 

6.12 Prove Lemma 6.1. 

6.13 Prove that the diagonal matrix of Eq. (6.3) is positive definite if and 
only if cr > 0 for i = 1, 2, . 	, p. 

6.14 Show that minimizing Eq. (6.100) leads to the estimator Eq. (6,101). 

6.15 Consider the expression 

f(/) = kln + tr(X I A)} 

where k is a constant of proportionality. Prove that for X and A 
positive definite f(1) is minimized uniquely at 	A. 

6.16 Show that for n 8 the SIC(r) criterion (Eq. 6.81b) results in fewer 
common factors that the AlC(r) criterion (Eq. 6,81a). 

6.17 Prove Eq. (6.96). 

6.18 Stroud (1953) obtains the following correlation matrix for p = 14 body 
measurements of soldier termites (Table 6.17). 
(a) Carry out a maximum likelihood factor analysis using the correla-

tion matrix of Table 6.17. How many common factors are 
retained using (i) likelihood ratio chi-squared test, (ii) Akaike's 
criterion, and (iii) Schwartz's criterion. What do you conclude? 
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Table 6.17 

FACTOR ANALYSIS  

Correlation Matrix of Body Measurements of Soldier Termites" 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

.685 .663 
.761 

.857 

.571 

.528 

.679 

.350 

.389 

.788 

.741 

.488 

.598 

.850 

.862 

.867 

.560 

.494 

.815 

.760 

.728 

.802 

.490 
,446 
.813 
.756 
.768 
.865 

.877 

.535 

.587 

.823 

.790 

.790 

.939 

.863 

.865 

.586 

.539 

.927 

.807 

.866 

.819 

.840 

.864 

.862 

.537 

.653 

.827 

.800 

.812 

.910 

.845 

.979 

.895 

.682 

.446 

.231 

.801 

.668 

.668 

.714 

.844 
,647 
.765 
.636 

.889 

.548 

.473 

.892 

.811 

.800 

.888 

.814 
,884 
.886 
.874 
.780 

.657 

.413 

.572 

.597 

.500 

.501 

.606 

.528 

.694 

.612 

.666 

.357 

.579 

Length of right mandible; Y = length of second amennal segment; Y i  = length of third 
antennal segment; Y 4  = length of third tibia; Y = width of third tibia; Y, = width of third 
femur; Y 7 = height of head; Y„ = length of head; Y, = width of head; Y length of 
pronotum; Y„ = width of pronotum; Y 12.  = length of postmentum; Y o  = width of postmentum; 

ntaximum diameter of eye. 

(b) Rotate thc common factor loadings using (i) orthogonal rotation 
and (ii) oblique rotation. Do they aid analysis of the data? (Sce 
also Hopkins, 1966 and Sprcnt, 1972.) 
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CHAPTER 7 

Factor Analysis of Correlated 
Observations 

7.1 INTRODUCTION 

In the previous chapters it is explicitly assumed that the data represent 
random, independent samples from a multivariate distribution. Here which 
observation appears first, second,. .. nth is strictly arbitrary since the rows 
of Y can bc permuted without altering the outcome. Such a situation 
however is not characteristic of all forms of multivariate data. Thus, for 
certain types of data the observations appear in a specific order (sequence), 
and it is no longer permissible to interchange observations without a 
fundamental change in the outcome. This is generally true for observations 
which are ordered over time, spatial location, or both. The ordering induces 
correlation amongst neighboring data points, thus altering the perspective Of 
the analysis—for example, by inducing lead-lag relationships between points 
of a time series. Now, rather than constituting a sct of n observations on a 
random variable, sequential correlated data are viewed either as a realiza-
tion of a stochastic process or else as a function that depends on physical–
spatial variables such as time, spatial location, and so forth. Note that in the 
former view a time series is considered as consisting of n random variables 
observed jointly for one measurement or sample point, whereas for the 
latter the time points are considered as comprising the sample observations. 
A factor or a principal components analysis of correlated observations will 
feel the impact of such correlation, over and above the correlation that exits 
among the variables. Generally speaking, the analysis will depend on 
whether the serial correlation is taken into account or not, and whether the 
analysis is performed in the time or in the frequency domain. 

423 
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7.2 TIME SERIFS AS RANDOM FUNCTIONS 

The most straight-forward case of correlated observations is that of a time 
series, where thc observations are ordered over time at regular and discrete 
time points such as days, weeks, or months. A time series can also be 
observed at irregular time points or even continuously if time gaps between 
points can be made arbitrarily small. A unifying feature of such series is that 
they can be viewed as random time functions whose analytic form(s) are 
either not known or not specified. If p series 1 (i), Y 2(i), ;(i) are 
available they can be represented in terms of the usual (n x p) data matrix 

[ 	 .7 lp] 
. . . 	u 

Yll 	Y12 

where n is the number of time points and p is the number of characteristics or 
time series. If the series have arisen on an equal footing, that is, if none is 
considered to be functionally dependent on other series, then interest 
frequently lies in the correlational structure between such series, which may 
have arisen because of the presence of a smaller number of common time 
functions, for example, trends or cycles. Such regular behavior may not 
always be observable directly within the series, but may nevertheless exist, 
masked by random error or "noise." A factor analysis of multiple time series 
can then provide convenient estimates of the "hidden" time functions, in the 
form of factor or component scores (Sections 3.4 and 6.8). It is interesting to 
note that the existence of such functions usually removes much of the 
arbitrariness which at times is ascribed to factor identification since the 
existence of common factors in time series can be verified by further statistical 
analysis, for example, using graphical methods or by regression analysis. 
When correlation between the time series is of exclusive or primary interest, 
serial correlation can frequently be ignored. Here no change in the model is 
required since the series are simply viewed as a set of intercorrelated random 
variables, which happen to be observed over time. The principal areas of 
application of the methodology include the estimation of underlying time 
functions or data smoothing, construction of index numbers or "indicators," 
and data compression. Since the underlying time functions often possess a 
simpler structure than the original series, they can also be used for forecasting 
purposes (Otter and Schur, 1982). A unidimensional ordering of sample 
points also occurs in physical space represented, say, by perpendicular rock 
core drillings or horizontal lengths of geological rock formations (e.g., see, 
Harbaugh and Demirmen, 1964; Imbrie and Kipp, 1971). 

In certain disciplines, for example the social sciences, time series are 
frequently considered as "variables," that is, observations on random 
variables which happen to be observed over time. Here the n time points are 
viewed as comprising the sample space whose dimensions are not necessarily 

Y(t) 
Y21 Y22 	 .7 2p 

• • • 	u 

Yni Yn 2 	 Yllp 
• • • 
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orthogonal, owing to the serial correlation which usually exists among such 
observations. Multivariate analysis is then performed on the variables by 
ignoring the correlations among the time-ordered data points. Again, 
various Grammian association matrices may be used depending on the 
objective(s) of the analysis (Section 2.4) by correcting for the means, 
standard deviations or both. Time series variables however may at times 
require further correction owing to their time dependence since dominant 
movements such as trend may have to be removed if we are to perceive 
variance that is unique to each series, that is, variance that is independent of 
major components common to each time series. A simple translation of axes 
is therefore not always sufficient to eliminate the effects of "size" or level of 
the variables if size is an increasing (decreasing) function of time. Thus a 
preliminary regression analysis must at times be performed to eliminate 
dominant movement(s). Note however that it is not possible to eliminate 
time altogether from such variables as is at times advocated (e.g., see 
Walker 1967) since time series are intrinsically dependent on time. The 
following example illustrates some of the difficulties which may be involved 
when treating correlated time series as if they were ordinary variables. 

Example 7.1. Using published data for p= 18 offence categories 
Ahamad (1967) has carried out a principal component analysis of the 
number of offences committed in each category, per year, during the period 
1950-1963. The variables are defined as follows and the data matrix is given 
in Table 7.1. Since ncp 

• = Homicide 
Y, = Woundings 
Y3  = Homosexual offences 

Y4 = Heterosexual offences 
Y5 = Breaking and entering 
Y6  = Robbery 
Y7  =- Larceny 
• = Fraud and false pretence 
Y, = Receiving 
Yio  = Malicious injury to property 
• = Forgery 
Yi 2  = Blackmail 

Yi3 = Assault 
Y14  = Malicious damage 

Y1 ,= Revenue laws 
Y16  = Intoxication laws 
• = Indecent exposure 
Yi  = Taking motor vehicle without consent 



Table 7.1 	Total Number of Offences for England and Wales, 1950-1963, for 18 Categories 

Variate 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 

Y , 529 455 555 456 487 448 477 491 453 434 492 459 504 510 
Y 2  5.258 5.619 5.980 6.187 6.586 7.076 8.433 9,774 10,945 12,707 14.391 16,197 16,430 18.655 
V. 4,416 4,876 5.443 5,680 6.357 6,644 6,196 6,327 5,471 5,732 5.240 5.605 4,866 5.435 
Y4 8.178 9,223 9.026 10,107 9.279 9,953 10.505 11.900 11,823 13,864 14.304 14,376 14.788 14,772 
Y, 92,839 95,946 97,941 88,607 75,888 74,907 85,768 105,042 131,132 133.962 151,378 164,806 192.302 219.138 
Y, 1,021 800 1.002 980 812 823 965 1,194 1,692 1,900 2.014 2,349 2.517 2.483 
Y.7  301.078 355.407 341,512 308.578 285,199 295.035 323,561 360.985 409,388 445,888 489,258 531.430 588.566 635,627  

25.333 27,216 27,051 27,763 26,2.67 22,966 23,029 26.235 29,415 34.061 36,049 39,651 44.138 45.923 
Y, 7.586 9,716 9,188 7.786 6.468 7.-016 7.215 8,619 10,002 10,254 11,696 13,777 15.78.3 17.777 

Y10 4,518 4,993 5.003 5,309 5.251 2.184 2,559 2,965 3,607 4.083 4,802 5,606 6,256 6,935 

V11 3.790 3,378 4,173 4.649 4,903 4.086 4.040 4,689 5,376 5,598 6,590 6,924 7.816 8,634 

Y12 118 74 120 108 104 92 119 121 164 160 241 205 250 257 

Y13 20,844 19,963 19,056 17,772 17.379 17,329 16,677 17,539 17,344 18,047 18.801 18,525 16,449 15,918 

Y14 9,477 10,359 9.108 9,278 9.176 9.460 10,997 12.817 14.289 14,118 15,866 16,399 16.852 17,003 

Y15 24.616 21,122 23,339 19,919 20,585 19,197 19,064 19,432 24,543 26.853 31.266 29.922 34,915 40,434 

YI6 49,007 55,229 55.635 55,688 57,011 57,118 63.289 71,014 69,864 69,751 74.336 81,753 89,794 89,149 
Tly 2,786 2,739 2.598 2,639 2.587 2.607 2,311 2.310 2,371 2.544 2.719 2.820 2,614 2,777 
V 1  3,126 4.595 4,145 4,551 4.343 4,836 5,932 7.148 9,772 11.211 12,519 13.050 14,141 22,896 

Source: Aharnad, 1967; reproduced with permission 



Table 7.2 	Correlation of p 7--  18 Offences for England and Wales, 1950-1963 

L00 
-0.041 1.00 
-0371 -0.133 1.00 
-0.174 0.969 -0.070 1.00 

0.128 0.947 -0.379 0.881 1.00 
0.013 0.970 -0,315 0.940 0.963 1.00 
0.074 0.96] -0.339 0.909 0.992 0.966 1.00 
0.099 0.923 -0,377 0,870 0.974 0.950 0.975 1.00 
0.157 0.900 -0.406 0.822 0.981 0.915 0.982 0.967 1,00 
0.347 0.469 -0,522 0,371 0.648 0.550 0.623 0351 0.701 1.00 
0.089 0,954 -0.173 0.896 0.948 0.942 0.942 0.957 0.909 0.645 1,00 
0.183 0.941 -0.322 0.895 0.943 0.956 0.936 0.922 0.887 0.565 0,950 1.00 
0.175 -0.502 -0.534 -0.488 -0.385 -0.367 -0,389 -0,354 -0.346 -0.027 -0.535 -0.389 1.00 

-0.082 0.972 -0.234 0.962 0.930 0.964 0.944 0.885 0.875 0,412 0.893 0.922 -0.397 1.00 
0.264 0,876 -0,471 0.782 0.961 0.910 0.943 0.954 0.945 0,723 0.920 0.932 -0.272 0.834 1.00 

-0,022 0.976 -0.075 0.949 0.926 0.932 0.942 0.892 0.891 0.439 0,931 0.900 -0.590 0.958 0.816 1.00 
0.173 0.210 -0.545 0.109 0.339 0.282 0,335 0.448 0.414 0.677 0,304 0.286 0.428 0,144 0,498 0,074 1,00 
0.015 0.957 -0.167 0.893 0.959 0.916 0.954 0,919 0.926 0.542 0.944 0.905 -0.523 0.909 0.915 0.927 0.256 

Source: Aharnad, 1967: reproduced with permission. 

1.00 
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the correlation matrix of the 18 categories (Table 7.2) is singular. The data 
matrix has two further peculiarities which can modify a principal com-
ponents analysis; first, the entries are counts (Chapter 8); second, the 
"sample space" consists of ordered time points. A principal components 
analysis of the correlation matrix (Table 7.3) reveals r = 3 components with 
at least a single loading coefficient whose magnitude is sufficiently large to 
be judged "significant," although the usual tests of significance are not 
applicable. Further possible difficulties also arise from using the correlation 
matrix with offence counts. First, since the rows of Table 7.1 are adjusted to 
zero means, the analysis treats infrequent offences such as homicides (Y 1 ) in 
the same way as the more common ones such as larceny (Y 7 ). Second, 
standardizing the categories to unit length tends to ignore differences among 
the variates due to time variability, an important consideration when 
attempting to forecast. Since the data of Table 7.1 represent a contingency 
table (Chapter 8), it is frequently useful to consider other measures of 
association, for example Euclidian measures such as cosines or the un-
adjusted inner product (Section 2.4) or non-Euclidian measures (Exercise 
7.12). 

Since the principal components loadings of Table 7.3 are computed from 
an association matrix of the variables they are independent of time, in the 
sense that they depend on the offence categories, rather than the years. 

Table 7.3 Principal Component Loading Coefficients of p = 18 Offence Categories 
Using the Correlation Matrix of Table 7.2 

Zi Z2  Z 3  R 2  

V I  0.085 0.540 0.797 93.4 
Y, 0.971 -0.199 -0.054 98.6 
V3 -0,311 -0.809 0.118 76.6 
V 4  0.917 -0.294 -0.162 95.3 
V s  0.992 0.051 0.021 98.6 
V 6  0.976 -0.041 -0.091 96.2 
V, 0.992 0.013 -0.030 98.4 
V„ 0.982 0.115 -0.030 97.9 
V, 0.966 0.126 0.024 94.9 

Vio 0.642 0.566 0.112 74.6 

VI I 0.974 -0.078 0.085 96.1 

V12 0.961 0.007 0.083 93.1 
/1' -0.422 0.734 -0.350 84.0 

Y I4 0.943 -0.176 -0.139 93.9 
0.953 0.233 0.075 96.9 

"U 0.945 -0.280 0.040 97.3 

V 17 0.337 0.751 -0.302 77.0 

V 18 0.962 -0.129 0.016 94.2 
Ii  12.898 2.715 .957 

Source: Ahamad, 1%7; reproduced with permission. 
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Here the component scores are functions of time and estimate time behavior 
of the variables. The scores for the first two components are shown in Figure 
7.1. The first component, which accounts for just over 71% of the total 
variance, seems to be highly correlated with the total number of individuals 
in the 13- to 19-year-old age group where Z 1  (Fig. 7.1a) represents that part 
of Z 1  which is due to the age group, as determined by linear regression. The 
finding is clearly of some interest, but is perhaps not too surprising since the 
data of Table 7.1 are not corrected for population levels and the dominant 
principal component represents the general "size" effect, that is, an 

 

1- 

0 

 

a. 

Figure 7.1 Principal component scores for the 
first two principal components of the offence 
categories of Table 7.1 (Aharnad, 1967; re-
produced with permission). 
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increasing time trend perhaps reflecting population growth. The expectancy 
however is to a large extent retrospective in nature since it may not be clear 
on a priori grounds why Z 1  should reflect the 13--19 age group as opposed, 
for example, to some other group (see Ahamad, 1967; Walker, 1967). The 
high correlation should also he interpreted with care since it does not 
necessarily reflect direct causation, particularly when dealing with age 
cohorts over time (Section 7.3). 

The second component Z 2 , which accounts for 15% of the variance (Fig. 
7.1b), reflects quadratic behavior over time and is correlated positively with 
Y 1 , Y ID , 17 13 , and Y 17  and negatively with Y„ variables that can be seen to 
possess quadratic movement over time (Table 7.1). Its exact identification 
however is not evident without a more intense scrutiny of the data. Finally, 
although Z 3  is correlated, to some extend, with the number of homicides 
(Y 1 ) (Table 7.3) it appears to reflect random, independent movement over 
time. This in itself may be of some interest since it represents evidence that 
homicides contain a large degree of purely random variation from year to 
year. The analysis should be viewed as tentative and exploratory, however, 
since more data and alternative association matrices which are more 
appropriate to integer count data (Chapters 8 and 9) should also be 
analyzed. 

7.2.1 Constructing Indices and Indicators 

One of the first applications of factor analysis to time series is from Rhodes 
(1937), who attempted to use factor scores to construct an index of general 
business activity of the British economy. Rhodes selected a set of leading 
indicators of business activity, and then used the series to compute a general 
index by taking the first (dominant) factor, which explained the major part 
of the variance. The factor model used by Rhodes (see Thurstone, 1935), 
however, is somewhat outdated and is no longer in use and has been 
replaced by the ordinary principal components model (Peters and Butler, 
1970; Jaumotte et al., 1971; Bartels, 1977), although weighted models 
(Chapter 6) can also be used, depending on the specification of the error 
terms. Since the input variables are themselves dimensionless index num-
bers, either a covariance or correlation matrix can be used, keeping in mind 
that principal components are influenced by large differences in the 
variances of the variables. At times logarithmic transformations are also 
employed in an attempt to either linearize the series, reduce variance 
differences, or both. Since time series arc functions of time, the correlation 
between them is often due to time variation resulting from the presence of 
(common) time functions, which may be estimated by the factor scores. The 
advantage of using factor analysis to estimate such functions is that the 
analytical form(s) of the functions need not he known a priori, since they 
can be viewed as empirical functions which maximize variance (correlation) 
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amongst the observed series. The factor scores can thus be expressed as 

Fl 
	

F2 LW/ • 4 6 

	

F, =fAt) 

and may be plotted graphically to aid identification. Depending on the 
nature of the observed series J(t) can represent time trends, seasonal 
(monthly) fluctuations, or longer cyclical movements and the factors are not 
restricted to linear functions such as (linear) trend. Another approach which 
may be used to identify the factors is to include exact analytical functions as 
"markers," keeping in mind that this can only be done by using principal 
components since exact (error-free) functions are not compatible with 
(heteroscedastic) factor models (Chapter 6). The resultant time factor scores 
can then be used as standardized indices which estimate the process(es) that 
gave rise to the observed time series. In addition to providing index 
estimates the factors utilize information inherent in the high correlation 
usually observed between time series, which regression cannot do due to 
multicollinearity. 

Index numbers can also be constructed by using factors (principal 
components), in a more restricted sense. Thus a procedure which yields 
"best" linear index numbers of commodity prices and quantities has been 
suggested by Theil (1960). Consider K commodities which are exchanged 
over a period of T time intervals. Let p,i  and q,1  denote price and quantity of 
commodity j at time I. Then we can write 

P = 

I P , 1 

P21 

T 1 

PI2 
P22 

PTZ 

• • 

• • 

• 
PIK] 

P2K 

PTK 

Q 

411 
421 

4T! 

412 

422 

4T2 

• • 

• • 

• 

• 

41K] 

42K 

4TK 

where 

c PQ1 
	

(7.1) 

is the (T x T) "value" matrix of total (aggregate) quantities for time periods 
t = 'I, 2, .. . , T. We wish to find those (T x 1) vectors p and q that provide 
the best least square fit to the matrix of bilinear forms C. That is, we wish to 
minimize tr(EET ) where 

E C - pq-r 	 (71) 

for some two unknown column vectors p and q. 
We have 

tr(EE 1  ) = tr(C - Pq r )(C - Pql  

= tr(CC T ) - 2tr(Cpq 1 ) + tr(pq TqpT ) 
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= tr(CC T ) — 2tr(p1 Cq) + tr(p 1 	q) 

= tr(CC T ) — 2pTicq 	pTp )(qTq 	 (7.3) 

Differentiating Eq. (7.3) with respect to p and q and setting to zero yields 

Cq — (q Tq)p = 0 

C Tp — (pTp)q =0 

Or 

[( CTC ) ( pTp )(qT(i)[q 0 	 (7.4a) 

[(CC T ) — (pTooiroip  _ 0  (7.4b) 

using Eq. (7.1). Thus q and p are latent vectors of the Grammian matrices 
C 1 C and CC' respectively and correspond to the dominant latent root 

A 2 ._ ( pro
(

i

•

q ) 
	

(7.5) 

Thus optimal price and quantity index numbers correspond to the principal 
component loadings and scores of C TC. The procedure hears a close 
resemblance to estimating functional forms and growth curves (Section 
10.6). The matrix C however is not adjusted for sample means so that the 
dominant root (Eq. 7.5) is mainly a function of these means, but the 
procedure can easily be modified should this be an undesired feature. Theirs 
(1960) Best Linear Index possesses several desirable properties which are 
not shared by the usual economic index numbers. For example, when T = 2 
the best linear index number lies halfway between the Laspeyres and 
Paasche indices when quantities are equal in the two periods; closer to the 
Paasche index when current quantities are larger; and closer to the 
Laspeyres index when current quantities are smaller. This makes the Best 
Linear Index a useful compromise between the two commonly used indices. 
A difficulty with Theil's Best Linear Index is that it may be biased since 
elements of pq" may systematically exceed corresponding elements of C. In 
an attempt to correct for such potential bias Kloek and deWit (1961) have 
obtained a modified version of p and q, such that tr(E) = 0. This is achieved 
by introducing a correction factor such that C = 0. In practice p, may 
be computed iteratively, and the modified price and quantity indices are 
then known as Best Linear Unbiased Index numbers. The following two 
examples illustrate the use of factor analysis (principal components) in index 
number  construction. 

Example 7.2. Quarterly data are available for prices of consumer 
commodities in the United Kingdom, during the period 1955-1968 (first 
quarter of 1958 = 100). For the sake of simplicity the time series represent 



TIME SERIES AS RANDOM FUNCTIONS 	 433 

p = 10 grouped consumer commodities, which are based on the industrial 
sector that produced them. Owing to the quarterly nature of the data we 
wish to determine the extent of seasonality of the series, together with any 
other systematic time behavior which may be present. 

A principal components analysis is carried out on the logarithms of the 
p -= 10 price series using the correlation matrix. Loadings for the first two 
components, which virtually explain the entire systematic variance of the 
series, are given in Table 7.4 and scores are plotted in Figures 7.2 and 7.3. 
Evidently, with the exception of Y 5  the price variables can be explained by 
the first component Z, whereas Z2 reflects the price of the commodity group 
produced by the engineering sector. Hence the scores for Z, can be taken as 
a measure of the general consumer price index, excluding the engineering 
commodity which exhibits a different time pattern picked up by Z2 (Fig. 
7.3). Here Z t  can also be understood as a random time function which 
represents the general inflationary increase in consumer prices. Note 

Table 7.4 	Principal Component Loadings for Natural Logarithms of p = 10 
Quarterly Series, 1955-1968 a  

Prices z , 12  

Y ; Agriculture .9872 
Y2; Mining and quarrying ,9855 
Y - : Food, drink and tobacco ,9867 
Y4: Chemicals .9934 
Y5: Engineering —.3686 .9268 

Textilcs ,9863 
V 7 : Other manufacture .9894 
Y 8 : Gas and electricity .8937 .1517 
Y y . Services .9775 
V,„: Noncompetitive imports .9022 .2317 

"Loadings smaller than .10 are omitted. 

.33 - 

20 - 

,10 

— Teed Price Index 

°Mogen,* 

Figure 7.2 Component scores Z, for p =10 economic price indices of Table 7.4. 
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Figure 7.3 Component scores Z, for p = 10 economic price indices of Table 7,4. 

however that, as it stands, Z, is a biased estimator of I' s  since the two 
components have been constrained to be orthogonal to each other, in spite 
of the correlation between them—the. price of engineering goods is clearly 
influenced by the general price trend of all other commodities. The bias is 
readily removed by an oblique rotation of the loadings and scores of Z i  and 

Example 7.3. Kloek and deWit (1961) have applied Theil's (1960) Best 
Index numbers to published Dutch import and export data for the period 
1921-1936, which consists of p = 15 commodity categories. Both the Best 
Linear (BL) and the Adjusted Best Linear and Unbiased (BLAU) price and 
quantity indices are computed and given in Table 7.5. Since the variables 
are not corrected for mean values, a dominant latent root exists which 
reflects the general mean levels of imports and exports. The fitting coeffi-
cient / 2  of Table 7.5 is a function of the dominant latent root and represents 
the total proportion of variance which is accounted for by the computed 
price and quantity indices. 

7.2,2 Computing Empirical Time Functions 

When given a set of correlated time series we may at times wish to 
investigate the presence of common time movements (functions) which can 
he present in the series. Since the functional form(s) of the unobserved time 
functions is generally not known, regression analysis cannot be used for the 
purpose. A common practice at times is to compute factor or component 
scores of thc common factors, and then attempt to identify them by plotting 
the score values against time. Time functions of this type are also known as 
empirical time functions. Although rotation of the loadings and the scores is 
generally not required, in order to identify the time functions an orthogonal 
or oblique rotation may enhance interpretability (see Richman, 1981). 
Regression analysis, AR1MA, or other time series methods can also be 
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Table 7.5 EL and BLAU Price and Quantity Index Numbers p and q with 
Corresponding Roots A 2  and Fitting Coefficients 1 2 . 

Years 

Imports Exports Imports Exports 

11)80 x 10 17 
 0.99994 

5589x 10 i7 
 0.99982 

10994x 10 17 
 0,99986 

5451 x 10 17 
 0.99963 

P q P q P q P q 

1921 6900 x In 3331 x 10 6048 x 10 2426 x 10 6900 x 10 3283 x 10 6054 x 10 1359 x I0 
1922 5502 3701 4771 2691 5492 3667 4765 2643 
1923 5408 3752 4460 2975 5398 3719 4448 2933 
1924 5476 4313 4649 3615 5461 4282 4630 3575 
1925 5302 4661 4423 4097 5283 4634 4395 4064 
1926 4309 51121 4074 4322 4879 4999 4041 4295 
1927 4945 5170 4096 4653 4920 5147 4059 4628 
1928 5091 5302 4108 4868 5065 5279 4069 4843 
1929 5044 5469 4116 4863 5017 5447 4076 4838 
1930 4395 5480 3759 4598 4365 5464 3721 4576 
1931 3639 5304 3191 4244 3607 5294 3154 4229 
1932 2982 4515 2486 3506 2954 4508 7454 3495 
1933 2768 4474 2176 3408 2740 4469 2144 3401 
1934 2554 4116 2141 3357 2528 4111 2109 3349 
1935 2515 3823 2104 3263 2491 3817 2073 3255 
1936 2704 3883 2143 3455 2681 3876 2109 3448 

Source: Kloek and deWit, 1961; reproduced with permission. 

" Both p and q are expressed in square roots of guilders per year, 

applied to each factor independently, either as an aid to identification of the 
basic functions (the scores) or in forecasting future values of the multivariate 
series—see, for example, Otter and Shur (1982). 

Several types of data matrices can incorporate time. Such data occur 
frequently in the historical, social, biomedical, environmental, and atmos-
pheric sciences when observing time records for a set of characteristics or 
variables ("historic data"), or when a single characteristic is observed 
simultaneously over a set of geographic regions or locations at regular time 
intervals (cross-sectional/time series data). Although irregularly spaced data 
can also be used, this may introduce distortion to the loadings and the scores 
(Karl et al., 1982). Not much evidence seems to exist on the point, however, 
although distortion would be expected on a priori grounds since irregularly 
spaced data can be considered as an instance of missing data. When columns 
of the data matrix Y correspond to the cross sections, it must be kept in 
mind that the loadings (which characterize the locations) cannot be plotted 
on an axis in the same way as the scores unless they also correspond to a 
natural ordering such as geographic direction, Thus ordering regions in 
alphabetical order, for example, does not necessarily induce a natural order 
amongst the regions, and a functional plot of the loadings is here meaning-
less (for an example of the latter see Jaumotte et al., 1971). Also, when 
using principal components in conjunction with time series it is important to 
distinguish between the various Grammian association matrices, since 
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principal components are not unit invariant (Chapter 3). Thus failure to 
distinguish between the correlation and covariance matrix, for example, can 
lead to interpretational errors (e.g., Dyer, 1981). Time-distributed geog-
raphic data are particularly common in atmospheric and meteorological 
research, where they are intended to capture space/ time variability (Crad-
dock and Flood, 1969; Henry, 1977; Schickendanz, 1977; Barnett, 1978), 
When only monthly effects are of interest meterological data can also be 
presented in the form of a (n x 12) matrix where n is the number of years of 
available records (Craddock, 1965); Brier and Meltsen, 1976). It must be 
kept in mind however that with time-dependent data the outcome of a factor 
analysis will also depend on the degree of serial correlation within the series, 
as well as on correlation between the series-see Farmer (1971) for a 
simulated example. Also, the statistical testing procedures described in 
Chapter 4 and Section 6.6 are not, strictly speaking, applicable for depen-
dent observations. The following example provides a general illustration of 
using factor scores to estimate empirical time functions for geographic 
regions. 

Example 7.4. Table 7.6 contains adjusted motor vehicle fatalities for the 
10 Canadian Provinces, between 1961 and 1982, together with the total 
Canadian average. A ML factor analysis reveals the presence of a single 
dominant component, which explains 85.8% of the variance. The factor 

Table 7.6 Number of Motor Vehide Fatalities per 100 million km for 10 
Canadian Provinces 

Year Canada Nfld. F.E. I. N.S. N.B. Que. Ont. Man. Sask. Alta. B.C. 

1961 4.7 6.9 4.8 6.9 8,1 5.0 4.4 3.6 4,2 4.4 4.9 
1962 5.1 6.0 6.1 7.2 7.2 5,9 4.7 3.7 4.4 4,2 5.6 
1963 5.2 8.1 7.5 6.8 9.3 6.4 45 4.4 4_3 4.4 4.9 
1964 5.4 6,9 7,3 7.2 9,6 7.3 4.2 4.5 4.6 4.8 4.8 
1965 5.2 5.4 5.1 7.5 9.7 6.2 4.5 4.0 4.7 4.2 5.3 
1966 5.2 6,1 6,0 7.6 10.0 6.5 4.2 4.4 5,6 4.2 5.3 
1967 5.2 5.6 5.2 8.1 9.3 5.9 4.2 4,3 5.5 4.7 5.4 
1968 4.7 4.3 7,4 6.9 7,8 5.7 3.7 4.1 4.9 4.5 5.1 
1969 44 5.9 7.2 6.5 7.4 5.6 3.7 3,3 4.1 4.6 45 
1970 4.0 3.9 5.4 5.4 6,6 4.9 3.2 3.0 3.8 3.7 4.4 
1971 4.2 4.2 4.7 5.3 5.9 4.9 3.5 3.3 3.9 4.1 4.6 
1972 4.2 4.9 6.5 5.6 5.7 5.3 3.4 2.8 4.5 3.6 4.8 
1973 4.2 4,0 5.6 5.5 5.9 5.2 3.2 3.3 3.9 3.7 5.0 
1974 3,7 4.2 5.2 5.0 6.1 4.3 2.7 2.9 4.5 3.8 4.7 
1975 3.5 3.4 5.1 4.3 45 4.2 18 2.8 4.0 3.3 4.0 
1976 3.0 3.3 3.4 35 4.5 3.4 23 3.1 3.4 2.9 3.4 
1977 2.8 2.7 5.7 3.0 3.9 3.2 2.1 2.4 3.3 3.0 3.7 
1978 2.8 2.2 3.1 3.5 3.9 3.6 2.1 2.5 3.6 2.3 3.0 
1979 2.9 2.9 3.3 2.8 4.2 3.6 2.1 2.3 3.4 3.1 3.3 
1980 2.7 2.4 3.6 3.0 3.2 3.0 2.1 2.2 3.0 3.0 3.4 
1981 2.6 1.7 2.3 2.6 3.0 3.1 2.0 2.6 3.1' 3.1 3.6 
1982 2.3 1.8 1.9 2.9 3.6 23 1.7 2.1 2.5 2.3 2.8 

Source: Statistics Canada; Transport Canada. 
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Figure 7.4 First (dominant) maximum likelihood factor score for Canadian motor vehicle 
fatalities, 1961-1982. 

scores appear in Figure 7.4, where it can he readily verified that the 
dominant factor estimates the average fatality rate for Canada as a whole. A 
principal components analysis also reveals the presence of a dominant 
component, which accounts for a slightly higher percentage of variance. The 
component scores however are influenced by residual error variation and 
give a poorer fit to the overall fatality rate than do the maximum likelihood 
estimates. If temporal rather than regional correlation is of interest, a 
0-mode factor analysis can also be performed, for example, by transposing 
the data of Table 7.6 (Exercise 7.12). An interesting historical analysis of 
climate in the western United States using ring data of drought-sensitive 
trees is also given by La Marche and Fritts (1971), where individual trees 
rather than provinces represent geographic location. 

7.2.3 Pattern Recognition and Data Compression: Electrocardiograph Data 

The first two sections deal with the extraction of time functions from 
observed data, which could then be used to characterize or compare the 
observed series. At times one may be given a large number of time series, 
where we are faced with the purely utilitarian task of reducing the size of the 
data to manageable proportions, at the same time retaining essential 
informational content. The problem of data reduction and smoothing 
occurs, for example, in electrocardiographic (ECG) research where interest 
lies in describing, from body surface readings, the electrical current sources 
within the heart. Since one of the main purposes of recording a large set of 
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ECG data is to distinguish normal from abnormal hearts, we would only be 
interested in retaining sufficient information to achieve this aim, for 
example, for therapeutic purposes, for automatic computerized screening of 
a population, or to obtain insight into the underlying biological processes at 
work (Van Bemmel, 1982). 

The heart is a cyclic pump, with the cycle consisting of the heart pumping 
blood from the ventricles to the body, the lungs, and back again. The ECG 
is thus, most of the time, a continuous periodic function. The sinoatrial node 
causes the atrial muscle to depolarize and pump blood into the right 
ventricle.. At the same time the left atrium is receiving blood from the lungs 
and pumping it into the left ventricle. The depolarization of the atria and 
ventricles is characterized in the ECG by the so-called P-wave and ORS 
complex (Fig. 7.5) where the letters P, Q, R, S, and T represent standard 
notation for the prominent features of the wave form. The electrical signal is 
relatively large (50 mV) and of moderate band width (0-100 I-1z), and can be 
measured with low error (noise) which may emanate from either electrical 
(equipment) or physiological sources. It is also consistent from heartbeat to 
heartbeat hut can vary somewhat from person to person. The heart, on the 
other hand, is not a simple electrical source but consists of a time-varying 
charge distribution that can be described by a time-varying current dipole 
moment, distributed throughout the volume of the heart. 

Let E denote instantaneous voltages recorded at a body surface point p 
and consider k current generators G 1 ,G,, . 	G. Then 

fr" =c G +c G +--.+ck Gk  41, 	I 	2 	2 (7.6) 

where the constants c i  , c2 , 	ck  are determined by the geometry and 
resistivity of the body and are assumed to be constant throughout QRS. The 
basic aim of an ECG is to describe, from body surface recordings, the 
electrical current sources within the heart (see Young and Calvert, 1974; 
Ahmed and Rao, 1975). The number of recordings required to describe the 
equivalent generator is equal to the number of sources contributing to this 
generator. Thus for a k-function system we require k nonredundant 
recordings. If we have fewer than k ECG leads we miss information and if 
there are more we have redundancy. We thus need to determine the number 
of basic functions (voltage generators) needed to account for the voltages 
recorded on the body surface. Sher et al. (1960) have used principal 

Figure 7,5 The P wave and the QRS complex of a normal ECG. 
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Figure 7.6 Orthogonal principal component functions of p =7 electrocardiograph leads 
estimating the systematic portion of the data (Sher et al.. 1960; reproduced with permission). 

components to determine the number of basic time functions required to 
reproduce the recordings from seven leads (Figure 7.6), and found that r = 3 
components are sufficient to reproduce the essential features of the ECG. 
Feature recognition, together with pattern classification, can also be applied 
to an ECG as well as other signals of biological origin such as the 
electroencephalogram, the spirogram, or hemodynamic signals, which can 
then become useful diagnostic aids. For a review of this area of study see 
Van Bemmel (1982) and Wold (1976). 

7.3 DEMOGRAPHIC COHORT DATA 

Owing to the scarcity of accurate data, many life tables are constructed 
artificially using statistical projection techniques. Thus a practice in common 
usage at the United Nations, for example, is to take life expectancy at birth 
and to project, in 5-year age intervals, the sex and age-specific mortality 
rates of the various countries. Such projections are possible because of the 
high serial correlation that exists between adjacent age groups. Principal 
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component analysis is a particularly powerful and straightforward method of 
constructing model life tables, since it does not require a priori specification 
of the analytic functional forms of the component life tables, and can utilize 
all available data for all countries. 

Let q denote the mortality rate for individuals who are between ages x l 
 and x2  and who were deceased during the interval 1x 1  — x2 1. The ratio q is 

computed as a proportion of mortality with respect to those who had age x. 
The intervals 1x, —x 2 1 are typically taken as 5-year durations, and the base is 
customarily set at n 1000 individuals, Thus we can write 5 q30 , for example, 
to denote the mortality rate for individuals from 30 up to (but not including) 
35 years of age, expressed as a proportion of 1000, The various values of q, 
when plotted against 5-year age intervals, then constitute the so-called life 
table, that is, mortality rates plotted as a function of age. Owing to 
differential mortalities between males and females, life tables are usually 
constructed separately for the two sexes. When sex-specific age groups are 
taken as the variables and countries as sample points a data matrix Y is 
obtained, which can be decomposed using factor analysis. Alternatively both 
sexes can be included in a three-mode analysis (Sections 5.4.3 and 6.12), but 
this does not appear to be current practice. Note that a factor model with a 
diagonal error covariance matrix may be inappropriate because of possibly 
correlated residual errors induced by serially correlated observations. 

Example 7.5. Ledermann and Breas (1959) (see also United Nations 
Organization, 1962) use principle components to analyze a data matrix 
consisting of p =18 age groups for n 157 countries. The correlation matrix 
for males, together with correlation loadings for the first three components, 
are given in Tables 7.7 and 7.8. The first component Z, represents general 
life expectancy, that is, that portion of life expectancy which can be 
predicted from the expectation of life at birth, generally a function of the 
widespread health conditions which are prevalent in the countries at that 
time. An examination of the loadings reveals it accounts for less variance of 
the older group (75 years of age and higher), indicating that older age 
groups are subject to greater age-specific risk. These influences appear to he 
associated with Z 2  and Z 3  and explain variation about Z 1 , that is, these 
components explain independent deviation of mortality from general health 
conditions. 

The loading coefficients (Table 7.8) indicate age-specific effects while 
scores rank the countries in order of their importance vis-a-vis the com-
ponents. A main objective for life table analysis is to reconstruct (estimate) 
the main features of the life tables for specific life expectancies. This can be 
done by computing the row vectors of the matrix of predicted values 
X = ZA 1  where Z is the (157 x 3) matrix of scores. Thus for / o  = 70 we 
obtain the estimated life table of Figure 7.8 using only the first component 
Note that the mortality rates must first be linearized by taking logarithms. 



Table 7.7 Correlation Matrix of Male Age-Specific Mortality Rates for it = 157 Countries (Logarithms) 

4 0-1 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 

1.000 
.937 1.000 
.948 .905 1.000 
.915 .844 .917 1.000 
.933 .842 .906 .929 1.000 
.911 _801 .872 .879 .949 1.000 
.898 .782 .856 .861 .916 .985 1.000 
.917 .793 .865 .869 .921 .967 , 985 1.000 
.932 .810 .874 .875 .920 .940 .949 .982 1.000 
.904 .790 .841 .839 .888 .891 .890 .925 .939 1.000 
.933 .811 .841 .844 .890 .889 .888 .936 .974 .933 1.000 
.915 .790 .800 .805 .853 .846 _840 _891 _940 .920 .988 1.000 
.886 .758 .744 .757 .805 .800 .792 .844 .889 .887 .956 .982 1.000 
.850 .722 .697 .703 .753 .749 .740 .790 .832 .849 .910 .949 .983 1.000 
.828 .696 .676 .671 .736 .726 .715 _765 .809 _835 .888 .931 .970 .991 1.000 
.815 .702 .672 .647 .691 .704 .691 .735 .782 .796 .862 .907 .944) .951 .972 1.000 
.818 .713 .684 .653 .692 .705 .687 .726 .763 .780 .836 .875 .909 .939 .927 .963 1.000 
.715 .635 .597 .550 .602 .614 .591 .618 .647 .653 .714 .746 .777 .820 .844 .871 .946 1.000 
.520 .479 .456 .409 .419 , 419 .384 .412 .441 .462 .498 .524 .542 .576 .610 .665 .749 .878 1.000 

Source: Lederman and Breas, 1959. 
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Table 7.8 Principal Components Loadings for the 
First Three Components of Male Age-Specific 
Mortality Rates' 

Z 
	

Z 2 	 z, 
io  .9736 -.0887 .0734 
0-1 .8839 -.0992 .2319 
1-4 .9061 -.2296 .2421 
5-9 .8978 -.2481 .1645 

10-14 .9332 - .2399 .0758 
15-19 .9245 - .2595 .0305 
20-24 .9073 - .2888 - .0034 
25-29 .9362 - .2425 - .0769 
30-34 .9509 -,1832 -.0975 
35-39 .9326 -.1096 - .1248 
40-44 .9594 - .0385 -.1721 
45-49 .9475 .0594 - .2307 
50-54 .9261 .1607 -.2894 
55-59 .9059 .3122 -.2363 
60-64 .8817 .3098 -.2953 
65-69 .8629 .3645 - .2230 
70-74 .8659 .4199 - .1016 
75-79 .7717 .5463 .0885 
80-84 .5824 .6344 .3760 
Variance (%) 81.5% 7.4% 3,7% 

Figure 7.7 Principal component loadings of Table 7,8 for the first r = 3 components of 
male-specific mortality rates (Lederman and Buns. 1959). 
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Figure 7.8 Estimated life table using the first principal component which is plotted against 
expectation of life at birth (both sexes combined; United Nations Bulletin 6, 1962), 

7.4 SPATIAL CORRELATION: GEOGRAPHIC MAPS 

The previous sections deal with one-dimensional time series. At times 
however, data are gathered over two- or three-dimensional physical space, 
for example, geographic variables distributed over a given land surface, or 
geological mineral exploration measurements obtained from 3-dimensional 
underground rock deposits. Since the sampling scheme for such data 
normally consists of an evenly spaced grid pattern, the observations for the 
variables will generally be correlated. The correlation can be induced, for 
example, by common land features shared by a number of adjacent 
observational sites. Generally speaking any feature(s) that overlaps several 
adjacent observation sites will induce correlation amongst the sample points. 
An example (Section 7.8) is satellite digital image processing, where digital 
energy information (light intensity, color, etc.) is stored in pixels which 
stand in a definite relationship to each other. As for time series the sample 
points are ordered, and the correlation cannot be removed by a random 
shuffling of the data points. When a factor analysis is carried out for a set of 
correlated variables distributed over adjacent geographical areas (space), the 
loadings are still interpreted in the usual way. Since the factor scores 
characterize an ordered sample space, however, their values are also 
ordered, and can therefore be represented physically on a sample space such 
as a geographic map, a picture, and so forth. 

Example 7.6. Gordon and Whittaker (1972) use principal components 
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in an attempt to identify fundamental sociological dimensions of private 
wealth and property in the south west region of England. Since average 
incomes may mask causes of poverty or deprivation, other variables that 
measure unemployment, housing, services, and so forth are introduced as 
follows: 

• = Income 
Y2  = Unemployment rate 

Unemployment seasonality 
Y4 = Female activity rate 
y, = Social class I and II (professional and intermediate occupations) 
y„ 	Social class III (skilled occupations) 
Y7 = Social class IV and V (partly skilled and unskilled occupations) 

= Migration of young males 
= Average domestic rateable value 

Y10 = Houses with very low rateable value 

Y1 t Households with all exclusive amenities 
Y12 7.7' Cars per household 

YI3 Telephone ownership 

YI4 Houses built postwar 

Y15 = Owner occupation of building 
Y 1 , = Employment growth (change in total employment, 1961-1966) 
Y17  = Growth industries 
• = Industrial building 
Y, 9  = Terminal age of education 
Yzu  = Movement of school leavers 
Y, 1  = Doctors per head 

Y22 "----- Accessibility to services 
Y23  = Death rate 

A principal component analysis is carried out, followed by the orthogonal 
varimax rotation. The resulting loadings (correlation matrix) are given in 
Table 7.9, where low-order magnitudes are omitted. The authors identify 
the following dimensions of "prosperity" in the southwest of England. 
Factor 1 denotes high incomes, skilled occupations, and houses built after 
World War II and factor 2 indicates property values in the areas.* The 
remaining components can be interpreted in the usual fashion using the 
loadings of Table 7.9. Since the sample points are spatially ordered the score 
coefficients have a similar ordering, and may be plotted on a map of the 
southwest region of England (Fig. 7.9). Again, we have reversed the signs 

*We have altered the signs of the loadings in Table 7.9 to conform to this interpretation. 
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Table 7.9 Socioeconomic Indicators of Regional Prosperity in the Southwest of 
England 

Z, Z4  z, 	z, 
.7729 

.8144 
-.3550 

.3964 
-5729 

-.6922 -.5246 
.6383 .5123 

-.5480 -.5250 
.7528 

.8683 
-.8050 

.7385 
-.8341 

-.3670 .6393 
.5822 .3774 .4330 

-.4187 .5747 
.5365 

,4208 .4890 
-.6100 

.7199 
-,5841 

.3582 .5719 
•6734 

Y 2  
Y 3  

"4 

Y 5  
Y6 

 Y, 
Y„ 
Y, 

Yin 

Y il 
Y 17,  

V,, 
Y14 
Y 15 

V ie 

Y 17 

Y ti 

Y20 
V 21  

V 22 
Y 2.4  

Source: Gordon and Whittaker, 1972; reproduced with permission. 

of the scores to maintain interpretational consistency with the loadings of 
Table 7.9. Comparing the loading and score coefficients it can be seen that 
the eastern portion of the region enjoys higher incomes and a more skilled 
labor force than does the western portion. A similar analysis can also be 
found in Hunter and Latif (1973) and Kuz et al., (1979). Geographic 
mappings are also common in meteorology and ecology (Knudson et al., 
1977). Yanai et al. (1978) have also used factor analysis to study cancer 
mortality rates for 46 Japanese prefectures, using three time periods for 
males and females. Pirkle et al. (1982) use principal components to 
construct prediction indices for mineral exploration by identifying lithologic 
units which are favorable for the ore deposits. 

7.5. THE KARHUNEN-LOEVE SPECTRAL DECOMPOSITION IN 
THE TIME DOMAIN 

The usual multivariate analysis does not make use of the correlation 
between observations within time series or spatially distributed data. An 
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Figure 7.9 Spatial distribution of the first principal component of prosperity in the southwest 
region of England, 

alternative approach is to use such correlations to effect a decomposition of 
a stochastic process into its more basic constituents. This can be done in 
both the time and the frequency domain. In this section we consider 
time-domain spectral analysis for both continuous and discrete processes. 
Stochastic processes defined over two-dimensional physical space are consid-
ered in Section 7.8. 

7.5.1 Analysis of the Population: Continuous Space 

We first consider analysis of a continuous random time process X(r) defined 
within an interval in infinite dimensional space.. The general mathematical 
theory is that of functional analysis in Hilbert space where we attempt to 
expand a continuous function f(x), within a finite interval, into an infinite 
series of orthogonal functions (e.g., see Mercer, 1909), The statistical 
application of the theory comes independently from Karhunen (1947) and 
Loeve (1945), although it seems to have been first considered, within the 
multivariate normal setting, by Kosambi (1943). The latter author also 
describes interesting computational machinery (hardware) which he suggests 
could be used to carry out the computations, although this was never done 
because of the author's difficult political circumstances. The principal 
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objective of a spectral analysis is to expand X(t) into an infinite linear series 
of functions, which in some sense reveal thc structure of the process, Let 
X(t) be a process such that E[X(1)1= 0. We wish to decompose X(t) into a 
set of orthogonal functions A(t), each with zero mean and unit variance, 
such that X(t) = z(t), In particular, if X(t) contains measurement 
error the objective is often to decompose X(t) into two orthogonal parts as 

X(t) = X*(t) + N() 	 (7,7) 

where 20(t) represents the true or the "signal" part of the series, 
Consider a function f(x) defined over a finite closed interval [a, b], 

together with the linear expansion 

f(x) = E z,41),(x) 
	

(7.8) 

Then if f(x) is square integrable, that is, 

[f(x)1 2 dx < 
	

(7.8a) 

the magnitude of the squared error of the expansion can be defined as 

1 1/2 
{fa  (f(x)1 ,11.41  [ Z tbi (X )1 2  dx f (7.9) 

where 01 (x) are also square-integrable functions. Since the integral replaces 
the summation sign encountered in finite vector spaces, Eq. (7.9) can be 
considered as the infinite dimensional extension of the usual sum-of-squares 
criterion, 

Definition 7.1. Consider a sequence of functions 0 1 (x), 02 (x), . . in the 
closed interval [a, bl, Then the system is said to be orthogonal if and only if 

(7,10) 

Definition 7.2. An orthogonal system of functions 0 1 (x), 02 (x), „ . in a 
closed interval [a, b] is complete if, for every piecewise continuous function 
f(x), the squared error criterion (Eq. 7.9) converges to zero as 

It is well known that given a complete orthogonal sequence 01 (x), 02 (x), . 
the function f(x) can be expanded into a convergent infinite series in [a, h], 
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that is, we can write 

f(x) = 	z i ck(x) 
	

(7.11) 
I 

In the mathematical literature (Eq. (7.11) is also known as a generalized 
Fourier expansion of f(x) (see Kaplan, 1952). When Eq. (7.11) holds, the 
orthogonal functions Oi (x) are said to form a basis of the space in the finite 
interval [a, b], 

Since a time series can be viewed as a function of time, the theory of 
generalized Fourier series can be applied to stochastic processes. Let Y(t) be 
a continuous real-valued stochastic process (time-series) of second order, 
defined in the time interval [0, T], with finite mean-value function E[Y(t)] = 
m(t) and continuous autocovariance function (kernel) C(t, s) = E[Y(t) — 
m(t)1[Y(s) — m(s)] where $ and t represent two points in time. The process 
Y(t) is continuous in the mean in [0, TI if 

E[Y(t + h) Y(t)1 2  0 
	

for h 0 	 (7.12) 

[note that although C(t, s) must be continuous, Y(t) need not be stationary]. 
Alternatively Y(t) must be continuous in the mean. Love (1945) and 
Karhunen (1947) have applied the theory of generalized Fourier expansions 
to show that if Y(t) satisfies the conditions given above then 

Y(t) = m(t) + 	z,(/),(t) 	 (7.13) 

with convergence convergence in the mean, that is, the partial sums approach Y(t) in the 
sense of the squared criterion (Eq. 7.9). It is usual to define X(t) Y(t) — 
m(t) so that E[X(t)1= 0. The terms CO are the eigenvectors of the 
homogeneous integral equation 

	

C(t, s)c/),(t) dt = A4 1 (s) 	 (7.14) 

for i I,2, .... If m(t) = E[X(t)] = 0 then z , are random variables such that 
E(z 1 ) = 0 and E(z,z) = 0 for i and Oi (t) are fixed functions of time such 
that E(zf) = A i  (Exercise 7.3). 

THEOREM 7.1. Let {c¢,(t)} be a complete orthogonal system of continu-
ous functions in the interval [0, Ti.  Then the series E7_, z ick(t) converges 
uniformly to X(t), t E [0, T], and 

1  f Z = 	0  X(t)O r (t) di 
	

(7.15) 
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PROOF. Using Eq. (7.13) for m(t) = 0 

X(t) = z orfi l  (t) + z 2 4)2 (t) + • • • + z rq5,(t) + • • • 

and multiplying by 4i,(1) and integrating in [0, 71 we have 

)01)01(1) =z Jo  01 0470) di Z 	02(00,.(t) di 

+ • • ' 	Z 	(1);' (t) dt + • • 

	

o 	' 

using Eq. (7.10). Dividing by A r  yields Eq. (7.15). 
The Ai , 0) are the eigenroots and eigenvectors of the integral equation 

(Eq. 7.14) and represent continuous analogues of the latent roots and latent 
vectors of the principal components model (Eq. 3.7). Likewise, the random 
functions z l , . . . are the continuous principal components of the stochas-
tic process X(i) and Eq. (7.15) is the continuous analogue of Eq. (3.1). The 
orthogonality of z 1 , in relation to the integral equation (Eq. 7.14), is given 
in the following theorem. 

THEOREM 7.2. Consider Eq. (7.13) where Pit(t)= 0. Then 

(i) If the random variables z i  are orthogonal, then the functions ck(t) 
satisfy the integral equation (Eq. 7.14). 

(ii) If the orthogonal functions 01 (t) satisfy Eq. (7.14), the z i  are 
orthogonal. 

PROOF. 

(i) Let 

	

x(o= E z 1 (i) 	T) 
i. 1 

3C 

	

X(s) = E z141(s) 	(0 az 	T) 

Multiplying, and assuming orthogonality, we have 

Lilt-0mm=  

where E(z) = Ai  and E(z izi ) = 0 for i 0j. Since C(t, s) = 
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EIX(t)X(s)] we have 

co, s) = 

and multiplying by cki (s) and integrating yields 

- T 
foT  CO s)d)i(s) ds E 	A4(t)1(s) cbi(s) 

i- 

A 1 k(t) 	ck(s)0, (s) dc 
t-i 

= A i ck(t) (7.16) 

so that the eigenfunctions satisfy the integral equation (Eq. 7.14). 

(ii) Conversely, assume the random variables z, satisfy the integral 
equation (Eq. 7.14). Then when cA i (t) are orthonormal we have, 
from Eq. (7.15), 

X(s)z1 = 	X(3)X(t)445,(t) di 

and 

	

 fT E[X(s)z] = 	E[X(s)X(t)14.(1) di 

	

= 	s)ck(t) di 

= A AM) 

Thus 

E(z tz) = for  E[X(t)z,10,(t) di 

IT 
 A ,cbi( 1 )(1);(t) 

f A, i =j 
— o i Oj (7.17) 

and z , form an orthogonal set of random variables with variance 
Ai . 

THEOREM 7.3. Let z, = foT  X(s)41),(s) ds be the coefficients of the infinite 
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expansion (Eq. 7.13) where m(t) = 0. Then E(z) = A, are the latent roots of 
the integral equation (Eq. 7.14). 

PROOF: We have 

z. = 
	X(s)4,(s)  ds 

so that 

T r 
E(4) = 	0  E[X(t)X(s)Ick(t)cib i (s) ds 

= f [ C(t , s)(k(t) dticA(S) ds 
o o 

= f [A i ll)i (S)]CMS) (IS 
0 

=A1  

since (/),(s) are orthonormal. 

In summary, given an orthogonal set {415,(t)} if the random variables z i 
 are also orthogonal then the problem of representing a stochastic process by 

a series of the form of Eq. (7.13) is equivalent to the condition that the 
integral equation (Eq. 7.14) possesses nonzero eigenfunctions CO, corre-
sponding to eigenvalues A = A i . In addition, when the process is stationary 
the autocovariance function only depends on the differences between the 
time points, that is, C(t, s) = C(t — s). The integral equation (Eq. 7.14) can 
then be expressed as 

	

I T 	

- *A(t) ds = A iOi(s) 
	

(7.18) 

When C(t, s) can be expressed explicitly in terms of an analytic function of 
time, the eigenftmctions can also be written as analytical functions of time. 
In general, however, both the fixed eigenfunctions and the random principal 
components will be empirical functions. For use of the Karhunen-Loeve 
expansion in nonstationary processes see Davis (1952). Fukunaga (1990) 
describes application in pattern recognition. In addition, the expansion can 
be shown to have the following properties. 

1. Parseval's equation. If there exists a complete system of orthogonal 
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eigenfunctions {O(t)} then 

fir  Mt) 	A 	+ A 24 + • • • 	 (7.19) 

Conversely, if Parseval's equation (Eq. 7.19) holds then the system {401 (t)) is 
complete (Exercise 7.4). 

2. The autocovariance function can be expanded into an infinite series. 
We have 

C(t, s) = E[X(t)X(s)] 

so that 

s) = 2, 2, 4,(t)(1) 1 (s)E(z e z1 ) 

= 
	

(7.20) 

since the random variables z, are orthogonal (see Exercise 7.5). 
3. The Karhunen—Loeve coefficients z, minimize the mean-squared error 

resulting from only using a finite number r of terms in Eq. (7.13), that is, 
they minimize 

2 	GAG 

X(t) E z ick(t)] di = E z2; = 1 - E A, 	(7.21) 
i-v 	 i=r+1 

using Eq. (7.19) where X(t) and {401(0) are of unit length. 

PROOF. The minimization can be established by showing that for any 
other set of coefficients d 1 0 z i , I = 1, 2,... we have the inequality 

	

2 	T 	 2 

	

X(i) E z 015 1 (t)] 	[X(t) — E d id),(1)] di 	(7.21a) LTC 
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The right-hand side of Eq. (7.21a) is given by 

LIE 
7 

X(t) - E 	+ E E d 4),(01 di 

= fo  [X (1) — 	Z i (1)(t) 
2 

di )0i(t)] di 

2 JT 
= 	[X(t) E z ,415,(i)j di +[i (z - d )0,0)] 2  dt 

t 

+ 2 [(X(t) E z ici5,.(1)1[E (z 	di )45,(1)] di  
0 	i-1 

2 	r Jo  [X(t) - E z ick(i)] di + E 	- d,-) 2 	(7.21c) 

where for the last term of Eq. (2.71b) we have 

T r 
X(t) E (z, - d i )(1)1 (t) di -- f E z i (z, - d i )41)(t) di 

	

i -I 	 0 

z i (z i  - di ) - E zsz i  - di ) 

= 0 

The inequality (Eq. 7.21a) follows from Eq. (7.21c). 

	

4. Let Y= (Y1 , Y2 , 	, Yp ) r  be a vector of random variables. Then the 
entropy function of a distribution f(Y) is defined as (Section 1.6) 

I = - E{ln f(Y)} 	 (7.22a) 

Entropy can be used in place of variance as a measure of variability of a 
distribution, When the components of Y are independently distributed Eq. 
(7.22a) becomes 

	

1. -E E[In f(Y i )] 
	

(7.22b) 
I— I 

It can be shown that the Karhunen-Loeve expansion maximizes the entropy 
measure 

IA  = E Ai  in At 	 (7.22c) 

for any finite number of the first largest eigenroots (Exercise 7.9). 

Owing to the optimality properties the Karhunen-Loeve expansion is a 
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useful tool when considering expansions of a stochastic process, and from 
the development described above is easily seen to represent the continuous 
version of principal components analysis. Thus when a continuous process is 
sampled periodically at a finite number of occasions the Karhunen—Loeve 
decomposition becomes identical to a principal components analysis of an 
autocovariance matrix (see Cohen and Jones, 1969). Although a distinction 
is at times made between the two models, particularly in the engineering 
literature (e.g., see Gerbrands, 1981), this is not of essence. The two models 
can also be obtained using more general methods such as co-ordinate-free 
theory (Ozeki, 1979), Karhunen—Love analysis can be used with electro-
cardiograph data (Section 7.2.3) to obtain a description of the heart's 
function in terms of the so-called "intrinsic components" (Young and 
Calvert, 1974). Consider v(r, 0, (If), the potential at a point on the body's 
surface at time t where (r, 0, 1,11) denote a point on the body's surface in 
terms of spherical coordinates (r, 0, ar). We then have v(r, 0, 41; t) = 

z ,(r, 0, 0)(p,(1) where cp,(t) denotes the ith latent vector or intrinsic time 
component of the electrocardiograph and z ,(r, 0, depends only on 
location on the body's surface. 

7.5.2 Analysis of a Sample: Discrete Space 

Usually a stochastic process is observed in the form of one or more time 
series, each sampled at regular time intervals. An example would be daily, 
weekly, or monthly temperatures observed at n geographic locations, 
yielding matrices similar to those of Section 7.2.2 (Table 7.3). The interest 
in time series analysis however lies in the time points that is, locations, 
commodities, or other objects are simply viewed as convenient sample 
frames within which to estimate the variance/covariance or correlational 
structure of a stochastic process. Since interest here lies in the behavior of 
time a single time series consisting of n timc points is normally viewed as a 
set of n random variables within a single observation, that is, a sample size 
of 1. When k "observations" or time series are available, each of length n, a 
(n x n) correlation (covariance) matrix can be computed which when 
decomposed into principal components yields the discrete analogue of the 
Karhunen—Loeve decomposition (Eq. 7,14), The latent vectors (loading) 
then correspond to the time functions 0,(t) (1= 1, 2, ... , n) and the scores 
correspond to the random variables z,. The loadings can thus be plotted 
against time, where using the language of communication engineering the 
first r retained components are used as estimates of the true part or the 
"signal" within the series X(/). This maximizes the informational content of 
the sampled process and minimizes the variance of the "noise" component 
N(c). Little new arises, apart from what was seen to hold for the principal 
components model (Section 3,4). Note however that a principal components 
(Karhunen—LA)eve) analysis of time points implies homoscedastic, uncorre- 
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lated error terms for all time points. Furthermore, if a stochastic process is 
stationary (see Brillinger, 1981), the columns of the data matrix have 
approximately equal variance as well, and either a covariance or a correla-
tion matrix can be used. Alternatively, a single timc phenomenon can be 
measured simultaneously k times, at discrete points (or continuously), for 
example, a single earthquake or explosion may be measured by k different 
seismographs. Thus in terms of the electrocardiograph example of Section 
7.5.1, if k simultaneous measurements of one heart beat of duration T are 
made on thc surface of the body, we have k series x l (t), x2 (t),  
where the (k x k) covariance matrix C has typical (population) elements 
given by 

- 	xi (t).0)dt 
0 

(7.22d) 

The Karhunen—Loeve analysis for the sample of k continuous series can 
be carried out by solving P rSP = L in the usual way. 

A different situation arises when we only have a single time series at our 
disposal, that is, replications are not available to estimate the variance—
covariance terms of C(t,$). Much of social and historic data, for example, 
are available in the form of single time series observed at highly discrete 
points of time (annual, quarterly, monthly, etc.). In this situation all first 
and second moments must be estimated from a single series. The following 
procedure is found to work well in practice when the objective is to estimate 
empirical components of a series (Basilevsky and Hum, 1979). Consider a 
time series Y(t) of length N = n + rn + 1 which is partitioned into m 1 
overlapping segments of length n, that is, we have the series Y(t) = 

m+2 , . . , y l , , y„) where negative subscripts are used to 
simplify subsequent notation. To compute a [(m + 1) x (m + 1)] sample 
covariance matrix S series Y(t) is segmented into in + 1 lagged vectors 
Y(1 —  j) = (y 1 _ 1 , y 2  , i), 0, 1, 2, , m), each of length it > in. 
Each vector therefore differs from its immediate neighbor by its first and last 
element. 

A discrete analogue of Eq. (7.13) can then be written for each of the 
segments Y(t), Y(t — 1), ... Y(t — m) as 

+ I 

Y(t) m(t) + E p(t)Z 1  

in .1- 

Y(t — 1) = rn(t 1) + E 	— 1)Z1  

(7.23) 

+ I 

Y(/ — m) = m(t m) + E p,(t m)Z i  

 

I 
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where the sample means are computed as 

1 n-, 
m(t j) = 37(1 — j)= --n-  E v, 	= o, 1, 	, m) 	(7.24) 

Note that the original series does not have to be detrended. The coefficients 
p,(t — j) are. elements of the orthonormal latent vectors P(t) and 
P(t — 1), . , P(t — m) which correspond to the continuous eigenfunctions 
•://i (t) of Eq. (7.13) and vector Z i  corresponds to the random variables z In 
many applications Z i  values are of main interest, since they represent 
systematic components of the time series such as trend, cycle, and seasonal 
movements, The p 1 (1 — j) and Zi  are computed from the covariance matrix 
S„, formed from the lagged vectors Y(t j), that is, 

n 
s 2 (w) — 	I 	2 

n 	nAt w) 	 (7.25) 

1  

	

(w = 0, 1, .. , m) 	(7.26) - n 1 , 

s(u,u) — 	E yi 	nAt u)9(t v) 

1  E 	= o, 1, „ m) 	(7.27) - n — 

where x denotes deviations from the sample means (Eq 7.24). Thus 
elements of a common segment Y(t — j) are assumed to have constant mean 
and variance, but the moments can vary from segment to segment, that is, 
the time series is only "piecewise" or segment stationary. The computations 
are again essentially those of the principal (Karhunen—Loeve) components 
model and can bc implemented as follows: 

I. Express the elements of the (n x 1) vectors Y(t) and Y(t — I) - • • , 
Y(t — m) as deviations about means (Eq. 7.24) and let the deviations form 
the columns of the n x (m + 1) matrix X. 

2. Compute the eigenvectors P(t), P(t — 1), .. P(t m) and corre-
sponding eigenvalues L — diag (l i  , 1,, . . . ,10, ÷1 ) of the matrix X r X. 

3. Let A = L II2P with column vectors A(t) and A(t — 1), 	, A(t — m) 
where P is the matrix of eigenvectors. Then 

nt + I 

Y(t j) m(t 	+ 	a,(t — .0Z 
	

(7.28) 
i- 

1 

1 

where a(t — j) is the ith element of A(t , 7 j) (j = 0, 1 , . . , m), that is, 
ai (t — j) are correlation loadings when X I X = R, the correlation matrix. 
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Since the variances of the different time segments are not assumed to be 
equal, either the covariance or the correlation matrix may be used with the 
usual provisos (Section 3.4.3). 

Clearly, only the first r components are of interest since these contain the 
"signal" portion of the time series. For example, given a socioeconomic 
quarterly time series we can write 

X(1) = TO) + C(t)+ S(t) + N(/) 	 (7,29) 

where T(t) is a polynomial trend, C(t) is a cycle with generally variable 
period and amplitude, S(t) represent seasonal (quarterly) within-year 
periodic variation (with possibly variable amplitude), and N(t) is the residual 
"noise" or error term. If X(t) possesses the terms T(t), C(t), and S(t) thcn 
the first r component scores should reflect these movements. However, it 
does not necessarily follow that each term of Eq. (7.29) corresponds to a 
single principal component. Thus if X(t) contains seasonal variation, then 
S(t) is generally represented by three orthogonal components. Likewise, the 
"cycle" C(t) can be picked up by several orthogonal components. For 
purposes of interpretation however it is usually preferable to represent 
similar time behavior by a single term. Initially, the first r principal 
component scores can be plotted against time, where a visual inspection will 
normally reveal their identity, so that rotation is generally not required to 
identify the components. In addition, assuming a normal process the 
likelihood ratio criterion can be used to test equality of all, or some, of the 
latent roots (Chapter 4) where components with insignificantly different 
roots will generally represent similar time behavior and thus may be 
aggregated into a single tcrm. 

Example 7.7 Given an annual series we may wish to investigate whether 
the time series contains nonstationary components such as trend and/or 
cycle(s). Figure 7.10 represents annual volume flows of the Red River, 
measured at Emerson (Manitoba) during the period 1913-1976. Here N = 
66 where m = 15 lags prove adequate to capture the main movements of the 
series. We have the vectors X(t — 15) X(t — 14), . , X(1), X(0), and a 

1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 

Figure 7.10 Red River mean annual discharge cubic feel per second, 1913-1976, at Emerson. 
Manitoba. 
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Figure 7.11 The cycle-trend component Z(I) of Red River discharge at Emerson, Manitoba. 
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Figure 7.12 The cyclic component Z(2) of Red River discharge at Emerson, Manitoba. 

principalcomponents analysis of the (16 x 16) covariance matrix reveals the 
presence of two recognizable "signal" components in the series (Figs. 7.11 
and 7.12) which account for 26.2 and 17.6% of the trace respectively. The 
first component Z(1) represents cyclic-like behavior superimposed on a 
linear trend, and further investigation reveals it corresponds to a moving 
average of the series. The second component Z(2) exhibits an irregular 
cyclic movement, which is uncon -elated with the moving average term and 
which represents deviations from the moving average. Consulting the 
correlation loadings (Table 7.10) indicates that the cycle-trend component is 
most highly and positively correlated with the segment 1921-1971, where we 
can perceive both trend and cyclical movements of the water flows. The 
second component, on the other hand, correlates negatively with the 
segment 1915-1965, its peaks indicating that the most dry period occurred 
during 1932-1938, and to a lesser extent during 1954-1961. Care, however, 
must be taken when interpreting correlation involving cyclical behavior since 
the nonlinear nature of periodic-like functions precludes associating in-
dependence with lack of correlation. Also, since the signal components 
represent empirical functions, any extrapolation into the future carries some 
risk. Nevertheless the component functions reveal simpler behavior than the 
original series and are generally easier to understand and forecast. For 
comments on more general applications see Matalas and Reiher (1967). 

Example 7.8. Given quarterly birth data we at times may wish to 
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Table 7.10 Correlation Loading Coefficients for 
p= 16 Lagged Variables 

Z(1) Z(2) 

X(0) .059 -,511 
X(1)  104 -,585 
X(2) .172 -.597 
X(3) .297 -.593 
X(4) .452 -.548 
X(5) .560 -.418 
X(6) .598 -.302 
X(7) .656 -.216 
X(8) ,698 -.072 
X(9) .691 .081 
X(10) .684 .213 
X(11) ,608 .370 
X(12) .577 .390 
X(13) .538 .389 
X(14) ,449 .449 
X(15)  .366 .441 

determine whether the series contains seasonal (and other) regular move-
ments. Consider the series Y(t) consisting of N 323 quarterly time records 
of the number of registered births for two administrative Jamaica parishes 
(1880-1938), the mode of production of which is dominated by plantation 
organization with a highly seasonal workload (Basilevsky and Hum, 1979). 
The data for the births, as well as their estimated spectral components, are 
given in Figures 7.13-7.15. Since birthrates as such are not available, the 
series Y(t) also reflects variation (trend) in the general population level of 
the parishes due perhaps to short-, medium-, or long-term migratory 
movements within the labor force, natural increase, and so forth. 

Figures 7.14 and 7.15 reveal the presence of fairly regular movements in 
the total number of births, consisting of seasonal and cyclic behavior as well 
as a nonlinear trend, which represents a moving average of the series. To 

Year 
Figure 7.13 Jamaican plantation births, 1880-1938 (Basilevsky and Hum, 1979; reproduced 
with permission). 
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Figure 7.14 Estimated cycle C(t) and trend TO of Jamaican plantation births (Basilevsky and 
Hum, 1979; reproduced with permission). 
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Figure 7.15 Estimated seasonality S(z) of Jamaican plantation births (Basilevsky and Hum, 
1979; reproduced with permission). 

illustrate the agvegation of component scores consider the first r = 6 
components of X X, which yield the decomposition 

X(t) = (.322Z 1  — .557Z 2 ) + .263Z 3  + (--- .108Z 4  .335Z5  + .247Z6 ) + N(t) 

S(t) + T(t) + C(t) + N(t) 	 (7.30) 

Other columns of X yield similar decompositions. Since in = 32, X repre-
sents a (200 x 32) matrix. Only the first r = 6 components are retained since 
the remaining components fail to reveal globally meaningful variation. Also, 
an examination of the scores reveals the seasonal and the between-years 
cyclical terms broken down into two and three orthogonal components, 
respectively. This is further corroborated by Anderson's chi-squared criter- 
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Table 7.11 Latent Roots, Principal Components and Time Components of the 
Matrix X TX 

Latent Roots 

Corresponding 
Principal 

Components X 
2 Time Components 

% Variance 
Explained 

1 1 = 286872.0 
1 2  = 284684.1 
1 3 = 127786.6 
1 4  = 58758.6 

55943.6 
i, = 	45054.2 

ZT 
Z1 
Z*, 
Z: 
Z ; 
Z: 

.10 

4.0 

S(t): Seasonality 

T(t): Trend 

C(t): Cycle 

41.6 

6.8 

18_5 

ion (Section 4.3) 

x-Nr  
x 2 = — n E In(11 ) + nr 	2, •=r 

r 
(7.31) 

which reveals insignificant differences between the bracketed terms of the 
first line of Eq. (7.30). The results are summarized in Table 7.11. 

The procedures of the present section can also be extended to more than 
a single time series. For example, a canonical correlation analysis can be 
carried out on two sets of lagged variables. For three variables or more 
Quenouille (1968) has also suggested the following procedure. Consider, for 
example, variables x, y, and z with correlation matrices R(0), 
R(1),. , R(T) where R(t) is the (3 x 3) matrix of correlations between 
present values and those at lag t (1= 0, 1, . , T) A principal components 
analysis is carried out on the t "quotient" matrices 11,R,l' 1  and the resulting 
latent roots are arranged in a matrix with t rows and 3 columns. A column of 
stable (large) values then indicates a strong trend component; a stable root 
that changes sign with increasing lag indicates a cyclical component, and an 
erratically variable root suggests a component that is independent of trend 
and cycle. Using simulated data Farmer (1971) has carried out experiments 
dealing with the estimation of sinusoidal components of serially correlated 
time series, using Quenouille's method. 

7.5.3 Order Statistics: Testing Goodness of Fit 

Let y i , y,.. , y„ be a random independent sample observed for a 
continuous random variable Y. The order statistics are those values 
arranged in the increasing order 

Y(1) 	Y(2), • • • < YO) 
	 (7.32) 
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where y()  = min(y i , y2 , ... y„) and y( , )  max(y i , y 2 , 	, y„) with inter- 
mediate values in between. Since Y is continuous, the probability of any two 
observations being equal is zero. A major use of order statistics lies in 
testing the hypothesis that n independent and identically distributed random 
variables have a specified continuous distribution function F(y). The sample 
distribution function is defined by 

0 

Fn (y)--.1kIn 

1 

Y 

Y 	Y(k+11) 

Y(.1) 	Y 

(7.33) 

the proportion of observations which do not exceed y. A goodness of fit test 
can be defined by the use of the Cramer—von Mises statistic 

F(Y)1 2  dRY) 
	

(7.34) 

which is based on the Euclidian distance between F(y) and F(y) (see also 
Smirnov, 1936). 

As for most goodness of fit tests, Eq. (7.34) is global in nature in that it 
does not reveal the source nor the nature of discrepancy between F(y) and 
F(y). it is at times desirable therefore to partition 1•1 7 , into a suitable set of 
components, each of which measures some distinctive aspect or feature of 
the data. One would then be able to test the significance of the individual 
components, in addition to assessing overall significance of W. First we 
observe that testing the null hypothesis of y i , y2 , „ . having emanated 
from the continuous distribution function F(y) is equivalent to testing the 
null hypothesis that F(y (1) )< F(y(2) )< • • <F(y) is an ordered sample of 
independent uniform (0, 1) random variables. Let u 1  = F(y(L) ), u 2  = 
F(y (2) ), . , and u„ = F(y(„) ) and let G(u) be the empirical distribution 
derived from u i , u 2 , , u„. Then the test can be expressed as 

EG„(u)— ur du 

1 	 k 

= 	[ F(y (0) 	n I 

for 0 5 u 5 1. Also, X(u) = n[G(u) — u] is a random variable the set of 
which may be considered as a stochastic process with parameter u. For fixed 
U, u2 , , u ,. the joint distribution of X„(u 1 ), X(u 2 ), , . , , X„(u k ) ap-
proaches a k-variate normal process specified by its mean and covariance 
function. 
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For finite n we have 	ET Xn (u)1 = 0 

E[X„(u,)X n (u j )1 = min(u„ uj ) — u,uj 	 (7.36) 

We wish to decompose the process X(u) into a set of orthogonal com-
ponents z 11 , z n2 , 	each with zero mean such that 

xjo= E jL  z00 

By Theorem 7.3 the continuous principal components of X(u) are given by 

= 	O1(u)X(u)du 	(1 = 1, 2, . . .) 	(7.37) 

where 0 1 (u), 4)2 (u), and so on are normalized eigenfunctions obtained as 
solutions of Eq. (7.14). Putting 

C(u„ uj ) = min(u„ uj ) — uiuj  

we have the integral equation 

Jo 
[min(u„ uj ) u,u1 j(1)1 (u1 ) = A14 1 (u) 	 (7.38) 

where A t , A2 , and so on are the eigenvalues. It can be shown (Kac, 1951) 
that the solution to Eq. (7.38) is given by the eigenfunctions 

(u) = 	sin(ru), 02 (u) = N.12 sin(27ru), . . , 01 ( ) = N/2".  sin( jiru) 

and eigenvalues A i = 1/j 2 /r 2  ( j = 1, 2, . • ). Continuous principal com-
ponents with zero mean and unit variance can therefore be defined as 

z = 	fir L sin( jiru)X„(u) du 	( j = 1, 2, ...) 	(7.39) 

The inverse form 

1 
X n (u) = 	2, -:— sin(jiru)z„, 	(0 u 1) 

j1 i1T 

is therefore simply a Fourier sine series expansion of the function X,(u). 
The Cramer—von Mises statistic can then be expressed as 

v  1 2 

	

 
.2 	 (7.40) , 	2 z nj 

1= 1  .1 IT 
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where an examination of the individual z 2  can yield local information 
concerning departure of the observations from Ho . An empirical process can 
also be expanded using the Karhunen—Loeve expansion of Section 7.5.1 (see 
Wells, 1990). Percentage points for the components of Eq. (7.40) may be 
found in Durbin and Knott (1972). Rosenblatt (1952) has extended the 
results to the multivariate case. 

7.6 ESTIMATING DIMENSIONALITY OF STOCHASTIC PROCESSES 

Factor models can be used to estimate dimensionality of a stationary 
autoregressive (autoregressive-moving average) stochastic process. A sto-
chastic process {x,) is said to follow a stationary autoregressive process of 
order p if 

E aix,.. ;  =a,,x1 + a 1 x r I + • ' • + a x 
P 

(7.41) 

where c is a random error term and x„ x 	. . , x, p  possess a common 
probability distribution, and where without loss of generality we may impose 
the normalizing condition au  1. Since the estimation of Eq. (7.41) is 
generally carried out on the assumption of normality, the weaker condition 
of second-order stationarity is usually imposed, that is, only the first two 
moments of x„ x . , x, are required to be stationary. This implies 
that the random variables possess equal (say zero) means and equal variance 
and autocovariances which are independent of absolute time, that is, which 
are functions only of the lags or the relative proximities of the time points. 
A process is said to be autoregressive moving average (ARMA) if we have 
an autoregressive (AR) process (Eq. 7.41) where in addition the error term 
follows a moving average process of order q, that is, 

q 

E 	E Et.€ 
fr o 

or 

aox,+ 	+ • + apx,_ p = hoc, + t l €+ • • + 17q €,_ q 	(7,42) 

where the moving average process of (c) follows the same restrictions as 
the AR process (Eq. 7.41). 

When the orders p and q of Eq. (7.42) are known, the coefficients al  and 
hi can be estimated in one of several methods (e.g., see Wei 1990). Usually 
however the random variables {x,) of a stochastic process are not known, 
and instead we observe a single realization or a time series x l , x2 , . „. , x 
n discrete and equal intervals, that is, we obtain a single sample for the n 
random variables. In this situation both the orders as well as the coefficients 



ESTIMATING DIMENSIONALITY OF STOCHASTIC PROCESSES 	 465 

must be estimated simultaneously, which gives rise to a situation not unlike 
that of factor analysis. In the following sections we describe several related 
estimation procedures using factor analysis (principal components) to 
estimate unknown stationary AR and ARMA processes as well as the 
so-called Kalman filter commonly used in control engineering and time 
series regression models. 

7.6.1 Estimating a Stationary ARMA Model 

Given an unknown ARMA process the most commonly used estimation 
procedures attempt to estimate the autoregressive parameters first. The 
methods can therefore also be applied to autoregressive processes as a 
special case. If the process is weakly (second-order) stationary, the (auto) 
correlations between the points x„ x. , x,_ I, capture all of the required 
information concerning cr,, and the relevant association matrix is thus the 
correlation matrix. Given a particular realization of a stationary process, the 
sample autocorrelations of the time series are given by 

r(k) 	E x,x, k 	(k = 0,1, 2, . . .) 	 (7.43) 

where r(k) denotes the correlations between contemporaneous points and 
those lagged k periods. If the process is second-order stationary, its main 
characteristics are embodied in the autocorrelation sequence (Eq. 7.43), and 
the AR coefficients of the ARMA process may be estimated from the 
so-called extended Yule—Walker equations 

air(t — j) = 0 	(t q + 1) 	 (7.44) 

(see Cadzow, 1982, 1984) where m distinct values of t satisfying t ___- q + 1 are 
considered, Such an overdeterrnined approach leads to the following normal 
equations: 

r(q + 1) r(q) [ 

. 	

- • • r(q — p + 1) [ 	0  

= 	

(7.45) 

1[0 
r(q + 2) r(q + 1) 	

1 

	

• • • 	r(q — p + 2) 

	

r(q + m) r(q + m — 1) - • . 	r(1 — p + m) 	

- 	: 

a 2  

	

P 	0  

or, in matrix form, R I  A =0 whcre the "correlation" matrix R 1  possesses a 
Toeplitz-like structure (Section 7.9.3) with the (i, j)th element given by 

r(i, j) = r(q + 1 + — j) 

for 1 I Lc. m and 1 j p + 1. Note that R 1  is not a true correlation matrix 
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since the number of rows do not necessarily equal the number of columns 
for rn> p. In practice r(i, j) is estimated by the unbiased estimator 

I 	
xv— j)x(1) + r(i, 1) —  n 	

— 

(7.46) 

for 1 Lc i_-5p+ 1 and 1 -5.j p  +1. Wc have the following theorem (Cadzow, 
1982). 

THEOREM 7.4. If the autoeorrelation lag entries of matrix R 1  of Eq. 
(7.45) correspond to thosc of an ARMA process of ordcr (p l , q3, the rank 
of R I  is p i  , provided that p_p i  and 

The proof of the theorem is left as an exercise (Exercise 7.3). When R 1 
 has less than full rank, a nontrivial autoregressive solution A — 

(1, a 1 , a21 . • , ap ) T  will always exist. In that case we can write, using Eq. 
(7.45), 

RTR 1 A = 0 

and the required AR parameter vector A is then a latent vector (whose first 
component is unity) associated with a zero latent root. When R I  is of full 
rank, a trivial solution will not exist, and here we may wish to determine an 
ARMA model that provides the best fit to Eq. (7.42). This can be 
accomplished by choosing the latent vector A such that A l  R;R i A is 
minimized subject to the usual condition A TA = 1. Once the p + I parame-
ters are known, those of the moving average part can also be computed. 
Alternatively, the principal component decomposition can be based on the 
association matrix of the form X„T X„ where elements of X, are suitably 
lagged column vectors (Cadzow, 1982), the idea being similar to that of 
Section 7.5.2 except that the objective here is to identify the lag order p. 

This discussion assumes that the orders p and q of the ARMA process 
are known. This generally is not the case and the integers p and q must be 
estimated, together with the coefficients of the process. A number of 
procedures are available to estimate p and q. One that appears to give good 
results is based on the principal components decomposition of KR, where 
the initial orders pt. and q e  are set sufficiently high so that ire > p, ch.> q and 
qe — — p. Following Cadzow (1982), the initial arbitrary high value p e  
is substituted into Eq. (7.44), which yields a new higher order matrix R, of 
order [m x (p c  + 1)1, whose true rank will be p, but whose actual rank is 
observed to be minkri, (pe  + 1)1. The estimation of p is then identical to the 
principal components analysis of Kit e , that is, we chose p= r, the number 
of common principal components considered to be present. The ARMA 
model is then completed by determining the model's associated moving 
average parameters. 
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7.6.2 Time Invariant State Space Models 

Stationary time series can generally be represented by ARMA models 
whose dimensionality may be obtained as outlined in the previous section. 
An alternative procedure is to use the so-called state space representation 
which is fundamental to control engineering and statistical time series 
regression models, and which in many ways is a natural choice when 
modeling systems consisting of inputs and outputs. Consider an exact, 
linear, and time invariant transformation 

= 13X,*_ 1 	 (7.47) 

where the (one time period) true state of the system X7 is solely determined 
by its past state X,* 1 . Although in practice X*, and X,*_ are vectors (and 
is a time invariant transition matrix of coefficients) for the moment we treat 
these terms as scalars. Here, beginning at time t = 1 all state values 

X, , X*, are determined by the initial value X *1  , since using Eq. 
(7.47) we have X*, = 13t X, and in this sense nothing new occurs within the 
system. Now, assume that a present value X*, is not only a function of its 
past value X r*._ 1 , but that new occurrences or inputs Ur  also occur, which 
influence the presence value X*, (but not the past value X 1 ). The u, 
frequently represent random shock or noise at each time period, and are 
also known as "innovations" in the control literature owing to their property 
of creating novelty in the otherwise deterministic system. 

Equation (7.47) can now be written as the so-called system equation 

= 13X + Ou, 	 (7.48) 

where the coefficient 0 is time invariant. Now, assume that the present true 
value X*, undergoes a transformation due to measurement error, that is, we 
also have the observation equation 

X, = aX + e, 	 (7.49) 

where €, is measurement error and X, is the observed output of the system. 
The state-space system (Eq. 7.48) and (7.49) can be generalized to 
nonlinear equations with time-dependent coefficients (see Mehra, 1979; 
Young, 1985). The general mathematical—statistical theory underlying state-
space equations and their estimation may be found in Jaswinski (1970) and 
their interpretation in terms of multivariate regression in Harrison and 
Stevens (1976), Boekee and Buss (1981), Meinhold and Singpurwalla 
(1983), and Brown et al. (1975). For a recent application see Anderson-
Sprechter and Lederter, 1991. 

An ARMA process (Eq. 7.42) represents a special case of a state-space 
model. As is well known, an arbitrary ARMA process of order p, q can be 
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expressed in the moving average form 

X r  = + e l  er  . +C2  er  2 + • • 	 (730) 

where {er } represents white noise and c i  are fixed coefficients. Any future 
value 1 periods ahead is then given by Xr+ , = c +1  + 	+ c 2 e 	+ • - 
Let k,(/) = E[X, +/ IX„ X,_ .], the predicted or forecast value of Xi+ , 
given present and past values. Subsequent forecasts can then be expressed in 
recursive form as 

ki (1  + 1  ) 	€r 	+ e/E/ 	 + • ' ' 

+ A;(/) 

=a,,t(0) +a, l k,(1)+ • + 	– 1) + ci _ l e, +1  

(7,51) 

where 	+ 1) represents the next period forecast. The point here is that 
the forecast X, +1 (/ + 1) is a function of previous forecasts X,(0), 
X,(1),. , . , X,(1 – 1). It can be shown that given a value / = p –1 the 
following system of equations hold: 

x„ ( 1) 

kt , 1 (2 ) 

01 

00 

a _ p a 

0 

1 

a 
P 

• 

• 

• 

• 

0 
0 

1 

a 

k,(1) 
1 1 —  ;V s (0) 	— 

C  P  

VI* 

1 
• INII 

Es 4- 

or 

kr . 	+ CE„ 	 (7.52) 

which is of the same form as Eq. (7.49) and where the coefficients are 
defined as in Eqs. (7.42) and (7.50)—for an example see Pagan (1975). The 
state-space representation (Eq. 7.52) of an ARMA process was first 
considered by Akaike (1974), although it is based on the well-known fact 
that a difference (differential) equation of order p can always be reduced to 
a system of p first-order difference (differential) equations (Nagle and Saff, 
1986). The matrix A has a special (structured) form and is known as the 
Frobenius or companion matrix (e.g., Basilevsky, 1983). The important 
point here is the generality of the seemingly narrowly defined first-order 
Markovian representation (Eq. 7.52), of which the stationary ARMA model 
is simply a special case. The state-space representation can also be extended 
to nonstationary and non-time-invariant processes. 

As was seen in Section 7,6.1, the ARMA process is not fully specified 
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unless the number of parameters p and q are known. The ARMA model is 
then said to be unidentified. Even when the model is put in the state-space 
form, it is still not identifiable since the basis of the predictor space is not 
unique. In general the state-space model (Eq. 7.52) is not identifiable since 
the space of linear least squares predictors of 	X,, 2 , . , given the 
present and past values X„ X,_,, X, ,, 	X,_„, (for sufficiently large m), 
is also not fixed. The situation is similar to that of estimating least squares 
regression coefficients when the predictor variables are highly correlated 
(Section 10.3) or when deciding on the basis of a common factor space. A 
solution that yields the minimal or canonical realization has been proposed 
by Akaike (1974, 1976), which makes use of the canonical correlation model 
(Section 5.5). The idea is to compute canonical correlations between the 
data vectors [X„, X„_ 1 , X ,n-2 ,  • • • , 41--p X 	and the least squares predicted 
values [X„(0), i n (1), X„(2), 	, X„(n p)], where in (0)=-- X„ is the 
common element between the two sets. The procedure assumes that p is 
known, which in practice is usually not the case. It may be estimated 
however as the order of an AR process using, for example, any one of the 
information criteria described in Section 6.6.2. Once p is known the analysis 
proceeds on a trial-and-error basis, beginning with the correlation analysis 
of [X„, X„_ 1 , , X„_p ] and [X„, Xn (1)]. If the smallest canonical correla-
tion is judged to be zero, then a linear combination of [X„, X n (1)1 is 
uneorrelated with the data [X„, X, _ 1 , . , and Xn (1) is not included 
in the state vector. The process continues by successively adding new 
components X n (2), Xn (3), and so on until we fail to obtain significant 
canonical correlation. The estimation procedure is thus based on selecting 
the canonical form of state-space representation by choosing the state-space 
vector as the first maximum set of linearly independent elements within the 
sequence of predictors X,(0), X,(1), X,(2).. . As discussed above, the 
method is univariate in the sense that the letter X denotes a scalar quantity 
for each time period. The state-space model however, together with its 
canonical estimation, can be generalized in a straightforward manner to 
include two or more time series. Once the dimension and the elements of 
the state vector are known, the remaining parts of the state-space model can 
also be estimated—see Akaike (1974; 1976), Priestley (1981), and Wei 
(1990). The latter reference also provides numerical examples for the 
estimation of canonical state-space models. 

7.6.3 Antoregression and Principal Components 

The canonical correlation method described in the previous section for 
estimating stationary state-space form ARMA models is one possible 
approach to time series modeling. An alternative motivation for considering 
canonical correlation analysis of time series has been provided by Rao 
(1976a), within the context of an AR process. The method is based on the 
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principal components analysis of random vectors obtained from the innova-
tions of an observed process, and differs somewhat from that considered in 
Section 7.6.1. The basic idea here is to link the latent root theory of 
difference equations to that of thc latent root decomposition of a Grannmian 
correlation matrix, which demonstrates the close link between the concept 
of a "minimal realization" used in time series and that of a smallest common 
factor space. Consider two independent zero-mean, stationary, discrete 
stochastic processes X*, and N, such that X, = X*, f N, as in Eq. (7.7), but 
with slightly altered notation. Thc observed process X, is thc result of a true 
process X*, having been contaminated by an independent error process N. 
usually (but not always) specified to be normal. In the language of 
communications and control engineering X*, is an unobserved signal and N, 
is unobserved white noise, such that 

E(X7) = E(N,) =0 

E(XT NJ= E(N,1 ■15 )= 0 

E(N) =17 2 
	

(7.53) 

although more general specifications are also possible. Given a semiinfinite 
realization of Xt , —x< t T, the objective is to obtain an optimal estimator 
or predictor (the "filter") of X7 1 ,. Since the observations of a time series 
are generally correlated, in order to reduce a normal time series to a set of 
independent observations it is usually first necessary to "prewhiten" it by 
regression analysis, that is, the series is replaced by a set of independent 
residuals. Let 

Xr (1) E(X, „ I X,) 
	

(7.54a) 

k7(1)= E(X7 I X s ) 
	

(7.54b) 

(—x <s /), the 1-step prediction of X 	X / , respectively, using past 
and present values X.  Then the prediction errors can be expressed as 

};(1 ) = Xi+, — ki(1 ) 

= (Xi"+.1 	Nr+1) 	,(1 ) 

= 	.t( 1 ))+ Ac4.1 

since X,,, /  = 	+ N , and E(X, I Xs ) = E(X7 I X s ). 

THEOREM 7.5. Let Y,(/) be as defined by Eq. (7.55). Then 
(i) E{[X,*+/  — 5C,!(1)1/■/ I ) = 0 	(1, k > 0) 

(a) Et[Xf*+, kr* (1 ),Mi iki* (m)i) = EPC( 1 )Yt(n)] 
ilr(l)] 2 } + 0-2 = Ef[Yr(1 )1 2 } 

(7.55) 
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For a proof the reader is referred to Rao (1976a). The first part of the 
theorem states that the prediction error of the true signal is u.ncorrclated 
with contamination noise 1■1, +k , whereas the second part shows that the 
covariance between any two prediction errors of process X, is only due to 
thc covariance between the corresponding prediction errors of the signal 
X. Consider the first p values of the index 1. Then from Eq. (7.55) we have 
the p forecast errors for the observed values 

Y,(1) + [V, 1  — k,*(1)1+ N„ 

YI(2)= [X2 ;VI! ( 2)] ±  N4 2 

Yr(P) EX:+p itt* (P)1 Ni+p 

or, in vector form, 

so that 

where 

Y, = S, + M, 	 (7.56) 

X=F+ 11, 	 (7.57) 

= E(Y,YT, ) 

F E(S,S,r ) 

= E(M,M, ) = oJ 	 (7.58) 

When the signal process X,! follows a pth order autoregressive process, 

'Cr*  = p l xi*+ 132 ,1c f*_ 2 + • • + f3p X,*  p 	 (7.59) 

where e, represents a sequence of N(0, 1) independent random variables, we 
have from Eq. (7.59) 

X  74- 	13tX  t*+(p-i) 	€1+p
P 1=1 

	 (7.60) 

and taking conditional expectations with respect to X, and using Eq. (7.54a) 
we have 

k*(p)= E 13t;k:`(p-o 
	

(7.61) 
i. I 
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Subtracting Eq. (7_60) from Eq. (7.61) yields 

(7.62) 
i - 1 

Let the forecast errors for the true values be given by the vector 

F = airk  — 5(7 (0)1.Lx7+1 k7( 1 )1, • • 	g7(P - 	r  

where 

E, = (0,0, . 	 (7.63) 

and define the so-called companion (Frobenius) coefficient matrix 

( 	1 	
0 

t11 	0  1 	• • 	0 
• • • 	0 

0 0 	0 	0 
B 

1 
Pp Pp- I 13p-2 

Then from Eqs. (7.56) and (7.62) we have a system of equations, similar to 
the state-space equations of the previous section, given by 

S r  = BF, + E, 

(7.64) 

which is stable only if the latent roots of B possess moduli less than unity. 
Combining the two equations yields 

	

= BF, + (E, + M,) 	 (7.65) 

that is, 

j((1)] 

X, ÷2 — kr (2) 

k(p) 

1 0 0 

1 

0 

= • • • • 	• 
• 

01 	0 . • . 	0 

,V71 dt(1) 	
0 

+ 
0 Nt+  

[NNt4,1 

p  

X t*  it(0) 	 -0 

Equation (7.65) is formally equivalent to the factor analysis model consid- 
ered in Chapter 6 since the coefficients B can be taken as the factor loadings 
and F can be defined as the matrix of factor scores. Since the initial purpose 
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is to estimate the order p of an AR process (assuming stability), interest 
centers on the intrinsic dimensionality of Eq. (7.65). 

THEOREM 7.6. If an AR process (eq. 7.59) is of order p, then vector F, is 
of dimension p. 

PROOF. In the terminology of control engineering literature the system 
(Eq. 7.65) is observable if and only if for the ranks of successively higher 
powers of B we have 

p(B, 11 2 , 	, B P ) =p 

and using the Caley—Hamilton theorem we know that F, cannot be of 
dimension less than p. To show that F, cannot be of dimension greater than 
p, consider the augmented version of 8„ 

= V7+ I - 	( 1 ) b 	1 13C 7+p kr* ( p)1, 	 kr* (m)1} 

such that .8- , = 	+ E, where 1.1 is the (m x m) augmented matrix 

[101 01  

and and P, are correspondingly augmented vectors. Since the last (m p) 
latent roots of B must lie on the unit circle, the augmented system becomes 
unstable, which is contrary to assumption. Thus F, cannot be of dimension 
greater than p. so that the dimension of the AR process must be precisely p, 
that is, the dimension of F, (see Kalman and Bucy, 1961; Kalman et al., 
1969). 

Theorem 7.6 permits us to identify the order of an AR process by means 
of factor analysis. From the system (Eq. 7.64) we have 

E(Y,ST) = E(S,ST) + E(M,ST) 

= E(S,K) 

= ERBF, + E r )(BF, + EJ T ] 

= B[E(F,FTABT  + E(E,ET) 

= B4PBT  + E(EE,T ) (7.66) 

where = E(V,S,3 ') E(S,K) so that the number of common factors equals 
the rank of F which is the same as the dimension of F, (see Section 6.3). 
Thus the order of an AR process equals the number of nonzero roots of the 
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determinantal equation 

1  

(1-A,2 ) 1111 

=0 	 (7.67) 

as given by Eq. (6.63). Since qr = A 21 we have from Eq. (6.65) that if 
p(1) =p <m, then identifying the order p of an AR process is the same as 
testing for the equality of the last (m — p) roots of I% 

In practice the implementation of the method of estimating p .  is as 
follows. First, define the aurtented column vector 17 ;r  = [(X, — 
(Xr+2 — X1 (2))s . . ,(X,_„,— X 1 (m))1 where m p , and then compute the 
usual sample covariance (correlation) matrix 

n 

= 	(Y r  — t)(V t. ir ) T  
n t-t 

(7.68) 

In practice the observed series X, is prewhitened to eliminate the serial 
correlation between the elements, for example, by fitting an autoregressive 
model of adequate order. Also, since the elements of the series Y, may also 
be correlated, Rao (1976a) suggests the use of a subsequence of Y„ 
consisting of elements that are sufficiently far apart. Next, the latent roots 

, A2 , , i,„ of i are obtained and the last m — r tested for equality 
(Section 4.3.2). If equality of the last m r roots is accepted, the procedure 
of computing latent roots is repeated, but this time using the vector 
1(1' .  = (LX, +1  — 1t,(1)], [X„. 2  — IC,(2)1, — it1 (q) .1) where q m — r. 
The process is continued until the number of distinct latent roots becomes 
stable. This number is then the estimated order (dimension) of the AR 
model, and the residual noise variance can be estimated as 

1 

• i-p+1 

	 (7,69) 

Since IP = cr 2I, owing to the assumption of second-order stationarity we 
have the homoscedastie residuals model of Section 6.3.1, that is, the 
principal components model with m p isotropic roots. 

Once the dimensionality of the AR process is known, its coefficients can 
be estimated with little extra effort. Letting Q, = E, + M„ where E(Q,Q, ) = 
D, we can write D = D L/2 D 1/2  so that the model becomes 

_ 

(7.70) 

where V, = D -1 ' 217„ W, = D - " 2Q„ and E(W,W,T ) = I. Also using Eq. (7.58) 
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we have I-  E(S,S,T ) = BOW.  where = E(F,V,r ). Let = 0 )/2." where 

1O-, 
02 I 	1 	820  

_ Opt 0p 2 

and the model can be expressed in general factor form as 

V, = HG, + W, 

where E(G r ) = 0, E(G,G,1 ) = I, and 

• 112 

1 

(7.71) 

021  1 0,3 

03 1 032 030  

• 

0 	.5 

	

pi 0  p 	0p 3 
& 	&

- 1
ap .. 2  

P 

(7.72) 
I • 
	1 

II 	 • 
	 a l  

such that •0 /213* = a where 0* .i .  = (i3 1,*  , 13:_ , . 	pr) and aT  = 
(a a 	. , a 1  ) Note that the coefficient matrix has lost its special P'  
(Frobenius) form, so that H is now equivalent to a general factor loadings 
matrix where the factors G are unit variance and are uncorrelated. The 
coefficients of the AR process are then given by 

(7.73) 

where ex is the last row of matrix H. Note that the parameters iv are not the 
same as because of the standardization of the factors f',. The following 
example is taken from Rao (1976a). 

Example 7.9. A set of 2,000 N(0, 1) random variables are generated, 
and from this we obtain the time series X: using the AR process of order 
p = 2, 

X:4. 1  = .80X: — 	+ e„ 	(I = 1, 2, . . . , 2000) 	(7.74) 

Here 2000 additional standard normal deviates N, are generated yielding the 
corrupted series X, = X,*  + IV,. The estimation algorithm proceeds as fol- 
lows. First, the observed series X, is prewhitened to eliminate serial 
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correlation—perhaps by fitting an AR process of adequate order by least 
squares. The maximum order of lag for Eq. (7.74) is decided upon, say 
m = 10. This yields the vector 

Y lt r 	 – it(1)], [X, z  – g,(2)1, . . , 	– gt (rn)1} 

Second, since Y, may not represent an independent sequence, the actual 
analysis is carried out on a subsequence with elements sufficiently apart to 
guarantee independence_ Choosing observations 20 units apart Rao (1976) 
retains n = 97 observations for the estimation process, based on the 
estimated covariance matrix 

97 

= 2-  E (Y t)(Yr *4r  97 
(7.75) 

Third, a principal component analysis is carried out on to determine the 
order p of the true AR process, using the chi-squared criterion to test for 
isotropic roots (Section 4.3). The fourth step consists of letting m =4 and 
repeating the principal components analysis on the (4 x 4) matrix X. The 
actual values are given in Tables 7.12 and 7.13. Now only the last two roots 
are insignificantly different, and we conclude the AR process is of order 
p = 2. 

Table 7.12 Values of in 10 Chi-Squared Statistics 
and Degrees of Freedom for Testing Latent Roots of 
ia  

Number of 
Roots Excluded Chi-Squared 

Degrees of 
Freedom 

0 205.7371 54 
1 158.4052 44 
2 97.6864 35 
3 68.6000 27 

4 37.4402 20 
5 16.5803 14 
6 10.0031 9 
7 3.3210 5 
8 1.2506 2 
9 0.0000 0 

Source: Rao, 1976; reproduced with permission. 

The last six roots are not significantly different at the I% 
level. 
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Table 7.13 Principal Component Chi-Squared 
Values for Latent Roots of with m =4 

Number of 	 Degrees of 
Roots Excluded 	Chi-Squared 	Freedom 

0 	 39.3093 	9 
I 	 25.9924 	5 
2 	 4.3215 	2 
3 	 0.0000 	0 

Source: Rao, 1976; reproduced with permission. 

The parameters it* are estimated as follows. We have 

where 

6 -1/2 r 1.2045 	0 1 
L 0 	1.5655 

H=[ 021 1  ] 
a2 a l 

T_ 1221.250 65.2261 
" — L 65.226 105.843J 

with latent roots A 1  = 250.638 and A2  = 76_ 45 9 and corresponding latent 
vectors Pli  = (1.466, .660) and P-12 . = (.365, —.810). Equating elements of H 
with the dements of the latent vectors we obtain the values 0 1 , = 1.466, 

L367, and ii; = L070. 

7.6.4 Kalman Filtering Using Factor Scores 

Consider again the state-space equations of Section 7.6.2, 

i1C+1  = x + 0u 1 	 (7.76) 

x, crx7 + 
	

(7.77) 

where X, and X7 are jointly stationary normal processes and u, and e, are 
jointly normal such that 

and 

E(ur ) = E(c) = 0 

E(u,uT 

E(E,E,T). (7,2 1 

E(u4) 0 (7.78) 

E(X i ) = 0 

E(X u,T  )= 0 	(s t) 
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E(X €1,r) 0 	(s t) 

E(Xr u,T )= 0 	(s t) 	 (7.79) 

Since the main use of state-space models lies in signal extraction and 
forecasting it is important to develop an efficient algorithm for the estima-
tion of the model. One such algorithm is the so-called Kalman filter, 
introduced in control engineering by Kalman (1960) and Stratonovich (1960, 
1968), which consists of an application of the recursive least squares 
algorithm to the state-space system (e.g., see Ganin, 1977 and Basilevsky, 
1983). An alternative method for deriving the Kalman filter is by the use of 
factor scores as indicated by Priestley and Rao (1975; see also Priestly, 
1981) who have used factor scores to obtain optimal estimates of the 
unobserved values X,*  given previous observations X,_, , where a is 
identified with a matrix of fixed factor scores. 

Owing to the presence of serial correlation among the observations, a 
factor model cannot be used for an autoregressive specification as it stands, 
and the observed series X, must first be "prewhitened" (by least squares 
autoregression), which yields uncorrelated residuals or "white noise" of the 
form 

Z, X, E(X, I X (r _ i) ) 	 (7.80) 

where X (,_ 1)  represents the set of lagged values X,_ , X r _2, and so on. 
Taking conditional expectation on both sides of Eq. (7.77), we have 

E(X, I X(,_ 1) ) = aE(X7 I X (,_ )) + E(e, I X(f _ 1) ) 

= aE(X I  X(r _ 

(7.81) 

using Eq. (738) and (739) (Exercise 7.6) where 11 	= E(X,* IX() ). 
Equation (7.81) represents the linear least squares predictor of the unknown 
values given a record of past observations X,_ 1 , X,_ 2 , and so on. 
Subtracting Eq. (7.81) from Eq. (7.77) we then have 

Zr  = a(X,* — 	I r(*,_ 0 ) + e t  
= a4), + e, 	 (7.82) 

where both series Z, and (1), consist of independent observations such that 
E(4),) = 0 and E(41,41,T ) = fi, and (r x r) covariance matrix of r common 
factors. Equation (7.82) can be viewed as representing a factor model 
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(Chapter 6) where the unknown factor scores are given by the estimator 

= E(41),I Z(0 ) 

= ERX:' – fi r*H1 ) I Z( , ) ] 

= E(i7 I Z(, ) ) – E(i: IZ (0 ) 

=i rlf 	-I 

	 (7.83) 

Since 41), is not a linear function of the prewhitened series Zr,  using the 
regression estimator of Section 6.8.1 yields the (r X 1) vector 

= 
	

(7.84) 

Since the quantities II, a, and c are not usually known, Eq. (7.84) is 
replaced by its sample equivalent. Using Eqs. (7.83) and (7.84) we then 
obtain the Kalman filter 

=it*Ii-1 iletTi`z, 
(7.85) 

which is a one-step recursive predictor for X71 , where the quantity flci Tt -  is 
the so-called "Kalman gain" which determines the correction term for the 
predicted values X t*I „ given the previous values X7. The oblique regres-
sion factor scores are means of the posterior distribution of the unobserved 
random factors (Section 6.8) and thus model the adaptive control mecha-
nism expressed by Eqs. (7,76) and (7.77). As is the case for factor analysis, 
the Kalman filter can also be developed within a Bayesian framework 
(Harrison and Stevens, 1976; Meinhold and Singpurwalla, 1983). 

The equivalence of the regression factor estimator to the recursive 
Kalman filtering procedure is a theoretical formality and does not necessari-
ly imply any computational simplification. It is however of interest since it 
makes more evident something which is not readily apparent from the more 
standard approach—that the Kalman filter is biased. This follows directly 
from the theory of estimation of factor scores (Section 6.8) where it can be 
seen that the regression estimator is biased (Rao, 1976b). It follows that an 
unbiased estimator is obtained by the use of the Bartlett minimum distance 
estimator which in terms of the state-space model can be expressed as 

-- ki*Hi etT (6%.2.1) -1 a6LT(ei 2„0 - `(xi - 
	

(7.86) 

which differs from Eq. (7,85) in the gain function where 1E(ce) = cr 2„1. 
Although Eq. (7.86) is derived by Rao (1976b) in the context of Kalman 
filtering, it may be inappropriate since (1) the Kalman filter minimizes mean 
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squared error and (2) the Bartlett estimator is only valid, strictly speaking, 
for fixed rather than random factors, and may cause difficulties when using 
maximum likelihood estimation (see Section 6.8), 

7.7 MULTIPLE TIME SERIES IN THE FREQUENCY DOMAIN 

Analyses of time series described in the previous sections possess a common 
feature in that both the factor loadings and the scores can be identified in 
terms of time-dependent quantities, that is, they are computed in what is 
known as the time domain. The objective for time domain analysis is to be 
able to identify time series interdependence, components of a time series, or 
lead-lag relationships between points in time. This is often an attractive 
option because of the additional ease of interpretation when estimators are 
computed directly in the time domain. Occasionally, however, it is necessary 
to transform series into what is known as the frequency domain, and the 
result is then what is generally known as a frequency domain (spectral 
analysis) of a time series, which enables us to determine periodic com-
ponents of a series, lead-lag relationship between several series at various 
periodic frequencies, and so forth 

Consider two jointly stationary stochastic processes Y(e) and Y 2 (t) with 
autocovariance functions 

C1  (k) = E{[Yi (t) - /.11 1E 1710 + 

(:22(k) = Ei[Y2(t) P-21[Y20 + — !IA 	 (7.87) 

and cross-covariance functions 

C2(k ) = E{ ( Y1 (t) - If Y2(t + k) —  Pip 

C21 (k)= E {tY2(t) — I- 421[Y + k) —  gin 
	

(7.88) 

where E[Y1 (1)1= p., (i = 1, 2). It can be shown that C„(k) = C„(—k) and 
C,j(k)= (i, j= 1,2) where the time displacement k is known as the 
lead (lag) of the series (k = 0, ±1,... .). Sample estimates of the moments 
are then given by 

I nv,-k  
et,(k)= -- 	(Yir 5i)01 0 -ik 	i) n (7.89) 
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When E = 	j (k)l< co we can define the first- and second-order spectra as 

	

S(w) = (27r) 	E Cif (k) exp(---tokAi —1) 
	

(7.90) 

	

Sai (w)= (27r) k 	Cii (k)exp(—cok1r=i)=S ii (w) 	(7.91) 

respectively where —Do< w < co is frequency and S, 1 (w) is the complex 
conjugate of Sii (w). Equation (7.90) is real, whereas the second order or 
cross spectrum (Eq. 7.91) is complex. The Fourier series yields a decompo-
sition of variance of the time series at frequency co, and is known as the 
Fourier transform of the covariance function (Eq. 7.89). When the series 
(processes) are continuous, the summations (Eqs. 7.90 and 7.91) are 
replaced by integrals. The interpretation of a power spectrum of an 
observed series bears a close resemblance to that of the latent roots of a 
lagged autocovariance matrix (Section 7.5.2) whereas the cross-power 
spectrum contains information on the interdependence between the two 
series at varying frequencies. The following quantities play an important 
role in a cross-spectral analysis: 

Re S,1(w) cospectrum 
1m SI.I (D) = quadrature spectrum 
Arg S11 (w) = phase spectrum 
IS1) (60)1= amplitude spectrum 

The real part (cospectrum) measures the covariance between the in-phase 
frequency components of Y(t) and Y 2 (t) and the imaginary part (quadrature 
spectrum) measures covariance between the out-of-phase frequency com-
ponents, that is, the lead-lag relations between the two series at varying 
frequencies. 

7.7.1. Principal Components in the Frequency Domain 

Cross-spectral analysis can be generalized to the multiseries case by defining 
a (p x p) cross-spectral matrix S(to) with real power spectra (Eq. 7.90) lying 
on the main diagonal and complex cross spectra (Eq. 7.91) lying on the 
off-diagonals. Since S(w) is Hermitian, a principal components analysis of 
S(w) (Section 5.7) reveals the interrelationships between the time series. 

Let Y(t) be a p-vector valued series (t = 0, ±- 1, 	) with mean E[Y(01 --=- 
1A. and absolutely summable autocovariance matrix 

E[Y(t + k)— pl[Y(t) —1T  C(k) 	 (7,92) 
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The ( p x p) spectra density matrix can be expressed as 

S(co) (271-1" E C(k) exp(—cok\rji) (7.93) 

  

k 

 

where, since C(k) is real valued, we have 

 

    

S(co) =S(—co)= S T(co) 	 (7.94) 

that is, S(co) is Hermitian (Section 2.11.1). Under general conditions Eq. 
(7.93) can be inverted as 

CV(' = 	exp(cok1/7"--1) S(co) cico 	 (7.95) 

which represents an expansion of the autocovariance function in terms of 
frequency co. 

Given a zero-mean, p-valued second-order stationary series X(t), the 
objective of a principal components analysis in the frequency domain is to 
find linear combinations 

to). E b(t — k)X(k) 
	

(7.96) 

(t = 0, ±1, ...) such that 

540= E co - kg(k) 	 (7.97) 

provides a good approximation to X(t). This is accomplished through a 
latent vector decomposition of the spectral density matrix S(co). 

THEOREM 7.7 (Brillinger, 1969), Let X(t) be a p vector-valued second-
order stationary series with mean zero, absolutely summable autocovariance 
function C(k) and spectral density matrix S(co) (—cc< o >cc). Then the 
coefficients b(k) and c(k) that minimize 

E[X(t) — E co - otvoi [X(t) - I co - otvoi 	(7.98) 
lc 

are given by 

b(k) = (270 -1  L 11(0 ) exp(kcolr--71) cite) 	(7.99) 

c(k) = (27r) -1 
	

co) r  exp(kco'NF--71) do) 	(7.100) 



fl(co) = 

1.11,(w) ,  

and II 1 (w) is the ith latent vector of S(co) at frequency co. 
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where 

Theorem 7.7 provides a decomposition of S(i) at each frequency to, and 
provides a complex analogue to the real-valued decomposition of a co-
variance matrix. The theorem applies to jointly stationary processes, that is 
processes for which the covariance matrix (Eq. 7.92) is constant (stationary) 
over time. In practice, when time series are nonstationary—for example, 
because of the presence of trend and/or seasonal components— they may 
be "filtered" to remove such terms. As before, the degree of approximation 
of X(t) to X(t) is a direct function of how close the latent roots A(co) are to 
zero (-03 < w < cc). Thus under conditions of Theorem 7.7, the ith principal 
components series CO has power spectrum A,(co), with any two components 
C(t) and t i(t) possessing zero coherency at all frequencies. For greater detail 
concerning principal components in the complex domain see Brillinger 
(1981). Bartels (1977) has used frequency domain principal components 
analysis to analyze Dutch regional cross-sectional/time series economic 
data, in order to estimate the lead-lag effects of regional economic well-
being. A one-factor model of wage rates is also given by Engle and Watson 
(1981). 

7.7.2 Factor Analysis in the Frequency Domain 

The use of Fourier transforms can be extended to the case of a frequency 
domain maximum likelihood factor analysis (Section 6.4). As an example 
consider the single common-factor model 

X(t) = a0(t) + e(t) 	 (7.101) 

(Geweke, 1977) where X(t) = [X l (t), X2 (t), 	Xp (t)I T  is a multivariate 
series such that E[X(t)] = 0 and a = [a 1 , a2 , 	. , ap j r  is a (p x 1) time- 
invariant vector of loadings, 4)(t) is a single time dependent unobserved 
factor, and e(t) is the (p x 1) vector of independent error terms. We suppose 
that all assumptions (Section 6.1) hold, except that in addition to being 
intercorrelated the series X l (t), X 2 (t), . . Xp (t) also possess intercorrelated 
observations. It is well known from the theory of stochastic processes that 
the series u/(t) and e(t) can be expressed as infinite linear combinations 
(moving averages) of time-uncorrelated "white-noise" series u(t) and v(t), 
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that is, 

and 

al 	= a l  (0)u(t) + a l  (1 )u(t —1) + • • - 
a20(t) = a 2 (0)u(t)  +  a2 (1)u(t  — 1) + • • • 

a40(t)= a p (0)u(t) + a p (1)u(t — 1) + • • 

€ 1 (t ) = 1) 11 (0) (0) + 	1 ( 1)u 1 (t — 1) + • • 

€20)= b22(0)v2(t) + b 22 (I)u2 (t — 1) + • • 

 

  

or 

ep (t) = b pp (0)v 1,(t) + 17 pp ( 1 )vp  (t — 1) + • - 

a(t) = E ai(s)u(t — s) = a i (s)u(t) 
5=o 

(7.102) 

E,(t) = 	b„(s)E7,(t — s) 	b ll (s)v,(t)( j = 1, 2, ... p) 	(7.103) 
5-0 

so that Eq. (7.101) can be expressed as 

X(t) = A(s)u(t) + B(s)v(t) 	 (7.104) 

where A(s) = [a 1 (s), a 2 (s), . 	, a p (s)r , u(t) is a scalar, B(s) = diag (bii ) and 
v(t) = [u t (t), v 2 (t), 	up (t)j -r . 

The reduction of signal a(t) and residual error (noise) e(t) to white 
noise results in a lack of serial correlation in the two series, thus restoring 
the initial conditions of the factor model. A potential difficulty still remains, 
however, since u(t) and v(t) may be correlated within themselves at different 
frequencies. Such interdependence can be eliminated by decomposing the 
series into frequencies. Let C(k) = E(X(t + k)X(t)1 be the autocovariance 
matrix of X(t). Then from Eq. (7.104) 

X(t + k)X(t)'' = [As + k)u(t + k) + B(s + k)v(t + k)1[A(s)u(() + B(s)v(t)J T  

= A(s + k)A r (s)+ B(s + k)B T (s) 	 (7,105) 

since u(t) and v(t) are mutually uncorrelated at all leads/lags k = 01 
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±1, . , by assumption. Let 

SOO) = k E C(k) exp(kwAFT-1-) 	 (7.106) 

A(w) s 	A(8) exp(sw \F-7-1-) 	 (7.107) 

B(w) = s  E.  B(s) exp(swAr-I) 	 (7.108) 

be the spectral densities (Fourier transforms) of C(k), A(s), and B(s) 
respectively where diagonal elements of S(w) are real and the off-diagonals 
are complex. Also since B(s + k)B(t) r  is diagonal, it must contain real 
elements. The analogue of Eq. (7.105) in the frequency domain is then 

S(w) = A(w)AT(to) + B(w)B T(w) 	 (7.109) 

(Sargent and Sims, 1977; Geweke, 1977) assuming that C(k) is nonsingular. 
Since Eqs. (7.105) and (7.109) are invertible transforms of each other they 
contain the same information, albeit in different guise. Note also that since 
the processes must be (covariance) stationary, observed series that do not 
exhibit stationarity must first be transformed by a filtering procedure such as 
detrending or autoregressive fitting. This is important if we are to preserve 
the assumptions of the model and achieve unbiased estimation of S()—
after the factor model has been estimated, however, the effect(s) of the 
filter(s) can always be removed if so desired by a procedure known as 
"recoloring". 

It is also possible to derive maximum likelihood estimators for the 
complex factor model. When X(t) is a multivariate complex process the 
Fourier transform S(w) of X(t) possesses the complex normal distribution 

1  
f(X) 	 exp[-X H(w)S (co)X(w)] IS(w)I (7.110) 

(Section 2.11), Given n independent observations the likelihood function is 
then 

i i 	1 

ir "  IS(0)In 	 xi(w)S -1 (w)x 1H  (w)] 	(7.111) 

with log likelihood 

L = -nip In ir + IniS(w)g + tr SS -1 (w)] 	(7.112) 
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where 

n 

S = — E x,(60)x 1  (w) n (7.113) 

Maximization of Eq. (7.112) is equivalent to minimizing 

IniS(w)1 + tr SS (w) 	 (7.114) 

which is the complex analogue of Eq. (6.43). Under the null hypothesis of 
r<p common factors we therefore minimize 

InIA(w)A r(w) + B(w)B T((o)1+ tr S1A(w)A T(co) + B(co)B T(w)l (7.115) 

which is minimized with respect to A(co) and B(w)B 1 (w). A derivation 
parallel to the real-domain model (Section 6.4.2) then leads to normal 
equations which can be solved by adapting Joreskog's program based on the 
Fletcher—Powel algorithm (see Geweke, 1977). The frequency domain 
factor model can also be extended to restricted confirmatory factor analysis 
(Geweke and Singleton, 1981). An extensive numerical example using US 
economic data may he found in Sargent and Sims (1977). 

7.8 STOCHASTIC PROCESSES IN THE SPACE DOMAIN: 
KARHUNEN—LOEVE DECOMPOSITION 

Serial realizations of a stochastic process occur, physically, as one-dimen-
sional time (space) series (sequences) and can thus be plotted as functions of 
a single variable (time, directional location, etc.). This however is not the 
only instance of a stochastic process. For example, when dealing with 
spatially distributed data we can also encounter correlated observations 
which are distributed over physical area or volume. Thus any measurement 
of an object in space will generally be correlated with neighboring measure-
ments. Stochastic processes of this nature are common in geography, 
geology, engineering, and related areas (Barnett, 1978; Pratt, 1978; Knud-
son et al., 1977; Kittler and Young, 1973; Fukunaga, 1972). Note that a 
stochastic process view of spatial data differs from that encountered in 
Section 7.4, where correlation among observations is ignored since no prior 
distinction is made between a stochastic (random) variable and a stochastic 
process. For the sake of concreteness, in this section we confine ourselves 
only to two-dimensional digital areal (surface) data, for example, as 
encountered when dealing with picture processing, pattern recognition, 
radar (sonar) maps, and so forth. 

Consider a real function of two variables f(x, y) defined over a region 
R = 	<x <b p  a2  <y <6 2 1 of the x, y plane. Assuming f(x, y) is square- 
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integrable in the interval, that is, assuming 

fit  f (f(x, y)1 2  dx dy <00 

we wish to find real, orthonormal functions 0,i (x, y) such that 

and 

eir 	1 	(i, i) = (k, 1 ) 
40,1 4, Y)Oki(x, y) dx .4Y — t o 	(1 , j ) (k,  0 (7.116) 

.fix,y)=EEcii00(x,y) 	 (7.117) 
;,0 

where 

cii =1 f f(x, y)ck i(x, y)dx dy 
	

(7.118) 

These equations are two-dimensional analogues of the theory encountered 
in Section 7.5.1 so that the functions 0 11 (x, y) are assumed to be complete, 
that is, they fonrn an orthonormal basis in R. 

Two-dimensional Karhunen—Loeve (KL) analysis is obtained by consid-
ering a stochastic process X(t, s) defined over a random field, as encountered 
for example in digital image processing. Here we consider the problem of 
transmitting a picture such that storage space is minimized. A digital picture 
consists of discrete picture elements or pixels, often coded as 6-bit words 
which can be represented as decimal numbers between 1 and 64 (0 and 63), 
that is, in 64 levels. The pixels measure light or radiant energy, usually over 
a wavelength band of about 350-780 mm and this energy is then processed 
in (n x n) blocks or matrices. Any pixel in the tth row, sth column can be 
represented as a sample from a continuous stochastic process X(t, s) . The 
pixel measurements are generally intercorrelated over the random field 
because of the existence of a nonrandom picture, and a two-dimensional KL 
model can then be used to compress the image. Since an image will also 
consist of relatively minor random patterns, a principal components (factor) 
decomposition will usually result in a substantial reduction in electronic 
storage requirements as well as in an enhanced image. 

Consider a continuous process X(t, s) with autocovariance function 
C(t„ s t,, s 2 ) for any two points s 1 ) and (12 , 82 ) in R. Following Section 
7.5.1 we can write 

xo, = E E 	s) 	 (7.119) 
i-! i-1 
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where 4)i1 (t, s) are orthononnal eigen functions, and the coefficients 

Ca, = IR  CO s 1 , t 2 , s 2 ),A,(t, s) dt ds 	 (7.120) 

minimize the mean-square error criterion. The eigenfunctions satisfy the 
integral equation. 

J. CO I , S I , I2 , SOCAii (t2, S 2 ) dt 2  dS2 = AVAAI L , S I ) 
	

(7.121) 

where 	= E(c) are eigenvalues of the autocovariance function 
, s t  , t 2 , s 2 ). Clearly both eigenfunctions and eigenvalues are real-valued, 

and 0. The coefficients c 1  are assumed to be random, but the 
eigenfunctions cki(t, s) are viewed as fixed. When X(t, s) represents a 
continuous image, the higher the intercorrelation between the pixels, the 
less terms are required in Eq. (7.119) to transmit the picture or the 
consistent part of the image. Since the eigenvalues A ii  are ordered by 
magnitude and represent the power of the transmission, the first terms of 
the expansion clearly represent the main features of the image, whereas the 
last terms contribute to the detail and/or "noise" of the picture. If an 
excessive number of terms are omitted, this leads to a loss of resolution, 
whereas an excessive number of terms contribute little, if anything, to the 
visible picture as far as the observer is concerned. Such a reassemblage of an 
image may be viewed in terms of transparancy overlays employed in police 
work when attempting to reconstruct the appearance of a suspect, where 
each overlay portrays some essential feature of the suspect's appearance. 
Several overlays are generally required in order to yield a recognizable 
approximation to the true image. Unlike our analogy of police transparancy 
overlays, however, each term of the expansion (Eq. 7.119) need not in itself 
represent an identifiable feature, as long as their total effect results in a 
recognizable picture. Interestingly, when a picture or image is contaminated 
by blurs or two-dimensional "noise," the omission of the last terms can 
result in a clearer image. 

In practice, continuous pictures are never transmitted and instead an 
image is digitized during a sampling process whereby light intensities are 
stored in pixels which form a (n x n) lattice or grid. This can be done in a 
number of ways. Thus with p-channel remote sensing data a common 
approach is to compute (p x p) covariance matrices by treating the pixels as 
replicates of a p-variate observation. A common form of analysis is then to 
compute principal components of the covariance matrix, although as Switzer 
and Green (1984) point out this does not necessarily take into account 
spatial correlation. An alternative method is to use the Kronecker product 
of two covariance matrices. Consider a (n x n) image matrix Y which 
consists of n discrete picture elements or pixels. First the n' elements of Y 
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are placed into a single column vector by stacking the columns of Y. Call 
this column vector vec(Y). Then the element y, 1  of Y is placed into the 
((j — 1)n + ilth position of vec(Y). The process is termed column scanning 
in the engineering literature (e.g., see Hunt, 1973). Now assume that all 
columns of Y possess the same covariance matrix S r  and that the rows 
possess the same covariance matrix S,. Then the covariance matrix of 
vec(Y) can at times be written as 

(7,122) 

where S is (n 2  x n2 ). A matrix which can be written in the form of Eq. 
(7,122) is known as a separable matrix. Separability implies that the column 
variance/covariance structure of Y is independent of its row variance/ 
covariance structure and is equivalent to the assumption of stationarity used 
for time series. The covariance matrices 5, and S, are estimated in the usual 
way, by using the elements of the rows and columns of Y. The advantage of 
separability is that S can he estimated from a single image realization, much 
in the same way as the moments of a stationary time process can be 
estimated from a single time series of sufficient length. The covariance 
matrix S can be decomposed into a Kronecker product of latent roots and 
latent vectors as 

S = (p. Pc  )(I„ L, )(Pr  Pe ) 	 (7.123) 

(Section 2.9). Equation (7.123) may be viewed as a discrete analogue of the 
Karhunen—Loeve decomposition (Eq. 121). Notice however that the de-
composition (Eq. 7.123) does not take into account in an explicit way the 
spatial autocorrelation between the pixels, which is analogous to the serial 
correlation of a time series. More recently Switzer and Green (1984) have 
developed an analysis that resembles factor and canonical corelation analysis 
and takes explicit account of spatial autocorrelation. Visual examples dealing 
with engineering problems may be found in Andrews and Patterson (1976a), 
Huang and Narendra, (1975), Andrews and Patterson (1976b), and Jain and 
Angel (1974). 

7.9 PATTERNED MATRICES 

It was seen in Section 3,3 that owing to its special pattern a covariance 
matrix of the form (3,29) possesses latent roots and latent vectors which 
exhibit a simplified structure that can be expressed in exact analytic form. 
This is also true of covariance matrices associated with special types of 
stochastic processes, whose latent roots and latent vectors can be computed 
or approximated by algebraic functions without necessarily having to have 
recourse to solving characteristic equations by numerical means. 
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7.9.1 Circular Matrices 

Consider matrix C of the form 

b l 	b 2 	b 3  

C = 

b) 	b 	. • 0 _1  
/70 	b , 
b n 1  bo . •

. • 

• ! 	

b „ _ 1 1 
b „_ 2  

[ 	r 	b 2  i 	• 

(7.124) 

with equal diagonal elements b o  and periodic rows and columns. A matrix of 
the form Eq. (7124) is known as a circular matrix. Since the elements of C 
occur periodically with period n, they can be expanded into a finite complex 
Fourier series with frequency k I n where k = 0, 1, .. n — 1. It follows that 
C is similar to a diagonal matrix A, with nonzero elements are given by the 
Fourier transform 

n - 

	

Ak = E b exp[—IF--1(27rkin)ii 	 (7.125) 
j-0 

and corresponding column latent vector 

Pk  = 	12 {expi 	-(2 ,yrk/n)1, exp[—V7---1(4irkin)j, 

exp[ 	— 1)/rk/n1} 	k = 0, 1, . 	, n — 1 	(7.126) 

Let P be the matrix of latent vectors as in (Eq. 7.126). Then the matrix of 
Eq. (7.124) can be expressed as 

firAp 	 (7.127) 

(Section 2.11). Since C is not generally symmetric the expansion (Eq. 7.127) 
is complex 
the latent 

and 

Pk  = 

rather than real. When bi — 
roots and vectors can be expressed 

- 

= 2, b e  cos( 
-0 

"2 1 [COS( 2Irk ) 
+ sin (2irk) 

b„ 	(i =0, 
as 

2irk 

1, 	, n — 1) 

( 47k + sin  

however 

(7.128) 

(7.129) 

, [ cns ( 4irk  
n 

1)7rk)1}T 
 [cos(2(n°Irk) 	

— + sin ( 2 (n  
\ n 

n fl 

for k = 0, 1, . . , n 1. Note that the latent vectors of a circular matrix are 



b 1  [ 	c t  
b 2 

 0 a, 

00 

0 	0 . 	0 

C 2 	0 	• 0 

b 1 	c3  -•• 0 

a„_ 1  

G = (7,130) 

0 - 	• 0 

c3(d21c13) • • 	• 0 
63  - 	• 0 

b 1 	c 2 (d 1 ld2 ) 

a2 (d2 1c1 1 ) 	b 2  

0 	a3 (d3 /d2 ) 

• 

• 

c„(dn ld-,t ) 
0 	 0 	 an _ i (d„ . 1 1c1 n ) 	 b„ 
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not direct functions of its elements. Symmetric circular covariance matrices 
occur, for example, in stochastic processes when equally spaced temporal 
(spatial) points are equally correlated, that is, when X(t) = X(t n) so that 
the process has period n and the autocorrelation satisfies the constraint 
p(k)= p(n — k) (k 1, 2, , n). For example, when n = 4 the circular 
correlation structure is given by the matrix 

[1 Pt P2 P 1 
Pt P2 C 	

1 
 

P2 Pi 1 

Pt P2 Pt 1 

7.9.2 Tridiagonal Matrices 

A matrix of the form 

for which aici > 0 (1, 2, ... ,n —1) is known as a Jacobi matrix. All 
elements of a Jacobi matrix are zero except those on the three main 
diagonals. Tridiagonal matrices of the form of Eq. (7130), together with 
several additional special forms, occur in conjunction with stochastic 
processes (e.g., see, Jain and Angel, 1974) and always possess real spectra, 
as is shown in the following theorem. 

THEOREM 7.8. A tridiagonal matrix of the form of Eq. (7.130) always 
possesses real latent roots and latent vectors. 

PROOF. Let A = DGD -I  where D diag(d i , d,,. , d„). Then matrix A 
is of the tridiagonal form 

A= 
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Since ac >0 we can always find numbers ci t , d,, . . ,d„ such that 

d 

	

d2 	 3 1 	d 	d 2 	d„ _ 1 	d 
a

„ 
=c—a—=c 	a 	—c 	 

	

2 d 	2 d , 3 d2 	3 d 	d„ 	” a»--1 2 

so that A is symmetric with nonzero diagonal elements. Since similar 
matrices possess equal latent roots, it follows that the latent roots of G are 
real. 

When c i  c2  = • • ----- c 1  = c, b t = b2 = - = b„= b, a=a2== 
a„= a, we have what is known as a common tridiagonal matrix. It can be 
shown that the latent roots of a common tridiagonal Jacobi matrix are given 
by 

Ak b + 2../Fic cos (k = 1, 2, . . . , n) 	(7.131) 

(see Hammarling, 1970) and the latent vectors can also be expressed in 
terms of trigonometric functions For the special case a = c we have a 
symmetric common tridiagonal matrix with latent roots 

kir  
A k  b + 2a cos(11+1) 

and latent vectors 

(n 
 +
2 1) 1 /sin(,n

k+ir 1 ), 
 s in ( Pk 	 i 	. „ sin ( 	nkir  )] 

kn+ 11"
i  + n 1 

(k- 	1, 2, . 	n) 	 (7.132) 

which do not depend on the elements of the matrix. A symmetric common 
tridiagonal matrix is a special case of the symmetric circular matrix C. 

7.9.3 Toeplitz Matrices 

A matrix that occurs in conjunction with stationary stochastic processes is 
the Toeplitz matrix. Consider a sequence of elements b 	,b 2 , 
b 	b o , b , b.„ 	,b„.. 1 . Then a Toeplitz matrix is obtained by taking b i _ j 

 as the (1, j)th element, that is, a Toeplitz matrix contains the elements 

[60  
6_ 1  
b _ 2  

T= 
• 

b l 

 bo  

b _. 1  

P.. 

62 
b 1  

11 0  

. 

b 

.. 	• 

• 
b 

bn -2 
6„_ 3  

b i  
60  

(7.133) 



c 	c 	c, 
c 	C 0 	C 1 	• • • 
c 2 	c 	C0  . . . 

C o._ 
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with equal entries on the main diagonals. When b,=b, T becomes 
symmetric. Thus for a covariance matrix which possess Toeplitz structure, 
the covariance elements depend only on the index differences rather than on 
the indices themselves. Since in practice the indices usually represent time 
points or space locations, a Toeplitz form frequently characterizes stationary 
processes. Consider a finite stochastic process with autocovariance ck  = 
E(X,X, +k ) (k= 0, -±-1, . .) and Toeplitz (stationary) autocovariance 
matrix 

(7.134) 

where the autocovariance depends only on time differences. A question 
arises as to whether it is possible to express the latent roots and vectors of a 
Toeplitz matrix in terms of analytical expressions. This unfortunately turns 
out not to be the case, for a finite process. However, the latent roots and 
latent vectors of C can be approximated (asymptotically) by periodic 
functions using the following theorem from Toeplitz (1911). 

THEOREM 7,9. Let C be a matrix as defined by Eq. (7.134). Then as 
n co the latent roots and latent vectors of C approach those of the circular 
matrix (Eq. 7.124). 

The proof of the theorem, together with other related results, can be 
found in Grenander and Szego (1958), Widom (1965), and Brillinger (1981). 

The finite Fourier transform can also be expressed in terms of a (n X  n) 
periodic orthogonal matrix F with typical element 

ISL = (exp[—NFL-1(2/rst1nj) 	 (7.135) 

in row (s+ 1) and column (t + 1) (s, t = 0, 1, 	. , n 1). The matrix F is 
identical to the matrix of latent vectors P in Eq. (7.126). The Fourier matrix 
can then be expressed in terms of sine and cosine functions (see Fuller, 
1976). Let A = diag(A k ), where Ak  is given by Eq. (7.125), Then as t cc the 
contribution from the top and bottom corners of Eq. (7.124) approaches 
zero, and the complex latent roots and latent vectors of the circular matrix C 
provide an approximation to the Toeplitz matrix. When C is symmetric the 
latent roots and vectors become real. A principal components analysis of a 
symmetric Toeplitz matrix can therefore be expressed, asymptotically, in 
terms of a real-valued Fourier series; that is, given a time series 

X(0), X(1), . 	X(n) the principal components of the series 
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can be expressed as 

(2n + 1) -112 	exp(--Nr=-1[2irst/2n + 111X(t) 	(7.136) 

known as the Cramer representation of a time series. For further detail see 
Brillinger (1981) and Durbin (1984). Also for an application to the two-
dimensional space domain in digital image processing, see Andrews and 
Patterson (1976). 

When a finite process is Markov (first order), the Toeplitz autoeorrelation 
matrix assumes the simple form 

    

R = 

p n-2 

• 

 

(7.137) 

 

••• 1 

  

   

a symmetric Toeplitz matrix which depends on the single parameter II  1. 
The inverse of R can be shown to be the tridiagonal matrix 

0 

••■ 

R 
1 

1 
—09  

0 

—p 
1+  _

P 
 2 

—p 

0 

0 

-- P 
1 + p" 

• • 	• 

• • 

• • 

..• 
0 

0 

1 

(7.138) = 

which is almost a common tridiagonal Jacobi matrix, and can therefore bc 
expanded (approximately) into a cosine series (Section 7.9.2). 

7.9.4 Block-Patterned Matrices 

Consider a block-patterned matrix of the form 

VON' 

AB-  - 	• 
B B • • B 

G= 
• • 

• (7.139) 
• • • 

• 
• • . 

_B B • • 	• B 
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consisting of m 2 (n x n) submatriees 

   

• b l -
b t  

A 	• 

b 
b, 	b, 	

• 

'1) 1  

B= 

a2 	b, 	- • • 	b-, 
b2 a 2, 62 	• ' • b 2 

' 

 

• 

 

  

 

b2  b 2  

 

  

G is thus a (mn x mn) matrix consisting of blocks of equal elements on the 
main diagonal, and represents a generalization of the equicorrelation matrix 
(Eq. 3.29). When G consists of correlation coefficients it is known as the 
intraelass correlation matrix, and occurs commonly in problems where 
time-series and cross-sectional data are combined. It can be shown (see 
Press, 1972) that the latent roots of G are given by 

A l  =a l  + (n - 1)b + (m - 1)[a 2  + (n - 1)b 2 1 

A2  ' • ' = A,, = 	- b i )+ 	- 1)(a 2  b 2 ) 

	

A„, ,„ --- (a, - a 2 ) + (n - 1)(b 	1, 2 ) 

A„,„, = A = (a - a2 ) + (6 2  - 1 ) 
	

(7.140) 

which are an extension of those of Eq. (3.29). 
Block-patterned covariance matrices also occur in association with 

branching or tree-patterned processes, such as those found in biological 
evolution. Consider seven terminal populations (numbered 1-7) which 
evolved from populations numbered 8-13, as indicated by the branching 
process of Figure 7.16. Assuming constant evolution rates the associated 
covariance between the seven terminal populations is given by the block-
patterned array of matrix E (Cavalli-Sforza and Piazza, 1975; Piazza and 
Cavalli-Sforza, 1978). The repetitive values for covariances are a con-
sequence of constant evolution rates. 

51;  - : - a-  - :--- 
C 	

1 [ 
-- I- J - La - 1  
d d dial 	1 

d d dle l a l  1 --- 1- - -1- - - - - 
d d dif f la 
d d d:f f Fila--  

For example, population I (row 1) is equally correlated with populations 
4-7, and so forth, as indicated in matrix E. Let a = LO, b --- .80, c .50, 
d = .20, e = .90, f= .40, and g = .70, Then matrix E becomes 
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12 

10 	 11 

Figure 7.16 A hypothetical biological • 
evolutionary branching process (Cavalii- 
Sforza and Piazza, i975). 	 1 	2 	3 4 	5 6 

[1.00 
.80 1.00 

	

.50 	.50 1.00 
E= 	.20 	.20 	.20 1.00 

	

.20 	.20 	.20 	.90 1.00 

	

.20 	.20 	.20 	.40 	.40 1.00 

	

.20 	.20 	.20 	.40 	.40 	.70 1.00- 

The latent vectors of E exhibit a block-patterned structure (Table 7,14) 
which indicate the bifurcation points of Figure 7.16. The first split occurs at 
population (node) 13, and this is indicated by negative values for the first 
three populations and positive values for the remaining four. Signs for 
remaining latent vectors are interpreted in a similar fashion. Although latent 
vectors for matrices of order 2 <p< 4 can be expressed in analytic form, 
those of order p> 4 are more difficult. Cavalli-Sforza and Piazza (1975) 
provide an example for actual human populations and indicate how the null 
hypothesis of constant evaluation rates can be tested employing actual data 
(see also Anderson, 1973). 

Table 14 Latent Vectors (Rows) and Latent Roots of Matrix E 

Split at 
Node 

Populations 
Latent 
Roots 1 2 3 4 5 6 7 

- .40 .40 .30 .40 .40 .40 .40 3.127 
13 -.50 - .50 - .40 .30 .30 .30 .30 1.696 
12 0 0 0 .50 .50 - .50 - .50 .997  
9 -.30 -.30 .90 0 0 0 0 .585 

11 0 0 0 0 0 -.70 .70 .300 
8 -.70 .70 0 0 0 0 0 .200 

10 0 0 0 .70 -.70 0 0 .100 

Source: Cavaiii-Sforza and Piazza, 1975; reproduced with permission, 

13 
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EXERCISES 

7.1 Prove that for Eq. (7.5) all elements of the best linear indices p and q 
are strictly positive. 

7.2 Show that given p, vector q can be computed using 

q  = (1 ) cp  

7.3 Prove Theorem 7.4 

7.4 Show that Parseval's equation (Eq. 7.19) holds. 

7.5 Using Eq. (7.20) derive the integral equation (Eq. 7.14). 

7.6 Prove the relation of Eq. (7,81). 

7.7 Show that for the circular matrix (Eq. 7.124) 

	

n - 1 	rt - 1 

	

ICI = E 	Fl b i  

	

i-o 	i-o 

7.8 Show that the determinant of the block-patterned matrix (Eq. 7.139) 
is given by 

IGI = IA — Bl m  'IA + B(m — 1)1 

7.9 Show that the Karhunen—Loeve expansion maximizes the entropy 
measure (Eq. 7.22c). 

7.10 Core samples taken from ocean floors are at times analyzed for 
plankton content in order to infer approximate climatological con-
ditions which existed on earth. Since many species coexist at different 
times (core depths), their abundance is generally correlated, and a 
factor analysis is frequently performed on such data. Table 7.15, 
represents an excerpt of data given by Imbrie and Kipp (1971) for 
n = 110 core depths of a single core, where each depth represents 
10cm and where only p = 10 plankton species are considered, 

(a) Carry out a principal component analysis of the p 10 species, 
plotting component scores for the dominant component. 

(b) Rotate the loadings and scores using the varimax rotation. Is 
there a change in the interpretation? 

(c) Repeat parts a and h using a maximum likelihood factor model. 
Horizontal versions of the analysis are also common in geology where 



Table 7.15 Percent Abundance of p = 10 Species of Plankton at n = 110 Depth of 
an Ocean Core Drilling 

Sample 
Dem Its 

Species 

Y 1  Y Y 3 Y Y 5  Y, Y, Y I, Y,, Yla 

1 1.792 0.489 43.485 0.814 25.570 0.651 0,0 0.163 0,0 0,163 
2 3.203 0_712 37.722 0.356 30.961 0.712 0,0 0.356 0,0 0.0 
3 2.564 1.709 47.009 0.855 20.513 1.709 0.0 1.282 0.427 0.0 
4 1.124 0.562 47.191 1.124 12.360 2,247 0.0 3.933 0,562 0.562 
5 0.671 1.007 43.624 3.020 15.436 1.007 0,0 0,336 0.671 0.336 
6 1.149 0.766 52.874 0.766 12.261 0.0 0.0 0,383 2,299 0.0 
7 1.990 0.498 53.234 3.980 6.965 0.0 0.0 0.498 0.995 0.0 
8 7. 722 2.222 45.926 2.222 13.333 2.963 0.0 1.481 1.481 1.481 
9 1.786 1.190 49.403 1.786 10.714 1.786 0.0 0.595 0.595 0.0 

10 0.621 0.621 36.025 2.484 10.559 0.621 0.0 1.242 1.863 0,0 
11 1.418 0.0 46.099 2.837 9.220 4.255 0.0 0.709 2.836 0.0 
12 0.0 0.0 38.298 0.709 11.348 2.837 0.0 1.418 5.674 0.0 
13 0.498 0,498 48.756 0.0 5.970 1.990 0.498 0.498 2.985 0.0 
14 1.379 1.034 42.069 0.690 8.621 2.069 0.0 2.759 1.724 0.690 
15 0.662 0.0 46.358 0,0 11.921 0.0 0.0 1.987 3.311 0.0 
16 3.429 1.143 45.714 1.143 14.286 1.714 0.0 0.571 3.429 0.571 
17 2.899 2.899 42.995 0.0 14.010 1.449 0,0 2.415 2.415 0.483 
18 1.198 1.796 541.299 1.198 8.383 2.994 0.0 0.599 0.599 0.599 
19 1.887 2.516 38.994 3.145 7.547 2.516 0.0 1.258 1.258 0.0 
20 5.143 2.857 38.286 0.0 13.714 1.143 0.0 1.143 1.143 0.0 
21 3.067 0.613 37.423 1,227 13.497 2.761 0.0 1.227 0.0 0.307 
22 1.961 2,614 41.830 3.268 11.765 1.307 0.654 1.307 0.654 0.0 
23 1.515 2.020 37.374 1,010 12.626 2.020 0.0 0.0 0.505 0.0 
24 1.422 2.844 38.389 1.422 16.114 0.948 0.0 0.0 0.474 0.0 
15 1.630 1,630 36,957 2.174 10.870 2.174 0.0 0.0 0.0 0.0 
26 1.571 1.571 37.696 1.571 10.995 4.188 0.0 2.094 2.618 1.047 
27 1.826 3,196 36.073 0.913 12.329 2.283 0.0 0.457 0.9 t 3 0.457 
28 0.926 3.241 28.241 0.463 12.037 0.926 0.0 0.463 1.852 0.463 
29 1.379 2.414 35.517 0.345 11.679 0.345 0.0 0.0 4.828 0.0 
30 1.036 6.218 34.197 1.036 14.508 0.518 0.0 0.0 1.554 0.518 
31 0.649 3.896 39.610 3.896 13.636 1.299 0.0 0.543 0.649 0.0 
32 1.485 7.426 29.208 2.475 15.842 1.485 0.0 2.970 1.485 0.0 
33 1.087 0.0 42.391 1.630 15.761 1.630 0.0 2.174 1.087 0.0 
34 3.404 0.426 32.766 4.255 13.191 2.128 0.0 3.830 0.851 1.70 
35 1.429 0.476 42.381 2.857 10.952 1.905 0.0 0.476 0.952 1.90 
36 1.449 3.623 36.957 0.0 15.942 3.623 0.0 0.725 1.449 0.72 
37 1.685 1.685 48.315 2,809 10.674 1.124 0.0 1.124 1.124 0.0 
38 0.772 0.386 40.927 0.772 15.444 2.703 0.0 0.0 0.772 0.38 
39 1.266 1,266 37.975 2.532 18,143 3.376 0.0 2.110 0.422 0.0 
40 3.627 0.518 41.451 1.554 16.580 0.518 0.0 2.591 1.554 0.0 
41 1.869 1.402 37.850 2,804 12.617 2.336 0.0 9.813 0.467 0.93 
42 3.509 2.456 42.105 2.105 12.281 1.053 0.351 2.456 0.0 0.0 
43 0.904 0.904 44.578 1.20.5 14.7.59 0.602 0.301 1.506 0.602 0,0 
44 1.449 0.483 41961 3.865 12.560 1.449 0.0 2.899 0.0 0.0 
45 1.299 0.649 38,961 0.325 17.208 1.948 0.0 4.545 1.948 0.0 
46 0.0 0.741 33.333 2.222 22.222 2.222 0.0 0.741 0.0 0.0 
47 2.513 4.523 35.176 1.00 20.603 0.0 0.0 0.0 0.0 0.0 
48 1.026 0.513 42.051 2.051 16.410 2.051 0.0 0.513 2.051 0.0 
49 0.565 0.565 44.068 3.955 10.169 1.695 0.0 9.605 3.390 0.0 
50 1.523 9.0 34.518 2.030 20.305 2.030 0.0 1.513 1.015 0.0 
.51 0.508 0.0 40.609 0.508 21.827 0.508 0.0 3.046 0.0 0.0 
52 0.0 2.703 28.649 1.622 24.324 3.784 0,0 2.162 3,243 0.0 
53 0.629 4.403 39.623 0.629 10.063 3.145 0.0 5.660 5.031 0.0 
54 0.800 2.400 50.400 1.600 11,200 2400 0.0 4.800 0.0 0.0 
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Table 7.15 	(Continued) 

Sample 
Depths 

Species 

Y2 Y l  Y 5  

55 1.630 0.543 54.348 2.174 7.609 3.804 0.0 1.630 2.717 0.0 
56 0.0 0.543 32.609 1.087 11.413 4.891 0.0 3.804 2.717 0.0 
57 1.622 1.081 32.973 2.162 11.892 3.784 0.0 9.780 0.541 0.0 
58 1.762 0.0 33.921 0.0 16.740 2.643 0.0 9.251 2.643 0.0 
59 1.418 0.0 36.879 0.709 11.348 4.155 0.0 4.90.5 4.965 0.709 
60 1.136 2.841 49.432 2.273 11.932 2.273 0,0 0.568 0.0 0.0 
61 0,893 3.561 33.036 5.357 13.393 2.679 0.0 4.464 0.893 0.893 
62 3.636 1.212 35.758 2.424 6.061 6.061 110 3.030 0.0 0.0 
63 3.448 1.478 29.064 3.448 14.778 4.433 0.0 2.955 0.0 0.0 
64 1,342 2.685 34.228 3.356 12.081 2.685 0.0 2.685 4.027 0.0 
65 4.435 2.419 33.468 0.806 17.742 3.226 0.0 0.0 4.032 0.0 
66 2.158 2.158 34.532 2.158 15.826 5.036 0.0 0.719 2.158 0.0 
67 0.0 4.545 38.636 0,0 15.152 1.515 0.0 2.273 2.273 0.758 
68 1,235 0,0 41.975 0.0 12.346 1.852 7.407 0.617 2.469 0.0 
69 1,508 1.508 38.191 0,503 3.518 1.508 4.523 1.508 2.910 0.503 
70 3.550 2.367 47.337 2.367 5.917 10.059 0.0 0.0 0.592 0.0 
71 5,344 0.0 39.695 1.527 13.740 6.870 0.0 0.763 0.0 0.0 
72 5.455 0.606 43.636 1.818 10.303 7.273 1.212 0.605 0.0 0.0 
73 0.0 0.0 38.095 3.571 4.762 9.524 0,0 3.571 0.0 1.190 
74 2.609 1.304 33.043 1.739 9.130 3.913 0.870 3.478 0.435 0.0 
75 1.604 1.604 33.690 0,0 19.251 2.139 0.0 3.209 3.209 0.5:35 
76 1.899 0.0 34.177 2.532 12.025 4.430 0.633 2.532 1.266 0.0 
77 2.041 0.816 36.327 2.041 20.000 2.449 0.0 2.449 1.224 0.408 
78 0.595 2,976 50.000 0.0 7.738 6548 011 2.381 0,595 9.0 
79 0.0 6.130 35.249 0.0 10.728 0.0 0.0 0.383 0.383 0.0 
80 0.372 5,576 37.918 0.372 15.613 0.743 0,0 010 0.372 0.0 
81 3.582 5.373 38,209 0.896 17.015 0.896 0.0 0.0 0.896 0.299 
82 2.362 2.362 36.220 3.150 14.173 1.969 (10 0.787 1.575 0.0 
83 2.105 4.211 26.842 1.053 13.684 4.737 0.526 5.263 2.105 0.0 
84 2.381 3.175 32.143 1.190 17.460 1.587 0.0 0.397 1.190 0.0 
85 0.455 0.909 37.273 0.455 24.091 3.182 0.0 0.455 0.455 0.909 
86 0.858 3.863 31.760 1.717 21.888 7.296 0.0 4.721 0.858 0.0 
87 2.769 1.231 43.385 1.231 2.769 4.000 0.0 6.467  3.077 0.0 
88 0.658 1.316 52.632 0.0 3.289 1.974 0.0 3.947 0.658 0.9 
89 3.448 0.575 35.632 1.149 14.368 0.0 0.0 4.598 0,575 0.0 
90 1.689 0.676 26.689 2.027 8.108 4.392 0.338 13.176 2.027 1.689 
91 1.533 0.0 35.249 0.383 9.195 2.682 1533 13.793 1.533 0.0 
92 1.064 0.0 40.957 1.596 6.915 2.660 0,0 3.723 2.660 0.0 
93 1.394 0.348 36.585 1.045 8.014 3.833 0.0 6.969 1,394 110 
94 0.00 0.0 35.533 1.015 13.706 7.614 0.0 3.553 0.0 0.0 
95 1.970 2.463 39.901 0.493 15.764 3.941 0.0 0.985 0.493 11493 
96 1.471 2.206 34.559 2.941 15.441 1.471 0.0 0.0 0.735 010 
97 1.613 0.403 42.742 1.210 16.129 2.823 0.0 2,823 0.403 0.0 
98 0.0 0.498 44.776 2.488 19.9(X) 0.995 0.0 1.990 0.995 0.498 
99 0.448 0.448 40.359 4.484 12.556 2.242 0.(1 6.278 0.897 010 

100 2.717 0.0 32.065 3.261 15.761 1.087 0.0 6.522 1.087 0.0 
101 1.887 1.887 34.906 1,415 12.264 1.415 0.0 3,302 1.415 0.472 
102 1.342 2.013 24.161 3.356 11.409 1.342 0.0 9,396 0,0 0.671 
103 1.633 0.816 24,898 2,449 6.531 (1408 0.0 12.245 2.041 0.0 
104 1.548 0.310 3L269 1.548 9.288 0.0 0.0 9.288 4,644 0.0 
105 1.093 0.546 31.694 1.639 14.208 0.0 0.0 19.672 4.372 0,0 
106 2.183 1.747 33.188 0.437 13.974 0.437 0.0 4.367 1.747 1.747 
107 1.878 0.469 24.883 1.878 14.085 1.408 0.0 9.390 0,939 0.0 
108 2,286 1286 37.143 1.714 8.000 1.714 0.0 8.0180 4.571 0.0 
109 3.911 2.793 32.961 1.117 14.525 1.117 0.0 2.793 0.559 0.0 
110 0.658 0.658 34.868 4.605 15.789 1.316 0.0 3.947 1.974 0.0 

Source: Imbrie and Kipp, 1971; reproduced with permission. 
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they are known as trend surface analyses—see, for example, Har-
baugh and Demirmen (1964) and Cameron (1968). 

7.11 Carry out a factor analysis of the vehicle fatalities data of Table 7.6 by 
replacing Provinces by years, that is, by treating the years as 
variables. Interpret the loadings and scores in terms of vehicle 
fatalities. Is any additional insight provided by the 0-model? 

7.12 Consider the criminological data of Table 7.1 (Example 7,1): 
(a) Repeat the analysis using (1) the matrix Y Y and (ii) the cosine 

matrix (Section 2.4). Compare your results. 
(b) Ahamad (1967) gives the following population values of the 13- 

to 19-year age group, in thousands: 
Year 1950 1951 1952 1953 1954 1955 1956 1957 
Values 1914 1912 1920 1927 1899 1935 1980 2057 

Year 1958 1959 1960 1961 1962 1963 
Values 2105 2173 2330 2455 2542 2601 
Express the data of Table 7.1 per thousand and repeat the analysis 
using the correlation matrix. Compare your results—is there a 
significant change in the interpretation? Explain. 
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CHAPTER 8 

Ordinal and Nominal Random 
Variables 

8.1 INTRODUCTION 

When confronted with multivariate data, it is generally assumed that the 
observations are drawn from continuous distributions, that is, they repre-
sent ratio or interval scales (Section 1.5). This is the case, for example, in 
the preceding chapters, which deal almost exclusively with factor models in 
the context of continuous data. Not all observations however are of this 
type. Thus we frequently encounter situations where variables can only be 
represented by an absolute count, an ordinal ranking, or else by purely 
qualitative or nominal categories. Since ordinal and nominal observations 
do not possess quantitative information (as such), they are usually repre-
sented by integers, and this alters certain interpretative aspects of factor 
analysis. In addition, discrete observations may possess particular configu-
rations in multivariate space— for example, dichotomous dummy variables 
represent apices of a hypercube (Fig. 9.6), certain rank values lie on the 
surface of a multidimensional sphere, and so forth. In the following 
sections we consider classical multivariate analyses of discrete data where 
the random variables are intercorrelated and the (independent) observa-
tions are drawn from a single population, that is the observations are 
identically distributed. 

8.2 ORDINAL DATA 

It was seen in Section 1.5 that ordinal or rank-ordered random variables 
do not possess the property of distance between their particular values. 
Since ordinal scales are only intended to reflect monotonically increasing 
(decreasing) sequences of magnitudes they, together with nominal vari-
ables, are at times referred to as "qualitative" or "nonmetric." They may 
occur, for example, in sample surveys of attitudes or opinions (Westley and 
Jacobson, 1962; Lever and Smooha, 1981), perception or cognition of 
power (Lusch and Brown, 1982), or judgments of, say, scientists concerned 
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with the biological behavior of chemicals (Mager, 1984) or soil types 
(Hathout and Hiebert, 1980). Here ordinal data may represent a purely 
qualitative ordering of categories or else they can reflect a rank ordering of 
values of a continuous or quantitative variable whose values cannot be 
observed directly because of physical impediments or perhaps large errors 
of measurement. Specifically, three situations can be discerned when 
considering ordinal values. First, the multidimensional continuity is not 
observed; we observe instead integer ranks from which we wish to estimate 
the underlying continuity, usually using the factor scores. Here the ob-
served variables are said to be intrinsically continuous. Second, the con-
tinuity may be observed but cannot be used in a factor model because of 
excessive errors of measurement or nonlinearities of unknown form. Here 
replacing the original values by their rank orders can restore linearity and 
eliminate much of the error. The cost of such a move is of course the 
elimination of metric information from the sampled values. Third, a 
continuity may simply not cxist at all, or may be a purely speculative or 
hypothetical nature. The situation is then described as being purely quali-
tative or nonmetric. Since ordinal scales do not possess physical units of 
measure, a factor analysis of such data is normally based either on the 
correlation or the cosine matrix (Section 2.4). 

8.2.1 Ordinal Variables as Intrinsically Continuous: Factor Scaling 

A relatively straightforward approach to a factor analysis of ordinal data is 
to assume an underlying continua for the population, which cannot be 
observed directly in a sample and which is consequently approximated by 
an ordinal scale of fixed length. Since ordinal scales are invariant with 
respect to continuous monotonic transformations, the positive integers 
1, 2, . • k are normally used for convenience. Also, in order to have the 
mean (median) of the scale values itself a scale value, the integer k is often 
chosen to be odd. A typical situation may occur, for example, when a 
sample of n respondents are asked to express a preference (agreement) on 
the scale 1, 2, , k, concerning a set of p statements. Note that since 
each respondent may chose any of the k integers per question, there are 
no constraints on the rows or columns of the data matrix. Thc objective of 
factor analysis is then to provide a ratio (or an interval) scale estimate of 
the multidimensional continua which has generated the observed rankings. 
Since it is frequently unnecessary to ascribe major measurement error to 
integer ranks, the model employed is usually that of principal components, 
although a maximum likelihood factor model can also be used if uneven 
error is thought to be present. Nothing new then arises in the execution 
and interpretation of a factor analysis of rank scales. Thus if the analysis is 
for explanatory purposes, the loading and scores may be rotated using the 
usual algorithms (Section 5.3), and so forth. 

Another major use of a factor analysis of ordinal variables is as a 
measuring or sealing device of concepts which are inherently multidimen- 
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sional in nature, for example, socioeconomic or political affiliation. Here, 
since the concept is initially defined in terms of theory, or some a priori 
reasoning process, the observed or manifest variables are chosen to reflect 
the underlying multidimensional scale. If the manifest responses to the 
questionnaire are further correlated, a reduced number of dimensions can 
be used to construct a single scale (index) which estimates the relative 
position of each individual on the scale, and which excludes inconsistencies 
due purely to individual or residual factors. The main concepts are 
illustrated by the following examples. 

Example 8.1. During the international "oil crisis" in 1982, the federal 
Canadian government commissioned a survey of 1500 employees of a 
centrally located company in Winnipeg, Manitoba. The objective of the 
survey was to construct, mathematically, features of a public transportation 
mode which would have sufficient appeal (demand) for individuals to 
forego the use of personal vehicles. The subsequent reduction in the 
number of such commuters, particularly single-occupant drivers, should 
then result in a significant decrease of petroleum fuel consumption. The 
respondents were asked to rank, in order of importance, their "ideal" 
preference concerning a range of desirable features of public transporta-
tion, as represented by the following variables (Basilevsky and Fenton, 
1992) 

• = Door to door transportation between home and work 
Y2  = Direct transportation without stops 
Y3 = Short travel time 
Y, — Freedom to make stops on the way to or from work 
Y5  = Freedom to chose to go at different time and on different days 
• = Freedom from having to drive 
Y7  = Preference for traveling with other people 
Y8  Preference to have travel arrangements handled by someone else 
Y9  Importance of low transportation expenses 
1110 = Availability of vehicle 
Yi 	Freedom of responsibility for vehicle maintenance and operation 
Y1 2  The need for space to carry packages 
Yt 3  := Freedom from having to obtain parking space 

-

• 

- The nced for transportation to and from work during off-hours 
(nonrush hours) 

Y1 	Importance of physical disability (if any) 
Yl „= Preference for traveling alone 

The scale used ranges from 5 (very important) to 1 (not at all im-
portant), with the digit 3 representing indifference. Since the survey is 
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Table 8.1 	Orthogonal Factors of the "Ideal Preference" Transportation Mode, 
Winnipeg, Manitoba' 

Variable F t  F2 F3 F, F5  F6  

X i  .651 .335 
X 2  .297 .669 
X 3  .847 
X4  .884 
X. .665 .258 .280 
X, .399 .387 .470 
X 7  .781 .326 
X, .834 
X, ,673 .284 
X t „ .695 
X„ .736 
X 1 2 .252 .431 .322 .236 .256 
X 13  .787 
X 14  .968 
X. .980 
X i „ .907 

"Loadings smaller than 100 are omitted. 
Source: Basilevsky and Fenton, 1992. 

exploratory in nature, the variables are chosen to reflect a number of 
different dimensions or components of a public transportation system, the 
main idea being that once relevant dimensions are known, they can be 
identified in terms of ingredients of a mixture of a transportation mode 
which would elicit high consumer use. Owing to the presence of unequal 
residual error, a maximum likelihood factor analysis was carried out and 
the rotated factor loadings of the p = 16 variables appear in Table 8.1, 
where the factors may be given the following interpretation. The first 
factor seems to reflect a consumer convenience—cost effectiveness di-
mension—the second indicates group-oriented convenience, the third iden-
tifies a flexibility dimension which accommodates shopping, while the 
fourth and fifth factors reflect demand for door-to-door transportation and 
availability of vehicle. If the extent or strength of preference held by an 
individual is considered to be continuous, then the factor scores provide 
estimates of the underlying continuous preference dimensions or scales 
which have generated the common response to the questionnaire. Further 
exploratory analysis of ordinal data may be found in Stoetzel (1960), 
Petrinovich and Hardyck (1964), Mukherjee (1965), Vavra (1972), Heeler 
et al. (1977), and Bruhn and Schutz (1986). 

Example 8.2. As an illustration of factor scaling consider a survey 
consisting of 10 questions that pertain to Canada's immigration policy and 
general economic conditions. The first five variables are intended to 
measure attitudes towards the degree of economic insecurity. The factor 
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Variable Factor 1 Factor 2 

Y 1 : More white immigration +.703 +,301 
V,: More "boat people" -.741 -.267 
Y 3 : Nonwhites are good citizens - .705 + .184 
V,: Whites are good citizens -.750 +.371 
Y 5 : Whites are more hard working +.682 -.173 
V,: Economic depression imminent -.271 +.871 
Y 7 : Dollar is very unstable +103 +.787 
V 8 : Situation is improving i- .080 -.880 
Y 9 : Government is doing good job -.371 +.784 
Y 1 „: Jobs are plentiful -.291 -.850 

Table 8.3 Observed Response for Individual i on 
the 10 Questions 

Question 	Observed Response 

Y, 	 5 
1/2 	 2 

4 
14 3 

4 
4 

}r7 	 5 
2 

Y, 	 4 

loadings are given in Table 8.2. The individuals are asked to respond on 
the scale 5----strongly agree; 4------  agree; 3----- neutral; 2 disagree; 1 
strongly disagree. Consider a hypothetical individual who responds in the 
manner of Table 8.3. To compute this individual's position on the factor 1 
scale, we first reverse the negative signs for the first fivc loadings that 
characterize factor 1. Thus for question Y2 the respondent can also be 
understood as "not disagreeing," that is, "agreeing," and he/she therefore 
receive a rank of (6 — 2) = 4, which is the "agreed" rank. Similarly Y 3 

 obtains a rank of (6 4) = 2, and so forth. The total score for the 
individual of Table 8.3 on factor 1 is then .703(5) + .741(2) + .682(3) + 
.837(4) ,--- 13.375 or 13.375/5 = 2.675 (per question), indicating a virtually 
neutral attitude on the dimension represented by the factor. Likewise the 
individual's position on the second factor is [.871(4)+ .787(5) + .880(4) + 
.784(4) + .850(5)1/5 = 3,665, also indicating an almost neutral position for 
this scale. 0 

When the underlying continua posses a normal distribution, it is possible 
to define a more appropriate correlation coefficient, the so-called poly- 
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choric correlation. Suppose a continuous multivariate population has a 
normal distribution. The true population values e and y* however are not 
known and instead we observe the ranked integers 0, 1,2, ... , which we 
assume to be related to the true values by the monotone relations (Figs. 
8.1 and 8.2). 

1 	I 	I  
2 	3 	4 	5 	X, 

Figure 8.1 Relation between true values x: and observed ranks x,. 

	L 	 
2 3 
	x, 

Figure 8.2 Relation between two unobserved continuous variables x* and y* in terms of their 
ranks x and y. 
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The inequalities implied by Eq. (8.1) are also known as "crude" classifica-
tions of the observations in the applied literature and may arise due to lack 
of data or unacceptably large errors of measurement. Given normality of 
the population we then wish to estimate the Pearson product-moment 
correlation between the continuities e and y* using the observed ranks x 
and y, and then to use the correlations to construct a matrix of polychoric 
correlation coefficients which could be subjected to a factor analysis. 

Consider the bivariate normal distribution fix*, y*). The probability 
that e and y* lie in the area between s a , s1 	tb, tb +1  is given by 

Pab =  f(x*, y*)dx* dy* 	 (8.2) 

(Fig. 8.2), for some correlation value p. Given p and the thresholds of 
equation 8.1, the distribution f(x*, y*) is completely specified, and the 
estimated correlation 1) between x* and y* can be computed by the 
formula 

1 

EE abp ab  - EE apab  EE bp ab 
a=1 a=1 	 a=1 b=1 

• 	f 	 f 	 21P2r S 	1 	
2 	

S 	 \211/2 

a ap ab  LE E 2p ab  (E 	LE E 	 ab b Pab 	E>_4 bp)  I 
13=1 	 17=1 	 1:111:■ 1 	 a=I 

(8.3) 

Using Eqs. (8.2) and (8.3) it is then possible to compare numerically the 
correlation using ranks with the normal correlation A question may also 
arise as to the robustness of the ranking of the normal values in a maximum 
likelihood factor model. Olsson (1979b; see also Olsson, 1980) has carried 
out a simulation of robustness of the factor model with respect to ranking 
(Eq. 8.1), with the conclusion that the fit of a factor model is not heavily 
influenced by the number of thresholds k, r, but is influenced to a higher 
degree by nonnormality of the variables, as expressed by univariate 
(marginal) skewness. 

At times ranked categories are also observed in terms of counts, as for a 
multicategory two-way contingency table. The situation is illustrated in 
Figure 8.3 for k = 3 and r 4. Employing the termite-Chebyshev polyno-
mial expansion of the hivariate normal (Section 8.4.3), Lancaster and 
Hamdan (1964) have shown that the maximum likelihood estimator of the 
polychoric correlation coefficient p can also he expressed as 

2 	r 

	

= ix 2  - (r - 1)(k - 1)j/n = > 	
- 
Eaill b ig p" 

2 

(8.4) 
i - 1 J . 

where 9 2  is the corrected version of Pearson's contingency table correlation. 
Note also that the thresholds are fixed. Equation (8.4) is considered in 
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Figure 8.3 The concept of estimating polychoric correlation in terms of a (r x k) contingency 
table of counts. 

greater detail in Section 8.4.3. The polychoric correlation coefficient is a 
generalization of Pearson's tetrachoric correlation and is similar to the 
correlation obtained by a canonical correlation analysis of a two-way 
contingency table. An algorithm for computing (3 has been given by 
Martinson and Hamdan (1972). It should be kept in mind that a correlation 
matrix consisting of the estimates may not be positive (semi)definite so 
that a principal components rather than a maximum likelihood factor model 
should be used in the initial stages of the analysis. 

8,2.2 Ranks of Order Statistics 

At times even though the data are observed on a continuous scale, the ratio 
or "quantitative" information inherent in such scales cannot be used, 
because large errors of measurement or unknown forms of nonlinearities 
may exist among the variables. Also, a part of the data may be missing and 
is replaced by, say, the relative positions or the ranks of the missing values 
should this bc possible. Let yol  be the ith order statistic of a continuous 
random variable y (Section 7.5,3). Then the rank of y(i)  is defined as its 
position among the order statistics, that is, 

	

rank(y (o ) = i 	(i = 1, 2„ , . , n) 
	

( 8 . 5 ) 

Note that there are as many ranks as observations, that is k = n. For a 
multivariatc data matrix Y, ranks are usually assigned to the observations on 
a univariate basis without permuting the rows of Y. that is, for each column 
Yi  ( j 1, 2, . . , k) we have min(y o ) 1 and max(y ii ) = n. Alternatively, 
the rows of Y may be rearranged so that one of the variables (say the first) 
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has its observations in the natural order 1, 2, . . . n, with remaining 
variables assuming corresponding rank values depending on the magnitudes 
of the original observations. Thus although the rank-order transformations 
of the n observations generally do not result in all variables having their 
observations in the natural order, the sums of the columns are now equal, 
resulting in closed arrays similar to those encountered in Section 5,9.1. 
Replacing the original observations by ranks also results in a significant 
reduction of measurement error (if it exists) and introduces linear relation-
ships between the variable ranks even though the original variables may 
have been nonlinear. It should be kept in mind that rank-order transforma-
tions may result in loss of information if applied to errorless and/or linear 
data, and the procedure should be used only as a salvage operation of data 
which is otherwise of limited value. 

The rank orders implied by Eq. (8.5) make use of all observations of the 
data matrix, so that ties cannot occur if the original data are sampled from a 
continuous distribution. For intrinsically continuous variables the usual 
correlation (Spearman rho) coefficient is then the appropriate measure of 
association. A significant number of ties however can be introduced when 
only a subset of the order statistics is used, for example, deciles or quartiles. 
The decision to use a smaller number of rank-order statistics often hinges on 
whether we wish to explore the "main features" of multivariate data, 
perhaps as a preliminary step to a more complete analysis. Again it is 
important to stress the exploratory nature of such a strategy, as well as the 
fact that results of an analysis will depend in part on the ranking scale 
chosen, Nevertheless, replacing data by quartiles or other broad order 
statistics may reveal qualitative features which are otherwise submerged by 
quantitative information, and which can provide a safeguard against becom-
ing "lost" in any subsequent analysis. 

Example 8.3. A simulated comparison between principal components 
analyses of nonlinear continuous variables and rank-transformed data of the 
same variables has been conducted by Woodward and Overall (1976). The 
objective of the simulation is to explore the efficacy of rank transformations 
in being able to simultaneously linearize the variables and remove measure-
ment error from the data. The variables are nonlinear functions of two 
measurements using a millimeter rule, which represent the north—south and 
east-west distances of n =29 points on a road map of the state of Texas 
measured from the bottom, right-hand margins of the map. The original and 
estimated points appear in Figure 8.4, indicating close agreement between 
the data and the recovered two-dimensional space spanned by the first two 
principal components of the (12 x 12) correlation matrix. Rank transforma-
tions thus appear to be effective for the analysis of error-prone continuous, 
nonlinear data. When measurement error is (approximately) normal, how-
ever, a maximum-likelihood factor model may represent a more optimal 
approach. 1:11 
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Figure 8.4 Measured configuration (dots) and estimated configuration (circles) using r---,  2 
principal components of locations on a road map of the State of Texas (Woodward and Overall, 
1976; reproduced with permission). 

Example 8,4. Goldstein (1982) presents data for social and disease 
variables obtained for n = 21 wards of Hull, England (Table 8.4). His 
objective for using quartiles rather than the original observations is to carry 
out a preliminary inspection of the data, by means of permuting the rows of 
the matrix and observing any suhscquent pattcrns that may emerge. Since 
rank orders tend to linearize relationships among the variables, however, 
using the principal components model provides a more complete analysis, 
particularly whcn the data matrix is large. An examination of the correlation 
matrices of both the original and quartile data, together with rotated 
loadings and scores (Tables 8.5-8.7) reveals the close similarity between the 
two sets of analyses, indicating that the relationships among the variables 
are approximately linear. Vectors Y 1 , Y3 , and Y 4  are seen to form a cluster 
(Z 1 ), and consulting the score coefficients it is seen that the cluster Z 1  is 
underscored, that is, underrepresented in wards 1, 3, 5, 7, and 16. Likewise 
Z 3  represents another cluster which consists only of the vector Y2 and which 
is underrepresented in wards 9, 10, 12, 20, and 21. Components Z 2  and Z, 
can be interpreted in a similar fashion. Both sets of analyses are seen to be 
similar, so that replacing continuous data by order statistics results in 
surprisingly little loss of information, and indicates a fair degree of 
robustness of the principal components model against rank transformations. 

Cl 



Table 8.4 
1968-1973 

Quantitative and Quartile Data for n =21 Wards of Hull, England, 

Crowding 
Ward 	(Y 1 ) 

No Toilet 	No Car 
(Y2) 	(Y3) 

Unskilled 	Jaundice 
(Y4) 	(Y5) 

Measles 
(Ye.) 

Scabies 
(Y7) 

Quantitative Data: counts 

1 28 222 627 86 139 96 20 
2 53 258 584 137 479 165 31 
3 31 39 553 64 88 65 22 
4 87 389 759 171 589 196 84 
5 29 46 506 76 198 150 86 
6 96 385 812 205 400 233 123 
7 46 241 560 83 80 104 30 
8 83 629 783 255 286 87 18 
9 112 24 729 255 108 87 26 

10 113 5 699 175 389 79 29 
11 65 61 591 124 252 113 45 
12 99 1 644 167 128 62 19 
13 79 276 699 247 263 156 40 
14 88 466 836 283 469 130 53 
15 60 443 703 156 339 243 65 
16 25 186 511 70 189 103 28 
17 89 54 678 147 198 166 80 
18 94 749 822 237 401 181 94 
19 62 133 549 116 317 119 32 
20 78 25 612 177 201 104 42 
21 97 36 673 154 419 92 29 

Quartile Data 

1 1 3 2 1 1 2 1 
2 2 3 2 2 4 4 2 
3 1 2 1 1 1 1 1 
4 3 4 4 3 4 4 4 
5 1 2 1 1 2 3 4 
6 4 4 4 4 4 4 4 
7 1 3 1 1 1 2 2 
8 3 4 4 4 3 1 1 
9 4 1 4 4 1 1 1 

10 4 1 3 3 3 1 2 
11 2 2 2 2 2 3 3 
12 4 1 2 3 1 1 1 
13 3 3 3 4 3 3 3 
14 3 4 4 4 4 3 3 
15 2 4 3 3 3 4 4 
16 1 3 1 1 2 2 2 
17 3 2 3 2 2 4 4 
18 4 4 4 4 4 4 4 
19 2 2 1 2 3 3 3 
20 2 1 2 3 2 2 3 
21 4 1 3 2 4 2 2 

511 



512 
	

ORDINAL AND NOMINAL RANDOM VARIABLES 

Table 8.5a 	Correlation Matrix of Social and Disease Variables in the Wards of 
Hull, England 

X 1  X 2  X3  X 4  X s  X6  X7  

X, 
X 2  
X 3  
X, 
X, 

X7 

1.000 
-1.105 

0,779 
0,779 
0.447 
0.005 
0.079 

1.000 
0.374 
0.263 
0.484 
0.558 
0,374 

1.000 
0.853 
0.558 
0.226 
0,226 

1.000 
0.484 
0.116 
0.189 

1.000 
0,595 
0.521 

1.000 
0.853 1.000 

Table 8.5b Correlation Matrix of Quartile Ranks of Social and Disease Variables 
hi the Wards of Hull, England 

x, 	x2 
	x, 	x, 	x, 	x6 	x, 

X i 	L000 
X 2 	0.084 	1.000 

0.733 	0.641 	1.000 
X 4 	0.768 	0.522 	0.879 	1.000 

0.380 	0.480 	0.543 	0.442 
X 6 	0.055 	0.522 	0.375 	0.209 
X, 	0,181 	0.378 	0.409 	0.201 

1.000 
0.542 
0.425 

1.000 
0.823 1.000 

Table 8.6a Varimax-Rotated Loadings of Original Social and Disease Variables in 
the Wards of Hull, England 

Z, 	 Z2 
	

Z3 

XI 

x2 
X3 

X4 

Xi 
X„ 
X 7  
Latent roots 

	

.955 	 .045 	 -.165 	 .164 

	

.179 	 .258 	 .918 	 .191 

	

.816 	 .241 	 .445 	 .167 

	

.874 	 .035 	 .386 	 .130 

	

.273 	 .285 	 .203 	 .894 

	

.010 	 .873 	 .281 	 .281 

	

.152 	 .956 	 .081 	 .090 

	

2.471 	 1.885 	 1.344 	 .994 

8.2.3 Ranks as Qualitative Random Variables 

Finally, ranks may represent purely qualitative categories which are related 
by a hierarchical monotonic ordering. Here the only valid relationship 
among the rank values is "less than" or "greater than." Three broad 
approaches can be used to factor analyze such data. First, the nonmetric 
nature of the data can be ignored and Euclidian measures such as Sperman's 
rho used to summarize relationships among the multivariate rankings. The 
approach has an interesting interpretation since it can he considered as a 
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z z3  z, 
X I  .920 	 .004 -.217 .208 
X 2  .079 	 .254 .948 .169 
X3 .904 	 .104 .257 .165 
X4  ,916 	 .062 .157 .117 
X, .356 	 .364 .235 .828 
X .869 .308 .240 
X 7  .086 	 .956 .105 .141 
Latent root 2.643 	 1.898 1.199 .875 

Table 8.7a Varimax-Rotated Factor Scores of Original Social and Disease 
Variables in Hull, England 

Zi Z2 Z i  Z4 

- 1.173 -0.719 0,767 -0.726 
-1.051 -0.346 0.138 2.106 
-1.217 -0.763 -0.200 -0.929 

0.148 0.986 0.061 1.981 
-1,477 1.336 -0.814 -0.580 

0,866 2.462 0.007 -0.174 
-1.010 -0.325 0.388 -1.195 

0.831 -1.440 0,228 -0.290 
1.644 -0.585 -0.753 -1.435 
1.049 -0.878 -1.375 1.086 

-0.376 -0.049 -0.744 0.038 
0.860 -0.938 -0.957 -0.912 
0.628 -0,059 0,525 -0.368 
1.155 -0,402 1.227 0.820 

-0.529 1.258 0.954 0.186 
-1.690 -0.516 0.266 -0.127 

0.483 1,353 -1.124 -0,950 
0.830 1,037 1.847 -0,137 

-0.760 -0,424 -0,485 0.787 
0.308 -0,177 -0.814 -0.508 
0.482 0.810 -1,144 1.419 

generalization of Kendall's well-known coefficient of concordance. Second-
ly, we may define a purely nonparametric correlation coefficient such as 
Kendall's tau and proceed to decompose a correlation matrix constructed 
from such coefficients. Third, a nonmetric algorithm can be employed where 
the factor structure itself is invariant under monotone transformations of the 
data within each column. 

Consider the situation where we have n observers, each of whom ranks k 
objects on the scale 1, 2, 	lc_ The scaling is similar to that used for order 
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Table 8.7b 	Varimax-Rotated Factor Scores of Quartile Ranks of Social and 
Disease Variables in Hull, England 

Z Z 2  Z3  Z, 

-0.975 -1.035 0.906 --- 1.036 
-0.870 -0.186 0.121 1.837 
- 1.312 -1.278 0.028 -0.505 

0.491 1.007 0.882 0.585 
-1.464 1.259 -0.666 -0.303 

1.195 1.032 0.906 0.271 
- 1.283 0.379 0.840 -1.128 

0.928 -1.913 1.542 0.428 
1.750 -1.062 -1.040 -1.650 
0.713 -0.808 -1.392 0.924 

-0.452 0.628 -0.575 -0.524 
0.813 -1.062 -0.921 -1.236 
0.660 0.311 0.231 -0.059 
0.767 -0.032 1.053 0.860 

-0.015 L185 1,018 -0.368 
1_497 0.579 0.676 0.135 
0.294 1.692 0.761 -1.250 
1.195 1.032 0.906 0.271 

-0.983 0.428 - 0.699 0.876 
-0.169 0.386 -1,533 -0.271 

0.214 -0.625 -1.621 2.141 

statistics (Section 8.2.2) except the ranking is now for variables rather than 
observations, that is, the row sums rather than the column sums are 
constant. Since the rows of the (n x k) data matrix simply consist of 
permutations (not necessarily distinct) of the integers, 1, 2, , k, the rows 
have the constant sum [1 f2k(k + I)] and constant sum of squares, and 
consequently lie on the surface of a p -1 dimensional hypersphere with 
center at the origin. Overall (nonnull) correlation is suspected for the 
population, and we wish to estimate the magnitude of such correlation. 
Kendall has suggested the coefficient 

12S  
W -  2 1 n (k -  - k) 

(8.6) 

as a measure of overall agreement or "concordance" among the n in-
dividuals, where S is the sum of squares of deviations of the column sums 
from the mean column sum (see Kendall, 1970). It can be shown that W is 
related to the arithmetic mean of the Spearman correlation coefficients 
amongst the C(I) possible pairs of observers (Exercise 8.1). Also, 0 Ls_ W 
1, with unity indicating total agreement among the individuals (Exercise 
8.2), 
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Kendall's statistic of concordance however is a global measure of 
association and as such possesses two shortcomings. First, it does not shed 
light on the local structure of agreement/disagreement so that the existence 
of negative or zero correlation, for example, can be obscured by a value of 
W which is significantly different from zero. This is especially true for 
moderate or large data matrices. Second, it does not provide information 
concerning the correlation among the objects or columns of the matrix, or 
which clusters of objects (if any) are morc (less) preferred by certain groups 
of individuals. Consequently, there is no opportunity to observe whether all 
individuals use the same criteria when judging. Note also that even an 
insignificant value of W does not necessarily imply the absence of local 
agreement (disagreement). 

A more complete understanding of the data can be achieved by a 
principal components analysis of the rankings, using a (n x n) matrix of 
Spearman rho correlations among the observers. In addition the (k x k) 
correlation matrix of objects can also be analyzed to uncover preferred 
(unpreferred) groupings of the objects. The analysis proceeds in the usual 
fashion, with an examination of the correlation loadings obtained from a Q 
analysis of the observers (Section 5.4.1). A one-dimensional positive 
isotropic structure implies uniform agreement amongst the individuals, 
whereas multidimensional structures imply the existence of groupings or 
clusters. Linear transformations (rotations) can also be applied to locate 
clusters of observers with homogeneous behavior, and significance tests can 
be performed to determine the number of significant components, under the 
assumption of (approximate) normality (Section 4.3). 

Principal components and Kendall's W share a common feature in that 
both represent metric Euclidian analyses or measures of nonmetric quali-
tative data. In addition, it is possible to establish a theoretical link between 
W and the first latent root A t  of the correlation matrix in the special case of a 
one-dimensional isotropic structure. Consider a correlation matrix of the 
form of Eq. (3.29) where cr 2  = I. Then using Eq. (3.32) we have 

– p = 	 (8.7) n – 1 

for n observers. Since all correlations are equal we also have p = p a , where 
Pa is the arithmetic mean, and consequently 

which implies 

–I 
P n – 1 

nW – I 
n – 1 

(8.8) 

= —
n 
	 (8.9) 
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using Eq. (8.7) (see also Exercise 8.1). Equation (8.9) is mainly of 
theoretical interest since a one-dimensional isotropic structure is probably 
not common for ranked data. It can also be misleading (e.g. see Gorman, 
1976) since in the general case a principal components analysis is not related 
to W, so that the two procedures are generally distinct and the latent root A t 

 should not be confused with W 

Example 8.5. Consider Kendall's example of n = 4 observers which rank 
k = 6 objects (Table 8.8) and correlation (Spearman rho) matrix 

[ 1.000 

R = 	
.314 

.314 

1.000 
-.543 

.029 
1.000 

.257 1.000 

for the four rankings, Kendall's coefficient of concordance W equals .229, 
indicating a somewhat low degree of overall agreement. Principal com-
ponent loadings and score coefficients (Table 8.9), however, reveal a more 
complex structure. First, the main source of variance (A 1  in = .4855) is due 
to agreement between the first two observers, who show low preference for 
object C but higher preference for D. The third individual however 
disagrees with his first two colleagues ranking, with observer 4 indicating 

Table 8.8 Four Sets of Rankings of Six Objects 

Objects 

ObserverS 
	

A 

1 5 4 1 6 3 2 
2 2 3 1 5 6 4 
3 4 1 6 3 2 5 
4 4 3 2 5 1 6 

Source: Kendall. 1971a-c, p. 94; reproduced with permission. 

Table 8.9 Principal Components Analysis or Spearman's Rho Correlation Matrix 
R for Kendall's Example (Table 8.8) 

Loadings Scores 

z,  Z4 Z r  z, z, Z4 

1 .772 .417 -.418 .235 A -.110 .620 -1.163 .605 
2 .762 -.096 .628 .121 B .596 -.461 -.909 -1.619 
3 -.873 .332 .188 .304 C -1.675 -.621 -.273 .432 
4 .042 .964 .179 -.194 D .984 .953 .061 .870 
Latent E .750 -1.468 .882 .573 
roots 1.942 1.222 .637 .200 F -.545 .977 1,402 -.861 
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independence from everyone else. In fact, individual 4 appears as "odd man 
out," showing a relative dislike for E and C and preference for D and F 
(A2  in = .3055). The third component seems to represent a residual contrast 
between the first two individuals, with the fourth component representing 
total individual disagreement which is mainly due to object B. Note that if 
the objects are of main interest, a principal components analysis can also be 
performed on the (6 x 6) object correlation matrix (Exercise 8.4). 

Although the Spearman rho correlation coefficient is frequently used for 
ranked data, it can lose much of its rationale when the rank orders are 
purely qualitative, that is, when there is no continuity underlying the ranks. 
A rank order correlation coefficient however can be defined which only uses 
rank order information, that is, one that only employs the relations of 
"greater than" or "less than." Let P and Q represent the number of 
concordant and discordant pairs rcspectively. Then Kendall's rank-order 
correlation coefficient, known as "Kendall's tau" is defined as 

P – 
T =  	 (8.10) 1/2n(n – 1) 

for n objects in the rankings (Kendall, 1970). An alternative form can also 
be found in Gibbons (1971; see also Exercise 8.3). The coefficient (Eq. 
8.10) is distinct from Spearman's rho and often tends to be smaller in 
magnitude. A factor analysis can be based on a correlation matrix using 
Kendall's tau. Nothing new of major importance arises with respect to the 
interpretation of the results—see Marquardt (1974) for an archaeological 
application. 

The use of Kendall's tau in place of Spearman's rho corrects for the 
nonmetric nature of noncontinuous rank-order variables. When using a 
factor model in conjunction with Kendall's tau, however, it can be argued 
that the correction is only partial, since it does not involve the factor 
algorithm used to compute the loading and the score coefficients of the 
model. An alternative approach to a factor analysis of ordinal data therefore 
may be to only recover that minimum dimensional factor representation 
which is invariant under monotonic transformations of the observations. 
Such an analysis is frequently termed "nonmetric," in contrast to the usual 
factor models which assume "metric," that is, intrinsically continuous 
observations defined on the real line. Kruskal and Shepard (1974) have 
developed an algorithm to perform nonmetric analysis employing a least 
squares monotone (isotonic) regression (see also Kruskal, 1964 and Barlow 
et al., 1972). The algorithm preserves for the jth variable, the same rank 
orders for the observed and predicted values. Let x al  and xki  be any two 
observations for the jth variable with predicted values given by 

v * 	 * 
— E z tham 	= 	Z kh ao  (8.11) 
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Then x* and x*. are chosen such that 

* A7 6  -X ki  whenever 	xki 	 (8.12) 

Least squares monotone regression then consists of finding numbers xi'; and 
xik  such that x7i  sx, whenever x 1 5-..rki  and also which minimize 

(i= 1 , 2 , • - • P) (8.13) 

The minimization of Eq. (8,13) cannot be expressed in closed form and is 
therefore carried out by iterative numerical methods. Although the nonmet-
ric monotone model has theoretical appeal, it seems to possess two practical 
drawbacks. First, it requires lengthy computation even for moderate data 
sets, as compared to principal components. Second, the nonmetric model 
can fare poorly against principal components when variables are nonlinear, 
especially when in addition they possess errors of measurement (Woodbury 
and Overall, 1976). 

8.2.4 Conclusions 

Rank-order data lack much of the ratio (interval) information present in 
continuous random variables. If intrinsic continuity can be assumed, either 
as a working hypothesis or by invoking a priori theoretical reasoning, most 
factor models carry through just as if the sample had been taken directly 
from a continuous population. If the assumption of continuity is tenuous, 
however, a nonparametric correlation coefficient such as Kendall's tau can 
be used, and a factor analysis then provides a fictitious but perhaps useful 
summary of the data. A common condition here is that a (n X  p) data matrix 
represents a multivariate sample much in the same way as for continuous 
variables, that is, the observations must be independent. Since rank orders 
usually consist of integer scales, however, they also share common features 
with purely qualitative nominal scales, considered in the following sections. 

8.3 NOMINAL RANDOM VARIABLES: COUNT DATA 

Although ranked data consist of a sequence of discrete, ordered categories, 
they do preserve to some extent the notion of a quantity (Section 1.5). A 
nominal scale on the other hand normally expresses purely qualitative 
categorical attributes which do not contain quantitative information unless 
the data are expressed as counts or proportions—see e.g., Fleiss (1973). A 
factor analysis of nominal data possesses certain features that are not shared 
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by ordinal forms of categorical data or other integer-valued variables, and 
usually require a different interpretational approach. 

8.3.1 Symmetric Incidence Matrices 

A square matrix A is said to be a Boolean incidence (or simply a Boolean) 
matrix when every element aii  of A consists of either I or 0. Such matrices 
are frequently used as qualitative indicators of the presence or absence of 
some attribute since we can always let 

f 1 if attribute present 
= to if attribute absent 

(8.14) 

Furthermore, if aii  = all , A is said to be a symmetric Boolean matrix. 
Although symmetric Boolean matrices are more commonly studied within 
the context of nonnegative matrices, they can also occur in conjunction with 
a principal components analysis of undirected graphs, such as transportation 
networks that possess symmetric incidence matrices. In the geographic 
literature symmetric matrices are also known as "connectivity" matrices. 
Undirected graphs occur in structural analyses of the so-called nodal 
accessibilities of road or airline networks between cities, regions, or 
countries (see Taaffe and Gauthier, 1973). More generally, undirected 
graphs occur in any setting where "communication" is two-way. 

Consider a graph consisting of n nodes, together with an associated 
incidence matrix A where au  = 1 if nodes i and j are connected and zero 
otherwise. Since connectivity is a symmetric relation, the incidence matrix A 
is symmetric. For example, for n = 5, the graph of Figure $.5 has the 
associated incidence matrix 

A t  A2 A, A 4  As 
A l  — 1 1 0 1 0 
A2 1 1 1 0 0 

A = A 3  0 1 1 1 0 
A 4  1 0 1 1 1 
A 5  0 1 1 1 

At times the convention of using zeroes on the main diagonal is also 
employed in which case A may be thought of as a type of "distance" matrix. 
Altering the diagonal terms in this way however does not alter significantly a 
principal component analysis of the matrix since this affects only the latent 
roots (but not the latent vectors) in a fairly straightforward fashion, Note 
that since incidence matrices of undirected graphs are symmetric but not 
necessarily positive definite, the latent roots can be negative, and in order to 
overcome the difficulty, principal components analysis of A is at times 



520 
	

ORDINAL AND NOMINAL RANDOM VARIABLES 

A, 

Figure 8.5 An undirected graph consisting of ti = 5 nodes. 

carried out on the matrix A TA (Gould, 1967; Tinkler, 1972). This, however, 
is unnecessary since for a square symmetric matric we have 

ATA = AAT  = A2  

= PA2PT 	 (8.15) 

so that A = PAPT , that is, ATA, AAT , and A2  possess the same latent vectors, 
the latent roots being squares of those of A. 

Example 8.6. Consider the main road network of Uganda, linking 18 
locations (nodes) as indicated in Figure 8.6 (Gould, 1967). The associated 
incidence matrix A is symmetric since the roads imply two-way communica-
tion between nodes (Table 8.10). The matrix A however is sparse and 
virtually diagonal, indicating poor road connections between the locations. 

- 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 

A 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1— 

(8.16) 
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Figure K.6 A schematic map of the main roads in Uganda, 1921 and 1935 (Gould, 1967; 
reproduced with permission). 

The first four latent vectors, together with their latent roots, are given in 
Table 8.10. Since an incidence matrix is not generally Grammian, it is more 
convenient to use latent vectors rather than the correlation loading co-
efficients. The latent vector elements provide a convenient topological 
quantification of a road map. The first latent vector is associated with the 
cluster of towns connected to Kampala (the capital), indicating the city 
possesses the greatest connectivity or accessability, both direct and indirect. 
The remaining coefficients of the latent vector indicate satellite towns such 
as Entebbe, Masaka, Mityana, and Luweru. The remaining three latent 
vectors indicate the existence of autonomous subclusters of towns which are 
weakly connected to Kampala (or to each other). Thus the second latent 
vector groups the Masindi cluster; the third contrasts the two linear 
branches of the Fort Portal—Mityana string against towns lying on the 
Kampala—Mbarabara road; and the fourth vector contrasts these two linear 
branches with the Busenbatia—Jinja—Kampala/Entebbe—Kiboga loop. The 
remaining latent vectors are ignored since these are either associated with 
negative latent roots or with features that are unique to particular towns and 
are thus of little general interest. For an application to transportation 
networks see Garrison and Marble (1963). 
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Table 8.10 The First Four Latent Roots and Latent Vectors of the incidence 
Connectivity Matrix Eq. 8.16 Indicating Nodal Structure (Fig. 8.6)" 

Node A, = 3.65 A 2  = 2.83 A 3  = 2.62 A 4  = 2.45 

Kampala .64 - .20 
Luweru .24 - .14 
Mityana .29 .32 
Mubende .13 .51 .25 
Kyenjojo .51 .33 
Fort Portal .32 .23 

Entebbe .24 - .14 
Jinja .24 - .27 
Busenbatia .11 -.19 
Masaka ,35 - .14 - .32 .36 
Mbirizi .15 -.11 -.32 .48 
Mbarabara -.20 .33 
Bukata .13 -.20 .25 
Kiboga .29 .22 .13 
Hoima .14 .47 
Masindi .64 .15 
Butiaba .35 .10 
Masindi Port .35 .10 

a  Coefficient magnitudes less than .10 are omitted. 
Source: Gould, 1967; reproduced with permission. 

8.3.2 Asymmetric Incidence Matrices 

Not all incidence matrices need be symmetric since at times a graph may 
represent asymmetric relationships between the nodes in terms of directed, 
that is, one-way, line segments. An example lies in the context of the 
general problem of trying to obtain a unique and complete ranking of a set 
of n objects given pairwise comparisons between two objects. Say, for 
example, we have a round-robin elimination tournament between n players 
such that ties are not permitted and each player registers either a win or a 
loss. The problem is to convert the pairwise elimination results into a 
complete ranking of the players so that the best player is first, followed by 
the second best, and so forth. Denoting the players as A 1 , A 2, . A„, the 
win-loss results of a tournament can be represented by an asymmetric 
incidence matrix of the form 

a12 
0 

an2  • • • 



NOMINAL RANDOM VARIABLES: COUNT DATA 
	

523 

where 

{1 if Ai  —) Ai  (Ai  loses to A 1 ) 
aq --' 0 if Ai .— Ai  (Ai  loses to Ai ) 

and au + a11 -- 1 for i .1'. The diagonal elements are again arbitrary, in the 
sense that they may be coded either by zeroes or ones. 

The most straightforward method of assigning scores is to rank players 
according to the total number of wins, that is, according to the row totals of 
the incidence matrix A. Such a method of scoring however ignores the 
transitivities involved, since two players may tie even though one of the two 
has defeated several stronger players, that is, players who in turn had 
defeated his tied opponent(s). To take transitivities into account, Kendall 
(1955) has proposed to rank players according to their "power," that is, 
according to the elements of the latent vector P 1  that corresponds to the 
dominant (real) root A 1  of A. Since for n> 3 the nonnegative incidence (the 
so-called tournament) matrix is primitive, a unique dominant root A 1  always 
exists, and a unique and complete ranking can be obtained from the relative 
magnitudes of the elements of P i . For a more detailed treatment of 
nonnegative matrices see Basilevsky (1983). 

A weakness of the method is that wins and losses are not treated in a 
symmetric fashion. Thus rather than rank players based on wins we can also 
rank them using losses, that is, we can obtain a ranking using the matrix A T . 
Since the spectra of the two matrices are not identical, this does not 
necessarily lead to a reversal of the original ranks, as is demonstrated by the 
following example (David, 1971). 

Example 8.7, 	Consider the matrix 

A 1 	A 2  A A 4  A 5  

A 1 0 0 I 1 0—  
A 2  1 0 0 1 0 

A = A 3  0 1 0 1 1 
A 4 0 0 0 0 1 
A s  1 1 0 0 0 

where columns indicate losses and rows indicate wins, that is, A loses to 
and so forth (Fig. 8.7):  The leading latent vector of A is 111  = (.4623, 

.3880, .5990, .2514, .4623) r  and that of AT  is Q1 = (.4623, .3880, .2514, 

.5990, .4623) 1 . Thus using A we obtain the ranking A 3 , A I , and A 5  which 
tie for second place, and A 2  and A 4 ; using AT  however we have the ranking 
A3, A,, A 1 , and A 5  which tie for third place, followed by A 4 . 

Although the 04 dummy code normally denotes a nominal variable, such 
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Figure 8.7 The directed graph associated with 
the incidence matrix of Example 8.7. 

a code can also be interpreted as a special case of an ordinal variable, 
possessing only two levels. Thus a win—loss situation, for example, can be 
viewed as representing an ordinal variable since a win (code 1) gives a 
player greater strength than a loss (code 0). The ordinal nature of the 
variable is further reinforced when we introduce ties, that is, when we have 

{2 (a, beats Ili ) 

1)4 = 1 (B, ties with Bi ) 
0 (B, loses to Bi ) 

where b ii  + b ii = 2 for i j. Again an overall general ranking is provided by 
elements of the latent vector that correspond to the largest root. Clearly the 
method can be generalized to the case of k rankings, and we return to the 
situation of Section 8.2. Reversing the order does not necessarily result in a 
reversal of rank orders of the elements of the dominant latent vector. 

8.3.3 Multivariate Multinomial Data; Dummy Variables 

Square dummy (rank order) matrices of the previous section essentially 
occur in conjunction with problems of the paired comparisons type. A more 
general situation occurs for rectangular 0-1 dummy variable matrices which 
can occur in empirical studies dealing with the presence/absence of k 
multivariate attributes given n samples. As for the case of ranks (Section 
8.2), the 0-1 dummies may represent either purely qualitative categories or 
else dichotomies defined over difficult-to-observe continuities. First, con-
sider the case of purely qualitative categories where the nominal variables 
are not given in numeric form and must thus be coded in a particular 
fashion. As was observed in preceding sections, the 0-1 code is frequently 
employed. Although from a measurement perspective the 0-1 scale is strictly 
arbitrary it does lead, in a natural way, to well-known discrete probability 
distributions and their moments. Consider k dummy variables observed for 
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Table 8.11 The k Binomial Dummy Variables 
Observed for n Fixed, Independent Sample Points 

Sample Points 	V i 	V, 	• . • 	Ilk 

1 	 1 	 0 	, . • 	1 
2 	 0 	0 	 0 
3 	 1 	I 	• • • 	0 

• 

	

1 
	

0 	8- • 

Totals 	 n i 	n 2 	• • • 

n occasions or sample points (Table 8.11). The variables may represent k 
sets of "yes—no" answers to a questionnaire, quantal responses in a 
multivariate bioassay, the occurrence—nonoccurrence of plant species in a 
certain ecological environment, or whether archaeological artifacts are 
found in certain closed assemblages. Variables of this type are known as 
dichotomous or binary. Other names include incidence variables, indicator 
variables, and pseudo variables. Frequently n is fixed and the probabilities 
of outcome are constant across the n (independent) sample points. Here the 
k dummy variables Y1, Y2  , . , Yk may then be viewed as defining a set of k 
binomial random variables, possibly correlated. Although in the statistical 
literature the term random variable conventionally refers to a count or 
incidence of occurrence of the code "1," in what follows the term is also 
used to refer to a 04 dummy variable, depending on the context. As is well 
known, all first and second moments of the dummy variables are functions 
of the frequencies, either relative or absolute. Thus Y , ni ln, and the 
sums-of-squares and products of the dummy variables are as in Table 8.12 
where nit  denotes joint bivariate occurrence. The second moments are then 
given by 

y ry  „.. 
z 

— — Po 

Table 8.12 The Sum-of-Squares and Products 
Matrix for k Correlated Binomial Variables 

(8,17) 

 

V, V 2 

 

'I ll 
 n21 

n k , 

ni2 

n 12 

• • • 

• • • 
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and 

1 

	

var(Y,) = [ 	 — 

,.., 

	

nu 	VW 
= 

2 
Pii Pii 

Pa( 1—  

= puqu 	 (8.18) 

1 
cov(Y„ Y,)= — [n11 	kJ] 

nri n il  \ 
= 	I 

Ii n 1\n 

Pii — PiiPii (8.19) 

where q„— (1— p i ). Using Eqs. (8.18) and (8.19) the binomial correlation 
coefficient can then be expressed as 

Ai —  (1)0(P11) 
(8.20) 

(Pitqapitql1)
112 

which corresponds to the usual Pearson product—moment correlation 
coefficient. Six different analyses of a data matrix of dummy variables are 
possible, depending on the type of dispersion matrix employed (Section 
2.4). The six dispersion matrices are summarized in Table 8.13, where 
ID — diag(n ii ), C = diag(p 1 q11 ). Of course when categories represent an 
unobserved underlying normal distribution, Pearson's tetrachoric correlation 
coefficient can be used instead (Section 8.2.2). Other measures are also 
possible and these are discussed further below. 

Table 8.13 Six Types of Dispersion Matrices for Binomial Dummy Variables 
Where tbe Equality Sign Indicates a Typical Element of the Respective Matrix 

About Origin 
	

About Mean 

Absolute 
frequency 

Relative 
frequency 
Standardized 
frequency 

yTy (no)  

y Ty  = = 

	

n 	(1311) 1 

	

0 -trz y.ryo - I /2 	n il  

(n iinil )" 2  

X TX=(nu — no )) ) 

T 
X X 

C -"" 2 X TXC 112  — 	 PhP')  

(pe, chip/4r col 12 



f(N) = f(n l , n 2 , .  n 1 !n 2 ! ... 1 ! Pn l Pn  2 	
(8.22) 
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The binomial dichotomy can easily be generalized to a multinomial 
polytomy (multichotomy) consisting of 1 categories (levels) A I , A 2 , „ , A i . 
Let I I , I, . „ , I„ denote a set of n (1 x1) observation vectors such that 

{ 1 	if Ai 	(j= 1, 2, . 	,/) 

0 otherwise 	(i = 1, 2, . . n) 
(8.21) 

A single multichotomous nominal variable can then be represented by n 
dummy variables say I I  = (1, 0, 0, ... , 0)1 , 1 2  = (0, 1, 0, . 	, . . • 

= (0, . . . , 1, 	, 0) r , each consisting of a single "1" and 1— 1 zeroes 
(Table 8.14). Since the 1 categories are mutually exhaustive and exclusive, 
they cannot be independent. To remove the dependence however we can 
simply delete a category, for example, the last. Note also that the digit "1" 
may appear only once for each row of Table 8.14. At times such dummy 
variables are also termed as "pseudovariables" to distinguish them from 
nonmultinomial dichotomies which can possesses any number of ones. 

Table 8.14 represents a different situation than that depicted in Table 
8,11, since in the latter we encounter k binomial dummy variables and in the 
former we have a single (multinornial) variable consisting of / cataegories or 
"levels." For fixed n >1 let n i  denote the number of times "1" is observed 
for category A,. Then E tit  n, = n, and the joint density for n independent 
sample points can be written as 

It is easy to verify that for 1= 2 we obtain the binomial probability function 
and the multinomial is thus the multivariate generalization of the binomial 
distribution. Also all marginal distributions of Eq. (8.22) are binomial and 
consequently E(ni )= npi  and var(nd= npi  (1— p i ) (j =1, 2, .. . Mul-
tinomial counts are generally correlated since it can be shown that for any 
two counts ni  and ni  we have cov(n„ —np i pi , and the covariance 

Table 8,14 A (n xi) Dummy Variable Matrix for an 
(Category Multinomial Variable 

Multinomial Categories 

A / 	A 2 	 A, 

1, 1 0 0 
1 2 1 0 0 

• • • 
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matrix is therefore 

np t q l  —np 1 p 2 

 X= -- nP1P2 	nP2q2 

—ni)  IP/ - — nP2P1 

• • I,  

— nP 
—1119 2Pr 

np iqi  

 

    

The correlation coefficient between n . 	ni  can also be expressed as 

01 2m1 p1 ci1 ) 112  

— 	(qiiird1/2 	(i, = 1, 2, . . . 1) 	 (8.23) 

which results in a corresponding correlation matrix for the I subcategor-
ies. 

A different situation emerges when we consider a set of k interrelated 
nominal variables, each consisting of l, 1 2 , . • 	lk  mutually exclusive 
multichotomies. The special case of 1 1 	= lk  = 1 is shown in Table 
8.15. A distribution of this type is known as a multivariate multinomial 
distribution (see Johnson and Kotz, 1969), and provides a generalization for 
the k intercorrelated binomial variables of Table 8.11. When k 2 we obtain 
a further special case, that of the bivariate binomial distribution. Owing to 
the mutual exclusiveness of the categories there is a single "1" per variable 
(per sample point) so that the rows of Table 8.15 possess the constant sum 
k. Since the same trait may be observed for more than one sample point 
however, the column sums are unrestricted. Let K =1 1 +12 + • +1k . Then 
Table 8.15 can be represented as a (n x K) matrix Y, and forming the 
(K x K) Grammian matrix of the sums-of-squares and products yields the 
partitioned matrix 

Table 8.15 The k Multivariate Multinomial Dummy Variabks Observed for n 
Independent Sample Points 

Sample 
Points 

V, . 	• • V 

Total J, 1  • 12 • ill i21 ill J 1  J 2  ..1„ 

1 1 0 • • 	• 0 0 0 • • 1 • • s 0 1 • • • k 
2 0 I • 0 1 0 1 0 0 k 

• • • 

0 0 J 0 . 	• 	. 0 0 0 I k 
Total N,, N, 

••• N„ N Nz2.  ' 	• 	' ND' • ' • N„, N„ • • • 

(pit), )" 2  



[...T. ,  
Y 1Y I 

yTy = Y12..111 1 

YT:Y 1  

11 

11 :11 2  NI , 

yTt  = 

n i2  
n 22  

nr2 

- - 
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011/,  

yTy 
1 	2 

Y IY 22 

fey 
K 2 

y2T y  

N21  

N,, 
YTKV 

NK1 

(8.24) 

where again for simplicity of notation we assume / 1  = 12  = • • • = 11(  =1. The 
categories that comprise Y 1 , Y2 ,. , YK  are exhaustive and mutually 
exclusive so that Y rY is symmetric and positive semidefinite of rank K — k + 
1. The submatrices on the main (block) diagonal are square and diagonal 
whereas the (generally) rectangular off-diagonals represent nonsymmetric 

x 	two-way contingency tables; for example, for Y I1 Y 2  we have the 
X 12 ) matrix 

where / I  = r and 12  = c the number of rows and columns respectively. 
For multivariate multinomial observations however the appropriate 

measures of association are based on Grammian matrices and this provides 
the appropriate rationale for a factor analysis of nominal data. Also for 
large n the multivariate multinomial approaches the K-dimensional normal 
distribution, which permits the use of normal sampling theory for signifi-
cance testing. 

The categories of Table 8.15 are generally purely qualitative. A special 
case arises which is of considerable interest in practice, where the multino-
mial categories represent an observed polytomy of an otherwise continuous 
(but unobserved) variable. In such a case interest lies in estimating the 
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underlying continuity by using the observed frequencies, much in the same 
way as in Section 8.2.1. The correlation coefficient between any two 
underlying continuities may be estimated using the polychoric correlation 
coefficient (Eq. 8.3), which is also applicable to nominal data. A correlation 
matrix of such coefficients may then be built up and factor analyzed by an 
appropriate procedure. When all the variables are nominal, a more com-
monly used procedure however is to perform a principal components 
analysis of a matrix of (0, 1) dummy variables. As is seen in the following 
section, this is equivalent to several other procedures which have been 
commonly used to analyze discrete data. The appropriate analysis of Table 
8.15 is based on the uncentered matrix of direction cosines or relative 
frequencies ID- uzyTyp  1/2, that is, principal components are obtained as 
solutions of the normal equations 

(D u2Y FYD " 2 	= 0 	 (8.25) 

or, in alternate form, 

(YTY AM)P; = 0 	(i = 1, 2, . . . , K) 	 (8.26) 

where .r = D I/2 1Pi  (see Exercise 8.5) and D = diag(D ! , D,, 	, Dk ) where 
Di  = Y,-`17 i  are diagonal submatrices of Eq. (8.24). Although Y consists of 
discrete random variables, the loadings and the scores are real valued and 
may be used as estimates of the underlying continuities in the population. 
The normal equations (Eq. 8.26) contain the maximal latent root A = = k, 
equal to the constant row sum, and its corresponding latent vector I = ( 1 , 
1, . , 1)T, Since elements of Y'Y are not centered about the means, the 
trivial solution corresponds to the nonzero expected values of the dummy 
variables. From Eq. (8.26) we have 

Y 1 Yri' ADP7 

and replacing 1 K  = r and A. = k leads to the expression 

Y1 Y1 K  = kD1 K 
	 (8.27) 

where Yl K  = k1„ = (k, k, . . . , k) T  the (ii x I) vector or row sums of Y, and 
fr in= D1 k= (Nil, Nu ,  N 31 ,•  • NOT  the (K x 1) vector of column sums of 
Y. Substituting Yl„ into the left-side of Eq. (8.27) then leads to 

kY T  WU< 
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the right-hand side of eq. (8.27) and A 1  = k, I. K = ( 1,1, . ,1)T  must be a 
solution of the normal equations (Eq. 8.26), where 

= 	, VIT2 , • , VITO 

Normalizing we obtain the (k x k) latent vector 

E 
(VN 1Is/1 	,\INI   T 

Ni
i„  

(8.28) 

where N = N 1  + 	+ NIG . Once the effect of the maximal (trivial) 
solution is removed, the remaining latent roots and vectors are those of the 
centered solution, that is, the solution of the centered matrix 

At; 112  is the same as that of the (first) residual matrix 

(D 112YTY1D -1 " 2  — A I PI P.11. ) 	 (8.29) 

where A i  = k and P1  = 1. Finally, since Y 1 Y is singular, other trivial 
solutions of Eq. (8.25) are given by A i  = 0. In fact, since Y TY has rank 
K — k + 1 we only obtain that number of nonzero latent roots of the matrix 
D - 1 /2yTy.+ 

U 112  (Exercise 8.6). 

Example 8.8. Burt (1950) presents physiological human genetic data 
obtained for n 100 individuals in Liverpool, England: color of hair (Fair, 
Red, Dark), color of eyes (Light, Mixed, Brown), shape of head (Narrow, 
Wide), and stature (Tall, Short) in the form of a k = 4 dimensional 
multinomial distribution so that we have / I  = 3, /2 = 3, 13  = 2, and /4  = 2 
categories respectively. The (10 X 10) matrix Y TY is given in Table 8.16. 
The adjusted matrix of direction cosine (relative frequencies) 

' 12 Y YD "2  is presented in Table 8.17 where removing the effect of the 
trivial solution yields the residual matrix R 1  (Eq. (8.29) of Table 8.18. Once 
the effect of the sample means is removed, the subsequent loadings are 
those of the usual (centered) correlation matrix of Table 8.19. The principal 
components correlation loadings may be interpreted in the usual manner. 
Also, in addition the first two components can be used to yield a joint 
mapping of the four traits in a common subspace (Fig. 8.8; see also Section 
5.4.4). We thus perceive a tendency for light pigmentation to go together 
with tall stature and darker pigmentation to be associated with a wider head. 
A narrow head structure, on the other hand, appears to be equally 
associated with the first two clusters. The relative groupings of categories is 
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Table 8.16 	Sums of Squares and Products of a (100 x 10) Dummy Variable 
Matrix V 

Trait F R D L MB NW T S 

V,: Hair 
Fair 22 0 0 14 6 2 14 8 13 9 
Red 0 15 0 8 5 2 11 4 10 5 
Dark 0 0 63 11 25 27 44 19 20 43 

V 2  : Eyes 
Light 14 8 11 33 0 0 27 6 29 4 
Mixed 6 5 25 0 36 0 20 16 10 26 
Brown 2 2 27 0 0 31 22 9 4 27 

V 3  : Head 
Narrow 14 11 44 27 20 22 69 0 30 39 
Wide 8 4 19 6 16 9 0 31 13 18 

Y,: Stature 
Tall 13 10 20 29 10 4 30 13 43 0 
Short 9 5 43 4 26 27 39 18 0 57 

Source: Burt, 1950. 

Table 8,17 Matrix of Relative Frequencies D -112 VT VD- " 2  of Table 8.16 

Trait F R DL MBNW T S 

Hair 
Fair 1.000 .000 .000 .519 213 .077 .359 .306 .423 .254 
Red .000 1.000 .000 .359 .215 .093 .342 ,185 .394 .171 
Dark .(XX) .000 1.000 .241 .525 .611 .667 .430 .384 .718 

Eyes 
Light .519 .359 .241 1.000 .000 .000 .566 .188 .770 .092 
Mixed .213 .215 .525 .000 1.000 .0(X) .401 .479 .254 .574 
Brown .077 .093 .611 .000 .000 1.000 .476 .290 .110 .642 

Head 
Narrow .359 .342 .667 .566 .401 .476 1.000 .000 .551 .622 
Wide .306 .185 .430 .188 .479 .290 .000 1.000 .356 A28 

Stature 
Tall .423 .394 .384 .770 .254 .110 .551 .356 1.000 .000 
Short .254 .171 .718 .092 .574 .642 .622 .428 .000 1.000 

Source: Burt, 1950. 

then presumably accounted for in terms of the underlying latent continuum 
which is related to the genetic and/or environmental factors. 

Further examples of principal components analysis of nominal data may 
be found in David et al. (1977) and Tenenhaus (1977). 
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Table 8.18 Residual Matrix R after the Removal of the "Trivial" Sointion 

Trait L M B N W 

Hair 
Fair .780 -.182 -.372 .250 -0.68 -.185 -.030 .045 .115 -.100 
Red -.182 .850 -.370 .137 m017 - -.123 .020 -.030 .140 -.121 
Dark -.372 -.370 .370 -.215 .049 .169 .008 -.012 -.136 .118 

Eyes 
Light .250 .137 -.215 .670 -.345 -.320 .089 -.132 .393 -.341 

Mixed -.068 - .017 .049 -.345 .640 -.334 -.097 .145 -.139 .121 
Brown -.185 -.123 .169 -.320 -.334 .690 .130 --,020 -.255 ,222 

Head 
Narrow -.030 .020 .008 .089 -.097 .013 .310 -.462 .006 -.005 
Wide .045 -.030 -.012 -.132 .145 -.020 -.462 .690 -,009 .008 

Stature 
Tall .115 .140 -.136 .393 -.139 - .255 .006 -.009 .570 -.495 
Short -.100 -.121 .118 -.341 121 .222 -.005 .008 -.495 .430 

Source: Burt. 1950. 

Table 8.19 Centered Principal Components Loadings of Matrix R 1  

Traits 

Factors 

1 11 111 1V VI VII 

Hair 
Fair .469 .420 .231 -.602 -.100 - .404 .119 

Red .387 .333 -.019 .751 .182 -.376 .012 

Dark .794 -.411 -.128 -.011 -.030 .422 -.076 

Eyes 
Light .574 .719 -.164 -.104 .042 .084 -.325 

Mixed .600 -.214 .563 .227 -.442 .048 .125 

Brown .557 -.482 -.437 -.138 .443 -.183 .201 

Head 
Narrow .831 .081 -.428 .039 -.338 -.044 .056 

Wide .557 -.121 .638 -.058 .504 .065 -.084 

Staiure 
Tall .656 .619 .010 .047 .120 .335 .241 

Short .755 -,537 -.009 -.041 -.104 -.292 -.209 

Source: Burt, 1950. 

8.4 FURTHER MODELS FOR DISCRETE DATA 

Principal components analysis 
previous section can be derived 
models are at times considered 

of multivariate multinomial data of the 
in several alternative ways. Although such 
to be distinct, and historically have been 
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Figure 8.8 Principal component loadings of the first two axes of Table 8.19. ity fair hair, 
H, = red hair, H„ = dark hair, E,= light eyes, /3„, mixed eyes, E,,= brown eyes, C„ =narrow 
head, C.. = wide head, S, = tail stature, and Ss  =short stature. 

ascribed to different authors, they are in fact related and can be considered 
as variants of the model described in Section 8.3.3. In what follows we 
describe several of the better known alternative derivatives of the multi-
variate multinomial model. In addition, as a rule the models can also be 
extended to the rank-order data of Section 8.2. 

8.4.1 Guttman Scaling 

An alternative rationale to maximizinf correlation among nominal variables 
is to maximize the correlation ratio Tr . This is in fact the approach adopted 
by Guttman (1941, 1946), who seems to he the first to consider the problem 
explicitly in terms of a principal components analysis of 0-1 dummy 
variables. Although the procedure leads to the normal equations (Eq. 8.25), 
Guttman's derivation provides an additional insight into the model. His 
derivation does not require directly the assumption of multivariate multino-
mialness and has as its objective the quantification or scaling of discrete 0-1 
multivariate data. 

Consider the incidence data matrix of Table 8.15 and assume the dummy 
variables represent discrete indicators of an underlying continuous subspace. 
We wish to estimate a set of real-valued loading coefficients and score 
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vectors that maximize a nonlinear coefficient of correlation, known in the 
context of one-way classification ANOVA as the correlation ratio. Guttman 
(1941) uses what he terms the "consistency principle" (principle of internal 
consistency) in deriving the model; in Guttman's (1941, p. 321 words, "in 
the social sciences we are often confronted with a set of acts of a population 
of individuals that we would like to consider as a single class of behaviour." 
The intent of the analysis is thus to maximize consistency between individual 
sample points, which can be achieved by minimizing variation within the 
individuals, that is, minimizing the relative variability of the rows of Table 
8.15. Let SS„ SS, and SSb  denote the total, within, and between groups 
sum-of-squares of one-way classification ANOVA, respectively. Then SS, = 

+ SS,, and since minimizing SS ), is the same as maximizing SSb , our task 
can be defined as maximizing the expression 

(8.30) 

The correlation ratio 71 2  provides a general mcasurc of correlation not 
specifically tied down to linearity of regression. By maximizing Eq. (8,30) 
we are in fact seeking continuous principal components which are maximally 
related to the observed dummy variables. Since 

MS„ 	71 2  dfb  

F MS .' – ( 1  — 2) df  

in usual notation maximizing 7/ 2  is equivalent to maximizing the F statistic. 
First consider the correlation ratio for the component loadings. Let u be a 

(K x 1) vector of continuous weights assigned to the columns of Y and let 

(8.31) 

that is fi = 	 , Ü„)T , the (n X 1) vector of mean weights for 
individuals 1, 2, . 	, n. Also let a be the overall mean of the elements of 
Yu. Then the correlation ratio for the loadings can be expressed as 

2 SSb 	– Knet 2  
= 57:51 u TDu – Kna2  

T 
—K u Y rYu – Kna z  

u l Du – Kna 2  

using Eq. (8.31) where D diag(Y TY). The numerator accounts for vari- 
ation between the rows of V (the sample points) and the denominator 
represents total variation of the elements of Y when ones are replaced by 



536 	 ORDINAL AND NOMINAL RANDOM VARIABLES 

the weights u 1 , u2 , . , u K . Since 71 2  is invariant under translation of axes, 
we can center u about the overall mean ü by setting a = 0, which yields 

2 uTyTyu  

nu = 
Kul 

-
Du 

(8.32) 

We now have the standard problem of maximizing a ratio of quadratic 
forms, which can be achieved by maximizing the numerator u TYTYu for 
some fixed value of u TDu. Letting 71 2„ = A, Eq. (8.32) can then be expressed 
as 

AKuTDu = Tu  yTyu  

and differentiating Eq. (8.32) with respect to u yields 

2AKDu + 79 —u 
Du =2Y Vu  

where the necessary condition for a maximum is 

2Y1 Yu 2AKDu 
— 

uTDu 

Or 

2(Y TY — AKD)u 

u Du 

The maximum value of the correlation coefficient A = n: is then a solution of 
the normal equations 

(—IC
YTY AD)u = 0 

1  
(8.33) 

An alternative derivation is to set u TDu = / and maximize the numerator by 
using Lagrange multipliers (Tjok-Joe, 1976). This procedure however tends 
to obscure the fact that extrema of ratios of quadratic forms are absolute 
rather than constrained, a point which is frequently of some importance. 
Equation (8.33) is the same as Eq. (8.25), with the exception of the constant 
1/K which can be initially omitted since it only affects the values of the 
latent roots and not of the latent vectors. We have 

(D -1/2YTYD -112  — Al)! = 0 	 (8.34) 

Or 

(Y* TY* AI)Pi  = 0 	 (8.35) 
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where Pi  = /2u and Y* = YD - " 2 . The vector of weights u is thus identical 
to the latent vector 13'; of Eq. (8.26), and the latent root is equal 
(proportional) to 7/. Equation (835) possesses the same trivial solutions as 
Eq. (8.26) so that the maximal nontrivial correlation ratio corresponds to 
the second root of Eq. (8.35). 

We can also maximize the correlation ratio for the scores of ICKTY* which 
are simply the latent vectors of Y*Y* T , by assigning to each sample point a 
real-valued score, say Denoting the (n x 1) vector of scores by v we have 
the (K x 1) vector of mean scores 

= 	 (8.36) 

so that the correlation ratio for scores is 

— 2 	  
nu - Kv T V 

v 1VD -  V T  v 

Kv T  v 
(8.37) 

where we set the overall mean of the scores U equal to zero. Differentiating 
and setting to zero then yields the dual of Eq. (8.33), namely, 

A1)1, = 0 
	

(8.38) 

(Exercise 8.7) 

where A =7/. The optimal scores (weights) are then contained in the latent 
vector v which is associated with the first nontrivial root of (1/1()Y*Y* 1 , 
where re, = = A (Section 5.4). Guttman's theory of scaling thus leads to a 
standard principal components analysis of direction cosines, based on the 
matrix of dummy variables rather than on the contingency table. As for the 
general method described in Section 8.3, the normal equations (Eqs. 8.35 
and 8.38) also possess trivial solutions which can be eliminated by a 
deflation factor, Thus the matrix 

1 
XTX = Y

T 	 - Y — DI K  1 1 D K 	K  (8.39) 

contains roots O 5.. A <1 and the deflation factor (1 /1()D1 K 1 TKD is equivalent 
to the matrix of sample means encountered in the continuous case (Section 
2.4). Since the matrix X rX has rank K k it can possess at most this 
number of nonzero latent roots. 

Several extensions of the method are possible. Thus the matrix of dummy 
variables Y can be viewed as a contingency table (Shiba, 1965a) or the 
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dummy codes may be replaced by ranks (Guttman, 1950; Shiba, 1965b). It 
turns out however that the procedure has a dual method of analysis based 
on contingency tables, which historically has preceded Guttman's principal 
components decomposition of dummy variables (Section 8.4.3). In fact 
there has been some debate, particularly in the psychological literature, as 
to whether a factor analysis (principal components analysis) is suitable for 
dummy variables and whether the analysis should be considered in terms of 
so-called scalogram analysis (Guttman, 1953; Burt, 1953). Certainly the 
surface objectives of the two approaches appear to he different—Burt 
(1950) seeks to factor analyze a set of dummy variables using principal 
components, whereas Guttman's (1941) aim is to construct measurement 
scales of the latent traits. This would seem to correspond to the factor and 
the multidimensional scaling models, respectively, since the objective of 
unrestricted factor analysis is exploratory and that of multidimensional 
scaling is to provide measurements of unobservable phenomena or traits. 
Although from the application-oriented viewpoint the distinction may be of 
some importance, from a statistical or mathematical viewpoint the models 
are identical and are based on a principal components analysis of nominal 
variables. 

8.4.2 Maximizing Canonical Correlation 

Consider the multivariate multinomial table of 0-1 dummy variables (Table 
8.15). Since each category can he viewed as a distinct set of variables, the 
matrix V can also be viewed as representing K categories. First consider the 
case for K = 2, a situation which is formally equivalent to Hotelling's 
(1936b) canonical correlation model for continuous variables (Section 
5.5.1). Using sample covariances the canonical correlation model can be 
written as 

(SS 12 S2-21 S 21  – 	–0 

(S;21 S2IVII I SI2 /4)11i= 0 	 (8,40) 

with standardization ATS' il  A i  = 1 and 113 1 ,522/3, = 1 where 

[

4

511 : 512 

I 
5+1 I 5+1 

 1 	4  

(8.41) 

 

is the sample covariance matrix in partitioned form. To see how S is related 
to the sums of squares and products matrix V I Y (Section 8.3.3) we have, for 
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K= 2, 

n il 	n 12  

n21 n 22 

n 

• • • 

N1 2 	0 

0 
	M 

N21  

N22 

0 

n 

1 i2 	n22 	• • • 	nr2 

• • 
• 

	

-Fi ie  n2, 	n, 

y T y 
 

r1 	n r2 

N212- 

[

Dr. 

 NT  

N 

 

(8.42) 

   

where r=1 1 , c=12 , and N, NT  consist of joint occurrences, D r  is the 
diagonal matrix of totals for II I , and D, is the diagonal matrix of totals for 
Y2. Let r and c denote the mean vectors of columns of 17 1  and Y2, 
respectively, that is, r and c consist of relative frequencies based on the 
columns of V I  and ‘1 2 , Then 

S = Y ;V, rrT  , 	S22 = Y2 -CCT 

	

= Dr  — rrT 
	

= Dr. — ccT  

	

S12 	11)( 2 

N re' 
	

(8.43) 

where since S II E = -221=0, the matrices S I!  and 5 72  are singular of rank 
(f t  — 1) and (/2  — 1), respectively, owing to the mutual exclusiveness of the 
categories of 17 1  and Y2. A standard canonical correlation analysis however 
breaks down in the presence of singularity. Several options exist to remedy 
the dilemma. First, we can employ unique generalized inverses of S 11  and 
S22 (e.g., see McKeon, 1966). Second, we can omit a column for each 
nominal variable V i , for example, the last. A similar expedient however is to 
carry out a classical canonical correlation analysis using 'CA I  = Dr ,Y21 Y2 

 D. and V0(2 , that is, without centering the data about the means. The 
analysis again yields a trivial maximal solution associated with the canonical 
correlation p 2  = A -  = 1, after which the remaining canonical solutions are 
equivalent to those centered about the means. En practice the solutions are 
obtained using the matrix of direction cosines. The normal equations can 
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then be written as 

(1),-. -  'NW; NT  — A 	= 
	

(8.44a) 

(D NTD; — 1.4 )11, 	 (8,44b) 

with standardization 

A;rD,A, = 13? DcB, = J 	 (8.44c) 

As for the general canonical correlation model of Section 5.5.1, it suffices to 
solve only one of the equations given above. 

For k> 2 the classical interpretation of canonical correlation as maximiz-
ing correlation between two linear combinations (bilinear form) breaks 
down. This is because correlation is inherently a binary concept and cannot 
be generalized to more than two variables or vector spaces. Generalizations 
that seek objectives similar to classical canonical correlation analysis 
however are possible (McKeon, 1966; Carroll, 1968; Tomassone and Lebart, 
1980). C:onsider k data matrices Y E , Y2, . . Yk  as in Table 815 where the 
column means are set to zero. We seek an n-component vector Z and k 
transformation vectors A . = 1, 2, „ k) each with i components such 
that correlation between Z and A E Y /  + A2 Y 2  + • • - + Ak Y k  is maximized. 
Although for categorical data this is equivalent to a principal components 
analysis of multinomial multivariate data (Table 8.15), the comparison is 
nevertheless interesting since it indicates the inherent limitations of classical 
canonical correlation analysis. The principal components model however 
suffers from no such difficulties, and this enables us to generalize to analyses 
of multivariate multinomial dummy variables and multiple contingency 
tables. As for principal components, the canonical variates can be rotated to 
alternative positions (Cliff and Krus, 1976). For further reading concerning 
canonical correlation of discrete data sec also Nishisato (1980) and 
G reenacre (1984). 

8,4.3 Two-Way Contingency Tables: Optimal Scoring 

As was seen above an alternative method of developing the topic of a factor 
analysis of nominal categorical data is through the concept of a two-way 
contingency table of counts, that is, through the submatrix N of Y TY (Eq. 
8.42). The advantage of such an approach is that it obviates the storage and 
manipulation of large sparse dummy variable matrices. Historically, this is 
also the original approach, apparently from Hirschfeld (1935; later known as 
H.O. Hartley), who considered the problem of transforming a discrete 
bivariate distribution such that regressions between the two variables are 
linear and yield maximal correlation. By maximizing the con -elation ratio he 
obtained the maximal squared correlation coefficient as the largest latent 
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root of Eq. (8.44), that is, the largest squared canonical correlation between 
two sets of discrete multinomial categories. In this respect Hirschfeld's work 
precedes that of Hotelling's paper (1936) on canonical correlation theory, as 
well as Fisher's (1940) "method of scoring" for discrete variables (see also 
Maung, 1941) and Guttman's (1941) scalogram analysis. Indeed, to this day 
the approach seems to he relatively unknown outside of the statistical 
literature and still continues to elicit publications on the topic (e.g., see 
Kaiser and Cerny, 1980). 

For ease of interpretation we modify our notation to conform to that of 
contingency table analysis. Consider matrix N of Eq. (8.42) but in the form 
of an asymmetric contingency table (Table 8.20). The columns correspond 
to a nominal (multinomial) variable A with c categories, and the rows 
represent a nominal (multinomial) variable B with r categories. Also n, . = n 
is the total sample size, and the subtotals Il,. and n denote marginal 
frequencies of the rows and columns respectively. Although the rows and 
columns of N represent purely nominal categories, they can also consist of 
ordered categories of the type considered in Section 8.2, particularly when 
the rank orders are considered to represent unobserved continuities. In any 
case, although the categories represent observable (but possibly arbitrary) 
groupings, it is at times not unrealistic to assume the existence of an 
underlying bivariate continuum ftx, y), which cannot be observed in practice 
but which may hopefully be estimated from the frequency counts. The 
purpose for estimating the continuum ftx, y) may be threefold: (1) to 
remove the artificiality of evenly spaced categories; (2) to estimate the 
correlation coefficients (regressions) between the variables A and B; (3) to 
obtain a joint mapping of the two sets of categories in a joint space of lower 
dimension (Section 5.4.4). The objectives are therefore similar to those of 
the preceding sections, and the analysis may again be understood either in 
term of canonical correlation or else in terms of the principal components 
model. As already pointed out however the main disadvantage of the former 

Table 8.20 The Submatrix N In the form of a Two-Way Contingency Table Where 
yi  and xj  are the Unobserved Scores 

Variable A 

ye 

A 1, 	Totals 

n 

Variable B 

n 	n 
n2 I 	n 22 

ill. 
n2r 	n2• 

xr 	B r 	n r 	n 	• • • 	n„.  

Totals 	n. 1 	n .2 	 n. n 

Y I Y2 

 A2  

 

A, 

 



1 vIr 	 1 x: 	2 var(x) — L ni.4 = var(y) = —n 2, n .i y i  n a=ri  r- 
(8.46) 

p = X T NY = [x 1 , x2 , . . . , x,.] 

n 11 

[n 2 -' 

rI 

n 12 
n  22 

• 

tir2 
• 

(8.48) 
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viewpoint is that the canonical correlation model cannot be generalized for 
k > 2, that is, for more than two sets of variables. 

Formally, the objective is to estimate the unobserved values x i , 
X2 , .. and y, y 2 , . • . , y, of x and y respectively (Table 8.20) such that 
correlation between them is maximized. This is the prbolem of finding 
"optimum scores" posed by Hirschfeld (1935), Fisher (1940), and Maung 
(1941). Assuming large n, the scores are chosen so that they are in standard 
form—zero means, that is, 

1 r  1 
—E ni•  = n 2, n. iy i = 0 	 (8.45) n 1=1  

and unit variance, that is, 

The correlation between x and y can then be expressed as 

1 	f 

P = E E n a-, 
(8.47) 

which corresponds to the usual correlation coefficient for grouped data. In 
matrix form we have 

a bilinear form in the unknowns X and Y. Also, using Eq. (8.46) the sums of 
squares can be expressed as 

n = E flX 5 	n = E n 
I=1 

= XTNiX 	= yi-N1 y 	 (8.49) 

where 

N, = 	n2. , 	. nr. ) 	 (8.50h) 

	

= diag(n .i , n .2 , 	,n f ) 	 (8.50h) 

We wish to maximize the correlation (Eq. 8.48) subject to the constraints 
(Eq. 8.49). Using Lagrange multipliers we have 

= XTNY — A(XT N,X — n) — 11,(Y TN,Y — n) 	(8.51) 
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and differentiating with respect to X and Y and setting to zero yields the 
normal equations 

drA 
dX =

NY — AN,X = (8.52a) 

acb 
 —A( = NT  X — 	= 0 	 (8.52b) 

Premultiplying by N1 112  and N -112  and solving for X and V yields the two 
systems 

(N1 u2NN1 112 )N: 12 Y = Als1' 2X 	 (8.53a) 

(N,- ' 12 N TN - ' 12 )N 112 X = iu,NY 2 Y 	 (8.53h) 

where A and p. are latent roots of N and N T  respectively and N; i2 Y and 
ISI: i2 X are right and left latent vectors of N. Setting A 2 --- /L 2  = p 2  and 
substituting 1■1 12 X = (1/A)(1 12 NN;-1/2 )N1 2 Y into Eq. (8.53b) yields 

1 
"NN -. - I  /2)1■1!/2Y = „0,,i y2v  

p /  ; 	P", I  

Let M = N, " 2 NN:-112 . Then 

(m -rm)Ni2y  

Similarly it can be shown that 

( MMT)N il I2X p 2N,Ux 

(8.54) 

(8.55a) 

(8.55b) 

(Exercise 8.8) where M TM and MM" are positive semidefinite and symmet-
ric. Equations (8.55a and b) can be viewed as representing a principal 
components analysis of M 1 M and MM 1- , where M is the matrix of direction 
cosines between the two sets of categories and N: 12Y and N: 12 X are the 
latent vectors. Both sets are therefore formally equivalent to the "loadings" 
and "scores" of a continuous data matrix (Section 3,4). Alternatively, Eq. 
(8.54) can be expressed in canonical correlation format. We have 

(N7112NTN,7"2N1 2
NN -Ii2IN 1

I 
 12., 	2 112 

I  

and premultiplying by Ni  2  and simplifying yields 

(N,7 I NINT 1 N)Y 
	

(8.56a) 

Also, using Eq. (8.55b) we have 

(N: I NN I NT)X = p 2X 
	

(8.56b) 
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which are the same as the canonical correlation equations (E9s. 8.44a and 
b). The latent vectors are also usually standardized as Y 'Nit/ = I and 
XI Ni X = I. The analysis of a two-way contingency table is therefore 
equivalent to a principal components analysis of M TM with possible 
differences in the scaling of the latent vectors. Again, it must be kept in 
mind that Eqs. (8.56a and b) cannot be generalized to higher level tables, so 
that when k > 2 the analysis must be conducted along the lines of the 
principal components model. Also, since the rank of MM and Mlle -  is 
equal to min(r, c), the matrix used in the analysis usually depends on the 
relative magnitudes of r and c since it is easier to work with matrices of full 
rank. The contingency table analysis also has the trivial solution p 2  = 1. 

Equations 8.56 maximize correlation between two sets of categories and 
form a useful tool for an optimal exploratory analysis of nominal and rank 
order variables. It may be asked, however, to what extent is the analysis 
distribution free. The problem has been considered by Lancaster (1966; see 
also Kendall and Stuart, 1979; Naouri, 1970; Hamdan, 1970) in the context 
of constructing bivatiate normality from grouped sample counts n , 1  by 
employing Hermite—Chebyshev polynomial expansions. The procedure is 
analogous to the use of Taylor series expansions of a probability function to 
obtain the moments of a distribution. Hermite—Chebyshev polynomials 
however turn out to be particularly useful for the purpose of studying 
bivariate normality. Let f(x, y) represent the standard bivariate normal 
distribution with correlation 0< p < 1 and consider transformations x' = 
fi x) and y' = /2 (y) such that 

E(x 1 ) 2  = (20 - ' 12  f (x') exp(-1/2(x') 2 ) dx 

gy , ) z (20 - 112 	(yr) exp(-1/2(yr) 2 ) dy 
	

(8.57) 

Then we can write 

x' = ao  + E a illi (x) 	y' =1;00 +E 	i (y) 	(8,58) 

such that E7 	= 	1 = 1, where we can set ao  = bo  = 0 	because of the 
independence of p to change of origin (scale). The functions iii (x) and Hi (y) 
are known as Hermite—Chebyshev polynomials and have the property that 
for any two integers m and n (m n) 

fi (x)H„(x)11„,(x) dx = { (11) !  n = m 
n m (8.59) 

and similarly for f2 (y). The Hermite—Chebyshev polynomials are thus 
orthogonal over the (normal) weighting functions f(x) and f2 (y). Since the 
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polynomials have the generating function exp(sx — 1/25 2 ) and since for the 
bivariate normal 

S
22 

E[exp(sx — + ty — T)1= exp(stp) 

we have 

fl f(x, y)H„(x)11(y)dx dy = tr )  
n = m 
n m (8.60) 

Using Eq. (8.58) it can then be shown (Exercise 8.9) that the correlation 
between x' and y' can be expressed as 

corr(xy, y') = E a,b ip" 	 (8.61) 

Hermite—Chebyshev polynomials can also be used to establish the following 
theorems (Lancaster, 1957; see also Lancaster, 1969). 

THEOREM 8.1. Let x and y be bivariate normal f(x, y) with correlation 
coefficient p. If a transformation x' =f1 (x) and y' = .6(x) is carried out such 
that E(.0 2  and E(y') 2  are finite, then the correlation between the trans-
formed variables x' and y' cannot exceed !pl• 

PROOF. From Eq. (8.61) the correlation between x' and y' is E:1_, aikp i  , 
which is less than lp I unless a, = h i  = 1, in which case the remaining af  and 
b i  must vanish as a result of Eq. (8.58). Thus corr(x', y') !pi and 
correlation between the transformed variables x and y' cannot exceed in 
magnitude the original correlation between the untransformed variables x 
and y. 

THEOREM 8.2. The values to be assigned to the canonical variates are 
111(x) and Hi(y), where the canonical correlations are powers of p, in 
descending order. 

PROOF. From Theorem 8.1 the maximum correlation corresponds to the 
transformations H i  (x) = x' =x and 11 1 (y) = y' = y using the definition of 
Hermite—Chebyshev polynomials. Consider a second pair of standardized 
transformations x" and y" which are uncorrelated with the pair x' and y', 
that is, 

E(x")= E(y) =0 , 	E(x', x")= 	y")= 0 , 

E(x") 2  = E(y) 2  = 
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We can write 

x" E c,H,(x) 

y"= 	 (8.62) 

where E:"_ c ,2 = 	d = 1. Since E(x' x") = 0, we have 

E(x', x")= Etc 	+ c2x' H2 (x)+ c 3x713 (x)+ • • • I 

= E[c 1 .11 21 (x) + c 2H 1 (x)H2 (x) + c. 3 11 1 (x)H3 (x)+ • - 

= c E[H 21 (x)] + c 2 E[11 1 (x)H2 (x)1+ c 5 E[11 1 (x)H3 (x)1+ • • • 

=C I  

so that c l  =0 since the H; (x) form an orthonormal system. Similarly it can 
be shown that d i  = 0. The expansions (Eq. 8.62) can thus be expressed as 

x"= E c,H,(x) 

y" = E d,11( (y) 
	

(8.63) 
i=2 

and following Eq. (8.61) we have 

corr(x", y") = 	eidi p' 	 (8.64) 
i-2 

which is again maximized for c;= c122-  = 1, with the remaining c, and di  zero. 
The maximal correlation is thus for i = 2, that is, for p 2 . Continuing in the 
same vein we obtain transformed pairs (x", y') and (x`r, y l "), and so on with 
maximal correlations ip1 3 , p 4 ..... 

Theorem 8.1 was previously proved by Maung (1941) using a more 
lengthy method. Both Theorems 8.1 and 8.2 are of some theoretical interest 
since they indicate that optimal canonical scores are not strictly distribution-
free, a point which is not always realized in practice (see Benzieri, 1970; 
David et al., 1977). Several other conclusions emerge from the theorems. 

1. Although Theorems 8.1 and 8.2 pertain to any data, in general they 
can also be used for grouped two-way contingency tables where the 
categories are either ordinal or nominal, If a choice of variables can be 
made such that a bivariate normal distribution results from a contingency 
table then p' , p 2 . Ipl 3  , p 4 , . . are the latent roots (canonical correlations) 
and the canonical variables are the orthonormal Hermite—Chebyshev 
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polynomials 

,Y (L)) = 	HAY)] 	 (8.65) 

2. The roots of (Eq. 8.56) are powers of the maximal correlation 
<p <1, any difference being due to sampling error and the method of 

grouping. 
3. In seeking optimal scoring systems for the rows and columns that 

maximize correlation we are implicitly attempting to construct a bivariate 
normal distribution by transforming the margins of the table to univariate 
normality. It is not sufficient however to transform the marginal categories 
to univariate normality in order to achieve bivariate normality. The 
contingency table counts must represent a bivariate normal distribution if 
correlation is to be maximized. 

4. From general latent vector theory, if p i , i 2 ' . . pi  are the roots of the 
system (Eq. 8.56), then the (i, j)th entry of the table can be expressed as 

in - 

nil 	
fl 

•i 
+ E (8.66) 

where xi  and y i  are elements of the vectors x and y. The series is analogous 
to a principal component expansion of continuous data and can therefore be 
used to obtain predicted counts As m--> ce and the groupings become 
finer, the expansion (Eq. 8.66) approaches, in the limit, the well-known 
tetrachoric series 

f(x, y)= (270 -1  exp[ —1/2(x 2  + y 2 )][1 + 	11j(x)H(y)pi 	(8.67) 
i=1 

used by Pearson (1900), but originally from Mehler (1866). 
5, The Chebyshev—Hermite polynomials provide a basis for extending 

the theory to continuous distributions. When a contingency table reflects an 
underlying bivariate normal distribution with correlation coefficient p, it is 
seen that thc latent roots and latent vectors are given by pv and Hr (x l ) and 
H,(x2 ) respectively. For a p-variate normal distribution with all correlations 
equal, it can be shown that the first two nontrivial solutions for 0-1 
dichotomous data are 

fi (x) a(x + x 2 + • • • + xp ) 

f2 (x) = b[112(x) + H2 (x 2 ) + .. - + H2 (x p )] 

The scores on the second axis are quadratic functions of thc first axis, a 
phenomenon which at times leads to the so-called "horseshoe effect" 
considered in Section 9.3. Canonical analysis of an (r x c) table is closely 
related to the chi-squared statistic and certain other measures of association. 
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We have 

since 

c 	2 

tr(M L. M) = tr(MM T) =  
1=1  no 

(8.68) 

X
2 

= n 
-11n(no 

ni. n . , 

 

 

C 

= n 
z 

1=1 i= I 
(8.69) 

and since the latent roots of M TM and MMT  are 1, p 21 , p 22 , 
- - 

	

we 
have from Eq. (8.66) 

x 2  = n (p 21 	p 22  4- • • • + p:n."  1 ) 
	

(8.70) 

for 0 < pi  <1. It is easy to show that the square of Cramer's measure of 
association is simply the mean squared canonical correlation. We have (see 
also Kendall and Stuart 1979, vol. 2) 

C2  

x 2 

n min(r — 1, c — 1) 

m— I 
xl 2 

n L 
i=1  

n min(r —1, c — 1) 

m 
I 

— 1 	
(8.71) 

which provides a more basic interpretation of correlation within an (r x c) 
contingency table. The following properties of C 2  are immediately evident 
from Eq. (8.71). 

(a) C 2  is nonnegative and achieves its lower bound of zero if and only 
if the polytomies representing the rows and columns are stochastically 
independent. Thus C 2  = 0 if and only if pi = 0 (1= 1, 2, 	, in 1). 

(b) C2  cannot exceed unity since it equals the arithmetic mean of 
correlation coefficients, and clearly attains its upper bound C 2  = I when 
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Other global measures of association which may be used are the geometric 
mean of the canonical correlations and the so-called squared vector multiple 
correlation, discussed by Srikantan (1970). 

We now turn to tests of significance of the latent roots (canonical 
correlations) issued from multinomial data. The area seems to be frought 
with peril, as witnessed by incorrect conjectures which at times are made 
concerning the distributional properties of the latent roots, particularly in 
the psychological/educational literature. We first turn to Eq. (8.70). Since 
the expansion represents a partition of the asymptotic chi-squared statistic it 
might be assumed that each individual component nA,= np i  (i = 
1, 2, . , m — 1) is also asymptotically distributed as chi-squared, with 
appropriately partitioned corresponding degrees of freedom. As Lancaster 
(1963) has demonstrated, however, such a conjecture is incorrect, and in 
practice tends to yield a larger value of np t  (smaller value of np,n _ t ) than 
would be expected from the chi-squared distribution. As pointed out by 
Greenacre (1984), this generally leads to optimistic significance levels for p l  
and pessimistic levels for The use of the chi-squared statistic discussed 
above for testing significance of the canonical correlations however does not 
appear to be in wide use at present. A somewhat different chi-squared test 
on the other hand still continues to be in use (see Bock, 1960; Butler et al., 
1963; Nishisato, 1980) although it also is incorrect for contingency tables. 
Thus owing to the formal similarity of contingency table analysis to 
canonical correlation Bock (1960) has suggested that Bartlett's (1951b) 
approximate large sample chi-squared likelihood ratio test (Section 4.3) be 
used. The test however requires the assumption of multivariate normality, a 
condition which generally is not met by the data. Fisher's F test for equality 
of group means is also at times employed, although in the present context it 
is incorrect as well. For further details see Butler et al. (1963) and Nishisato 
(1980). Another test inspired by multivariate normal canonical correlation 
theory (see Lawley, 1959) is based on the assumption that the variances of 
A . p, can be approximated by the expression (1/n)(1 — /4) 2  (Kaiser and 
Cerny, 1980; Kshirsagar, 1972). The approximation however appears to be 
unsatisfactory and the test should probably not be used for multinomial data 
(Lebart et al., 1977). 

A correct theory proceeds along the lines of Lebart (1976), which 
employs the multivariate normal asymptotic approximation to the multino-
mial distribution of the rc entries of the contingency table. The matrix to be 
diagonalized in the analysis has approximately the same latent roots as a 
Wishart matrix of some lower order. Thus when the rows and columns are 
independent, that is, the pi  are identically zero, the asymptotic distribution 
of the np i2  is the same as the distribution of the latent roots of a central 
Wishart matrix of order c — 1 with r — 1 degrees of freedom, assuming, 
without loss of generality, that c=5-i% When the rows and columns are 
dependent, an asymptotic theory has also been given by O'Neill (1978a, 
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1978b, 1980, 1981). As noted by Lebart (1976), the percentages of variance 
of a central Wishart matrix are distributed independently of their sum 
(trace), and when the usual chi-squared test does not reject the null 
hypothesis of independence, the major percentages of variance could still be 
significantly high. Conversely, when the null hypothesis is rejected, it may 
still be the case that the percentages of variance are not significant. 

Example 8.9. An example from the field of dentistry of the use of 
optimal scoring of contingency tables is provided by Williams (1952), where 
particular interest lies in detecting the correlational structure between the 
rows and columns of Table 8.21. The first two nontrivial latent vectors are 
given by 

Column scores 	Row scores 

.8397 —1.3880 

.4819 —1.0571 
—1.5779 .6016 
—1.1378 .9971 

where the largest canonical correlation is p = —.5627 (x 2  = 44.35), indicat-
ing a negative relationship between calcium intake and severity of condition. 
The scores are scaled to zero mean and weighted sum of squares are equal 
to n = 135, as is customary for this type of analysis. Note that the last score 
for x reverses an otherwise decreasing trend, indicating a threshold effect for 
the efficacy of calcium intake after .70 g/day. Merging the last two columns 
of Table 8.21 results in the correlation of p = —.5581 (x 2  = 42.05) with an 
insignificant second correlation of .0779. The new (recalculated)scores are 
then 

Table 8.21 Peridontal Condition of n = 135 Women as a Function of Calcium 
Intake: A = best; D=,  worst. 

Peridontal 
Condition -.40 .40-.55 .55-.70 .70- Total 

A 5 3 10 11 29 
B 4 5 8 6 23 
C 26 11 3 6 46 
13 23 11 1 2 37 
Total 58 30 22 25 135 

Source: Williams, l.952 reproduced with permission. 
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Column scores 
	

Row scores 

.8448 --1.4072 

.4906 —1.0243 
—1.3557 .5906 

1.0054 

Canonical correlation analysis of contingency tables can therefore be used as 
an exploratory tool for the underlying correlational structure, as well as for 
grouping rows and columns. For recent work see Gilula (1986), who also 
discusses the relationship between canonical and structural models for 
contingency table analysis. 

Example 8.10. Another example is Maung's (1941) analysis of Tocher's 
(1908) eye and hair pigmentation data of Scottish school children. The 
latent roots and vectors are given in Table 8.23. The latent vectors are again 
standardized so that their weighted sums of squares equal n, the total 
sample size (Table 8.22). Three questions may be asked of the data: (1) 
What is (are) the principal underlying dimension(s) of the data? (2) What is 
(are) the correlation(s) among the dimensions? (3) How closely do the row 
and column categories cluster together? 

The first underlying dimension (continuum) X I  and Y 1  has a direct physical 
interpretation in terms of the amount of pigment present in the outer layer 
of the retina and in the hair, and thus presumably represents the genetic 
pigmentation factor. Since X I  and Y 1  have a correlation of () I  = 38, both 
hair and eye pigment tend to go together, although clearly not to an 
overwhelming extent. The second dimension X 2  and V 2  seems to indicate a 
"lack of extremes" dimension since it relates positively to children with a 
medium degree of pigmentation, while the third dimension is difficult to 
interpret and seems to indicate random individual variation among the 
children. The analysis however is not free of the artificial quadratic 

Table 8.22 	Two-Way Classification of the Hair and Eye Color of School Children 
from the City of Aberdeen 

Eye Color 

Hair Color 

Fair Red Medium Dark Black Total 

Blue 1368 170 1041 398 1 2978 
Light 2577 474 2703 932 11 6697 
Medium 1390 420 3826 1842 33 7511 
Dark 454 255 1848 1506 112 5175 
Total 5789 1319 9418 5678 157 22361 

Source: Maung, 1941; reproduced with permission. 
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Latent Roots and Vectors of the Contingency Table 8.22' 

Canonical Vectors 
Categories 
Variables Y, Y 2 Y, 

Hair color -1,3419 -.9713 - .3288 
-0.2933 .0237 3.7389 
-0.0038 1.1224 -.1666 

1.3643 - .7922 .3625 
2.8278 -3.0607 3.8176 

Eye color 

Can nonical 
correlation 

I) 

X I  
-1.1855 
-.9042 

.2111 
1.5459 

p, = .3806 

X 2 	 X, 

	

-1.1443 	-1.9478 

	

- .2466 	 1.2086 

	

1.3321 	-1.3976 

	

-.9557 	 .1340 

	

p2  .1393 	p3  = .0221 

" The latent vectors are standardized such that XD X, = Y DY = 22361. 

Source: Maung, 1941; reproduced with permission. 

"horseshoe" affect which may influence the interpretation of the canonical 
variates (Section 9,3). 

The scaling of the latent vectors which is customary for canonical 
correlation of discrete data may be inappropriate since dimensions that 
account for different correlation (latent roots) are scaled equally. This is 
analogous to the situation in principal components analysis where the latent 
vectors are initially scaled to unit length (Sections 3.2-3.4). To account for 
the differences between the latent roots, however, the weighted sum of 
squares should be resealed so that they equal their respective percentages of 
variance (see Table 8.24 and Fig. 8.9). Alternatively, they may be scaled 
such that their weighted sum of squares equal the latent roots, but this is not 
usually done in order to avoid excessively small fractions. The change in the 
scaling however does not seem to influence the interpretation, since it may 
be seen again that the first axis measures hair and eyes pigmentation while 
the second seems to represent a "lack of extremes" dimension. Most of the 
variation however is accounted for by the first canonical variable. For 
alternative analyses of the data see Becker and Clog (1989) and references 
therein. 

8.4.4 Extensions and Other Types of Discrete Data 

Other forms of analysis of discrete data are also possible. A method 
closely related to contingency table analysis is to employ a multinomial-type 
covariance matrix with prior weights (probabilities) together with constraints 
(Healy and Goldstein, 1976). Let X be a vector of scores to be determined 
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Table 8.24 Resealed Latent Vector Elements of Table 8.22 such that Their 
Weighted Sum of Squares X TN,X= XTIVC, YTNJ,  Y =1/ TD,Y Equal the 
Percentage of Variance Accounted for 

Canonical Vectors 
Categories 
(Variables) 	 V

, 

Hair color 	F 	 —.084 	 —.022 

	

,018 	 +.0 
—.0 	 .026 

	

,085 	 • -.018 

	

,178 	 —.070 

X, X 2  

Eyc color B —.074 —.026 
L —.057 —.006 
M ,013 .031 
D .097 —.022 

Latent root .14485 .01940 
Variance 87.95% 11,78% 

" X, is omitted since it represents random pigment variation among the children. 

ZIP  

medium eyes 

0 	.02 

scam 

Figure 8.9 The first two canonical axes of Table 8.24 representing the canonical vectors of 
Table 8.22. 

and let A be a symmetric matrix with diagonal elements n 11 p1 (1— p,) and 
off-diagonal elements —n,iki p i p k  where nii  and no,,, are counts representing 
the number of elements in level j of attribute i, and both level j of attribute i 
and level I of attribute k, respectively. The p, are weights such that E t p I 
and can thus be viewed in terms of prior probabilities. Also let Z be a 
symmetric matrix with diagonal elements nii p,2, and off-diagonal elements 
niiklPiPk and let S =A +Z. The objective is to minimize disagreement 

black haw • 
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within elements (here subjects) across their respective attribute scores and 
their weighted average score, that is, to maximize internal consistency. Let A 
and p  be Laisrange multipliers. Then we minimize X TAX subject to the 
constraints X ZX = 1 and X1 S1 = 0, that is, we find X, A, and p, such that 

= X I  AX — A(X TZX — ) — p,(X rS1) 	 (8.72) 

is a minimum. Differentiating with respect to X and setting to zero yields 

= 2AX — 2AZX — ILS1 = 0 

and multiplying on the left by I T we obtain 

(A — AZ)X =0 	 (8.73) 

since 1 TA = 1 TSX = 0, which leads to p,1 TS1 = 0 and thus g = O. Since the 
smallest root of Eq. (833) is zero (with latent vector of unities), the smallest 
latent root of Eq. (833) minimizes the criterion, and its latent vector X 
provides the optimum scores. Healy and Goldstein (1976) discuss other 
constraints which, however, do not seem to lead to an optimal solution 
(Greenacre, 1984). Recently extensions of contingency table canonical 
analysis have also been given by Gulula et. al, (1986), who consider 
relationships in terms of "structural" log-linear models (see also Daudin and 
Trecourt, 1980). 

Finally, discrete data may also be observed in terms of integer counts 
themselves, that is, the (n x k) data matrix consists of counts nii  which are 
observed for j random variables across i sample points. Data of this type 
differ from dummy variables in that they represent a unique absolute scale 
(Section 1,5.1). It may be analyzed by two methods, depending on the 
underlying objective. First, we can treat the (n X k) observed matrix of 
counts in the same way as any other data matrix and proceed with a 
principal components analysis. Second, since the entries are counts (or 
frequencies), we can consider the data matrix in terms of a (n x k) 
contingency table and proceed with a canonical analysis such as described in 
the previous section. The two approaches differ in terms of the weighting 
scheme employed. A contingency-type analysis is also more conducive to a 
joint mapping of the random variables and the sample points in a joint 
vector subspace, and is considered in the following section under the title of 
correspondence analysis (Section 5.4.4). The following example considers a 
principal components analysis of counts using human physiological data. 

Example 8.11. An analysis of count data is presented by Siervogel et al. 
(1978) in relation to radial and ulnar digital ridge counts of human finger 
prints for a sample of n = 441 individuals (167 males and 196 females), Since 
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Table 8.25 Variance of the First 10 PCs of Radial and Ridge Counts for Male 
and Female Digits 

Component 

Males Females 

Latent root 

Percentage 
of 

Variance 

Cumulative 
Percentage 

of 
Variance Latent root 

Percentage 
of 

Valiance 

Cumulative 
Percentage 

of 
Variance 

1 8.589 42,9 42.9 8.021 40.1 40.1 
2 1.830 9.2 52.1 1.808 9.0 49.1 
3 1.547 7.7 59.8 1,590 8.0 57.1 
4 1.236 6.2 66.0 1.431 7.1 64.2 
5 1.064 5,4 71.4 1,154 5.8 70.0 
6 0.768 3.8 75.2 1,013 5.1 75.1 
7 0.634 3.1 78.3 0.714 3.5 78.6 
8 0.583 3.0 81,3 0.592 3.0 81.6 
9 0.519 2.5 83.8 0.565 2.8 84,4 

10 0.472 2.4 86.2 0.495 2.5 86,9 

Source: Siervogel et al., 1978; reproduced with permission. 

ridge counts are highly correlated between fingers, the authors carry out a 
principal components analysis of the matrix of counts, and using orthogonal 
(varimax) rotation obtain biologically meaningful results (Table 8.26) which 
are consistent for both males and females and for both hands. The results 
suggest the presence of three distinct digital regions: digit I; digits II and III; 
digits IV and V (Table 8.26) which could be the focus of further research, 
for example, for electronic storage of fingerprint information. At times 
count data are also analyzed in the form of relative frequencies expressed as 
proportions of the total sample size n (Westley and Lynch, 1962). A further 
modification is also provided by the use of Haberman's (1973) standardized 
residuals obtained by considering a matrix of counts as a contingency table. 
The residuals are defined by 

---- 	E.. 	 (8.74) 
r) 

where 0i, = n1 . 	Ei, = E(ni,). When the row and column totals n , and 
are not very small compared to the overall sample size n, the variance of 
will not necessarily equal unity. To produce standardized unit variance 
residuals Haberman (1973) further divides Eq. (8.74) by 

n.1 112 	n 	/2  
Vvar(nii ) = [1 - 	[1 - -1] 

to obtain the standardized residuals 

d 	
ei. 

Iva*i-1
)1112 (8.75) 
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Table 8.26 Rotated Principal Component Loadings for the First five Components 

Digit 	Hand 

Maies 
Components 

Femaies 
Components 

Z Z, Z. Z, Z, 	ZI  Z, 

Radical Ridge Counts 

1 	R 0,47 0.60 -0.04 0M4 0,32 0.65 0.20 -0.04 0.10 0.45 
L 0.38 0.64 -0.02 0.10 0.34 0.67 0.09 -0.03 0,12 0.46 

ii 	R 0.70 0.22 0.06 0.28 0,10 0.69 0.13 0.12 0,19 -0.02 
L 0.77 0.15 0.31 0,05 0,13 0.60 0.40 0.32 0.09 -0.05 

111 	R 0.76 0.30 0.18 0.13 0.11 0,63 0,45 0.29 0,05 0,03 
L 0,76 0.30 0, 75 0,08 0.03 0.56 0.57 0.28 0.03 0,01 

IV 	R 0.44 0.65 0.31 0.15 0.01 0.21 0.79 0.21 0.05 0.06 
L 0.50 0.61 0.33 0,02 0.06 0,24 0,82 0.14 0.04 0,03 

V 	R 0.24 0.77 0.24 0.22 0,02 0.20 0,78 0.12 0,18 0,21 
L 0.08 0.78 0.27 0.14 0,05 0.21 0,76 0.05 0.31 0,20 

Vinar Ridge Count 

R 0,12 0,07 0.25 0.08 0.81 0.12 0.15 0.19 0.01 0,83 
L 0.10 0.16 0.17 0.21 0.81 0,06 0.13 0.11 0.06 0.84 

11 	R 0.14 0.34 0.74 0.00 0,22 0.02 0.61 0.51 -0.01 0,32 
L 0.11 0.29 0.69 0.08 0.18 0,01 0,44 0,56 0,07 0.18 

Iii 	R 0.25 0.04 0.78 0.10 0.16 0.18 0,13 0.79 0.05 0,01 
I. 0.15 0,09 0.70 0.17 0,03 0.15 0,03 0.80 0.23 0.05 

i V 	R 0.43 0.20 0,50 0,47 0,10 0.18 0.33 0.62 0,23 0.23 
L 0,36 0.08 0.37 0.66 0.10 0,24 0.25 0.49 0,46 0.20 

V 	R 0.10 0,16 0,28 0.76 0_25 0.17 0.11 0.31 0.80 -0.05 
L 0.06 0.14 -0.09 0,89 0,06 0.09 0.13 0.07 0,91 0,10 

Percent of 
variance 
accounted for 17.9 16,8 16.1 11.7 8.9 14.0 20.3 15.0 10.0 10.7 

Source: Siervogei et al., 1978; reproduced with permission. 

which can then be used in place of n o  in a principal components analysis. 
Using the standardized residuals d 1, also helps to overcome the problem of 
varying row and column totals by placing relatively rarer categories on the 
same footing as the more abundant ones. This can be useful, for example, in 
uncovering whether plant species have certain environmental preferences. 0 

Example 8.12. Strahler (1978) uses the standardized residuals (Eq. 
8.75) in place of the observed frequencies n g. to carry out a Q-mode 
principal components analysis (Section 5.4,1) of a data matrix where the 
columns arc plant species and the rows are environmental conditions. Since 
the objective is to obtain a correspondence between the two sets of 
variables, both the component loadings and the scores are considered (Table 
8.27). 
Unlike the canonical correlation-type analysis, however, it is not possible to 
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Table 8.27 Factor Loadings and Scores for Rotated Factors of Rock/Soil Type 
and Plant Species 

Species 

Factor 

Z, Z2  Zi  Z4  

Liquidambar styraLiflua L, .986 .034 -,033 -.118 -.105 
Quercus pheiios L. .984 .057 ,127 -.104 -,035 
Clethra ainifolia L. .983 -- .004 -.135 -.087 
Vaccinium atrococcum (Gray) 

Helier .978 -.192 -,081 .027 -.019 
Prunus vkginiana L. -.969 -.148 -,019 -.197 -,022 
Pinus ridiga Mill,' .966 -,024 -.220 -.089 -.103 

liex opaca Ali. ,960 -.109 -,110 -.182 -,144 

Carya ovaia (Mli1,) K. Koch -.960 -.178 .148 -.118 -.107 

Juglans nigra L. -.948 .293 .014 - 	.121 -.007 
Cornus florida L. -.906 .058 .189 -.293 .231 
Vaccinium corymbosum L .887 ,050 -.311 .328  
Ouercus palustris Muenchh, .878 .179 .333 -,211 -.202 
Rhododendron maximum L .870 -.081 -.458 -.070 -.144 
Carya Giabra (Miii.) Sweet -.849 -.370 -.068 .258 .265 
Carya (Nabs (Wang.) Sarg. -.743 .313 -.306 -.500 .073 

Carya tomentosa Null. -,727 -.297 .091 -.179 .586 
Quercus falcata Michx. .727 -.095 -.593 .252 -.218 
Rhododendron viscosum (L.) 

Torr." .690 -.139 -.687 -.043 -.178 
Vitis spp. -.673 -.103 ,609 .103 .393 

Liriodendron tulipifera L. -.616 .153 .503 -.537 .235 
Lindera benzoin (L.) Biume .569 .455 .467  -.504 .047 

Coryius americana Wait. -.151 .947 .027 -.283 .001 
Fagus gradifolia L. .165 ,932 -.283 .133 -.085 
Carpinus caroiiniana Wait. -.141 .928 .145 -.308 .047 
Ouercus Prinus L. -,241 -.911 - .203 .006 .264 
Kairnia 1atifoiia L. -.133 -.874 -.447 .117 -.066 
Castanea pumila (L.) Mai. -.398 -.873 -.054 -.205 .187 
Castanea dentata (Marsh) Borkh. -.449 -.850 -.095 -.186 .179 
Quercus coccinea Muenchil. .458 -.842 -.266 .049 .095 
Lonicera japonica Thunb. -.354 .791 .337 -.345 -.131 
Fraxinus americana L. --.554 .759 -.215 -.148 .219 
Lamm rubra Muh1. - .240 .729 .095 -.353 .526 
Carya cordiformis (Wang.) 

K. Koch' .269 .628 .523 -.203 -.467 
Sambucus canadensis L. .095 -.014 .988 -.073 -.095 
Rhus radicans L. -.337 -.020 .920 .182 -.075 
Parthcnocissus quinquefoiia (L.) 

Pianch. -.548 .274 .783 .016 ,104 

Vaccinium stamineum L. .383 -.280 -.726 .498 -.014 
ilex verticeilata (1.) Gray .628 .185 .724 -.206 -.068 
Betuia nigra L. .650 .184 .723 -.094 .103 
Sassafras aibiduin (Nutt.) Nees -.119 -.465 -.668 .309 .478 
Gayiussacia dumosa (Andr.) 

T. ez G. .473 -.533 -.630 -.229 -.205 



In 

var(z, k ) = Ak  = E 	- ( 	2  E 	f i z )k  
2 

1= 1 	 1-1 
(8.75b) 
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Table 8.27 	(Continued) 

Species 

Factor 

Z, Z. Z, Z, 

Quercus steiiata Wang' .025 -.018 -.077 .997 -.002 
Quercus maryiandica Mueneh .163 .213 .040 .957 -.016 
Juniperus communis L. -.269 -.087 .086 .955 -.008 
Rhododendron nudillorum (L.) 
Tort. -.367 -.320 -.003 .871 .065 
Vaccini um vacciiians Torr. -.004 -.431 -.510 .737 .105 
Pinus virginiana Miii. .507 -.507 -.329 .600 -.131 
Quereus veiutina LaM. .-.422 -.523 .014 -.113 .732 

Variance Proportion 
Environment .441 .290 .121 .115 .034 

Factor scores 
Acid igneous rocks -.798 .955 .050 -.560 -1.517 
Basic igneous rocks -.348 1.083 -.594 -.390 1.539 
Uitrarnafic rocks -.173 .048 .057 2.031 -.078 
Phyiiites and schists -1.116 -1.584 .306 -.465 .321 
Sand and gravei 1.229 -.624 -1.416 -.267 -.438 
Interbedded sand and siit 1.207 .121 1.595 .349 .173 

'Present in <5% of the sample piots. 

plot both the loadings and the scores using common axes. A comparison of 
high magnitude loadings and scores however reveals which soil types 
(environmental condition) are conductive to which species. 	 El) 

Another closely related version of the analysis of two-way discrete tables 
is Williams' (1978) Q-mode factor-analytic decomposition of families or sets 
of discrete distribution functions. Let Ai  = p,(X = x i ) (i = 1, 2, . m; f = 
1, 2,.. . , n) be a family of m probability functions defined on a discrete set 
x x,,.. 2 1 " • 	n • X We wish to decompose the finite set of probabilities p o  using 
a finite orthogonal basis as 

p ie  = E ak ,z ik 
 k=t 

(8.75a) 

where the aki  are fixed and z, k  are random. The variance of the random 
terms can then be expressed as 

where cov(z ik , z i,)= 0 owing to the orthogonality of Eq. (8.75a) and where 
are appropriate frequencies. Without loss of generality we can assume that 
Eq. (8.75a) represents a principal components decomposition of the prob- 
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(8.75e) 

where P and Z are (m X n) and A is (n x n). Note that because of the 
present needs of notation P represents the probability (data) matrix, not the 
latent vectors which are now given by the columns of A. Z is therefore the 
matrix of loadings which correspond to the Q-mode analysis. Also, since 
Williams' (1978) development of the theory is in terms of Q-mode analysis, 
the columns of Z span the m-dimensional "variable" or probability function 
space while the latent vectors or columns of A span the n-dimensional space 
defined by the "observation" or the discrete set x l , x2, , xn . It follows 
from Eq. (8.75c) that the kth vector Z k  can be expressed as 

Zk - PA k 	(k = 1, 2, . 	n) 	 (8.75d) 

Also the variances (Eq. 8.75b) can be written in matrix form as 

Ak  = ZI:Idiag(f) — ffTlZk  

	

= AIPT [diag(f) — ffTIPA k 	 (8.75e) 

where 

7(1 -f) 

f2( 1  f2) - • 	-hfm 
[diag(f) 	= 

f2f. 	f.( 1  - 

(see also Section 8.3) The fi  (1 = 1, 2, , 	, m) are weights for the m 
distribution functions such that 	J 	I. Williams also introduce weights 
wi  for the discrete set xi , x2 ,. . . x„ such that El; 	= 1, so that both rows 
and columns of P are weighted. Equation (8.75e) can then written as 

Ak = AT,W(W .IPT[diag(f) ffilPW i }WA k 	(8.75f) 

where W = diag(w 1 ) and the orthogonality constraint on the weighted latent 
vectors is now given by 

AW 2 AT  = I 	 (8.75g) 

Thus for the weighted expression (Eq. 8.75f) the A 1 , A2 , 	, A, are 
(nonzero) latent roots of the doubly weighted matrix W -iPT[diag(f) — 
ffTIPW . I and WA I  and WA2 , 	, WA, are the corresponding latent 
vectors. For the last n r roots we have A,.+.1 Ar+2 = • • '= A = 0 for which 

,WA,, are any corresponding orthonormal latent vectors. 

FURTHER MODELS FOR DISCRETE DATA 

abilities p ig . In matrix form we have (Section 3.4) 

P =- ZAT  
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The rank of the matrix W I PT[diag(f) - ff TiPW -I  is thus r, which can be 
shown to be equal to one less than the rank of P (Exercise 8.13). It can also 
be shown that thc unit vector is always a latent vector which corresponds to 
a zero latent root, and the analysis of the doubly weighted matrix 
W - 'P" [diag(f) - IfT1PW -1  is thus similar to the principal components 
analysis of compositional data (Section 5.9.1), 

Example 8.13. Williams (1978) provides a set of age-distribution histo-
grams of the US population classified by sex, race, and the decade in which 
the census was taken (Table 8 : 28). The data are given in percentages and 
represent the (n x m) matrix p!,  scaled by 100. Note that the array P T  can 
also be taken as an r-way contingency table, which indicates the similarity of 
the method to procedures described in the preceding sections of the chapter. 
Since the discrete set x l  , x2 , , x„ is here represented by time-ordered 
(age) categories, the elements of the latent vectors Ak  (Eq. 8.751) of the 
Q-mode analysis of P can be plotted on a time axis and the global age-time 
behavior of the racial groups, by sex, can he observed. Note also that 
Williams chooses the total 1930 age distribution as the weights w i  and equal 
frequencies fi  rather than the row and column totals of the Table 8.28 
(Exercise 8.14). 0 

Table 8.28 The Age Distribution of the US Population (millions) in the Decades 
1930, 1940, and 1950 Classified by Race and Sex 

1930 1940 1950 

Wi  Whiie Nonwhite White Nonwhite White Nonwhite 

Age M F M F M F M 	F Mk' MF 
0-4 9.2 9.2 10.4 10.4 7,8 7,7 9,9 	9,6 10,8 10,2 12,9 	12,3 9.3 

5-9 10.1 10.1 11.6 11.6 7.9 7.8 10.2 	10,0 8.8 8,4 10,4 	10,0 10,25 
10-14 9.7 9,7 10.5 10.5 8,8 8.7 10.5 	10.2 7.4 7.0 9.3 	8,8 9.8 
15-19 9,2 9,4 10,1 10.8 9.3 9.3 10.0 	10.3 7,0 6,8 8,1 	8,2 9.4 

20-24 8.5 9.0 9.5 10.6 8,7 8.9 8.8 	9,8 7.5 7.6 7.8 	8.7 8.9 

25 29 7.7 8,1 8,6 9,4 8.4 8.5 8,4 	9.3 8.0 8.2 8.1 	8.6 8.0 
30-34 7.4 7,5 7,2 7,4 7,8 7,9 7.5 	7,9 7.6 7.8 7,1 	7.7 7,4 

35-39 7.6 7.5 7.3 7.6 7.2 7.3 7,4 	7.9 7,4 7.5 7,3 	7,8 7.5 
40-44 6,7 6.4 5.9 5,7 6.7 6.7 6.4 	6.3 6.8 6.8 6.4 	6.4 6.5 
45-49 5.9 5,6 5.5 5,0 6,4 6,3 5.5 	5.2 6.1 6.0 5.8 	5.6 5,7 
50-54 5.1 4.8 4,8 3.7 5.7 5,5 4,6 	4.0 5,6 5.6 4,8 	4.5 4.9 
55-59 4.0 3.8 3.0 2,2 4,6 4,5 3.3 	2,9 5,0 4.9 3.6 	3,2 3.8 

60-M 3. 7  3.1 7.3 1.8 3,7 3.7 2.5 	2.) 4.2 4.2 2.7 	2,5 3.0 

65-69 2.4 2,4 1,4 1.2 3.0 3.0 2,4 	2,2 3,3 3,5 2.6 	2.7 2.3 
70-74 1,7 1.7 0.9 0,8 2,0 2.1 1.3 	1,2 2.3 2.5 1,5 	1.4 1.6 
75- 1.5 1,7 1.0 1.1 2,1 2,2 1.2 	1,3 7 .4 2.9 1.6 	1.6 1,55 
No record 0.1 0.1 0.1 0.1 0.0 0.0 0,0 	0.0 0.0 0.0 0,0 	0.0 0,1 

Population (M) 55,922,528 6,214,552 59,448,548 6,613,044 67,129,192 7.704,047 
Mai (F) 54,364,212 6,273,754 58,766,322 6,841,361 67,812,836 8,051,286 
100j 13.80 	13.42 1.53 	1,55 14,67 14.51 1.63 	1,63 16,57 	16.74 1,90 	1,99 

Source: Williams 1978; reproduced by permission. 
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8.5 RELATED PROCEDURES: DUAL SCALING AND 
CORRESPONDENCE ANALYSIS 

As was pointed out at the outset (Section 8.4.1), optimal scoring or scaling 
of contingency tables had an early equivalent in Guttman's (1941) work on 
principal components analysis of multinomial dummy variables, although 
the full development of the. theory lies elsewhere. Nevertheless, a tradition 
has developed in the educational and psychological literature of analyzing 
nominal and rank order data using canonical correlations or principal 
components e.g., see Skinner and Sheu, 1982). The method is known as 
"dual scaling" and represents a straightforward adaption of the model(s) 
discussed above, together with their conventions concerning normalization 
of canonical variates, data weighting, and so forth. The applications are 
often restricted to using the canonical variates as optimal "discriminant" 
scores, to scale the rows and columns of a multinomial or rank-order data 
matrix representing responses of ri subjects to k "stimuli" such as ques-
tionnaires, visual experiments, and so forth. For a comprehensive treatment 
of dual scaling see Nishisato (1980). 

A more recent variant, developed in France in the 1960s, is as "analyse 
factorielle des correspondences" or "correspondence analysis" (Benzecri, 
1969; Lebart et al., 1977; Greenacre, 1984; Lebart et al., 1984; Van 
Rijckevorsel and deLeeuw, 1988). The procedure, which is oriented toward 
graphical displays, represents an adaptation of the rationale of factor 
analysis to the objectives of a canonical analysis of a contingency table (see 
Greenacre and Hastie, 1987). Its principal objective is therefore explorat-
ory, and the aim of the method lies in uncovering joint clusters of the row 
and column categories. At times attempts are also made to give corre-
spondence analysis greater generality by extending its use to continuous 
random variables (Section 5,4.4). This however simply reduces corre-
spondence analysis to a multidimensional scaling procedure such as principal 
axes analysis (Section 5.4.1) and nothing new of essence arises. The method 
however is at times considered to be novel, no doubt due in part to a certain 
amount of confusion generated by the original literal translation from the 
French (Benzecri, 1969; 1973), which seems to have been continued by 
subsequent English-language publications (Hill, 1974, 1982; Theil, 1975; 
Greenacre, 1984), Nevertheless, this particular application of principal 
component/factor analysis of discrete data has revived a perhaps neglected 
method of multivariate data analysis. The procedure is particularly popular 
in continental Western Europe, as witnessed by journals such as Les Cahiers 
de L' Analyse des Donnees (Dunod, Paris; 1976—), and it may be useful to 
give a brief account of correspondence analysis as considered by recent 
authors. 

Let Ai  and B1  be as defined in Section 8.4.2 where 

ATD„A = 8TD,11 1  = 1 	 (8.76) 
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Correspondence analysis is then simply the system (Eqs. 8.44a and b) where 
the latent vectors are resealed, that is, the normalization (Eq. 8.44c) is 
replaced by 

Al TD,A: = TD,1117 = 	 (8.77) 

In the parlance of correspondence analysis the quantities A7 and B7 are 
known as the principal coordinates of the row and column "profiles," where 
profiles are the rows and columns divided by their respective marginal 
totals. The unit vectors A i  and Bi  arc then referred to as "standard 
coordinates." A description of correspondence analysis as a factor model 
may also be found in Valenchon (1982). If the analysis is based on a discrete 
data matrix, a correspondence analysis often proceeds by using Gower's 
(1966) principal coordinates where each observation is adjusted by the 
overall mean and the row and column means, that is, by replacing each 
by x + — - )7, in standard notation (Section 5.9.1). Note that a 
correspondence (principal axis) analysis essentially ignores the difference 
between a sample space and a variable subspace and treats a discrete data 
matrix as a contingency table. Although the practice may be objected to on 
theoretical grounds it does permit a joint plotting of the sample points and 
variables in a common (usually two-dimensional) subspace. In particular this 
permits an alternate approach to the analysis of 0-1 data matrices, termed 
by Hill (1974) as a zero-order correspondence analysis in contrast to a 
first-order correspondence analysis of a contingency table. 

Definition 8.1 (Hill, 1974). A triple (A, X, Y) is a solution of a zero-
order correspondence analysis if and only if 

AX= 	' NY , 	AY = IsI t NTX 

where N is a (r X c) contingency table and Ni , and Ni  are defined by Eq. 
(8.50). The main idea of a first-order correspondence analysis is that in Eq. 
(8.52) N can be taken as a matrix of a 0-1 dummy variable, which 
essentially leads us back to the analysis considered in the early part of 
Section 8.3.3. For a two-way contingency table there is thus a direct 
relationship between the two approaches, which however breaks down in 
the general k-way analysis. 

THEOREM 8.3. Let N be a two-way contingency table. Then the solutions 
of a first-order analysis for k = 2 can be put into a 2-1 correspondence with 
those of a zero-order analysis. The canonical variates are the same, and the 
latent roots are related by the function 2A 2  — 1. 
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For a proof the reader is referred to Hill (1974) and Greenacre (1984). The 
point is that when (A, X. Y) is the solution of the normal equations (Eq. 
8.52) for a 0-1 matrix N, then (2A 2  – 1, X, Y) is the solution when N is a 
contingency table, where U is partitioned as 

= 
:] 

[ 	 (8.78) 

corresponding to the columns and rows of the contingency table-see 
Greenacre (1984). Hill (1974) also considers other relations between the 
model and principal components analysis, where variates are resealed 
elastically to be as concordant as possible. The procedure is also at times 
viewed as a multidimensional scaling method. The method can also be used 
to detect reducibility (near reducibility) of a 0-1 data matrix (see also 
Benzecri, 1980). Applications using ranked and mixed data are given in 
Marubini et al. (1979), Francis and Lauro (1982), and Nakache et al. 
(1978). Fortran programs may be found in David et al. (1977), Nishisato 
(1980), Greenacre (1984), and Lebart et al. (1977). A review of PC1BM 
programs is given by Hoffman (1991). 

Example 8.14. Consider an example from geology (Theil and 
Cheminee, 1975; see also Theil, 1975; Valenehon, 1982). The data are 
compositional rather than discrete (Section 5.4.1), and this illustrates the 
peculiarity of correspondence analysis—it can also be viewed as an attempt 
to find a common mapping for both the variables as well as the sample 
points of continuous data consisting of proportions. 

The samples consist of rocks from a certain geographic areas which are. 
then analyzed for trace elements. The objective is to uncover relationships 
between the elements and the rock samples. The first three factors account 
for 89.5% of the total variance and can be identified as follows (Table 8.29. 
The first distinguishes the trace elements found in the extreme members of 

Table 8.29 The First Three Axes of the Trace 
Elements Found in Rocks in Ethiopia 

Factorl Factor 2 Factor 3 

Bn = —28.3 Cr = —31.2 Cu = —7.8 
Zn = -6.7 Ba -= —20.7 Cr = —6.1 
Cr 	51,7 V= 26.3 Ni = 82.3 
Ni = 5,0 Cu = 6.9 

Sr = 7.3 
57.2% 
	

23.2% 
	

9.1% 

Source: Theii and Cherninee, 1975; reproduced with permis-
sion. 
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the series—chromium (in picrite basalt) and barium (in the trachytic 
rhyolites and rhyolites). The second factor separates the extreme trace 
elements from the trace elements found in greater abundance in the 
intermediate rocks (such as vanadium), and the third contrasts high Ni 
against small traces of Cu and Cr. A joint distribution of the trace elements 
and rock type is displayed in Figure 8.10. A genetic application has been 
given by Greenacre and Degos (1977). 0 

8.6 CONCLUSIONS 

Most of the models considered in Chapters 3 and 5 are seen to be readily 
applicable to rank-order and nominal dummy variables, although adjust-
ments arc usually required in the measures of association and in the 
interpretation of the final results, The flexibility of factor models is further 
underlined when we come to consider applications of a more specialized 
nature (Chapter 9). Note that units of measure do not pose a problem as is 
sometimes the case with continuous variables, since an analysis of quali-
tative data is based on the correlation or cosine matrix, depending on the 
centering requirement of the analysis, A potential pitfall nevertheless exists, 
which may catch the unwary user off guard—the reversal of a particular 
code used will generally alter the analysis. Thus reversing zeros and ones of 
a dichotomous code, for example, can yield a factor structure with little 
resemblance to the original solution. The decision of which digit is to be 
attached to what category must therefore constitute an integral part of the 
analysis of qualitative data, and should form a basic reference point for any 
subsequent interpretation of the output. 

EXERCISES 

8.1 Prove that Kendall's coefficient of concondance (Eq. 8.6) is given by 

p,(n –1)+1 

	

W– 	n 

where pr, is the mean value of the Spearman rho correlation between 
C() possible pairs of observers. 

8.2 Show that for the coefficient W we have 0 5 W 1. 

8.3 Let c be the number of crossings linking the same objects in the two 



2 
• 

 

  

Figure SAO The joint distribution of rock type-trace element in the Erta ale chain (Theil and 
Cheminee, 1975; reproduced with permission). 
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rankings. Show that Kendall's tau can be expressed as 

C() — 2c  
T 

C() 

8.4 Using the data of Table 8.8 carry out a principal components analysis 
of the object correlation matrix using (a) Spearman's rho and (b) 
Kendall's tau correlation coefficients. What do you conclude? 

8.5 Prove that the normal equations (Eqs, 8.25 and 8.26) are equivalent. 

8.6 Show that the rank of matrix Y TY (Eq. 8.24) is K— k+ 1. 

8.7 Show that maximizing expression (Eq. 8.37) yields the normal 
equations (Eq. 8.38), 

8.8 Prove Eq. (8.55b). 

8.9 Show that for a bivariate normal distribution the correlation coeffi-
cient between x and y' can be expressed in terms of the infinite 
expansion (Eq. 8.61). 

8.10 The following data are provided by Pearson (1904) concerning joint 
father's and son's occupations: 

Father's 
Son's Occupation 

Occupation (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) Total 

(1) 28 0 4 0 0 0 1 3 3 0 3 1 5 2 50 
(2 ) 2 51 1 1 20 0 12 0 0 0 1 1 62 
(3) 6 5 7 0 9 1 3 6 4 2 1 1 2 7 54 
(4) 0 12 0 6 5 0 0 1 7 1 2 0 0 10 44 
(5 ) 5 5 2 1 54 0 0 6 9 4 12 3 1 13 115 
(6) 0 230  3 0 0 1 4 1 4 2 1 5 26 
( 7 ) 17 1 4 0 14 0 6 11 4 1 3 3 17 7 88 
(8 ) 3 5 6 0 6 0 2 18 13 1 1 1 8 5 69 
(9 ) 0 1 1 0 4 0 0 1 4 0 2 1 1 4 19 

(10) 12 16 4 I 15 0 0 5 13 11 6 1 7 15 106 
(11) 0 420  1 0 003  0 20 0 5 6 41 
(12) 1 31 0 00 1 01 1 1 6 2 1 18 
( 13 ) 5 020  3 0 181  2 2 323 1 51 
(14) 5 302  6 0 1 3 1 0 0 I I 1 32 
Total 84 108 37 11 122 I 15 64 69 24 57 23 74 86 775 

The categories arc; (1) army; (2) art; (3) teacher, clerk, or civil servant; (4) crafts; (5) divinity; 
(6) agriculture; (7) land ownership; (8) jaw; (9) literature; (10) commerce; (11) medicine; (12) 
navy; (13) politics and court; (14) scholarship and science. 



EXERCISES 
	

567 

(a) Carry out a correspondence analysis of the contingency table 
(matrix). 

(b) Plot the scores in a common two-dimensional subspace. Which 
occupations have changed more (less) during the generations? 

8.11 Le Bras (1974) has given the following (artificial) data from neuro-
psychology concerning certain functions which are hypothetically 
performed in specific areas of the brain's right hemisphere: 

%triable( 

Indi'M081  Y Y, 'i's Y4 'V S Yó 11 7 Y$ Y 	Y t Y12 Y13 Y14 Y15 Yto Y17 Y}* YIY 1(.0 Y ZI 	n Y -11  Y.14 Y2i 
No.1 	1111111010 	M1001111010000 
No.2 	00001000110111141011111111 
No.3 	0(I1)9111/1110111110011011111 
No.4 	0111001111011110001100011 
No. 5 	0111100111001110111101000 
No.6 	00100111100111000111111111 
No.7 	4111100001101011(1111100111 
No. 8 	11111011110101100111(1001)0 
No.9 	000111101111111111111(11.1000 
NO. 10 	110001[11(111000111111104)0 
No,11 	00000110111111111011111001 
No. 12 	1111(1(11110;10000110011110 
No. 13 	11 	11 	I 	11 	0 	0 	0 	1 	0 	1 	1 	1 	1 	1 	1 	1 1 	1 	1 	1 	1 	01 	11111 
No.14 	1111011111)1111100 	[01100 	IOU 
No, 15 	11111011111111001100(10000 
No, 16 	01011[31111001110911011I110 
No.17 	01111111110011190011000H 	I 
Nu. 18 	111101[110110000100011110 
No.19 	10011110110 	11110 	0 	101(10011 
NO. 211 	00011000111101110111101111 
No.21 	1 1 011100010001110011111111 
No,22 	0000011011110110111111010 
No. 23 	(111111111111111.100111001000 
No.24 	[1011)0901100111111111(11()11 
No25 	(1411100100001111111111(11111 
No,26 	1001011110111101111000100 
Nu, 27 	1100041011100111110111111111 
No. 28 	1111100111011111101.1111011011 
No 29 	0001001110001110111111110 
No. 301111(0011111011110011114/0111 
No.31 	11111001111111110110100000 
No.32 	011001111101111001110910(1 
No.33 	11000111111111101110011000 
No.34 	1111111110111111100001111100 
No.35 	0001100011111110010111101 
No, 36 	01111011119011100(11100011 
No. 37 	01(1000111(1111109101011111 
No.38 	4 ) 0110110111011100011101111 
Nu.39 	01111011111111111101000000 
No. 411 	111(3 1)1110(3111111)1101(10 	0 	4)1 
NI 41 	000(100100101111111111111U 
Nu.42 	1011111111111110010000000 
No. 43 	0011011111(11[11[11001)1000 
NO. 44 	(10111000110011101111111110 
Na).45 	0 	0 	I 	I 	I 	0 	I 	I 	I 	I 	0 	0 	0 	I 	I 	0 	0 	I, 	1 	1 	1) 	0111 
No,46 	1010011111101111001000011 
No.47 	II0410I110011111.1111110ug 	I0 
No, 48 	100(10100101111011111011[0 
No. 49 	111111111011110110(1000000 
No.511 	(11.1110100011011110111101111 
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Vadat'les 

No. SI 0 I) 1 1 1 0 (1 1 0 I 1 ) II 0 I) 1 1 U (I I 1 1 

N41. SZ (I 0 0 0 0 1 0 I 1) 011111110M 

No. 53 1 t () 0 1 1 1 0 1 I 1 0 0 1 1 0 0 0 1 0 0 
No. 54 I I 1001 I I I I 1 0 1 0 II II 0 1 1 U (1 II 

No. 55 0 U 000  0 0 I l U 111111110111! 
No. 5( 0001  I 00 1 0 1 111)011100111 
No. 57 1 1 1 101  1 1 1 1 0 0 1 1 0 0 0 II 0 0 0 0 

No. 5)I / 1 1 1 1 1 1 1 (I I II/11001{00000 

No. 59 0 1 1 1 0 0 1 1 0 U 1 1 (I 0 1 1 0 0 (I 1 1 1 
N(..60 1 I 1 1001  1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 
No, 61 1 1 1 1 0 1 1 I I 1 11000110000() 

No, 62 1 t 1 I (I 0 I 0 I 1 001110(111000 
No. 63 1 t 11111 t 0 1 010001100000 

No, 64 1 I 111011 0 1 0 1 0 0 0 0 t 1 II CI t I 1 

No. 65 I I 1 1 I 1 0 0 1 1 [11011100111U° 

No. 66 II I  1000  t t U 1 011111101110 
No. 67 01 III0t t 0 t 110000100111 

No. 63 1 1 1 1 1 1 0 0 1,  0 I I 0 0 I I II LI 0 1,) 1 0 
No. 69 I I 1 00 1 I 0 11 (I I0()()01101111 
No. 70 1 1 I 0 	0 1 1 0 1 1 101110011000 

To discover if a function is not performed, presumably due to a 
tumor, hemmorhage, and so on, individuals are given 25 tests where 
"pass" = 0 and "fail" = 1. The areas where the functions are per-
formed however are not known—all we have are the outcomes of the 
tests. Assuming the right hemishpere consists of 25 specific connected 
areas located on a grid, we wish to assign each of the 25 tests to a 
location on the grid. 

(a) Using principal components estimate the underlying grid structure 
of the p = 25 variables. How many dimensions are required to 
estimate the structure? Confirm by plotting the variables in the 
common factor space. 

(b) Using principal axes (Section 8.5) repeat the exercise of part a. 
Plot the variables and individuals in the common factor space. 

8.12 An important area of biochemical medical research is in the develop-
ment of antitumor drugs, where interest lies in being able to predict a 
drug's activity using properties of its chemical structure. Since the 
resultant biological measures possess large variability they are often 
analyzed using order statistics. The following data are given by Mager 
(1980a) where 

= Harmmett's electronic constant 
Y2  = Electronic constant in a different position 
Y3 = Logarithm of molar volume 
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Y3  

0.78 (LOU 1.76 -0.04 0.00 1.76 
0.60 0.00 1.76 -0,04 0.00 1.76 
0.25 0.00 1.76 0.15 0.00 1.76 
0.78 0.00 1.76 0.10 0.00 1.76 
0.50 0.00 1.76 0.14 0.00 1.76 
0,66 0.00 1.76 0.18 0.00 1,76 
0.65 0.00 1.76 0.16 0.00 1.76 
0.00 0.00 1.76 0.18 0.00 1.76 

-0.24 0,00 1.76 0.11 0.00 1.76 
-0.04 0.00 1.76 -0,04 0,00 1.76 
-0,04 0.00 1,76 -0.06 0.78 167 
-0,04 0.00 1.76 -0.09 0.00 1,76 

0.21 0.00 1.76 -0,04 -0.17 3,03 
-0,08 0.00 1,76 -0.56 0.00 1,76 
-0.04 0.07 2.49 -0.04 -0.24 3.67 
-0,04 0,00 1,76 -0.04 -0.18 3.23 

0.12 0.00 1,76 -0.66 0.00 1.76 
-0,04 0.00 1.76 -0,04 -0.17 3,03 
-0,13 0.00 1,76 -0.24 0.00 1.76 
-0.13 0.25 2.93 -0.04 -0.66 3.36 
-0.10 0,00 1.76 -0.04 -0,66 3.36 
-0.04 0.00 1.76 -0.13 -0.66 3,36 
-0.04 0.25 2.93 -0,04 -0.66 3.36 
-0,13 0,00 1.76 -0.04 -0.66 3.36 
-0,44 0.00 1,76 -0,13 -0.66 3,36 

(a) Using the original observations carry out a principal components 
analysis of the variables. 

(b) Perform a principal components analysis using quartiles in place 
of the original observations, What do you conclude? 

8.13 Consider the matrix W 'P T  Idiag(f) -1TIPW - ' of Eq. (8,75f) of 
Section (8.44). Show that the rank of the matrix is one less than the 
rank of P. 

8.14 Refer to Example 8.13 and Table 8.28 
(a) Repeat the 0-mode analysis of Table 8.28 using the weights W I 

 and f and compare to Williams (1978). What do you conclude'? 
(b) Reanalyze the data using R-mode analysis, that is, using the age 

distribution as the rows of the data matrix (Table 8.28). Can you 
determine the historical (time) behavior of the different age 
groups across race and sex? 
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CHAPTER 9 

Other Models for Discrete Data 

9.1 INTRODUCTION 

The methods introduced in Chapter 8 represent what may be called classical 
procedures of analyzing discrete data. Several additional questions arise 
however when considering nominal and rank order variables, for example, 
what can be done in the presence of nonindependence in the sample 
observations, or how is it possible to analyze a (n x p) data matrix which 
consists of both discrete and continuous random variables. Also the latent 
space itself may be discrete rather than continuous, that is, a given set of 
discrete variables may be generated by a set of unobserved classes or 
categories which themselves are discrete. These problems, together with 
extensions of techniques described in Chapter 8, are considered in the 
following sections. 

9.2 SERIALLY CORRELATED DISCRETE DATA 

Generally speaking a sample is drawn randomly and independently from 
some population, and this is usually sufficient to ensure that points in the 
sample space are not correlated. As was seen in Chapter 7 however, 
observations can, in practice, be correlated. Also, given a (n x p) matrix of 
observations for n objects and p attributes we may wish to discover which 
objects are more similar to each other in terms of the attributes, in other 
words which objects tend to be characterized more by which attributes, and 
vice versa. This implies the uncovering of object/attribute clusters, not 
unlike those considered in Section 8.5, which could provide useful in-
formation concerning the nature of the objects and/or the attributes. This is 
especially common when the observations are either ordered over time or 
are distributed in physical space, since this induces serial correlations among 
the discrete observations. In this section we examine two applications of 
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optimal scoring, described in Sections 8.3 and 8.4, when the discrete data 
reflect a sequential ordering over time (space). 

9.2.1 Sedation 

The general question posed by seriation may be stated as follows. Given a 
set of "objects," how can we place these objects (items) in an approximately 
correct serial order, so that the position of each object best reflects the 
degree of similarity between it and the remaining items. The problem may 
be further complicated by the presence of uncertainty due to the partial 
unreliability of the data. Sedation originated in the late 19th century in 
archaeology with sequence dating, where interest lay in ordering n large sets 
of closed assemblages (such as graves) into an ordered chronological series. 
Kendall (1975; see also Doran and Hodson, 1975) has also referred to such 
activity as one-dimensional map-making, since sedation can also be applied 
to the mapping of diverse objects such as genes and viruses (Benzer, 1961), 
as well as to ecological species that are distributed over a certain area. The 
latter activity is known as ordination and is considered in Section 9.2.2. In 
some respects the situation is similar to that encountered in Chapter 7 when 
estimating time functions, except the data matrix is integer-valued rather 
than continuous. For the sake of concreteness in what follows we consider 
seriation in the archaeological/historical setting. 

Consider a set of n closed assemblages examined for the presence or 
absence of p preselected artifacts that are thought to be of importance. If 
the assemblages span a period of time and if an order can be discerned in 
the distribution of the 0-1 binary code values, then the ordering may be 
ascribed to a directed unilinear time dimension. This is because if the known 
time-sensitive variables are chosen judiciously, they will be highly inter-
correlated, and can then be represented by a single factor which is attributed 
to "time." Other variables that correlate highly with the time factor may 
then be inferred to be good candidates for additional time-dependent 
variables. In any ease, as a rule of thumb the first two factors are usually 
expected to account for at least 50% of the variance, as a check on the 
time-discriminating ability of the variables (Marquardt, 1978). The time 
direction of the seriated objects cannot be determined in the same analysis 
in situ without, of course, the presence of external information provided by 
the archaeologist. Any nonnegative data such as rank orders, absolute 
counts, and proportions can be used, although in archaeological practice 
seriation is usually based on 0-1 dummy variables to denote the absence or 
presence of some attribute. The main reason for preferring 0-1 absence-
presence data as opposed to counts or proportions seems to be that the time 
similarity between assemblages of similar function does not necessarily 
increase with the number or abundance of the attributes they have in 
common (Goldman, 1971), but rather whether the attributes are simply 
present or not. For example, a greater number of ornamental broaches in 
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certain graves may be due to a relative wealth differential rather than to 
temporal change. The end product of such coding is then a matrix of 0-1 
dummy variables where rows represent assemblages and columns the 
artifacts. If the ones (presence of attribute) can be grouped together by 
permuting the rows and columns of the matrix, then this is sufficient to 
establish the presence of serial order among the artifacts and assemblages. 
A matrix that can be so permuted has been termed by Kendall (1975) to be 
in "Petrie form," and upon further permutation of the rows and columns 
can be put in quasi-diagonal form. The process may be illustrated by means 
of an artificial numerical example. 

Example 9.1. Consider a cemctary consisting of n 13 graves, where an 
archaeologist selects k 15 artifacts as being of importance (Graham et al., 
1976). The occurrence/nonoccurrence of an artifact in a given grave is 
denoted by a I or 0 (Tables 9.1-9.3) where the zeroes are omitted for 
convenience. Consulting Table 9.1 it may be concluded that the occurrence 
of artifacts is distributed randomly across the graves. The impression 
however is mainly due to the arbitrariness of the initial numbering or listing 
of the graves and artifacts in the matrix, and disappears once the rows and 
columns of the matrix are permuted in a judicious fashion, Thus Table 9,2 
reveals the presence of distinct clusters, and further permutation of columns 
yields the quasi-diagonal structure of Table 9.3, which is characteristic of a 
seriated matrix. Both the graves and artifacts are now in temporal order, 
and with further knowledge of direction it is possible to determine which 
graves are oldest and which are most recent. The rearrangement of rows 
thus determines the ordinal chronology of the graves, and this in turn 

Table 9.1 An Unordered Incidence Matrix 

Artifact types 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 11 1 1 
2 1 111 1 1 
3 1 1 1 

G 	4 1 II I 1 
r 	5 11 I 
a 	6 1 1 
v 	7 11 11 1 
c 	8 1 1 I 1 
S 	9 I 1 1 

10 I I 1 1 1 1 
II 1 1 1 1 1 
12 1 I 1 I 1 
13 1 1 1 1 1 1 
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Table 9.2 The Incidence Matrix of Table 9.1 with the Rows Ordered such that it 
is in Petrie Form 

Artifact types 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

6 
IOW 

1 1 
3 I 1 1 
8 1 I 1 1 

G 	1 I I 1 1 
r 	7 Ii II 1 
a 	13 11 111 1 

2 1 II 1 1 
4 1 1 1 1 1 

S 	11 11 1 1 1 
12 11 1 1 1 1 
10 11 1 1 1 1 
5 11 1 
9 1 1 1 

Table 9.3 	The Petrie Matrix of Table 9.2 with the Columns and Rows Ordered 
Along the Main diagonal 

Artifact types 

5 13 2 8 1 14 6 7 11 15 10 4 9 3 12 

6 
_

1 1 
3 1 1 1 
8 1 Ill 
1 1111 

G 7 111  1 
13 1 1 1 1 1 1 

a 2 1 1 111  1 
V 4 1 1 1 1 1 

11 1 1 1 1 1 1 
12 1 1 1 1 1 
10 1 1 1 1 1 1 
5 1 1 1 
9 1 1 

assigns a range of "sequential dates" to each artifact. Note that the 
identification of the direction of the graves with time must further be 
inferred since direction could presumably also be due to spatial variables 
such as physical or geographic position of the graves and/or artifacts. 

In Example 9,1 we are able to determine the existence of the quasi- 
diagonal structure simply by a trial and error permutation of the rows and 
columns of the matrix. In a realistic situation, however, where the matrix 
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may possess hundreds of rows and/or columns such an approach is clearly 
not feasible for a systematic sedation of an incidence matrix. Moreover, a 
matrix may not have a diagonal structure since there is no a priori guarantee 
that we can locate the temporal order, perhaps owing to a lack of suitable 
artifacts. It is of some interest therefore to investigate mathematical 
conditions for the existence of a diagonal structure, as well as computational 
procedures which could be used to locate such a structure, A number of 
algorithms that rearrange the rows/columns of nonnegative integer matrices 
can be used in order to uncover such informative clusters (see e.g., 
McCormick et al., 1972; Exercise 9.5). It turns out that necessary and 
sufficient conditions for a correct ordering can be obtained from general 
properties of Hamiltonian graph-theoretic circuits, which must pass through 
the rows (graves) of the matrix (see Shuchat, 1984). The problem of 
determining whether a given incidence matrix can be rearranged by rows 
(columns) so as to bring together all the unities in each column appears to 
have been first considered by Fulkerson and Gross (1965) in a genetic 
problem of testing whether experimental data are consistent with a linear 
model of the gene. Both approaches however have a drawback in that they 
are only applicable to deterministic or near deterministic situations, which is 
not the case for sedation in archaeology and other related disciplines. 
Kendall (1969) has shown that for a (0, 1) incidence matrix Y a principal 
components analysis of either Y rY or YYT  yields sufficient information to 
decide on the possibility of a diagonal arrangement, as well as the actual 
arrangement itself. Although Kendall uses multidimensional scaling, a 
principal components (factor) analysis is probably preferable in the presence 
of noisy data (see Graham et al., 1976). A factor analytic model also 
provides a more unified approach to the sedation problem, and can handle a 
fairly large matrix if principal components are used. Figure 9.1 illustrates a 
seriation of actual graves from the Munsinger-Rains region. The relationship 
between diagonalization using row/column permutations and latent vector 
decomposition is stated in the following theorem. 

THEOREM 9.1. Let Y be a (0, 1) incidence matrix. If the rows and 
columns of Y can be permuted so that all the ones in every row and column 
come together, there exists (degeneracies aside) a unique ordering of the 
rows and columns, generated by the first (nontrivial) axis of the optimal 
scaling of Y. 

An outline of the proof is given by Hill (1974). The idea is to consider an 
incidence matrix Y as a contingency table and to compute scores that 
maximize the rows (assemblages) and columns (artifacts) as described in 
Sections 8.4 and 8.5. If there exists an underlying continuum for the rows 
and columns, it is estimated by the axis corresponding to the largest 
(nontrivial) latent root of the decomposition. Another approach is to use the 
general theory of nonnegative matrices (e.g., see Basilevsky, 1983). For 
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Figure 9.1 A seriated archaelogical incidence matrix representing the graves from the 
Munsinger-Rains region. 

archaeological or historical time-sequence data the continuum can clearly be 
interpreted in terms of a time trend due to the serially correlated nature of 
the artifacts and assemblages. The method can also be extended in a 
straightforward manner to matrices containing integer counts of artifacts, 
the so-called "abundance" matrices (Kendall, 1971a). As seen in Section 
9,3, however, non-Euclidean measures of association may have to be used, 
owing to the existence of the quadratic or the so-called "horseshoe" effect. 

Seriation has also been applied to classical writings such as the works of 
Plato ((ox and Brandwood, 1959) using absolute counts. The following 
example is taken from Boneva (1971). 

Example 9.2. The problem may be posed as follows. Given a count of 
Plato's writing style (sentence-endings or the so-called clausula), is it 
possible to place his works in chronological order? The input matrix consists 
of the books (rows) and types of clausulae (columns), there being in all 45 
books and 32 different types of clausulae. The entries of the matrix are then 
counts of clausulae in the various works. The matrix can again be considered 
as a contingency table, in conformity with Sections 8.4 and 8,5, and a 
seriation of the rows using the first nontrivial axes yields the coordinates of 
Table 9.4 and the corresponding graph of Figure 9.2. Since the ordering is 
based on grammatical structure (the clausulae), it clearly does not necessari- 

jp 71 
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Two-Dimensional Coordinates of Figure 9.2 of the Works of Plato 

Final Configuration Name 

1 0.179 1.020 Charmides 
2 -0.292 0.662 Laches 
3 1.513 0,108 Lysis 
4 0,706 0,483 Euthyphro 

5 0.248 0.463 Gorgias 
6 1,177 0.395 Hippas Minor 
7 0,443 1.144 Euthydemus 
8 0.346 0.167 Cratylus 
9 0,310 0.990 Mcno 

10 1,119 1.344 Menexen us 
11 0.811 1.046 Phaedrus 
12 0.195 0.774 Symposium 
13 0,323 0.524 Phaedo 
14 0.237 0.428 Theaetetus 
15 0.874 0.613 Parmenides 
16 0.339 0.812 Protagorus 
17 -0.335 1.125 Crito 
18 0.641 1,137 Apology 
19 0,194 0.645 R 1  
20 0,561 0,597 R 2  
21 -0,295 0,956 R 3  
22 0.647 0,826 R4 

23 0.403 0.635 R, 	Republic 
24 0,301 1,238 R4  
25 -0,019 1.494 R 7  
26 0.178 1.681 R s  
27 0.316 1.639 Rv  
28 -0.009 0.892 R. Is  
29 -0.566 - 1,158 L 1  

30 -0,799 -L893 L2 
31 -1.053 -1.449 La  

32 -0,348 -2,040 L 4  

33 -0.489 -2.301 Ls  
34 -1..404 -1.643 L, 	Laws 
35 -0,851 -1,569 L., 
36 -1.323 -1.707 Ls  
37 -1.438 -1.351 L 9  
38 -1.176 -1,899 L k, 
39 -1.824 -1.040 L 11  
40 - 1.096 - 1.257 L 12  
41 0.945 -1,009 Critias 
42 - 0.584 - 1.802 F (Philebus) 
43 -0,335 -1.162 Politicus 
44 0,232 -0,327 Sophist 
45 0.997 -0.232 Trimaeus 

Source: Boneva, 1971; reproduced with permission. 
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Figure 9.2 A chronological scriation of the 
works of Plato. 

ly have to reflect a temporal evolution of Plato's philosophical concepts 
unless grammatical style itself is time-dependent. Also, the ordering is 
estimated using only the first two principal axes, which may not provide 
enough local information since subsequent axes can well reveal the existence 
of subgroupings which contrast finer aspects of Plato's style, and which 
distort the two-dimensional sequence. Nevertheless, the ordering may be of 
some interest since it reveals that the books fall into two well-marked 
groups: (1) those for which both coordinates are negative (cluster A; 
Philebus, Politicus. the Laws), and (2) those for which the second coordi-
nate is positive and which contains the Republic and the first 18 works 
(cluster B). Critias however is a member of neither group and, indeed, 
forms a cluster all by itself (Table 9.4; Figure 9.2). 

9.2.2 Ordination 

The spatial analogue of temporal seriation is the ordination of spatially 
correlated incidence or count data in one; two; or three-dimensional space—
for background see Gittins (1969). The procedure originated in ecological 
studies of plant species and is known as reciprocal averaging, weighted 
averaging, or gradient analysis. The objective is to identify the causes or 
process(es) that underlie and determine the behavior of the individual 
species which collectively form the vegetation of a given area. More 
generally ordination considers spatial distributions of objects across various 
conditions or subareas, in an attempt to uncover which types of objects have 
an affinity for what kind of an environment. As in the case of seriation the 
initial data matrix (contingency table) may consist either of (0, 1) incidences 
of occurrence/nonoccurrence or of abundance measurements such as 
counts, percentage of area covered, and so forth. Since the fundamental 
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objective of such research is often qualitative in nature (existence–nonexist-
ence of species), most work is conducted using (0, 1) incidence matrices, 
although exceptions exist. Since the objective or ordination is a joint plot of 
the rows and columns of a data matrix it can be achieved using either a 
principal components analysis or a canonical correlation analysis when the 
data matrix is considered as a contingency table. 

In ecology, gradient analysis is often combined with a scheme of 
successive approximations, as follows. For example, from an approximate 
floristic gradient such as water relations the species are divided into "wet" 
and "dry" species. An initial gradient analysis of sites can be obtained by 
scoring 0 for stands containing only "wet" species, 1.00 for stands containing 
only "dry" species, and .50 for those containing equal amounts of both. 
Provided that the stand scores are a reasonable initial indication of water 
retention, they can be used to derive an improved second-order new 
calibration of the species. The new species scores are the averages of the 
scores of the stands in which they occur. Thus species that occur mainly in 
wet stands, for example, receive a low score; species that occur mainly in 
dry stands receive a high score; and intermediate species are given an 
intermediate score. Thus if the new species scores are resealed from 0 to 
1.00 the process can be repeated and the stands recalibrated. 

The process of repeated cross-calibration represents a traditional method 
in plant ecology and in the limit yields a unique one-dimensional ordination 
of both species and stands, since after sufficient iterations the scores 
stabilize. The process is known as "reciprocal averaging" by practitioners 
and can be applied to a matrix of counts, proportions (probabilities), or 
(0, 1) absence–presence data. It can be shown however that the iteration 
procedure is in fact identical to the computation of the dominant (nontrivial) 
latent root and latent vector of the discrete data matrix used. 

THEOREM 9.2. (Hill, 1973). Let A = (ti e] ) denote a (0, 1) matrix where 
rows represent species and columns represent the stands. Then the cross 
calibration of the rows/columns by reciprocal averaging is equivalent to the 
extraction of the first nontrivial latent root and its corresponding latent 
vector. 

PROOF. Let 

re  = E a ti 	C1 
 =

E 

be the row and column totals of A. Then the reciprocal averaging process 
can be represented by the equations 

1  
x. =— 2, a.-y1 	aux, 
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or, in matrix form, as 

X = 11 -J AY 	Y = C 'AIX 	 (9.1) 

where X and Y are the row and column scores and R and C are diagonal 
matrices containing the row and column totals. Substituting, say, for Y in 
Eq. (9.1) the first step of the iteration is 

X' = 14 -1 AC - 'AIX 	 (9.2) 

where X' are the new values for the row scores. When there is no resealing, 
the largest latent root of Eq. (9.2) is 1. which corresponds to the unit latent 
vector. The matrix expression preceding X in Eq. (9.2) however is not 
symmetric. Let Z = R" 2X, Then Eq. (9.2) may be rewritten as 

Z' R " 2AC "AIR -  "Z 

-ii2 AC )(C " -AIR " 2 )Z 

= 	Z 	 (9.3) 

where Z = R 112  X' and B = R -1i2AC -H2 . The matrix preceding Z in Eq. 
(9.3) is the same as in Eq. (8.54), which is also of the same form as in Eq. 
(8.44) but with different scaling. 

An artificial numerical example illustrating the similarity between re-
ciprocal averaging and principal components is given by Hill (1973). 
Hatheway (1971) has used contingency table optimal scoring to study rain 
forest vegetation. For a comparison of reciprocal averaging with other 
ordination techniques such as standardized and unstandardized principal 
components and other latent vector methods see Gauch et al. (1977) and 
Orloci (1966). Again, a choice is available as to the location of the 
origin—centering by columns, rows, or both—for a discussion see Noy-Meir 
(1974 The following example is drawn from Orloci (1966). 

Example 9.3. The data consist of the presence or absence of plant 
species from dune and slack vegetation in Newborough Warren, Anglesey. 
The random sample consists of 131 plots (2 X 2 m each) where plant shoot 
presence-absence is determined for all species encountered in 50 random 
20 x 20 cm quadrants within each sample plot. A total of 100 plots is used in 
the ordination, using 101 species. E 

The (100 x 101) incidence data matrix is subject to a principal com-
ponents ordination to determine specie richness and locate specie com-
munities. A plot for the first two components is given in Figure 9.3. Because 
species-rich communities differ in more species than the species-poor 
communities, the analysis results in a dense clustering of the dune plant 
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Figure 9.3 Presence-absence ordination by principal component analysis (0 mobile dunes; 110. 
fixed dunes; • fixed slacks (leached soils); 1111 hummocks; V raised ground in slacks; 0 alkaline 

wet slacks with semi-open vegetation; V alkaline wet slacks with closed vegetation) (Orloci 
1966, reproduced with permission), 

communities and a gradual quadratic-like fanning out of the points (Sections 
8.4.3 and 9.3). The first principal axis can be identified as corresponding to a 
vegetational gradient starting from the Ammophila arenaria-type of mobile 
dunes and leading to plant communities of the wet alkaline slacks (Orloci, 
1966). 

Finally, it must be noted that both seriation and ordination are special 
cases of a more general problem. Given a nonnegative object—attribute 
matrix whose (1, Dth element measure (on an ordinal scale) the degree to 
which object j possesses attribute i, can we cluster the rows/columns such 
that similar groups of attributes characterize similar groups of objects 
(Exercise 9.5). 

9.2.3 Higher-Dimensional Maps 

Both seriation and ordination seek to uncover a one-dimensional ordering of 
objects, either in temporal or in physical space. The idea can also be 
extended to a higher-dimensional ordering of objects, for example, in 
physical or in geographic space. Thus by using integer counts (or functions 
of integer counts) as measures of similarity, it is possible to construct or 
estimate a higher-dimensional map from what may appear to be meager 
data. Kendall (1971b) has aptly described the procedure as "construction of 
maps from odd bits of information," and using a similarity measure based 
on intermarriage rates computed from parish registers has estimated the 
relative location of eight lost Otmoor parishes in Oxfordshire, England. 
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Also, in a problem of determining fine genetic structure Benzer (1959) 
utilized similar mapping concepts using a (0, 1) recombination matrix, while 
Levine (1972) produced a three-dimensional map indicating the structure of 
bank-industrial corporate interlocked directorates. The algorithms which 
can be employed for mapping purposes are those of multidimensional 
scaling including principal components and principal axes analysis. The 
conversion of non-metric into metric information is also considered by 
Abelson and Tukey (1959; 1963). The following example can serve as an 
illustration in the area of archaeological exploration. 

Example 9.4. Tobler and Wineburg (1971), using cunieform tablets 
uncovered in Kiiltepe (Turkey) containing cross references to Assyrian 
towns (1940-1740 B.C.) have attempted to estimate the location of these 
lost Bronze Age centers. The basic reasoning employed is that towns that 
are closer to each other engage (on the average) in more frequent trade than 
those that are far away, and thus can be expected to be mentioned more 
frequently on their neighbor's records or tablets. In addition, it is expected 
that interaction between the Assyrian towns also depended on the relative 
sizes of the towns, so that in total it is posited that interaction increases with 
size and decreases with distance. The authors thus use the well-known 
gravity model index 

(9.4) 

where I. is the interaction between place i and j; Pi  and Pi  are populations 
of towns i and j, d ii  is distance; and k is a constant of proportionality. The 
estimated map of the towns' locations is given in Figure 9.4. The fit of the 
configuration is reported to be in excess of 80%. Since any solution only 
gives the relative coordinates of the towns, at least two points (towns) must 
be known in terms of absolute coordinates in order to determine the scale, 
and a third point to determine the absolute orientation. Of course the more 
towns that are known in advance, the more precise and stable will be the 
statistical solution. It must be kept in mind however that a statistical 
resolution of a mapping problem is at best an initial approximation which 
must usually be adjusted by an experienced archaeologist. Nevertheless a 
first approximation based on a mathematical algorithm can result in a saving 
of human labor and may provide greater objectivity in the comparison or 
search process. 

Example 9.5. The objective of the method of Example 9.4 can be 
described as follows. Given a square matrix of interpoint distances (simil-
arities), is it possible to estimate, in a space of lower dimension, the 
coordinates of the physical locations of the points which have given rise to 
these distances (similarities). An alternative method of obtaining a two- 
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Figure 9.4 Predicted location of 33 pre-Hittite Assyrian towns (Tobler and Wineburg, 1971; 
reproduced with permission). 

dimensional map is one that makes use of the spatial distribution which 
often exists among the nominal observations. The procedure is to use the 
loadings from a Q-mode (scores from an R-mode) factor analysis to obtain 
an estimated spatial distribution or map of the factors, which hopefully 
reveal the essential structure(s) of the original variables. The purpose of the 
plot is exploratory and is mainly intended to detect groupings or clusters 
among the original variables or sample points. Rowlett and Pollnac, (1971), 
for example, have used factor clusters to observe whether archaeological 
variables can be clustered arealy. The data consist of p = 104 grave 
assemblages (the variables) which are distributed, in varying degrees, among 
n = 77 archaeological sites in an area which is approximately 1(X) X 75 km, 
located in the Marne Valley of northern Champagne. The objective is to 
detect whether the so-called Marne Culture (480-400 B.C.), long recognized 
as a distinctive variant of the widespread La Tène Culture, can itself be 
subdivided meaningfully into subcultures, The map of Figure 9.5, con-
structed using scores of the correlation matrix, indicates three distinct 
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Figure 9.5 Spatial distribution of factors. Bouadaries are factor loadings of +,30, 0== -  graves 
among houses; y = houses adjacent to cemetery; x houses distance front cemetery. 

clusters of the n=77 sites, suggesting the presence of three distinct 
subcultures. Since the nominal data are not too highly correlated, however, 
the r= 3 factors only account for 20.5% of the variance (9.3, 6.0, and 5.2% 
respectively). The results appear to be meaningful, and the authors conclude 
that factor mapping should prove to be useful in anthropology and 
archaeology since it appears to yield superior results to more traditional 
forms of clustering such as hierarchical dendograms (see also Christenson 
and Read 1977). The existence of the three distinct clusters or subcultures 
however may very well be spurious. First, it is not clear that the three 
common factors are statistically significant. Second, the factor method used 
is the so-called "common factor analysis" or the image factor model 
whereby unities on the main diagonal are replaced by squared multiple 
correlations. As was seen in Section (6.3.3) however, the model is inapprop-
riate since it introduces bias. Actually, with dichotomous variables it is 
probably best to use the principal components decomposition rather than an 
errors-in-variables factor model of the type described in Sections 6.4 and 
6.5. Nevertheless, the present numerical example illustrates the type of 
analysis which can be performed with discrete data using the Q-mode 
approach (Section 5.4) (Table 9.5). 

9.3 THE NONLINEAR "HORSESHOE" EFFECT 

The mathematical validity of factor analysis does not depend on the type of 
particular configuration of points in multivariate space. Owing to the very 
nature of (0, 1) data however, the observations cannot lie in any position in 
the vector space but must lie on the apices of a hypercube (Fig. 9.6), and 
this generally modifies the implementation and interpretation of factor 
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Table 9.5 Factor Scores of a (75 X 75) Correlation Matrix of Nominal Dummy 
Variables Describing Archaeological Artifacts Representing the La Tine Culture 

Assemblage Items 

Factors 

11 111 

1. Vases chiefly to right, at foot -1.22 0.28 0.39 
2. Lances chiefly to the left -0.50 -0.34 0,26 
3. a°-la bowls -0.37 -0.07 -.1.76 
4. A°-la jar -1.12 3.48 -1.30 
5. A° jar with neck cordon 0.04 -0.53 0.65 
6. B vase with flat, everted rim -0.82 -0.06 -0.40 
7. B vase with vertical rim -0.11 -0.18 0.20 
8. Rimless B and b vases -0.41 -0.13 0.44 
9. Biconic plates with foot -0.29 -0,70 0.66 

10. Footless carinated cup -0.19 -0.71 0.63 
11. Footless ovoid cup ca-2b 0.06 -0.72 0.68 
P. Rectilinear conical cist predominant form -0.89 -0.87 0.74 
13. Orange-yellow pottery at least 10% of ceramic 

colors -4.32 -0.25 0.07 
14. Thin red paint -4.21 0.22 -0.10 
15. Wide-band painting technique -4.56 0.21 -0.00 
16. Triple chevron ceramic motif -0.88 0.52 0.12 
17. inverted chevron ceramic motif -1,29 0.12 0.14 
18. Zig-zag line ceramic motif -0.58 -0.45 0.09 
19. Reticular ceramic motif -1.17 0.16 0.05 
20. Circular ceramic motif 0,33 0,20 0.54 
21, Vertical wavy combmarks on ceramics -0.35 0.75 0.57 
22. Less than 50% twisted torcs -1.50 -0.31 0.21 
23. Majority of twisted tore hooks in the plane of the 

tore -1.54 -0.50 -0,48 
24. Bird torcs, bird vases, and other bird images 

(except on fibulae) 
-0.19 -0.57 0.36 

25. Torcs with exterior annelets -0.38 -0.21 0.59 
26. Bracelet with continuous series of incised lines -0.61 -0.09 0.62 
27. Bracelet with serpentine decoration around the 

exterior 0.33 -0.67 0.17 
28. Pin-and-socket bracelet with flattened wire section -0,56 0.05 0.48 
29. Multiple-node bracelet 0.03 -0.99 0.43 
30. Fibula terminal semihemispherical (as at La Gorge 

Meillet) 0.48 -0.70 0.48 
31. Fibula with false spring on foot 0.24 -0,98 0.81 
32. Disc fibula -0.23 -0.69 0.69 
33. Bronze sword scabbards 0.62 -0.86 0.56 
34, Predominantly high arc on scabbard mouth 0.00 -L16 0.09 
35. Knife with complete handle and rectangular 

pommel -0.35 -0.48 -0.08 
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Table 9.5 	(Continued) 

Assemblage hems 

Factors 

11 111 

36. Knives with convex dorsal lines and short riveted 
handles (D - 1 and D3e) - 1.15 -0.20 0.48 

37. Narrow felloe clamp -0.00 -1.16 0,71 
38. Trapezoidal chariot burial pit 0.81 -1,06 0.82 
39. Vases chiefly to the left side, not at foot 0.29 -0.75 -1.92 
40. Black piriform wheelmade urns 0.20 -0.62 -1.57 
41. A-3c urn with short, flat upper shoulder 0.48 -1.06 -0.66 
42. Spheroid jars A°-3 -0.17 0.52 -3.82 
43. b°-3 spherical pots 0.72 -0.18 -1.09 
44. Ta° chalice with flaring rim 0.80 -0.25 -1.02 
45. Te-3 conical chalice 0.25 0.17 -1.43 
46. Black pottery predominant (50% or more) 0.21 -0.41 -5.09 
47. Relief decorative technique 0.45 -1.01 -1.59 
48. Nested serial lozenge ceramic motif 0.78 -0.27 -0.60 
49. A vases with rounded bellies 0.64 -0.35 -1.05 
50. Concentric semicircle decorative motif 0.60 -0.81 0.06 
51. Vertical comb marks with top section curved 0.46 0.09 -0.39 
52. Punctate decoration with relief margins 0.30 -0.57 -0.96 
53. Pyramidal ceramic motif 0.35 -0.74 -0,89 
54. La Tene curvilinear designs on wheel-made pottery 0.41 -0.76 -0.73 
55. Bracelet of flattened wire with square-chapped 

ends (B2a) 0.03 0.22 0.09 
56. Knife with complete handle with splayed butt 0.65 -0.80 -0,67 
57. Knife with concave dorsal line, short handle 0.71 -0.28 -0.20 
58. Wide felloe clamp 0.83 -0.48 -0.03 
59. Square or rectangular chariot pit 0.43 -0.34 -0.32 
60. Cremations as well as inhumations 0.63 0.82 0.34 
61. Pots chiefly at the head 0.99 0.71 0.68 
62. A-3h urn with short cylindrical neck, wide flat rim 0.67 0.56 -0.10 
63. A-2b vase with dropping upper shoulder 0.57 1.22 0.67 
64. b*-2 vase 0.65 0.56 0,60 
65. Cylindrical cist predominant cist form 0.66 0.99 0.57 
66. Many grey pots (over 33%) 0.51 1.81 0.44 
67, Triplet parallel lines on ceramic cists 0,72 0,30 0.66 
68. Single and stacked lozenges ceramic motif 0.01 1.70 0.95 
69. Left-oriented step ceramic motif -0.41 1.59 0.46 
70. Solid dot ceramic motif 0,15 0.65 0.46 
71. Over 50% twisted toms 0.67 3.00 -0.41 
72. Plaque catch-plate on torcs 0.59 2.02 0.68 
73. Majority of tore hooks perpendicular to the plane 

of the tore 0.48 3.29 -0.28 
74. Bracelet with alternate band decoration with lines 

at right angles to the bands 0.36 0.55 -0.27 
75. Rectangle and triangles bracelet motif 0.04 2.09 1,00 
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Table 9.5 	(Continued) 

Assemblage Items 

Factors 

1 11 111 

76. Pointed-ended bracelet with flattened section, 
overlapping ends 0.79 0.94 0.36 

77. Predominantly low arc scabbard mouth 0.70 1.94 -1.18 
78. Knife with arched back, stepped pommel 0.84 -0.13 0.32 
79. Knife with short, stepped handle 0.86 0.55 0.57 
80. Red piriform wheel-made urns 0.56 -1.15 0.56 
81. Piriform flasks 0.06 -0.75 0.50 
82.1r-3 jar (high rounded shoulder) 0.20 - 0. 08 0.48 
83. b°.1 bowl (high rounded shoulder) -0.35 -0.72 0.31 
84. Rimless chalice Te-2a 0.23 -0.21 0.95 
85. Triangle ceramic motif -0.38 -0.70 0.26 
86. Asymmetrical rectangular meander ceramic motif -0.04 -0.93 0.50 
87. La Tette curvilinear designs on handmade pottery 0.46 -0.80 0.40 
88. Bracelet of ribbon twist with pointed ends 0.32 -0.77 0.62 
89. Pointed oval design on fibula bow complemented 

by tick marks 0.56 -0.57 0.83 
90. Knife with pointed handle 0.09 -1.01 0.71 
91. Spear with long socket 0.18 -0.83 0.34 
92. Lances chiefly at the feet 0.82 0.34 0.24 
93. 13 vase with incurvate upper shoulder (B°-3) 0.84 - 0.20 - 1.20 
94. 13' rimless ceramic situla 0.23 -0.79 -0.79 
95. Cross-hatched decoration on fibula bows 0.11 -0.33 -0.57 
96. Lances chiefly at the right 0.61 0.47 0.48 
97. Symmetrical rectangular meander ceramic motif 0.30 0.15 -0.20 
98. Pin-and-socket bracelets with round socket 0.43 -0.31 -0.14 
99. Flat rectangular fibula terminal with X-design 

incised 0.82 0.53 0.68 
100. Vases chiefly at foot, no side preference 0.68 -0.27 0.55 
101. Orange-brown pottery over 10% 0.42 0.45 0.77 
102. Thick paint predominant technique of ceramic 

decoration (50% plus) 0.37 0.03 0.57 
103. Double chevron design -0.66 0.87 0.34 
104. Series of small circles decorating bronzes 0.18 1.06 0.46 

Source: Rowlett and Pollnac, 1971; reproduced with permission. 

analysis. In this section we consider a particular problem that occurs when 
using dummy variables in a canonical or a factor model. It was seen in 
Section 8.4.3 that latent vectors associated with nominal data consist of 
Chebyshev-Hermite polynomials when the (0. I) observations are gener-
ated by a normal distribution. In particular, for a bivariate normal dis-
tribution the first two principal axes may be related by a quadratic function 
even though the eigenvectors are orthogonal. The phenomenon manifests 
itself in terms of a quadratic configuration of points in the plane, which can 
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Figure 9.6 I iypercube in three-dimensional space. 

frequently be observed in the applied literature and which has been termed 
by Kendall as the "horseshoe effect" (Kendall, 1971a, 1975; Hill and 
Gauch, 1980). Research workers are frequently surprised by the phenom-
enon, although it can be expected in practice under widespread and general 
conditions because of the very nature of the data and measures of 
association used. The main difficulty with a quadratic configuration of points 
is that it renders interpretation more difficult, particularly when conducting 
a seriation of discrete time series or an ordination of spatially distributed 
points (Section 9.2). This is because the "horseshoe" is a purely mathemati-
cal artifact and does not necessarily correspond to any real structure of the 
data, and cannot be interpreted in a meaningful, substantive sense. A way 
out of the difficulty is to consider alternative non-Euclidean measures of 
association which do not rely on linearity to maximize correlation. Before 
considering non-Euclidean measures of association it is useful to take a 
closer look at the quadratic horseshoe effect and the reason for its presence. 

Consider the matrix 

A = 

1 	I 
0 	0 
0 0 
0 	0 
0 	0 

_0 0 

1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 

1 
I 
1 
0 
0 
0 

0 
1 
1 
0 
0 
0 

0 
l 
1 
1 
0 
0 

0 
0 
1 
1 
0 
0 

0 
0 
1 
1 
1 
0 

0 
0 
0 
1 
1 
0 

0 
0 
0 
1 
1 
1 

0 
0 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 

0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 

(9.5) 
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which represents serially ordered objects corresponding to the rows and 
columns of A. The horseshoe effect is a direct product of the fact that the 
data points are restricted to lie on the corners of a hypercube (Fig. 9.6). 
Thus in terms of the similarity measures between the rows of the matrix we 
observe a quadratic effect in spite of the fact that the ordering is linear 
(diagonal). Consider the matrix of inner products between the rows of A 

Table 9.6 Sample Counts or Euphausia Species taken at Discovery II and Deutsche 
&Apotar Expedition Stations" 

Y I Y ? Y 3 Y 4 Y:‘ Y fi Y 7 YR YV YID Y i Yr Yu Y 14 Y 2i YR, Y17 

00°54' 12 2 7 61 - _ _ _ _ _ _ _ _ 
(Too' 44 11 103176- _ _ _ _ .... _ _ _ .... _ - 
04°06 9 4 36- - _ _ _ _ _ _ _ _ _ _ 
05°02' - 4 18 11 _ _ _ _ _ _ _ _ 
07°03' 4 16 1 4- - _ _ _ _ _ 
07°52' 4 6 41 9- - _ _ _ _ _ - _ 
W°51' 12 4 26 211 - - _ _ _ _ _ _ 
12°23' 2 - 8 2 - _ _ _ _ _ _ _ 
13°37' 2 14 94 21 _ _ _ _ _ _ _ _ _ _ _ 
16°37' 10 2 170 21- - _ ... _ _ _ _ _ _ 
19°35' _ _ 29 - _ _ _ _ _ _ _ _ 
20°19' 1 27 198 21 - _ _ - _ _ _ _ _ 
22°38' - 2 39 21 - .... _ _ _ _ _ _ - 
23°51' - - 12- .... _ 8 - - _ .... _ - _ _ 
25°51' - 46- - 12 - _ _ _ _ _ _ _ _ _ 
26°24' - - 8 - 5 - _ _ - _ _ 
29°42' - 8 - - 2 _ _ _ _ _ _ _ _ _ 
30°28' _ ./, --■ 1 21 83 _ 5 - _ 
32°07 ' - 7 - - 20 165- - - 8 - _ _ _ _ _ 
32°49' - - 4 50 116 176 10 27 94 _ _ _ - 
34° 19 ' - _ _ - 3 56 459 2 8 11 - _ _ _ _ _ _ 
36°08' - - .... _ 33 223 49 83 57 16 - _ _ _ _ _ 
37°09' - _ _ - 47 252 84 23 _ 2 - _ _ _ _ _ 
39°21' - _ _ _ ... _ 1 9 - 15 12 - - _ _ - 
39053' - _ _ _ _ _ 3 4 52 4 - _ _ _ _ _ 
42°24' - - _ _ _ _ _ _ 1 55 24 24 3 - 
451V - - 1 .50 83 218 1 - _ _ 
46°02' - - _ _ _ _ _ - 21 20 - 
48104' _ _ _ _ _ _ 39 16 62 18 _ _ _ 
49053• - _ _ _ _ _ _ 8 5 _ _ 
50043' - _ _ _ _ _ - 388 19 - _ _ 
5323' - - _ _ _ _ _ _ 46 90 _ _ _ 
54°13' - _ _ _ _ _ _ _ _ ... _ 0 1 134 10 - 
57°55' - _ _ _ _ _ _ _ _ _ 10 2 2154 4 
60°33' _ ... _ _ _ _ _ _ _ _ 1 89- - 
tire - _ _ .... _ .... _ _ _ _ .... _ 68 8 - 
64'153' - 

- 
- - 

_ _ 
... 
_ 

_ 
_ 

-

65°30' 	 1 
- 
_ _ 

..._ 
_ 

_ 
_ 

_ 
_ 

_ 
_ 

_ 4 
_ 

66"02' - - _ _ _ ... .._ ... - - 4 17 

'The counts from Discovery 11 Stations are corrected for a 20 minN100B haul. Stations' positions are 
shown in Figure 9.9, 
Source: Baker, 1965; reproduced with permission. 
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given by the symmetric Toeplitz matrix 

5 	3 	1 
3 	5 	3 

3 	5 
0 	1 	3 
0 	0 	1 
0 	0 	0 

0 
1 
3 
5 
3 

1 

0 
0 
1 
3 
5 
3 

0 
0 
0 
1 
3 
5 

(9.6) 

Since the similarity between the first row and the last three rows is zero 
(even though the rows are highly disimilar) and since the ordering between 
the first and last rows is reversed this results in the quadratic horseshoe 
effects such as that of Fig. 9.7 when a conventional principal components 
analysis is performed on the matrix. Also related procedures discussed in 
the preceding section such as reciprocal averaging, correspondence analysis, 
and canonical correlation of a contingency table are also subject to the 
quadratic effect. In addition the horseshoe effect may introduce difficulties 
concerning the rotation of axes since the principal components are no longer 
independent. 

A closer examination of the problem reveals that the zeroes of the matrix 
(Eq. 9.6) are mainly responsible for the quadratic effect of an ordination. A 
solution which is therefore sometimes used is to transform the inner product 
matrix in such a way that the resulting similarity matrix is free of the effect 
of the zeroes. This implies the use of alternative measures of similarity 
between the rows (columns) of the original data matrix. Two such measures 
are in common use; the "step-across' method of Williamson (1978) de-
veloped for ecologic ordination of plant species, and the "circle" measure of 
Kendall (1971c, 1975), used in archaeological seriation. First consider the 
"step-across" method used in ordination. The procedure consists of replac-
ing inner products by the well-known Minkowski L I  distances di , where 

11 

did = E 	- 	 (9.7) 
I 

Figure 9.7 Ordination resulting from a principal 
components analysis of the incidence matrix (Eq. 
9.6). 
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Figure 9.8 The network of distances (Eq. 
9.9) between the rows of the incidence 
matrix (Eq, 9.6). 

for some kth and /th rows (see below). The L I  or the "city block" distance is 
a more natural measure of association, owing to the hypercube structure of 
(0, 1) data. For the data matrix (Eq. 9.5) we then have the L I  distance 
matrix 

0 4 8 10 10 10 
4 0 4 8 10 10 

= 8 4 0 4 8 10 D  10 8 4 0 4 8 
10 10 8 4 0 4 
10 10 10 8 4 0 

(9.8) 

  

which however is still not free of the quadratic horseshoe effects as may be 
verified, by example, by comparing the first and the last three rows. 
Williamson (1978) next proposes to replace the equal entries in D by a 
graph-theoretic shortest distance between the points, as illustrated in Figure 
9.8. The resultant matrix of non-Euclidean distances is then given by 

0 
4 
8 

12 
16 

,_20 

4 
0 
4 
8 

12 
16 

8 
4 
0 
4 
8 

12 

12 
8 
4 
0 
4 
8 

16 
12 
8 
4 
0 
4 

20 
16 
12 
8 
4 
0 

(9.9) 

The linear ordination of points can now be carried out using G in place of 
the usual Euclidean association matrices. A minor drawback in using Eq. 
(9.9) however is that although all the latent roots and latent vectors are real, 
owing to the symmetry of the matrix, some roots can be negative because of 
the nonpositive (semi)definiteness of G. Components that correspond to 
negative latent roots however can usually be ignored owing to their lack of 
interpretability. 

Example 9.6. Using Baker's (1965) data, which conform closely to a 
diagonal structure, Williamson (1978) carries out an ordination of stations 
and species found in the Indian Ocean (Table 9.6, Fig. 9.9). The data 
consist of presences (counts) and absences of p = 17 species of euphausiids 
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Figure 9.9 Chart showing the positions of R.R.S. "Discovery H" stations (used). The 
approximated positions of the Tropical (TC), Subtropical (SIC) and Antarctic (AC) con-
vergences are also given (DSP are Deutsche Sudpolar Expedition stations; Baker, 1965; 
reproduced with permission). 

(planktonic crustacea) taken at various stations in the Indian ocean along a 
north—south axis. The species are defined as follows: 

Y1  --- E. diomedeae (DI) 
Y2 = E. paragibba (PA) 
Y3 = E. brevis (BR) 
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= E. ienera (TE) 

Y. = E. mutica (MU) 

Y6 = E. hemigibba (HE) 

Y7  = E. recurva (RE) 

Y8 = E. spintfera (SP) 

Y9 = E. 'wens (LU) 

Yto  = E. similis var.armata (SA) 

Y„ = E. similis (SI) 

Yi2  = E. longirosiris (L) 

Yi 3 = E. valientini (VA) 

Y14  = E. triacantha (TR) 

Yis = E. frigida (FR) 

Yi6  = E. superba (SU) 

= E. crystallorophias (CR) 

Since the abundance of species depends in part on water temperatures, it is 
suspected that there exists a north—south abundance gradient which can be 
estimated by a statistical ordination. As can be seen from Figure 9.10 
however, a conventional principal components analysis of the data of Table 
9.6 produces a quadratic rather than a linear configuration of points. Using 
the step-across similarity matrix we obtain a more linear distribution of the 
Euphausia species, which indicates a north—south gradient (Fig. 9.11), 

TR •  VA 
• 

0 	PA • 

BR • DI 

• TE 
	

MU 

SU , 
• LO 

FR 	• 

1, CR 

• LU 	• SA 

• SI 
SP 

HE 	• 
• RE 

0 

Figure 9.10 Ordinary principal components analysis of the E. crystallorophias species counts 
of Table 9.6, 
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Figure 9.11 A step-across analysis of the E. crystallorophias species counts of Tablc 9,6. 

0 

Several authors also find the "horseshoe" or the "arch effect" to cause 
difficulties in optimal scaling, where it also has no meaningful interpretation. 
For example, Hill and Gaud.' (1980) have proposed an alternative method 
for eliminating the horseshoe effect. Since the effect is caused by the first 
two principal axes being highly related to each other (while at the same time 
being restricted to be orthogonal), a "detrending" procedure can be used, 
whereby axes are obtained in such a way that at any point along the first axis 
the mcan value of all subsequent axes is zero. This has the effect of 
"flattening out" the horseshoe, resulting in a linear ordering of the points. 
The procedure, however, does not seem to attack the root cause of the 
problem. In archaeological seriation Kendall (1971c, 1975) has introduced 
his "circle product" which can be used as a measure of similarity either 
between elements of an incidence matrix or a matrix of counts (see also 
Wilkinson, 1974) and which appears to work well in practice. Let n ij  be the 
ith and jth clement of a count matrix (0, I for an incidenc. matrix). Then 
the ith and jth element of Kendall's similarity matrix is defined as 

(S S) = K(i, j)= 	min(n th , ni4 ) 
Fe 0 

(9,10) 

The procedure of adding the smallest pairwise elements of any two rows, 
implied by Eq. (9.10), may have to be repeated several times until an 
association matrix results which does not yield a horseshoe effect. A 
comparison of various approaches can be found in Graham et al, (1976), 
who have conducted a Monte Carlo study to test the effectiveness of various 
seriation procedures and measures of association. 

9.4 MEASURES OF PAIRWISE CORRELATION OF DICHOTOMOUS 
VARIABLES 

Section 9.3 illustrates the point that at times it may be desirable to employ 
nonstandard measures of association when considering nominal dummy 
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variables. Actually a wide choice is available since several such measures 
have been developed over the years which embody Euclidian as well as 
non-Euclidian properties. In the following section we consider, in a general 
context, some of the better known coefficients of association which can be 
used for nominal variables when carrying out a factor analysis. 

9.4.1 Euclidean Measures of Association 

When the categories represent binomial dichotomies, Euclidean measures of 
association provide appropriate inputs to a factor analysis, and as is seen in 
Section 8.3.3 it becomes particularly convenient to employ (0, 1) dummy 
variables as indicators of the presence or absence of some given trait. 
Consider the (2 x 2) contingency table (Table 9.7) which expresses the 
essential binary relationships between the dichotomous categories. A well-
known and commonly used measure is the Pearson product correlation 
coefficient, which can be expressed as 

r — (n 11  + n 12 )(n 21  + n22 )(n,, + n 21 )(n 1 2 + n22 ) 

n 11  — nEn 
n, n2 ,n 

niin22 nunzt 	 (9.11) 

The coefficient is also known as the "phi" coefficient or simply as Pearson's 
0. It can be shown that r2  is related to the chi-squared statistic by the 
relationship 

r 2 X 	 (9.12) 

where x 2  is the chi-squared statistic from the (2 x 2) contingency table 

Table 9.7 The (2 2) Contingency Table for (0, 1) 
Binary Data 

Variable 
B 

Variable 
A 

1 0 Totals 

1 
0 

n 11 
n 21  

n 12 
 n22 

ni  
n2• 

Totals n 1 n 2 n 
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(Table 9.7), with 1 degree of freedom (Exercise 9.1). The coefficient r 2  is 
commonly used, for example, in plant ecology when performing a cluster 
analysis of species (sites) (Williams and Lambert, 1959) and can also he 
employed in a factor analysis in situations where the distinction between 
positive and negative association is not of importance. Where such a 
distinction is of importance, for example, in marketing research or opinion 
poll questionnaires (Heeler et al., 1977; Jones and SiIler, 1978) then r 2  is 
clearly the appropriate measure of association. Both maximum likelihood 
factor analysis and principal component models can be employed in 
conjunction with r 2 , although it must be kept in mind that multivariate 
normality can only hold approximately at best. Another well-known mea-
sured based on r 2  is the Pearson coefficient of contingency, defined as 

(9.13) 

Although using the common (0, 1) coding scheme (Table 9.7) is at times 
convenient, other coding systems can also be used, Thus the (0, !)'s can be 
replaced by (-1, + I) codes where —1 signifies absence and +1 indicates the 
presence of a trait. Euclidian measures of association can then be computed 
using such alternative codes. Thus replacing 1,0 in Table 9,7 by +1, —1, it 
can be shown that the cosine of the angle between the two random variables 
is given by 

(n1 + n22) — (n r, — 
+ n 

(9,14) 

 

In the psychological and educational literature (Eq. 9.14) is also known as 
the G coefficient. Note, however, that since it does not correct for the 
means (marginal differences), r, is not a true Pearson-type correlation 
coefficient. Actually Eq. (9.14) has the interesting interpretation as the 
difference in probabilities between the two sets of equal scores, that is, the 
probability of scoring the same on both variables minus the probability of 
scoring differently on both variables. Because of this property it is frequent-
ly employed for marking true—false multiple choice questions in an examina-
tion in an attempt to eliminate the effect of random guessing. Since Eq. 
(9.14) can also be defined for sample points it can be used in a Q-mode 
factor analysis of individuals, and in this context is at times understood as 
the "correlation" between students' true or real knowledge and the test 
criteria used to evaluate the students' knowledge (see Ives and Gibbons, 
1967). 
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9.4.2 Non-Euclidean Measures of Association 

Because of its symmetry the Euclidean correlation coefficient (Eq. 9.11) 
requires that both off-diagonal entries of Table 9.7 vanish in order that all 
those who are A be also B, that is, both nondiagonal terms must vanish to 
obtain perfect (positive) association. This may at times be an undesirable 
property and an alternative to Eq. (9.11) which can be used is the coefficient 

n 'Inn — n12 11 21  
Q  n n + n I I 	22 	12 21 

(9.15) 

proposed by Yule, where only one off-diagonal frequency need vanish in 
order to achieve total positive association, Thus Q = I when all A are B (all 
B are A), that is, when either n i2 = 0 or n 21 = 0. Kendall and Stuart (1979) 
have termed this type of association as "complete association" as opposed to 
"absolute association" represented by Tr = 1 in Eq. (9.11). Another measure 
of complete association is provided by the proportion 

 

(9.16) 
n I In 22 

where X = 1 only when (n, 1 n, 2  — ni2n21)= 
More specialized non-Euclidean measures of association can also be used. 

Owing to the structure of (0, 1) data, the L I  distance, for example, can at 
times be more appropriate than either r or P (Williamson, 1978). Both 
Euclidean and L 1  measures however utilize all cells of the (2 x 2) contin-
gency table. In certain applications, such as biological ecology, it is at times 
inappropriate to use all the cells. Thus when the codes (0, 1) correspond to 
absence/presence data it may be argued that nothing can be said concerning 
unobserved events (absences of a trait) and thus not all of the cells should 
be used when matching occurrence/nonoccurrence of objects or events. If 
this is deemed to be the case several measures, known collectively as 
matching coefficients, are available. A well-known coefficient is the Russell--
Rao coefficient defines as 

(9.17) 

which omits those counts from the numerator that correspond to unobserved 
events, that is, those that correspond to the code 0. When the (0, 0) cell is 
also removed from the denominator we obtain 

— (9.18) n 11 + n12 + n 21 
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known as the Jaccard coefficient. Removing also the (1, 1) matches from the 
denominator yields the further modification 

" I 1  K- n + n 21  21 
(9.19) 

or the Kulczynski coefficient. Other combinations designed to fit specific 
conditions are also possible and may be found, for example, in Anderberg 
(1973). When a Q-analysis of persons or sample points is of interest, 
Kendall's measure of association can also be used (see Vegelius, 1982). On 
the other hand when a bivariate normal continuity is suspected to underlie 
the dichotomies, a special case of the polychoric correlation coefficient (Eq. 
8.3), known as tetrachoric correlation, becomes appropriate. When the two 
continuous variables are dichotomized at some thresholds h and k, the 
estimate of p is then the tetrachoric estimate obtained by solving 

h 	k 

f(h, k, p) = 12/r(1 — p 2)1121 1 	exp 	— 	3PxY  + Y2 1} 	dy 
2(1 - (3) 2  

(9.20) 

where the bivariate normal can be expanded using the Hermite—Chebyshev 
polynomials (Section 8.4.3). Again, a correlation matrix can be built up 
consisting of tetrachoric correlations and factor analyzed by means of an 
appropriate factor model. Note again that the resultant correlation matrix 
need not be positive (semi)definite and its elements may exceed the bounds 
(-1, 1) for highly nonnorrnal data. This implies the possibility of negative 
latent roots, in which case the maximum likelihood factor model cannot be 
used. Finally, discrete data can also be used to compute proportions or 
probability estimates, much in the same way as is done for continuous data 
(Section 5.9.1). The input data for an analysis can then consist of a (n x k) 
multivariate data matrix, or else a symmetric matrix of observed proportions 
which can be viewed as a similarity (association) matrix. Although similarity 
matrices of this type are normally considered within the framework of 
multidimensional scaling analysis, factor models can also be used to uncover 
spaces of minimal dimension which are capable of accounting for the 
observed proportions (Exercise 9.4). 

9.5 MIXED DATA 

Frequently data will be mixed. Thus in many applications it is not 
uncommon to observe data sets consisting of nominal, ranked, and continu-
ous random variables. When ranked data can be viewed as being intrinsically 
continuous, no major difficulties arise when comparing ordinal, interval, or 
ratio scales. We can simply treat the ranks as if they represent values on a 
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continuous scale and compute the usual Pearson product-moment correla-
tion coefficient. Alternatively, continuous variables can be converted into 
ranks if we suspect the presence of nonlinearities or large errors in variables 
(Section 8.2.1). 

A more fundamental issue arises when we wish to compare nominal and 
ratio or interval scale information. Thus given a set of mixed (0, 1) and 
continuous random variables a question arises as to whether it is legitimate 
to include both types of variables in a factor analysis. Two types of attitudes 
seem to prevail. On the one hand the "purist school," guided perhaps by an 
excessive degree of theoretical rigidity, is usually wont to caution against the 
practice of "mixing apples and oranges." On the other end of the spectnim 
both types of variables are often thrown in together without taking heed of 
the differences in their matrices, and "churning them through" the usual 
computer software packages. A compromise between the two attitudes is 
however both possible and necessary, and lies in the recognition that the use 
of standard algorithms and procedures with mixed data must be accom-
panied by specific objectives, an appropriate measure of association and an 
interpretation of the final results which is in accordance with the type and 
composition of the data. 

First, we observe that in most applications it is probably not feasible to 
convert continuous variables into dichotomies since this results in a loss of 
information. The way out of the impasse thus usually lies in the selection of 
an appropriate correlation coefficient which accords with the structure of the 
data and which agrees with the origins or genesis of the dichotomous 
variables. Two well-known correlation coefficients are available, depending 
on whether the dummy variables represent purely qualitative categories or 
are simply manifestations of unobserved continuities. 

9.5.1 Point Biserial Correlation 

Let x be a continuous random variable and y a (0, 1) dummy, say a binomial 
random variable that represents two mutually exclusive qualitative 
categories. Then the Pearson product moment correlation between x and y 
is given by 

E(xy) E(x)E(y)  
P — 	

o:4  0•V 
 

E(xy) — E(x)p 
orx ( pol 12 (9.21) 

where E(y)..-- p (1— q) is the true proportion of ones in the population 
and o is the binomial variance (Section 8.3). Let x i  and yi  be sample 
values and let i and 12 be the sample means of x in the two groups which 
correspond to the codes 1, 0 of the dichotomous variable y. Then the sample 
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equivalent of Eq. (9.21) can be expressed as 

 

( 	 E ,Ic•) ( 

 ni  
n + n kn i  + n2 	 I 	2  

(Sx2f4) 1 /2  

(11 12)(00 12  
(9.22) 

 

where fi = n 1 1(n 1 + n2), I pi, + I2, and n i  and n 2  represent the number 
of observations in the two groups (corresponding to the dummies 0, 1). 
Equation (9.22) is known as the (sample) point biserial correlation coeffi-
cient. The point biserial correlation between a dichotomous dummy and a 
continuous random variable is therefore equal to the mean difference of the 
continuous variable in the two groups, adjusted for the standard deviations. 
A factor analysis of such mixed data is therefore not interpretable in the 
same way as in the case of a homogeneous set of variables, since we are now 
comparing correlation coefficients and mean values. Often such a com-
parison cannot be meaningfully justified and an alternative approach at 
times proves fruitful. Consider the partitioned sample covariance matrix 

S 
ES /  / S u] 
S 21  S22  (9.23) 

where block diagonals represent covariance matrices of the continuous and 
dummy variables, respectively, and off diagonals contain covariances be-
tween the two sets, that is, terms containing mean differences. We may then 
wish to cast the analysis in the form of the canonical correlation model (Eq. 
8.40). The normal equations are (S 1 .1 I S, 2S223 S 71  — A = 0, which now 
represent a decomposition of the mean differences of the continuous set, 
adjusted for the covariance matrices S 11  and S22  of the two sets, much in the 
same way as for the bivariate correlation coefficient (Eq. (9.22). Note that 
the canonical correlation model can also he used in the event the con-
tinuities are dichotomized (say, using the median as cut-off point), in which 
case we end up with a contingency table-type analysis discussed in Section 
8.4. The use of the point biserial correlation coefficient in a principal 
component analysis and the advantage of the method over other procedures 
such as correspondence analysis in biological ordination is given by Hill and 
Smith (1976). 

9,5.2 Biserial Correlation 

The point biserial r does not assume an underlying continuity for the dummy 
variable. When the dichotomy represents an underlying (normal) continuity, 
however, Eq. (9.22) becomes inappropriate. In this case the estimator of p 
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is 

- i2)(134)  
r — 

sit z k  
(9.24) 

where z k  is the standard normal deviate corresponding to the point of 
dichotomy k of the normal distribution of y. Equation (9.24) is known as 
the (sample) biserial correlation coefficient. As for the case of the tetra-
choric correlation coefficient the biserial r may exceed the bounds (-1, 1) 
for highly nonnormal data, and can yield non-Grammian matrices. For 
approximately normal data, however, the point biserial r can be used to 
construct correlation matrices, and a factor analysis may then proceed in the 
usual way since Eq. (9.24) is comparable to the usual Pearson product.. 
moment correlation coefficient. Note however that for correlations between 
the dummy variables we should now use the tetrachoric correlation rather 
than the r,t) coefficient (Section 9.4). When the continuous variable is 
represented by dichotomous counts within a contingency table an alternative 
form for the biserial r must also be used (see Kendall and Stuart, 1979). 

When the continuous normal variate is observed as a multistage poly-
tomy, that is, in the form of rank orders, the notion of biserial correlation 
can be extended to that of a polyserial correlation coefficient, much in the 
same way as is done for the tetrachoric correlation of Section 8.2.1 (Olsson 
et al., 1982). The correlation of a polytomy with a continuous variable can 
also be understood in terms of the correlation which would be registered if 
the continuous variable has been approximated as closely as possible by an 
additive effects model based on the observed character states of the discrete 
variable (Hill and Smith, 1976). Mixed rank-order and nominal data 
however are best analyzed in terms of optimal scoring and related tech-
niques discussed in Sections 8.3 and 8.4. For mixed nominal and continuous 
observations Eseofier (1979) has also proposed a recoding of the continuous 
variables where each is replaced by a set of two codes (1 — x 1 )12 and 
(1 + x1 )/2. 

Example 9.7. Mixed data frequently occur in exploratory medical 
research. Thus Nakache et al. (1978), for example, consider data obtained 
for a set of patients suffering from acute myocardial infarction, which is 
complicated by pump failure. Since a technique known as intraaortic balloon 
pumping (IABP) can be beneficial, the authors attempt to uncover high-risk 
patients who have a high probability of nonsurvival and for whom IABP is 
particularly necessary. The following 24 variables, which are thought to be 
good predictors of survivalinonsurvival, are selected for the analysis, with 
the continuous variables being reduced to discrete categories. The final data 
used 
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Original Variables 
	 Unit or Measurement 

Sex (M/F) 
Age (AG) 
Previous myocardial infarction (PM) 
Time of study from probable onset 

of MI (TS) 
Location(A/I) 

Heart rate (HR) 
Cardiac index (Cl) 
Stroke index (SI) 
Diastolic aortic pressure (DAP) 
Mean aortic pressure (MAP) 
Peripheral vascular resistance 

(PVR) 
Ventricular filling pressure (LVFP) 
Mean pulmonary artery pressure 

(MPAP) 
Right ventricular filling pressure 

(RVFP) 
Total pulmonary resistance (TPR) 
Left ventricular stroke work index 

(LVSWI) 
Right ventricular stroke work 

index (RVSWI) 
Left ventricular minute work index 

(LVSWI) 
Right ventricular minute work 
index (RVSWI) 
LVSWI:LVFP ratio (LI) 
RVSWI:RVFP ratio (RIO) 
Survival! Death 
Conduction disturbances (CD) 
Right ventricular pressure 

generation index (RVPGI) 

I for male, 2 for female 
Numerical value (years) 
I for absence, 2 for presence 
Numerical value (day) 

1 for anterior infarction 
2 for inferior infarction 
Numerical value 
Numerical value 
Numerical value 
Numerical value 
Numerical value 
Numerical value 

Numerical value 
Numerical value 

Numerical value 

Numerical value 
Numerical value 

Numerical value 

Numerical value 

Numerical value 

Numerical value 
Numerical value 
I for survival, 2 for death 
1 for absence, 2 for presence 
Numerical value 

consist of binary codes, where the interval of each physical variable is split 
into approximately equal-size classes by taking into account the physio-
pathological significance of the bounds (Table 9.8). The procedure generally 
results in a loss of information, but the objective of the authors is to use 
"correspondence analysis" (Section 8.5) to determine which variables 
characterize survival. The situation is portrayed in Figure 9.12 using an 
initial "learning" sample of n 101 individuals, and the classification is then 
tested on a further sample of 55 patients who subsequently entered the 
Coronary Care Unit. Figure 9.12 indicates the clustering or joint mapping of 
patients/variables in a joint two-dimensional factor space which is seen to be 
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Table 9.8 Redefined Categories of Original Variables Obtained for Patients Suffering 
from Acute Myocardial infarction Complicated by Pump Failure 

Variables 

Number 
of 

Classes Code 

Classes 

1 2 3 4 5 

Y, 2 M /I: Male Female 

Y2 3 ACr 57 58-69 70 
Yi  2 PM Absence Presence 
Y., 3 TS 1 a 3 
Y., 2 A/1 Anterior inferior 
Y„ 3 HR 82 84-96 99 
Y7 5 CI 113 1.24-1.56 1.58 	1.92 1.93-2.40 2.4 1 
Y, 5 St 13.8 13.9-17.4 17.5-21.7 21.8-26.9 27.2 
Y, 3 DAP 58 59- 67 68 
1(1€1 3 MAP 69 70-81 82 
YI f 5 PVR 2156 2172-2809 2446-3164 3173-3897 4031 
Yrr  5 LVF-P 14 15-17 18-20 21-24 25 

Yo 5 MPAP 19 20-23 24-27 28-31 32 

YI4 3 RVFP 7 8-11 12 
1(1 , 4 TPR 797 807-1108 1131-1608 1610 

YI6 4 LVSWI 10,49 10.72-14.83 15.29-24.00 34.70 
Yu 4 RVSWI 2.74 2,82-4.15 4.16-6.15 6.22 
YIN 4 LVSWI 1022 1031-1325 1328-2098 2131 
Ypg 4 RMRVSWI 242 246-387 388-564 573 
Y20 5 LI 0.44 0.45-0.64 0,67-0.93 0.95-1.65 

5 RIO 0.20 0.21-0.35 0.36-0.53 0.54-1.14 1.16 
Y22 2 S/D Survivor Non survivor 

Y23 2 Cl) Absence Presence 

Y24 4 RV 0.94 1,05-1.82 1.83-2.88 3.00 

Source: Nakache et al. (1978); reproduced with permission. 

composed of a survival zone, a death zone, and the indeterminate zone of 
overlap. 

9.6 THRESHOLD MODELS 

It was observed in Section 9.4 that when a set of p dichotomous dummy 
variables are assumed to represent p underlying normal variates, it is more 
appropriate to consider tetrachoric correlation coefficients. A principal 
components analysis can then be performed on the matrix of tetrachoric 
correlations, with little change in the final interpretation of the results. Such 
a heuristic approach however suffers from the drawback that a tetrachoric 
con-elation matrix need not be positive—definite, with the result that it is 
not possible to use weighted factor models such as those described in 
Chapter 6. 

An alternative approach is to introduce the concept of a threshold point, 
as traditionally employed in probit or logit bioassay experiments when 
estimating quantal-response effective dosages. Consider a set of p continu-
ous random variables x i , x2 , ,xp  which are of main interest. For various 
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Figure 9.12 Simultaneous scatter configuration of learning sample patients and binary 
variables on the factorial plane (F, and F z ) issued from correspondence analysis. 

reasons we are not able to observe the continuities, but can only observe 
corresponding quantative changes in terms of the dummy variables, that is, 
we can only observe 

RI, 

AM, 

• Vo 
o 

RP, / 

Equation (9.25) is equivalent to assuming that an observed 2 x 2 x - - x 2 = 
2' contingency table arises from grouping each dimension of a p-variate 
multivariate normal distribution into categories or dichotomous ranks. The t, 
are referred to as critical points or threshold values and are in general 
assumed to vary randomly from individual to individual. Fixed threshold 
points occur commonly in the physical sciences, for example, such as 
melting (freezing) points of liquids. Here the underlying variable (heat) is 
readily observed and can be measured directly. In many other areas such as 
encountered in the social, biological, or life sciences, however, the critical 
points are random, and in addition cannot be observed directly. Thus the 
decision for a housewife to reenter the labor force, for example, may be a 
function of her spouse's income. As long as the income is above a certain 
threshold point for that individual, the housewife will not join the labor 
force. Once it descends below this critical value, however, she may well feel 
the necessity to rejoin the labor force in order to maintain family income 
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above this value. An economic threshold point will in addition vary 
randomly between individuals depending on their life styles, position in the 
life cycle, and so on. Also, when applying a dosage of insecticide to an 
insect species, for example, we cannot observe directly the insect's intrinsic 
tolerance level to the poison. Rather we observe, after a sufficient period of 
time, two states. Live insects for whom the dosage was below their threshold 
point t, and dead insects whose resistance was insufficient to overcome the 
dosage. 

When the dummy variables are functions of unobservable threshold 
points, it becomes inappropriate to compute factors solely in terms of the 
observed dummy variables, since the factors of interest are those that 
account for the variation in the unobservable continuities X 1 , X2,. , X. 
The general factor model is then 

X = + 	+ c 	 (9.26) 

where X is the (p x 1) vector of unobserved variables and 40 represents the 
(r x 1) vector of r common factors (Chapter 6). Assuming E(X) = 0, the 
unobserved covariance matrix X can be decomposed, generally, as 

X = 	+ 	 (9.27) 

where a is the (r x r) common factor covariance (correlation) matrix. Note 
that in Eq. (9.26) both the dependent as well as independent variables are 
latent, that is, not observed. The model may thus be viewed as incorporat-
ing a "two-tier" latent structure, where the observed dichotomies have 
underlying latent continuities which in turn are functions of other latent 
factor continuities. The multivariate probit maximum likelihood factor 
analysis model assumes further that the underlying continuity is multivariate 
normal, which permits the estimation of the so-called "probits." The 
population probability of observing a p-dimensional dummy variable, say 
Y= (1, 0, 1, 0)", is 

J if  2 	t 

	

= I 	
r  .•. 	11.1 -112(2/rr i2 exp[ —1 /2(eXii)1 du (9.28) 

	

ft 	1 2 

where u is a normal vector of integration variables and X is as in Eq. (9.27). 
The integral (Eq. 9.28) on which maximum likelihood estimation is based 
does not exist in closed form, and must consequently be evaluated by 
numerical integration. This places a heavy burden on the limits of computa-
tion since the full maximum likelihood method implied by Eq. (9.28) uses 
all 2P cell frequencies of the implied contingency table, that is, it uses 2-way, 
3-way,. , p-way associations between the dichotomous variables. As 
pointed out by Bock and Lieberman (1970; see also Lawley, 1944), 
however, for a one-factor model the practical limit for such an exercise 
appears to be (at present) at most a dozen or so variables. The situation 
therefore differs from the usual maximum likelihood factor analysis where 
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only pairwise associations or correlations are considered. if for the probit 
model third and higher order associations can be ignored, this results in a 
significant simplification in the computations since we at most consider 
two-dimensional marginals, that is, we consider the integrals 

2 
7 = 	1) = 	(270 - ' 12  exp (— -----

u 
11 	 ) du 2 $; 

(9.29) 

P = P(x 1  1, 112 (21r) exp( —1 f2(u TI, u) du 

(9.30) 

where 

T 	r 

E E aik a1.1 Ok i 
lc= I 1=1 

(9.31) 

and Oki  is the (k, Oth element of the factor covariance matrix 1/. This is the 
method adopted by Christofferson (1975, 1977), and has the advantage of 
only using the first- and second-order marginals of the 2P contingency table. 
The simplification permits the use of a greater number of variables and 
enables the extraction of more common factors. The numerical integration 
implied by Eq. (9,30) is further simplified by using the Hermite—Chebyshev 
polynomial expansion of Section 8.4.2, that is, by expressing 13 7, as the 
infinite series 

P 	E 	Tk (t e );(t i ) 

where Tk  is the kth tetrachoric function 

Hk  _ 1 (x)f(x)  
Tk(X) 

(k!)" 2  

We can then define, for the p random variables, 

P, = 	+ c„ 	(1 = 1, 2, . . . , p) 

P,1  = P ‘; + E11 	(1 = 1, 2, 	. , p — 1; j = i + 1, . 	, p) 

(9.32) 

(9.33) 

which expresses the observed sample proportions 13;  and P,1  in terms of the 
threshold levels. To estimate the parameters of the factor model Christ- 
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offerson (1975, 1977) minimizes the generalized least squares criterion 

F(t, a, (I)) = X rS 

= (P - P*)S (P - P*) 	 (9.34) 

where S is a consistent estimator of the residual covariance matrix. When 
the loadings are not rotated, min F(t, a, 40) is asymptotically distributed as 
chi-squared with (p/2)(p + 1) degrees of freedom. 

This method requires repeated computation of integrals of the form of 
Eqs. (9.29) and (9.30), together with their derivatives. More recently 
Muthen (1978) has suggested an iterative algorithm based on the tetrachoric 
correlation coefficients which avoids the iterated computation of the inte-
grals. Since the probit maximum likelihood factor model depends in part of 
nonlinear expressions Muthen's strategy is to first linearize the relationship 
between the observed proportions and the vector 0 = (0T, 02T ), where 0 1  is 
the vector of population thresholds t i  and 02  is the vector of population 
tetrachoric correlations. The algorithm also permits the extraction of 
multiple common factors, but because of its greater simplicity it can also be 
used with a larger number of variables. In effect Muthen's (1978) procedure 
uses tetrachoric correlations from two-way contingency tables to estimate 
correlations between the unobserved normal continuities, and then esti-
mates the threshold levels themselves using weighted least squares to 
increase efficiency. However, for a larger set of 20-25 variables, the author 
reports that little difference can be observed between thc weighted and 
unweighted least squares criteria. Both the weighted and unweighted criteria 
can be tested using an asymptotic chi-squared statistic. 

More generally, and computational aspects aside, thc Bock and Lieber-
man (1970), Christofferson (1975), and Muthen (1978) models all share 
common features in that they consider the same population model, for 
which the continuities underlying the 0-1 dummy variables (as well as the 
latent common factors) are assumed to be normally distributed. This allows 
the use of the well-known probit function defined as probit(u)  
where 4, is the normal cumulative probability distribution function. More 
recently Bartholomew (1980, 1983) has proposed another well-known 
cumulative function, the so-called logit function of a probability p defined as 
logit(p) = ln[p/(1 —p)1 which can be used in place of probits for nonnormal 
data. The logistic is similar to the probit function, but accepts more outlying 
observations. Indeed, Batholomew (1980) shows that both the probit and 
logistic functions satisfy a list of six conditions of a well-behaved response 
function, which probably explains in part why both tend to yield fairly 
similar results. The logistic function however has the advantage in that it can 
be expressed in algebraic or closed form, and this makes it easier to 
manipulate terms. Let p,(0) be a response function defined as the probabili-
ty that a positive response ()I t = I) occurs for an individual whose latent 
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position is given by (/). Bartholomew (1980) then defines the logistic factor 
model as 

G[ p i (¢))] = crio  + E a,71-1(4); ) 	(i = 1, 2, . . . , p) 	(9.35) 

where a0 are the factor loadings and the expressions G and 	represent 
logistic functions, which then yields 

logit[p1(0)] = lnipi /(1 —pi )] + 	Ink 1 /(1 — 0i )] 
i-1 

(1 = 1, 2, . 	p) (9.36) 

The theory is developed within a Baysian framework and can be generalized 
to more than a single threshold level when ranked or polytomous data are 
used, but for the case r> 1 the logit factor model appears to suffer from 
computational difficulties. Probit and logit threshold models are also 
described by Andersen (1980), who classifies them generally under the 
heading "latent structure models," which should not he confused with the 
latent class: (structure) models of the following section. 

9.7 LATENT CLASS ANALYSIS 

The classical factor models described in the previous chapters, together with 
their extensions and embellishments, all possess one main common charac-
teristic. In all cases the underlying factor scores are defined in a continuous 
vector space, and the factor loadings for both continuous and discrete 
manifest variables can then be considered in terms of Pearson product-
moment correlation coefficients. An exception to this general model was, 
however, already noted in Section 6.13 where Lazarsfeld's (1950) latent 
profile model is defined in terms of a discrete factor structure which is 
considered to be responsible for generating the set of continuous observed 
or manifest variables. A further departure from the usual factor models is 
the so-called latent class analysis model where both manifest and latent 
"factors" represent discrete categories (Lazarsfeld, 1950). The general 
situation is depicted in Table 9.9 in terms of type of manifest and latent 
random variables, where it may be seen that the latent class model requires 
the input variables to be in nominal form. Since ratio or rank order 
information is not required the latent class model is well suited for the 
analysis or reduction of purely qualitative categories into a smaller set of 
qualitative latent classes. The need for such a reduction may occur, for 
example, when the observed multivariate classifications represent a mixture 
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Table 9.9 A Cross Classification of Factor Model Versus Type of Random Variable 

Observed Variables 
Factors 
(Latent 
Variables) 

Metrical 
continuous; ranks 

Categorical 
(nominal) 

    

 

Metrical 
(Continuous; Ranks) 

 

Categorical 
(Nominal) 

PCA, FA of multivariate 
multinomial data 

Latent class analysis 
(LCA) 

 

Standard 
PCA; FA 

Latent profile 
analysis (LPA) 

 

of a smaller number of unobserved categories, and the objective is then to 
"unmix" the sample into its basic discrete constituents. 

Since latent class analysis uses categorical, that is, nominal factors, 
consider a hypothetical example provided by Lazarsfeld and Henry (1968) 
where we have three dichotomies: "education" (high, low); "read news-
paper A" (yes, no); "read newspaper B" (yes, no). Forming the (2 x 2) 
contingency table of newspaper readership we may conclude that some 
individuals who read A also tend to read B, that is, newspaper readership is 
not independent across the sample of individuals. The interdependency 
however may be due to a third underlying variable such as education, in the 
sense that once the (2 x 2) table is stratified on this variable, "newspaper 
readership" may well become independent (Table 9.10), since the depen-
dence may be due to the nonhomogeneous nature of the observed sample; 
that is, the sample may represent a mixture of binomial (multinomial) 
distributions. In this example the third category is observable and may thus 
be readily taken into account. More generally the intervening categories 
may not be observable or may be difficult to observe, thus constituting a 
latent category or class. The principal objective of latent class analysis is 
then to estimate membership and the number of such classes on condition 

Table 9.10 Stratification of a (2 x 2) Contingency Table on a Third Category 
(Education) such that Rows and Columns are Independent Within the High 
Education and Low Education Branches 

Education 
(High, Low) 

High I  Education 

Read A 
Do not 
read A 

Read B 
Do not 
read B 

p 11  

p21 

p12 

p22 

Low I Education 
' 

Read A 

- 
Do not 
read A 

Read B 
Do not 
read B 

plt 

p2 , 

P12 

P22 
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that once latent classes are estimated the observed interdependencies of the 
(2 X 2) contingency tables vanish. Lazarsfeld has termed this "the axiom of 
local independence" (see Lazarsfeld and Henry, 1968) which corresponds to 
the conditional independence assumption of continuous factor models 
(Chapter 6) where the observed correlations vanish once the common 
factors are taken into account. 

The latent class model can be understood and developed from standard 
probability theory making use of Bayes' theorem. Consider any two 
dichonomous random variables X and X, defined as 

= 
{1 if event E, is observed 

xi 	0 if event E, not observed 

for i = 1 and 2. The outcome corresponding to the code "1," which is 
defined arbitrarily, is known as the "positive" outcome or the "success" of 
the trial and the code "0" is termed as the "negative" or the "failure" 
outcome of the trial. For example, x i  may represent independent binomial 
trials or outcomes for any other discrete distribution. The following theorem 
is well known from classical probability theory. 

THEOREM 9.2, Let A 1 , A 2 ,. 	 ,. A,1,, represent a mutually exclusive 
partition of a sample space S, such that P(A)  0, s 1, 2, .. m, and 

sP(A ) = 1. Let E, he some arbitrary event defined in S. Then 

P(E)= 	s )RE:i  I A 

PROOF. We have 

P(Et ) = P(E, n 

= NE1 11(A I U A 2 U U 

= PRE, n A)U (E, nitou •-.0 (Ei  n A „,)] 

= 	CI 	+ P(Ei  II A 2 ) + • • - + P(Ei  n A,,,) 

= P(E, n A,) 
s,1 

and using the definition of a conditional probability we have 

NEt nAJ  

(9.37) 
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so that 

P(E) = 	P(A s )P(Ei  I A s ) 	 (9.38) 

The result of Theorem 9.2 can be generalized to any finite number of 
independent events. Thus for two events we have 

P(E, n 	= •E P(Ei  n Ei  n A s ) 

where 

P(Ei  n n A s ) 
P(Ei  n 	A s ) — 	P(A ) 

and cross multiplying yields 

P(Ei  n Ei) = > P(A,)P(Et  n I A s ) 

al 

	

E P(A ,)P(Ei l A ,)P(Ei  A s ) 
	

(9.39) 

It is easy to show by induction that for any finite number of k arbitrary 
events El, E2 ,. 	Ek , we have the relation 

P(E, fl F2  fl -  • n Ek ) = 	P(A r )P(El l A c )P(E2 1 	P(Ek 1 A s ) 

(9.40) 

In a typical application of Eq. (9.40) the probabilities P(A s ) of the 
partitioning or "background" events are given, and k < m. In the latent class 
model however we assume the events A I , A 2 ,. , A. to be unobservable 
and the probabilities P(A) to be unknown. The problem then poses itself as 
follows. Given the observed probabilities P(E), P(E 2 ), , P(E) is it 
possible to compute the conditional probabilities P(Ei  I A s ) (i =1, 2, . . . , k; 
s = I, 2, . . m) together with the partition probabilities P(A s ) such that 
m <k? Consider k dichotomous random variables (the observed classes) 
and m < k unobserved classes, where 

P(Ei )= pc, = Observed proportion of sample points 
that respond positively to the ith dich- 
otomy (i = 1, 2, , k). 

P(Ef  flEi) = ft
,, 

= Observed proportion of sample points 
which respond positively to both the ith 
and :oh dichotomies (i j, A I = Pp). 
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P(Ei  fl Ei  fl- • • CI E, ) = /3,4.  k  = Observed proportion of sample points 
that respond positively to the ith, 
jth, . . , , kth dichotomies (i ) 0 • - • 0 
k), where permutations of indices are 
excluded. 

NA 5 ) =ir = The unobserved probability of being in 
the sth latent class, s = 1, 2, 	, , m. 

P(Ei l A s ) = Pis  = The unobserved conditional probability 
that a sample point in the sth latent class 
is also in the ith observed category (prob-
ability of sample point in latent class A, 
responding favorably to dichotomy Ei ). 

Since thesets A 1 , A 2 , . . . , A m  represent a partition of the sample space, 
irs  = 1, When conditions for multinomial sampling are met, the ir , can 

also be considered as multinomial probabilities. Using the notation shown 
above we have the normal equations 

= 	/Ts 	 (9,41a) 

= E 'Ws Pis 
	 (9,41b) 

1 

rn 

= E IrsvisPi5 

rn 

• •• 1= E 	pis Pis • ' • 	pls 
s 1 

(1, j = I, 2, . . 	k) 	 (9.41c) 

(i, j, „ , , 1= 1, 2, . „ k) (9.41d) 

where i0j0- •-•1 and permuted subscripts do not appear. Equations 
(9.41) express observed probabilities in terms of unknown probabilities, and 
represent the general system of normal equations for a latent class model. 
They are also known in the literature as the "accounting" equations. In 
practice, given a sample the observed joint frequencies or the manifest 
probabilities are substituted on the left-hand side of Eq. (9.41), and 
assuming the existence of a unique solution (identifiability) the system can 
be solved to yield estimates of the unobserved parameters ir„, P i„ 
vu ,. . , Pf „ known as the latent probabilities. 

The system of equations (Eq. 9.41) resembles the normal equations of 
factor analysis, except for two major differences. First, the notion of a 
continuous latent variable or factor is replaced by the corresponding notion 
of a discrete latent set of classes or categories. Second, the accounting or 
normal equations of latent class analysis contain third, fourth, ... /th 
higher moments or "interactions" in terms of the joint probabilities, which 
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do not exist in classical factor models which only make use of second order 
covariance terms. For k > m observed dichotomies, the largest number of 
joint probabilities possible is when 1 k, although in practice very few 
higher order moments are normally used, Taking p o  ,== 1 as the "null 
subscript" probability, the maximum number of equations which is possible 
is then /7. /k, 0 CQfl = 2 11 . Since for k observed categories and in <k latent 
classes the total number of unknown latent parameters is m + mk = m(k + 
1), a necessary condition for identifiability is that 2" ?_.m(k + 1), that is, 

2 11  
k + 1 m 
	

(9.42) 

Equation (9.42) can always be satisfied however since given m we can 
always take k sufficiently large assuming a large sample. Conversely, if the 
system is identifiable and if there are more equations (i.e., joint prob-
abilities) than parameters, a solution can always be found by using a subset 
of the normal equations. Also, not all of the k dichotomous variables need 
be used. Thus, given the somewhat large degree of latitude which emerges 
from the model specification, a number of different models have been 
developed, depending on the type and amount of information employed 
(i.e., depending on the number of variables) and the number of joint 
probabilities which are used. 

Since Eq. (9.41) is generally nonlinear, an added difficulty arises when 
we attempt to express the normal equations in matrix form. The most 
straightforward solution of the normal equations is that of Anderson (1954, 
1959; see also Lazarsfeld and Henry 1968; Fielding, 1978), which extends 
Lazarsfeld's (1950) original work (see also Koopmans, 1951). The simplified 
model uses only 2m — 1 variables, and only second- and third-order joint 
probabilities are employed to define the set of (identified) equations from 
which the latent probabilities are estimated. In addition, as for the 
maximum likelihood factor model, the latent class model requires a prior 
specification of m. The latent class model can then be expressed in modified 
form as 

1 = ir 	 (9.42a) E 
s 

Pe= E irsvis 	(i = 1, 2, . . . , k) 	 (9.42b) 

E irs Pi, iijs 	(i = 	2, 	. , k) 	 (9.42c) 
s--I 

Pitt = E TrsVisVjsVis 	(1, j, 1= I, 2, 	, k) 	(9.42d) 
s-] 



Pm .  1k Pm 	.k 
• 

[

Pk P nr.k 

Plk Pt.m.k 

P -2,k 

P2.2m 2,k 

P 	

• 

- 2.k 
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for all possible combinations of the indices 1, f, k, where p o  1. The 
Anderson (1954) model requires a selection of 2m — 2 observed dichotomies 
in order to form two distinct sets of in — 1 variables, each such that 
2m — <k plus an additional (observed) variable called the stratifier 
variable. This permits us to express Eq. (9.42) in relatively straightforward 
matrix form, where the stratifier variable (which receives the subscript 1) is 
used to compute the third-order joint probabilities of Eq. (9.42d). Which of 
the 2m — 2 observed variates and which stratifier are chosen for the analysis 
is arbitrary, so that if an initial choice proves unsatisfactory, a different 
portion of the variables may be used to improve the solution. 

Following Anderson, define the following matrices: 

N = [1r  
TT2 

t I 	I/21 	 2m -2.1 

A= [1 
1 	

li 

1,12 	22 

. . 

• • • 	1/2m - 2,2 

P   

	

[1 

	Pm 	 P 2nt - 2 

	

Pt 	P 1 on  

• • • Pi  -- 	11 	P2.0, 	P2.2m- 2 j19 	I   

• . . 	n 
Pm - 1 •fl, 	Pm-I•m- 2 

. . 
1m 	2m  

	

1 	 - 1. 

	

[ 	VII 

V12 	22 

V21 

Pm - 1.2 

3 

A 2 

 = [ 1 L' m1 - 	 , 

Pm,2 Pm 

Pi 	

1-1.2 

vI91+ I . 

"1,n 2m 	• • 
1,.nt 	

vm 	vm on 

• • • 

. - • 

P2m --2.1 

P - 2.2 

P2m -  2.m 

using the selected 2m — 2 dichotomies (without the stratifier variable) where 
the first column corresponds to the dummy item p o  =- 1, Pt  is the (In x In) 
matrix of observed first- and second-order joint probabilities, and P2 is the 

x m) matrix of first-, second- and third-order probabilities involving the 
stratifier dichotomy. The matrices A and A 2  correspond to the latent 
conditional probabilities of the two sets of observed variables containing 
in — 1 dichotomies each, together with a column of unities (but excluding 
the stratifier), that is, they consist of the latent marginal probabilities 
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bordered by a column of ones. The normal equations (Eq. 9.42) can then be 
expressed in matrix form as 

= A II 'ls1A 2 	 (9.43a) 

P2  = A TI  NAA 2 	 (9.43b) 

where Eq. (9,43a) contains the first- and second-order joint probabilities 
and Eq, (9.43b) contains the first-, second-, and third-order probabilities 
involving the stratificr dichotomy. 

Example 9.8. As an example consider the casc where k = 3 and m = 2. 
We have 

=ANA, 

that is, 

P 2 1 11 	0111   
[ 1  P P12 12 L Io 	P22 
= 	[ 	+1r2) 	(7i P21 + 	3) v2 

or, in equation form, 

1 = IT 1  + 

P1 = 1

• 

r1 PI + 7

• 

2 vt 2 

P2 = • /121 + 7

• 

2 v22 

P12 = 7

• 

1 1/11 vn + 	v1 1 /123 

Likewise, for P2 = A lt  NA.A 2  we have 

(71 Pi I + 72 v12) (71 vt 1 v21 + 72 2 /122) 

[ P3 P231 

P13 P123 

or, in equation form, 

= [ 1 	1 ] [7,01 	 0 ] [P31 
	01 11  

0 	V2 

[  1,21 ] 

v11 	1112 0 	P32 1 	P22 

= (71 1131 + 72 v32) 	(71 1131 /121 + 72 v32 v22) 

(Tr! Pi 1 113! + 172 v12 v32 ) 	(71 Pi I P3 i v21 + 71 v11 V32 v22) 

P3 =  71 P31 7r2 P32 

P13 	71'111 v31 + 7

• 

2 1112 v32 

P23 = 1'31'21 + 7

• 

2 1'32 v23 

P 1 , 3 	vi v31 P211 + 71 /111 v32 v22 
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where thc third subscript (3) corresponds to the stratifier dichotomy. 	D 

The normal equations (Eq. 9.43) can be solved by finding the generalized 
left and right latent vectors of the matrices Pi  and P2  (Anderson, 1954, 1959; 
see also Basilevsky, 1983), The objective here is to find a suitably small 
number m < k of latent classes for which the observed dichotomies (contin-
gency tables) become independent. We first consider the following lemma: 

Lemma 9,1. Let 

(P2  — 	)Xi  = 
	

(9,44a) 

P2 — P1 )= 0 
	

(9.44b) 

where X, and Y, are the right and left latent vectors of P2  with respect to P I , 
respectively. Then 4), = 

Proof. The proof follows by observing that for the homogeneous equa-
tions (Eq. 9.44) we have 

I P2 - 4iP 1 I = IP2 Ai P1  I = 

so that 0, and p, satisfy the same characteristic equation. 

The solution of the system (Eq. 9,43) proceeds by first finding A, which 
contains the latent roots of Eq. (9.44), We have 

IP2 — (API  = I ATNAA 2  4,A NA, 

= IA:11 INI 	- 01[ 1A 2 1 

= 	 (9.45) 

so that the elements vkl, Pk2 1  " ' Pkm of A are the latent roots 0 1  > 412 > • • • 
> Om . In addition since N, A I , and A 2  are nonsingular, this implies the 
elements of N are nonzero. 

Next, the elements of A I  and A, can be obtained as the latent vectors of 
the product 

P2 11 1 = irNA,A2 RA NA2) 

= ATNAA 2 A 2 1 N 1 (AT) 

= ATA,(A,r ) - ' 
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since both N and A are diagonal. Also 

P i-1 P2  (AirNA2) -1 (ATNI1A2) 

= A
" 
 .(• L 	T%-1 A 	A 

17'2  

= A 2-I AA2  

which further shows that A is the diagonal matrix of latent roots and ATI 
 and A 2  are the latent vectors of Eq. (9.44), that is, of the products PA-- 

 and Pi- "P2 , respectively. Specifically, A 2  corresponds to the right latent 
vectors of the system 

	

(I/7  — ci); PI  )XI  =0 	 (9,46a) 

and A 	the left latent vectors Y where 

	

YT(P2  — API ) = 0 	 (9.46b) 

Finally, the matrix N can be found from Eq. (9.43a). Note that although the 
latent vectors are determined up to constants of proportionality, the first 
column of A 1  and A2 consists of unities and are thus unique. 

Several difficulties may be encountered when applying Anderson's 
model. First, for a sample of observed probabilities of 2m — 1 dichotomies 
using different (m x m) observed matrices will not generally yield the same 
solutions. Thus which partition is used can have a marked effect on the 
results. This is partly due to the fact that Anderson's method does not use 
all of the sample data, and also because in a sample the normal equations 
need not be consistent, unlike for the population values. The estimates of 
the latent probabilities moreover need not be admissible. Thus it is possible, 
for example, to obtain complex solutions since the matrices of the normal 
equations are not generally symmetric. Even in the case of real-valued 
solutions the estimated latent probabilities may lie outside of the 0-1 
interval. The procedure is nevertheless computationally straightforward and 
yields convenient closed-form solutions, and provides an interesting example 
of how latent root and latent vector models can be used for an exploratory 
multivariate analysis of dichotomous random variables. 

Other formulations of latent class analysis are also possible, but these 
may be computationally cumbersome and may also depend on imaginary 
entities (e.g., see Green 1951). Gibson (1955) has extended Anderson's 
solution by (1) involving all of the observed dichotomies for estimating third 
order moments, (2) using more than a single stratifier, and (3) augmenting 
the probability matrices P 1  and P2. The analysis then follows that of 
Anderson, except that it is based on a sum of matrices of the form P2  where 
each matrix term in the sum involves a different stratifier. The augmentation 
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process also uses a latent vector analysis, in conjunction with least squares 
orthogonal projections (least squares regression coefficients). As in factor 
analysis, however, it is also important to consider conditions under which a 
latent class model is identifiable, that is, necessary and sufficient conditions 
under which a set of manifest parameters corresponds to a unique set of 
latent parameters such that both sets can be related by the accounting 
equations of the form of Eq. (9.41). Conditions for identification have been 
described by Madansky (1960) who extends Anderson's model using higher 
moments but, unlike Gibson (1955), retains a single stratifier dichotomy. 
Madansky's (1960) method is to use sufficient sample information in the 
form of higher order product moments in order to resolve identification 
difficulties. Moreover the model can also he made to include the extensions 
proposed by Gibson (1955), which makes it an attractive option for 
empirical application. 

A more direct link between latcnt class and factor analysis is provided by 
Green's (1951) model, which also represents an alternative method of 
matricizing the normal accounting equations (Eq. 9.41). An interesting 
feature of the model is that it avoids some of the difficulties associated with 
Anderson's estimators since the observed or manifest probabilities are 
represented by symmetric matrices and thus yield real-valued solutions, in 
this respect the model also bears a greater similarity to a principal 
components decomposition of a covariance matrix since it only makes use of 
second-order product moments. Let 

[ 1 

	Pt 	P2 • • • 
Pk 	 1 	1111 	1121 	111711 

P1 P 11 P12 	 Pik li 
P = Pz P12 P22 

• P • 

P2k A 	
1 V12 1122 	 m2 

 = 

where the diagonal elements pa  remain undefined in the initial stage of the 
analysis—for example, they may be considered as missing values, although it 
is clear that they do not correspond to any substantively concrete aspect of 
the data. The accounting equations can now be expressed in matrix form as 

1 
Pk P lk P2k • • • P kk 	

Vik Vlk 	 linqk 

0 

N= [ 0  
' .7rm  

'yr2 

P = ATNA 	 (9.47) 

where A and N are the latent vectors and latent roots of P, respectively. 



618 	 OTHER MODELS FOR DISCRETE DATA 

Since the matrix P contains probabilities, additional constraints are also used 
in practice to simplify the rotation of the "factor axes." The interpretation 
of the output proceeds in the usual way, keeping in mind the discrete nature 
of the "factor space," For an application of the model to hospital mortality 
data see Miller et al. (1962). 

When the observed dichotomies are binomial the method of maximum 
likelihood can be used to estimate the latent probabilities. A computer 
program to maximize the likelihood function is given by Henry (1975). 
Forrnann (1982) uses the logistic function to obtain maximum likelihood 
estimators of the latent parameters (see also Dayton and Macready, 1988). 
Also Goodman (1974a,b) extends the latent class model to deal with 
contingency tables involving multinomial categories, which are assumed to 
be explained by a discrete latent variable composed of k classes (see also 
Haberman, 1979; Clogg, 1981; Bergan, 1983). The analysis has also been 
generalized to several different types of multidimensional contingency 
tables (Clogg and Goodman, 1984). For an application of Goodman's 
model see Madden and Dillon (1982). Finally, a recent development is to 
employ the EM algorithm (Section 4.7.3) to yield maximum likelihood 
estimators of the latent parameters. The algorithm seems to be particularly 
appropriate when some observations are missing randomly (see Aitkin et 
al., 1981). 

Before attempting to interpret the maximum likelihood analysis it would 
be desirable to test the null hypothesis that there exist m latent classes. This 
is because like most cluster models such as factor analysis and hierarchical 
cluster analysis the latent class model can produce relatively homogeneous 
clusters even from random data. A natural candidate for thc test would 
seem to be the asymptotic chi-squared distribution for the likelihood ratio 
test statistic, but it is known that it does not apply to mixture models. Aitkin 
et al. (1981) discuss the difficulties involved, and propose a test together 
with graphical analysis, based on normal mixture theory. The ability of the 
procedure to discriminate between the latent classes however does not seem 
to be known, and simulation studies are perhaps in order to assess the 
approach. Mixture theory nevertheless seems to provide a useful rationale 
or framework for the latent class model, not unlike that employed for a 
Q-mode factor model for unmixing samples (Section 5.9.2). This is because 
latent class models can be used to classify sample points into discrete classes, 
each possessing a probability distribution. This is done by computing the 
so-called recruitment probabilities, which are analogues of the factor scores. 
Let 

P(R) = Probability of an observed response to a particular (0, 1) configu-
ration (response pattern) 

P(S I R) = the observed probability of belonging to the sth latent class, given 
a response R 
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Then using Bayes' theorem we have 

pov(RIS)  
p(S1R)— 	P(R) 

jr,  p(R  /S)  
P(R) (9.48) 

where the irs  are estimates given by the latent class model. 

Example 9.8. Latent class analysis has been used by Henry (1974) to 
classify individuals during a socioeconomic experiment held in Indiana (see 
Basilevsky and Hum, 1984) which grew out of the "war on poverty" 
program in the United States. The analysis is performed on the following 
dichotomized variables obtained through a sample survey: 

= Parents should teach their children that there isn't much you can do 
about the way things are going to turn out in life. 

1'2  = Parents should teach their children that planning only makes a person 
unhappy, since your plans hardly every work out anyway. 

Y3  = Nowadays the wise parents will teach the child to live for today and let 
tomorrow take care of itself. 

Y, = Parents should teach their children not to expect too much out of life 
so they won't be disappointed, 

Y5  = Parents should teach their children that when a man is born the success 
he is going to have is already in the cards, so he might as well accept it 
and not fight it out. 

The sample consists of n = 1762 low income members of the labor force, 
where each question is coded as 

ual disagrees 
Y, = 

1 if individ 
0 if agrees 

The positive score of unity indicates an "optimistic" response and zero 
denotes "pessimism." A latent model consisting of three classes is found to 
provide the best fit (Table 9.12), where the recruitment probabilities 
denoting class size are given in Table 9.13. 

The class size probabilities r3  can be considered as analogues to the 
latent roots of principal components analysis, whereas conditional prob- 
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Table 9.12 Partitioning Latent Probabilities P(A.)= 	and Latent Conditional 
Probabilities P(E, I A)= so.  for in =3 (Theorem 9.2) 

/%2 i'410 

Y,: Not much can do .920 .510 .232 
Y2:Plans do not work .989 .685 .266 
Y3:Live for today .952 .746 .269 
114 : Do not expect too much .915 .515 .070 

Accept life .923 .877 .268 

Class size ( irj.) .666 .197 .137 

Source: Henry, 1974, 

abilities play a role equivalent to the factor loadings. It can be seen that the 
largest latent class A I  can be understood as representing an "optimism" 
element in parents' attitudes since the high probabilities indicate a high 
frequency of disagreement (codes 1). Many of the working poor therefore 
seem to indicate a counter-defeatist attitude with respect to their children. 

Table 9.13 Recruitment Probabilities for Type of Response to Qnestionnaire 

Response Pattern Class Observed 
Frequency 

V 2 	Y 3  Y4  Y 5  1 11 11 

0 0 0 0 0 .000 .012 .988 71 
1 0 0 0 0 .000 .040 .960 19 
0 1 0 0 0 .001 .067 .932 25 
0 0 1 0 0 ,000 .088 .912 24 
0 0 0 1 0 .000 .145 .85.5 6 
0 0 0 0 1 .000 .189 .811 33 
1 1 0 0 0 .035 .192 .773 11 
1 0 1 0 0 .008 .247 .746 15 
1 0 0 I 0 .017 .362 .621 1 
0 1 I 0 0 .039 .352 .609 13 
1 0 0 0 1 .003 .444 .553 9 
0 1 0 1 0 .078 .465 .457 6 
0 0 1 I 0 .016 .566 .418 5 
0 1 0 0 I .016 .574 .410 21 
0 0 1 0 1 .003 •649 .348 27 
0 0 0 1 1 .005 .762 .232 9 
0 0 1 1 1 .044 .921 .035 22 
1 0 1 0 1 .043 .828 .129 21 
I 0 0 1 1 .068 .856 .076 5 
0 1 1 0 1 .145 .785 .070 44 
1 1 0 0 1 .203 .660 .137 26 
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Table 9.13 (Continued) 

Response Pattern Class Observed 
Frequency 

Y1 Y2 Y3 Y4 Y 5 

1 0 1 1 0 .206 .654 .140 4 
0 1 0 1 1 .212 .750 .038 17 
1 0 1 1 1 .345 .648 .007 29 
1 1 1 0 0 .449 .367 .185 17 
0 1 1 1 0 .499 .446 .055 9 
1 1 0 1 0 .592 .318 .091 5 
0 1 1 1 1 .652 .345 .002 117 
1 1 1 0 1 .668 .324 ,008 116 
1 1 0 1 1 .756 .241 .004 57 
1 1 1 1 0 .923 .074 .003 79 
1 1 1 1 1 .955 .045 .000 899 

1762 

Source: Henry, 1974. 

The second latent class A, also exhibits optimism but to a lesser extent, and 
seems to indicate a "realistic" modification to the first latent class. The third 
class A 3  is more difficult to identify, but seems to represent "pessimistic" 
individuals. Note that the lack of a clear-cut distinction between the three 
classes may indicate that the underlying "optimism-pessimism" scale is 
essentially continuous so that a principal component model may be more 
appropriate. In any case, as with any exploratory model, the results of a 
latent class analysis should be treated as tentative and subject to further 
corroboration. Latent class analysis has also been used to estimate ethnicity 
using census data (Johnson, 1990); effect of response errors is considered by 
Bye and Schechter (1986). 

EXERCISES 

9.1 Prove Eq. 9.12. 

9.2 Prove that the G coefficient can be derived as given by Eq. (9.14). 

9.3 Using an appropriate model of Section 9.2 sedate (ordinate) the 
following Boolean matrix: 
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1 1 
0 0 
1 1 
0 0 
0 0 
0 0 
0 0 
1 1 
0 1 
0 1 
0 0 
1 I 
0 0 
1 1 
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1 1 0 0 0 0 0 
0 0 1 0 1 1 1 
0 0 0 1 0 0 0 
0 1 0 1 1 1 1 
0 I 0 0 1 1 1 
0 0 1 0 0 1 0 
0 1 0 1 1 0 0 
0 0 0 0 0 0 0 
0 1 0 1 1 0 1 
0 1 0 1 1 0 0 
0 0 1 0 0 0 0 
0 1 0 1 1 0 0 
0 0 1 0 1 1 0 
1 0 0 1 0 0 0 

o 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 

A 

ft 

9.4 The following data was obtained by Rothkopf (1957) using 598 
individuals who were asked to judge whether a pair of consecutively 
presented Morse code singals were identical or not. Using the pairwise 
comparisons similarity data matrix of proportions, we wish to discern a 
possible ordering, in a space of smaller dimension, of correctly 
identified (incorrectly confused) Morse code signals: 
(a) Carry out a principal components analysis of the similarity matrix. 
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(b) Carry out a maximum likelihood factor analysis using information 
obtained from part a. 

(c) Compare the two analyses with each other, as well as to Shepard's 
(1963) multidimensional scaling analysis of the data. 

9.5 McCormick et al. (1972) give a ranking, on the scale of 0 to 2, of the 
degree (subjectively determined) to which each of a total of 53 military 
aircraft can perform one or more of a total of 27 functions. This yields 
the following object/attribute matrix: 

Type of Aircraft 

1 2 3 4 S 7 9 1 11 	1 13 14 15 16 17 19 1 20 21 22 23 24 25 24 27 2 29 30 31 32 33 3 35 3 3 39 39 4 4 42 43 44 45 4 4 4 4 5 5 5 53 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 	1 	1 	1 	2 1 21 0000 0 
2 0 0 0 2 0 0 0 2 0 0 0 0 2 2 2 2 0 2 0 0 0 0 0 	0 	0 	0 	0 0 00 1000 o 
3 0 1 0 1 0 0 1 0 0 3 0 2 2 2 1 0 0 2 0 1 2 2 0 	0 	2 	2 	2 2 20 0000 1 
4 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 2 2 1 	2 	2 	2 	1 1 11 0110 1 
9 0 0 0 2 0 1 0 1 1 0 1 1 2 1 2 1 0 2 0 0 0 0 0 	0 	0 	0 	0 0 00 000 0 0 
6 1 3 1 2 0 0 0 0 0 2 0 2 2 2 1 0 0 2 0 0 0 0 0 	0 	0 	0 	1 0 10 0000 0 
7 0 1 0 0 0 0 0 0 0 2 0 1 1 1 0 0 0 0 0 0 1 1 0 	1 	1 	1 	2 20 0000 0 
9 1 2 2 1 1 2 2 2 2 2 3 2 2 2 1 1 2 1 1 1 1 1 1 	1 	1 	1 	1 11 2122 1 
9 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 0 	1 	1 	1 	2 20 0100 0 
0 2 1 1 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 2 	2 	2 	1 	1 12 0101 2 
11 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 	111 	3 11 1211 1 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 	0 	0 00 0000 0 
13 0 1 0 2 0 00 2 1 1 1 1 1 1 1 0 2 0 1 0 0 0 0 	0 	0 	0 	0 01 1000 0 
14 1 1 2 1 1 1 1 1 1 2 2 2 1 2 1 3 1 2 1 1 1 1 1 	1 	1 	1 	1 11 1131 1 
15 1 1 1 2 0 1 1 2 1 1 2 1 1 2 1 2 1 2 2 2 0 0 0 	0 	0 	0 	0 00 2110 0 
14 11 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 	0 	0 	0 	1 10 0100 0 
17 1 2 1 1 1 1 2 3 2 1 2 2 2 2 1 1 1 1 1 2 1 1 1 	1 	1 	1 	1 1 1 2111 1 
11 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 1 2 1 1 1 1 	1 	1 	1 	0 00 3111 1 
19 1 2 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 2 1 1 0 	1 	1 	1 	1 10 2121 1 
20 1 	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 0 0 0 0 	9 	0 	0 	0 00 1210 0 
31 1 3 2 1 1 1 3 1 1 2 1 2 1 2 1 1 1 1 1 1 2 2 1222 3 	1 2111 2 
32 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2222 2 	1 0000 0 
23 1 	1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 0 0 0000 0 	0 11 12 1 
24 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2111 1 	2 0000 2 
25 0 1 0 0 0 00 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0001 2 	0 0000 0 
26 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111 1 	1 1122 1 
27 1 	1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 1 3 2 2222 1 	1 0100 1 
29 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 2 2 2222 2 	2 0000 1 
29 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0001 0 	0 0000 0 
30 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1110 0 	1 0100 1 
31 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 0 0 0000 0 	0 2222 1 
32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 2222 2 	2 0100 0 
13 0 1 1 	1 0 2 0 1 1 1 1 1 1 1 1 2 1 1 1 0 1 0 0 	0 	0 	0 00 1011 0 
34 0 0 0 2 0 0 0 0 0 P 0 0 1 1 2 0 0 2 0 0 0 0 0 	0 	0 	0 00 0000 0 
35 0 1 1 2 0 2 0 1 1 1 1 1 1 1 1 2 1 2 0 0 0 0 0000 0 	0 1 	0 	1 	1 0 
36 1 1 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0000 0 	0 0000 0 
17 0 0 0 1 0 0 0 1 0 0 2 0 1 1 1 1 0 1 0 0 0 0 0000 0 	0 2000 0 

Using the ordination of Section 9.2.2 (see also Section 8.5), determine 
which aircraft are similar in terms of their application (use). 
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CHAPTER 10 

Factor Analysis and Least Squares 
Regression 

10.1 INTRODUCTION 

The previous chapters dealt with factor analysis in terms of a set of statistical 
data-analytic procedures which may be utilized to estimate unobserved 
latent variables, influential dimensions, or clusters within the variable 
(sample) space. This is the traditional conceptual framework within which 
factor analytic models have been viewed, and which constitutes much of 
their application today. Another major area of relevance for factor models 
also exists, which recently has captured greater attention—the use of factors 
in the estimation of least squares planes and other functional specifications. 
Generally speaking this takes two forms. First, factor models can be utilized 
directly to estimate multivariate functions, for example, when dealing with 
the so-called functional and structural relationships between the dependent 
and independent variables, biological growth curves, chemical free-energy 
relations, and so forth. This occurs when all variables are subject to 
measurement or observational error or when the explanatory variables are 
not observed. Second, the predictor variables may be subject to multicol-
linearity and factor models can then be employed in conjunction with 
Gauss–Markov least squares in order to augment precision. In the following 
sections we describe several factor analysis-based least squares regression 
estimators which can be used to estimate linear functional forms or to 
reduce bias and inefficiency in least squares regression. 

10.2 LEAST SQUARES CURVE FITTING WITH ERRORS IN 
VARIABLES 

In this section, we return to the mathematical and statistical origins of 
principal components—the use of orthogonal ellipsoidal principal axes to 
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estimate a least squares regression plane. Actually the relevant model is the 
weighted principal components model (Section 5.6) since generally speaking 
errors may be correlated and may possess uneven variance. At first glance 
this seems a surprising origin for factor analysis given the well-developed 
nature of the Gauss—Markov least squares model. The puzzle disappears 
however once we note the restricted nature of least squares regression. A 
crucial assumption of Gauss—Markov analysis is that the independent or 
predictor variables are free of measurement error. Thus although the 
predictor variables can be allowed to vary randomly their true values must 
be known in advance. In this sense least squares regression can be viewed as 
utilizing a priori knowledge in the form of zero restrictions placed upon the 
error terms of the independent variables. In the presence of measurement 
error however, sufficient prior knowledge (or replications) must also be 
available to at least estimate the error variance, since in the absence of such 
information the Gauss—Markov model yields inconsistent and inefficient 
estimators. 

When measurement error is present in the predictor variables their true 
values become, in effect, unobserved latent variables and consequently can 
be estimated using the weighted principal components model (Section 5.6). 
A further advantage of viewing regression in terms of weighted principal 
components is that the requirement for prior information is recognized in an 
explicit manner when no replications are available. Such an approach seems 
to have been first considered by Adcock (1878), Kummel (1879), and 
Pearson (1901). The latter author used cross sections of an ellipsoid in what 
represents the first de facto principal components analysis of a correlation 
matrix, but in terms of latent vectors associated with the smallest rather than 
the largest latent root(s). The problem can also be posed within the context 
of multivariate normal theory by considering rotations of normal ellipsoids 
to independent form, as described originally in Bravais' (1846) work on the 
multivariate normal distribution. The theory has since been considered by 
Gini (1921), Rhodes (1937), Frisch (1929), Van Uven (1930), Dent (1935), 
Lindley (1947), Anderson (1951a), Sprent (1966), and others. Summary 
reviews of the material can be found in Moran (1971), Mak (1978), Mandel 
(1984) and Anderson (1984b). 

Specifically, the situation is as follows. Let y = e + E, x i = ,1 + 	x 2 = 
X2 + 112 	' 1k -I = Xk-1 ilk- 1 where 6 Y Y -1 ,  -2 , 	' Xk- are true values 
related by the exact linear equation 

= 130 +f3 XI + 132 X2 + 	-4-  /3k - 1 Xk 
	 (10.1) 

The true values, however, are not observed owing to the presence of 
residual errors, and in their place we have the variables y, x , x2 ,... 
such that E(e) = E(A 1 ) - - • = E(A k  ) = 0. The predictor or explanatory 
variables can contain error for a number of reasons. When the predictor 
variables are allowed to vary randomly, they are often observed in very 
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much the same way as the dependent variable, and can then be subject to 
measurement error and other residual variation. For example, in large 
sample surveys of human populations all variables are generally affected by 
recall error, intentional misreporting, data recording and entry errors, loss 
of data, and so forth. Also when variables contain missing values they are 
frequently estimated by a number of different techniques (e.g., see 
Basilevsky et al., 1985) and this introduces error terms into the predictors 
even in the case when the predictors are fixed. The difficulty is also not 
obviated when the original values are replaced by ranks (Section 8.2) since 
these will also be subject to error, and what is required is an estimation 
technique which takes into explicit account error in all the variables of the 
equation. 

Before considering curve-fitting methods when all variables contain 
measurement error it is perhaps worthwhile to first point out the effects of 
such errors on regression analysis and why the usual least squares linear 
regression is not optimal. Consider the true values e,x,  x2 , . xk _.. 1  which 

	

0 , 	• are related as in Eq. (10.1). To estimate parameters 13 B , „ 	• • 7 13k -1 9  n 
independent observations y,, x ii , x, 2 , 	X 	= I, 2, 	n) are ob- 
tained such that yi  = 	c, x 	+ Ail  , x ,2 = x12 Ai2 $ • • • 7  X ik- I = 
Ala  + Aik  _ 1 . Equation (10.1) then becomes 

= P0+ /3 1 (Xi 1 - Ai! ) i32(X/7 - A/2) + • • • 4-  Pk 	- 1 - 	-1) 

or 

yi = Po+ Axil 4" 02X  i2 + • • + Pk- ixiA + - PA! 	- Pk - I - 

= 130 + 134, 1 + 02X t-2 + • • • + Pk -1Xik -1 + 	(i = 1,2, . . . , n) 	(10.2) 

Equation (10.2) does not represent a simple regression equation since the 
variables x , x2 ,. . . , xk  are correlated with the overall error term S. If Eq. 
(10.2) is estimated by Gauss—Markov least squares, the estimator of 3 in 
V= XI + 8 is inconsistent, and the variance of the error term is inflated 
owing to the errors of measurement in the predictor variables (Section 
6.3.3). Thus the Gauss—Markov least squares fit becomes progressively 
poorer as the error variance increases, which is also accompanied by a 
corresponding increase in bias (Example 10.2). Also linearity is generally 
not preserved, that is, even when the true equation (Eq. 10.1) is linear, it 
does not follow that the observed regression (Eq. 10.2) is necessarily linear 
(Kendall and Stuart, 1979, pp. 438-440). 

Two broad strategies are available when all variables in a regression 
equation contain error. In the simple case when the errors can be estimated 
with some accuracy (e.g., when replications are available), the variables can 
be corrected for error and least squares estimates may be computed in the 
usual manner. When insufficient information exists for the error terms, 
however, prior information must be available, at least for their relative 
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variances. For example, we may know that all variables possess equal error 
variance (or nearly so), or else a ranking of the error variance magnitudes 
may be indicated using prior information (should this be available). In this 
situation we would wish to fit the plane so that the error variance is no 
longer minimized only in the direction of the dependent variable. A 
generalized (weighted) least squares estimator of the coefficients of Eq. 
(10.1) can be derived which minimizes error variance in any arbitrary 
direction, and which makes use of weighted principal components associated 
with the smallest latent root(s) and their latent vector(s). 

10.2.1 Minimizing Sums of Squares of Errors in Arbitrary Direction 

The following procedure can be used to estimate Eq. (10.1) in a direction 
determined by the variance/covariance structure of the errors. Let X = 
(x, , x2 , . xk  )T  be a vector of observed random variables where y = xk , 
X = x + A, and x and A represent the true and error parts respectively such 
that E(A) = 0. Although A (A I , A 2 , , )T , and thus X, are assumed to 
be random the true parts x = (x 1 , x2 , . . . , %k ir  may be either random or 
fixed. In the former case the linear form (Eq. 10.1) is referred to as a 
structural relationship; in the latter case it is known as a functional 
relationship. In the structural relationship case it is assumed that has finite 
mean and finite covariance matrix. For the present we suppose that the true 
values x are random. The variance/covariance matrix of X can then be 
expressed as 

E(XX1  ) = E[(x + A)(x + A)1 1 

Or 
	 = E(xxl ) + E(AAT ) 

= 	+ 
	

(10.3) 

assuming E(Ax T ) = 0, that is, the errors and the true values are uncorre-
lated. The condition is usually imposed when replications are not available 
since in this case the variance/covariance structure of the error terms cannot 
be estimated. The error covariance matrix qf however may be either 
diagonal or otherwise depending on whether the error terms are correlated, 
although in practice errors can be expected to be independent of each other. 
Again, in the event the errors are correlated replications are required to 
estimate the off-diagonal elements of 

Since all variables are subject to error they are treated in a symmetric 
fashion, and the equation is estimated in the implicit rather than in the 
explicit form, that is, the equation is expressed as a l x, + a2x2  + - - - + akxk  = 
8 or 

eiTX = 8 	 (10.4) 
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where E(b) = E(8)= 0 and 6= a TA is the joint error term. Also, the 
coefficients a are assumed to be fixed. The objective is to estimate Eq. 
(10.1) using only Eq. (10,4), that is, by estimating a such that 

var(8) = Ma T X)(a T X)T 1 

aTE(XXT )a 

= a TI,a 
	

(10.5) 

is minimized. Since the error variance (Eq. 10.5) can also be expressed as 
aTilta (Exercise 10.1), the minimization of Eq. (10.5) cannot be carried out 
unless a Tgra is fixed. This implies the well-known Lagrangian expression 

aTZa — A(a Ttlya — 	 (10.6) 

where c and A are positive constants. Differentiating (Eq. 10.6) with respect 
to a and setting to zero yields 

Or 

(1 AAP)ci= 0 	 (10.7) 

We thus arrive at the same expression as for the weighted principal 
components model (Eq. 5.104) except that the optimum solution ei now 
corresponds to the smallest latent root of in the metric IP (Exercise 10.2). 
Thus the lower-order principal components represent residual error mea-
sured at an arbitrary angle to the plane whereas components corresponding 
to dominant roots estimate the plane itself. The weighted least squares 
model therefore takes the weighted principal component ‘ k  as the optimal 
estimator of the error term 8. 

Since the population matrixes and ‘11  are usually not known, they must 
be estimated using sample values. Let X denote a (n x k) matrix of sample 
observations for the dependent and independent variables such that X = 0. 
The sample counterpart of Eq. (10.7) is then the set of normal equations 

(10.8) 

where it denotes the sample estimator of IP. Premultiplying Eq. (10.8) by 
&T and setting a lira= 1 we obtain 
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or 

iitT(xTx)ii  = iat Tlira  

=1 

so that the estimated sample regression plane is given by 

z, = aTx 

=a,x, 	+ ••• + 

=6 

(10.9) 

(10.10) 

where Z k  is the weighted principal component corresponding to the smallest 
root 1k  such that ZkZ k = lk • An alternative standardization is to let 43C 1 IPet = 
f k-1  in which case ZZ k  = 1. To obtain the explicit form solution of Eq. 
(10.10) let Xk Y, be the dependent variable of the regression equation. 
Then 

erk X, T, erk Y = FrI X - & 2 X 2  - g g - k  

or 

Y --lc.'  X – X - - • – 	X + — 2 	 k  • 	 A 

ak 	 ak 	a 

= "4x + 0§,x , + • - • + 	+ 4* 	( 1(U1 ) 

The intercept term is obtained from the usual condition that the regression 
plane must pass through the mean point. 

Since all variables are subject to error, the term 5 consists of a linear 
combination of the individual error terms. We have 8 = Ail or 

A  

I-A l 1 A ll 

A21 21 22 A2k «2 
41] 

• 

_An1 An2 A nk - 	-A 

so that 

8- 
S i  

 
Ai2a2+ • • • 4-  A ik tik) elk 	erk 

(10.12) 

(10.13) 



630 	 FACTOR ANALYSIS AND LEAST SQUARES REGRESSION 

and the fitted plane is given by 

5 	 - 
Y 	' 1-12Xi2 	' 1

0
A- IXi&-1 

2 	 _ g 

+ 	+ • • + 4, 	+ 
a. Crk 

= 	132x/2 	 ! 

(- i3- 1 4111 -  152 4 12 - - 1k -Pk& 1 +  Ark) 

1) + 	 11 i2) 	+ 13-  k-I(Xik- I - 

Or 

= 	fi2 i 4-  • • • + 	- 1iik -1 	(i 	1, 2, . 	n) 	(10.14) 

where X = 	i2  = i 2 ,•, 	 andiT = 	are the estimated true 
values of X I  , X2, 	 Y and A= —61 /6, (j= 1, 2, .. , k—I) as in 
(Eq. 10.11). The predicted values can also be estimated in terms of the 
weighted principal components of X as 

/1 1 	 413 12 Z 2 

	

= P2I Z 1 + P22 Z 2 	4- P2k-A-1  

	

+ NA 	+ Pkk-A-1 

where 6 = Zk, that is, the predicted values are the weighted nonorthogonal 
projections of the columns of X into the subspace spanned by the first k-1 
weighted principal components. 

The weighted least squares regression plane selects the smallest latent 
root as the optimal error variance of the equation on the assumption that 
there is only a single regression plane passing through the variables. This is 
so, however, only when the smallest latent root is significantly different from 
one or more of the remaining roots. When this is not the case, there exist 
more than one regression plane and the choice of which equation to use 
becomes less clear. When k—r smallest roots are insignificantly different 
(Section 4.3.2) the estimates of the elements of a can be defined as sample 
averages of the k—r latent vector elements. The main difficulty here 
however is that the latent roots by themselves are unable to pick out the 
appropriate explicit-form regression equation since small roots will also 
correspond to nonpredictive multicollinearities which are present among the 
predictors (Section 10.3.2). This must be so, for r<k— 1. 

Whichever plane is selected as the appropriate estimate of the linear 
equation, another major assumption is that the variance/covariance matrix 

(10.15) 
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of the errors is known, or at least can be estimated from the data. This is not 
always the case and in this situation a priori conditions have to be imposed 
on the structure of IP in order to solve the normal equations (Eq. 10.9). 
Such information may be available in the sample in terms of replicated 
observations, or else can be given in the form of prior knowledge about the 
residual errors. The first simplifying assumption commonly used is that the 
error terms are uncorrelated, in which case IP becomes a diagonal matrix. 
Under regularity conditions the diagonal error variance matrix may then be 
estimated by an iterative procedure. Alternatively, if this is not possible the 
unknown error variance terms can at times be replaced by the rank orders 

2, . , k, if the relative error magnitudes of the variance terms are 
known. Also, as a special case, when the observed variables are further 
deemed to possess equal error variance the weighted regression model 
reduces to finding that (unweighted) principal component which corresponds 
to the smallest latent root of X I X. Here the errors are fitted perpendicularly 
to the estimated plane, and the model is then known as the orthogonal-norm 
least squares model (Fig. 10.1). Since the orthogonal-norm model is a 
principal components model it retains all optimality properties of the latter 
(Chapter 3). Chen (1974) has given a Bayesian optimality property of the 
model. 

The weighted regression model (Eq. 10.8) assumes that the true values 

Xi ,  X2 , • Xk are random. The model also holds for the case when the true 
values are fixed so that the distinction between deterministic and random 
variables need not generally be made when using weighted least squares. 
The situation is identical to the case when principal components can be 
considered either fixed or random (Sections 3.6 and 6.7). Note also that the 
development assumes that errors are independent and homoscedastic in the 

Figure 10.1 Orthogonal-norm least squares regression by rotation of axes. 



632 	 FACTOR ANALYSIS AND LEAST SQUARES REGRESSION 

sample space, that is, the error specification is that of the ordinary least 
squares model. The model can be generalized however to the case where the 
errors are heteroscedastic and correlated in the sample space (Sprent, 1966). 

Example 10.1. First consider a bivariate example (Table 10.1) using 
data from Sprent (1966), where x = logarithm of wood growth and y = 
logarithm of girth increment of apple trees. Sprent's model for the data is 
somewhat more general since, as pointed out above, the observations for 
time series need not be independent or homoscedastic. Ignoring the serial 
correlation we note that six replications are available per year so that the 
residual errors for both variables can be estimated, and corrected values 
X* = X - and Y* = Y e may be used in a Gauss-Markov regression. To 
illustrate the weighted least squares model however we have the normal 

Table 10.1 Logarithms of Wood Growth and Girth Increment of Apple Trees 
with Six Replications per Year 

X 

1954 	 3.44 	 .49 	 -.002 	 .013 

	

3.62 	 .51 	 .178 	 .033 

	

3.42 	 .43 	 -.022 	- .047 

	

3.47 	 .43 	 .028 	- .047 

	

3.28 	 .48 	 - .162 	 .003 

	

3.42 	 .52 	 -.022 	 .043 

Means 	 3.442 	.477 	 .00 	 .00 

1956 	 3.97 	 .56 	 .027 	 .055 

	

3.97 	 .52 	 .027 	 .015 

	

3.79 	 .43 	 - .153 	- .075 

	

4.04 	 .52 	 .097 	 .015 

	

3.94 	 .49 	 - .003 	-.015 

	

3.95 	 .51 	 .007 	 .005 

Means 	 3.943 	.505 	 .00 	 .00 

1958 	 4.06 	 .63 	 -.008 	 .020 

	

4.04 	 .57 	 -.028 	-.040 

	

4.07 	 .59 	 -.002 	-.020 

	

4.11 	 .64 	 .042 	 .030 

	

3.93 	 .59 	 -.138 	-.020 

	

4.20 	 .64 	 .132 	 .030 

Means 	 4.068 	.610 	 .00 	 .00 

Overall means 	3.818 	.531 	 .00 	 .00 

Source: Sprent, 1966; reproduced with permission. 
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equations 

(trx -149et= pir'xrx - 	= 0 	(10.16) 

Since = = 0, the first and second moments of the system are given by 

 

18 

E x, = 68.7200 , 
18 

y, = 9.5500 

= 5.1475 , 

= .021484 , 

 

and 

= 263.8108 , 

= .133102 , 

 

is 
E xiy, = 36.7095 

18 

E 	= .028014 

i) 2  = 1.453111 , 	(yi  )7) 2  = .080694 , 
e-i 

is 

E (x, -1)( y, -y = .249722 
e=1 

Since the errors are correlated (r 	.524) we have 

---i[.133102 .028014 	1 	[ .021484 -.028014 = 	1 
L028014 .021484J - .002075 [-.028014 	.133102J 

[ 10.353735 -13.500723 1 
-13.500723 	64.145542J 

so that 

	

+-1± r 10.353735 	13.500723 1 11.453111 .249722 1 

	

L - 13.500723 	64.145542J I .249722 .080694J 

[ 11.673699 1.4961281 
-3.599496 1.804732J 

whose latent roots are solutions of the determinantal equation 

I (11.673699 /) 	1.496128 
= I -3.599496 	(1.804732 - 

Or 

12 - 13.478431/ + 26.453205 = 0 

that is, / 1  = 11.093962 and 12 = 2.384469. The latent vectors corresponding to 
the two roots are then given by Eq. (10.16), that is, corresponding to 1 1  we 
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have 

=0 

or 

[(11.673699 - 11.093962) 	1.496128 it  
-3.599496 	(1.804732 11.0939621 [a21] 0 

subject to the constraint ãIrâ- 1. This yields the system of equations 

.5797376 11  + 1.49612862 , -01..  A  
-3.599496k, -9.28923& = 0 12 " 

-2.58°70162 

where 

so that 

A  [ .133102 .02801401 
[611,0211 .280140 	.021484] 

.133102& 	.0560286 11 621 + .0214886 22 1 = / 

the unique solution to which is (aside from rotational indeterminacy and sign 
change) 611 = -2.9538 and et„ = 1.1446. Similarly, corresponding to 1 2  -- 
2.384469 we have the latent vector '6 1 2'. -1.276775 and an  = 7.927326 so 
that the implicit form equation is given by 

or 

-1.276775(i - 	+ 7.927326(1? -170= 0 

where fi = .5306 and X= 3.8178. Solving for f.io  and 	we have 

- 1  1.276775  - 
(1 17 ' 7.927326 

= .16106(i - 

so that 

= + 

= -.0843 + .16106i 

The Gauss-Markov ordinary least squares estimate for the slope is 
.17185 so that the effect of the error in X is small. Actually the main 
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influence here is exerted by the correlation between the two error terms 
since if the correlation is assumed to be zero we obtain p, .5433, a much 
larger value. 

Example 10.2. Under certain environmental conditions a protein known 
as vicilin, when isolated from legume (faba bean) seeds, undergoes self-
association to form a micelle-type structure, a relatively unique arrangement 
for protein molecules. A micelle is a stable spherical aggregation of 
molecules in an aqueous system, in which nonpolar or hydrophobic ends of 
the molecules are oriented inwards and the polar portions are exposed to 
the water medium. The capacity of vicilin to form micelles seems to be 
related to several molecular structural parameters which, in turn, are 
influenced by the specific type of environment. Experimental data (Table 
10.2; lsmond, 1984; personal communication) is obtained for the following 
variables: 

= Surface hydrophobicity, in terms of how many hydrophobic amino 
acid residues were on the surface of the protein 

Y2  = Temperature of denaturation 
Y3  -= Micelle rating; the (subjective) ordinal scale 0-9 

= Logarithmic (base 10) transformation of Y 1  
Y5 = Logarithmic (base 10) transformation of Y2  

A part of the total data set is given in Table 10.2 for n = 56 experimental 
observations. Using the entire data set of 130 observations we obtain the 
following correlation matrix together with its latent roots and latent vectors 
for the first three variables (Table 10.3). 

Taking X 3  as the dependent variable we have the estimated equation 
(Eq. 10.14) 

.2837 	.7638 - 
X3  - .5797 XI .5797  X2  

or 

= 229.152 — .4894 k r  — 1.3176', 	 (10.17) 

The data are used only for illustrative purposes since the assumption of 
equal error variance is doubtful. 

10.2.2 The Maximum Likelihood Model 

The weighted least squares regression model can be viewed as a generaliza- 
tion of the usual Gauss—Markov ordinary least squares where the residual 
errors are fitted at an arbitrary angle to the plane. At times it is also 
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Table 10.2 	Part of the Original n = 130 Observations for k = 5 Experimental 
Variables in a Study of Micelle Formation 

V I  V 2  Y 3  V, V 5  

315 89.0 9 2.49831 1.94939 
299 89M 9 2.47567 1.94939 
266 86.0 9 2.42488 1.93450 
235 86.0 9 2.37107 1.93450 
271 88.5 9 2.43297 1.94694 
248 89.0 9 2,39445 1,94939 
352 88.5 9 2,54654 1.94694 
264 88.0 9 2,42160 1.94448 
255 89.0 9 2.40654 1.94939 
263 91.0 9 2.41996 1,95904 
269 91.0 9 2.42975 1.95904 
225 90.5 9 2.35218 1.95665 
225 91.0 9 2.35218 1.95904 
288 95.0 6 2.45939 1,97772 
202 95.0 6 2.30535 1.97772 
198 95.0 6 2.29667 1.97772 
167 90.0 9 2.22272 1.95424 
167 91.0 9 2.22272 L95904 
153 92.5 8 2.18469 1.96614 
156 92.5 9 2.19312 1.96614 
168 92.5 0 2.22531 1.96614 
162 92.5 0 2.20952 1.96614 
127 94.5 0 2.10380 1.97543 
112 94,5 0 2.04922 1.97543 
174 98.0 5 2.24055 1.99123 
162 98.0 5 2.20952 1.99123 
160 99.0 5 2.20412 1.99564 
153 100.0 5 2.18469 2.00000 
172 103,0 0 2.23553 2.01284 
151 104.0 0 2.17898 2.01703 
144 104.5 0 2.15836 2.01912 
136 105.0 0 2.13354 2.02119 
233 87.0 9 2.36736 1.93952 
228 87.5 9 2.35793 1.94201 
194 87.5 9 2.28780 1.94201 
176 88.0 9 2.24551 1.94448 
226 91.0 9 2.35411 1,95904 
197 91.0 9 2.29447 1.95904 
190 91.0 9 2.27875 1.95904 
192 92.0 9 2.28330 1.96379 
153 100.5 9 2.18469 2.00217 
186 97.0 8 2.26951 1.98677 
211 96.0 8 2.32428 1.98227 
219 105.0 0 2.34044 2.02119 
172 105.0 0 2.23553 2.02119 



LEAST SQUARES CURVE FITTING WITH ERRORS IN VARIABLES 

Table 10.2 	(Continued) 

637 

174 105.0 0 2.24055 2.02119 
175 106.5 0 2.24304 2.02735 
228 86.0 2 2.35793 1.93450 
188 86.0 2 2.27416 1.93450 
183 87.0 2 2.26245 1.93952 
165 88.0 2 2.21748 1.94448 
214 89.0 2 2.33041 1.94939 
178 90.5 2 2.25042 1.95665 
177 92.5 2 2.24797 1.96614 
166 93.0 2 2.22011 1.96848 
143 100.0 0 2.15534 2.00000 

Source Ismond, 1984, personal communication. 

Table 10.3 Correlation Matrix, Mean Values, Latent Roots, and Latent 
Vectors of the First Three Variables Using the Original n 130 Observations of 
a Mkelie-Rating Experiment 

X2  x 3  z, Z2 Z3 

x, 1.0000 .5176 .8072 .2837 
x, -.5047 1.0000 -.6309 .1361 .7638 
x„ .3385 -.6322 1.0000 .5780 -.5743 .5797 

204.49 94.63 4.39 1, 1.9932 .6732 .3328 

Source: Ismond, 1984; personal communication. 

convenient to assume normality of the errors, for example, for purposes of 
significance testing. For the moment we continue not to make a distinction 
between functional and structural forms, although, as will be seen shortly, 
such a distinction is of some importance from the theoretical perspective 
when considering normal errors. Consider the errors-in-variables model of 
the previous section wherc the errors are distributed as the multivariate 
normal. Then for any ith observation A., we have 

1  

f(A.)+ (2.70 k 12 141  1 /2 
2(11;hit -1 40 (i = 1, 2, . 	n) 	(10.18) 

where IP is nonsingular and A i  is the ith row of A. The likelihood of the 
sample is then given by 

1 !I 

L(A) - 	 e
- / 2 AT" piryik 21.4,1" - (10.19) 

It is easy to show that when error is present only in the dependent variable 
Y= X I , Eq. (10.19) reduces to the usual Gauss-Markov ordinary least 



= ke 

I 
—2 E xirck(aNiar 

L(6) = ke 
xInga T la i  

2 
= ke 

2 
(10.22) 

638 	 FACTOR ANALYSIS AND LEAST SQUARES REGRESSION 

squares likelihood function 

(10.20) L(e) or: 217) n /2 e 

where e is the error term in Y. Since d — N(0, %It) we have 6 N(0, aT  gra). 
Let x T, denote the ith row of X. Then Eq. (10.4) can be written as 

T 	T x i a=A; a=ai 	(i= 1,2, 	.,n) 	 (10.21) 

and the likclihood function of 8 1 , 82 , 	, ön  is given by 

where k is the constant of proportionality. Also, it is easy to verify by direct 
expansion that x:aa rx i  = a l  x,xT, a and consequently 

fg 

Zd xi  aa xi  = E a xixi  a 
I 

= a T  (X TX)a 	 (10.23) 

Thc likelihood function (Eq. 10.23) can be maximized by minimizing the 
exponent, subject to the constraint a TAPa = I. The Lagrangian expression is 

= a-r(x -rx)a gaTiva  1) (10.24) 

where A is a Lagrangian scalar multiplier. Differentiating Eq. (10.24) with 
respect to the parameters a and cquating to zcro yiclds 

= 2(X
T x)a- 2111fie = 0 äa 

or 

RxTx)- toirja =0 	 (10.25) 

where / is the sample estimator of A. 
The normal equations (Eq. 10.25) are the same as Eq. (10.8) and a again 

denotes the latent vcctor of X T X which corresponds to thc smallest latent 
root ik For purposes of computation it may also be more convenient to 
write Eq. (10.25) as [qt (X TX) — /k Ilex = 0 and to solve the resulting 
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characteristic equation (Section 2.10). Although both lir and X TX are 
symmetric and positive definite, their product need not be symmetric, and 
thc (I therefore need not represent an orthogonal coordinate system. Both 
the eigenvectors & and the eigenvalues 1 . are real, and /, 0. 

The derivation of the maximum likelihood model does not distinguish 
between the case when the true values are random or fixed. It was pointed 
out in Section 6.7 however that maximum likelihood estimators do not exist 
for fixed principal components. In fact Solari (1969) has shown that for 
functional forms these values correspond to a saddle point rather than to a 
true maximum of likelihood surface. Although such a result is indeed 
surprising, since we would more readily expect difficulties with the more 
general structural form, this does not necessarily imply that good approxi-
mations cannot be obtained from the functional form as well, this is 
because, as pointed out by Copas (1972), continuous population probability 
densities are only continuous hypothetical approximations to likelihood 
functions when using actual data, which are never recorded as a pure 
continuum. Rather, we observe data that are rounded off to some decimal 
point, that is, data grouped within intervals, and this is sufficient to ensure 
(with unit probability) that error variances will not be zero, which is what 
produces saddlepoint solutions. The least squares estimator is thus often 
used with normally distributed errors for both structural and functional 
forms, and although "maximum likelihood" estimators will still be inconsis-
tent with grouped data, such inconsistency will usually be small in most 
cases encountered in practice (Sprent, 1970). Maximum likelihood estima-
tion of the general nonlinear functional relationship has also been consid-
ered by Dolby and Lipton (1972). 

10.2.3 Goodness of Fit Criteria of Orthogonal-Norm Least Squares 

Several criteria are available with which to estimate the sum of squares 
resulting from the least squares plane. First we note that Eq. (10.11) yields 
biased predicted values of the dependent variable V since in 

Y XI 
	

(10,26) 

the variables X contain error and E(t) x11. A consistent estimator of thc 
conditional regression equation is provided by Eq. (10.14), that is, Y = XP 
where values of X are given by Eq. (10.15). We have 

E(iTg) = ER; P) 1  gi 

= Meek" _ 1 41 

=0 
	

(10.27) 

so that the predicted values and the error term are independent. Since 
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residual variance of the implicit-form regression equation is provided by the 
smallest root 4, the proportion of variance explained by the first (k 1) 
major axes is then 

R2 - A 

(10.28) 

which may be used as a goodness-of-fit criterion. Note, however, that R A2  is 
not bounded by zero from below—for example, in a bivariate regression we 
obtain 

, 	1 1 	1 
– 	-- A 	1 1  +12 	2 

in the case of independence between the variables, since in this case / I  = 12 . 
Also note that Eq. (10.28) is always larger (in a given sample) than the 
ordinary least squares R 2  criterion since for the former case the residuals are 
fitted orthogonally to the hyperplane and thus represent minimum distance 
between observations and the hyperplane. A bivariate measure which is 
bounded from below by zero is 

1  1 	12  
It 2B 	+ (10.29) 

which can be shown to equal the hivariate correlation coefficient between 
the dependent and independent variables. Other measures that generalize to 
the multivariate case are also available and may be found in Kloek and 
Banink (1962). 

Finally, a useful measure of multicollinearity is given by 

lk 
S 2k= -1-  

aik 
(10.30) 

since Hawkins (1973) has shown that when am  is small (large) relative to lk , 
multicollinearity will also be high (low) (Section 10.3.3). 

10.2.4 Testing Significance of Orthogonal-Norm Least Squares 

Once a structural (functional) form has been fitted to the data, it is of some 
interest to test for significance and estimate confidence intervals of the slope 
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coefficients. In what follows we describe two possible approaches for 
deriving standard errors of the orthogonal norm coefficients, depending on 
whether errors are normal or otherwise. Owing to the difference between 
thc two models (Section 10.2.2), this also largely coincides with whether a 
structural or functional form is considered. 

When the true values and the error terms follow the normal distribution, 
the coefficients of thc orthogonal-norm equation can he testcd using 
Girshick's (1939) principal components distribution theory, together with 
the theory of ratio estimators (Basilevsky, 1980). Let era  be any ith element 
of the latent vector ak which is associated with the smallest latent root / R . 
Then for multivariate normal data we know (Section 4.3.4) that era  has 
asymptotic variance 

	

1k 	15, 
to" 2 	E 	 

– k y (s 	k; = 1, 2, 	,k) 	(10.31) 

If the k regression variables are assumed to be distributed as a multivariate 
normal it follows that each marginal distribution is normal, and ((i ik  – crik ) 
are thus asymptotically NO, (4) normal variates (i = 1, 2, . . k). In large 
samples the null hypothesis ctik = 0 can therefore be tested by means of the 
normal distribution. 

A more frequent requirement is to be able to test the significance of the 
conditional regression parameters f3i  --(exi lak ), that is, ratios of normal 
variates (Section 10.2.1). This may be done by using thc general theory of 
ratio estimators. It is known that when x N(Ax , crx2 ) and y NO.ty , c r ) the 
probability density function of z =xly is the Fieller distribution (Fieller, 
1932), which depends on p,x , cr,./cry , and p, the correlation coefficient 
between x and y. Although the theoretical distribution of z is known, no 
tables of its probabilities are available, no doubt because of the complexity 
of the function (see Hinkley, 1969). Another difficulty arises when p = =- 
0. In this case Curtiss (1940) has shown that (see also Marsaglia, 1965) z 
follows the Cauchy distribution (Fig. 10.2) 

A  

	

COL, – 	 (10.32) 
– /2) 2  + Al 

where 

cr, 	2 	 a 	or 

	

x 	xy A —cr VI – p and IL = p— = 

	

cry 	a- y  

In its general form the Cauchy distribution (Eq. 10.32) depends on the 
parameters p. and A which determine location and scale, respectively. 
Although the Cauchy distribution possesses no moments, confidence inter- 
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Figure 10.2 The non-central Cauchy distribution. 
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vals and critical values for /..4. are available, and ML estimators exist (Haas et 
al., 1970) so that hypotheses concerning IL and A can be tested. 

In the orthogonal regression context, however, the Cauchy distribution is 
only relevant in the degenerate ease when both numerator and denominator 
of the ratio coefficients are distributed normally with zero mean. More 
generally, Lianos and Rausser (1972) have estimated an empirical cumula-
tive distribution of a ratio of normal variates, as well as the critical values 
for various levels of significance, and conclude that the standard normal 
distribution cannot be used for testing the significance of a ratio in samples 
of size n 125 or smaller. It is nevertheless advantageous to be able to use a 
well-tabulated distribution such as the standard normal to test for signifi-
cance of /3i , if only in an approximate fashion. As noted above, a way out of 
the difficulty is to consider the 13, as ratio estimators, well known in sampling 
theory. Let 

a 	a 
r — b ' 	R T3  (10.33) 

where r is a sample value of the ratio and R its population value such that 
a — N(a, cr 2a ) and b N(13, (4,). It is known that r is a consistent but biased 
estimator of R unless r = [cov(a, b)/var(b)]. However, consider the quantity 

q = a Rb 	 (10.34) 

which is normally distributed since a and b are normal, that is, q — N(0, cr 2q ) 
since E(q) = a — Rp = 0. The variance of q can be obtained (approximately) 
by the first-order Taylor series expansion about the mean, as 

2 	2D 
q 	-1-  I% b 	2RoYab )113 2  (10.35) 
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SO that approximately, 

 

a - Rb 

 

N(0 , 1) 	 (10.36) 

   

1113V + R 2  cr - 2Rcr o, 

Also, by expanding r into a bivariate Taylor series it can be shown that the 
square of the denominator of Eq. (1036) is the first-order approximation of 
(T r  SO that we have (approximately), 

r - R 
	 - N(0, 1) cr, 

On the null hypothesis R = 0 we then have 

(10.37) 

- N(0, 1) 	 (10.38) 

b2  

where o- ‘,2  has been replaced by its sample value .s.„2 . Equation (1038) may be 
used as a large sample test of significance of the ratio coefficients p, = r 
where we replace b by eek  and s ó using Eq. (10.31). Equation (10.38) 
is similar to the usual statistic employed in Gauss-Tvlarkov ordinary least 
squares and is not difficult to compute. Its use however is conditional on the 
roots of the quadratic (Eq. 10.35) being real, which is the case most of the 
time when 3al, b and 3a, a (Geary, 1930). Also the bias of the ratio 
estimator r can be shown to satisfy the inequality 

IBias ri 	crb  
<— 

ar 	b (10.39) 

The bias can usually be ignored however when ab  1 b .1, that is, when the 
sample size is large. 

Example 103. As a numerical comparison between ordinary least 
squares and orthogonal-norm regression consider the true equation 

Y* = .50x 1  .10x 2 	 (10.40) 

where the observed values are given by X 1  = x i  + A i , X 2  = )( 2  + A2 , and 
= Y* + e. The equation is defined for a population size of n = 100 where 

the values are randomly drawn from the integers in the range 1-100 to avoid 
multicollinearity. The correlational structure and thc least squares estimates 
are given in Tables 10.4 and 10.5. 

The ratio estimator test is based on the assumption of approximate 
multivariate normality of the variables. Nonparametric methods that do not 
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Table 10.4 The Correlational Structure Between True Values and Error 
Measurements for a Simulated Population 

XI 	X2 
	Y* 
	

11 2 

XI 
X2 
I" 
A I  

112 
€ 

1.00 
- .1664 

.9260 
-.0382 
- .0055 
-.0456 

1.00 
- .5263 
-.0174 

.0408 

.0361 

1.00 
-.0262 
-.0204 
-.0531 

1.00 
-.0573 
-.0234 

1.00 
.0013 1.00 

Table 10.5 The Estimated Equation (Eq. 10.40) Using All n = 100 Values for 
Ordinary (OLS) and Orthogonal-Norm (ON) Least Squares" 

Error SS 

OLS ONLS A, 41 2  

Coefficients .4811 -.0893 .4965 -M899 
Standard deviation .0203 .0224 .0168 .0230 17.4% 19.9% 162% 
t-Statistic 23.70 3.99 29.55 3.91 
R 2  .8661 .9133 

'The R 2  coefficient for orthogonal-norm least squares is obtained using Eq. (10.26). 

require prior distributional assumptions, however, are also possible. Ander-
son (1975), for example, uses the jackknife estimator to test the angle of 
rotation associated with the bivariate functional form, using small samples, 
Assuming (1) bivariate normality, (2) bivariate uniformness, and (3) 
uniform and exponential errors, Anderson (1975) uses Monte Carlo sam-
pling to investigate the influence of nonnormality. A more conclusive study 
is carried out by Kelly (1984) who uses Monte Carlo methodology to 
compare sampling behavior of the jackknife, bootstrap, normal-theory, and 
influence function estimators of variability. Kelly (1984), concludes that 
while the bootstrap seems to perform well in a variety of sampling 
situations, the influence function estimator of the standard error is con-
sistently biased downward, as is the normal theory estimator in nonnormal 
situations. The conclusions are that although no estimator is globally best, 
the influence function method should be avoided. Also, the jackknife 
estimator is conservative in that on the average it overestimates the standard 
error. The bootstrap seems to do better than the jackknife in terms of mean 
squared error, but it can apparently give biased results. 

10.2.5 Nonlinear Orthogonal Curve Fitting 

Unlike the usual least squares regression model it is not possible to 
generalize the orthogonal-norm plane to nonlinear functions such as polyno- 
mials because in order to maintain orthogonality to the tangent the residuals 
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must alter their orientation with respect to the axes. An iterative algorithm 
however has been developed by Hastie and Stuetzie (1989) which fits 
"principal curves" to data points in an orthogonal manner. This is achieved 
by an index which at each fitting stage minimizes the distance from the point 
to the curve. The nonparametric algorithm begins with the first (largest) 
principal component and checks if this curve is "self-consistent" by project-
ing and averaging. The iteration continues until convergence, which appears 
to take place in practice most of the time, although this is not guaranteed. 

10.3 LEAST SQUARES REGRESSION WITH MULTICOLLINEARITY 

The previous sections deal with the weighted least squares errors-in-vari-
ables model, which is the inverse of weighted principal components (Section 
5.6), where least squares optimality is associated with the smallest latent 
root(s) of both the dependent and independent variables. In recent years, 
with the advent of electronic computers, another specification error of major 
importance has been recognized for least squares—that of multicollinearity. 
The term multicollinearity refers to the situation (and the difficulties created 
by it) when in a multiple least squares regression equation the correlation 
between any two (or more) predictors arbitrarily tends to unity in the limit, 
reaching unity (exact correlation) when the affected predictors lie in a 
common subspace. In this section we concern ourselves with linear multicol-
linearity, so that high correlation between terms of a quadratic equation, for 
example, are not considered. In the situation of unit correlation the 
predictors are related by one (or more) exact linear relationship(s), which 
are usually due to a badly specified model, that is, a predictor is inadvertent-
ly defined as a linear combination of some (or all) other predictors. Here, 
the difficulty can be resolved by removing explanatory variables which are 
responsible for the multicollinearity. 

When correlation is high but not perfect, the Gauss–Markov estimator is 
still unique but (X TX) tends to singularity, thus inflating the diagonal 
elements of its inverse. The result is high inefficiency, and a paradoxical 
situation arises whereby we tend to accept the null hypothesis for all least 
squares coefficients of the equation even though the F-statistic indicates a 
high overall fit. Thus a consequence for using regression as an exploratory 
tool is that it becomes difficult to distinguish between significant and 
insignificant predictor variables. Furthermore, multicollinearity can be 
enhanced (masked) by the presence of outlier observations, which contrib-
ute further to serious difficulties of estimation, interpretation, and predic-
tion. By the very nature of the problem it is generally not possible to predict 
beforehand exactly how low correlation must be in order to identify 
statistically significant predictors, although diagnostic statistics may be used 
to alert the analyst to the problem (see Hocking and Pendleton, 1983). 

When the explanatory variables can be predetermined (held fixed), for 
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example, in a scientific experiment, multicollinearity will usually not be a 
problem even when the regressors are not orthogonal. When all variables 
vary randomly and not much a priori information is available for the 
structure of the population, (for the use of a priori information see Fomby 
and Hill, 1979) multicollinearity emerges as a distinct possibility. Although 
multicollinearity is common for data such as time series, it can also appear 
with random independent samples. There are two distinct ways of consider-
ing multicollinearity. First, the excessively high correlation can be viewed as 
a sampling deficiency whereby the sample contains insufficient information 
to estimate a linear model. This view of multicollinearity has been advo-
cated by Farrar and Glauber (1967), whereby multicollinearity is defined in 
its strict sense as departure from orthogonality. There are two difficulties 
associated with such a viewpoint, particularly when dealing with random 
rather than fixed regressors. (1) a departure from the orthogonality 
definition of multicollinearity is too stringent in practice, and (2) it is 
inconsistent with the concept of multivariate regression, which is intended to 
generalize univariable regression precisely through the notion of correlated 
predictor variables. 

The second, and probably more productive view of multicollinearity, is in 
terms of population correlation, where although the observed variables are 
linearly independent, owing to errors in variables and/or sampling error, 
their true population values are perfectly correlated because of the existence 
of common underlying dimensions. Here multicollinearity is viewed as a 
model specification error rather than a data difficulty. Also, whereas the 
sampling approach treats multieollinearity as a problem due to lack of 
information, the population approach emphasizes the presence of supple-
mentary information which is available in terms of the high correlation 
between the regressors. It is only when such information is ignored that 
multicollinearity emerges as a misspecification of the regression equation. 
Population multicollinearities are usually due to inherent characteristics of 
the population since the difficulty cannot be removed by resampling or by an 
appropriate choice of experimental or observational units (see also Gunst, 
1983; Basilevsky, 1973). 

The causal structures that may exist among a set of random regressors 
can be uncovered by a factor analysis of the variables, since it is well known 
that although some coefficients cannot be estimated precisely, their linear 
combinations often can. The situation is similar to the concept of re-
parametrization commonly encountered in discrete ANOVA-type least 
squares regression. The first suggestion of this approach to multicollinearity 
was from Tintner (1945), who suggested that latent roots of a sample 
dispersion matrix be used to estimate the number of estimable linear 
combinations between the regressors, and proposed that multicollinearity be 
tested on the basis of these latent roots. Somewhat later Kendall (1957) 
reiterated the idea of carrying out a principal components analysis of the 
independent variables of a regression equation while Kloek and Mennes 
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(1960) used principal components to estimate equation systems. In what 
follows we consider several approaches developed for using principal 
components to solve the multicollinearity problem 

10.3.1 Principal Components Regression 

When nonexperimental data are used in a least squares regression context 
the predictor variables are frequently stochastic rather than fixed, and the 
outcome may be high intercorrelation among the variables. Even with fixed 
experimental variables, high correlation may become a problem, for 
example, in calibration experiments using a near infrared reflectance 
instrument (Fearn, 1983) or in experiments that require random covariates. 
The matrix X rX of the predictor variables becomes ill-conditioned and this 
results in inefficiency of the least squares estimators. A common strategy to 
improve efficiency is to replace the unbiased ordinary least squares es-
timator by one which is biased but more efficient, and which minimizes the 
mean squared error criterion. Several such estimators exist (see Hocking, 
1976). First, the predictor variables can be tested for individual contribution 
to the sum of squares using the F statistic. This includes stepwise regression 
procedures such as backward and forward elimination. Since step-wise 
methods do not make use of all possible combinations of the predictors, 
they may fail to locate the optimal subset, and at times a better strategy is to 
perform all 2' — 1 regressions if the number of predictors is not too high. 
Second, we can introduce prior "information" in the form of "phoney data" 
and use the so-called ridge estimators, which by themselves do not result in 
a reduced set of predictor variables but which are nevertheless less subject 
to multicollinearity. A possibly unsatisfactory feature of ridge regression 
however is that it represents a purely technical "quick fix" and does not 
attempt to uncover the structure and/or cause(s) of multicollinearity. A 
third option is to use linear combinations of the predictor variables as the 
new regressors. The linear combinations play the role of linear restrictors 
and may either be suggested by prior theory (Theil, 1963) or else may be 
estimated directly from the sample by using a factor model such as principal 
components. An advantage of the approach is that it will reveal the 
correlational structure of the predictors, which can yield important in-
formation (see, e.g., Chatterjee and Price, 1977). The principal components 
regression model seems to have been first proposed by Tintner (1945), 
Butchatzsch (1947), and Stone (1947) who used principal components to 
eliminate multicollinearity in sociodemographic and economic time series 
data. The use of the method grew somewhat and similar applications 
appeared in White et al. (1958), Versace (1960), Spurrell (1963), Fiering 
(1964), Hashiguchi and Morishima (1969), Dating and Tamura (1971), 
Janssen and Jobson (1980), Kung and Shard (1980), and Mager (1988), to 
name but a few. More theoretical aspects of the model can also be found in 
Massy (1965), Basilevsky (1973), SiIvey (1969) Oman (1978), Fomby et al. 
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(1978), Trenkler (1980), Park (1981), and Mandel (1982). An interesting 
use of the complex decomposition (Section 5.7) can also be found in Doran 
(1976), in conjunction with the generalized least squares estimator of a time 
series regression model. Cohen and Jones (1969) and Basilevsky (1973) also 
consider time series regression in terms of the continuous Karhunen—Loeve 
decomposition (Section 7.5). 

There are two broad objectives when employing principal components of 
the predictor variables. First, we may have a large number of highly 
correlated explanatory variables, not all of which represent unique or 
well-defined influences. Indeed, the number of explanatory variables may 
exceed the sample size, thus precluding the estimation of a regression plane. 
A principal components analysis of the explanatory variables can then be 
carried out to explore the correlational structure of the regressors and to 
locate correlated subsets or clusters, should such exist, and the component 
scores may then be used in place of the original variables. We call this 
procedure Model I. If all of the explanatory variables are highly intercorre-
lated, a single dimension (component) suffices to capture all of the relevant 
information in the variable subspace (see Section 3.3). The regression of the 
dependent variable on the dominant principal component then provides a 
global test of whether the independent variables play a significant role in 
explaining the behavior of the dependent variable. In general, more than a 
single principal component is usually required. Note that since principal 
components replace the original explanatory variables, the use of Model I 
implies a substantive identification of the components, including rotation of 
the components should this be required (Section 5.3). The difference 
between such an approach and ridge regression is now clear. Whereas the 
latter requires an increase in (artificial) information, the former reduces 
dimensionality by omitting low-variance dimensions. There are three advan-
tages to using Model I principal components regression: (1) it simplifies the 
structure of the model and thus brings out the essential information 
contained in the independent variables; (2) it increases the efficiency of the 
regression estimators by eliminating or greatly reducing multicollinearity, 
which is assumed to exist in the population; (3) it produces unbiased 
(consistent) estimators (in the event the lower case principal components 
represent measurement error). Thus the essential feature of a factor 
approach to multicollinearity is that it attempts to model the correlational 
structure of the predictor variables. The cost or disadvantage of such an 
approach is that the original predictors are not used directly in the 
regression equation and thus their coefficients cannot be estimated in the 
model. 

The second major approach to using principal components within a 
regression model is to employ the components as a reduced set of 
"instrumental" variables and to use them to expand the original least 
squares estimators into a finite linear series. We refer to this approach as 
Model II. This implies a third step in the analysis after the dependent 
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variable has been regressed on all of the k principal components—inversion 
of the original ordinary least squares coefficients in terms of the principal 
components regression coefficients. Here the original regression variables 
are of interest rather than the principal components themselves, which are 
only used as convenient instruments with which to carry out an expansion of 
the ordinary least squares coefficients. A substantive identification of the 
principal components is therefore not required, although such information is 
always of interest. Also, when both error and multicollinearity coexist with 
the k predictor variables, it is possible to assume that some (or all) of the 
true predictor values would be perfectly correlated were it not for the 
presence of random errors. When only multicollinearity is present, the 
removal of small roots results in biased but more efficient regression 
estimators, which are expected to lie closer to the true population values. 

The principal components regression model is best thought of as a special 
case of the canonical correlation model (Section 5.5). Let Z XP and 
V= qY be two sets of principal components where X is the (n x k) matrix of 
k standardized explanatory variables and Y is a (n x 1) standardized vector 
of n dependent observations. Then if P = (p, i ) is a (k x k) matrix of latent 
vectors associated with X, and q is an arbitrary scalar (set equal to 2), the 
principal components regression model can be derived as follows: maximize 
the correlation 

Z EV= 2Z TY = 2PT(X TY) 	 (10.41) 

subject to the multivariate constraint P T (X1 X)P = 11, where X TX is the 
correlation matrix of predictor variables and I is a scalar quantity. The 
Lagrangian expression can be written as 

_ 2p-r(x -ry)  [p-r(x-rx)p 	 (10.42) 

where 7* is a (k x 1) vector of Lagrange multipliers. Differentiating Eq. 
(10.42) with respect to P and setting the vector of partial derivatives to zero 
yields the following normal equations: 

= 2(X1  Y) – 2(X TX)Pi* = aP 

or 

if* = PT(X TX) -I XTY 

P1 
	

(10.43) 

since P is an orthogonal matrix and fi is the usual vector of ordinary least 
squares regression coefficient. Thus if* is the vector of principal components 
regression coefficients obtained by regressing Y on the matrix of un- 

R ck 



■••■• 

0 

0 

or 

(*k — r) 

[if  (*r)  

0 
( r) 

(10.45) 
Z (*kT—r) Y 
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standardized principal components Z* = XP since from Eq. (10.43) we have 

i* = P -1 (X TX) -t PPTXTY 

= (PT X TXP) 'PIXY 

= (Z* TZ*) -1 Z* TY 

= 14 -1 Z* TY 	 (10.44) 

that is, 

where 

	

(1, 00; = 1, 2 	k) 4 	 a 	• • a 
I 	 2 

For very small roots the regression coefficients cannot be estimated with 
precision, and normally only the first r components will be used. It does not 
necessarily follow however that only the first r principal components are 
statistically significant. The significance of principal components regression 
coefficients is not only dependent on the latent roots of (X TX) but also is a 
function of the sum of products (correlation) of Y and the unstandardized 
components Z i*, since when both the principal components and the variables 
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are standardized we have 

= pT(xTx)- x Ty 

/ 2zTzij  i 2p1- 1 pi.,  I 2zTy  

= IIT[PLPI1 I PL" 2 7,TY 

= L 1"Z TY 

(10.46) 

or = L u2i* = ZY where Y = Zy + e for standardized Z (and Y). The 
regression coefficients therefore do not depend only on the latent roots, and 
principal components that correspond to large latent roots are therefore not 
necessarily optimal in the regression when it comes to accounting for the 
sum of squares of the dependent variable. Thus in general all regression 
coefficients i%t , should be tested for significance if we wish to 
maximize the predictive power of the Z. lithe components are orthogonal 
this can be done simply by using the t-test for each j. When the predictor 
variables are also subject to error however, the low-order components 
should not prove significant since they usually correspond to measurement 
error in the predictors. 

The main sampling properties of the principal components regression 
Model I can be summarized by the following theorem. 

THEOREM 10.1. Let Y = X13 + c where Xis a (n x k) matrix of random 
predictor variables, and let Z* = XP be the (n x k) matrix of unstandardized 
principal components of the correlation matrix R = X TX. Then the Model I 
principal component regression estimator has the following properties: 

(i) Replacing X by all of the principal components Z does not alter 
the predicted values or the error sum of squares. 

(ii) it* is a consistent estimator of y* = el-3 where P is a fixed matrix 
of coefficients. 

(iii) The asymptotic covariance matrix of it* is cr 2L -1  where CT = 

var(c). 
(iv) When V— mxp, a-2 ) the distribution of 

* 

= 
 1 	
11.'2 

I 	ir  

approaches the standard normal distribution. 

PROOF 
(i) We have t = p,cir where P, is the projection matrix that projects 

I' onto the basis of the column space of X. The columns of Z span 



652 	 FACTOR ANALYSIS AND LEAST SQUARES REGRESSION 

the same space as those of X since 

= Px Y = Z*P T(PV TZ*PT ) 'PZ* TY Pz . 

so that replacing X by Z* does not alter the predicted values 	It 
follows that the error sum of squares also remains unchanged. 

(ii) From Eq. (10.44) the least squares estimator is given by r = 
1., --1 Z* 'Y, and taking probability limits we have 

plim if*  = p lim 

=p lim 	(x0 + €) 

=p 	 + p 	Z*Tel 

=p limtL LPTI + p 1im(L -I PT X T €1 

L -I pTp iim(x-ro  

pTo 

since by assumption p lim X TE =0, if* therefore represent con-
sistent estimators of the linear combinations P 1  IL 

(iii) We have 

P 	"Ie)61* — 1111 = p limRP T  — P)(P1  — Ri F  

= P linl[PT(11 — 13)(0 — 13) TP1 

= PTIP 	13)(0 — 13 )TIP 

— PTo- 2(XTX) -1 P 

-' = CT 2 14  

(iv) Since II —N[0, cr 2 (X TX) -  '1 it follows, using parts ii and iii of the 
theorem, that the distribution of i* approaches the normal 
Nfr, (.1-2 L 1. Since Y l* , 	. , , 	are uncorrelated random 
variables the expression 

Yi   

= 	

0/2 

l i 	)75.2 	I (i = 1, 2, . . . , k) 

tends to be distributed as N(0, 1) for increasing n. 

Part iv of Theorem 10,1 indicates that given fixed residual error variance, 
the magnitudes of the t statistic depend on both the latent roots as well as 
on 	When standardized components Z are used, the regression co- 
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efficients (Eq. 10.46) do not depend on i„ and the t statistic can then be 
expressed as t i  = ler (1= 1, 2, . . „ k). When the dependent variable V is 
also standardized to unit length, the orthogonal regression coefficients 

, 	ik  estimate the correlation between Y and the principal com- 
ponents. 

Multicollinearity is not just a problem of correlated predictor variables, 
since multiple regression is designed precisely to handle nonorthogonality of 
the regressors. Rather multicollinearity enters the stage when two predictors 
(or more) are so highly correlated as to render the regression coefficients 
both highly unstable and statistically insignificant owing to the inefficiency of 
the least squares estimator. In this case a principal components analysis will 
generally yield a reduced number of principal components, which account 
for most of the observed variance in the regressors. Nevertheless it is 
interesting to note that principal components can also be used in the 
presence of perfect linear dependence among the predictor variables, as was 
indicated by Rao (1962). Let X TX have rank 1 r < k. Then the last k — r 
latent roots are precisely zero, and only r linear combinations of the original 
least squares coefficients are estimable. The estimator (Eq. 10.44) then 
becomes 

or 

	

rrl 	I:.  0] [zr, ;ry] 

	

[1" 	o o 	o 

= L (r
) 

(10.47a) 

( I0.47b) 

omitting the zero parts of the partitioned matrix /vectors. 
When p(X TX) = k all if:" are estimable, although some may turn out to be 

statistically insignificant. Further results may be found in Eubank and 
Webster (1985). 

The second major objective of principal components regression, as stated 
at the outset, is to use the components as a convenient orthogonal basis by 
which to expand the original regression coefficients into a finite linear series 
(Model II). The expansion may easily be obtained by noting that Eq. 
(10.43) can be inverted to express p i  in terms of r. We have 

=PL I/2z 	 (10.48) 

so that each coefficient can be expanded as the linear combination 

A = 

= "Pi 	+12  ' 12 p,272 + 	+ 1; 1 " 
	

(10.49) 
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where Pi  is the ith row vector of P. The rth order principal components 
regression estimator is obtained by replacing the last k r terms (which 
correspond to "small" latent roots 	• • 1k) by zeros, that is, we 
have for 1 	r < k 

4,,M6 

p11 Pi: PI! 0 	- • - 	 0 

P.21 P22 P2r 0 - 0 

LP 41 P k2 " P kr 

112 
I 

1/2 

lr 	
1/2 

or 

eV 

Y2 

EPfr, 
[L' 

 0 
1" li il "C0.1  il 0) . ..][ . 

1  o 	o 1 
(10.49a) 

Alternatively, since the principal components regression estimator is com- 
puted in a fixed r-dimensional subspace, Eq. (10.49a) can also be written as 

(10.49b) 

where the zeros are omitted. The ith principal components regression 
estimator can then be expressed as the truncated expression 

131 - 1 1 112  P 	+ 	112  P i2if2 	+ r  I /2  PA 	(J 0.50) 

Although 	depends on the latent vector elements p11 , the greatest influence 
on Pi  conies from the last (omitted) k r latent roots, whose magnitudes 
approach zero as the degree of multicollinearity increases. In the limit when 
some predictors are perfectly correlated, at least onc of the roots becomes 
identically zero and 3 does not exist (but does). The main sampling 
properties of p can be summarized as follows. 

THEOREM 10.2. Let Y = X13 +€ where xlxr= L and 13 
is the r-component regression estimator of 13, Then 

(I) 13  is a consistent estimator of 13 only when for the last k — r terms 
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of Eq. (10.49) we have 

p lim 	= p lim 	?:= • ' === p lim 	= 0 

(ii) The variance—covariance matrix of 3 can be expressed as 

0) 1 1 a 2PL 

where 

IWO - 13) 1i- fr 2P( , ) 14PT, )  when plimI 1= 

PROOF 

(I) From Eq. (10.49) we have 

P urn  131 W I2 P1tP 	+ 1 ; 112  P i2P iim i2 + • .- 

+/,-- " 2 p P iim 	s' 2  PrtI P km ir+i 

▪lk-112  PIA 13  hill 
= r-1/3 

t 	Pi P iirn 	+ I - 	P p f2 	131  .2 

▪ /2 piri9 iiin  

for 

p lim 	0 	(i r + 1 , r + 2, 	. k) 

	

it follows that p lirn 	=p Lim I 3  = 	= 1, 2, , 	k) that is, 	is 
a consistent estimator of 13 only when the Model I regression 
coefficients for the last k — r principal components are insig-
nificantly different from zero i.e. their non-zero values are due to 
error. Since this does not hold in general, we conclude that flp is an 
inconsistent estimator of 13, 

(ii) We have, for large samples, 

ER ii 	- 13) T1= 20iTxr 
cr 2PL P 

so that the variance-covariance matrix, of I  is given by 

ER0 — 0)(11  — 0) T i 0-21101 1-, IPT,) 
	 (10,51) 

The (1, j)th element of the matrix E[(13 '1)0 --pp] can thus he 



656 	 FACTOR ANALYSIS AND LEAST SQUARES REGRESSION 

expanded as 

E[(f3i 	
1
3i)11= cr2 [P; I ,  P12 ,  

2 1. n n  1-R 4_ n n 	4_ 
\i'llt'j1 6  I 	' l'i2V12'2 	' 	5  -4-  

and for i = j  we have 

var(A) ER/3' — /3 1 ) 2 J 

Z 	n 2 	 n 2 
Fi2 	Pik —+—+ • .*+ -1, 

1 1 	12 	 k 
(10.52) 

Omitting the last k r terms for some fixed r we obtain a more efficient 
estimator since var(fid ) < var(f3i ), and a modified t statistic can be computed 
as 

SD( f3;  ) 
	 (10,53) 

Since ciz  is generally not known, it is replaced by the sample estimator s 2 
 where degrees of freedom are increased to n r from n — k. Also the notion 

of variance is undefined when 3 is a biased (inconsistent) estimator 0( 13. 
Equation (10.51) expresses the "variance/covariance" matrix of it in 

terms of the first 1 -5-rck latent roots and latent vectors of the matrix 
(XIX), for some constant cr 2 . Since 13  is an inconsistent (biased) estimator 
of 0, however, the term "variance/covariance" is incorrent, strictly speak-
ing and the expression E[(ii [WV 13) 1 -I is referred to as the mean 
squared error (MSE) criterion. This is because the notion of variance and 
covariance is undefined for a biased estimator. Since the latent roots of 
(X TX) are ranked in decreasing order the estimator I  must clearly minimize 
the MSE criterion when a fixed number of k — r principal components are 
deleted from the expansion (10.52). Another way of seeing this is to note 
that the pi  represent linear combinations of the OLS estimators 4, (equation 
10.49b) and then to ask for what set of constants C I  = (c l , c2 , . ck ) is the 
variance of the linear combination C13 minimized (see also Theorem 10.1). 
This can be easily achieved by the method of Lagrange multipliers, as was 
the case for principal components (Section 3,2) and nothing new arises in 
principle (Exercise 10,12). 

Theorem 10.2 establishes that when the last k r principal components 
do not explain significant variance of V. that is, when p lim = 0 (i = r + 
r + 2, .. . , k), the estimator 13  is optimal in the sense of being consistent and 



LEAST SQUARES REGRESSION WITH MULTICOLLINEARITY 	 657 

possessing minimal variance. This is the case when the last (k r) principal 
components of X FX represent random error variation which is irrelevant for 
explaining the variance of Y. The proper procedure for deleting principal 
components is then based on testing for isotropic latent roots (Section 4.3.2) 
since these can be expected to correspond to measurement error in the 
predictors, on the assumption of multivariate normality. On the other hand, 
when the explanatory variables do not possess random error, is no longer 
a consistent estimator of 3 although it minimizes the MSE criterion (Eq. 
10.51). This is because omitting a component which is associated with a 
small latent root (but which at the same time is strongly related to Y) can 
lead to a significant decrease in variance. Note that a more general principal 
components regression estimator can also be used, one based on deleting 
only those principal components that are insignificantly different from zero, 
as determined by the t statistic (Theorem 10.4 Since this does not 
necessarily imply deleting components with least variance, the preservation 
of consistency necessarily results in the risk of higher imprecision of the 
estimator. Nevertheless, when a large number of multicollinear predictors 
exist, the use of a smaller set of components results in an increase in the 
degrees of freedom, thus mitigating to a certain extent the effect of small 
latent roots, For greater detail concerning the selection of components in a 
principal components regression see Mansfield et al. ( l 977), Fomby and Hill 
(1978), Saxena (198(J)), Park (1981), and Rao and Oberhelman (1982). 
Jackson (1991) provides an overview of principal components regression. 
Finally, note that no matter which terms are deleted, a reduced number of 
components necessarily leads to linear dependence between the original k 
regression coefficients. 

The Model U principal components regression estimator possesses two 
further important optimality criteria, as demonstrated by the following 
theorem. 

THEOREM 10.3. Let be the vector of principal components regression 
coefficients as defined in Theorem 10.2. Then 

(i) I  minimizes the determinant of the MSE criterion. 

(ii) I  minimizes the trace of the MSE criterion. 

PROOF 

(i) From well-known properties of the determinant (e.g., see 
Basilevsky, 1983) we have 

0)(5 P T I =1Gr zPL -I PT I 

= (r 2 111111, '11P 1 1 

= o-2 1L -1 1 

which is minimized for 1 1  > /2  > • - • > /, assuming constant (7-2. 
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(ii) We have 

tr[(Ift — N(1 -  13) T 1 = tr o-2 1114 -  "P T  

= 0. 2  trl PTL -1 P -1 

= o-2  tr(1 -1 ) 

which again is minimized for / 1 > /2 > • • - > /T . 

Note again that for biased 13 the minimization is of the mean squared error 
criterion rather than variance. 

The estimator 13  has two interesting interpretations which may be used to 
relate it more closely to standard least squares regression theory. 

THEOREM 10.4. Let /I bc the vector of principal components regression 
coefficients as defined by Theorem 10.2. Then 

(i) 13  is a restricted least squares regression estimator, obtained by 
setting P - 1-(k —r)R =0. 

(ii) 13 is an adjusted instrumental variables estimator of 13. 

PROOF 
(i) Let 13* denote the restricted least squares estimator given by (e.g., 

see Goldberger, 1964), 

13*= — (X1 X) -1 11 T1R(X rX)N " -t RR13 r) 	(1054) 

where r = R13 are the linear restrictions placed upon the least 
squares estimators 13  for some fixed matrix R. We also have 

= P( ) 	+ P(k— r) 	r if* 	where for the sake of convenience we (k - ') 
use unstandardized latent vectors. Setting r = 0 and R = Pr) in 
Eq. (10.54) we have 

= 	(XTX) I 	 r) (XTX) —  (k- r) 1 	P (lc — r) 

- = — PL 1  P E Po  _ 0 11, (k _ V' Pit* -r) 

0 
= fl — PL " { '

:-
•

] 

Lo, . r) [0 	(k 	r) lif* 
I( r) 

[ 0 

=P 
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where 

D 
(r +1)(*r + I) + P(r4-2)'g+2) + • - - + pooi(*k) 

Thus using Eq. (10.54) we have 

1-3*=1)(r)i(*r) 

so that the principal components regression estimator 	is a 
restricted least squares estimator. 

(ii) For r=k the instrumental variables estimator of 13 is given by 

= (Z* TX) l r TY 

[(XP) TX1 -  (XP) TY 

= (X I X) I  X TY 

since the number of components is the same as the number of 
predictor variables. We can therefore write 

11! = P(r)i' (*r) 	P(k 	(*k-r) 

or 

0 = 13 1 -P(k-rli(*k-t) 

so that I  can be taken as an -adjusted" instrumental variables 
estimator. 

Since instrumental variables estimators are normally used when the 
predictors are subject to measurement error the use of principal components 
in this context is not optimal and a more natural development for r<k 
instrumental variables lies in the context of factor analysis regression, 
considered in Section (10.4.1). Note also that the restricted least squares 
interpretation of 15 in the first part of the theorem allows us to interpret 
(10.54) in terms of an optimal restricted least _squares estimator, which 
minimizes the mean squared error criterion of 13 (see also Fomby et al., 
1978). In this view principal components regression can be considered as an 
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exploratory search for optimal zero restrictions when R is not provided 
ahead of time. 

Example 10.4 As an example of Model I PC regression consider the car 
data of Example 6.2 where X 3 (Y 3 ) is omitted and Y represents mileage per 
gallon. A PC analysis of thc correlation matrix of the predictors yields the 
following loadings and latent roots 

z 	z, 	Z 3 	14  

X I  .9471 .2383 -.0744 .2015 
X 2  .9367 -.1902 .2922 -.0329 
X 3  .8332 .5173 -.1097 -.1618 
X 4  .6416 .7459 .1744 .0394 

fi  2.88026 .91698 .13336 .06941 

where I I  represents heavy, powerful cars and 1, denotes high acceleration 
automobiles with smaller engines and lower horsepower. The regression of 
mileage (Y) on all four components (Table 10.6) indicates that the main 
determinant of gasoline consumption is component I I , that is, engine size 
(X i ), horsepower (X 2 ), and weight of car (X 3 ) which is capable of high 
acceleration (X 4 ). Since the principal components are orthogonal, the t-test 
possesses maximal efficiency, and are unbiased from the usual least 
squares regression theory. 

To see the effect of the individual predictors on Y we turn to Model IT 
which yields efficient but biased estimators. The correlation matrix R is 
given by 

Table 10.6 Regression Coefficients of Mileage on the 
Standardized Principal Components Where 
er = .07965 

Ill 
- .86612 10.87 

Z, - .21560 2.71 
Z3  .09847 1.24 
Z4  .14944 1.87 

Y[ 1.0000 
-.8489 

	

R  = X 2 	-.7464 

	

X 4 	- .8682 

	

X 5 	.4180 

X 

1.0000 
.8134 
.8880 

-.4350 

x 2  

1.000 
.6553 

-.6932 

X i  

1.000 
-.1742 

X 4  

1.000 
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and the latent vectors of the predictors by 

Z 1  12 
X, .55808 .24887 

p = X2  .55191 -.19863 
X 3  

[ 

.49093 .54025 

x4 L- .37806 .77894 

13  1 4 
-.20384 .76489 

.80023 -.12480 
-.30025 -.61398 

.47742 .14963 

When all variables are standardized to zero mean and unit sum of squares, 
the least squares regression of mileage (Y), engine size (X I ), horsepower 
(X 2 ), weight (X 3 ), and inverse of acceleration (X 4 ) is 

SD 	Iti 

X i  .038070 .237843 160 F -=---- 32.66 
X 2  -.091955 .181194 .507 R 2 =.8287 
X 3  -.801427 .203215 3.944 
X 4  .231188 .131918 1.753 

Here we see the effects of multicollinearity since in spite of a high F value 
only one variable appears significant as judged by the t statistic (a = .05). 
Also the coefficient for X I  is of the wrong sign and there exists a strong 
likelihood that the magnitudes of both the least squares coefficients and 
their standard deviations are distorted. Using correlations (least squares 
coefficients) between Y and Z Z„

3' 
and 14  the /3,. can be reproduced 

using Eq. (10.44) as II= PL 1)2 or  

.550808 .24887 -.20384 .76489 

.55191 -.19863 .80023 -.12480 

.49093 .54025 -.30025 -.61398 

.37806 .77894 .47742 .14963 

[ 

36518 0 	
.95758 

. .2634511 .09847 

-.86612] 
-.21560 

.14944 

1.69713 	 0 

The individual least squares coefficients can thus he expanded as 

ps 	-(55808)(86612) (.24887)(.21560) (.20384)(09847)  
- 	1.69713 	 .95758 	 .36518 

(.76489)(.14944)  
26345 

= -.28481 - .056033 - .054965 + .433870 

- .0380 

X 
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42 = -.28166 + .04478 + .21578 - .07079 

---- -.0919 

43  -.25054 ,12163 - .08096 - .34827 

-.8014 

44 = .19294 - .17536 + .12873 + .084876 

= .2312 

and their standard deviations as 

P2 	p 2 	P 2 	D 2  
var(41) 	 . 13 	. 14) 

I I 	12 

145 	,06194 .04155 .58505  \ 

	

= .07965-( 2. .88 	
4_ 	+

026 .91698 .13336 + .06941) 

= .07965 2(.10813 + .06755 + .31156 + 8.42890) 

= .07965 2(8.91614) 

= .05665 

and so forth so that 

SD(4 1 )- .2380 

SD( ( 2 ) .07965(.10575 + .043025 + 4,8018 f- .22439) /2  

= .18119 

SD(43 ) = .07965(.08368 + .31829 + .67599 + 5.43108)" 2 

 - .2032 

SD(44 )= .07965(.04962 + .66168 + 1.70913 + .32256)' 12  

= .1319 

using Eq. (10,52), The effect and source of the multicollinearity is now clear 
since examining the terms of the expansion indicates that Z3 and Z4  
contribute disproportionately to the overall magnitudes of the coefficients 
and their standard deviations, even though they account for a small 
percentage of the overall variance of the predictors. Using Eqs. (10.50), 
(10.51), and (10.53) the biased but efficient PCR coefficients, standard 
deviations, and modified t values can readily be computed by omitting the 
last two terms (r = 2) , and these appear in Table 10.7. Note that the 
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Table 10.7 Principal Components Regression 
Coefficients, Standard Deviations, and Values of the 
Modified t Statistic 

4 	 III 	 limi 
X, —.3408 ,0334 10.21 
X 2  —2369 .0307 731 
X 3  —.3722 .0505 7.37 
X, .0176 .0067 2,62 

coefficient for X 1  is now negative, as is expected on theoretical grounds, and 
all four predictors are significant. 

10.3.2 Comparing Orthogonal-Norm and Y-Norm Least Squares 
Regression 

In Section 10.2 the orthogonal-norm least squares regression model is 
considered in its own right without any reference to Gauss—Markov 
regression. Several relationships however can be established between the 
two models which are of interest when dealing with multicollinearity. 
Consider Figure 10.3 where the straight line through the origin is given by 
the equation a l  y l  + a2x = 0 or, alternatively y 1  — b 2x =0 where b 2  = (.—a 2 / 
a l  ). Any point off the line can then he represented as y, — b 2x = e for some 
value e. From Euclidean geometry we know that the perpendicular distance 

Figure 10.3 Relationship between y-norm and orthogonal-norm least squares regression in 
terms of the residual errors of the two models. 
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from some arbitrary point to the straight line is given by 

ly — b2x1  
Id ' 	1(1 +b' 

lel  

1(1 + 17)" 2 1 

lel 
1(1 +4/4)1 '1 

la,liel  
Ka; ±a 22) 1/2 1  

and using the normalization (a; + a22 ) = 1 we obtain the simplified expression 

(10.55) 

where a l  and a 2  are direction cosines, that is, a l  = cos 0, a 2  = sin 0, and 0 is 
the angle between the straight line and the horizontal axis, which in turn 
must be the same as the angle between the y-norm and the perpendicular 
distance to the straight line (Exercise 10.7). We thus have Idl = cos Olel = 

I le' and when a l  —*1 we have 0 = 0 in which case lel, that is, both the 
orthogonal-norm and y-norm regressions approach each other in the 
degenerate case. Since the degenerate case also coincides with multicol-
linearity between x and the constant term, this provides a method for 
diagnosing the problem (see Hawkins, 1973). The relationship between 
y-norm and orthogonal-norm regression of Figure 10.4 provides the basis of 

Small Id I 

Small 

lal I 

Large 
'ail 

Multicollinearity 
(Unpredictive 

coorelation) 

Low lel 
Good y-norm fit 

(Predictive correlation) 

Figure 10.4 The identification of y-norm multicollinearity using orthogonal-norm regression. 
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yet another model for principal components regression, described in the 
following section. 

10.3.3 Latent Root Regression 

Equation (10.55) implies that orthogonal-norm least squares can be used as 
a diagnostic tool for the y-norm regression plane, and this completes the 
two-way table of possible outcomes as shown in Table 10.8. The method is 
due to Hawkins (1973), Webster and Mason (1974) and Gunst et al. (1976). 
The data matrix for latent root regression is as in Section 10.2 where the first 
column represents the dependent variable and the next k — 1 columns 
represent predictor variables. Let the data matrix be denoted by V. Then for 
n observations we have 

Yi x  x 12  X1 k 

Y2 X21  X 22 x2k 

V=• [ 

Yn 

 

X„ I  Xn 2 Xnk  

with the associated matrix of column latent vectors 

PO PI P2 " Pk 

PO0  Poi P02 

Po Pu Pi?. • Pik 

p= P20 P2I P22 

Pokl 

P2k 

• • 

_Pk0 Pk! P2 Pkk 

partitioned along the first row. We assume that all variables are standardized 
to unit length so that the latent vectors are those of the correlation matrix. 
Note that the dependent variable receives the subscript zero rather than 
unity, in the notation of Gunst et al. (1976). The k + 1 unstandardized 

Table 10.8 Four Possible Least Squares Models Depending on Direction of Fit and 
Whether the Dependent Variable is Included or Excluded from the Analysis 

Dependent Variable 
Direction 
of Residuals 

  

included Excluded 

Orthogonal norm Pearson's orthogonal regression Ordinary principal components 
y-norm 	Latent root regression 	Principal components regression 
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principal components are then given by 

[

, 	 k k 

POO I 4-  id Phoxih 	 PuiY1 + E ph,x,h 

k 	 A 

PIMY2 4-  E

• 

 Ph0x2h ZI = POIY2 + E

• 

 Phl x2h 
h -' I 	 h =1 

k 

POkY 	E h  Phk-xlh 

POkY 1  E

• 

 Phk x2h 
h  

PiIkY n E

• 

 PhkXnh 

or Z =VP where Z o  =VP0 , Z i  = VP, , 	Zk  =VP 	latent roots 10  a! 1  
/2  a • - • a /k . Again recall that although the inequality is not strict, the 
probability of obtaining equal roots is arbitrarily close to zero for continuous 
data. For 11., = 0 we have the linear combination 

or 

pooY + p loX, + p20X 2  + • - + p kdik  = 0 

P20X 2 	• 	PkIA/c) = (10_56) 

as in Section 10.2. Thus for any jth zero-variance principal component and 
for any ith observation we have 

V 
Yi —P01

I 
	 = 1, 2, , 	n) 

h — 
(10,57) 

where the matrix X TX approaches singularity as poi  0, that is, the columns 
of the data matrix for the predictors tend to approach linear dependence 
and the relationship being, in the limit, Ehk PhlXih= 0. 

Now let Pi°  denote thc jth (column) latent vector with the first element p oi 
 omitted. Then Eq. (10,57) can be expressed in vector form as 

I 

 

Y , )  -
p 

XP '  01 I"' (i = 1, 2, . 	k) 

PuoY 	E

• 

 phi.xnh yn E

• 

 PhI xnh 
h-1 	 h 

Z k  

where V (i)  denotes that part of Y which is predicted by the jth principal 
component, assuming p1,1  #0 and /i  0. The residual sum of squares can 
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then be expressed as 

(Y - '1:7 (1) ) T(Y - 
)) 

(10.58) 

Usually none of the individual components will by itself be a good predictor 
and an optimal linear combination is sought using the method of Lagrange 
multipliers (Gunst et al., 1976). Let such a combination be 

I ax,,,v ( , )  
i =0 

" 

	

= 	a• XP . 

—x 	 (10.59) 

for some coefficients a = 	a 2 ,. 	, ak ) .  . Equation (10.59) is of the usual 
least squares form where 13 = E 0  ai P", . Imposing the arbitrary constraint 
E k  a i  p 	1 we wish to minimize the Lagrange expression 0(a) = a Aa - i 	c9  
2/1.(aTPri))  - 1), where the latent roots A are functions of the residual sums 
of squares of the least squares fit (see Webster et al., 1974). Differentiating 
and setting to zero yields the expression ackaa = Aa - 21.cei  = 0 or a = 
p.11(i1A- ' so that a i  /i i po.L. We have a1 pa,=1 1  p ill', or 

E criPo l = E 1 1 Pi,1 P 
j-u 

= II Eli ' P1211 
i-ir 

= 

so that the Lagrange multiplier is given by 	= (E ik_ 1,17) - I . The ordinary 
least squares estimator can therefore be expressed as 

i 
k 

t -1)i 	 h 
h I) 

(E 	1)E 1 poi pli? 

h 
(10.60) 
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Since 1: = (P 260h ), Eq. (10.60) can be written as 

E 1  r- 1  P01 l4 

 

1-0  

 

(10.61) k 
 V (P
2
0h) 

h 0 	h 

which is a function of the latent roots and the latent vectors only. Note that 
solutions of the normal equations can be obtained regardless of whether 
X rX is singular or not by simply omitting zero latent roots. Equation (10.61) 
thus provides an alternative expansion of the y-norm least squares regres-
sion coefficients using latent roots and latent vectors of both the dependent 
and independent variables. The general idea here is to omit terms that 
correspond to small latent roots, but only those terms for which the latent 
vector element is small as well, since these terms correspond to multicol-
linear (nonpredietive) correlation amongst the predictors (Fig. 10.4). As is 
the case for principal components regression (Eq. 10.50), the latent root 
least squares estimator is efficient but biased. 

Example 10.5 Referring to the car data of the previous example we have 
the latent roots and latent vectors of the dependent and predictor variables 
as in Table l0.9 where the matrix of latent vectors is transposed for 
convenience. The least squares coefficients of Example 10.4 can be re-
produced using Eq. (10.61)-the coefficient p i , for example, can be 
expanded as 

4 

if3  1 = I /, 'Tho u  
f 

where 

4 	2 
c  E  (Poi) 

i-o 

Table 10.9 Latent Roots and Latent Vectors of the Dependent and Predictor 

	

Variables of Example 10.4 Where phi  (Is = 0, 1, 	, 4) is the Element of the hth 
Column 

Is  X X2 X3 X, 

/a  = 3.68875 -.48160 .49458 .47290 .45393 -.30621 
/ 1  = 	.95657 -.18642 .15774 -.27717 .46272 .80587 
12 = 	.18179 .69848 .34260 .55554 -.01321 .29317 
13  = 	.11719 .37872 .54712 -.62099 .21294 -.35533 
14  = 	.05571 .31938 -.56017 .07273 .73097 -.21117 
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We have 

-(.48160)(.49458)  
3.68875 

(.37872)(.54712) 
 .11719 

-.06457 - .03074 + 

3.08446 - 3.30671 

-.22225, 

(.18642)(.15774) (.69848)(34260)  
.95657 	4- 	.18179 

(.31938)(56017) 
 .05571 

1.131635 + 1.76811 - 3.21140 

(-.48160) 2  (-.18642) 2  (.69848) 2 	(.37872) 2  (.31938)2  
C = 	 + 	 + 	+ 	+ 3.68875 	.95657 	.18179 	.11719 	.05571 

= .068875 + .03633 + 2.68372 + 1.22390 + 1.83097 

= 5.843795 
so that 

.22225  
131  - 5.843795 

= .03803 

The remaining coefficients can be expanded in a similar manner. The main 
idea here is the same as for principal components regression, that is, we 
wish to omit terms in the expansion which are responsible for multicol-
linearity. In view of Section 10.3.2 this corresponds to small I , and small poi  
values. Webster and Mason (1974) recommend deletion of terms for which 
1 .05 and poi  :5..10, which is not realized for our example (Table 10.9), 
although muIticollinearity is present. To be consistent with principal 
components regression (Example 10.4) we omit the last two terms, which 
yields the latent root regression coefficients 13 1; = -.4378, I3 2  = .7626, /3 3  = 
- .0718, and 0 4* 1.0094. Comparing these with the f3, of Example 10.4 it can 
be seen that latent root regression tends to yield values that are not 
necessarily close to the principal components regression coefficients-indeed 
one of the coefficients (f3 2  -= .7626) is of the wrong sign. A disadvantage of 
latent root regression is that it is difficult to test individual significance of the 
coefficients by an adjusted r statistic, although a global F value can be 
computed. Given the more complex nature of latent root regression, it does 
not appear to be as advantageous as principal components regression in the 
present context, although in practice it is always a goad idea, when dealing 
with multicollinearity, to examine several different estimators. 

10.3.4 Quadratic Principal Components Regression 

Principal components regression can also be employed with a quadratic 
regression equation to more easily identify turning points and multicollinear 
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relationships. Consider a quadratic regression model in k predictor variables 

Y = 	Pix E E 13f.1x + e 	 (10.62) 

For a sample of it observations Eq. (10.62) can be expressed in matrix form 
as 

V =130- X13 + XBX 1. -f-e 	 (10.63) 

where = (f3,, f32 , . . , f3k )T and 

1 
1321 	' ' 	13 2 ki 

1 
2 i3k2 

41111i 

1 

• 

..... -12- 13k I 	-113k 2 	• • • 	f3k k 

is a symmetric matrix of coefficients for the purely quadratic terms. Let P 
denote the (k X k) matrix of latent vectors of X TX. Then Eq. (10.63) can be 
rewritten (rotated) as 

Y = Po + (XP r )( 113) (XP I-)(PBPT )(PX T ) 

= p, + zy  + ZOZ e 	 (10.65) 

where Z = XPT , = PP, and 0 = PBPT  are the principal components for X, 
the vector of principal component regression coefficients, and the diagonal 
matrix of latent roots of B, respectively, Although B is symmetric, it is not 
necessarily positive definite, so that 0 may contain both positive and 
negative terms. To illustrate the procedure let k = 2. Then Eq. (10.65) can 
be written in vector form as 

Y =13o + 	72Z2 01Z 21+ 02Z22+ 	 (10.66) 

which is a quadratic form in the principal components Z 1  and Z 2 . The 
canonical form (Eq. 10.66) is often employed in the so-called response 
surface methodology to analyze optimal experimental conditions (see Box 
and Draper, 1987). This can be achieved more efficiently using Eq. (10.66) 
since we do not have to worry about the cross-product interaction terms. 
Negative Oi  indicate the existence of a maximum. Positive Oi  indicate a 
minimum, and a positive and negative coefficient reveals the existence of a 
saddle point. Note also that by rotating the quadratic form we increase the 
degrees of freedom since we do not have to estimate the cross-product 

(10.64) 



1 

B= 

 
Jill 	-i/321 

2 132 ' 
1 

P11 P1 7  

P21 P22 
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I.EAST SQUARES REGRESSION WITH ERRORS IN VARIABLES 	 671 

terms. The original linear coefficients can also be expanded as in Section 
10.3.1, whereas the quadratic coefficients are given by B=P1 OP or 

(0 11) 211 4" 02 Pi2) 	(0 119 11P2I+ 02P12P22) 

OIPIIP21+ 621712P22) 	(0 1 p 1 	021).22) 

(10.67) 

The extension to k> 2 predictors is straightforward. 

10.4 LEAST SQUARES REGRESSION WITH ERRORS IN VARIABLES 
AND MULTICOLLINEARITY 

When the predictor variables are highly correlated but free of residual error, 
all alternatives to ordinary least squares lead to biased estimators, and 
optimality is considered in terms of the minimum mean square (MMS) 
criterion. When both multicollinearity and errors in the variables are 
present, however, the regression hypothesis is altered in a fundamental way. 
Here, although the observed predictors are not perfectly correlated because 
of residual and/or measurement error, the true values may be assumed to 
be linearly dependent owing to the presence of a smaller number of 
unobserved predictor variables or dimensions. The objective then becomes 
to estimate the true values together with their least squares regression 
coefficients with the dependent variable. This can be done in one of two 
ways, using maximum likelihood factor analysis, depending on whether (1) 
the dependent variable is excluded (Basilevsky, 1981) or (2) the dependent 
variable is included (Scott, 1966). 

10.4.1 Factor Analysis Regression: Dependent Variable Excluded 

The most straightforward approach to factor analysis regression (FAR) is to 
extend the principal components regression model of Section 10.3.1. Let X 
have a k-dimensional normal distribution N(0, 1,) and let X = x + A where x 
denotes the true part of X and E(T)  is diagonal. Factor analysis regression 
then consists of the joint hypotheses 

Y=X11 -f- n 	 (10.68a) 

X = + a + A 	 (10.68h) 
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such that E(X) = x  = 4)a is of rank r < k, E(4)T) = 0, 4) N(0, I) is a 
(n x r) matrix of standardized and uncorrelated factors (scores), and a 
represents a (r x k) matrix of factor coefficients (loadings). To initially 
simplify the presentation we assume that both cl) and a are known. The 
regression specification is therefore conditional on the acceptance of the 
factor model (Eq. 10.68b) so that although the observed explanatory 
variables X 1 , X2 ,. 	 , Xk  possess a nonsingular distribution, the true values 

,v2 , 	. 'Xi  lie in a subspace of dimension r < k. Since x is not of full 
rank, the k population regression parameters also lie in an r-dimensional 
subspace and we denote these values by fr. Our purpose then is to estimate 
ir on the assumption that the true regression equation is given by 

= x13* e 	 (10.69) 

where — N(0, cr 21), Y is a (n x 1) vector of sample observations on a 
dependent random variable Y, x is the unobserved matrix of true values, 
and e is the residual vector for Y. 

When x is of full rank, fr = (3 and the normal equations can be solved in 
the usual way, allowance being made for errors in the predictor variables. 
Also, the best linear minimum norm (BLMN) estimator can be obtained 
when X contains no error but (X TX) is singular, by considering the 
generalized inverse (X TX) -  (e.g., Basilevsky, 1983; Graybill, 1983; Searle, 
1982). In the factor analysis case where both singularity and measurement 
error are assumed to be present it is still possible to obtain an unbiased 
BLMN estimator of gr. The unique generalized inverse of x is given by 

x 	(aaT 4) -r 	 (10,70) 

(see Albert, 1972), and postmultiplying by Y yields the FAR estimator 

aT(aaT ) - 1 4) Ty  

= aT(aaT ) g 	 (10.71) 

where .4 = cl) T Y is the (r x 1) vector of correlations between 4) 1 ,.,40 2 , • - • , 
and Y. Premultiplying by a then yields the inverse relationship ail* = 4. The 
inverse x - , which provides a unique solution to the singular least squares 
problem, replaces the generalized inverse (X TX) -I XT  normally used in 
regression, and it is easy to show that in the nonsingular case x -  = 
(XTX) ' I V. Also when a = A = L' PT  we obtain the PCR estimator. 

Equation (10.71) re?resents an estimator of the orthogonal projection 
=Pa p where P = a (aaT) 'a is the projection operator on the range 

space R(U T)  of a and (I — Pa ) is the projection operator on the null space 
N(aT ) so that x(I — Pa ) = 0. Here ft* is also the unbiased estimator of 
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p* 	p since 

E[aTotaT)-- 146  Tyi 

Eta T(aa T) --1 4.7-043  + 

= E[aT(aa T) -- i do Txrii  E[a
T(

act  Ty 141  11 .70 

= E[aT(aaT) --- 1431 7.( 4ba ,d)ri] E[aTotoeTy i4o T701 

= aT(aa  Ty  l ap  + a  T(aa  T )  - l Eot.T 410ii  aT(ciaT)-1 EcitiTio 

= 

= 	 (10.72) 

since E(4•T 	E(411. A) = 0. Also, i" =i* is an unbiased estimator of 
E(Y) = xtr since E(Y) = E(x13*) = xE(13*) = x13*. Note, however, that the 
projection of the OLS estimator is onto R(a 1 ) is a biased estimator of ir 
since 

E(Pa l) = Elt(X TX) -  'X TY] 

=Eit(x -rx)•xT(xit + 1)1 

=Pa p+ ERX TX) -I (+a + 	111 

=pu p+ P 	a E(4) T q) + 1. -1 E(A r ig) 

Pu  + (10.73) 

where E(I TN) #0. Finally, the covariance matrix of fl* can be obtained as 

WW1*  R ) 1= a L.  al  E(EE) I  ( aTra 
= a- r(aa  Ty  2 0,2 1 	 (10.74) 

When the true model is of full rank it can be shown that Eq. (10.74) reduces 
to the usual OLS covariance matrix cr 2 (X TX) -1 , and when a = A = 1, 112 P I 

 we obtain the PCR covariance matrix cr2 (PL - I PT ). On the usual assumption 
of normality of Y Eq. (10.74) can be used to compute interval estimates of 
13* and to test hypotheses. 

Our development has so far assumed that the true population values of 4) 
and a are available. When this is not the case, both 4)  and a arc estimated 
from sample values and are replaced by their estimates 4) and il In this case 
the results given above still hold, on the assumption that the loadings Cif and 
errors are uncorrelated, which is the case in large samples. The factor 
scores 4) however are usually not required since the FAR estimator can be 
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obtained more directly from Eq. (10.71) as 

= a '(&a' ) - 2ax 	 (10.75) 

since it is straightforward to verify that 

= (10.75a) 

Factor analysis regression can also be considered within the context of 
optimality of errors-in-variables models, as is demonstrated by the following 
theorem. 

THEOREM 10.5 Let O f  be an instrumental variable estimator of II when 
(1) there are fewer instruments than variables, and (2) the instruments are 
maximally correlated with the predictor variables. Then 

11*  = Pt. lit 

PROOF. Premultiplying Eq. (10.68a) by 4) 1  yields the normal equations 

4) TY = 4)TXp + 4)Tiq 

= 4)1 X13 

= 

where by assumption 4) TX 00. Thus 11, is the optimal instrumental variables 
estimator since the common factors 4) are maximally correlated with X. 
Premultiplying by otT(auT. - 

) ' then yields aT(aaT) - 14)Ty = ot T(aaT) - l ap,  

or 13*  = Ur. 

When the number of instruments is the same as the total number of 
predictors it is well known that 0, is an unbiased estimator of I. This is 
clearly not the case here since, by the very nature of the ML factor model, 
the number of common factors is always less than the total number of 
variables. 

10.4.2 Factor Analysis Regression: Dependent Variable Included 

An alternative method for factor analysis regression, as was the case for the 
principal components regression model of Section 10.3.3, is to include the 
dependent variable Y in the factoring process. The model can be written in 
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partitioned form as 

Y 	a ll 	a 12 	• • • 	a 1, or 	011 	61  
I • 

X I 
a21 	a22 	a 1 –412 

X2 	 + 62  

ak+1,2 	 + I r Crk+1.1 	 "1 	 _Or 	ek i_ I Xk 

or 

Y=a 1 4)+€ 1  

X = a z. + € 2 	 (10.76) 

where a, is the (I x r) vector of loadings for the predictor variables and cD is 
the (1 x r) vector of common factors for both the independent variable Y 
and the k predictor variables X. Since the predictors are subject to 
measurement error and multicollinearity, the objective is to use a factor 
model to estimate the true part of X and to use their values in an ordinary 
least squares regression model. The model was originally considered by 
Scott (1966) and Lawley and Maxwell (1973)— see also and Isogawa and 
Okamoto (1980). Using Eq. (10.76) and assuming € 2  represents the errors 
in the predictors, the true values can be estimated, for a sample of n 
observations as X = 4)& 2  where &2  are the maximum likelihood estimates of 
the factor loadings and cI) is an orthogonal matrix of factor scores. The 
Scott–Lawley factor analysis regression estimator can then be expressed as 

13 . = 

(61 -10T41) 1 6141,Ty  

(412Tei2) - i st2T43,T(peil  + c I)  

(10.77) 

since the common factors and the errors are uncorrelated. Equation (10.77) 
represents the vector of regression coefficients of the loadings & 2  on the 
loadings vector a 1  and does not involve the factor scores 41). Alternative 
expressions for Eq. (10.77), which require the estimation of 0, can also be 
found in Lawley and Maxwell (1973). For the bivariate case with one 
common factor (k = 2; r= 1) it is straight-forward to show that /3* = fer 2 

 (Exercise 10.13). 

THEOREM 10.6 Let X=x+41 as in Section (10.4.1). _Then 0* is a 
consistent estimator of the true population coefficient when X is a consistent 
estimator of x, that is, when the common factors correctly estimate x. 

675 
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PROOF. We have from Eq. (10.77) 

iv= 	Y 

=Cic lirk`ota, 

so that 

"- _"T  
p lim =p lim(X

T 
 X) 

1
X Oa +p lim(

T  
X X) X € 

"T" -I 	̂T 	 "T" _1" T, 
= p lim(X X) p lim X (1)ii + p lim(X X) X € 

" 
=p lim(X X) p lim 

(4:1.2r4:1 2) -1 a2a1 

= 

where p urn 	0. 
Once 13* are known, the predicted values of the dependent variable can 

be obtained as Y = X13* = (1)& 2 0* where 4) is an (n x r) matrix of factor 
scores (Section 6.8). When the scores (I) are estimated using Eq. (6.95), 
however, 11  is an inconsistent estimator of the true values of the dependent 
variable (Lawley and Maxwell, 1973). Also Chan (1977) has shown that Eq. 
(6.101) leads to inconsistent estimates of the dependent variable, and 
provides one that is consistent. Since using factor scores (Eq. 6.101) leads to 
the minimization of E(Y — Y) 2  however, inconsistency may not be an 
overriding factor because of the increased efficiency of the estimator 0* 

10.5 FACTOR ANALYSIS OF DEPENDENT VARIABLES IN MANOVA 

A regression equation will usually consist of k predictor variables and a 
single dependent variable. At times however p> 1 dependent variables are 
available which are correlated with each other, and carrying out a set of p 
separate regressions will provide incorrect estimators and tests of signifi-
cance. The situation occurs in experimental designs when more than one 
response is observed for the same set of experimental conditions and a 
multivariate analysis of variance (MANOVA) is appropriate (Dempster, 
1963), or in the context of observational data when carrying out a path 
analysis between two sets of variables (Chung et al., 1977). The multivariate 
multiple regression model (e.g., see Finn, 1974) can be written as 

Y = XB + E 	 (10.78) 

where V is (n x p), X is (n x k), B is the (k x p) matrix of coefficients, and E 
is the (n x p) matrix of residual errors. When the columns of V are highly 
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correlated, they cannot be analyzed individually because of the resultant 
correlation of the residual errors, since this results in wider confidence 
intervals for the elements of B. Also, the columns of Y frequently represent 
alternative measurements on a smaller number of common traits or 
dimensions, which renders individual interpretation difficult. This is the 
case, for example, when a set of growth curves are observed under 
experimental treatment, the so-called repeated measures designs (Chapter 
7) described in Rao (1958), Rao kind Boudieau (1985), Church (1966), and 
Snee (1972). 

A way out of the difficulty is to carry out a factor analysis of Y and to use 
the factor scores as new dependent variables. Since the factors are orthogon-
al, Eq. (10,78) can be replaced by r<p separate regression equations and 
standard testing of significance can be carried out, under the usual assump-
tions. The method was initially proposed by Rao (1958) in the context of 
gtowth curves, and a sequential test of significance based on principal 
components was developed by Demster (1963). Consider Eq. 10.78 where 
some (or all) columns of Y are highly correlated, but the predictors X are 
not. Let L and P be the latent roots and latent vectors, respectively, of Y TY, 
that is, p-ryTy_ v= L. Post multiplying Eq. (10.78) by P yields 

VP = XBP + EP or z ,-n+ q 	 (10.79) 

where Z = YP is the (n x p) matrix of principal components of Y, = EP is 
the transformed matrix of errors and 6 is the new matrix of regression 
coefficients. We have 

g=(X1 X) X'Z 

= (X TX) I X T(YP) 

= BP 
	

(10.80) 

which may be compared to Eq. (10.46). Since multicollinearity among the 
dependent variables is assumed not to be a problem, it is not usually 
necessary to expand B in terms of the 6. Also note that the deletion of 
dependent variables does not . affect the remaining values of B. Equation 
(10.79) implies a partition of Y Y into the predicted and residual matrices of 
sums-of-squares since 

L = PT YT YP = P TIITXT P + PTETEP 

=L+L E 	 (10.8)) 

say where L, L, and L E  are diagonal. 
The main reason for using principal components in place of the observed 

variables is to transform the covariance matrix of E into diagonal form and 
to replace Eq. (10.78) by r<p separate regressions. Since observed 
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variables are replaced by component (factor) scores, it becomes important 
to identify the factors in terms of real, substantive behavior. This may imply 
a full-blown factor analysis of Y, including rotation of the loadings and 
scores to identifiable form. If an oblique rotation is chosen, however, this 
may not completely alleviate the original problem of dependence among the 
Y variables, but since oblique factors are usually less correlated than the 
original variables, a factor analysis of Y may still prove of some value. 

10.6 ESTIMATING EMPIRICAL FUNCTIONAL RELATIONSHIPS 

It was seen in Section 10.2 that principal components can be used directly to 
estimate a linear regression function, by using latent vectors that are 
associated with small latent roots. Another use of the PC expansion is to 
estimate an intrinsically linear empirical function of the form 

(10.82) 

where the ath  and z h*j  are the loadings and scores of X TX respectively (see 
Tucker, 1958). Alternatively, a ML factor model can be used on the usual 
assumptions (Chapter 6), or the analysis may be based on the inner product 
matrix Y TY (Sheth, 1969) or any other matrix of Euclidian measures of 
association. Equation (10.82) thus represents a standard factor analysis of a 
(n x k) data matrix, and nothing new of a theoretical statistical nature arises 
in the context. Several applications however are of particular interest when 
analyzing growth curves or certain experimental data. 

The use of principal components to estimate functional growth curves is 
due to Rao (1958) and represents a special case of a factor analysis of 
multivariate data when the rows (columns) of the data matrix Y are ordered 
over time and/or space (Section 7.2). The original data can represent 
sample survey observations or may emanate from controlled experiments, 
the so-called repeated measures designs, where a sequence of measurements 
is taken for each experimental unit and the resultant observations are 
analyzed using a MANOVA model (Section 10.5). Since the data are of the 
type discussed in Chapter 7, the reader should consult the first four sections 
of the chapter. Also, since growth curves represent time functions it usually 
does not make sense to employ the usual rotations of the factor loadings or 
scores (Section (5.3). A different type of transformation however may at 
times be appropriate in order to distinguish between true or explanatory 
functions and random noise. The relevant criterion in the context of 
correlated observations is that of "smoothness," which may be defined as 

IF 

sm(y)= E 	--y 2 
	

(10.83) 
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as proposed by Arbuckle and Friendly (1977), where Y = (y 1 , y2 , „ . , y„) T  
is an observation vector ordered over time (or space). In what follows we 
assume, without loss of generality, that observations are ordered over time. 
Since a first difference of a series represents a linear transformation we can 
write 

1 0 0 • • 0 0 v  
• • 

• • 	• 
0 
0 

(01[; 12] 

Yn I —  YR 0 	0 1 —1 Y. 

= DY 

say, so that Eq. (10.83) can be expressed in matrix form as A TA. = Y TDTDY 
where Y TY = 1. Now, consider a (n X k) data matrix X such that XP = Z 
where P and Z are the latent vectors and component scores, respectively. To 
transform the component scores to smoother form we take first differences 
A = DZ and minimize 

Al  = ZIDTOZ 

= PT(X 1  DTDX)P 	 (10.84) 

so that the smoothest function is given by the principal component 

Z: DXPk 	 (10,85) 

where Pk  is the latent vector that corresponds to the smallest latent root 1k  of 
X 1 DTDX. The smoothness of the transformed component scores is thus 
measured by the smallest latent root tk . Higher-order differences can also be 
minimized in a similar fashion, for which the reader is referred to Arbuckle 
and Friendly (1977). 

Exampk 10.6 Sheth (1969) and Arbuckle and Friendly (1977) consider 
a sample of n = 154 families who bought a certain commodity on 60 (or 
more) occasions, the commodity consisting of several competing brand 
names. For each family the first 60 purchases are grouped into k = 10 blocks 
or "trials" of six purchases each. Within each block the frequency of 
purchase of a given brand (say Brand A) having the highest market share is 
then calculated, resulting in a (154 x 10) data matrix Y with typical element 
y ij  = number of times family i purchased Brand A during the jth time block 
or "trial," so that 0 Lsy o  :5_ 6. 

The PC analysis is carried out on the average inner product (1/n)(Y rY) 
(Section 2.4.1) in order to preserve information concerning level and 
variability of purchase (Table 10.10). Since we wish to observe the time 
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Table 10.10 The Averaged Inner Product Matrix (1/n) (Y'Y) of Brand A 
Purchases 

Trials 

Trials 

1 2 3 4 5 6 7 8 9 10 

1 1430 1176 1157 1155 1126 1144 1131 1138 1176 1030 
2 1176 1306 1148 1149 1079 1116 1163 1082 1139 1031 
3 1157 1148 1318 1197 1122 1144 1150 1136 1182 1034 
4 1155 1149 1197 1387 1149 1216 1233 1208 1242 1095 
5 1126 1079 1122 1149 1327 1221 1192 1146 1220 1091 
6 1144 1116 1144 1216 1221 1516 1318 1317 1350 1200 
7 1131 1163 1150 1233 1192 1318 1495 1312 1328 1210 
8 1138 1082 1136 1208 1146 1317 1312 1505 1373 1216 
9 1176 1139 1182 1242 1220 1350 1328 1373 1595 1315 

10 1030 1031 1034 1095 1091 1200 1210 1216 1315 1377 

Source: Sheth, 1969: reproduced with permission. 

behavior of families, the component loadings rather than the scores are of 
interest and these are given in Table 10.11, together with their associated 
latent roots. Also, since the association matrix consists of inner products, 
the loadings for the first PC reflect the general mean level of purchases and 
the remaining loadings are the direction cosines between the trials and the 
principal components. The loadings for the first r = 4 components of Tables 
10.11 and 10.12 can be plotted and compared for relative smoothness 
(Exercise 10.10). 

Table 10.11 Principal Component Loadings of the Inner Product Matrix (1/n) 
(Y TY) and Their Associated Latent Roots 

Principal Component Loadings 

Trials Z, Z, Z, 14  Z, Z6  Z7 19  Z9  1 10 

Y, 2.70 .982 -.609 .573 -.383 .212 .144 -.234 -.052 .222 
2.64 .824 -.014* -.402 .174 .503 -.330 .217 - .055 -.464 

Y„ 2.69 .824 .013* -.310 .036 -.518 -.125 .442 .329 .390 
Y i  2.79 .370 .410 -.452 -.106 -.435 .053 -.672 -.171 -.112 

2.71 .161 .298 .594 .676 .213 .469 .132 .027 -.263 
Y6 2,92 -.455 .530 .568 - .012 .160 -.676 -.134 .114 .090 
Y 7  2.91 -.339 .460 - 	.321 .008 _672 .386 .094 -.214 .362 
YR  2.89 -.628 .026. .003 - .828 -.077 .249 .191 .324 -.335 
V, 3.01 -.658 -.461 .002 .001 - .384 - .159 .250 -.662 .017 
Y TO 2.70 -.766 -.871* -.274 .501 .088 .002 -.295 .427 .077 
/, 12058.6 620.4 284.4 253.3 243.9 221.7 163.4 150.8 142.9 116.4 

Source: Arbuckle and Friendly, 1977; reproduced with permission. 



ESTIMATING EMPIRICAL FUNCTIONAL RELATIONSHIPS 	 681 

Table 10.12 	The First Six Components of Table 10.11 Using First Differences 

Trials 

Principal Component Loadings 

Z 

Y t .3196 .4518 -.4914 .4282 .1525 .3198 
Y2 .3126 .3498 -.2497 .0557 m0518 -.5221 
Y3 .3067 .3099 .0232 -.5024 -.1175 .1039 
Y4 .3120 .1943 .2079 -.4484 -.3267 .0371 
Y 5  .3081 .1103 .3756 -.1017 .6458 .0871 
Y b  .3198 -.0993 .4899 .3619 .1508 ,1418 
Y 7  .3252 -.1021 .2639 .3094 -.2494 -.5333 
Y H  .3133 -2553 -.0010 .2342 -.5258 .3845 
Y 9  .3354 -.4052 -.2211 -.2046 .0656 .2621 
Y(0 .3084 -.5272 -.3909 -.1621 .2660 .2904 

Source: Arbuckle and Friendly, 1977; reproduced with permission. 

Example 10.7 An example of estimating the dimensionality of energy-
free chemical relations is given by Hutton et al. (1986) who consider shifts in 
resonance frequency of substituted phenols and 2-nitrophenols. The data 
matrix for 2-substituted nitrophcnols is given in Table 10.13. The initial 
objective of the principal components analysis is to determine the number of 
factors required to reproduce the substituent parameters (Eq. 10,86), free of 

Table 10.13 13C Chemical Shifts of 2-Substituted Shifts of 2-Substituted 
Nitrophenols (ppm) from Internal TMS 

Substituent 

2-Nitrophenol 

C-1 C-2 C-3 C-4 C-5 C-6 

H 152.6 136.6 125.2 119.5 135.6 119.4 
NH, 144.5 135.6 107.4 141.9 124.3 120.2 
OCH, 146.9 135.8 107.7 151.7 123.7 120.4 
CH, 150.4 136.0 24.6 128.8 136.4 119.2 
F 148.9 136.2 111.5 153.9 122.8 120.6 
Cl 151.2 137.2 124.5 122.5 134,9 120.9 
Br 151.4 137.7 127.2 109.3 137,5 121,3 
COCH, 155.8 136.8 126.0 128.2 134.4 119.2 
CHO 157.1 137.2 128.3 128.0 134.6 120.0 
COOH 156.0 136.6 127.2 122.1 135.9 119.6 
COOCH 3  156.2 136.5 126.9 120.6 135A 119.6 
CN 155.6 137.5 130.2 101.5 137.9 120.3 
NO 2  157.6 136.4 122,0 138.5 129.5 119,9 
C(CH,), 150.3 135.9 120.9 142.1 133.0 119.1 
1 151,8 138.2 132.8 79.9 143,2 121.5 
COCJI 5  155.9 136.9 127.8 127.8 136.1 119.4 
NHCOCH 3  148.5 135.4 114.8 131.5 127.3 119.7 
C6Hs  151.6 137.3 122.7 131.5 133.5 119.8 

Source: Hutton et al., 1986; reproduced with permission. 
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Table 10.14 	Varimax Principal Component Loadings of the Correlation Matrix of 
Data of Table 10.2 

z: z; z:  
0.302 0.938 -0.148 0M78 -0.009 -0.006 

C 2  0.614 0.355 0.505 0.491 0.005 0.002 
C 3  0.812 0.547 0.005 0.164 0.096 0.076 
C4  -0.904 -0.142 -0.337 -0.016 0.222 0.008 
C s  0.935 0.292 0.022 0.155 0.121 -0.025 
C 6  0.105 -0.158 0.980 0.051 -0.014 -0.000 
1 1  2.830 1.436 1.353 0.301 0.073 0.007 

Source: Hutton et al., 1986: personal communication. 

experimental error. Using the varimax rotation (Section 5.3.1) the correla-
tion loadings of Table 10.14 indicate thc presence of three systematic 
dimensions and the data of Table 10.13 can therefore be fitted by the 
equation. 

3 

hi = y +1 
h•K I 	in  

(10.86) 

The variances are usually set to unity in order to avoid the dominating 
variance of the ipso and ortho-like portions of thc molecule, that is, the 
analysis is based on the correlation matrix. A number of variants of the 
method are also available-for a general overview of related applications in 
chemistry see Malinowski (1977), Malinowski and Howery (1979), Kowalski 
et al. (1982), Kowalski and Wald (1982), and Johnels et al. (1983; 1985; 
Strouf, 1986). 

10.7 OTHER APPLICATIONS 

The previous sections describe what may be termed the "standard" uses of 
factor models in estimating least squares planes and functional forms. Other 
applications and variants are also possible and these may be found in the 
literature of the various disciplines that employ multivariate data. Several 
specialized applications however are of particular interest and these are 
described briefly in the following sections. 

10.7.1 Capital Stock Market Data: Arbitrage Pricing 

Factor models can be used to analyze rates of returns on portfolio 
investments if we assume the existence of systematic risk factors that 
influence some or all of the stock returns over time. (Roll and Ross, 1980; 
Sharpe, 1982; Kryzanowski and To, 1983). Let Y represent a (T X k) matrix 
of returns for k investment stocks over T time periods. Then if there exist 
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r < k unobserved risk factors 4) 1 , 4)2 , 	, tttr  a ML factor model can be 
used to expand the jth column (asset) of Y as 

Y, = E(Y) a1101 a1 2+2 + • • • + a. 	e jr r (10.87) 

where Wild is the expected return on security j, cr i„ a1 2 , .. ,a11. are ML 
factor loadings, and ei  (j =1, 2, . , k) are uncorrelated error terms 
(Chapter 6). 

In matrix form we have the equations X i  = (Daj  + ei  where Xi  = Yj  – Y. 
The loadings are known as "reaction coefficients" and measure the sensitivi-
ty of the jth stock to the particular risk factor. In practice, in the finance 
literature an unnecessary duplication occurs, since the common factor scores 
(Dare first estimated and then used as regressor variables for X I , X 2 , . . . , Xk 
to test the significance of the common factors. 

Once the reaction coefficients are estimated, the second state is to 
compute the risk premium A i  for the ith common risk factor. This is done by 
computing T cross-sectional regressions of the rows of X (or Y) on the 
(k x r) matrix of loadings et (or the regression coefficients of factor scores on 
the stocks) as 

X ! la !  + g ! 
 X2  = 	+ 8, 

X r  = ea r  + 

(10.88) 

where X1 	= 1, 2, .. 	T) are row vectors of X, that is, we estimate 
X I  = & + 8 where A is the (r x T) matrix of coefficients to be estimated. 
The columns of A. are then averaged to obtain the final estimates of risk 
premia A 1  i2 , . , A, , one for each common factor. Using Eq. (10.88) the 
risk premia can be used to calculate the cost of capital of each asset. 

Example 10.8 Arthur et al. (1988) (Table 10.15) use the ML factor 
model to price k = 24 agricultural assets over T = 35 quarterly time periods. 
The k = 24 assets are then regressed on the common factors to yield the 
reaction (regression) coefficients shown in Table 10.16. To facilitate inter-
pretation the rotated varimax correlation loadings are given in Table 10.17. 
Using the reaction coefficients of Table 10.16 the (average) premia are 

= .089, A2  = .013, A a  = .073, and A-4  = .123. Quarterly premia for each 
asset can then be estimated by using the A i  in Eq. (10.88)—for example, the 
quarterly premium for gold is 

•12148(,089) – .04072(.013) + .02489(.073) + .02563(.123) =0151 

or 1.51%, and so forth. 
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Table 10.15 Standardized r =4 Common Factor Scores of a (35 x 24) Matrix of 
Rates of Returns for 24 Assets 

Quarter 403 

1 
2 0.2206 0.6448 0.3988 0.6947 
3 0.0831 -0.5684 0.0940 - L5416 
4 -0.5848 -1.5549 0.2851 -1.4378 
5 -0,0691 0.4814 -0.4741 0.7246 
6 0.5386 -0.3885 0.0588 0.5358 
7 -0.471 , 3 -2.8349 0.8227 0.4169 
8 -1.0202 0.6940 1.2561 - 0.4904 
9 -0.9484 1.1693 1.6122 1.6140 

10 1.1061 1.0887 -0.0246 1.8018 
11 0,9823 -1.0558 1.9362 0.2047 
12 -1.4182 0.2694 0.3441 0.4935 
13 0.2973 0.4914 -0.3952 1.9335 
14 0.1527 1.2488 -2.0068 0.0381 
15 0.6642 0.2491 2.0883 - 1.3126 
16 -0.6465 0.2170 0.0888 -0.3827 
17 0.4279 -0.4399 -0.2547 0.0143 
18 -0.4817 0.2739 -0.2310 -1.3495 
19 2.29 i 0 1.5568 0.2729 1.3130 
20 0.9592 1.4059 -0.8678 -0.6440 
21 -0.5042 0.4364 -1.4520 -1.0298 
22 0.1073 -0.0645 -0.9355  0.2244 
23 -1.3470 2.3355 -0.2553 0.2789 
24 -1.1140 -0.2886 1.8936 -1.5368 
25 -1.2706 0.0991 -0.2689 -0.4798 
26 -0.3125 0.2347 -1.0074 0.9138 
27 0.0289 -1.1595 -0.7505 0.0182 
28 2.5445 -0.6526 0.4453 -1.2220 
29 1,5062 0.1996 0.1875 0.7910 
30 1.2818 0.9733 -0.4978 -0.33% 
31 -0.0533 0.1469 -1.6843 -1.3172 
32 0.1132 0.5274 1.1267 - 0.6952 
33 -0.9482 0.2101 -0.3624 1.3805 
34 -1.0461 0.4899 -0.3618 -0.2986 
35 0.2351 -1.2169 -1.0808 -0.2737 

Source: Arthur et al., 1958; reproduced with permission. 
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Table 10.16 Estimated Reaction (Regression) Coefficients Using Standardized 
Common Factors and Unstandardized Dependent Variables 

Asset Factor 1 Factor 2 Factor 3 Factor 4 R 2  u 

i (Gold) 0_1214806  -0.04072 0.02489 0.02563 .47 
2 (S & P) 0.051119" 0.00060 -0.00538 0.00472 .83 
3_ (Dow-Jones) 0.058190" 0.00312 -0.00235 -0.00813" .95 
4 (NY Exchange) 0.053539" -0.00036 -0.00086 ---0.00548 97 
5 (American Exchange) 0.078357 -0.00625 0.03969" 0.04535 .44 
6 (Municipal bonds) 0.017848 -0.01592 0.00200 -0.00370 .13 
7 (Vegetables) -0.010425 0.03610 0.00739 0.00225 .05 
8 (Cotton) 0.044173" 0.03173" -0.01563 0,01108 .34 
9 (Feed & hay) 0,008098 0.07916" -0.05848" 0.01949 .66 

10 (Food grains) 0.025862 0.03764" 0.01562 0.01219 .27 
11 (Fruit) -0.041710 -0.01240 -0.00529 0.00292 .09 
12 (Tobacco) 0.214586 -0.24347 -0.15751 -0.15448 .22 
13 (Dairy, eggs) 0.040689" -0.00681 0.01412 0.07048" .32 
14 (Meat) -0,004446" 0.00859" -0.00138" 0.07578" 1.00 
15 (Corn) 0.017764" 0.07848 "  -0.01524 0.01304 .74 
16 (Barley) -O.005655 '  0.09886 0.00854" -0.02264" 1.00 
17 (Steer) -0.002875 0.00986 0,00672 0.05749" .66 
18 (Hogs) 0.003376 -0.01544 -0.00576 0.09544" .53 
19 (Wheat) 0.007072 0.04595" 0.03702" -0.00032 .54 
20 (Mark) -0.003271 0.00300 0.4702" 0.00363 .72 
21 (Swiss franc) 0.000430" 0.00498°  0.07198" 0.00010" 1.00 
22 (Yen) 0.015895 0.00138 0.04448" -0 .01699 .32 
23 (Farmland) -0.000858 0.01011 0.01094 0.00345 .13 
24 (Farmland and dividends)' -0.001071 0.01033 0.01118 0,00356 ,13 

a le = 1,00 for cases wherein onc factor nearly perfectly explains all variations in that asset 
(factor 2 for asset 16, factor 3 for asset 21, factor 4 for asset 14), 
h  Significant at a 90% confidence level. 

Annual returns to farmland included. 

Source: Arthur et al., 1988; reproduced with permission. 

10.7.2 Estimating Nonlinear Dimensionality: Sliced Inverse Regression 

Consider a general equation of the form 

Y =f(p i x, 0,x, . . , 	e) 	 (10.89) 

where Y is the dependent variable, X is a column vector of p predictor 
variables, the are row vectors, and e is the error term. Equation (10.88) is 
assumed to be linear in the unknowns pi  but not necessarily in the predictors 
X. The functional form f is unknown and we wish to estimate the 
dimensionality of the space generated by the values of p i , that is, we wish to 
estimate whether f is linear (unit dimensionality), quadratic (dimensionality 
two), or generally k dimensional. Li (1991) has termed this space as the 
effective dimension reduction (edr) space and has proposed a procedure to 
estimate it based on inverse regression. Li shows that if the p-dim column 
vector is standardized to zero mean and unit variance, the inverse regression 
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Table 10.17 Varimax Rotated Correlation Loading for k= 24 Assets' 

Asset Factor 1 Factor 2 Factor 3 Factor 4 	R " 

4 (New York) 97" 5 0 -6 
3 (Dow-Jones) 95° 10 -3 -9 
2 (S & P) 88" 9 -9 11 
1 (Gold) 62" -15 15 13 
5 (American) 51° 3 27 31 
8 (Cotton) 43 32 -15 14 

11 (Fruit) -27 -9 -2 0 
16 (Barley) 11 99 2 -12 
15 (Corn) 28 76" -19 21 
9 (Feed and hay) 15 61" -46 21 

19 (Wheat) 18 57" 44 5 
10 (Food grains) 29 38 12 15 
7 (Vegetables) -2 22 3 4 
6 (Municipal bonds) 24 -23 5 -7 

12 (Tobacco) 22 -30 -16 -21 
21 (Swiss franc) 1 2 i 00 ' 0 
20 (Mark) -5 2 84" 5 
22 (Yen) 17 -I 51" -18 
23 (Farmland) 2 24 24 10 
14 (Meat) -2 24 -4 97"  
17 (Steers) 0 24 -11 77" 
18 (Hogs) 1 0 -4 72" 
13 (Dairy, eggs) 27 4 9 48 

Values are multiplied by 100. The square of a pattern coefficient represents the direct 
contribution of the factor to the variance of the variable. The sum of these squares across any 
variable represents the commonality or total variance explained. 
6  Values greater than 50. 

Source: Arthur et al., 1988: reproduced with permission. 

curve E(X/y) will fall into this space. The procedure is based on the idea of 
inverse regression whereby instead of regressing Y on X we regress X on Y, 
that is, we have an equation with p dependent variables and a single 
independent variable Y. As V varies E(X/ Y) draws out a curve called the 
inverse regression curve which lies in the p-dimensional space, but which 
also lies close to the k-dimensional subspace. A principal component 
analysis of E(X/ Y) (or of the standardized version E(Z/ Y) will then recover 
the subspace. Li (1991) has developed an algorithm which he calls the 
"sliced inverse regression" (SIR) algorithm, which provides sample esti-
mates of the dimensionality k of the subspace. Given data (y, X r ) (i = 
1, 2, . . n) the algorithm operates as follows: 

1. Standardize X to zero mean and unit variance. 
2. Divide the range of Y into H partitions or "slices" I t , 1, 	, Ill  
3. Within each partition compute the sample mean gh 	= 1, 2, . . . , H). 
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4. Carry out a principal component analysis of the weighted sample 
covariance matrix 

h nh 
	 (10.90) 

where nh  is the number of observations in partition h. Let Pk  (k = 
1, 2, ... , K) be the (row) latent vectors associated with the largest k 
latent roots. Then estimates of the I3 i  are given by 

(10.91) 

where is the sample covariance matrix of X. For further detail and 
simulated examples the reader is referred to Li (1991). 

10.7.3 Factor Analysis and Simultaneous Equations Models 

In this chapter we described applications of factor models when fitting a 
single multivariate function to a set of n observations. Other systems are 
also possible, whereby we have n observations for k independent variables 
which influence a set of p dependent variables, for example, the MANOVA 
model considered in Section 10.5. Here the exogenous treatment variables 
determine the behavior of the dependent experimental variables which are 
observed endogenously (internally) to the experimental system. More 
general models also exist whereby exogenous variables have an indirect 
causal effect on a set of endogenous variable. The initial model, known as 
path analysis, originated with Wright (1934, 1960) in the context of genetics, 
and seems to have been discovered independently by research workers of 
the Cowles Commission (see Koopmans, 1950; Malinvaud, 1966) working 
with econometric models, known as simultaneous equations models which 
deal with two sets of variates. Relations between two sets of variables can 
also be posited in terms of latent traits as estimated by common factors such 
as encountered in psychology, sociology, and other areas of the social 
sciences (e.g., see JOreskog, 1979). Although such uses of factor models are 
of growing importance, (e.g., see Woodward et al., 1984) they lie outside 
the scope of the book and are not considered in the present volume. 

EXERCISES 

10.1 Prove that for Eq. (10.5) we have var(8) = ceNrot where 8 is given 
by Eq. (10.4) 

10.2 Using Theorem 3,3 show that the optimal latent vector at 
corresponds to the smallest latent root of Eq. (10.7). 
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